RECEIVED

By Alameda County Environmental Health at 3:30 pm, Apr 11, 2014

FIRST SEMIANNUAL 2014 GROUNDWATER MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

April 2014

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

FIRST SEMIANNUAL 2014 GROUNDWATER MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 1, 2014

Project No. 2014-02

GEOSCIENCE & ENGINEERING CONSULTING

April 1, 2014

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Semiannual 2014 Groundwater Monitoring Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes the First Semiannual 2014 groundwater and surface water monitoring and sampling conducted on March 10, 2014. In addition to the activities typically conducted during a monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were taken to assess the effectiveness of the Permeable Reactive Barrier (PRB) that was installed in November 2013.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Promathe S. Makdini

Richard S. Makdisi, P.G., R.E.A. Principal Geochemist/President

Matthew Loud

Matt Graul, Stewardship Manager East Bay Regional Park District

cc: State of California GeoTracker database Alameda County Department of Environmental Health 'ftp' system

Z:\SES Projects\PROJECTS\EBRPD\EBRPD-2014\2014-02-Redwood GWM and PRB Remedy\REPORTS\RO#246 First Semiannual 2014 GWM Report and PRB Evaluation.doc

TABLE OF CONTENTS

Project Background. 1 Objectives and Scope of Work 1 Historical Corrective Actions and Investigations 1 Site Description 3 Regulatory Oversight 3 2.0 PHYSICAL SETTING 6 Site Lithology. 6 Groundwater Consciption 10 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Groundwater and Surface Water Analytical Results 19 Quality Control Sample Analytical Results 19	Sectio	n I	Page
Objectives and Scope of Work 1 Historical Corrective Actions and Investigations 1 Site Description 3 Regulatory Oversight 3 2.0 PHYSICAL SETTING 6 Site Lithology. 6 Gite Lithology. 10 6 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 12 4.0 FIRST SEMIANNUAL 2014 ACTIVITIES 14 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Quality Control Sample Analytical Results 19 Quality Control Sample Analytical Results	1.0	INTRODUCTION	1
Historical Corrective Actions and Investigations 1 Site Description 3 Regulatory Oversight 3 2.0 PHYSICAL SETTING 6 Site Lithology 6 Hydrogeology 10 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 froundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Quality Control Sample Analytical Results 19 Quality Control Sample Analytical Results 19		· · ·	
Site Description 3 Regulatory Oversight 3 2.0 PHYSICAL SETTING 6 Site Lithology 6 Hydrogeology 10 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Quality Control Sample Analytical Results 19 Quality Control Sample Analytical Results 19		5 I	
Regulatory Oversight 3 2.0 PHYSICAL SETTING 6 Site Lithology 6 Hydrogeology 10 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 Surface Water Contamination 12 4.0 FIRST SEMIANNUAL 2014 ACTIVITIES 14 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Groundwater and Surface Water Analytical Results 19 Quality Control Sample Analytical Results 19		6	
2.0 PHYSICAL SETTING		1	
Site Lithology		Regulatory Oversight	3
Hydrogeology 10 3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 4.0 FIRST SEMIANNUAL 2014 ACTIVITIES 14 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Groundwater and Surface Water Analytical Results 19 Quality Control Sample Analytical Results 19	2.0	PHYSICAL SETTING	6
3.0 REGULATORY CONSIDERATIONS 12 Groundwater Contamination 12 Surface Water Contamination 12 4.0 FIRST SEMIANNUAL 2014 ACTIVITIES 14 Groundwater Monitoring and Sampling 15 Creek Surface Water Sampling 17 Bioventing-Related Activities 17 Permeable Reactive Barrier (PRB) Monitoring Indicators 17 Groundwater and Surface Water Analytical Results 19 Quality Control Sample Analytical Results 19		Site Lithology	6
Groundwater Contamination12Surface Water Contamination124.0FIRST SEMIANNUAL 2014 ACTIVITIES14Groundwater Monitoring and Sampling15Creek Surface Water Sampling17Bioventing-Related Activities17Permeable Reactive Barrier (PRB) Monitoring Indicators17Groundwater and Surface Water Analytical Results19Quality Control Sample Analytical Results19		Hydrogeology	10
Surface Water Contamination124.0FIRST SEMIANNUAL 2014 ACTIVITIES14Groundwater Monitoring and Sampling15Creek Surface Water Sampling17Bioventing-Related Activities17Permeable Reactive Barrier (PRB) Monitoring Indicators17Groundwater and Surface Water Analytical Results19Quality Control Sample Analytical Results19	3.0	REGULATORY CONSIDERATIONS	12
4.0 FIRST SEMIANNUAL 2014 ACTIVITIES		Groundwater Contamination	12
Groundwater Monitoring and Sampling		Surface Water Contamination	12
Creek Surface Water Sampling	4.0	FIRST SEMIANNUAL 2014 ACTIVITIES	14
Bioventing-Related Activities		Groundwater Monitoring and Sampling	15
Permeable Reactive Barrier (PRB) Monitoring Indicators		Creek Surface Water Sampling	17
Groundwater and Surface Water Analytical Results			
Quality Control Sample Analytical Results			
		•	
5.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS		Quality Control Sample Analytical Results	19
	5.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	22
Summary and Conclusions		Summary and Conclusions	22
Proposed Actions			
6.0 REFERENCES	6.0	REFERENCES	25
10.0 LIMITATIONS	10.0	LIMITATIONS	32

TABLES AND FIGURES

Tables	Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data – March 10, 2014	15
Table 2 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradien – March 10, 2014	
Table 3 Groundwater and Surface Water Samples Analytical Results – March 10, 2014.	20

Figures	Page
Figure 1 Site Location Map	4
Figure 2 Site Plan and Historical Sampling Location	5
Figure 3 Geologic Cross-Section Locations	7
Figure 4 Geologic Cross-Sections A-A' through C-C'	8
Figure 5 Geologic Cross-Sections D-D' through F-F'	9
Figure 6 Groundwater Elevation Map –March 10, 2014	16
Figure 7 Plan View of Remedial Barrier Treatment Wall & TPH Plume - March	n 10, 201421

Appendices

Appendix A	Historical Groundwater Monitoring Water Level Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Analytical and Surface Water Analytical Results

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the first semiannual 2014 groundwater monitoring report along with the annual trend analyses and recommendations for future work.

OBJECTIVES AND SCOPE OF WORK

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the first 2014 semiannual period from January 1, 2014 to March 31, 2014:

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

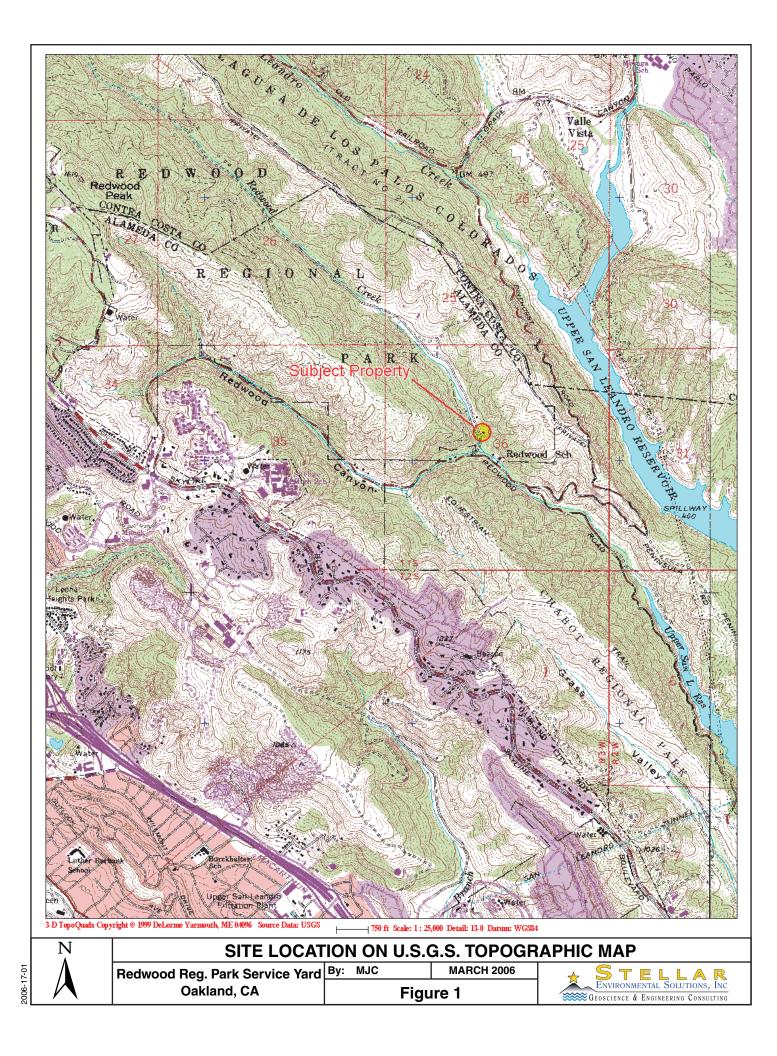
The general phases of site work included:

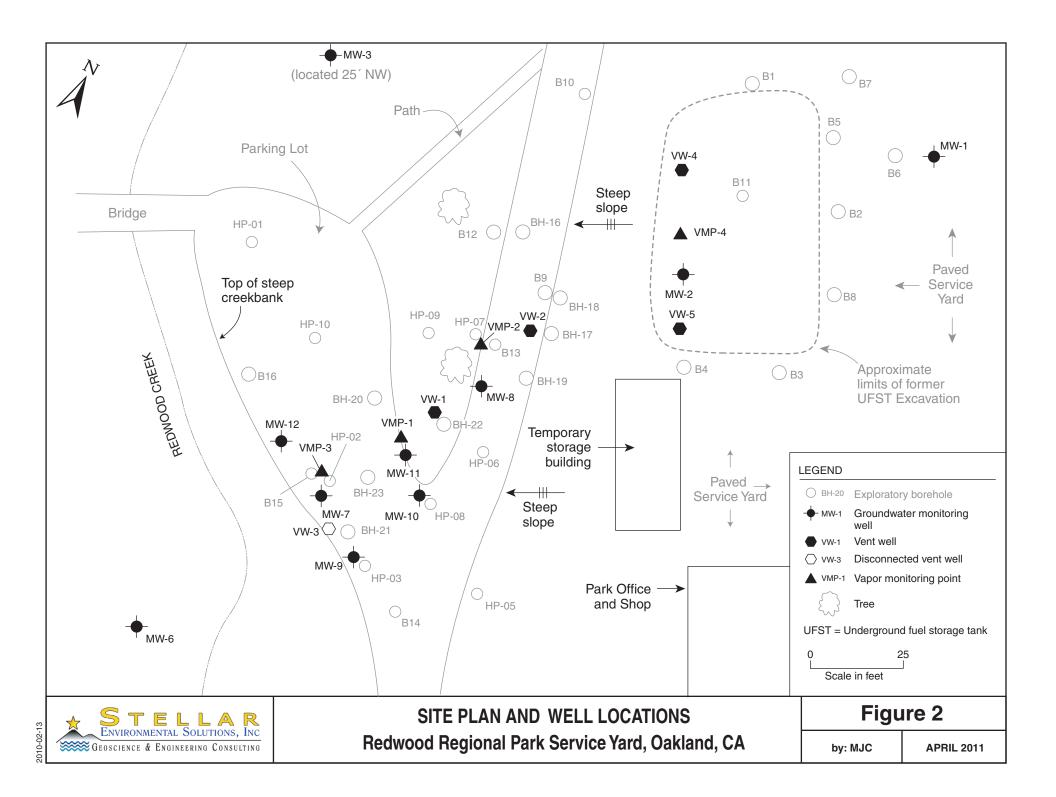
- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 59 groundwater monitoring events have been conducted since project inception (February 1994). A total of 12 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued on July 18, 2011.

The RAW, dated November 28, 2011, prepared by Stellar Environmental. ACEH approved the PRB RAW in a subsequent letter, dated December 29, 2011and the PRB was installed in November 2013 and followed with a 30-day post-installation monitoring of key downgradient site wells in December 2013.

SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.


Figure 1 shows the location of the project site. Figure 2 presents the site plan.

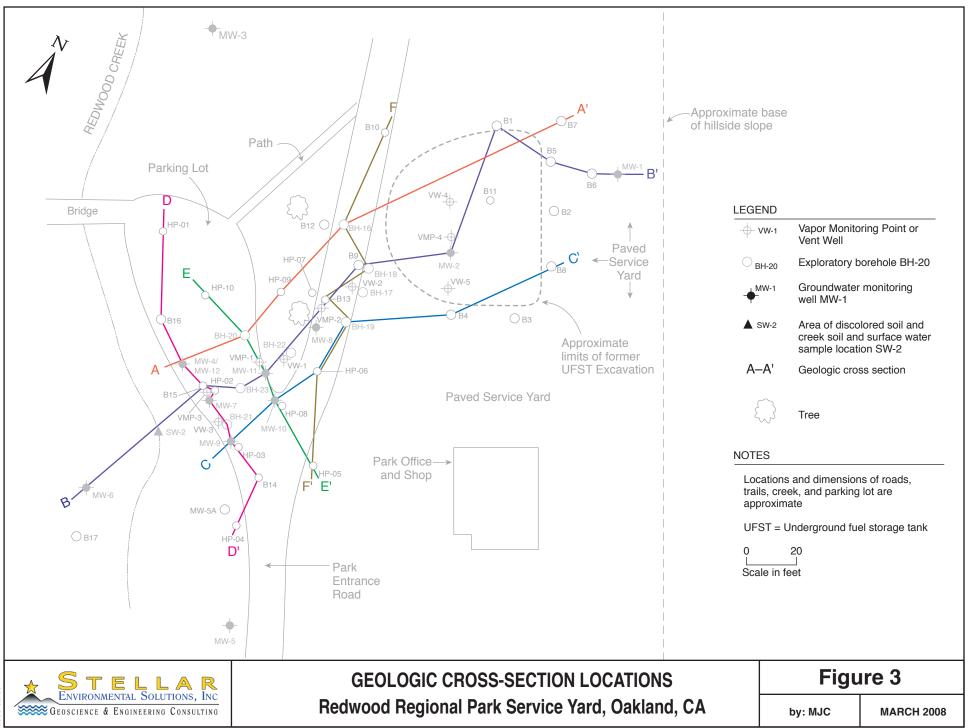

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek. No surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

