RECEIVED

By Alameda County Environmental Health at 12:10 pm, Dec 31, 2014

SECOND SEMIANNUAL 2014 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

December 2014

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

GEOSCIENCE & ENGINEERING CONSULTING

December 19, 2014

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

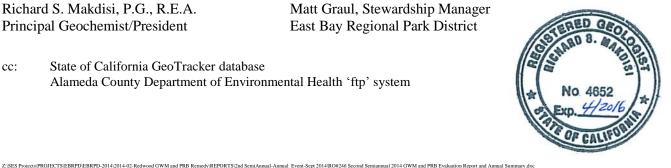
Subject: Second Semiannual 2014 Groundwater and Permeable Reactive Barrier Monitoring, and Annual Summary Report Redwood Regional Park Service Yard Site - Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes Semiannual 2014 groundwater and surface water monitoring activities conducted from July1 to December 31, 2014. These activities include: the semiannual groundwater monitoring event conducted on September 19, 2014; and a six-month post-permeable reactive barrier (PRB) installation monitoring of key wells was conducted on June 26, 2014. In addition to the activities typically conducted during a monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were taken to assess the effectiveness of the PRB.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me at 510-644-3123.


Sincerely,

Junat S. Makdin

Richard S. Makdisi, P.G., R.E.A. Principal Geochemist/President

Matthew Lout

Matt Graul, Stewardship Manager East Bay Regional Park District

cc: State of California GeoTracker database Alameda County Department of Environmental Health 'ftp' system

SECOND SEMIANNUAL 2014 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

December 19, 2014

Project No. 2014-02

TABLE OF CONTENTS

Section	n Pag	ge
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Site Description Regulatory Oversight	1 2 3
2.0	PHYSICAL SETTING	6
	Site Lithology Hydrogeology	10
3.0	REGULATORY CONSIDERATIONS	12
	Groundwater Contamination Surface Water Contamination	
4.0	SIX-MONTH POST-PRB INSTALLATION EVALUATION	14
	PRB Design and Background Groundwater Elevation in Key Wells Analytical Results PRB Groundwater Monitoring Indicators	15 15
5.0	SECOND SEMIANNUAL 2014 ACTIVITIES	21
	Groundwater Monitoring and Sampling	23 23 23 25 25
7.0	EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY	30
	Contaminant Source Assessment	31 34 45
8.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	47

	Summary and Conclusions Proposed Actions	
9.0	REFERENCES	50
10.0	LIMITATIONS	57

Appendices

Appendix A	Historical Groundwater Monitoring Water Level Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Analytical Results

TABLES AND FIGURES

Tables Page
Table 1 6-Month Post-PRB Installation Groundwater Sampling Analytical Results – June 26,201418
Table 2 6-Month Analytical Results of Electron Acceptors and Oxygen Demand inDowngradient Wells - June 26, 201419
Table 3 Groundwater Monitoring Well Construction and Groundwater Elevation Data – September 19, 2014
Table 4 Groundwater and Surface Water Samples Analytical Results –September 19, 2014Redwood Regional Park Corporation Yard, Oakland, California
Table 5 Baseline Analytical Results of Electron Acceptors and Oxygen Demand inDowngradient Wells – September 19, 2014

Figures		Page
Figure 1	Site Location Map	4
Figure 2	Site Plan and Historical Sampling Location	5
Figure 3	Geologic Cross-Section Locations	7
Figure 4	Geologic Cross-Sections A-A' through C-C'	8
Figure 5	Geologic Cross-Sections D-D' through F-F'	9
Figure 6	Groundwater Analytical Results – June 2014- Six-Month PRB Evaluation Monitoring of Key Wells	16
Figure 7	Cross-Section View of the PRB in Relation to Hydrocarbon Contaminant Plume	17
Figure 8	Groundwater Elevation Map –September 19, 2014	24
Figure 9	Groundwater Analytical Results and Gasoline Plume – September 2014	27
Figure 10	Historical Groundwater Elevations in Key Site Wells	33
Figure 11	Gasoline and Diesel Hydrochemical Trends in Well MW-2	37
Figure 12	Gasoline and Diesel Hydrochemical Trends in Well MW-8	38
Figure 13	Gasoline and Diesel Hydrochemical Trends in Well MW-11	39
Figure 14	Gasoline and Diesel Hydrochemical Trends in Well MW-7	41
Figure 15	Gasoline and Diesel Hydrochemical Trends in Well MW-9	42
Figure 16	Gasoline and Diesel Hydrochemical Trends in Well MW-10	43
Figure 17	Gasoline and Diesel Hydrochemical Trends in Well MW-12	44

Z:SES Projects/PROJECTS/EBRPD:EBRPD:2014/2014-02-Redwood GWM and PRB Remedy/REPORTS/2nd SemiAnnual-Annual Event-Sept 2014/ROP246 Second Semiannual 2014 GWM and PRB Evaluation Report and Annual Summary.doc

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the second semiannual 2013 groundwater monitoring report that includes documentation of the implementation of the permeable reactive a barrier remedy approved by ACEH along with the annual trend analyses and recommendations for future work.

OBJECTIVES AND SCOPE OF WORK

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the second 2014 semiannual period from July 1, 2014 to December 31, 2014:

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis
- In addition, a limited groundwater sampling was conducted on June 26, 2014, approximately 6 months after installation of the PRB, of downgradient key wells: MW-7, MW-9, MW-12 and upgradient wells: MW-10 and MW-11. This is reported in Section 4.0 of this report. A full discussion of the PRB is included in the December 2013 Semiannual Groundwater Monitoring Report.

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

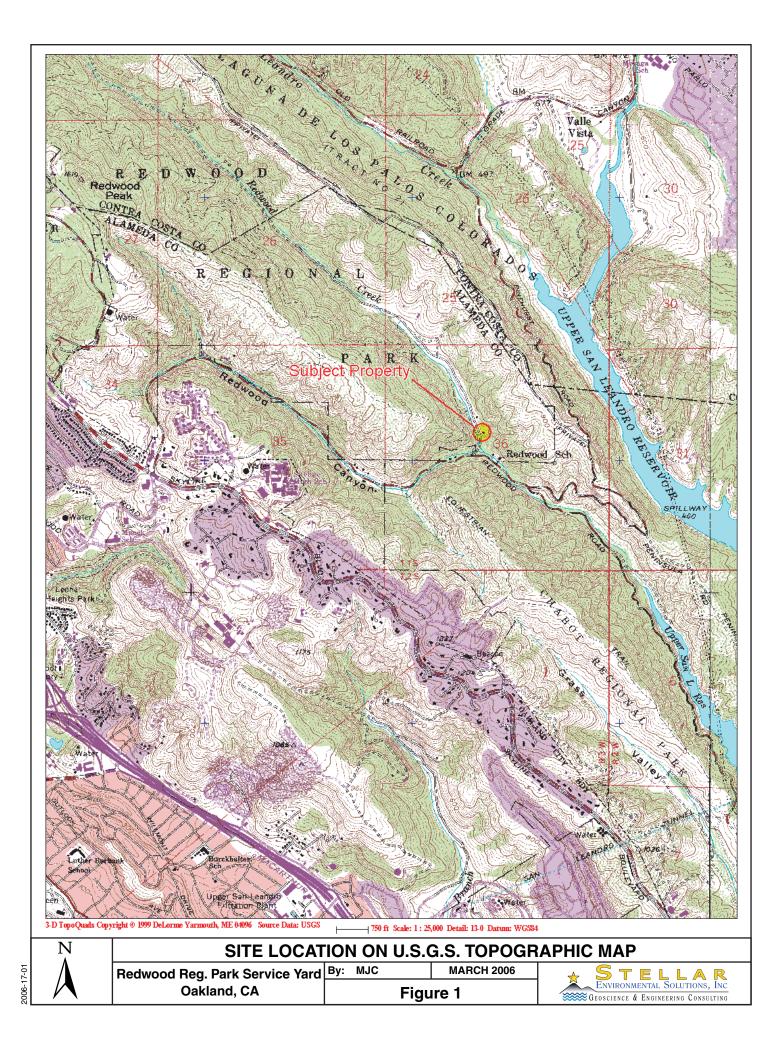
The general phases of site work included:

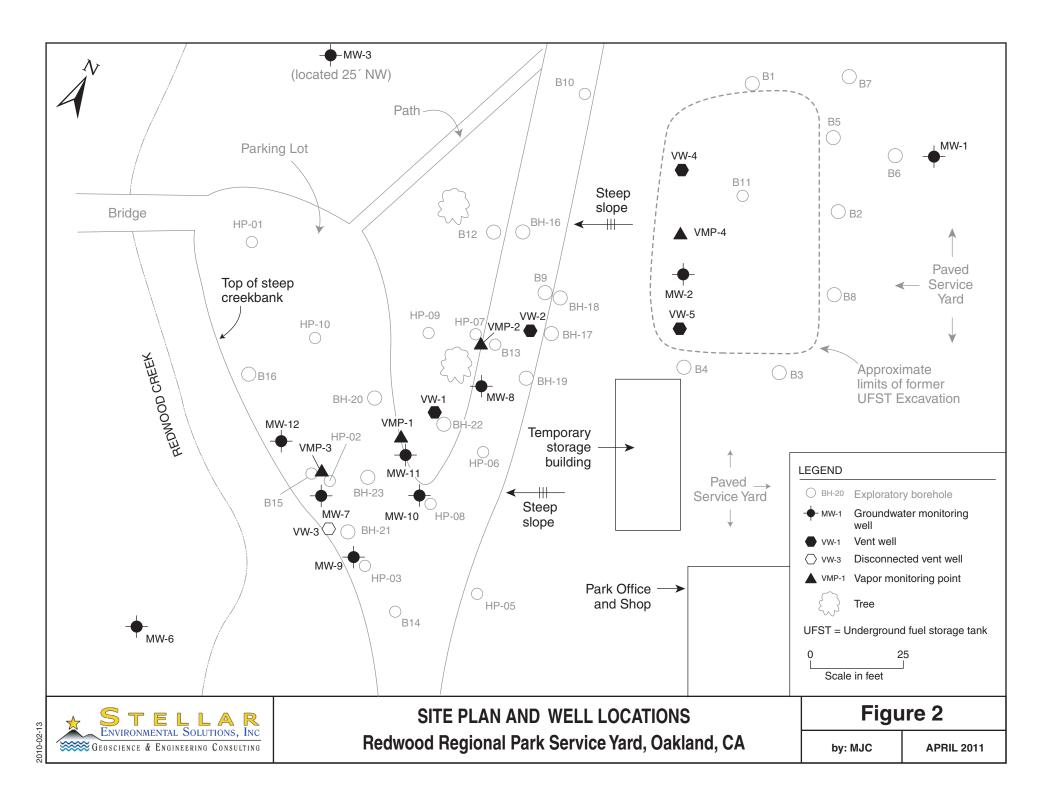
- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 58 groundwater monitoring events have been conducted since project inception (February 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).

- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued on July 18, 2011.
- The PRB RAW, dated November 28, 2011, was prepared by Stellar Environmental and approved by ACEH in their letter, dated December 29, 2011. The PRB was installed in November 20, 2013 and evaluated with30-day (December 2013) and 6-month (June 2014) post-installation sampling events of key downgradient site wells.

SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.


Figure 1 shows the location of the project site. Figure 2 presents the site plan.

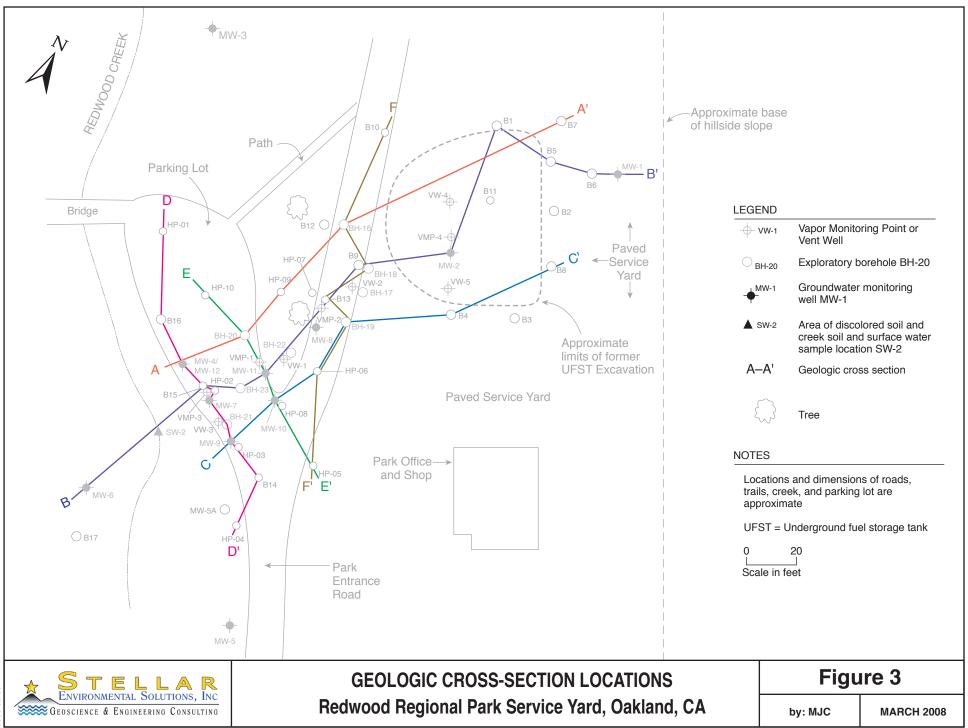

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek. No surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

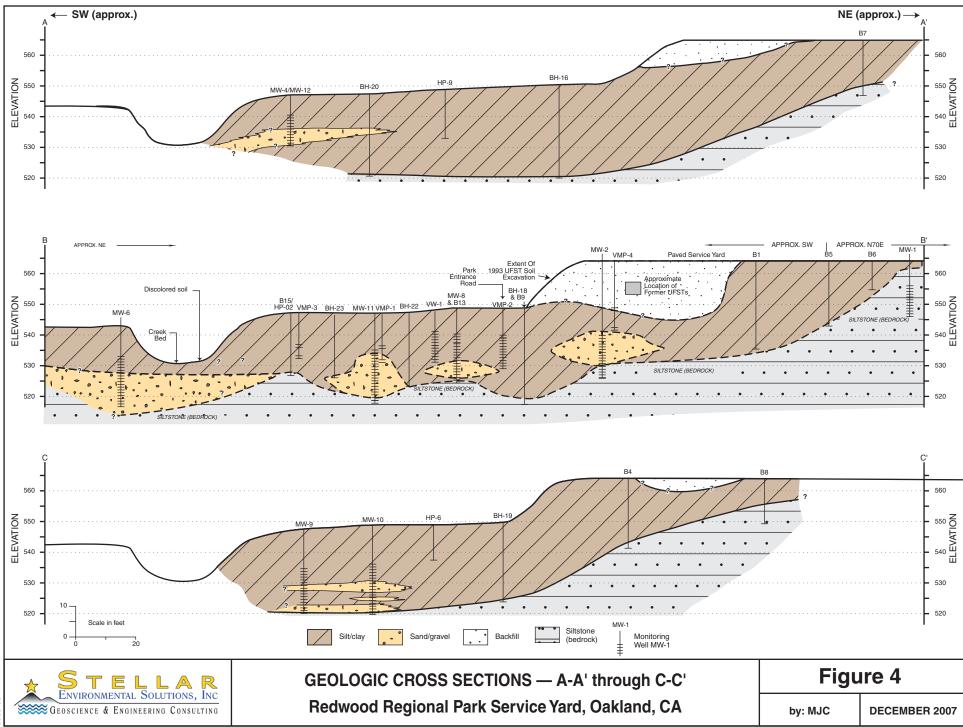
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH, at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- Shut down of the site bioventing system In June 2011.
- Design and implementation of PRB workplan.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system.

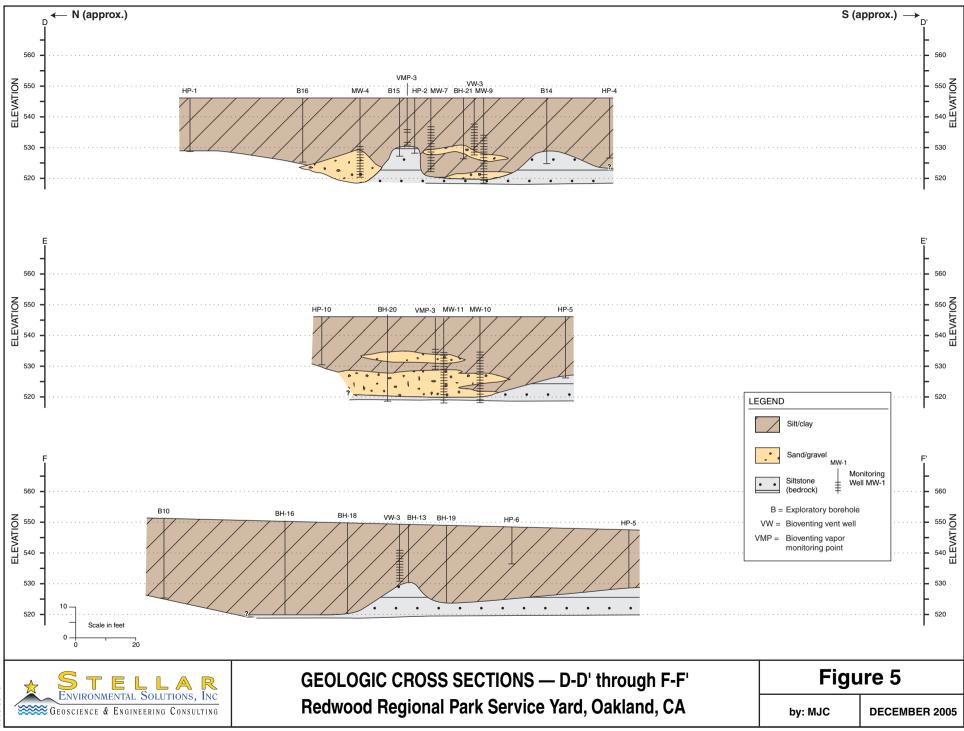
2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.

SITE LITHOLOGY


Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination were presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.


A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

2008-02-05

2005-66-14

2005-66-13

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the

time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.27 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient flattens out to approximately 0.07 feet per foot. The average groundwater elevation was 2.69 feet lower than the previous (March 2014) event, with the greatest decrease of 6.14 feet measured in MW-3 and the lowest increase measured in MW-1 of 1.28 feet. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 SIX-MONTH POST-PRB INSTALLATION EVALUATION

This section presents the field and laboratory results of the 6-month post-PRB installation groundwater monitoring event conducted on June 26, 2014. In accordance with the PRB RAW, groundwater monitoring and sampling of the five key wells surrounding the PRB (downgradient wells: MW-7, MW-9, MW-12 and upgradient wells: MW-10 and MW-11) was conducted to monitor the effectiveness of the PRB. Groundwater monitoring well water level measurements, purging, sampling, and field measurements was conducted on June 26, 2014, approximately 6 months after the November 20, 2013 installation of the PRB, by Blaine Tech Services under the supervision of Stellar Environmental personnel. The sampling generated purge water and decontamination rinseate (approximately 34.5 gallons) during this limited event that was containerized in the onsite above-ground storage tank.

The monitoring included analysis of TPH contaminants in all five of the key wells and analysis of the electron acceptors and oxygen demand analyses to track utilization of the PRB product was done in the 3 key wells downgradient of the PRB.

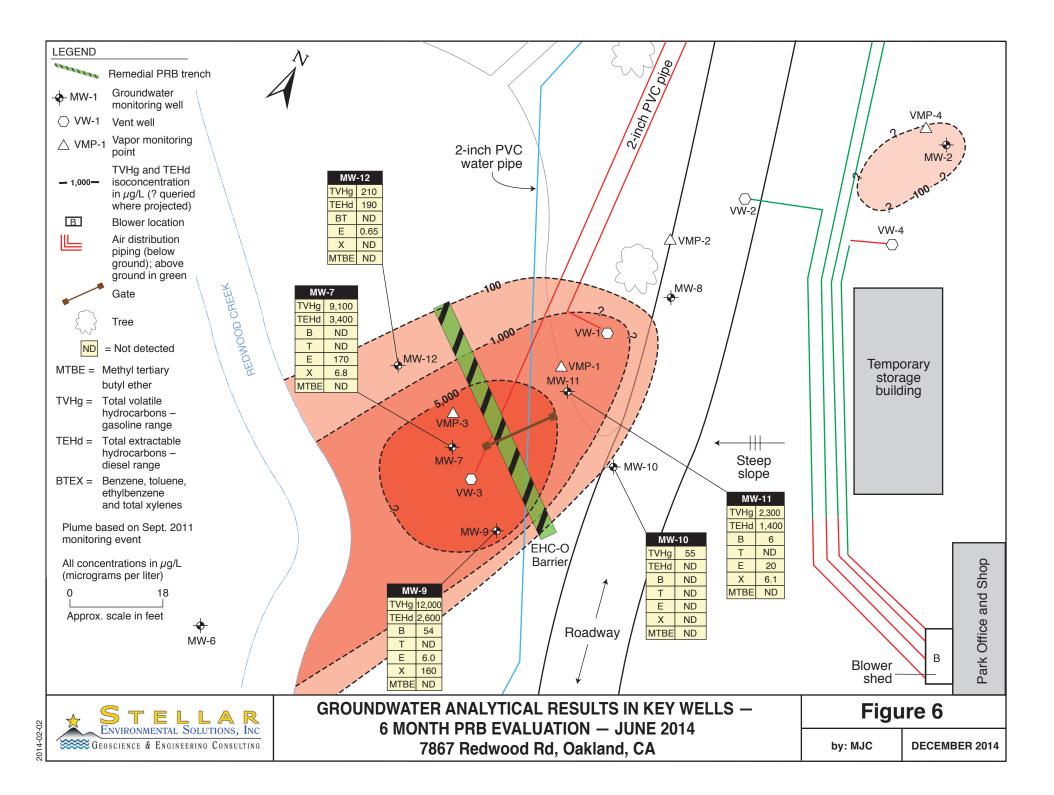
Figure 6 is site plan showing the PRB in relation to Redwood Creek with groundwater analytical results from the six-month PRB evaluation monitoring of the five key wells. Figure 7 is a cross-section showing the location of the PRB in relation to the contaminated zone and Redwood Creek. Table 1 summarizes the contaminant analytical results and Table 2 summarizes the results of the electron acceptors and oxygen demand analyses in the 6-month event. Appendix C contains the certified analytical laboratory reports and chain-of-custody record.

