RECEIVED

By Alameda County Environmental Health 1:57 pm, Apr 21, 2015

FIRST SEMIANNUAL 2015 GROUNDWATER MONITORING REPORT AND PRB EVALUATION

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

April 2015

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

FIRST SEMIANNUAL 2015 GROUNDWATER MONITORING REPORT AND PRB EVALUATION

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 21, 2015

Project No. 2015-02

GEOSCIENCE & ENGINEERING CONSULTING

April 21, 2015

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Semiannual 2015 Groundwater Monitoring and PRB Evaluation Report of the Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes the First Semiannual 2015 groundwater and surface water monitoring and sampling conducted on March 23, 2015. In addition to the activities typically conducted during a monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were taken to assess the effectiveness of the Permeable Reactive Barrier (PRB) that was installed in November 2013.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Pandel S. Mildi

Richard S. Makdisi, P.G. Principal Geochemist/President

Matthew Low

Matt Graul, Stewardship Manage East Bay Regional Park District

cc:

State of California GeoTracker database Alameda County Department of Environmental Health 'ftp' system

TABLE OF CONTENTS

Sectio	n	Page
1.0	INTRODUCTION	1
	Project Background	1
	Objectives and Scope of Work	
	Historical Corrective Actions and Investigations	1
	Site Description	3
	Regulatory Oversight	3
2.0	PHYSICAL SETTING	6
	Site Lithology	6
	Hydrogeology	7
3.0	REGULATORY CONSIDERATIONS	10
	Groundwater Contamination	10
	Surface Water Contamination	10
4.0	FIRST SEMIANNUAL 2015 ACTIVITIES	
	Groundwater Monitoring and Sampling	13
	Creek Surface Water Sampling	
	Bioventing-Related Activities	
	Permeable Reactive Barrier (PRB) Monitoring Indicators	
	Groundwater and Surface Water Analytical Results	
	Reactive Barrier Effectiveness	
	Quality Control Sample Analytical Results	18
5.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	
	Summary and Conclusions	
	Proposed Actions	22
6.0	REFERENCES	23
10.0	LIMITATIONS	

TABLES AND FIGURES

Tables	Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data - March 23, 2015	13
Table 2 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells – March 23, 2015	
Table 3 Groundwater and Surface Water Samples Analytical Results – March 23, 2015	18

Figures	Page
Figure 1 Site Location Map	4
Figure 2 Site Plan and Historical Borings, Well and Geologic Cross-Section Locations.	5
Figure 3 Geologic Cross-Section	9
Figure 4 Groundwater Elevation Map – March 23, 2015	14
Figure 5 Plan View of Remedial Barrier Treatment Wall & TPH Plume - March 23, 201	1518

Appendices

Appendix A	Historical Groundwater Monitoring Water Level Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Analytical and Surface Water Analytical Results

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the first semiannual 2015 groundwater monitoring report along with the annual trend analyses and recommendations for future work.

OBJECTIVES AND SCOPE OF WORK

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the first 2015 semiannual period from January 1, 2015 to March 31, 2015:

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

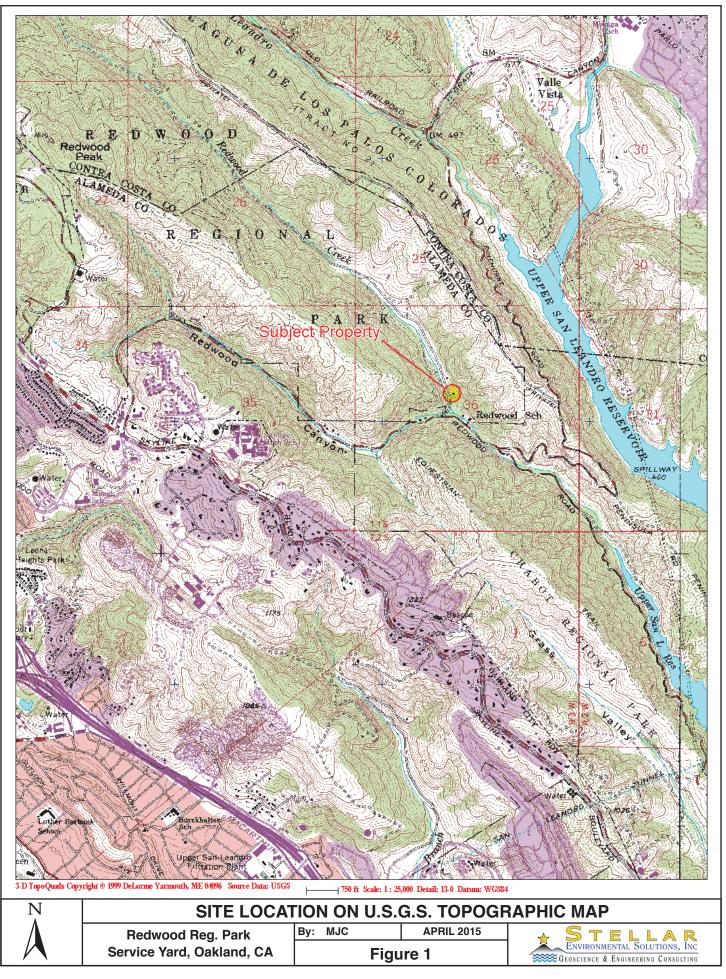
The general phases of site work included:

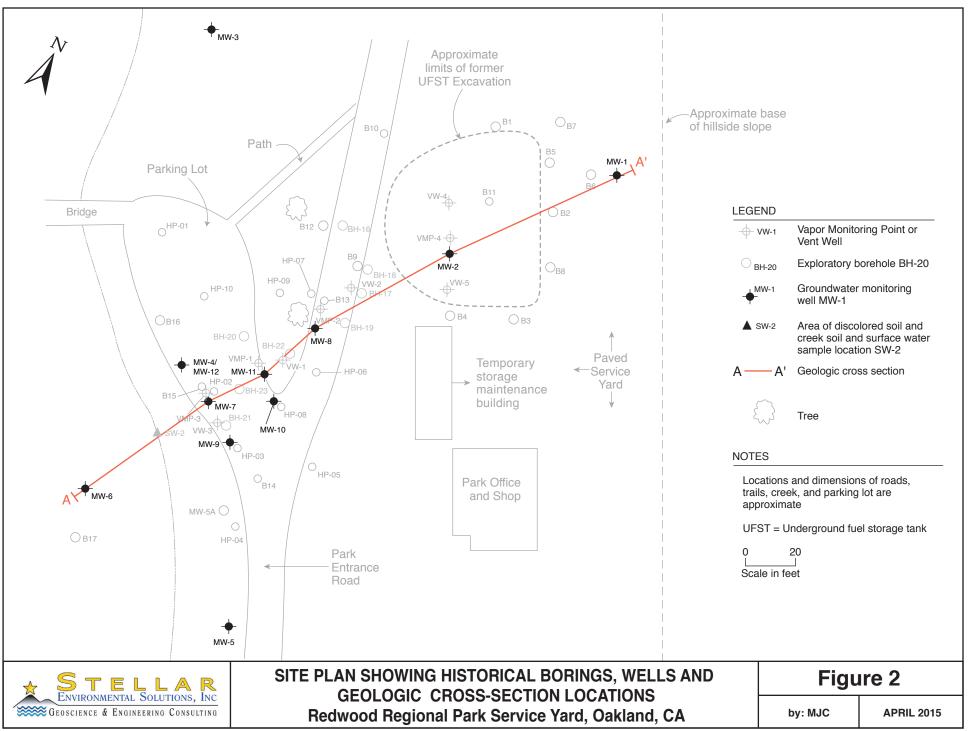
- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 63 groundwater monitoring events have been conducted since project inception (February 1994). A total of 12 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued on July 18, 2011.

The RAW, dated November 28, 2011, prepared by Stellar Environmental. ACEH approved the PRB RAW in a subsequent letter, dated December 29, 2011and the PRB was installed in November 2013 and followed with a 30-day post-installation monitoring of key downgradient site wells in December 2013.

SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.


Figure 1 shows the location of the project site. Figure 2 presents the site plan.


REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek. No surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH, at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- Shut down of the site bioventing system in June 2011.
- Design and implementation of PRB workplan.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

2015-02-02

2.0 PHYSICAL SETTING

This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis (Stellar Environmental 2004c). These additional geologic cross-sections have been presented in previous reports.

SITE LITHOLOGY

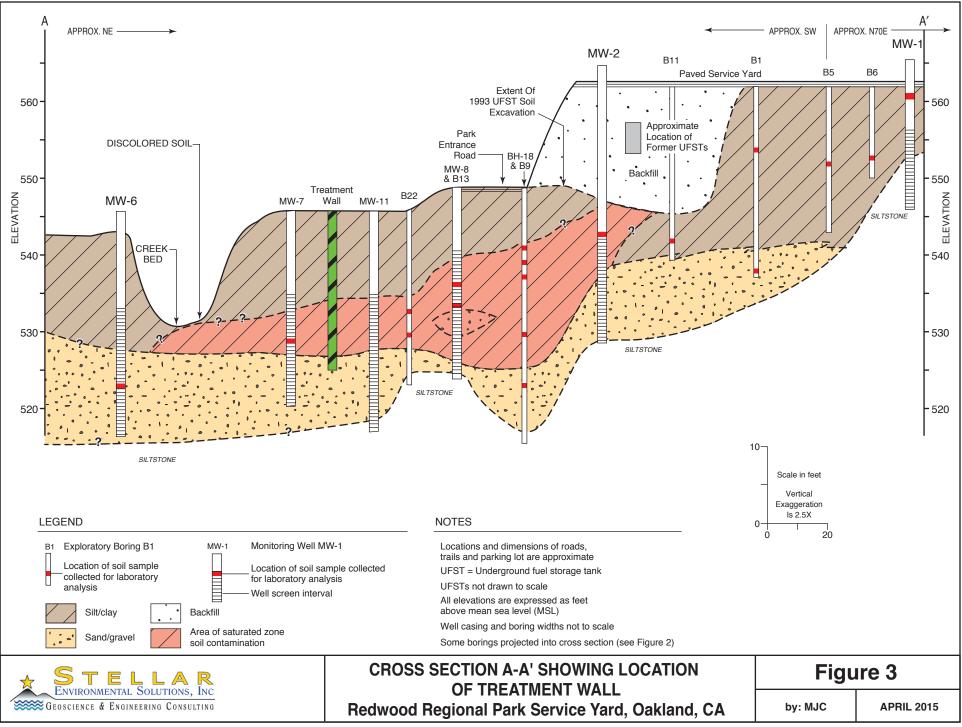
Figure 3 shows the location of geologic cross-section (A-A') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). The cross-section represented by Figure 4 shows the generalized subsurface features, the inferred thickness of the saturated soil contamination zone and the location of the permeable reactive barrier treatment wall. The PRB shown on the cross-section was constructed with the inoculated treatment zone located from 10-22 feet bgs which correlates to an elevation ranging from 525.5 - 537.5 feet amsl.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data. In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 and at downgradient location B15/HP-02. Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.


HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.21 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient was approximately 0.105 feet per foot. The average groundwater elevation was 1.84 feet higher than the previous (September 2014) event, with the greatest increase of 4.47 feet measured in MW-8. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

2015-02-03

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater is considered a potential source of drinking water unless otherwise approved by the Water Board, and is also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 3 (in Section 5.0), site groundwater contaminant levels are compared to the Water Board Tier 1 Environmental Screening Level (ESL) criteria for residential sites where groundwater <u>is</u> a current or potential drinking water source (Water Board, 2013).

As stipulated in the ESL guidance, ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern. ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the Water Board December 2013 ESL for fresh water habitat. As discussed in the ESL document (Water Board, 2013), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water).

This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 FIRST SEMIANNUAL 2015 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (First Semiannual 2015), conducted on March 23, 2015, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 12 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, SW-2 and SW-3);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Continue post-purge measurement of dissolved oxygen (DO) and redox to evaluate the effect of the permeable reactive barrier (PRB) that was installed across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation;

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the March 2015 groundwater elevation data are summarized in Table 1. Figure 4 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth (bgs)	Groundwater Elevation
MW-1	18	7 to17	565.83	2.19	561.41
MW-2	36	20 to 35	566.42	18.63	545.47
MW-3	42	7 to 41	560.81	16.44	541.46
MW-5	26	10 to 25	547.41	14.19	531.01
MW-6	26	10 to 25	545.43	10.91	532.09
MW-7	24	9 to24	547.56	11.94	534.56
MW-8	23	8 to 23	549.13	11.57	537.43
MW-9	26	11 to 26	549.28	12.92	534.08
MW-10	26	11 to 26	547.22	12.63	534.97
MW-11	26	11 to 26	547.75	10.76	535.44
MW-12	25	10 to 25	544.67	11.38	534.82

Table 1Groundwater Monitoring Well Constructionand Groundwater Elevation Data – March 23, 2015

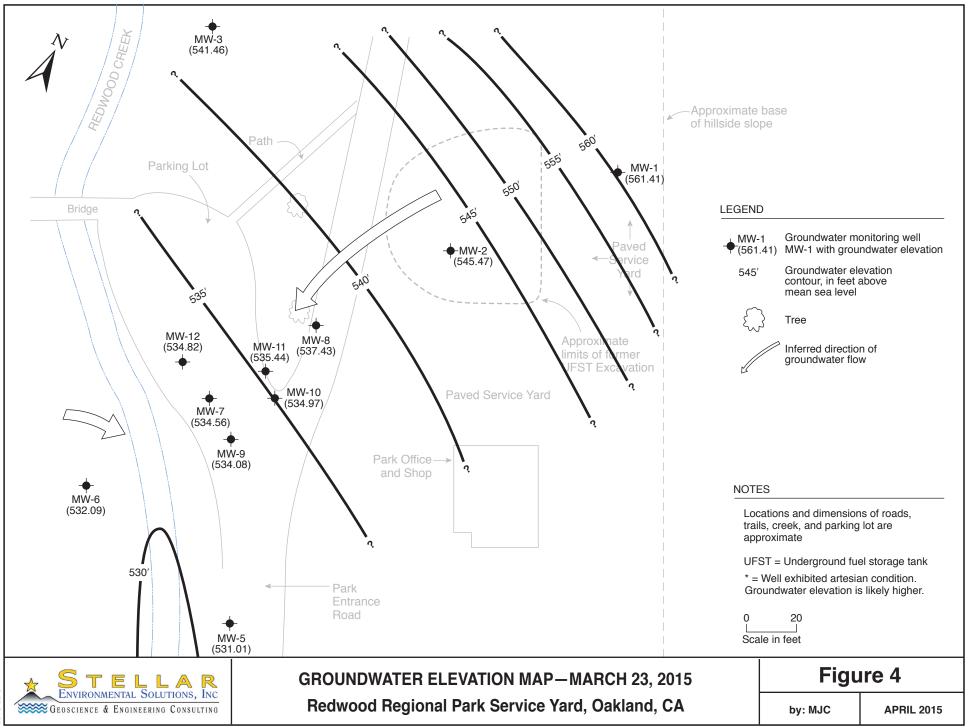
Notes:

All measurements expressed in feet

TOC = top of casing

bgs = below ground surface

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.


