## **RECEIVED**

By Alameda County Environmental Health 3:33 pm, Oct 06, 2016

# FIRST SEMIANNUAL 2016 GROUNDWATER MONITORING REPORT AND PRB EVALUATION

## REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

**April 2016** 



## FIRST SEMIANNUAL 2016 GROUNDWATER MONITORING REPORT AND PRB EVALUATION

### REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

#### Prepared for:

## EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

#### Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

**April 30, 2016** 

Project No. 2016-02



April 30, 2016

Ms. Dilan Roe. Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Semiannual 2016 Groundwater Monitoring and PRB Evaluation Report of the

Redwood Regional Park Service Yard Site - Oakland, California (ACEH Fuel Leak Case No.

RO0000246)

Dear Ms. Roe:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes the First Semiannual 2016 groundwater and surface water monitoring and sampling conducted on March 21, 2016. In addition to the activities typically conducted during a monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were taken to assess the effectiveness of the Permeable Reactive Barrier (PRB) that was installed in November 2013.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Richard S. Makdisi, P.G.

Principal Geochemist/President

Januar S. Wolding

Matt Graul, Stewardship Manager East Bay Regional Park District

Mouther Grant

cc: State of California GeoTracker database
Alameda County Department of Environmental Health 'ftp' system



## TABLE OF CONTENTS

| Section | Section                                                                               |    |  |  |
|---------|---------------------------------------------------------------------------------------|----|--|--|
| 1.0     | INTRODUCTION                                                                          | 1  |  |  |
|         | Project Background Objectives and Scope of Work                                       |    |  |  |
|         | Historical Corrective Actions and Investigations                                      |    |  |  |
|         | Site Description                                                                      |    |  |  |
| 2.0     | PHYSICAL SETTING                                                                      | 6  |  |  |
|         | Site Lithology                                                                        |    |  |  |
| 3.0     | REGULATORY CONSIDERATIONS                                                             | 10 |  |  |
|         | Groundwater Contamination                                                             |    |  |  |
| 4.0     | FIRST SEMIANNUAL 2015 ACTIVITIES                                                      | 12 |  |  |
|         | Groundwater Monitoring and Sampling                                                   |    |  |  |
|         | Creek Surface Water Sampling                                                          |    |  |  |
|         | Bioventing-Related Activities  Permeable Reactive Barrier (PRB) Monitoring Indicators |    |  |  |
|         | Groundwater and Surface Water Analytical Results                                      |    |  |  |
|         | Reactive Barrier Effectiveness                                                        |    |  |  |
|         | Quality Control Sample Analytical Results                                             |    |  |  |
| 5.0     | SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS                                             | 20 |  |  |
|         | Summary and Conclusions Proposed Actions                                              |    |  |  |
| 6.0     | REFERENCES                                                                            | 23 |  |  |
| 10.0    | LIMITATIONS                                                                           | 30 |  |  |

### **TABLES AND FIGURES**

| Tables          | Page                                                                                      |
|-----------------|-------------------------------------------------------------------------------------------|
|                 | dwater Monitoring Well Construction and Groundwater Elevation Data<br>larch 23, 2015      |
|                 | ical Results of Electron Acceptors and Oxygen Demand in Downgradient lls – March 23, 2015 |
| Table 3 Ground  | dwater and Surface Water Samples Analytical Results –March 23, 201518                     |
| Figures         | Page                                                                                      |
| Figure 1 Site L | ocation Map4                                                                              |
| Figure 2 Site P | lan Showing Historical Borings, Wells and Geologic Cross-Section Locations5               |
| Figure 3 Geolo  | gic Cross-Section9                                                                        |
| Figure 4 Groun  | ndwater Elevation Map – March 21, 201614                                                  |
| Figure 5 Plan V | View of Remedial Barrier Treatment Wall & TPH Plume - March 21, 201619                    |
| A 11            |                                                                                           |
| Appendices      |                                                                                           |
| Appendix A      | Historical Groundwater Monitoring Water Level Data                                        |
| Appendix B      | Groundwater Monitoring Field Documentation                                                |
| Appendix C      | Analytical Laboratory Report and Chain-of-Custody Record                                  |
| Appendix D      | Historical Analytical and Surface Water Analytical Results                                |

#### 1.0 INTRODUCTION

#### PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the first semiannual 2016 groundwater monitoring report along with the annual trend analyses and recommendations for future work.

#### **OBJECTIVES AND SCOPE OF WORK**

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following scheduled activities coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the first 2016 semiannual period from January 1, 2016 to June 30, 2016:

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis

#### HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

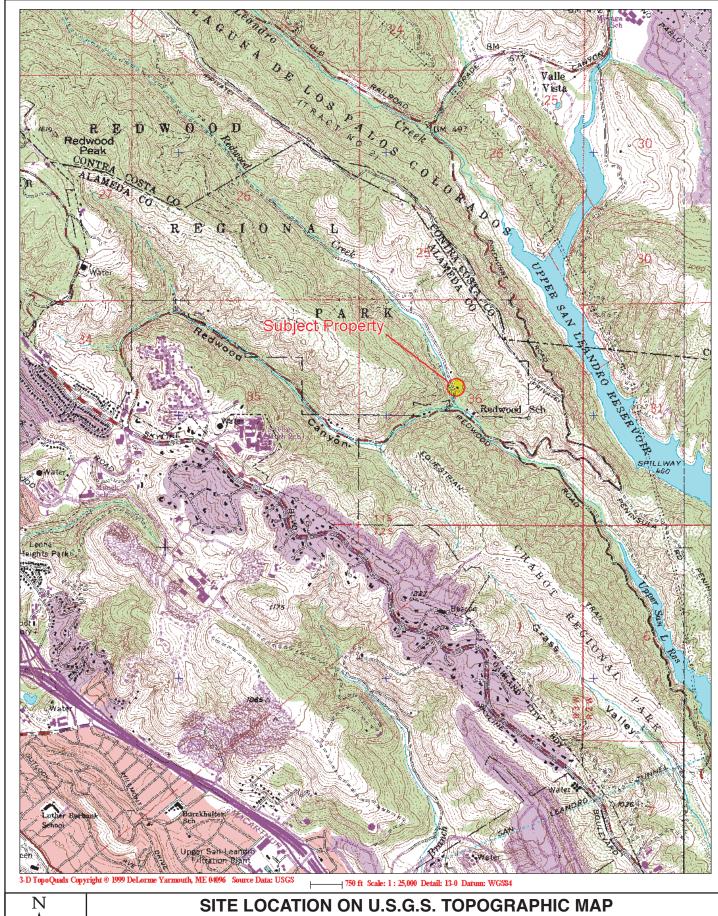
The general phases of site work included:

- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORC<sup>TM</sup> injection—proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORC<sup>TM</sup> injection were conducted: in September 2001 and July 2002.
- A total of 63 groundwater monitoring events have been conducted since project inception (February 1994). A total of 12 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORC<sup>TM</sup> injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORC<sup>TM</sup> injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued on July 18, 2011.

■ The RAW, dated November 28, 2011, prepared by Stellar Environmental. ACEH approved the PRB RAW in a subsequent letter, dated December 29, 2011and the PRB was installed in November 2013 and followed with a 30-day post-installation monitoring of key downgradient site wells in December 2013.

#### SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.


Figure 1 shows the location of the project site. Figure 2 presents the site plan.

#### REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek. No surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH, at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- Shut down of the site bioventing system in June 2011.
- Design and implementation of PRB workplan.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.



N

Redwood Reg. Park Service Yard, Oakland, CA By: MJC APRIL 2015
Figure 1





#### 2.0 PHYSICAL SETTING

This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis (Stellar Environmental 2004c). These additional geologic cross-sections have been presented in previous reports.

#### SITE LITHOLOGY

Figure 3 shows the location of geologic cross-section (A-A') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). The cross-section represented by Figure 4 shows the generalized subsurface features, the inferred thickness of the saturated soil contamination zone and the location of the permeable reactive barrier treatment wall. The PRB shown on the cross-section was constructed with the inoculated treatment zone located from 10-22 feet bgs which correlates to an elevation ranging from 525.5 – 537.5 feet amsl.

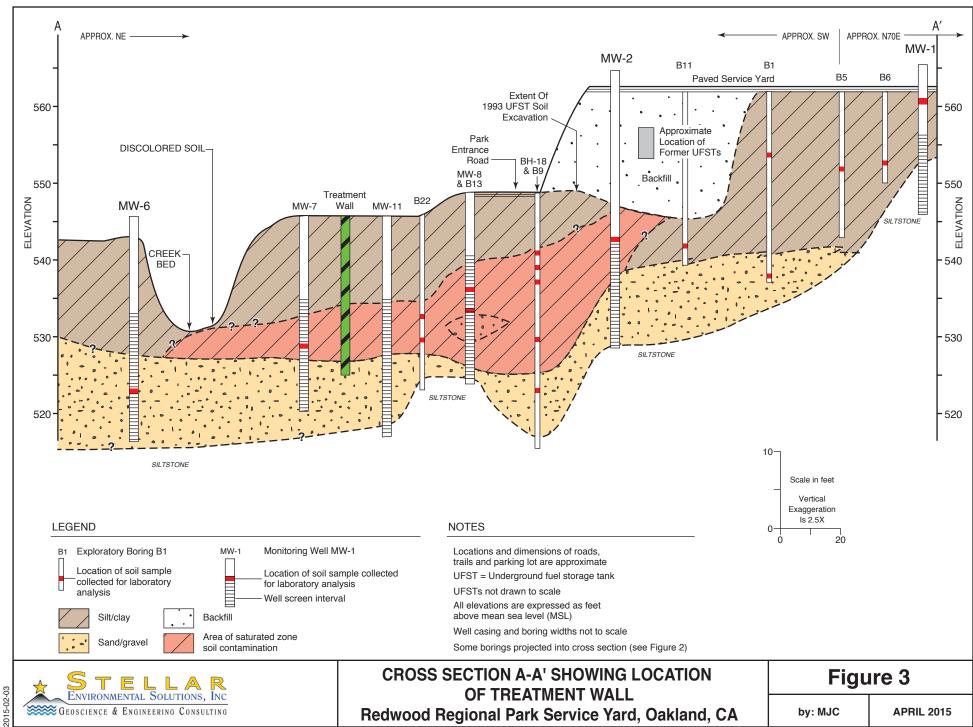
Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 and at downgradient location B15/HP-02. Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.


#### **HYDROGEOLOGY**

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.25 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient was approximately 0.104 feet per foot. The average groundwater elevation was 4.23 feet higher than the previous (September 2015) event, with the greatest increase of 5.42 feet measured in MW-10. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.



#### 3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

#### **GROUNDWATER CONTAMINATION**

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater is considered a potential source of drinking water unless otherwise approved by the Water Board, and is also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 3 (in Section 5.0), site groundwater contaminant levels are compared to the Water Board Tier 1 Environmental Screening Level (ESL) criteria for residential sites where groundwater <u>is</u> a current or potential drinking water source (Water Board, 2013).

As stipulated in the ESL guidance, ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern. ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

#### SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the Water Board December 2013 ESL for fresh water habitat. As discussed in the ESL document (Water Board, 2013), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water).

This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

#### 4.0 FIRST SEMIANNUAL 2016 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (First Semiannual 2016), conducted on March 21, 2016, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 12 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, SW-2 and SW-3);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Continue post-purge measurement of dissolved oxygen (DO) and redox to evaluate the effect of the permeable reactive barrier (PRB) that was installed across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation;

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the March 2016 groundwater elevation data are summarized in Table 1. Figure 4 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data – March 21, 2016

| Well  | Well<br>Depth    | Screened<br>Interval | TOC<br>Elevation | Groundwater<br>Depth (bgs) | Groundwater<br>Elevation |  |
|-------|------------------|----------------------|------------------|----------------------------|--------------------------|--|
| MW-1  | 18               | 7 to17               | 565.83           | -0.35                      | 563.95                   |  |
| MW-2  | MW-2 36 20 to 35 |                      | 566.42           | 18.84                      | 545.26                   |  |
| MW-3  | 42               | 7 to 41              | 560.81           | 17.95                      | 539.95                   |  |
| MW-5  | MW-5 26          |                      | 547.41 11.98     |                            | 533.22                   |  |
| MW-6  | MW-6 26          |                      | 545.43           | 8.84                       | 534.16                   |  |
| MW-7  | MW-7 24          |                      | 547.56 10.74     |                            | 535.76                   |  |
| MW-8  | MW-8 23          |                      | 549.13 11.19     |                            | 537.81                   |  |
| MW-9  | 26               | 11 to 26             | 549.28           | 11.42                      | 535.58                   |  |
| MW-10 | 26               | 11 to 26             | 547.22           | 10.04                      | 537.56                   |  |
| MW-11 | 26               | 11 to 26             | 547.75           | 8.75                       | 537.45                   |  |
| MW-12 | 25               | 10 to 25             | 544.67           | 9.51                       | 536.69                   |  |

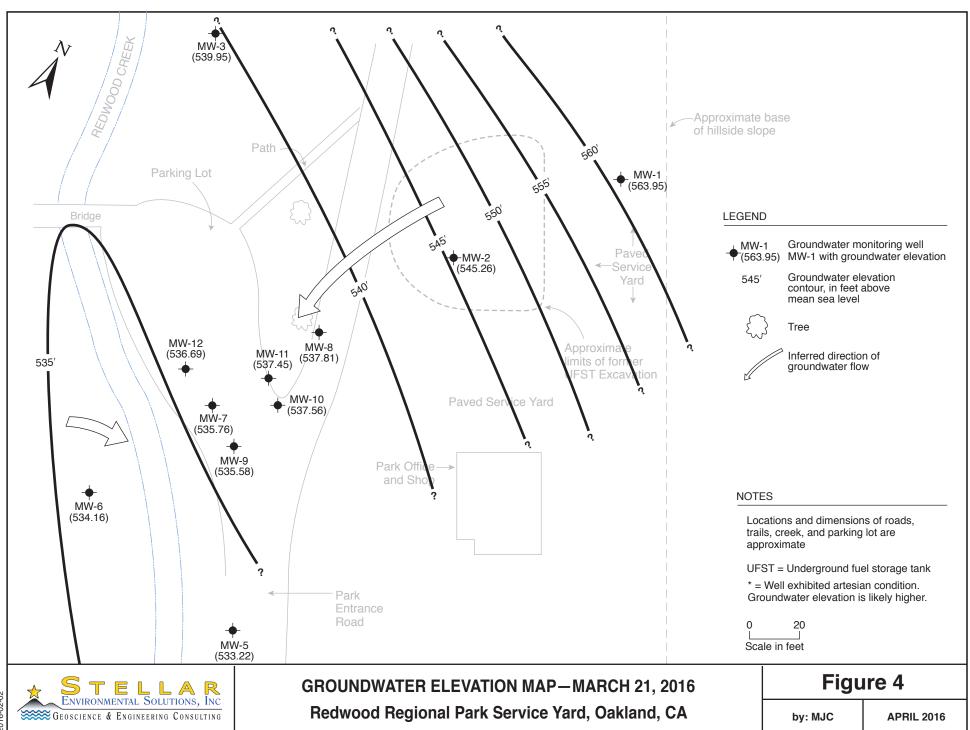
Notes:

All measurements expressed in feet

TOC = top of casing

bgs = below ground surface

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.


All elevations are expressed in feet above mean sea level (amsl). (U.S. Geological Survey)

The PRB inoculated treatment zone is located from 10-22 feet bgs which correlates to an elevation ranging from 525.5 - 537.5 feet amsl

#### GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 56.75 gallons) from the current event was containerized in the onsite above-ground storage tank. Purge water is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.



#### CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel on March 21, 2016. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

#### **BIOVENTING-RELATED ACTIVITIES**

On July 18, 2011, in concurrence with ACEH, the site bioventing system, having accomplished its' design purpose, was discontinued.

#### PERMEABLE REACTIVE BARRIER (PRB) MONITORING INDICATORS

The permeable reactive barrier (PRB), installed on November 20, 2013, was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination. Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to track the effect of the oxygen release product (Adventus EHC-O<sup>TM</sup>) utilization. One concern about the use of Adventus EHC-O<sup>TM</sup> is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

Table 2 includes the results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the proposed PRB.

Table 2
Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells – March 21, 2016

|          | Analytical Concentrations (mg/L) |          |      |     |  |
|----------|----------------------------------|----------|------|-----|--|
| Location | Nitrates                         | Sulfates | BOD  | COD |  |
| MW-7     | 0.31                             | 36       | <5.0 | 15  |  |
| MW-9     | MW-9 <0.05                       |          | 8.7  | 26  |  |
| MW-12    | MW-12 <0.05                      |          | <5.0 | 14  |  |

Notes: COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

#### **Dissolved Oxygen**

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. However, no significant reduction of total hydrocarbons has been recorded so far.

Monitoring wells MW-7, MW-9 and MW12, downgradient of the PRB, of which MW-7 and MW-9 currently show the highest concentrations of hydrocarbons. The DO at wells MW-9 and MW-7 are relatively low (0.79 - 1.19 mg/L) showing an inverse relationship to hydrocarbons that suggests there is active aerobic biodegradation as the PRB is designed to promote.

#### **Oxidation-Reduction Potential**

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

Measurement of the baseline ORP during this sampling event ranged from -13 to -36 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB and from -31 to -34 in wells MW-10 and MW-11, respectfully, located within 15 feet upgradient of the PRB, respectfully. As with the DO, the ORP trend is monitored to evaluate the effectiveness of the PRB. Measurements collected during the March 2016 monitoring event are included in Table 3.

#### GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The semiannual monitoring event was conducted on March 21 2016. Table 3 summarizes the analytical laboratory results of site contaminants. Figure 5 shows the distribution of contaminants and the inferred limits of the groundwater contaminant plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

First Semiannual 2016 groundwater contaminant concentrations were as follows: The ESL for TVHg for residential areas where groundwater is a drinking water resource was exceeded in four of the seven wells sampled and was exceeded for TEHd in five of the seven wells sampled. Benzene was detected in wells MW-8 and MW-9 but the ESL was only exceeded only in well MW-9. Toluene was not detected above the laboratory detection limit in any of the seven wells

sampled. Ethylbenzene was detected in wells MW-7, MW-8, MW-9 and MW-11 but above the ESL only in well MW-9. Well MW-7 contained both the maximum TVHg and TEHd concentrations in site groundwater, but TVHg in MW-7 was also at a historic low concentration this March 2016 event. Total xylenes were detected in wells MW-8 and MW-11 but below the ESL in both wells. MTBE was not detected in any of the wells, however in well MW-9 the laboratory detection limit was above the ESL and thus this result is indeterminate.

Well MW-7 contained both the maximum TVHg and TEHd concentrations in groundwater. MW-7 is located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is defined by well MW-5.

No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2016 sampling event.

#### REACTIVE BARRIER EFFECTIVENESS

The PRB has had disappointing results as being an effective reactive barrier that clearly shows a significant and sustained reduction of hydrocarbons in at the two keys wells, MW-7 and MW-9, downgradient of the PRB. The main active ingredient in Adventus EHC-O<sup>TM</sup> is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a post-purge pH range of 6.06 to 7.22, only partially within the optimum range. Under these conditions, the Adventus EHC-O<sup>TM</sup> remedy product should still react effectively to release hydrogen peroxide and oxygen.

This initial chemical oxidation to take place starts the breakup of the contaminants in groundwater as they reach and reactive within the PRB. The oxygen is released slowly but at a high enough level that is designed to assist bioremediation for several years. However, the data has not showing any significant reduction in the hydrocarbon compounds at the two keys wells, MW-7 and MW-9, downgradient of the PRB. And with the effective principal reaction timeframe of the EHC-O<sup>TM</sup> at around two years, the timeframe for reaction has run out. The drought over the previous two years may be in part responsible for not recharging the area to the full height that the EHC-O<sup>TM</sup> was introduced.

Table 3 **Groundwater and Surface Water Samples** Analytical Results - March 21, 2016

|                                       |                     |     | Contaminant Concentrations |       |         |         |                   |                  |      |
|---------------------------------------|---------------------|-----|----------------------------|-------|---------|---------|-------------------|------------------|------|
| Location                              | Dissolved<br>Oxygen | ORP | TEHd                       | TVHg  | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | MTBE |
| GROUNDWATER SAMPLES                   |                     |     |                            |       |         |         |                   |                  |      |
| MW-2                                  | 1.03                | -51 | <50                        | < 50  | < 0.5   | < 0.5   | < 0.5             | < 0.5            | <2.0 |
| MW-7                                  | 1.19                | -13 | 850                        | 1,500 | < 0.5   | < 0.5   | 12                | < 0.5            | <2.0 |
| MW-8                                  | 0.91                | -42 | 290                        | 170   | 0.53    | < 0.5   | 3.6               | 5.52             | 2.5  |
| MW-9                                  | 0.79                | -23 | 2,600                      | 4,000 | 18      | <8.3    | 84                | <8.3             | <33  |
| MW-10                                 | 0.84                | -31 | 110                        | 90    | < 0.5   | < 0.5   | < 0.5             | < 0.5            | <2.0 |
| MW-11                                 | 0.83                | -34 | 610                        | 720   | < 0.5   | < 0.5   | 6.1               | 3.0              | <2.0 |
| MW-12                                 | 0.86                | -36 | < 50                       | <50   | < 0.5   | < 0.5   | < 0.5             | < 0.5            | <2.0 |
| Groundwater ESLs (a)                  |                     |     | 100                        | 100   | 1.0     | 40      | 13                | 20               | 5.0  |
| REDWOOD CREEK SURFACE WATER SAMPLES   |                     |     |                            |       |         |         |                   |                  |      |
| SW-2                                  | 0.26                | -21 | <50                        | <50   | < 0.5   | < 0.5   | < 0.5             | < 0.5            | <2.0 |
| SW-3                                  | NS                  | NS  | <50                        | <50   | < 0.5   | < 0.5   | < 0.5             | <0.5             | <2.0 |
| Surface Water<br>Screening Levels (b) |                     |     | 100                        | 100   | 1.0     | 40      | 13                | 20               | 5.0  |

Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource. Analytical results shown as < and indicate a non-detection or less than the laboratory detection limit.

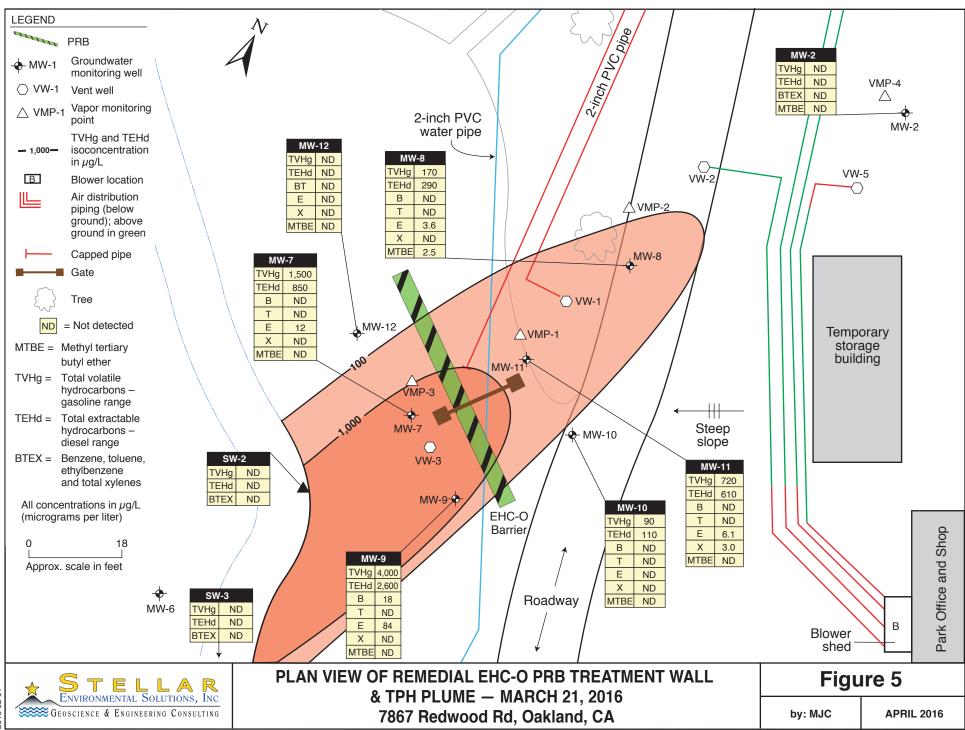
NS = not sampled

MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons – gasoline range TEHd = total extractable hydrocarbons - diesel range

ORP = redox or oxidation reduction potential measured in millivolts (mV)

All contaminant concentrations are expressed in micrograms per liter (µg/L), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells.


#### QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

Notes:

(a) ESLs = Water Board Environmental Screening Levels (where groundwater <u>is</u> a potential drinking water resource) (Water Board, 2016).

<sup>(</sup>b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2013).



#### 5.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

#### SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of twelve site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene and ethylbenzene in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000 concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 1,000 μg/L of TVHg) is currently centered around wells MW-7 and MW-9 in the downgradient area of the plume. However, prior to March 2010, the greatest contamination was observed in MW-2, the historical source area well.
- The contaminant plume has historically appeared neither stable and reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of

the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells. Contaminants in upgradient source area well MW-2 have steadily decreased since March 2010 following the in-situ bioremediation compound injection event with no contaminant detections this March 2016 event.

- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- First Semiannual 2016 groundwater contaminant concentrations exceeded the groundwater ESLs for TVHg in four of the seven wells sampled and for TEHd in five of the seven wells sampled. Benzene was detected in two wells but exceeded its ESL in only well MW-9. Toluene was not detected above the laboratory detection limit in any of the seven wells. Ethylbenzene was detected in wells MW-7, MW-8, MW-9 and MW-11 but exceeded its ESL only in well MW-9. Xylenes were detected in wells MW-8 and MW-11 but below the ESL in both wells. MTBE was detected only in well MW-8 and below the ESL.
- The current March 2016 event showed a general decrease in contaminant concentrations in downgradient wells MW-7, MW-9 and MW-12 (located below the PRB) with a historic low concentration of TVHg detected in MW-7 and no detections in MW-12. Well MW-9 contained both the maximum TVHg and TEHd concentrations in groundwater but was within historical range.
- No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2015 sampling event.

#### PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

■ Continue the semiannual monitoring to evaluate if any hydrochemical changes occur with the PRB in response to the high 2016 rainfall year. Continue with additional testing of site chemical parameters in downgradient wells MW-7, MW-9, and MW-12, to track the effect of the oxygen release product utilization and to investigate whether microbial

- biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- The effectiveness of the PRB has expired, thus we recommend discontinuing analysis for the additional site chemical parameters that was conducted to track the effect of the oxygen release product utilization in key wells; MW-7, MW-9, MW-11 and MW-12.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

#### 6.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2013.

  Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats., 2008 Revised May 2013.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 2012. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. September.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2016. Second Semiannual 2015 Groundwater Monitoring, Permeable Reactive Barrier Evaluation and Annual Summary Report Redwood Regional Park Service Yard Site. March 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015b. First Semiannual 2015 Groundwater Monitoring and PRB Evaluation Report of the Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246). April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. Second Semiannual 2014 Groundwater and Permeable Reactive Barrier Monitoring, and Annual Summary Report Redwood Regional Park Service Yard Site Oakland, California (ACEH Fuel Leak Case No. RO0000246). December 19.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation. Redwood Regional Park Service Yard Site. April 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Permeable Barrier Installation, and Annual Summary Report, Redwood Regional Park Service Yard Site, Oakland, California. January 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013
  Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC<sup>TM</sup> Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.

- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.

- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.

- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California.