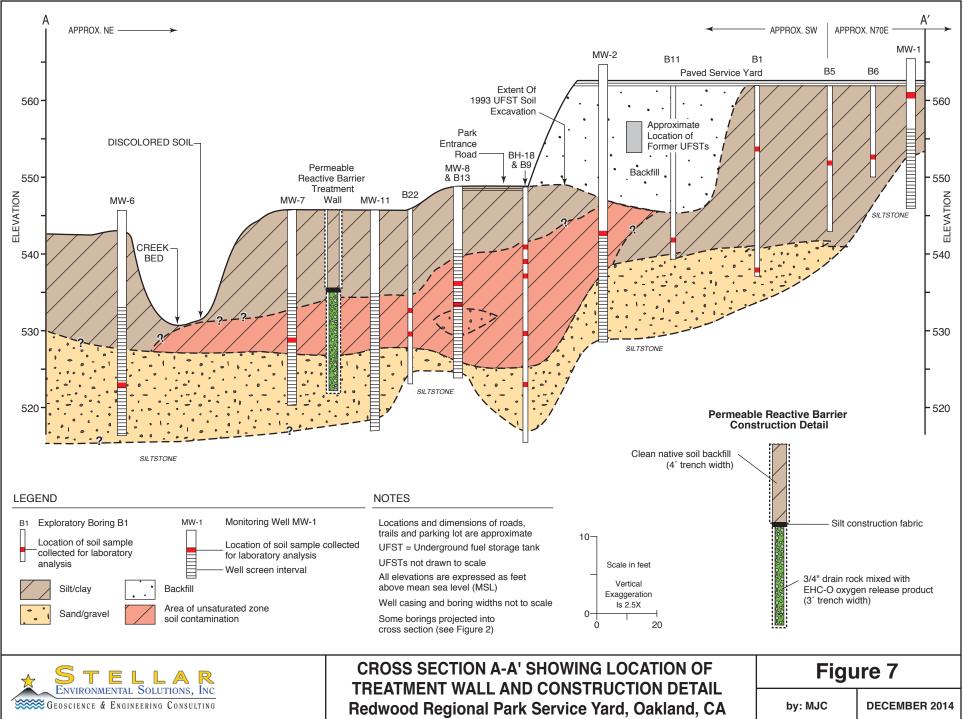
PRB DESIGN AND BACKGROUND

A full discussion of the PRB workplan development and installation are discussed in the December 2013 Semiannual Groundwater Monitoring Report. The permeable reactive barrier (PRB) was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. The PRB trench was constructed by excavating a trench approximately 40 feet long and 3 feet wide and 22 feet bgs in the distal downgradient contaminated zone. A total of 1,250 pounds of Adventus EHC-O oxygen release product was mixed in a relatively more permeable drain rock backfill and emplaced in the trench from 22 to 10 feet bgs as it was backfilled.

The PRB should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first approximately 6-12 months. The volume of dissolved hydrocarbons within the generalized area is expected to be reduced within the first 12 months by 50 percent or more—according to the manufacturer's data. However, groundwater flow through the reactive wall is needed to trigger the treatment and the until December 2014 rainfall the recent year drought conditions kept the groundwater elevations low.

GROUNDWATER ELEVATION IN KEY WELLS


The 6-month groundwater levels measurement showed an average decrease of 0.41 feet in the five key wells since the previous monitoring in March 10, 2014 which is consistent with the below average 2013-2014 rainfall season.


ANALYTICAL RESULTS

Volatile Organic Compounds

Groundwater contaminant concentrations exceeded the groundwater ESL for TVHg and TEHd in four of the five key wells sampled (MW-7, MW-9, MW-11 and MW-12). The ESL for benzene was exceeded in both wells where it was detected (MW-9 and MW-11); ethylbenzene was detected in all 5 wells but only exceeded the ESL in MW-7 and MW-9; and total xylenes were detected in four of the five wells but only exceeded the ESL in MW-9. Other VOCs were detected but all below their respective ESLs; toluene was detected in MW-10. MTBE was not detected in any of the five wells.

All of the contaminant concentrations were detected within their historical ranges suggesting that insufficient time has elapsed to see a reduction in concentration compared to the baseline or previous events.

Table 1
6-Month Post-PRB Installation Groundwater Sampling
Analytical Results – June 26, 2014

	Field Measur	ements		Contaminant Concentrations					
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-7	0.15	-32	3,400	9,100	<0.5	<0.5	170	6.9	<2.0
MW-9	0.12	-56	2,600	12,000	54	<0.5	610	160	<2.0
MW-10	0.45	-62	55	<50	<0.5	0.61	2.0	1.5	<2.0
MW-11	0.13	-86	1,400	2,300	6.0	<0.5	20	6.1	<2.0
MW-12	0.12	-7	190	210	<0.5	<0.5	0.65	<0.5	<2.0
Groundwater ESLs	-	-	100/ 640	100/500	1.0/27	40 / 130	30/43	20 / 100	5.0 / 1,800

Notes:

ESLs = Water Board Environmental Screening Levels, where groundwater is/is not a potential drinking water resource (Water Board, 2013)

 $\label{eq:temperature} \begin{array}{l} TEHd = total \mbox{ extractable hydrocarbons - diesel range} \\ TVHg = total \mbox{ volatile hydrocarbons - gasoline range} \end{array}$

$$\label{eq:mtbeta} \begin{split} MTBE &= methyl \ tertiary-butyl \ ether \\ NLP &= no \ level \ published \end{split}$$

All contaminant concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion. Samples in **bold-face** type exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

PRB GROUNDWATER MONITORING INDICATORS

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-8 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to establish a baseline to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.74 to 7.18, mostly within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants in groundwater as they reach the PRB. The oxygen is then released more slowly, which will assist bioremediation for several years.

Table 2 includes the results of these additional analyses of samples collected during the 6-month site monitoring in wells located immediately downgradient of the PRB.

Table 26-Month Analytical Results of Electron Acceptors and Oxygen Demand in DowngradientWells - June 26, 2014

	Analytical Lab Concentrations						
Location	Nitrates	Sulfates	BOD	COD			
MW-7	< 0.05	1.7	14	48			
MW-9	< 0.05	6.8	20	95			
MW-12	< 0.05	27	<5.0	48			

Notes:

COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Analytical laboratory concentrations are expressed in in milligrams per liter (mg/L) micrograms per liter (μ g/L).

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as microbial respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

To help evaluate the effect of the PRB, DO was measured in the key site wells during the October 2013 sampling event to establish a baseline for comparison in future monitoring events. The baseline post-purge measurements during October 2013 event showed a DO concentration ranging from 0.17 - 0.87 mg/L in the downgradient key site wells (MW-7, MW-9 and MW-12) and a DO concentration ranging from 0.23 - 0.31 mg/L in the upgradient (of the PRB) key site wells MW-10 and MW-11. The 30-day, post-PRB installation sampling event measured DO concentrations ranging from 0.93 in downgradient key site well MW-9 to 2.75 mg/L in the upgradient key well MW-10. The 6-month, post-PRB installation sampling event measured DO concentrations ranging from 0.12 in downgradient key site well MW-9 and MW-12 to 0.45 mg/L in the upgradient key well MW-10. This represents an overall decrease in available oxygen in the 5 key wells that may indicate a decline in the effect of the PRB or possibly reflect the low groundwater and drought conditions.

It should be noted that DO concentrations in the field are not indicative of the total amount of oxygen release by EHC-OTM product as the oxygen is rapidly utilized by microorganisms.

Oxidation-Reduction Potential

In oxidizing (aerobic) conditions, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

Combined measurement equal to -154 mV of the ORP range of 61 to -100 mV in wells MW-7, MW-9 and MW-12 (downgradient of the PRB) during the 30-day sampling event increased (became more positive) to -122 mV in the March 2014 indicating an increase in oxidizing aerobic conditions favorable to bioremediation. The average ORP in the five key wells measured in the 6-month monitoring showed a sight increase in negativity compared to the March 2014 event which may indicate a lessening of biodegradation during this period.

Chemical and Biochemical Oxygen Demand, Nitrates, and Sulfates

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, BOD and COD to establish a baseline to track the effect of the oxygen release product (Adventus EHC-OTM) utilization.

The presence of sulfates and absence of nitrates in wells MW-7, MW-9 and MW-12 is generally consistent with the DO and ORP data. These results indicate that some degree of aerobic degradation is likely occurring at the site; however there is a slight decrease in sulfates but no discernable trend and/or correlation to hydrocarbon concentration in this 6-month event.

5.0 SECOND SEMIANNUAL 2014 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (Second Semiannual 2014), conducted on September 19, 2014, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3 could not be conducted this 2nd 2014 semiannual event as creek was dry.
- Continue post-purge measurement of dissolved oxygen (DO) and redox to establish a baseline prior to installation and monitor the effect of the permeable reactive barrier (PRB) that was installed on November 20, 2013 across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to establish a baseline prior to and approximately 30 days after installation of the PRB;
- Conduct a limited groundwater sampling on June 26, 2014, approximately 6 months after installation of the PRB, of downgradient key wells: MW-7, MW-9, MW-12 and upgradient wells: MW-10 and MW-11. This is discussed in Section 4.0 of this report.

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the September 19, 2014 groundwater elevation data are summarized in Table 3. Figure 8 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth (bgs)	Groundwater Elevation			
MW-1	18	7 to17	565.83	3.20	560.40			
MW-2	36	20 to 35	566.42	23.77	540.33			
MW-3	42	7 to 41	560.81	22.77	535.53			
MW-5	26	10 to 25	547.41	15.89	529.31			
MW-6	26	10 to 25	545.43	12.50	530.50			
MW-7	24	9 to24	547.56	14.45	532.05			
MW-8	23	8 to 23	549.13	16.04	532.96			
MW-9	26	11 to 26	549.28	15.54	531.46			
MW-10	26	11 to 26	547.22	15.69	531.91			
MW-11	26	11 to 26	547.75	13.54	533.66			
MW-12	25	10 to 25	544.67	13.92	532.28			

Table 3
Groundwater Monitoring Well Construction
and Groundwater Elevation Data – September 19, 2014

Notes:

All measurements expressed in feet

TOC = top of casing

bgs = below ground surface

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above mean sea level. (U.S. Geological Survey)

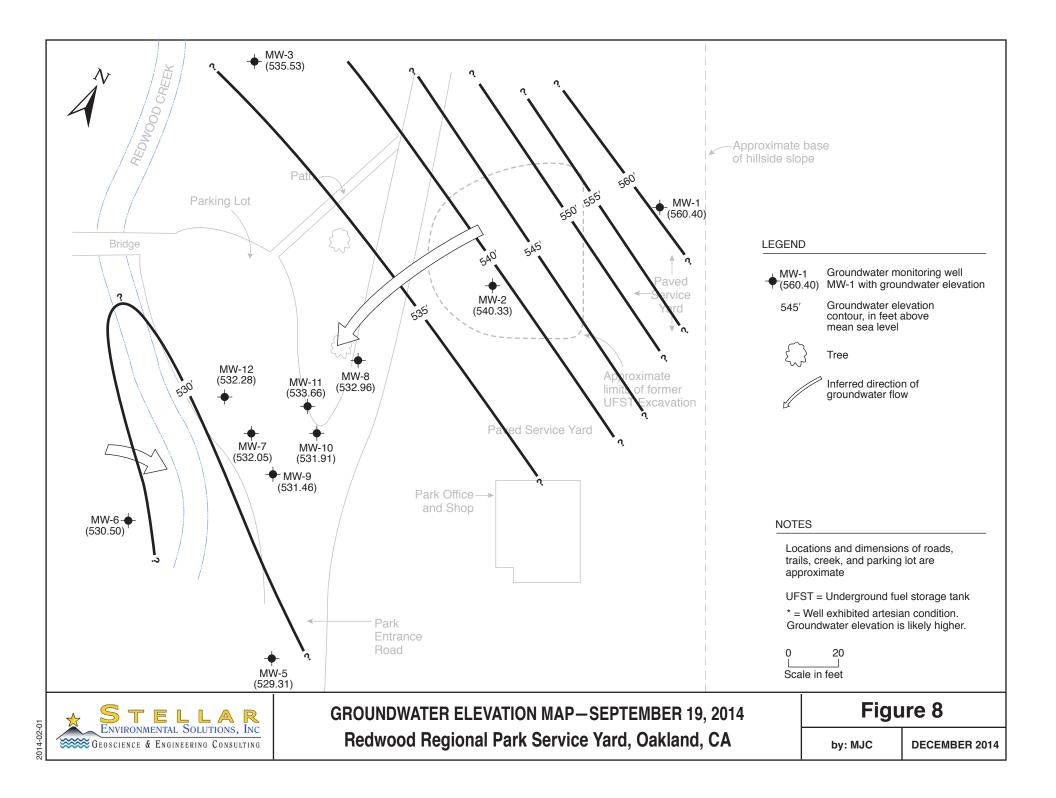
GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 40.1 gallons) from the current event was containerized in the onsite above-ground storage tank. Purgewater is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

REDWOOD CREEK SURFACE WATER SAMPLING

Surface water sampling usually conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel could not be done this period as creek was dry at both of the prescribed creek sampling locations: location SW-2 immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination; and surface water sampling location SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.


At the time of the September 2014 sampling event, the entire stretch of creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. Blaine Tech personnel did not report observing orange algae in the creek bank at location SW-2 or petroleum odors during this event.

BIOVENTING-RELATED ACTIVITIES

On July 18, 2011, in concurrence with ACEH, the site bioventing system, having accomplished its' design purpose, was discontinued.

POST-PRB INSTALLATION MONITORING

Six-month and this semiannual monitoring related to the PRB installed on November 20, 2013 are discussed in Sections 4.0 and 5.0 of this report, respectfully. A full discussion of the PRB workplan development and installation are discussed in the December 2013 Semiannual Groundwater Monitoring Report.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The semiannual field and analytical laboratory results of the current monitoring event were collected in September 2014. Table 4 summarizes the contaminant analytical results. Figure 9 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

Second Semiannual 2013 groundwater contaminant concentrations were as follows: The ESL for TVHg and TEHd for residential areas where groundwater <u>is</u> a drinking water resource was exceeded in five of the seven wells sampled. TVHg was detected at 17,000 mg/L in well MW-9 and at 2,500 ug/L in MW-12, both historical maximum high concentrations in these wells. The ESL for benzene was exceeded in wells MW-9 and MW-12, the only wells in which it was detected and a historical maximum detection of 6.8 ug/L in MW-12. Ethylbenzene was detected in all of the wells except MW-10 and MW-11 and above the ESL in wells MW-7 and MW-9. Total xylenes were detected in 4 wells but only above the ESL in MW-9. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled. MTBE was detected in wells MW-2, MW-8, MW-10 and MW-11 but above the ESL only in well MW-8.

Well MW-7 contained both the maximum TVHg and TEHd groundwater. MW-7 is located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution.

Surface water sampling could not be conducted this event at either of the prescribed sampling locations; SW-2 or SW-3 due to insufficient creek water for sampling.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

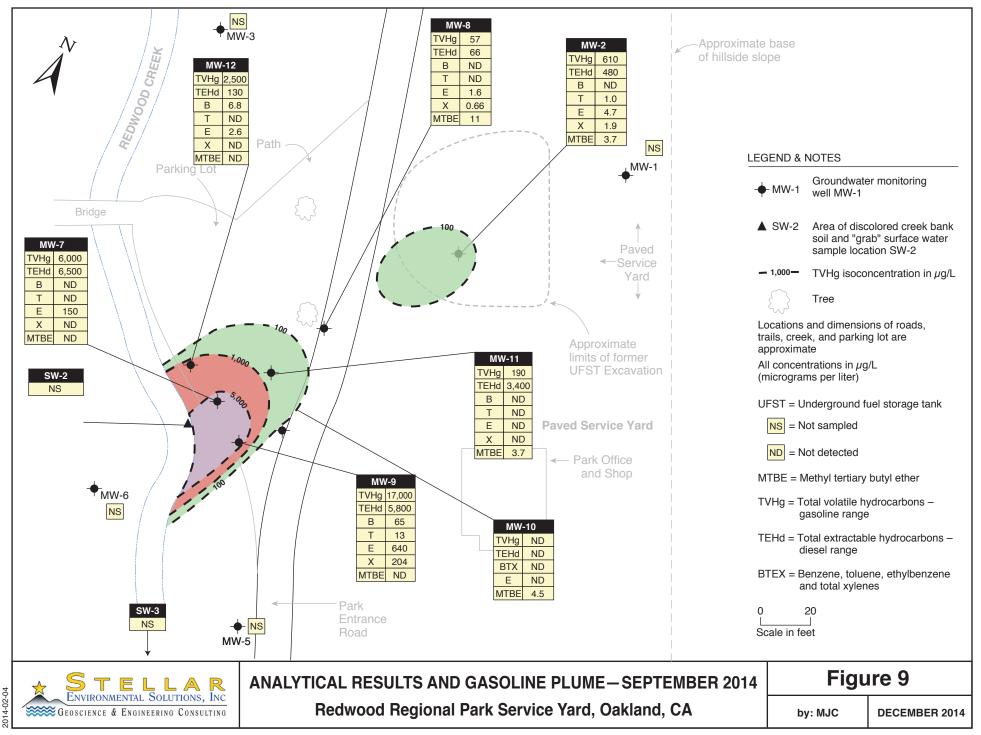
Table 4 **Groundwater and Surface Water Samples** Analytical Results –September 19, 2014 **Redwood Regional Park Corporation Yard, Oakland, California**

			Contaminant Concentrations						
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLES									
MW-2	18.61	190	480	610	<0.5	1.0	4.7	1.9	3.7
MW-7	0.12	-69	6,000	6,500	< 0.5	<0.5	150	5.1	<2.0
MW-8	1.11	-50	66	57	<0.5	<0.5	1.5	0.66	11
MW-9	0.11	-63	5,800	17,000	65	13	51	204	<2.0
MW-10	0.51	22	<50	<50	< 0.5	<0.5	<0.5	<0.5	4.5
MW-11	0.71	-79	3,400	190	< 0.5	<0.5	<0.5	<0.5	3.7
MW-12	0.32	-21	130	2,500	6.8	<0.5	26	<0.5	<2.0
Groundwater ESLs ^(a)			100 / 640	100/ 500	1.0 / 27	40 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SU	RFACE WAT	TER SAMP	PLES						
SW-2 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
SW-3 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
Surface Water Screening Levels ^(b)			100	100	1.0	40	30	20	5.0

Notes: (a) ESLs = Water Board Environmental Screening Levels (where groundwater is/is not a potential drinking water resource) (Water Board, 2013).

^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource.


NA = not analyzed NLP = no level published NS = not sampled

MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons – gasoline range

TEHd = total extractable hydrocarbons - diesel range

All contaminant concentrations are expressed in micrograms per liter (µg/L), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells. ORP = redox or oxidation reduction potential measured in millivolts (mV)

PERMEABLE REACTIVE BARRIER MONITORING INDICATORS

Alternate electron acceptors were measured during this semiannual monitoring and sampling event in wells MW-7, MW-8 and MW-12 located downgradient of the the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to establish a baseline to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.03 to 7.96, mostly within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants in groundwater as they reach the PRB. The oxygen is then released more slowly, which will assist bioremediation for several years.

Table 5 includes the results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the PRB.

Table 5 Baseline Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells – September 19, 2014

	Analytical Lab Concentrations								
Location	Nitrates	Sulfates	BOD	COD					
MW-7	<0.25	1.5	9.6	21					
MW-9	<0.25	5.5	17	24					
MW-12	<0.25	23	<5.0	32					

Notes:

COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Analytical laboratory concentrations are expressed in in milligrams per liter (mg/L) micrograms per liter (µg/L).