All elevations are expressed in feet above mean sea level (amsl). (U.S. Geological Survey)

The PRB inoculated treatment zone is located from 10-22 feet bgs which correlates to an elevation ranging from 525.5 – 537.5 feet amsl

GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 51.5 gallons) from the current event was containerized in the onsite above-ground storage tank. Purge water is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

2015-02-04

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel on March 23, 2015. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

BIOVENTING-RELATED ACTIVITIES

On July 18, 2011, in concurrence with ACEH, the site bioventing system, having accomplished its' design purpose, was discontinued.

PERMEABLE REACTIVE BARRIER (PRB) MONITORING INDICATORS

The permeable reactive barrier (PRB), installed on November 20, 2013, was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination. Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

Table 2 includes the baseline results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the proposed PRB.

Table 2Analytical Results of Electron Acceptors and Oxygen Demandin Downgradient Wells – March 23, 2015

	Analytical Concentrations (mg/L)					
Location	Nitrates	Sulfates	BOD	COD		
MW-7	< 0.05	1.7	8.7	49		
MW-9	< 0.05	19	9.5	110		
MW-12	< 0.05	37	<5.0	42		

Notes: COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. However, no significant reduction of total hydrocarbons has been recorded so far.

The DO concentrations, downgradient of the PRB, at monitoring wells MW-7, MW-9 and MW12, of which MW-7 and MW-9 currently show the highest concentrations of hydrocarbons. The DO at wells MW-7 and MW-9 are relatively low (0.11 - 0.58 mg/L) showing the inverse relationship to hydrocarbons that suggests the active aerobic biodegradation the PRB is designed to promote. The DO in wells that have low hydrocarbons, like MW-2, and MW-8 show a 1.61-4.83 mg/L. DO trends will be monitored in subsequent monitoring events to evaluate the effectiveness of the PRB.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

Measurement of the baseline ORP during this sampling event ranged from -44 to 1.0 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB and from 57 to -87 in wells MW-10 and MW-11, respectfully, located within 15 feet upgradient of the PRB, respectfully. As with the DO, the ORP trend will be monitored to evaluate the effectiveness of the PRB in subsequent monitoring events. Measurements collected during the March 2015 monitoring event are included in Table 3.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The semiannual monitoring event was conducted on March 23 2015. Table 3 summarizes the analytical laboratory results of site contaminants. Figure 5 shows the distribution of contaminants and the inferred limits of the groundwater contaminant plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

First Semiannual 2015 groundwater contaminant concentrations were as follows: The ESL for TVHg for residential areas where groundwater is a drinking water resource was exceeded in five of the seven wells sampled and was exceeded for TEHd in four of the seven wells sampled. The ESL for benzene was exceeded in well MW-9 the only well in which it was detected. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled. Ethylbenzene was detected in wells MW-7, MW-8, MW-9 and MW-11 but above the ESL in wells MW-7, MW-9 and MW-11. Total xylenes were detected in wells MW-9 and MW-11 but below the ESL in both wells. MTBE was only detected in well MW-12 was above the ESL.

Well MW-7 contained both the maximum TVHg and TEHd concentrations in groundwater. MW-7 is located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is defined by well MW-5.

No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2015 sampling event.

REACTIVE BARRIER EFFECTIVENESS

The PRB has had disappointing results as being an effective reactive barrier that clearly shows a significant and sustained reduction of hydrocarbons in at the two keys wells, MW-7 and MW-9, downgradient of the PRB. The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a post-purge pH range of 6.73 to 7.23, only partially within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product should still react effectively to release hydrogen peroxide and oxygen.

This initial chemical oxidation to take place starts the breakup of the contaminants in groundwater as they reach and reactive within the PRB. The oxygen is released slowly but at a high enough level that is designed to assist bioremediation for several years. However, the data is no showing any appreciable or significant reduction in the hydrocarbon compounds at the two keys wells, MW-7 and MW-9, downgradient of the PRB. And with the effective principal reaction timeframe of the EHC-OTM at around two years, the timeframe for reaction is running out. The drought over the last two years may be in part responsible for not recharging the area to the full height that the EHC-OTM was introduced.

			Contaminant Concentrations						
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAM	GROUNDWATER SAMPLES								
MW-2	4.83	-30	450	370	< 0.5	< 0.5	< 0.5	< 0.5	<2
MW-7	0.23	-77	3,200	7,700	<0.5	<0.5	91	<0.5	<2.0
MW-8	1.65	-91	68	190	<0.5	<0.5	1.6	<0.5	11
MW-9	0.11	-74	2,000	4,300	24	<0.5	150	19.2	<2.0
MW-10	0.69	+57	<49	61	<0.5	<0.5	<0.5	<0.5	3.3
MW-11	0.30	-87	1,500	1,300	< 0.5	< 0.5	8.4	3.0	<2.0
MW-12	0.58	+1.0	<49	<50	<0.5	<0.5	<0.5	<0.5	<2.0
Groundwater ESLs ^(a)			100 / 640	100/ 500	1.0 / 27	40 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	3.97	-4.0	<51	<50	<0.5	<0.5	< 0.5	<0.5	<2.0
SW-3	4.12	+8.0	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0
Surface Water Screening Levels ^(b)			100	100	1.0	40	30	20	5.0

Table 3 **Groundwater and Surface Water Samples** Analytical Results – March 23, 2015

Notes: ^(a) ESLs = Water Board Environmental Screening Levels (where groundwater <u>is/is not</u> a potential drinking water resource) (Water Board, 2013). ^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2013).

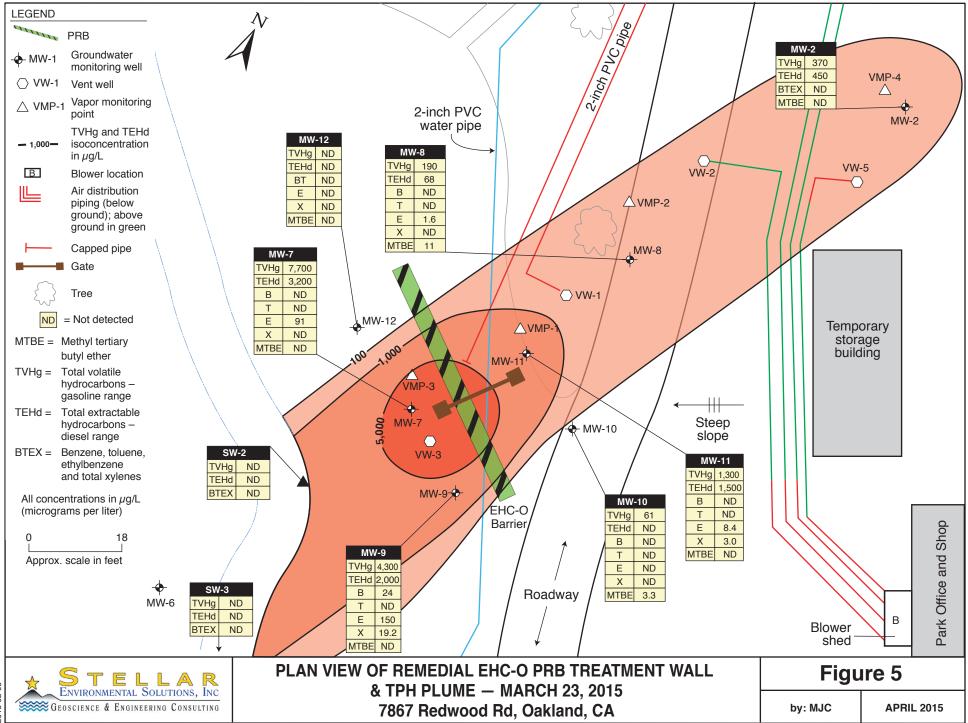
Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource.

NA = not analyzed

NLP = no level published

NS = not sampled

MTBE = methyl tertiary-butyl ether


TVHg = total volatile hydrocarbons – gasoline range

TEHd = total extractable hydrocarbons - diesel range

All contaminant concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells. ORP = redox or oxidation reduction potential measured in millivolts (mV)

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

2015-02-05

5.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of twelve site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene and ethylbenzene in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000 concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 1,000 µg/L of TVHg) is currently centered around wells MW-7 and MW-9 which are in the downgradient area of the plume. However, prior to March 2010, the greatest contamination was observed in MW-2, the historical source area well.

- The contaminant plume has historically appeared neither stable and reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells, however the contaminants in upgradient source area well MW-2 have showed a steady decrease since March 2010 following the in-situ bioremediation compound injection event, with the mid and downgradient areas of the plume (MW-7, MW-9 and MW-11 exhibiting the highest contaminant concentrations.
- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- First Semiannual 2015 groundwater contaminant concentrations exceeded the groundwater ESLs in five of the seven wells sampled and the ESL for TEHd in four of the seven wells sampled. The ESL for benzene was exceeded in well MW-9 the only well in which it was detected. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled. Ethylbenzene was detected in wells MW-7, MW-8, MW-9 and MW-11 but above the ESL in wells MW-7, MW-9 and MW-11. Total xylenes were detected in wells MW-9 and MW-11 but below the ESL in both wells. MTBE was only detected in well MW-12 and was above the ESL.
- The current March 2015 event showed a general decrease in contaminant concentrations in downgradient wells MW-7, MW-9 and MW-12 (located below the PRB) with the exception of an increase in TVHg in MW-7 and an increase in ethylbenzene in MW-9. Well MW-7 contained both the maximum TVHg and TEHd concentrations in groundwater. Downgradient well MW-9 showed a magnitude drop in TVHg, from 17,000 mg/L in September 2014 to 4,300 mg/L detected during this March 2015 event and there were no contaminant detections in well MW-12.
- No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2015 sampling event.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

- Continue to monitor and evaluate the PRB with sampling of key wells MW-7, MW-9, MW-11 and MW-12 for the additional site chemical parameters to track the effect of the oxygen release product utilization and to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons. At minimum, the key wells should be monitored on a quarterly basis for approximately 2 years after the product application, thus this evaluation will be completed with the inclusion of a 3rd quarter 2015 sampling event in addition to the full semiannual event in September 2015.
- We recommend additional quarterly monitoring and sampling of key wells; MW-7, MW-9, MW-11 and MW-12 for analysis of TPH constituents and the additional site chemical parameters to assess the seasonal variations of the PRB effectiveness.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

6.0 **REFERENCES**

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats., 2008 Revised May 2013.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 2012. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. September.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. Second Semiannual 2014 Groundwater and Permeable Reactive Barrier Monitoring, and Annual Summary Report Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246). December 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation. Redwood Regional Park Service Yard Site. April 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Permeable Barrier Installation, and Annual Summary Report, Redwood Regional Park Service Yard Site, Oakland, California. January 21.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.

- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.

- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.

- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.

- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

10.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10 Grou	547.41	545.43	547.56 (feet above	549.13 mean sea	549.28	547.22	547.75	544.67
Date Monitored 09/18/98	563.7	544.2	540.8	534.5	531.1	531.4		incui scu				
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	546.9	542.5	534.9	531.2	532.9						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
9/23/2011	561.03	543.54	539.52	(b)	530.81	532.31	534.34	536.41	533.59	534.67	534.85	534.86
3/22/2012	562.25	546.42	542.02	(b)	531.83	533.13	534.71	539.34	535.97	535.51	536.03	535.69
9/19/2012	560.93	541.83	537.53	(b)	530.6	531.91	533.55	534.88	532.95	534.33	534.17	534.17
3/14/2013	561.80	545.57	541.74	(b)	531.01	532.11	534.66	538.64	534.31	535.72	535.67	535.37
10/3/2013	560.95	541.01	536.21	(b)	530.02	531.14	532.74	533.74	531.89	532.54	533.08	533.06
3/10/2014	561.68	541.01	541.67	(b)	531.99	532.02	534.61	536.53	534.28	535.22	535.57	534.89
9/19/2014	560.40	540.33	535.53	(b)	529.31	530.50	532.05	532.96	531.46	531.91	533.66	532.28
3/23/2015	561.41	545.47	541.46	(b)	531.01	532.09	534.56	537.43	534.08	534.97	535.44	534.82

7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

						111-3	Client _			
Site	Redwo	od Re	eglonal	Park	, Oat	clond				
Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed		Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
MW-1	0856	4					4.42	19,16	TO C:	
MW-2	0850	4					20.95	37.39	ł	
MW-3	0959	4					19.35	44.88		
m100-5	0901	Ч					1640	26.93		
MW-6	0948	4					13.34	2747		
mw-7	0910	2					13.60	25.32		
MW-T	0929	2					11.0	22.20		
mw-9	0923	2					15.20	30.20		
MW~(0	0906	2					12.25	28.30		
NW -11	0937	2					12.31	28.68		
MW-12	0917	2					9,85	23.71		

www.blainetech.com

V	V	EL	Н	E	A	D	N	S	P	E	C	Т	IO	N	Cł	ΗE	CI	KL	IS	Т
	•		 		e e		 * **			thurst.	~~~	- 41			· · · · ·	A Nema	~	1 1		

Client	Stellar				Date	3	23 15	
Site Address	Redwood	Regiona	1 Parl	c <u>,</u> Oa	akland		•	
	150323-	-				BL	ر	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
Mw-1								
MW-Z	X							
MW-3	X							
MW-5	X							
MW-6	\times							
mw-7.	X							
MW-8		3/3 V	polts v	nissing				
MW-9	X							
MW-10		7/2 Tal	os Str	pped				
MW-11					1			
MW-12		1/2 Ta)	os bro	cen	i.		a for	
							an a	
		·						
	· · · · ·							
A								

NOTES:

;

Page _ (of)

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE Redwood	Regional Pa	ik, Oakland	PROJECT NUM	IBER 150323-	Beul	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myron - C Ultracter I	6220659	3 23 15 @ 0610	PH 7,10,4 Cond 3900%	7.0,10.0,4.0 39100mg/cn	ok	16,1°C	Æ,
Hach 2100Q Turbiduetr	13050C02549Z	3 23 15 @ 0615	800 <i>n</i> tn	801ntn	ok	N/A	B,
YSI 550 Do meter	06E1424AI	32315 @0620	100% D.O.	10070	OK	16.8°C	B
							х.
						4944691647476691977669	

LL MONITORING DATA SHLAT

Project #:	150323	Z-RINI		Client: Stellar						
Sampler:	BU			Date:		3/15				
Well I.D.:	MW	-2			Diameter	,	68			
Total Well	Depth (TI	D): 3-	1.39				.95			
Depth to Fr	ree Produc	**************		÷		Free Product (f	-			
Referenced		PVC	Grade	1	Meter (if		YSI HACH			
DTW with	80% Rech	arge [(F	leight of Water				24,24			
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Bailer Displacem		Waterra Peristaltio ction Pump	a 	Sampling Metho	d: Bailer XDisposable Bailer Extraction Port Dedicated Tubing			
1D 17 1 Case Volume	Gals.) X Spec	<u> </u>	$\frac{31.1}{Calculated Vol$	Gals. olume	<u>Well Diamete</u> 1" 2" 3"	er <u>Multiplier We</u> 0.04 4" 0.16 6" 0.37 Oth	l Diameter Multiplier 0.65 1.47 er radius ² * 0.163			
Time 160 J	Temp (°F or °C) (5.1	рН 7.04	Cond. (mS or µS) SIZ	1	bidity TUs)	Gals. Removed	l Observations			
¥ Den	satud	@ 11.	0 gallous							
1310	15.4	7.17	818	51		<u>.</u>				
Did well dev	water?	Yes	No	Gallon	s actually	y evacuated:	11.0			
Sampling Da	ate: 3/23	3/15	Sampling Time	e: 131	0	Depth to Wate	er: 26.33 (2 hus)			
Sample I.D.:	MU)-Z		Labora	tory:	Kiff CalScienc	e Other C+T			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: See	(00			
EB I.D. (if a	pplicable)	•	@ . Time	Duplica	ate I.D. (if applicable):				
Analyzed for	TPH-G	BTEX		Oxygena	ites (5)	Other:				
D.O. (if req'o	l): Pr	e-purge:	· · · · · · · · · · · · · · · · · · ·	^{mg} /L	Po	ost-purge:	4,83 mg/L			
O.R.P. (if rec	q'd): Pr	e-purge:		mV	Po	ost-purge:	~ 30 mV			

... LL MONITORING DATA SHLET

Project #:	15032	23-BI	21	Client	: 6	fellar		
Sampler:	BW			Date:	31.	tcllar 23/15	•••••	
Well I.D.:	mw-	7		Well I	 Diameter	6	4	6 8
Total Well	Depth (TI): ī	25.32			r (DTW):		.00
Depth to Fi	ree Produc	t:		·		Free Produ	ct (fe	et).
Referenced		PVC	Grade		Meter (if			YSI HACH
DTW with	80% Rech	arge [(H	leight of Water					5,46
Purge Method:		Bailer Displaceme		Waterra Peristaltic ction Pump	1 2 2	Sampling N	Aethod Other:	✓ Disposable Bailer Extraction Port Dedicated Tubing
$\frac{Z_{i}O}{1 \text{ Case Volume}}$	· · ·	<u> </u>	$= \frac{6.0}{\text{Calculated V}}$	Gals.	<u>Well Diamete</u> 1" 2" 3"	er <u>Multiplier</u> 0.04 0.16 0.37	<u>Well</u> 4" 6" Other	Diameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163
	Temp		Cond.		1. •			
Time	(°F or O	pH	(mS or μ S)	1	bidity TUs)	Gals. Rem	oved	Observations
1653	13.4	6.98	688	44	71	2.0		ODOR
1057	13-5	6.99	670	23	-7	4.0		Sheen
1100	13.5	7.02	663	13	31	6.0	,	
Did well de	water?	Yes (No	Gallon	s actuall	y evacuate	d:	lo. 0
Sampling D	ate: 3/23	15	Sampling Tim	e: //(0)	Depth to	Wate	r: 13.27
Sample I.D.	: MW	- 7-		Labora	tory:	Kiff CalS	cience	Other $C + T$
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: 4	See	COC.
EB I.D. (if a	pplicable)	•	@ Time	Duplic	ate I.D. ((if applicat		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:		
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Pe	ost-purge:		0.2.3 mg/L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Pe	ost-purge:		~44 mV

LL MONITORING DATA SHLET

Project #:	1503	23-B	WI	Client	. 6	Lallard	
Sampler:	BW		,	Date:	· <u> </u>	tellar 23/15	
Well I.D.:	mw-	T			Diameter		6 8
Total Well	Depth (TT))· 77	20			r (DTW): 11.7	
			- · · ·	·			
Depth to Fr Referenced		PVC				ree Product (fe	
		\leq			Meter (if		YSI HACH
		arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	13.80
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Well Diamete	Sampling Method Other er Multiplier Well	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	<u> </u>	$= \frac{5}{\text{Calculated Veters}}$	Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 ar radius ² * 0.163
Time 1203	Temp (°F or °С) 14, 0	рН 7.07	Cond. (mS or µS) & 46	(N	bidity TUs)	Gals. Removed	Observations
1205	14.1	7.10	540	7100	0	3.4	
1207	14.1	7.14	833	70	000	5.1	
			<u> </u>				
Did well dev	water?	Yes (No	Gallon	s actuall	y evacuated:	5,1
Sampling D	ate: 3/23	15	Sampling Time	e: 121	0	Depth to Wate	er: 13.39
Sample I.D.:	: mw	-8		Labora	tory:	Kiff CalScience	e Other C+T
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	See Coc
EB I.D. (if a	pplicable)	•	@ Time	Duplic	ate I.D. ((if applicable):	•
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen		Other:	
D.O. (if req'	d): Pr	e-purge:	· · · · ·	^{mg} /L	P	ost-purge:	1.65 mg/L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Pe	ost-purge:	-91 mV

LL MONITORING DATA SH

67.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						
Project #:	15032	3-BW	· 1	Client:	Stellar	
Sampler:	BW			Date:	Stellar 123/15	500000 (101) - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 -
Well I.D.:	mw-	9		Well Diameter	r:(2) 3 4	6 8
Total Well	Depth (TD): <u> </u>	50.ZO	Depth to Wate	er (DTW): 15	,20
Depth to Fr	ee Product	* #		Thickness of F	Free Product (fee	et):
Referenced	to:	PVC	Grade	D.O. Meter (if		YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	18.20
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ont Extrac Other	Waterra Peristaltic ction Pump 	Sampling Method: Other: er Multiplier Well [Disposable Bailer Extraction Port Dedicated Tubing
Z.4 "	Gals.) X	3	= 7.2	1" Gals. 2"	0.04 4" 0.16 6"	0.65 1.47
1 Case Volume		fied Volun		- 11 21	0.37 Other	radius ² * 0.163
Time	Temp (°F or °C)	pH	Cond. (mS orus)	Turbidity (NTUs)	Gals. Removed	Observations
1140	13.7	6.90	808	732	2:4	ODOR
1143	13.7	6.96	807	71000	4.8	Sheen
1147	13.8	7.02	805	71000	7.2	
Did well de	water?	Yes	NO	Gallons actual	ly evacuated:	7 , Z
Sampling D	ate: 323	(15	Sampling Tim	e: 1155	Depth to Wate	r: 18:07
Sample I.D.	: Mu	>-9		Laboratory:	Kiff CalScience	Other C+T
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: 5	ee coc
EB I.D. (if a	applicable)	:	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): Pr	e-purge:		^{mg} /L F	Post-purge:	0.11
O.R.P. (if re	ea'd): Pr	e-purge:		mV I	Post-purge:	-74 1

LL MONITORING DATA SH

 $\left\{ \right.$

								
Project #:	150=	323 -	-BWI	Client:	S.	fellar		
Sampler:	BW			Date:	3	23/15		
Well I.D.:	ΜW	-10		Well Dia	meter	2 3 4	68	
Total Well	Depth (TD): 24	6-30	Depth to	Wate	r (DTW): 12	. 25	****
Depth to Fr	ee Product	:		Thicknes	s of F	ree Product (fe	et):	
Referenced	to:	(PVC)	Grade	D.O. Met	ter (if	req'd):	YSI HACH	
DTW with 8	80% Rech	arge [(H	eight of Water				15.46	
Purge Method:		ailer Displaceme		Waterra Peristaltic ction Pump	II Diamete	Sampling Method Other	X Disposable Baile Extraction Port Dedicated Tubin	
Z.6 (C 1 Case Volume	Gals.) XSpeci	<u>3</u> fied Volum	$= \frac{7.8}{\text{Calculated Ve}}$	_ Gals. olume	2" 3"	0.16 6" 0.37 Othe	1.47	
Time	Temp (°F or 🕐	pН	Cond. (mS or (µS)	Turbid (NTU	2	Gals. Removed	Observations	
1020	14.6	7:37	816	65-	7	2:6		
1024	14.5	7.30	817	7100	U	5.Z		
1028	14.4	7.23	818	71000		7.8		
Did well dev	water?	Yes (No	Gallons a	ctuall	y evacuated:	7.8	
Sampling D	ate: 3/23	i_{15}	Sampling Tim	e: 1045	*******	Depth to Wate	er: 15.30	
Sample I.D.	: mi	J-10		Laborator	ry:	Kiff CalScience	e Other C+T	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other: See	Coc	
EB I.D. (if a	pplicable)	•	@ Time	Duplicate	: I.D. ((if applicable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		mg/L	P	ost-purge:	0.69	^{mg} /L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:	57	mV

LL MONITORING DATA SH. ...

Project #:	1503	23-1	3~1	Client:	(Stellar	
Sampler:	BW			Date:	3	Stellar 123/15	
Well I.D.:	mw.	- (Well D	ameter:	2 3 4	6 8
Total Well I	Depth (TD): Z	8.68	Depth	to Water	·(DTW): 12	. 31
Depth to Fre	ee Product	•	_	Thickr	less of Fi	ree Product (fee	et):
Referenced	to:	(PVC)	Grade	D.O. N	leter (if	req'd): (YSP HACH
DTW with 8	30% Recha	arge [(H	eight of Water	Colum	n x 0.20)	+ DTW]: /	5.58
•	Bailer Disposable Ba Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump		Sampling Method: Other: r Multiplier Well E	Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier
2.6 (C 1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{7.8}{\text{Calculated Vc}}$		1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F or 🏈)	pН	Cond. (mS of µS)		bidity TUs)	Gals. Removed	Observations
1221	17.8	7.02	7.06	32	1	2:6	
1224	13.8	6.98	702	21	2	5.2	
1227	13.8	6.93	699	14	4	7.8	
					d en la constante esperata sere		
Did well de	water?	Yes (No	 Gallon	s actuall	y evacuated:	7.8
Sampling D	ate: 3/23	3/15	Sampling Tim	e: (23	30	Depth to Wate	r: 12.66
Sample I.D.	: M	W-11		Labora	atory:	Kiff CalScience	Other C+T
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: ς	ee Coc
EB I.D. (if a	applicable):	@ Time	Duplic	ate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	
D.O. (if req	'd): P	re-purge:		^{mg} /L	. P	ost-purge:	0.30 ^{mg} / _L
O.R.P. (if re	eq'd): P	re-purge:		mV	Р	ost-purge:	-87- mV

LLL MONITORING DATA SH

Project #:	15030	23 - BI	~) 	Client:	Hellar	
Sampler:	BW			Date: 3	Stellar 123/15	
Well I.D.:	mw-1	2		Well Diamet	er: 2 3 4	6 8
Total Well	Depth (TD)): z	3.71	Depth to Wa	ter (DTW): 9.	85
Depth to Fr	ee Product	t:		Thickness of	Free Product (fe	et):
Referenced	to:	PVC	Grade	D.O. Meter (if req'd):	YSI HACH
DTW with 8	80% Rech	arge [(H	leight of Water	Column x 0.2	20) + DTW]:	12.62
,	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump <u>Well Dian</u> 1"		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier
$\frac{Z_1 Z_1}{1 \text{ Case Volume}}$	Jais.) A	<u>3</u> fied Volun	$\frac{1}{1} = \frac{6.6}{\text{Calculated Vol}}$	Gals. 2"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163
Time	Temp (⁰F or Ĉ)		Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations
1120	13.2	6.98	685	71000	Z.Z.	ODOR
1122	13.3	6.96	686	71000	4.4	
1124	13.3	6.94	687	71000	6.6	
Did well dev	water?	Yes (No)	Gallons actua	Illy evacuated:	6.6
Sampling D	ate: 3/23	115	Sampling Time	e: 1130	Depth to Wate	er: 10.61
Sample I.D.	: M	N-12		Laboratory:	Kiff CalScience	e Other C+T
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	See coc
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D	. (if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pr	e-purge:		mg/L	Post-purge:	0.58 ^{mg} /L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Post-purge:	/ mV
		{	l and a state of the	I	-	1/

