RECEIVED

11:22 am, Oct 26, 2011

Alameda County Environmental Health

SECOND SEMIANNUAL 2011 GROUNDWATER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

October 2011

GEOSCIENCE & ENGINEERING CONSULTING

SECOND SEMIANNUAL 2011 GROUNDWATER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

October 19, 2011

Project No. 2010-02

October 19, 2011

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist **Local Oversight Program** Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2011 Groundwater Monitoring and Annual Summary Report

Redwood Regional Park Service Yard Site - Oakland, California

ACEH Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes Semiannual 2011 groundwater and surface water monitoring activities conducted on September 23, 2011. This is the first monitoring event conducted since the site monitoring frequency was reduced to a semiannual basis. In addition to the activities typically conducted during a monitoring event, the water quality parameters including dissolved oxygen and oxygen reduction potential were taken to assess the effectiveness of the oxygen release product injection conducted during February 2010.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Richard S. Makdisi, R.G., R.E.A.

Bound S. Waldin

Principal and Project Manager

Matt Graul, Stewardship Manager East Bay Regional Park District

Matthews I and

cc: State of California GeoTracker database

Alameda County Department of Environmental Health ftp system

TABLE OF CONTENTS

Secti	ion	Page
1.0	INTRODUCTION	1
	Project Background	1
	Objectives and Scope of Work	1
	Historical Corrective Actions and Investigations	1
	Site Description	
	Regulatory Oversight	
2.0	PHYSICAL SETTING	6
	Site Lithology	6
	Hydrogeology	10
3.0	REGULATORY CONSIDERATIONS	12
	Groundwater Contamination	12
	Surface Water Contamination	12
4.0	SECOND SEMIANNUAL 2011 ACTIVITIES	14
	Groundwater Level Monitoring and Sampling	15
	Creek Surface Water Sampling	17
	Bioventing-Related Activities	17
5.0	SECOND SEMIANNUAL 201 ANALYTICAL RESULTS	20
	Groundwater and Surface Water Analytical Results	
	Quality Control Sample Analytical Results	21
6.0	EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILIT	Y23
	Contaminant Source Assessment	
	Water Level Trends	
	Hydrochemical Trends	
	Plume Geometry and Migration Indications	
	Closure Criteria Assessment and Proposed Actions	36
7.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	37
	Summary and Conclusions	
	Proposed Actions	39
8.0	REFERENCES	40

TABLE OF CONTENTS (continued)

Section		Page
9.0 LIMITA	ATIONS	46
Appendices		
Appendix A	Historical Groundwater Monitoring Water Level Data	
Appendix B	Groundwater Monitoring Field Documentation	
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record	
Appendix D	Historical Analytical Results	

TABLES AND FIGURES

Tables	Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Da	ta15
Table 2 Electron Acceptors and Oxygen Demand in Key Wells	18
Table 3 Groundwater and Surface Water Samples Analytical Results	21
Figures	Page
Figure 1 Site Location Map	4
Figure 2 Site Plan and Historical Sampling Location	5
Figure 3 Geologic Cross-Section Locations	7
Figure 4 Geologic Cross-Sections A-A' through C-C'	8
Figure 5 Geologic Cross-Sections D-D' through F-F'	9
Figure 6 Groundwater Elevation Map –September 23, 2011	16
Figure 7 Groundwater Analytical Results and Gasoline Plume – September 2011	22
Figure 8 Historical Groundwater Elevations in Key Site Wells	25
Figure 9 Gasoline and Diesel Hydrochemical Trends in Well MW-2	28
Figure 10 Gasoline and Diesel Hydrochemical Trends in Well MW-8	29
Figure 11 Gasoline and Diesel Hydrochemical Trends in Well MW-11	31
Figure 12 Gasoline and Diesel Hydrochemical Trends in Well MW-7	32
Figure 13 Gasoline and Diesel Hydrochemical Trends in Well MW-9	33
Figure 14 Gasoline and Diesel Hydrochemical Trends in Well MW-10	34
Figure 15 Gasoline and Diesel Hydrochemical Trends in Well MW-12	35

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the second semi-annual groundwater monitoring report that includes the annual trend analyses and recommendations for 2012 work.

OBJECTIVES AND SCOPE OF WORK

The overall objective of the latest remedial action is to continue trying to reduce the residual hydrocarbons in the source area and in the downgradient slope area (which is inaccessible to any remedies other than in-situ). Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) since March 31, 2011 that include:

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

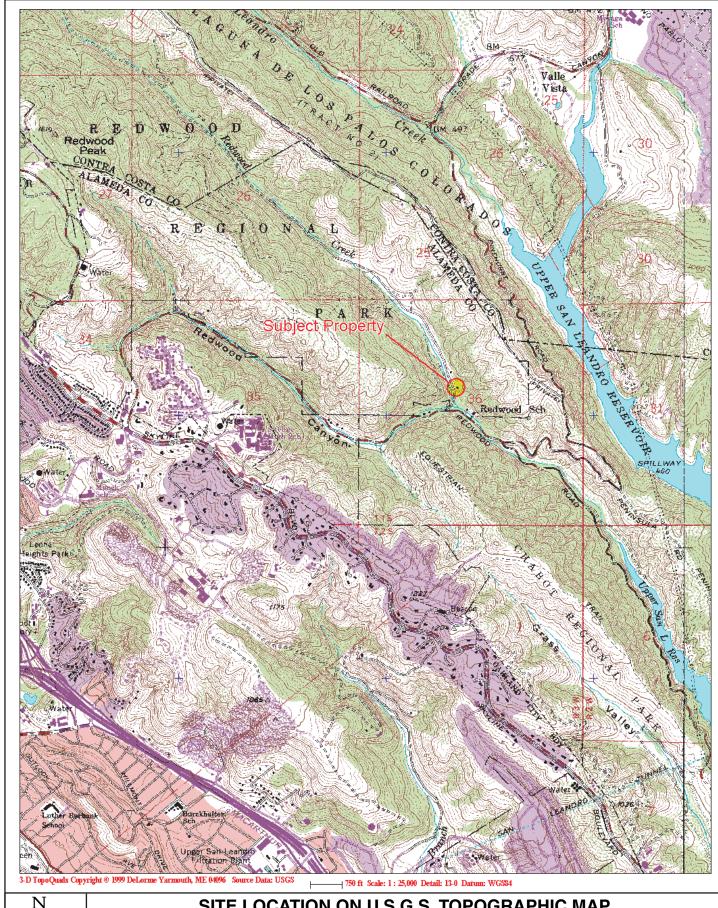
Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report lists all technical reports for the site.

The general phases of site work included:

- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection—proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 48 groundwater monitoring events, conducted on a quarterly basis since project inception (November 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. However, the bioventing remedy has not been effective to date. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued on July 18, 2011.