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at

least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

The baseline DO concentrations, prior to installation of the PRB, at monitoring key wells MW-7, MW-9 and MW12, of which MW-7 and MW-9 showed the highest concentrations of hydrocarbons, are relatively low (0.23 – 0.31 mg/L) suggesting that less active aerobic biodegradation was occurring at these wells. The DO in wells MW-10 and MW-11, located upgradient of the PRB ranged from 0.23 – 0.31 mg/L also suggested minimal aerobic biodegradation was occurring. The 6-month, post-PRB installation sampling event measured DO concentrations ranging from 0.12 in downgradient key site wells MW-9 and MW-12 to 0.45 mg/L in the upgradient key well MW-10 showed an overall decrease in available oxygen in the 5 key wells, and again suggest minimal aerobic biodegradation is occurring. This September 2014 monitoring shows DO concentrations have remained relatively the same with the exception of MW-2 that showed a large increase. The anomalously elevated 18.61 mg/L DO measured this September 2014 in source area well MW-2 increased from 4.1 mg/L in March 2014 and likely represents the influence of atmospheric air exchange through the permeable material used to backfill in the UST source area excavation. The September 2014 DO concentrations in the five key wells have remained similar compared to the March 2014 event.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

Measurement of the baseline ORP ranged from -108 to + 1 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB and from -42 and -62 in wells MW-10 and MW-11, located within 15 feet upgradient of the PRB, respectfully. This September 2014 monitoring shows the ORP concentrations have remained relatively the same compared to the March 2014 event with the exception of source area well MW-2 that showed a large positive increase corresponding to the large DO increase.

Measurements collected during the 6-month post-PRB monitoring in June 2014 and this semiannual monitoring events are included in Tables 2 and 5, respectfully

7.0 EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. An assessment is made as to the nature of residual contaminated soil that acts as a continued source of groundwater contamination. A conceptual model (incorporating site lithology, hydrogeology, and hydrochemistry is presented to explain the spatial extent and magnitude of the dissolved hydrocarbon plume.

CONTAMINANT SOURCE ASSESSMENT

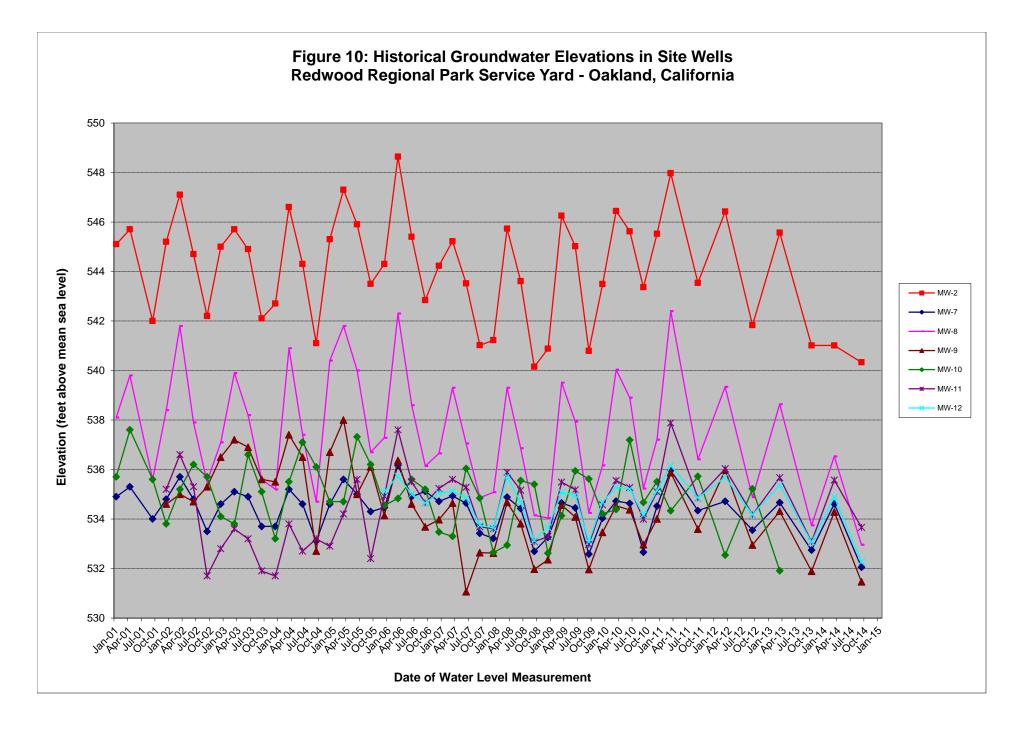
Site UFSTs were removed (i.e., discharge was discontinued) in 1993, and some but not all of the source area excavation contaminated soil was removed. That residual hydrocarbon contamination entrained in the soil and capillary fringe has been extremely hard to mitigate, with only partial success achieved through the bioventing and oxygen providing product in-situ injection that has been implemented since 2005.

Success at reducing the significant contamination in the mid-field plume area represented by well MW-8 has been achieved along with mitigation of the 2007 timeframe increase at the upper plume area represented by well MW-2. This September 2014 monitoring shows the contaminant plume split into an upper zone of contamination around MW-2 and a lower zone around well MW-7, MW-9 and MW-12 with very low detection, all below the applicable ESLs, surrounding MW-8. But the lower plume area represented by the "guard" wells MW-7 and MW-9 were not significantly reduced by the combination of bioventing and March 2010 ORC[™] injection. The PRB was installed in November 2013 in an effort to treat the lower plume on the downgradient border to mitigate against the hydrocarbon impact to the Redwood Creek.

This September 2014 event showed historical maximum high concentrations of TVHg in wells MW-9 and MW-12 and of benzene in MW-12 immediately downgradient of the PRB. These historical high concentrations are likely attributed to the effect of the installation of the PRB initially releasing hydrocarbons entrained in the soil. The PRB may also be creating hydrostatic pressure that is mobilizing contaminants in this area of distal plume area.

Borehole soil sampling has provided data on the extent and magnitude of soil contamination in the vicinity of the former UFSTs ("source area") and the outlying area (in the capillary fringe above the groundwater plume). Soil contamination appears constrained to the unsaturated zone and the underlying saturated sediments on the weathered bedrock surface. The 2010 ORC[™] injection effort was aimed at mitigating the apparent large mass of residual TPH contamination in the unsaturated zone, primarily in the area between the former UFSTs and the park entrance roadway, with the contaminated zone thinning toward Redwood Creek. Seasonal desorption of contamination in this unsaturated zone occurs during the rainy season and during high-water periods, acting as a long-term source of dissolved contamination. Previous ORC[™] injection programs—which resulted in permanent reductions at the peripheral plume margins, but were followed by rebound (to pre-injection conditions) within the central portions of the plume—indicate that site conditions support aerobic biodegradation. However, biodegradation is limited by oxygen deficiency in the unsaturated zone.

Based on this conceptual model—and using conservative assumptions for equilibrium partitioning, contaminant geometry, soil moisture, and previous laboratory analytical results for TPH in soil—estimates of TPH mass in soil were calculated based on 2004 and earlier borehole data. Residual TPH in vadose zone soil is estimated at 1,400 to 7,000 pounds (100 to 600 gallons of gasoline), compared to a mass of TPH in groundwater estimated at 1 to 10 pounds (0.1 to 1.0 gallon of gasoline). The hydrocarbon mass in groundwater is likely higher than originally estimated (based on post-2004 data).


Soil and groundwater contamination distribution and site lithologic and hydrogeologic conditions have shown that residual soil contamination, unless abated, will continue to be a source of long-term groundwater contamination via seasonal desorption and migration.

WATER LEVEL TRENDS

Appendix D contains historical groundwater elevation data. Figure 10 shows a trendline of site groundwater elevations in key wells (those within the contaminant plume). The data support the following conclusions:

- Groundwater elevations in all of the monitored site wells showed a seasonal fluctuation in 2013-2014—with an average increase of 1.84 feet (from October 2013 to March 2014) to an average decrease of 2.69 feet (from March 2014 to September 2014) reflecting the low rainfall season. The 6-month post-PRB installation monitoring of the 5 key downgradient wells showed a slight average decrease of 0.41 feet (from December 2013 to June 2014).
- In all wells, the lowest elevations have generally been observed during the end of the dry season and the highest elevations at the peak of the rainy season. This is a common seasonal trend observed in the upper water-bearing zone in the Bay Area.

- Groundwater elevation trends and magnitudes are similar between wells.
- Overall groundwater flow direction is consistently to the west-southwest (toward Redwood Creek). Localized (on the scale of tens of feet) groundwater flow direction appears to vary within the general flow direction, likely controlled by bedrock surface topography.
- The historical groundwater gradient in the area of the contaminant plume is consistently around 0.1 feet/foot.

HYDROCHEMICAL TRENDS

Concentrations of contaminants in an individual well can fluctuate over time for one or more reasons—contaminant migration, seasonal effects due to fluctuating groundwater levels (i.e., desorption from the unsaturated zone and/or dilution of saturated zone contamination), and/or natural attenuation (plus enhancement by active remediation measures such as ORC[™] injection, bioventing and the PRB). These hydrochemical trends can result in changes in the lateral extent and magnitude of a dissolved contaminant plume.

The most consistent trend in the wells located within the centerline of the plume has been a seasonal influence of desorption following winter rains, with a resultant increase in dissolved hydrocarbon concentration in the groundwater.

Because the quarter-to-quarter comparisons can be unduly influenced by seasonal effects that mask longer trends, it is useful to compare same-season data over time to determine if concentrations are increasing, decreasing, or remaining stable. Our evaluation of hydrochemical trends focuses on gasoline and diesel, which, when combined, represent the majority of the contaminant mass. To more closely evaluate plume stability differences, the following discussion focuses on four separate portions of the plume relative to the long axis (along the hydraulic gradient): "upgradient" (trailing edge of plume); "mid-plume"; "downgradient"; and "plume fringe."

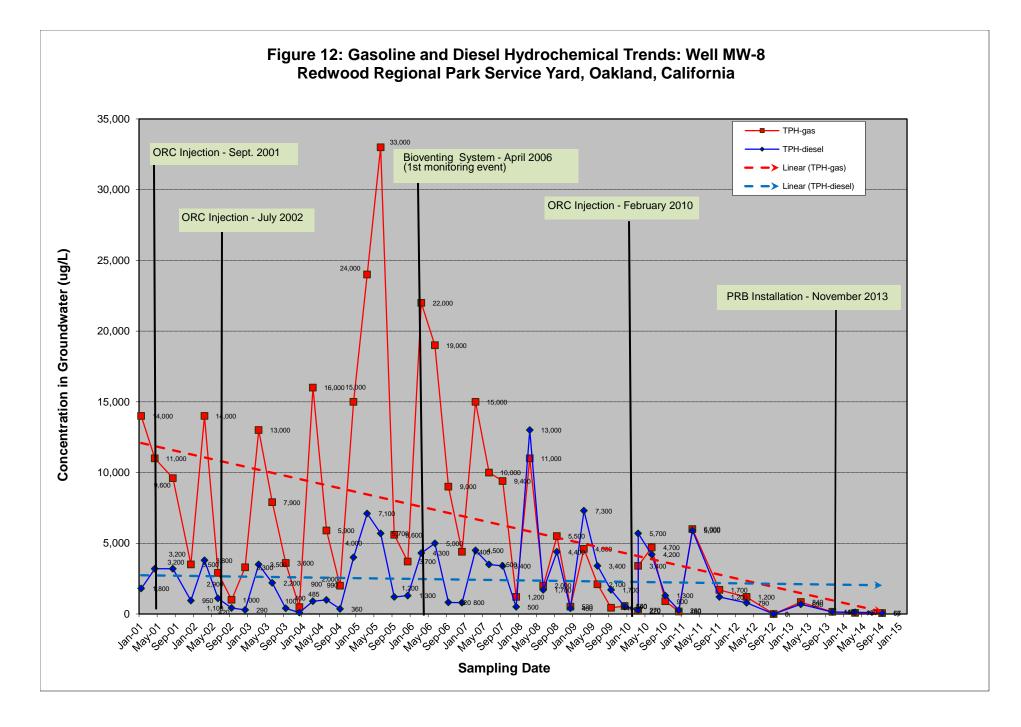
Important components of plume stability include: degree of contaminant fluctuations in individual wells over time; changes in the lateral extent of the plume; and changes in the location of the center of contaminant mass within the plume.

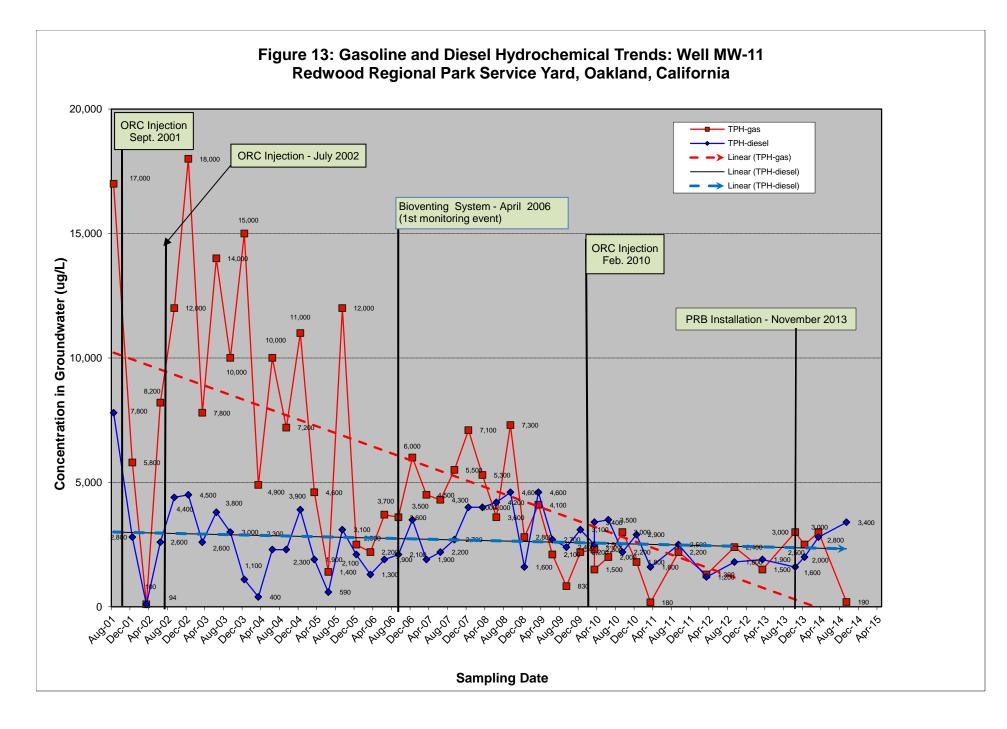
This September 2014 contaminant plume pattern is observed similar as historically observed before where, the contaminant plume appears to have disconnected from the source such that historical downgradient concentrations were higher than upgradient (near the source) concentrations. However, a significant increase in gasoline and diesel concentrations in source area well MW-2 was observed beginning in approximately September 2007. The increase continued, even after individual purging events, into 2010. Stellar Environmental commenced with ORCTM injection near this well and in the general area of the plume in February 2010. Based on that apparent success, in March 2010, a wider ORCTM injection into areas of the plume was initiated. This has not resulted in the same success at reducing concentrations in the lower plume area as it did in the upper and mid-field of the plume. The two guard wells MW-7 and MW-9 generally have comparative TPHg + TEHd, however there was a large difference over the last year. Well MW-7 showed a combined 9,100 μ g/L TPHg + TEHd in September 2011 compared with 8,700 μ g/L TPHg + TEHd in September 2012, which is pretty comparable. But well MW-9 showed a combined 4,500 μ g/L TPHg + TEHd in September 2011 compared with a

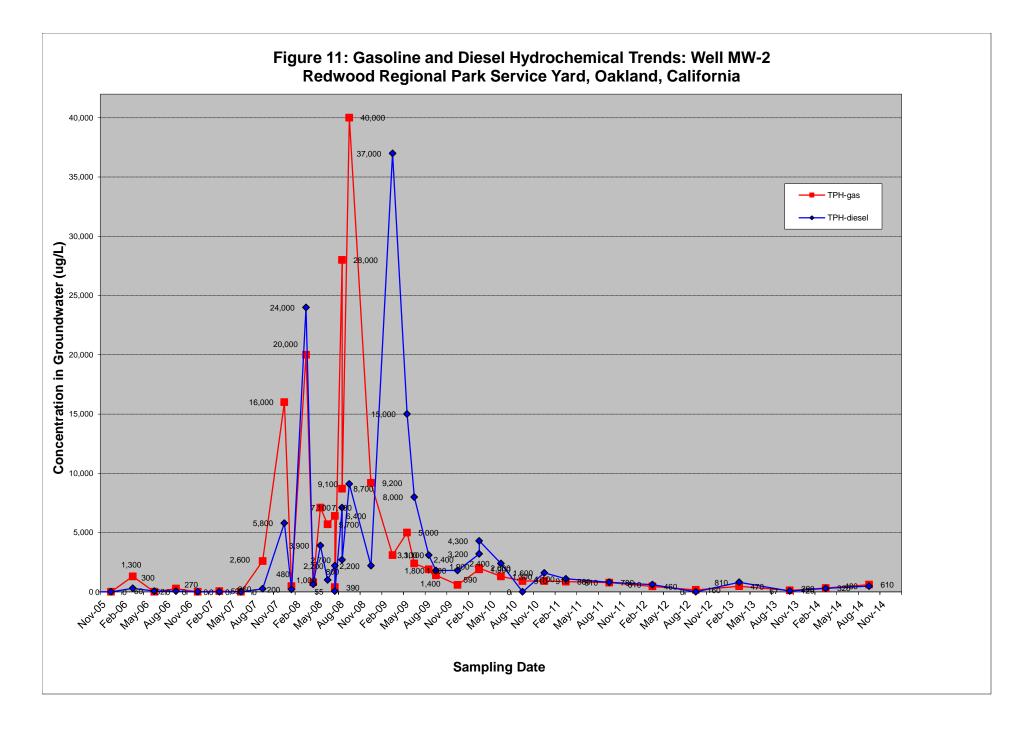
significant increase to 18,600 μ g/L TPHg + TEHd in September 2012. The contaminants in source area MW-2 have showed a steady decrease since March 2010, with the mid and downgradient areas of the plume (MW-7, MW-9, MW-11 and MW-12 exhibiting the highest contaminant concentrations.

The permeable reactive barrier (PRB) was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. This September 2014 event, approximately 10 months after installation of the PRB showed historical maximum high concentrations of TVHg in wells MW-9 and MW-12 and of benzene in MW-12 immediately downgradient of the PRB. The PRB should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first approximately 6-12 months, however, these historical high concentrations are likely attributed to the effect of the PRB which may be creating hydrostatic pressure that is mobilizing contaminants in this area of distal plume area.

To evaluate plume stability with regard to changes in the center of contaminant mass, we evaluated concentrations of TPH (gasoline and diesel combined) in individual wells over time. The data show no obvious correlation between maximum TPH concentrations and well locations, suggesting high plume instability. Since January 2001, maximum TPH concentrations have been variously detected in upgradient, mid-plume, and downgradient wells. These variations are likely due in large part to differing contaminant mass in unsaturated zone soils at particular locations, resulting in variable amounts of desorbed mass to the plume during high water conditions. The following discusses hydrochemical trends in each of the upgradient, mid-plume, and downgradient portions of the site, as well as at the fringes of the plume.


Upgradient Hydrochemical Trends


MW-2. As described in Section 4.0, this source area well historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. In September 2008, a new historic maximum of 40,000 µg/L of gasoline was observed in MW-2 and a new historic maximum of diesel at 37,000 µg/L was observed in March 2009. In March 2010, Stellar Environmental conducted a limited ORCTM injection, which has dramatically decreased concentrations of both gasoline and diesel to the recent lows observed in the October 2013 event, the diesel concentration measured 67 µg/L and the gasoline concentration measured 120 µg/L. The March and September 2104 events showed an increase in both the gasoline (320 and 610 µg/L) and diesel (290 and 480 µg/L) detection which may be the results of the 2013-2014 drought conditions. Figure 11 shows hydrochemical trends for gasoline and diesel in MW-2.

