RECEIVED

By Alameda County Environmental Health 11:34 am, Mar 02, 2016

SECOND SEMIANNUAL 2015 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

March 2016

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

SECOND SEMIANNUAL 2015 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

March 1, 2016

Project No. 2015-02

GEOSCIENCE & ENGINEERING CONSULTING

March 1, 2016

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2015 Groundwater and Permeable Reactive Barrier Monitoring, and Annual Summary Report Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes Semiannual 2015 groundwater and surface water monitoring activities conducted from July 1st to December 31, 2015 and summarizes the annual trends. These activities include: the semiannual groundwater monitoring event conducted on September 24, 2015 and a limited quarterly monitoring of key wells on December 29, 2015. In addition to the activities typically conducted during a monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were collected to assess the effectiveness of the permeable reactive barrier (PRB) that was installed in November 2013.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me at 510-644-3123.

Sincerely,

cc:

Januar S. Makdin

Richard S. Makdisi, P.G., R.E.A. Principal Geochemist/President

Matthew Land

Matt Graul, Stewardship Manage East Bay Regional Park District

Stellar Environmental Solutions. Inc.

State of California GeoTracker database

Alameda County Department of Environmental Health 'ftp' system

TABLE OF CONTENTS

Section	n Pa	age
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Site Description Regulatory Oversight	1 2 3
2.0	PHYSICAL SETTING	3
	Site Lithology Hydrogeology	
3.0	REGULATORY CONSIDERATIONS	7
	Groundwater Contamination Surface Water Contamination	
4.0	SECOND SEMIANNUAL 2015 ACTIVITIES	9
	Groundwater Monitoring and Sampling Redwood Creek Surface Water Sampling Groundwater and Surface Water Analytical Results Permeable Reactive Barrier (PRB) Design and Background Permeable Reactive Barrier Effectiveness	13 13 16
5.0	DECEMBER 2015 POST-PRB INSTALLATION EVALUATION	19
6.0	EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY.	23
	Contaminant Source Assessment Water Level Trends Hydrochemical Trends Plume Geometry and Migration Indications Closure Criteria Assessment and Proposed Actions	24 25 38
7.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	.40
	Summary and Conclusions Proposed Actions	
8.0	REFERENCES	43
9.0	LIMITATIONS	50

Appendices

- Appendix A Historical Groundwater Monitoring Water Level Data
- Appendix B Groundwater Monitoring Field Documentation
- Appendix C Analytical Laboratory Report and Chain-of-Custody Record
- Appendix D Historical Analytical Results

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data – September 24, 2015
Table 2	Groundwater and Surface Water Samples Analytical Results –September 24, 2015 Redwood Regional Park Corporation Yard, Oakland, California
Table 3	Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells September 24, 2015
Table 4	Quarterly Post-PRB Installation Groundwater Sampling Analytical Results – December 29, 2015

Figures	Page
Figure 1 Site Location Map	1
Figure 2 Site Plan showing Location of Historical Borings, Wells and Geologic Cross-Section	2
Figure 3 Geologic Cross-Section A-A' showing Subsurface Features and the PRB in Relation to the Hydrocarbon Contaminant Plume	4
Figure 4 Groundwater Elevation Map –September 24, 2015	12
Figure 5 Groundwater Analytical Results and Hydrocarbon Plume – September 2015	15
Figure 6 Historical Groundwater Elevations in Key Site Wells	26
Figure 7 Gasoline and Diesel Hydrochemical Trends in Well MW-2	29
Figure 8 Gasoline and Diesel Hydrochemical Trends in Well MW-8	31
Figure 9 Gasoline and Diesel Hydrochemical Trends in Well MW-11	32
Figure 10 Gasoline and Diesel Hydrochemical Trends in Well MW-7	34
Figure 11 Gasoline and Diesel Hydrochemical Trends in Well MW-9	35
Figure 12 Gasoline and Diesel Hydrochemical Trends in Well MW-10	36
Figure 13 Gasoline and Diesel Hydrochemical Trends in Well MW-12	37

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the second semiannual 2015 groundwater monitoring report along with the annual trend analyses and recommendations for future work.

OBJECTIVES AND SCOPE OF WORK

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the second 2015 semiannual period from July 1, 2015 to December 31, 2015:

- Collecting water levels in all 12 site wells to determine shallow groundwater flow direction.
- Collecting post-purge groundwater samples for contaminant analysis as well as the water quality parameters pH, temperature, conductivity, dissolved oxygen (DO), and turbidity.
- Collecting surface water samples from Redwood Creek for contaminant analysis.
- Continue post-purge measurement of DO and redox to evaluate the effect of the permeable reactive barrier (PRB) that was installed across the distal contaminant plume. In addition, wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, were analyzed for alternate electron acceptors including nitrates, sulfates, biological oxygen

demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation.

In addition, a limited groundwater sampling including analysis of nitrates, sulfates, BOD and COD was conducted on December 29, 2015, of downgradient key wells: MW-7, MW-9, MW-12 and upgradient wells: MW-10 and MW-11. This event monitors groundwater quality and attenuation of contaminants, approximately 25 months after installation of the PRB and is reported in Section 5.0 of this report.

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

The general phases of site work included:

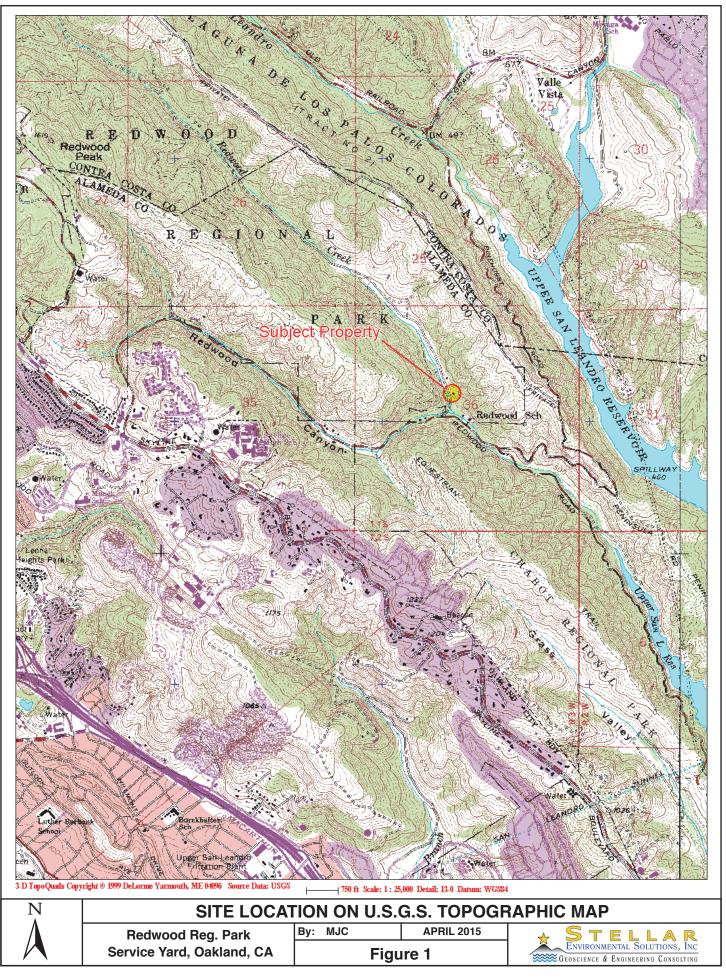
- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 58 groundwater monitoring events have been conducted since project inception (February 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.

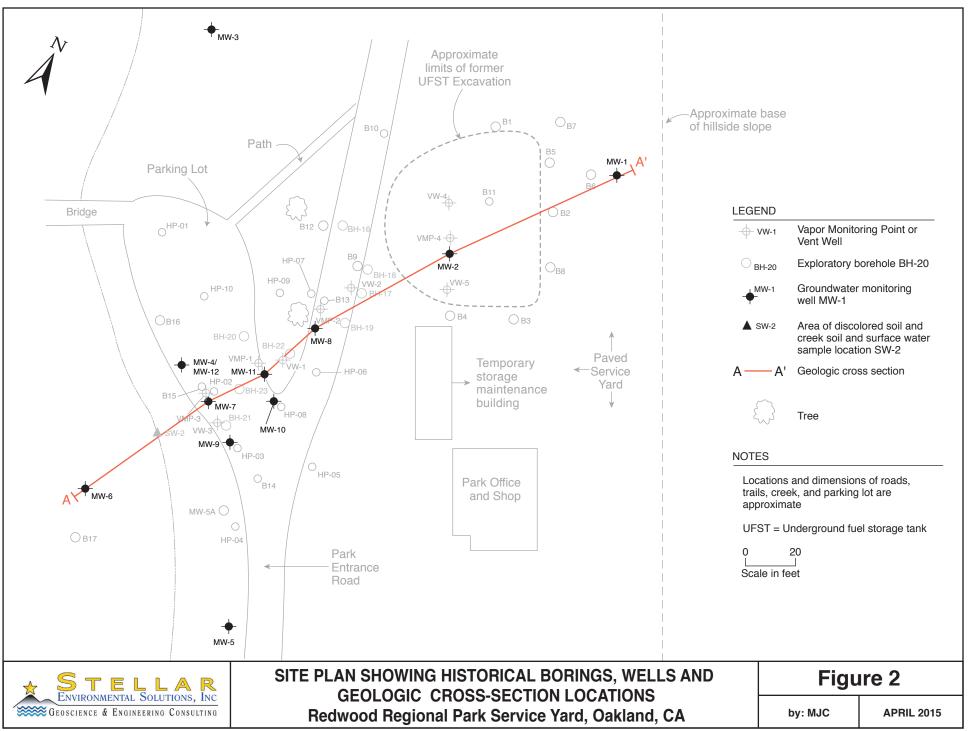
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its design purpose, was discontinued on July 18, 2011.
- The PRB RAW, dated November 28, 2011, was prepared by Stellar Environmental and approved by ACEH in their letter, dated December 29, 2011. The PRB was installed in November 20, 2013 and evaluated with 30-day (December 2013), 6-month (June 2014), quarterly and semiannual post-PRB installation sampling events of key downgradient site wells.

SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.

Figure 1 shows the location of the project site. Figure 2 presents the site plan.


REGULATORY OVERSIGHT


The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek. No surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

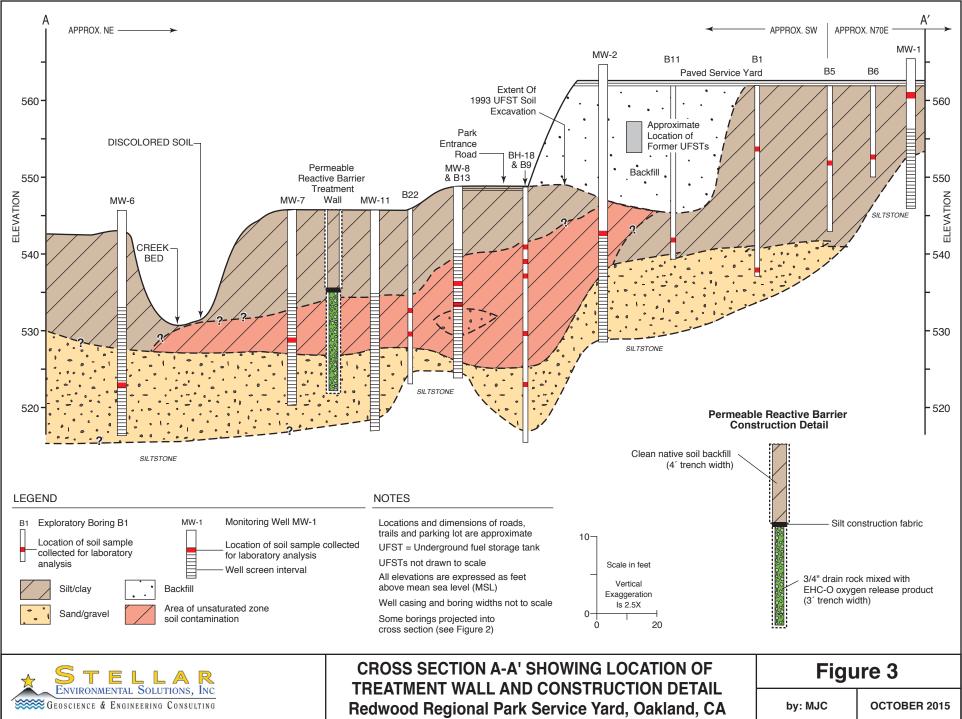
Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.

- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual.
- The bioventing system was discontinued in July 2011.
- Monitoring the effectiveness of the PRB for a period of 3 years after its installation.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system.

2015-02-02

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis. Those cross-sections were included in previous monitoring reports from July 2004 through the first semiannual 2014 monitoring event, after which updated geologic cross-section A-A' along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction) showing the permeable reactive barrier (PRB) is presented here as Figure 3. The location of cross-section A-A' is shown on Figure 2.

SITE LITHOLOGY

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 and at downgradient location B15/HP-02. Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.26 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient flattens out to approximately 0.074 feet per foot. The average groundwater elevation was 2.90 feet lower than the previous (March 2015) event, with the greatest decrease of 5.67 feet measured in MW-3 and the lowest increase measured in MW-1 of 1.15 feet. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction. Groundwater was also monitored as part of the post-PRB installation evaluation on December 29, 2015 during sampling of the 5 key wells (MW-7, MW-9, MW-10, MW-11 and MW-12) located in the distal area of the plume. These 5 key wells showed an average groundwater recharge in the beginning of the 2015-2016 rainfall season, and an average gradient of 0.04 feet per foot in this relatively flat area of the site.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 SECOND SEMIANNUAL 2015 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (Second Semiannual 2015), conducted on September 24, 2015, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3 could not be collected this event as the creek was dry.
- Continued post-purge measurement of dissolved oxygen (DO) and redox to monitor the effect of the permeable reactive barrier (PRB) that was installed on November 20, 2013 across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation.

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the September 24, 2015 groundwater elevation data are summarized in Table 1. Figure 4 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

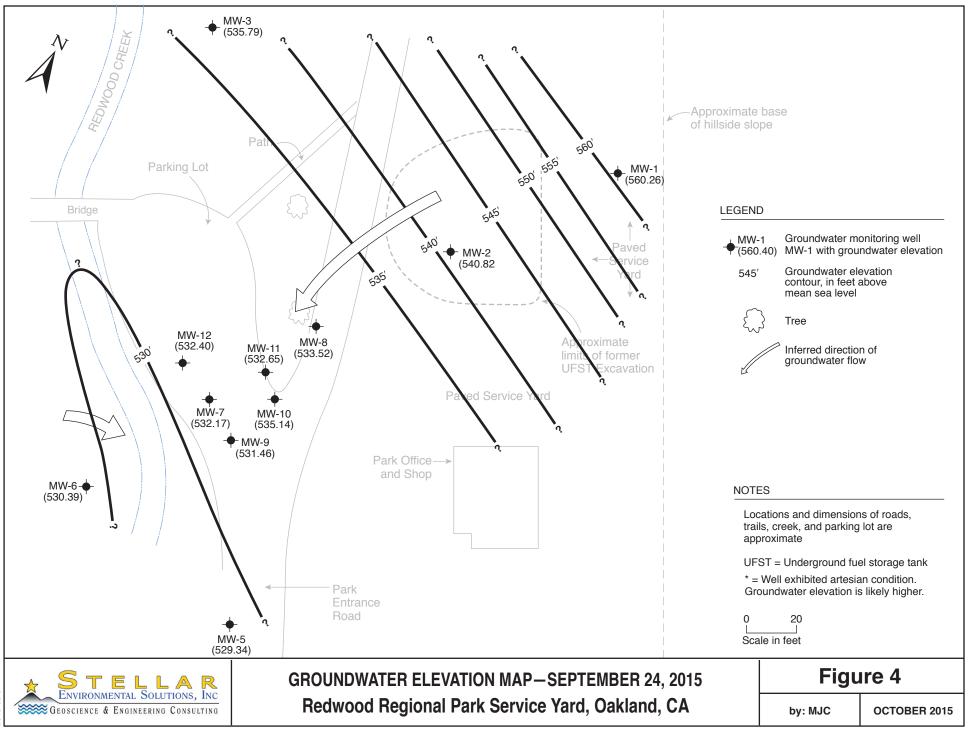
Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth (bgs)	Groundwater Elevation
MW-1	18	7 to17	565.83	3.34	560.26
MW-2	36	20 to 35	566.42	23.28	540.82
MW-3	42	7 to 41	560.81	22.11	535.79
MW-5	26	10 to 25	547.41	15.86	529.34
MW-6	26	10 to 25	545.43	12.61	530.39
MW-7	24	9 to24	547.56	14.33	532.17
MW-8	23	8 to 23	549.13	15.48	533.52
MW-9	26	11 to 26	549.28	15.65	531.35
MW-10	26	11 to 26	547.22	15.46	532.14
MW-11	26	11 to 26	547.75	13.55	532.65
MW-12	25	10 to 25	544.67	13.80	532.40

Table 1Groundwater Monitoring Well Constructionand Groundwater Elevation Data – September 24, 2015

Notes:

All measurements expressed in feet

TOC = top of casing


bgs = below ground surface

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter. All elevations are expressed in feet above mean sea level. (U.S. Geological Survey)

GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 42.5 gallons) from the current event was containerized in the onsite above-ground storage tank. Purgewater is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

2015-02-07

REDWOOD CREEK SURFACE WATER SAMPLING

Surface water sampling usually conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel could not be done this period as the creek was dry at both of the prescribed creek sampling locations: location SW-2 immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination; and surface water sampling location SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of the September 2014 sampling event, the entire stretch of creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. Blaine Tech personnel did not report observing orange algae in the creek bank at location SW-2 or petroleum odors during this event.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The September 2015 semiannual field and analytical laboratory results are summarized on Table 2. Figure 5 shows the distribution of the contaminant analytical results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

Second Semiannual 2015 groundwater contaminant concentrations were as follows: The ESLs for TVHg and TEHd for residential areas where groundwater <u>is</u> a drinking water resource were exceeded in four of the seven wells sampled. TVHg was detected at 3,000 mg/L in well MW-9 and at 2,500 ug/L in MW-12. The ESL for benzene was exceeded in well MW-9, the only well in which it was detected. Ethylbenzene was detected in three wells and above the ESL in wells MW-7 and MW-9. Total xylenes were detected in 3 wells but none were above the ESL. Toluene was detected only in well MW-2 but below the ESL. MTBE was detected in 4 wells and above the ESL in 3 of the 4 wells; MW-8, MW-9 and MW-11.

Well MW-7 contained both the maximum TVHg and TEHd groundwater. MW-7 is located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution.

Surface water sampling could not be conducted this event at either of the prescribed sampling locations; SW-2 or SW-3 due to insufficient creek water for sampling.

Table 2Groundwater and Surface Water SamplesAnalytical Results –September 24, 2015Redwood Regional Park Corporation Yard, Oakland, California

			Contaminant Concentrations						
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLES									
MW-2	16.41	70	980	790	<0.5	0.60	<0.5	3.3	<2.0
MW-7	1.24	-11	2,800	6,800	<0.5	<0.5	85	2.1	<2.0
MW-8	0.77	-11	97	<50	<0.5	< 0.5	< 0.5	<0.5	6.0
MW-9	0.85	-24	950	3,000	25	<0.5	59	2.6	46
MW-10	1.28	80	<50	<50	<0.5	< 0.5	< 0.5	<0.5	2.6
MW-11	0.81	-36	1,800	2,500	< 0.5	< 0.5	25	<0.5	24
MW-12	1.07	46	91	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.0
Groundwater ESLs ^(a)			100 / 640	100/ 500	1.0 / 27	40 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SU	RFACE WAT	TER SAMP	ELES						
SW-2 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
SW-3 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
Surface Water Screening Levels ^(b)			100	100	1.0	40	30	20	5.0

Notes:

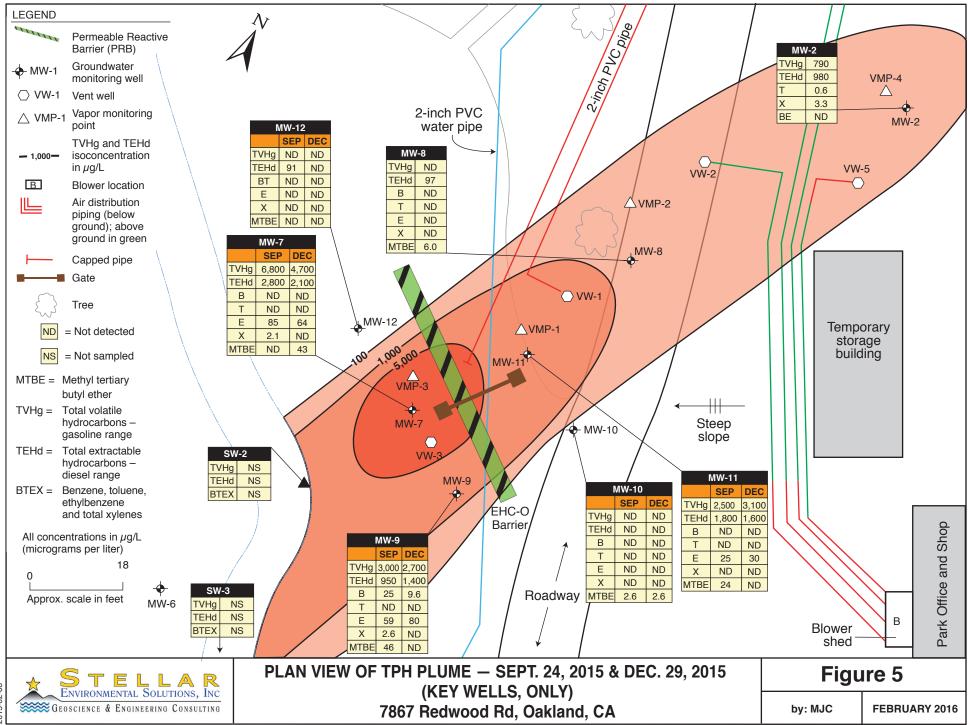
 $\overline{(a)}$ ESLs = Water Board Environmental Screening Levels (where groundwater <u>is/is not</u> a potential drinking water resource) (Water Board, 2013).

^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource.

NA = not analyzed NLP = no level published NS = not sampled

MTBE = methyl tertiary-butyl ether


TVHg = total volatile hydrocarbons – gasoline range

TEHd = total extractable hydrocarbons – diesel range

All contaminant concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells. ORP = redox or oxidation reduction potential measured in millivolts (mV)

Quality Control Sample Analytical Results

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

2015-02-08

PERMEABLE REACTIVE BARRIER (PRB) DESIGN AND BACKGROUND

The PRB was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. The PRB trench was constructed by excavating a trench approximately 40 feet long and 3 feet wide and 22 feet bgs in the distal downgradient contaminated zone. A total of 1,250 pounds of Adventus[™] EHC-O oxygen release product was mixed in a relatively more permeable drain rock backfill and emplaced in the trench from 22 to 10 feet bgs as it was backfilled.

The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.74 to 7.18, mostly within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants in groundwater as they reach the PRB. The oxygen is then released more slowly, which will assist bioremediation for several years.

The PRB should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first approximately 6-12 months. The volume of dissolved hydrocarbons within the generalized area is expected to be reduced within the first 12 months by 50 percent or more—according to the manufacturer's data. However, groundwater flow through the reactive wall is needed to trigger the treatment and the until December 2014 rainfall the recent year drought conditions kept the groundwater elevations low.

Permeable Reactive Barrier Monitoring Indicators

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12, all located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

Table 3 includes the results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the proposed PRB.

Table 3 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells September 24, 2015

	Analytical Concentrations (mg/L)							
Location	Nitrates Sulfates BOD COD							
MW-7	< 0.05	2.2	6.2	35				
MW-9	< 0.05	9.8	5.0	33				
MW-12	<0.05	42	<5.0	33				

Notes: COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. However, no significant reduction of total hydrocarbons has been recorded so far.

The DO concentrations, downgradient of the PRB, at monitoring wells MW-7, MW-9 and MW-12, of which MW-7 currently shows the highest concentrations of hydrocarbons, ranges from 0.85 – 1.25 mg/L. The DO at well MW-7 is relatively high (1.24 mg/L) suggesting active aerobic biodegradation, however DO is low in MW-9 (0.85 mg/L) showing an inverse relationship of hydrocarbons that the active aerobic biodegradation the PRB is designed to promote. The average DO in the 7 site wells showed an overall increase from 1.19 mg/L in March 2015 compared to 3.20 mg/L during this September 2015 event. However, the average DO in the 3 wells (MW-1, MW-9 and MW-12) downgradient of the PRB, showed less increase in DO from 0.31 mg/L in March 2015 to 1.05 mg/L this September 2015, suggesting the increase in DO is a seasonal fluctuation rather than an effect that can be attributed to the PRB.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive). Measurement of the baseline ORP during this sampling event ranged from -11 to 46 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB, and from 80 to - 36 mV in wells MW-10 and MW-11, respectfully, located within 15 feet upgradient of the PRB, respectfully. As with the DO, the ORP trend will be monitored to evaluate the effectiveness of the PRB in subsequent monitoring events. Measurements collected during the September 2015 monitoring event are included in Table 3.

Chemical and Biochemical Oxygen Demand, Nitrates, and Sulfates

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, BOD and COD to track the effect of the oxygen release product (Adventus EHC-OTM) utilization.

The presence of sulfates and absence of nitrates in wells MW-7, MW-9 and MW-12 is generally consistent with the DO and ORP data. These results indicate that some degree of aerobic degradation is likely occurring at the site; however there is a slight decrease in sulfates but no discernable trend and/or correlation to hydrocarbon concentration in this event.

PERMEABLE REACTIVE BARRIER EFFECTIVENESS

The PRB has had disappointing results as being an effective reactive barrier that clearly shows a significant and sustained reduction of hydrocarbons at the two keys wells, MW-7 and MW-9, downgradient of the PRB. The main active ingredient in Adventus EHC-O[™] is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a post-purge pH range of 6.24 to 7.21, only partially within the optimum range. Under these conditions, the Adventus EHC-O[™] remedy product should still react effectively to release hydrogen peroxide and oxygen.