LL MONITORING DATA SH. T

P									
Project #:	150323-	BWI		Client:	51	fellar			
Sampler:	BW			Date:	3/2	tellar 3/15			
Well I.D.:	5W-2			Well I	Diameter	: 2 3	4	68 🖄	
Total Well	Depth (TD	·): ~		Depth	to Wate	r (DTW):	, ,		
Depth to Fr	ee Product			Thickr	ness of F	ree Produ	ct (fee	et): —	
Referenced	to:	PVC	Grade	D.O. N	Aeter (if	req'd):	(YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]	: Ø	3	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump		Sampling M	Other:	Disposable Bailer Extraction Port Dedicated Tubing	
			s	~ .	1" 2"	0.04 0.16	<u>wen t</u> 4" 6"	0.65 1.47	
1 Case Volume	Gals.) X Speci	fied Volun	nes Calculated Vo	_ Gals. olume	3"	0.37	Other	2	
Time 1240	Temp (°F or C) 15.1	рН 7,38	Cond. (mS or (µS)) 4/2/1	1	bidity TUs) Z	Gals. Ren	noved	Observations	
Did well de	water?	Yes	No	Gallon	s actuall	y evacuat	ed:		
Sampling D	ate: 3/23	s/15	Sampling Tim	e: 124	0	Depth to	Wate	r:	
Sample I.D.	:: SW	-2		Labora	tory:	Kiff Cal	Science	Other C+T	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:		Sec. (01	
EB I.D. (if a	applicable)	:	@ Time	Duplic	ate I.D.	(if applica	ble):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	• • •	Other:	*****	4-1	
D.O. (if req	'd): Pr	e-purge:		mg/L	Р	ost-purge:		3.97	^{mg} /L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	'ost-purge:		- 4	mV

LL MONITORING DATA SH T

Cliente Cluit
Client: Stellar
Date: $3/23/15$
Well Diameter: 2 3 4 6 8 🖉
Depth to Water (DTW):
Thickness of Free Product (feet):
D.O. Meter (if req'd): (YSI) HACH
Column x 0.20) + DTW]:
Waterra Sampling Method: Bailer Peristaltic X Disposable Bailer ion Pump Extraction Port
Gals. $3^{"}$ 0.37 Other radius ² * 0.163
Turbidity (NTUs) Gals. Removed Observations / 5
Gallons actually evacuated:
: 1255 Depth to Water:
Laboratory: Kiff CalScience Other C+7
Oxygenates (5) Other: See $C \circ C$
Duplicate I.D. (if applicable):
Oxygenates (5) Other:
^{mg} / _L Post-purge: 4,12 ^{mg} / _L
mV Post-purge: 🔗 mV

Chain of Custody Record

Laboratory Curtis and Tor	npkins, Ltd.			Me	Chain o		-	ec	orc	8										Lab job no Date $\frac{-3/2}{1}$	3/15	5 1
Address 2323 Fifth Stre Berkeley, Cali 510-486-0900	eet fornia 94710			Sh Air	ipment No					/	_	_		(120)		Analysi:	s Req	uired		Page		
Project Owner <u>East Bay F</u> Site Address 7867 Redv Oakland, C	wood Road	rk Distr	ict	Pro	opler NoRich oject ManagerRich lephone No(510) 644	-3123	(disi			or c	Containers	/ 'S	SA /	1 60 1	*/	/	₩				·	
Project Name <u>Redwood I</u> Project Number <u>2014-02</u>	Regional Pa	ark		Fax Sai	x No(510) 644 mplers: <i>(Signature)</i>	-3859 En E	zu	- /			S.H.Z				Son State		9/		/	He	emarks	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pri Cooler	eservation Chemical	\square	\square	<u> </u>	Žĸ	76	Ž Š	75	Y 03	/	/	/{(/	/		
mw - 2		3/23/15	1310		MIX	~	HCC + "	N	5	X	X											
mw - 7		1	1110		1	V	HCC+ Hisoy	\sim	8	X	<u>-X</u>	X	\times	X	X)	X						
mw-8			1210			L	HCL	N	5	X	X	X										
mw-9			1155			2	HCL+H2504	N	8	\succ	X	X	X	X	\times	\times	ŝ,					
nw-10			1045			L	HLL	N	5	X	X	X										
			1230			2	HCL	Ν	5	X	X	Υ							1 - 12 - 12 - 12 - 14			
mw-11 mw-12			1130			L	HCL+HZQ	2	8	X	X	X	X	X	XX	X			2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
5W-2			12.40			レ	HCL	N	5	Х	X	X										
SW-3		Ţ	1255		~	ر. ر	HCL	Ν	5	X	×	X							а 234 г. () 234 г. ()			
																	13,5 					
					1					-							1					
Relinquished by Signature	20	Date 723/ 15	Received Signal	ί,	pr-	Date	Relinquished t Signature _							Date		ived by Inature					- '	Date
Printed Brian We Stellar Environ	<u></u>	Time 425	Printe		Kello Chang	Time	Printed		÷				-	Time		nted mpany					- 1	Time
Company 5 Day TAT		l	Comp	any	!	1.	Company Relinquished b	y:						Date		ved by						Date
Samples on in	 ce	<u></u>				<u> </u>	Signature _						-		Sig	Inature	·	•			-	٠
Comments.		MAC	ven	- EDI	F FOR EN SAM	NPLES	Printed			<u>, , , , , , , , , , , , , , , , , , , </u>			- -	Time	Pri	nted _			a) 1		- 1	Fime
only to	ber H	orp	TH	LES			Company _								Co	mpany					_	

2198 Sixth Street #201, Berkeley, CA 94710

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 265507 ANALYTICAL REPORT

Stellar Environmental SolutionsProject : 2014-022198 6th StreetLocation : RedwoodBerkeley, CA 94710Level : II	
---	--

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	265507-001
MW-7	265507-002
MW-8	265507-003
MW-9	265507-004
MW-10	265507-005
MW-11	265507-006
MW-12	265507-007
SW-2	265507-008
SW-3	265507-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Mikelle thong

Signature:

Mikelle Chong Project Manager mikelle.chong@ctberk.com

Date: <u>04/01/2015</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 265507 Stellar Environmental Solutions 2014-02 Redwood Regional Park 03/23/15 03/23/15

This data package contains sample and QC results for nine water samples, requested for the above referenced project on 03/23/15. The samples were received on ice and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Carbonaceous BOD (SM5210B):

No analytical problems were encountered.

						乙のション Chain of Custody Record	of Cu	of Estody H	leco	pro						Lab job no		·
	Laboratory <u>Curtis and Tompkins. Ltd.</u> Address <u>2323 Fifth Street</u>	okins. Ltd. t			Met Shir	Method of Shipment <u>Hand Delivery</u>	land De	livery	I				``	C		Date 1	$\sqrt{2}$	
	Berkeley, California 94710 510-486-0900	rnia 94710			Figure 1	Airbill No.			1 1				FO	Analysis	Analysis Required			[
	Project Owner East Bay Regional Park District Site Address 7867 Redwood Road	gional Park od Road	Distric			Cooler No	Richard Makdisi	kdisi	1 1	A	SIGUIB,	1. Ser 1		HORE SIGNED				
	California Control Minuno Redwood Regional Park	lifornia ecional Park			Tele	Telephone No. (510) 644-3123 (510) 644-3859	t-3123 t-3859		1	LIILOLO	o of Con	en e	シア	77			Remarks	
					Sarr 1	s: (Sign	Z	Rich	<u> </u>		\$: *		20	10 0 00 10 10			2	
	Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler Pr	Preservation er Chemical	\geq		N		T	202				
	MW-2	R.	3/23/5	1310		MIX	7	Hcc + *	2	In	X	X						
Ч	mw-7			011			7	HCC+ HSO4	2	8	Ð	X	X	X X)
3	mw - 8			1210			7	ηcr	2	5	Ð	X						
5	b-mu			1155			7	HCL+ H2504	5	8	X	Z	X	XX				
S	01-1900			1045			د	H.L	2	5	X	X						
9	11- MW		_	1230			7	HCL	2	v v		X						1
2	-12 mm			021			7	HCLTHLE	2	8	IÇ	X	X X	XX				
\$0	5m-2			Qh2(د	HCL	2	v I	$\frac{1}{\times}$	×						
9-	Św-3			1255		->	ſ	HCL	Z	2	\mathbf{X}							
						-											:	
	Relinquished by Signature	Pate Pate	~	Received by: Signature .		5	Date	Relinquished by: Signature	ž				Date	Received by: Signature			ă	Date
	Printed Brian Week		//2	Printed	MIK	collo Chan		· · · ·						<u> </u>			[
	Company Stellar Environmentar	<u></u>	<u>v</u>										Time				F 	Time
	Turnaround Time: 5 Day TAT		-	Company	A			Company Relinquished by:					Date	Company Received by:				Date
	Comments: Samples on ice							Signature -										
10-0	-	Germenen	ACK.	8	6010	For Sw Same	MOLES	Printed					Time	Printed				Time
2000-0	2000-0	SHEF HOLD		THUES	Ś	•		Company -					<u>.</u>	Company				
3 of	* Stellar Environmental Solutions	lutions												2198 S	ixth Stree	2198 Sixth Street #201, Berkeley, CA 94710	, CA 9	4710

COOLER RECEIPT CHECKLIST

ct	Curtis & Tompkins,	Ltd
----	--------------------	-----

Login # 265507 Date Received 3/23/15 Number of coor Client Stellar Environmental SolutiProject Redwood Regione	lers	9
Client Stellar Environmental SolutiProject Redwood Regiona	1 p	ark
	、	
Date Opened 3/23 By (print) BL (sign) 5 Date Logged in By (print) (sign) 5		
	es (NO
2A. Were custody seals present? \Box YES (circle) on cooler on samples		D NO
How many Name Date 2B. Were custody seals intact upon arrival? YF	IS N	
or there easily papers any and infact when received?		-
4. Were custody papers filled out properly (ink, signed, etc)?	& N	0
 Is the project identifiable from custody papers? (If so fill out top of form) Indicate the packing in cooler: (if other, describe) 	8 N	10
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	owels	
Type of ice used: \bigvee Wet \Box Blue/Gel \Box None Temp(°C) 2.6) C
\Box Samples Received on ice & cold without a temperature blank; temp. take	· · · · · · · · · · · · · · · · · · ·	
☐ Samples received on ice directly from the field. Cooling process had begu		i ik gun
8 Were Mathed 5025 1		
If YES, what time were they transferred to freezer?	YES	ФЮ
y. Did all bottles arrive unbroken/unopened?	ES	NO
10, The more any missing / exits samples?	YES	
11. Are samples in the appropriate containers for indicated tests?	ÆS	
12. Are sample labels present, in good condition and complete?	ES	
13. Do the sample labels agree with custody papers?	E8	
	TES	NO
15. Are the samples appropriately preserved?	NO	N/A
16. Did you check preservatives for all bottles for each sample?	NO	
17. Did you document your preservative check?	NO	N/A
10. Did you change the hold time in LIMS for unpreserved VOAs?YES	NO	NDA N
19. Did you change the hold time in LIMS for preserved terracores?YES	NO	N/A
20. Are bubbles > 6mm absent in VOA samples?		
	ΈS	X()
ByDate:		
COMMENTS		

Rev 10, 9/12

	H: <2	>9	>12	<u>Other</u>
-002a b	[]	[]	[]	
b c d	įj	נֿ ז	įj	
d	\mathbf{X}	[]	[] [] [] []	
e f	[]	[]	[]	
£	[]	[]	[]	
g h	[]	[]	[]	
11	[]	[]	[]	
-004a	[]	[]	[]	
b	[]	[]	[]	
c d e f		[]	[] [] [] [] [] []	
e				
f	įj	ίi	[] [] []	
g h	[] []	[]	[]	
h	[]	[]	[]	
-007a	[]	ſ)	[]	
b	įį	ŗ į	ŗį	
c d	[]	[]	[]	
d	\mathbf{X}	[]	[]	
e f	[]	[]		·
I ~	[]	[]	[]	·
g h	[]		[]	<u> </u>
**	ιj	ιj	LJ	

Analyst:	BL
)ate:	3/23/15
age 1 of 1	

5 of 38

Detections Summary for 265507

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions Project : 2014-02 Location : Redwood Regional Park

48

Client Sample ID : MW-2

Laboratory Sample ID :

Laboratory Sample ID :

265507-001

265507-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	370	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Diesel C10-C24	450	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-7

RL Analyte Result Flags Units Basis IDF Method Prep Method Gasoline C7-C12 7,700 Y 50 ug/L As Recd 1.000 EPA 8015B EPA 5030B 91 ug/L As Recd 1.000 EPA 8021B EPA 5030B Ethylbenzene 0.50 As Recd 1.000 EPA 8015B EPA 3520C Diesel C10-C24 3,200 49 ug/L 1.000 EPA 300.0 METHOD Sulfate 1.7 0.50 mg/L TOTAL Biochemical Oxygen Demand 8.7 5.0 mg/L TOTAL 1.000 SM5210B METHOD

10

Client Sample ID : MW-8

Chemical Oxygen Demand

Laboratory Sample ID :

mg/L TOTAL 1.000 SM5220D

265507-003

METHOD

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	190	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	11		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	1.6		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	68	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-9 Laboratory Sample ID :

265507-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	4,300	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	24		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	150		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	14	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	5.2	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	2,000	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	19		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	9.5		5.0	mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	110		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-10

Laboratory Sample ID :

Laboratory Sample ID :

265507-005

265507-006

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	61	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	3.3		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B

Client Sample ID : MW-11

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,300	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Ethylbenzene	8.4		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	3.0	C	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,500	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-12

Laboratory Sample ID :

265507-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Sulfate	37		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Chemical Oxygen Demand	42		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : SW-2

Laboratory Sample ID :