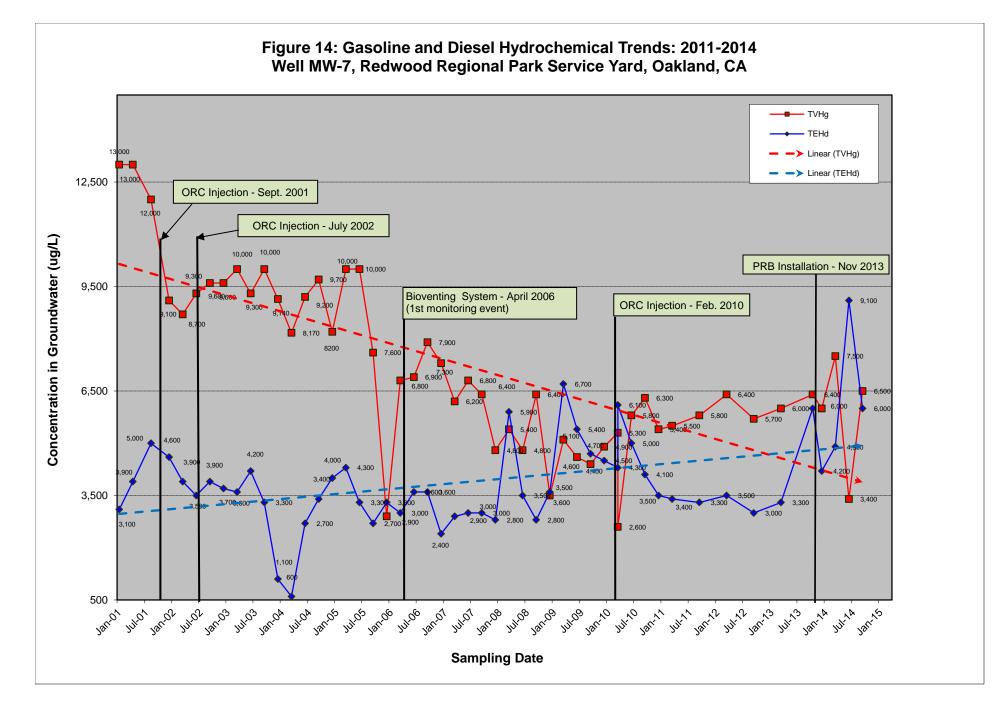

Mid-Plume Trends

MW-8. Concentrations of TVHg in MW-8, located approximately 60 feet downgradient of MW-2, have been generally decreasing since 2005: from a historic high of 33,000 TPHg μ g/L observed in June 2005 to the lowest TPHg concentration of 180 μ g/L in December 2010 to 1,700 μ g/L in this latest event. TEHd concentrations had remained fairly stable until a TEHd spike of 13,000 μ g/L was observed in March 2008; however, the concentration has since decreased to below the applicable ESLs in this latest September 2014 event. This fluctuation demonstrates that significant contaminant mass entrained in the soil continues to "feed" the dissolved concentration, as demonstrated by periods of recharge represented during the March 2008 sampling event. As contaminant concentrations decrease in the source area, contaminant concentrations in this well will most likely decrease as the plume migrates downgradient. Both gasoline and diesel concentrations have fluctuated widely but follow a well-established seasonal fluctuation pattern. The strong seasonal effect is visually apparent, with annual maximum concentrations generally occurring in late winter/early spring and annual minimum concentrations in MW-8.

MW-11. This well is located in the lower part of the mid plume zone, along the plume centerline, approximately midway between upgradient well MW-8 and downgradient guard well MW-7. Figure 13 shows hydrochemical trends for gasoline and diesel in this well. Gasoline and diesel concentrations were greatly reduced in 2001, and this was followed by an equally large increase by late 2002. Since that time, concentrations have fluctuated widely, with a strong seasonal effect. However, both diesel and gasoline concentrations in this well demonstrated a generally decreasing trend since 2008 and were within historical range.

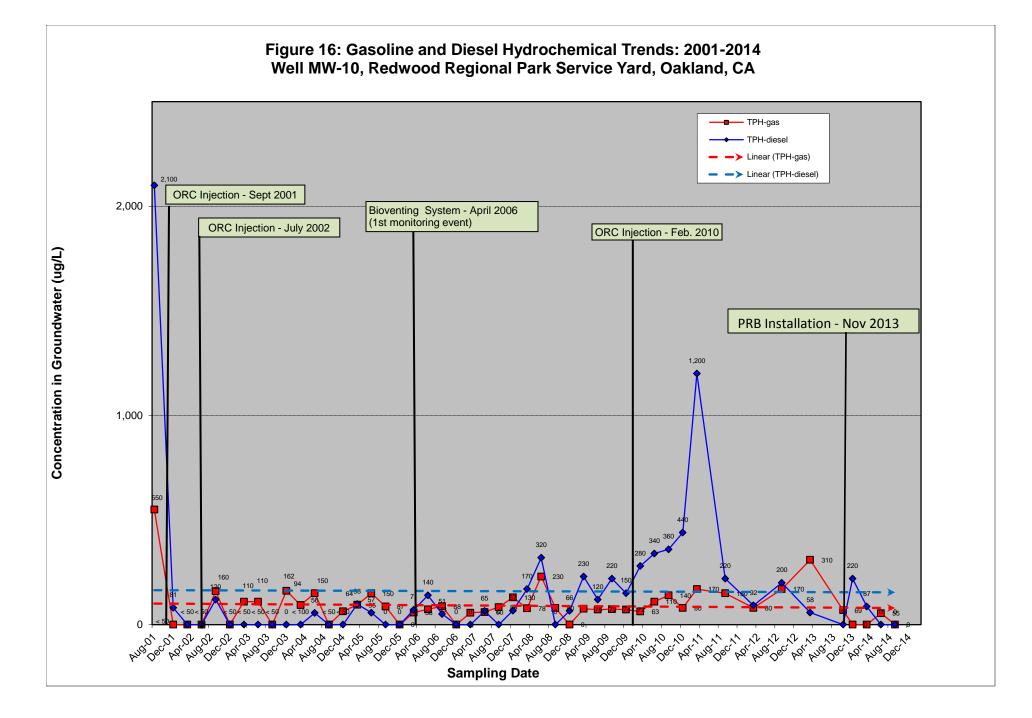
Downgradient Hydrochemical Trends

MW-7 and MW-9. These wells represent the high-concentration area of the central plume at the downgradient area approximately 20 feet from Redwood Creek. Well MW-7 shows concentrations of diesel and gasoline within historical ranges relative to the June 2014 (6-month post-PRB installation) and this September 2014 monitoring event with gasoline concentrations on an overall downward trendline and diesel on a slightly increasing one. Gasoline in MW-9 has shown strong fluctuations in concentration, but generally stable and within historical range since 2008. However, the diesel concentration trend in MW-9 has historically been fairly stable to slightly increasing trend. Both diesel and gasoline concentrations have increased since December 2013 in well MW-9 following the PRB installation with diesel detected at a historical high of 17,000 μ g/L this September 2014. As discussed previously, this is attributed to the effect of the installation of the PRB initially releasing hydrocarbons entrained in the soil and the hydrostatic pressure from the PRB mobilizing contaminants in this area of distal plume area. This should be a transient phenomenon with the effectiveness of the PRB indicated when 2014-2014 winter recharge of the groundwater mobilized the bioremediation product within the reactive barrier.

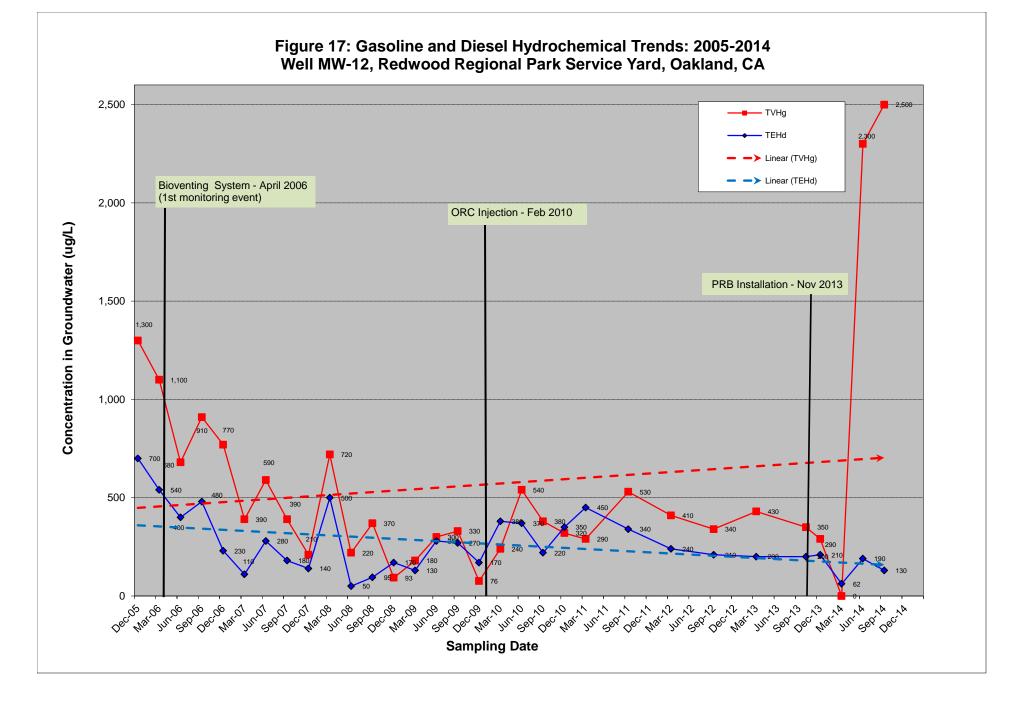

Additional monitoring will be needed to understand the effect of the PRB. Figures 14 and 15 show the hydrochemical trends for gasoline and diesel in wells MW-7 and MW-9, respectfully.

Plume Fringe Zone Trends

MW-10. This well is located on the southern edge of the plume, in the mid-plume portion relative to the longitudinal axis. Figure 16 shows hydrochemical trends for gasoline and diesel in this well. Concentrations of gasoline generally remained stable compared to 2009, with only slight increases observed above 100 μ g/L and a downward trend in 2013. The diesel concentration trend appears stable with a slightly increasing trend. The historic maximum of 2,100 μ g/L diesel was recorded in 2001 and the second highest of 1,200 μ g/L diesel was observed during in March 2011. This well has shown no contaminants in excess of the applicable ESLs since December 2013.


MW-4 (former). This well was located on the northern edge of the plume, just upgradient of Redwood Creek. Other than anomalous diesel detection in June 2004, no contamination had been detected in this well since December 2001. Due to poor recharge in this well, the well was destroyed in November 2005 and replaced by well MW-12 (in an adjacent position).

MW-12. The initial sampling of MW-12 showed elevated petroleum concentrations up to 1,300 μ g/L, but those concentrations declined until March 2008 when a spike was observed. Concentrations have fluctuated since then, but are below the historical maximum observed and show a decreasing contaminant trend. This September 2014 event following the PRB installation showed historical maximum high concentrations of TVHg (2,500 μ g/L) and benzene (6.8 μ g/L)



Stellar Environmental Solutions, Inc.

Stellar Environmental Solutions, Inc.

that are likely attributed hydrostatic pressure caused by the PRB that is mobilizing contaminants, however additional monitoring is needed to understand Figure 17 shows hydrochemical trends for gasoline and diesel in this well.

PLUME GEOMETRY AND MIGRATION INDICATIONS

The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination historically fluctuated between the upper portion of the plume (MW-2), the mid-portion of the plume (near MW-8), and the downgradient portion of the plume (at MW-7 and MW-9). The 2012 and 2013 years of monitoring showed the greatest contamination in the mid-plume area (MW-11) and downgradient portion of the plume (MW-7 and MW-9). The current September 2014 monitoring year showed a decreasing concentration trend in the mid-plume wells (MW-8 and MW-11) and an increasing concentration in the downgradient wells (MW-7, MW-9, and MW-12) with the contaminant mass above the applicable ESLs in the distal area of the plume appears to have disconnected and migrated from the source area contamination.

The plume geometry has not varied substantially over the past years of monitoring, although seasonal fluctuations in contaminant concentrations have been observed. This is exhibited by higher concentrations in downgradient wells in some events, and in mid-plume or upgradient wells in other events.

The October 2013 monitoring event showed the historical highest detection of TEHd detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.

CLOSURE CRITERIA ASSESSMENT AND PROPOSED ACTIONS

The Water Board and ACEH generally require that the following criteria be met before issuing regulatory closure of contaminant cases:

1. The contaminant source has been removed (i.e., the source of the discharge and obviously-contaminated soil). This criterion has not been partially met. While the UFSTs have been removed, along with contaminated soil, borehole soil sampling has shown a substantial mass of residual source area soil contamination that will act as an ongoing source of groundwater contamination. A bioventing system was installed and began operating in December 2005 as a corrective action to reduce gross contaminant mass in soil. The bioventing system resulted in an estimated magnitude drop in soil contaminant concentrations and thus having accomplished its' design purpose, was turned off in June 2011. Additional monitoring will be required to evaluate the effect of the PRB.

- 2. *The groundwater contaminant plume is well characterized, and is stable or reducing in magnitude and extent.* As discussed above, in our professional opinion, this criterion has not been met, and continued groundwater monitoring will be needed to demonstrate plume stability.
- 3. If residual contamination (soil or groundwater) exists, there is no reasonable risk to sensitive receptors (i.e., contaminant discharge to surface water or water supply wells) or to site occupants. This criterion is generally met by conducting a Risk-Based Corrective Action assessment that models the fate and transport of residual contamination in the context of potential impacts to sensitive receptors (e.g., water wells, residential and use). The newly installed PRB corrective action is designed to remedy the magnitude and duration of future contaminated groundwater discharge to Redwood Creek; considered the primary sensitive receptor, however additional monitoring is needed to evaluate the PRB to determine whether the 2014-2014 winter recharge of the groundwater mobilized the bioremediation product within the reactive barrier to reduce the concentrations in the wells downgradient of the PRB, particularly at well MW-9.

8.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of eleven site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include TVH-gasoline, TEH-diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene and ethylbenzene in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000, concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination greater than 1,000 µg/L of TVHg is currently centered on wells MW-7, MW-9 and MW-12; and contamination greater than 1,000 µg/L of TEHd currently centered on wells MW-7, MW-9 and MW-11, all of which are in the downgradient area of the plume. However, prior to the ORCTM injection in March 2010, the greatest zone of contamination was observed in MW-2, the historical source area well.

- This September 2014 event showed historical maximum high concentrations TVHg at 17,000 mg/L in well MW-9 and at 2,500 ug/L in MW-12, both upgradient of the new permeable reactive barrier (PRB).. Benzene was only detected in wells MW-9 and MW-12 and showed a historical maximum detection of 6.8 ug/L in MW-12. These historical high concentrations may be attributed to the effect of newly installed PRB disturbing the entrained hydrocarbon in soil locally. These wells are located approximately 10 feet downgradient gradient of the PRB which may be creating hydrostatic pressure that is mobilizing contaminants in this area of distal plume area.
- Second Semiannual 2014 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg and TEHd in five of the seven wells sampled. The ESLs for benzene were exceeded in monitoring wells MW-9 and MW-12; exceeded for ethylbenzene in MW-7 and MW-9; exceeded for xylenes in MW-9; and the ESL for MTBE was exceeded in well MW-8.
- The current September 2014 monitoring year showed a decreasing concentration trend in the mid-plume wells (MW-8 and MW-11) and an increasing concentration in the downgradient wells (MW-7, MW-9, and MW-12) with the contaminant mass above the applicable ESLs in the distal area of the plume, appearing to have disconnected and migrated from the source area contamination.
- The contaminant plume has historically appeared neither stable and reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells, however the contaminants in upgradient source area MW-2 have showed a steady decrease since March 2010, with the mid and downgradient areas of the plume (MW-7, MW-9, MW-11 and MW-12) currently the exhibiting the highest contaminant concentrations as of September 2014.
- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- At the time of the September 2014 sampling event, the entire stretch of Redwood Creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. The October 2013 monitoring event showed the historical highest detection of TEHd

detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.

- The six-month post-PRB installation monitoring in June 2014 of the five key wells in the distal plume area detected a historical high concentration of diesel in MW-9, however the other contaminant concentrations were within their historical ranges suggesting that insufficient time has elapsed to see a reduction in concentration compared the baseline concentrations in the October 2013 baseline monitoring or previous events.
- The 6-month, post-PRB installation sampling event in June 2104 measured DO concentrations ranging from 0.12 in downgradient key site well MW-9 and MW-12 to 0.45 mg/L in the upgradient key well MW-10. This represents an overall decrease in available oxygen in the 5 key wells that may indicate a decline in the effect of the PRB or possibly reflect the low groundwater and drought conditions. The September 2014 monitoring showed DO concentrations have remained relatively the same with the exception of MW-2 that showed a large increase which likely represents the influence of atmospheric air exchange through the permeable material used to backfill in the UST source area excavation.
- The historically high concentrations at the well MW-9 is attributed to the effect of the installation of the PRB initially releasing hydrocarbons entrained in the soil and the hydrostatic pressure from the PRB mobilizing contaminants in this area of distal plume. This should be a transient phenomenon with the effectiveness of the PRB indicated when 2014-2014 winter recharge of the groundwater mobilized the bioremediation product within the reactive barrier.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

- Continue to monitor the PRB effectiveness with quarterly sampling at key wells MW-7, MW-9, MW-10, MW-11 and MW-12 for one more year with inclusion of the additional site chemical parameters during all sampling events to track the effect of the oxygen release product utilization and to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

9.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. , Revised May 2013.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation. Redwood Regional Park Service Yard Site. April 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014 Second Semiannual 2013 Groundwater Monitoring, Permeable Reactive Barrier installation, and Annual Summary Report Redwood Regional Park Service Yard Site. January 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.

- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.

- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.

- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.

- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

10.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored		1	1	Gro	undwater E	levations	feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	505.4
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
9/23/2011	561.03	543.54	539.52	(b)	530.81	532.31	534.34	536.41	533.59	534.67	534.85	534.86
3/22/2012	562.25	546.42	542.02	(b)	531.83	533.13	534.71	539.34	535.97	535.51	536.03	535.69
9/19/2012	560.93	541.83	537.53	(b)	530.6	531.91	533.55	534.88	532.95	534.33	534.17	534.17
3/14/2013	561.80	545.57	541.74	(b)	531.01	532.11	534.66	538.64	534.31	535.72	535.67	535.37
10/3/2013	560.95	541.01	536.21	(b)	530.02	531.14	532.74	533.74	531.89	532.54	533.08	533.06

TOC = Top of well Casing(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

	WELL GAU	JGING DATA	그는 아이는 것은 말 것을 얻는 것이 없다.
	- 그렇는 사람들과 동안을 통했을까		영영을 통하는 것을 물을 얻는 것이다.
111 -010 001		성격한 소문 방송은 동물을 통을 수 있다.	
Project # 140919-PC1	Date 9/19/	14 Cliv	ent Stellar
	Dale		

Site Redwood Regional Parks Service Yard, Oakland

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	- 「火戸でした」というというからい。		■ ともこした とうとう ちゃうしん ひらくもうかい	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-1	0812	L					5.43	19.12	}.	
Mw-2	0814	4					26.09	37-14		
MW-3	0790	4					25.26	26.96		
MW-5	0754	4					18.10	(8.1)		
MW-6	0802	2					14,93	14950	Astru	tion
MW-7	0821	Z				2	15.51	25-31		
MW-8	6670	2					16.17	2232		
MW-9	0828	2					17.82	30.24		
Mw-10		2					[53]	28.41		
MW-11	directer interactions and	r					15.09	28.70		
MW-12	0824	2					12.39	23.85	4	
))	Green	offle	nd tau	~~!/	4 fall	(~g" from	Bottom)		

	;				:			
	V	VELLHEA	D INSP	ECTION	CHEC	KLIST	Page	of
Client <u>SUS</u>			11-111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Date	9/10	rley	
Site Address <u>R</u> R	PSY, Oal	rland						
Job Number 140	ι ·			Tech	nician	Pe		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-1			lid bro	ken e h	juge-	standpipe		
Mu-2	X							
MW-3	X							
MW-6	X							
MW-E	X							
MW-7	K							
MW-8		×	3300	Hts m	tesing			
MW-9	X			`				
M6-10			apto	los stri	pped - "	Mular s	eal failed	
M.U-11	X				.1			
MW-12			1/2 - 10	bsbak	en			

NOTES:

;

BLAINE TECH SERVICES, INC.