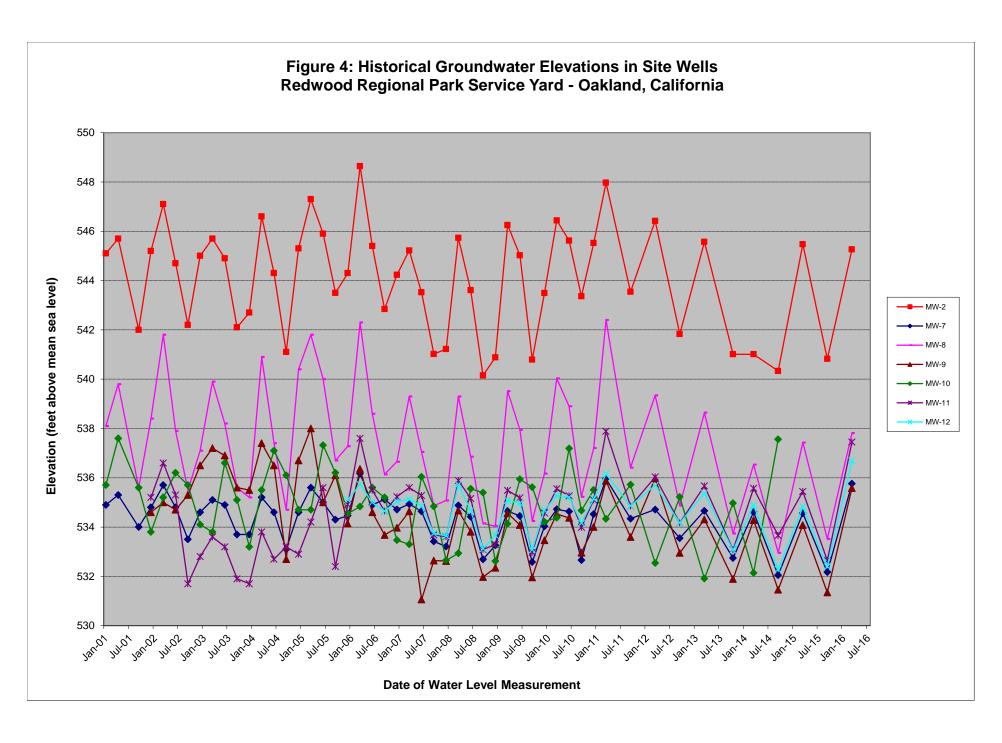
  October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

#### 10.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.


## **APPENDIX A**

## Historical Groundwater Monitoring Well Water Level Data

#### HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

| Well I.D.         | MW-1   | MW-2   | MW-3   | MW-4   | MW-5      | MW-6             | MW-7       | MW-8     | MW-9   | MW-10  | MW-11  | MW-12  |
|-------------------|--------|--------|--------|--------|-----------|------------------|------------|----------|--------|--------|--------|--------|
| TOC Elevation (a) | 565.83 | 566.42 | 560.81 | 548.10 | 547.41    | 545.43           | 547.56     | 549.13   | 549.28 | 547.22 | 547.75 | 544.67 |
| Date Monitored    |        |        |        | Grou   | ndwater E | levations (      | feet above | mean sea | level) |        |        |        |
| 09/18/98          | 563.7  | 544.2  | 540.8  | 534.5  | 531.1     | 531.4            |            |          |        |        |        |        |
| 04/06/99          | 565.2  | 546.9  | 542.3  | 535.6  | 532.3     | 532.9            |            |          |        |        |        |        |
| 12/20/99          | 562.9  | 544.7  | 541.5  | 534.9  | 531.2     | 532.2            |            |          |        |        |        |        |
| 09/28/00          | 562.8  | 542.7  | 538.3  | 532.2  | 530.9     | 532.0            |            |          |        |        |        |        |
| 01/11/01          | 562.9  | 545.1  | 541.7  | 535.0  | 531.2     | 532.3            | 534.9      | 538.1    |        |        |        |        |
| 04/13/01          | 562.1  | 545.7  | 541.7  | 535.1  | 531.5     | 532.4            | 535.3      | 539.8    |        |        |        |        |
| 09/01/01          | 560.9  | 542.0  | 537.7  | 533.9  | 530.7     | 531.8            | 534.0      | 535.6    |        |        |        |        |
| 12/17/01          | 562.2  | 545.2  | 542.2  | 534.8  | 531.4     | 532.4            | 534.8      | 538.4    | 534.6  | 535.7  | 535.2  |        |
| 03/14/02          | 563.0  | 547.1  | 542.2  | 535.5  | 532.4     | 533.3            | 535.7      | 541.8    | 535.0  | 537.6  | 536.6  |        |
| 06/18/02          | 562.1  | 544.7  | 541.1  | 534.6  | 531.2     | 532.2            | 534.8      | 537.9    | 534.7  | 535.6  | 535.3  |        |
| 09/24/02          | 561.4  | 542.2  | 537.3  | 533.5  | 530.6     | 531.8            | 533.5      | 535.5    | 535.3  | 533.8  | 531.7  |        |
| 12/18/02          | 562.4  | 545.0  | 542.0  | 534.8  | 531.5     | 532.5            | 534.6      | 537.1    | 536.5  | 535.2  | 532.8  |        |
| 03/27/03          | 562.6  | 545.7  | 541.7  | 534.8  | 531.6     | 532.4            | 535.1      | 539.9    | 537.2  | 536.2  | 533.6  |        |
| 06/19/03          | 562.3  | 544.9  | 541.5  | 534.8  | 531.3     | 532.3            | 534.9      | 538.2    | 536.9  | 535.7  | 533.2  |        |
| 09/10/03          | 561.6  | 542.1  | 537.9  | 533.8  | 530.8     | 531.9            | 533.7      | 535.6    | 535.6  | 534.1  | 531.9  |        |
| 12/10/03          | 562.4  | 542.7  | 537.6  | 533.7  | 530.9     | 531.9            | 533.7      | 535.2    | 535.5  | 533.8  | 531.7  |        |
| 03/18/04          | 563.1  | 546.6  | 541.9  | 535.0  | 531.7     | 532.4            | 535.2      | 540.9    | 537.4  | 536.6  | 533.8  |        |
| 06/17/04          | 562.1  | 544.3  | 540.7  | 534.3  | 531.0     | 532.1            | 534.6      | 537.4    | 536.5  | 535.1  | 532.7  |        |
| 09/21/04          | 561.5  | 541.1  | 536.5  | 533.1  | 530.5     | 531.6            | 533.1      | 534.7    | 532.7  | 533.2  | 533.2  |        |
| 12/14/04          | 562.2  | 545.3  | 541.7  | 534.7  | 531.4     | 532.2            | 534.6      | 540.4    | 536.7  | 535.5  | 532.9  |        |
| 03/16/05          | 563.8  | 547.3  | 541.7  | 535.3  | 532.4     | 532.8            | 535.6      | 541.8    | 538.0  | 537.1  | 534.2  |        |
| 06/15/05          | 562.9  | 545.9  | 541.6  | 535.0  | 531.7     | 532.5            | 535.0      | 540.0    | 535.0  | 536.1  | 535.6  |        |
| 09/13/05          | 562.3  | 543.5  | 539.7  | 534.4  | 530.9     | 532.2            | 534.3      | 536.7    | 536.1  | 534.7  | 532.4  |        |
| 12/15/05          | 562.2  | 544.3  | 541.4  | (b)    | 531.0     | 532.2            | 534.5      | 537.3    | 534.1  | 534.7  | 534.9  | 535.1  |
| 03/30/06          | 565.8  | 548.6  | 542.7  | (b)    | 533.9     | 534.4            | 536.2      | 542.3    | 536.4  | 537.3  | 537.6  | 535.7  |
| 06/20/06          | 563.6  | 545.4  | 541.6  | (b)    | 531.5     | 532.5            | 534.9      | 538.6    | 534.6  | 536.2  | 535.5  | 535.0  |
| 09/29/06          | 561.9  | 542.8  | 539.0  | (b)    | 530.7     | 532.1            | 535.1      | 536.1    | 533.7  | 534.6  | 534.7  | 534.7  |
| 12/14/06          | 562.9  | 544.2  | 541.5  | (b)    | 531.1     | 532.3            | 534.7      | 536.7    | 534.0  | 534.8  | 535.2  | 535.0  |
| 03/21/07          | 562.5  | 545.2  | 541.7  | (b)    | 531.4     | 532.4            | 534.9      | 539.3    | 534.6  | 535.6  | 535.6  | 535.1  |
| 06/20/07          | 561.5  | 543.5  | 540.8  | (b)    | 531.0     | 532.4            | 534.6      | 537.1    | 531.1  | 535.2  | 535.3  | 534.9  |
| 9/14/2007         | 560.71 | 541.02 | 536.99 | (b)    | 530.46    | 531.58           | 533.42     | 534.86   | 532.64 | 533.47 | 533.68 | 533.74 |
| 12/6/2007         | 560.62 | 541.22 | 536.85 | (b)    | 530.68    | 531.48           | 533.21     | 535.08   | 532.62 | 533.3  | 533.61 | 533.64 |
| 3/14/2008         | 561.76 | 545.73 | 541.63 | (b)    | 531.34    | 532.30           | 534.88     | 539.30   | 534.67 | 536.04 | 535.89 | 535.72 |
| 6/13/2008         | 560.92 | 543.61 | 540.6  | (b)    | 530.83    | 532.02           | 534.42     | 536.86   | 533.81 | 534.84 | 535.16 | 534.67 |
| 9/18/2008         | 560.43 | 540.15 | 536.41 | (b)    | 529.85    | 531.11           | 532.69     | 534.15   | 531.97 | 532.65 | 533.09 | 533.12 |
| 12/17/2008        | 561.11 | 540.88 | 536.77 | (b)    | 530.68    | 531.67           | 533.26     | 534.04   | 532.35 | 532.94 | 533.29 | 533.66 |
| 3/16/2009         | 561.84 | 546.25 | 539.51 | (b)    | 531.63    | 532.58           | 534.65     | 539.51   | 534.56 | 535.55 | 535.49 | 535.08 |
| 6/10/2009         | 561.05 | 545.02 | 541.38 | (b)    | 531.02    | 532.08           | 534.45     | 537.94   | 534.08 | 535.40 | 535.18 | 534.96 |
| 9/25/2009         | 560.00 | 540.79 | 536.33 | (b)    | 529.98    | Dry              | 532.58     | 534.25   | 531.96 | 532.62 | 532.97 | 533.08 |
| 12/21/2009        | 560.93 | 543.49 | 541.22 | (b)    | 530.96    | 532.06           | 534.03     | 536.17   | 533.46 | 534.13 | 534.57 | 534.69 |
| 3/29/2010         | 561.48 | 546.44 | 541.59 | (b)    | 531.52    | 532.58           | 534.72     | 540.03   | 534.53 | 535.94 | 535.55 | 535.28 |
| 6/22/2010         | 561.46 | 545.62 | 541.40 | (b)    | 531.26    | 532.56           | 534.63     | 538.90   | 534.37 | 535.62 | 535.27 | 535.26 |
| 9/28/2010         | 560.32 | 543.36 | 537.91 |        | 530.6     | 532.41           | 532.66     | 535.23   | 534.37 | 534.21 | 533.99 | 534.16 |
|                   | 561.33 |        | 541.51 | (b)    |           |                  | 534.52     |          | 534.00 | 534.21 | 535.10 |        |
| 12/16/2010        |        | 545.52 |        | (b)    | 531.11    | 532.31<br>534.43 |            | 537.21   |        |        |        | 535.15 |
| 3/23/2011         | 563.68 | 547.97 | 542.49 | (b)    | 532.78    |                  | 535.96     | 542.40   | 535.87 | 537.19 | 537.88 | 536.15 |
| 9/23/2011         | 561.03 | 543.54 | 539.52 | (b)    | 530.81    | 532.31           | 534.34     | 536.41   | 533.59 | 534.67 | 534.85 | 534.86 |
| 3/22/2012         | 562.25 | 546.42 | 542.02 | (b)    | 531.83    | 533.13           | 534.71     | 539.34   | 535.97 | 535.51 | 536.03 | 535.69 |
| 9/19/2012         | 560.93 | 541.83 | 537.53 | (b)    | 530.6     | 531.91           | 533.55     | 534.88   | 532.95 | 534.33 | 534.17 | 534.17 |
| 3/14/2013         | 561.80 | 545.57 | 541.74 | (b)    | 531.01    | 532.11           | 534.66     | 538.64   | 534.31 | 535.72 | 535.67 | 535.37 |
| 10/3/2013         | 560.95 | 541.01 | 536.21 | (b)    | 530.02    | 531.14           | 532.74     | 533.74   | 531.89 | 532.54 | 533.08 | 533.06 |
| 3/10/2014         | 561.68 | 541.01 | 541.67 | (b)    | 531.99    | 532.02           | 534.61     | 536.53   | 534.28 | 535.22 | 535.57 | 534.89 |
| 9/19/2014         | 560.40 | 540.33 | 535.53 | (b)    | 529.31    | 530.50           | 532.05     | 532.96   | 531.46 | 531.91 | 533.66 | 532.28 |
| 3/23/2015         | 561.41 | 545.47 | 541.46 | (b)    | 531.01    | 532.09           | 534.56     | 537.43   | 534.08 | 534.97 | 535.44 | 534.82 |
| 9/24/2015         | 560.26 | 540.82 | 535.79 | (b)    | 529.34    | 530.39           | 532.17     | 533.52   | 531.35 | 532.14 | 532.65 | 532.4  |
| 3/21/2016         | 563.95 | 545.26 | 539.95 | (b)    | 533.22    | 534.16           | 535.76     | 537.81   | 535.58 | 537.56 | 537.45 | 536.69 |

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.
NM = not measured



# **APPENDIX B**

# **Groundwater Monitoring Field Documentation**

## WELL GAUGING DATA

| Project # | 160321-DSI | _ Date | 3-21-16 Client Stellar |  |
|-----------|------------|--------|------------------------|--|
|           |            |        |                        |  |

Site Reduced Regional Pank service yard

| Well ID | (in.)       | time<br>Well<br>Size<br>(in.) | Sheen /<br>Odor | Depth to<br>Immiscible<br>Liquid (ft.) |  | Depth to water | Depth to well bottom (ft.) | Survey<br>Point:<br>TOB or | Notes |
|---------|-------------|-------------------------------|-----------------|----------------------------------------|--|----------------|----------------------------|----------------------------|-------|
| mw-7    | 2           | 0850                          | No              |                                        |  | 11.80          | 2535                       | 1                          |       |
| MW-11   | 2           | 0354                          | No_             |                                        |  | 10.30          | 28.79                      |                            |       |
| mw-9    | 2           | 0857                          | No              |                                        |  | 13.70          | 30.20                      |                            |       |
| MW-12   | 2           | 0859                          | No              |                                        |  | 7.98           | 23.80                      |                            |       |
| mw-8    | 2           | 0902                          | <i>No</i>       |                                        |  | 11.32          | 22:25                      |                            |       |
| mw-2    | <u> 4</u>   | 0908                          | No              |                                        |  | 21.16          | 37.55                      |                            |       |
| mw10    | 2           | 0913                          | $N_0$           |                                        |  | 9.66.          | 28.36                      |                            |       |
| mw-1-   | <u> 니 _</u> | 0916                          | No              |                                        |  | 1.88           | 19.20                      |                            |       |
| mw-3'   | <u> </u>    | 0918                          | No              |                                        |  | 20.96          | 45.05                      |                            |       |
| mw-6    | <u> </u>    | 0921                          | No.             |                                        |  | 11.27          | 27.55                      |                            |       |
| MW-5    | <u> </u>    | 0924                          | No              |                                        |  | 14.19          | 26.96                      | 1                          |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |
|         |             |                               |                 |                                        |  |                |                            |                            |       |

# WELLHEAD INSPECTION CHECKLIST

Page / of /

| Client Stel  | lar er                                               | <u>w.                                    </u> |       |                 | Date             | 3-7                                         | 1-16_                                       |                           |
|--------------|------------------------------------------------------|-----------------------------------------------|-------|-----------------|------------------|---------------------------------------------|---------------------------------------------|---------------------------|
| Site Address | Ledword                                              | e e                                           | Brion | or (            | Dark             | sen                                         | ice y                                       | ard                       |
| Site Address | 60321                                                | -DS (                                         | U     | Tech            | nician           | PS                                          |                                             |                           |
| Well ID      | Well Inspected -<br>No Corrective<br>Action Required | Water Bailed<br>From<br>Wellbox               | 1 1   | Cap<br>Replaced | Lock<br>Replaced | Other Action<br>Taken<br>(explain<br>below) | Well Not<br>Inspected<br>(explain<br>below) | Repair Order<br>Submitted |
| mw-2         |                                                      | _                                             |       | :               |                  |                                             | oc.ow)                                      |                           |
| MW-7         |                                                      | 3                                             | -     |                 |                  |                                             |                                             |                           |
| mw-8         |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| mwg          |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| murio        |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| mw-11        |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| mw-12        |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| Sw-2         |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| 8W-3         |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| MW-1         |                                                      |                                               |       |                 | -                |                                             |                                             |                           |
| MW-3         | : 🗸                                                  |                                               |       | · .             |                  |                                             |                                             |                           |
| MW-5         | V                                                    |                                               |       |                 |                  |                                             |                                             |                           |
| mwy          |                                                      |                                               |       | i               |                  |                                             | 1                                           |                           |
|              |                                                      |                                               |       |                 | ····             |                                             |                                             |                           |
|              |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
|              |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
| NOTES:       |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
|              |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
|              |                                                      |                                               |       |                 | 4,               |                                             |                                             |                           |
|              |                                                      |                                               |       | ·               | *- T             |                                             |                                             |                           |
|              |                                                      |                                               |       |                 |                  |                                             |                                             |                           |
|              |                                                      |                                               |       |                 |                  |                                             |                                             |                           |

## TEST EQUIPMENT CALIBRATION LOG

| PROJECT NAM       | /E                  | •                    |                     | PROJECT NUMBER             |                                  |       |          |  |  |
|-------------------|---------------------|----------------------|---------------------|----------------------------|----------------------------------|-------|----------|--|--|
| EQUIPMENT<br>NAME | EQUIPMENT<br>NUMBER | DATE/TIME<br>OF TEST | STANDARDS<br>USED   | EQUIPMENT<br>READING       | CALIBRATED TO:<br>OR WITHIN 10%: | TEMP. | INITIALS |  |  |
| WALOU             | BIS                 | 3/21/16              | 10,7.4<br>cond 3900 | 10.1,7.03,403<br>cond 3903 |                                  | 20'C  | Ds       |  |  |
| 4                 | 7                   | 1                    | orp 237.5           | orp. 236.9                 | ove                              | 202   | DS.      |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |
|                   |                     |                      |                     |                            |                                  |       |          |  |  |

| Project #:             | 160321                                         | -DS             | The state of the s | Client: Steway                       |                                     |                                |                                                    |  |  |  |
|------------------------|------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------|----------------------------------------------------|--|--|--|
| Sampler:               | DS                                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                | 3-2                                 |                                |                                                    |  |  |  |
| Well I.D.:             | mw-2                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Diameter: 2 3 (4) 6 8           |                                     |                                |                                                    |  |  |  |
| Total Well             | Depth (TE                                      | )): 37.         | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth to Water (DTW): 21.16          |                                     |                                |                                                    |  |  |  |
| Depth to Fr            | ee Produc                                      | t:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thick                                | Thickness of Free Product (feet): — |                                |                                                    |  |  |  |
| Referenced             | to:                                            | PVC             | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.O. 1                               | Meter (if                           | req'd):                        | (YSI) HACH                                         |  |  |  |
| DTW with               | 80% Rech                                       | arge [(F        | leight of Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Colum                                | n x 0.20)                           | ) + DTW]: 2                    | 4 43                                               |  |  |  |
| Purge Method:          | Bailer Disposable E Positive Air Electric Subr | Displaceme      | ent Extrac<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Waterra<br>Peristaltion<br>tion Pump |                                     | Sampling Methodology Othe      | Disposable Bailer Extraction Port Dedicated Tubing |  |  |  |
| 10.50<br>1 Case Volume | Gals.) X<br>Speci                              | 3<br>fied Volum | $\frac{1}{1000} = \frac{31.5}{\text{Calculated Vo}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ Gals.<br>olume                     | 1"<br>2"<br>3"                      | 0.04 4"<br>0.16 6"<br>0.37 Oth | 0.65<br>1.47<br>er radius <sup>2</sup> * 0.163     |  |  |  |
| Time                   | Temp                                           | pH              | Cond.<br>(mS or µS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                    | bidity<br>TUs)                      | Gals. Removed                  | Observations                                       |  |  |  |
| 1023                   | 55.8                                           | 6.61            | 772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 711                                  | 000                                 | 10.50                          | cloudy                                             |  |  |  |
| *                      | weil                                           | den             | vertered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                    | 2 1 (                               | gallens                        |                                                    |  |  |  |
| 1248                   | 56.1                                           | 6.37            | 752.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                   | 9                                   | grab                           | clear                                              |  |  |  |
| Did well de            | water? (                                       | Yes             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gallon                               | s actually                          | y evacuated:                   | 11                                                 |  |  |  |
| Sampling D             | ate: 3-21-                                     | 16              | Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 124                                | 8                                   | Depth to Wate                  | er: 28.83/2-hou                                    |  |  |  |
| Sample I.D.            | : mw - 7                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Labora                               | tory:                               | Kiff CalScience                | e Other CXT                                        |  |  |  |
| Analyzed fo            | r: трн-G                                       | BTEX            | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygen                               | ates (5)                            | Other: See (                   | 00                                                 |  |  |  |
| EB I.D. (if a          | pplicable):                                    | :               | @ · Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duplicate I.D. (if applicable):      |                                     |                                |                                                    |  |  |  |
| Analyzed fo            | r: TPH-G                                       | BTEX            | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygen                               | ates (5)                            | Other:                         |                                                    |  |  |  |
| D.O. (if req'          | d): Pr                                         | e-purge:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                 | Po                                  | ost-purge:                     | 1.63 mg/ <sub>L</sub>                              |  |  |  |
| O.R.P. (if re          | q'd): Pro                                      | e-purge:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                   | Po                                  | ost-purge:                     | -5( mV                                             |  |  |  |

| <del></del>         |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        |                            | (Jacobin C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|---------------------|------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project #:          | 16032                                          | 1-051           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client:                             | Stev                   | lar                        | 13 (15) (15)<br>12 (15) (15)<br>42 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Sampler: 3          | DS                                             |                 | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l .                                 | 3-21.                  | •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Well I.D.:          | mw -7                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Diameter: (2) 3 4 6 8          |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Total Well          |                                                | Ç               | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth to Water (DTW): //-80         |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Depth to Fr         | ee Produc                                      | t:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thickness of Free Product (feet):   |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Referenced          | to:                                            | PVC             | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.O. Meter (if req'd): YSI HACH     |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| DTW with            | 80% Rech                                       | arge [(H        | leight of Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | <del></del>            | ) + DTW]: 14               | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Purge Method:       | Bailer Disposable E Positive Air Electric Subr | Displaceme      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waterra<br>Peristaltic<br>tion Pump |                        | Sampling Method:           | Disposable Bailer Extraction Port Dedicated Tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 2.20 (1 Case Volume | Gals.) X<br>Speci                              | 3<br>fied Volum | = <u>(0.00</u><br>Calculated Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ Gals.<br>blume                    | Well Diameter 1" 2" 3" | 0.04 4" 0.16 6" 0.37 Other | Diameter         Multiplier           0.65         1.47           radius² * 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Time                | Temp<br>(°F)or °C)                             | pН              | Cond.<br>(mS or (\muS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                   | oidity<br>ΓUs)         | Gals. Removed              | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 0930                | 55.8                                           | 661             | 1126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                  | <u> </u>               | 2.20                       | chear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0933                | 55.6                                           | 6.52            | 1107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ပို                                 |                        | 4.40                       | A COLOR OF THE COL |  |  |
| 0936                | 55.5                                           | 6.43            | 1096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ()                                  | )                      | 6.60                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                   |                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        | ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Did well de         | water?                                         | Yes (           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gallons                             | s actuall              | y evacuated:               | 6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Sampling D          | ate: 3-21                                      | -16             | Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e: 094(                             | )                      | Depth to Water             | r: 11.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Sample I.D.         | : mw-                                          | 7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Labora                              | tory:                  | Kiff CalScience            | Other of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Analyzed fo         | r: TPH-G                                       | BTEX            | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygena                             | ites (5)               | Other: See                 | COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| EB I.D. (if a       | pplicable)                                     |                 | @ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duplica                             | ate I.D. (             | (if applicable):           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Analyzed fo         | r: TPH-G                                       | BTEX            | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygena                             | ` '                    | Other:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| D.O. (if req'       | d): Pr                                         | e-purge:        | and the second distribution of the second se | $^{ m mg}/_{ m L}$                  | P                      | ost-purge:                 | /./9 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| O.R.P. (if re       | q'd): Pr                                       | e-purge:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                  | P                      | ost-purge:                 | /3 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

### ...LL MONITORING DATA SHLET

| ************************************** |                                                |                 |                                       | ozdi o bikki                              | X DELEGIZIE                                     |                                                                                       |  |  |
|----------------------------------------|------------------------------------------------|-----------------|---------------------------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Project #:                             | 1603                                           | 21-6            | 120                                   | Client: Ste                               | ilar                                            |                                                                                       |  |  |
| Sampler:                               | DS                                             |                 |                                       | Date: 3 - 21-16                           |                                                 |                                                                                       |  |  |
| Well I.D.:                             | MW-B                                           |                 |                                       | Well Diameter:(2) 3 4 6 8                 |                                                 |                                                                                       |  |  |
| Total Well                             | Depth (TI                                      | )): 2°          | 2.25                                  | Depth to Water (DTW): 11-32               |                                                 |                                                                                       |  |  |
| Depth to Fr                            | ee Produc                                      | t:              |                                       | Thickness of F                            | ree Product (fe                                 | eet):                                                                                 |  |  |
| Referenced                             | to:                                            | PVC             | Grade                                 | D.O. Meter (if                            | reg'd):                                         | YSI HACH                                                                              |  |  |
| DTW with                               | 80% Rech                                       | arge [(H        | leight of Water                       | Column x 0.20)                            |                                                 |                                                                                       |  |  |
| Purge Method:                          | Bailer Disposable E Positive Air Electric Subr | Sailer >        |                                       | Waterra<br>Peristaltic<br>tion Pump       | Sampling Method                                 | Bailer Disposable Bailer Extraction Port Dedicated Tubing                             |  |  |
| 1.75 (c) 1 Case Volume                 | Gals.) X<br>Speci                              | 3<br>fied Volum | $= \frac{5.25}{\text{Calculated Vo}}$ | Gals. lume   Well Diameter   1"   2"   3" | er Multiplier Well  0.04 4"  0.16 6"  0.37 Othe | Diameter         Multiplier           0.65           1.47           r radius² * 0.163 |  |  |
| Time                                   | Temp<br>(°F) or °C)                            | pН              | Cond.<br>(mS or (iS))                 | Turbidity<br>(NTUs)                       | Gals. Removed                                   | Observations                                                                          |  |  |
| 1200                                   | 560                                            | 712             | 862.7                                 | 140                                       | 1.75                                            | Cloudy                                                                                |  |  |
| 1205                                   | 55.9                                           | 7.03            | 843.2                                 | 109                                       | 3.50                                            |                                                                                       |  |  |
| 1210                                   | 56.0                                           | 6,97            | 834 8                                 | 98                                        | 5.25                                            | 1                                                                                     |  |  |
|                                        |                                                |                 | · .                                   |                                           |                                                 |                                                                                       |  |  |
|                                        |                                                |                 | :                                     |                                           |                                                 |                                                                                       |  |  |
| Did well dev                           | water?                                         | Yes (           | No                                    | Gallons actually                          | y evacuated:                                    | 5.25                                                                                  |  |  |
| Sampling Da                            | ate: 3-21                                      | -ιφ             | Sampling Time                         | : 1213                                    | Depth to Wate                                   | r: 11.67                                                                              |  |  |
| Sample I.D.:                           | nu                                             | 8               |                                       | Laboratory:                               | Kiff CalScience                                 | e Other CAT                                                                           |  |  |
| Analyzed for                           | r: трн-G                                       | BTEX            | MTBE TPH-D                            | Oxygenates (5)                            | Other: see                                      | coc                                                                                   |  |  |
| EB I.D. (if a                          | pplicable):                                    |                 | @ ·                                   | Duplicate I.D. (                          | ****                                            |                                                                                       |  |  |
| Analyzed for                           | r: TPH-G                                       | BTEX            | MTBE TPH-D                            | Oxygenates (5)                            | Other:                                          |                                                                                       |  |  |
| D.O. (if req'o                         | d): Pro                                        | e-purge:        |                                       | mg/ <sub>L</sub> Po                       | ost-purge:                                      | 0.91 mg/L                                                                             |  |  |
| O.R.P. (if red                         | q'd): Pro                                      | e-purge:        |                                       | mV Po                                     | ost-nurge:                                      | W mV                                                                                  |  |  |

|                                |                                              |                  |                     | OLUINO DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                             |  |  |
|--------------------------------|----------------------------------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|--|--|
| Project #:                     | 1603                                         | 321-5            | 186                 | Client: SHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | llar                                         |                                                             |  |  |
| Sampler:                       | DS                                           |                  | ,                   | Date: 3-21-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                             |  |  |
| Well I.D.:                     | mwc                                          | 1                |                     | Well Diameter: (2) 3 4 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                             |  |  |
| Total Well                     | Depth (TI                                    | )): 30           | .20                 | Depth to Water (DTW): 13.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                             |  |  |
| Depth to F                     | ree Produc                                   | t: Colombia.     |                     | Thickness of F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Free Product (fe                             | et):                                                        |  |  |
| Referenced                     | l to:                                        | (PVC-            | Grade               | D.O. Meter (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | req'd):                                      | YSI HACH                                                    |  |  |
| DTW with                       | 80% Rech                                     | arge [(F         | leight of Water     | Column x 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | 7, 0                                                        |  |  |
| Purge Method:                  | Bailer Disposable Positive Air Electric Subi | Displaceme       |                     | Waterra<br>Peristaltic<br>tion Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampling Method                              | : Bailer Disposable Bailer Extraction Port Dedicated Tubing |  |  |
| 2.70 <sub>(1</sub> Case Volume | Gals.) XSpec                                 | ろ<br>ified Volum | nes = R.(           | Gals. Gals. Substitute of the second substitut | er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe | Diameter Multiplier 0.65 1.47 radius² * 0.163               |  |  |
| Time                           | Temp<br>(F or °C)                            | pН               | Cond.<br>(mS or µS) | Turbidity<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gals. Removed                                | Observations                                                |  |  |
| 1037                           | 56.3                                         | 6.86             | 919.3               | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270                                          | Choule                                                      |  |  |
| 1041                           | 56.4                                         | 051              | 960.3               | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.40                                         | 1                                                           |  |  |
| 1045                           | 56.5                                         | 6.48             | 971.2               | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.16                                         | V                                                           |  |  |
|                                |                                              |                  |                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                             |  |  |
|                                |                                              |                  | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                             |  |  |
| Did well de                    | water?                                       | Yes (            | No                  | Gallons actuall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y evacuated:                                 | 3.10                                                        |  |  |
| Sampling D                     | ate: 3-2                                     | 1-16             | Sampling Time       | : 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth to Wate                                | r: [4,12_                                                   |  |  |
| Sample I.D.                    | : MW-0                                       | 1                |                     | Laboratory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kiff CalScience                              | Other C+T                                                   |  |  |
| Analyzed fo                    | r: TPH-G                                     | BTEX             | MTBE TPH-D          | Oxygenates (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other: Sel (                                 | DC -                                                        |  |  |
| EB I.D. (if a                  | pplicable)                                   | •                | @ · Time            | Duplicate I.D. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                             |  |  |
| Analyzed fo                    | r: трн-G                                     | BTEX             | MTBE TPH-D          | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other:                                       |                                                             |  |  |
| D.O. (if req'                  | d): Pr                                       | e-purge:         |                     | mg/L Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ost-purge:                                   | 0.79 mg/L                                                   |  |  |
| O.R.P. (if re                  | g'd): Pr                                     | e-purge:         |                     | mV Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ost-nurge:                                   | 72 mV                                                       |  |  |