SITE DESCRIPTION

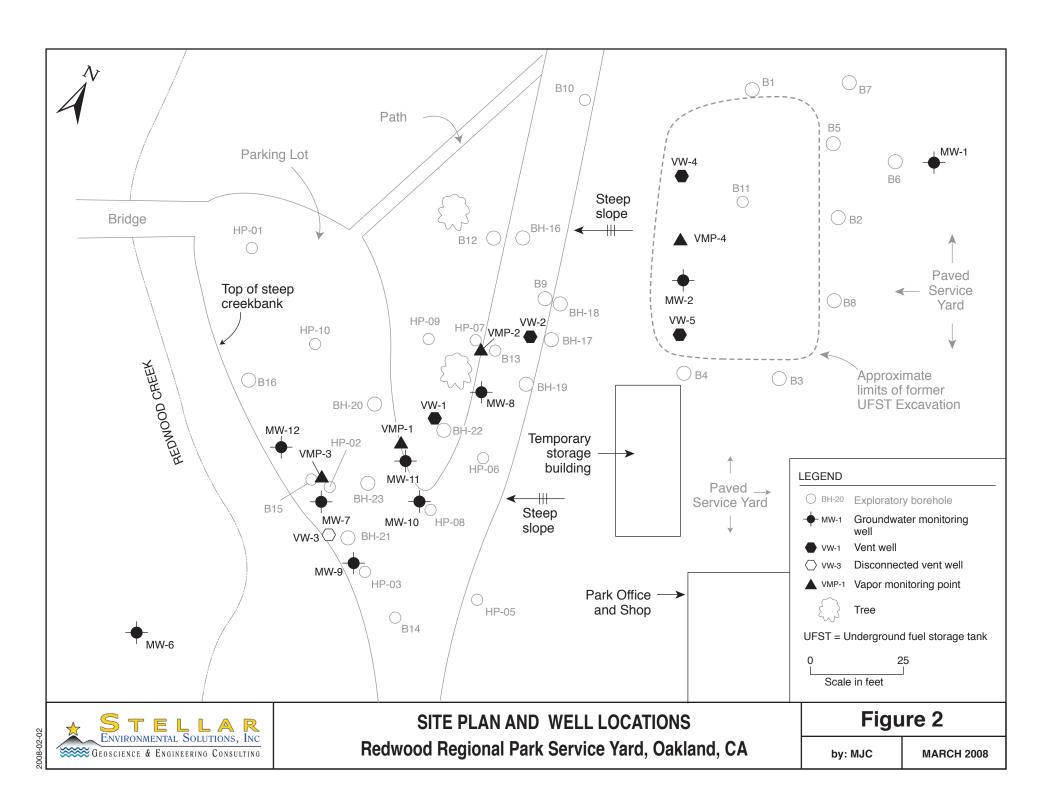
The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.


Figure 1 shows the location of the project site. Figure 2 presents the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports have been submitted to these agencies. ACEH-approved revisions to the groundwater sampling program as of this date include:

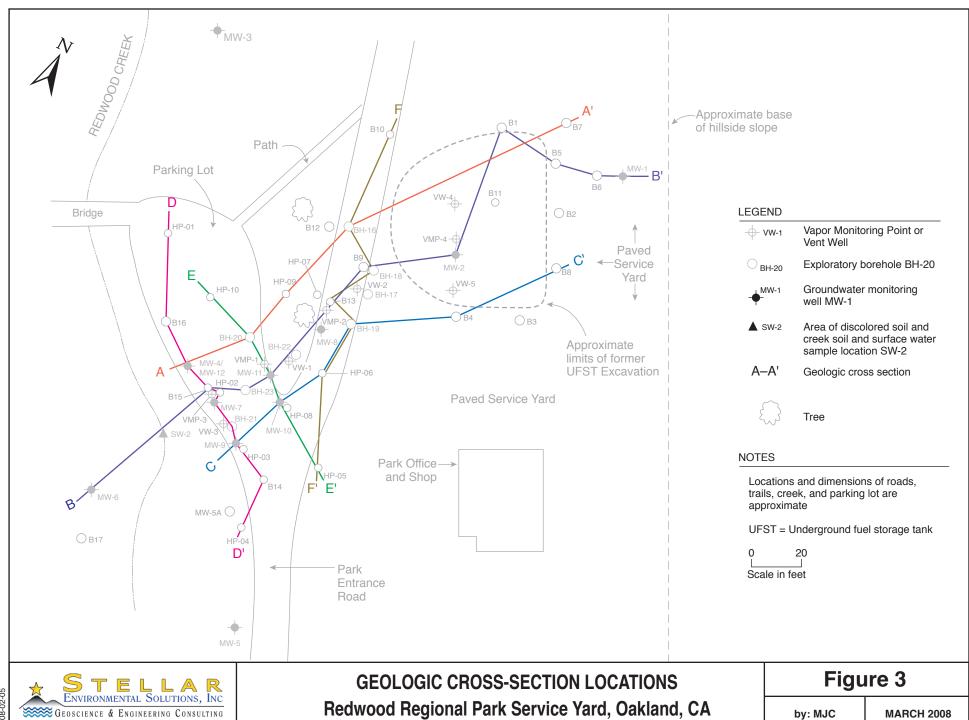
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH, at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- Shut down of the site bioventing system In June 2011.