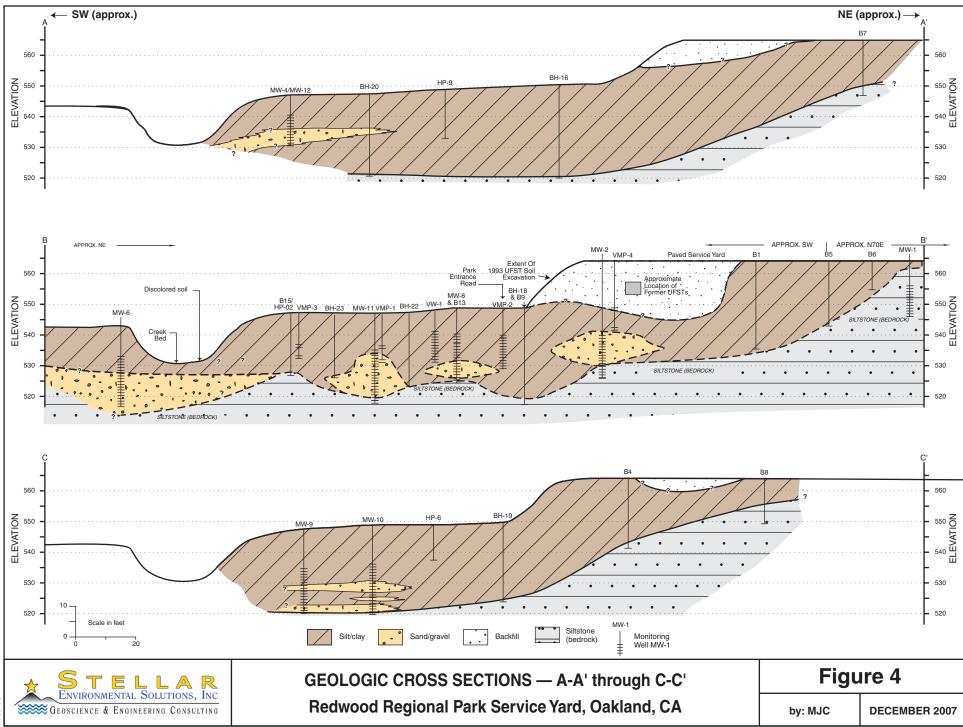
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH, at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- Shut down of the site bioventing system in June 2011.
- Design and implementation of PRB workplan.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

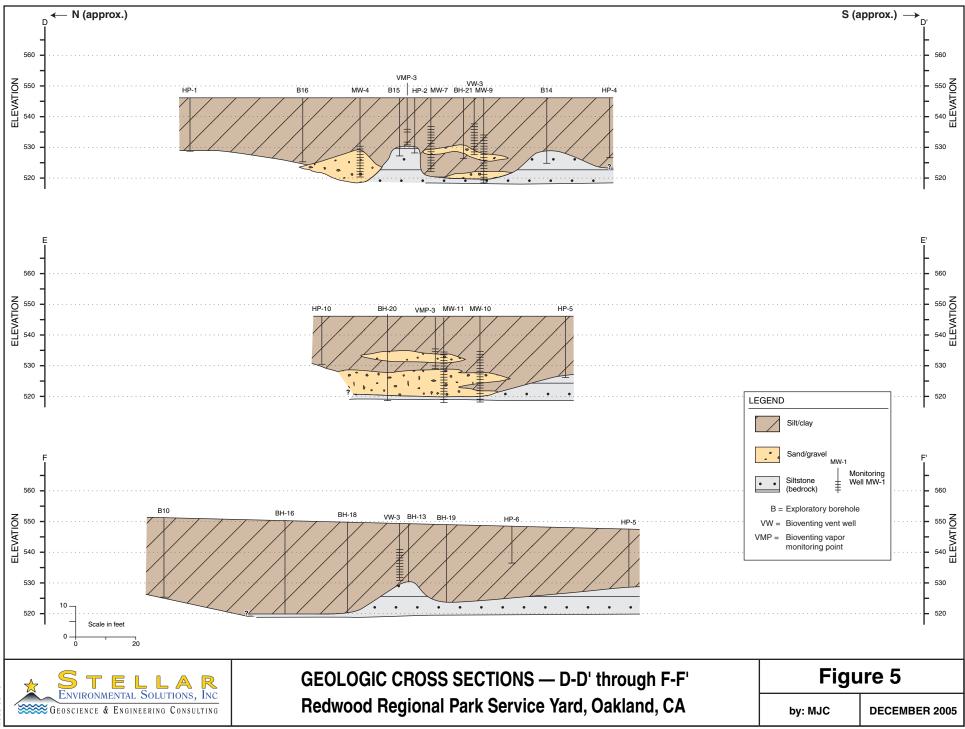
2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.

SITE LITHOLOGY


Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination were presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.


A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

2008-02-05

2005-66-14

2005-66-13

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the

time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.27 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient was approximately 0.06 feet per foot. The average groundwater elevation was 1.84 feet higher than the previous (October 2013) event, with the greatest increase of 5.46 feet measured in MW-3. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern. ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 FIRST SEMIANNUAL 2014 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (First Semiannual 2014), conducted on March 10, 2014, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 12 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, SW-2 and SW-3);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Continue post-purge measurement of dissolved oxygen (DO) and redox to evaluate the effect of the permeable reactive barrier (PRB) that was installed across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation;

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the March 2014 groundwater elevation data are summarized in Table 1. Figure 6 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

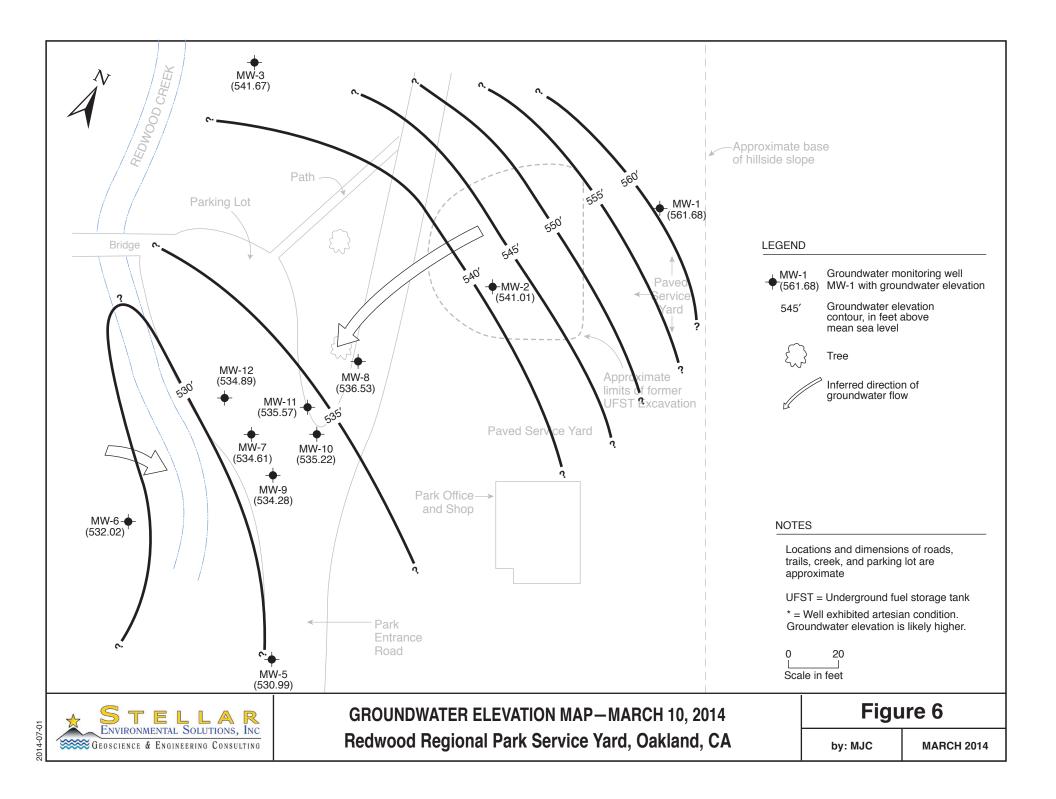
Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth (bgs)	Groundwater Elevation	
MW-1	18	7 to17	565.83	4.15	561.68	
MW-2	36	20 to 35	566.42	21.29	541.01	
MW-3	42	7 to 41	560.81	19.14	541.67	
MW-5	26	10 to 25	547.41	16.42	530.99	
MW-6	26	10 to 25	545.43	13.41	532.02	
MW-7	24	9 to24	547.56	12.95	534.61	
MW-8	23	8 to 23	549.13	12.60	536.53	
MW-9	26	11 to 26	549.28	15.00	534.28	
MW-10	26	11 to 26	547.22	12.00	535.22	
MW-11	26	11 to 26	547.75	12.18	535.57	
MW-12	MW-12 25		544.67	9.78	534.89	

Table 1Groundwater Monitoring Well Constructionand Groundwater Elevation Data – March 10, 2014

Notes:

All measurements expressed in feet

TOC = top of casing bgs = below ground surface


Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above mean sea level (amsl). (U.S. Geological Survey)

GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 92.5 gallons) from the current event was containerized in the onsite above-ground storage tank. Purge water is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel on March 10, 2014. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

BIOVENTING-RELATED ACTIVITIES

On July 18, 2011, in concurrence with ACEH, the site bioventing system, having accomplished its' design purpose, was discontinued.

PERMEABLE REACTIVE BARRIER (PRB) MONITORING INDICATORS

The permeable reactive barrier (PRB), installed on November 20, 2013, was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination. Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.21 to 7.75, mostly within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants in groundwater as they reach the PRB. The oxygen is then released more slowly, which will assist bioremediation for several years.

Table 3 includes the baseline results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the proposed PRB.

Table 2 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells – March 10, 2014

	Analytical Lab Concentrations					
Location	Nitrates	Sulfates	BOD	COD		
MW-7	< 0.05	25	9.3	63		
MW-9	< 0.05	32	15	180		
MW-12	<0.05	24	<5.0	49		

Notes:

COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Analytical laboratory concentrations are expressed in in milligrams per liter (mg/L) micrograms per liter (µg/L).

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

The DO concentrations, post installation of the PRB, at monitoring wells MW-7, MW-9, MW-11 and MW12, of which MW-7 and MW-9 currently show the highest concentrations of hydrocarbons, are relatively low (0.22 - 0.24 mg/L) suggesting that less active aerobic biodegradation is currently occurring at these wells. The DO in well MW-10, located upgradient of the PRB is 0.68 mg/L suggests natural aerobic biodegradation is occurring. The trends will be monitored in subsequent monitoring events to evaluate the effectiveness of the PRB.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive).

Measurement of the baseline ORP during this sampling event ranged from -66 to -40 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB and from -56 to +25 in wells MW-10 and MW-11, located within 15 feet upgradient of the PRB, respectfully. As with the DO, the ORP trend will be monitored to evaluate the effectiveness of the PRB in subsequent monitoring events. Measurements collected during the March 2014 monitoring event are included in Table 3.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The semiannual field and analytical laboratory results of the current monitoring event were collected in March 2014. Table 3 summarizes the contaminant analytical results. Figure 7 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

First Semiannual 2014 groundwater contaminant concentrations were as follows: The ESL for TVHg for residential areas where groundwater <u>is</u> a drinking water resource was exceeded in four of the seven wells sampled and was exceeded for TEHd in five of the seven wells sampled. The ESL for benzene was exceeded in wells MW-9 and MW-11 in which it was detected. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled. Ethylbenzene was detected in wells MW-7, MW-8, MW-9, MW-10 and MW-11 but above the ESL in wells MW-7, MW-9 and MW-11. Total xylenes were detected in wells MW-7 and MW-9 but above the ESL only in well MW-9. MTBE was detected in wells MW-8, MW-10 and MW-12 but above the ESL only in well MW-8.

Well MW-7 contained both the maximum TVHg and TEHd concentrations in groundwater. MW-7 is located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is defined by well MW-5.

No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2014 sampling event.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

			Contaminant Concentrations						
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAM	PLES								
MW-2	4.1	-29	290	320	< 0.5	< 0.5	< 0.5	< 0.5	<2
MW-7	0.24	-54	4,900	7,500	<0.5	<0.5	130	2.0	<2.0
MW-8	0.22	-68	120	79	<0.5	<0.5	2.1	<0.5	11
MW-9	0.22	-66	3,100	5,200	49	<0.5	420	83	<2.0
MW-10	0.68	25	87	<50	<0.5	<0.5	0.51	<0.5	3.7
MW-11	0.23	-56	2,800	3,000	13	<0.5	34	<0.5	<2.0
MW-12	0.23	-40	62	<50	<0.5	<0.5	<0.5	<0.5	2.8
Groundwater ESLs ^(a)			100 / 640	100/ 500	1.0 / 27	40 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	4.27	-6	<49	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.0
SW-3 (dry this event)	4.88	+16	<50	<50	<0.5	<0.5	<0.5	< 0.5	<2.0
Surface Water Screening Levels ^(b)			100	100	1.0	40	30	20	5.0

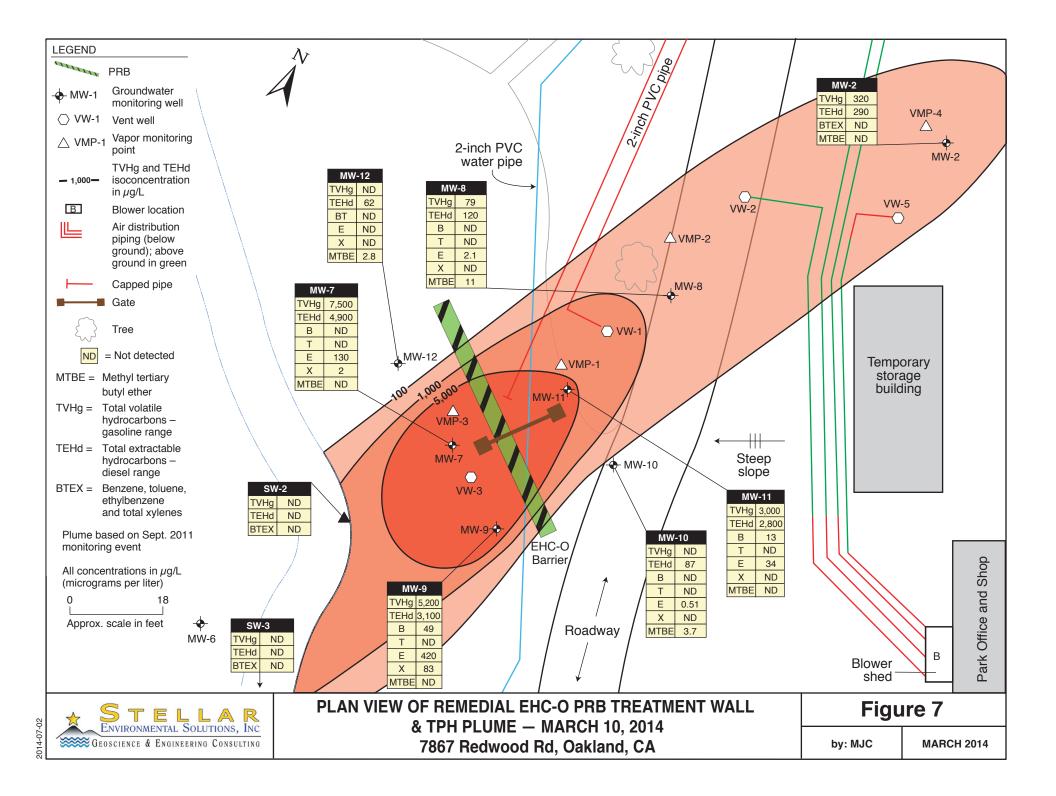
Table 3 **Groundwater and Surface Water Samples** Analytical Results – March 10, 2014

Notes: ^(a) ESLs = Water Board Environmental Screening Levels (where groundwater <u>is/is not</u> a potential drinking water resource) (Water Board, 2013). ^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource.

NA = not analyzed

NLP = no level published


NS = not sampled

MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons - gasoline range

TEHd = total extractable hydrocarbons - diesel range

All contaminant concentrations are expressed in micrograms per liter (µg/L), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells. ORP = redox or oxidation reduction potential measured in millivolts (mV)

5.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of twelve site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene and ethylbenzene in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000, concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 1,000 µg/L of TVHg) is currently centered around wells MW-7, MW-9, and MW-11 which are in the downgradient area of the plume. However, prior to March 2010, the greatest contamination was observed in MW-2, the historical source area well.
- The contaminant plume has historically appeared neither stable and reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells, however the contaminants in upgradient source area MW-2 have showed a steady decrease since March 2010, with the

mid and downgradient areas of the plume (MW-7, MW-9 and MW-11 exhibiting the highest contaminant concentrations.

- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- First Semiannual 2014 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in four of the seven wells sampled and the ESL for TEHd in five of the seven wells. The ESL for benzene was exceeded in wells MW-9 and MW-11 in which it was detected. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled. Ethylbenzene was detected in wells MW-7, MW-8, MW-9, MW-10 and MW-11 but above the ESL in wells MW-7, MW-9 and MW-11. Total xylenes were detected in wells MW-7 and MW-9 but above the ESL only in well MW-9. MTBE was detected in wells MW-8, MW-10 and MW-8.
- The current March 2014 event showed an increase in contaminant concentrations in downgradient wells MW-7, MW-9 and MW-12. Well MW-7 contained both the maximum TVHg and TEHd concentrations in groundwater. The increase in contaminant concentrations in these wells suggests that contaminant has traveled downgradient during or after the PRB installation, and an insufficient time has elapsed to see a reduction in concentration compared to previous monitoring events.
- No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2014 sampling event.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

Continue to monitor and evaluate the PRB with sampling of key wells MW-7, MW-9, MW-11 and MW-12 for the additional site chemical parameters to track the effect of the oxygen release product utilization and to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.

- We recommend additional quarterly monitoring and sampling of key wells; MW-7, MW-9, MW-11 and MW-12 for analysis of TPH constituents and the additional site chemical parameters to assess the seasonal variations of the PRB effectiveness.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

6.0 **REFERENCES**

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. , Revised May 2013.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 2012. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. September.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Permeable Barrier Installation, and Annual Summary Report, Redwood Regional Park Service Yard Site, Oakland, California. January 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.

- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.

- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.

- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.

Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

10.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored			-	Gro	undwater E	levations	(feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
	561.03					532.31						
9/23/2011		543.54	539.52	(b)	530.81		534.34	536.41	533.59	534.67	534.85	534.86
3/22/2012	562.25	546.42	542.02	(b)	531.83	533.13	534.71	539.34	535.97	535.51	536.03	535.69
9/19/2012	560.93	541.83	537.53	(b)	530.6	531.91	533.55	534.88	532.95	534.33	534.17	534.17
3/14/2013	561.80	545.57	541.74	(b)	531.01	532.11	534.66	538.64	534.31	535.72	535.67	535.37
10/3/2013	560.95	541.01	536.21	(b)	530.02	531.14	532.74	533.74	531.89	532.54	533.08	533.06
3/10/2014	561.68	541.01	541.67	(b)	531.99	532.02	534.61	536.53	534.28	535.22	535.57	534.89

TOC = Top of well Casing(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Proje	ect # 1403	510 - BWI	_ Date	3/10/14	Client _	Stellar	
Site	7867	Redinal	DA LO	Jakland			

Well ID	Time	Well Size (in.)	Sheen / Odor	Thickness of Immiscible Liquid (ft.)		Depth to well bottom (ft.)	Surv Poi TOE (TO	nt: 3 or	Notes
MW-1	0832	4			4.15	19.18			
mw-2	0836	4			21,29	37.20			
mw-3	0912	4			19.14	45.00			
mw-5	0918	4			16.42	26.97			
MW-6	0925	2			13.41	27.44			
MW-7	0847-	2	ODOR		12,95	25:35			
MW-8	090Z	2			12.60	22.25			
MW-9	8856	2	ODOR		15.00	30.20			
MW-10	0842	2			12.00	28.40			
mw-11	0907	2			12.18	28.73			
MW-12	0851	2			9.78	20.80	1		
			1						
					MT				

WELLHEAD INSPECTION CHECKLIST

<u>.</u>

٠

Page ____ of ____

Client	Stellar				Date	3/1	0/14	
Site Address	7867 Re					•	•	
Job Number	140310-1	3101		Tech	nician	Bu		*****
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-1						X		
mw-z	X							
MW-3	X					,		
MW-5	X							
mw-6	X							
mw-7	Х							
MW-8						X		
mw-9	X							
MW-10						X		
MW-11	X							
MW-12						X		
				****		· · · · · · · · · · · · · · · · · · ·	· ·	
NOTES: MI	ul-1: Shad	oine him	na laval	1010	· ·	~	Sector Sector	The second s
NOTES: <u>Μι</u> Μω-8: 3/3	balts mise	sina , r	nw - 10	: 2/2 Ta	-bs St	rived, M	NW-12: 1/2	Tab broke
<u> </u>		<u> </u>				(1)		Martin 2010 Martin 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1
				с. 19. 19. р. – С. 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			·	·····		м <u>.</u>		
BLAINE TECH SERVICE		SAN JOSE SA	CRAMENTO	LOS ANGELES	SAN DIEC	SO SEATTLE		www.blainetech.com

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	PROJECT NAME 7867 Redwood Rd. Oakand PROJECT NUMBER 140310-BWI								
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS		
Myron - L Ultrameter II	6220709	3/10/14 @0635	PH 7,10,4 Cond 3900 mg/m	7.0,10.0,4.0 3900 Jan	oK	62.1°F	ŧ		
Hach 2100P Turbidimeter	BTS 00 Z	3/10/14 @0640	800 ntu	803 nta.	oE	~/4	E.		
YSI 550A Do Meter	BTS 001	3[0]14 @0650	100% DO	100%	ok	62.8°F	t.		
				r					
			``						

L

WELL MONITORING DATA SHEET

Project #:	- BW	(Client:	Ste	illar				
Sampler:	BW			Date:	3/10	114			
Well I.D.:	mw-	2		Well D	Jiameter	: 2 3 4	6 8		
Total Well	Depth (TD): 3	7.20	Depth to Water (DTW): 21.29					
Depth to Fr	ee Product	•	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	Thickn	less of F	ree Product (fee	et):		
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): (YSI) HACH					
DTW with	80% Rech	arge [(H	eight of Water	Colum	n x 0.20))+DTW]: 24	1.47		
Purge Method:	ailer Displaceme nersible		Waterra Peristaltic tion Pump	Well Diamete	Sampling Method: Other:	✓Disposable Bailer Extraction Port Dedicated Tubing			
$\frac{10.3}{1 \text{ Case Volume}}$	3 fied Volum	$\frac{1}{1000} = \frac{30.9}{\text{Calculated Vol}}$	_Gals. Jume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65			
TempCond.Time($^{\circ}$ For $^{\circ}$ C)pH(mS or μ S)(95)58.16.71782				1	bidity FUs)	Gals. Removed	Observations		
*	Dewate	ed O	lle O galle	ons					
1300	59.2	7.01	770	104	/				
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuated:	11.0		
Sampling Date: $3 \left(\frac{16}{14} \right)$ Sampling Time: (0	Depth to Wate	r: 29.54 (zhrs)		
Sample I.D.: MW-Z L					tory:	Kiff CalScience	• Other <u>C+T</u>		
Analyzéd for: TPH-G BTEX MTBE TPH-D				Oxygenates (5) Other: See COC					
EB I.D. (if applicable): [@]				Duplic	ate I.D.	(if applicable):			
Analyzed for: TPH-G BTEX MTBE TPH-D				Oxygena	ates (5)	Other:			
D.O. (if req'd): Pre-purge:				^{mg} /L	Р	ost-purge:	4.10 mg/L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	Р	ost-purge:	-Zg mV		

WELL	MONITORING	DATA	SHEET

r			•						
Project #:	14031	0 - BW	1	Client:	Ste	llar	Hanna an Anna Anna Anna Anna Anna Anna A		
Sampler:	BW			Date:	31	10/14			
Well I.D.:	mω	-7		Well I	Diameter	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	6 8	
Total Well	Depth (TE): Z	5.35	Depth to Water (DTW): 12.95					
Depth to Fr	ee Product	t:	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Thickr	ness of F	ree Product	(fee	t):	
Referenced	to:	PVC	Grade		/leter (if		· · · · · ·	YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 15,43					
-	Bailer Disposable E Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump			ther:	Bailer XDisposable Bailer Extraction Port Dedicated Tubing	
2.0 ((1 Case Volume	Gals.) X Speci	<u>3</u> fied Volum	$\frac{1}{1} = \frac{6.0}{\text{Calculated Vc}}$	_ Gals. olume	<u>Well Diamete</u> 1" 2" 3"	0.04 0.16	<u>Well D</u> 4" 6" Other	iameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp (È or °C)	pH	Cond. (mS or µS)	1	bidity ГUs)	Gals. Remov	/ed	Observations	
1027	54.0	6.81	615	Z	88	2.0		ODOR /Sheen	
1029	54.7	6.82	572	710	006	4.0			
1033	54.8	6.83	560	710	00	6.0			
,								New York	
						· ·			
Did well dev	water?	Yes (No	Gallon	s actuall	y evacuated:	: (0.0	
Sampling D	ate: 3/1	0/14	Sampling Time	e: 104	0	Depth to W	ater	: 13,28	
Sample I.D.	: m	w-7	-	Labora	tory:	Kiff CalScie	ence	Other C+T	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: S	e e	Coc	
EB I.D. (if applicable): @					ate I.D. ((if applicable	e): [.]		
Analyzed for: TPH-G BTEX MTBE TPH-D					ates (5)	Other:			
D.O. (if req'	d): Pı	e-purge:		^{mg} /L	Р	ost-purge:	T	0.24 mg/L	
O.R.P. (if re	q'd): Pi	e-purge:		mV	Р	ost-purge:		-54 mV	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

.

255

WELL MONITORING DATA SHEET

[· · · · · · · · · · · · · · · · · · ·					
Project #:	140310-	BWI		Client:	Ste	lley			
Sampler:	BW			Date:	3/10	/14			
Well I.D.:	MW-S	3		Well D	ameter	: (2) 3 4	6 8		
Total Well	Depth (TD): 22	. 25	Depth to Water (DTW): 12.60					
Depth to Fr	ee Product	•	e	Thickn	less of F	ree Product (fe	et):		
Referenced	to:	(PVC)	Grade	1	leter (if		(YSI) HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)	+ DTW]:	14.53		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extra Electric Submersible Other				Waterra Peristaltic tion Pump	Well Diamete	Sampling Method Other	XDisposable Bailer Extraction Port Dedicated Tubing		
1.5 ((1 Case Volume	Gals.) X Speci	3 fied Volum	$\frac{4.5}{\text{Calculated Vo}}$	_Gals. Jume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time Temp Cond. (°For °C) pH (mS or µS)				1	bidity TUs)	Gals. Removed	Observations		
1157	57.0	7.11	794	710	00	1.5			
1201	57.2	7.09	501	70	000	3.0			
1264	57.0	7.06	803	7100	Ö	4.5			
ttttt						· · · · · · · · · · · · · · · · · · ·			
Did well dev	water?	Yes (Nø	Gallon	s actuall	y evacuated:	4.5		
Sampling Date: $3/10/14$ Sampling Time: (210) Depth to Water: 12.97									
Sample I.D.: $\mathcal{M}\mathcal{W}$ - S Laboratory: Kiff CalScience Other $C + T$									
Analyzed for: TPH-G BTEX MTBE TPH-D (Oxygenates (5) Other: See COC				
EB I.D. (if a	@ · Time	Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D				Oxygena	ates (5)	Other:			
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Р	ost-purge:	0.22 ^{mg} / _L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	Р	ost-purge:	-68 mV		

WELL MONITORING DATA SHEET

[
Project #:	140310	- BWI	******	Client:	Stel	ilar			
Sampler:	BW			Date:	3/10	5/14			
Well I.D.:	MW-	9		Well D	iameter	: 2 3	4	6 8	
Total Well	Depth (TD): 30	.20	Depth to Water (DTW): 15.00					
Depth to Fr	ee Product	- 6 - 6		Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd):		YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: /8,04					
Purge Method:		Waterra Peristaltic tion Pump	Well Diamete		ther:	Bailer XDisposable Bailer Extraction Port Dedicated Tubing			
<u>2.4</u> ((1 Case Volume	$\underline{}_{\text{nes}} = \underline{7, 2}$	Gals.	1" 2" 3"	0.04 0.16	4" 6" Other	0.65 1.47 radius ² * 0.163			
Time Temp Cond. (For °C) pH (mS or μ S)				Turb (NT	idity ʿUs)	Gals. Remov	ved	Observations	
121	55.0	6.93	846	7100	>0	2.5		ODOR/hight Sheen	
1126	55.6	6.94	827	>100	>0	5.0		•	
1132	55.8	6.94	823	7100	>0	7.5			
Did well dev	water?	Yes (No	Gallons	actuall	y evacuated:	: "	7.5	
Sampling Date: 3/10/14 Sampling Time: 1146 Depth to Water: 17,84									
Sample I.D.: $M \omega - \gamma$ Laboratory: Kiff					Kiff CalScie	ence	Other C+T		
Analyzed for: TPH-G BTEX MTBE TPH-D C				Oxygena	tes (5)	Other: 5	, se e	$c\alpha$	
EB I.D. (if applicable):				Duplica	te I.D. ((if applicable	e): '		
Analyzed for: TPH-G BTEX MTBE TPH-D				Oxygena	tes (5)	Other:			
D.O. (if req'd): Pre-purge:				^{mg} / _L Post-purge: 0,22			0,22 mg/L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	P	ost-purge:		-66 mV	

		(•	ELL MONIT	ORING	DATA	SHEET		
Project #:	140310-	Bui		Client:	51	ellar		
Sampler:	BW			Date:	3/	10/14		
Well I.D.:	MW -(0		Well Diameter: 2 3 4 6 8				
Total Well	Depth (TD): ZS	.40	Depth to	Wate	r (DTW): (2,	00	
Depth to Fr	ee Product	:	,	Thickne	ss of F	ree Product (fe	et): —	
Referenced	to:	(PVC)	Grade	D.O. Me	eter (if	req'd): (YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column 2	x 0.20)) + DTW]:	5.28	
•	Bailer Disposable B Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump		Sampling Method	XDisposable Bailer Extraction Port Dedicated Tubing	
2.6	Gals.) X	3	= 7.8	^w	ell Diamete	0.04 4"	Diameter Multiplier 0.65	
1 Case Volume	ر fied Volum		_Gals.	2" 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163		
Time	Temp (°F or °C)	pH	Cond. (mS or µS)	Turbio (NTU	•	Gals. Removed	Observations	
(007	57.2	7.03	849	721		3.0		
1011	56.8	7.21	797	7100	Ó	6.0		
1016	56.6	7.29	791	71000	>	8.0		
			******				ORP - + 25mV	
						·	DO: 0.68 mg/L	
Did well de	water?	Yes (No')	Gallons a	actuall	y evacuated:	8.0	
Sampling D	ate: 3/10	14	Sampling Time	e: 10Z	0	Depth to Wate	r: 14.32	
Sample I.D.	: mu	1-10		Laborato	ry:	Kiff CalScience	e Other <u>C+</u> T	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenate	es (5)	Other: 5	e coc	
EB I.D. (if a	pplicable)	•	@ · Time	Duplicate	e I.D. ((if applicable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenate	es (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	P	ost-purge:	0.68 mg/L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Р	ost-purge:	0.68 mg/L +25mV mV	