SAN DIEGO SEATTLE

	7	1				 				[]
	INITIALS	R					×	·				
	TEMP. 2 INITIALS	19.1	202	20.4	20.0		-				•	
PROJECT NUMBER 140919-90	CALIBRATED TO: OR WITHIN 10%:	5	2	5	5							
PROJECT NUN	EQUIPMENT READING	99.1	4.00 LOZ 100 02	Slot	ic 236.1				-			
	STANDARDS USED	No0) - 60%	4/1/(120H	Shooms	237.5mve 206	-						
Oakland	DATE/TIME OF TEST	alight a								У н _а х		
IE RRPSY		162 5004 BTS 001	t185 18 3)									
PROJECT NAME R.R.P.S.Y	EQUIPMENT EQUIPMENT NAME NUMBER	SBAA	marent									

TEST EQUIPMENT CALIBRATION LOG

P	roject #:	140919	-Pcl		Clien	Client: $\leq \leq \leq$						
S	ampler:	2			Date:	Date: $q q y $						
W	vell I.D.:	MW-2			Well	Well Diameter: $2 3 4 6 8$						
T	otal Well	Depth (TI	D):37.	14	Depth	Depth to Water (DTW): 26.09						
D	epth to Fi	ree Produc	t:	······································	1	Thickness of Free Product (feet):						
R	eferenced	l to:	PVC	Grade	1	Meter (if		YSI HACH				
D	TW with	80% Rech	arge [(H	leight of Water	Colum	un x 0.20)) + DTW]: 2	28,30				
Pu	Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Other: Other:											
1 C	7-2 (ase Volume	Gals.) X Speci	<u>3</u> fied Volun	$\frac{1}{1} = \frac{2(-6)}{\text{Calculated Volume}}$		Well Diamete 1" 2" 3"	0.04 4" 0.16 6"	ell Diameter Multiplier 0.65 1.47 her radius ² * 0.163				
-	Time	Temp (°F or °C)	pH	Cond. (mS orus)	(N	bidity TUs)	Gals. Remove	d Observations				
	924	16.5	6.22		>/0	<u>v</u>	7-2					
	116	Well	devate	a a a t								
H	9(9	17.2-	6.39	809.6	710	200						
Dic	l well dev	water?	Yes	No	Gallon	s actually	y evacuated:	8.0				
Sar	npling Da	ate: 9/19	114	Sampling Time	: 13	15	Depth to Wat	er: 34,19				
Sar	nple I.D.:	MW-:	2		Labora	tory:	Kiff CalScien	ce Other CET				
Ana	alyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See Co					
EB	I.D. (if a	pplicable):	* \ ¥_}	@ Time	Duplica		if applicable):					
Ana	alyzed for	r: TPH-G	BTEX		Oxygenz		Other:	18. Homel				
D.C). (if req'o	l): Pro	e-purge:		^{mg} / _L	Pc	ost-purge:	190 R mg/L				
O.R	.P. (if rec	q'd): Pre	e-purge:		mV	Po	ost-purge:	190 mV				

WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

TT	MONITORING	DATA	OT UT
	montroluno	DRIM	OLUULI

		******		1							
Project #: 140919-PC1					Client: SUS						
Sampler: PC					Date: 9/19/14						
Well I.D.:	MW-7-			Well I	Diameter	:(2) 3 4	6 8				
Total Well	Depth (TD):25/?	31	Depth	to Water	r (DTW): (5.5	5				
Depth to Fr	ee Product	t:	NE FOR TRANS VIEW CONTENT OF A STATE OF A STA			ree Product (fe					
Referenced	to:	evo	Grade		Aeter (if		YSP HACH				
DTW with	80% Rech	arge [(H	eight of Water	Colum	n x 0.20)	+ DTW]: ۲	1.47				
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	;	Sampling Metho Othe	Disposable Bailer Extraction Port Dedicated Tubing r:				
L.C. (0 1 Case Volume		S fied Volum	$\frac{1}{1} = \frac{4.8}{\text{Calculated Ve}}$	Gals. olume	1" 2" 3"	multiplier wei 0.04 4" 0.16 6" 0.37 Oth	l Diameter Multiplier 0.65 1.47 er radius ² * 0.163				
Time	Temp (°F or C	pH	Cond. (mS or (tis)	1	bidity TUs)	Gals. Removed	l Observations				
1008	15.2	6.06	6113	99	37	t.6	e.vel				
1013	14.6	10.03	60ie.3	20	55	3.2	clear				
1018	14.5	6.05	5950	iz	L.H	4.8	* c				

Did well dev	water?	Yes (No	Gallon	s actually	y evacuated:	4.8				
Sampling Da	ate: Alali	الار	Sampling Tim	e:1\22	>	Depth to Wate	er: 15.60				
Sample I.D.:	MW-7			Labora		Kiff CalScienc	e Other <u>AT</u>				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other: Eeecoc							
EB I.D. (if a	pplicable):	:	@ . Time	Duplicate I.D. (if applicable):							
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:					
D.O. (if req'o	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:	-82 0.12 mg/L				
O.R.P. (if red	q'd): Pro	e-purge:	· · ·	mV	Po	ost-purge:	-69 mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

... LL MONITORING DATA SHEET

Project #:	140919-	-PCI		Client: SES							
Sampler: 🖗	20			Date:		14					
Well I.D.:	MW-8			Well I	Diameter	:(2) 3 4	6 8				
Total Well	Depth (TD):22	32	Depth	to Water	r (DTW): 16	.17				
Depth to Fr	ee Product	: ~		Thickr	ness of F	ree Product (i					
Referenced	to:	eve	Grade	D.O. Meter (if req'd): (YS) HACH							
DTW with	80% Rech	arge [(H	eight of Water	Colum	n x 0.20)	+ DTW]:	7.40				
Purge Method:	Bailer Disposable B ∲Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	; •	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing				
1 Case Volume	Jais.) A	3 fied Volum	$= \frac{5.0}{\text{Calculated Vc}}$	_Gals. Jume	Well Diamete 1" 2" 3"	0.04 4" 0.16 6"	<u>Il Diameter Multiplier</u> 0.65 1.47 ner radius ² * 0.163				
Time	Temp (°F or C)	pH	Cond. (mS or (LS)	1	bidity TUs)	Gals. Remove	d Observations				
1132	15.4	6.96	783.0	70	69						
137	[5:3	6.83	7-88-2	210	990	2					
1141	(5.3	6.79	788.8	210	200	3					
Did well dev	water?	Yes (No>	Gallon	s actually	y evacuated:	3				
Sampling Da	ate: 9/(9/14		Sampling Time			Depth to Wa	<u></u>				
Sample I.D.:	MW-8			Labora	tory:	Kiff CalScien	ce Other C&T				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See	Coc				
EB I.D. (if a	pplicable):		@ · Time	Duplic	ate I.D. (if applicable)					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	• •	Other:					
D.O. (if req'	d): Pro	e-purge:		^{mg} /L Post-purge: 1.[[
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	-50 mV				

... LL MONITORING DATA SHEET

Project #: (40919-	PCI		Client	Client: SUS							
Sampler: <	PC				9/19/1	ч						
Well I.D.:	MW-9			Well I	Diameter	2 3	4	6 8				
Total Well	Depth (TD): 30-	24	Depth	to Water	r (DTW):	17	82				
Depth to Fr	ee Product	t:		Thickr	Thickness of Free Product (feet):							
Referenced	to:	evo	Grade	D.O. Meter (if req'd): (YSI) HACH								
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 20-30								
Purge Method:	Bailer Disposable B (Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	;	Sampling M	Other:	Bailer XDisposable Baile Extraction Port Dedicated Tubing				
2.0		3	L S		1" 2"	er Multiplier 0.04 0.16	<u>Weli 1</u> 4" 6"	Diameter Multiplier 0.65				
1 Case Volume	Gals.) X Speci	fied Volun	$\frac{1}{1} = \frac{6.0}{\text{Calculated Vol}}$	Gals. olume	3"	0.18	o Other	1.47 radius ² * 0.163				
Time	Temp (°F or Ĉ	рН	Cond. (mS or as)	1	bidity TUs)	Gals. Rem	oved	Observations				
1100	15.1	6.55	569.9	[]	19							
1106	150	6.49	642.2	115 4								
1113	15-1	6.52	625.7	5	56	6	,					
·					2. 							
					e e e e e e e e e e e e e e e e e e e	λ. Ma						
Did well dev	water?	Yes (No	Gallon	s actually	y evacuate	d: (?.				
Sampling Da	ate: 9 / 19 /	14	Sampling Time	e: (ZZ	5	Depth to V	Wateı	: 18-10				
Sample I.D.:	: MW-9			Labora	tory:	Kiff CalS	cience	Other CET				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: Gee	icor					
EB I.D. (if a	pplicable)	•	@ . Time	Duplic		if applicat		AN				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:						
D.O. (if req'	d): Pr	e-purge:		, ^{mg} /L	Po	ost-purge:		0-4	^{mg} /L			
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:		- 63	mV			

LL MONITORING DATA SHLLT

Project #:	40919-	pci		Client: SES							
Sampler: Pa				Date: 9/19/1	4						
Well I.D.: y	MW-10	:		Well Diameter	:: 2 3 4	6 8					
Total Well	Depth (TD):281	-1	Depth to Wate	r (DTW):15.3						
Depth to Fr	ee Product	•		Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 17-93							
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump 	Sampling Method: Other: er Multiplier Well	Disposable Bailer Extraction Port Dedicated Tubing					
2.) 1 Case Volume	Gals.) X Speci	7 5 fied Volum	$\frac{1}{1} = \frac{6.3}{Calculated Vol$	Gals.	0.04 4" 0.16 6" 0.37 Other	0.65					
Time	Temp (°F or ℃	pH	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations					
0943	(6-2	6.78	796.8	128	2.1						
0949	15.4	657	764.7	81	4.2						
0955	15.1	6.48	752.7	104	6.3						
					·						
				• **							
Did well dev	water?	Yes (No	Gallons actuall	y evacuated: 6	-3					
Sampling Da	ate: 9/19/	ĮЧ	Sampling Time	: 1050	Depth to Wate	r: 17.78					
Sample I.D.:	MLHO)		Laboratory:	Kiff CalScience	Other C&T					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See coc						
EB I.D. (if a	pplicable)	•	@ · Time	Duplicate I.D.	(if applicable):						
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'o	d): Pr	e-purge:		^{mg} / _L P	ost-purge:	0.51 mg/L					
O.R.P. (if red	q'd): Pr	e-purge:		mV P	ost-purge:	22 mV					

... LL MONITORING DATA SHEET

Project #: 140919-901	Client: 5일5						
Sampler: PC	Date: 9 (9/14	5					
Well I.D.: MW-11	Well Diameter	: 2 3 4	6 8				
Total Well Depth (TD):28,70	Depth to Water	r (DTW): 15.0	29				
Depth to Free Product:	Thickness of F	ree Product (fe	et):				
Referenced to: PVC Grade	D.O. Meter (if req'd): (TSI) HACH						
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: (7-8)						
	Waterra Peristaltic tion Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing				
$\frac{2 - 2}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{6 - 6}{\text{Calculated Volumes}}$	Well Diamete 1" 2" 3"	xr Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163				
Temp (°F or °C)Cond. (mS or μ S)115515.5 7.37 120715.4 6.76 120715.4	Turbidity (NTUs) >(OD) >(OD)	Gals. Removed 2-2 4.4	Observations				
1210 15.4 6.72 424,4	797	6-6					
Did well dewater? Yes No	Gallons actually	y evacuated: 🌘	-6				
Sampling Date: 9/19/14 Sampling Time	: 1300	Depth to Wate	r: 14,51				
Sample I.D.: WULL	Laboratory:	Kiff CalScience	other_CAT				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other: seeco	c t				
EB I.D. (if applicable):	Duplicate I.D. (if applicable):					
Analyzed for: TPH-G BTEX MTBE TPH-D		Other:	······································				
D.O. (if req'd): Pre-purge:	^{mg} / _L Po	ost-purge:	0.71 ^{mg} /L				
O.R.P. (if req'd): Pre-purge:	mV Po	ost-purge:	-79 mV				

... LL MONITORING DATA SHEET

Project #: 1	40919-1	Pel		Client: 5ES							
Sampler: 📢	20			Date: 9/19/1	Y						
Well I.D.:	NW-12	ı		Well Diameter	r: 2 3 4	6 8					
Total Well	-):23.ê	35	Depth to Wate	er (DTW): 125	39					
Depth to Fr	ee Product			Thickness of H	Free Product (fe	et):					
Referenced	to:	evo	Grade	D.O. Meter (if req'd): (YSI) HACH							
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.20) + DTW]: [4-68							
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump 	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing					
1 Case Volume	Gals.) X Speci	ح fied Volum	$= \frac{14.68}{\text{Calculated Vo}}$	1" Gals.	0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163					
Time	Temp (°F or O)	pH	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations					
1030	14.9	6.49	604.7	>1000	1.8						
1036	14.3	6.13	631.7	21000 617	5.6						
	[0.01	055-1		5,4						
·	·			******							
Did well dev	water?	Yes (NO	Gallons actual	ly evacuated: 5	<u>.</u>					
Sampling Da	ate: 9/19	liy	Sampling Time	: 1216	Depth to Wate	r: 13. 14.50					
Sample I.D.:	MW-12			Laboratory:	Kiff CalScience	Other CAT					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See co	2					
EB I.D. (if a	pplicable)	•	@ · Time	Duplicate I.D.	(if applicable):						
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'	d): Pr	e-purge:		^{mg} /L F	ost-purge:	0,37 ^{mg} /L					
O.R.P. (if re	q'd): Pr	e-purge:		mV F	ost-purge:	-21 mV					

LL MONITORING DATA SHud'I

£		***		· · · · · · · · · · · · · · · · · · ·							
Project #: [40919-	PCI		Client: SES							
Sampler: 🖓	_			Date: a 19/1	4						
Well I.D.:	SW-2			Well Diamete	er: 2 3 4	6 8					
Total Well	Depth (TD):		Depth to Wat	er (DTW): 🦟						
Depth to Fr	ee Product	•		Thickness of	Free Product (fe	et):					
Referenced	to:	PVC	Grade		D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:						
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displacem	ent Extra Other	Waterra Peristaltic ction Pump 		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier					
((1 Case Volume	Gals.) X Speci	fied Volur	= nes Calculated V	Gals. 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163					
Time	Temp (°F or °C)	pH	Cond. (mS or µS) No Water	Turbidity (NTUS)	Gals. Removed - Creek - Alos						
				· · · · · · · · · · · · · · · · · · ·							
Did well dev	water?	Yes	No /	Gallons actual	lly evacuated:	J					
Sampling Da	ate:		Sampling Tim	e:	Depth to Wate	r:					
Sample I.D.:	•			Laboratory:	Kiff CalScience	e Other					
Analyzed fo	r: TPH-G	втех	MTBE TPH-D	Oxygenates (5)	Other:						
EB I.D. (if a	pplicable)	/	@ Time	Duplicate I.D.	(if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'	d): / Pr	e-purge:		^{mg} /L	Post-purge:	mg/L					
O.R.P. (if re	q'd): Pr	e-purge:		mV	Post-purge:	mV					
					1						

LL MONITORING DATA SHILET

Project #: [1	40919-1	201		Client: 5°65								
Sampler:	2				2/19/14	-{						
Well I.D.: §	56-3			Well I	Diameter	: 2 3	4	6 8				
Total Well	Depth (TD): _		Depth	to Wate	r (DTW):						
Depth to Fr	ee Product			Thick	ness of F	ree Produ	ict (fee	et):				
Referenced	to:	PVO	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]	•	•				
Purge Method:	Bailer Disposable B Positive Air 1 Electric Subn	Sisplacem	ent Extrac Other	Waterra Peristaltic ction Pump	Well Diamete		Other: Well D	Bailer Disposable Bailer Extraction Port Dedicated Tubing				
(0 1 Case Volume	Gals.) X Speci	fied Volun	= nes Calculated Vo	_ Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163				
Time	Temp (°F or °C)	pH No L	Cond. (mS or µS) Pater in Rad	(N	bidity TUs) CreeK	Gals. Rer	noved	Observations				
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuat	ed:					
Sampling Da	ate:		Sampling Time	e:		Depth to	Water	: /				
Sample I.D.:				Labora	tory:	Kiff Cal	Science	Other				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	/					
EB I.D. (if a	pplicable)		O · · · · · · · · · · · · · · · · · · ·	Duplic	ate I.D. ((if applica	ble):					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	/					
D.O. (if req'o	d): Pr	e-purge:		^{mg} /L	P	ost-purge:		" ^{mg} /L				
O.R.P. (if red	q'd): Pr	e-purge:		mV	P	ost-purge:		mV				

		Chain c	of Custo	Chain of Custody Record	ą			Lab job no
Laboratory <u>Curtis and Tompkins, Ltd.</u> Address <u>2323 Fifth Street</u> Berkelav, California 94710	9	Method of Shipment <u>Hand Delivery</u> Shipment No.	Hand Deliven			(12		Date 1
510-486-0900	2	Airbill No.				2.	Analysis Required	
Project Owner East Bay Regional Park District	ark District	Cooler No	Richard Makdisi	· · · · · · · · · · · · · · · · · · ·	The sound	× 00 / 15		
Site Address Oakland, California		Telephone No. (510) 644-3123	4-3123		Elliered Sonia	Mar 10	/ / /	/ /
Project Name Redwood Regional Park	ark	Fax No. (510) 644-3859	4-3859			40		Pemarks
Project Number 2013-02		Samplers: (Signature) VerWi	Betver		dr.	-	1 200	
Field Sample Number Location/	Date Time Sample	ple Type/Size of Container	Preservation Cooler Chem	rvation Chemical	/R/a/K	°.		
2-MM	9/19/14/13/5	XIX	V Hel		XXX			
MW-8	8621		>		メメメ			
M. 9	1225		<u> </u>	/Hysen	へメメソ	メメメ	X	
1- mm	0211		~		XXX	42	X	
mw-10	1050		<u> </u>		メメイ			
Mw-11	1300		>		メメメ			
mw-12	1211	-)		Hzéor	ノイメノ	メメメ	X	
cms by					XXX			n Na N
× 243					XXX			
	Date Received by:	A. M. W.	Date Rel	Relinquished by: Signature		Date	Received by: Signature	Date
Louvisil	apply Printed Part	it Gonzaley	5	Printed		Time	Printed	Time
≥	~~~		~	Company			Company	
TAT	-			Relinquished by:		Date Rec	Received by:	Date
				Signature			Signature	
GEDNATUEN POR	For GW	SAMPLET DU	try a	Printed		Time	Printed	Time
X Sthere Horo L	The second		.	Company			Company	
🖈 Stellar Environmental Solutions							2198 Sixth Street #2	2198 Sixth Street #201, Berkeley, CA 94710

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 261047 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2013-02.
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tra

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>09/30/2014</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 261047 Stellar Environmental Solutions 2013-02. Redwood Regional Park 09/19/14 09/19/14

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/19/14. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Carbonaceous BOD (SM5210B):

No analytical problems were encountered.

Lab job no Date of			- Hemarks	/ /											Date			Date		Time	
26102	Analysis Required	Somerses		16/07 2 x x a F	<u> </u>	XXX	XXX	XXXXXXX	XXXXXXX	XXX	XXX	XXXXXXX		X	Date Received by:		Company	Date Received by:	Signature	Tirre Printed	Company
Chain of Custody Record Method of Shipment <u>Hand Delivery</u>	Airbill No.	Cooler No		Samplers: (Signature) VerWi	Type/Size of Container Cooter Chemical	MIX V Hel		<u>/ //+, & // // // // // // // // // // // // /</u>	-+	~	~	L V J/H2504			A C Date Relinquished by: Signature	Conzale - mine	1.2. 1.2.	Ω.	Signature	Printed Printed	- Company
Laboratory <u>Curtis and Tompkins, Ltd.</u> Met Address 2323 Fifth Street Shi		Project Owner East Bay Regional Park District Coo Site Address 7867 Redwood Road Proj Oakland, California Tele	Regional Park	Project Number 2013-02 Sam	Field Sample Number Location/ Date Time Sample	mw-2 9/18/15/5	M.J. 8- UM	8221 9 WW	Mw-7 1120	m - 10 1050	Mw-11 138	mw-12 + 1210	Switz Current	5433		Louvis / Time Printed Part	y Stellar Environmental	Turnaround Time: 5 Day TAT	comments: Samples on ice	Ken Bar Gu Gu	SHORT HOLD TIME

2198 Sixth Street #201, Berkeley, CA 94710

★ Stellar Environmental Solutions

COOLER RECEIPT CHECKLIST

cb	Curtis	&	Tompkins,	Ltd.
----	--------	---	-----------	------

Login # 241047 Date Received 9/19/14 Numb Client <u>Fast Bay Regional Park</u> Project <u>Redwood Reg</u> District	per of coolers 2
Date Opened $\frac{\hat{q}}{19}$ By (print) $\underline{52}$ (sign) $\underline{6}$ Date Logged in $\underline{419}$ By (print) $\underline{51}$ (sign) $\underline{7}$	h th
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? □ YES (circle) on cooler or How many Name Dat	ie i i i i i i i i i i i i i i i i i i
 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of for 6. Indicate the packing in cooler: (if other, describe) 	<u>¥es</u> no <u>yes</u> no
☐ Bubble Wrap ☐ Cardboard ☐ Styrofoam ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation: * Notify PM if temperature exceeds	6°C
Type of ice used: 🎽 Wet 🛛 Blue/Gel 🗌 None Temp	<u> (°C) איז איז איז איז איז איז איז איז איז א</u>
□ Samples Received on ice & cold without a temperature blank; t	-
Samples received on ice directly from the field. Cooling proces	s had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES NO
9. Did all bottles arrive unbroken/unopened?	
10. Are there any missing / extra samples?	YES NO
11. Are samples in the appropriate containers for indicated tests?	TES NO
12. Are sample labels present, in good condition and complete?	
13. Do the sample labels agree with custody papers?	YES NO
14. Was sufficient amount of sample sent for tests requested?	YES NO
15. Are the samples appropriately preserved?	YES NO N/A
16. Did you check preservatives for all bottles for each sample?	
17. Did you document your preservative check?	YES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO N/A
19. Did you change the hold time in LIMS for preserved terracores?	
20. Are bubbles > 6mm absent in VOA samples?	<u>YES</u> NO N/A
21. Was the client contacted concerning this sample delivery?	YES NO-
If YES, Who was called?By	Date:
COMMENTS	

Rev 10, 9/12

Curtis & Tompkins Sample Preservation for 261047

<u>Sample pl</u>	H: <2	>9	>12	<u>Other</u>
-003a b c d e f g h		[] [] [] [] [] [] []	[] [] [] [] [] []	
-004a b c d e f g h		[] [] [] [] [] [] []	[] [] [] [] [] [] []	
-007a b c d f f y h	[]	[] [] [] [] [] [] []	[] [] [] [] [] [] []	

Analyst: Date: Page 1 of 1

Detections Summary for 261047

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions Project : 2013-02. Location : Redwood Regional Park

Client Sample ID : MW-2

Laboratory Sample ID :

261047-001

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	610	Y	50	5.7	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	3.7		2.0	0.62	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	1.0		0.50	0.15	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	4.7	С	0.50	0.077	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	1.9		0.50	0.10	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	480	Y	50	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-8 Laboratory Sample ID :