|                                                             |                                                |                  |                     | •                                   |                                              |                                                                                             |  |  |  |  |
|-------------------------------------------------------------|------------------------------------------------|------------------|---------------------|-------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| Project #:                                                  | 1603                                           | 21-09            | 51                  | Client: Stel                        | lav                                          |                                                                                             |  |  |  |  |
| Sampler:                                                    | 05                                             |                  |                     | Date: 3-7                           | Date: 3-21-16                                |                                                                                             |  |  |  |  |
| Well I.D.:                                                  | MW - 1                                         | 10               |                     | Well Diameter: (2) 3 4 6 8          |                                              |                                                                                             |  |  |  |  |
| Total Well                                                  | Depth (TI                                      | )): JQ           | 34                  | Depth to Water (DTW): A.            |                                              |                                                                                             |  |  |  |  |
| Depth to Fr                                                 | ree Produc                                     | t:               |                     | Thickness of Free Product (feet):   |                                              |                                                                                             |  |  |  |  |
| Referenced                                                  | to:                                            | (PVC)            | Grade               | D.O. Meter (if                      | req'd):                                      | YSI HACH                                                                                    |  |  |  |  |
| DTW with                                                    | 80% Rech                                       | arge [(F         | Height of Water     | Column x 0.20                       | ) + DTW]: 13                                 | 40                                                                                          |  |  |  |  |
| Purge Method:                                               | Bailer Disposable F Positive Air Electric Subi | Displaceme       | ent Extrac<br>Other | Waterra Peristaltic ction Pump      | Sampling Method                              | : Bailer Disposable Bailer Extraction Port Dedicated Tubing                                 |  |  |  |  |
| 3 (1 Case Volume                                            | Gals.) X                                       | 3<br>ified Volum | nes Calculated Vo   | Gals. Solume Well Diameter 1" 2" 3" | er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe | Diameter         Multiplier           0.65         1.47           r         radius² * 0.163 |  |  |  |  |
| Time                                                        | Temp<br>(F) or °C)                             | pH               | Cond.               | Turbidity<br>(NTUs)                 | Gals. Removed                                | Observations                                                                                |  |  |  |  |
| 1220                                                        | 56.4                                           | 609              | 817.6               | 60                                  | 3                                            | chouds                                                                                      |  |  |  |  |
| 1223                                                        | 56.6                                           | 612              | 807.2               | 48                                  | 6                                            | Cler                                                                                        |  |  |  |  |
| 1227                                                        | 56.7                                           | 0.13             | 803.0               | 45                                  | 9                                            | cler                                                                                        |  |  |  |  |
|                                                             |                                                |                  |                     | · P                                 | ·                                            |                                                                                             |  |  |  |  |
|                                                             |                                                |                  |                     |                                     | `                                            |                                                                                             |  |  |  |  |
| Did well dev                                                | water?                                         | Yes              | No)                 | Gallons actually                    | y evacuated: 9                               |                                                                                             |  |  |  |  |
| Sampling D                                                  | ate: 3-U                                       | -16              | Sampling Time       | : 1230                              | Depth to Wate                                | r: 10.09                                                                                    |  |  |  |  |
| Sample I.D.:                                                | mw.                                            | (O)              | * 1                 | Laboratory:                         | Kiff CalScience                              | Other CAT                                                                                   |  |  |  |  |
| Analyzed for                                                | r: TPH-G                                       | BTEX             | MTBE TPH-D          | Oxygenates (5)                      | Other: S                                     | ee COC                                                                                      |  |  |  |  |
| EB I.D. (if applicable):  @ Duplicate I.D. (if applicable): |                                                |                  |                     |                                     |                                              |                                                                                             |  |  |  |  |
| Analyzed for                                                | r: TPH-G                                       | BTEX             | MTBE TPH-D          |                                     | Other:                                       |                                                                                             |  |  |  |  |
| D.O. (if req'o                                              | d): Pr                                         | e-purge:         | · ·                 | mg/L Po                             | ost-purge:                                   | DEY mg/L                                                                                    |  |  |  |  |
| O.R.P. (if red                                              | q'd): Pr                                       | e-purge:         |                     | mV Po                               | ost-purge:                                   | -31 mV                                                                                      |  |  |  |  |

|                |                                                  | •           |                    | · · · · · · · · · · · · · · · · · · ·   |                                 |                                                      |  |  |  |
|----------------|--------------------------------------------------|-------------|--------------------|-----------------------------------------|---------------------------------|------------------------------------------------------|--|--|--|
| Project #:     | 160                                              | 321-        | 021                | Client: S                               | Hellar                          |                                                      |  |  |  |
| Sampler:       | DS                                               |             |                    |                                         | 21-16                           |                                                      |  |  |  |
| Well I.D.:     | mw-1                                             |             |                    | Well Diameter                           | ~~                              | 6 8                                                  |  |  |  |
| Total Well     | Depth (TI                                        | )): 23      | .79                | Depth to Wate                           | Depth to Water (DTW): 10.30     |                                                      |  |  |  |
| Depth to Fr    | ee Produc                                        | t:          |                    | Thickness of Free Product (feet):       |                                 |                                                      |  |  |  |
| Referenced     | to:                                              | (PVG)       | Grade              | D.O. Meter (if                          | req'd):                         | (YSI) HACH                                           |  |  |  |
| DTW with       | 80% Rech                                         | arge [(H    | leight of Water    | Column x 0.20)                          |                                 |                                                      |  |  |  |
| Purge Method:  | Bailer Disposable B Positive Air I Electric Subr | Displaceme  |                    | Waterra Peristaltic ction Pump          | Sampling Method: Other:         | Disposable Batter  Extraction Port  Dedicated Tubing |  |  |  |
| ſ              |                                                  |             |                    | Well Diamete                            | er Multiplier Well I<br>0.04 4" | Diameter Multiplier<br>0.65                          |  |  |  |
| 3.0 (          | Gals.) X                                         | 3           | = 9.0              | Gals. 2"                                | 0.16 6"                         | 1.47                                                 |  |  |  |
| 1 Case Volume  |                                                  | ified Volum | nes Calculated Vol |                                         | 0.37 Other                      | r radius² * 0.163                                    |  |  |  |
| Time           | Temp<br>(°F)or °C)                               | pН          | Cond<br>(mS of µS) | Turbidity<br>(NTUs)                     | Gals. Removed                   | Observations                                         |  |  |  |
| 1005           | 55.7                                             | 685         | 838-2              | 87                                      | 3.0                             | chady                                                |  |  |  |
| 1009           | 55.9                                             | 6.42        | 814.7              | 51                                      | 6.0                             | dray                                                 |  |  |  |
| 1012           | 200                                              | 6.32        | 803.1              | 40                                      | 9:0                             | V                                                    |  |  |  |
|                |                                                  |             |                    |                                         |                                 |                                                      |  |  |  |
|                |                                                  |             |                    |                                         | ·                               |                                                      |  |  |  |
| Did well dev   | water?                                           | Yes (       | No                 | Gallons actually                        | y evacuated: 9                  | 1.0                                                  |  |  |  |
| Sampling Da    | ate: 3-21                                        | -16         | Sampling Time      | :1015                                   | Depth to Water                  | r: 10.56                                             |  |  |  |
| Sample I.D.:   | : MW-                                            |             |                    | Laboratory:                             | Kiff CalScience                 | Other C                                              |  |  |  |
| Analyzed for   | r: TPH-G                                         | BTEX        |                    | Oxygenates (5)                          | Other: Gel (                    | (O)                                                  |  |  |  |
| EB I.D. (if a  | pplicable)                                       | •           | Time ]             | Duplicate I.D. (                        | if applicable):                 |                                                      |  |  |  |
| Analyzed for   | r: TPH-G                                         | BTEX        | MTBE TPH-D         | • • • • • • • • • • • • • • • • • • • • | Other:                          |                                                      |  |  |  |
| D.O. (if req'o | d): Pr                                           | e-purge:    |                    | mg/ <sub>L</sub> Po                     | ost-purge:                      | 0.83 mg/L                                            |  |  |  |
| O.R.P. (if red | g'd): Pr                                         | e-purge:    |                    | mV Po                                   | ost-purge:                      | 24 mV                                                |  |  |  |

| Project #:                                                                                                                                                           | 100                                                             | 321-1            | 081                                                       | Client: St               | evar                                             |                                                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------------------------------------------------------|--------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| Sampler:                                                                                                                                                             | DS                                                              |                  |                                                           | Date: 3-26-16            |                                                  |                                                                                             |  |  |  |  |
| Well I.D.:                                                                                                                                                           | mw-12                                                           | 300°             |                                                           | Well Diameter: 2 3 4 6 8 |                                                  |                                                                                             |  |  |  |  |
| Total Well                                                                                                                                                           | Depth (TI                                                       | )): <u>23</u>    | i.80 .                                                    | Depth to Wate            | Depth to Water (DTW): 798                        |                                                                                             |  |  |  |  |
| Depth to Fr                                                                                                                                                          | ee Produc                                                       | t:               |                                                           |                          | Thickness of Free Product (feet):                |                                                                                             |  |  |  |  |
| Referenced                                                                                                                                                           | to:                                                             | PVC              | Grade                                                     | D.O. Meter (if           | req'd):                                          | YSI HACH                                                                                    |  |  |  |  |
| DTW with                                                                                                                                                             | 80% Rech                                                        | arge [(H         | Ieight of Water                                           | Column x 0.20            | ) + DTW]:                                        | 11.14                                                                                       |  |  |  |  |
| Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other Other: |                                                                 |                  |                                                           |                          |                                                  |                                                                                             |  |  |  |  |
| 2.6 (Case Volume                                                                                                                                                     | Gals.) XSpeci                                                   | 3<br>ified Volum | $\frac{1}{\text{mes}} = \frac{7.5}{\text{Calculated Vo}}$ | Gals. Slume Well Diametr | ter Multiplier Well ) 0.04 4" 0.16 6" 0.37 Other | Diameter         Multiplier           0.65         1.47           r         radius² * 0.163 |  |  |  |  |
| Time                                                                                                                                                                 | Temp<br>(F)or °C)                                               | pН               | Cond.<br>(mS or (iS)                                      | Turbidity<br>(NTUs)      | Gals. Removed                                    | Observations                                                                                |  |  |  |  |
| 1101                                                                                                                                                                 | 564                                                             | 6.77             | 805.3                                                     | 93                       | 2.4                                              | dondy                                                                                       |  |  |  |  |
| 1166                                                                                                                                                                 | 56.0                                                            | 672              | 7(03:0                                                    | 81                       | 5.2                                              | 1                                                                                           |  |  |  |  |
| 111                                                                                                                                                                  | 56.0                                                            | 6.70             | 751-7                                                     | ଏବ                       | 7.8                                              | 1                                                                                           |  |  |  |  |
|                                                                                                                                                                      |                                                                 |                  |                                                           |                          |                                                  |                                                                                             |  |  |  |  |
|                                                                                                                                                                      |                                                                 |                  |                                                           |                          |                                                  |                                                                                             |  |  |  |  |
| Did well dev                                                                                                                                                         | vater?                                                          | Yes (            | (No)                                                      | Gallons actuall          | y evacuated:                                     | 7.8                                                                                         |  |  |  |  |
| Sampling Da                                                                                                                                                          | ate: 3-21-                                                      | 16               | Sampling Time                                             | : 1115                   | Depth to Water                                   | r: 8 <sub>.</sub> 92                                                                        |  |  |  |  |
| Sample I.D.:                                                                                                                                                         | muri                                                            | 7                |                                                           | Laboratory:              | Kiff CalScience                                  | e Other C                                                                                   |  |  |  |  |
| Analyzed for                                                                                                                                                         | r: TPH-G                                                        | BTEX             | MTBE TPH-D                                                | Oxygenates (5)           | Other: Sel C                                     | 0(_                                                                                         |  |  |  |  |
| EB I.D. (if a                                                                                                                                                        | B I.D. (if applicable):  © Time Duplicate I.D. (if applicable): |                  |                                                           |                          |                                                  |                                                                                             |  |  |  |  |
| Analyzed for                                                                                                                                                         | nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:        |                  |                                                           |                          |                                                  |                                                                                             |  |  |  |  |
| O.O. (if req'o                                                                                                                                                       | 1): Pr                                                          | e-purge:         |                                                           | mg/ <sub>L</sub> Po      | ost-purge:                                       | 0.86 mg/L                                                                                   |  |  |  |  |
| O.R.P. (if red                                                                                                                                                       | a'd): Pr                                                        | e-purge:         | i                                                         | mV P                     | ost-purge:                                       | -2/0 mV                                                                                     |  |  |  |  |

| Project #:     | 1603                                           | CL-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>'SL</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client: Stellar                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|----------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Sampler:       | DS                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: 3                           | 2016                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Well I.D.:     | Sw-                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well Diame                        | eter: 2 3 4                           | 6 8 Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Total Well     | Depth (TI                                      | )): ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Water (DTW):             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Depth to Fi    | ree Produc                                     | t:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Constitution</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thickness of Free Product (feet): |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Referenced     | to:                                            | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D.O. Meter (if req'd): YSI HACH   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| DTW with       | 80% Rech                                       | arge [(F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Height of Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Column x 0.                       | 20) + DTW]:                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Purge Method:  | Bailer Disposable E Positive Air Electric Subr | Displacem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The state of the s | Waterra Peristaltic               |                                       | Extraction Port Dedicated Tubing The Conference of the Conference |  |  |  |  |  |  |
|                |                                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Dia                          | 0.04 4"                               | Diameter Multiplier<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 1 Case Volume  | Gals.) X<br>Speci                              | ified Volun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =<br>nes Calculated Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gals. 2" olume 2"                 | 0.16 6"<br>0.37 Oth                   | 1.47 <sub>.</sub><br>er radius <sup>2</sup> * 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Time           | Temp<br>(For °C)                               | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cond.<br>(mS or \(\mu \text{S}\))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turbidity<br>(NTUs)               | Gals. Removed                         | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 1240           | 53.8                                           | 748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 463.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                | GRAB                                  | clear / Running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Did well dev   | water?                                         | Yes (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gallons actu                      | ally evacuated: (                     | RAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Sampling Da    | ate: 3-U                                       | -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ::1240                            | Depth to Wate                         | er: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Sample I.D.:   | :SW-2                                          | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory:                       | Kiff CalScienc                        | e Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Analyzed for   | r: TPH-G                                       | BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygenates (5)                    | Other: Su                             | COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| EB I.D. (if a  | pplicable):                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duplicate I.D                     | O. (if applicable):                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Analyzed for   | r: трн-G                                       | BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygenates (5)                    | Other:                                | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| D.O. (if req'o | d): Pr                                         | e-purge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                              | Post-purge:                           | 6.26 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| O.R.P. (if red | q'd): Pro                                      | e-purge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                | Post-purge:                           | -2  mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |

|                |                                                |            |                        | <del></del>                              |                       |                                                    |  |  |  |  |  |  |
|----------------|------------------------------------------------|------------|------------------------|------------------------------------------|-----------------------|----------------------------------------------------|--|--|--|--|--|--|
| Project #:     | 16030                                          | 21-D       | 5 <i>)</i>             | Client:                                  | Stella                |                                                    |  |  |  |  |  |  |
| Sampler:       | DS                                             |            |                        | Date: 3                                  | 21-16                 |                                                    |  |  |  |  |  |  |
| Well I.D.:     | Sw-                                            | 3          |                        | Well Diameter: 2 3 4 6 8 Meek            |                       |                                                    |  |  |  |  |  |  |
| Total Well     | Depth (TI                                      | )): —      |                        | Depth to Water (DTW):                    |                       |                                                    |  |  |  |  |  |  |
| Depth to Fr    | ree Produc                                     | t:         |                        | Thickness of Free Product (feet):        |                       |                                                    |  |  |  |  |  |  |
| Referenced     | to:                                            | PVC        | > Grade                | D.O. Meter (i                            | f req'd):             | YSI HACH                                           |  |  |  |  |  |  |
| DTW with       | 80% Rech                                       | arge [(F   | leight of Water        | Column x 0.20                            | 0) + DTW]:            | ,                                                  |  |  |  |  |  |  |
| Purge Method:  | Bailer Disposable E Positive Air Electric Subr | Displacem  | ent Extrac<br>Other    | Waterra Peristaltic tion Pump  Well Diam | Sampling Method Other | Disposable Bailer Extraction Port Dedicated Tubing |  |  |  |  |  |  |
|                |                                                |            | ,                      | 1"                                       | 0.04 4"<br>0.16 6"    | Diameter Multiplier 0.65 1.47                      |  |  |  |  |  |  |
| 1 Case Volume  | Gals.) X<br>Speci                              | fied Volun | =<br>nes Calculated Vo | _ Gals.                                  | 0.37 Othe             | ٠ ,                                                |  |  |  |  |  |  |
| Time           | Temp<br>(For °C)                               | pН         | Cond.<br>(mS & ps)     | Turbidity<br>(NTUs)                      | Gals. Removed         | Observations                                       |  |  |  |  |  |  |
| 1300           | 54.4                                           | 7.60       | 937:1                  | 32_                                      | GRAB                  | Clear                                              |  |  |  |  |  |  |
|                |                                                |            |                        |                                          |                       |                                                    |  |  |  |  |  |  |
|                |                                                |            |                        |                                          |                       |                                                    |  |  |  |  |  |  |
|                |                                                | ÷          |                        |                                          |                       |                                                    |  |  |  |  |  |  |
|                |                                                |            |                        |                                          |                       |                                                    |  |  |  |  |  |  |
| Did well dev   | water?                                         | Yes (      | No:                    | Gallons actual                           | ly evacuated: (       | SPEARS                                             |  |  |  |  |  |  |
| Sampling Da    | ate: 3-21                                      | -1 (e      | Sampling Time          | ::/300                                   | Depth to Wate         | r:                                                 |  |  |  |  |  |  |
| Sample I.D.:   | : 86 -                                         | 3          |                        | Laboratory:                              | Kiff CalScience       | e Othek 1                                          |  |  |  |  |  |  |
| Analyzed fo    | r: TPH-G                                       | BTEX       | MTBE TPH-D             | Oxygenates (5)                           | Other: See            | ac                                                 |  |  |  |  |  |  |
| EB I.D. (if a  | pplicable)                                     | •          | @ ·                    | Duplicate I.D.                           | (if applicable):      |                                                    |  |  |  |  |  |  |
| Analyzed for   | r: TPH-G                                       | BTEX       |                        | Oxygenates (5)                           | Other:                | **************************************             |  |  |  |  |  |  |
| D.O. (if req'o | d): Pr                                         | e-purge:   |                        | mg/L                                     | Post-purge:           | mg/L                                               |  |  |  |  |  |  |
| O.R.P. (if re  | q'd): Pr                                       | e-purge:   |                        | mV )                                     | Post-purge:           | mV                                                 |  |  |  |  |  |  |

# **Chain of Custody Record**

| Laboratory <u>Curtis and Tor</u> Address <u>2323 Fifth Stre</u> Berkeley, Cali | eet         |                                 |                                         |                                         | ethod of Shipment Hipment No. | and De   | ivery<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |           | <i></i>   | ,,-   |                 |                 |                   |         |              |              | Date<br>Page                            | 1 01  | 1                          |
|--------------------------------------------------------------------------------|-------------|---------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-----------|-------|-----------------|-----------------|-------------------|---------|--------------|--------------|-----------------------------------------|-------|----------------------------|
| 510-486-0900                                                                   | 1           |                                 | *************************************** | Air                                     | bill No.                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | /         | ′ /       |       | <u> </u>        |                 | Ana               | dysis A | equired      | i            |                                         |       |                            |
| Project Owner _ East Bay F                                                     | Regional Pa | ırk Disti                       | rict                                    | Co                                      | oler No.                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           |           | 1     | x = 7           | 1               | 7                 | 7       | 7            | 7            | //                                      | 7     |                            |
|                                                                                | wood Road   |                                 |                                         |                                         | oject Manager <u>Rich</u>     |          | disi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ ,                                               | /, ,      | ainers /  | / 00/ |                 |                 | / ,               | / ,     | / /          | / /          | / / .                                   |       |                            |
| Oakland, C                                                                     | California  |                                 |                                         | Tel                                     | ephone No. (510) 644          | -3123    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - //                                              | ) lifered | Š\        | T.    | / /             | /منر /          | /بعر              |         |              |              | //                                      |       |                            |
| Project Name Redwood                                                           | Regional Pa | ark                             |                                         |                                         | x No(510) 644                 |          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ / `                                             | `/&       | ?/        | \     | / /.            | \$/             | $\ell$            |         |              |              | / /                                     | Remar | ks                         |
| Project Number 2013-02                                                         |             |                                 |                                         | <br>Sa                                  | mplers: (Signature)           | 2        | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>-</del> /-/                                  | / /       | / y       | 3/    |                 | / 3             | [ ]               | /a/     | / /          | / /          |                                         |       |                            |
| Field Sample Number                                                            | Location/   | Date                            | Time                                    | Sample                                  | Type/Size of Container        | Pr       | eservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1//                                               |           |           |       |                 |                 | []<br>2]          | 9       |              |              |                                         |       |                            |
| r leid dample Number                                                           | Depth       |                                 |                                         | Type                                    | Typeraize of Container        | Cooler   | Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>/ /     </del>                               | 1         | 7         | 7     | <del></del>     | <del>3</del> /_ | 7                 | 7       | $\leftarrow$ | $\leftarrow$ | <u>/</u>                                |       |                            |
| Sw-3                                                                           | cheel.      | 3/411                           | 1300                                    | W                                       |                               | 水        | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | ×         | ×         |       |                 |                 |                   |         |              |              |                                         |       |                            |
| SW-Z                                                                           | Creek       |                                 | 240                                     | W                                       |                               | ىح       | <u>~</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | N         | 8         |       |                 |                 |                   |         |              |              |                                         |       |                            |
| mw-2                                                                           |             |                                 | 1248                                    | w                                       |                               | `w       | . 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | ~         | \$        |       |                 |                 |                   |         |              |              |                                         |       |                            |
| MW-10                                                                          |             | /                               | 230                                     | W                                       |                               | ,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 70        | \$        |       |                 |                 |                   |         |              |              |                                         |       |                            |
| mwB                                                                            |             |                                 | 213                                     | in/                                     |                               | X<br>  X | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | X         | 9         |       |                 |                 |                   |         |              |              |                                         |       |                            |
| mw-12                                                                          |             |                                 | 1115                                    |                                         |                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | X         | <b>√</b>  | ,     |                 |                 |                   |         |              |              |                                         |       |                            |
| mw-9                                                                           |             | 1                               | 050                                     | w                                       |                               | 2        | <del>9</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | 70        | -¢        |       | \(\frac{1}{2}\) | 1               | 1                 | }       |              |              | *************************************** |       |                            |
| 1                                                                              |             |                                 |                                         | المما                                   |                               | 100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           | 1         |       | X 7             | × 2             | -                 |         |              |              |                                         |       |                            |
| mw-11                                                                          |             | 1 1/                            | 715                                     | W                                       |                               | الخر     | $-\mathcal{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | ベ         | チ         |       | _               |                 | -                 |         |              |              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |       |                            |
| mw-7                                                                           |             | L C                             | 1940                                    | W                                       |                               | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 7         | $\varphi$ |       | XX              | E               | 8                 |         |              |              |                                         |       |                            |
| ·                                                                              |             |                                 |                                         |                                         |                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           |           |       |                 |                 |                   |         |              |              |                                         | ,     |                            |
|                                                                                |             |                                 |                                         |                                         |                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           |           |       |                 |                 |                   |         |              |              |                                         |       |                            |
|                                                                                |             |                                 |                                         |                                         | ~ /                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           |           |       |                 |                 |                   |         |              |              |                                         |       |                            |
| Relinquished by:                                                               | 2           | Date                            | Received                                |                                         | 1 M T                         | Date     | Relinquished by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y:                                                |           | L-,       |       | Date            | R               | eceived           | by:     |              | I.           |                                         |       | Date                       |
| Signature                                                                      | -7-1        | 1/21/                           | Signatu<br>ما                           | irel/4                                  | 2 Lange                       | 3/21/    | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |           |           |       |                 |                 | Signati           | ure     |              |              | <del></del>                             |       |                            |
| Printed Dam S                                                                  | 30          | Time                            | Printed                                 | Pot                                     | Gonzaldz                      | Time     | Printed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |           |           |       | Time            | _               | Printed           | 1       |              |              |                                         |       | Time                       |
| Stellar Environr                                                               | mental      | 100                             |                                         | -                                       | a FT                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |           |           |       |                 |                 |                   |         |              |              |                                         |       |                            |
| Company                                                                        |             |                                 | Compa                                   | ny                                      |                               | 14:00    | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |           |           |       | ļ               | _               | Compa             | iny     |              |              |                                         |       |                            |
| Turnaround Time: 5 Day TAT                                                     | ·           | ******************************* |                                         | *************************************** |                               | ····     | Relinquished by<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>r</i> :                                        |           |           |       | Date            | - 1             | ceived<br>Signati | •       |              |              |                                         |       | Date                       |
| Comments: Samples on ic                                                        | e ·         |                                 |                                         |                                         |                               |          | The second secon | antige delan dari bilang etan germanyiliyi dajara |           |           | *     |                 |                 |                   |         |              |              | *** A CONTRACTOR OF THE PROPERTY OF     |       | Nonedyseny system dysty, c |
|                                                                                |             |                                 |                                         |                                         |                               |          | Printed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                 | w         |           |       | Time            | •               | Printed           | l       |              |              |                                         |       | Time                       |
|                                                                                |             |                                 |                                         |                                         |                               |          | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |           |           |       |                 |                 | Compa             | ny      |              |              |                                         |       |                            |

# **APPENDIX C**

**Analytical Laboratory Report** and Chain-of-Custody Record





# Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

# Laboratory Job Number 275296 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2013-02.

Location : Redwood Regional Park

Date: 04/04/2016

Level : II

| Sample ID | <u>Lab ID</u> |
|-----------|---------------|
| SW-3      | 275296-001    |
| SW-2      | 275296-002    |
| MW-2      | 275296-003    |
| MW-10     | 275296-004    |
| MW-8      | 275296-005    |
| MW-12     | 275296-006    |
| MW-9      | 275296-007    |
| MW-11     | 275296-008    |
| MW-7      | 275296-009    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: \_\_\_

Will Rice Project Manager will.rice@ctberk.com

Will Rice

CA ELAP# 2896, NELAP# 4044-001

1 of 40



#### CASE NARRATIVE

Laboratory number: 275296

Client: Stellar Environmental Solutions

Project: 2013-02.

Location: Redwood Regional Park

Request Date: 03/21/16 Samples Received: 03/21/16

This data package contains sample and QC results for nine water samples, requested for the above referenced project on 03/21/16. The samples were received cold and intact.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

MW-9 (lab # 275296-007) was diluted due to client history of high non-target or organic acid interference. No other analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

#### Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

#### Biochemical Oxygen Demand (SM5210B):

High recovery was observed for biochemical oxygen demand in the BSD for batch 233358; the associated RPD was within limits. No other analytical problems were encountered.

# 275296 Chain of Custody Record

| Laboratory Curtis and Tor                                        | npkins, Ltd.<br>eet |                   |          |                | hod of ShipmentHa                              | and <u>Deli</u>          | very                      | -                 |          |              |          |                 |             |                  |          |          |     | Page | ]<br>of _                             |      |
|------------------------------------------------------------------|---------------------|-------------------|----------|----------------|------------------------------------------------|--------------------------|---------------------------|-------------------|----------|--------------|----------|-----------------|-------------|------------------|----------|----------|-----|------|---------------------------------------|------|
| Address 2323 Fitti Street<br>Berkeley, Calif<br>510-486-0900     | fornia 94710        | )                 |          |                | oment No.                                      |                          |                           | <u>.</u>          |          | 7            | پر/      |                 |             | Analys           | sis Rec  | quired   |     |      |                                       |      |
| Project Owner East Bay F<br>Site Address 7867 Redv<br>Oakland, O | vood Road           | k Distr           | ict      | —<br>Proj      | ect Manager <u>Rich</u><br>phone No. (510) 644 | ard <b>Ma</b> k<br>-3123 | disi                      | -<br>- /<br>- /il | No. or   | Soulainers ( | 1        |                 |             |                  |          | ///      |     |      |                                       |      |
| FIUIECTIVATIVE                                                   | Regional Pa         | rk                |          |                | No. (510) 644                                  | -3859                    |                           | • / /             | ر پخ     | /_)          |          | / 1             | 7 <i>\$</i> | 7_/              | / /      | / /      | / / | ′ /  | Remarks                               | 5    |
| Project Number 2013-02                                           |                     |                   |          | San            | nplers: (Signature)                            | 1                        | 756                       | -/-/              | /:       | - J          |          | /5/             | <i>.</i> // | 4/3/3            | 9        |          |     |      |                                       |      |
| Field Sample Number                                              | Location/<br>Depth  | Date              | Time     | Sample<br>Type | Type/Size of Container                         | Pre<br>Cooler            | servation<br>Chemical     |                   | R        |              | 7 /      | ₹/ •            | ·/_         | <u>ک</u> ر       | <u>/</u> |          |     |      |                                       |      |
| 5w-3                                                             | check.              | 3/2/14            | 1300     | W              |                                                | *                        | ×                         |                   | ×        | ×            |          |                 |             |                  |          |          |     |      |                                       |      |
| SW-2                                                             | Cheek               | 1                 | 240      | W              |                                                | لح                       | $\sim$                    |                   | ×        | X            | _        | <u> </u>        | <u> </u>    |                  |          |          |     |      |                                       |      |
| mw-2                                                             |                     |                   | 1248     | w              |                                                | l y                      | ~                         |                   | ¥        | ¥            |          |                 |             |                  |          |          |     |      |                                       |      |
| MW-10                                                            |                     |                   | 230      | w              |                                                | ×                        |                           |                   | <b>)</b> | S            |          | _               |             |                  |          |          |     |      |                                       |      |
| mus                                                              |                     |                   | 213      | W              |                                                | ×                        | $-\varphi$                |                   | 7        | 4            |          |                 | -           |                  |          |          | -   |      |                                       |      |
| mw-12                                                            |                     |                   | 1115     | w              |                                                | ×                        | <u> </u>                  |                   |          | *            |          | x   x           | ¥           | 1                |          |          |     |      |                                       |      |
| mw-9                                                             |                     | 1                 | 050      | سرا            |                                                | 120                      | <b>y</b>                  |                   | 70       | 7            | 1        | XX              | ×           | €                |          |          |     |      |                                       |      |
| mw-11                                                            |                     | 1 . 1 /           | 715      | w              |                                                | <b>×</b>                 | $\mathcal{S}$             |                   | 7        | 7            | _        | _               | $\vdash$    | <u> </u>         | _        |          | -   |      |                                       |      |
| mw-7                                                             |                     | <b>V</b> (        | 1940     | W              |                                                | Y                        | P                         |                   | 7        | 4            |          | * X             | : ×         | X                |          |          |     |      | <del> </del>                          |      |
|                                                                  |                     |                   |          |                |                                                |                          |                           |                   |          |              |          |                 | -           |                  |          |          |     |      |                                       |      |
|                                                                  |                     |                   |          |                |                                                |                          |                           |                   |          |              |          |                 |             |                  |          | <u> </u> |     |      |                                       |      |
| Relinquished by: Signature                                       | 3                   | Date 3/21         | Received | ture           | t Long                                         | Date 3/2/                | Relinquished<br>Signature | by:               |          |              |          | Dat             | e R         | eceived<br>Signa | -        | ·        |     |      |                                       | Date |
| Printed Dam                                                      | 31                  | Time              | Printe   | d Pat          | Gorrales                                       | - Time                   | Printed                   |                   |          |              |          | Tim             | е           | Printe           | :d       |          |     |      |                                       | Time |
| Stellar Enviror                                                  | nmental             | <del>(</del> 120) | Comp     | pany(          | <u> </u>                                       | - 4-00                   |                           |                   |          |              |          | -               |             | Comp             |          | -        |     |      |                                       | Date |
| Turnaround Time: 5 Day TAT                                       |                     |                   |          |                | · · · · · · · · · · · · · · · · · · ·          |                          | Relinquished<br>Signature |                   |          |              |          | Da <sup>*</sup> | te   F      | Receive<br>Signa |          |          |     |      | · · · · · · · · · · · · · · · · · · · | Date |
| Comments: Samples on                                             | ice                 |                   |          |                |                                                |                          | Printed                   |                   |          |              | <u> </u> | - Tin           | ne          | Printe           | ed       |          |     |      | <del></del>                           | Time |
|                                                                  |                     |                   |          |                |                                                |                          | Company                   |                   |          |              |          | -               |             | Comp             | pany _   |          |     |      |                                       |      |

## COOLER RECEIPT CHECKLIST



| Login # 275296 Date Received 3/21/16 Client Stellar Environmental Project Redwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of coolers 2                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Date Opened $3/21$ By (print) $5$ (sign) Date Logged in $2$ By (print) $3$ (sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | syn yrs                                |
| Date Logged in $ \Rightarrow $ By (print) $ \Rightarrow $ (sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —————————————————————————————————————— |
| 1. Did cooler come with a shipping slip (airbill, etc)Shipping info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES YO                                 |
| 2A. Were custody seals present?   YES (circle) on cooled Name  Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                                   |
| 2B. Were custody seals intact upon arrival?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YES NO NA                              |
| <ul><li>3. Were custody papers dry and intact when received?</li><li>4. Were custody papers filled out properly (ink, signed, etc)?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 5. Is the project identifiable from custody papers? (If so fill out top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| C T 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                               |
| ☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam  7. Temperature documentation: * Notify PM if temperature expressions of the properties of the pr |                                        |
| Type of ice used: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| Temperature blank(s) included? Thermometer# 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| ☐ Samples received on ice directly from the field. Cooling pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 8. Were Method 5035 sampling containers present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES NO                                 |
| 9. Did all bottles arrive unbroken/unopened?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YOS NO                                 |
| 10. Are there any missing / extra samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YES XX                                 |
| 11. Are samples in the appropriate containers for indicated tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 12. Are sample labels present, in good condition and complete?13. Do the sample labels agree with custody papers?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7F0 3.70                             |
| 14. Was sufficient amount of sample sent for tests requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 15. Are the samples appropriately preserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OS NO N/A                              |
| 16. Did you check preservatives for all bottles for each sample?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WES NO N/A                             |
| 17. Did you document your preservative check? (pH strip lot#_HC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 18. Did you change the hold time in LIMS for unpreserved VOAs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 19. Did you change the hold time in LIMS for preserved terracores?<br>20. Are bubbles > 6mm absent in VOA samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 21. Was the client contacted concerning this sample delivery?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YES NO N/A YES NO                      |
| If YES, Who was called?By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                  |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |

Curtis & Tompkins Sample Preservation for 275296

| Sample pH:                               | <2                       | >9_                             | >12 | Other |
|------------------------------------------|--------------------------|---------------------------------|-----|-------|
| -006a<br>b<br>c<br>d<br>e<br>f<br>g<br>h |                          |                                 | [ ] |       |
| -007a<br>b<br>c<br>d<br>e<br>f<br>g<br>h |                          | [ ]<br>[ ]<br>[ ]<br>[ ]<br>[ ] |     |       |
| -009a<br>b<br>c<br>d<br>e<br>f<br>g<br>h | [ ]<br>[ ]<br>[ ]<br>[ ] |                                 |     |       |

Analyst: 50 Date: 3/21//6 Page 1 of 1



#### Detections Summary for 275296

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2013-02.