VELL	MONITORING	DATA	SHEET

Γ			······					
Project #:	140310	<u>) - Bw</u>		Client:	Stell	lar		
Sampler:	BW			Date:	Date: $3/10/14$			
Well I.D.:	MW-1	il	1	Well Dia	ameter:	2 3 4	6 8	
Total Well	Depth (TD	り): 28		Depth to	Water	(DTW): 12.0	8	
Depth to Fr	ee Product	t:		Thicknes	ss of Fi	ree Product (fe	et):	
Referenced	to:	PVC	Grade	D.O. Me			YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column 3	x 0.20)	+DTW]: /	5.49	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	'ell Diameter	Sampling Method Other: r Multiplier Well 1	Disposable Bailer Extraction Port Dedicated Tubing	
2.7 ((1 Case Volume	Gals.) X Speci	3 ified Volum	$\frac{1}{1} = \frac{5}{Calculated Vol}$	_Gals. Jume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47	
Time	Temp (°F or °C)	pH	Cond. (mS or (µS))	Turbid (NTU	-	Gals. Removed	Observations	
1226	55.7	6.74	670	384	(]	3.0		
1231	55.9	6.71	634	412		6.0		
1236	56.0	672	629	488		8.5		
Did well dev	water?	Yes (No	Gallons a	actually	y evacuated:	8-5	
Sampling Da	ate: 3/10	0/14	Sampling Time	: 1240	•	Depth to Wate	r: 12.39	
Sample I.D.:	: mw	~[[Laborato	ry:	Kiff CalScience	other C+T	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:	See COC	
EB I.D. (if a	pplicable)	•	@··· Time	Duplicate	= I.D. (if applicable):		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:		
D.O. (if req'o	d): Pr	re-purge:		^{mg} /L	Po	ost-purge:	0.23 mg/L	
O.R.P. (if re	q'd): Pr	re-purge:		mV	Pc	ost-purge:	-56 mV	

WELL MONITORING DATA SHEET

ſ									
Project #:	140310 -	BWI		Client: Steller					
Sampler:	BW			Date:	3/1	0/14			
Well I.D.:	MW-	12		Well I	Diameter	:(2) 3	4	6 8	
Total Well 1	Depth (TD): 2(0.80	Depth	to Wate	r (DTW):	9	78	
Depth to Fre	ee Product	- e		Thickr	ness of F	ree Product	(fee	.t):	
Referenced	to:	(PVC)	Grade		Aeter (if	······	<u>`</u>	YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	11	1,98	,
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	;		Other:	Bailer X Disposable Bailer Extraction Port Dedicated Tubing	······································
1.8 (- - 1 \ xr	3	= 5:4	~ .	1" 2"	0.04 0.16	4" 6"	0.65 1.47	
1 Case Volume	Gals.) X Speci	fied Volun		_ Gals. olume	3"	0.37	Other	radius ² * 0.163	
Time	Temp (°For °C)	pH	Cond. (mS or µS)	1	bidity TUs)	Gals. Remo	oved	Observations	
1047	54.3	6.91	681	710	00	2.0			
1051	54.5	6.89	674	>10	W	4.0			
1055	54.7	6.87	668	7/00	0	5.5			
÷.				-					
Did well dev	water?	Yes (No	Gallon	s actuall	y evacuated	l:	5.5	
Sampling Da	ate: 3/10	5/14	Sampling Time	e: ///	0	Depth to W	Vater	: 10.24	
Sample I.D.	: mw	1-12		Labora	tory:	Kiff CalSc	ience	Other C+T	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: <	See	Coc	
EB I.D. (if a	pplicable)	•	@ · Time	Duplic	ate I.D.	(if applicab)	le): [.]	an para da se a	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	·····		
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Р	ost-purge:		0.23	^{mg} /L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Р	ost-purge:		-40 1	mV

		*	ELL MONIT	ORING	G DATA	Shee]	Г	
Project #:	140310	-BWI		Client:	Stel	lar		
Sampler:	BW			Date:	3/10	1		
Well I.D.:	SW-	Z		Well D	Diameter	: 2 3	4	6 8
Total Well	Depth (TD):	· .	Depth	to Water	r (DTW)	•	
Depth to Fr	ee Product			Thickn	ness of F	ree Prod	uct (fee	et):
Referenced	to:	PVC	Grade	D.O. N	Aeter (if	req'd):	(YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Colum	1 x 0.20)	+ DTW]:	:
Purge Method:	Bailer Disposable H Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump		Sampling	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Pole + Ladre - disp
1 Case Volume	Gals.) X Speci	fied Volum	$\frac{1}{\text{mes}} = \frac{1}{\text{Calculated Vo}}$	_Gals. Dume	Well Diamete 1" 2" 3"	<u>r Multiplier</u> 0.04 0.16 0.37	Well D 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time 320	Temp (°F or °C) 54.8	рН 7.75	Cond. (mS of µS) 468	1	bidity FUs)	Gals. Re	moved	Observations
				· · ·		· · · ·		
Did well de	water?	Yes	No	Gallon	s actuall	y evacua	ted: 9	2
Sampling D	ate: 3/10	114	Sampling Time	e: [3	20	Depth to	Water	:: Ø
Sample I.D.	: Św	- 2		Labora	tory:	Kiff Ca	IScience	Other $\underline{C + T}$
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	See	COL
EB I.D. (if a	pplicable)	•	@ . Time	Duplic	ate I.D. ((if applic	able):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	• • •	Other:		
D.O. (if req'	d): Pr	e-purge:	· · · · · · · · · · · · · · · · · · ·	^{mg} /L	Р	ost-purge:		4.27 mg/L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:		= mV

L MONITORING DATA SHE

Project #:	140310	s - Bh	51	Clien	t: 31	tellar			
Sampler:	BW)		Date:	3/10	tellar >/14			
Well I.D.:	SW	- 3		Well	Well Diameter: 2 3 4 6 8				
Total Well	Depth (TI	D):		Depth	to Wate	r (DTW):			
Depth to F1	ree Produc	t:		Thick	ness of F	Free Produc	ct (fe	et):	
Referenced	to:	PVC	Grade	D.O. 1	Meter (if	req'd):		YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	r Colum	ın x 0.20) + DTW]:			
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme	ent Extra Other	Waterr Peristalti ction Pumj	c p -		Other:	Disposable Bailer Extraction Port Dedicated Tubing Pole + disp ladle	
1 Case Volume	Gals.) X Speci	fied Volun	${\text{Calculated V}}$	Gals.	Well Diamete 1" 2" 3"	er <u>Multiplier</u> 0.04 0.16 0.37	Well I 4" 6" Other	Diameter Multiplier 0.65 1.47 - radius ² * 0.163	
Time 1340	Temp (°F°) °C) 54.9	_{рн} 7.56	Cond. (mS or µS) 466	(N	bidity TUs) &	Gals. Rem	oved	Observations	
Did well dev	water?	Yes	No	Gallon	s actually	y evacuate	d:	Ø	
Sampling D	ate: 3/10	/14	Sampling Tim	e: 134	0	Depth to V	Vate	r: Ø	
Sample I.D.	: Sh)-3		Labora	tory:	Kiff CalSo	cience	Other C+T	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	n Ver	COC	
EB I.D. (if a	pplicable)	*	@ Time	Duplic	ate I.D. (if applicab			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen		Other:			
D.O. (if req'	d): Pr	e-purge:	NERLE NAVEZ DE L'ALTRE LE DE LE D	mg/L	Po	ost-purge:		4, 88 ^{mg} /L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Рс	ost-purge:	 	+16 mV	

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 254257 ANALYTICAL REPORT

Stellar Environmental SolutionsProject : 2013-02.2198 6th StreetLocation : Redwood Regional ParkBerkeley, CA 94710Level : II	
--	--

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	254257-001
MW-7	254257-002
MW-8	254257-003
MW-9	254257-004
MW-10	254257-005
MW-11	254257-006
MW-12	254257-007
SW-2	254257-008
SW-3	254257-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tra

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

CA ELAP# 2896, NELAP# 4044-001

Date: <u>03/17/2014</u>

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 254257 Stellar Environmental Solutions 2013-02. Redwood Regional Park 03/10/14 03/10/14

This data package contains sample and QC results for nine water samples, requested for the above referenced project on 03/10/14. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High response was observed for MTBE in the CCV analyzed 03/12/14 03:33; affected data was qualified with "b". High surrogate recoveries were observed for bromofluorobenzene (FID) in a number of samples. High surrogate recovery was observed for bromofluorobenzene (PID) in MW-11 (lab # 254257-006). No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Biochemical Oxygen Demand (SM5210B):

High recoveries were observed for biochemical oxygen demand in the BS/BSD for batch 208868. No other analytical problems were encountered.

	a and Tomokine. Md. Wendod G Signenen Land Delikero. Mendod G Signenen Land Delikero. Mendod Signero. Mendod Signero.						Criairi or Cusiouy record	ゴン こ	n dnois			•		•		Lab job no.	5/10/14
Addres State manual State manual State manual Test constrained State manual State manual State manual Test constrained State manual State manual State manual Test constrained State manual State manual State manual Propertition State manual State manual State manual State manual Propertition State manual State manual State manual State manual State manual Propertition State manual State manual<	Addres Exercision Symon No. Symon No. Symon No. Project Owner Early Transmission Symon No. Symon No. Symon No. Symon No. Project Owner Early Transmission Symon No. Symon No. Symon No. Symon No. Symon No. Project Owner Early Transmission Symon No. Symon No. <th>Laboratory <u>Curtis and Ton</u></th> <th>npkins. Ltd. ⁺</th> <th></th> <th></th> <th>Me</th> <th></th> <th>land Deli</th> <th>very</th> <th>1</th> <th></th> <th></th> <th></th> <th>``</th> <th></th> <th>Page 1</th> <th>4- ·</th>	Laboratory <u>Curtis and Ton</u>	npkins. Ltd. ⁺			Me		land Deli	very	1				``		Page 1	4- ·
Structure Structure Answer Structure Answer Answer <t< th=""><th>Claradic California Cal</th><th></th><th>fornia 94710</th><th></th><th></th><th>ਸ਼ਿ </th><th>ipment No.</th><th></th><th></th><th>1</th><th></th><th></th><th>-</th><th>~r</th><th></th><th></th><th></th></t<>	Claradic California Cal		fornia 94710			ਸ਼ਿ 	ipment No.			1			-	~r			
Project Owner East Bay Regional Fark Conto No. Conto No. <thconto no.<="" th=""> Conto No. <thcont <="" no.<="" td=""><td>Project Owner East Bay Regional Park Olstrict Cooler No. Telephone Kulturd Matchial Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number Zamplers (Signatura) (510) 644-3133 Project Number Zamplers (Signatura) (510) 644-3133 Project Number 2013-02 Samplers (Signatura) Project Number Umber No. (710) UU Project Number NUU - 1 NUV + No. Project Number NUU - 1 NUV + No. Project Number NUV + No. NVV + No. Project Number NVV + No. NVV + No. Project</td><td>510-486-0900</td><td></td><td></td><td></td><td>Air</td><td>bill No.</td><td></td><td></td><td>I</td><td></td><td><u> </u></td><td></td><td>8</td><td>d</td><td></td><td><u> </u></td></thcont></thconto>	Project Owner East Bay Regional Park Olstrict Cooler No. Telephone Kulturd Matchial Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number Zamplers (Signatura) (510) 644-3133 Project Number Zamplers (Signatura) (510) 644-3133 Project Number 2013-02 Samplers (Signatura) Project Number Umber No. (710) UU Project Number NUU - 1 NUV + No. Project Number NUU - 1 NUV + No. Project Number NUV + No. NVV + No. Project Number NVV + No. NVV + No. Project	510-486-0900				Air	bill No.			I		<u> </u>		8	d		<u> </u>
Review of Road Freque Name	Project Name Factor Rectinant Marketisi Sile Address 7867 Relevood Read Project Name 7867 Relevood Regional Park Project Name Version Projon Version Proje		Regional Park	Distric	, ,	8 	oler No.			1			2	ろ	100		
Instant Telebrore Model Telebrore Model <td>Display Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number 2013-02 Samplers: (5gmatter) Each No. (510) 644-3133 (510) 644-314 (510) 644-314 (510) 644-313 (510) 644-313 (510) 644-313 (510) 644-313 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314</td> <td>1</td> <td>vood Road</td> <td></td> <td></td> <td>ا م</td> <td>oject ManagerRich</td> <td>nard Mak</td> <td>disi</td> <td>1</td> <td>~</td> <td>Sibula</td> <td>17</td> <td>3</td> <td></td> <td>/ / / /</td> <td></td>	Display Telephone No. (510) 644-3133 Telephone No. (510) 644-3133 Project Number 2013-02 Samplers: (5gmatter) Each No. (510) 644-3133 (510) 644-314 (510) 644-314 (510) 644-313 (510) 644-313 (510) 644-313 (510) 644-313 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314 (510) 644-314	1	vood Road			ا م	oject ManagerRich	nard Mak	disi	1	~	Sibula	17	3		/ / / /	
Project Name Fax No. Gill Gill Gill Gill Gill Gill Gill Gill	Policie Hanne Feak No. (510) 644-3859 Policie Hanne Feak No. (510) 644-3859 Policie Hanne Policie Hanne <td>1</td> <td>California</td> <td></td> <td></td> <td>ة 1 </td> <td>ephone No. (510) 644</td> <td>4-3123</td> <td></td> <td>1</td> <td>0010111</td> <td>Contra</td> <td>2</td> <td>1</td> <td></td> <td>/ /</td> <td></td>	1	California			ة 1	ephone No. (510) 644	4-3123		1	0010111	Contra	2	1		/ /	
Project Number Surplice: (Signature)	Project Number 2013-02 Samplers: (Signature) Samplers: (Signa		Regional Park	~		Ea	x No. (510) 644	4-3859	(\ }			\prec			/ /	Remarks
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Field Sample Muniter Location Data Type T	Project Number 2013-02				Sai	:: (Signature) 🟒	New Y	Dar	<u> </u>		5-1	7 5		10 00 15 15 10 00 00 15 15	/ /	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Field Sample Number		Date	Time	Sample Type	Type/Size of Container	Pre	sservation Chemical			N N		\sim	× 12/12/	/	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	1	2/10/14	1300		MIX		HcL	—		7	17	N.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$mWU - 8$ $mU \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $mU \times C$ $m \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $mU \times C$ $m \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $m \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $m \times A$ $K \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $m \times A$ $K \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $5 \times + +$ $K \times A$ $mWU - 1c$ $M \times A$ $K \times A$ $5 \times + +$ <td>- MW</td> <td></td> <td></td> <td>OHO</td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>7</td> <td>+</td> <td>ナナナ</td> <td></td> <td></td>	- MW			OHO				X				7	+	ナナナ		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- MW			1210	3			HCL	<u> </u>	10	×	4				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				OHI	3			MIK		4	4	+	7-	イイイ		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				020	3			H CL	1	10	+	×				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				01771	З			MIX Ke	N	10	+	+				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SW-ZN/320WHCLN/5YYHSW-3V1340WVHCLN/5YYVSwareNNNNNNNNNNReinquistred MarkNNNNNNNNNNReinquistred MarkNNN				011	3			HCC.Je	2		+	4	Ł	+++		
S.W3 I-1740 W I-1CL M S I I N I I Retinuisined by: Data Retinuisined by: Data Retinuisined by: Data Received by: Signature Retinuisined by: Data Retinuisined by: Data Retinuisined by: Data Received by: Signature Prined Time Prined Time Prined Time Prined Prined Imacuna Time: Stallar Environmental/SG H15 Ocnpany Company Data Received by: Signature Imacuna Time: Stallar Environmental/SG H15 Ocnpany Company Data Received by: Signature Imacuna Time: Stallar Environmental/SG H15 Company Company Data Received by: Imacuna Time: Stallar Environmental/SG H15 Company Company Data Received by: Imacuna Time: Stallar Environmental/SG H15 Company Data Received by: Signature Imacuna Time: Stallar Environmental/SG H15 Company Company Company Data	S.W3 V 1740 W V H.C.L M K H Reinquished by Date Received by Date Received by N K K K Signature Mole Fined Time P K K K K Signature Mole Signature K K K K K K Printed Time Time P K K K K K Company Stellar Environmental/KS H K K K K K K Lunaround Time 5 Day TAT K Company Company Company K K K K Commans: Samples on ice K K K K K K K K Mole K K K K K K K K K K	2- MS			0261	3			HCL	~	4	4	4				
Relinquished Dig Date Relinquished Dig Relinquished Dig Date Received b; Signature Date Received b; Signature Time Signature Printed Dirition Date Printed Dirition Date Received b; Date Received b; Date Received b; Date Received b; Signature Printed Dirition Dirition Dirition Dirition Printed Company Company Statute Dirition Dirition Printed Dirition Printed Dirition Date Received b; Signature Signature Signature Signature Dirition Printed Printed Comments: Signature Signature Company Printed Printed	Reinquished by: Date Reinquished by: Date Reinquished by: Reinquished by: Date Reinquished by: Date Reinquished by: Signature Time Time Reinquished by: Date Reinquished by: Signature Time Time Reinquished by: Date Reinquished by: Printed Time Time Reinquished by: Date Reinquished by: Imacound Time: 5 Day TAT Company Company Company Company Imacound Time: 5 Day TAT No Company Signature Signature Comments: Samples on ice Signature Signature Signature Printed Company Company Company Company	5W-3		\mathbf{x}	OHEI	3	4		HCL	\mathbf{H}	4 V		+		-		
Refinduished Back Date Received br. Signature Joint Signature Signature Joint Signature Joint Signature Joint Signature Joint Signature Joint Signature Joint Printed Time Printed Date Received br: Signature Standles on ice Date Printed Time	Reinquished by: Date Bate Reinquished by: Signature X Date Herewed ty: Signature X Date Herewed ty: Printed X Signature X Printed X Date Herewed ty: Date Hit Printed Z Company Company C Y Company Stellar Environmental/B HV Company C Y Company Company C Timeround Time: 5 Day TAT Time Timeround Time: Stellar Environmental/B Finded Signature Stellar Environmental Finded Marcinet Signature Signature								-								
Reinquished by: Date Received by: Date Received by: Signature Signature Signature Signature Finded Time Printed Time Printed Time Printed Time Printed Time Printed Time Printed Time Printed Time Printed Time Printed Printed Company Stellar Environmental/SS H45 Company Company Stellar Environmental/SS H45 Company Company Stellar Environmental/SS Printed Printed Tumaround Time: 5 Day TAT Signature Signature Signature Signature Signature Signature Comments: Samples on ice Time Printed York Company Company Company	Reinquished by: Date Received by: Date Received by: Signature End End End End Printed Time Time Finted End Printed End End End End Company Stellar Environmental/Fig H45 Company Company Time Finted Environmental/Fig H45 Company Time Finted Environmental/Fig H45 Company Company Stellar Environmental/Fig H45 Company Company Time Stellar Environmental/Fig H45 Company Company Time Stellar Environmental/Fig Finted Finted Finted Stellar Environments Samples on ice Signature Company Stellar Environments Samples on ice Signature Finted																
Printed Printed Printed Time Printed Time Printed Printed Company Stellar Environmental/SF H45 Company Company Printed Printed Company Stellar Environmental/SF H45 Company Company Company Printed Tumacound Time: 5 Day TAT NA Company Date Relinquished by: Signature Comments: Samples on ice Signature Printed Time Printed X Shipes on ice Printed Company Company Company	Printed Time Time Printed Time Printed Company Stellar Environmental/SF H45 Company C4 T Company Stellar Environmental/SF H45 Company C4 T Tumaround Time: 5 Day TAT Company C4 C C Tumaround Time: 5 Day TAT Company C4 C C Tumaround Time: 5 Day TAT Signature Date Rec Comments: Samples on ice Signature Printed Time Printed Company Company Company Company	Relinquished by		Date Io/ref	Receiver Signat	ite i	Herry Start	L C Mo		- Hereit	4			Date			Date
Turnaround Time: 5 Day TAT Date Pelinquished by: Turnaround Time: 5 Day TAT Date Peceived by: Comments: Samples on ice Signature Signature X State Time Printed	Turnaround Time: 5 Day TAT Date Reinquished by: Date Reinquished by: Comments: Samples on ice Signature Printed Signature	Printed <u>Brian Wee</u> Stellar Environ	tes mental/85	Time T	Printe	a La								Ĕ	- <u>r</u>		I I I I I I I I I I I I I I I I I I I
Comments: Signature Signature Signature Signature Printed Printed Time Printed Company Company Company	Comments: Samples on ice Signature Signature Signature Signature Signature Signature Signature Signature	Turnaround Time: 5 Day TAT								Ä				Dat			Date
Frind Printed Printed Time Printed Company	Printed Printed Time F Company Company	Comments: Samples on i	ce						Signature	,					Signature		
Company	Compary Contriguent	* SHOLT	L crof	Me	Ч				Printed					Ē	<u> </u>		Time
									Company						Company		