261047-002

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	57		50	5.7	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	11		2.0	0.62	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	1.5		0.50	0.034	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	0.66		0.50	0.10	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	66	Y	49	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-9 Laboratory Sample ID : 261047-003

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	17,000		830	94	ug/L	As Recd	16.67	EPA 8015B	EPA 5030B
Benzene	65		0.50	0.095	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	13		8.3	2.4	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
Ethylbenzene	640		8.3	0.57	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
m,p-Xylenes	160		0.50	0.10	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	54		0.50	0.10	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	5,800		49	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	5.5		0.50	0.026	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	17		5.0		mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	24		10	1.8	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-7

Laboratory Sample ID :

261047-004

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	6,000	Y	50	5.7	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Ethylbenzene	150		0.50	0.034	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	6,500		49	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	1.5		0.50	0.026	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	9.6		5.0		mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	21		10	1.8	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-10

Laboratory Sample ID :

261047-005

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
MTBE	4.5	С	2.0	0.62	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B

Client Sample ID : MW-11

Laboratory Sample ID :

261047-006

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	190	Y	50	5.7	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	3.7	С	2.0	0.62	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	3,400		50	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-12

Laboratory Sample ID :

261047-007

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	2,500	Y	50	5.7	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	6.8	C	0.50	0.095	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	26		0.50	0.077	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	130	Y	50	16	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	23		0.50	0.026	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Chemical Oxygen Demand	32		10	1.8	mg/L	TOTAL	1.000	SM5220D	METHOD

C = Presence confirmed, but RPD between columns exceeds 40%

 $\ensuremath{\mathtt{Y}}$ = Sample exhibits chromatographic pattern which does not resemble standard Page 2 of 2

	Curtis & Tomp	kins Labor	atories Ana	alytical Re	port	
Lab #: 261047 Client: Stellar Project#: 2013-02.	Environmental Sc	olutions	Location: Prep:	Redwood EPA 503	l Regional P 80B	ark
Matrix: W	Nater 19/L		Sampled: Received:	09/19/1 09/19/1		
	<u>, </u>		10001700		-	
Type: SA	V-2 AMPLE 51047-001		Diln Fac: Batch#: Analyzed:	1.000 215608 09/21/1	.4	
Analyte	9	Result		RL	Analy	sis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		610 Y 3.7 ND 1.0 4.7 C 1.9 ND	!	50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogat		REC Limits	Analys	is		
Bromofluorobenzene Bromofluorobenzene			EPA 8015B EPA 8021B			
Type: SA Lab ID: 26	V-8 AMPLE 51047-002		Diln Fac: Batch#: Analyzed:	1.000 215608 09/21/1		_
Analyte Gasoline C7-C12	9	Result 57		RL 50	Analy EPA 8015B	SIS
MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		11 ND ND 1.5 0.66 ND			EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogat		REC Limits	Analys	is		
Bromofluorobenzene Bromofluorobenzene			EPA 8015B EPA 8021B			
	V-9 Ample		Lab ID:	261047-	003	
Analyte Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Result 17,000 ND 65 13 640 160 54	8. 8. 0.	50 1.000 3 16.67	ac Batch# An 215681 09 215608 09 215608 09 215681 09 215681 09 215688 09 215608 09 215608 09	0/24/14 EPA 0/21/14 EPA 0/21/14 EPA 0/24/14 EPA 0/24/14 EPA 0/24/14 EPA	Analysis 8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B
Surrogat Bromofluorobenzene Bromofluorobenzene	e (FID) 112		16.67 2	atch# Analyze 15681 09/24/1 15681 09/24/1	.4 EPA 8015	
C= Presence confin Y= Sample exhibits ND= Not Detected					udard	

ND= Not Detected RL= Reporting Limit Page 1 of 3

	Curtis & T	ompkins Labo	ratories An	alytical F	Report
Lab #: 26104 Client: Stell Project#: 2013-	ar Environmenta	l Solutions	Location: Prep:	Redwoo EPA 5	od Regional Park 030B
Matrix:	Water		Sampled:	09/19	
Units:	ug/L		Received:	09/19	/ 14
Field ID: Type:	MW-7 SAMPLE		Diln Fac: Batch#:	1.000 21568	1
Lab ID:	261047-004		Analyzed:	09/23	/14
Anal		Result		RL	Analysis
Gasoline C7-C12 MTBE		6,000 Y ND		50 2.0	EPA 8015B EPA 8021B
Benzene		ND		0.50	EPA 8021B
Toluene		ND 150		0.50	EPA 8021B
Ethylbenzene m,p-Xylenes		ND		0.50 0.50	EPA 8021B EPA 8021B
o-Xylene		ND		0.50	EPA 8021B
Surro		%REC Limits	Analys	sis	
Bromofluorobenz Bromofluorobenz		123 77-128 127 75-132	EPA 8015B EPA 8021B		
BIOMOTIUOTODENZ		12/ /5-132	LPA OUZID		
Field ID:	MW-10		Diln Fac:	1.000	_
Type: Lab ID:	SAMPLE 261047-005		Batch#: Analyzed:	21560 09/21	
Anal		Result		RL	Analysis
Gasoline C7-C12		ND	2	RL 50	EPA 8015B
Gasoline C7-C12 MTBE		ND 4.5	C	RL 50 2.0	EPA 8015B EPA 8021B
Gasoline C7-C12		ND	C	RL 50	EPA 8015B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene		ND 4.5 ND ND ND	с	RL 50 2.0 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes		ND 4.5 ND ND ND ND	C	RL 50 2.0 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND 4.5 ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surro	gate	ND 4.5 ND ND ND ND	Analys	RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surro	gate ene (FID)	ND 4.5 ND ND N	Analys	RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz	gate ene (FID) ene (PID)	ND 4.5 ND ND ND ND ND ND ND ND 99 77-128	Analys EPA 8015B EPA 8021B	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID:	gate ene (FID) ene (PID) MW-11	ND 4.5 ND ND ND ND ND ND ND ND 99 77-128	Analys EPA 8015B EPA 8021B Diln Fac:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID: Fype:	gate ene (FID) ene (PID)	ND 4.5 ND ND ND ND ND ND ND ND 99 77-128	Analys EPA 8015B EPA 8021B	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 sis	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surro Bromofluorobenz Bromofluorobenz Field ID: Field ID: Type: Lab ID: Anal	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND ND %REC Limits 99 77-128 109 75-132 109 75-132	Analys EPA 8015B EPA 8021B Diln Fac: Batch#:	RL 50 2.0 0.50 0.50 0.50 0.50 sis 1.000 21560 09/21 RL	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID: Field ID: Type: Lab ID: Anal Gasoline C7-C12	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND %REC Limits 99 77-128 109 75-132	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315 1.000 21560 09/21 RL 50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID: Fype: Lab ID: MTBE	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND %REC Limits 99 77-128 109 75-132 109 75-132	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315 1.000 21560 09/21 RL 50 2.0	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Bromofluorobenz Gasoline C7-C12 MTBE Benzene Toluene	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND %REC Limits 99 77-128 109 75-132	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315 1.000 21560 09/21 RL 50 2.0 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID: Type: Lab ID: MTBE Benzene Toluene Ethylbenzene	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND ND %REC Limits 99 77-128 109 75-132 109 75-132 190 Y 3.7 ND ND ND ND	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315 1.000 21560 09/21 RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Bromofluorobenz Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND 100 ND 100 100 100 100 100 100 100 100 100 10	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 315 1.000 21560 09/21 RL 50 2.0 0.50 0.	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Field ID: Type: Lab ID: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte	ND 4.5 ND ND ND ND ND ND ND \$REC Limits 99 77-128 109 75-132 109 75-132 109 3.7 ND ND ND ND ND ND ND ND	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed: C	RL 50 2.0 0.50 0.50 0.50 0.50 3is 1.000 21560 09/21 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Bromofluorobenz Field ID: Type: Lab ID: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surro	gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte gate	ND 4.5 ND ND ND ND ND ND %REC Limits 99 77-128 109 75-132 109 75-132 VD ND ND ND ND ND ND ND ND ND N	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed: C	RL 50 2.0 0.50 0.50 0.50 0.50 3is 1.000 21560 09/21 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz Bromofluorobenz MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	<pre>gate ene (FID) ene (PID) MW-11 SAMPLE 261047-006 yte gate ene (FID)</pre>	ND 4.5 ND ND ND ND ND ND ND \$REC Limits 99 77-128 109 75-132 109 75-132 109 3.7 ND ND ND ND ND ND ND ND	Analys EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed: C	RL 50 2.0 0.50 0.50 0.50 0.50 3is 1.000 21560 09/21 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 3

	Curtis & To	ompkins Labo	ratories An	alytical H	Report	
Lab #: 261047 Client: Stella Project#: 2013-0	r Environmental	Solutions	Location: Prep:	Redwo EPA 5	od Regional Park 030B	
Matrix: Units:	Water ug/L		Sampled: Received:	09/19 09/19		
Type:	MW-12 SAMPLE 261047-007		Diln Fac: Batch#: Analyzed:	1.000 21560 09/21	8	
Analy	te	Result		RL	Analysis	
Gasoline C7-C12 MTBE		2,500 Y ND		50 2.0	EPA 8015B EPA 8021B	
Benzene Toluene		6.8 ND	С	0.50	EPA 8021B EPA 8021B	
Ethylbenzene		26		0.50	EPA 8021B	
m,p-Xylenes o-Xylene		ND ND		0.50 0.50	EPA 8021B EPA 8021B	
Surrog		%REC Limits	Analys	sis		
Bromofluorobenze Bromofluorobenze	ne (FID) ne (PID)	128 77-128 131 75-132	EPA 8015B EPA 8021B			
Type:	BLANK		Batch#:	21560	8	
Lab ID:	QC758444		Analyzed:	09/21		
	1.000					
Analy Gasoline C7-C12	te	Result ND		RL 50	Analysis EPA 8015B	
MTBE		ND		2.0	EPA 8021B	
MTBE Benzene Toluene		ND ND ND		2.0 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene		ND ND ND		0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene		ND ND		0.50 0.50	EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrog	ate	ND ND ND ND %REC Limits	Analys	0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ne (FID)	ND ND ND ND ND	EPA 8015B	0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze	ne (FID)	ND ND ND ND ND 87 77-128	EPA 8015B	0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze	ne (FID) ne (PID)	ND ND ND ND ND 87 77-128	EPA 8015B EPA 8021B	0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID:	ne (FID) ne (PID) BLANK QC758742	ND ND ND ND ND 87 77-128	EPA 8015B	0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac:	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND %REC Limits 87 77-128 95 75-132	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 0.50 sis 21568 09/23	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID:	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND ND 87 77-128	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 0.50 sis	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND *REC Limits 87 77-128 95 75-132	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 315 21568 09/23 RL 50 2.0	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B I /14 Analysis EPA 8015B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND %REC Limits 87 77-128 95 75-132 95 75-132	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 0.50 315 21568 09/23 RL 50 2.0 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac: MTBE Benzene Toluene Ethylbenzene	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND %REC Limits 87 77-128 95 75-132 95 75-132	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 0.50 0.50 315 21568 09/23 RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene	ne (FID) ne (PID) BLANK QC758742 1.000	ND ND ND ND %REC Limits 87 77-128 95 75-132 95 75-132	EPA 8015B EPA 8021B Batch#:	0.50 0.50 0.50 0.50 0.50 315 21568 09/23 RL 50 2.0 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Type: Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrog	ne (FID) ne (PID) BLANK QC758742 1.000 te	ND ND ND ND ND ND ND *REC Limits 87 77-128 95 75-132 *REC ND ND ND	EPA 8015B EPA 8021B Batch#: Analyzed:	0.50 0.50 0.50 0.50 0.50 sis 21568 09/23 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ne (FID) ne (PID) BLANK QC758742 1.000 te ne (FID)	ND	EPA 8015B EPA 8021B Batch#: Analyzed:	0.50 0.50 0.50 0.50 0.50 sis 21568 09/23 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Idb ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze	ne (FID) ne (PID) BLANK QC758742 1.000 te te ne (FID) ne (FID)	ND ND ND ND ND ND ND %REC #imits 87 95 75-132 95 75-132 ND	EPA 8015B EPA 8021B Batch#: Analyzed: EPA 8015B EPA 8021B	0.50 0.50 0.50 0.50 315 21568 09/23 RL 50 2.0 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Bromofluorobenze C= Presence conf Y= Sample exhibi	ne (FID) ne (PID) BLANK QC758742 1.000 te te ne (FID) ne (FID) irmed, but RPD	ND ND ND ND ND ND ND \$\$REC Limits 87 77-128 95 75-132 ND ND ND ND ND ND	EPA 8015B EPA 8021B Batch#: Analyzed: EPA 8015B EPA 8021B s exceeds 40%	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Lab ID: Diln Fac: Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze C= Presence conf	ne (FID) ne (PID) BLANK QC758742 1.000 te ate ne (FID) ne (FID) irmed, but RPD ts chromatograp	ND ND ND ND ND ND ND \$\$REC Limits 87 77-128 95 75-132 ND ND ND ND ND ND	EPA 8015B EPA 8021B Batch#: Analyzed: EPA 8015B EPA 8021B s exceeds 40%	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	8.1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	261047	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	215608				
Units:	ug/L	Analyzed:	09/21/14				
Diln Fac:	1.000						

Type:

BS

Lab ID: QC758441

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.73	107	74-132
Benzene	10.00	10.12	101	80-120
Toluene	10.00	10.27	103	80-120
Ethylbenzene	10.00	10.46	105	80-120
m,p-Xylenes	10.00	10.11	101	80-120
o-Xylene	10.00	10.24	102	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	102	75-132

Type:

BSD

Lab ID:

QC758442

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	11.24	112	74-132	5	36
Benzene	10.00	10.07	101	80-120	1	20
Toluene	10.00	10.13	101	80-120	1	20
Ethylbenzene	10.00	9.967	100	80-120	5	20
m,p-Xylenes	10.00	10.39	104	80-120	3	20
o-Xylene	10.00	10.11	101	80-120	1	20

Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	100	75-132	

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	261047	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2013-02.	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC758443	Batch#:	215608			
Matrix:	Water	Analyzed:	09/21/14			
Units:	ug/L					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	969.5	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	95	77-128

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 261047		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B			
Project#: 2013-0	2.	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ	Batch#:	215608			
MSS Lab ID:	261045-001	Sampled:	09/18/14			
Matrix:	Water	Received:	09/19/14			
Units:	ug/L	Analyzed:	09/22/14			
Diln Fac:	1.000					

Type:	MS			Lab ID:	QC758445		
A	nalyte	MSS Re	sult	Spiked	Result	%REC	Limits
Gasoline C7	-C12	9	1.88	2,000	1,945	93	74-120
S	urrogate	%REC	Limits				
Bromofluoro	benzene (FID)	118	77-128				

Type:	MSD			Lab ID:		QC758446			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	-		2,000		1,948	93	74-120	0	27
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	117	77-128						

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	261047	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2013-02.	Analysis:	EPA 8021B			
Matrix:	Water	Batch#:	215681			
Units:	ug/L	Analyzed:	09/23/14			
Diln Fac:	1.000					

Type:

BS

Lab ID:

QC758739

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.23	112	74-132
Benzene	10.00	9.848	98	80-120
Toluene	10.00	10.07	101	80-120
Ethylbenzene	10.00	9.744	97	80-120
m,p-Xylenes	10.00	9.972	100	80-120
o-Xylene	10.00	9.922	99	80-120

	Surrogate	%REC	Limits
Bromoflu	luorobenzene (PID)	100	75-132

Type:

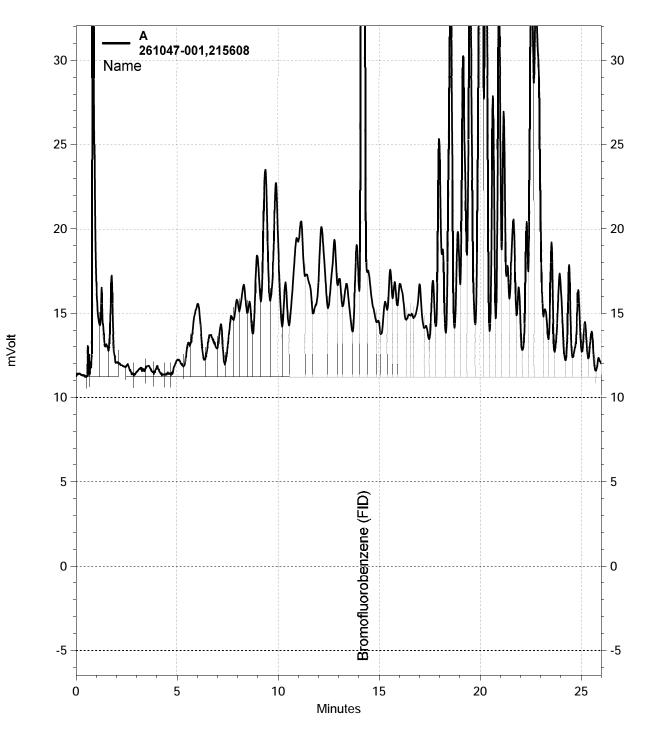
BSD

Lab ID:

QC758740

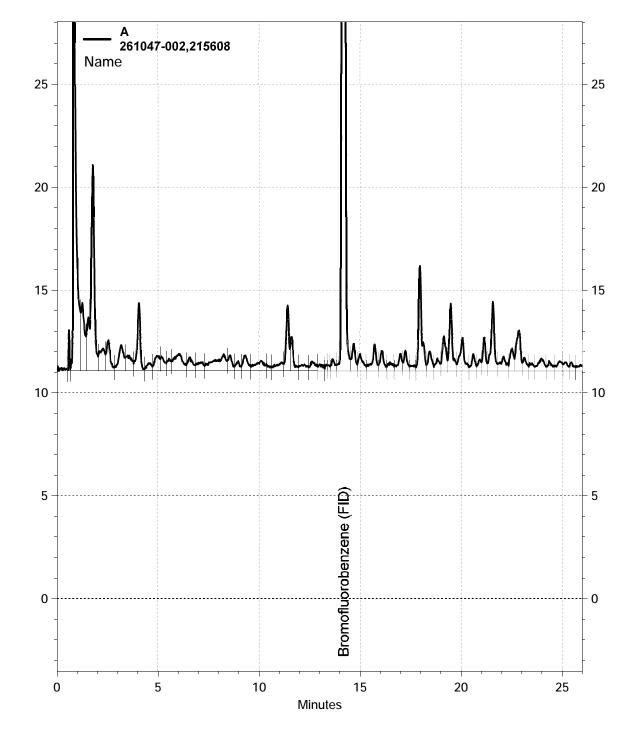
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	11.44	114	74-132	2	36
Benzene	10.00	10.57	106	80-120	7	20
Toluene	10.00	10.82	108	80-120	7	20
Ethylbenzene	10.00	11.10	111	80-120	13	20
m,p-Xylenes	10.00	10.67	107	80-120	7	20
o-Xylene	10.00	10.91	109	80-120	10	20

Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	106	75-132	


Curtis & Tompkins Laboratories Analytical Report						
Lab #:	261047	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2013-02.	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC758741	Batch#:	215681			
Matrix:	Water	Analyzed:	09/23/14			
Units:	ug/L					

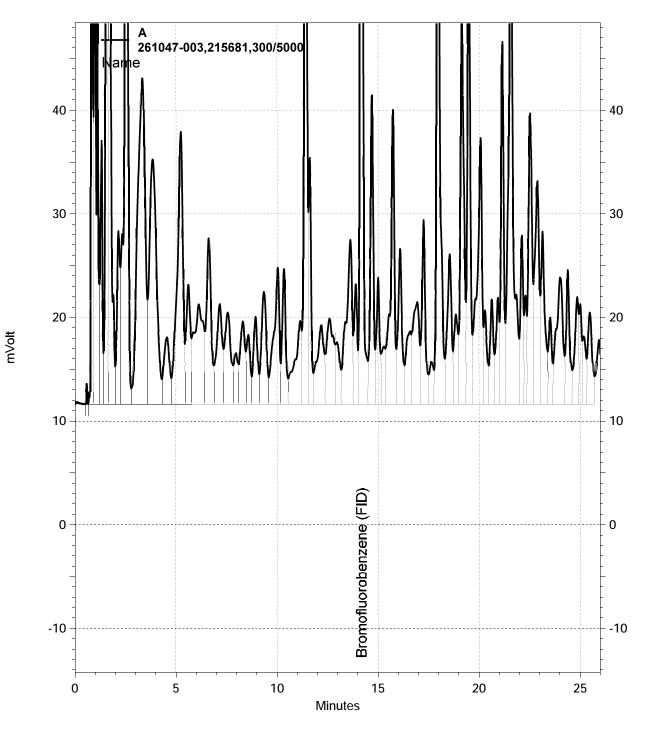
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	951.7	95	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	97	77-128