This initial chemical oxidation to take place starts the breakup of the contaminants in groundwater as they reach and react within the PRB. The oxygen is released slowly but at a high enough level that is designed to assist bioremediation for several years. However, the data is not showing any appreciable or significant reduction in the hydrocarbon compounds at the two of the three key wells, (MW-7 and MW-9), downgradient of the PRB. And with the effective principal reaction timeframe of the EHC-OTM estimated at two to a maximum of 3 years, the timeframe for reaction is running out. The drought over the last two years may be in part responsible for not recharging groundwater in area to the full height of the PRB resulting in less mobilization of the EHC-OTM product. In addition, it is suspected that the heterogeneity of the site formation lithologies may also not be conducive to optimizing the flow of contaminant in groundwater through the PRB.

5.0 DECEMBER 2015 POST-PRB INSTALLATION EVALUATION

This section presents the field and laboratory results of the quarterly post-PRB installation groundwater monitoring event conducted on December 29, 2015. In accordance with the PRB RAW, groundwater monitoring and sampling of the five key wells surrounding the PRB (downgradient wells: MW-7, MW-9, MW-12 and upgradient wells: MW-10 and MW-11) was conducted to monitor the effectiveness of the PRB. This groundwater monitoring well water level measurements, purging, sampling, and field measurements was conducted on June 26, 2014, approximately 25 months after the November 20, 2013 installation of the PRB, by Blaine Tech Services under the supervision of Stellar Environmental personnel. This limited sampling event generated purge water and decontamination rinseate (approximately 32.7 gallons) hat was containerized in the onsite above-ground storage tank.

The monitoring included analysis of TPH contaminants in all five of the key wells and analysis of the electron acceptors and oxygen demand analyses to track utilization of the PRB product was done in the 3 key wells downgradient of the PRB.

The analytical results of the five key wells are summarized on Table 4 and included on the Figure 5 site plan. Table 5 summarizes the results of the electron acceptors and oxygen demand analyses. Appendix C contains the certified analytical laboratory reports and chain-of-custody record.

GROUNDWATER ELEVATION IN KEY WELLS

The quarterly groundwater levels measurement showed an average increase of 1.49 feet in the five key wells since the previous monitoring in September 24, 2015 which reflects groundwater recharge from the "El Nino" rainfall season that began in winter 2015.

ANALYTICAL RESULTS

Volatile Organic Compounds

Groundwater contaminant concentrations exceeded the applicable groundwater ESLs for TVHg and TEHd and ethylbenzene in three of the five key wells sampled (MW-7, MW-9 and MW-11). The ESL for benzene was exceeded in the only well where it was detected (MW-9); MTBE was

detected in three of the five but only exceeded the ESL in MW-7; and toluene and total xylenes were not detected not detected in any of the five wells.

All of the contaminant concentrations were detected within their historical ranges suggesting that insufficient time has elapsed to see a reduction in concentration compared to the baseline or previous events.

Table 4
Quarterly Post-PRB Installation Groundwater Sampling
Analytical Results – December 29, 2015

	Field Measur	ements		Contaminant Concentrations					
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-7	0.55	31	2,100	4,700	<0.5	<0.5	64	<0.5	43
MW-9	0.28	-43	1,400	2,700	9.6	<8.3	80	<8.3	<33
MW-10	0.74	231	<49	<50	<0.5	<0.5	<0.5	<0.5	2.6
MW-11	0.82	-25	1,600	3,100	<0.5	<0.5	30	<0.5	<2.0
MW-12	0.45	64	<49	<50	<0.5	<0.5	<0.5	<0.5	2.1
Groundwater ESLs	-	-	100/ 640	100/500	1.0/27	40 / 130	30/43	20 / 100	5.0 / 1,800

Notes:

ESLs = Water Board Environmental Screening Levels, where groundwater is/is not a potential drinking water resource (Water Board, 2013)

TEHd = total extractable hydrocarbons - diesel range TVHg = total volatile hydrocarbons - gasoline range MTBE = methyl tertiary-butyl ether NLP = no level published

All contaminant concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Samples in **bold-face** type exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

PRB GROUNDWATER MONITORING INDICATORS

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-8 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to establish a to track the effect of the oxygen release product (Adventus EHC-OTM) utilization as discussed in Section 4.0. The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this limited event showed a pH range of 6.17 to 6.74 was not within the optimum range likely reflects both the depletion and increased microbial activity.

Table 5 includes the results of these additional analyses of samples collected during the December 2015 site monitoring in wells located immediately downgradient of the PRB.

Table 5Quarterly Analytical Results of Electron Acceptors and Oxygen Demand in DowngradientWells - December 29, 2015

	Analytical Lab Concentrations							
Location	Nitrates	Sulfates	BOD	COD				
MW-7	< 0.05	5.2	5.5	20				
MW-9	< 0.05	29	14	110				
MW-12	< 0.05	37	<5.0	63				

Notes:

COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Analytical laboratory concentrations are expressed in in milligrams per liter (mg/L) micrograms per liter (µg/L).

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as microbial respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

It should be noted that DO concentrations in the field are not indicative of the total amount of oxygen release by EHC-OTM product as the oxygen is rapidly utilized by microorganisms. The average lowering of DO levels since the September 2015 event likely indicates the effects from both depletion of oxygen produced by the PRB as it approaches the end of the product activity and an increase in microbial activity that would be expected from increased oxygen content related to the substantial seasonal groundwater recharge that was measured.

Oxidation-Reduction Potential

In oxidizing (aerobic) conditions, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

The average ORP in the five key wells measured showed an increase in positivity compared to the September 2015 event which may indicate an increase of biodegradation during this period.

Chemical and Biochemical Oxygen Demand, Nitrates, and Sulfates

Alternate electron acceptors were measured during this limited sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates,

BOD and COD to establish a baseline to track the effect of the oxygen release product utilization.

The presence of sulfates and absence of nitrates in wells MW-7, MW-9 and MW-12 is generally consistent with the DO and ORP data. These results indicate that some degree of aerobic degradation is likely occurring at the site. There is a slight increase in sulfates and COD but no discernable trend and/or correlation to hydrocarbon concentration in this event.

6.0 EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. An assessment is made as to the nature of residual contaminated soil that acts as a continued source of groundwater contamination. A conceptual model (incorporating site lithology, hydrogeology, and hydrochemistry is presented to explain the spatial extent and magnitude of the dissolved hydrocarbon plume.

CONTAMINANT SOURCE ASSESSMENT

Site UFSTs were removed (i.e., discharge was discontinued) in 1993, and some but not all of the source area excavation contaminated soil was removed. That residual hydrocarbon contamination entrained in the soil and capillary fringe has been extremely hard to mitigate, with only partial success achieved through the bioventing and oxygen providing product in-situ injection that has been implemented since 2005.

Success at reducing the significant contamination in the mid-field plume area represented by well MW-8 has been achieved along with mitigation of the 2007 timeframe increase at the upper plume area represented by well MW-2. The contaminant plume has historically appeared split into an upper zone of contamination around MW-2 and a lower zone around well MW-7, MW-9 and MW-12 with very low detection, all below the applicable ESLs, surrounding MW-8. The lower plume area represented by the "guard" wells MW-7 and MW-9 were not significantly reduced by the combination of bioventing and March 2010 ORC[™] injection. The PRB was installed in November 2013 in an effort to treat the lower plume on the downgradient border to mitigate against the hydrocarbon impact to the Redwood Creek.

The September 2014 event showed historical maximum high concentrations of TVHg in wells MW-9 and MW-12 and of benzene in MW-12 immediately downgradient of the PRB. These historical high concentrations are likely attributed to the effect of the installation of the PRB initially releasing hydrocarbons entrained in the soil and possibly creating hydrostatic pressure mobilizing contaminants in this area of distal plume area. Concentrations in these distal wells have since decreased to within historical range. This September 2015 monitoring shows the contaminant mass to be concentrated in the distal area of the plume and no longer split indicating the majority of source area contamination has both attenuated and migrated downgradient.

Borehole soil sampling has provided data on the extent and magnitude of soil contamination in the vicinity of the former UFSTs ("source area") and the outlying area (in the capillary fringe above the groundwater plume). Soil contamination appears constrained to the unsaturated zone and the underlying saturated sediments on the weathered bedrock surface. The 2010 ORCTM injection effort was aimed at mitigating the apparent large mass of residual TPH contamination in the unsaturated zone, primarily in the area between the former UFSTs and the park entrance roadway, with the contaminated zone thinning toward Redwood Creek. Seasonal desorption of contamination in this unsaturated zone occurs during the rainy season and during high-water periods, acting as a long-term source of dissolved contamination. Previous ORCTM injection programs—which resulted in permanent reductions at the peripheral plume margins, but were followed by rebound (to pre-injection conditions) within the central portions of the plume—indicate that site conditions support aerobic biodegradation. However, biodegradation is limited by oxygen deficiency in the unsaturated zone.

Based on this conceptual model—and using conservative assumptions for equilibrium partitioning, contaminant geometry, soil moisture, and previous laboratory analytical results for TPH in soil—estimates of TPH mass in soil were calculated based on 2004 and earlier borehole data. Residual TPH in vadose zone soil is estimated at 1,400 to 7,000 pounds (100 to 600 gallons of gasoline), compared to a mass of TPH in groundwater estimated at 1 to 10 pounds (0.1 to 1.0 gallon of gasoline). The hydrocarbon mass in groundwater is likely higher than originally estimated (based on post-2004 data).

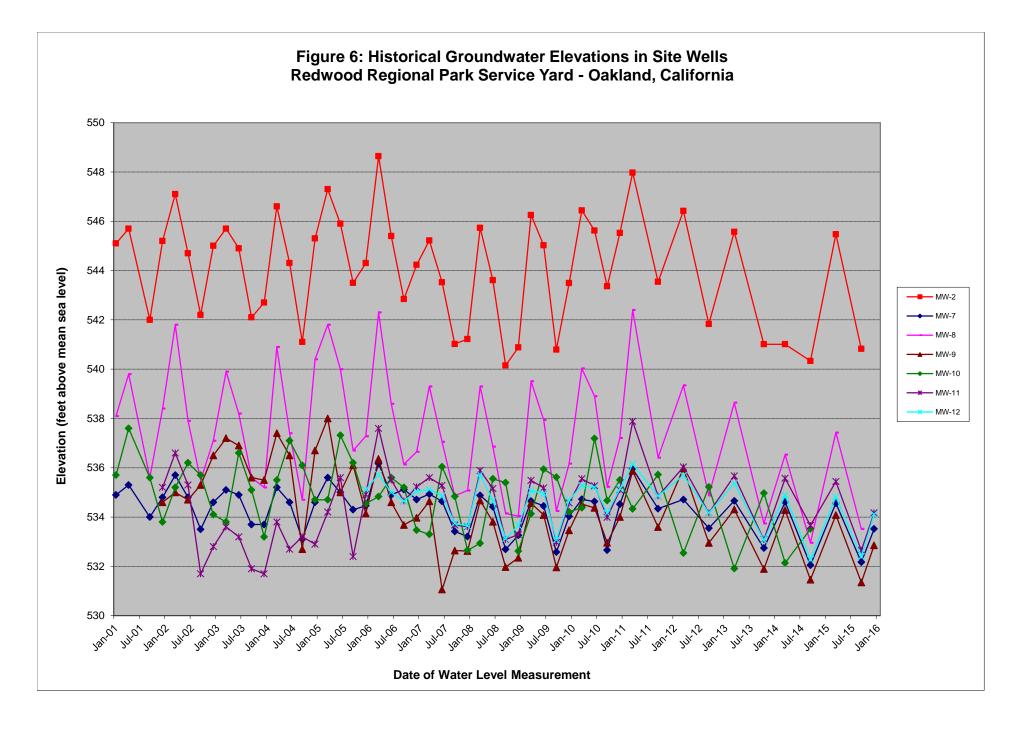
Soil and groundwater contamination distribution and site lithologic and hydrogeologic conditions have shown that residual soil contamination, unless abated, will continue to be a source of long-term groundwater contamination via seasonal desorption and migration.

WATER LEVEL TRENDS

Appendix D contains historical groundwater elevation data. Figure 10 shows a trendline of site groundwater elevations in key wells (those within the contaminant plume). The data support the following conclusions:

Groundwater elevations in all of the monitored site wells showed a seasonal fluctuation in 2013-2014—with an average increase of 3.03 feet (from September 2014 to March 2015) to an average decrease of 2.90 feet (from March 2014 to September 2015) reflecting the low rainfall season. These limited monitoring of the 5 key wells in December 2015 showed an average groundwater elevation increase of 1.49 feet from the September 2015 event which reflects groundwater recharge resulting from the 2015-2016 rainfall season.

- In all wells, the lowest elevations have generally been observed during the end of the dry season and the highest elevations at the peak of the rainy season. This is a common seasonal trend observed in the upper water-bearing zone in the Bay Area.
- Groundwater elevation trends and magnitudes are similar between wells.
- Overall groundwater flow direction is consistently to the west-southwest (toward Redwood Creek). Localized (on the scale of tens of feet) groundwater flow direction appears to vary within the general flow direction, likely controlled by bedrock surface topography.
- The historical groundwater gradient in the area of the contaminant plume is consistently around 0.1 feet/foot.

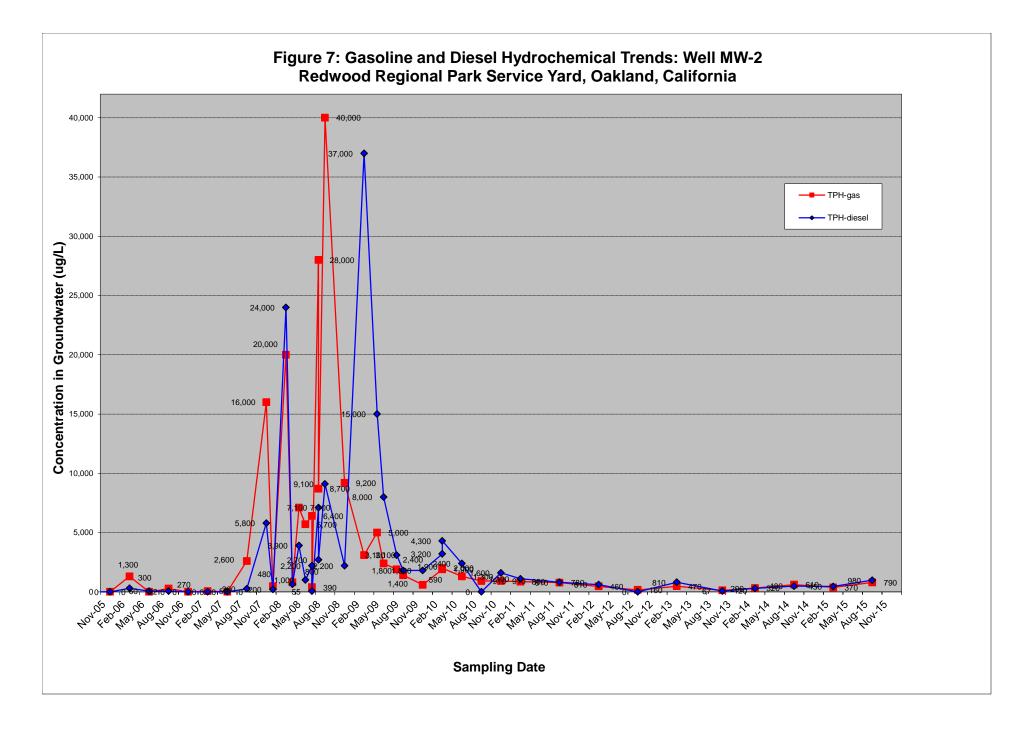

HYDROCHEMICAL TRENDS

Concentrations of contaminants in an individual well can fluctuate over time for one or more reasons—contaminant migration, seasonal effects due to fluctuating groundwater levels (i.e., desorption from the unsaturated zone and/or dilution of saturated zone contamination), and/or natural attenuation (plus enhancement by active remediation measures such as ORC[™] injection, bioventing and the PRB). These hydrochemical trends can result in changes in the lateral extent and magnitude of a dissolved contaminant plume.

The most consistent trend in the wells located within the centerline of the plume has been a seasonal influence of desorption following winter rains, with a resultant increase in dissolved hydrocarbon concentration in the groundwater.

Because the quarter-to-quarter comparisons can be unduly influenced by seasonal effects that mask longer trends, it is useful to compare same-season data over time to determine if concentrations are increasing, decreasing, or remaining stable. Our evaluation of hydrochemical trends focuses on gasoline and diesel, which, when combined, represent the majority of the contaminant mass. To more closely evaluate plume stability differences, the following discussion focuses on four separate portions of the plume relative to the long axis (along the hydraulic gradient): "upgradient" (trailing edge of plume); "mid-plume"; "downgradient"; and "plume fringe."

Important components of plume stability include: degree of contaminant fluctuations in individual wells over time; changes in the lateral extent of the plume; and changes in the location of the center of contaminant mass within the plume.

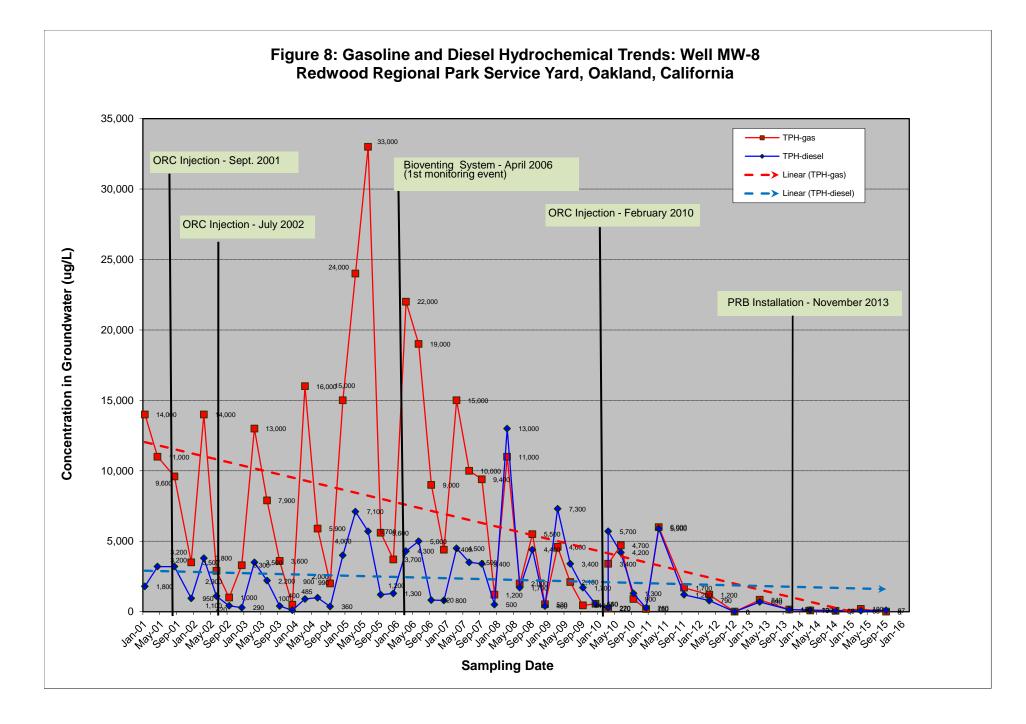

This September 2015 contaminant plume pattern is observed similar as historically observed before where, the contaminant plume appears to have disconnected from the source such that historical downgradient concentrations were higher than upgradient (near the source) concentrations. However, a significant increase in gasoline and diesel concentrations in source area well MW-2 was observed beginning in approximately September 2007. The increase continued, even after individual purging events, into 2010. Stellar Environmental commenced with ORCTM injection near this well and in the general area of the plume in February 2010. Based on that apparent success, in March 2010, a wider ORC[™] injection into areas of the plume was initiated. This has not resulted in the same success at reducing concentrations in the lower plume area as it did in the upper and mid-field of the plume. The two guard wells MW-7 and MW-9 generally have comparative TPHg + TEHd, however there was a large difference over the last year. Well MW-7 showed a combined 9,100 μ g/L TPHg + TEHd in September 2011 compared with 8,700 µg/L TPHg + TEHd in September 2012, which is pretty comparable. But well MW-9 showed a combined 4,500 µg/L TPHg + TEHd in September 2011 compared with a significant increase to 18,600 µg/L TPHg + TEHd in September 2012. The contaminants in source area MW-2 have showed a steady decrease since March 2010, with the mid and downgradient areas of the plume (MW-7, MW-9, MW-11 and MW-12 exhibiting the highest contaminant concentrations.

The permeable reactive barrier (PRB) was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. This September 2015 event, approximately 23 months after installation of the PRB, show the TVHg concentration in wells MW-7, MW-9 and MW-12, immediately downgradient of the PRB to be within historical range. The December 2015 limited monitoring of the 5 key wells a significant lowering of TPHd and TVHg in well MW-7 in the central area of the plume while the other key wells remained within historical range. The PRB should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first approximately 6-12 months and can be effective for up to three years.

To evaluate plume stability with regard to changes in the center of contaminant mass, we evaluated concentrations of TPH (gasoline and diesel combined) in individual wells over time. The data show no obvious correlation between maximum TPH concentrations and well locations, suggesting high plume instability. Since January 2001, maximum TPH concentrations have been variously detected in upgradient, mid-plume, and downgradient wells. These variations are likely due in large part to differing contaminant mass in unsaturated zone soils at particular locations, resulting in variable amounts of desorbed mass to the plume during high water conditions. The following discusses hydrochemical trends in each of the upgradient, mid-plume, and downgradient portions of the site, as well as at the fringes of the plume.

Upgradient Hydrochemical Trends

MW-2. As described in Section 4.0, this source area well historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. In September 2008, a new historic maximum of 40,000 µg/L of gasoline was observed in MW-2 and a new historic maximum of diesel at 37,000 µg/L was observed in March 2009. In March 2010, Stellar Environmental conducted a limited ORCTM injection, which has dramatically decreased concentrations of both gasoline and diesel to the recent lows observed in the October 2013 event, the diesel concentration measured 67 µg/L and the gasoline concentration measured 120 µg/L. The March and September 2014 events showed an increase in both the gasoline (320 and 610 µg/L) and diesel (290 and 480 µg/L) and the March and September 2015 events continued to show increases in both the gasoline (370 and 790 µg/L) and diesel (450 and 980 µg/L) detection which may be the results of the 2013-2014 drought conditions. Figure 7 shows hydrochemical trends for gasoline and diesel in MW-2.


Mid-Plume Trends

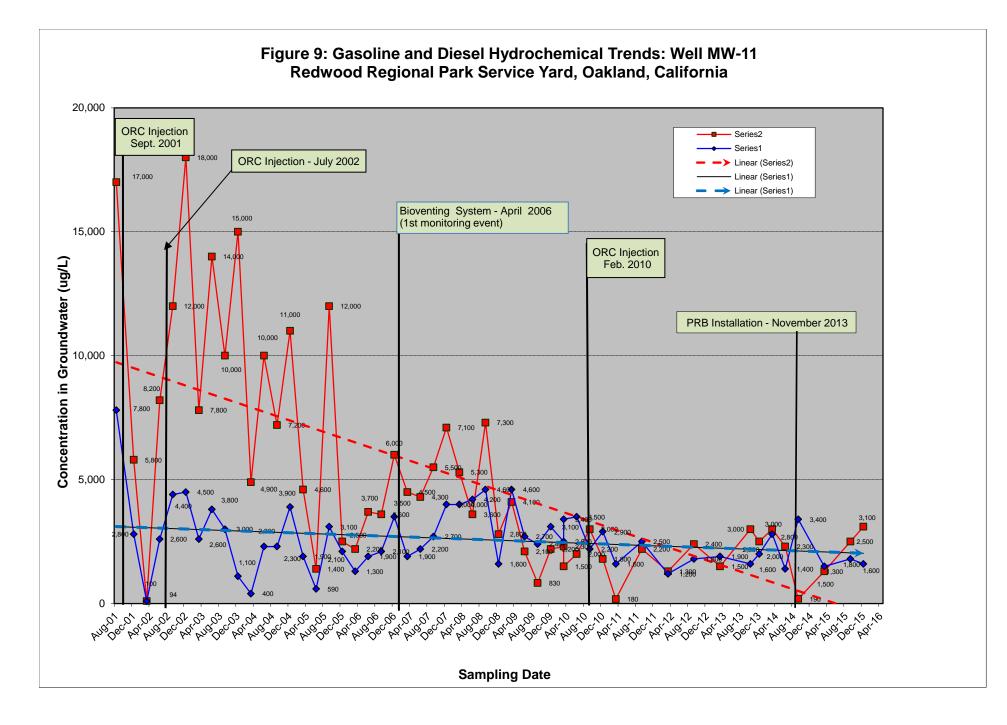
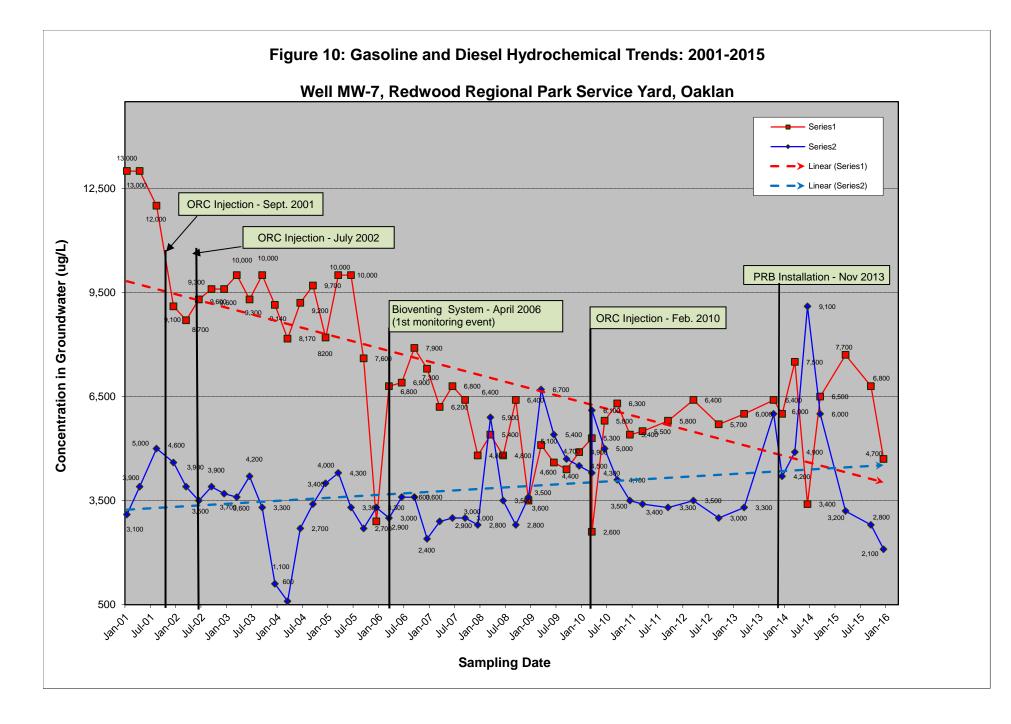

MW-8. Concentrations of TVHg in MW-8, located approximately 60 feet downgradient of MW-2, have been generally decreasing since 2005: from a historic high of 33,000 TPHg μ g/L observed in June 2005 to the lowest TPHg concentration of 180 μ g/L in December 2010 to 1,700 μ g/L in this latest event. TEHd concentrations had remained fairly stable until a TEHd spike of 13,000 μ g/L was observed in March 2008; however, the concentration has since decreased to below the applicable ESLs in the September 2014 and in the September 2015 event. This fluctuation demonstrates that significant contaminant mass entrained in the soil continues to "feed" the dissolved concentration, as demonstrated by periods of recharge represented during the March 2008 sampling event. As contaminant concentrations decrease in the source area, contaminant concentrations in this well will most likely decrease as the plume migrates downgradient. Both gasoline and diesel concentrations have fluctuated widely but follow a well-established seasonal fluctuation pattern. The strong seasonal effect is visually apparent, with annual maximum concentrations generally occurring in late winter/early spring and annual minimum concentrations generally occurring in the fall/winter.