X Stellar Environmental Solutions

ZT48 SIXIN SITEEI #ZUT, BETKEIEY, CA 94/TU

COOLER RECEIPT CHECKLIST

COOLER RECEIPT CHECKLIST
Login # 297257 Date Received 3/10/14 North
Client SES Date Received 3110/14 Number of coolers 2 Project REDWOOD REGITONAL PARK (201
Date Opened 310 By (print) (sign) (Sign) (\$2,000 By (print) (\$3,000 By (print)(\$3,000 By (print)(\$3,000 By (print)(\$3,000 By (print)(\$3,000 By (print)(\$3,000 By (print)
1. Did cooler come with a shipping slip (airbill, etc)
2A. Were custody seals present? 🗆 YES (circle) on cooler on samples 🔂 NO
2B. Were custody seals intact upon arrival? Date 3. Were custody papers dry and intact when received? YES NO 4. Were custody papers filled out properly (ink, signed, etc)? YES NO 5. Is the project identifiable from custody papers? (If so fill out top of form) YES NO 6. Indicate the packing in cooler: (if other, describe)
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C
Type of ice used: T Wet T Pluc/Cel T T T T T
\Box Samples Received on ice & cold without a temperature 11 - 1
Samples Received on ice & cold without a temperature blank; temp. taken with IR gun
 Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?YES NO If YES, what time were they transferred to freezer?YES NO 0. Are there any missing / extra samples?YES NO 10. Are there any missing / extra samples?YES NO 11. Are samples in the appropriate containers for indicated tests?YES NO 12. Are sample labels present, in good condition and complete?YES NO 13. Do the sample labels agree with custody papers?YES NO 14. Was sufficient amount of sample sent for tests requested?YES NO 15. Are the samples appropriately preserved?YES NO N/A 16. Did you check preservatives for all bottles for each sample?YES NO N/A 18. Did you change the hold time in LIMS for unpreserved VOAs?YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores?YES NO N/A 20. Are bubbles > 6mm absent in VOA samples?YES NO N/A 21. Was the client contacted concerning this sample delivery?YES NO N/A 21. Was the client contacted concerning this sample delivery?YES NO
COMMENTS

Rev 10; 11/11

_

<u>Sample pH</u>	: <2	>9	>12	<u>Other</u>
-002a b c d e f g h	[] [] [] [] [] []	[] [] [] [] [] [] []	[] [] [] [] [] []	
-004a b c d e f g h			[] [] [] [] [] []	
-007a b c d e f g h	[] [] [] [] []	[] [] [] [] [] [] []		

I

5 of 40

	Curtis &	Tompkins Labo	ratories An	alytical	Report	
Lab #: 2542 Client: Stel Project#: 2013	lar Environment	al Solutions	Location: Prep:		wood Regi 5030B	onal Park
Matrix: Units:	Water ug/L		Sampled: Received:		10/14 10/14	
Field ID: Type: Lab ID:	MW-2 SAMPLE 254257-001		Diln Fac: Batch#: Analyzed:	1.0 208 03/		
	alyte	Result		RL		Analysis
Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	. 2	320 Y ND ND ND ND ND ND ND		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8	021B 021B 021B 021B 021B 021B
Surr	rogate	%REC Limits	Analys	ais		
Bromofluorober Bromofluorober	nzene (FID)	128 77-128 123 75-132	EPA 8015B EPA 8021B	,10		
Field ID: Type: Lab ID:	MW-7 SAMPLE 254257-002		Diln Fac: Batch#: Analyzed:	1.0 208 03/		
	alyte	Result		RL		Analysis
Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	.2	7,500 Y ND ND ND 130 ND 2.0	С	50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8	021B 021B 021B 021B 021B
Surr	rogate	%REC Limits	Analys	sis		
Bromofluorober Bromofluorober		148 * 77-128 131 75-132	EPA 8015B EPA 8021B			
Field ID: Type:	MW-8 SAMPLE		Lab ID: Diln Fac:	254 1.0	257-003 00	
Analy		Result	RL		Analyzed	Analysis
Gasoline C7-C1 MTBE	12	79 Y 11 ND ND	50 2.0 0.50 0.50 0.50	208887 208887 208887	03/11/14 03/12/14 03/12/14 03/12/14 03/12/14	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		2.1 ND ND	0.50 0.50 0.50	208887	03/12/14 03/12/14	EPA 8021B EPA 8021B
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surr	rogate	ND ND %REC Limits	0.50 0.50 Batch# Analy	208887 208887 /zed	03/12/14 Analysi	EPA 8021B
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	nzene (FID)	ND ND	0.50 0.50	208887 208887 7 zed /14 EPA	03/12/14	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 5

	Curtis & Tompkins Labo	oratories Anal		
Lab #: Client: Project#:	254257 Stellar Environmental Solutions 2013-02.	Location: Prep:	Redwood Regional Park EPA 5030B	
Matrix: Units:	Water ug/L	Sampled: Received:	03/10/14 03/10/14	

Field ID: Type: Lab ID:	MW-9 SAMPLE 254257-004		Diln Fac: Batch#: Analyzed:	16.67 208887 03/12/14	
Ana	lyte	Result	RL		Analysis
Gasoline C7-C12	2	5,200 Y	830	EPA	8015B
MTBE		ND	33	EPA	8021B
Benzene		49 C	8	.3 EPA	8021B
Toluene		ND	8	.3 EPA	8021B
Ethylbenzene		420	8	.3 EPA	8021B
m,p-Xylenes		74	8		8021B
o-Xylene		9.0	8	.3 EPA	8021B

Surrogate	•	%REC	Limits	Analysis
Bromofluorobenzene	(FID)	122	77-128	EPA 8015B
Bromofluorobenzene	(PID)	121	75-132	EPA 8021B

Field ID: Type: Lab ID:	MW-10 SAMPLE 254257-005			Diln Fac: Batch#: Analyzed:	1.00 2088 03/3		
Anal	yte		Result		RL	Analysis	
Gasoline C7-C12		ND			50	EPA 8015B	
MTBE			3.7		2.0	EPA 8021B	
Benzene		ND			0.50	EPA 8021B	
Toluene		ND			0.50	EPA 8021B	
Ethylbenzene			0.51		0.50	EPA 8021B	
m,p-Xylenes		ND			0.50	EPA 8021B	
o-Xylene		ND			0.50	EPA 8021B	
		A – – – –					
Surro		%REC	Limits	Analy	sis		
Bromofluorobenz		125	77-128	EPA 8015B			
Bromofluorobenz	ene (PID)	125	75-132	EPA 8021B			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 5

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: Client: Project#:	254257 Stellar Environmental Solutions 2013-02.	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix:	Water	Sampled:	03/10/14
Units:	ug/L	Received:	03/10/14
Field ID:	MW-11	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	208848
Lab ID:	254257-006	Analyzed:	03/11/14

Analyte	Result	RL	Analysis
Gasoline C7-C12	3,000 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	13 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	34	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	166 *	77-128	EPA 8015B	
Bromofluorobenzene	(PID)	143 *	75-132	EPA 8021B	

Field ID: Type: Lab ID:	MW-12 SAMPLE 254257-007		Ba	atch#: 20	000 8887 /12/14	
A	nalyte	Res	ult	RL	Analysis	
Gasoline C7-0	C12	ND		50	EPA 8015B	
MTBE			2.8	2.0	EPA 8021B	
Benzene		ND		0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzene		ND		0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xylene		ND		0.50	EPA 8021B	
Su	rrogate	%REC Li	mits	Analysis		

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	117	77-128	EPA 8015B	
Bromofluorobenzene (PID)	116	75-132	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 5

	Curtis & T	ompkins Labo	oratories An	alytical	Report	
Lab #:	254257 Stellar Environmenta	l Solutiona	Location:		ood Regional Park 5030B	
Client: Project#:		I SOLUCIONS	Prep:	EPA	2030B	
Matrix:	Water		Sampled:	03/1	0/14	
Units:	ug/L		Received:	03/1	0/14	
Field ID: Type: Lab ID:	SW-2 SAMPLE 254257-008		Diln Fac: Batch#: Analyzed:	1.00 2088 03/1	48 2/14	
~ <u>1</u>	Analyte	Result		RL	Analysis	
Gasoline C	27-012	ND		50	EPA 8015B	
MTBE Benzene		ND ND		2.0 0.50	EPA 8021B EPA 8021B	
Toluene		ND ND		0.50	EPA 8021B EPA 8021B	
Ethylbenze	ne	ND		0.50	EPA 8021B EPA 8021B	
m,p-Xylene		ND		0.50	EPA 8021B	
o-Xylene	~	ND		0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	119	77-128	EPA 8015B	
Bromofluorobenzene (PID)	119	75-132	EPA 8021B	

Field ID: Type: Lab ID:	SW-3 SAMPLE 254257-009		Diln Fac: Batch#: Analyzed:	1.00 2088 03/1	
Ar	nalyte	Result		RL	Analysis
Gasoline C7-C	212	ND		50	EPA 8015B
MTBE		ND		2.0	EPA 8021B
Benzene		ND		0.50	EPA 8021B
Toluene		ND		0.50	EPA 8021B
Ethylbenzene		ND		0.50	EPA 8021B
m,p-Xylenes		ND		0.50	EPA 8021B
o-Xylene		ND		0.50	EPA 8021B
Sur	rrogate	%REC Limits	Analys	aia	

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	131 *	77-128	EPA 8015B	
Bromofluorobenzene	(PID)	129	75-132	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 4 of 5