265507-008

No Detections

Client Sample ID : SW-3	Laboratory Sample ID :	265507-009

No Detections

C = Presence confirmed, but RPD between columns exceeds 40% Y = Sample exhibits chromatographic pattern which does not resemble standard Page 2 of 2

Curtis &	Tompkir	ns Labor	ratories Analyt	ical Report				
Lab #: 265507 Client: Stellar Environment Project#: 2014-02	al Solut	ions	Location: Prep:	Redwood Regional Park EPA 5030B				
Matrix: Water Units: ug/L Diln Fac: 1.000			Sampled: Received:	03/23/15 03/23/15				
Field ID: MW-2 Type: SAMPLE			Lab ID: Analyzed:	265507-001 03/24/15				
Analyte	Re	sult	RL	Batch# Analysis				
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND	370 Y	50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	221608 EPA 8015B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B				
diama and a	0.580	T						
Surrogate Bromofluorobenzene (FID)	%REC 103	Limits 80-132	Batch# Anal 221608 EPA 8015B	ysis				
Bromofluorobenzene (PID)	101	71-141	221600 EFA 8021B					
Field ID: MW-7 Type: SAMPLE			Lab ID: Analyzed:	265507-002 03/24/15				
Analyte		sult	RL	Batch# Analysis				
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	7, ND ND ND ND ND	700 Y 91	50 2.0 0.50 0.50 0.50 0.50 0.50	221608 EPA 8015B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B 221611 EPA 8021B				
Surrogate	%REC	Limits	Batch# Anal	lysis				
Bromofluorobenzene (FID) Bromofluorobenzene (PID)	117 107	80-132 71-141	221608 EPA 8015B 221611 EPA 8021B					

	W-8 Ample		Lab ID: Analyzed:		265507-003 03/24/15	
Analyte	R	esult	F	SL	Batch#	Analysis
Gasoline C7-C12		190 Y	5	50	221608 1	EPA 8015B
MTBE		11		2.0	221611 1	EPA 8021B
Benzene	ND			0.50	221611 1	EPA 8021B
Toluene	ND			0.50	221611 1	EPA 8021B
Ethylbenzene		1.6		0.50	221611 1	EPA 8021B
m,p-Xylenes	ND			0.50	221611 1	EPA 8021B
o-Xylene	ND			0.50	221611 1	EPA 8021B
Surrogat	te %REC	Limits	Batch#	Analy	ysis	
Bromofluorobenzene	e (FID) 96	80-132	221608 EPA	8015B		
Bromofluorobenzene	e (PID) 98	71-141	221611 EPA	8021B		

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

Page 1 of 4

	Curtis & Tompkins Laboratories Analytical Report								
Lab #: Client: Project#:	265507 Stellar Environmental Solutions 2014-02	Location: Prep:	Redwood Regional Park EPA 5030B						
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	03/23/15 03/23/15						

Field ID: Type:	MW-9 SAMPLE		Lab ID: Analyzed:	265507-004 03/24/15	
Anal	yte	Result	RL	Batch#	Analysis
Gasoline C7-C1	2	4,300 Y	50	221608 EPA	8015B
MTBE		ND	2.0	221611 EPA	8021B
Benzene		24	0.50	221611 EPA	8021B
Toluene		ND	0.50	221611 EPA	8021B
Ethylbenzene		150	0.50	221611 EPA	8021B
m,p-Xylenes		14 C	0.50	221611 EPA	8021B
o-Xylene		5.2 C	0.50	221611 EPA	8021B

Surrogate	%REC	Limits	Batch#	Analysis	
Bromofluorobenzene (FI	ID) 108	80-132	221608 E	EPA 8015B	
Bromofluorobenzene (PI	LD) 96	71-141	221611 E	EPA 8021B	

Field ID: Type:	MW-10 SAMPLE			Lab ID Analyz		265507-005 03/24/15	
Analy	te	Re	sult		RL	Batch#	Analysis
Gasoline C7-C12			61 Y		50	221608 1	EPA 8015B
MTBE			3.3		2.0	221611 1	EPA 8021B
Benzene		ND			0.50	221611 1	EPA 8021B
Toluene		ND			0.50	221611 1	EPA 8021B
Ethylbenzene		ND			0.50	221611 1	EPA 8021B
m,p-Xylenes		ND			0.50	221611 1	EPA 8021B
o-Xylene		ND			0.50	221611 1	EPA 8021B
Surro		%REC	Limits	Batch#	Anal	ysis	
Bromofluorobenz	ene (FID)	97	80-132	221608	EPA 8015B		
Bromofluorobenz	ene (PID)	99	71-141	221611	EPA 8021B		

Field ID: Type:	MW-11 SAMPLE			Lab II Analyz		265507-006 03/24/15	
Analy	te	Re	sult		RL	Batch#	Analysis
Gasoline C7-C12		1,	300 Y		50	221608 EPA	A 8015B
MTBE		ND			2.0	221611 EPA	A 8021B
Benzene		ND			0.50	221611 EPA	A 8021B
Toluene		ND			0.50	221611 EPA	A 8021B
Ethylbenzene			8.4		0.50	221611 EPA	A 8021B
m,p-Xylenes		ND			0.50	221611 EPA	A 8021B
o-Xylene			3.0 C		0.50	221611 EPA	A 8021B
Surro	gate	%REC	Limits	Batch#	Anal	ysis	
Bromofluorobenz	ene (FID)	107	80-132	221608	EPA 8015B		
Bromofluorobenz	ene (PID)	103	71-141	221611	EPA 8021B		

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

	Curtis & Tompkins Laboratories Analytical Report								
Lab #: Client: Project#:	265507 Stellar Environmental Solutions 2014-02	Location: Prep:	Redwood Regional Park EPA 5030B						
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	03/23/15 03/23/15						

Field ID: Type:	MW-12 SAMPLE		Lab ID: Analyzed:	265507-007 03/24/15	
Anal	.yte	Result	RL	Batch#	Analysis
Gasoline C7-C12		ND	50	221608 1	EPA 8015B
MTBE		ND	2.0	221611 1	EPA 8021B
Benzene		ND	0.50) 221611 1	EPA 8021B
Toluene		ND	0.50) 221611 1	EPA 8021B
Ethylbenzene		ND	0.50) 221611 1	EPA 8021B
m,p-Xylenes		ND	0.50) 221611 1	EPA 8021B
o-Xylene		ND	0.50) 221611 1	EPA 8021B

Surrogate	%REC	Limits	Batch#	Analysis	
Bromofluorobenzene (FID)	101	80-132	221608 E	PA 8015B	
Bromofluorobenzene (PID)	98	71-141	221611 E	PA 8021B	

Field ID: Type:	SW-2 SAMPLE			Lab II Analy:			265507-008 03/25/15		
Analy	yte	R	esult			RL	Batch#		Analysis
Gasoline C7-C12		ND				50	221608	EPA	8015B
MTBE		ND				2.0	221611	EPA	8021B
Benzene		ND				0.50	221611	EPA	8021B
Toluene		ND				0.50	221611	EPA	8021B
Ethylbenzene		ND				0.50	221611	EPA	8021B
m,p-Xylenes		ND				0.50	221611	EPA	8021B
o-Xylene		ND				0.50	221611	EPA	8021B
Surrog	gate	%REC	Limits	Batch#		Analy	rsis		
Bromofluorobenze	ene (FID)	102	80-132	221608	EPA	8015B			
Bromofluorobenze	ene (PID)	98	71-141	221611	EPA	8021B			

Field ID: Type:	SW-3 SAMPLE		Lab ID: Analyzed:	265507-009 03/25/15	
Ana	lyte	Result	RL	Batch#	Analysis
Gasoline C7-C12	2	ND	50	221608 EP.	A 8015B
MTBE		ND	2.0	221611 EP.	A 8021B
Benzene		ND	0.50	221611 EP.	A 8021B
Toluene		ND	0.50	221611 EP.	A 8021B
Ethylbenzene		ND	0.50	221611 EP.	A 8021B
m,p-Xylenes		ND	0.50	221611 EP.	A 8021B
o-Xylene		ND	0.50	221611 EP.	A 8021B

Surrogate	%REC	Limits	Batch#	Analysis	
Bromofluorobenzene (FIL) 103	80-132	221608 E	EPA 8015B	
Bromofluorobenzene (PIL) 98	71-141	221611 E	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

Page 3 of 4

	Curtis & To	ompkins Labo	ratories A	nalytical Report
	265507 Stellar Environmental 2014-02	Solutions	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000		Sampled: Received:	03/23/15 03/23/15
Type: Lab ID: Batch#:	BLANK QC781799 221608		Analyzed: Analysis:	03/24/15 EPA 8015B
Gasoline C	Analyte 7-C12	Result ND		RL 50
Bromofluor	Surrogate obenzene (FID) obenzene (PID)	Result NA	%REC 98	Limits 80-132
Type: Lab ID: Batch#:	BLANK QC781815 221611		Analyzed: Analysis:	03/24/15 EPA 8021B
	Analyte	Result		RL
MTBE Benzene Toluene Ethylbenze: m,p-Xylene o-Xylene		ND ND ND ND ND ND		2.0 0.50 0.50 0.50 0.50 0.50 0.50
	Surrogate	Result	%REC	Limits
Bromofluor Bromofluor		NA	78	71-141

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 4

Batch QC Report

	Curtis &	Tompki	ns Labor	atories <i>P</i>	Analytic	cal Report			
Lab #:	265507			Location:]	Redwood Regio	nal Park		
Client:	Stellar Environment	al Solut	tions	Prep:]	EPA 5030B			
Project#:	2014-02			Analysis:]	EPA 8015B			
Matrix:	Water			Batch#:	:	221608			
Units:	ug/L			Analyzed:	(03/24/15			
Diln Fac:	1.000								
Type:	BS			Lab ID:	(QC781800			
	Analyte		Spiked		Result	%REC	Limits		
Gasoline (C7-C12		1,000		944.5	94	80-120		
	Surrogate	%REC	Limits						
Bromoriuo	robenzene (FID)	97	80-132						
Туре:	BSD			Lab ID:	(QC781801			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline (C7-C12		1,000		1,037	104	80-120	9	20
	Surrogate	%REC	Limits						
Bromofluo	robenzene (FID)	99	80-132						

Batch QC Report

	Curtis & Tompkins Laboratories Analytical Report									
Lab #:	265507	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B							
Project#:	2014-02	Analysis:	EPA 8021B							
Matrix:	Water	Batch#:	221611							
Units:	ug/L	Analyzed:	03/24/15							
Diln Fac:	1.000									

Type:

BS

Lab

Lab ID: QC781813

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.052	91	74-137
Benzene	10.00	8.530	85	80-120
Toluene	10.00	9.064	91	80-120
Ethylbenzene	10.00	9.597	96	80-120
m,p-Xylenes	10.00	9.437	94	80-120
o-Xylene	10.00	9.452	95	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	81	71-141

Type:

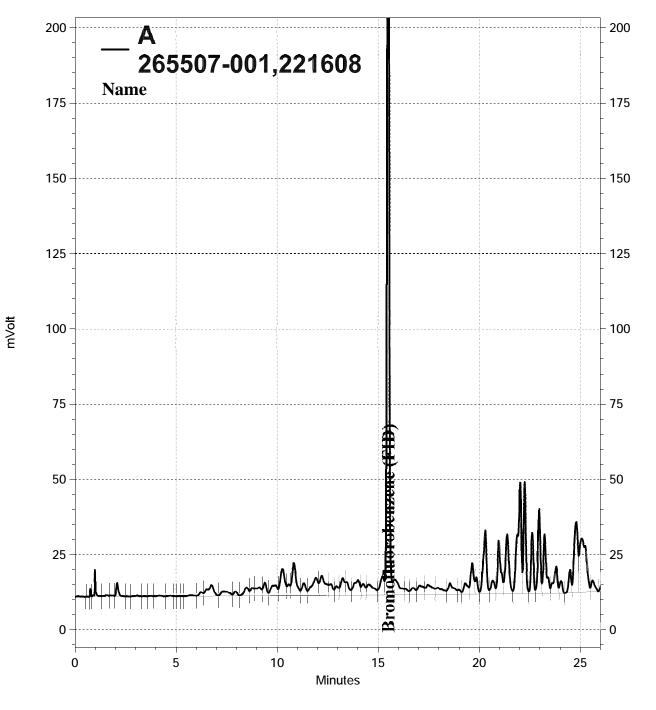
BSD

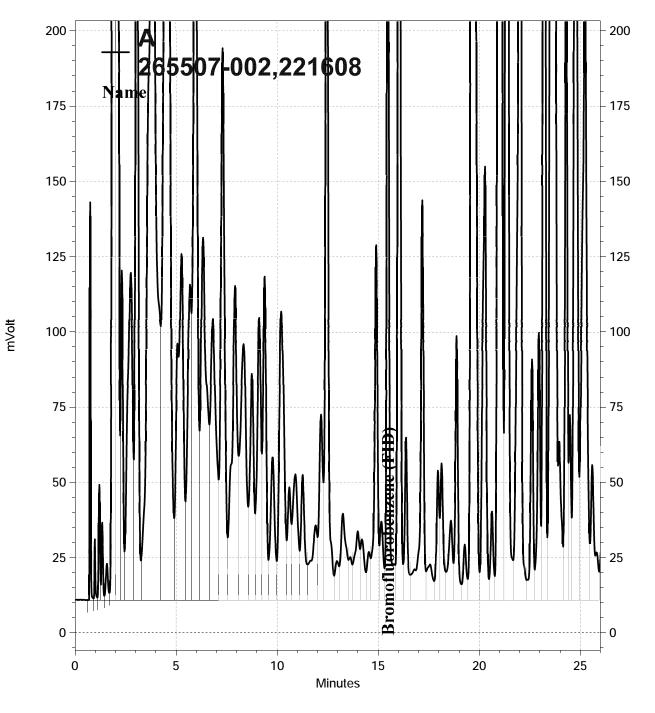
Lab ID:

QC781814

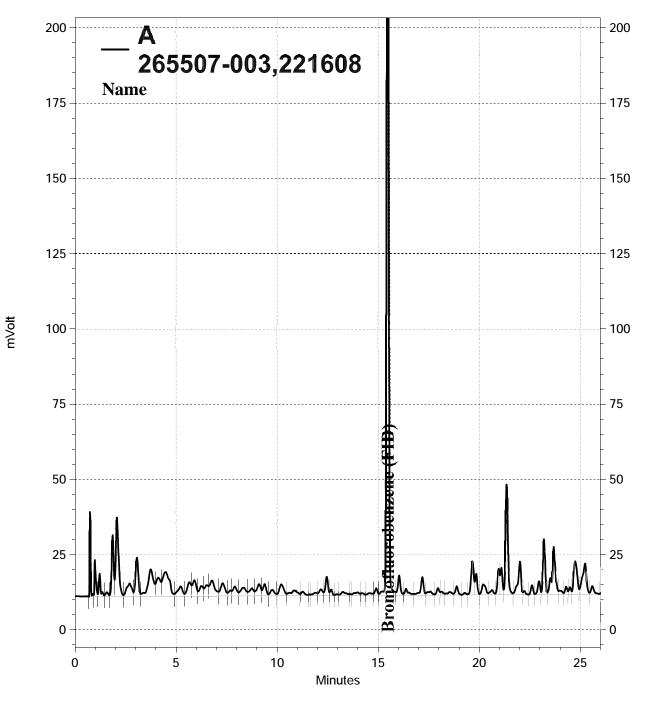
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.08	101	74-137	11	37
Benzene	10.00	8.773	88	80-120	3	20
Toluene	10.00	10.01	100	80-120	10	20
Ethylbenzene	10.00	9.687	97	80-120	1	20
m,p-Xylenes	10.00	9.211	92	80-120	2	20
o-Xylene	10.00	9.313	93	80-120	1	20
Surrogate	%REC Limits					

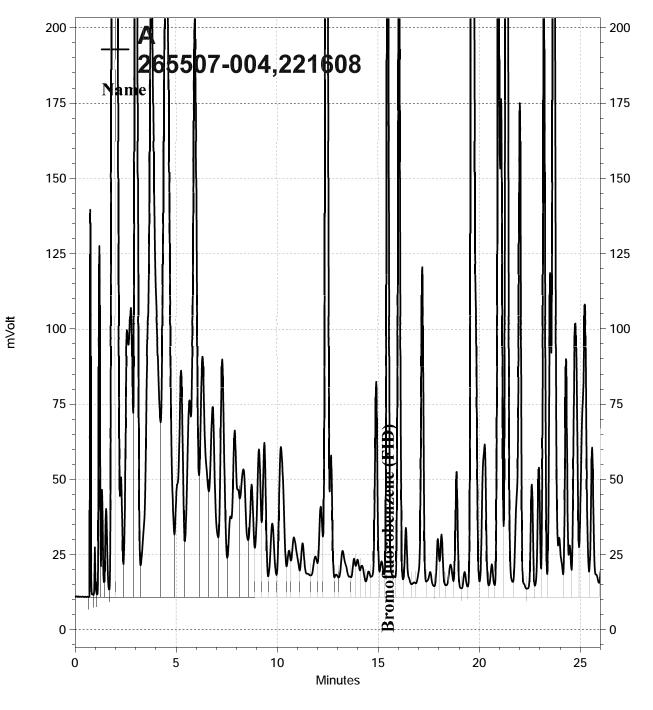
Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	85	71-141	

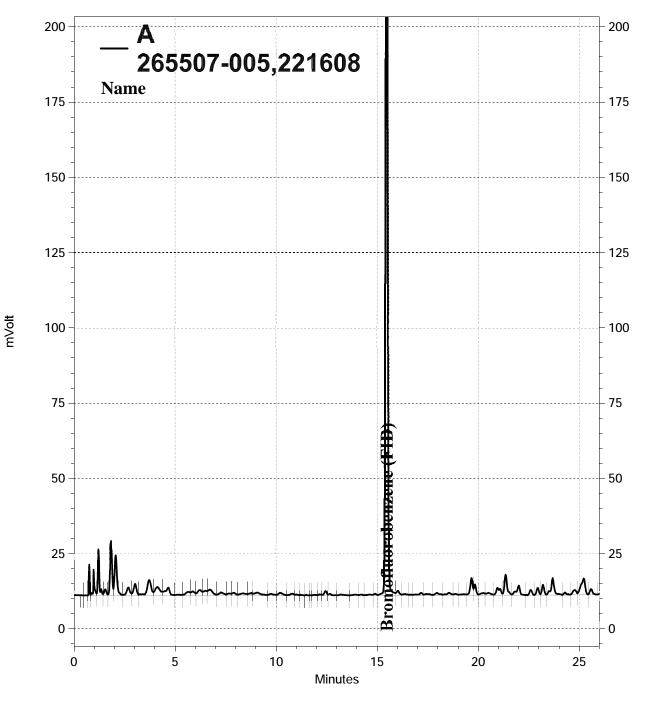


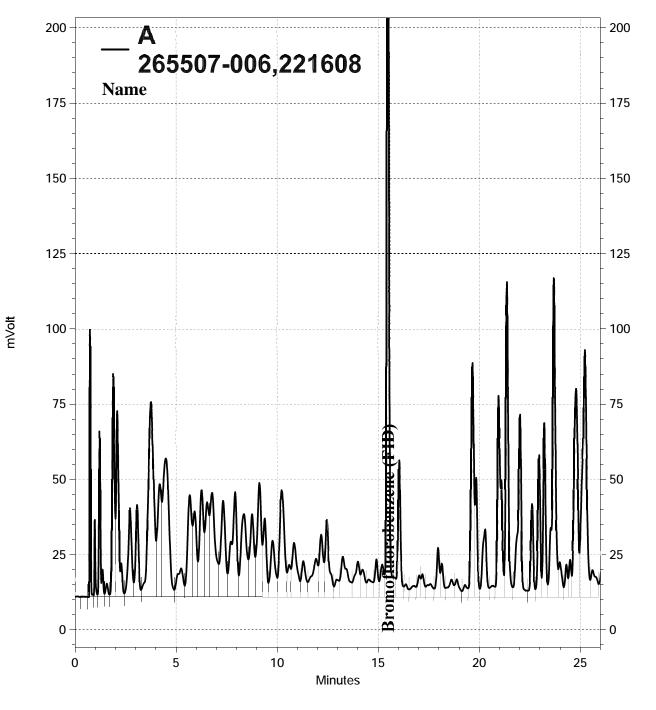

Batch QC Report

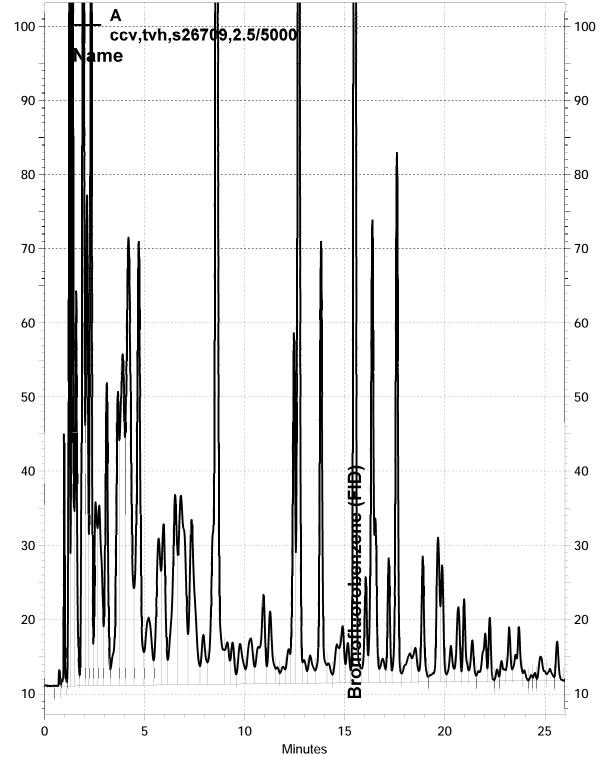
Curtis & Tompkins Laboratories Analytical Report						
Lab #: 265507		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B			
Project#: 2014-0	2	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ	Batch#:	221608			
MSS Lab ID:	265387-003	Sampled:	03/18/15			
Matrix:	Water	Received:	03/18/15			
Units:	ug/L	Analyzed:	03/24/15			
Diln Fac:	1.000					


Spiked	Result	%REC	Limits
0 000			
2,000	1,601	79	76-120
ts			
.32			


Type:	MSD			Lab ID:	Ç	QC781834			
Analyte			Spiked		Result	%REC	Limits	RPD	Lim
		2,000		1,814	90	76-120	12	20	
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	106	80-132						




- \\Lims\gdrive\ezchrom\Projects\GC07\Data\083-017, A


- \\Lims\gdrive\ezchrom\Projects\GC07\Data\083-019, A

- \\Lims\gdrive\ezchrom\Projects\GC07\Data\083-024, A

mVolt

- \\Lims\gdrive\ezchrom\Projects\GC07\Data\083-003, A

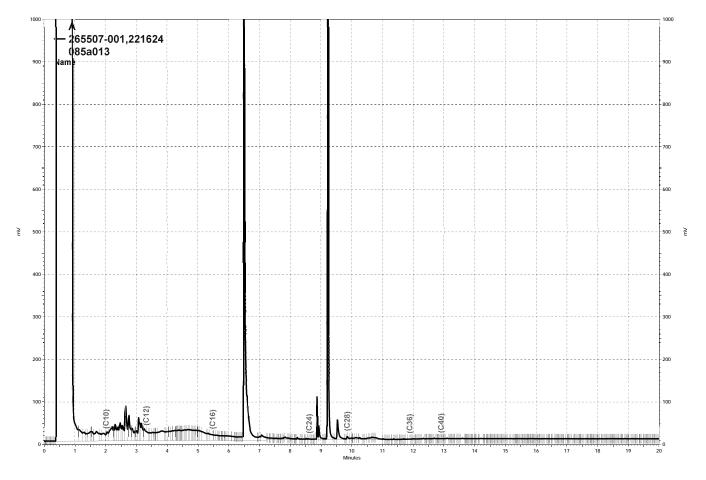
mVa**l**t

mValt

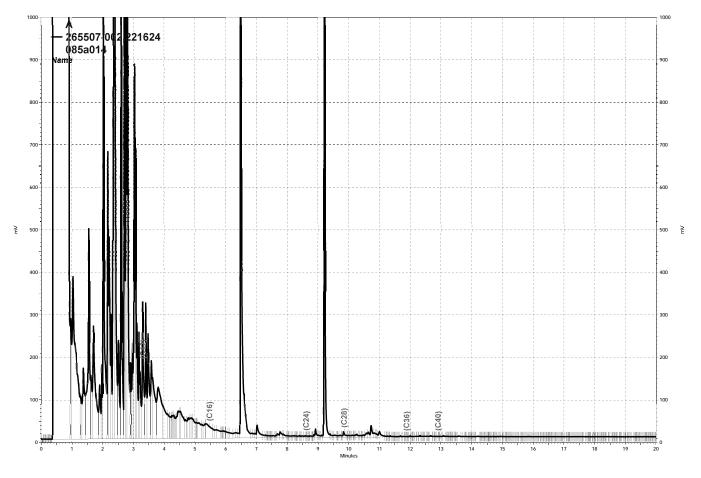
		Total Ex	xtracta	ble Hydroc	arbo	ns
Lab #: Client: Project#:		al Soluti	ons	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 221624			Sampled: Received: Analyzed:		03/23/15 03/23/15 03/26/15
Field ID: Type:	MW-2 SAMPLE			Lab ID: Prepared:		265507-001 03/25/15
	Analyte	R	esult	-	RL	
Diesel Cl(0-C24		450 Y		49	
o-Terpheny	Surrogate yl		Limits 67-136			
Field ID: Type:	MW-7 SAMPLE			Lab ID: Prepared:		265507-002 03/25/15
Diesel Cl(Analyte		esult ,200		RL 49	
Diesei Cit			Limits		17	
o-Terpheny	Surrogate yl		67-136			
Field ID: Type:	MW-8 SAMPLE			Lab ID: Prepared:		265507-003 03/25/15
Diesel C10	Analyte	R	esult 68 Y		RL 49	
o-Terpheny	Surrogate		Limits 67-136			
Field ID: Type:	MW-9 SAMPLE			Lab ID: Prepared:		265507-004 03/25/15
Diesel Cl(Analyte		esult ,000 Y		RL 49	
210201 01	Surrogate		Limits			
o-Terpheny			67-136			
Field ID: Type:	MW-10 SAMPLE			Lab ID: Prepared:		265507-005 03/25/15
Diesel Cl(Analyte 0-C24	R ND	esult		RL 49	
o-Terpheny	Surrogate Yl		Limits 67-136			

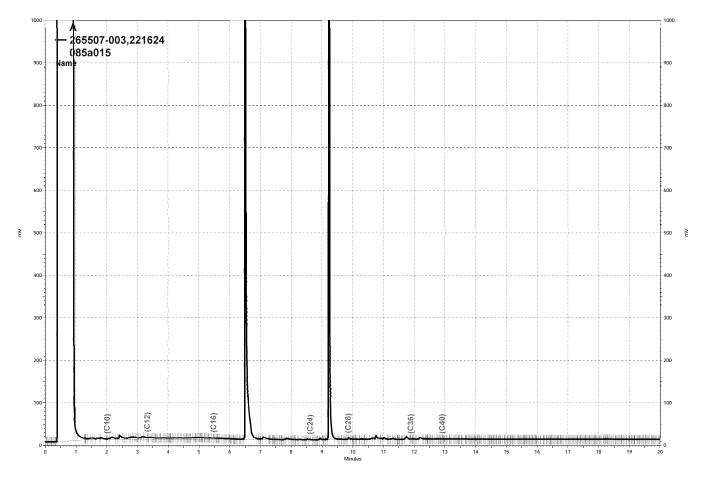
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