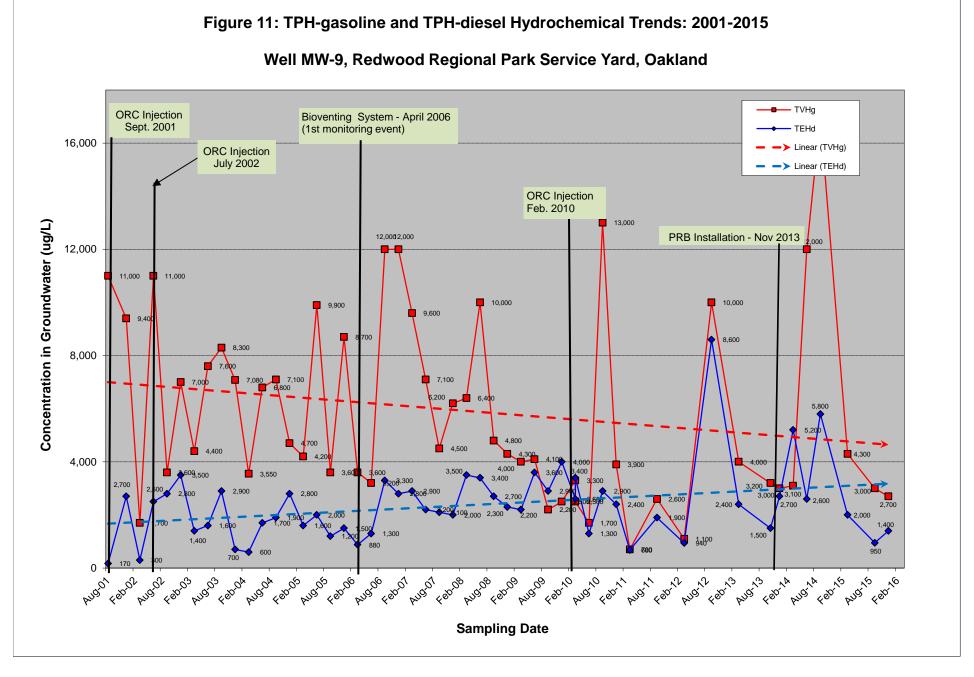
Figure 8 features gasoline and diesel hydrochemical trends in MW-8.

MW-11. This well is located in the lower part of the mid plume zone, along the plume centerline, approximately midway between upgradient well MW-8 and downgradient guard well MW-7. Gasoline and diesel concentrations were greatly reduced in 2001, and this was followed by an equally large increase by late 2002. Since that time, concentrations have fluctuated widely, with a strong seasonal effect. However, both diesel and gasoline concentrations in this well demonstrated a generally decreasing trend since 2008 and were within historical range.

Figure 9 features gasoline and diesel hydrochemical trends in MW-11 and Figure 10 shows hydrochemical trends for gasoline and diesel in well MW-7.

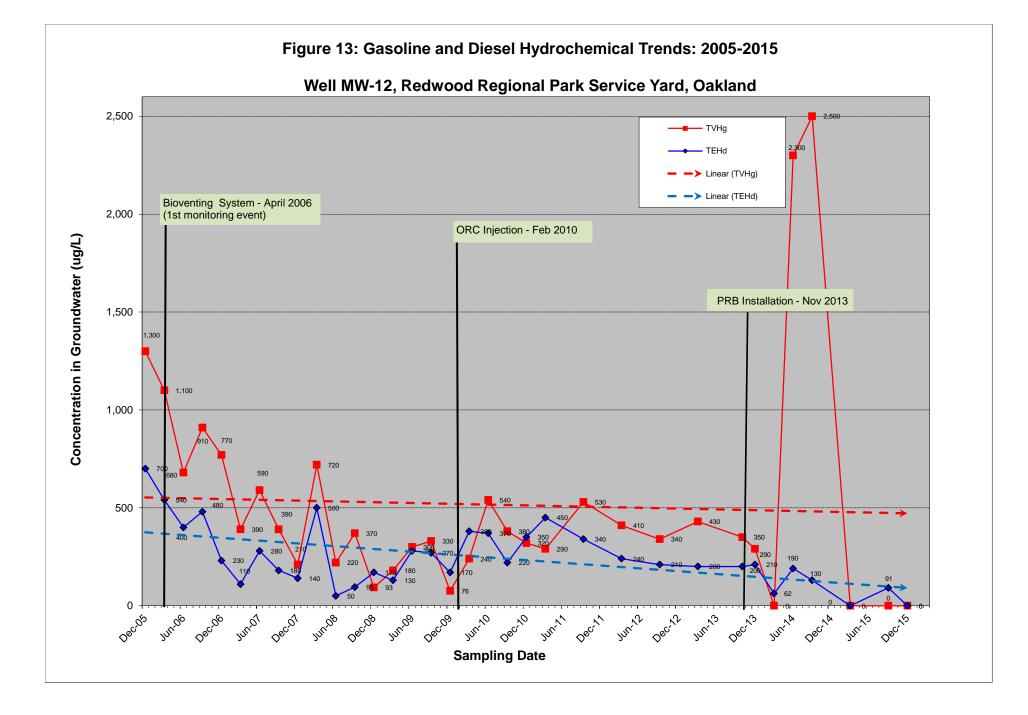
Downgradient Hydrochemical Trends


MW-7 and MW-9. These wells represent the high-concentration area of the central plume at the downgradient area approximately 20 feet from Redwood Creek. Well MW-7 shows concentrations of diesel and gasoline within historical ranges through to this September 2015 and a significant drop in both TPHd and TVHg observed in the limited December 2015 monitoring event. Gasoline and diesel concentrations have been generally stable and within historical range since 2008 with no apparent effect from the PRB, however the December 2015 event showed the lowest TPHd in MW-7 since March 2004. Both diesel and gasoline concentrations increased steadily in well MW-9 since December 2013 following the PRB installation with diesel showing a historical high of 17,000 μ g/L, but showed a steady decrease in gasoline and diesel concentration to within historical ranges observed in 2015. As discussed previously, this 2014 contaminant spike is attributed to the effect of the installation of the PRB mobilizing hydrocarbons entrained in the soil and the hydrostatic pressure from the PRB mobilizing contaminants in this area of distal plume area. Figures 10 and 11 show the hydrochemical trends for gasoline and diesel in wells MW-7 and MW-9, respectfully.


Plume Fringe Zone Trends

MW-10. This well is located on the southern edge of the plume, in the mid-plume portion relative to the longitudinal axis. Figure 16 shows hydrochemical trends for gasoline and diesel in this well. Concentrations of gasoline generally remained stable compared to 2009, with only slight increases observed above 100 μ g/L and a downward trend in 2013. The diesel concentration trend appears stable with a slightly increasing trend. The historic maximum of 2,100 μ g/L diesel was recorded in 2001 and the second highest of 1,200 μ g/L diesel was observed during in March 2011. This well has shown no contaminants in excess of the applicable ESLs since December 2013. Figure 12 shows hydrochemical trends for gasoline and diesel in this well MW-10.

MW-4 (former). This well was located on the northern edge of the plume, just upgradient of Redwood Creek. Other than anomalous diesel detection in June 2004, no contamination had been detected in this well since December 2001. The well was destroyed in November 2005 and replaced by well MW-12 (in an adjacent position).


MW-12. The initial sampling of MW-12 showed elevated petroleum concentrations up to 1,300 μ g/L TVHg, but those concentrations declined until March 2008 when a spike was observed. Concentrations have fluctuated since then, but are below the historical maximum observed and show a decreasing contaminant trend. The September 2014 event following the PRB installation showed historical maximum high concentrations of TVHg (2,500 μ g/L) and benzene (6.8 μ g/L), however the September and December 2015 events showed a steady decline of both TVHg and TEHd to below applicable ESLs. Figure 13 shows hydrochemical trends in well MW-12.

Stellar Environmental Solutions, Inc.

PLUME GEOMETRY AND MIGRATION INDICATIONS

The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination historically fluctuated between the upper portion of the plume (MW-2), the mid-portion of the plume (near MW-8), and the downgradient portion of the plume (at MW-7 and MW-9). The 2012 and 2013 years of monitoring showed the greatest contamination in the mid-plume area (MW-11) and downgradient portion of the plume (MW-7 and MW-9). The current September 2015 monitoring year showed a decreasing concentration trend in the mid-plume wells (MW-8 and MW-11) and an increasing concentration in the downgradient wells (MW-7, MW-9, and MW-12) with the contaminant mass above the applicable ESLs in the distal area of the plume appears to have disconnected and migrated from the source area.

The plume geometry has not varied substantially over the past years of monitoring, although seasonal fluctuations in contaminant concentrations have been observed. This is exhibited by higher concentrations in downgradient wells in some events, and in mid-plume or upgradient wells in other events.

The October 2013 monitoring event showed the historical highest detection of TEHd detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.

CLOSURE CRITERIA ASSESSMENT AND PROPOSED ACTIONS

The Water Board and ACEH generally require that the following criteria be met before issuing regulatory closure of contaminant cases:

1. The contaminant source has been removed (i.e., the source of the discharge and obviously-contaminated soil). This criterion has not been partially met. While the UFSTs have been removed, along with contaminated soil, borehole soil sampling has shown a substantial mass of residual source area soil contamination that will act as an ongoing source of groundwater contamination. A bioventing system was installed and began operating in December 2005 as a corrective action to reduce gross contaminant mass in soil. The bioventing system resulted in an estimated magnitude drop in soil contaminant concentrations and thus having accomplished its' design purpose, was turned off in June 2011. Installation of the PRB appeared to cause an initial mobilization of contaminants, but appears to have been effectual in lowering contaminant concentrations as observed in MW-12. The other wells MW-7 and MW-9 downgradient of the PRB have returned to historical concentration, however additional monitoring will be required to evaluate the effect of the PRB which may be effectual for up to 1 more year (a total product effective period of approximately 2-3 years).

- 2. *The groundwater contaminant plume is well characterized, and is stable or reducing in magnitude and extent.* As discussed above, in our professional opinion, this criterion has not been met, and continued groundwater monitoring will be needed to demonstrate plume stability.
- 3. If residual contamination (soil or groundwater) exists, there is no reasonable risk to sensitive receptors (i.e., contaminant discharge to surface water or water supply wells) or to site occupants. This criterion is generally met by conducting a Risk-Based Corrective Action assessment that models the fate and transport of residual contamination in the context of potential impacts to sensitive receptors (e.g., water wells, residential and use). The newly installed PRB corrective action is designed to remedy the magnitude and duration of future contaminated groundwater discharge to Redwood Creek; considered the primary sensitive receptor, however additional monitoring is needed to evaluate the PRB to determine whether the upcoming 2015-2016 seasonal winter groundwater recharge will mobilize the bioremediation product within the PRB.

7.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of eleven site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include TVH-gasoline, TEH-diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene, ethylbenzene and MTBE in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000 concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination greater than 1,000 µg/L of TVHg and TEHd is currently centered on wells MW-7, MW-9 and MW-11, all of which are in the downgradient area of the plume. However, prior to the ORCTM injection in March 2010, the greatest zone of contamination was observed in MW-2, the historical source area well.

- Second Semiannual 2015 site groundwater contaminant concentrations exceeded the groundwater ESLs for TVHg and TEHd in four of the seven wells sampled. The ESLs for benzene were exceeded in monitoring wells MW-9; exceeded for ethylbenzene in MW-7 and MW-9; and the ESL for MTBE was exceeded in wells MW-8, MW-9 and MW-11.
- The contaminant plume has historically appeared neither stable nor reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells, however the contaminants in upgradient source area MW-2 have showed a steady decrease since March 2010 but still exist above ESL. The mid and downgradient areas of the plume (MW-7, MW-9 and MW-11) currently exhibit the highest contaminant concentrations as of September 2015.
- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- At the time of the September 2015 sampling event, the entire stretch of Redwood Creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. The October 2013 monitoring event showed the historical highest detection of TEHd detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.
- The limited December 2015 groundwater sampling of the 5 key distal plume wells showed contaminant concentrations exceeded the applicable groundwater ESLs for TVHg and TEHd and ethylbenzene in three of the five key wells sampled (MW-7, MW-9 and MW-11). The ESL for benzene was exceeded in the only well where it was detected (MW-9); MTBE was detected in three of the five but only exceeded the ESL in MW-7; and toluene and total xylenes were not detected not detected in any of the five wells.
- The average DO in the 7 site wells showed an overall increase from 1.19 mg/L in March 2015 compared to 3.20 mg/L during this September 2015 event and a continued lowering trend in key wells measured in December 2015. However, the average DO in the 3 wells (MW-7, MW-9 and MW-12) downgradient of the PRB, showed less increase in DO from

0.31 mg/L in March 2015 to 1.05 mg/L this September 2015, suggesting the increase in DO is a seasonal fluctuation rather than an effect that can be attributed to the PRB.

■ The PRB that was installed on November 20, 2013 appears to have caused an initial mobilization of contaminants as was observed in downgradient wells MW-7, MW-9 and MW-12 and was most evident by the historical high spike of 17,000 mg/kg TPHg that was detected in September 2014 in well MW-19. As of this latest September 2015 monitoring event, wells MW-7 and MW-9 have returned to within historical concentration range, however contaminant concentrations as in MW-12 have remained below ESLs and this may be attributed to the PRB. The PRB is likely not effective based on the data presented although the manufacturer of the bioremediation product says it can be effective for up to 3 years. The minimal effect of the PRB over the last two years may be partly due to the drought not recharging groundwater to the full height of the PRB resulting in less mobilization of the EHC-OTM product. In addition, heterogeneity of the site formation lithologies may also not be conducive to optimizing the flow of contaminated groundwater through the PRB.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

- Continue to monitor for one more year to evaluate if any changes hydrochemcial occur with the PRB in place during the expected high rainfall 2016 year. Scheduled two semiannual monitoring events with additional testing of site chemical parameters in downgradient wells MW-7, MW-9, and MW-12, to track the effect of the oxygen release product utilization and to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

8.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. , Revised May 2013.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015a First Semiannual 2015 Groundwater Monitoring and PRB Evaluation Report of the Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246). April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015. Second Semiannual 2015 Groundwater Monitoring, Permeable Reactive Barrier Evaluation, and Annual Summary Report Redwood Regional Park Service Yard Site. December 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014a. First Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation. Redwood Regional Park Service Yard Site. April 1.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014 Second Semiannual 2013 Groundwater Monitoring, Permeable Reactive Barrier installation, and Annual Summary Report Redwood Regional Park Service Yard Site. January 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.

- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.

- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.

- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored		Groundwater Elevations (feet above mean sea level)										
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.41	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.02	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
9/23/2011	561.03	543.54	539.52		530.81		534.34	536.41	533.59			
				(b)		532.31				534.67	534.85	534.86
3/22/2012	562.25	546.42	542.02	(b)	531.83	533.13	534.71	539.34	535.97	535.51	536.03	535.69
9/19/2012	560.93	541.83	537.53	(b)	530.6	531.91	533.55	534.88	532.95	534.33	534.17	534.17
3/14/2013	561.80	545.57	541.74	(b)	531.01	532.11	534.66	538.64	534.31	535.72	535.67	535.37
10/3/2013	560.95	541.01	536.21	(b)	530.02	531.14	532.74	533.74	531.89	532.54	533.08	533.06
3/10/2014	561.68	541.01	541.67	(b)	531.99	532.02	534.61	536.53	534.28	535.22	535.57	534.89
9/19/2014	560.40	540.33	535.53	(b)	529.31	530.50	532.05	532.96	531.46	531.91	533.66	532.28
3/23/2015	561.41	545.47	541.46	(b)	531.01	532.09	534.56	537.43	534.08	534.97	535.44	534.82
9/24/2015	560.26	540.82	535.79	(b)	529.34	530.39	532.17	533.52	531.35	532.14	532.65	532.4
12/29/2015	NM	NM	NM	(b)	NM	NM	533.52	NM	532.85	533.52	534.17	534.11

TOC = Top of well Casing (a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements. (b) Well decomissioned and replaced by MW-12 in December 2005. NM = not measured

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Project # <u>150924-DC1</u> Date <u>9/24/15</u> Client <u>STELLAR</u>

Site REDWOOD REGIONAL PARKS SERVICE YARD, CAKLAND, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)			Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-1	0833	4				5.57	19.20		
MW-2	0836	4				25.60	37.54		
MW-3	0841	4				25.02	45.06		
Mw-5	0845	Ч				18.07	26.96		
MW-6	0850	4				15,04	27.55		
MW-7	0854	2				15.39	25.35		
MW-B	0858	2				15.61	22.25		
MW-9	0902	2				17.93	30.21		
MW-10	0906	2				15.08	28.36		
MW-11	0910	2				15.10	28.78		
MW-12	0913	2				12.27	23.81	V	
/									
						5 C.			

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SFATTI F

		· · ·			2	\bigcirc		
	3							
	V	VELLHE	AD INSP	ECTION	I CHEC	KLIST	Page_	of
Client STELLAR	2				Date	9/24/15		
Site Address	DWOOD REAL	ONAL PAR	<u>ks Seev</u>	ICE YARD				
Job Number 150924-001 Tech						De	·	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-1	X							
MW-2	Х							
MW-3	×							
MW-5	×							
MW-6	X							
MW-7	X		·					
MW-B			·			X		
Mw-9	X			*				
MW-10					ļ	X		
M.W-11	<u>. X</u>			iiii				
MW-12	· X							
				· ·			·	
								53
	·····							
	<u> </u>					<u> </u>		
	MW-5: Ra						1	
MI	N-6: 200	TS IN C	CASING K	15 ~ 15	FT			
	N-8: -3/3			¥		*******		
<u>Mi</u>	0-10: 2/2	IMUS S	ILL PRED					
	7				•			
· · · · · · · · · · · · · · · · · · ·								

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO

SEATTLE

jek

a like a

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE ISOSTELLAN	20 REDWOOD RI OAKLAND,		PROJECT NUMBER 150924-DCI				
EQUIPMENT NAME	EQUIPMENT	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS	
MYRON L ULTRAWEBE	6209492	9/24/15 0915.	PH 7,10,4	7.00,10.01,4.00	Y	17.54	The	
			COND 3900usky	3897uS/cn	Y	17.5%	De	
		V	ORP 240mV	240 mV	Y	17.54	te	
451 550	06E1424AI	9/24/15 0920	Do 100%.	99.3%	У	17.5%	R	
						-		

.

1									
Project #:	150924	1-DCI	·	Client: STELLAR					
Sampler:	DC			Date:	9/24	115			
Well I.D.:	MW-2	•		Well	Diameter	r: 2 3	4	6 8	
Total Well	Depth (TI	D): 37.	.54	Depth	Depth to Water (DTW): 25,60				
Depth to F	ree Produc	t:		1		Free Product			
Referenced	l to:	PVC) Grade	D.O. 1	Meter (if	req'd):		YSD HACH	
DTW with	80% Rech	arge [(I	Height of Water	Colum	n x 0.20)) + DTW]:	27	.98	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:									
<u> </u>					Well Diamete		Well D 4"	iameter Multiplier 0.65	
7,7 (1 Case Volume	Gals.) X Speci	3 ified Volur	$= \frac{231}{\text{Calculated V}}$	Gals. olume	2" 3"	0.16	4 6" Other	0.65 1.47 radius ² * 0.163	
Time	Temp (°F or ©	pH	Cond. (mS or as)	1	bidity TUs)	Gals. Remov	ved	Observations	
0942	16.7	6.57	753	716	200	8,0	Î	CLOUDY	
×	WELL	DE	WATERED	C	>	10.0			
·					*				
1315	17.1	6.74	772	10	6	GRAB		CLOUDY	
Did well dev	water?	Ves	No	Gallon	s actually	y evacuated:	Į	9.0	
Sampling Da	ate: 9/24/	15	Sampling Time	: 1315	5	Depth to W	ater:	33.86	
Sample I.D.:	MW-2	-		Labora	tory:	Kiff CalScie	ence	Other CHT	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: SE	E	COC.	
EB I.D. (if a _l	pplicable):		@··· Time	Duplica	ate I.D. (if applicable	:): [·]		
Analyzed for	: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:			
D.O. (if req'o	P.O. (if req'd): Pre-purge: $\frac{mg}{L}$ Post-purge: $\frac{16.41}{M}$								
D.R.P. (if rec	1'd): Pre	e-purge:		mV	Pq	st-purge:		70 mV	

Blaine Tech Services, Inc. 1680 Roger's Ave., San Jose, CA 95112 (408) 573-0555

Project #:	150924	-DCI		Client: STELLAR						
Sampler:	X	<u>anna anailtean ann an </u>		Date: 9/2	Date: 9/24/15					
Well I.D.:	MW-7			Well Diameter: 2 3 4 6 8						
Total Well	Depth (TI): 25	.35	Depth to Wate	er (DTW): 15	,39				
Depth to F	ree Produc	t:	ayaannaada ahaa garaa ahaa dhiga ay ahaa ahaa ahaa ahaa ahaa dhidada dhidada dhi	Thickness of F	Free Product (fe	eet):				
Referenced	l to:	PVC	Grade	D.O. Meter (if	req'd):	(YSI) HACH				
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20)+DTW]: /7	7.39				
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: <u>Well Diameter Multiplier Well Diameter Multiplier</u> 1" 0.04 4" 0.65										
$\frac{1.5}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{4.5}{\text{Calculated Volume}} \text{Gals.}$ $\begin{bmatrix} 1^{"} & 0.04 & 4^{"} & 0.65 \\ 2^{"} & 0.16 & 6^{"} & 1.47 \\ 3^{"} & 0.37 & \text{Other} & \text{radius}^2 * 0.163 \end{bmatrix}$										
Time	Temp (°F or °C)	pН	Cond. (mS or aS)	Turbidity (NTUs)	Gals. Removed	Observations				
1021	15.0	6.72	809	121	1.5	CLOUDY /ODOR				
1024	14.7	6.60	808	179	3.0	CLOUDY / ODOL				
1026	14.6	6.63	801	187	4.5	CLOUDY ODOR				
Did well dev	water?	Yes	1	Gallons actually	y evacuated:	4.5				
Sampling D	ate: 9/24/	15	Sampling Time	: 1030	Depth to Wate	r: 17.05				
Sample I.D.	MW-7	Ł		Laboratory:	Kiff CalScience	Other CHI				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	COC				
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. (i	if applicable):					
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'o	D.O. (if req'd): Pre-purge: ^{mg} / _L Post-purge: 1.24 ^{mg} / _L									
O.R.P. (if red	q'd): Pre	-purge:		mV Po	st-purge:	-il mV				

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

Project #:	150924	1-DC1		Client: STELLAR					
Sampler:	DC			Date:	9/24/	1,5			
Well I.D.:	MW-8			Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI): 22.	25	Deptl	Depth to Water (DTW): 15.61				
Depth to F	ree Produc	:t:		Thick	ness of F	Free Product (f	eet):		
Referenced	l to:	PVC	Grade	D.O. 1	Meter (if	req'd):	ASI HACH		
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20)+DTW]: //	0.93		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47									
<u>1,0</u> 1 Case Volume	Gals.) XSpec	<u>5</u> ified Volun	$\frac{1}{1} = \frac{3.0}{\text{Calculated Vol}}$	Gals. olume	3"	0.16 6" 0.37 Oth			
Time	Temp (°F or C)	pН	Cond. (mS or aS)	1	bidity TUs)	Gals. Removed	Observations		
1216	16.7	7.21	836	>10	200	1.0	CLOUDY		
1218	15.7	6.95	857	> 1.	000	2.0	CLOUDY		
1220	15.8	6.88	848	> r	000	3.0	CLOUDY		
Did well dev	water?	Yes (No	Gallon	s actually	vevacuated:	3.0		
Sampling D	ate: 9/24/	15	Sampling Time	: 1306	>	Depth to Wate	r: 16.47		
Sample I.D.	: MW-8			Labora	tory:	Kiff CalScience	e Other C+7		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5) 🤇	Other:) SEE	Coc		
EB I.D. (if a	pplicable):		@ Time	Duplica	ate I.D. (i	if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	9 2		
D.O. (if req'd): Pre-purge: ^{mg} /L Post-purge ^{mg} 0,77 ^{mg}							0,77 ^{mg} / _L		
D.R.P. (if red	.R.P. (if req'd): Pre-purge: mV Post-purge: -11 mV								