		Tompkins Labo	ratories Ar	-	-	
Lab #: Client: Project#:	254257 Stellar Environmer 2013-02.	ntal Solutions	Location: Prep:		vood Regional Park 5030B	
Matrix: Units:	Water ug/L		Sampled: Received:		10/14 10/14	
Type: Lab ID: Diln Fac:	BLANK QC731188 1.000		Batch#: Analyzed:	2088 03/1	348 11/14	
	Analyte	Result		RL	Analysis	
Gasoline (MTBE Benzene Toluene Ethylbenze m,p-Xylene	ene	ND ND ND ND ND ND ND		50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
	Surrogate	%REC Limits	Analys	sis		
	Surrogate robenzene (FID) robenzene (PID)	%REC Limits 103 77-128 103 75-132	Analys EPA 8015B EPA 8021B	sis		
	robenzene (FID)	103 77-128	EPA 8015B	2088	387 12/14	
Bromofluor Type: Lab ID: Diln Fac:	robenzene (FID) robenzene (PID) BLANK QC731349 1.000 Analyte	103 77-128 103 75-132 Result	EPA 8015B EPA 8021B Batch#:	2088 03/1 RL	Analysis	
Bromofluo: Type: Lab ID:	robenzene (FID) robenzene (PID) BLANK QC731349 1.000 Analyte C7-C12 ene	103 77-128 103 75-132	EPA 8015B EPA 8021B Batch#:	2088 03/1	12/14	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 5 of 5

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	254257	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	208848				
Units:	ug/L	Analyzed:	03/11/14				
Diln Fac:	1.000						

Type:

BS

Lab

Lab ID: QC731185

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.32	113	74-132
Benzene	10.00	10.74	107	80-120
Toluene	10.00	9.595	96	80-120
Ethylbenzene	10.00	9.676	97	80-120
m,p-Xylenes	10.00	9.860	99	80-120
o-Xylene	10.00	9.683	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	96	75-132

Type:

BSD

Lab ID:

QC731186

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	12.00 b	120	74-132	6	36
Benzene	10.00	10.57	106	80-120	2	20
Toluene	10.00	9.706	97	80-120	1	20
Ethylbenzene	10.00	9.641	96	80-120	0	20
m,p-Xylenes	10.00	9.748	97	80-120	1	20
o-Xylene	10.00	9.550	96	80-120	1	20
Surrogate	%REC Limits					

Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	100	75-132	

b= See narrative
RPD= Relative Percent Difference
Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	254257	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2013-02.	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC731187	Batch#:	208848			
Matrix:	Water	Analyzed:	03/11/14			
Units:	ug/L					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	962.4	96	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	99	77-128

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 254257		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B			
Project#: 2013-0	2.	Analysis:	EPA 8015B			
Field ID:	MW-2	Batch#:	208848			
MSS Lab ID:	254257-001	Sampled:	03/10/14			
Matrix:	Water	Received:	03/10/14			
Units:	ug/L	Analyzed:	03/12/14			
Diln Fac:	1.000					

Туре:	MS			Lab ID:	QC731189		
I	nalyte	MSS R	esult	Spiked	Result	%REC	Limits
Gasoline C7	7-C12	3	19.0	2,000	2,366	102	74-120
	1	%REC	Limits				
	Surrogate	%REC					
Bromofluoro	obenzene (FID)	123	77-128				

Type:	MSD			Lab ID:	QC	2731190			
			a 11 1		D a 1	0.550			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		2,406	104	74-120	2	27
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	135 *	77-128						

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	254257	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2013-02.	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	208887				
Units:	ug/L	Analyzed:	03/12/14				
Diln Fac:	1.000						

Type:

BS

Lab

Lab ID: QC731346

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.993	100	74-132
Benzene	10.00	10.17	102	80-120
Toluene	10.00	9.241	92	80-120
Ethylbenzene	10.00	9.504	95	80-120
m,p-Xylenes	10.00	9.352	94	80-120
o-Xylene	10.00	9.182	92	80-120

Surro
Bromofluorobenz

Type:

BSD

Lab ID:

QC731347

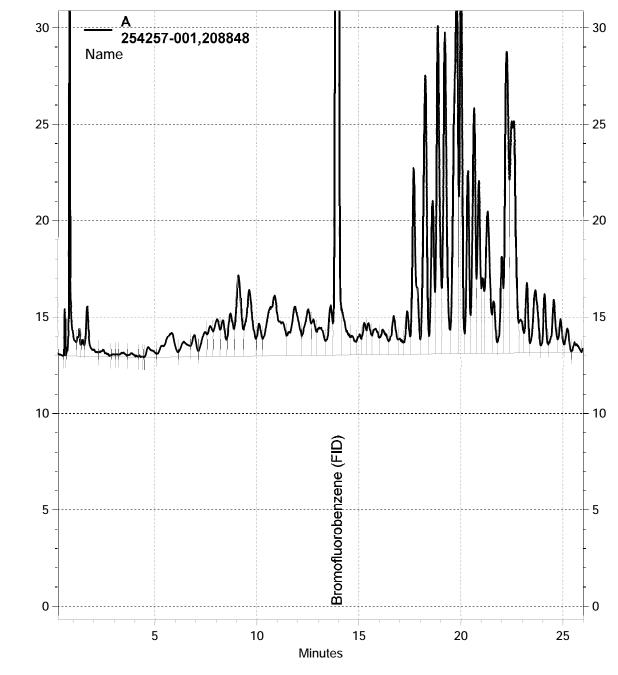
10.00 10.00	10.77 10.40	108 104	74-132 80-120	8	36
		104	80-120	2	~ ~
10 00			00 120	2	20
10.00	9.576	96	80-120	4	20
10.00	9.680	97	80-120	2	20
10.00	9.492	95	80-120	1	20
10.00	9.383	94	80-120	2	20
	10.00 10.00	10.009.68010.009.49210.009.383	10.009.6809710.009.4929510.009.38394	10.009.6809780-12010.009.4929580-12010.009.3839480-120	10.009.6809780-120210.009.4929580-120110.009.3839480-1202

Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	99	75-132	

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	254257	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2013-02.	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC731348	Batch#:	208887			
Matrix:	Water	Analyzed:	03/12/14			
Units:	ug/L					

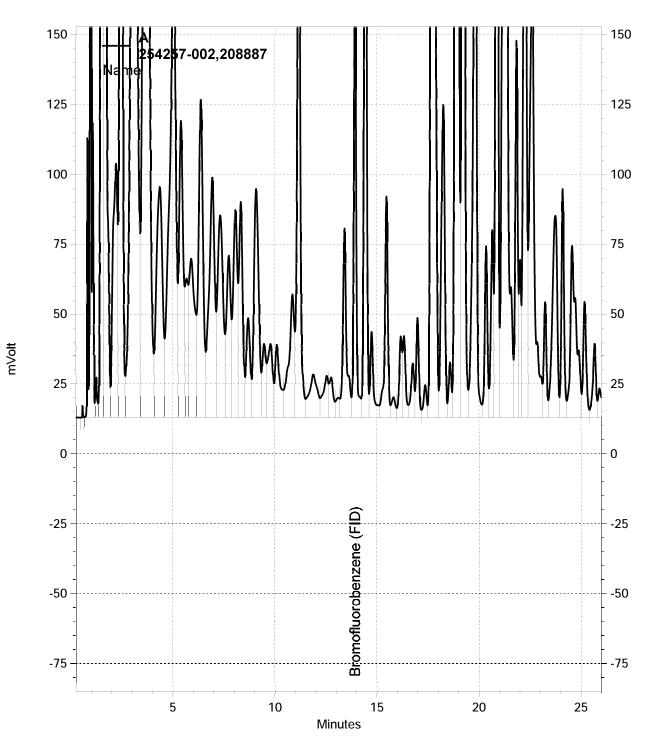
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	966.0	97	80-120

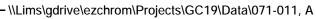
Surrogate	%REC	Limits
Bromofluorobenzene (FID)	99	77-128

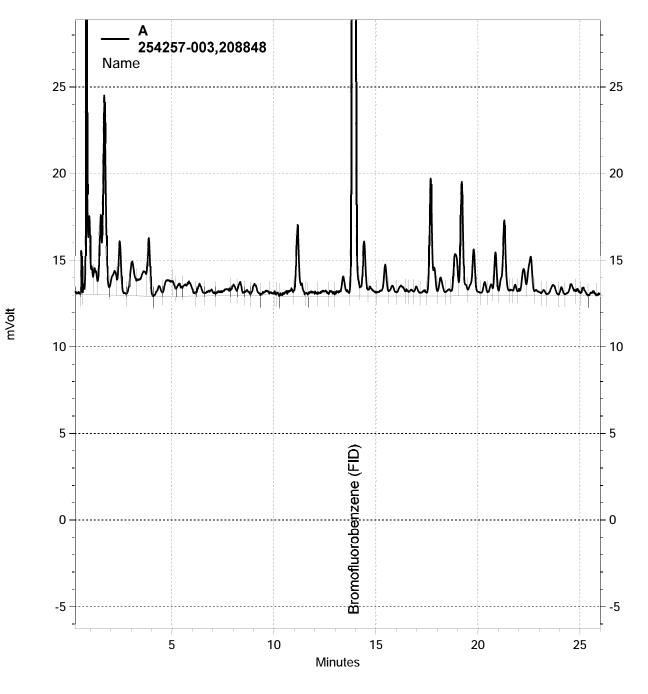


Curtis & Tompkins Laboratories Analytical Report								
Lab #: 254257		Location:	Redwood Regional Park					
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B					
Project#: 2013-0	2.	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZ	Batch#:	208887					
MSS Lab ID:	254259-001	Sampled:	03/10/14					
Matrix:	Water	Received:	03/10/14					
Units:	ug/L	Analyzed:	03/13/14					
Diln Fac:	1.000							

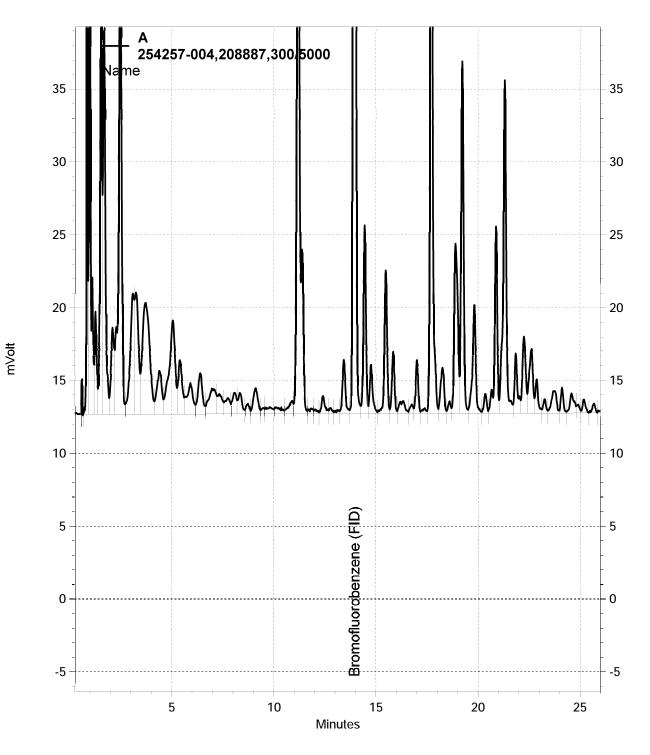
Туре:	MS			Lab ID:	QC731393		
	Analyte	MSS Re	sult	Spiked	Result	%REC	Limits
Gasoline	C7-C12	1,7	49	2,000	3,548	90	74-120
	Surrogate	%REC	Limits				
Bromofluo	robenzene (FID)	132 *	77-128				

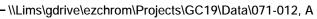

Type:	MSD			Lab ID:	Q	C731394			
			-						-
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		3,922	109	74-120	10	27
	Surrogate	%REC	Limits						
Bromoflu	orobenzene (FID)	144 *	77-128						

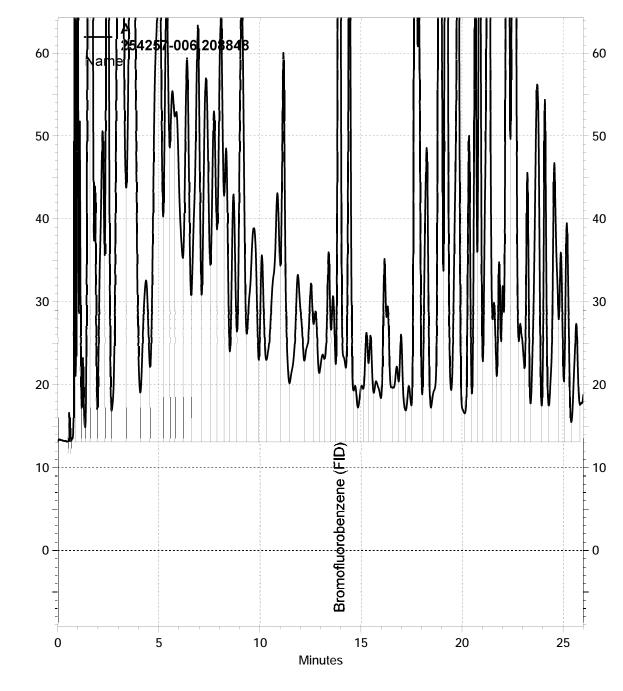

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1


mVolt

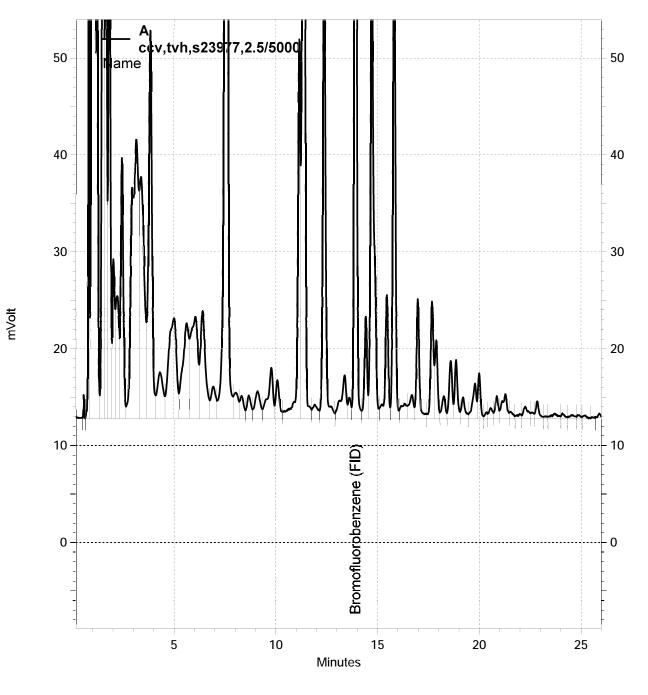
mVolt






mVolt

\Lims\gdrive\ezchrom\Projects\GC19\Data\070-016, A

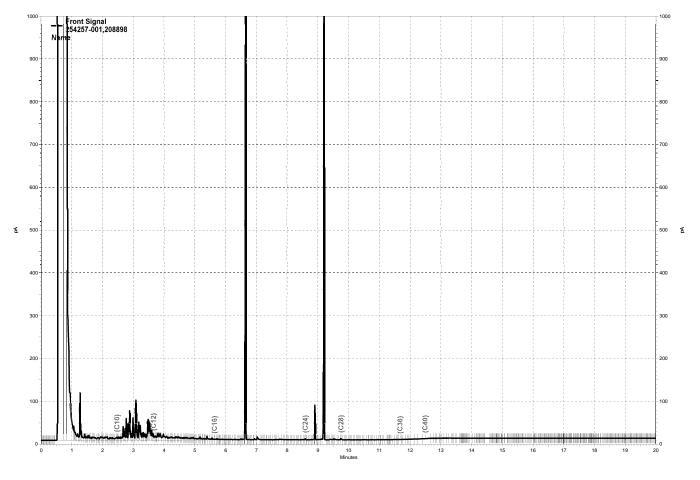


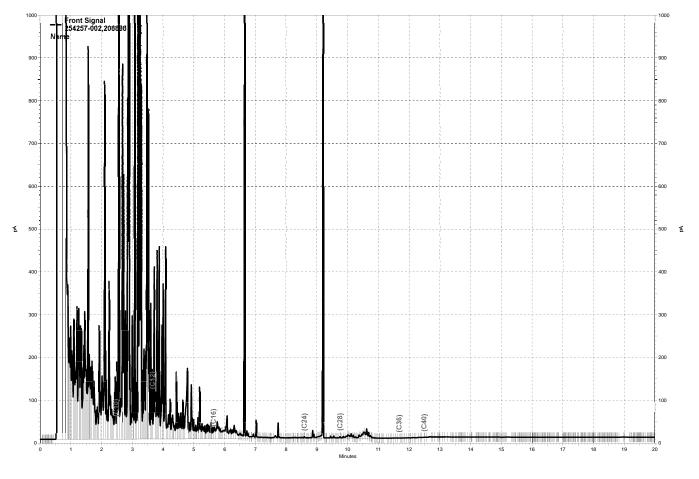
\Lims\gdrive\ezchrom\Projects\GC19\Data\070-019, A