Location : Redwood Regional Park

Client Sample ID : SW-3 Laboratory Sample ID : 275296-001

No Detections

Client Sample ID : SW-2 Laboratory Sample ID : 275296-002

No Detections

Client Sample ID: MW-2 Laboratory Sample ID: 275296-003

No Detections

Client Sample ID: MW-10 Laboratory Sample ID: 275296-004

| Analyte         | Result | Flags | RL | Units | Basis   | IDF   | Method    | Prep Method |
|-----------------|--------|-------|----|-------|---------|-------|-----------|-------------|
| Gasoline C7-C12 | 90     | Y     | 50 | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 5030B   |
| Diesel C10-C24  | 110    | Y     | 50 | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 3520C   |

Client Sample ID: MW-8 Laboratory Sample ID: 275296-005

| Analyte         | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|-----------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Gasoline C7-C12 | 170    |       | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 5030B   |
| MTBE            | 2.5    |       | 2.0  | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| Benzene         | 0.53   | С     | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| Ethylbenzene    | 3.6    |       | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| m,p-Xylenes     | 4.9    |       | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| o-Xylene        | 0.62   |       | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| Diesel C10-C24  | 290    | Y     | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 3520C   |

Client Sample ID: MW-12 Laboratory Sample ID: 275296-006

| Analyte                | Result | Flags | RL   | Units | Basis | IDF   | Method    | Prep Method |
|------------------------|--------|-------|------|-------|-------|-------|-----------|-------------|
| Sulfate                | 49     |       | 0.50 | mg/L  | TOTAL | 1.000 | EPA 300.0 | METHOD      |
| Chemical Oxygen Demand | 14     |       | 10   | mg/L  | TOTAL | 1.000 | SM5220D   | METHOD      |

Page 1 of 2 25.0



Client Sample ID : MW-9 Laboratory Sample ID :

275296-007

| Analyte                   | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|---------------------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Gasoline C7-C12           | 4,000  | Y     | 830  | ug/L  | As Recd | 16.67 | EPA 8015B | EPA 5030B   |
| Benzene                   | 18     |       | 8.3  | ug/L  | As Recd | 16.67 | EPA 8021B | EPA 5030B   |
| Ethylbenzene              | 84     |       | 8.3  | ug/L  | As Recd | 16.67 | EPA 8021B | EPA 5030B   |
| Diesel C10-C24            | 2,600  | Y     | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 3520C   |
| Sulfate                   | 22     |       | 0.50 | mg/L  | TOTAL   | 1.000 | EPA 300.0 | METHOD      |
| Biochemical Oxygen Demand | 8.7    |       | 5.0  | mg/L  | TOTAL   | 1.000 | SM5210B   | METHOD      |
| Chemical Oxygen Demand    | 26     |       | 10   | mg/L  | TOTAL   | 1.000 | SM5220D   | METHOD      |

Client Sample ID : MW-11 Laboratory Sample ID :

275296-008

| Analyte         | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|-----------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Gasoline C7-C12 | 720    | Y     | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 5030B   |
| Ethylbenzene    | 6.1    |       | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| Diesel C10-C24  | 610    | Y     | 49   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 3520C   |

Client Sample ID: MW-7 Laboratory Sample ID: 275296-009

| Analyte                | Result | Flags | RL   | Units | Basis   | IDF   | Method    | Prep Method |
|------------------------|--------|-------|------|-------|---------|-------|-----------|-------------|
| Gasoline C7-C12        | 1,500  | Y     | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 5030B   |
| Ethylbenzene           | 12     |       | 0.50 | ug/L  | As Recd | 1.000 | EPA 8021B | EPA 5030B   |
| Diesel C10-C24         | 850    | Y     | 50   | ug/L  | As Recd | 1.000 | EPA 8015B | EPA 3520C   |
| Nitrogen, Nitrate      | 0.31   |       | 0.05 | mg/L  | TOTAL   | 1.000 | EPA 300.0 | METHOD      |
| Sulfate                | 36     |       | 0.50 | mg/L  | TOTAL   | 1.000 | EPA 300.0 | METHOD      |
| Chemical Oxygen Demand | 15     |       | 10   | mg/L  | TOTAL   | 1.000 | SM5220D   | METHOD      |

C = Presence confirmed, but RPD between columns exceeds 40%

Y = Sample exhibits chromatographic pattern which does not resemble standard



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2013-02. Sampled: 03/21/16 Matrix: Water Units: Received: 03/21/16 ug/L Batch#: 233276

Field ID: SW-3 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/21/16

Lab ID: 275296-001

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | ND     | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 110  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 108  | 71-141 | EPA 8021B |  |

Field ID: SW-2 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/21/16

Lab ID: 275296-002

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | ND     | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 111  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 111  | 71-141 | EPA 8021B |  |

C= Presence confirmed, but RPD between columns exceeds 40%

Page 1 of 5

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2013-02. Sampled: 03/21/16 Matrix: Water Received: Units: 03/21/16 ug/L Batch#: 233276

Field ID: MW-2 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/21/16

Lab ID: 275296-003

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | ND     | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 107  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 106  | 71-141 | EPA 8021B |  |

Field ID: MW-10 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/21/16

Lab ID: 275296-004

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | 90 Y   | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 105  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 102  | 71-141 | EPA 8021B |  |

C= Presence confirmed, but RPD between columns exceeds 40%

Page 2 of 5

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2013-02. Sampled: 03/21/16 Matrix: Water Received: Units: 03/21/16 ug/L Batch#: 233276

Field ID: MW-8 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/21/16

Lab ID: 275296-005

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | 170    | 50   | EPA 8015B |
| MTBE            | 2.5    | 2.0  | EPA 8021B |
| Benzene         | 0.53 C | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | 3.6    | 0.50 | EPA 8021B |
| m,p-Xylenes     | 4.9    | 0.50 | EPA 8021B |
| o-Xylene        | 0.62   | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 111  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 111  | 71-141 | EPA 8021B |  |

Field ID: MW-12 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/22/16

Lab ID: 275296-006

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | ND     | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 107  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 110  | 71-141 | EPA 8021B |  |

C= Presence confirmed, but RPD between columns exceeds 40%

Page 3 of 5

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2013-02. Sampled: 03/21/16 Matrix: Water Units: Received: 03/21/16 ug/L Batch#: 233276

Field ID: MW-9 Diln Fac: 16.67 Type: SAMPLE Analyzed: 03/22/16

Lab ID: 275296-007

| Analyte         | Result  | RL  | Analysis  |
|-----------------|---------|-----|-----------|
| Gasoline C7-C12 | 4,000 Y | 830 | EPA 8015B |
| MTBE            | ND      | 33  | EPA 8021B |
| Benzene         | 18      | 8.3 | EPA 8021B |
| Toluene         | ND      | 8.3 | EPA 8021B |
| Ethylbenzene    | 84      | 8.3 | EPA 8021B |
| m,p-Xylenes     | ND      | 8.3 | EPA 8021B |
| o-Xylene        | ND      | 8.3 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 115  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 113  | 71-141 | EPA 8021B |  |

Field ID: MW-11 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/22/16

Lab ID: 275296-008

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | 720 Y  | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | 6.1    | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 100  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 108  | 71-141 | EPA 8021B |  |

C= Presence confirmed, but RPD between columns exceeds 40%

Page 4 of 5

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2013-02. Sampled: 03/21/16 Matrix: Water Units: ug/L Received: 03/21/16 Batch#: 233276

Field ID: MW-7 Diln Fac: 1.000 Type: SAMPLE Analyzed: 03/22/16

Lab ID: 275296-009

| Analyte         | Result  | RL   | Analysis  |
|-----------------|---------|------|-----------|
| Gasoline C7-C12 | 1,500 Y | 50   | EPA 8015B |
| MTBE            | ND      | 2.0  | EPA 8021B |
| Benzene         | ND      | 0.50 | EPA 8021B |
| Toluene         | ND      | 0.50 | EPA 8021B |
| Ethylbenzene    | 12      | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND      | 0.50 | EPA 8021B |
| o-Xylene        | ND      | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 116  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 115  | 71-141 | EPA 8021B |  |

Type: BLANK Diln Fac: 1.000 Lab ID: QC828221 Analyzed: 03/21/16

| Analyte         | Result | RL   | Analysis  |
|-----------------|--------|------|-----------|
| Gasoline C7-C12 | ND     | 50   | EPA 8015B |
| MTBE            | ND     | 2.0  | EPA 8021B |
| Benzene         | ND     | 0.50 | EPA 8021B |
| Toluene         | ND     | 0.50 | EPA 8021B |
| Ethylbenzene    | ND     | 0.50 | EPA 8021B |
| m,p-Xylenes     | ND     | 0.50 | EPA 8021B |
| o-Xylene        | ND     | 0.50 | EPA 8021B |

| Surrogate                | %REC | Limits | Analysis  |  |
|--------------------------|------|--------|-----------|--|
| Bromofluorobenzene (FID) | 106  | 80-132 | EPA 8015B |  |
| Bromofluorobenzene (PID) | 108  | 71-141 | EPA 8021B |  |

C= Presence confirmed, but RPD between columns exceeds 40%

Page 5 of 5

12.0

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit



#### Batch QC Report

|           | Curtis & Tompkins Labo          | oratories Anal | ytical Report         |
|-----------|---------------------------------|----------------|-----------------------|
| Lab #:    | 275296                          | Location:      | Redwood Regional Park |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B             |
| Project#: | 2013-02.                        | Analysis:      | EPA 8015B             |
| Type:     | LCS                             | Diln Fac:      | 1.000                 |
| Lab ID:   | QC828220                        | Batch#:        | 233276                |
| Matrix:   | Water                           | Analyzed:      | 03/21/16              |
| Units:    | ug/L                            |                |                       |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,000  | 1,136  | 114  | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Bromofluorobenzene (FID) | 108  | 80-132 |

Page 1 of 1



Batch QC Report

|           | Curtis & Tompkins Labo          | oratories Anal | Lytical Report        |
|-----------|---------------------------------|----------------|-----------------------|
| Lab #:    | 275296                          | Location:      | Redwood Regional Park |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B             |
| Project#: | 2013-02.                        | Analysis:      | EPA 8021B             |
| Matrix:   | Water                           | Batch#:        | 233276                |
| Units:    | ug/L                            | Analyzed:      | 03/21/16              |
| Diln Fac: | 1.000                           |                |                       |

Type: BS Lab ID: QC828222

| Analyte      | Spiked | Result | %REC | Limits |
|--------------|--------|--------|------|--------|
| MTBE         | 10.00  | 10.55  | 105  | 74-137 |
| Benzene      | 10.00  | 10.14  | 101  | 80-120 |
| Toluene      | 10.00  | 9.686  | 97   | 80-120 |
| Ethylbenzene | 10.00  | 10.05  | 100  | 80-120 |
| m,p-Xylenes  | 10.00  | 10.45  | 105  | 80-120 |
| o-Xylene     | 10.00  | 10.46  | 105  | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Bromofluorobenzene (PID) | 105  | 71-141 |

Type: BSD Lab ID: QC828223

| Analyte      | Spiked | Result | %REC | Limits | RPD | Lim |
|--------------|--------|--------|------|--------|-----|-----|
| MTBE         | 10.00  | 11.32  | 113  | 74-137 | 7   | 37  |
| Benzene      | 10.00  | 10.86  | 109  | 80-120 | 7   | 20  |
| Toluene      | 10.00  | 10.42  | 104  | 80-120 | 7   | 20  |
| Ethylbenzene | 10.00  | 10.62  | 106  | 80-120 | 6   | 20  |
| m,p-Xylenes  | 10.00  | 10.98  | 110  | 80-120 | 5   | 20  |
| o-Xylene     | 10.00  | 10.94  | 109  | 80-120 | 5   | 20  |

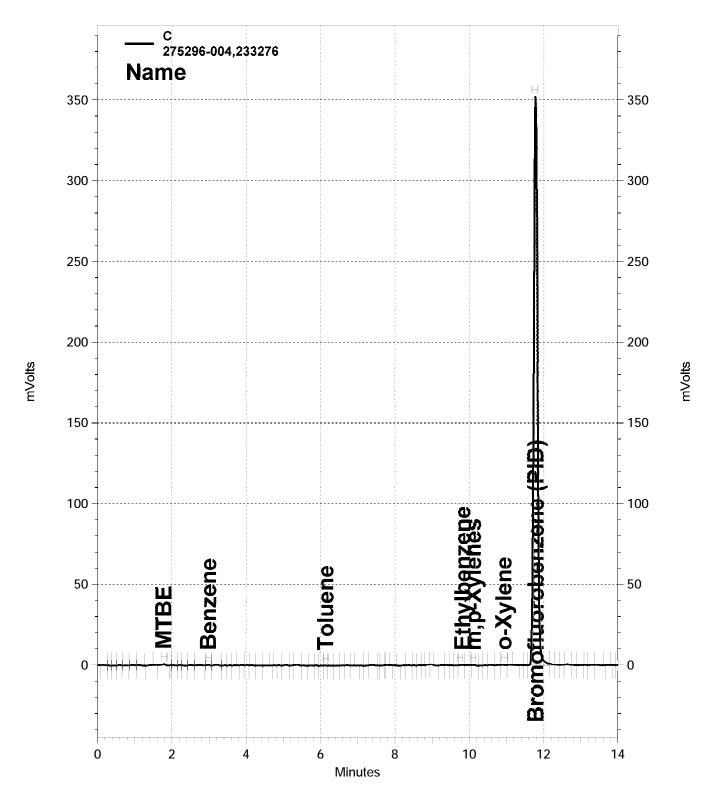
|            | Surrogate %REC            | Limits |
|------------|---------------------------|--------|
| Bromofluor | nofluorobenzene (PID) 112 | 71-141 |



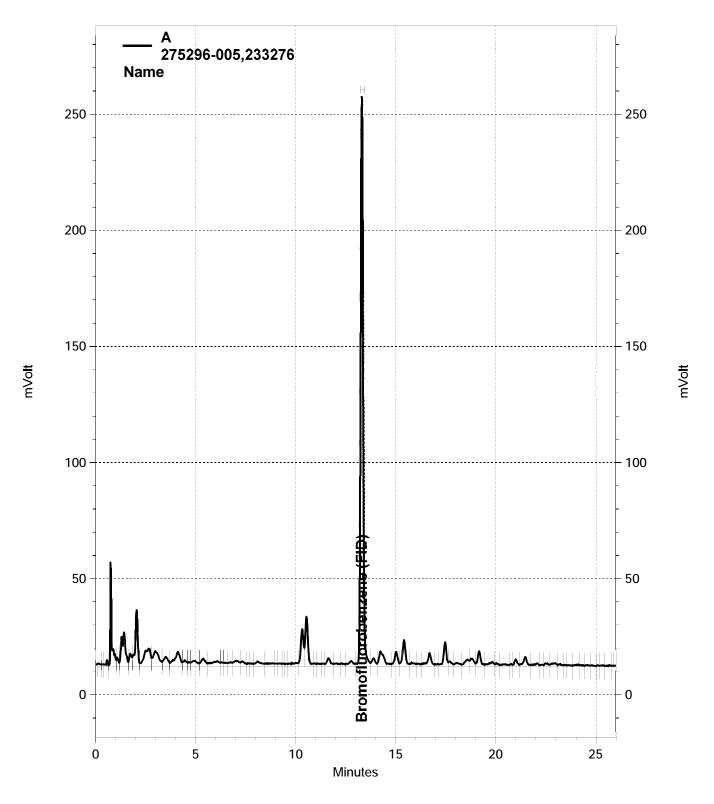
Batch QC Report

|                  | Curtis & Tompkins Labo     | oratories Anal | ytical Report         |
|------------------|----------------------------|----------------|-----------------------|
| Lab #: 275296    | 5                          | Location:      | Redwood Regional Park |
| Client: Stella   | ar Environmental Solutions | Prep:          | EPA 5030B             |
| Project#: 2013-0 | 02.                        | Analysis:      | EPA 8015B             |
| Field ID:        | ZZZZZZZZZ                  | Batch#:        | 233276                |
| MSS Lab ID:      | 275280-001                 | Sampled:       | 03/19/16              |
| Matrix:          | Water                      | Received:      | 03/21/16              |
| Units:           | ug/L                       | Analyzed:      | 03/21/16              |
| Diln Fac:        | 1.000                      |                |                       |

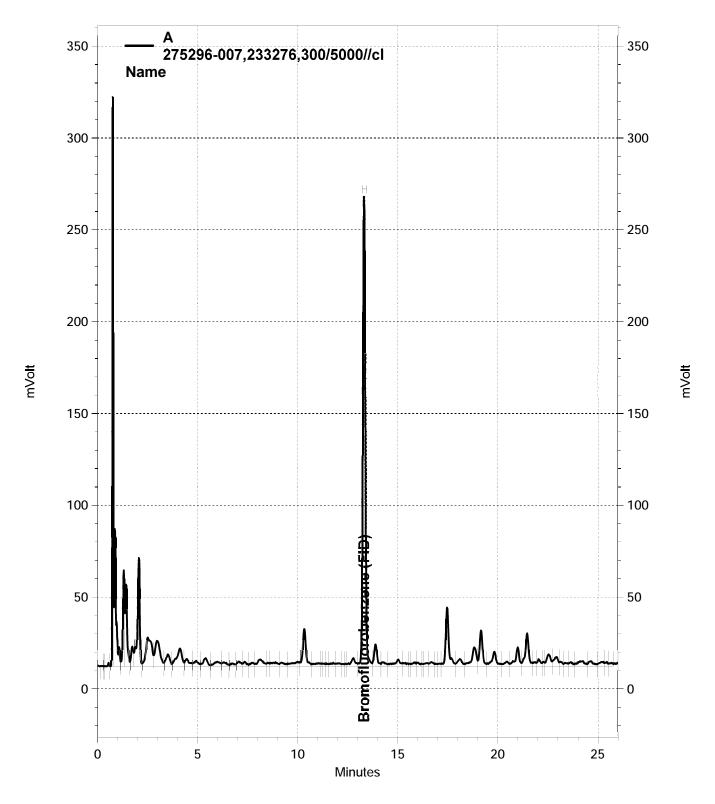
Type: MS Lab ID: QC828224


| Analyte         | MSS Result | Spiked | Result | %REC | Limits |
|-----------------|------------|--------|--------|------|--------|
| Gasoline C7-C12 | 30.65      | 2,000  | 2,011  | 99   | 76-120 |

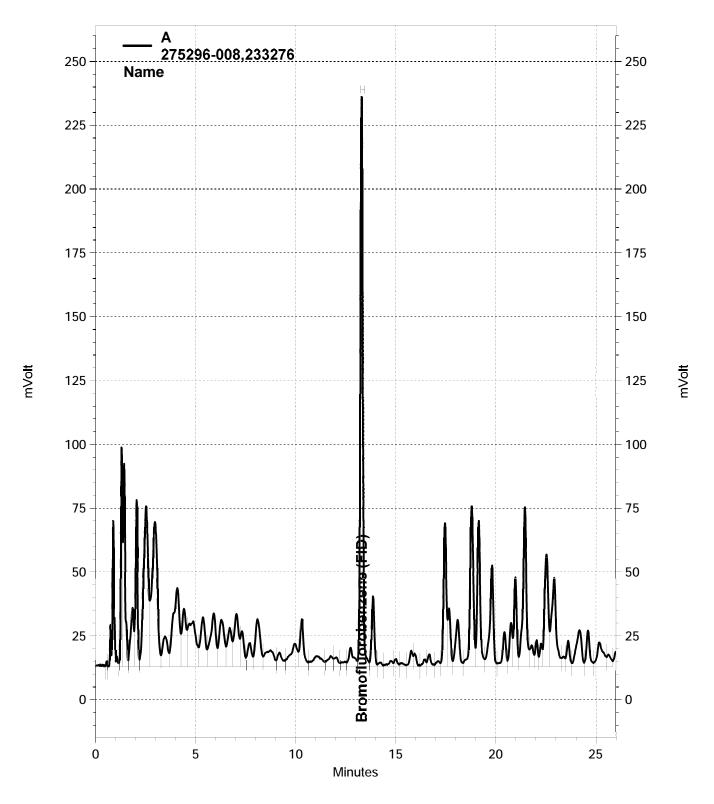
| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Bromofluorobenzene (FID) | 110  | 80-132 |


Type: MSD Lab ID: QC828225

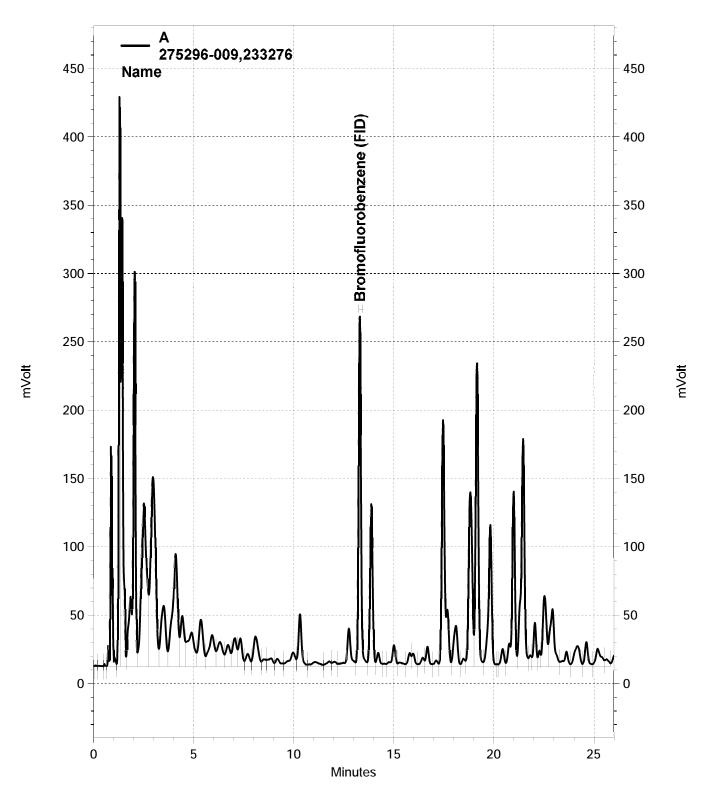
| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 2,000  | 2,106  | 104  | 76-120 | 5   | 20  |


| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Bromofluorobenzene (FID) | 112  | 30-132 |  |

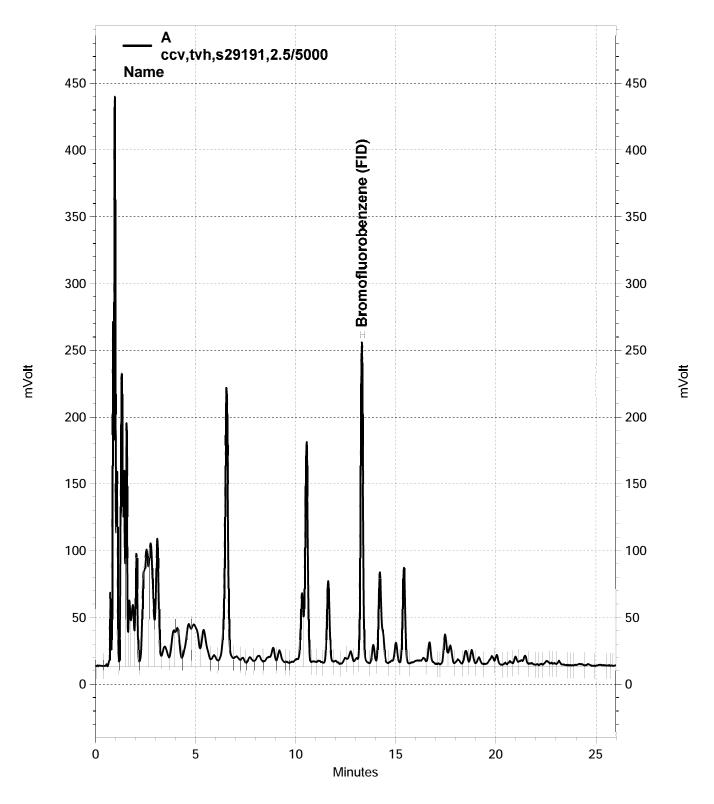



\Lims\gdrive\ezchrom\Projects\GC05\Data\081-020, C




\Lims\gdrive\ezchrom\Projects\GC05\Data\081-021, A




\Lims\gdrive\ezchrom\Projects\GC05\Data\081-025, A



\Lims\gdrive\ezchrom\Projects\GC05\Data\081-023, A



\Lims\gdrive\ezchrom\Projects\GC05\Data\081-024, A



\Lims\gdrive\ezchrom\Projects\GC05\Data\081-003, A



Total Extractable Hydrocarbons

Lab #: 275296 Location: Redwood Regional Park EPA 3520C

Client: Stellar Environmental Solutions Prep: Project#: 2013-02 Analysis: EPA 8015B 03/21/16 Matrix: Water Sampled: 03/21/16 Units: ug/L Received: Diln Fac: 1.000

Field ID: SW-3Batch#: 233431 03/24/16 03/29/16 Type: SAMPLE Prepared: Lab ID:

275296-001 Analyzed:

Result Analyte RLDiesel C10-C24 ND 50

%REC Surrogate Limits o-Terphenyl 67-136

Field ID: SW-2Batch#: 233431 SAMPLE 03/24/16 Type: Prepared: Lab ID: 275296-002 03/29/16 Analyzed:

Analyte Result RL Diesel C10-C24 ND 50

Surrogate %REC Limits o-Terphenyl 67-136

Field ID: MW-2Batch#: 233431 03/24/16 03/29/16 Type: SAMPLE Prepared: Lab ID: 275296-003 Analyzed:

Analyte Result RLDiesel C10-C24 50

Surrogate %REC Limits o-Terphenyl

Field ID: MW-10Batch#: 233431 03/24/16 Type: SAMPLE Prepared: Lab ID: 275296-004 Analyzed: 03/29/16

Analyte Result 110 Y Diesel C10-C24

Surrogate %REC Limits o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 3



Total Extractable Hydrocarbons

Lab #: 275296 Location: Redwood Regional Park Client: Stellar Environmental Solutions Prep: EPA 3520C

Client: Stellar Environmental Solutions Prep: EPA 3520C Project#: 2013-02. Analysis: EPA 8015B Matrix: Water Sampled: 03/21/16 Units: ug/L Received: 03/21/16

Units: ug/L Diln Fac: 1.000

 Field ID:
 MW-8
 Batch#:
 233431

 Type:
 SAMPLE
 Prepared:
 03/24/16

 Lab ID:
 275296-005
 Analyzed:
 03/29/16

 Analyte
 Result
 RL

 Diesel C10-C24
 290 Y
 50

Surrogate %REC Limits
o-Terphenyl 101 67-136

Field ID: MW-12 Batch#: 233431
Type: SAMPLE Prepared: 03/24/16
Lab ID: 275296-006 Analyzed: 03/29/16

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 102 67-136

Field ID: MW-9 Batch#: 233473
Type: SAMPLE Prepared: 03/28/16
Lab ID: 275296-007 Analyzed: 03/29/16

 Analyte
 Result
 RL

 Diesel C10-C24
 2,600 Y
 50

Surrogate %REC Limits
o-Terphenyl 113 67-136

Field ID: MW-11 Batch#: 233629
Type: SAMPLE Prepared: 03/31/16
Lab ID: 275296-008 Analyzed: 04/04/16