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

Purge Method: Bailer									
Well I.D.: $M\omega - 9$ Well Diameter: \bigcirc 3468Total Well Depth (TD): \bigcirc , 2.1Depth to Water (DTW):17, 93Depth to Free Product:Thickness of Free Product (feet):Referenced to: \swarrow \bigcirc \bigtriangledown \bigcirc Referenced to: \checkmark \bigcirc \bigcirc Builton \blacksquare \blacksquare DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.3% Purge Method:Bailer \blacksquare Presistatic \blacksquare \blacksquare Positive Air DisplacementExtraction PurpElectric Submersible \bigcirc Other \blacksquare Positive Air DisplacementExtraction PurpElectric Submersible \bigcirc Other \bigcirc I.9(Gals.) X \Im = \bigcirc \Im = \bigcirc \square \bigcirc \square <	Project #:	150920	H-DCI		Client: S72	ELLAR	·		
Total Well Depth (TD): 30.2.1 Depth to Water (DTW): 17,93 Depth to Free Product: Thickness of Free Product (feet): Referenced to: $\mathbb{E}\sqrt{\mathbb{O}}$ Grade D.O. Meter (if req'd): $\mathbb{A}\mathbb{O}$ DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.32 Parage HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.32 Parage Bailer Purge Method: Bailer Disposable Bailer Peristatic Sampling Method: Bailer Purge Method: Bailer Disposable Bailer Peristatic Sampling Method: Bailer Purge Method: Bailer Disposable Bailer Detected Tubing Other Other Detected Tubing Purge Method: Bailer Bailer Bailer Other Detected Tubing Other Other Other 1.0 (Gaks.) X 3 Gals. Calculated Volume Cond. Turbidity Odd 4 0.37 Other 0.63 1.120 15.5 6.97 B16 2.37 Z.0 Claudyl / oxol. 112.4 S.1 6.86 <td< td=""><td>Sampler:</td><td>DC</td><td></td><td></td><td>Date: 9/24</td><td>115</td><td></td></td<>	Sampler:	DC			Date: 9/24	115			
Depth to Free Product: Thickness of Free Product (feet): Referenced to: P''_{CO} Grade D.O. Meter (if req'd): P''_{SD} HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.38 Purge Method: Bailer Disposable Bailer Peristatic Other	Well I.D.:	MW-9			Well Diameter: ② 3 4 6 8				
Referenced to: Grade D.O. Meter (if req'd): FSD HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 2.0.38 Purge Method: Bailer Disposable Baile Purge Method: Bailer Disposable Baile Positive Att Displacement Electric Submersible Other Other Multiplier Multiplier Multiplier Other Temp Other Multiplier Multiplier Multiplier Multiplier Temp Cond. Turbidity Gals. Removed Observations Temp Cond. Turbidity Gals. Removed Observations Temp Cond. Turbidity Gals. Removed Observations Temp Cond. Turbidity Gals. Removed	Total Well	Depth (TI): 30.	21	Depth to Wate	er (DTW): 17	,93		
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.38 Purge Method: Bailer Waterra Peristattic Positive Air Displacement Electric Submersible Other Detraction Pump Other Detracted Tubing Ot	Depth to Fr	ee Produc	t:		Thickness of F	Free Product (fe	eet):		
Purge Method: Bailer	Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	ASD HACH		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 20.38								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Disposable BailerPeristalticDisposable BailerPositive Air DisplacementExtraction PumpExtraction PortElectric SubmersibleOtherDedicated Tubing								
Time(°F or \bigcirc)pH(mS or \textcircled{mS})(NTUs)Gals. RemovedObservations112015.56.978162372.0CLOUDY otock112415.16.8681042.34.0CLOUDY otock112815.16.858044416.0CLOUDY otock112815.15.8560112.17.2.5Depth to Water: 19.91ampling Date:9/24/15Sampling Time: 12.05Depth to Water: 19.91analyzed for:TPH-GBTEXMTBETPH-DNo. (if applicable):math the TPH-DOxygenates (5)Other:.0. (if req'd):Pre-purge:mg/4Post-purge:0.85<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
112015.5 6.97 $B16$ 237 2.0 $CLOUDY OTOR112415.16.8681042.34.0CLOUDY OTOR112815.16.858044416.0CLOUDY OTORDid well dewater?YesNoGallons actually evacuated:6.0Did well dewater?YesNoGallons actually evacuated:6.0ampling Date:9/24/15Sampling Time:12.05Depth to Water:19.91ample I.D.:MW-9Laboratory:KiffCalScienceOthernalyzed for:TH-GBTEXMTBETPH-DOxygenates (5)Other:5.5 \text{ Cox}B I.D. (if applicable):@TimeDuplicate I.D. (if applicable):nalyzed for:TimeDuplicate S)Other:.O. (if req'd):Pre-purge:mg_LPostpurge?0.85mg_L$	Time		pН	-		Gals. Removed	Observations		
1124 15.1 6.86 $B10$ 42.3 4.0 $Causy/ascl112815.16.858044416.0causy/ascl112815.16.858044416.0causy/ascl112815.16.858044416.0causy/ascl112815.16.858044416.0causy/ascl112815.16.858044416.0causy/ascl010ullical1280.00.00.0010ullical12.050.00.0ample I.D.:MuJ - 912050.00.0ample I.D.:MuJ - 912050.00.0ample I.D.:MuJ - 912050.00.0ample I.D.:MuJ - 912050.00.0ample I.D.:MuJ - 90.00.00.0ample I.D.:MuJ - 90.00.00.0ample I.D. (if applicable):metric0.00.0malyzed for:TH-GBTEXMTBETH-D0.00.0.65metric0.0.85metric0.0.65metric0.0.85metric$	1120	15,5	6.97		237	2.0	CLOUDY /ODOR		
112815.1 6.85 804 441 6.0 $crousy obschDid well dewater?Yes15.16.858044416.0crousy obschDid well dewater?Yes15.16.858044416.0crousy obschDid well dewater?Yes15.16.858041416.0crousy obschDid well dewater?Yes15.16.856041416.0crousy obschDid well dewater?Yes15.2606.07.027.02ampling Date:9/24/5Sampling Time:12.05Depth to Water:19.91ample I.D.:MW - 9Laboratory:KiffCalScience0analyzed for:THI-GBTEXMTBETPH-DOxygenates (5)00.85mg/Lnalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)00.85mg/L.O. (if req'd):Pre-purge:mg/LPost-purge?0.85mg/L$	1124	15.1		810	423	4.0	CLOUDY ODOR		
Did well dewater?YesNoGallons actually evacuated: $(6, 0)$ ampling Date: $9/24/15$ Sampling Time: 12.05 Depth to Water: 19.91 ample I.D.:MW - 9Laboratory:KiffCalScienceOtheranalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)OtherSEEB I.D. (if applicable):@TimeDuplicate I.D. (if applicable):nalyzed for:TH-GBTEXMTBETPH-DOxygenates (5)Other:.O. (if req'd):Pre-purge: mg/L Post-purge: 0.85 mg/L	1128		6.85	804	441	6.0	CLOUDY ODOR		
ampling Date: $9/24/15$ Sampling Time: 12.05 Depth to Water: 19.91 ample I.D.:MW-9Laboratory:KiffCalScienceOtherCHT.nalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other:SEECoccB I.D. (if applicable):@TimeDuplicate I.D. (if applicable):Duplicate I.D. (if applicable):Image: Coccnalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other:.O. (if req'd):Pre-purge: mg/L Post-purge: 0.855 mg/L							DTW: 23.66		
ampling Date: $9/24/15$ Sampling Time: 12.05 Depth to Water: 19.91 ample I.D.: $MW-9$ Laboratory: Kiff CalScience Other CtT.nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other: $5 \in C \in C$ B I.D. (if applicable):@.nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other: $5 \in C \in C$ B I.D. (if applicable): <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
ample I.D.: MW-9 Laboratory: Kiff CalScience Other CFT analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE Coc B I.D. (if applicable): @ malyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: .0. (if req'd): Pre-purge: mg/L Post-purge: 0.85 mg/L	Did well dev	vater?	Yes (No	Gallons actually	y evacuated:	6.0		
Inalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE Cocc B I.D. (if applicable): Imme Duplicate I.D. (if applicable): Imme Duplicate I.D. (if applicable): nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: .O. (if req'd): Pre-purge: Imme Post-purge: 0.85 Imme/L	Sampling Da	nte: 9/24	1.5	Sampling Time	: 1205	Depth to Wate	r: 19.91		
B I.D. (if applicable): malyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: .O. (if req'd): Pre-purge: .O. (if req purge: .O. (if req'd): Pre-purge: .O. (if req	Sample I.D.:	MW-9		·····	Laboratory:	Kiff CalScience	Other CFT		
B I.D. (If applicable): Time Duplicate I.D. (If applicable): nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: .O. (if req'd): Pre-purge: mg/L Post-purge? 0.85 mg/L									
.O. (if req'd): Pre-purge: ^{mg} / _L Post-purge? 0.85 ^{mg} / _L	EB I.D. (if a _l	oplicable):		@ Time	Duplicate I.D. (if applicable):			
	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:								
D.D. (if would), D).O. (if req'd	l): Pre	e-purge:		^{mg} / _L Po	st-purge?	0.85 mg/L		
.R.P. (if req'd): Pre-purge: mV Post-purge: -24 mV).R.P. (if req	l'd): Pre	e-purge:		mV Po	st purge:	-24 mV		

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

Project #:	150921	1-DCI		Client: STELLAR					
Sampler:	DC			Date: 9/24	115				
Well I.D.:	MW-10	>		Well Diameter: (2) 3 4 6 8					
Total Well	Depth (TI): 'ZE	3.36	Depth to Wate	Depth to Water (DTW): 15,08				
Depth to F	ree Produc	t:		Thickness of I	Free Product (fe	eet):			
Referenced	l to:	PVC	Grade	D.O. Meter (if	req'd):	ASD HACH			
DTW with	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 17.73								
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:									
$\frac{2.1}{1 \text{ Case Volume}}$	Gals.) X Speci	3 fied Volun	$\frac{1}{\text{nes}} = \frac{6.3}{\text{Calculated Vo}}$	_Gals. 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163			
Time	Temp (°F or °C)	pН	Cond. (mS or KS)	Turbidity (NTUs)	Gals. Removed	Observations			
0957	15.6	6.24	838	156	2.5	CLOUDY			
1002	15.2	6.58	816	177	5.0	CLOUDY			
1007	14.9	6.67	803	181	7.5	CLOUDY			
						DTW: 22.48			
Did well dev	water?	Yes (No	Gallons actually	y evacuated: 7	.5			
Sampling Da	ate: 9/24/1	5	Sampling Time	: 1050	Depth to Water	r: 17.24			
Sample I.D.:	MW-10			Laboratory:	Kiff CalScience	Other CHT			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D (Oxygenates (5)	Other SEE	car i			
EB I.D. (if aj	pplicable):		@ Time]	Duplicate I.D. (if applicable):				
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:								
D.O. (if req'd	D.O. (if req'd): Pre-purge: 1.28 mg/L								
O.R.P. (if rec	ı'd): Pre	-purge:		mV Po	st-purge:	80 mV			

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112 (408) 573-0555

Project #:	15092	1-DCI		Client: 5	TELLAR	·			
Sampler:	DC			Date: 9/24	115				
Well I.D.:	MW-11				Well Diameter: 2 3 4 6 8				
Total Well	Depth (TI)): 2 <i>8</i> ,	78	Depth to Wate	Depth to Water (DTW): 15,10				
Depth to Fr	ee Produc	t:		Thickness of I	Free Product (fe	eet):			
Referenced	to:	evc	Grade	D.O. Meter (it	f req'd):	HACH			
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20)+DTW]: 17	83			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:									
$\frac{2.1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{6.3}{\text{Calculated Volume}} \text{Gals.}$ $\begin{bmatrix} 1^{"} & 0.04 & 4^{"} & 0.65 \\ 2^{"} & 0.16 & 6^{"} & 1.47 \\ 3^{"} & 0.37 & \text{Other} & \text{radius}^2 * 0.163 \end{bmatrix}$									
Time	Temp (°F or C)	pН	Cond. (mS or aS)	Turbidity (NTUs)	Gals. Removed	Observations			
1237	16.5	7.01	683	68	2.5	CLEAR			
1241	16.4	6.63	687	147	5.0	CLOUDY			
1246	16.4	6.58	689	153	7.5	CLOUDY			
	-								
Did well dev	vater?	Yes (No	Gallons actuall	y evacuated:	4.5			
Sampling Da	ate: 9/24/	15	Sampling Time	: 1325	Depth to Wate	r: 16,42			
Sample I.D.:	MW-11			Laboratory:	Kiff CalScience	Other CFT			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:) SEE	COC			
EB I.D. (if aj	pplicable):		@ . Time .	Duplicate I.D. (if applicable):				
Analyzed for	: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'd	D.O. (if req'd): Pre-purge: mg/L Post-purge: 0.81 mg/L								
D.R.P. (if rec	P.R.P. (if req'd): Pre-purge: mV Post-purge: -36 mV								

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112 (408) 573-0555

Project #:	150924	-DCI		Clien	t: STE	ILLAR	•
Sampler:	DC			Date:	9/24	115	. •
Well I.D.:	MW-12			Well	Diameter	: 2 3 4	6 8
Total Well	Depth (TI): 23.	81	Depth	to Wate	er (DTW): 12	
Depth to Fr	ree Produc	t:		Thick	ness of F	Free Product (fe	eet):
Referenced	to:	VC	Grade	D.O. 1	Meter (if	'req'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: /	4.57
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme	,	Waterr Peristalti ction Pum	c	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
<u>1, B</u> 1 Case Volume		3 fied Volum	$= \frac{5.4}{\text{Calculated Vc}}$	_Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47
Time	Temp (°F or °C)	pН	Cond. (mS or (AS)	1	bidity TUs)	Gals. Removed	Observations
1037	14.9	7.01	692	į۷	12	2.0	CLOUDY/ODOR
1040	14.4	6.65	704	2	ø5	4.0	CLOUDY
1044	14.5	6.67	713	2	.13	6.0	CLOUDY
							DTW: 17.80
Did well dev	water?	Yes (No	Gallon	s actually	y evacuated: (p. O
Sampling Da	ate: 9/24/1	5	Sampling Time	: 1104	5	Depth to Wate	r: 14.29 ("SHORT)
Sample I.D.:	MW-12			Labora	tory:	Kiff CalScience	other CHT
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5) 🤇	Other: SEE	coc.
EB I.D. (if a	pplicable):		@ Time	Duplica	ate I.D. (if applicable):	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	
D.O. (if req'o	l): Pre	e-purge:		^{mg} /L	Po	st-purge:	1.07 ^{mg} /L
D.R.P. (if red	q'd): Pre	e-purge:		mV	Ро	st-purge:	46 mV

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

Project #:	15092	14-DC1		Clier	nt: 572	ELLAR			
Sampler:	DC			Date	: 9/20	4/15			
Well I.D.:	SW-2			Well	Diameter	r: 2 3	4	6 8	
Total Well	Depth (TI):		Dept	Depth to Water (DTW):				
Depth to F	ree Produc	t:		Thicl	Thickness of Free Product (feet):				
Referenced	l to:	PVC	Grade	D.O.	Meter (if	req'd):		YSI HACH	
DTW with	80% Rech	arge [(I	Height of Wate	r Colun	nn x 0.20)) + DTW]:			
Purge Method:	Bailer Disposable I Positive Air Electric Subi	Displàcem	nent Extra Other	Water Peristali action Pun	ic		Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Spec	ified Volur	mes Calculated V	Gals. Volume	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163	
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	4	rbidity ITUs)	Gals. Remo	ved	Observations	
*	CREEK	15	DRY ;	NO	WATER	FLOWING	ĩ		
¥	NO	SAMPI	E TAKEN						
Did well dev	water?	Yes	No	Gallor	is actually	y evacuated	 :	-	
Sampling D	ate:		Sampling Tim	e:		Depth to W	ater:		
Sample I.D.:	• •			Labora	atory:	Kiff CalSci	ence	Other	
Analyzed for	r: TPH-G	втех	MTBE TPH-D	Oxygen	ates (5)	Other:			
EB I.D. (if a	pplicable):		@ Time	Duplic	ate I.D. (i	if applicable	e):		
Analyzed for	r: TPH-G/	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	pastas		
D.O. (if req'o	d): Pre	-purge:	-	^{mg} /L	Ро	st-purge:		mg/L	
D.R.P. (if red	q'd): Pre	-purge:	ny mangang kanang ka	mV	Po	st-purge:		mV	

Project #:	15092	.4- DCI			Clier	nt: 57	ELLAR			
Sampler:	TX				Date	: 9/24	lis			
Well I.D.:	SW-3)			Well	Diameter	: 2 3	4	6 8	
Total Well	Depth (TI): -			Depth to Water (DTW):					
Depth to F	ree Produc	t:			Thicl	kness of F	ree Produ	ict (feet	:):	
Referenced	l to:	PVC	Gra	de	D.O.	Meter (if	req'd):	Υ	YSI HACH	
DTW with	80% Rech	arge [(I	Height of	Water	Colun	nn x 0.20)) + DTW]	•		
Purge Method:	Bailer Disposable F Positive Air Electric Subr	Displacem			Water Peristali tion Pun	tic	Sampling	Method: Other:	Bailer Disposable Baile Extraction Port Dedicated Tubin	
1 Case Volume	Gals.) X Speci	fied Volur	nes Calcu	lated Vo	Gals. lume	Well Diamete 1" 2" 3"	er <u>Multiplier</u> 0.04 0.16 0.37	Well Dia 4" 6" Other	ameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163	
Time	Temp (°F or °C)	pH	Cond (mS or	1		rbidity \TUs)	Gals. Ren	noved	Observations	
×	CREEK	15	DRY	j	NO	WATER	FLOWIN	16		
¥	NO	SAMP	LEN	AKEN						
х										
	, 								******	
Did well dev	water?	Yes	No		Gallor	ns actually	v evacuate	ed:		
Sampling D	ate:		Sampling	, Time	•		Depth to	Water:		
Sample I.D.:	•]	Labora	atory:	Kiff CalS	cience /	Other	
Analyzed for	r: TPH-G	BTEX	мтве тр	PH-D (Dxygen	ates (5)	Other:		Anno 2007 - Constant Anno 2007 - Congo y Longo y Longo y San	
EB I.D. (if a	pplicable):	/	@ Time	I	Duplic	ate I.D. (i	f applical	oje):	ана ами ала ана ана ана ана ана ана ана ана ана	
Analyzed for	r: TPH-G	втех	MTBE TP	'H-D (Dxygen	ates (5) (Other:	/		
D.O. (if req'o	l): Pre	-purge:			^{mg} /L	Ро	st-purge:			^{mg} /L
D.R.P. (if red	q'd): Pré	-purge:		******	mV	Po	st-pyrge:]	mV

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

WELL GAUGING DATA

Project # 1512 29 - ACZ Date 12/29/15 Client STELCAR

Site RRPSY OUKLAND, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	🚪 ta kana kana kana kana kana kana kana k	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
NW-7 MW-9	1233	2					14.07	25.35		2.
MW-9	1241	2					16.43	30.30		4
MW-10	1230	2					13.70	28.42		2
Mw-(1	1245	2					13.58	28,80		5
MM-12	1237	2					10.86	23.83		3
					_	~				
							1988 B			
		1 .								

BLAINE TECH SERVICES INC. SAN IOSE SACRAMENTO LOS ANOSTES CALIBURAS

	3							
	V	VELLHEA	AD INSP	ECTION	I CHECI	KLIST	Page_	1_of1
Client 578	il A R				Date	12/	29/1	5
Site Address	7867 R	EDWOO	DRD.	OMALA	ND C	А		
Site Address Job Number	15122	9 - AC	Z	Tech	nician	A	2	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
Mw-M						Delowy	Delowy	
Mw-7 Mw-9							-	
Mur-10 Mur-11						2/2 BOLTS STRIPPED		
mv-ll	\checkmark							
MW - 12						2/2 BOLTS STAIMED		
			~					
								-
	·····			······				
							·	
								s

NOTES:

BLAINE TECH SERVICES, INC.

SEATTLE

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	VIE RAPSY	/		PROJECT NUM	18ER 15122.	9-4cz	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP. ℃	INITIALS
NYAONL ULTAAII	6212894	12/29/15 1300	P.4 4,7,10	4.00, 7.00, 10.00	Y .	11.2	AC.
			ØRP	249.7	Y	11.7	AC
	* * * * * * * * * * * * * * * * * * *		COND 3900	3904	Y	11.0	AC
YSI 550	04 B082ZAE	12/29/15	DO 100%.	100.4%	Y	13.2	AC
							· · ·

Project #:	15122	9	1c7	Client: STELLAR					
Sampler:		10		Date: 12/29/15					
Well I.D.:	NW-	\$7		Well Diameter: 2 3 4 6 8					
Total Well]	Depth (TD): 25	. 35	Depth to Water (DTW): 14.07					
Depth to Fr	ee Product	•		Thick	ness of F	ree Product (fe	et):		
Referenced	to:	PVC	Grade	D.O. 1	Aeter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: 1	6.33		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump)	Sampling Method Other er <u>Multiplier Well</u> 0.04 4"	Disposable Bail Extraction Por Dedicated Tubin Diameter Multiplier	t	
$\frac{f \cdot S}{1 \text{ Case Volume}} (0)$	Juis. / A	3 fied Volum	$\frac{1}{1} = \frac{5.4}{\text{Calculated Vo}}$	_Gals.	2" 3"	0.16 6" 0.37 Othe	1.47	-	
Time 1345 1349 1355	Temp (°F or °C) 10.6 12.1 12.9	pH 6.30 6.31 6.28	Cond. (mS or US) 803 797 804	1	7	Gals. Removed 1 - 8 3 - 6 5 - 4	Observation	5	
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuated:	5.4		
			Sampling Time			Depth to Wate	-		
Sample I.D.	: nw	- 11		Labora	tory:	Kiff CalScience	e Other (4 7		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: $5 \in E$	\mathcal{COC}		
EB I.D. (if a	pplicable)	•	@ Time	Duplic	ate I.D. ((if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	• •	Other:			
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Р	ost-purge:	0-55	^{mg} /L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Р	ost-purge:	+31	mV	
				5					

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

-								
Project #:	151229	1-或	AC2	Client: Sl	ellar			
Sampler:	BW	- 94 (* 977) - 979) - 979) - 979) - 979) - 979) - 979 (* 979)		Date: 12	129/15			
Well I.D.:	mw-	-9		Well Diamet	er: ② 3 4	6 8		
Total Well	Depth (TD): 30	130	Depth to Water (DTW): 16.43				
Depth to Fr	ee Product	t:		Thickness of	Free Product (fe	eet):		
Referenced	to:	PVC	Grade	D.O. Meter (f req'd):	(YSI) HACH		
DTW with	80% Rech	arge [(H	13,87 leight of Water	Column x 0.2	0) + DTW]: (9,20		
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	ent Extrac	Waterra Peristaltic tion Pump 	Sampling Method Other	✓ Disposable Bailer Extraction Port Dedicated Tubing		
Z.Z 1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{6.6}{\text{Calculated Vo}}$	_Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp (°F or (Ĉ)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations		
1246	13.4	6.74	899	71000	Z.Z	Steen		
1249	13.6	6.40	884	71000	4.4			
1252	13.7	6,37	880	71000	6.6	+		
				······································				
Did well dev	water?	Yes	Nõ	Gallons actua	lly evacuated:	6.6		
Sampling D	ate: 2/29	115	Sampling Time	: 1510	Depth to Wate	er: 18,92		
Sample I.D.	: mw -	9		Laboratory:	Kiff CalScience	e Other <u>C+T</u>		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Coc		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	d): Pr	e-purge:		mg/L	Post-purge:	0,28 mg/L		
O.R.P. (if re	q'd): Pre	e-purge:		mV	Post-purge:	-43 mV		

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

Project #:	1312	29-	Acz	Client	: 578	FULAR			
Sampler:	AC			Date: 12/29/15					
Well I.D.:	mw-1	0		Well Diameter: 2 3 4 6 8					
Total Well I	Depth (TD): 29	.47	Depth to Water (DTW): 13.70					
Depth to Fre	ee Product	:		Thick	ness of F	ree Product (f	eet):		
Referenced	to:	pvc	Grade	D.O. N	Aeter (if	req'd):	YSI HACH		
DTW with 8	30% Recha	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: (6.64		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	; ; -	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing		
$\frac{2}{1 \text{ Case Volume}}$ (C		3 fied Volun	$= \frac{7.7}{\text{Calculated Vo}}$	_Gals. Iume	Well Diamete 1" 2" 3"	er <u>Multiplier We</u> 0.04 4" 0.16 6" 0.37 Ott	$\begin{array}{c c} 11 \text{ Diameter } & \text{Multiplier} \\ 0.65 & 14.72 \\ 1.47 \\ \text{ner } radius^2 * 0.163 \end{array}$		
Time	Temp (°F or °C)	pH	Cond. (mS or(uS)	1	bidity TUs)	Gals. Removed	d Observations		
1310	12.9	6.43	973.9	32	***	2.4			
13/5	13.9	6.23	823.1	习了		4.8			
1320	(4,)	6.21	823.2	104	<u></u>	7.2			