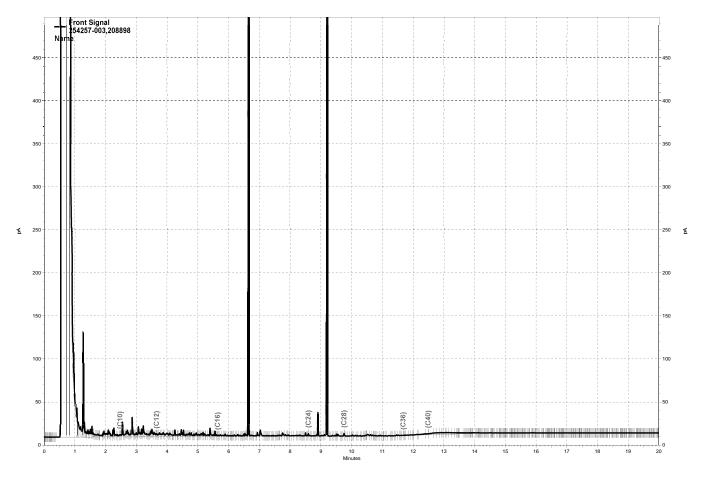
mVolt

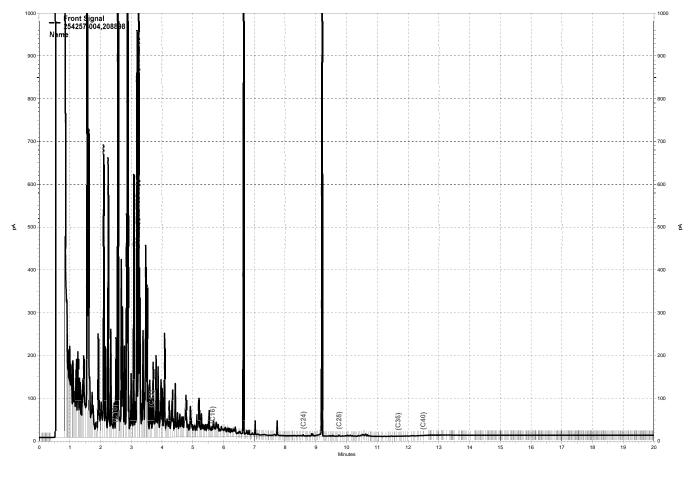
21 of 40

\Lims\gdrive\ezchrom\Projects\GC19\Data\070-007, A

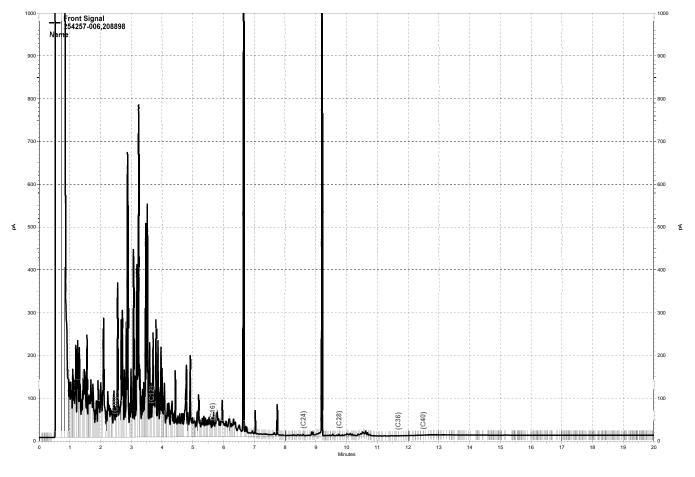

		Total 1	Extracta	able Hydroc	arbo	ns
Tab #1	254257			Location:		
Lab #: Client: Project#:	Stellar Environment	tal Solut	cions	Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units:	Water			Sampled: Received:		03/10/14 03/10/14
Diln Fac:	ug/L 1.000			Prepared:		03/12/14
Batch#:	208898			Analyzed:		03/13/14
Field ID:	MW-2			Lab ID:		254257-001
Type:	SAMPLE					231237 001
	Analyte		Result		RL	
Diesel C10			290		49	
	Surrogate	%REC	Limits			
o-Terpheny		115	66-129			
Field ID:	MW-7			Lab ID:		254257-002
Type:	SAMPLE			Lab ID.		234237-002
	Analyte		Result		RL	
Diesel Cl(4,900		49	
	Surrogate	%REC	Limits			
o-Terpheny		112	66-129			
	N#1 0			T 1 TD.		
Field ID: Type:	MW-8 SAMPLE			Lab ID:		254257-003
			Pogul+		RL	
Diesel Cl(Analyte		Result 120		49	
	Surrogate	%REC	Limits			
o-Terpheny		108	66-129			
				- 1		
Field ID: Type:	MW-9 SAMPLE			Lab ID:		254257-004
-72-			D1+			
Diesel C10	Analyte D-C24		Result 3,100		RL 49	
	Surrogate	%REC				
o-Terpheny		110	66-129			
Field ID: Type:	MW-10 SAMPLE			Lab ID:		254257-005
-120-						
Diesel C10	Analyte		Result 87		RL 49	
		•				
o-Terpheny	Surrogate /l	%REC 115	Limits 66-129			
C LOIPHON	<i>c</i> =					

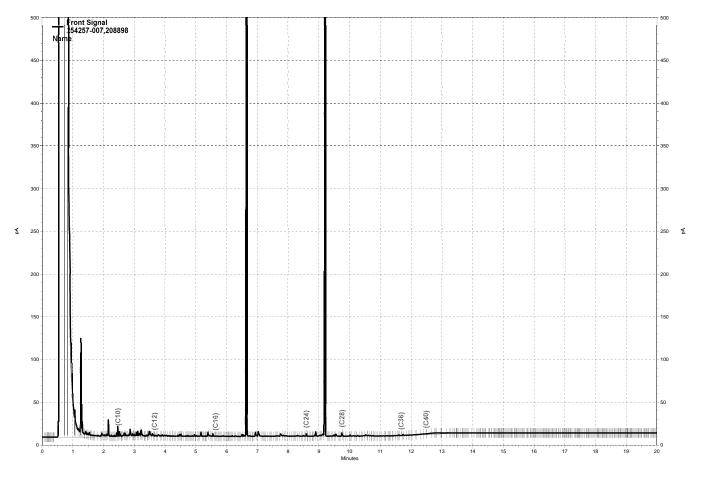

		Total E	vtraata	ble Hydroc	arhor	
T - 1		IULAI E	ALLACIA		arbor	
Client:	254257 Stellar Environment	al Solut	ions	Location: Prep:		Redwood Regional Park EPA 3520C
Project#:	2013-02.			Analysis:		EPA 8015B
Matrix: Units:	Water ug/L			Sampled: Received:		03/10/14 03/10/14
Diln Fac:	1.000			Prepared:		03/12/14
Batch#:	208898			Analyzed:		03/13/14
	NATET 11			Tab TD:		
Field ID: Type:	MW-11 SAMPLE			Lab ID:		254257-006
-71						
Diesel ClC	Analyte		Result 2,800		RL 49	
					15	
o-Terpheny	Surrogate	%REC 124	Limits 66-129			
0 rerpheny	Υ <u>Τ</u>	121	00 127			
Field ID:	MW-12			Lab ID:		254257-007
Type:	SAMPLE					
	Analyte		Result		RL	
Diesel C10)-C24		62		49	
	Surrogate	%REC	Limits			
o-Terpheny	vl	115	66-129			
Field ID:	SW-2			Lab ID:		254257-008
Type:	SAMPLE					
	Analyte		Result		RL	
Diesel ClC	J-C24	ND			49	
	Surrogate	%REC				
o-Terpheny	r⊥	123	66-129			
Field ID:	SW-3			Lab ID:		254257-009
Type:	SAMPLE			Lab ID.		234237-009
	Ame last e				DT	
Diesel C10	Analyte	ND	Result		RL 50	
o-Terpheny	Surrogate	<u>%REC</u> 116	Limits 66-129			
C rerpicity	-	±±0	JJ 10/			
Type:	BLANK			Lab ID:		QC731404
	Apolato				ът	
Diesel C10	Analyte	ND	Result		RL 50	
o-Terpheny	Surrogate	<u>%REC</u> 101	Limits 66-129			
			hh-1/9			

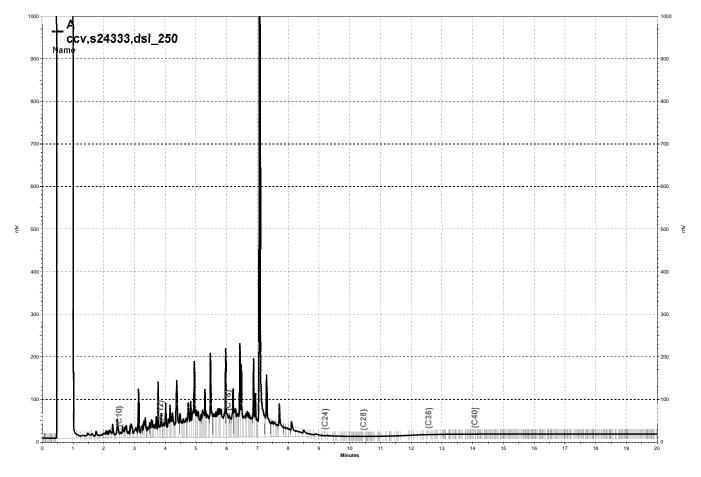

	Т	otal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	254257			Location:	Redwood Regio			
Client: Stellar Environmental		l Solut	cions	Prep:	EPA 3520C			
Project#:	2013-02.			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	208898			
Units:	ug/L			Prepared:	03/12/14			
Diln Fac:	1.000			Analyzed:	03/13/14			
Type: Lab ID:	BS QC731405			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel Cl	0-C24		2,500	1,631	65	61-120		
	Surrogate	%REC	Limits					
o-Terphen	yl	98	66-129					
Type: Lab ID:	BSD QC731406			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel Cl	0-C24		2,500	1,695	68	61-120	4	45
	Surrogate	%REC	Limits					
o-Terphen	yl	100	66-129					


-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a007.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a008.dat, Front Signal


-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a009.dat, Front Signal


-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a010.dat, Front Signal


-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a011.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a012.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\072a013.dat, Front Signal

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\072a004, A

	Curtis & To	ompkins Labo	ratories Ana	lytical Report	
Lab #:	254257		Location:	Redwood Regional Park	
Client:	Stellar Environmental	Solutions	Prep:	METHOD	
Project#:			Analysis:	EPA 300.0	
Matrix:	Water		Batch#:	208771	
Units:	mg/L		Received:	03/10/14	
Diln Fac:	-		neocryca	00,10,11	
Field ID:	MW-7		Sampled:	03/10/14 10:40	
Type:	SAMPLE		Analyzed:	03/10/14 16:42	
Lab ID:	254257-002				
	Analyte	Result		RL	
Nitrogen, Nitrate		ND		0.05	
Sulfate		25		0.50	
Field ID:	MW-9		Sampled:	03/10/14 11:40	
Type:	SAMPLE		Analyzed:	03/10/14 17:37	
Lab ID:	254257-004		mary 2cu	03/10/11 1/13/	
	251257 001				
	Analyte	Result		RL	
Nitrogen,		ND		0.05	
Nitrogen, Sulfate					
		ND		0.05	
		ND	Sampled:	0.05	
Sulfate	Nitrate	ND	Sampled: Analyzed:	0.05 0.50	
Sulfate Field ID:	Nitrate MW-12	ND		0.05 0.50 03/10/14 11:10	
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE	ND		0.05 0.50 03/10/14 11:10	
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE 254257-007 Analyte	ND 32		0.05 0.50 03/10/14 11:10 03/10/14 18:41	
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 254257-007 Analyte	ND 32 Result		0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL	
Sulfate Field ID: Type: Lab ID: Nitrogen,	Nitrate MW-12 SAMPLE 254257-007 Analyte	ND 32 Result ND		0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL 0.05	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate	ND 32 Result ND	Analyzed:	0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL 0.05 0.50	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate BLANK	ND 32 Result ND		0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL 0.05	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate	ND 32 Result ND	Analyzed:	0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL 0.05 0.50	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate BLANK QC730890 Analyte	ND 32 Result ND	Analyzed: Analyzed:	0.05 0.50 03/10/14 11:10 03/10/14 18:41 RL 0.05 0.50	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate BLANK QC730890 Analyte	ND 32 Result ND 24	Analyzed: Analyzed:	0.05 0.50 03/10/14 11:10 03/10/14 18:41 0.05 0.50 03/10/14 12:34	
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 254257-007 Analyte Nitrate BLANK QC730890 Analyte	ND 32 Result ND 24 Result	Analyzed: Analyzed:	0.05 0.50 03/10/14 11:10 03/10/14 18:41 0.05 0.50 03/10/14 12:34 RL	

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	254257	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2013-02.	Analysis:	EPA 300.0				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC730891	Batch#:	208771				
Matrix:	Water	Analyzed:	03/10/14 13:02				
Units:	mg/L						

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	1.013	101	80-120
Sulfate	10.00	9.914	99	80-120

	Curtis & '	fompkins Labor	atories Anal	ytical	Report			
	254257		Location:	Redwo	ood Regior	nal Park		
Client:	Stellar Environmenta	al Solutions	Prep:	METHO	DD			
Project#:	2013-02.		Analysis:	EPA 3	300.0			
Field ID:	MW-7		Diln Fac:	5.000)			
MSS Lab ID	: 254257-002		Batch#:	20877	71			
Matrix:	Water		Sampled:	03/10)/14 10:40	C		
Units:	mg/L		Received:	03/10	0/14			
Type: Lab ID:	MS QC731015 Analyte	MSS Result	Analyzed: Spiked		L/14 05:4: Result	l %REC	Lim	its
Nitrogen, 1	Nitrate	<0.005240	2.500		2.464	99	80-	120
Sulfate		25.30	25.00		49.20	96	79-	120
Type: Lab ID:	MSD QC731016		Analyzed:	03/11	L/14 06:08	3		
	Analyte	Spiked	Resu	ult	%REC	Limits	RPD	Lim
Nitrogen,	Nitrate	2.500)	2.456	98	80-120	0	20
Sulfate		25.00	4	49.73	98	79-120	1	20