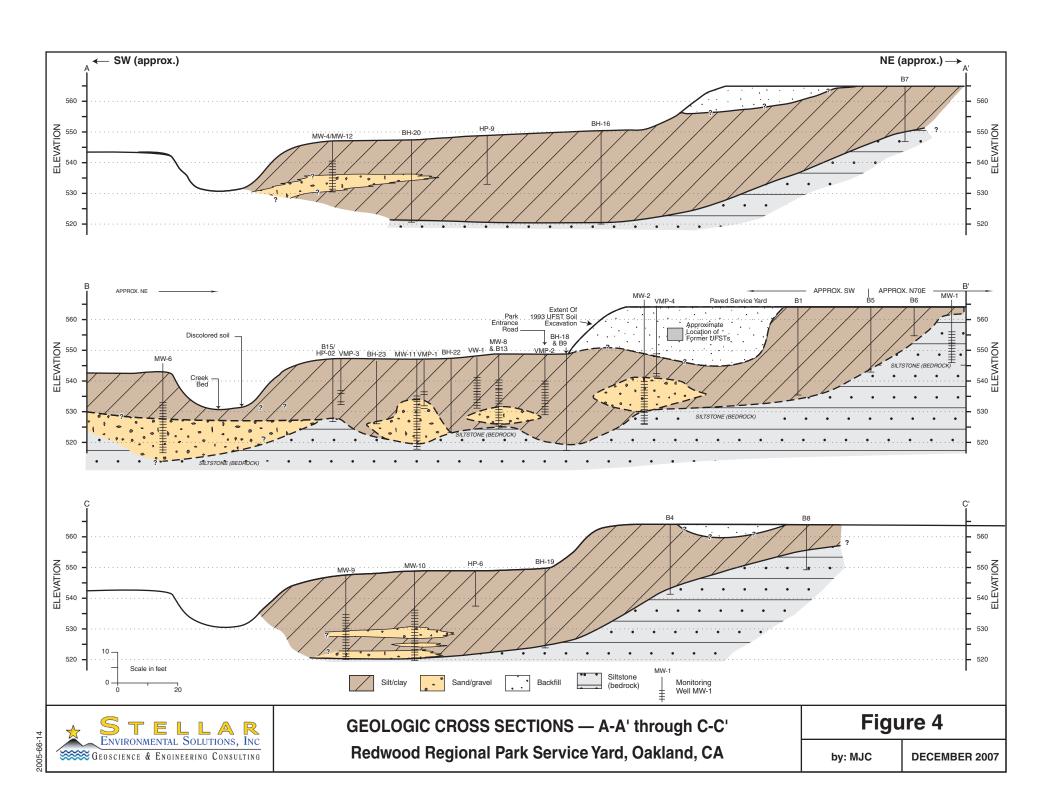

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

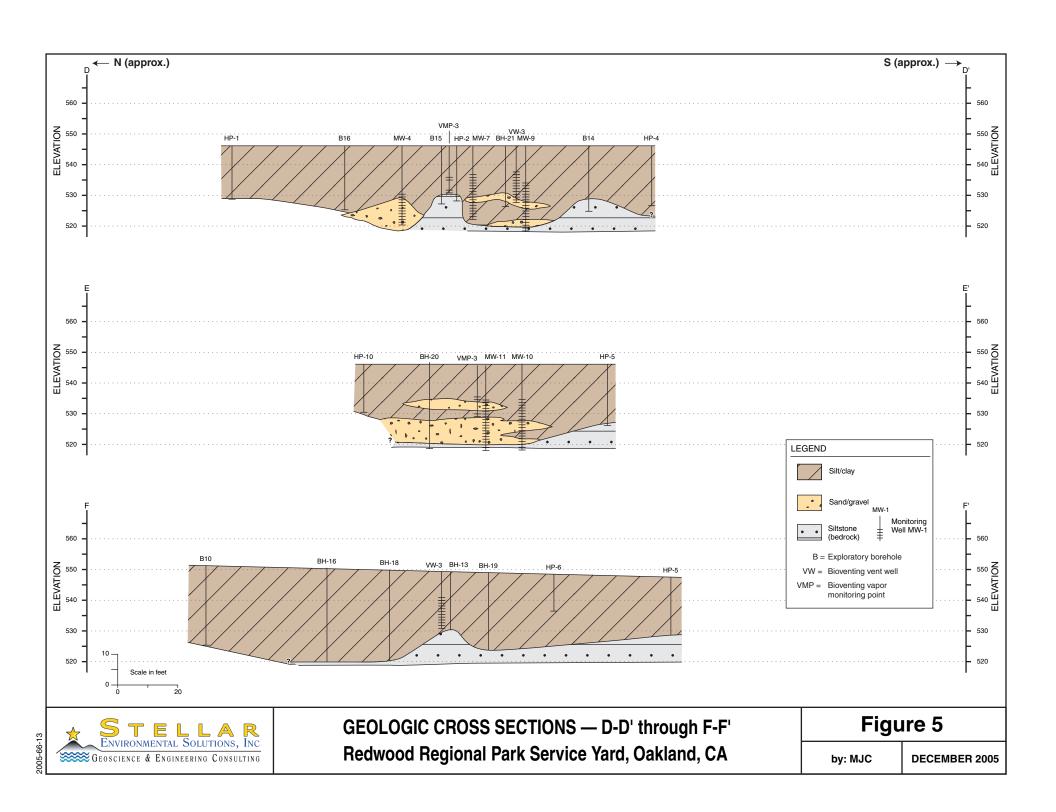
SITE LOCATION ON U.S.G.S. TOPOGRAPHIC MAP

Redwood Reg. Park Service Yard By: MJC Oakland, CA MARCH 2006 Figure 1

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.


SITE LITHOLOGY


Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination were presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We assume a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the

time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.23 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient was approximately 0.85 feet per foot. The average groundwater elevation was 2.81 feet lower than the previous (March 2011) event, with the greatest decrease of 4.43 feet measured in MW-2 and the lowest increase measured in MW-12 of 1.29 feet. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan (Water Board, 1995), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source; and 2) ESLs for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 SECOND SEMIANNUAL 2011 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the current monitoring event (Second Semiannual 2011), conducted on September 23, 2011. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring activities included:

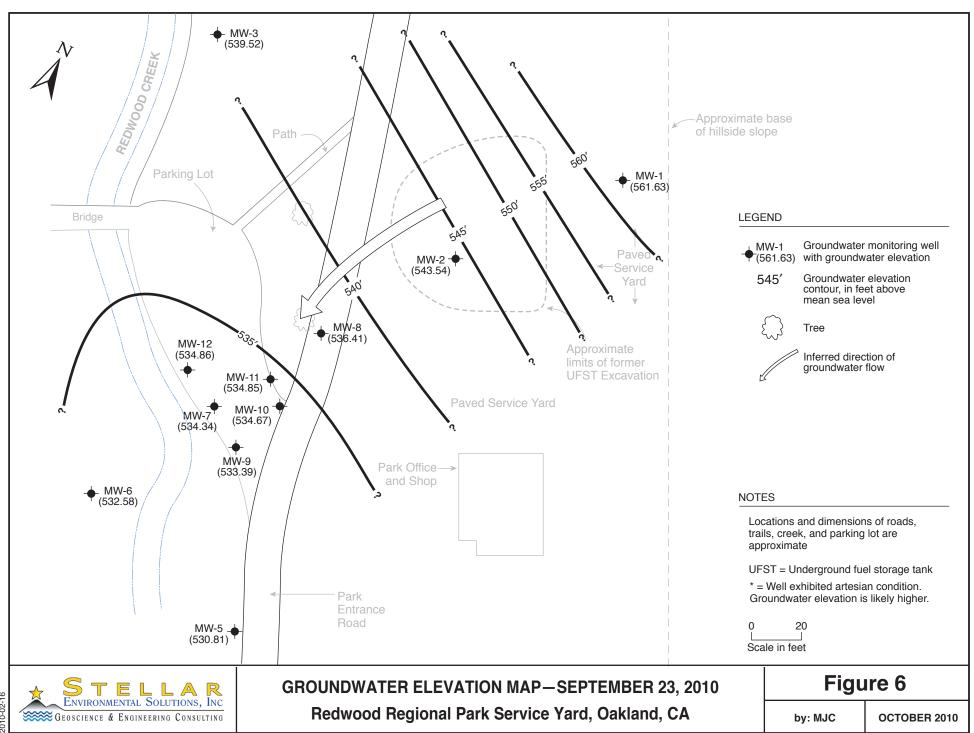
- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Post-purge measurement of dissolved oxygen (DO) and redox to monitor the effects of the February 2010 remedial ORCTM application. In addition, Stellar Environmental also analyzed wells MW-2, MW-7, MW-8 and MW-12 for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to determine the effect of the treatment;
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Shut down of the site bioventing system.

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and current equilibrated groundwater elevation data are summarized in Table 1. Figure 6 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data –
September 23, 2011 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	Groundwater Depth (feet bgs)	Groundwater Elevation * (9/23/11)
MW-1	18	7 to17	2.57	561.03
MW-2	36	20 to 35	20.56	543.54
MW-3	42	7 to 41	18.38	539.52
MW-5	26	10 to 25	14.39	530.81
MW-6	26	10 to 25	10.69	532.31
MW-7	24	9 to24	12.16	534.34
MW-8	23	8 to 23	12.59	536.41
MW-9	26	11 to 26	13.41	533.59
MW-10	26	11 to 26	12.93	534.67
MW-11	26	11 to 26	11.35	534.85
MW-12	25	10 to 25	11.34	534.86


^{*} Elevations are expressed in feet above mean sea level.

bgs = below ground surface

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 49 gallons) from the current event was containerized in the onsite above-ground storage tank. Purgewater is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Stellar Environmental personnel on September 23, 2011. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a seasonally low stage with water ponded with areas of very slight flow less than 6 inches deep. Stellar Environmental personnel did observe orange algae at location SW-2 but no sheen or petroleum odors were detected during this event.

BIOVENTING-RELATED ACTIVITIES

On July 18, 2011, in concurrence with ACEH, the site bioventing system, having accomplished its' design purpose, was discontinued.

ORCTM INJECTION EFFECTIVENESS INDICATORS

In Q1-2010, ORCTM was injected into a total of 24 boreholes in four zones throughout the plume and at various depths using direct-push drilling technology. Approximately 2,075 pounds of Advanced ORCTM was mixed in a 30 percent water/slurry mix and injected from the depth of the borehole to the subsurface. This was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination. One year later, this in-situ treatment appears to have been only marginally effective. The alternate electron acceptors measured during this Q1-2011 sampling event; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed to track the ORCTM utilization. One concern about the use of ORCTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern. Table 2 includes the results of these additional analyses.

The main active ingredient in Advanced ORCTM is calcium oxy-hydroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.8 to 7.6, mostly within the optimum range. Under these conditions, the Advanced ORCTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants. The oxygen is then released more slowly, which will assist bioremediation over a period of up to 1.5 years.

Because only a moderate reduction in hydrocarbon contaminant concentrations has been observed in the key site wells since the injection, it is suspected that in addition to lithologic restraints, non-hydrocarbon utilizing microorganisms are utilizing the ORCTM, preventing the breakdown of the residual hydrocarbons. This hypothesis is supported by the only rapid decrease in concentrations being observed in well MW-2, located in fill material in the historical excavation area, which would generally contain fewer microorganisms and lithologic restraints. This hypothesis can be tested by continuing to collect additional site chemical parameters in subsequent semiannual monitoring events.

Table 2 contains the results from the parameter analysis conducted during this sampling event.