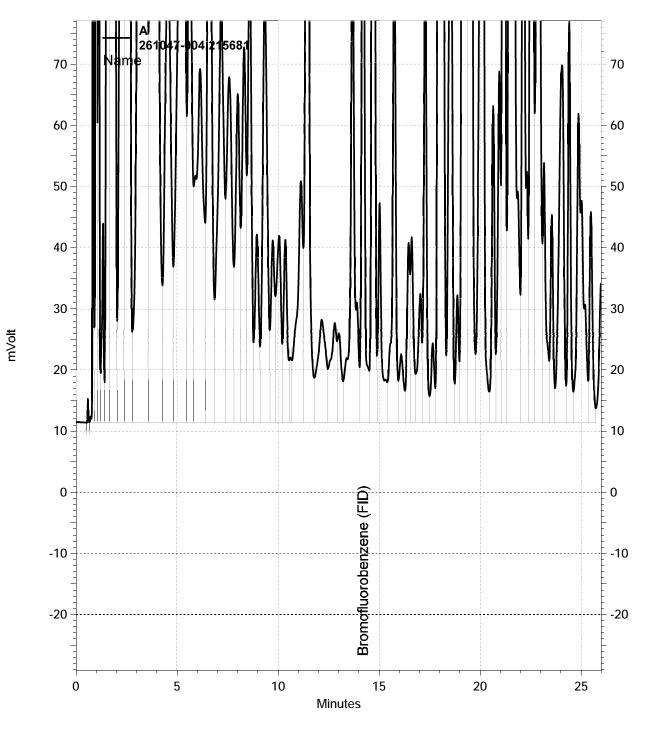


		ſompkiı	ns Labor	ratories Ana	lytical Report		
Lab #: 2	261047			Location:	Redwood Regio	nal Park	
Client: S	Stellar Environmenta	al Solut	lions	Prep:	EPA 5030B		
Project#: 2	2013-02.			Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ			Diln Fac:	1.000		
MSS Lab ID:	261048-001			Batch#:	215681		
Matrix:	Water			Sampled:	09/19/14		
Units:	ug/L			Received:	09/19/14		
Type: Lab ID:	MS QC758743			Analyzed:	09/23/14		
P	Analyte	MSS Re	esult	Spiked	Result	%REC	Limits
Gasoline C7	7-C12	2	29.44	2,000	1,932	95	74-120
S	Surrogate	%REC	Limits				
Bromofluoro	obenzene (FID)	109	77-128				
Type: Lab ID:	MSD QC758744			Analyzed:	09/24/14		
	Analyte		Spiked	Rea	sult %REC	Limits	RPD Lim
Gasoline C7	7-C12		2,000	1,9	901 94	74-120	2 27
S	Surrogate	%REC	Limits				

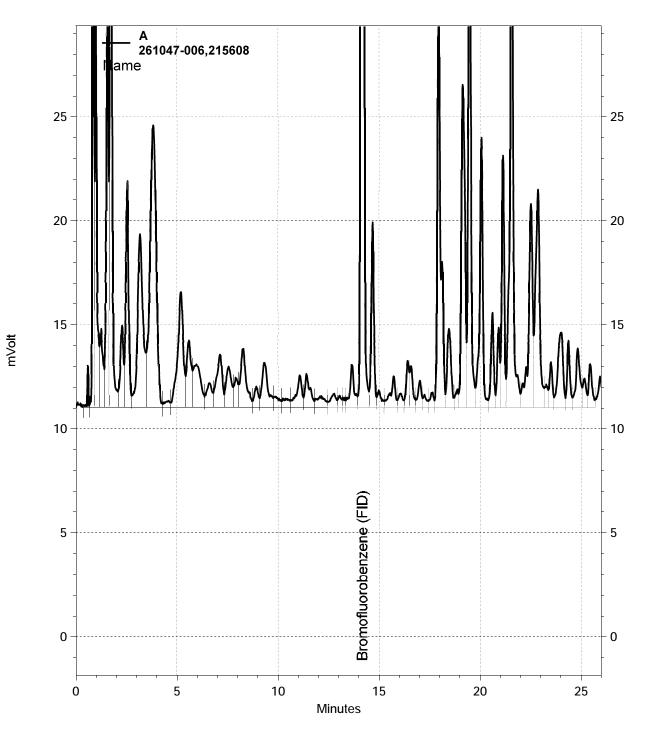
- \\Lims\gdrive\ezchrom\Projects\GC19\Data\264-009, A

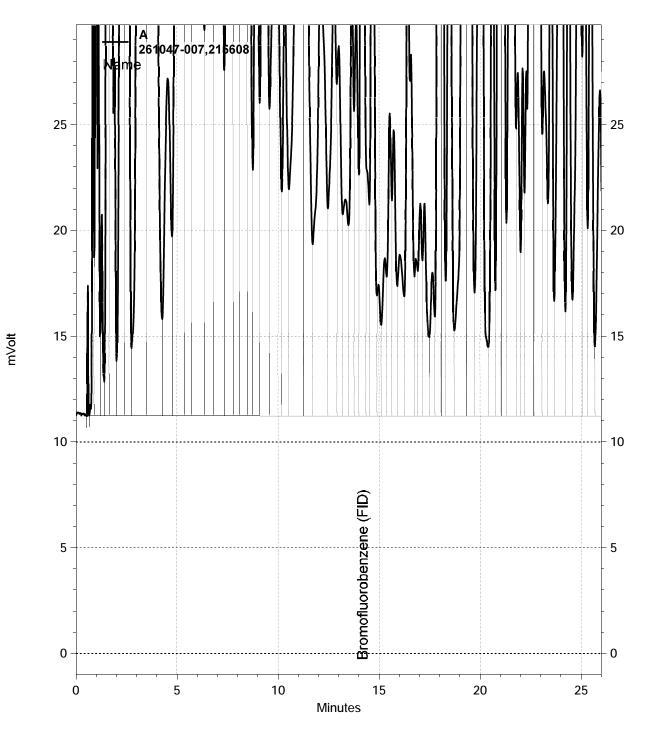

mVolt

- \\Lims\gdrive\ezchrom\Projects\GC19\Data\264-010, A

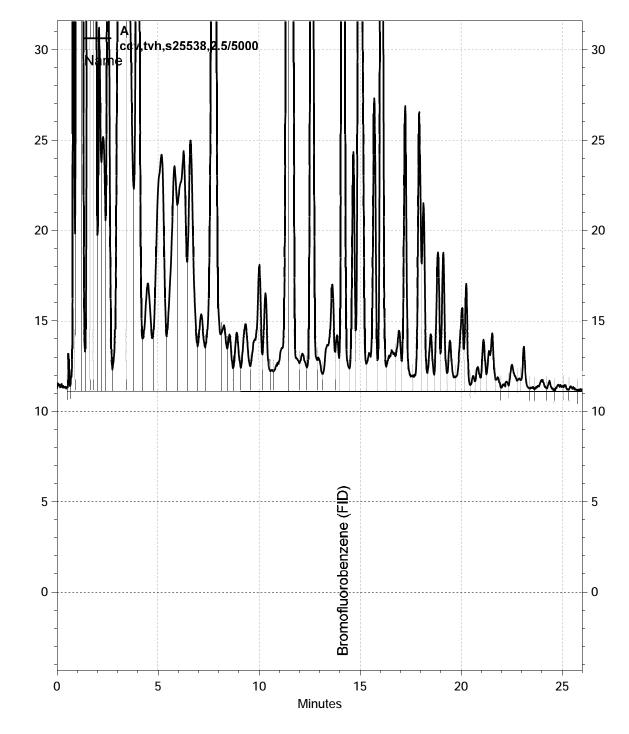

mVolt

mVolt


- \\Lims\gdrive\ezchrom\Projects\GC19\Data\266-025, A


- \\Lims\gdrive\ezchrom\Projects\GC19\Data\266-022, A

mVolt


- \\Lims\gdrive\ezchrom\Projects\GC19\Data\264-014, A

- \\Lims\gdrive\ezchrom\Projects\GC19\Data\264-015, A

- \\Lims\gdrive\ezchrom\Projects\GC19\Data\264-002, A

mVolt

23 of 43

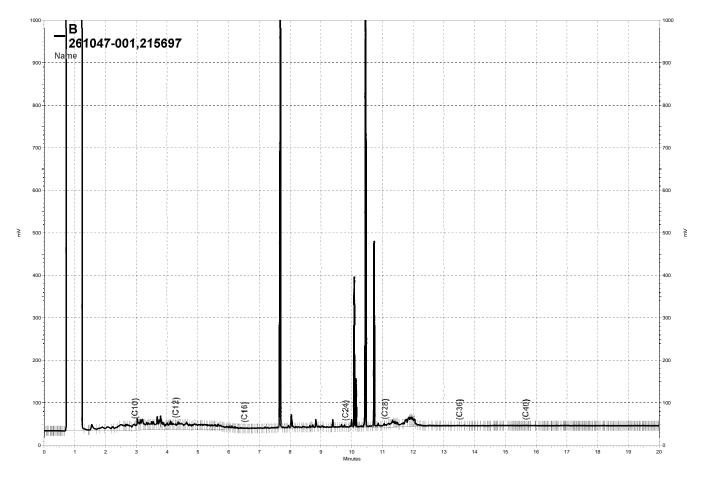
mVolt

	Тс	otal E	Extracta	ble Hydroc	arbo	ns
Lab #:	261047			Teretient		Deduced Deciencel Deci
Lab #. Client:	Stellar Environmental	Colut	iona	Location: Prep:		Redwood Regional Park EPA 3520C
Project#:		SOLUC	10115	Analysis:		EPA 8015B
Matrix:	Water			Sampled:		09/19/14
Units:	ug/L			Received:		09/19/14
Diln Fac:	1.000			Keceiveu.		09/19/14
	1.000					
Field ID:	MW-2			Batch#:		215697
Гуре:	SAMPLE			Prepared:		09/24/14
Lab ID:	261047-001			Analyzed:		09/26/14
	Analyte		Result		RL	
Diesel Cl	0-C24		480 Y		50	
	Surrogate	%REC	Limits			
o-Terpheny	yl	94	66-129			
Field ID: Type: Lab ID:	MW-8 SAMPLE 261047-002			Batch#: Prepared: Analyzed:		215697 09/24/14 09/26/14
	Analyte		Result		RL	
Diesel Cl	0-C24		66 Y		49	
	Surrogate	%REC	Limits			
o-Terpheny	уl	78	66-129			
Field ID:	MW-9			Batch#:		215834
Гуре:	SAMPLE			Prepared:		09/26/14
Lab ID:	261047-003			Analyzed:		09/29/14
	Analyte		Result		RL	
Diesel Cl			5,800		49	
	Surrogate	%REC	Limits			
o-Terpheny	x]	100	66-129			

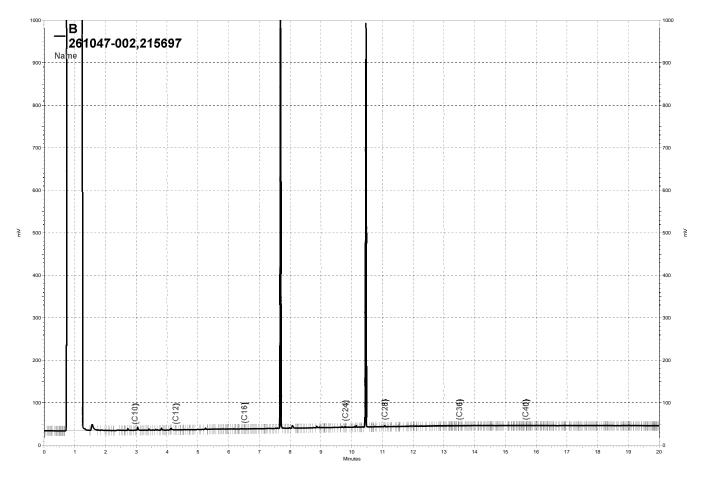
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 3

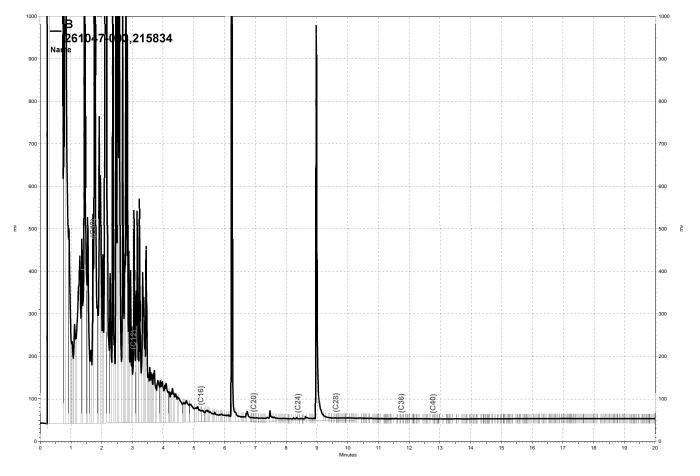
	Tc	otal E	Extracta	ble Hydroc	arbo	ns
Lab #:	261047			Location:		Redwood Regional Park
Client:	Stellar Environmental	Solut	ions	Prep:		EPA 3520C
Project#:				Analysis:		EPA 8015B
Matrix:	Water			Sampled:		09/19/14
Units:	ug/L			Received:		09/19/14
Diln Fac:						
Field ID:	MW-7			Batch#:		215834
Type:	SAMPLE			Prepared:		09/26/14
Lab ID:	261047-004			Analyzed:		09/29/14
	Analyte		Result		RL	
Diesel Cl			6,500		49	
	Surrogate	%REC	Limits			
o-Terphen		99	66-129			
Field ID: Type: Lab ID:	MW-10 SAMPLE 261047-005			Batch#: Prepared: Analyzed:		215697 09/24/14 09/25/14
	Analyte		Result		RL	
Diesel Cl	0-C24	ND			50	
	Surrogate	%REC	Limits			
o-Terphen	уl	101	66-129			
Field ID:	MW-11			Batch#:		215697
Гуре:	SAMPLE			Prepared:		09/24/14
Lab ID:	261047-006			Analyzed:		09/25/14
	Analyte		Result		RL	
Diesel C1			3,400		50	
	Surrogate	%REC	Limits			
o-Terphen	yl	109	66-129			

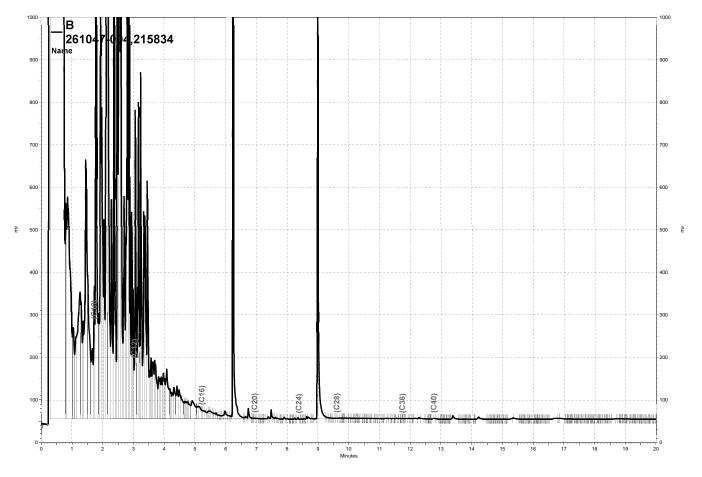
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 3

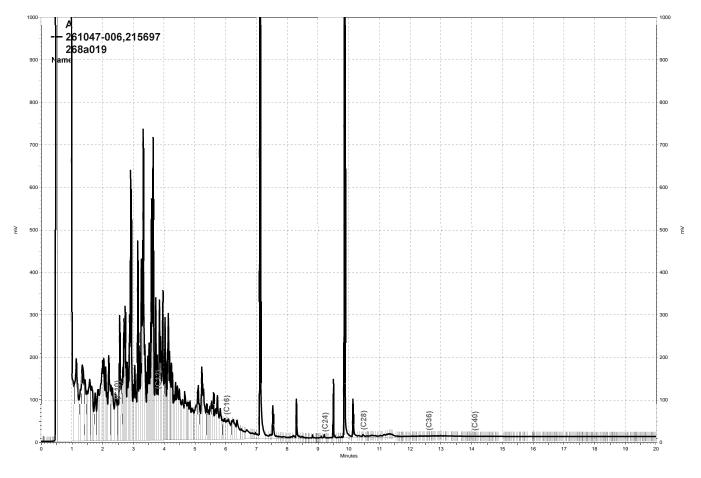


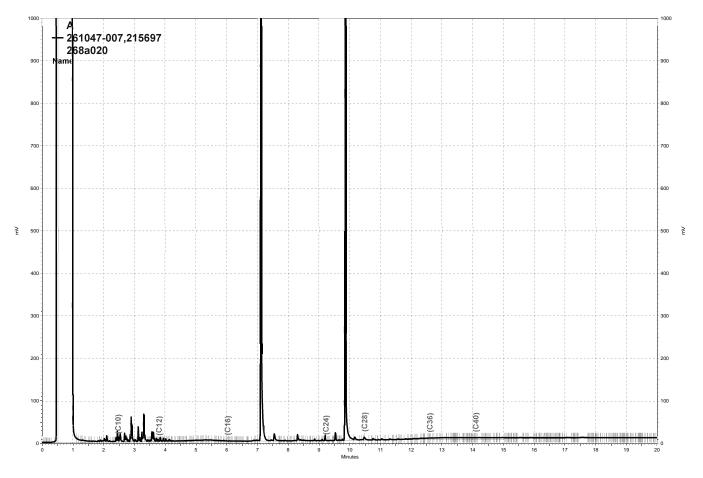
	Тс	tal E	Extracta	ble Hydroc	arbo	ns
Lab #: 2610	47			Location:		Redwood Regional Park
	lar Environmental	Solut	iong	Prep:		EPA 3520C
Project#: 2013		DOTUC	10115	Analysis:		EPA 8015B
Matrix:	Water			Sampled:		09/19/14
Units:	ug/L			Received:		09/19/14
Diln Fac:	1.000					
Field ID:	MW-12			Batch#:		215697
Type:	SAMPLE			Prepared:		09/24/14
Lab ID:	261047-007			Analyzed:		09/25/14
7	luto		Result		RL	
Diesel C10-C24	lyte		130 Y		RL 50	
			200 2			
	ogate	%REC	Limits			
o-Terphenyl		104	66-129			
Type: Lab ID: Batch#:	BLANK QC758806 215697			Prepared: Analyzed:		09/23/14 09/25/14
Ana	lyte		Result		RL	
Diesel C10-C24		ND)		50	
Surr	ogate	%REC	Limits			
o-Terphenyl		113	66-129			
Type:	BLANK			Prepared:		09/26/14
Lab ID:	QC759359			Analyzed:		09/29/14
Batch#:	215834					
Ana	lyte		Result		RL	
Diesel C10-C24		ND			50	
Curre	ogate	%REC	Limits			

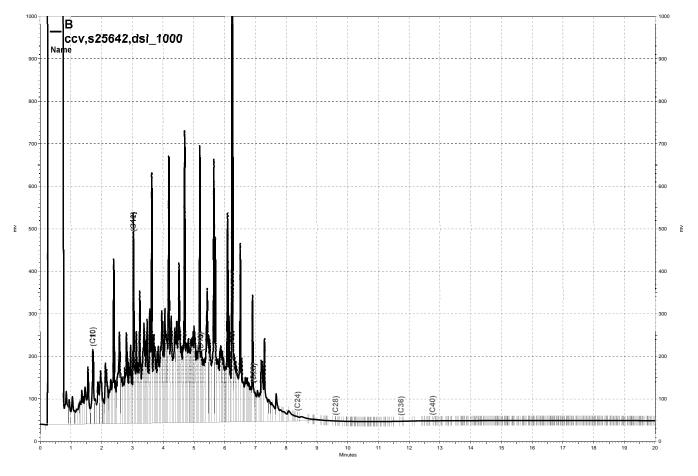

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3


		Total 1	Extracta	ble Hydro	ocarbor	າຮ			
Lab #:	261047			Location:		Redwood Regio	nal Park		
Client:	Stellar Environment	al Solut	cions	Prep:		EPA 3520C			
Project#:	2013-02.			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		215834			
Units:	ug/L			Prepared:		09/26/14			
Diln Fac:	1.000			Analyzed:		09/29/14			
Туре:	BS			Lab ID:		QC759360			
	Analyte		Spiked		Result	%REC	Limits		
Diesel Cl	0-C24		2,500		2,058	82	61-120		
	Surrogate	%REC	Limits						
o-Terphen	yl	103	66-129						
Туре:	BSD			Lab ID:		QC759361			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel Cl	0-C24		2,500		2,185	87	61-120	6	45
	Surrogate	%REC	Limits						
o-Terphen	yl	110	66-129						


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\268b031, B


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\268b032, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\272b006, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\272b007, B

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\268a019, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\268a020, A