	Biochemical Oxygen Demand							
Lab #:	254257	Location:	Redwood Regiona	l Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD					
Project#:	2013-02.	Analysis:	SM5210B					
Analyte:	Biochemical Oxygen Demand	Batch#:	208868					
Matrix:	Water	Received:	03/10/14					
Units:	mg/L	Prepared:	03/12/14 10:07					
Diln Fac:	1.000	Analyzed:	03/17/14 10:33					
Fie	ld ID Type Lab ID	Result	RL	Sampled				

Field ID	Type	Lab ID	Result	RL	Sampled
MW-7	SAMPLE	254257-002	9.3	5.0	03/10/14 10:40
MW-9	SAMPLE	254257-004	15	5.7	03/10/14 11:40
MW-12	SAMPLE	254257-007	ND	5.0	03/10/14 11:10
	BLANK (QC731276	ND	5.0	

			Biochemical	. Oxygen Demand				
Lab #:	254257	1		Location:	Redwood	l Regio	nal Park	
Client:	Stella	ar Environmental	Solutions	Prep:	METHOD			
Project#:	2013-0	02.		Analysis:	SM5210E	3		
Analyte:		Biochemical Ox	ygen Demand	Batch#:	208868			
Field ID:		ZZZZZZZZZZ		Sampled:	03/11/1	4 10:0	0	
MSS Lab I	D:	254315-001		Received:	03/11/1	4		
Matrix:		Water		Prepared:	03/12/1	4 10:0	7	
Units:		mg/L		Analyzed:	03/17/1	4 10:3	3	
Diln Fac:		1.000		-				
Type La	b ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim
BG 007	21277		198 0	229 1		116 *	85-115	

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim
BS	QC731277		198.0	229.1		116 *	85-115	
BSD	QC731278		198.0	229.6		116 *	85-115 0	26
SDUP	QC731279	771.7		741.7	300.0		4	29

*= Value outside of QC limits; see narrative
RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

Chemical Oxygen Demand						
Lab #:	254257	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD			
Project#:	2013-02.	Analysis:	SM5220D			
Analyte:	Chemical Oxygen Demand	Received:	03/10/14			
Matrix:	Water	Prepared:	03/14/14 13:15			
Units:	mg/L	Analyzed:	03/14/14 15:00			
Batch#:	208993					

Field ID	Type	Lab ID	Result	RL	Diln Fac	Sampled
MW-7	SAMPLE	254257-002	63	10	1.000	03/10/14 10:40
MW-9	SAMPLE	254257-004	180	20	2.000	03/10/14 11:40
MW-12	SAMPLE	254257-007	49	10	1.000	03/10/14 11:10
	BLANK	QC731795	ND	10	1.000	

20 2.000

Batch QC Report

QC731798

MSD

			Chemical (Oxygen Demand	l					
Lab #:	254257			Location:	Rec	lwood Reg	ional	. Par	rk	
Client:	Stella	r Environmental	Solutions	Prep:	MET	HOD				
Project#	: 2013-0	2.		Analysis:	SM5	220D				
Analyte:		Chemical Oxygen	n Demand	Batch#:	208	993				
Field ID	:	MW-7		Sampled: 03/10/14 10:40						
MSS Lab I	ID:	254257-002		Received:	03/	10/14				
Matrix:		Water		Prepared:	03/	14/14 13	:15			
Units:		mg/L		Analyzed:	03/	14/14 15	:00			
Type La	ab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim	Diln	Fac
LCS QC	731796		75.00	70.26	94	90-110			1.000	
MS QC'	731797	62.51	300.0	356.5	98	78-120			2.000	

342.3

93

78-120

4

300.0

APPENDIX D

Historical Analytical Results

					ug/∟, equiv	valent to parts pe	. Sunori [bbp])		
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	МТВЕ
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	Ν
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	Ν
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	٨
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	٨
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	٨
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	٨
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	Λ
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	٨
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	٨
12	Feb-98	2,000	200	270	92	150	600	1,112	٨
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	-	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	-	< 2
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	~
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47 48	Sep-08	40,000	9,100	1.6 0.52	<0.5 <0.5	110 <0.5	910.0 201.0	1021.6 201.52	9.5 12
	Dec-08	9,200	2,200						
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0 20.2	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
52	Aug-09	1,900	3,100	1.6	1.8	11	23.8	38.2	7.1
53 54	Sep-09	1,400 590	1,800	<0.5 <0.5	<0.5 <0.5	<0.5 1.2	4.2 1.2	4.24 2.4	12
	Dec-09		1,800						3.6
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
56	Mar-10	2,000	4,300	< 0.5	<0.5	<0.5	3.5	3.45	<2
57	Jun-10	1,300	2,400	< 0.5	<0.5	<0.5	1.7	-	<2
58	Sep-10	910	<50	< 0.5	< 0.5	<0.5	1.5	1.45	<2
59	Dec-10	910	1,600	<0.5	<0.5	<0.5	<0.5	<0.5	2.6
60	Mar-11	860	1,100	< 0.5	< 0.5	<0.5	<0.5	-	3.1
	Sep-11	780	810	<0.5	<0.5	< 0.5	< 0.5	—	<2
61 62	Mar-12	460	610	<0.5	<0.5	<0.5	<0.5		<2

Well MW-2 Continued

	Well MW-2												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
64	Mar-13	470	810	<0.5	<0.5	<0.5	<0.5		<2.0				
65	Oct-13	120	67	<0.5	<0.5	<0.5	<0.5	_	2.3				
66	Mar-14	320	290	<0.5	<0.5	<0.5	<0.5	_	<2.0				

					Well N	1W-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	-	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
G	roundwate	er monitoring	g in this we	ell discontin	ued with Ala	ameda County H	ealth Care Servic	es Agency appro	val.

					Well N	1W-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Grou	ndwater mo	onitoring in	this well di	scontinued	in 1998 wit	h Alameda Count	ty Health Care Se	rvices Agency a	oproval.
		Subsequ	lent groun	dwater mor	itoring con	ducted to confirm	plume's southerr	n limit	1
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0

					Well N	IW-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 1
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	145	570	200
10	Sep-03	9,300	3,300	190	11	300	130	597	< 2.
12	Dec-03	9,140	1,100	62	45	295	136	586	< 2. 89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 1
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	4
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.0	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.3	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.1	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.3	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.1	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.6	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.9	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.6	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.5	92	<2
40	Jun-10	5,800	5,000	20	<0.5	140	9.9	170	<2
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.0	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.2	108	87.0
43	Mar-11	5,500	3,400	11	<0.5	94	8.5	114	<2
43	Sep-11	5,800	3,300	<0.5	<0.5	94	8.5 3.1	100	<2
44	Mar-12	6,400	,	<0.5	<0.5	97 110	5.6	116	<2
			3,500			110 84		116 84	
46	Sep-12	5,700	3,000	<0.5	<0.5		<0.5		<2
47	Mar-13	6,000	3,300	<0.5	<0.5	82	<0.5	82	<2
48	Oct-13	6,400	6,000	35	<0.5	75	5.10	115	<2
49	Dec-13	6,000	4,200	<0.5	<0.5	100	<0.5	100	<2
50	Mar-14	7,500	4,900	<0.5	<0.5	130	2.0	132	<2

					Well N	1W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	<
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2
12	Dec-03	485	100	19	1.5	26	36	83	< 5
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	<
15	Sep-04	2,000	360	100	< 2.5	180	102	382	<
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	<
17	Mar-05	24,000	7,100	840	51	,	2,410		<10
18	Jun-05	33,000	5,700	930	39	1,800 2,500	3,860	5,101 7,329	<20
19 20	Sep-05	5,600 3,700	1,200 1,300	270 110	6.6 < 5.0	400 320	390 356	<u>1,067</u> 786	<20 <20
	Dec-05								
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 2
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	<0.5	22	<2.5	25	<
42	Dec-10	180	260	<0.5	<0.5	5	1.0	6.4	7.2
43	Mar-11	6.000	5,900	39	<0.5	510	431.0	980.0	<2
44	Sep-11	1,700	1,200	7	0.9	120	12.2	139.7	<
45	Mar-12	1,200	790	11	0.9	<0.5	99.0	110.9	4
45 46	Sep-12	730	430	4.7	<0.5	45	3.8	53.5	9.2
			430 690						
47 48	Mar-13 Oct-13	840 150	690 140	5.6 <0.5	<0.5 <0.5	47 3.3	9.9 <0.5	62.51 3.3	15
48 49	Mar-14	150 79	140 120	<0.5	<0.5	3.3 2.1	<0.5	3.3	<2

					Well N	/W-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 1
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 1
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 1
10	Dec-03	7,080	700	287	31	901	255	1,474	< 1
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 1
13	Sep-04	7.100	1,900	160	8.1	600	406	1,174	< 1
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 1
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 1
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 1
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4
20	Jun-06	3,200	1,300	39	<1.0	210	144	403	4.2
20	Sep-06	12,000	3,300	130	8	850	604	1,592	 <1
22	Dec-06	12,000	2,800	130	9.4	880	634	1,663	< 1
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 1
23	Jun-07	7.100	2,900	75	5.2	480	298	858	<4
24	Sep-07	4.500	2,200	60	3.8	480	296	710	<4
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2
20	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<1
29	Sep-08	4,800 4,300	2,700	53	< 0.5	250	66.4	369.4	<2
30	Dec-08		2,300	45	<0.5	330	39.1	414.1	<2
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82
40	Mar-11	700	680	1.6	<0.5	10	3.5	15.1	14
41	Sep-11	2,600	1,900	12	<0.5	160	10.2	182.2	<2
42	Mar-12	1,100	940	9	<0.5	25	1.6	35.6	<2
43	Sep-12	10,000	8,600	25	<0.5	260	19.0	304.0	<2
44	Mar-13	4,000	2,400	9.1	<0.5	73	9.7	91.8	<2
45	Oct-13	3,200	1,500	20	<0.5	51	6.6	77.6	<2
49	Dec-13	3,000	2,700	22	<0.5	120	4.6	147	<2
50	Mar-14	3,100	5,200	49	<0.5	420	83	552	<2

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene		Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
20	Sep-06	88	51	4.9 <0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
24	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.00	5.8	2.4
28	Jun-08	230	320	1.7	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	76	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	< 0.5	4.4 <0.5	<0.5	1.6	<2.0
34	Dec-09	74	150	0.6	<0.5	1.6	<0.5 1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0
36	Jun-10	63 110	340	1.3			<0.5 0.74	49.3 4.7	<2.0 2.4
		110 140	340		<0.5	2.6			
38 39	Sep-10 Dec-10	140 80	360 440	2.1 <0.5	<0.5 <0.5	1.4 0.69	<0.5 <0.5	3.5 0.7	4.3 4.1
40 41	Mar-11 Sop 11	170 150	1,200 220	1.0	<0.5	3.7	<u>1.8</u> 1	6.5	6.3
	Sep-11			0.8	<0.5	1.9		3.7	<2.0
42	Mar-12	80	92	0.81	<0.5	1.5	<0.5	2.3	3.4
43	Sep-12	170	200	<0.5	<0.5	2	0.94	2.9	<2.0
44	Mar-13	310	58	<0.5	<0.5	7.3	7.94	15.2	<2.0
45	Oct-13	69	<50	< 0.5	< 0.5	0.84	<0.5	0.8	4.8
46	Dec-13	<52	220	< 0.5	0.61	2	1.5	4.1	3.7
47	Mar-14	<50	87	<0.5	<0.5	0.51	<0.5	0.5	3.7

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 1
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 1
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< -
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 1
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 1
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 1
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	<
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 1
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 1
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 1
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 1
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 1
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 1
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.
20	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.
21	Dec-06	6,000	3,500	83	<1.0	250	16.4	319	< 4.
	Mar-07	4,500	1,900	110	< 0.5	170			
23 24	Jun-07	4,500	2.200	110	< 0.5	170	7.9 6.6	288 267	< 2. <4.
24	Sep-07	4,300 5.500	2,200	86	<0.5	140	16.1	282	
25 26	Dec-07	5,500 7,100	4,000	68	<0.5	180	16.1	282	<2. 35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.
29	Sep-08	7,300 2,800	4,600 1,600	130 93	<0.5	110 82	4.5 0.69	245	<2.
30	Dec-08				<0.5			176	<2.
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830 2,200	2,400	11 19	<0.5	19 46	<0.5 0.78	30	<2.
34	Dec-09		3,100		<0.5			66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3,000	2,200	18	<0.5	41	0.55	60	8.0
39	Dec-10	1,800	2,900	13	<0.5	49	1.9	64	15.0
40	Mar-11	180	1,600	<0.5	<0.5	1.2	<0.5	1.2	6.9
41	Sep-11	2,200	2,500	12	<0.5	44	2.2	58.2	<2.
42	Mar-12	1,300	1,200	8.7	<0.5	29	<0.5	37.7	<2.
43	Sep-12	2,400	1,800	7.7	<0.5	29	<0.5	36.7	<2.
44	Mar-13	1,500	1,900	4.8	<0.5	22	<0.5	26.8	<2.
45	Oct-13	3,000	1,600	14	<0.5	35	<0.5	49	<2.
46	Dec-13	2,500	2,000	<0.5	13	<0.5	0.68	13.7	<2.
47	Mar-14	3,000	2,800	13	<0.5	34	<0.5	47.0	<2.

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9
22	Mar-11	290	450	<0.5	0.74	1.3	<0.5	2.0	11
23	Sep-11	530	340	<0.5	<0.5	2.2	<0.5	2.2	<2.0
24	Mar-12	410	240	<0.5	<0.5	1.9	<0.5	1.9	<2.0
25	Sep-12	340	210	<0.5	<0.5	1.1	<0.5	1.1	<2.0
26	Mar-13	430	200	<0.5	<0.5	1.2	<0.5	1.2	7.1
27	Oct-13	350	200	<0.5	<0.5	0.92	<0.5	0.92	<2.0
28	Dec-13	290	210	<0.5	<0.5	0.68	<0.5	0.68	2.5
29	Mar-14	<50	62	<0.5	<0.5	<0.5	<0.5	0	2.8

HISTORICAL SURFACE WATER ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/l	., equivalent to parts	per billion [ppb])
-----------------------------	------------------------	--------------------

	Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)										
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA		
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0		
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0		
S	Sampling at this location discontinued after April 1999 with Alameda County Health Services Agency approval.										

_ 1							Groundwater Di		
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene		Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	< 0.5	< 0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
	i i								
47	Mar-09	<50	<50	< 0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
54	Dec-10	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
	Mar-11								
55		<50	<50	< 0.5	<0.5	<0.5	<5.0	<0.5	NA
56	Sep-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
39									
60	Oct-13	<50	930	<0.5	<0.5	<0.5	<5.0	<0.5	4.8

	Sampli	ng Locatio	n SW-3 (D	ownstream	of Contan	ninated Groundv	vater Discharge	Location SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	-		74						
	May-96	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	N
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	N
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	N
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	N
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
16	Sep-01	NS 1 50	NS	NS 105	NS 205	NS CO 5	NS 105	< 0.5	N.
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	N
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	N
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	N
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	N
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	N
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	N
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	N
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	N
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.
52	Sep-10	NS	NS	NS	NS	NS	NS	NS	N
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	^
54	Mar-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	Ň
55	Sep-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	N
57 58	Mar-12 Sep-12	<50	<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<2. <2.
58 59	Mar-13	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	<0.5 <0.5	<2.
60	Oct-13	NS	NS	NS	NS	NS	NS	NS	N
61	Mar-14	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.

NS = Not Sampled (no surface water present during sampling event)