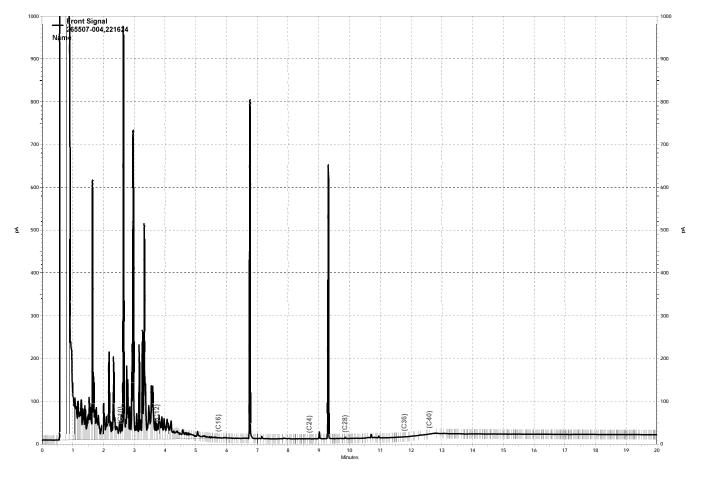
Page 1 of 2

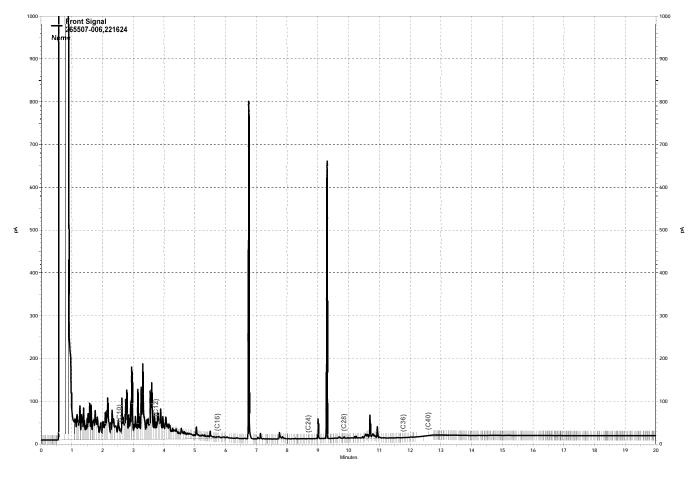


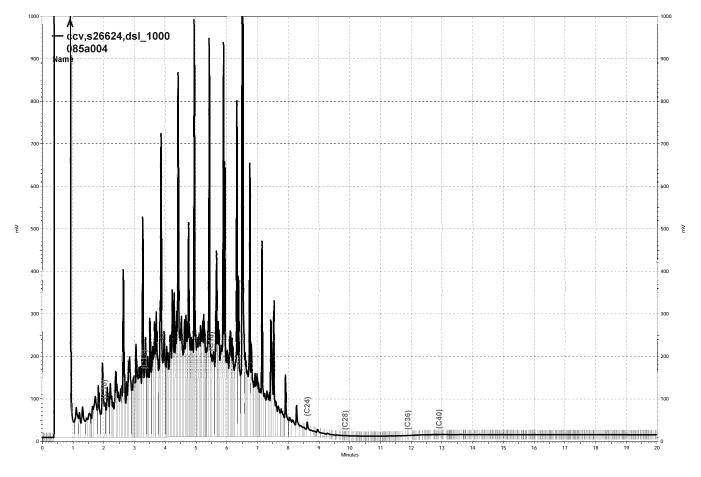
		Total I		ble Hydrod	arbo	22
T 1 1 .	0.000	IOTAL P	Extracta		arbo	
Lab #: Client: Project#:	265507 Stellar Environment 2014-02	tal Solut	ions	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units:	Water ug/L			Sampled: Received:		03/23/15 03/23/15
Diln Fac: Batch#:	1.000 221624			Analyzed:		03/26/15
batcii#•	221024					
Field ID:	MW-11			Lab ID:		265507-006
Type:	SAMPLE			Prepared:		03/25/15
	Analyte		Result		RL	
Diesel C10			1,500 Y		49	
o-Terpheny	Surrogate	%REC 108	Limits 67-136			
Field ID:	MW-12			Lab ID:		265507-007
Туре:	SAMPLE			Prepared:		03/25/15
Diesel C10	Analyte	ND	Result		RL 49	
					49	
o-Terpheny	Surrogate	%REC 115	Limits 67-136			
Field ID:	SW-2			Lab ID:		265507-008
Туре:	SAMPLE			Prepared:		03/25/15
Diesel C10	Analyte	ND	Result		RL 51	
		%REC			J1	
o-Terpheny	Surrogate	120	67-136			
Field ID:	SW-3			Lab ID:		265507-009
Туре:	SAMPLE			Prepared:		03/25/15
Diesel C10	Analyte	NE	Result		RL 50	
-	Surrogate	%REC	Limits			
o-Terpheny	1	102	67-136			
Туре:	BLANK			Prepared:		03/24/15
Lab ID:	QC781860					
Diesel C10	Analyte	ND	Result		RL 50	
2	Surrogate	%REC	Limits			
o-Terpheny		103	67-136			
_	orbibita abromator					


Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 2}$


		Total :	Extracta	ble Hydro	ocarbo	ns			
Lab #:	265507			Location:		Redwood Regio	onal Park		
Client:	Stellar Environment	al Solut	cions	Prep:		EPA 3520C			
Project#:	2014-02			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		221624			
Units:	ug/L			Prepared:		03/24/15			
Diln Fac:	1.000			Analyzed:		03/26/15			
Туре:	BS			Lab ID:		QC781861			
	Analyte		Spiked		Result	%REC	Limits		
Diesel Cl	0-C24		2,500		2,032	81	60-121		
	Surrogate	%REC	Limits						
o-Terphen	yl	96	67-136						
Туре:	BSD			Lab ID:		QC781862			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C1	0-C24		2,500		1,961	78	60-121	4	32
	Surrogate	%REC	Limits						
o-Terphen	yl	95	67-136						


-\Lims\gdrive\ezchrom\Projects\GC17A\Data\085a013, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\085a014, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\085a015, A

-\\lims\gdrive\ezchrom\Projects\GC27\Data\085a011.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\085a013.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC17A\Data\085a004, A

		ompkins Labor	atories Ana	lytical Report	
Lab #:	265507		Location:	Redwood Regional Park	
Client:	Stellar Environmental	Solutions	Prep:	METHOD	
Project#:			Analysis:	EPA 300.0	
Matrix:	Water		Batch#:	221569	
Units:	mg/L		Received:	03/23/15	
Diln Fac:	-		Received	00,20,20	
Field ID:	MW-7		Sampled:	03/23/15 11:10	
Type:	SAMPLE		Analyzed:	03/23/15 16:22	
Lab ID:	265507-002				
Nitrogen,	Analyte	Result ND		RL 0.05	
Sulfate	NICIALE	1.7		0.50	
Field ID: Type: Lab ID:	MW-9 SAMPLE 265507-004		Sampled: Analyzed:	03/23/15 11:55 03/23/15 16:57	
	Analyte	Result		RL	
Nitrogen,	Nitrate	NE		0.05	
		ND		0.05	
Sulfate		ND 19		0.05	
	MW-12		Sampled:		
Field ID:			Sampled: Analyzed:	0.50	
Field ID: Type:	MW-12		-	0.50 03/23/15 11:30	
Field ID: Type:	MW-12 SAMPLE		-	0.50 03/23/15 11:30	
Field ID: Type:	MW-12 SAMPLE 265507-007 Analyte	19	-	0.50 03/23/15 11:30 03/23/15 17:32	
Field ID: Type: Lab ID:	MW-12 SAMPLE 265507-007 Analyte	19 Result	-	0.50 03/23/15 11:30 03/23/15 17:32 RL	
Field ID: Type: Lab ID: Nitrogen,	MW-12 SAMPLE 265507-007 Analyte	19 Result ND	-	0.50 03/23/15 11:30 03/23/15 17:32 RL 0.05	
Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	MW-12 SAMPLE 265507-007 Analyte	19 Result ND	-	0.50 03/23/15 11:30 03/23/15 17:32 RL 0.05	
Field ID: Type: Lab ID: Nitrogen,	MW-12 SAMPLE 265507-007 Analyte Nitrate BLANK	19 Result ND	Analyzed: Analyzed:	0.50 03/23/15 11:30 03/23/15 17:32 RL 0.05 0.50	
Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	MW-12 SAMPLE 265507-007 Analyte Nitrate BLANK QC781657 Analyte	19 Result ND 37	Analyzed: Analyzed:	0.50 03/23/15 11:30 03/23/15 17:32 RL 0.05 0.50 03/23/15 11:44	
Field ID: Type: Lab ID: Nitrogen, Sulfate	MW-12 SAMPLE 265507-007 Analyte Nitrate	19 Result ND	Analyzed:	0.50 03/23/15 11 03/23/15 17 RL 0.05 0.50	7:32

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	265507	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2014-02	Analysis:	EPA 300.0				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC781658	Batch#:	221569				
Matrix:	Water	Analyzed:	03/23/15 12:01				
Units:	mg/L						

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	1.006	101	80-120
Sulfate	10.00	9.933	99	80-120

	Curtis & Tompkins Lab	ooratories Anal	lytical Report
Lab #: 2	265507	Location:	Redwood Regional Park
Client: S	Stellar Environmental Solutions	Prep:	METHOD
Project#: 2	2014-02	Analysis:	EPA 300.0
Field ID:	ZZZZZZZZZ	Diln Fac:	20.00
Type:	SSPIKE	Batch#:	221569
MSS Lab ID:	265518-001	Sampled:	03/23/15 10:40
Lab ID:	QC781724	Received:	03/23/15
Matrix:	Water	Analyzed:	03/24/15 04:33
Units:	mg/L		

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	0.8616	10.00	10.69	98	80-120
Sulfate	98.75	100.0	195.6	97	80-120

	Curtis & 1	Compkins Labor	atories Ana	lytical R	eport		
	55507		Location:	Redwoo	d Regio	nal Park	
Client: St	cellar Environmenta	al Solutions	Prep:	METHOD)		
Project#: 20	014-02		Analysis:	EPA 30	0.0		
Field ID:	ZZZZZZZZZZ		Diln Fac:	20.00			
MSS Lab ID:	265518-002		Batch#:	221569)		
Matrix:	Water		Sampled:	03/23/	15 14:1	0	
Units:	mg/L		Received:	03/23/	15		
	MS QC781725 halyte	MSS Result	Analyzed: Spiked	Re	15 04:53	%REC	Limits
Nitrogen, Ni	ltrate	<0.01127	10.00		10.12	101	80-120
Sulfate		199.0	100.0	2	97.8	99	80-120
Type: Lab ID:	MSD QC781726		Analyzed:	03/24/	15 05:0	8	
	Analyte	Spiked	Re	sult	%REC		RPD Lim
Nitrogen, Ni	ltrate	10.00		10.02	100	80-120	1 20
Sulfate		100.0		298.6	100	80-120	0 20

Biochemical Oxygen Demand							
Lab #:	265507	Location:	Redwood Regional P	ark			
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2014-02	Analysis:	SM5210B				
Analyte:	Biochemical Oxygen Demand	Batch#:	221638				
Matrix:	Water	Received:	03/23/15				
Units:	mg/L	Prepared:	03/25/15 10:58				
Diln Fac:	1.000	Analyzed:	03/30/15 10:45				
Fie	ld ID Type Lab ID	Result	RL	Sampled			

Field ID	Туре	Lab ID	Result	RL	Sampled
MW-7	SAMPLE	265507-002	8.7	5.0	03/23/15 11:10
MW-9	SAMPLE	265507-004	9.5	5.0	03/23/15 11:55
MW-12	SAMPLE	265507-007	ND	5.0	03/23/15 11:30
	BLANK	QC781908	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Biochemical	Oxygen Demand	
Lab #: 265507		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	METHOD
Project#: 2014-0	2	Analysis:	SM5210B
Analyte:	Biochemical Oxygen Demand	Batch#:	221638
Field ID:	ZZZZZZZZZ	Sampled:	03/24/15 06:00
MSS Lab ID:	265544-001	Received:	03/24/15
Matrix:	Water	Prepared:	03/25/15 10:58
Units:	mg/L	Analyzed:	03/30/15 10:45
Diln Fac:	1.000		
Type Lab ID	MSS Result Spiked	Result	RL %REC Limits RPD Lim

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim
BS	QC781909		198.0	224.8		114	85-115	
BSD	QC781910		198.0	227.8		115	85-115 1	20
SDUP	QC781911	3,109		3,189	5.000		3	26

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

03/23/15 11:30 03/23/15 15:45 03/23/15 17:45

03/23/15 12:00 03/23/15 14:00

			Chemica	.1 0:	xygen Demand		
Lab #:	265507				Location:	Redwood Regiona	l Park
Client:	Stellar H	Environmenta	l Solutions		Prep:	METHOD	
Project#:	2014-02				Analysis:	SM5220D	
Analyte:	Cł	hemical Oxyg	en Demand		Diln Fac:	1.000	
Matrix:	Wa	ater			Batch#:	221578	
Units:	mg	g/L			Received:	03/23/15	
Field ID	Туре	Lab ID	Result	RL	Sampled	Prepared	Analyzed
MW-7	SAMPLE	265507-002	48	10	03/23/15 11:10	03/23/15 15:45	03/23/15 17:45
MW-9	SAMPLE	265507-004	110	10	03/23/15 11:55	03/23/15 15:45	03/23/15 17:45

10

10

42

ND

ND=	Not Detected
RL=	Reporting Limit
Page	1 of 1

MW-12

SAMPLE 265507-007

BLANK QC781690

	Chemica	al Oxygen Demand	L
Lab #: 2	65507	Location:	Redwood Regional Park
Client: S	tellar Environmental Solutions	Prep:	METHOD
Project#: 2	014-02	Analysis:	SM5220D
Analyte:	Chemical Oxygen Demand	Batch#:	221578
Field ID:	ZZZZZZZZZ	Sampled:	03/16/15
MSS Lab ID:	265361-001	Received:	03/17/15
Matrix:	Water	Prepared:	03/23/15 12:00
Units:	mg/L	Analyzed:	03/23/15 14:00
Diln Fac:	1.000		
	h TD MCC Deguit	Sniked P	Acult Sprc Limits DDD Li