Did well dev	water?	Yes (No	Gallon	s actuall	y evacuated:	7.2		
Sampling Da	ate: 17/3	29/15	Sampling Time			Depth to Wat	*		
Sample I.D.:	Mw	-10		Labora	tory:	Kiff CalSciend	ce Other CET		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: シビ	ECOC		
EB I.D. (if a	pplicable)	*	@ Time	Duplic	ate I.D. ((if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:			
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Р	ost-purge:	0.74 mg/1		
O.R.P. (if re	q'd): Pr	e-purge:		mV	P	ost-purge:	+231 mV		

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112 (408) 573-0555

Clie	Client: STELCAR					
	Date: 12/29/15					
We	Well Diameter: 2 3 4 6 8					
. 80 Dej	Depth to Water (DTW): 13.58					
	Thickness of Free Product (feet):					
Grade D.C	. Meter (if	req'd):	YSI HACH			
eight of Water Colu	umn x 0.20)) + DTW]:	16.62			
Perist t Extraction P Other	altic ump <u>Well Diamete</u> 1"	0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing			
$= \frac{7 + c}{\text{Calculated Volume}}$	3"	0.37 Othe				
(mS or μ S)	(NTUs)	Gals. Removed 2.4. 4.8 7.2	Observations			
vo Gali	ons actuall	y evacuated: 1	7.2			
Sampling Time:	500	Depth to Wate	r:			
Lab	oratory:	Kiff CalScience	e Other <u>CKT</u>			
MTBE TPH-D Oxy	genates (5)	Other: $S \in E$	600			
@ Dup	licate I.D. ((if applicable):				
		Other:				
r	^{ng} / _L P	ost-purge:	0.32 ^{mg} / _L			
n	nV P	ost-purge:	- 75 mV			
		\Box_{l} \Box_{l} B \Box_{l} <td>$L = L$Date: $(2 / 24 / (5)$Date: $(2 / 24 / (5)$Well Diameter: $(2) 3 4$% Well Diameter: $(2) 3 4$% Well Diameter: $(2) 3 4$Thickness of Free Product (feGradeD.O. Meter (if req'd): (1)Waterra Sampling MethodPeristaticto Extraction PumpOtherOtherWell Diameter: MultiplierWellUnder the straction PumpOtherOtherOtherOtherOtherOtherCond.Turbidity (NTUs)Gals. RemovedCond.Turbidity (NTUs)Gals. RemovedQ (2) 11 12Q (2) 11 2Q (2) 11 2Gallons actually evacuated: AGallons actually evacuated: ASampling Time: $(5 @ O)$Depth to WateLaboratory:Kiff CalScienceMTBE TPH-DOxygenates (5) Other: $5 \in E$@TumeDuplicate I.D. (if applicable):mg/uPost-purge:</td>	$L = L$ Date: $(2 / 24 / (5)$ Date: $(2 / 24 / (5)$ Well Diameter: $(2) 3 4$ % Well Diameter: $(2) 3 4$ % Well Diameter: $(2) 3 4$ Thickness of Free Product (feGradeD.O. Meter (if req'd): (1)Waterra Sampling MethodPeristaticto Extraction PumpOtherOtherWell Diameter: MultiplierWellUnder the straction PumpOtherOtherOtherOtherOtherOtherCond.Turbidity (NTUs)Gals. RemovedCond.Turbidity (NTUs)Gals. RemovedQ (2) 11 12Q (2) 11 2Q (2) 11 2Gallons actually evacuated: A Gallons actually evacuated: A Sampling Time: $(5 @ O)$ Depth to WateLaboratory:Kiff CalScienceMTBE TPH-DOxygenates (5) Other: $5 \in E$ @TumeDuplicate I.D. (if applicable):mg/uPost-purge:			

		W	LL MONIT	ORING DA	TA SHELT			
Project #:	151229	-AC	2	Client: Skellar				
Sampler:	BW			Date: 12/29 (15				
Well I.D.:	mw-12	2		Well Diame	eter: 2 3 4	68		
Total Well I	Depth (TD): 27	3.83	Depth to W	ater (DTW): / 0.	86		
Depth to Fre	ee Product	•	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with 8	80% Recha	urge [(H	ہ 2' eight of Water	Column x 0.	20) + DTW]:	3,45		
Q	Bailer Disposable B Positive Air I Electric Subn	Displaceme	nt Extrac Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	べ Disposable Bailer Extraction Port Dedicated Tubing		
				Well Di	ameter Multiplier Well 0.04 4"	Diameter Multiplier 0.65		
	Gals.) X	3	= 6.3	_Gals. 2"	0.16 6" 0.37 Othe	1.47		
1 Case Volume	Speci	fied Volum	es Calculated Vo					
Time	Temp (°F or Ĉ	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1356	13.7	6.27	681	246	2.1			
1358	13.4	6.20	699	71000	4.2			
1401	13.3	6.17	703	7/000	6.3			
Did well de	water?	Yes .	No)	Gallons acti	ually evacuated:	6.3		
Sampling D	ate: iz/29	115	Sampling Tim	e: 1410	Depth to Wate			
Sample I.D.	: mw	- 12		Laboratory:	Kiff CalScience	e Other <u>C+T</u>		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other: See	Coc		
EB I.D. (if a	applicable)	•	@ Time	Duplicate I.	D. (if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:			
D.O. (if req	'd): Pi	e-purge:		mg/L	Post-purge:	0.45 ^{mg} / _L		
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Post-purge:	+64 mV		

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 270135 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2013-02.
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	270135-001
MW-7	270135-002
MW-8	270135-003
MW-9	270135-004
MW-10	270135-005
MW-11	270135-006
MW-12	270135-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Trag

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>10/05/2015</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 270135 Stellar Environmental Solutions 2013-02. Redwood Regional Park 09/24/15 09/24/15

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/24/15. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low recoveries were observed for gasoline C7-C12 in the MS/MSD of MW-2 (lab # 270135-001); the LCS was within limits, and the associated RPD was within limits. High surrogate recovery was observed for bromofluorobenzene (FID) in MW-11 (lab # 270135-006). No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

High recovery was observed for diesel C10-C24 in the MS for batch 227712; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. No other analytical problems were encountered.

Ion Chromatography (EPA 300.0): No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Carbonaceous BOD (SM5210B):

No analytical problems were encountered.

CT#270135

Chain of Custody Record

						lotouy i	100		u i											job no	<u> </u>
Laboratory <u>Curtis and Tompkins, Ltd.</u>			N	lethod of ShipmentH	and De	elivery													Date	<u>9/2</u>	<u>4//:</u>
Address 2323 Fifth Street Berkeley, California 94710	0		— s	Shipment No						,									Page	•	_ of _
510-486-0900				.irbill No			_				7 7	7					equired				7-
Project OwnerEast Bay Regional Pa	rk Distr	rict	c	ooler No			_				ļ.	3	7	_	7	7	- T			/	1
Site Address 7867 Redwood Road			P	roject ManagerRich	ard Ma	kdisi	-		/	1	/3	\$			/ ,		/	/		' /	
Oakland, California				elephone No. (510) 644			_	/	rillered	ontain	N.	~ ~	/ بد	· /		/	' /	/ /	' /		
Project Name Redwood Regional Pa	irk			ax No (510) 644				1		»/.	8 s	\$/ 9	Š/	/	/	/				/ _	
Project Number 2018402				amplers: (Signature)	int	$\cdot O$	—	/ /	/ <	/ Þ	×~`		/	/ /	' /	/ /	/ /	/ ,		Re	emarks
Field Sample Number Location/ Depth	Date	Time	Sample Type	V		reservation Chemical	- - -/				N			a /							
MW-2	9/24/15	1315	W	MIXED	Cooler	HCI	N	5	X	X	7 2	-	20	{	<u>_</u> {	/ (4	4-			
MW-7	1	1030	~		<u> </u>	HCI/H2SOY	N	8	X	$\left \begin{array}{c} \\ \end{array} \right $	X		X								
MW - 8		1300	W			Hu .	N	5	$\overline{\mathbf{x}}$	5	~	Х			_+					<u> </u>	
MW-9		1205	W			HCI/H2SOY	N	B	X	5	· V	~	$\overline{\mathbf{v}}$	-+							
MW-10		1050	·			HCI	N	5		X	X	X	X		-+						
MW-11		1325	W			Исі	N		N V	\mathbf{S}											
MW-12	V	iios	W	V		HCI/H2SOY	N	5 8	X	$\overleftarrow{\mathbf{X}}$	X	X	X			-+					
						112-9	<u> </u>	-			/	\sim				+	-				
														-+							
															-+-		-				
														-+-	_	_					
										-+		_		-+-		-+	_+			• <u> </u>	
	Date F	Received L	\sim	1/-	Date	Relinquished by	 y:					L	Date	Becei	ived by	 ,					┯.
91	Izylis	Signatu		<u>~ v</u>		Signature						- -			nature						
Printed KUG WHICHARD T	Time	Printed	Ua	Belle CHOID	Time	Printed								.							
Company Stellar Environmental	410	Compan		C PT								- '	ime	Ph	nted						· T
urnaround Time: 5 Day TAT					— <u>i </u>	Company Relinguished by						-			mpany						
Comments: Samples on ice						Signature						. ^D	ate	Receiv Sigi	ved by: nature						D
					···· ··· ·	Brints d								- '9'							
				· · · · · · · · · · · · · · · · · · ·		Printed						· TI	me	Prin	nted	_	_				Ti
						Company								Con	npany						1

★ Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

3 of 37

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # $\frac{276135}{\text{Client}}$ Date Received $\frac{9/21}{2013}$	Number of coolers $\boxed{2}$
Date Opened $\frac{9/24}{124}$ By (print) $T_1B_2B_3$ (sign) Date Logged in $\frac{9/24}{124}$ By (print) $T_1D_2B_3$ (sign)	THO BA
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How manyName	_ Date YES NO N/A YES NO YES NO of form) (YES) NO
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:* Notify PM if temperature exercise	☐ None ☐ Paper towels ceeds 6°C
Type of ice used: 🛛 Wet 🗌 Blue/Gel 🗌 None	Temp(°C)
Type of ice used: ⊠ Wet □ Blue/Gel □ None □ Samples Received on ice & cold without a temperature bl	
Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p	ank; temp. taken with IR gun process had begun
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p Were Method 5035 sampling containers present? 	ank; temp. taken with IR gun process had begun YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 	ank; temp. taken with IR gun process had begun YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? Did all bottles arrive unbroken/unopened? 	ank; temp. taken with IR gun process had begun YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? Did all bottles arrive unbroken/unopened? Are there any missing / extra samples? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 	ank; temp. taken with IR gun process had begun YES NO YES NO YES NO YES NO YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 	ank; temp. taken with IR gun process had begun YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 	ank; temp. taken with IR gun process had begun YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 	ank; temp. taken with IR gun process had begun YES NO YES NO
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 	ank; temp. taken with IR gun process had begun YES NO YES N
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 	ank; temp. taken with IR gun process had begun YES NO YES N
 Samples Received on ice & cold without a temperature bl Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 	ank; temp. taken with IR gun process had begun YES NO YES NO

Rev 10, 9/12

Curtis & Tompkins Sample Preservation for 270135

<u>Sample pH:</u>	<2	>9	>12	Other
-002a b c d e f g h		[] [] [] [] [] []	[] [] [] [] [] []	
-004a b c d e f g h		[] [] [] [] [] []	[] [] [] [] [] []	
-007a b c d e f g h		[] [] [] [] [] []	[] [] [] [] [] [] []	

5 of 37

Page 1 of 1

Detections Summary for 270135

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions Project : 2013-02. Location : Redwood Regional Park

Client Sample ID : MW-2

Laboratory Sample ID :

Laboratory Sample ID :

270135-001

270135-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	790	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Toluene	0.60		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	3.3		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	980	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-7

Analyte Result Flags RL Units Basis IDF Method Prep Method Gasoline C7-C12 6,800 Υ 50 uq/L As Recd 1.000 EPA 8015B EPA 5030B Ethylbenzene 85 As Recd 1.000 EPA 8021B EPA 5030B 0.50 uq/L o-Xylene 2.1 0.50 ug/L As Recd 1.000 EPA 8021B EPA 5030B Diesel C10-C24 2,800 Υ 50 As Recd 1.000 EPA 8015B EPA 3520C ug/L 2.2 0.50 1.000 EPA 300.0 METHOD Sulfate mg/L TOTAL Biochemical Oxygen Demand 5.0 TOTAL 1.000 SM5210B METHOD 6.2 mq/L TOTAL 1.000 SM5220D Chemical Oxygen Demand 35 10 mg/L METHOD

Client Sample ID : MW-8

Laboratory Sample ID :

270135-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	6.0		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	97	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-9

Laboratory Sample ID :

270135-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	3,000	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	46	С	2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Benzene	25	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	59		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	2.6	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	950	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	9.8		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	5.0		5.0	mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	33		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sar	mple ID : 1	MW-10	Laboratory Sample ID : 270135-005							
Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method		
MTBE	2.6		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B		

Client Sample ID : MW-11

Laboratory Sample ID :

270135-006

Analyte	Result	Flags		Units							Method
Gasoline C7-C12	2,500	Y	50	ug/L	As R	lecd	1.000	EPA	8015B	EPA	5030B
MTBE	24	С	2.0	ug/L	As R	lecd	1.000	EPA	8021B	EPA	5030B
Ethylbenzene	25		0.50	ug/L	As R	lecd	1.000	EPA	8021B	EPA	5030B
Diesel C10-C24	1,800	Y	50	ug/L	As R	lecd	1.000	EPA	8015B	EPA	3520C

Client Sample ID : MW-12

Laboratory Sample ID :

270135-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	91	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	42		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Chemical Oxygen Demand	33		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Curtis a	& Tompkins Labo	ratories Ar	nalytical	Report	
Lab #: 270135 Client: Stellar Environme Project#: 2013-02.	ntal Solutions	Location: Prep:	EPA !	ood Regional Park 5030B	
Matrix: Water Units: ug/L Diln Fac: 1.000		Batch#: Sampled: Received:	22764 09/24 09/24	4/15	
Field ID: MW-2 Type: SAMPLE		Lab ID: Analyzed:	2701: 09/28	35-001 8/15	
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	790 Y ND ND 0.60 ND ND 3.3		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogate	%REC Limits	Analy	sis		
Bromofluorobenzene (FID) Bromofluorobenzene (PID)	126 80-132 108 71-141	EPA 8015B EPA 8021B			
Field ID: MW-7 Type: SAMPLE		Lab ID: Analyzed:	2701 09/2	35-002 9/15	
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	6,800 Y ND ND ND 85 ND 2.1		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogate	%REC Limits	Analy	ala		

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	125	80-132	EPA 8015B	
Bromofluorobenzene (PID)	112	71-141	EPA 8021B	

Field ID: Type:	MW-8 SAMPLE		Lab ID: Analyzed:		135-003 28/15	
I	Analyte	Result		RL	Analysis	
Gasoline C7-	-C12	ND		50	EPA 8015B	
MTBE		б.	0	2.0	EPA 8021B	
Benzene		ND		0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzene	2	ND		0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xylene		ND		0.50	EPA 8021B	
Su	irrogate	%REC Limit	s Analys	sis		

Bromofluorobenzene (FID) 111 80-132 EPA 8015B 71-141 Bromofluorobenzene (PID) 107 EPA 8021B

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	270135	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	-					
Matrix:	Water	Batch#:	227642				
Units:	ug/L	Sampled:	09/24/15				
Diln Fac:	1.000	Received:	09/24/15				

Field ID: Type:	MW-9 SAMPLE		Lab ID: Analyzed:	270135-004 09/28/15	
Ana	lyte	Result	I	RL	Analysis
Gasoline C7-C1	2	3,000 Y		50 EPA	8015B
MTBE		46 C		2.0 EPA	8021B
Benzene		25 C		0.50 EPA	8021B
Toluene		ND		0.50 EPA	8021B
Ethylbenzene		59		0.50 EPA	8021B
m,p-Xylenes		2.6	С	0.50 EPA	8021B
o-Xylene		ND		0.50 EPA	8021B

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	125	80-132	EPA 8015B	
Bromofluorobenzene	(PID)	110	71-141	EPA 8021B	

Field ID: Type:	MW-10 SAMPLE		Lab ID: Analyzed		135-005 28/15	
Ana Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Lyte	Resu ND ND ND ND ND ND ND	1 t 2.6	RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis EPA 8015B EPA 8021B EPA 8021B	
Surro Bromofluorobenz Bromofluorobenz Field ID: Type:		113 80-	1115 Ana 132 EPA 8015E 141 EPA 8021E Lab ID: Analyzed	2701	L35-006 28/15	
Ana Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Lyte	ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis EPA 8015B EPA 8021B EPA 8021B	

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	138 *	80-132	EPA 8015B	
Bromofluorobenzene	(PID)	113	71-141	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: Client: Project#:	270135 Stellar Environmental Solutions 2013-02.	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Sampled: Received:	227642 09/24/15 09/24/15

Field ID: Type:	MW-12 SAMPLE		Lab ID: Analyzed:	270135 09/28/		
Anal	lyte	Result	F	sг		Analysis
Gasoline C7-C12	2	ND		50	EPA	8015B
MTBE		ND		2.0	EPA	8021B
Benzene		ND		0.50	EPA	8021B
Toluene		ND		0.50	EPA	8021B
Ethylbenzene		ND		0.50	EPA	8021B
m,p-Xylenes		ND		0.50	EPA	8021B
o-Xylene		ND		0.50	EPA	8021B

Surrogate	3	%REC	Limits	Analysis
Bromofluorobenzene	(FID)	115	80-132	EPA 8015B
Bromofluorobenzene	(PID)	104	71-141	EPA 8021B

Type: Lab ID:	BLANK QC805510		Analyzed:	09/:	28/15	
	Analyte	Result		RL	Analysis	
Gasoline C7	-C12	ND		50	EPA 8015B	
MTBE		ND		2.0	EPA 8021B	
Benzene		ND		0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzene	e	ND		0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xylene		ND		0.50	EPA 8021B	
	urrogato	PEC Limita	۸nolura	: _		

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	111	80-132	EPA 8015B	
Bromofluorobenzene	(PID)	103	71-141	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	270135	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC805509	Batch#:	227642				
Matrix:	Water	Analyzed:	09/28/15				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	925.1	93	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	112	80-132

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 270135		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B			
Project#: 2013-0	2.	Analysis:	EPA 8015B			
Field ID:	MW-2	Batch#:	227642			
MSS Lab ID:	270135-001	Sampled:	09/24/15			
Matrix:	Water	Received:	09/24/15			
Units:	ug/L	Analyzed:	09/29/15			
Diln Fac:	1.000					

Type: MS		Lab ID:	QC805511	
Analyte	MSS Result	Spiked	Result	%REC Limits
Gasoline C7-C12	792.5	2,000	2,137	67 * 76-120
Surrogate	%REC Limits			
Bromofluorobenzene (FI	D) 119 80-132			

Type:	MSD			Lab ID:	QC805512				
	Analyte		Spiked	Resu	ilt %F	REC	Limits	RPD	Lim
Gasoline (C7-C12		2,000	2,08	35 65	*	76-120	2	20
	Surrogate	%REC	Limits						
Bromofluor	robenzene (FID)	118	80-132						

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	270135	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	227642				
Units:	ug/L	Analyzed:	09/28/15				
Diln Fac:	1.000						

Type:

BS

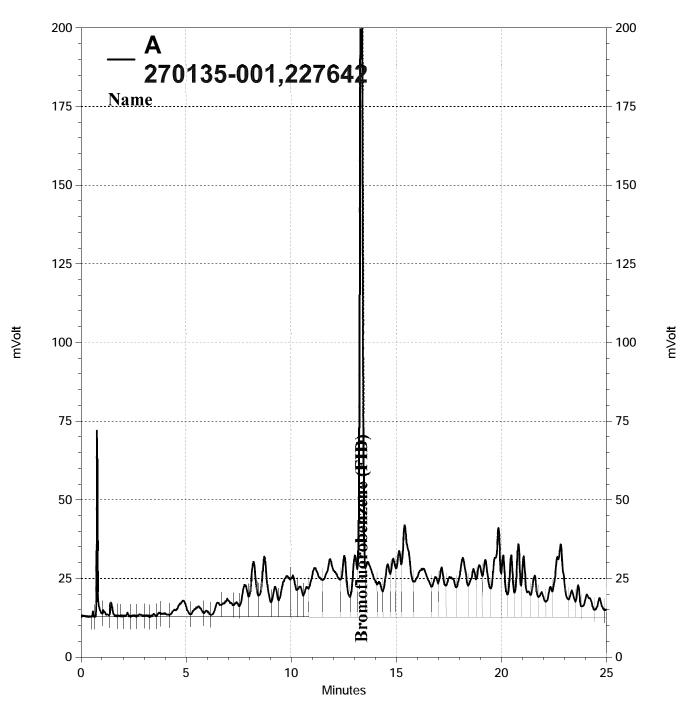
Lab ID:

QC805513

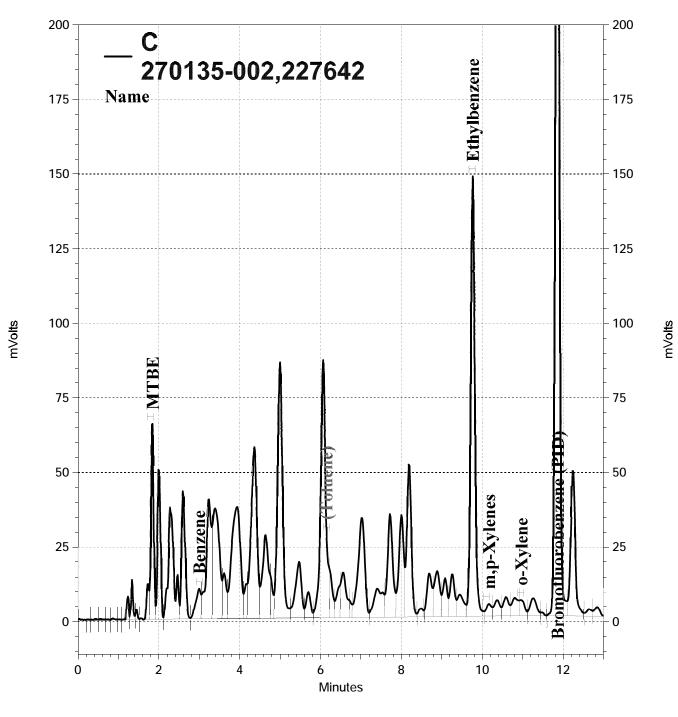
Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.866	99	74-137
Benzene	10.00	10.74	107	80-120
Toluene	10.00	8.826	88	80-120
Ethylbenzene	10.00	8.954	90	80-120
m,p-Xylenes	10.00	8.968	90	80-120
o-Xylene	10.00	10.94	109	80-120

Surrogate	%REC	Limits
Bromofluorobenzene	99	71-141

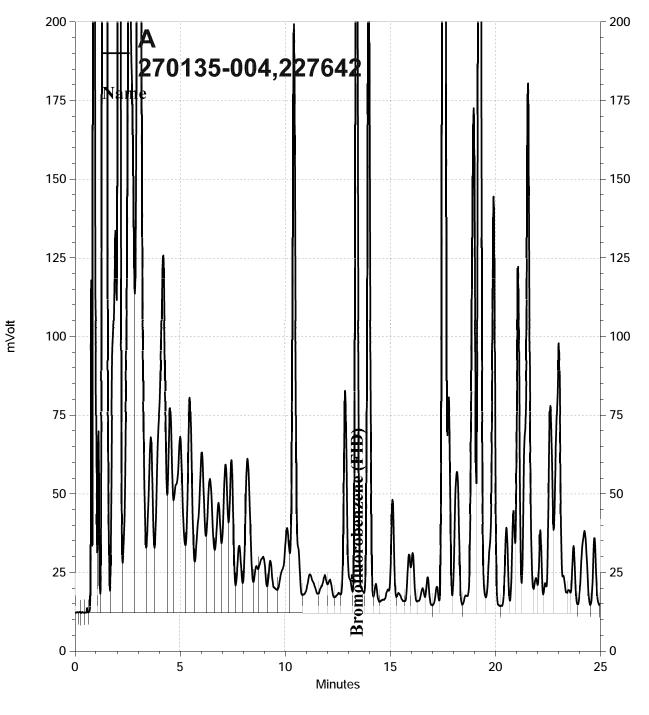
Type:

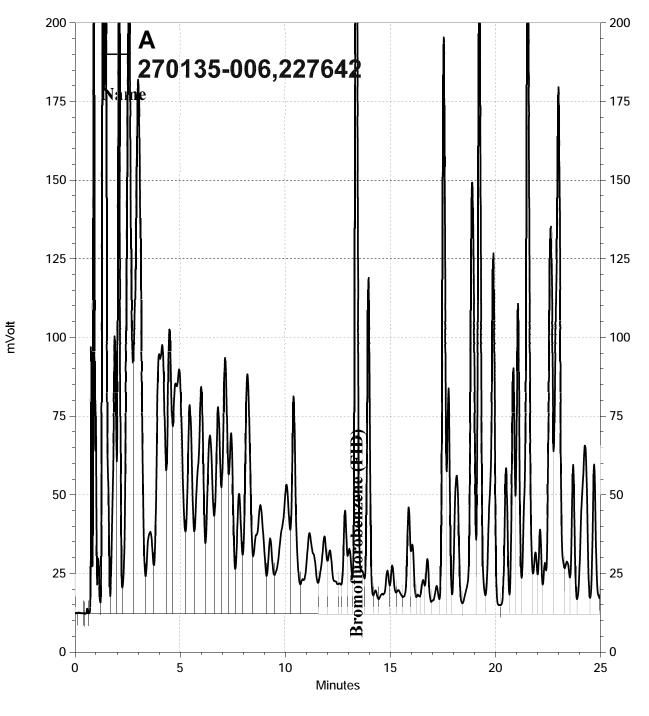

BSD

Lab ID:

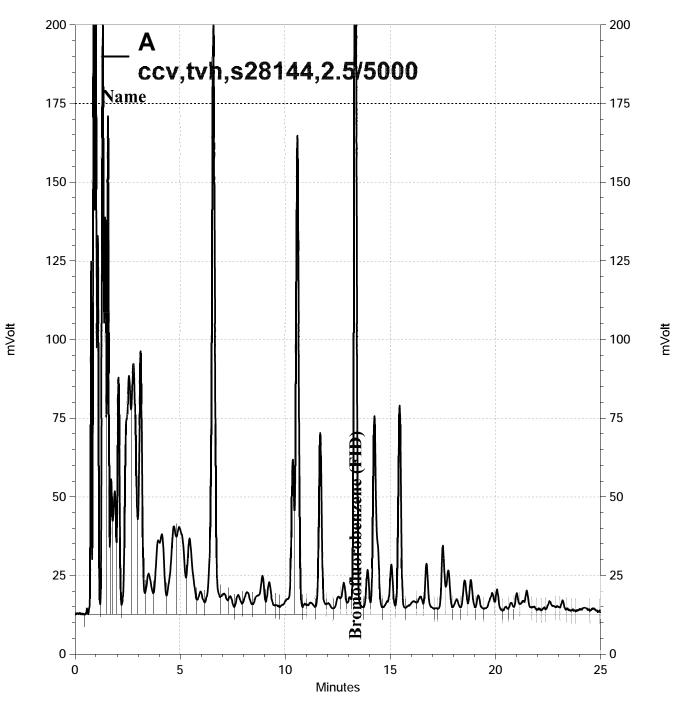

QC805514

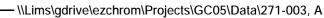
Spiked	Result	%REC	Limits	RPD	Lim
20.00	19.92	100	74-137	1	37
20.00	19.70	98	80-120	9	20
20.00	19.83	99	80-120	12	20
20.00	19.66	98	80-120	9	20
20.00	20.90	104	80-120	15	20
20.00	20.26	101	80-120	8	20
	20.00 20.00 20.00 20.00	20.00 19.70 20.00 19.83 20.00 19.66 20.00 20.90 20.00 20.26	20.0019.709820.0019.839920.0019.669820.0020.9010420.0020.26101	20.0019.709880-12020.0019.839980-12020.0019.669880-12020.0020.9010480-12020.0020.2610180-120	20.0019.709880-120920.0019.839980-1201220.0019.669880-120920.0020.9010480-1201520.0020.2610180-1208


Surrogate	%REC	Limits
Bromofluorobenzene (PID)	106	71-141


14 of 37

15 of 37




mVolt

- \\Lims\gdrive\ezchrom\Projects\GC05\Data\271-024, A

mVolt

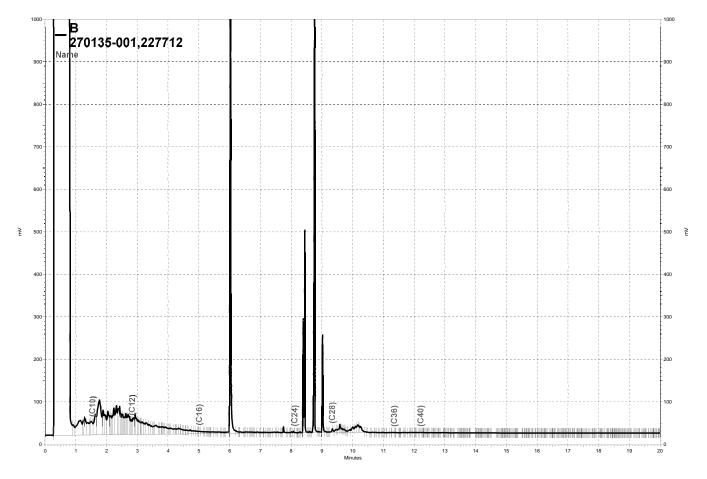
		Total Extract	able Hydroc	arbons	
Lab #: Client: Project#: Matrix: Units: Diln Fac: Batch#:	270135 Stellar Environmen 2013-02. Water ug/L 1.000 227712	tal Solutions	Location: Prep: Analysis: Sampled: Received: Prepared:	Redwood Re EPA 3520C EPA 8015B 09/24/15 09/24/15 09/29/15	gional Park
Field ID: Type:	MW-2 SAMPLE		Lab ID: Analyzed:	270135-001 09/30/15	
Diesel Cl	Analyte 0-C24	Result 980 Y		RL 50	
o-Terphen	Surrogate yl	%REC Limits 103 67-136			
Field ID: Type:	MW-7 SAMPLE		Lab ID: Analyzed:	270135-002 09/30/15	
Diesel Cl	Analyte 0-C24	Result 2,800 Y		RL 50	
o-Terphen	Surrogate yl	%REC Limits 98 67-136			
Field ID: Type:	MW-8 SAMPLE		Lab ID: Analyzed:	270135-003 09/30/15	
Diesel Cl	Analyte 0-C24	Result 97 Y		RL 50	
o-Terphen	Surrogate yl	%REC Limits 92 67-136			
Field ID: Type:	MW-9 SAMPLE		Lab ID: Analyzed:	270135-004 09/30/15	
Diesel Cl	Analyte 0-C24	Result 950 Y		RL 50	
o-Terphen	Surrogate yl	%REC Limits 87 67-136			
Field ID: Type:	MW-10 SAMPLE		Lab ID: Analyzed:	270135-005 09/30/15	
Diesel Cl	Analyte 0-C24	Result ND		RL 50	
o-Terphen	Surrogate yl	%REC Limits 105 67-136			

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

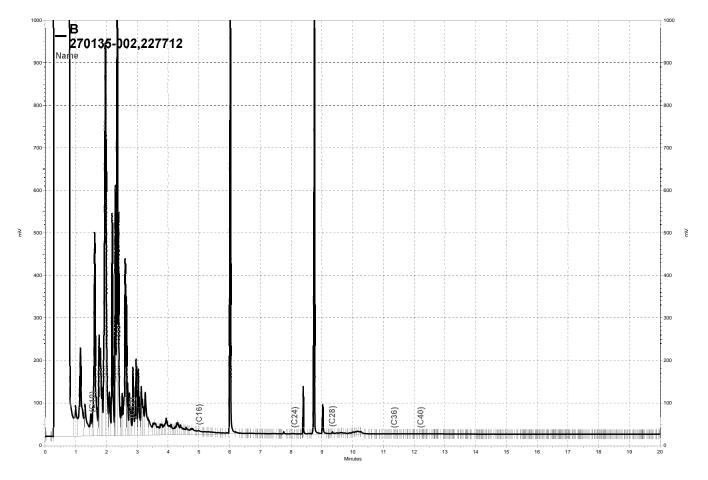
Page 1 of 2

	То	tal Ext	ractal	ble Hydroc	arboi	າຮ
Project#: 2013	lar Environmental	Solution	ıs	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 227712			Sampled: Received: Prepared:		09/24/15 09/24/15 09/29/15
Field ID: Type:	MW-11 SAMPLE			Lab ID: Analyzed:		270135-006 09/30/15
Ana Diesel C10-C24	lyte		sult 300 Y		RL 50	
o-Terphenyl	rogate		imits 7-136			
Field ID: Type:	MW-12 SAMPLE			Lab ID: Analyzed:		270135-007 09/30/15
Ana Diesel C10-C24	lyte	Res	sult 91 Y		RL 50	
o-Terphenyl	rogate		imits 7-136			
Type: Lab ID:	BLANK QC805794			Analyzed:		10/01/15
Ana Diesel C10-C24	lyte	Res ND	sult		RL 50	
Surr o-Terphenyl	rogate		imits 7-136			

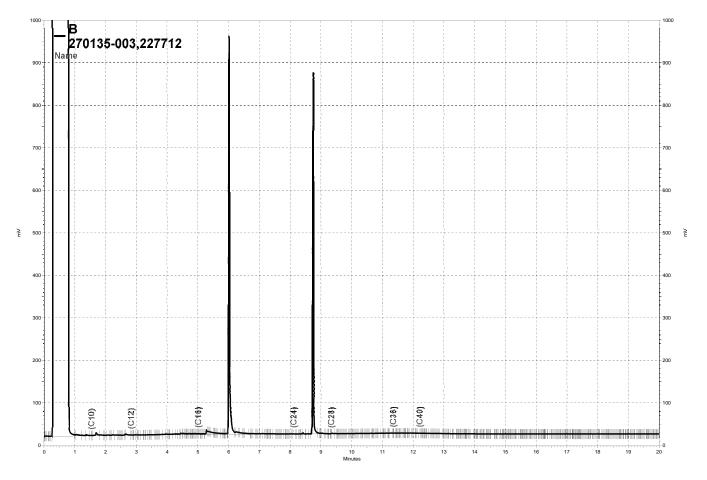
Total Extractable Hydrocarbons								
Lab #:	270135	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C					
Project#:	2013-02.	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC805795	Batch#:	227712					
Matrix:	Water	Prepared:	09/29/15					
Units:	ug/L	Analyzed:	09/30/15					

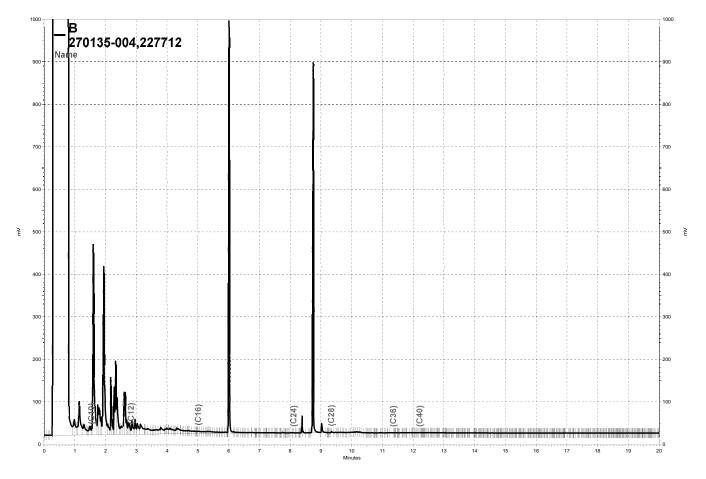

Cleanup Method: EPA 3630C

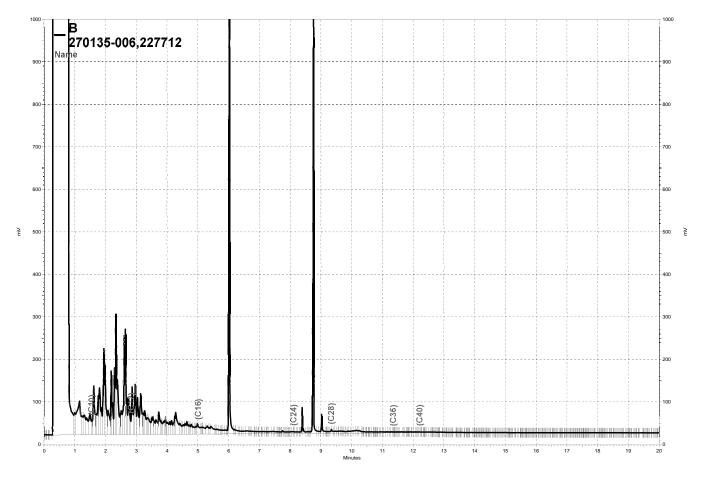
Spiked		Result	%REC	Limits
2,500		1,990	80	60-121
%REC	Limits			
96	67-136			
	%REC	2,500 %REC Limits	2,500 1,990 %REC Limits	2,500 1,990 80 %REC Limits

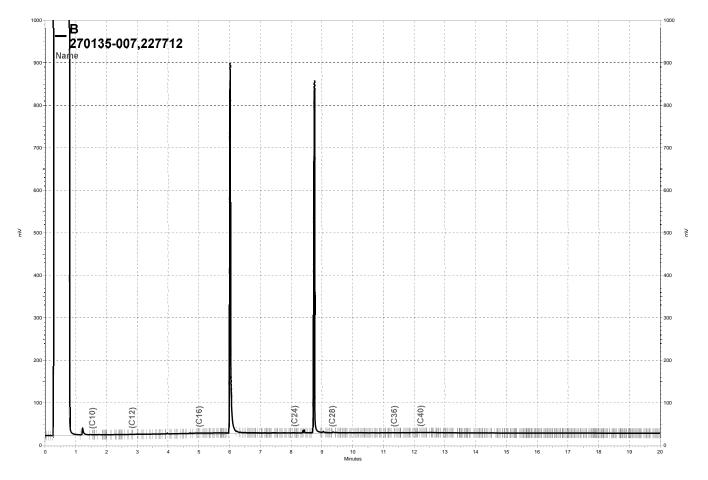


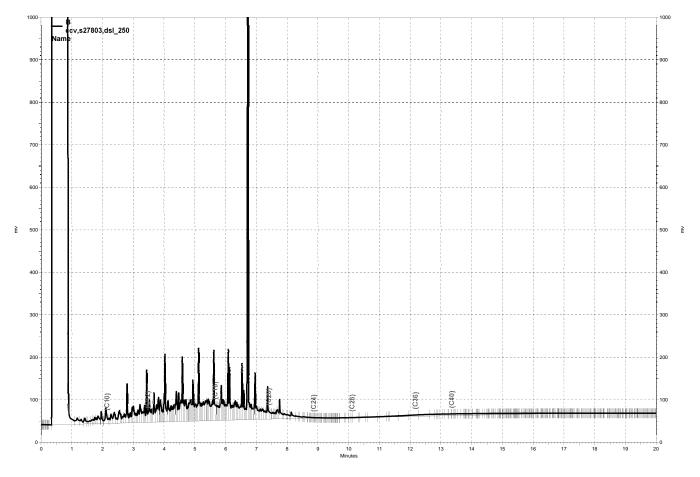
Total Extractable Hydrocarbons											
Lab #: 27013	Lab #: 270135					Redwood Regio	onal Park				
Client: Stell						EPA 3520C					
Project#: 2013-			Analysis:		EPA 8015B						
Field ID:	ZZZZZZZZZZ			Batch#:		227712					
MSS Lab ID:	270037-001			Sampled:		09/21/15					
Matrix:	Water			Received:		09/22/15					
Units:	ug/L			Prepared:		09/29/15					
Diln Fac:	1.000			Analyzed:		10/02/15					
Type: Analy Diesel C10-C24	MS te	MSS Res		Lab ID: Spiked 2,500		QC805796 Result 6,113	% REC 135 *	Limi			
				_,		-,					
	ogate	%REC	Limits								
o-Terphenyl		111	67-136								
Type:	MSD			Lab ID:		QC805797					
Ana	lyte		Spiked		Result	%REC	Limits	RPD	Lim		
Diesel C10-C24			2,500		5,652	116	55-122	8	53		
Surro	ogate	%REC	Limits								
o-Terphenyl		106	67-136								


*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b023, B


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b022, B


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b021, B


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b020, B

-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b018, B

-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\273b017, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\273b050, B

	Curtis & To	ompkins Labor	atories Ana	alytical Report
Lab #:	270135		Location:	Redwood Regional Park
Client:	Stellar Environmental	Solutions	Prep:	METHOD
Project#:	2013-02.		Analysis:	EPA 300.0
Matrix:	Water		Batch#:	227538
Units:	mg/L		Received:	09/24/15
Diln Fac:	1.000			
Field ID:	MW-7		Sampled:	09/24/15 10:30
Type:	SAMPLE		Analyzed:	09/24/15 14:25
Lab ID:	270135-002			
	Analyte	Result		RL
Nitrogen,		ND		0.05
Sulfate		2.2		0.50
Field ID: Type: Lab ID:	MW-9 SAMPLE 270135-004		Sampled: Analyzed:	09/24/15 12:05 09/24/15 15:00
	Analyte	Result		RL
Nitrogen,		ND		0.05
Nitrogen, Sulfate				
Sulfate	Nitrate	ND	Sampled:	0.05 0.50
Sulfate Field ID:	Nitrate MW-12	ND	Sampled:	0.05 0.50 09/24/15 11:05
Sulfate	Nitrate MW-12 SAMPLE	ND	Sampled: Analyzed:	0.05 0.50
Sulfate Field ID: Type:	Nitrate MW-12	ND		0.05 0.50 09/24/15 11:05
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 270135-007 Analyte	ND 9.8 Result		0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL
Sulfate Field ID: Type: Lab ID: Nitrogen,	Nitrate MW-12 SAMPLE 270135-007 Analyte	ND 9.8 Result ND		0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL 0.05
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 270135-007 Analyte	ND 9.8 Result		0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL
Sulfate Field ID: Type: Lab ID: Nitrogen,	Nitrate MW-12 SAMPLE 270135-007 Analyte	ND 9.8 Result ND		0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL 0.05
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 270135-007 Analyte Nitrate BLANK	ND 9.8 Result ND	Analyzed:	0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL 0.05 0.50
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 270135-007 Analyte Nitrate BLANK QC805093 Analyte	ND 9.8 Result ND 42	Analyzed:	0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL 0.05 0.50 09/24/15 10:51
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 270135-007 Analyte Nitrate BLANK QC805093 Analyte	ND 9.8 Result ND 42 Result	Analyzed:	0.05 0.50 09/24/15 11:05 09/24/15 15:35 RL 0.05 0.50 09/24/15 10:51 RL

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report								
Lab #:	270135	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	METHOD					
Project#:	2013-02.	Analysis:	EPA 300.0					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC805094	Batch#:	227538					
Matrix:	Water	Analyzed:	09/24/15 11:08					
Units:	mg/L							

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	0.9908	99	80-120
Sulfate	10.00	10.30	103	80-120

Curtis & T	ompkins Labor	atories Analyt	ical Report			
Lab #: 270135		Location:	Redwood Regio	nal Park		
Client: Stellar Environmenta	l Solutions	Prep:	METHOD			
Project#: 2013-02.		Analysis:	EPA 300.0			
Field ID: ZZZZZZZZZ		Diln Fac:	5.000			
MSS Lab ID: 270140-001		Batch#:	227538			
Matrix: Water		Sampled:	09/24/15 07:4	5		
Units: mg/L		Received:	09/24/15			
Type: MS Lab ID: QC805158 Analyte	MSS Result	Analyzed: Spiked	09/25/15 05:4 Result	%REC	Lim	
Nitrogen, Nitrate	4.063	2.500	6.363	92	80-	120
Sulfate	25.26	25.00	48.77	94	80-	120
Type: MSD Lab ID: QC805159		Analyzed:	09/25/15 06:0	5		
Analyte	Spiked	Result	t %REC	Limits	RPD	Lim
Nitrogen, Nitrate	2.500	E E	.389 93	80-120	0	20
NICIOGEN, NICIALE	2.500	0	. 50 55	00 120	0	

Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 270135	Location:	Redwood Regional Park
Client: Stellar Environmental Solutions	Prep:	METHOD
Project#: 2013-02.	Analysis:	EPA 300.0
Field ID: ZZZZZZZZZ	Diln Fac:	5.000
Type: SSPIKE	Batch#:	227538
MSS Lab ID: 270140-002	Sampled:	09/24/15 10:39
Lab ID: QC805160	Received:	09/24/15
Matrix: Water	Analyzed:	09/25/15 06:23
Units: mg/L		

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	2.033	2.500	4.392	94	80-120
Sulfate	14.36	25.00	38.83	98	80-120

Biochemical Oxygen Demand									
Lab #:	270135	Location:	Redwood Regiona	al Park					
Client:	Stellar Environmental Solutions	Prep:	METHOD						
Project#:	2013-02.	Analysis:	SM5210B						
Analyte:	Biochemical Oxygen Demand	Batch#:	227592						
Matrix:	Water	Received:	09/24/15						
Units:	mg/L	Prepared:	09/25/15 16:40						
Diln Fac:	1.000	Analyzed:	09/30/15 15:05						
Fie	ld ID Type Lab ID	Result	RL	Sampled					

Field ID	Type	Lab ID	Result	RL	Sampled
MW-7	SAMPLE	270135-002	6.2	5.0	09/24/15 10:30
MW-9	SAMPLE	270135-004	5.0	5.0	09/24/15 12:05
MW-12	SAMPLE	270135-007	ND	5.0	09/24/15 11:05
	BLANK	QC805303	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Environmental Solutions	Location: Prep:	Redwood H	Regior	nal Park		
	Prep:	MERICOR				
		METHOD				
	Analysis:	SM5210B				
Biochemical Oxygen Demand	Batch#:	227592				
ZZZZZZZZZ	Sampled:	09/24/15	08:05	5		
270112-001	Received:	09/24/15				
later	Prepared:	09/25/15	16:40)		
ng/L	Analyzed:	09/30/15	15:05	5		
.000						
MSS Result Spiked	Result	RL ⁹	REC	Limits	RPD	Lim
	2222222222 270112-001 Jater ng/L 000	Analysis:Biochemical Oxygen DemandBatch#:Biochemical Oxygen DemandBatch#:Batch#:Sampled:Biochemical Oxygen DemandReceived:Batch#:Received:Biochemical Oxygen DemandReceived:Biochemical Oxygen DemandReceived:Biochemical Oxygen DemandReceived:Biochemical Oxygen DemandReceived:Biochemical Oxygen DemandPrepared:Analyzed:Analyzed:000Result	Analysis:SM5210BBiochemical Oxygen DemandBatch#:227592SZZZZZZZZZSampled:09/24/15270112-001Received:09/24/15VaterPrepared:09/25/15ng/LAnalyzed:09/30/15.000SpikedResult	Analysis: SM5210B Biochemical Oxygen Demand Batch#: 227592 SZZZZZZZZ Sampled: 09/24/15 08:05 270112-001 Received: 09/24/15 Vater Prepared: 09/25/15 16:40 ng/L Analyzed: 09/30/15 15:05	Analysis: SM5210B Biochemical Oxygen Demand Batch#: 227592 SZZZZZZZZZ Sampled: 09/24/15 08:05 270112-001 Received: 09/24/15 Vater Prepared: 09/25/15 16:40 ng/L Analyzed: 09/30/15 15:05 .000 Result REC Limits	Analysis: SM5210B Biochemical Oxygen Demand Batch#: 227592 SZZZZZZZZ Sampled: 09/24/15 270112-001 Received: 09/24/15 Vater Prepared: 09/25/15 ng/L Analyzed: 09/30/15 .000 Spiked Result MSS Result Spiked Result

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC805304		198.0	203.2		103	85-115		
BSD	QC805305		198.0	204.7		103	85-115	1	20
SDUP	QC805306	68.60		68.50	5.000			0	26

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

Chemical Oxygen Demand										
Lab #:	270135			Location:	Redwood Regiona	al Park				
Client:	Stellar Environmenta	al Solutions		Prep:	METHOD					
Project#:	2013-02.			Analysis:	SM5220D					
Analyte:	Chemical Oxy	gen Demand		Diln Fac:	1.000					
Matrix:	Water			Batch#:	227518					
Units:	mg/L			Received:	09/24/15					
Field ID	Type Lab ID	Result	RL	Sampled	Prepared	Analyzed				
MW-7	SAMPLE 270135-002	35	10	09/24/15 10:30	09/24/15 16:00	09/24/15 18:00				

Field ID	туре	Lad ID	Result	RL	Sampled	Prepared	Analyzed
MW-7	SAMPLE	270135-002	35	10	09/24/15 10:30	09/24/15 16:00	09/24/15 18:00
MW-9	SAMPLE	270135-004	33	10	09/24/15 12:05	09/24/15 16:00	09/24/15 18:00
MW-12	SAMPLE	270135-007	33	10	09/24/15 11:05	09/24/15 16:00	09/24/15 18:00
	BLANK	QC805017	ND	10		09/24/15 11:00	09/24/15 13:00

ND= Not Detected RL= Reporting Limit Page 1 of 1

QC805020

MSD

			Chemical (Oxygen Demand	1					
Lab #:	270135			Location:	Red	lwood Reg	ional	L Parl	۲.	
Client:	Stella	r Environmental	Solutions	Prep:	MET	HOD				
Project#	: 2013-0	2.		Analysis:	SM5	220D				
Analyte:		Chemical Oxyger	ı Demand	Batch#:	227	518				
Field ID	:	ZZZZZZZZZZ		Sampled:	09/	22/15 13	:21			
MSS Lab	ID:	270039-003		Received:	09/	22/15				
Matrix:		Water		Prepared:	09/	09/24/15 11:00				
Units:		mg/L		Analyzed:	09/	24/15 13	:00			
Type L	ab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim 1	Diln Fa	ac
LCS QC	805018		50.00	51.36	103	90-110		-	1.000	
MS QC	805019	<10.00	200.0	197.7	99	57-126		4	4.000	

210.5

105

57-126

б

20 4.000

and setting to the

H

Laboratory Job Number 272774 ANALYTICAL REPORT

Stellar Environmental Solutions	F
2198 6th Street	I
Berkeley, CA 94710	I

Project : 2013-02. Location : Redwood Regional Park Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-7	272774-001
MW-9	272774-002
MW-10	272774-003
MW-11	272774-004
MW-12	272774-005

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>01/06/2016</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 272774 Stellar Environmental Solutions 2013-02. Redwood Regional Park 12/29/15 12/29/15

This data package contains sample and QC results for five water samples, requested for the above referenced project on 12/29/15. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recoveries were observed for bromofluorobenzene (FID) in MW-11 (lab # 272774-004) and the MS of MW-7 (lab # 272774-001). MW-9 (lab # 272774-002) was diluted due to client history of high non-target or organic acid interference. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):
No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Carbonaceous BOD (SM5210B):

No analytical problems were encountered.