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\272b003, B

	Curtis & To	mpkins Labor	atories Ana	alytical Report	
Lab #:	261047		Location:	Redwood Regional Park	
Client:	Stellar Environmental	Solutions	Prep:	METHOD	
Project#:			Analysis:	EPA 300.0	
Matrix:	Water		Batch#:	215590	
Units:	mg/L		Received:	09/19/14	
Diln Fac:	-		Received	00/10/11	
Dim race	1.000				
Field ID:	MW-9		Sampled:	09/19/14 12:25	
Type:	SAMPLE		Analyzed:	09/19/14 15:11	
Lab ID:	261047-003				
	Analyte	Result		RL	
Nitrogen,	Nitrate	ND		0.05	
Sulfate		5.5		0.50	
Field ID: Type: Lab ID:	MW-7 SAMPLE 261047-004		Sampled: Analyzed:	09/19/14 11:20 09/19/14 15:45	
	Analyte	Result		RL	
Nitrogen,		Result ND		RL 0.05	
Nitrogen, Sulfate					
Sulfate	Nitrate	ND	Sampled:	0.05 0.50	
Sulfate Field ID:	Nitrate MW-12	ND	Sampled:	0.05 0.50 09/19/14 12:16	
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE	ND	Sampled: Analyzed:	0.05 0.50	
Sulfate Field ID: Type:	Nitrate MW-12	ND	-	0.05 0.50 09/19/14 12:16	
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE 261047-007	ND	-	0.05 0.50 09/19/14 12:16	
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 261047-007 Analyte	ND 1.5	-	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL	
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE 261047-007 Analyte	ND 1.5 Result	-	0.05 0.50 09/19/14 12:16 09/19/14 17:25	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 261047-007 Analyte	ND 1.5 Result ND	-	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL 0.05	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 261047-007 Analyte Nitrate BLANK QC758370	ND 1.5 Result ND 23	Analyzed:	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL 0.05 0.50 09/19/14 14:36	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 261047-007 Analyte Nitrate BLANK QC758370 Analyte	ND 1.5 Result ND 23 Result	Analyzed:	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL 0.05 0.50 09/19/14 14:36 RL	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID: Nitrogen,	Nitrate MW-12 SAMPLE 261047-007 Analyte Nitrate BLANK QC758370 Analyte	ND 1.5 Result ND 23 Result ND	Analyzed:	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL 0.05 0.50 09/19/14 14:36 RL 0.05	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 261047-007 Analyte Nitrate BLANK QC758370 Analyte	ND 1.5 Result ND 23 Result	Analyzed:	0.05 0.50 09/19/14 12:16 09/19/14 17:25 RL 0.05 0.50 09/19/14 14:36 RL	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	261047	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD			
Project#:	2013-02.	Analysis:	EPA 300.0			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC758371	Batch#:	215590			
Matrix:	Water	Analyzed:	09/19/14 14:53			
Units:	mg/L					

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	0.9971	100	80-120
Sulfate	10.00	9.792	98	80-120

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 2610	47	Location:	Redwood Regional Park			
Client: Stel	lar Environmental Solutions	Prep:	METHOD			
Project#: 2013	-02.	Analysis:	EPA 300.0			
Field ID:	ZZZZZZZZZ	Diln Fac:	10.00			
Type:	SDUP	Batch#:	215590			
MSS Lab ID:	261055-003	Sampled:	09/19/14 10:40			
Lab ID:	QC758385	Received:	09/19/14			
Matrix:	Water	Analyzed:	09/20/14 04:09			
Units:	mg/L					

Analyte	MSS Result	Result	RL	RPD	Lim
Nitrogen, Nitrate	<0.05000	ND	0.5000	NC	20
Sulfate	60.96	60.46	5.000	1	20

NC= Not Calculated ND= Not Detected RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

Curtis	& Tompkins Labo	oratories Ana	lytical Report
Lab #: 261047		Location:	Redwood Regional Park
Client: Stellar Environ	mental Solutions	Prep:	METHOD
Project#: 2013-02.		Analysis:	EPA 300.0
Field ID: ZZZZZZZ	ZZ	Diln Fac:	10.00
Type: SSPIKE		Batch#:	215590
MSS Lab ID: 261055-0	03	Sampled:	09/19/14 10:40
Lab ID: QC758386		Received:	09/19/14
Matrix: Water		Analyzed:	09/20/14 04:26
Units: mg/L			

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	<0.01127	5.000	4.622	92	80-120
Sulfate	60.96	50.00	105.9	90	79-120

	Curtis & '	Tompkins Labor	atories Anal	ytical Report			
Lab #:	261047		Location:	Redwood Regior	nal Park		
Client:	Stellar Environmenta	al Solutions	Prep:	METHOD			
Project#:	2013-02.		Analysis:	EPA 300.0			
Field ID:	ZZZZZZZZZZ		Diln Fac:	500.0			
MSS Lab I	D: 261060-002		Batch#:	215590			
Matrix:	Water		Sampled:	09/19/14 12:10)		
Units:	mg/L		Received:	09/19/14			
Type: Lab ID:	MS QC758388 Analyte	MSS Result	Analyzed: Spiked	09/20/14 04:44 Result	%REC	Lin	nits
Nitrogen,	Nitrate	<0.2255	250.0	236.8	95	80-	120
Sulfate		1.145	2,500	2,350	94	79-	-120
Type:	MSD		Analyzed:	09/20/14 05:01	_		
Lab ID:	QC758389						
	Analyte	Spiked	Resu	ult %REC	Limits	RPD	Lim
Nitrogen,	=	250.0	24	40.9 96	80-120	2	20
Sulfate		2,500	2,38	39 96	79-120	2	20

Biochemical Oxygen Demand						
Lab #:	261047	Location:	Redwood Regiona	l Park		
Client:	Stellar Environmental Solutions	Prep:	METHOD			
Project#:	2013-02.	Analysis:	SM5210B			
Analyte:	Biochemical Oxygen Demand	Batch#:	215588			
Matrix:	Water	Received:	09/19/14			
Units:	mg/L	Prepared:	09/19/14 18:18			
Diln Fac:	1.000	Analyzed:	09/24/14 12:37			
Fie	ld ID Type Lab ID	Result	RL	Sampled		

Field ID	Type	Lab ID	Result	RL	Sampled
MW-9	SAMPLE	261047-003	17	5.0	09/19/14 12:25
MW-7	SAMPLE	261047-004	9.6	5.0	09/19/14 11:20
MW-12	SAMPLE	261047-007	ND	5.0	09/19/14 12:16
	BLANK	QC758361	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Biochem	ical Oxygen Demand	1
Lab #: 26	1047	Location:	Redwood Regional Park
Client: St	ellar Environmental Solution	s Prep:	METHOD
Project#: 20	13-02.	Analysis:	SM5210B
Analyte:	Biochemical Oxygen Dema	nd Batch#:	215588
Field ID:	MW-9	Sampled:	09/19/14 12:25
MSS Lab ID:	261047-003	Received:	09/19/14
Matrix:	Water	Prepared:	09/19/14 18:18
Units:	mg/L	Analyzed:	09/24/14 12:37
Diln Fac:	1.000		
Type Lab I	D MSS Result Spike	d Result	RL %REC Limits RPD Lim

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC758362		198.0	190.4		96	85-115		
BSD	QC758363		198.0	200.9		101	85-115	5	26
SDUP	QC758364	16.80		17.00	5.000			1	29

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

	Chemical Oxygen Demand											
Lab #:	261047	Location:	Redwood Regional Park									
Client:	Stellar Environmental Solutions	Prep:	METHOD									
Project#:	2013-02.	Analysis:	SM5220D									
Analyte:	Chemical Oxygen Demand	Batch#:	215728									
Matrix:	Water	Received:	09/19/14									
Units:	mg/L	Prepared:	09/24/14 14:15									
Diln Fac:	1.000	Analyzed:	09/24/14 18:00									
		Degult	DI Compled									

Field ID	Type Lab ID	Result	RL	Sampled
MW-9	SAMPLE 261047-003	24	10	09/19/14 12:25
MW-7	SAMPLE 261047-004	21	10	09/19/14 11:20
MW-12	SAMPLE 261047-007	32	10	09/19/14 12:16
	BLANK QC758916	ND	10	

ND= Not Detected RL= Reporting Limit Page 1 of 1

QC758919

MSD

			Chemical (Oxygen Demand	1					
Lab #:	261047			Location:	Rec	lwood Reg	ional	Par	k	
Client:	Stella	r Environmental	Solutions	Prep:	MED	THOD				
Project#	: 2013-0	2.		Analysis:	SM5	5220D				
Analyte:		Chemical Oxygen	n Demand	Batch#:	215	5728				
Field ID	:	ZZZZZZZZZZ		Sampled:	09/	09/14 10	:00			
MSS Lab	ID:	260651-002		Received:	09/	09/14				
Matrix:		Water		Prepared:	09/	24/14 14	:15			
Units:		mg/L		Analyzed:	09/	24/14 18	:00			
Type L	ab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim 1	Diln F	ac
LCS QC	758917		75.00	68.73	92	90-110			1.000	
MS QC	758918	118.8	300.0	368.1	83	78-120			2.000	

376.7

86

78-120

2

20 2.000

300.0

APPENDIX D

Historical Analytical Results

			VOOD RE	GIONAL PA	ARK SERVI		NALYTICAL RES AND, CALIFORN r billion [ppb])		
					Well N	1W-2			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	N
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	Ν
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	~
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	٨
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	٨
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	٨
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	٨
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	٨
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	٨
12	Feb-98	2,000	200	270	92	150	600	1,112	Λ
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5		6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5		13
23	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5		< 2
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	4.1 < 0.5	1.9	8.7
20	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
		374		81	1.0	36	7.3	126	18
29	Mar-04		<100						
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31 32	Sep-04 Dec-04	200 80	< 50 < 50	23 14	< 0.5	< 0.5	0.70	24 18	16 20
								-	
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	-	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50		<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
52	Aug-09	1,900	3,100	1.6	1.8	11	23.8	38.2	7.1
53	Sep-09	1,400	1,800	<0.5	<0.5	<0.5	4.2	4.24	12
55	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6

					Well MW-2				
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
56	Mar-10	2,000	4,300	<0.5	<0.5	<0.5	3.5	3.45	<2.0
57	Jun-10	1,300	2,400	<0.5	<0.5	<0.5	1.7	-	<2.0
58	Sep-10	910	<50	<0.5	<0.5	<0.5	1.5	1.45	<2.0
59	Dec-10	910	1,600	<0.5	<0.5	<0.5	<0.5	<0.5	2.6
60	Mar-11	860	1,100	<0.5	<0.5	<0.5	<0.5	_	3.1
61	Sep-11	780	810	<0.5	<0.5	<0.5	<0.5	—	<2.
62	Mar-12	460	610	<0.5	<0.5	<0.5	<0.5	_	<2.
63	Sep-12	160	190	<0.5	<0.5	<0.5	<0.5	_	<2.
64	Mar-13	470	810	<0.5	<0.5	<0.5	<0.5	_	<2.
65	Oct-13	120	67	<0.5	<0.5	<0.5	<0.5	_	2.3
66	Mar-14	320	290	<0.5	<0.5	<0.5	<0.5	_	<2.0
67	Sep-14	610	480	<0.5	1	4.7	1.9	7.6	3.7

					Well N	1W-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6		< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
G	roundwate	r monitoring	g in this we	ell discontin	ued with Ala	ameda County H	ealth Care Servic	es Agency appro	val.

					Well N	1W-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Grou	ndwater mo	onitoring in	this well di	scontinued	in 1998 wit	h Alameda Coun	ty Health Care Se	rvices Agency a	pproval.
		Subsequ	uent groun	dwater mor	itoring con	ducted to confirm	plume's southerr	n limit	
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	5.9
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	—	< 2.0

					Well N	1W-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.(
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.(
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.(
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	4
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.(
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.0	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.3	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.1	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.3	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.1	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.6	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.9	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.6	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.5	92	<2.0
40	Jun-10	5,800	5,000	20	<0.5	140	9.9	170	<2.0
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.0	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.2	108	87.0
43	Mar-11	5,500	3,400	11	<0.5	94	8.5	114	<2.
44	Sep-11	5,800	3,300	<0.5	<0.5	97	3.1	100	<2.
45	Mar-12	6,400	3,500	<0.5	<0.5	110	5.6	116	<2.
46	Sep-12	5,700	3,000	<0.5	<0.5	84	<0.5	84	<2.0
47	Mar-13	6,000	3,300	<0.5	<0.5	82	<0.5	82	<2.0
48	Oct-13	6,400	6,000	35	<0.5	75	5.10	115	<2.0
49	Dec-13	6,000	4,200	<0.5	<0.5	100	<0.5	100	<2.
50	Mar-14	7,500	4,900	<0.5	<0.5	130	2.0	132	<2.
51	Jun-14	3,400	9,100	<0.5	<0.5	170	6.9	177	<2.
52	Sep-14	6,500	6,000	<0.5	<0.5	150	5.1	155	<2.0

					Well N	/W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 1
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2
12	Dec-03	485	100	19	1.5	26	36	83	< 5
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 1
15	Sep-04	2,000	360	100	< 2.5	180	102	382	<
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	<
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	3,800	1,067	<20
20	Dec-05	3,700	1,200	110	< 5.0	320	356	786	<20
			-						
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820 800	170 75	7.7 4.2	730 320	539 246	1,447	<10
24	Dec-06	4,400						645	< 2
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 2
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	<0.5	22	<2.5	25	<
42	Dec-10	180	260	<0.5	<0.5	5	1.0	6.4	7.2
43	Mar-11	6,000	5,900	39	<0.5	510	431.0	980.0	<2
44	Sep-11	1,700	1,200	7	0.9	120	12.2	139.7	<2
45	Mar-12	1,200	790	11	0.9	<0.5	99.0	110.9	<2
46	Sep-12	730	430	4.7	<0.5	45	3.8	53.5	9.2
47	Mar-13	840	690	5.6	<0.5	47	9.9	62.51	15
48	Oct-13	150	140	<0.5	<0.5	3.3	<0.5	3.3	~2
49	Mar-14	79	120	<0.5	<0.5	2.1	<0.5	2.1	
50	Sep-14	57	66	<0.5	<0.5	1.5	0.66	2.16	11

				-	Well N	1W-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 1
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 1
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4
9	Sep-03	8,300	2,900	420	14	870	200	1,504	<
10	Dec-03	7,080	700	287	31	901	255	1,474	<
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	<
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< '
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< '
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	<
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	<
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2
17	Dec-05	8,700	1,200	150	<0.5 4	650	551	1,355	< 4
19	Mar-06	3,600	880	37	<1.0	210	165	412	
									< 4
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	<
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	<
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82
40	Mar-11	700	680	1.6	<0.5	10	3.5	15.1	14
41	Sep-11	2,600	1,900	12	<0.5	160	10.2	182.2	<2
42	Mar-12	1,100	940	9	<0.5	25	1.6	35.6	<2
43	Sep-12	10,000	8,600	25	<0.5	260	19.0	304.0	<2
44	Mar-13	4.000	2.400	9.1	<0.5	73	9.7	91.8	<2
45	Oct-13	3,200	1,500	20	<0.5	51	6.6	77.6	<2
49	Dec-13	3,000	2,700	20	<0.5	120	4.6	147	<2
50	Mar-14	3,100	5,200	49	<0.5	420	83	552	<2
51	Jun-14	12,000	2,600	49 54	<0.5	610	160	824	<2
52	Sep-14	17,000	5,800	54 65	<0.5 13.0	51	204	333	<2

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	< 0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5
12	Jun-04	34 150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	-	98				-	17	13
15	Jun-05	95 150	98 57	8.3 14	<0.5 <0.5	7.7	0.77 1.0	25	-13 <2
10		87	- 50	5.0	<0.5				<2
17	Sep-05	87 < 50	< 50 < 50	5.0 1.2	<0.5	3.6 <0.5	<1.0 <1.0	8.6 1.2	7.8
	Dec-05								-
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	< 0.5	<0.5 <0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61		0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	<0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	<0.5	<0.5	0.69	<0.5	0.7	4.1
40	Mar-11	170	1,200	1.0	<0.5	3.7	1.8	6.5	6.3
41	Sep-11	150	220	0.8	<0.5	1.9	1	3.7	<2
42	Mar-12	80	92	0.81	<0.5	1.5	<0.5	2.3	3.4
43	Sep-12	170	200	<0.5	<0.5	2	0.94	2.9	<2
44	Mar-13	310	58	<0.5	<0.5	7.3	7.94	15.2	<2
45	Oct-13	69	<50	<0.5	<0.5	0.84	<0.5	0.8	4.8
46	Dec-13	<52	220	<0.5	0.61	2	1.5	4.1	3.7
47	Mar-14	<50	87	<0.5	<0.5	0.51	<0.5	0.5	3.7
48	Jun-14	55	<50	<0.5	0.61	2	1.5	4.1	<2
49	Sep-14	<50	<50	<0.5	<0.5	<0.5	<0.5	0.0	4.5

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 1
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< -
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 1
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 1
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 1
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	<
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 1
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 1
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 1
15	Mar-05	4.600	1,900	69	<2.5	300	206	575	< 1
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 1
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 1
	Jun-06			170		230	14	414	
20		3,700	1,900		<1.0				< 4.
21	Sep-06	3,600	2,100	80 83	<0.5 <1.0	230	8.8	319	< 2.
22	Dec-06	6,000	3,500			260	16.4	359	< 4.
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3,000	2,200	18	<0.5	41	0.55	60	8.0
39	Dec-10	1,800	2,900	13	<0.5	49	1.9	64	15.0
40	Mar-11	180	1,600	<0.5	<0.5	1.2	<0.5	1.2	6.9
41	Sep-11	2,200	2,500	12	<0.5	44	2.2	58.2	<2.
42	Mar-12	1,300	1,200	8.7	<0.5	29	<0.5	37.7	<2.
43	Sep-12	2,400	1,800	7.7	<0.5	29	<0.5	36.7	<2.
44	Mar-13	1,500	1,900	4.8	<0.5	22	<0.5	26.8	<2.
45	Oct-13	3,000	1,600	14	<0.5	35	<0.5	49	<2.
46	Dec-13	2,500	2,000	<0.5	13	<0.5	0.68	13.7	<2
47	Mar-14	3.000	2,800	13	<0.5	34	<0.5	47.0	<2.
47	Jun-14	2,300	1,400	6	<0.5	20	6.1	32.1	<2.
48 49	Sep-14	2,300	3,400	6.8	<0.5	20	<0.5	32.1	< <u>2</u> . 3.7

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9
22	Mar-11	290	450	<0.5	0.74	1.3	<0.5	2.0	11
23	Sep-11	530	340	<0.5	<0.5	2.2	<0.5	2.2	<2.0
24	Mar-12	410	240	<0.5	<0.5	1.9	<0.5	1.9	<2.0
25	Sep-12	340	210	<0.5	<0.5	1.1	<0.5	1.1	<2.0
26	Mar-13	430	200	<0.5	<0.5	1.2	<0.5	1.2	7.1
27	Oct-13	350	200	<0.5	<0.5	0.92	<0.5	0.92	<2.0
28	Dec-13	290	210	<0.5	<0.5	0.68	<0.5	0.68	2.5
29	Mar-14	<50	62	<0.5	<0.5	<0.5	<0.5	0	2.8
30	Jun-14	2,300	190	<0.5	<0.5	0.65	<0.5	0.65	<2.0
31	Sep-14	2,500	130	<0.5	6.8	26	<0.5	32.8	<2.0

	HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA (all concentrations in ug/L, equivalent to parts per billion [ppb])												
	Surface Water Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0				
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0				
S	ampling at	this locatio	n discontir	nued after A	pril 1999 w	ith Alameda Cou	nty Health Service	es Agency appro	val.				

F	Det						ninated Groundw		MTOT
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene		Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	N
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	Ν
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	Ν
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	٨
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
8	Aug-97	350	130	13	0.89	19	11	44	٨
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2
30	Dec-04	<50	<50	4.4 <0.5	<0.5	<0.5	< 1.0	1.0	< 2
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
-							-	-	
35 36	Mar-06 Jun-06	<50 <50	62 110	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 1.0 < 1.0	<1.0 <1.0	< 2
36	Sep-06	<50 62	<u>110</u> 94	<0.5	<0.5	<0.5 0.81	< 1.0 <0.5	<1.0 0.8	<2
37	Dec-06	62 <50	94 <50	<0.5	<0.5	0.81 <0.5	< 1.0	0.8 <1.0	<2
39	Mar-07	<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	< 2
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2
45		530	690			4.3			

Ganado	Surface water Sampling Escalion SW-2 Solutided										
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0		
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0		
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		
52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		
53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		
54	Dec-10	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA		
55	Mar-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA		
56	Sep-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA		
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0		
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0		
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0		
60	Oct-13	<50	930	<0.5	<0.5	<0.5	<5.0	<0.5	4.8		
61	Mar-14	<50	<49	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0		
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS		

Surface Water Sampling Location SW-2 Continued

Surfs	ace Water	Sampling	Location 9	SW-3 (Down	nstream of	Contaminated 6	Foundwater Dis	charge Location	SW-2)
	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
Event									
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
		NS	NS	< 0.5 NS	< 0.5 NS				NS
16 17	Sep-01 Dec-01	< 50	< 50	< 0.5	< 0.5	NS < 0.5	NS < 0.5	< 0.5 < 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	<50	<100	<0.3	< 0.3	<0.6	<0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06								
		<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	< 0.5	< 0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Jun-10	<50	<50		<5.0	<5.0			<2.0
				<5.0			<5.0	<0.5	
52	Sep-10	NS 150	NS 150	NS 10.5	NS 0.57	NS 10.5	NS 0.81	NS 1.4	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81		NA
54	Mar-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
55	Sep-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
			NS	NS	NS	NS	NS	NS	NS
60	Oct-13	NS	113	140		-	-		
60 61	Oct-13 Mar-14	NS <50	<50	<0.5	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	<2.0 NS

NS = Not Sampled (no surface water present during sampling event)