Table 2
Electron Acceptors and Oxygen Demand in Key Wells
September 23, 2011 Analytical Results

	Concentrations						
Location	Nitrates	Sulfates	BOD	DO	COD		
MW-2	0.88	110	<12	24.38	61		
MW-7	< 0.05	1.2	<12	0.66	28		
MW-8	< 0.05	27	<10	0.72	68		
MW-12	< 0.05	18	<10	0.77	25		

COD = Chemical oxygen demand; BOD = Biological oxygen demand; DO = Dissolved Oxygen

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

The highest hydrocarbon concentrations (> 40 mg/L) were reported in well MW-2 in early 2008 before the initial injection of ORCTM in Q1-2009 which resulted in steady decreases in both TPHg and TEHd. The current DO in MW-2 is relatively high with relatively low hydrocarbon concentrations (< 1,000 μ g/L) in this well. This suggests both that the ORCTM was effective there and that active aerobic biodegradation is currently occurring. Conversely at monitoring wells MW-7, MW-8 and MW-12, with higher concentration of hydrocarbons, lower DO

concentrations were measured. In these areas, the ORCTM was likely not as effective at being in contact with the hydrocarbon contamination in and around the well. Thus, low DO concentration can also signify a lack of effective aerobic biodegradation occurring as a result of less ORCTM penetration or utilization by the hydrocarbons.

During the First Quarter 2010 sampling event, DO concentrations in site wells ranged from 0.28 mg/L to 2.41 mg/L. During the Second Quarter 2010 sampling event, DO concentrations ranged from 0.30 mg/L to 24.01 mg/L, with the anomalous 24.01 mg/L being associated with MW-2. During the Q1-2011 event, DO concentrations ranged from 0.44 mg/L to 27.3 mg/L and DO concentrations ranged from 0.72 mg/L to 24.38 mg/L

5.0 SECOND SEMIANNUAL 2011 ANALYTICAL RESULTS

This section presents the field and laboratory results of the current monitoring event. Table 3 summarizes the contaminant analytical results. Figure 7 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

Second Semiannual 2011 groundwater contaminant concentrations were as follows: The ESL for TVHg and TEHd for residential areas where groundwater <u>is</u> a drinking water resource was exceeded in all of the seven wells sampled. The ESL for benzene was exceeded in 3 of the 4 wells in which it was detected. Ethylbenzene was detected in all of the wells except MW-2 and above the ESL in all wells in which it was detected except MW-10 and MW-12. Total xylenes were detected in all wells except MW-2 and MW-12, and below the ESL. Toluene was detected above the laboratory detection limit, only in well MW-8. No MTBE was detected above the laboratory detection limit, which is below the ESL, in any of the seven wells sampled.

Well MW-7 contained both the maximum TVHg and TEHd groundwater. MW-7 is located in the mid-line downgradient area of the plume, adjacent to Redwood Creek. The northern edge of this area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution.

There were no contaminants detected in SW-2 and SW-3 above the laboratory detection limit.

Table 3 Groundwater and Surface Water Samples Analytical Results – September 23, 2011 Redwood Regional Park Corporation Yard, Oakland, California

		Contaminant Concentrations							
Location	Dissolved Oxygen	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	
GROUNDWATER SAMPLE	GROUNDWATER SAMPLES								
MW-2	24.38	780	810	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	
MW-7	0.66	5,800	3,300	< 0.5	< 0.5	97	3.1	<2.0	
MW-8	0.72	1,700	1,200	6.6	0.89	120	12.2	<2.0	
MW-9	0.84	2,600	1,900	12	< 0.5	160	10.2	<2.0	
MW-10	1.21	150	220	0.8	< 0.5	1.9	1.0	<2.0	
MW-11	1.08	2,200	2,500	12	< 0.5	44	2.2	<2.0	
MW-12	0.77	530	340	< 0.5	< 0.5	2.2	< 0.5	<2.0	
Groundwater ESLs (a)	NLP	100 / 210	100/ 210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800	
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	NA	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	
SW-3	NA	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	
Surface Water Screening Levels (b)	NLP	100	100	1.0	40	30	20	5.0	

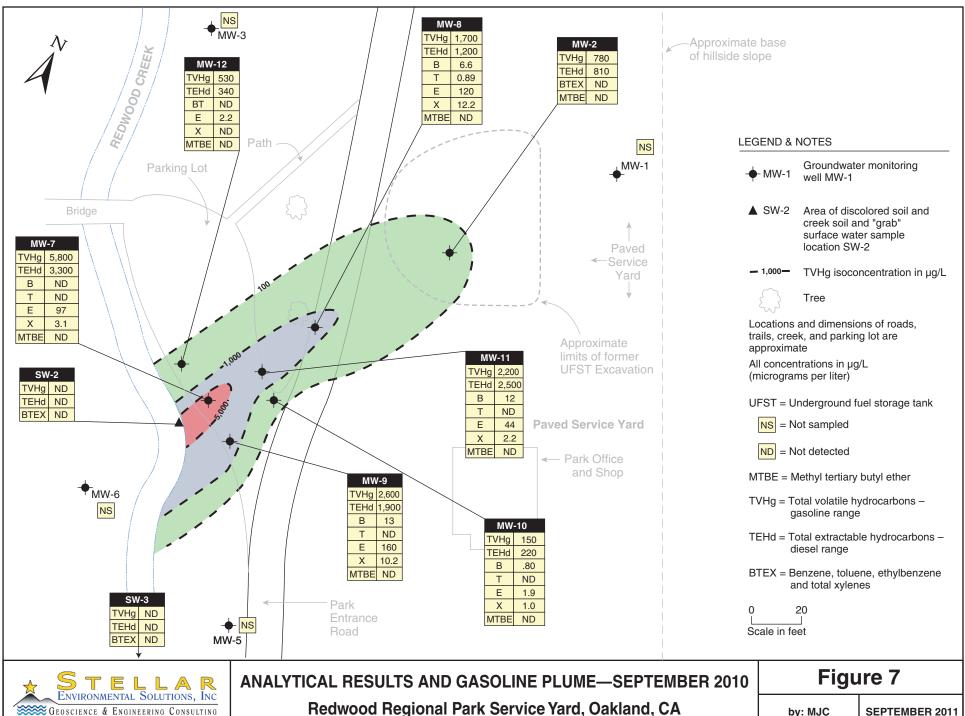
Notes:

NA = not analyzed NLP = no level published

MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons – gasoline range TEHd = total extractable hydrocarbons – diesel range

All contaminant concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion. Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater <u>is</u> a potential drinking water resource.


Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

⁽a) ESLs = Water Board Environmental Screening Levels (where groundwater is/is not a potential drinking water resource) (Water Board, 2008).

⁽b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

by: MJC

SEPTEMBER 2011

6.0 EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. An assessment is made as to the nature of residual contaminated soil that acts as a continued source of groundwater contamination. A conceptual model (incorporating site lithology, hydrogeology, and hydrochemistry is presented to explain the spatial extent and magnitude of the dissolved hydrocarbon plume.