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC781691		75.00	68.19	91	90-110		
MS	QC781692	130.9	300.0	499.0	123	57-126		
MSD	QC781693		300.0	493.4	121	57-126	1	20

APPENDIX D

Historical Analytical Results

			VOOD RE	GIONAL PA	ARK SERVI		NALYTICAL RES AND, CALIFORN r billion [ppb])		
					Well N	1W-2			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	N
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	Ν
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	~
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	٨
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	٨
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	٨
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	٨
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	٨
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	٨
12	Feb-98	2,000	200	270	92	150	600	1,112	Λ
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5		6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5		13
23	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5		< 2
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	4.1 < 0.5	1.9	8.7
20	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
		374		81	1.0	36	7.3	126	18
29	Mar-04		<100						
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31 32	Sep-04 Dec-04	200 80	< 50 < 50	23 14	< 0.5	< 0.5	0.70	24 18	16 20
								-	
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	-	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50		<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
52	Aug-09	1,900	3,100	1.6	1.8	11	23.8	38.2	7.1
53	Sep-09	1,400	1,800	<0.5	<0.5	<0.5	4.2	4.24	12
55	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6

					Well MW-2				
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
56	Mar-10	2,000	4,300	<0.5	<0.5	<0.5	3.5	3.45	<2.0
57	Jun-10	1,300	2,400	<0.5	<0.5	<0.5	1.7	-	<2.0
58	Sep-10	910	<50	<0.5	<0.5	<0.5	1.5	1.45	<2.0
59	Dec-10	910	1,600	<0.5	<0.5	<0.5	<0.5	<0.5	2.6
60	Mar-11	860	1,100	<0.5	<0.5	<0.5	<0.5	_	3.1
61	Sep-11	780	810	<0.5	<0.5	<0.5	<0.5	_	<2.0
62	Mar-12	460	610	<0.5	<0.5	<0.5	<0.5	_	<2.0
63	Sep-12	160	190	<0.5	<0.5	<0.5	<0.5	_	<2.0
64	Mar-13	470	810	<0.5	<0.5	<0.5	<0.5	_	<2.0
65	Oct-13	120	67	<0.5	<0.5	<0.5	<0.5	_	2.3
66	Mar-14	320	290	<0.5	<0.5	<0.5	<0.5	_	<2.0
67	Sep-14	610	480	<0.5	1	4.7	1.9	7.6	3.7
68	Mar-15	370	450	<0.5	<0.5	<0.5	<0.5	_	<2.0

Well MW-2 Continued

					Well N	1W-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6		< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
G	roundwate	r monitoring	g in this we	ell discontin	ued with Ala	ameda County H	ealth Care Servic	es Agency appro	val.

					Well N	1W-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Grou	ndwater mo	onitoring in	this well di	scontinued	in 1998 wit	h Alameda Coun	ty Health Care Se	rvices Agency a	pproval.
		Subsequ	uent groun	dwater mor	itoring con	ducted to confirm	plume's southerr	n limit	
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	5.9
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	—	< 2.0

					Well N	IW-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.
9	Mar-03	10.000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
14	Sep-04	9,200 9,700	3,400	98	< 0.5	300	125	523	< 2.
16	Dec-04	9,700 8200	4,000	98 95	< 0.5	290	125	523	< 2.
17	Mar-05	10,000	4,300	150	< 0.5	370	71	591	<2.
						410			
18	Jun-05	10,000	3,300	210	<1.0		56	676	<4.
19 20	Sep-05 Dec-05	7,600 2,900	2,700 3,300	110 31	<1.0 <1.0	310 140	54 41	474	<4. <4.
								212	
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 1
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	4
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.0	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.3	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.1	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.3	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.1	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.6	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.9	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.6	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.5	92	<2.
40	Jun-10	5,800	5,000	20	<0.5	140	9.9	170	<2.
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.0	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.2	108	87.0
43	Mar-11	5,500	3,400	11	<0.5	94	8.5	114	<2.
44	Sep-11	5,800	3,300	<0.5	<0.5	97	3.1	100	<2.
45	Mar-12	6,400	3,500	<0.5	<0.5	110	5.6	116	<2.
46	Sep-12	5,700	3,000	<0.5	<0.5	84	<0.5	84	<2.
47	Mar-13	6,000	3,300	<0.5	<0.5	82	<0.5	82	<2.
48	Oct-13	6,400	6,000	35	<0.5	75	5.10	115	<2.
49	Dec-13	6,000	4,200	<0.5	<0.5	100	<0.5	100	<2.
50	Mar-14	7,500	4,900	<0.5	<0.5	130	2.0	132	<2.
51	Jun-14	3,400	9,100	<0.5	<0.5	170	6.9	177	<2.
52	Sep-14	6,500	6,000	<0.5	<0.5	150	5.1	155	<2.
53	Mar-15	7,700	3,200	<0.5	<0.5	91	<0.5	91	<2.

					Well N	1W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 1
10	Jun-03	7.900	2,200	370	7.4	620	562	1,559	< 4.
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.
12	Dec-03	485	100	19	1.5	26	36	83	< 5.
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 1
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 1
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 1
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	3,800	1,067	<20
20	Dec-05	3,700	1,200	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820 800	170	7.7	730	539	1,447	<10
24	Dec-06	4,400		75	4.2	320	246	645	< 2.
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 2
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<2
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2.
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	<0.5	22	<2.5	25	<1
42	Dec-10	180	260	<0.5	<0.5	5	1.0	6.4	7.2
43	Mar-11	6,000	5,900	39	<0.5	510	431.0	980.0	<2.
44	Sep-11	1,700	1,200	7	0.9	120	12.2	139.7	<2.
45	Mar-12	1,200	790	11	0.9	<0.5	99.0	110.9	<2.
46	Sep-12	730	430	4.7	<0.5	45	3.8	53.5	9.2
47	Mar-13	840	690	5.6	<0.5	47	9.9	62.51	15
48	Oct-13	150	140	<0.5	<0.5	3.3	<0.5	3.3	<2.
49	Mar-14	79	120	<0.5	<0.5	2.1	<0.5	2.1	1
49 50	Sep-14	57	66	<0.5	<0.5	1.5	<0.5	2.1	11
50	Mar-15	190	68	<0.5	<0.5	1.5	<0.5	1.6	11

					Well N	1W-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 1
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 1
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 1
10	Dec-03	7,080	700	287	31	901	255	1,474	< 1
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 1
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 1
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 1
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 1
16	Jun-05	9,900	2,000	97 170	<2.5	590	359	1,119	< 1
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21 22	Sep-06	12,000 12,000	3,300 2,800	130 140	8 9.4	850 880	604 634	1,592	<1.
	Dec-06				-			1,663	< 1
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 1
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<1
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82
40	Mar-11	700	680	1.6	<0.5	10	3.5	15.1	14
41	Sep-11	2,600	1,900	12	<0.5	160	10.2	182.2	<2
42	Mar-12	1,100	940	9	<0.5	25	1.6	35.6	<2
43	Sep-12	10,000	8,600	25	<0.5	260	19.0	304.0	<2
44	Mar-13	4,000	2,400	9.1	<0.5	73	9.7	91.8	<2
45	Oct-13	3,200	1,500	20	<0.5	51	6.6	77.6	<2
49	Dec-13	3,000	2,700	22	<0.5	120	4.6	147	<2
50	Mar-14	3,100	5,200	49	<0.5	420	83	552	<2
51	Jun-14	12.000	2.600	49 54	<0.5	610	160	824	<2
52	Sep-14	17,000	2,600	54 65	<0.5 13.0	51	204	333	<2
52	Mar-15	4,300	2,000	24	<0.5	150	19	193	<2

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene		Ethylbenzene	Total Xvlenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	<0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	<0.5	<0.5	0.69	<0.5	0.7	4.1
40	Mar-11	170	1,200	1.0	<0.5	3.7	1.8	6.5	6.3
41	Sep-11	150	220	0.8	<0.5	1.9	1	3.7	<2.0
42	Mar-12	80	92	0.81	<0.5	1.5	<0.5	2.3	3.4
43	Sep-12	170	200	<0.5	<0.5	2	0.94	2.9	<2.0
44	Mar-13	310	58	<0.5	<0.5	7.3	7.94	15.2	<2.0
45	Oct-13	69	<50	<0.5	<0.5	0.84	<0.5	0.8	4.8
46	Dec-13	<52	220	<0.5	0.61	2	1.5	4.1	3.7
47	Mar-14	<50	87	<0.5	<0.5	0.51	<0.5	0.5	3.7
48	Jun-14	55	<50	<0.5	0.61	2	1.5	4.1	<2.0
49	Sep-14	<50	<50	<0.5	<0.5	<0.5	<0.5	0.0	4.5
50	Mar-15	61	<49	<0.5	<0.5	<0.5	<0.5	0.0	3.3

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	<4
9 10	Dec-03	15,000	1,100	314	9.9 60	1,070	802	2,246	173
				-					
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.(
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3.600	4.200	190	<0.5	140	11	341	<2.0
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	< 0.5	19	<0.5	30	<2.0
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
				-					
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.0
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3,000 1,800	2,200 2,900	18	< 0.5	41	0.55	60	8.0
39	Dec-10			13	<0.5	49	1.9	64	15.0
40	Mar-11	180	1,600	<0.5	<0.5	1.2	<0.5	1.2	6.9
41	Sep-11	2,200	2,500	12	<0.5	44	2.2	58.2	<2.0
42	Mar-12	1,300	1,200	8.7	<0.5	29	<0.5	37.7	<2.0
43	Sep-12	2,400	1,800	7.7	<0.5	29	<0.5	36.7	<2.0
44	Mar-13	1,500	1,900	4.8	<0.5	22	<0.5	26.8	<2.0
45	Oct-13	3,000	1,600	14	<0.5	35	<0.5	49	<2.0
46	Dec-13	2,500	2,000	<0.5	13	<0.5	0.68	13.7	<2.
47	Mar-14	3,000	2,800	13	<0.5	34	<0.5	47.0	<2.
48	Jun-14	2,300	1,400	6	<0.5	20	6.1	32.1	<2.
49	Sep-14	190	3,400	6.8	<0.5	26	<0.5	32.8	3.7
50	Mar-15	1,300	1,500	<0.5	<0.5	8.4	<0.5	8.4	<2.

				1	Well M	W-12			1
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9
22	Mar-11	290	450	<0.5	0.74	1.3	<0.5	2.0	11
23	Sep-11	530	340	<0.5	<0.5	2.2	<0.5	2.2	<2.
24	Mar-12	410	240	<0.5	<0.5	1.9	<0.5	1.9	<2.
25	Sep-12	340	210	<0.5	<0.5	1.1	<0.5	1.1	<2.
26	Mar-13	430	200	<0.5	<0.5	1.2	<0.5	1.2	7.1
27	Oct-13	350	200	<0.5	<0.5	0.92	<0.5	0.92	<2.
28	Dec-13	290	210	<0.5	<0.5	0.68	<0.5	0.68	2.5
29	Mar-14	<50	62	<0.5	<0.5	<0.5	<0.5	0	2.8
30	Jun-14	2,300	190	<0.5	<0.5	0.65	<0.5	0.65	<2.
31	Sep-14	2,500	130	<0.5	6.8	26	<0.5	32.8	<2.
32	Mar-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0	<2.

	HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA (all concentrations in ug/L, equivalent to parts per billion [ppb])											
	Surface Water Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
S	ampling at	this locatio	n discontir	nued after A	pril 1999 w	ith Alameda Cou	nty Health Service	es Agency appro	val.			

F	Det						ninated Groundw		MTOT
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene		Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	N
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	Ν
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	Ν
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	٨
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
8	Aug-97	350	130	13	0.89	19	11	44	٨
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	٨
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2
30	Dec-04	<50	<50	4.4 <0.5	<0.5	<0.5	< 1.0	1.0	< 2
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2
-							-	-	
35 36	Mar-06 Jun-06	<50 <50	62 110	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 1.0 < 1.0	<1.0 <1.0	< 2
36	Sep-06	<50 62	<u>110</u> 94	<0.5	<0.5	<0.5 0.81	< 1.0 <0.5	<1.0 0.8	<2
37	Dec-06	62 <50	94 <50	<0.5	<0.5	0.81 <0.5	< 1.0	0.8 <1.0	<2
39	Mar-07	<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	< 2
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2
45		530	690			4.3			

Surface	Water San	npling Local	tion SW-2	Continued					
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
54	Dec-10	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
55	Mar-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
56	Sep-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	<50	930	<0.5	<0.5	<0.5	<5.0	<0.5	4.8
61	Mar-14	<50	<49	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS
63	Mar-15	<50	<51	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0

Surface Water Sampling Location SW-2 Continued

Surfa	ace Water	Sampling I	ocation S	SW-3 (Dowi	nstream of	Contaminated 0	aroundwater Dis	charge Location	SW-2)
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96		74	< 0.5	< 0.5			< 0.5	
4		< 50				< 0.5 < 0.5	< 0.5		NA
5	Aug-96 Dec-96	69 < 50	< 50 < 50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	NA NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS NS	NS	< 0.5 NS	NS	× 0.5 NS	NS	NS	Z.4 NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	< 0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50		<0.5	<0.5	< 1.0		< 2.0
			120	< 0.5				<1.0	
35	Jun-06	<50		<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	< 0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Sep-10	NS 150	NS 150	NS 10 F	NS 0.57	NS 10.5	NS 0.81	NS	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	NA
54	Mar-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
55	Sep-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	NS	NS	NS	NS	NS	NS	NS	NS
61	Mar-14	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS
63	Mar-15	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
					sampling e		-0.0	-0.0	~2.0

NS = Not Sampled (no surface water present during sampling event)