 Analyte
 Result
 RL

 Diesel C10-C24
 610 Y
 49

Surrogate %REC Limits
o-Terphenyl 94 67-136

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3



Total Extractable Hydrocarbons

Lab #: 275296 Location: Redwood Regional Park Client: Stellar Environmental Solutions Prep: EPA 3520C

Client: Stellar Environmental Solutions Prep: EPA 3520C Project#: 2013-02. Analysis: EPA 8015B Matrix: Water Sampled: 03/21/16 Units: ug/L Received: 03/21/16

Diln Fac: ug/L

Field ID: MW-7 Batch#: 233473
Type: SAMPLE Prepared: 03/28/16
Lab ID: 275296-009 Analyzed: 03/29/16

Lab 1D. 2/5296-009 Analyzed. 03/29/16

 Analyte
 Result
 RL

 Diesel C10-C24
 850 Y
 50

Surrogate %REC Limits
o-Terphenyl 109 67-136

Type: BLANK Prepared: 03/24/16
Lab ID: QC828850 Prepared: 03/29/16

Batch#: 233431

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 109 67-136

Type: BLANK Prepared: 03/28/16 Lab ID: QC829015 Analyzed: 03/29/16

Batch#: 233473

AnalyteResultRLDiesel C10-C24ND50

Surrogate %REC Limits
o-Terphenyl 105 67-136

Type: BLANK Prepared: 03/31/16
Lab ID: QC829647 Analyzed: 04/04/16

Batch#: 233629

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 101 67-136

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 3



| Total Extractable Hydrocarbons |                                 |           |                       |  |  |  |  |
|--------------------------------|---------------------------------|-----------|-----------------------|--|--|--|--|
| Lab #:                         | 275296                          | Location: | Redwood Regional Park |  |  |  |  |
| Client:                        | Stellar Environmental Solutions | Prep:     | EPA 3520C             |  |  |  |  |
| Project#:                      | 2013-02.                        | Analysis: | EPA 8015B             |  |  |  |  |
| Matrix:                        | Water                           | Batch#:   | 233431                |  |  |  |  |
| Units:                         | ug/L                            | Prepared: | 03/24/16              |  |  |  |  |
| Diln Fac:                      | 1.000                           | Analyzed: | 03/29/16              |  |  |  |  |

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC828851

| Analyte        | Spiked | Result | %REC | Limits |
|----------------|--------|--------|------|--------|
| Diesel C10-C24 | 2,500  | 1,977  | 79   | 60-121 |

| Surrogate   | %REC | Limits |
|-------------|------|--------|
| o-Terphenvl | 94   | 67-136 |

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC828852

| Analyte        | Spiked | Result | %REC | Limits | RPD | Lim |
|----------------|--------|--------|------|--------|-----|-----|
| Diesel C10-C24 | 2,500  | 1,917  | 77   | 60-121 | 3   | 32  |

| Surrogate   | %REC | Limits |  |
|-------------|------|--------|--|
| o-Terphenyl | 88   | 67-136 |  |



| Total Extractable Hydrocarbons |                                 |           |                       |  |  |  |  |
|--------------------------------|---------------------------------|-----------|-----------------------|--|--|--|--|
| Lab #:                         | 275296                          | Location: | Redwood Regional Park |  |  |  |  |
| Client:                        | Stellar Environmental Solutions | Prep:     | EPA 3520C             |  |  |  |  |
| Project#:                      | 2013-02.                        | Analysis: | EPA 8015B             |  |  |  |  |
| Matrix:                        | Water                           | Batch#:   | 233473                |  |  |  |  |
| Units:                         | ug/L                            | Prepared: | 03/28/16              |  |  |  |  |
| Diln Fac:                      | 1.000                           | Analyzed: | 03/29/16              |  |  |  |  |

Type: BS Lab ID: QC829016

| Analyte        | Spiked | Result | %REC | Limits |
|----------------|--------|--------|------|--------|
| Diesel C10-C24 | 2,500  | 2,348  | 94   | 60-121 |

| Surrogate   | %REC | Limits |
|-------------|------|--------|
| o-Terphenyl | 107  | 67-136 |

Type: BSD Lab ID: QC829017

| Analyte        | Spiked | Result | %REC | Limits | RPD | Lim |
|----------------|--------|--------|------|--------|-----|-----|
| Diesel C10-C24 | 2,500  | 2,388  | 96   | 60-121 | 2   | 32  |

| Surrogate   | %REC | Limits |
|-------------|------|--------|
| o-Terphenvl | 107  | 67-136 |

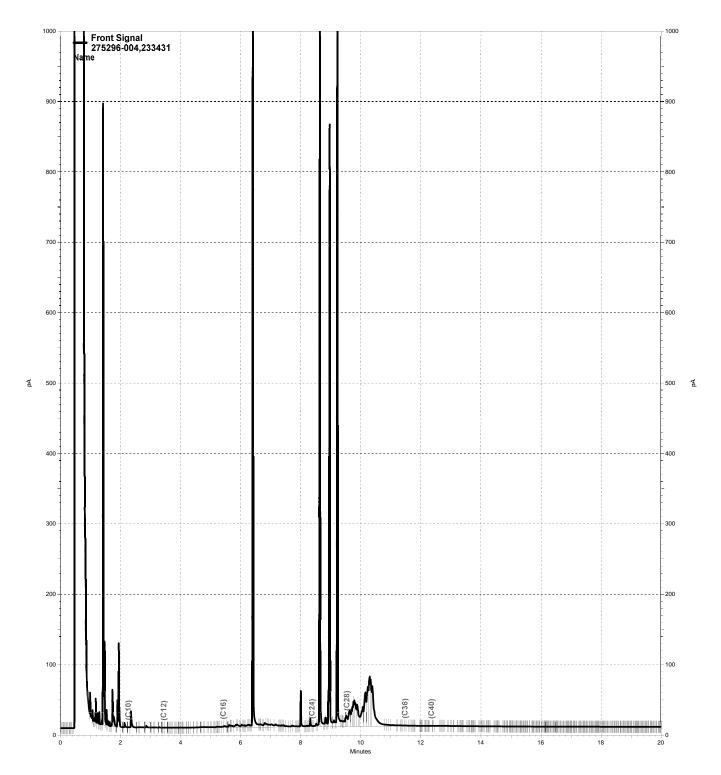


| Total Extractable Hydrocarbons |                                 |           |                       |  |  |  |  |
|--------------------------------|---------------------------------|-----------|-----------------------|--|--|--|--|
| Lab #:                         | 275296                          | Location: | Redwood Regional Park |  |  |  |  |
| Client:                        | Stellar Environmental Solutions | Prep:     | EPA 3520C             |  |  |  |  |
| Project#:                      | 2013-02.                        | Analysis: | EPA 8015B             |  |  |  |  |
| Matrix:                        | Water                           | Batch#:   | 233629                |  |  |  |  |
| Units:                         | ug/L                            | Prepared: | 03/31/16              |  |  |  |  |
| Diln Fac:                      | 1.000                           | Analyzed: | 04/04/16              |  |  |  |  |

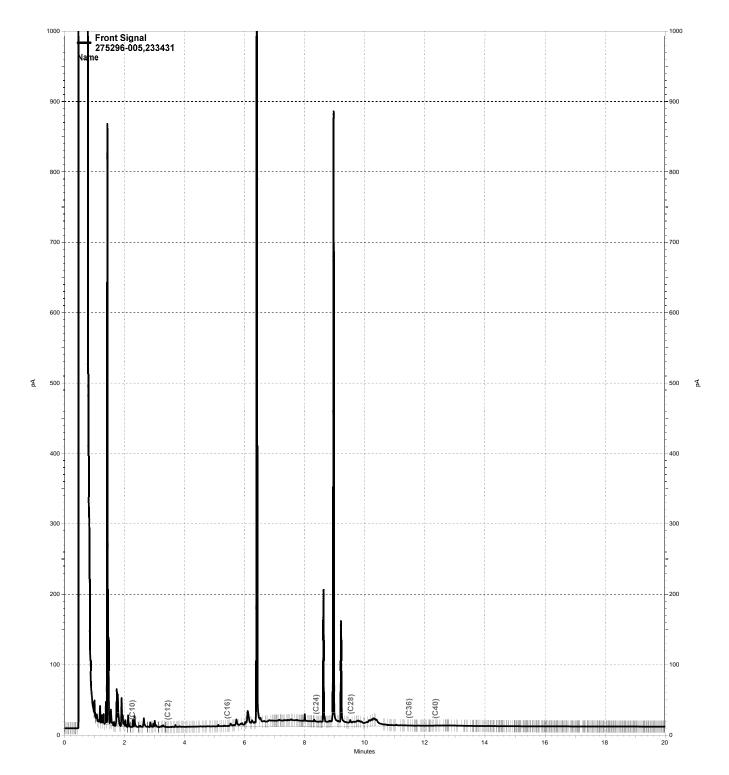
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC829648

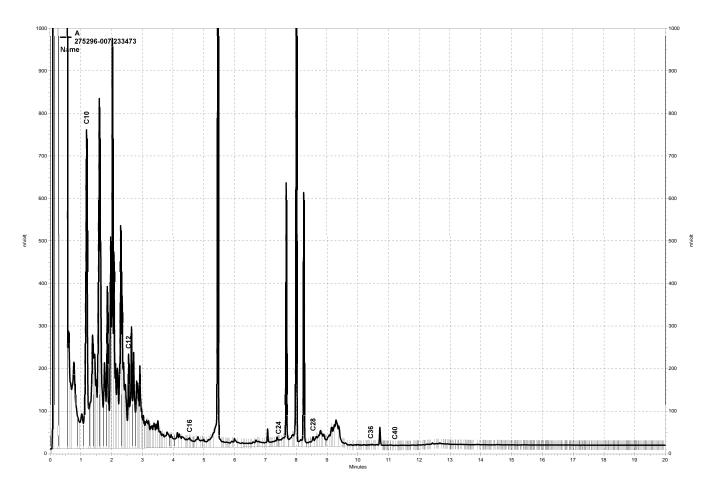
| Analyte        | Spiked | Result | %REC | Limits |
|----------------|--------|--------|------|--------|
| Diesel C10-C24 | 2,500  | 2,243  | 90   | 60-121 |


| Surrogate   | %REC | Limits |  |
|-------------|------|--------|--|
| o-Terphenyl | 96   | 67-136 |  |

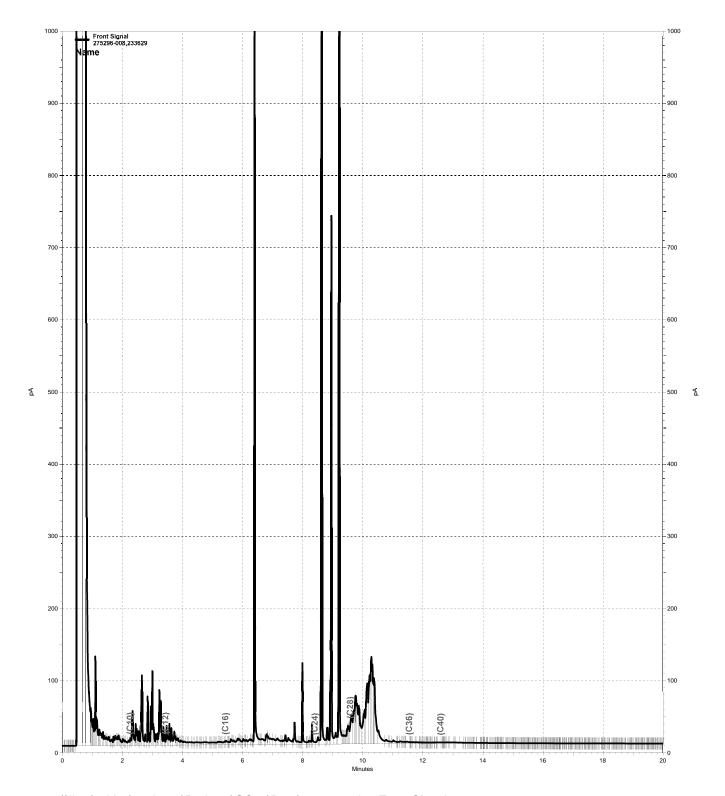
Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC829649

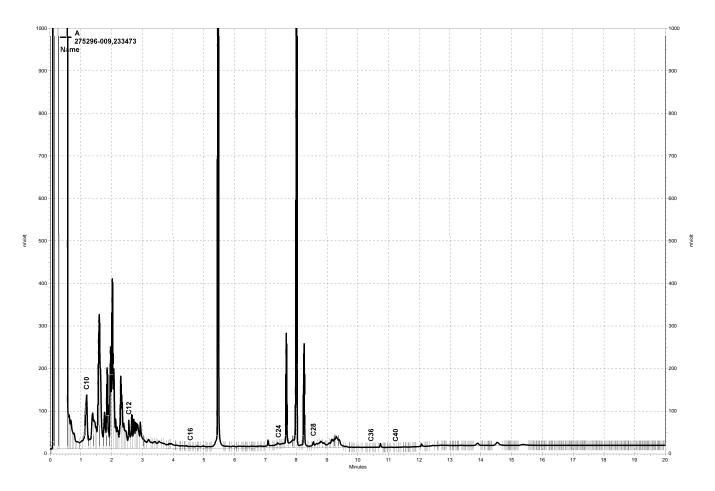
| Analyte        | Spiked | Result | %REC | Limits | RPD | Lim |
|----------------|--------|--------|------|--------|-----|-----|
| Diesel C10-C24 | 2,500  | 1,900  | 76   | 60-121 | 17  | 32  |


| Surrogate   | %REC | Limits |  |
|-------------|------|--------|--|
| o-Terphenyl | 79   | 67-136 |  |

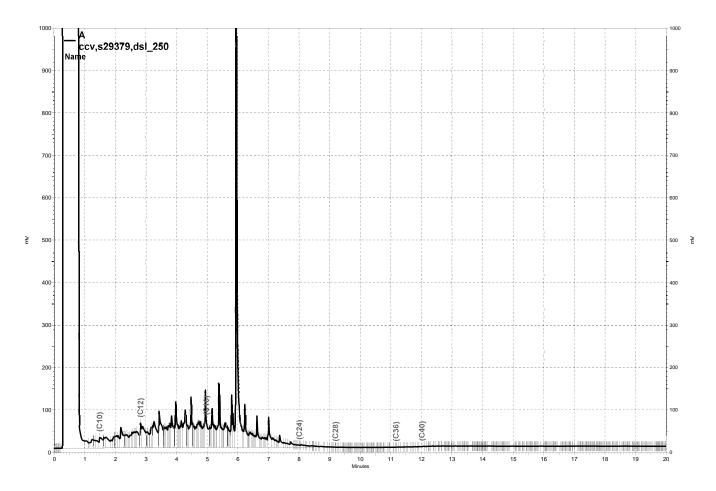



\\lims\gdrive\ezchrom\Projects\GC27\Data\089a009.dat, Front Signal




\\lims\gdrive\ezchrom\Projects\GC27\Data\089a010.dat, Front Signal




\Lims\gdrive\ezchrom\Projects\GC26\Data\089a025, A



\\lims\gdrive\ezchrom\Projects\GC27\Data\095a013.dat, Front Signal



\Lims\gdrive\ezchrom\Projects\GC26\Data\089a027, A



\Lims\gdrive\ezchrom\Projects\GC17A\Data\089a004, A



Curtis & Tompkins Laboratories Analytical Report Lab #: 275296 Location: Redwood Regional Park Client: Stellar Environmental Solutions Prep: METHOD Project#: 2013-02. EPA 300.0 Analysis: Batch#: 233291 Matrix: Water 03/21/16 Units: mg/L Received: 1.000 Diln Fac:

Field ID: MW-12 Sampled: 03/21/16 11:15 Type: SAMPLE Analyzed: 03/21/16 15:41

Lab ID: 275296-006

| Analyte           | Result | RL   |  |
|-------------------|--------|------|--|
| Nitrogen, Nitrate | ND     | 0.05 |  |
| Sulfate           | 49     | 0.50 |  |

Field ID: MW-9 Sampled: 03/21/16 10:50 Type: SAMPLE Analyzed: 03/21/16 15:06

Lab ID: 275296-007

| Analyte           | Result | RL   |  |
|-------------------|--------|------|--|
| Nitrogen, Nitrate | ND     | 0.05 |  |
| Sulfate           | 22     | 0.50 |  |

Field ID: MW-7 Sampled: 03/21/16 09:40 Type: SAMPLE Analyzed: 03/21/16 16:16

Lab ID: 275296-009

| Analyte           | Result | RL   |  |
|-------------------|--------|------|--|
| Nitrogen, Nitrate | 0.31   | 0.05 |  |
| Sulfate           | 36     | 0.50 |  |

Type: BLANK Analyzed: 03/21/16 13:17

Lab ID: QC828275

| Analyte           | Result | RL   |  |
|-------------------|--------|------|--|
| Nitrogen, Nitrate | ND     | 0.05 |  |
| Sulfate           | ND     | 0.50 |  |

ND= Not Detected RL= Reporting Limit

Page 1 of 1 3.0



| Curtis & Tompkins Laboratories Analytical Report |                                 |           |                       |  |  |
|--------------------------------------------------|---------------------------------|-----------|-----------------------|--|--|
| Lab #:                                           | 275296                          | Location: | Redwood Regional Park |  |  |
| Client:                                          | Stellar Environmental Solutions | Prep:     | METHOD                |  |  |
| Project#:                                        | 2013-02.                        | Analysis: | EPA 300.0             |  |  |
| Type:                                            | LCS                             | Diln Fac: | 1.000                 |  |  |
| Lab ID:                                          | QC828276                        | Batch#:   | 233291                |  |  |
| Matrix:                                          | Water                           | Analyzed: | 03/21/16 13:35        |  |  |
| Units:                                           | mg/L                            |           |                       |  |  |

| Analyte           | Spiked | Result | %REC | Limits |
|-------------------|--------|--------|------|--------|
| Nitrogen, Nitrate | 1.000  | 0.9204 | 92   | 80-120 |
| Sulfate           | 10.00  | 9.334  | 93   | 80-120 |

Page 1 of 1 4.0



| Curtis & Tompkins Laboratories Analytical Report |        |                           |           |                       |  |
|--------------------------------------------------|--------|---------------------------|-----------|-----------------------|--|
| Lab #:                                           | 275296 |                           | Location: | Redwood Regional Park |  |
| Client:                                          | Stella | r Environmental Solutions | Prep:     | METHOD                |  |
| Project#:                                        | 2013-0 | 2.                        | Analysis: | EPA 300.0             |  |
| Field ID:                                        |        | MW-12                     | Diln Fac: | 5.000                 |  |
| MSS Lab II                                       | D:     | 275296-006                | Batch#:   | 233291                |  |
| Matrix:                                          |        | Water                     | Sampled:  | 03/21/16 11:15        |  |
| Units:                                           |        | mg/L                      | Received: | 03/21/16              |  |

Type: MS Analyzed: 03/21/16 18:21

Lab ID: QC828293

| Analyte           | MSS Result | Spiked | Result | %REC | Limits |
|-------------------|------------|--------|--------|------|--------|
| Nitrogen, Nitrate | <0.01127   | 2.500  | 2.340  | 94   | 80-120 |
| Sulfate           | 49.42      | 25.00  | 72.38  | 92   | 80-120 |

Type: MSD Analyzed: 03/21/16 18:39

Lab ID: QC828294

| Analyte           | Spiked | Result | %REC | Limits | RPD | Lim |
|-------------------|--------|--------|------|--------|-----|-----|
| Nitrogen, Nitrate | 2.500  | 2.322  | 93   | 80-120 | 1   | 20  |
| Sulfate           | 25.00  | 71.30  | 88   | 80-120 | 1   | 20  |



|           | Biochemical                     | Oxygen Demand |                       |
|-----------|---------------------------------|---------------|-----------------------|
| Lab #:    | 275296                          | Location:     | Redwood Regional Park |
| Client:   | Stellar Environmental Solutions | Prep:         | METHOD                |
| Project#: | 2013-02.                        | Analysis:     | SM5210B               |
| Analyte:  | Biochemical Oxygen Demand       | Batch#:       | 233358                |
| Matrix:   | Water                           | Received:     | 03/21/16              |
| Units:    | mg/L                            | Prepared:     | 03/23/16 09:40        |
| Diln Fac: | 1.000                           | Analyzed:     | 03/28/16 11:36        |

| Field ID | Type   | Lab ID     | Result | RL  | Sampled        |
|----------|--------|------------|--------|-----|----------------|
| MW-12    | SAMPLE | 275296-006 | ND     | 5.0 | 03/21/16 11:15 |
| MW-9     | SAMPLE | 275296-007 | 8.7    | 5.0 | 03/21/16 10:50 |
| MW-7     | SAMPLE | 275296-009 | ND     | 5.0 | 03/21/16 09:40 |
|          | BLANK  | QC828549   | ND     | 5.0 |                |

ND= Not Detected RL= Reporting Limit

Page 1 of 1



|                  | Biochemical               | Oxygen Demand |                       |
|------------------|---------------------------|---------------|-----------------------|
| Lab #: 275296    |                           | Location:     | Redwood Regional Park |
| Client: Stella   | r Environmental Solutions | Prep:         | METHOD                |
| Project#: 2013-0 | 02.                       | Analysis:     | SM5210B               |
| Analyte:         | Biochemical Oxygen Demand | Batch#:       | 233358                |
| Field ID:        | MW-9                      | Sampled:      | 03/21/16 10:50        |
| MSS Lab ID:      | 275296-007                | Received:     | 03/21/16              |
| Matrix:          | Water                     | Prepared:     | 03/23/16 09:40        |
| Units:           | mg/L                      | Analyzed:     | 03/28/16 11:36        |
| Diln Fac:        | 1.000                     |               |                       |

| Type | Lab ID   | MSS Result | Spiked | Result | RL    | %REC  | Limits RPD | Lim |
|------|----------|------------|--------|--------|-------|-------|------------|-----|
| BS   | QC828550 |            | 198.0  | 222.8  |       | 113   | 85-115     |     |
| BSD  | QC828551 |            | 198.0  | 229.3  |       | 116 * | 85-115 3   | 20  |
| SDUP | QC828552 | 8.700      |        | 9.000  | 5.000 |       | 4          | 26  |

<sup>\*=</sup> Value outside of QC limits; see narrative

RL= Reporting Limit

RPD= Relative Percent Difference



|           | Chemical                        | Oxygen Demand |                       |
|-----------|---------------------------------|---------------|-----------------------|
| Lab #:    | 275296                          | Location:     | Redwood Regional Park |
| Client:   | Stellar Environmental Solutions | Prep:         | METHOD                |
| Project#: | 2013-02.                        | Analysis:     | SM5220D               |
| Analyte:  | Chemical Oxygen Demand          | Batch#:       | 233402                |
| Matrix:   | Water                           | Received:     | 03/21/16              |
| Units:    | ${ m mg/L}$                     | Prepared:     | 03/24/16 12:12        |
| Diln Fac: | 1.000                           | Analyzed:     | 03/24/16 14:12        |

| Field ID | Type   | Lab ID     | Result | RL | Sampled        |
|----------|--------|------------|--------|----|----------------|
| MW-12    | SAMPLE | 275296-006 | 14     | 10 | 03/21/16 11:15 |
| MW-9     | SAMPLE | 275296-007 | 26     | 10 | 03/21/16 10:50 |
| MW-7     | SAMPLE | 275296-009 | 15     | 10 | 03/21/16 09:40 |
|          | BLANK  | QC828736   | ND     | 10 |                |

ND= Not Detected RL= Reporting Limit

Page 1 of 1



|                 | Chemical                   | Oxygen Demand |                       |
|-----------------|----------------------------|---------------|-----------------------|
| Lab #: 27529    | 6                          | Location:     | Redwood Regional Park |
| Client: Stell   | ar Environmental Solutions | Prep:         | METHOD                |
| Project#: 2013- | 02.                        | Analysis:     | SM5220D               |
| Analyte:        | Chemical Oxygen Demand     | Batch#:       | 233402                |
| Field ID:       | MW-7                       | Sampled:      | 03/21/16 09:40        |
| MSS Lab ID:     | 275296-009                 | Received:     | 03/21/16              |
| Matrix:         | Water                      | Prepared:     | 03/24/16 12:12        |
| Units:          | mg/L                       | Analyzed:     | 03/24/16 14:12        |
| Diln Fac:       | 1.000                      |               |                       |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| LCS  | QC828737 |            | 50.00  | 49.96  | 100  | 90-110 |     |     |
| MS   | QC828738 | 14.86      | 100.0  | 110.3  | 95   | 57-126 |     |     |
| MSD  | QC828739 |            | 100.0  | 113.8  | 99   | 57-126 | 3   | 20  |

## APPENDIX D Historical Analytical Results

## HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

|       |        |        |        |         | Well N | /IW-2        |               |            |       |
|-------|--------|--------|--------|---------|--------|--------------|---------------|------------|-------|
| Event | Date   | TVHg   | TEHd   | Benzene |        | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 1     | Nov-94 | 66     | < 50   | 3.4     | < 0.5  | < 0.5        | 0.9           | 4.3        | NA    |
| 2     | Feb-95 | 89     | < 50   | 18      | 2.4    | 1.7          | 7.5           | 30         | NA    |
| 3     | May-95 | < 50   | < 50   | 3.9     | < 0.5  | 1.6          | 2.5           | 8.0        | NA    |
| 4     | Aug-95 | < 50   | < 50   | 5.7     | < 0.5  | < 0.5        | < 0.5         | 5.7        | NA    |
| 5     | May-96 | < 50   | < 50   | < 0.5   | < 0.5  | < 0.5        | < 0.5         | _          | NA    |
| 6     | Aug-96 | < 50   | < 50   | < 0.5   | < 0.5  | < 0.5        | < 0.5         | _          | NA    |
| 7     | Dec-96 | < 50   | < 50   | 6.3     | < 0.5  | 1.6          | < 0.5         | 7.9        | NA    |
| 8     | Feb-97 | < 50   | < 50   | 0.69    | < 0.5  | 0.55         | < 0.5         | 1.2        | NA    |
| 9     | May-97 | 67     | < 50   | 8.9     | < 0.5  | 5.1          | < 1.0         | 14         | NA    |
| 10    | Aug-97 | < 50   | < 50   | 4.5     | < 0.5  | 1.1          | < 0.5         | 5.6        | NA    |
| 11    | Dec-97 | 61     | < 50   | 21      | < 0.5  | 6.5          | 3.9           | 31         | NA    |
| 12    | Feb-98 | 2,000  | 200    | 270     | 92     | 150          | 600           | 1,112      | NA    |
| 13    | Sep-98 | < 50   | < 50   | < 0.5   | < 0.5  | < 0.5        | < 0.5         | _          | 7.0   |
| 14    | Apr-99 | 82     | 710    | 4.2     | < 0.5  | 3.4          | 4.0           | 12         | 7.5   |
| 15    | Dec-99 | 57     | < 50   | 20      | 0.6    | 5.9          | <0.5          | 27         | 4.5   |
| 16    | Sep-00 | < 50   | < 50   | 0.72    | < 0.5  | < 0.5        | < 0.5         | 0.7        | 7.9   |
| 17    | Jan-01 | 51     | < 50   | 8.3     | < 0.5  | 1.5          | < 0.5         | 9.8        | 8.0   |
| 18    | Apr-01 | 110    | < 50   | 10      | < 0.5  | 11           | 6.4           | 27         | 10    |
| 19    | Aug-01 | 260    | 120    | 30      | 6.7    | 1.6          | 6.4           | 45         | 27    |
| 20    | Dec-01 | 74     | 69     | 14      | 8.0    | 3.7          | 3.5           | 22         | 6.6   |
| 21    | Mar-02 | < 50   | < 50   | 2.3     | 0.51   | 1.9          | 1.3           | 8.3        | 8.2   |
| 22    | Jun-02 | < 50   | < 50   | < 0.5   | < 0.5  | < 0.5        | < 0.5         | _          | 7.7   |
| 23    | Sep-02 | 98     | < 50   | 5.0     | < 0.5  | < 0.5        | < 0.5         | _          | 13    |
| 24    | Dec-02 | < 50   | < 50   | 4.3     | < 0.5  | < 0.5        | < 0.5         | _          | < 2.0 |
| 25    | Mar-03 | 130    | 82     | 39      | < 0.5  | 20           | 4.1           | 63         | 16    |
| 26    | Jun-03 | < 50   | < 50   | 1.9     | < 0.5  | < 0.5        | < 0.5         | 1.9        | 8.7   |
| 27    | Sep-03 | 120    | < 50   | 8.6     | 0.51   | 0.53         | < 0.5         | 9.6        | 23    |
| 28    | Dec-03 | 282    | <100   | 4.3     | 1.6    | 1.3          | 1.2           | 8.4        | 9.4   |
| 29    | Mar-04 | 374    | <100   | 81      | 1.2    | 36           | 7.3           | 126        | 18    |
| 30    | Jun-04 | < 50   | < 50   | 0.75    | < 0.5  | < 0.5        | < 0.5         | < 0.5      | 15    |
| 31    | Sep-04 | 200    | < 50   | 23      | < 0.5  | < 0.5        | 0.70          | 24         | 16    |
| 32    | Dec-04 | 80     | < 50   | 14      | < 0.5  | 2.9          | 0.72          | 18         | 20    |
| 33    | Mar-05 | 190    | 68     | 27      | <0.5   | 14           | 11            | 52         | 26    |
| 34    | Jun-05 | 68     | < 50   | 7.1     | < 0.5  | 6.9          | 1.8           | 16         | 24    |
| 35    | Sep-05 | < 50   | < 50   | 2.5     | < 0.5  | < 0.5        | < 1.0         | 2.5        | 23    |
| 36    | Dec-05 | < 50   | < 50   | 3.9     | < 0.5  | < 0.5        | < 1.0         | 3.9        | 23    |
| 37    | Mar-06 | 1300   | 300    | 77      | 4.4    | 91           | 250           | 422        | 18    |
| 38    | Jun-06 | < 50   | 60     | < 0.5   | < 0.5  | < 0.5        | < 1.0         | ı          | 17    |
| 39    | Sep-06 | 270    | 52     | 31      | < 0.5  | 15           | 6.69          | 53         | 17    |
| 40    | Dec-06 | < 50   | < 50   | 2.1     | < 0.5  | < 0.5        | < 0.5         | 2          | 16    |
| 41    | Mar-07 | 59     | < 50   | 4       | < 0.5  | < 0.5        | < 0.5         | < 0.5      | 14    |
| 42    | Jun-07 | <50    | <50    | 3.5     | <0.5   | <0.5         | <0.5          | 3.5        | 8     |
| 43    | Sep-07 | 2,600  | 260    | 160     | 44     | 86           | 431           | 721        | 15    |
| 44    | Dec-07 | 16,000 | 5,800  | 23      | 91     | 230          | 2,420         | 2764       | 16    |
| 44a   | Jan-08 | 480    | 200    | 1.1     | 3.2    | 5.5          | 68            | 77.8       | 11    |
| 45    | Mar-08 | 20,000 | 24,000 | 21      | 39     | 300          | 2,620         | 2980       | 13    |
| 45a   | Apr-08 | 800    | 640    | 2.6     | 2.1    | 13           | 155           | 172.7      | 13    |
| 46a   | May-08 | 7,100  | 3,900  | 14      | 8.8    | 140          | 710           | 872.8      | 11    |
| 46    | Jun-08 | 5,700  | 1,000  | 9.4     | 5.2    | 80           | 550           | 644.6      | 11    |
| 46a   | Jul-08 | 6,400  | 2,200  | 13      | 5.1    | 140          | 570           | 728.1      | 2.9   |
| 46b   | Jul-08 | 390    | 55     | 1.3     | 0.77   | 4.6          | 44.4          | 51.07      | 9     |
| 46c   | Aug-08 | 28,000 | 7,100  | 12      | 19     | 260          | 2,740         | 3031       | <20   |
| 46d   | Aug-08 | 8,700  | 2,700  | 5.7     | 7.4    | 130          | 900.0         | 1043.1     | 3.5   |
| 47    | Sep-08 | 40,000 | 9,100  | 1.6     | <0.5   |              | 910.0         | 1021.6     | 9.5   |
| 48    | Dec-08 | 9,200  | 2,200  | 0.52    | <0.5   | <0.5         | 201.0         | 201.52     | 12    |
| 49    | Mar-09 | 3,100  | 37,000 | 1.1     | 1.4    | 7.9          | 35.0          | 45.4       | 14    |
| 50    | May-09 | 5,000  | 15,000 | 1.5     | <0.5   | 9.8          | 39.0          | 50         | 13    |
| 51    | Jun-09 | 2,400  | 8,000  | 5.4     | <0.5   |              | 20.2          | 36.6       | 13    |
| 52    | Aug-09 | 1,900  | 3,100  | 1.6     | 1.8    | 11           | 23.8          | 38.2       | 7.1   |
| 53    | Sep-09 | 1,400  | 1,800  | <0.5    | <0.5   | <0.5         | 4.2           | 4.24       | 12    |
| 54    | Dec-09 | 590    | 1,800  | <0.5    | <0.5   | 1.2          | 1.2           | 2.4        | 3.6   |