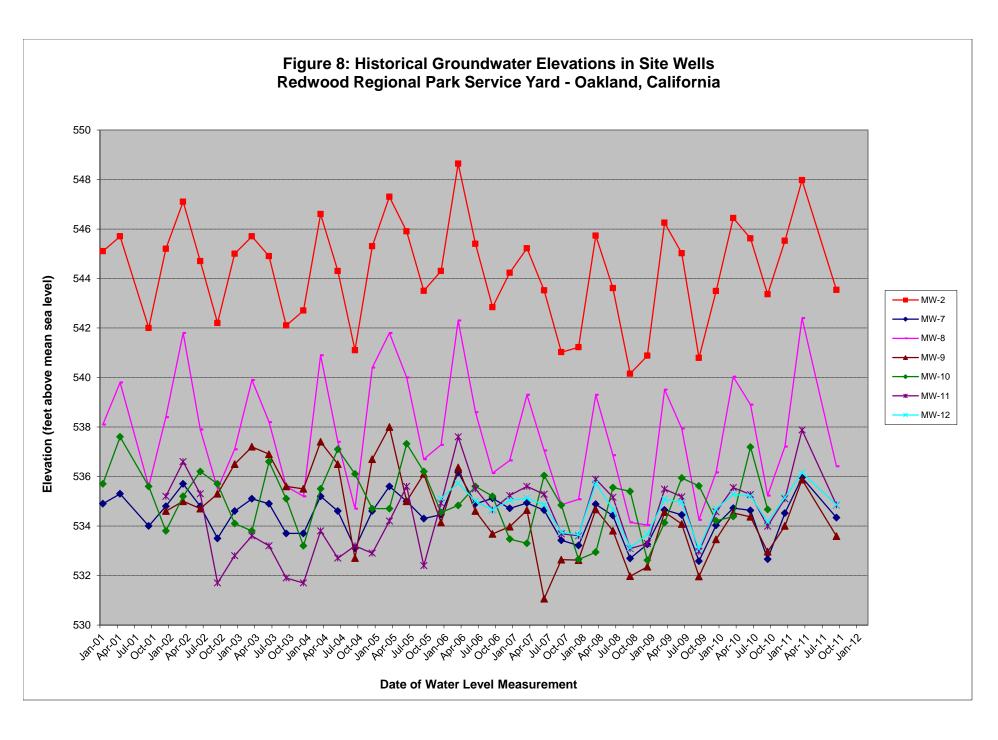
CONTAMINANT SOURCE ASSESSMENT

Site UFSTs were removed (i.e., discharge was discontinued) in 1993, and some but not all of the source area excavation contaminated soil was removed. That residual hydrocarbon contamination entrained in the soil and capillary fringe has been extremely hard to mitigate, with only partial success achieved through the bioventing and oxygen providing product in-situ injection that has been implemented since 2005.

Success at reducing the significant contamination in the mid-field plume area represented by well MW-8 has been achieved along with mitigation of the 2007 timeframe increase at the upper plume area represented by well MW-2. But the lower plume area represented by the "guard" wells MW-7 and MW-9 have not been significantly reduced by the combination of bioventing and recent March 2010 ORCTM injection.

Borehole soil sampling has provided data on the extent and magnitude of soil contamination in the vicinity of the former UFSTs ("source area") and the outlying area (in the capillary fringe above the groundwater plume). Soil contamination appears constrained to the unsaturated zone and the underlying saturated sediments on the weathered bedrock surface. The 2010 ORCTM injection effort was aimed at mitigating the apparent large mass of residual TPH contamination in the unsaturated zone, primarily in the area between the former UFSTs and the park entrance roadway, with the contaminated zone thinning toward Redwood Creek. Seasonal desorption of contamination in this unsaturated zone occurs during the rainy season and during high-water periods, acting as a long-term source of dissolved contamination. Previous ORCTM injection programs—which resulted in permanent reductions at the peripheral plume margins, but were followed by rebound (to pre-injection conditions) within the central portions of the plume—

indicate that site conditions support aerobic biodegradation. However, biodegradation is limited by oxygen deficiency in the unsaturated zone.


Based on this conceptual model—and using conservative assumptions for equilibrium partitioning, contaminant geometry, soil moisture, and previous laboratory analytical results for TPH in soil—estimates of TPH mass in soil were calculated based on 2004 and earlier borehole data. Residual TPH in vadose zone soil is estimated at 1,400 to 7,000 pounds (100 to 600 gallons of gasoline), compared to a mass of TPH in groundwater estimated at 1 to 10 pounds (0.1 to 1.0 gallon of gasoline). The hydrocarbon mass in groundwater is likely higher than originally estimated (based on post-2004 data).

Soil and groundwater contamination distribution and site lithologic and hydrogeologic conditions have shown that residual soil contamination, unless abated, will continue to be a source of long-term groundwater contamination via seasonal desorption and migration. The most effective way it appears to mitigate against the hydrocarbon impact to the Redwood Creek is to install a reactive wall to treat the plume on the downgradient border.

WATER LEVEL TRENDS

Appendix D contains historical groundwater elevation data. Figure 8 shows a trendline of site groundwater elevations in key wells (those within the contaminant plume). The data support the following conclusions:

- Groundwater elevations in all of the monitored site wells showed a seasonal fluctuation in 2011-2011—from an average increase of 2.24 feet (from September to March 2011) to a decrease of 2.8 feet (from March 2011 to September 2011)—with an average elevation change in individual wells of 0.2 feet.
- In all wells, the lowest elevations have generally been observed during the end of the dry season and the highest elevations at the peak of the rainy season. This is a common seasonal trend observed in the upper water-bearing zone in the Bay Area.
- Groundwater elevation trends and magnitudes are similar between wells.
- Overall groundwater flow direction is consistently to the west-southwest (toward Redwood Creek). Localized (on the scale of tens of feet) groundwater flow direction appears to vary within the general flow direction, likely controlled by bedrock surface topography.
- The historical groundwater gradient in the area of the contaminant plume is consistently around 0.1 feet/foot.

HYDROCHEMICAL TRENDS

Concentrations of contaminants in an individual well can fluctuate over time for one or more reasons—contaminant migration, seasonal effects due to fluctuating groundwater levels (i.e., desorption from the unsaturated zone and/or dilution of saturated zone contamination), and/or natural attenuation (plus enhancement by active remediation measures such as ORCTM injection and bioventing). These hydrochemical trends can result in changes in the lateral extent and magnitude of a dissolved contaminant plume.

The most consistent trend in the wells located within the centerline of the plume has been a seasonal influence of desorption following winter rains, with a resultant increase in dissolved hydrocarbon concentration in the groundwater.

Because the quarter-to-quarter comparisons can be unduly influenced by seasonal effects that mask longer trends, it is useful to compare same-season data over time to determine if concentrations are increasing, decreasing, or remaining stable. Our evaluation of hydrochemical trends focuses on gasoline and diesel, which, when combined, represent the majority of the contaminant mass. To more closely evaluate plume stability differences, the following discussion focuses on four separate portions of the plume relative to the long axis (along the hydraulic gradient): "upgradient" (trailing edge of plume); "mid-plume"; "downgradient"; and "plume fringe."

Important components of plume stability include: degree of contaminant fluctuations in individual wells over time; changes in the lateral extent of the plume; and changes in the location of the center of contaminant mass within the plume.

Historically, the contaminant plume appeared to have disconnected from the source such that historical downgradient concentrations were higher than upgradient (near the source) concentrations. However, a significant increase in gasoline and diesel concentrations in source area well MW-2 was observed beginning in approximately September 2007. The increase continued, even after individual purging events, into 2010. Stellar Environmental commenced with ORCTM injection near this well and in the general area of the plume in February 2010. Based on that apparent success, In March 2010, a wider ORCTM injection into areas of the plume was initiated. This has not resulted in the same success at reducing concentrations in the lower plume area as it did in the upper and mid-field of the plume. The two guard wells MW-7 and MW-9 have comparative TPHg + TEHd that showed a decrease in concentrations for September 2010 compared to September 2011. Well MW-7 showed a combined 10,400 μ g/L TPHg + TEHd in September 2011. Well MW-9 showed a combined 15,900 μ g/L TPHg + TEHd in September 2010 compared with 4,500 μ g/L TPHg + TEHd in September 2011 compared with 4,500 μ g/L TPHg + TEHd in September 2011.

To evaluate plume stability with regard to changes in the center of contaminant mass, we evaluated concentrations of TPH (gasoline and diesel combined) in individual wells over time. The data show no obvious correlation between maximum TPH concentrations and well locations, suggesting high plume instability. Since January 2001, maximum TPH concentrations have been variously detected in upgradient, mid-plume, and downgradient wells. These variations are likely due in large part to differing contaminant mass in unsaturated zone soils at particular locations, resulting in variable amounts of desorbed mass to the plume during high water conditions. The following discusses hydrochemical trends in each of the upgradient, mid-plume, and downgradient portions of the site, as well as at the fringes of the plume.