							272	77	1														
						Chain of				eco	rd											no	
	Laboratory <u>Curtis and Tom</u> Address <u>2323 Fifth Stree</u>													د د							Page	1 ,	2 <u>1/15</u> 1. of
	Berkeley, Califo	ornia 9471)			ipment No							7 7	<u>رال</u>	`		A a k	unin De					
	510-486-0900				Air	bill No						/ ,	/ /	5			Anar	ysis Re	equirea			/	
	Project Owner _ East Bay R	egional Pa	rk Distr	ict		oler No						/		0/	/	/	/	/	/	/	/ /		
	Site Address	ood Road				oject Manager <u>Richa</u> lephone No. <u>(</u> 510) 644-		lisi			Filtered	No. of Contained	alu Nu	/ /	/	/ /	4	/ /	/ /	/ /		/	
						(510) 644-	2850				🖺	\$; ;	4/			V	γ		/			Rema	arks
	Project NameRedwood F Project Number2013-02	egional Pa	ark		Fax	x No(510) 644- mplers: <i>(Signature)</i>	3639 1	72	5.2		-/	*/`	\$ 9		Ś	⁷ (\$	Ŋ	a	/ /	/ /			
	Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container		ervation Chem				Hal	Trout 45	/÷	s. S. S. S.		3/(9					
۱	nw-7		12/24	14:05	WG	MIX	X	MI	X		8 >	<u> </u>		×	λ	×	x						
2	mw-9			15:0			X				8 ×	(×		$ \mathcal{N} $	X	×	X						
3	MW-10 .			1335			X				<u>5</u> ×	×											
Ц	MW-11 MW-12			1500			×				5 >	/											
5	MW-12			H.D			×				8 2	、 、		X	×	×	×						
				 														-					
																		\vdash		-			
																					<u> </u>		
	Relinquished by: Signature	·	Date 7/24/ 13		ture <u>1</u>		Date 12124115		uished by	r:				_	Date		ı eceive Signa			.			Date
	Printed ALEX CARL BTS Stellar Environ		Time /643	Printe	C	na Ali 14T	Time		nted					_	Time		Printe	ed					- Time
	Turnaround Time: <u>5 Day TAT</u> Comments: Samples on ic	ce		· · · · · · · · · · · · · · · · · · ·		·			uished by nature	<i>ן</i> :					Date		eceive Signa	-					Date -
<u> 0-01</u>							-	Prir	nted						Time		Printe	ed					- Time
2000-00-01								Co	mpany								Com	pany _					-

 \star Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

3 of 31

COOLER RECEIPT CHECKLIST

CUTIS & Tompkins, Ltd.	
------------------------	--

Login # 27274 Date Received 1272115 Number of c	coolers Z
Client East Bay Regional Park Dist Project Reduced Regional	Park
Date Opened 12 /2 c By (print) (+) (sign)	101
Date Opened 12/29 By (print) CJN (sign) Image: Compare the second	~~
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	_YES 🔊
2A. Were custody seals present? □ YES (circle) on cooler on samp How many Name Date	les 🔊 NO
2B. Were custody seals intact upon arrival?	YES NO WA
3. Were custody papers dry and intact when received?	YES NO
4. Were custody papers filled out properly (ink, signed, etc)?	NO NO
5. Is the project identifiable from custody papers? (If so fill out top of form)6. Indicate the packing in cooler: (if other, describe)	Y BS NO
□ Bubble Wrap □ Foam blocks Ø Bags □ No □ Cloth material □ Cardboard □ Styrofoam □ Pag	per towels
7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used:	18.05
\square Temperature blank(s) included? \square Thermometer# \square IR G	•
Samples received on ice directly from the field. Cooling process had be	-
8. Were Method 5035 sampling containers present?	YES 👀
If YES, what time were they transferred to freezer?9. Did all bottles arrive unbroken/unopened?	VES NO
9. Did all bottles arrive unbroken/unopened?	YES NO
11. Are samples in the appropriate containers for indicated tests?	YES NO
12. Are sample labels present, in good condition and complete?	YES NO
13. Do the sample labels agree with custody papers?	YES NO
14. Was sufficient amount of sample sent for tests requested?	YES NO
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved?	YES NO YES NO TO N/A
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample?	YES NO YES NO TS NO N/A ES NO N/A
 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# HQ1230K) 	YES NO YES NO NO N/A ES NO N/A ES NO N/A
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# HQ12308) 18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO YES NO NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO Y/A
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# HC/1230K) (18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores?	YES NO YES NO NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO N/A
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# HQ1230K) 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery?	ES NO NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO M/A ES NO M/A ES NO M/A
14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# HQ1230K) 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery?	YES NO YES NO NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO N/A ES NO N/A

Rev 12, 12/01/15

4 of 31

<u>Sample</u> pH: -001a b c d e f f g h	<2 [] [] [] [] [] [] []	>9 [] [] [] [] [] [] []	<pre>>12 Other [] [] [] [] [] [] [] [] []</pre>
-002a b c d e f g h	[] [] [] [] [] []	[] [] [] [] [] []	[] [] [] [] [] [] [] []
-005a b c d e f g h	[] [] [X] [] [] []	[] [] [] [] [] []	[] [] [] [] [] [] [] []

Analyst: _______ Date: _______ Page 1 of 1

Detections Summary for 272774

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions Project : 2013-02. Location : Redwood Regional Park

Client Sample ID : MW-7

Laboratory Sample ID :

272774-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	4,700	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	43		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	64		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	2,100	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	5.2		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	5.5		5.0	mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	20		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-9 Laboratory Sample ID :

272774-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	2,700	Y	830	ug/L	As Recd	16.67	EPA 8015B	EPA 5030B
Benzene	9.6	С	8.3	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
Ethylbenzene	80		8.3	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
Diesel C10-C24	1,400	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	29		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	14		5.0	mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	110		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-10 Laboratory Sample ID :

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	2.6	C	2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B

Client Sample ID : MW-11

Laboratory Sample ID :

272774-004

272774-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	3,100	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Ethylbenzene	30		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,600	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-12

Laboratory Sample ID :

272774-005

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
MTBE	2.1	С	2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Sulfate	37		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Chemical Oxygen Demand	63		10	mg/L	TOTAL	1.000	SM5220D	METHOD
Page 1 of 2								24.0

Page 1 of 2

C = Presence confirmed, but RPD between columns exceeds 40% Y = Sample exhibits chromatographic pattern which does not resemble standard $_{\rm Page \ 2 \ of \ 2}$

	Curtis & Tompkins Labo	ratories Analy	rtical Report
Lab #: Client: Project#:	272774 Stellar Environmental Solutions 2013-02.	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix:	Water	Sampled:	12/29/15
Units:	ug/L	Received:	12/29/15
Batch#:	230800	Analyzed:	12/30/15
Field ID:	MW-7	Lab ID:	272774-001
Type:	SAMPLE	Diln Fac:	1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	4,700 Y	50	EPA 8015B
MTBE	43	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	64	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	119	80-132	EPA 8015B	
Bromofluorobenzene (PID)	123	71-141	EPA 8021B	

Field ID:	MW-9		Lab ID:		74-002	
Type:	SAMPLE		Diln Fac:	16.67	/	
	alyte	Result		RL	Analysis	
Gasoline C7-C	212	2,700 Y		830	EPA 8015B	
MTBE		ND		33	EPA 8021B	
Benzene		9.6	C	8.3	EPA 8021B	
Toluene		ND		8.3	EPA 8021B	
Ethylbenzene		80		8.3	EPA 8021B	
m,p-Xylenes		ND		8.3	EPA 8021B	
o-Xylene		ND		8.3	EPA 8021B	
Sur	rogate	%REC Limits	Analy	sis		
Bromofluorobe		110 80-132	EPA 8015B	515		
Bromofluorobe		122 71-141	EPA 8021B			
Field ID:	MW-10		Lab ID:	2727	74-003	
Type:	SAMPLE		Diln Fac:	1.000)	
۵n	alyte	Result		RL	Analysis	
Gasoline C7-C		ND		50	EPA 8015B	
MTBE	× 1 2	2.6	С	2.0	EPA 8021B	
Benzene		ND	•	0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzene		ND		0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xylene		ND		0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (H	FID) 106	80-132	EPA 8015B	
Bromofluorobenzene (H	PID) 119	71-141	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: Client: Project#:	272774 Stellar Environmental Solutions 2013-02.	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Batch#:	Water ug/L 230800	Sampled: Received: Analyzed:	12/29/15 12/29/15 12/30/15

Field ID: Type:	MW-11 SAMPLE		Lab ID: Diln Fac:	272774-004 1.000	
Ana	lyte	Result	RL		Analysis
Gasoline C7-C1	2	3,100 Y	50	EPA	8015B
MTBE		ND	2.0) EPA	8021B
Benzene		ND	0.1	50 EPA	8021B
Toluene		ND	0.1	50 EPA	8021B
Ethylbenzene		30	0.1	50 EPA	8021B
m,p-Xylenes		ND	0.1	50 EPA	8021B
o-Xylene		ND	0.!	50 EPA	8021B

Surrogate	9	%REC	Limits	Analysis
Bromofluorobenzene	(FID)	137 *	80-132	EPA 8015B
Bromofluorobenzene	(PID)	134	71-141	EPA 8021B

Field ID: Type:	MW-12 SAMPLE			Lab ID: Diln Fac:	272 1.00	774-005 00
Anal	yte]	Result		RL	Analysis
Gasoline C7-C12		ND			50	EPA 8015B
MTBE			2.1 (2	2.0	EPA 8021B
Benzene		ND			0.50	EPA 8021B
Toluene		ND			0.50	EPA 8021B
Ethylbenzene		ND			0.50	EPA 8021B
m,p-Xylenes		ND			0.50	EPA 8021B
o-Xylene		ND			0.50	EPA 8021B
Surro		%REC	Limits	Analy	sis	
Bromofluorobenz	ene (FID)	104	80-132	EPA 8015B		
Bromofluorobenz	ene (PID)	115	71-141	EPA 8021B		

Type: Lab ID:

BLANK QC818294

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Diln Fac: 1.000

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FI	D) 82	80-132	EPA 8015B	
Bromofluorobenzene (PI	D) 89	71-141	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	272774	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2013-02.	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC818293	Batch#:	230800
Matrix:	Water	Analyzed:	12/30/15
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	893.2	89	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	85	80-132

	Curtis & Tompkins Labo	ratories Analyt	ical Report
Lab #: 272774		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2013-0	2.	Analysis:	EPA 8015B
Field ID:	MW-7	Batch#:	230800
MSS Lab ID:	272774-001	Sampled:	12/29/15
Matrix:	Water	Received:	12/29/15
Units:	ug/L	Analyzed:	12/30/15
Diln Fac:	1.000		

Type:	MS			Lab ID:	QC818295		
	Analyte	MSS Re	sult	Spiked	Result	%REC	Limits
Gasoline	C7-C12	4,б	86	2,000	7,041	118	76-120
	-	0.550					
	Surrogate	%REC	Limits				
Bromoflue	orobenzene (FID)	135 *	80-132				

Type:	MSD			Lab ID:	Ģ	QC818296			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		7,044	118	76-120	0	20
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	127	80-132						

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	272774	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2013-02.	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	230800
Units:	ug/L	Analyzed:	12/30/15
Diln Fac:	1.000		

Type:

BS

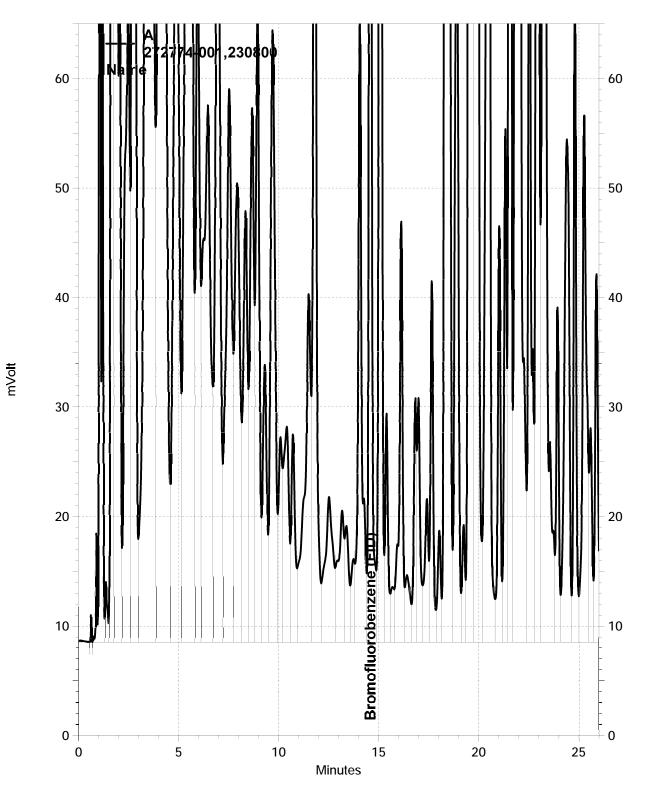
Lab ID:

QC818297

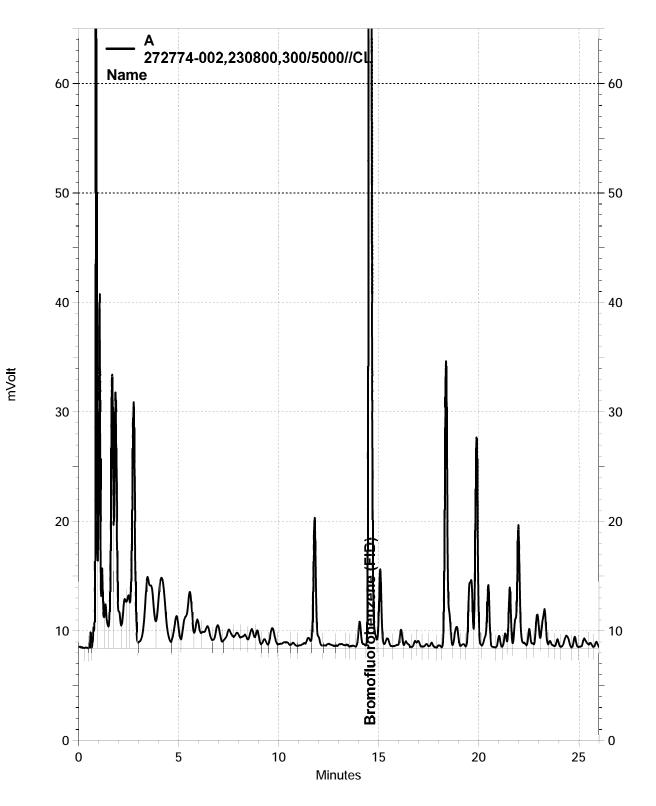
Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.569	96	74-137
Benzene	10.00	9.125	91	80-120
Toluene	10.00	9.377	94	80-120
Ethylbenzene	10.00	9.343	93	80-120
m,p-Xylenes	10.00	9.113	91	80-120
o-Xylene	10.00	9.018	90	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	82	71-141

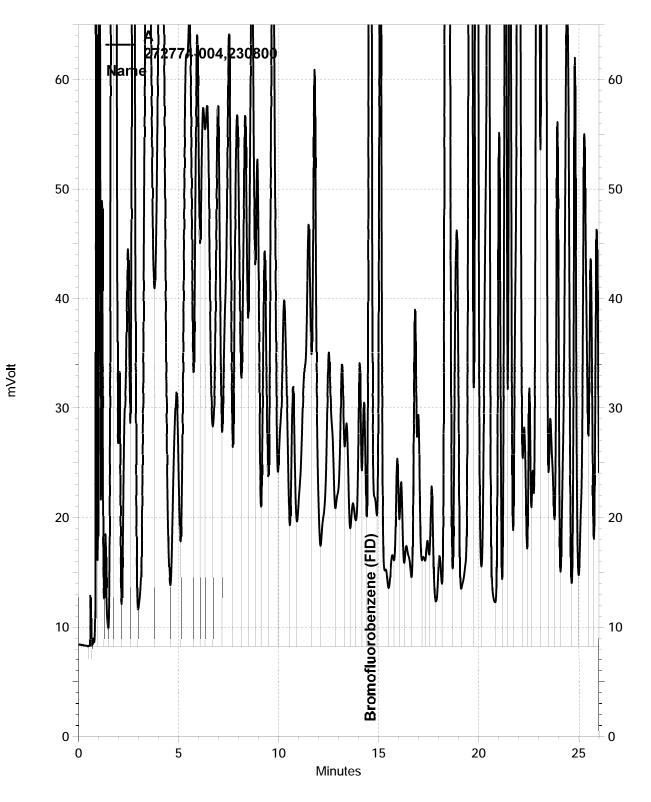
Type:

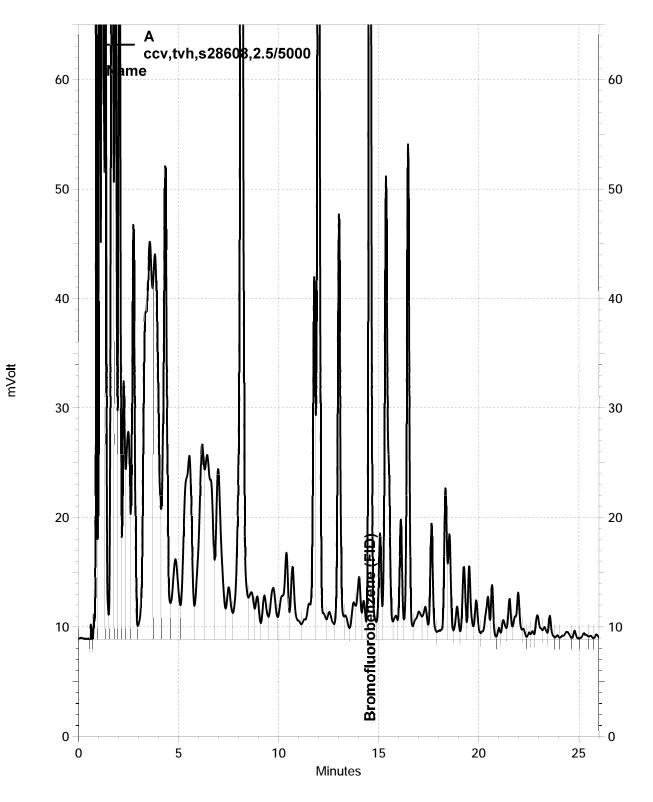

BSD

Lab ID:


QC818298

9009.6719774-1371379009.4639580-1204209009.5249580-120220
9.524 95 80-120 2 20
9.680 97 80-120 4 20
9.172 92 80-120 1 20
9.230 92 80-120 2 20
) (


Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	82	71-141	


- \\Lims\gdrive\ezchrom\Projects\GC19\Data\364-007, A

- \\Lims\gdrive\ezchrom\Projects\GC19\Data\364-010, A

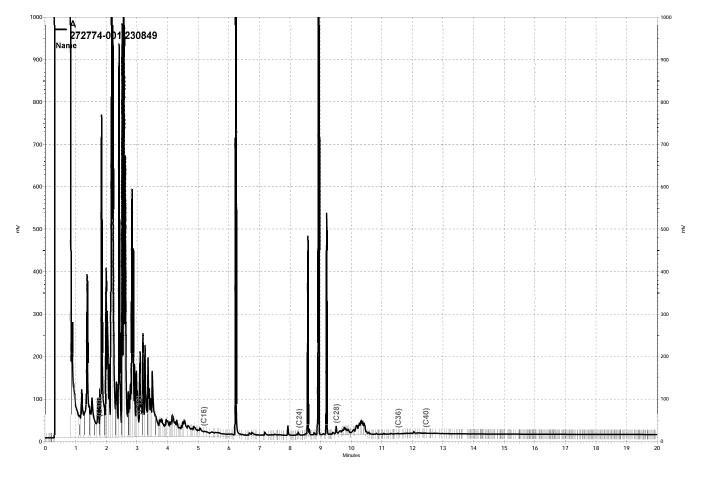
- \\Lims\gdrive\ezchrom\Projects\GC19\Data\364-012, A

- \\Lims\gdrive\ezchrom\Projects\GC19\Data\364-003, A

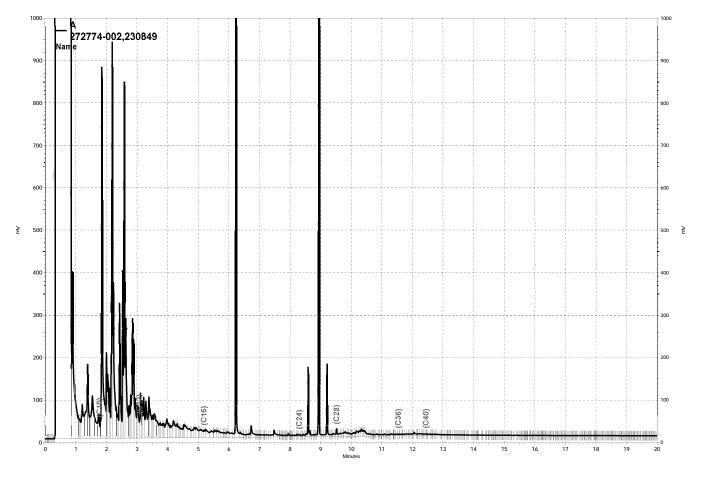
		Total	Extracta	ble Hydrod	arbo	ns
T 1 U 1	020224					
Lab #:	272774			Location:		Redwood Regional Park
Client:	Stellar Environmen	tal Solu	tions	Prep:		EPA 3520C
Project#:				Analysis:		EPA 8015B
Matrix:	Water			Sampled:		12/29/15
Units:	ug/L			Received:		12/29/15
Diln Fac:	1.000			Prepared:		12/31/15
Batch#:	230849			Analyzed:		01/04/16
Field ID:	MW-7			Lab ID:		272774-001
Type:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl(J-C24		2,100 Y		49	
	Surrogate	%REC	Limits			
o-Terpheny	/l	94	67-136			
Field ID:	MW-9			Lab ID:		272774-002
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl(D-C24		1,400 Y		50	
	Surrogate	%REC	Limits			
o-Terpheny	Ϋ́⊥	84	67-136			
Field ID:	MW-10 Samdi F			Lab ID:		272774-003
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl(D-C24	NI	0		49	
	Surrogate	%REC				
o-Terpheny	γl	97	67-136			

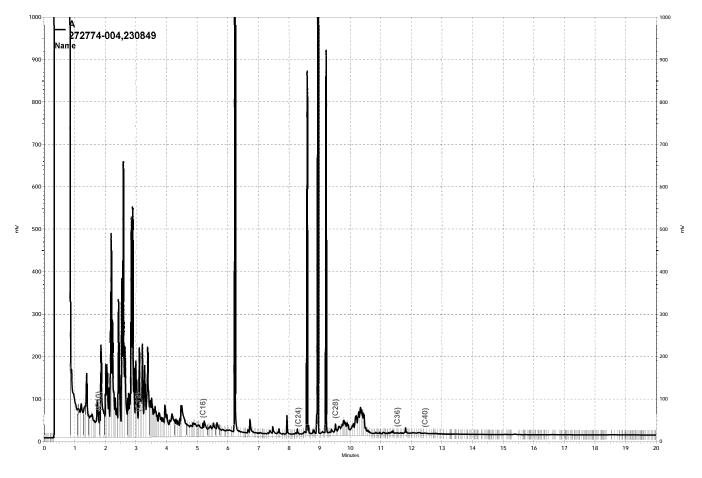
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 2

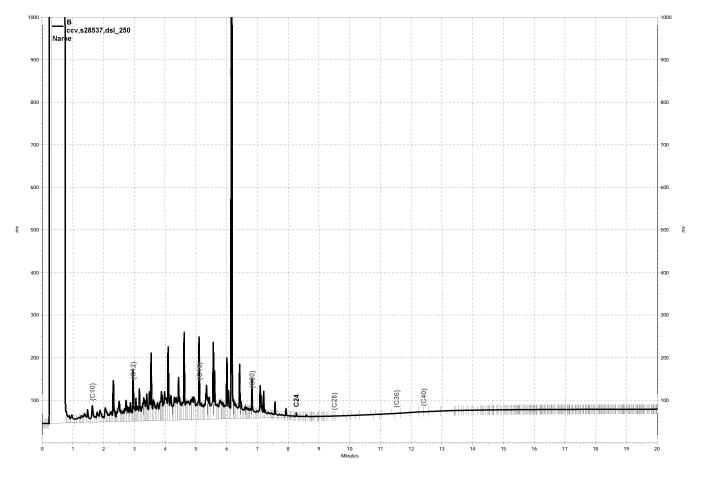
	Т	otal I	Intracta	ble Hydrod	arboi	ne
	272774			Location:		Redwood Regional Park
	Stellar Environmental	Solut	ions	Prep:		EPA 3520C
Project#:	2013-02.			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		12/29/15
Units:	ug/L			Received:		12/29/15
Diln Fac:	1.000			Prepared:		12/31/15
Batch#:	230849			Analyzed:		01/04/16
Field ID:	MW-11			Lab ID:		272774-004
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel C10	-C24		1,600 Y		49	
	Surrogate	%REC	Limits			
o-Terpheny	1	91	67-136			
Field ID:	MW-12			Lab ID:		272774-005
Type:	SAMPLE					
	Analyte		Result		RL	
Diesel C10	-C24	ND	1		49	
	Surrogate	%REC	Limits			
o-Terpheny	1	92	67-136			
Type:	BLANK			Lab ID:		QC818486
	1		D		5-	
	Analyte		Result		RL	
Diesel C10	-C24	ND	1		50	
i	Surrogate	%REC	Limits			


o-Terphenyl

111 67-136


Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2


Total Extractable Hydrocarbons								
Lab #:	272774			Location:	Redwood Regio	nal Park		
Client:	Stellar Environmenta	l Solut	cions	Prep:	EPA 3520C			
Project#:	2013-02.			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	230849			
Units:	ug/L			Prepared:	12/31/15			
Diln Fac:	1.000			Analyzed:	01/04/16			
Type: Lab ID:	BS QC818487			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel Cl	0-C24		2,500	1,636	65	60-121		
	Surrogate	%REC	Limits					
o-Terphen	yl	73	67-136					
Type: Lab ID:	BSD 0C818488			Cleanup Method:	EPA 3630C			
Lap ID.	~							
	Analyte		Spiked	Result		Limits	RPD	Lim
Diesel Cl	0-C24		2,500	1,866	75	60-121	13	32
		%REC	Limits					
o-Terphen	yl	81	67-136					


-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\004a015, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\004a016, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\004a018, A