| Well MW-2 Continu | ıed |
|-------------------|-----|
|-------------------|-----|

|    |        |       |       |       | Well MW-2 | 2    |      |      |      |
|----|--------|-------|-------|-------|-----------|------|------|------|------|
| 55 | Mar-10 | 1,900 | 3,200 | <0.5  | <0.5      | <0.5 | 2.2  | 2.2  | 2.2  |
| 56 | Mar-10 | 2,000 | 4,300 | <0.5  | <0.5      | <0.5 | 3.5  | 3.45 | <2.0 |
| 57 | Jun-10 | 1,300 | 2,400 | <0.5  | <0.5      | <0.5 | 1.7  | -    | <2.0 |
| 58 | Sep-10 | 910   | <50   | <0.5  | <0.5      | <0.5 | 1.5  | 1.45 | <2.0 |
| 59 | Dec-10 | 910   | 1,600 | <0.5  | <0.5      | <0.5 | <0.5 | <0.5 | 2.6  |
| 60 | Mar-11 | 860   | 1,100 | < 0.5 | <0.5      | <0.5 | <0.5 | _    | 3.1  |
| 61 | Sep-11 | 780   | 810   | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |
| 62 | Mar-12 | 460   | 610   | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |
| 63 | Sep-12 | 160   | 190   | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |
| 64 | Mar-13 | 470   | 810   | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |
| 65 | Oct-13 | 120   | 67    | <0.5  | <0.5      | <0.5 | <0.5 | _    | 2.3  |
| 66 | Mar-14 | 320   | 290   | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |
| 67 | Sep-14 | 610   | 480   | <0.5  | 1         | 4.7  | 1.9  | 7.6  | 3.7  |
| 68 | Mar-15 | 370   | 450   | <0.5  | < 0.5     | <0.5 | <0.5 | _    | <2.0 |
| 69 | Sep-15 | 790   | 980   | <0.5  | 0.6       | <0.5 | 3.3  | _    | <2.0 |
| 70 | Mar-16 | < 50  | < 50  | <0.5  | <0.5      | <0.5 | <0.5 | _    | <2.0 |

|       |           |              |            |               | Well N      | /IW-4          |                   |                 |       |
|-------|-----------|--------------|------------|---------------|-------------|----------------|-------------------|-----------------|-------|
| Event | Date      | TVHg         | TEHd       | Benzene       | Toluene     | Ethylbenzene   | Total Xylenes     | Total BTEX      | MTBE  |
| 1     | Nov-94    | 2,600        | 230        | 120           | 4.8         | 150            | 88                | 363             | NA    |
| 2     | Feb-95    | 11,000       | 330        | 420           | 17          | 440            | 460               | 1,337           | NA    |
| 3     | May-95    | 7,200        | 440        | 300           | 13          | 390            | 330               | 1,033           | NA    |
| 4     | Aug-95    | 1,800        | 240        | 65            | 6.8         | 89             | 67                | 227             | NA    |
| 5     | May-96    | 1,100        | 140        | 51            | < 0.5       | < 0.5          | 47                | 98              | NA    |
| 6     | Aug-96    | 3,700        | 120        | 63            | 2.0         | 200            | 144               | 409             | NA    |
| 7     | Dec-96    | 2,700        | 240        | 19            | < 0.5       | 130            | 93                | 242             | NA    |
| 8     | Feb-97    | 3,300        | < 50       | 120           | 1.0         | 150            | 103               | 374             | NA    |
| 9     | May-97    | 490          | < 50       | 2.6           | 6.7         | 6.4            | 6.7               | 22              | NA    |
| 10    | Aug-97    | 1,900        | 150        | 8.6           | 3.5         | 78             | 53                | 143             | NA    |
| 11    | Dec-97    | 1,000        | 84         | 4.6           | 2.7         | 61             | 54                | 123             | NA    |
| 12    | Feb-98    | 5,300        | 340        | 110           | 24          | 320            | 402               | 856             | NA    |
| 13    | Sep-98    | 1,800        | < 50       | 8.9           | < 0.5       | 68             | 27                | 104             | 23    |
| 14    | Apr-99    | 2,900        | 710        | 61            | 1.2         | 120            | 80                | 263             | 32    |
| 15    | Dec-99    | 1,000        | 430        | 4.0           | 2.0         | 26             | 14                | 46              | < 2.0 |
| 16    | Sep-00    | 570          | 380        | < 0.5         | < 0.5       | 16             | 4.1               | 20              | 2.4   |
| 17    | Jan-01    | 1,600        | 650        | 4.2           | 0.89        | 46             | 13.8              | 65              | 8.4   |
| 18    | Apr-01    | 1,700        | 1,100      | 4.5           | 2.8         | 48             | 10.7              | 66              | 5.0   |
| 19    | Aug-01    | 1,300        | 810        | 3.2           | 4.0         | 29             | 9.7               | 46              | < 2.0 |
| 20    | Dec-01    | < 50         | 110        | < 0.5         | < 0.5       | < 0.5          | 1.2               | 1.2             | < 2.0 |
| 21    | Mar-02    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | ı               | < 2.0 |
| 22    | Jun-02    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | I               | < 2.0 |
| 23    | Sep-02    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | I               | < 2.0 |
| 24    | Dec-02    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | ı               | < 2.0 |
| 25    | Mar-03    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | I               | < 2.0 |
| 26    | Jun-03    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | I               | < 2.0 |
| 27    | Sep-03    | < 50         | < 50       | < 0.5         | < 0.5       | < 0.5          | < 0.5             | I               | < 2.0 |
| 28    | Dec-03    | <50          | <100       | <0.3          | <0.3        | <0.3           | <0.6              | ı               | < 5.0 |
| 29    | Mar-04    | <50          | <100       | < 0.3         | < 0.3       | <0.3           | <0.6              | I               | < 5.0 |
| 30    | Jun-04    | <50          | 2,500      | <0.3          | <0.3        | <0.3           | <0.6              |                 | < 5.0 |
| 31    | Sep-04    | <50          | < 50       | < 0.5         | < 0.5       | < 0.5          | < 1.0             |                 | < 2.0 |
| 32    | Dec-04    | <50          | < 50       | < 0.5         | < 0.5       | < 0.5          | < 1.0             |                 | < 2.0 |
| 33    | Mar-05    | <50          | < 50       | < 0.5         | < 0.5       | < 0.5          | < 1.0             |                 | < 2.0 |
| 34    | Jun-05    | <50          | < 50       | < 0.5         | < 0.5       | < 0.5          | < 1.0             |                 | < 2.0 |
| 35    | Sep-05    | <50          | < 50       | < 0.5         | < 0.5       | < 0.5          | < 1.0             |                 | < 2.0 |
| G     | roundwate | r monitoring | in this we | II discontinu | ued with Al | ameda County H | ealth Care Servic | es Agency appro | val.  |

|                                                                                                                    |        |         |            |            | Well N       | /W-5              |                  | •          |       |
|--------------------------------------------------------------------------------------------------------------------|--------|---------|------------|------------|--------------|-------------------|------------------|------------|-------|
| Event                                                                                                              | Date   | TVHg    | TEHd       | Benzene    | Toluene      | Ethylbenzene      | Total Xylenes    | Total BTEX | MTBE  |
| 1                                                                                                                  | Nov-94 | 50      | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 2                                                                                                                  | Feb-95 | 70      | < 50       | 0.6        | < 0.5        | < 0.5             | < 0.5            | 0.6        | NA    |
| 3                                                                                                                  | May-95 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 4                                                                                                                  | Aug-95 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 5                                                                                                                  | May-96 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 6                                                                                                                  | Aug-96 | 80      | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 7                                                                                                                  | Dec-96 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 8                                                                                                                  | Feb-97 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 9                                                                                                                  | May-97 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 10                                                                                                                 | Aug-97 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 11                                                                                                                 | Dec-97 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 12                                                                                                                 | Feb-98 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | NA    |
| 13                                                                                                                 | Sep-98 | < 50    | <50        | < 0.5      | < 0.5        | < 0.5             | < 0.5            | _          | < 2   |
| Groundwater monitoring in this well discontinued in 1998 with Alameda County Health Care Services Agency approval. |        |         |            |            |              |                   |                  |            |       |
|                                                                                                                    |        | Subsequ | ent ground | dwater mon | itoring con- | ducted to confirm | plume's southern | n limit    |       |
| 14                                                                                                                 | Jun-04 | < 50    | <50        | < 0.5      | < 0.5        | < 0.5             | < 0.5            |            | 5.9   |
| 15                                                                                                                 | Sep-04 | < 50    | < 50       | < 0.5      | < 0.5        | < 0.5             | < 1.0            | _          | < 2.0 |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |        |           |         | Well N  | /IW-7        |               |            |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-----------|---------|---------|--------------|---------------|------------|-------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Event | Date   | TVHg   | TEHd      | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | Jan-01 | 13,000 | 3,100     | 95      | 4       | 500          | 289           | 888        | 95    |
| 4         Dec-01         9,100         4,600         89         < 2,25         460         228         777             5         Mar-02         9,700         3,900         220         6,2         450         191         867         200           6         Jun-02         9,900         3,900         110         < 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | Apr-01 | 13,000 | 3,900     | 140     | < 0.5   | 530          | 278           | 948        | 52    |
| 5         Mar-02         8,700         3,900         220         6,2         450         191         867         200           6         Jun-02         9,300         3,500         210         6,3         380         155         751         18           7         Sep-02         9,600         3,700         110         < 0,5         380         160         720         < 2         2           8         Dec-02         9,600         3,700         110         < 0,5         400         189         699         < 2            9         Mar-03         10,000         3,600         210         12         360         143         725         45           10         Jun-03         9,300         4,200         190         < 10         250         130         570         200           11         Sep-03         10,000         3,300         150         111         300         136         597         < 2.           12         Dec-03         9,140         31         1,100         62         45         295         184         586         89           13         Mar-04         8,170         600         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3     | Aug-01 | 12,000 | 5,000     | 55      | 25      | 440          | 198           | 718        | 19    |
| 6 Jun-02 9,300 3,500 210 6.3 380 1555 751 18 7 Sep-02 9,600 3,900 180 < 0.5 380 160 720 < 2.2 8 Dec-02 9,600 3,700 110 < 0.5 400 189 699 < 2. 9 Mar-03 10,000 3,600 210 12 380 143 725 45 10 Jun-03 9,300 4,200 190 < 10 250 130 570 200 11 Sep-03 10,000 3,300 150 11 300 136 597 < 2. 12 Dec-03 9,140 1,100 62 45 255 184 586 89 13 Mar-04 8,170 600 104 41 306 129 580 84 14 Jun-04 9,200 2,700 150 < 0.5 290 91 531 < 2. 16 Dec-04 8200 4,000 95 < 0.5 290 91 531 < 2. 16 Dec-04 8200 4,000 95 < 0.5 290 124 509 < 2. 17 Mar-05 10,000 3,300 150 150 370 71 591 < 2. 18 Jun-05 10,000 3,300 150 150 370 71 591 < 2. 20 Dec-05 9,600 3,300 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4     | Dec-01 | 9,100  | 4,600     | 89      | < 2.5   | 460          | 228           | 777        | < 10  |
| 7         Sep-02         9,600         3,900         180         < 0.5         380         160         720         < 2.2           8         Dec-02         9,600         3,700         110         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5     | Mar-02 | 8,700  | 3,900     | 220     | 6.2     | 450          | 191           | 867        | 200   |
| 8         Dec-02         9,600         3,700         110         < 0.5         400         189         699         < 2.           9         Maro3         10,000         3,600         210         12         360         143         725         45           10         Jun-03         9,300         4,200         190         < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6     | Jun-02 | 9,300  | 3,500     | 210     | 6.3     | 380          | 155           | 751        | 18    |
| 9 Mar-03 10,000 3,600 210 12 360 1433 725 45 10 Jun-03 9,300 4,200 190 <10 250 130 570 200 111 Sep-03 10,000 3,300 150 111 300 136 597 <2. 12 Dec-03 9,140 1,100 62 45 295 184 586 89 13 Mar-04 8,170 600 104 41 306 129 580 84 14 Jun-04 9,200 2,700 150 <0.5 290 91 531 <2. 15 Sep-04 9,700 3,400 98 <0.5 300 125 523 <2. 16 Dec-04 8200 4,000 95 <0.5 290 124 599 125 124 509 17 Mar-05 10,000 4,300 150 <0.5 290 124 599 <2. 18 Jun-05 10,000 4,300 150 <0.5 300 125 523 <2. 18 Jun-05 10,000 3,300 210 <1.0 410 56 676 <4. 20 Dec-05 2,900 3,300 31 <1.0 410 41 212 <4. 21 Mar-06 6,800 3,000 110 <1.0 410 41 212 <4. 21 Mar-06 6,800 3,000 110 <1.0 410 41 212 <4. 22 Jun-06 6,900 3,600 63 <2.5 290 43 3396 <1. 23 Sep-06 7,900 3,600 64 <0.5 200 43 3396 <1. 23 Sep-06 7,900 2,400 50 <0.5 200 43 3396 <1. 23 Sep-06 7,900 3,600 63 <2.5 290 43 3396 <1. 24 Dec-06 7,900 3,600 63 <2.5 290 42 312 <2. 25 Mar-07 6,200 2,900 34 <0.5 20 20 42 312 <2. 25 Mar-07 6,200 2,900 34 <0.5 20 20 42 312 <2. 25 Mar-07 6,200 2,900 34 <0.5 50 200 42 31 396 <1. 27 Sep-07 6,400 3,000 50 <1.0 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |        |           |         |         |              |               |            | < 2.0 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8     | Dec-02 | 9,600  | 3,700     | 110     | < 0.5   | 400          | 189           | 699        | < 2.0 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Mar-03 | 10,000 | 3,600     |         |         |              | 143           | 725        |       |
| 12   Dec-03   9,140   1,100   62   45   295   184   586   89     13   Mar-04   8,170   600   104   41   3066   129   580   84     14   Jun-04   9,200   2,700   150   < 0.5   290   91   531   < 2.     15   Sep-04   9,700   3,400   98   < 0.5   300   125   523   < 2.     16   Dec-04   8200   4,000   95   < 0.5   290   124   509   < 2.     17   Mar-05   10,000   4,300   150   < 0.5   370   71   591   < 2.     18   Jun-05   10,000   3,300   210   < 1.0   410   56   676   < 4.     19   Sep-05   7,800   2,700   110   < 1.0   410   56   676   < 4.     20   Dec-05   2,900   3,300   31   < 1.0   140   411   212   < 4.     21   Mar-06   6,800   3,000   150   < 0.5   280   42   432   110     22   Jun-06   6,900   3,600   63   < 2.5   290   43   396   < 1.     23   Sep-06   7,900   2,400   50   < 0.5   220   43   396   < 1.     24   Dec-06   7,300   2,400   50   < 0.5   220   42   312   < 2.     25   Mar-07   6,800   3,000   30   < 1.0   160   27   217   < 4.     27   Sep-07   6,400   3,000   < 0.5   40.5   170   180   27   217   < 4.     28   Dec-07   4,800   2,800   < 0.5   6.5   100   26.5   126.5   2.     30   Mar-08   5,400   5,900   21   < 0.5   100   26.5   126.5   2.     30   Mar-08   5,400   5,900   21   < 0.5   100   9.1   114   < 2.0     32   Sep-08   6,400   3,500   55   < 0.5   100   9.1   114   < 2.0     33   Dec-08   3,500   5,600   5   < 0.5   100   9.1   114   < 2.0     34   Mar-09   4,600   5,400   40   < 0.5   6.5   100   9.1   114   < 2.0     34   Mar-09   5,400   4,500   < 0.5   < 0.5   100   9.1   114   < 0.0   < 0.5     35   Jun-09   4,600   5,400   4,500   < 0.5   < 0.5   100   9.1   114   < 0.0   < 0.5   < 0.5   40.5   40.5   40.5   =   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   =   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   < 0.5   <    |       | Jun-03 |        | 4,200     | 190     |         | 250          | 130           | 570        | 200   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        |           |         |         |              |               |            | < 2.0 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Dec-03 | 9,140  | 1,100     |         |         | 295          |               | 586        | 89    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13    | Mar-04 | 8,170  | 600       | 104     | 41      | 306          | 129           | 580        | 84    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14    | Jun-04 | 9,200  | 2,700     | 150     | < 0.5   | 290          | 91            | 531        | < 2.0 |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        | , , , , , |         |         |              |               |            | < 2.0 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |        |           |         |         |              |               |            | < 2.0 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17    | Mar-05 | 10,000 | 4,300     | 150     | <0.5    | 370          | 71            | 591        | <2.0  |
| 20         Dec-05         2,900         3,300         31         < 1.0         140         41         212         <4.           21         Mar-06         6,800         3,000         110         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18    | Jun-05 | 10,000 | 3,300     |         | <1.0    |              | 56            | 676        | <4.0  |
| 21         Mar-06         6,800         3,000         110         < 1.0         280         42         432         110           22         Jun-06         6,900         3,600         63         < 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Sep-05 | •      |           |         |         |              |               |            | <4.0  |
| 22 Jun-06 6,900 3,600 63 <2.5 290 43 396 <1 23 Sep-06 7,900 3,600 64 <0.5 260 58 382 42 24 Dec-06 7,300 2,400 50 <0.5 220 42 312 <2. 25 Mar-07 6,200 2,900 34 <0.5 190 15 239 <2. 26 Jun-07 6,800 3,000 30 <1.0 160 27 217 <4. 27 Sep-07 6,400 3,000 <0.5 <0.5 170 43 213 <2. 28 Dec-07 4,800 2,800 <0.5 <0.5 1100 26.5 126.5 126.5 23 30 Mar-08 5,400 5,900 21 <0.5 <0.5 1100 26.5 126.5 126.5 23 31 Jun-08 4,800 3,500 55 <0.5 140 7.0 202 <2.0 32 Sep-08 6,400 2,800 22 <0.5 100 9.3 131 <2.0 33 Dec-08 3,500 55 <0.5 100 9.1 114 <2.0 33 Mar-09 5,100 6,700 19 <0.5 <0.5 140 12.3 171 51 35 Jun-09 4,600 5,400 40 <0.5 <0.5 140 5.1 185 260 36 Sep-09 4,400 4,700 <0.5 <0.5 90 2.9 93 57.0 38 Mar-10 5,300 4,300 17 <0.5 5 110 2.9 93 170 <2. 41 Sep-10 6,300 4,100 <0.5 <0.5 90 2.9 93 57.0 43 Mar-11 5,500 3,400 11 <0.5 94 8.5 110 <2.6 130 16.0 29 99 69.0 44 Sep-11 5,800 3,300 <0.5 <0.5 99 9 9.2 108 87.0 44 <2.0 44 Sep-11 5,800 3,300 <0.5 <0.5 99 9 9.2 108 87.0 44 <0.5 110 <0.5 84 <0.5 110 <0.5 84 <0.5 84 <0.5 110 <0.5 84 <0.5 84 <0.5 84 <0.5 99 9 170 <0.5 84 <0.5 99 9 9.2 108 87.0 57.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 44 <0.5 99 9 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50 99 9.2 108 87.0 50  | 20    | Dec-05 | 2,900  | 3,300     | 31      | <1.0    | 140          | 41            | 212        | <4.0  |
| 23         Sep-06         7,900         3,600         64         < 0.5         260         58         382         4           24         Dec-06         7,300         2,400         50         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21    | Mar-06 | 6,800  | 3,000     | 110     | < 1.0   | 280          | 42            | 432        | 110   |
| 24         Dec-06         7,300         2,400         50         < 0.5         220         42         312         < 2.2           25         Mar-07         6,200         2,900         34         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22    | Jun-06 | 6,900  | 3,600     | 63      | < 2.5   | 290          | 43            | 396        | < 10  |
| 25 Mar-07 6,200 2,900 34 < 0.5 190 15 239 <2. 26 Jun-07 6,800 3,000 30 <1.0 160 27 217 <4. 27 Sep-07 6,400 3,000 <0.5 <0.5 170 43 213 <2. 28 Dec-07 4,800 2,800 <0.5 <0.5 170 43 213 <2. 30 Mar-08 5,400 5,900 21 <0.5 150 15 186 51 31 Jun-08 4,800 3,500 55 <0.5 140 7.0 202 <2.0 32 Sep-08 6,400 2,800 22 <0.5 100 9.3 131 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.3 131 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.1 114 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.1 114 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.1 114 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.1 114 <2.0 33 Dec-08 3,500 3,600 5 <0.5 100 9.1 114 <2.0 33 Mar-09 5,100 6,700 19 <0.5 140 5.1 185 260 36 Sep-09 4,400 4,700 <0.5 140 5.1 185 260 36 Sep-09 4,400 4,700 <0.5 <0.5 96 5.6 102 3.5 37 Dec-09 4,900 4,500 <0.5 <0.5 96 5.6 102 3.5 38 Mar-10 5,300 4,300 17 <0.5 110 2.6 130 16.0 39 3 57.0 39 Mar-10 5,800 5,000 20 <0.5 140 9.9 170 <2.0 141 Sep-10 6,300 4,100 <0.5 <0.5 93 6.0 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 140 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 115 <0.5 90 Sep-11 5,800 3,300 <0.5 <0.5 90 Sep-11 5,800 3,300 Sep-11 5,8 | 23    | Sep-06 | 7,900  | 3,600     | 64      | < 0.5   | 260          | 58            | 382        | 49    |
| 26         Jun-07         6,800         3,000         30         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24    | Dec-06 | 7,300  | 2,400     | 50      | < 0.5   | 220          | 42            | 312        | < 2.0 |
| 27         Sep-07         6,400         3,000         <0.5         <0.5         170         43         213         <2.           28         Dec-07         4,800         2,800         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25    | Mar-07 | 6,200  | 2,900     | 34      | < 0.5   | 190          | 15            | 239        | < 2.0 |
| 28         Dec-07         4,800         2,800         <0.5         <0.5         100         26.5         126.5         2.           30         Mar-08         5,400         5,900         21         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26    | Jun-07 | 6,800  | 3,000     | 30      | <1.0    | 160          | 27            | 217        | <4.0  |
| 30 Mar-08 5,400 5,900 21 <0.5 150 15 186 51 31 Jun-08 4,800 3,500 55 <0.5 140 7.0 202 <2.0 32 Sep-08 6,400 2,800 22 <0.5 100 9.3 131 <2.0 33 Dec-08 3,500 5,000 5 <0.5 100 9.1 114 <2.0 34 Mar-09 5,100 6,700 19 <0.5 140 15.1 185 260 36 Sep-09 4,600 5,400 40 <0.5 140 5.1 185 260 36 Sep-09 4,400 4,700 <0.5 <0.5 96 5.6 102 3.5 37 Dec-09 4,900 4,500 <0.5 <0.5 96 5.6 102 3.5 37 Dec-09 4,900 4,500 <0.5 <0.5 96 5.6 102 3.5 38 Mar-10 5,300 4,300 17 <0.5 110 2.6 130 16.0 39 Mar-10 2,600 6,100 11 <0.5 76 4.5 92 <2. 40 Jun-10 5,800 5,000 20 <0.5 76 4.5 92 <2. 41 Sep-10 6,300 4,100 <0.5 <0.5 93 6.0 99 9.2 108 87.0 41 Sep-10 6,300 4,100 <0.5 <0.5 93 6.0 99 9.2 108 87.0 42 Dec-10 5,400 3,500 <0.5 <0.5 99 9.2 108 87.0 43 Mar-11 5,500 3,400 11 <0.5 76 4.5 92 108 87.0 44 Sep-11 5,800 3,300 <0.5 <0.5 99 9.2 108 87.0 45 Mar-12 6,400 3,500 <0.5 <0.5 99 9.2 108 87.0 46 Sep-12 5,700 3,000 <0.5 <0.5 94 8.5 111 <0.5 46 8.5 114 <2.0 47 Mar-13 6,000 3,300 <0.5 <0.5 94 8.5 110 5.6 116 <0.2 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 84 <0.5 8 | 27    | Sep-07 | 6,400  | 3,000     | <0.5    | <0.5    | 170          | 43            | 213        | <2.0  |
| 31         Jun-08         4,800         3,500         55         <0.5         140         7.0         202         <2.0           32         Sep-08         6,400         2,800         22         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28    | Dec-07 | 4,800  | 2,800     | <0.5    | <0.5    | 100          | 26.5          | 126.5      | 2.7   |
| 32         Sep-08         6,400         2,800         22         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30    | Mar-08 | 5,400  | 5,900     | 21      | <0.5    | 150          | 15            | 186        | 51    |
| 33         Dec-08         3,500         3,600         5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31    | Jun-08 | 4,800  | 3,500     | 55      | <0.5    | 140          | 7.0           | 202        | <2.0  |
| 34         Mar-09         5,100         6,700         19         <0.5         140         12.3         171         51           35         Jun-09         4,600         5,400         40         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32    | Sep-08 | 6,400  | 2,800     | 22      | <0.5    | 100          | 9.3           | 131        | <2.0  |
| 35         Jun-09         4,600         5,400         40         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33    | Dec-08 | 3,500  | 3,600     | 5       | <0.5    | 100          | 9.1           | 114        | <2.0  |
| 36         Sep-09         4,400         4,700         <0.5         <0.5         96         5.6         102         3.5           37         Dec-09         4,900         4,500         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34    | Mar-09 | 5,100  | 6,700     | 19      | <0.5    | 140          | 12.3          | 171        | 51    |
| 37         Dec-09         4,900         4,500         < 0.5         < 0.5         90         2.9         93         57.0           38         Mar-10         5,300         4,300         17         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35    | Jun-09 | 4,600  | 5,400     | 40      | < 0.5   | 140          | 5.1           | 185        | 260   |
| 38         Mar-10         5,300         4,300         17         <0.5         110         2.6         130         16.0           39         Mar-10         2,600         6,100         11         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36    | Sep-09 | 4,400  | 4,700     | <0.5    | <0.5    | 96           | 5.6           | 102        | 3.5   |
| 39         Mar-10         2,600         6,100         11         <0.5         76         4.5         92         <2.           40         Jun-10         5,800         5,000         20         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37    | Dec-09 | 4,900  | 4,500     | < 0.5   | < 0.5   | 90           | 2.9           | 93         | 57.0  |
| 40         Jun-10         5,800         5,000         20         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38    | Mar-10 | 5,300  | 4,300     | 17      | <0.5    | 110          | 2.6           | 130        | 16.0  |
| 41         Sep-10         6,300         4,100         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39    | Mar-10 | 2,600  | 6,100     | 11      | <0.5    | 76           | 4.5           | 92         | <2.0  |
| 42         Dec-10         5,400         3,500         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40    | Jun-10 | 5,800  | 5,000     | 20      | <0.5    | 140          | 9.9           | 170        | <2.0  |
| 43         Mar-11         5,500         3,400         11         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41    | Sep-10 | 6,300  | 4,100     | <0.5    | <0.5    | 93           | 6.0           | 99         | 69.0  |
| 44         Sep-11         5,800         3,300         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42    | Dec-10 | 5,400  | 3,500     | <0.5    | <0.5    | 99           | 9.2           | 108        | 87.0  |
| 45         Mar-12         6,400         3,500         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43    | Mar-11 | 5,500  | 3,400     | 11      | <0.5    | 94           | 8.5           | 114        | <2.0  |
| 46         Sep-12         5,700         3,000         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44    | Sep-11 | 5,800  | 3,300     | <0.5    | <0.5    | 97           | 3.1           | 100        | <2.0  |
| 47         Mair-13         6,000         3,300         <0.5         <0.5         82         <0.5         82         <2.           48         Oct-13         6,400         6,000         35         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45    | Mar-12 | 6,400  | 3,500     | <0.5    | <0.5    | 110          | 5.6           | 116        | <2.0  |
| 48         Oct-13         6,400         6,000         35         <0.5         75         5.10         115         <2.           49         Dec-13         6,000         4,200         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46    | Sep-12 | 5,700  | 3,000     | <0.5    | <0.5    | 84           | <0.5          | 84         | <2.0  |
| 49         Dec-13         6,000         4,200         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47    | Mar-13 | 6,000  | 3,300     | <0.5    | <0.5    | 82           | <0.5          | 82         | <2.0  |
| 50         Mar-14         7,500         4,900         <0.5         <0.5         130         2.0         132         <2.           51         Jun-14         3,400         9,100         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48    | Oct-13 | 6,400  | 6,000     | 35      | <0.5    | 75           | 5.10          | 115        | <2.0  |
| 51         Jun-14         3,400         9,100         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49    | Dec-13 | 6,000  | 4,200     | <0.5    | <0.5    | 100          | <0.5          | 100        | <2.0  |
| 52         Sep-14         6,500         6,000         <0.5         <0.5         150         5.1         155         <2.           53         Mar-15         7,700         3,200         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50    | Mar-14 | 7,500  | 4,900     | <0.5    | <0.5    | 130          | 2.0           | 132        | <2.0  |
| 52         Sep-14         6,500         6,000         <0.5         <0.5         150         5.1         155         <2.           53         Mar-15         7,700         3,200         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51    | Jun-14 | 3,400  | 9,100     | <0.5    | <0.5    | 170          | 6.9           | 177        | <2.0  |
| 54         Sep-15         6,800         2,800         <0.5         <0.5         85         <0.5         85         <2.           55         Dec-15         4,700         2,100         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Sep-14 | 6,500  | 6,000     | <0.5    |         | 150          |               | 155        | <2.0  |
| 54         Sep-15         6,800         2,800         <0.5         <0.5         85         <0.5         85         <2.           55         Dec-15         4,700         2,100         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53    | Mar-15 | 7,700  | 3,200     | <0.5    | <0.5    | 91           | <0.5          | 91         | <2.0  |
| 55 Dec-15 <b>4,700 2,100 &lt;</b> 0.5 <b>&lt;</b> 0.5 <b>64 &lt;</b> 0.5 <b>64 43</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |        |           |         |         |              |               |            | <2.0  |
| 56 Mar-16 1,500 850 <0.5 <0.5 12 <0.5 12 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55    | Dec-15 |        |           |         |         | 64           |               | 64         | 43    |
| <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56    | Mar-16 | 1,500  | 850       | <0.5    | <0.5    | 12           | <0.5          | 12         | <2.0  |