Upgradient Hydrochemical Trends

MW-2. As described in Section 4.0, this source area well historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. In September 2008, a new historic maximum of 40,000 μg/L of gasoline was observed in MW-2 and a new historic maximum of diesel at 37,000 μg/L was observed in March 2009. In March 2010, Stellar Environmental conducted a limited ORCTM injection, which has dramatically decreased concentrations of both gasoline and diesel over time. In this September 2011 event, the diesel concentration measured 810 μg/L and the gasoline concentration measured 780 μg/L. Figure 9 shows hydrochemical trends for gasoline and diesel in MW-2.

Mid-Plume Trends

MW-8. Concentrations of TVHg in MW-8, located approximately 60 feet downgradient of MW-2, have been generally decreasing since 2005: from a historic high of 33,000 TPHg μg/L observed in June 2005 to the lowest TPHg concentration of 180 μg/L in December 2010 to 1,700 μg/L in this latest event. TEHd concentrations had remained fairly stable until a spike of 13,000 μg/L was observed in March 2008; however, the concentration has since decreased to the 260 μg/L observed in this latest event. This fluctuation demonstrates that significant contaminant mass entrained in the soil continues to "feed" the dissolved concentration, as demonstrated by periods of recharge represented during the March 2008 sampling event. As contaminant concentrations remain high in upgradient well MW-2, contaminant concentrations in this well will most likely rise as the plume migrates downgradient. Both gasoline and diesel concentrations have fluctuated widely but follow a well-established seasonal fluctuation pattern. The strong seasonal effect is visually apparent, with annual maximum concentrations generally occurring in late winter/early spring (usually the March event), and annual minimum concentrations generally occurring in the fall/winter (usually the September or December events). Figure 10 features gasoline and diesel hydrochemical trends in MW-8.

Figure 9: Gasoline and Diesel Hydrochemical Trends: Well MW-2 Redwood Regional Park Service Yard, Oakland, California 40,000 40,000 September 2007 to December 2010 Detail 40,000 35,000 37.000 - TVHg TEHd 35,000 Linear (TVHg) Linear (TEHd) 30,000 30,000 Concentration in Groundwater (ug/L) Purge Events - 2008 25,000 ORC™ Injection January 17 24,000 April 3 20,000 May 22 20.000 July 7 16,000 25,000 August 14 24,000 December 16 15,000 No purge in 2009. Two ORC Injections in 2010 10,000 20,000 20,000 5,000 15,000 TPH-gas TPH-diesel 5,800 5,000 2,000 2,600 1,300

Sampling Date

Figure 10: Gasoline and Diesel Hydrochemical Trends: Well MW-8 Redwood Regional Park Service Yard, Oakland, California 35,000 TPH-gas 33,000 ORC Injection - Sept. 2001 Bioventing System - April 2006 (1st monitoring event) 30,000 Linear (TPH-diesel) ORC Injection - February 2010 ORC Injection - July 2002 Concentration in Groundwater (ug/L) 25,000 24,000 22,000 20,000 19,000 16,000 15,000 15,000 14,000 13,000 13,000 11.000 10,000 9,600 7,900 7,300 7,100 5,000 004,500 003,500 1,200 Mayos , serios NOYOS Mayor Mayos mayos Jan-03 Septos Jan 06 Service Janot Jan OS 28 08 10 10 10 10 May Sepon Jan May Seby Jan 15 **Sampling Date**

MW-11. This well is located in the lower part of the mid plume zone, along the plume centerline, approximately midway between upgradient well MW-8 and downgradient guard well MW-7. Figure 11 shows hydrochemical trends for gasoline and diesel in this well. Gasoline and diesel concentrations were greatly reduced in 2001, and this was followed by an equally large increase by late 2002. Since that time, concentrations have fluctuated widely, with a strong seasonal effect. However, both diesel and gasoline concentrations in this well demonstrated a generally decreasing trend since 2008.

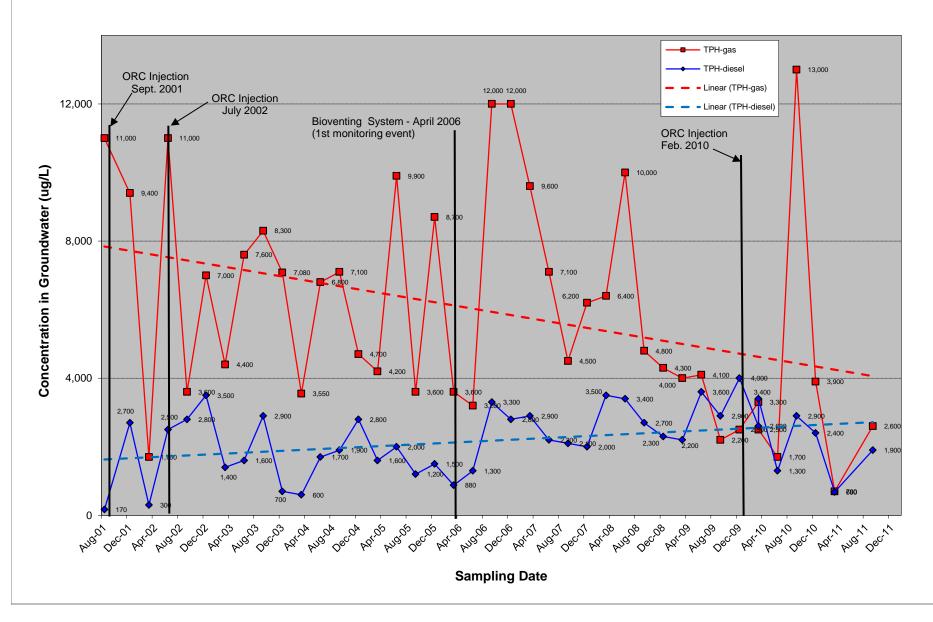
Downgradient Hydrochemical Trends

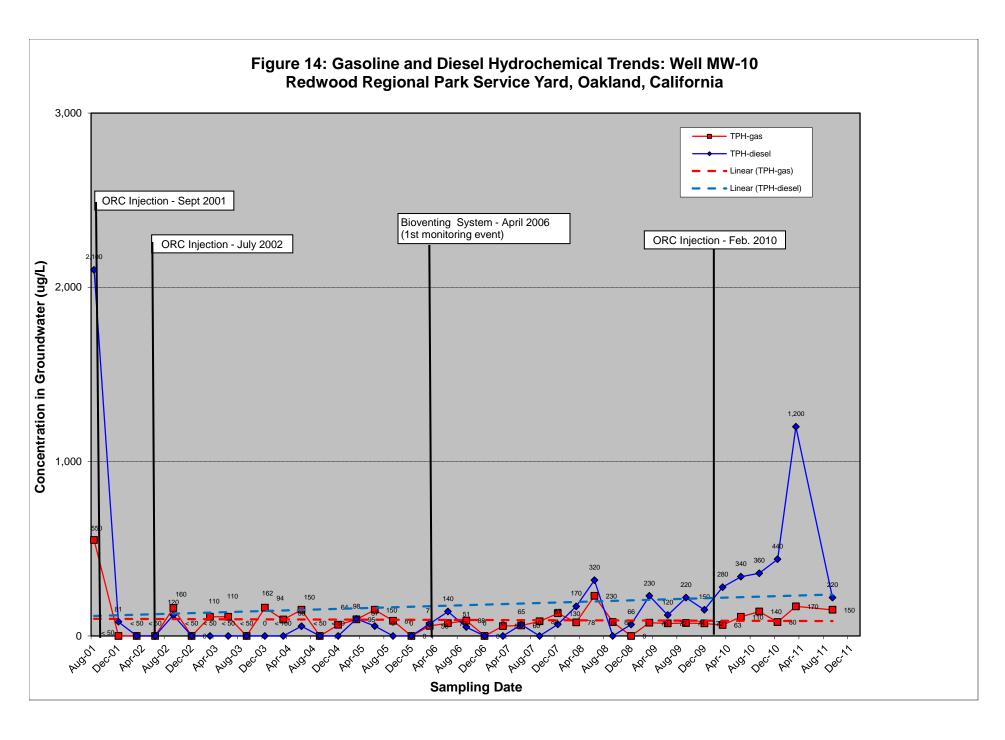
MW-7 and MW-9. These wells represent the high-concentration area of the central plume at the downgradient area approximately 20 feet from Redwood Creek. Figure 12 shows hydrochemical trends for gasoline and diesel in MW-7. Gasoline has shown strong fluctuations in concentration, but with a general downward trend. However, the diesel concentration trend has historically been fairly stable to slightly increasing trend. The historical TEHd maximum of 6,700 μ g/L was recorded in March 2009.