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\004b014, B

	Curtis & To	mpkins Labo	ratories Ana	lytical Report
Lab #:	272774		Location:	Redwood Regional Park
Client:	Stellar Environmental	Solutions	Prep:	METHOD
Project#:		DOTACIONS	Analysis:	EPA 300.0
Matrix:	Water		Batch#:	230777
Units:	mg/L		Received:	12/29/15
Diln Fac:	-		Keceiveu.	12/29/13
DIIII Fac.	1.000			
Field ID:	MW-7		Sampled:	12/29/15 14:05
Type:	SAMPLE		Analyzed:	12/29/15 18:44
Lab ID:	272774-001			
	Analyte	Result		RL
Nitrogen,	Nitrate	ND		0.05
Sulfate		5.2		0.50
	NEL O			12/20/15 15.10
Field ID:	MW-9		Sampled:	12/29/15 15:10
Type:	SAMPLE		Analyzed:	12/29/15 19:19
Lab ID:	272774-002			
	Analyte	Result		RL
Nitrogen,	Nitrate	ND		0.05
Sulfate		29		0.50
		29		
		29		
Field ID:	MW-12	29	Sampled:	12/29/15 14:10
	MW-12 SAMPLE	29	Sampled: Analyzed:	
Type:		29	-	12/29/15 14:10
Type:	SAMPLE	Result	Analyzed:	12/29/15 14:10
Type: Lab ID:	SAMPLE 272774-005 Analyte		Analyzed:	12/29/15 14:10 12/29/15 21:04
Type:	SAMPLE 272774-005 Analyte	Result	Analyzed:	12/29/15 14:10 12/29/15 21:04 RL
	SAMPLE 272774-005 Analyte	Result ND	Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05
Type: Lab ID: Nitrogen, Sulfate Type:	SAMPLE 272774-005 Analyte Nitrate BLANK	Result ND	Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05
Type: Lab ID: Nitrogen, Sulfate	SAMPLE 272774-005 Analyte Nitrate	Result ND	Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05 0.50
Type: Lab ID: Nitrogen, Sulfate Type:	SAMPLE 272774-005 Analyte Nitrate BLANK	Result ND	Analyzed: Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05 0.50
Type: Lab ID: Nitrogen, Sulfate Type:	SAMPLE 272774-005 Analyte Nitrate BLANK QC818188 Analyte	Result ND 37	Analyzed: Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05 0.50 12/29/15 14:37
Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	SAMPLE 272774-005 Analyte Nitrate BLANK QC818188 Analyte	Result ND 37 Result	Analyzed: Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05 0.50 12/29/15 14:37 RL
Type: Lab ID: Nitrogen, Sulfate Type: Lab ID: Nitrogen,	SAMPLE 272774-005 Analyte Nitrate BLANK QC818188 Analyte	Result ND 37 Result ND	Analyzed: Analyzed:	12/29/15 14:10 12/29/15 21:04 RL 0.05 0.50 12/29/15 14:37 RL 0.05

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	272774	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD			
Project#:	2013-02.	Analysis:	EPA 300.0			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC818189	Batch#:	230777			
Matrix:	Water	Analyzed:	12/29/15 14:55			
Units:	mg/L					

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	1.057	106	80-120
Sulfate	10.00	10.38	104	80-120

Curtis & 1	Fompkins Labor	atories Analy	ytical Rep	ort			
Lab #: 272774		Location:	Redwood	Regio	nal Park		
Client: Stellar Environmenta	al Solutions	Prep:	METHOD				
Project#: 2013-02.		Analysis:	EPA 300.	0			
Field ID: ZZZZZZZZZ		Diln Fac:	10.00				
MSS Lab ID: 272767-001		Batch#:	230777				
Matrix: Water		Sampled:	12/29/15	5 11:2	5		
Units: mg/L		Received:	12/29/15				
Type: MS Lab ID: QC818228 Analyte	MSS Result	Analyzed: Spiked	12/30/15 Resu		3 %REC	Lim	its
Nitrogen, Nitrate	0.9448	5.000	5	.865	98	80-	120
Sulfate	48.22	50.00	97	2.85	99	80-	120
Type: MSD		Analyzed:	12/30/15	17:4	0		
Lab ID: QC818229			12, 50, 15	· <u> </u>	0		
Analyte	Spiked	Resu	ılt	%REC	Limits	RPD	Lim
	5.000	<u>,</u>	F 001 1	00	80-120	1	20
Nitrogen, Nitrate	5.000)	5.931 1	.00	00-120	1	20

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 272	774	Location:	Redwood Regional Park			
Client: Stel	llar Environmental Solutions	Prep:	METHOD			
Project#: 2013	3-02.	Analysis:	EPA 300.0			
Field ID:	ZZZZZZZZZ	Diln Fac:	10.00			
Type:	SSPIKE	Batch#:	230777			
MSS Lab ID:	272767-002	Sampled:	12/29/15 10:30			
Lab ID:	QC818230	Received:	12/29/15			
Matrix:	Water	Analyzed:	12/30/15 17:58			
Units:	mg/L					

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	7.148	5.000	12.27	102	80-120
Sulfate	58.62	50.00	111.4	106	80-120

Biochemical Oxygen Demand							
Lab #:	272774	Location:	Redwood Regional	Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2013-02.	Analysis:	SM5210B				
Analyte:	Biochemical Oxygen Demand	Batch#:	230836				
Matrix:	Water	Received:	12/29/15				
Units:	mg/L	Prepared:	12/31/15 13:17				
Diln Fac:	1.000	Analyzed:	01/05/16 17:56				
Fie	ld ID Type Lab ID	Result	RL	Sampled			

Field ID	Type	Lab ID	Result	RL	Sampled
MW-7	SAMPLE	272774-001	5.5	5.0	12/29/15 14:05
MW-9	SAMPLE	272774-002	14	5.0	12/29/15 15:10
MW-12	SAMPLE	272774-005	ND	5.0	12/29/15 14:10
	BLANK	QC818442	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Biochemical	Oxygen Demand			
Lab #: 272774		Location:	Redwood Region	al Park	
Client: Stella	r Environmental Solutions	Prep:	METHOD		
Project#: 2013-0	2.	Analysis:	SM5210B		
Analyte:	Biochemical Oxygen Demand	Batch#:	230836		
Field ID:	MW-9	Sampled:	12/29/15 15:10		
MSS Lab ID:	272774-002	Received:	12/29/15		
Matrix:	Water	Prepared:	12/31/15 13:17		
Units:	mg/L	Analyzed:	01/05/16 17:56		
Diln Fac:	1.000	_			
Type Lab ID	MSS Result Spiked	Result		Limits RPD	Lim

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC818443		198.0	222.7		112	85-115		
BSD	QC818444		198.0	215.2		109	85-115	3	20
SDUP	QC818445	13.60		13.30	5.000			2	26

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

Chemical Oxygen Demand							
Lab #:	272774	Location:	Redwood Regio	nal Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2013-02.	Analysis:	SM5220D				
Analyte:	Chemical Oxygen Demand	Batch#:	230834				
Matrix:	Water	Received:	12/29/15				
Units:	mg/L	Prepared:	12/31/15 11:1	0			
Diln Fac:	1.000	Analyzed:	12/31/15 13:1	0			
Fie	ld ID Type Lab ID	Result	RL	Sampled			

Field ID	Type Lab ID	Result	RL	Sampled
MW-7	SAMPLE 272774-001	20	10	12/29/15 14:05
MW-9	SAMPLE 272774-002	110	10	12/29/15 15:10
MW-12	SAMPLE 272774-005	63	10	12/29/15 14:10
	BLANK QC818433	ND	10	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Chemica	l Oxygen Demano	a
Lab #:	272774	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#: 2	2013-02.	Analysis:	SM5220D
Analyte:	Chemical Oxygen Demand	Batch#:	230834
Field ID:	MW-7	Sampled:	12/29/15 14:05
MSS Lab ID	: 272774-001	Received:	12/29/15
Matrix:	Water	Prepared:	12/31/15 11:10
Units:	mg/L	Analyzed:	12/31/15 13:10
Diln Fac:	1.000		
	ab TD MSS Result Su	oiked F	Result %REC Limits RPD Lim

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC818434		50.00	49.07	98	90-110		
MS	QC818435	19.68	200.0	240.8	111	57-126		
MSD	QC818436		200.0	233.4	107	57-126	3	20

APPENDIX D

Historical Analytical Results

			VOOD REG	GIONAL PA	RK SERVI		NALYTICAL RES AND, CALIFORM		
			(
Event	Date	TVHg	TEHd	Benzene	Well M Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50		2.4	1.7	7.5	30	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.7	2.5	8.0	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.1	NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.3	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	1.2	NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
10	Dec-97	61	< 50	4.5 21	< 0.5	6.5	3.9	31	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
12	Sep-98	2,000 < 50	< 50	< 0.5	92 < 0.5	< 0.5	< 0.5	1,112	7.0
13		82	710	4.2		3.4	4.0	12	7.5
14	Apr-99 Dec-99	82 57	< 50	4.2	< 0.5 0.6	3.4 5.9	4.0 <0.5	27	4.5
15	Sep-00	57 < 50	< 50	0.72	< 0.5	5.9 < 0.5	< 0.5	0.7	4.5
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	-	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	-	< 2.0
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	-	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<20
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	9.8 11	20.2	36.6	13
52	Aug-09	1,900	3,100	5.4 1.6	<0.5 1.8	11	20.2	38.2	7.1
		1,900	1,800			<0.5	4.2	4.24	12
53	Sep-09			<0.5 <0.5	<0.5 <0.5	<0.5 1.2	4.2	4.24 2.4	
54	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6

					Well MW-2	2			
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
56	Mar-10	2,000	4,300	<0.5	<0.5	<0.5	3.5	3.45	<2.0
57	Jun-10	1,300	2,400	<0.5	<0.5	<0.5	1.7	-	<2.0
58	Sep-10	910	<50	<0.5	<0.5	<0.5	1.5	1.45	<2.0
59	Dec-10	910	1,600	<0.5	<0.5	<0.5	<0.5	<0.5	2.6
60	Mar-11	860	1,100	<0.5	<0.5	<0.5	<0.5	_	3.1
61	Sep-11	780	810	<0.5	<0.5	<0.5	<0.5	_	<2.0
62	Mar-12	460	610	<0.5	<0.5	<0.5	<0.5	_	<2.0
63	Sep-12	160	190	<0.5	<0.5	<0.5	<0.5	_	<2.0
64	Mar-13	470	810	<0.5	<0.5	<0.5	<0.5	_	<2.0
65	Oct-13	120	67	<0.5	<0.5	<0.5	<0.5	_	2.3
66	Mar-14	320	290	<0.5	<0.5	<0.5	<0.5	_	<2.0
67	Sep-14	610	480	<0.5	1	4.7	1.9	7.6	3.7
68	Mar-15	370	450	<0.5	<0.5	<0.5	<0.5	_	<2.0
69	Sep-15	790	980	<0.5	0.6	<0.5	3.3	—	<2.0

					Well N	/W-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	N
2	Feb-95	11,000	330	420	17	440	460	1,337	N
3	May-95	7,200	440	300	13	390	330	1,033	N
4	Aug-95	1,800	240	65	6.8	89	67	227	N
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	N
6	Aug-96	3,700	120	63	2.0	200	144	409	N
7	Dec-96	2,700	240	19	< 0.5	130	93	242	N
8	Feb-97	3,300	< 50	120	1.0	150	103	374	N
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	N
10	Aug-97	1,900	150	8.6	3.5	78	53	143	N
11	Dec-97	1,000	84	4.6	2.7	61	54	123	N
12	Feb-98	5,300	340	110	24	320	402	856	N
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5
30	Jun-04	<50	2,500	< 0.3	<0.3	<0.3	<0.6	_	< 5
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
G	roundwate	r monitoring	in this we	Il discontinu	ied with Al	ameda County H	ealth Care Servic	es Agency appro	ival

					Well N	1W-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2
Grour	ndwater mo	nitoring in t	his well dis	scontinued	in 1998 wit	h Alameda Coun	ty Health Care Se	ervices Agency a	oproval.
		Subsequ	ent ground	dwater mor	itoring con	ducted to confirm	plume's southerr	n limit	
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	5.9
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0

	-				Well N				
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 1
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	<
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.0	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.3	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.1	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.3	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.1	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.6	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.9	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.6	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.5	92	<2
40	Jun-10	5,800	5,000	20	<0.5	140	9.9	170	<2
41	Sep-10	6,300	4,100	< 0.5	< 0.5	93	6.0	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.2	108	87.0
43	Mar-11	5,500	3,400	11	<0.5	94	8.5	114	<2
44	Sep-11	5,800	3,300	<0.5	<0.5	97	3.1	100	<2
45	Mar-12	6,400	3,500	< 0.5	<0.5	110	5.6	116	<2
46	Sep-12	5,700	3,000	<0.5	<0.5	84	<0.5	84	<2
47	Mar-13	6,000	3,300	<0.5	<0.5	82	<0.5	82	<2
48	Oct-13	6,400	6,000	35	<0.5	75	5.10	115	<2
49	Dec-13	6,000	4,200	<0.5	<0.5	100	<0.5	100	<2
50	Mar-14	7,500	4,900	<0.5	<0.5	130	2.0	132	<2
51	Jun-14	3,400	9,100	<0.5	<0.5	170	6.9	177	<2
52	Sep-14	6,500	6,000	<0.5	<0.5	150	5.1	155	<2
53	Mar-15	7,700	3,200	<0.5	<0.5	91	<0.5	91	<2
54	Sep-15	6,800	2,800	<0.5	<0.5	85	<0.5	85	<2
55	Dec-15	4,700	2,100	< 0.5	<0.5	64	<0.5	64	43

					Well N	/W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1.000	420	22	< 0.5	64	50	136	< 2.
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 1
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.
12	Dec-03	485	100	120	1.5	26	36	83	< 5.
12	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
13	Jun-04	5,900	900	260	9.9	460	390	1,120	90 < 1
								·	
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 1
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 1
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 2
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<2
35	Jun-09	2,100	3.400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	< 0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	< 0.5	14	3.1	18	3.9
38	Mar-10 Mar-10	3.400	5.700	28.0	<0.5	340	255.7	624	3.9 <2.
39 40	Jun-10	3,400	.,		<0.5 2.9	400	255.7	-	27
40 41			4,200	27.0 2.9		400	103.2	533 25	
	Sep-10	900	1,300	-	< 0.5				<1 7.2
42	Dec-10	180	260	<0.5	<0.5	5	1.0	6.4	
43	Mar-11	6,000	5,900	39	<0.5	510	431.0	980.0	<2
44	Sep-11	1,700	1,200	7	0.9	120	12.2	139.7	<2
45	Mar-12	1,200	790	11	0.9	<0.5	99.0	110.9	<2
46	Sep-12	730	430	4.7	<0.5	45	3.8	53.5	9.2
47	Mar-13	840	690	5.6	<0.5	47	9.9	62.51	15
48	Oct-13	150	140	<0.5	<0.5	3.3	<0.5	3.3	<2
49	Mar-14	79	120	<0.5	<0.5	2.1	<0.5	2.1	1
50	Sep-14	57	66	<0.5	<0.5	1.5	0.66	2.16	11
51	Mar-15	190	68	<0.5	<0.5	1.6	<0.5	1.6	11
52	Sep-15	<50	97	<0.5	<0.5	<0.5	<0.5	0	6

_	-			-	Well N				
Event	Date	TVHg	TEHd	Benzene			Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 1
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 1
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4
9	Sep-03	8,300	2,900	420	14	870	200	1,504	<
10	Dec-03	7,080	700	287	31	901	255	1,474	<
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	<
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	<
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	<
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	<
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	<
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	<
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	<
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4
25	Sep-07	4.500	2.100	60	3.8	420	227	710	<4
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2
27	Mar-08	6.400	3.500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<
29	Sep-08	4.800	2.700	53	< 0.5	250	66.4	369.4	<2
30	Dec-08	4,300	2,300	45	< 0.5	330	39.1	414.1	~
31	Mar-09	4,000	2,200	<2.0	< 0.5	160	34.9	194.9	<2
32	Jun-09	4,000	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2.900	15	< 0.5	110	11.8	136.8	<2
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	~
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	107.0	2.1
37	Jun-10	1.700	1.300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	4.9	390.9	43
39	Dec-10	3,900	2,900	43 32	<0.5	240	20.5	292.5	43 82
40	Mar-11	700	680	1.6	<0.5	10	3.5	15.1	14
40	Sep-11	2,600	1,900	1.6	<0.5	160	10.2	182.2	- 14
			· ·						
42 43	Mar-12	1,100	940 8,600	9 25	<0.5 <0.5	25 260	1.6 19.0	35.6	~
	Sep-12	10,000	· ·					304.0	
44	Mar-13	4,000	2,400	9.1	<0.5	73	9.7	91.8	<2
45	Oct-13	3,200	1,500	20	< 0.5	51	6.6	77.6	<2
49	Dec-13	3,000	2,700	22	<0.5	120	4.6	147	<2
50	Mar-14	3,100	5,200	49	<0.5	420	83	552	<2
51	Jun-14	12,000	2,600	54	<0.5	610	160	824	<2
52	Sep-14	17,000	5,800	65	13.0	51	204	333	<2
53	Mar-15	4,300	2,000	24	<0.5	150	19	193	<2
54	Sep-15	3,000	950	25	<0.5	59	3	87	46
55	Dec-15	2,700	1,400	9.6	<0.5	<8.3	<8.3	10	<.

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	< 0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.
12	Jun-04	94 150	56	11	< 0.5	12	< 0.5	23	15
12	Sep-04			1.6					5.8
13	Dec-04	< 50 64	< 50 < 50	3.7	< 0.5 < 0.5	1.9 3.7	< 1.0 0.7	3.5 8.1	5.8
		-		-		-	-	-	
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2
17	Sep-05	87	< 50	5.0	<0.5	3.6 <0.5	<1.0	8.6	<2
18	Dec-05	< 50	< 50	1.2	<0.5		<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	< 0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	< 0.5	< 0.5	0.69	<0.5	0.7	4.1
40	Mar-11	170	1.200	1.0	<0.5	3.7	1.8	6.5	6.3
40	Sep-11	150	220	0.8	<0.5	1.9	1	3.7	<2
42	Mar-12	80	92	0.81	<0.5	1.5	<0.5	2.3	3.4
42	Sep-12	170	200	<0.5	<0.5	2	0.94	2.3	<u> </u>
44	Mar-13	310	58	<0.5	<0.5	7.3	7.94	15.2	<2
44	Oct-13	69		<0.5	<0.5	0.84	7.94 <0.5	0.8	 4.8
45	Dec-13	69 <52	220	<0.5	<0.5 0.61	2	1.5	4.1	3.7
							-		
47	Mar-14	<50	87	<0.5	<0.5	0.51	<0.5	0.5	3.7
48	Jun-14	55	<50	< 0.5	0.61	2	1.5	4.1	<2
49	Sep-14	<50	<50	<0.5	<0.5	<0.5	<0.5	0.0	4.5
50	Mar-15	61	<49	<0.5	<0.5	<0.5	<0.5	0.0	3.3
	Sep-15	<50	<49	< 0.5	< 0.5	< 0.5	< 0.5	0.0	2.6
51 52	Dec-15	<50	<50	<0.5	<0.5	<0.5	<0.5	0.0	2.6

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 1
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 1
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2.600	570	13	560	170	1,313	<
5	Sep-02	12.000	4.400	330	13	880	654	1,877	< 1
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 1
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 1
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	<
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 1
12		7,200	2,300	340	< 2.5	840	75	1,417	
13	Sep-04 Dec-04	11,000	2,300	340 180	< 2.5 5.1	780	695	1,255	< 1
14	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 1
-					-				
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 1
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 1
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3,000	2,200	18	<0.5	41	0.55	60	8.0
39	Dec-10	1,800	2,900	13	<0.5	49	1.9	64	15.0
40	Mar-11	180	1,600	<0.5	<0.5	1.2	<0.5	1.2	6.9
41	Sep-11	2,200	2,500	12	<0.5	44	2.2	58.2	<2
42	Mar-12	1,300	1,200	8.7	< 0.5	29	<0.5	37.7	<2
43	Sep-12	2,400	1,800	7.7	< 0.5	29	<0.5	36.7	<2
44	Mar-13	1,500	1,900	4.8	< 0.5	22	<0.5	26.8	<2.
45	Oct-13	3,000	1,600	14	<0.5	35	<0.5	49	<2.
46	Dec-13	2,500	2,000	< 0.5	13	<0.5	0.68	13.7	<2.
40	Mar-14	3,000	2,800	13	<0.5	34	<0.5	47.0	<2
47	Jun-14	2,300	2,800	6	<0.5	20	< <u>0.5</u> 6.1	32.1	<2
48 49	Sep-14	<u>2,300</u> 190	3,400	6.8	<0.5	20	<0.5	32.1	3.7
-	Mar-15					8.4			
50		1,300	1,500	< 0.5	<0.5	-	<0.5	8.4	<2
51	Sep-15	2,500	1,800	<0.5	<0.5	25	<0.5	25.0	24

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTB
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	<2
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	V
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	v
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	V
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	V
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	v
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	V
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	V
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	V
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	V
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	V
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	~
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9
22	Mar-11	290	450	<0.5	0.74	1.3	<0.5	2.0	11
23	Sep-11	530	340	<0.5	<0.5	2.2	<0.5	2.2	V
24	Mar-12	410	240	<0.5	<0.5	1.9	<0.5	1.9	V
25	Sep-12	340	210	<0.5	<0.5	1.1	<0.5	1.1	V
26	Mar-13	430	200	<0.5	<0.5	1.2	<0.5	1.2	7.1
27	Oct-13	350	200	<0.5	<0.5	0.92	<0.5	0.92	V
28	Dec-13	290	210	<0.5	<0.5	0.68	<0.5	0.68	2.5
29	Mar-14	<50	62	<0.5	<0.5	<0.5	<0.5	0	2.8
30	Jun-14	2,300	190	<0.5	<0.5	0.65	<0.5	0.65	V
31	Sep-14	2,500	130	<0.5	6.8	26	<0.5	32.8	V
32	Mar-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0	<
33	Sep-15	<50	91	<0.5	<0.5	<0.5	<0.5	0	V
34	Dec-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0	2.1

	HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA (all concentrations in ug/L, equivalent to parts per billion [ppb])											
	Surface Water Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)											
Event	Date	TVHg	TEHd	Benzene	Toluene		,	Total BTEX	MTBE			
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA			
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
S	ampling at	this location	n discontin	ued after A	pril 1999 w	ith Alameda Cou	nty Health Servic	es Agency appro	val.			

	Surface Water Sampling Location SW-2 (Area of Historical Contaminated Groundwater Discharge)											
Event	Date	TVHg	TEHd	Benzene		Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA			
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
8	Aug-97	350	130	13	0.89	19	11	44	NA			
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA			
10	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3			
12	Dec-99	1,300	250	10	1.0	47	27	85	2.3			
14	Sep-00	1,500	100	2.1	< 0.5	5.2	1.9	9.2	3.4			
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0			
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
10	Sep-01	440	200	2.1	< 0.5	17	1.3	20.5	10			
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
10	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
20	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0			
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0			
22	Mar-03		< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	< 2.0 2.8			
23 24	Jun-03	< 50 < 50	< 50		< 0.5	0.56 < 0.5	< 0.5	0.56 <0.5	2.8 < 2.0			
24		< 50 190	< 50 92	< 0.5 2.1		< 0.5 4.2	< 0.5	<0.5 6.3	< 2.0			
25	Sep-03 Dec-03	86	<u>92</u> < 100	< 0.3	< 0.5 < 0.3	4.2	< 0.6	<0.6	< 5.0			
20	Mar-04					1.1		1.1				
27		<50 <50	<100 <50	<0.3 <0.5	< 0.3		<0.6 <0.5	0.83	< 5.0 < 2.0			
20	Jun-04 Sep-04	260	370	<0.5 4.4	<0.5	0.83 6.3		11	< 2.0			
30	Dec-04	200 <50	<50	4.4 <0.5	<0.5 <0.5	<0.5	< 1.0 < 1.0	1.0	< 2.0			
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0			
							-		< 2.0			
32	Jun-05	<50	<50	< 0.5	< 0.5	<0.5	< 1.0	<1.0				
33 34	Sep-05 Dec-05	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5	< 1.0 < 1.0	<1.0 <1.0	< 2.0			
34	Mar-06	<50	<50 62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0			
35 36		<50 <50		<0.5		<0.5	< 1.0		< 2.0			
36	Jun-06	<50 62	<u>110</u> 94		< 0.5	<0.5 0.81		<1.0 0.8	< 2.0			
37	Sep-06 Dec-06	62 <50	94 <50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 < 1.0	0.8 <1.0	< 2.0			
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0			
40	Jun-07	<50	<50	<0.5	< 0.5	<0.5	<0.5	<1.0	<2.0			
41	Sep-07	<50	77	< 0.5	<0.5	<0.5	<0.5	<1.0	<2.0			
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0			
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0			
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0			
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0			
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0			

Surface	Water Sar	mpling Local	tion SW-2	Continued					
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
54	Dec-10	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
55	Mar-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
56	Sep-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	<50	930	<0.5	<0.5	<0.5	<5.0	<0.5	4.8
61	Mar-14	<50	<49	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS
63	Mar-15	<50	<51	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
64	Sep-15	NS	NS	NS	NS	NS	NS	NS	NS

Surface Water Sampling Location SW-2 Continued

Surfa							Groundwater Disc		
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12		× 50 NS	NS NS	< 0.5 NS	< 0.5 NS			< 0.5 NS	< 2.0 NS
	Sep-00					NS	NS		
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
									< 5.0
26	Mar-04	<50	<100	<0.3	< 0.3	<0.6	<0.6	<0.6	
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
40	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Sep-10	NS	NS	NS	NS	NS	NS	NS	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	NA
54	Mar-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
55	Sep-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	< 0.5	< 0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	NS	NS	NS	NS	NS	NS	NS	NS
61	Mar-14	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS
	Mar-15	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
63	Iviai - 15	<50	100						NS