|       |          |        |        |         | Well N  | 1W-8         |               |            |       |
|-------|----------|--------|--------|---------|---------|--------------|---------------|------------|-------|
| Event | Date     | TVHg   | TEHd   | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 1     | Jan-01   | 14,000 | 1,800  | 430     | 17      | 360          | 1230          | 2,037      | 96    |
| 2     | Apr-01   | 11,000 | 3,200  | 320     | 13      | 560          | 1,163         | 2,056      | 42    |
| 3     | Aug-01   | 9,600  | 3,200  | 130     | 14      | 470          | 463           | 1,077      | 14    |
| 4     | Dec-01   | 3,500  | 950    | 69      | 2.4     | 310          | 431           | 812        | < 4.0 |
| 5     | Mar-02   | 14,000 | 3,800  | 650     | 17      | 1,200        | 1,510         | 3,377      | 240   |
| 6     | Jun-02   | 2,900  | 1,100  | 70      | 2.0     | 170          | 148           | 390        | 19    |
| 7     | Sep-02   | 1,000  | 420    | 22      | < 0.5   | 64           | 50            | 136        | < 2.0 |
| 8     | Dec-02   | 3,300  | 290    | 67      | < 0.5   | 190          | 203           | 460        | < 2.0 |
| 9     | Mar-03   | 13,000 | 3,500  | 610     | 12      | 1,100        | 958           | 2,680      | < 10  |
| 10    | Jun-03   | 7,900  | 2,200  | 370     | 7.4     | 620          | 562           | 1,559      | < 4.0 |
| 11    | Sep-03   | 3,600  | 400    | 120     | 3.3     | 300          | 221           | 644        | < 2.0 |
| 12    | Dec-03   | 485    | 100    | 19      | 1.5     | 26           | 36            | 83         | < 5.0 |
| 13    | Mar-04   | 16,000 | 900    | 592     | 24      | 1,060        | 1,870         | 3,546      | 90    |
| 14    | Jun-04   | 5,900  | 990    | 260     | 9.9     | 460          | 390           | 1,120      | < 10  |
| 15    | Sep-04   | 2,000  | 360    | 100     | < 2.5   | 180          | 102           | 382        | < 10  |
| 16    | Dec-04   | 15,000 | 4,000  | 840     | 21      | 1,200        | 1,520         | 3,581      | < 10  |
| 17    | Mar-05   | 24,000 | 7,100  | 840     | 51      | 1,800        | 2,410         | 5,101      | <10   |
| 18    | Jun-05   | 33,000 | 5,700  | 930     | 39      | 2,500        | 3,860         | 7,329      | <20   |
| 19    | Sep-05   | 5,600  | 1,200  | 270     | 6.6     | 400          | 390           | 1,067      | <20   |
| 20    | Dec-05   | 3,700  | 1,300  | 110     | < 5.0   | 320          | 356           | 786        | <20   |
| 21    | Mar-06   | 22.000 | 4,300  | 550     | 30      | 1,800        | 2,380         | 4,760      | <20   |
| 22    | Jun-06   | 19,000 | 5,000  | 500     | 28      | 1,800        | 1,897         | 4,225      | <20   |
| 23    | Sep-06   | 9.000  | 820    | 170     | 7.7     | 730          | 539           | 1,447      | <10   |
| 24    | Dec-06   | 4,400  | 800    | 75      | 4.2     | 320          | 246           | 645        | < 2.0 |
| 25    | Mar-07   | 15,000 | 4,500  | 340     | 19      | 1,300        | 1,275         | 2,934      | < 20  |
| 26    | Jun-07   | 10,000 | 3,500  | 220     | 11      | 670          | 675           | 1,576      | <4.0  |
| 27    | Sep-07   | 9,400  | 3,400  | 200     | 6.9     | 1,000        | 773           | 1,980      | <8.0  |
| 28    | Dec-07   | 1,200  | 500    | 15      | 0.88    | 95           | 57.7          | 168.58     | <2.0  |
| 30    | Mar-08   | 11,000 | 13,000 | 150     | 13      | 1,100        | 950.0         | 2,213      | 76    |
| 31    | Jun-08   | 2,000  | 1,700  | 27      | 2.5     | 190          | 113.2         | 333        | <2.0  |
| 32    | Sep-08   | 5.500  | 4.400  | 89      | 3.9     | 630          | 194.4         | 917        | <2.0  |
| 33    | Dec-08   | 520    | 400    | 1.5     | <0.5    | 20           | 4.4           | 26         | 4.5   |
| 34    | Mar-09   | 4,600  | 7,300  | 55      | <5.0    | 410          | 639.0         | 1,104      | <20   |
| 35    | Jun-09   | 2,100  | 3,400  | 32      | < 0.5   | 260          | 80.8          | 373        | 55    |
| 36    | Sep-09   | 440    | 1,700  | 2.8     | <0.5    | 33           | 2.7           | 39         | 3.7   |
| 37    | Dec-09   | 560    | 540    | 1.5     | < 0.5   | 39           | 7.1           | 48         | 4.2   |
| 38    | Mar-10   | 220    | 270    | 0.8     | <0.5    | 14           | 3.1           | 18         | 3.9   |
| 39    | Mar-10   | 3,400  | 5,700  | 28.0    | <0.5    | 340          | 255.7         | 624        | <2.0  |
| 40    | Jun-10   | 4,700  | 4,200  | 27.0    | 2.9     | 400          | 103.2         | 533        | 27    |
| 41    | Sep-10   | 900    | 1,300  | 2.9     | <0.5    | 22           | <2.5          | 25         | <10   |
| 42    | Dec-10   | 180    | 260    | <0.5    | <0.5    | 5            | 1.0           | 6.4        | 7.2   |
| 43    | Mar-11   | 6,000  | 5,900  | 39      | <0.5    | 510          | 431.0         | 980.0      | <2.0  |
| 44    | Sep-11   | 1,700  | 1,200  | 7       | 0.9     | 120          | 12.2          | 139.7      | <2.0  |
| 45    | Mar-12   | 1,200  | 790    | 11      | 0.9     | <0.5         | 99.0          | 110.9      | <2.0  |
| 46    | Sep-12   | 730    | 430    | 4.7     | <0.5    | 45           | 3.8           | 53.5       | 9.2   |
| 47    | Mar-13   | 840    | 690    | 5.6     | <0.5    | 47           | 9.9           | 62.51      | 15    |
| 48    | Oct-13   | 150    | 140    | <0.5    | <0.5    | 3.3          | <0.5          | 3.3        | <2.0  |
| 49    | Mar-14   | 79     | 120    | <0.5    | <0.5    | 2.1          | <0.5          | 2.1        | 11    |
| 50    | Sep-14   |        | 66     | <0.5    | <0.5    | 1.5          | 0.66          | 2.16       | 11    |
| 51    | Mar-15   | 190    | 68     | <0.5    | <0.5    | 1.6          | <0.5          | 1.6        | 11    |
| 52    | Sep-15   | <50    | 97     | <0.5    | <0.5    | <0.5         | <0.5          | 0          | 6     |
| 53    | Mar-16   | 170    | 290    | 0.53    | <0.5    | 3.6          | 5.52          | 9.65       | 3     |
| JJ    | iviai-10 | 170    | 230    | 0.55    | ₹0.5    | 3.0          | J.J2          | 3.00       | J     |

|       |        |        |       |         | Well N  | IW-9         |               |            |       |
|-------|--------|--------|-------|---------|---------|--------------|---------------|------------|-------|
| Event | Date   | TVHg   | TEHd  | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 1     | Aug-01 | 11,000 | 170   | 340     | 13      | 720          | 616           | 1,689      | 48    |
| 2     | Dec-01 | 9,400  | 2,700 | 250     | 5.1     | 520          | 317           | 1,092      | < 10  |
| 3     | Mar-02 | 1,700  | 300   | 53      | 4.2     | 120          | 67            | 244        | 20    |
| 4     | Jun-02 | 11,000 | 2,500 | 200     | 16      | 600          | 509           | 1,325      | 85    |
| 5     | Sep-02 | 3,600  | 2,800 | 440     | 11      | 260          | 39            | 750        | < 4.0 |
| 6     | Dec-02 | 7,000  | 3,500 | 380     | 9.5     | 730          | 147           | 1,266      | < 10  |
| 7     | Mar-03 | 4,400  | 1,400 | 320     | 6.9     | 400          | 93            | 820        | < 2.0 |
| 8     | Jun-03 | 7,600  | 1,600 | 490     | 10      | 620          | 167           | 1,287      | < 4.0 |
| 9     | Sep-03 | 8,300  | 2,900 | 420     | 14      | 870          | 200           | 1,504      | < 10  |
| 10    | Dec-03 | 7,080  | 700   | 287     | 31      | 901          | 255           | 1,474      | < 10  |
| 11    | Mar-04 | 3,550  | 600   | 122     | 15      | 313          | 84            | 534        | 35    |
| 12    | Jun-04 | 6,800  | 1,700 | 350     | < 2.5   | 620          | 99            | 1,069      | < 10  |
| 13    | Sep-04 | 7,100  | 1,900 | 160     | 8.1     | 600          | 406           | 1,174      | < 10  |
| 14    | Dec-04 | 4,700  | 2,800 | 160     | < 2.5   | 470          | < 0.5         | 630        | < 10  |
| 15    | Mar-05 | 4,200  | 1,600 | 97      | <2.5    | 310          | 42            | 449        | < 10  |
| 16    | Jun-05 | 9,900  | 2,000 | 170     | <2.5    | 590          | 359           | 1,119      | < 10  |
| 17    | Sep-05 | 3,600  | 1,200 | 250     | <0.5    | 330          | 36            | 616        | < 2.0 |
| 18    | Dec-05 | 8,700  | 1,500 | 150     | 4       | 650          | 551           | 1,355      | < 4.0 |
| 19    | Mar-06 | 3,600  | 880   | 37      | <1.0    | 210          | 165           | 412        | < 4.0 |
| 20    | Jun-06 | 3,200  | 1,300 | 39      | <1.0    | 220          | 144           | 403        | 4.2   |
| 21    | Sep-06 | 12,000 | 3,300 | 130     | 8       | 850          | 604           | 1,592      | <1.0  |
| 22    | Dec-06 | 12,000 | 2,800 | 140     | 9.4     | 880          | 634           | 1,663      | < 10  |
| 23    | Mar-07 | 9,600  | 2,900 | 120     | 8.7     | 780          | 453           | 1,362      | < 10  |
| 24    | Jun-07 | 7,100  | 2,200 | 75      | 5.2     | 480          | 298           | 858        | <4.0  |
| 25    | Sep-07 | 4,500  | 2,100 | 60      | 3.8     | 420          | 227           | 710        | <4.0  |
| 26    | Dec-07 | 6,200  | 2,000 | 51      | <0.5    | 340          | 128.8         | 519.8      | <2.0  |
| 27    | Mar-08 | 6,400  | 3,500 | 67      | 5.2     | 480          | 177.6         | 724.6      | 38    |
| 28    | Jun-08 | 10,000 | 3,400 | 89      | <2.5    | 510          | 231.0         | 830.0      | <10   |
| 29    | Sep-08 | 4,800  | 2,700 | 53      | <0.5    | 250          | 66.4          | 369.4      | <2.0  |
| 30    | Dec-08 | 4,300  | 2,300 | 45      | <0.5    | 330          | 39.1          | 414.1      | <2.0  |
| 31    | Mar-09 | 4,000  | 2,200 | <2.0    | <0.5    | 160          | 34.9          | 194.9      | <2.0  |
| 32    | Jun-09 | 4,100  | 3,600 | 62      | < 0.5   | 280          | 41.7          | 383.7      | 160   |
| 33    | Sep-09 | 2,200  | 2,900 | 15      | <0.5    | 110          | 11.8          | 136.8      | <2.0  |
| 34    | Dec-09 | 2,500  | 4,000 | 27      | <0.5    | 170          | 8.7           | 205.7      | <2.0  |
| 35    | Mar-10 | 3,300  | 2,600 | 15      | <0.5    | 140          | 12.0          | 167.0      | 8.6   |
| 36    | Mar-10 | 2,500  | 3,400 | 16      | <0.5    | 70           | 15.4          | 101.4      | 2.1   |
| 37    | Jun-10 | 1,700  | 1,300 | 13      | <0.5    | 48           | 4.9           | 65.9       | 11    |
| 38    | Sep-10 | 13,000 | 2,900 | 43      | <0.5    | 300          | 47.9          | 390.9      | 43    |
| 39    | Dec-10 | 3,900  | 2,400 | 32      | <0.5    | 240          | 20.5          | 292.5      | 82    |
| 40    | Mar-11 | 700    | 680   | 1.6     | <0.5    | 10           | 3.5           | 15.1       | 14    |
| 41    | Sep-11 | 2,600  | 1,900 | 12      | <0.5    | 160          | 10.2          | 182.2      | <2.0  |
| 42    | Mar-12 | 1,100  | 940   | 9       | <0.5    | 25           | 1.6           | 35.6       | <2.0  |
| 43    | Sep-12 | 10,000 | 8,600 | 25      | <0.5    | 260          | 19.0          | 304.0      | <2.0  |
| 44    | Mar-13 | 4,000  | 2,400 | 9.1     | <0.5    | 73           | 9.7           | 91.8       | <2.0  |
| 45    | Oct-13 | 3,200  | 1,500 | 20      | <0.5    | 51           | 6.6           | 77.6       | <2.0  |
| 49    | Dec-13 | 3,000  | 2,700 | 22      | <0.5    | 120          | 4.6           | 147        | <2.0  |
| 50    | Mar-14 | 3,100  | 5,200 | 49      | <0.5    | 420          | 83            | 552        | <2.0  |
| 51    | Jun-14 | 12,000 | 2,600 | 54      | <0.5    | 610          | 160           | 824        | <2.0  |
| 52    | Sep-14 | 17,000 | 5,800 | 65      | 13.0    | 51           | 204           | 333        | <2.0  |
| 53    | Mar-15 | 4,300  | 2,000 | 24      | <0.5    | 150          | 19            | 193        | <2.0  |
| 54    | Sep-15 | 3,000  | 950   | 25      | <0.5    | 59           | 3             | 87         | 46    |
| 55    | Dec-15 | 2,700  | 1,400 | 9.6     | <0.5    | <8.3         | <8.3          | 10         | <33   |
| 56    | Mar-16 | 4,000  | 2,600 | 18.0    | <8.3    | 84           | <8.3          | 102        | <33   |

|       |        |      |       |         | Well M  | W-10         |               |            |      |
|-------|--------|------|-------|---------|---------|--------------|---------------|------------|------|
| Event | Date   | TVHg | TEHd  | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE |
| 1     | Aug-01 | 550  | 2,100 | 17      | < 0.5   | 31           | 44            | 92         | 40   |
| 2     | Dec-01 | < 50 | 81    | < 0.5   | < 0.5   | < 0.5        | < 0.5         | _          | 25   |
| 3     | Mar-02 | < 50 | < 50  | 0.61    | < 0.5   | < 0.5        | < 0.5         | 0.61       | 6.0  |
| 4     | Jun-02 | < 50 | < 50  | 0.59    | < 0.5   | 0.58         | < 0.5         | 1.2        | 9.0  |
| 5     | Sep-02 | 160  | 120   | 10      | < 0.5   | 6.7          | 3.6           | 20         | 26   |
| 6     | Dec-02 | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | _          | 16   |
| 7     | Mar-03 | 110  | < 50  | 11      | < 0.5   | 12           | 1.3           | 24         | 15   |
| 8     | Jun-03 | 110  | < 50  | 9.6     | < 0.5   | 6.8          | < 0.5         | 16         | 9.0  |
| 9     | Sep-03 | < 50 | < 50  | 1.1     | < 0.5   | 1.5          | < 0.5         | 2.6        | 7.0  |
| 10    | Dec-03 | 162  | <100  | 6.9     | <0.3    | 8.0          | <0.6          | 15         | 9.9  |
| 11    | Mar-04 | 94   | <100  | 2.8     | < 0.3   | 5.7          | 7.0           | 16         | <5.0 |
| 12    | Jun-04 | 150  | 56    | 11      | < 0.5   | 12           | < 0.5         | 23         | 15   |
| 13    | Sep-04 | < 50 | < 50  | 1.6     | < 0.5   | 1.9          | < 1.0         | 3.5        | 5.8  |
| 14    | Dec-04 | 64   | < 50  | 3.7     | < 0.5   | 3.7          | 0.7           | 8.1        | 10   |
| 15    | Mar-05 | 95   | 98    | 8.3     | < 0.5   | 7.7          | 0.77          | 17         | 13   |
| 16    | Jun-05 | 150  | 57    | 14      | <0.5    | 10           | 1.0           | 25         | <2.0 |
| 17    | Sep-05 | 87   | < 50  | 5.0     | <0.5    | 3.6          | <1.0          | 8.6        | <2.0 |
| 18    | Dec-05 | < 50 | < 50  | 1.2     | <0.5    | <0.5         | <1.0          | 1.2        | 7.8  |
| 19    | Mar-06 | 58   | 71    | 3.2     | <0.5    | 2.2          | <1.0          | 5.4        | 8.8  |
| 20    | Jun-06 | 73   | 140   | 4.9     | <0.5    | 2.5          | <1.0          | 7.4        | 5.3  |
| 21    | Sep-06 | 88   | 51    | <0.5    | <0.5    | <0.5         | <0.5          | <0.5       | 9.6  |
| 22    | Dec-06 | <50  | <50   | 0.61    | < 0.5   | 0.55         | <0.5          | 1.2        | 3.7  |
| 23    | Mar-07 | 57   | <50   | 3.6     | <0.5    | 2.2          | <0.5          | 5.8        | 3.1  |
| 24    | Jun-07 | 60   | 65    | 2.4     | <0.5    | 1.6          | <0.5          | 4.0        | 4.0  |
| 25    | Sep-07 | 84   | <50   | 3.6     | <0.5    | 2.3          | 0.52          | 6.4        | 3.6  |
| 26    | Dec-07 | 130  | 67    | 0.77    | < 0.5   | 340          | 0.83          | 341.6      | <2.0 |
| 27    | Mar-08 | 78   | 170   | 1.7     | <0.5    | 3.1          | 0.97          | 5.8        | 2.4  |
| 28    | Jun-08 | 230  | 320   | 12      | <0.5    | 9.9          | 3.50          | 25.4       | <2.0 |
| 29    | Sep-08 | 80   | <50   | 1.6     | <0.5    | 0.52         | <0.5          | 2.1        | 3.0  |
| 30    | Dec-08 | <50  | 66    | 0.89    | <0.5    | <0.5         | <0.5          | 0.9        | 2.1  |
| 31    | Mar-09 | 76   | 230   | <2.0    | <0.5    | 1.4          | <0.5          | 1.4        | <2.0 |
| 32    | Jun-09 | 72   | 120   | 2.0     | < 0.5   | 4.4          | 1.3           | 7.7        | <2.0 |
| 33    | Sep-09 | 74   | 220   | 1.6     | <0.5    | <0.5         | <0.5          | 1.6        | <2.0 |
| 34    | Dec-09 | 72   | 150   | 0.6     | < 0.5   | 1.6          | 1.2           | 3.4        | <2.0 |
| 36    | Mar-10 | 63   | 280   | 1.3     | <0.5    | 48           | <0.5          | 49.3       | <2.0 |
| 37    | Jun-10 | 110  | 340   | 1.4     | <0.5    | 2.6          | 0.74          | 4.7        | 2.4  |
| 38    | Sep-10 | 140  | 360   | 2.1     | <0.5    | 1.4          | <0.5          | 3.5        | 4.3  |
| 39    | Dec-10 | 80   | 440   | <0.5    | <0.5    | 0.69         | <0.5          | 0.7        | 4.1  |
| 40    | Mar-11 | 170  | 1,200 | 1.0     | <0.5    | 3.7          | 1.8           | 6.5        | 6.3  |
| 41    | Sep-11 | 150  | 220   | 0.8     | <0.5    | 1.9          | 1             | 3.7        | <2.0 |
| 42    | Mar-12 | 80   | 92    | 0.81    | <0.5    | 1.5          | <0.5          | 2.3        | 3.4  |
| 43    | Sep-12 | 170  | 200   | <0.5    | <0.5    | 2            | 0.94          | 2.9        | <2.0 |
| 44    | Mar-13 | 310  | 58    | <0.5    | <0.5    | 7.3          | 7.94          | 15.2       | <2.0 |
| 45    | Oct-13 | 69   | <50   | <0.5    | <0.5    | 0.84         | <0.5          | 0.8        | 4.8  |
| 46    | Dec-13 | <52  | 220   | <0.5    | 0.61    | 2            | 1.5           | 4.1        | 3.7  |
| 47    | Mar-14 | <50  | 87    | <0.5    | <0.5    | 0.51         | <0.5          | 0.5        | 3.7  |
| 48    | Jun-14 | 55   | <50   | <0.5    | 0.61    | 2            | 1.5           | 4.1        | <2.0 |
| 49    | Sep-14 | <50  | <50   | <0.5    | <0.5    | <0.5         | <0.5          | 0.0        | 4.5  |
| 50    | Mar-15 | 61   | <49   | <0.5    | <0.5    | <0.5         | <0.5          | 0.0        | 3.3  |
| 51    | Sep-15 | <50  | <49   | <0.5    | <0.5    | <0.5         | <0.5          | 0.0        | 2.6  |
| 52    | Dec-15 | <50  | <50   | <0.5    | <0.5    | <0.5         | <0.5          | 0.0        | 2.6  |
| 52    |        |      |       |         |         |              |               |            |      |