Figure 13 shows hydrochemical trends for gasoline and diesel in MW-9. This well has generally shown a fairly stable trend for diesel concentrations. The gasoline concentration trend is generally decreasing, however, a historical maximum of $13,000 \,\mu\text{g/L}$ was observed in September 2010.

Plume Fringe Zone Trends

MW-10. This well is located on the southern edge of the plume, in the mid-plume portion relative to the longitudinal axis. Figure 14 shows hydrochemical trends for gasoline and diesel in this well. Concentrations of gasoline generally remained stable compared to 2009, with only slight increases observed above 100 μ g/L. The diesel concentration trend appears stable with a slightly increasing trend. The historic maximum of 1,200 μ g/L diesel was observed during in March 2011.


MW-4 (former). This well was located on the northern edge of the plume, just upgradient of Redwood Creek. Other than anomalous diesel detection in June 2004, no contamination had been detected in this well since December 2001. Due to poor recharge in this well, the well was destroyed in November 2005 and replaced by well MW-12 (in an adjacent position).


MW-12. The initial sampling of MW-12 showed elevated petroleum concentrations up to 1,300 μ g/L, but those concentrations declined until March 2008 when a spike was observed. Concentrations have fluctuated since then, but are below the historical maximum observed and show a decreasing contaminant trend. Figure 15 shows hydrochemical trends for gasoline and diesel in this well.

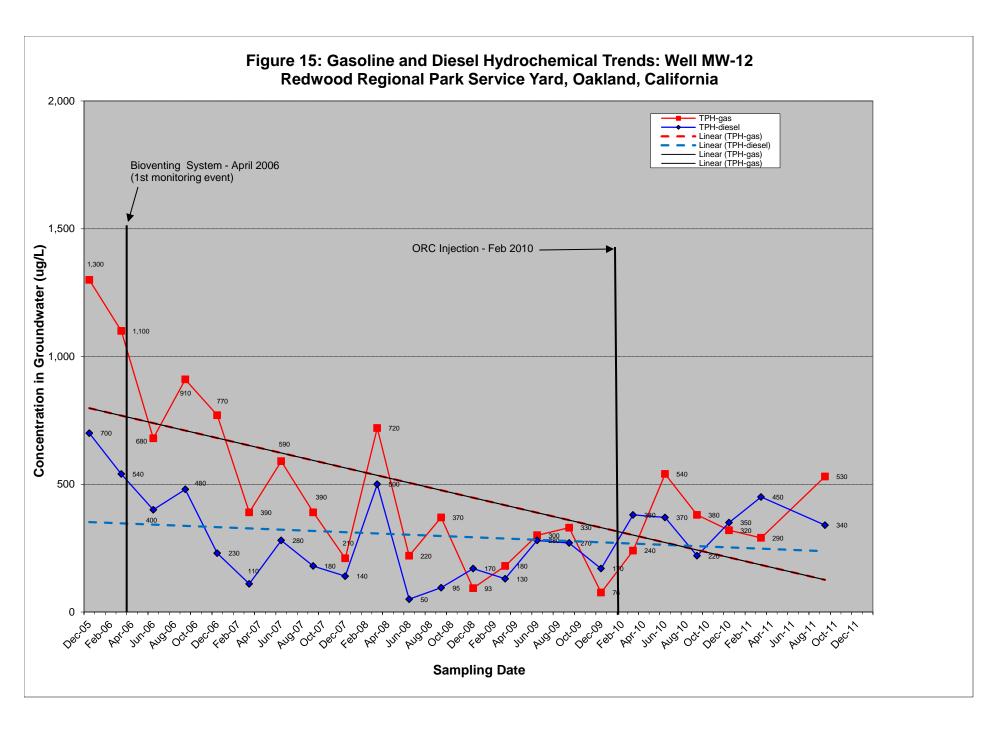

Figure 11: Gasoline and Diesel Hydrochemical Trends: Well MW-11 Redwood Regional Park Service Yard, Oakland, California 20,000 18,000 **ORC** Injection Sept. 2001 ORC Injection - July 2002 Linear (TPH-diesel) Bioventing System - April 2006 15,000 (1st monitoring event) 15,000 ORC Injection Feb. 2010 Concentration in Groundwater (ug/L) 12,00 12,000 11,000 10,000 8,200 5,800 5,000 4,900 4,600 3,900 3,800 2,600 2,100 POL'OR of the part by by be by the people by the by the by the by the by And Obc b to the trial doc by the box by the doc by the doc by the doc by **Sampling Date**

Figure 12: Gasoline and Diesel Hydrochemical Trends: Well MW-7 Redwood Regional Park Service Yard, Oakland, California TPH-gas Linear (TPH-gas) Linear (TPH-diesel) 12,500 ORC Injection - Sept. 2001 ORC Injection - July 2002 Concentration in Groundwater (ug/L) 10,000 10,000 Bioventing System - April 2006 ORC Injection - Feb. 2010 10,000 (1st monitoring event) 9,500 8200 6,500 5,000 4,600 4,200 4,000 4,300 3,500 3,300 3,100 500 OCTOR MayOA Jungo 40406 Potroj Sebroj Esproj , my becos Cardy topo may becoming originary that have **Sampling Date**

Figure 13: TPH-gasoline and TPH-diesel Hydrochemical Trends: Well MW-9 Redwood Regional Park Service Yard, Oakland, California

PLUME GEOMETRY AND MIGRATION INDICATIONS

The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination fluctuates between the upper portion of the plume (MW-2), the mid-portion of the plume (near MW-8), and the downgradient portion of the plume (at MW-7 and MW-9).

The plume geometry has not varied substantially over the past 8 years of monitoring, although seasonal fluctuations in contaminant concentrations have been observed. This is exhibited by higher concentrations in downgradient wells in some events, and in mid-plume or upgradient wells in other events.

CLOSURE CRITERIA ASSESSMENT AND PROPOSED ACTIONS

The Water Board and ACEH generally require that the following criteria be met before issuing regulatory closure of contaminant cases:

- 1. The contaminant source has been removed (i.e., the source of the discharge and obviously-contaminated soil). This criterion has not been partially met. While the UFSTs have been removed, along with contaminated soil, borehole soil sampling has shown a substantial mass of residual source area soil contamination that will act as an ongoing source of groundwater contamination. A bioventing system was installed and began operating in December 2005 as a corrective action to reduce gross contaminant mass in soil. The bioventing system resulted in an estimated magnitude drop in soil contaminant concentrations and thus having accomplished its' design purpose, was turned off in June 2011.
- 2. The groundwater contaminant plume is well characterized, and is stable or reducing in magnitude and extent. As discussed above, in our professional opinion, this criterion has not been met, and continued groundwater monitoring will be needed to demonstrate plume stability.
- 3. If residual contamination (soil or groundwater) exists, there is no reasonable risk to sensitive receptors (i.e., contaminant discharge to surface water or water supply wells) or to site occupants. This criterion is generally met by conducting a Risk-Based Corrective Action assessment that models the fate and transport of residual contamination in the context of potential impacts to sensitive receptors (e.g., water wells, residential and use). For this site, Redwood Creek is considered the primary sensitive receptor. The proposed reactive wall corrective action is designed to remedy the magnitude and duration of future contaminated groundwater discharge to Redwood Creek.