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        |        |       |         | Well M  | IW-11        |               |            |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-------|---------|---------|--------------|---------------|------------|-------|
| Dec-01   5,800   2,800   280   7,8   500   213   1,001   < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Event | Date   | TVHg   | TEHd  | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 3 Mar-02 100 94 < 0.5 < 0.5   0.64   < 0.5   0.64   2.4   4   Jun-02 8,200   2,600   570   13   560   170   1,313   < 5   5   Sep-02 12,000   4,400   330   13   880   654   1,877   < 1   6   Dec-02 18,000   4,500   420   < 2.5   1,100   912   2,432   < 1   7   Mar-03   7,800   2,600   170   4.7   530   337   1,042   53   8   Jun-03   14,000   3,800   250   < 2.5   870   693   1,813   < 1   9   Sep-03   10,000   3,000   250   9.9   700   527   1,487   < 5   1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     | Aug-01 | 17,000 | 7,800 | 390     | 17      | 820          | 344           | 1,571      | < 10  |
| 4 Jun-02 8,200 2,600 570 13 560 170 1,313 < 5 5 Sep-02 12,000 4,400 330 13 880 654 1,677 < 1 6 Dec-02 18,000 4,500 420 < 2.5 1,100 912 2,432 < 7 7 Mar-03 7,800 2,600 170 4.7 530 337 1,042 53 8 Jun-03 14,000 3,800 250 < 2.5 870 693 1,813 < 1 9 Sep-03 10,000 3,800 250 9.9 700 527 1,487 < 1 10 Dec-03 15,000 1,100 314 660 1,070 802 2,246 173 11 Mar-04 4,900 400 72 17 342 233 664 61 12 Jun-04 10,000 2,300 210 2.8 690 514 1,417 < 1 13 Sep-04 7,200 2,300 340 < 2.5 840 514 1,417 < 1 14 Dec-04 11,000 3,900 180 5.1 780 695 1,660 < 7 14 Dec-04 11,000 3,900 180 5.1 780 695 1,660 < 7 15 Mar-05 4,600 1,900 69 < 2.5 300 266 575 < 1 16 Jun-05 1,400 590 85 < 0.5 110 8.2 203 17 Sep-05 12,000 3,100 220 < 1.0 4.0 400 762 1,822 < 4. 18 Dec-05 2,500 2,100 120 < 2.5 260 16 396 1 19 Mar-06 2,200 1,300 27 < 2.5 130 5.2 162 < 1 19 Mar-06 3,700 1,900 170 < 1.0 230 14 4 14  < 4. 20 Jun-07 3,700 1,900 170 < 1.0 230 14 4 14  < 4. 21 Sep-06 3,600 2,100 120 < 2.5 260 16 396 < 2.5 20 Jun-06 3,700 1,900 170 < 1.0 230 14 4 14  < 4. 22 Dec-06 6,000 3,500 80 < 0.5 230 14 4 14  < 4. 22 Dec-06 6,000 3,500 80 < 0.5 230 14 4 14  < 4. 23 Mar-07 4,500 1,900 170 < 0.0 5 140 6.6 267 < 4. 24 Jun-07 4,300 2,200 100 120 < 0.5 140 6.6 267 < 4. 25 Sep-07 5,500 2,700 86 < 0.5 140 16 16 396 < 2. 25 Dec-06 6,000 3,500 83 < 1.0 260 16.4 3599 < 4. 25 Sep-07 5,500 2,700 86 < 0.5 140 16.1 222 < 2.2 3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2     | Dec-01 | 5,800  | 2,800 | 280     | 7.8     | 500          | 213           | 1,001      | < 10  |
| Sep-02   12,000   4,400   330   13   880   654   1,877   < 1   6   Dec-02   18,000   4,500   420   < 2.5   1,100   912   2,432   < 7   7   Mar-03   7,800   2,600   170   4,7   530   337   1,042   53   8   Jun-03   14,000   3,800   250   < 2.5   870   693   1,813   < 7   1   1,000   1,000   3,000   250   < 2.5   870   693   1,813   < 7   1   1,000   1,100   3,000   250   9.9   700   527   1,487   < 7   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | Mar-02 | 100    | 94    | < 0.5   | < 0.5   | 0.64         | < 0.5         | 0.64       | 2.4   |
| 6 Dec-02 18,000 4,500 420 <2.5 1,100 912 2,432 <17 7 Mar-03 7,800 2,600 170 4.7 5530 337 1,042 55 8 Jun-03 14,000 3,800 250 <2.5 870 693 1,813 <1 9 Sep-03 10,000 3,000 250 9.9 700 527 1,487 <2 10 Dec-03 15,000 1,100 314 60 1,070 802 2,246 173 111 Mar-04 4,900 400 72 177 342 233 664 61 12 Jun-04 10,000 2,300 210 2.8 690 514 1,417 <1 13 Sep-04 7,200 2,300 340 <2.5 840 75 1,455 <1 14 Dec-04 11,000 3,900 180 5.1 780 695 1,660 <1 15 Mar-05 4,600 1,900 69 <2.5 840 75 1,255 <1 16 Jun-05 1,400 590 85 <0.5 110 8.2 203 <2. 17 Sep-05 12,000 3,100 220 <1.0 840 762 1,822 <4. 18 Dec-05 2,500 2,100 120 <2.5 260 16 336 <1 19 Mar-06 2,200 1,300 27 <2.5 260 16 336 <1 19 Mar-06 3,700 1,900 170 <1.0 230 14 414 <4. 21 Sep-05 8,600 1,900 80 <0.5 2.5 130 5.2 162 <1 22 Dec-06 6,000 3,500 83 <1.0 230 14 414 <4. 21 Sep-06 8,600 1,900 170 <1.0 230 14 414 <4. 21 Sep-06 8,600 1,900 170 <1.0 230 14 414 <4. 21 Sep-06 8,600 1,900 170 <1.0 230 14 414 <4. 22 Dec-06 6,000 3,500 83 <1.0 230 14 414 <4. 22 Dec-06 6,000 3,500 83 <1.0 280 16. 330 14 414 <4. 23 Mar-07 4,500 1,900 110 <0.5 170 7.9 288 <2. 24 Jun-07 4,300 2,200 120 <0.5 140 6.6 267 <4. 25 Sep-07 5,500 2,700 86 <0.5 140 11 340 16.1 282 <2. 26 Dec-07 7,100 4,000 68 <0.5 140 11 341 222 35   28 Jun-08 5,300 4,000 130 <0.5 120 13 263 8.8 108 8.0   28 Jun-08 5,300 4,000 130 <0.5 140 11 341 222 35   33 Mar-07 4,500 1,900 110 <0.5 110 4.5 260 16. 386 61   33 Sep-08 7,300 4,600 130 <0.5 140 11 340 11 341 <2. 245   24 Jun-09 8,300 4,000 130 <0.5 140 11 340 11 341 <2. 245   24 Jun-09 8,300 1,500 83 <0.5 180 110 4.5 260 176 <2. 255   26 Dec-07 7,100 4,000 68 <0.5 140 11 340 11 341 <2. 245   24 Jun-09 8,300 1,600 18 <0.5 19   0.0 5 170 7.9 288   24 Jun-09 8,300 1,600 18 <0.5 19   0.0 5 170 7.9 288   25 Sep-08 7,300 4,600 180 <0.5 140 11   0.5 19   0.5 5 00 5 176   0.5 5 00 5 176   0.5 5 00 5 176   0.5 5 00 5 00 5 00 5 00 5 00 5 00 5 0                                                                                                                                                                    | 4     | Jun-02 | 8,200  | 2,600 | 570     | 13      | 560          | 170           | 1,313      | < 4   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     | Sep-02 | 12,000 | 4,400 | 330     | 13      | 880          | 654           | 1,877      | < 10  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6     | Dec-02 | 18,000 | 4,500 | 420     | < 2.5   | 1,100        | 912           | 2,432      | < 10  |
| 9   Sep-03   10,000   3,000   250   9.9   700   527   1,487   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7     | Mar-03 | 7,800  | 2,600 | 170     | 4.7     | 530          | 337           | 1,042      | 53    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8     | Jun-03 | 14,000 | 3,800 | 250     | < 2.5   | 870          | 693           | 1,813      | < 10  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9     | Sep-03 | 10,000 | 3,000 | 250     | 9.9     | 700          | 527           | 1,487      | < 4   |
| 12   Jun-04   10,000   2,300   210   2.8   690   514   1,417   < 1   13   Sep-04   7,200   2,300   340   < 2.5   840   75   1,255   < 1   14   DecO4   11,000   3,900   180   5.1   780   695   1,660   < 1   15   Mar-05   4,600   1,900   69   < 2.5   300   206   575   < 7   16   Jun-05   1,400   590   85   < 0.5   110   8.2   203   < 2.4   18   Dec-05   2,500   2,100   120   < 2.5   260   16   396   < 1   19   Mar-06   2,200   1,300   27   < 2.5   260   16   396   < 7   19   Mar-06   2,200   1,300   27   < 2.5   130   5.2   162   < 1   20   Jun-06   3,700   1,900   170   < 1.0   230   14   414   < 4.   21   Sep-06   3,600   2,100   80   < 0.5   230   8.8   319   < 2.   22   Dec-06   6,000   3,500   83   < 1.0   260   16.4   359   < 4.   23   Mar-07   4,500   1,900   110   < 0.5   170   7.9   288   < 2.   24   Jun-07   4,500   1,900   120   < 0.5   140   6.6   267   < 4.   25   Sep-07   5,500   2,700   86   < 0.5   140   6.6   267   < 4.   26   Dec-07   7,100   4,000   68   < 0.5   140   6.6   267   < 4.   25   Sep-08   5,500   4,000   130   < 0.5   140   14   222   35   27   Mar-08   5,300   4,000   130   < 0.5   140   14   222   35   27   Mar-08   5,300   4,600   130   < 0.5   140   14   222   35   27   Mar-08   5,300   4,600   130   < 0.5   140   11   341   < 2.   29   Sep-08   7,300   4,600   130   < 0.5   140   11   341   < 2.   29   Sep-08   7,300   4,600   130   < 0.5   82   0.69   176   < 2.   31   Mar-09   2,100   3,500   14   < 0.5   59   0.79   73   3.4     32   Jun-09   2,100   3,500   14   < 0.5   48   < 0.5   82   0.69   176   < 2.   31   Mar-10   2,000   3,500   14   < 0.5   49   1.9   < 64   15.0     38   Sep-10   3,000   2,200   18   < 0.5   42   0.92   57   7.9     38   Sep-10   3,000   2,000   13   < 0.5   42   0.95   57   7.9     38   Sep-10   3,000   2,000   8.7   < 0.5   44   2.2   58.2   < 2.   44   Mar-11   180   1,600   < 0.5   < 0.5   44   2.2   58.2   < 2.   45   Dec-01   1,800   3,000   2,005   12   < 0.5   44   2.2   58.2   < 2.   46   Dec-13   2,500   1,800   < 0.5   < 0.5   40.5 | 10    | Dec-03 | 15,000 | 1,100 | 314     | 60      | 1,070        | 802           | 2,246      |       |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11    | Mar-04 | 4,900  | 400   | 72      | 17      | 342          | 233           | 664        | 61    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12    | Jun-04 | 10,000 | 2,300 | 210     | 2.8     | 690          | 514           | 1,417      | < 10  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            | < 10  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            | < 10  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15    | Mar-05 | 4.600  | 1.900 | 69      | <2.5    | 300          | 206           | 575        | < 10  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            | < 2.0 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            | < 4.0 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            | < 10  |
| 20         Jun-06         3,700         1,900         170         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       | 27      |         |              |               |            | < 10  |
| 21         Sep-06         3,600         2,100         80         < 0.5         230         8.8         319         < 2.           22         Dec-06         6,000         3,500         83         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        |       |         |         |              |               |            |       |
| 22         Dec-06         6,000         3,500         83         <1.0         260         16.4         359         < 4.           23         Mar-07         4,500         1,900         110         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |        |       |         |         |              |               |            |       |
| 23         Mar-07         4,500         1,900         110         < 0.5         170         7.9         288         < 2.           24         Jun-07         4,300         2,200         120         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |        |       |         |         |              |               |            |       |
| 24         Jun-07         4,300         2,200         120         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 25         Sep-07         5,500         2,700         86         <0.5         180         16.1         282         <2.           26         Dec-07         7,100         4,000         68         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 26         Dec-07         7,100         4,000         68         < 0.5         140         14         222         35           27         Mar-08         5,300         4,000         130         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 27         Mar-08         5,300         4,000         130         <0.5         120         13         263         8.8           28         Jun-08         3,600         4,200         190         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 28         Jun-08         3,600         4,200         190         <0.5         140         11         341         <2.           29         Sep-08         7,300         4,600         130         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 29         Sep-08         7,300         4,600         130         <0.5         110         4.5         245         <2           30         Dec-08         2,800         1,600         93         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        |       |         |         |              |               |            |       |
| 30         Dec-08         2,800         1,600         93         < 0.5         82         0.69         176         < 2.           31         Mar-09         4,100         4,600         18         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        |       |         |         |              |               |            |       |
| 31         Mar-09         4,100         4,600         18         <0.5         82         8         108         8.0           32         Jun-09         2,100         2,700         38         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        | ,      |       |         |         |              |               |            |       |
| 32         Jun-09         2,100         2,700         38         < 0.5         80         3.3         121         3.3           33         Sep-09         830         2,400         11         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |        |       |         |         |              |               |            |       |
| 33         Sep-09         830         2,400         11         <0.5         19         <0.5         30         <2.           34         Dec-09         2,200         3,100         19         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        |       |         |         |              |               |            |       |
| 34         Dec-09         2,200         3,100         19         <0.5         46         0.78         66         14.0           35         Mar-10         2,300         2,500         13         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        |       |         |         |              |               |            |       |
| 35         Mar-10         2,300         2,500         13         <0.5         59         0.79         73         3.4           36         Mar-10         1,500         3,400         12         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |        |       |         |         |              |               |            |       |
| 36         Mar-10         1,500         3,400         12         <0.5         48         <0.5         60         <2.           37         Jun-10         2,000         3,500         14         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |        | _     |         |         | -            |               |            |       |
| 37         Jun-10         2,000         3,500         14         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        | -      |       |         |         |              |               |            |       |
| 38         Sep-10         3,000         2,200         18         <0.5         41         0.55         60         8.0           39         Dec-10         1,800         2,900         13         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |        |       |         |         |              |               |            | <2.0  |
| 39         Dec-10         1,800         2,900         13         <0.5         49         1.9         64         15.0           40         Mar-11         180         1,600         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        | ,      |       |         |         |              |               |            |       |
| 40         Mar-11         180         1,600         <0.5         <0.5         1.2         <0.5         1.2         6.9           41         Sep-11         2,200         2,500         12         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 41         Sep-11         2,200         2,500         12         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        | _     |         |         |              |               | -          |       |
| 42         Mar-12         1,300         1,200         8.7         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            |       |
| 43         Sep-12         2,400         1,800         7.7         <0.5         29         <0.5         36.7         <2.           44         Mar-13         1,500         1,900         4.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        |       |         |         |              |               |            | <2.0  |
| 44         Mar-13         1,500         1,900         4.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        |       |         |         |              |               |            | <2.0  |
| 45         Oct-13         3,000         1,600         14         <0.5         35         <0.5         49         <2.           46         Dec-13         2,500         2,000         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |        |       |         |         |              |               |            | <2.0  |
| 46         Dec-13         2,500         2,000         <0.5         13         <0.5         0.68         13.7         <2.           47         Mar-14         3,000         2,800         13         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |        |       |         |         |              |               |            | <2.0  |
| 47         Mar-14         3,000         2,800         13         <0.5         34         <0.5         47.0         <2.           48         Jun-14         2,300         1,400         6         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        |       |         |         |              |               |            | <2.0  |
| 48         Jun-14         2,300         1,400         6         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46    | Dec-13 | 2,500  | 2,000 |         | 13      | <0.5         | 0.68          | 13.7       | <2.0  |
| 49         Sep-14         190         3,400         6.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47    |        | 3,000  | 2,800 | 13      | <0.5    | 34           | <0.5          | 47.0       | <2.0  |
| 50         Mar-15         1,300         1,500         <0.5         <0.5         8.4         <0.5         8.4         <2.           51         Sep-15         2,500         1,800         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Jun-14 |        |       |         | <0.5    | 20           |               | 32.1       | <2.0  |
| 51         Sep-15         2,500         1,800         <0.5         <0.5         25         <0.5         25.0         24.           52         Dec-15         3,100         1,600         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49    | Sep-14 | 190    | 3,400 | 6.8     | <0.5    | 26           | <0.5          | 32.8       | 3.7   |
| 52 Dec-15 <b>3,100 1,600 &lt;</b> 0.5 <b>&lt;</b> 0.5 <b>30 &lt;</b> 0.5 <b>30.0 &lt;</b> 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50    | Mar-15 | 1,300  | 1,500 | <0.5    | <0.5    | 8.4          | <0.5          | 8.4        | <2.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51    | Sep-15 | 2,500  | 1,800 | <0.5    | <0.5    | 25           | <0.5          | 25.0       | 24.0  |
| 53 Mar-16 <b>720 610 &lt;0.5 &lt;0.5 6.1 &lt;0.5 6.1 &lt;2</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52    | Dec-15 | 3,100  | 1,600 | <0.5    | <0.5    | 30           | <0.5          | 30.0       | <2.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53    | Mar-16 | 720    | 610   | <0.5    | <0.5    | 6.1          | <0.5          | 6.1        | <2.0  |

|       |        |       |      |         | Well M  | IW-12        |               |            |       |
|-------|--------|-------|------|---------|---------|--------------|---------------|------------|-------|
| Event | Date   | TVHg  | TEHd | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |
| 1     | Dec-05 | 1,300 | 700  | < 0.5   | < 0.5   | 33           | 5.6           | 39         | < 2.0 |
| 2     | Mar-06 | 1,100 | 540  | < 0.5   | <0.5    | 8.5          | 1.5           | 10         | 49    |
| 3     | Jun-06 | 680   | 400  | <0.5    | <0.5    | 5.8          | 1.4           | 7.2        | < 2.0 |
| 4     | Sep-06 | 910   | 480  | <0.5    | <0.5    | 9.9          | 1.5           | 11.4       | 21    |
| 5     | Dec-06 | 770   | 230  | < 0.5   | < 0.5   | 7.4          | 2.0           | 9.4        | < 2.0 |
| 6     | Mar-07 | 390   | 110  | < 0.5   | < 0.5   | 1.7          | 1.7           | 3.4        | < 2.0 |
| 7     | Jun-07 | 590   | 280  | < 0.5   | <0.5    | 4.5          | 0.9           | 5.4        | <2.0  |
| 8     | Sep-07 | 390   | 180  | < 0.5   | <0.5    | 2.4          | 2.4           | 4.8        | <2.0  |
| 9     | Dec-07 | 210   | 140  | < 0.5   | <0.5    | 2.1          | 1.3           | 3.4        | <2.0  |
| 10    | Mar-08 | 720   | 500  | <0.5    | 4.4     | 9.0          | 2.8           | 16.2       | <2.0  |
| 11    | Jun-08 | 220   | 50   | < 0.5   | <0.5    | 2.0          | <0.5          | 2.0        | <2.0  |
| 12    | Sep-08 | 370   | 95   | <0.5    | <0.5    | 2.8          | 0.98          | 3.8        | <2.0  |
| 13    | Dec-08 | 93    | 170  | < 0.5   | <0.5    | 0.76         | <0.5          | 0.8        | <2.0  |
| 14    | Mar-09 | 180   | 130  | <0.5    | <0.5    | 1.70         | <0.5          | 1.7        | <2.0  |
| 15    | Jun-09 | 300   | 280  | < 0.5   | < 0.5   | 4.60         | < 0.5         | 4.6        | <2.0  |
| 16    | Sep-09 | 330   | 270  | <0.5    | <0.5    | 2.30         | <0.5          | 2.3        | <2.0  |
| 17    | Dec-09 | 76    | 170  | < 0.5   | <0.5    | <0.5         | <0.5          | 0.0        | <2.0  |
| 18    | Mar-10 | 240   | 380  | <0.5    | <0.5    | 2.7          | <0.5          | 2.7        | <2.0  |
| 19    | Jun-10 | 540   | 370  | < 0.5   | < 0.5   | 3.5          | 0.92          | 4.4        | 7.9   |
| 20    | Sep-10 | 380   | 220  | <0.5    | <0.5    | 1.7          | <0.5          | 1.7        | 8     |
| 21    | Dec-10 | 320   | 350  | < 0.5   | <0.5    | 1.5          | <0.5          | 1.5        | 3.9   |
| 22    | Mar-11 | 290   | 450  | <0.5    | 0.74    | 1.3          | <0.5          | 2.0        | 11    |
| 23    | Sep-11 | 530   | 340  | < 0.5   | < 0.5   | 2.2          | <0.5          | 2.2        | <2.0  |
| 24    | Mar-12 | 410   | 240  | < 0.5   | <0.5    | 1.9          | <0.5          | 1.9        | <2.0  |
| 25    | Sep-12 | 340   | 210  | < 0.5   | <0.5    | 1.1          | <0.5          | 1.1        | <2.0  |
| 26    | Mar-13 | 430   | 200  | < 0.5   | <0.5    | 1.2          | <0.5          | 1.2        | 7.1   |
| 27    | Oct-13 | 350   | 200  | < 0.5   | <0.5    | 0.92         | <0.5          | 0.92       | <2.0  |
| 28    | Dec-13 | 290   | 210  | < 0.5   | <0.5    | 0.68         | <0.5          | 0.68       | 2.5   |
| 29    | Mar-14 | <50   | 62   | < 0.5   | < 0.5   | <0.5         | <0.5          | 0          | 2.8   |
| 30    | Jun-14 | 2,300 | 190  | <0.5    | <0.5    | 0.65         | <0.5          | 0.65       | <2.0  |
| 31    | Sep-14 | 2,500 | 130  | <0.5    | 6.8     | 26           | <0.5          | 32.8       | <2.0  |
| 32    | Mar-15 | <50   | <49  | < 0.5   | <0.5    | <0.5         | <0.5          | 0          | <2.0  |
| 33    | Sep-15 | <50   | 91   | <0.5    | <0.5    | <0.5         | <0.5          | 0          | <2.0  |
| 34    | Dec-15 | <50   | <49  | <0.5    | <0.5    | <0.5         | <0.5          | 0          | 2.1   |
| 35    | Mar-16 | <50   | <50  | < 0.5   | < 0.5   | <0.5         | <0.5          | 0          | <2.0  |

## HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA (all concentrations in ug/L, equivalent to parts per billion [ppb])

|       |            |               |             |             | <u> </u>    | raierii io paris pe | E 1 2/            |                 |       |
|-------|------------|---------------|-------------|-------------|-------------|---------------------|-------------------|-----------------|-------|
| Sur   | face Wate  | r Sampling    | Location    | SW-1 (Ups   | tream of C  | ontaminated Gr      | oundwater Discl   | harge Location  | SW-2) |
| Event | Date       | TVHg          | TEHd        | Benzene     | Toluene     | Ethylbenzene        | Total Xylenes     | Total BTEX      | MTBE  |
| 1     | Feb-94     | 50            | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | I               | NA    |
| 2     | May-95     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | ı               | NA    |
| 3     | May-96     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | ı               | NA    |
| 4     | Aug-96     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | I               | NA    |
| 5     | Dec-96     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | I               | NA    |
| 6     | Feb-97     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | ı               | NA    |
| 7     | Aug-97     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | I               | NA    |
| 8     | Dec-97     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | I               | NA    |
| 9     | Feb-98     | < 50          | < 50        | < 0.5       | < 0.5       | < 0.5               | < 0.5             | 1               | NA    |
| 10    | Sep-98     | < 50          | <50         | < 0.5       | < 0.5       | < 0.5               | < 0.5             |                 | < 2.0 |
| 11    | Apr-99     | < 50          | <50         | < 0.5       | < 0.5       | < 0.5               | < 0.5             | _               | < 2.0 |
| S     | ampling at | this location | n discontin | ued after A | pril 1999 w | ith Alameda Cou     | nty Health Servic | es Agency appro | val.  |

| Surface Water Sampling Location SW-2 (Area of Historical Contaminated Groundwater Discharge) |        |       |       |         |         |              |               |            |       |  |  |  |
|----------------------------------------------------------------------------------------------|--------|-------|-------|---------|---------|--------------|---------------|------------|-------|--|--|--|
| Event                                                                                        | Date   | TVHg  | TEHd  | Benzene | Toluene | Ethylbenzene | Total Xylenes | Total BTEX | MTBE  |  |  |  |
| 1                                                                                            | Feb-94 | 130   | < 50  | 1.9     | < 0.5   | 4.4          | 3.2           | 9.5        | N     |  |  |  |
| 2                                                                                            | May-95 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | N     |  |  |  |
| 3                                                                                            | Aug-95 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | N     |  |  |  |
| 4                                                                                            | May-96 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | NA.   |  |  |  |
| 5                                                                                            | Aug-96 | 200   | < 50  | 7.5     | < 0.5   | 5.4          | < 0.5         | 13         | NA.   |  |  |  |
| 6                                                                                            | Dec-96 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | NA.   |  |  |  |
| 7                                                                                            | Feb-97 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | N.    |  |  |  |
| 8                                                                                            | Aug-97 | 350   | 130   | 13      | 0.89    | 19           | 11            | 44         | NA.   |  |  |  |
| 9                                                                                            | Dec-97 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | NA.   |  |  |  |
| 10                                                                                           | Feb-98 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | N.    |  |  |  |
| 11                                                                                           | Sep-98 | < 50  | <50   | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 12                                                                                           | Apr-99 | 81    | <50   | 2.0     | < 0.5   | 2.5          | 1.3           | 5.8        | 2.3   |  |  |  |
| 13                                                                                           | Dec-99 | 1,300 | 250   | 10      | 1.0     | 47           | 27            | 85         | 2.2   |  |  |  |
| 14                                                                                           | Sep-00 | 160   | 100   | 2.1     | < 0.5   | 5.2          | 1.9           | 9.2        | 3.4   |  |  |  |
| 15                                                                                           | Jan-01 | < 50  | < 50  | < 0.5   | < 0.5   | 0.53         | < 0.5         | 0.5        | < 2.0 |  |  |  |
| 16                                                                                           | Apr-01 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 17                                                                                           | Sep-01 | 440   | 200   | 2.1     | < 0.5   | 17           | 1.3           | 20         | 10    |  |  |  |
| 18                                                                                           | Dec-01 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 19                                                                                           | Mar-02 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 20                                                                                           | Jun-02 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 21                                                                                           | Sep-02 | 220   | 590   | 10      | < 0.5   | 13           | < 0.5         | 23         | < 2.0 |  |  |  |
| 22                                                                                           | Dec-02 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 23                                                                                           | Mar-03 | < 50  | < 50  | < 0.5   | < 0.5   | 0.56         | < 0.5         | 0.56       | 2.8   |  |  |  |
| 24                                                                                           | Jun-03 | < 50  | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | <0.5       | < 2.0 |  |  |  |
| 25                                                                                           | Sep-03 | 190   | 92    | 2.1     | < 0.5   | 4.2          | < 0.5         | 6.3        | < 2.0 |  |  |  |
| 26                                                                                           | Dec-03 | 86    | < 100 | < 0.3   | < 0.3   | < 0.3        | < 0.6         | <0.6       | < 5.0 |  |  |  |
| 27                                                                                           | Mar-04 | <50   | <100  | < 0.3   | <0.3    | 1.1          | <0.6          | 1.1        | < 5.0 |  |  |  |
| 28                                                                                           | Jun-04 | <50   | <50   | <0.5    | <0.5    | 0.83         | <0.5          | 0.83       | < 2.0 |  |  |  |
| 29                                                                                           | Sep-04 | 260   | 370   | 4.4     | <0.5    | 6.3          | < 1.0         | 11         | < 2.0 |  |  |  |
| 30                                                                                           | Dec-04 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | 1.0        | < 2.0 |  |  |  |
| 31                                                                                           | Mar-05 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 32                                                                                           | Jun-05 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 33                                                                                           | Sep-05 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 34                                                                                           | Dec-05 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 35                                                                                           | Mar-06 | <50   | 62    | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 36                                                                                           | Jun-06 | <50   | 110   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.0 |  |  |  |
| 37                                                                                           | Sep-06 | 62    | 94    | <0.5    | <0.5    | 0.81         | <0.5          | 0.8        | < 2.  |  |  |  |
| 38                                                                                           | Dec-06 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.  |  |  |  |
| 39                                                                                           | Mar-07 | <50   | <50   | <0.5    | <0.5    | <0.5         | < 1.0         | <1.0       | < 2.  |  |  |  |
| 40                                                                                           | Jun-07 | <50   | <50   | <0.5    | <0.5    | <0.5         | <0.5          | <1.0       | <2.   |  |  |  |
| 41                                                                                           | Sep-07 | <50   | 77    | <0.5    | <0.5    | <0.5         | <0.5          | <1.0       | <2.   |  |  |  |
| 42                                                                                           | Dec-07 | 130   | 430   | <0.5    | <0.5    | 1.5          | <0.5          | 1.5        | <2.   |  |  |  |
| 43                                                                                           | Mar-08 | <50   | 130   | <0.5    | <0.5    | <0.5         | 0.61          | 0.61       | <2.   |  |  |  |
| 44                                                                                           | Jun-08 | <50   | <50   | <0.5    | <0.5    | <0.5         | <0.5          | <0.5       | <2.   |  |  |  |
| 45                                                                                           | Sep-08 | 530   | 690   | <0.5    | <0.5    | 4.3          | <0.5          | 4.3        | <2.   |  |  |  |
| 46                                                                                           | Dec-08 | <50   | 83    | <5.0    | <5.0    | <5.0         | <5.0          | <0.5       | <2.   |  |  |  |

| Surface | Water | Sampling | Location | SW-2 | Continued |
|---------|-------|----------|----------|------|-----------|
|         |       |          |          |      |           |

| 47 | Mar-09 | <50 | <50 | < 0.5 | < 0.5 | <0.5 | <0.5 | <1.0 | <2.0 |
|----|--------|-----|-----|-------|-------|------|------|------|------|
| 48 | Jun-09 | <50 | <50 | <5.0  | <5.0  | <5.0 | <5.0 | <0.5 | <2.0 |
| 49 | Sep-09 | 110 | 220 | < 0.5 | < 0.5 | <0.5 | <0.5 | <0.5 | <2.0 |
| 50 | Dec-09 | <50 | <50 | <5.0  | <5.0  | <5.0 | <5.0 | <0.5 | <2.0 |
| 51 | Mar-10 | <50 | <50 | <5.0  | <5.0  | <5.0 | <5.0 | <0.5 | <2.0 |
| 52 | Jun-10 | <50 | 240 | <5.0  | <5.0  | <5.0 | <5.0 | <0.5 | <2.0 |
| 53 | Sep-10 | <50 | 66  | <5.0  | <5.0  | <5.0 | <5.0 | <0.5 | <2.0 |
| 54 | Dec-10 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | NA   |
| 55 | Mar-11 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | NA   |
| 56 | Sep-11 | <50 | <50 | < 0.5 | < 0.5 | <0.5 | <5.0 | <0.5 | NA   |
| 57 | Mar-12 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |
| 58 | Sep-12 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |
| 59 | Mar-13 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |
| 60 | Oct-13 | <50 | 930 | < 0.5 | < 0.5 | <0.5 | <5.0 | <0.5 | 4.8  |
| 61 | Mar-14 | <50 | <49 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |
| 62 | Sep-14 | NS  | NS  | NS    | NS    | NS   | NS   | NS   | NS   |
| 63 | Mar-15 | <50 | <51 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |
| 64 | Sep-15 | NS  | NS  | NS    | NS    | NS   | NS   | NS   | NS   |
| 65 | Mar-16 | <50 | <50 | <0.5  | <0.5  | <0.5 | <5.0 | <0.5 | <2.0 |

| Surfa    | ce Water         | Sampling L   | ocation S    | W-3 (Dowr      | nstream of     | Contaminated 0 | Groundwater Dis | charge Location | SW-2)               |
|----------|------------------|--------------|--------------|----------------|----------------|----------------|-----------------|-----------------|---------------------|
| Event    | Date             | TVHg         | TEHd         | Benzene        | Toluene        | Ethylbenzene   | Total Xylenes   | Total BTEX      | MTBE                |
| 1        | May-95           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA                  |
| 2        | Aug-95           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA                  |
| 3        | May-96           | < 50         | 74           | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA                  |
| 4        | Aug-96           | 69           | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA                  |
| 5        | Dec-96           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA                  |
| 6        | Feb-97           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA<br>NA            |
| 7<br>8   | Aug-97<br>Dec-97 | < 50<br>< 50 | < 50<br>< 50 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5  | < 0.5<br>< 0.5  | NA<br>NA            |
| 9        | Feb-98           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | NA<br>NA            |
| 10       | Sep-98           | < 50         | <50          | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 11       | Apr-99           | < 50         | <50          | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 12       | Dec-99           | < 50         | <50          | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 13       | Sep-00           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 14       | Jan-01           | < 50         | <50          | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 15       | Apr-01           | < 50         | <50          | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 16       | Sep-01           | NS           | NS           | NS             | NS             | NS             | NS              | < 0.5           | NS                  |
| 17       | Dec-01           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 18       | Mar-02           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | < 2.0               |
| 19       | Jun-02           | < 50         | < 50         | < 0.5          | < 0.5          | < 0.5          | < 0.5           | < 0.5           | 2.4                 |
| 20       | Sep-02           | NS<br>50     | NS<br>50     | NS<br>10.5     | NS<br>10.5     | NS<br>- 0.5    | NS<br>- 0.5     | NS<br>- 0.5     | NS<br>- 2.0         |
| 21<br>22 | Dec-02<br>Mar-03 | < 50<br>< 50 | < 50<br>< 50 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5 | < 0.5<br>< 0.5  | < 0.5<br>< 0.5  | < 2.0<br>< 2.0      |
| 23       | Jun-03           | < 50<br>< 50 | < 50<br>< 50 | < 0.5          | < 0.5          | < 0.5          | < 0.5<br>< 0.5  | < 0.5           | < 2.0               |
| 24       | Sep-03           | NS NS        | NS.          | NS             | NS             | NS             | NS              | NS              | NS                  |
| 25       | Dec-03           | 60           | < 100        | < 0.3          | < 0.3          | < 0.3          | < 0.6           | <0.6            | < 5.0               |
| 26       | Mar-04           | < 50         | <100         | < 0.3          | < 0.3          | < 0.6          | < 0.6           | <0.6            | < 5.0               |
| 27       | Jun-04           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 28       | Sep-04           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 29       | Dec-04           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 30       | Mar-05           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 31       | Jun-05           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 32       | Sep-05           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 33       | Dec-05           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 34<br>35 | Mar-06<br>Jun-06 | <50<br><50   | <50<br>120   | <0.5<br><0.5   | <0.5<br><0.5   | <0.5<br><0.5   | < 1.0           | <1.0<br><1.0    | < 2.0               |
| 36       | Sep-06           | <50<br><50   | 120          | <0.5           | <0.5           | <0.5           | < 1.0<br><0.5   | 0.5             | < 2.0<br><b>7.8</b> |
| 37       | Dec-06           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | < 2.0               |
| 38       | Mar-07           | <50          | <50          | <0.5           | <0.5           | <0.5           | < 1.0           | <1.0            | 3.3                 |
| 39       | Jun-07           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | 0.5             | <2.0                |
| 40       | Sep-07           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 41       | Dec-07           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 42       | Mar-08           | <50          | 200          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |
| 43       | Jun-08           | <50          | 55           | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |
| 44       | Sep-08           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 45       | Dec-08           | <50          | 360          | <5.0           | <5.0           | <5.0           | <5.0            | <5.0            | <2.0                |
| 46<br>47 | Mar-09           | <50<br><50   | <50<br><50   | <0.5<br><5.0   | <0.5<br><5.0   | <0.5<br><5.0   | <0.5<br><5.0    | 0.5<br><5.0     | <2.0<br><2.0        |
| 48       | Jun-09<br>Sep-09 | <50<br>NS    | NS<br>NS     | <5.0           | <5.0<br>NS     | <5.0           | <5.0            | <5.0<br>NS      | <2.0<br>NS          |
| 49       | Dec-09           | <50          | <50          | <5.0           | <5.0           | <5.0           | <5.0            | <0.5            | <2.0                |
| 50       | Mar-10           | <50          | <50          | <5.0           | <5.0           | <5.0           | <5.0            | <0.5            | <2.0                |
| 51       | Jun-10           | <50          | <50          | <5.0           | <5.0           | <5.0           | <5.0            | <0.5            | <2.0                |
| 52       | Sep-10           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 53       | Dec-10           | <50          | <50          | <0.5           | 0.57           | <0.5           | 0.81            | 1.4             | NA                  |
| 54       | Mar-11           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | NA                  |
| 55       | Sep-11           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | NA                  |
| 57       | Mar-12           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |
| 58       | Sep-12           | <50          | <50          | <0.5           | <0.5           | <0.5           | <5.0            | <0.5            | <2.0                |
| 59<br>60 | Mar-13<br>Oct-13 | <50<br>NS    | <50<br>NS    | <0.5           | <0.5           | <0.5<br>NS     | <5.0<br>NS      | <0.5<br>NS      | <2.0<br>NS          |
| 61       | Mar-14           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |
| 62       | Sep-14           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 63       | Mar-15           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |
| 64       | Sep-15           | NS           | NS           | NS             | NS             | NS             | NS              | NS              | NS                  |
| 65       | Mar-16           | <50          | <50          | <0.5           | <0.5           | <0.5           | <0.5            | <0.5            | <2.0                |

NS = Not Sampled (no surface water present during sampling event)