7.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994). A total of 11 site wells are available for monitoring, 7 of which are currently being monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene and ethylbenzene in groundwater.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of the Park District occurred in June 2011. Prior to June 2011, monitoring had been conducted on a quarterly basis since November 1994.
- A total of eleven site wells are available for monitoring; seven of the available wells are currently sampled for contamination.
- On July 18, 2011, in concurrence with ACEH, the site bioventing system having accomplished its' design purpose, was discontinued.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions. An instream bioassessment evaluation conducted in 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from

- top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 1,000 μg/L of TVHg) is currently centered around wells MW-7, MW-9, and MW-11 which are in the downgradient area of the plume. However, prior to the ORCTM injection in March 2010, the greatest zone of contamination was observed in MW-2, the historical source area well.
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, midplume, and downgradient wells in recent history. Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- Second Semiannual 2011 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg and TEHd in all of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12). The ESL for benzene was exceeded in monitoring wells MW-8, MW-9 and MW-11 and the ESL for ethylbenzene was exceeded in wells MW-7, MW-8, MW-9 and MW-11.
- No contaminants were detected in surface water samples SW-2 and SW-3 during this Second Semiannual 2011 event.
- The overall objective of the March 2010 in-situ ORCTM injection remedial action was to continue to reduce the residual hydrocarbons in the source area and in the downgradient slope area leading to Redwood Creek. The injection program was relatively effective in treating the upper and mid-plume area zone but not effective in the lower plume zone. Injection of ORCTM has been limited by lithologic restraints and non-hydrocarbon-utilizing microorganisms. It worked very well around the permeable backfilled zone of the former UFST excavation area as seen in earlier results at MW-2, but shows very limited effectiveness in the midfield and downgradient wells.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

- Continue to monitor and sample the site wells and creek on a semiannual frequency.
- Continue to monitor the March 2010 ORCTM injection remedy effectiveness and additional site chemical parameters to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue evaluation of additional corrective action measures to address elevated hydrocarbon concentrations in the downgradient area of the plume and develop a workplan for implementation of a bioremediation reactive wall transverse to the plume at the downgradient portion of the plume to treat the groundwater to prevent contaminants from reaching Redwood Creek.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

8.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008.

 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORCTM Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.

- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.

- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.

- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California.

 October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored							(feet above			_		
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16 535.15
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
9/23/2011	561.03	543.54	539.52	(b)	530.81	532.31	534.34	536.41	533.59	534.67	534.85	534.86

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

Chain of Custody Record

Laboratory <u>Curtis and Tom</u> Address <u>2323 Fifth Street</u> Berkeley, Califo	et)			ethod of Shipment Ha	and Deli								3					Date . Page	1	of
510-486-0900				— Ai	rbill No.							-) (a)	1	Anal	ysis A	equired	i	,	1/	
Project Owner East Bay Re	egional Par	rk Distr	ict	Co	poler No.			<u></u>				/ L			7	7	7	/	/ /	<u> </u>	
Site Address 7867 Redwe	ood Road				oject Manager <u>Richa</u>		disi			/ /	iners /		M I	1/	/ , ,	/ 1.	/ /	/ /	/ /		
Oakland, Ca	alifornia			Te	lephone No. <u>(510)</u> 644-	3123			//	Mered	\$	J 1	/ \		4	M					
Project Name Redwood R	egional Pa	ırk		Fa	x No(510) 644-	-3859			/ `	` / &	`/\	#W X.	7	/ *	5/ G			/	/ /	Ren	narks
Project Number 2006_16	2001	3-0	2_	Sa	amplers: (Signature) 🌬	Huy	your water	_ /	/ /	/ /	1	م الحرام		7			Y p				
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pro	eservation Chemical	1/			₹,		" /	3/	4	20/	4			,	
N W-2		9/23/1	1365	W	with	X	HC1/H250	N	8	X	又	x	Y	7	×	×			<i>(,</i>		~,,,
MU-7			1032			1	4		8	×	Y	X	X	X	X	×					, , , , , , , , , , , , , , , , , , , ,
mw-8.			1212						8	X	X	X	K	4	X	K			7.1.2		
Mw-9			1305						5	Je.	7	X									
mer-lo			1250			0.00		77200-0-100-0	5	X	X	1							٠.		
m w-(1	-		1315					1004	5	×	7	X									
MW-12		F	1212	ď	•		4	L	8	×	X	X	×	7	X	x					
		<u> </u>						-		-							-				
																	-		<u>-</u>		777277
			 									+		-			-				
		<u> </u>	<u> </u>												-				~~~~		
Relinquished by:		Date	Received Signal		Pot Handy	Date 9/23/	Retinquished Signature	by:	1		L		Date	Ri	ceived Signat	,					Date -
Printed Proclamin		Time	Printe	s La	t Gonzalez	Time	Printed				<u> </u>		Time		Printed	u					- Time
Stellar Environr	nental	14740	Comp	any	CIT	14:4	Company			***************************************	-				Compa	any					-
Turnaround Time: 5 Day TAT	. TTE GIVA FALVILLA AND AND AND AND AND AND AND AND AND AN						Relinquished	by:					Date	R	ceived	•		***************************************			Date
Comments: Please provide	e a GeoTra	acker E	DF for	ground	lwater samples only nvironmental Solutions		Signature .	<u>-</u>			······				Signati	ure			·	***************************************	-
Groundwater	samples co	ected	by Bla	ine Te	ch Services.	S,	Printed	- 1					Time		Printed	d					- Time
	***************************************						Company .		•	:				-	Cames	anv					

Lab job no. ____

Chain of Custody Record

Laboratory Curtis and Ton	nokins, Ltd.			Ме	ethod of ShipmentH	and De	liverv												Date	
Address 2323 Fifth Stre					ipment No.		*****	••••											Page 1	of
Berkeley, Calif)			AND IN WISH IN					,										
510-486-0900				All	bill No.		***************************************					li			Analys	is Req	uired		/	
Project Owner Fast Bay Site Address 7367 CAKIANA, CA	Regional	Park	(15	tret co	ooler No.						/ ,	XX			/	7	/	/	7 / 1	
Site Address 7.867	Réd wo	ed R	d	Pr	oject Manager <u>Richard</u>		și			/_ /				/ /	/ /			/ /		
Cakland, (A				Te	lephone No. (510) 644	-3123				Mered	£ &	S Y -	/ /							:
Project Name Pell WOO	a Regio	ral	Parl	√ Fa	x No(510) 644	-3859			/ *	· / 8						/ /	/ ,	/.,	Aer	narks
Project Number 2010	1-02	*			mplers: <i>(Signature)</i>	Z,	PRE	/ سي	/	/ /	$\langle \langle \rangle \rangle$	X _{/X}	/ /	/ /						
Field Sample Number	Location/ Depth	Date	Time	Sample	Type/Size of Container	Pı	eservation]/			1//4	1 /				/			/ .	
9W-2	creek	9-23	1000	Type	10000	Cooler	Chemical	1	2/			-/-		_		/	/	/		
				<u>L</u>	Sec M-AMDE	1 yes	1es(a)	N	7	X	X									
5W-3	Crack		10.0	W	1	<u> </u>	105(1)	N	3/2	X	X						a	-		
							" ' '													
								1		-				-			-			
						-		-									_	-		
						 														
		ļ				ļ														
	ļ																			
					:															
										-							\dashv	-		
						┼														
									-											
																_				
Relinquished by:	000	Date	Received	by:	41	Date	Relinquished	by:r		 -			Date	L Be	ceived b)		/	D-4-
1	-	7-23	Received Signat	ure /	Щ		Relinquished Signature	YO	d(U			9/23/)f	Signatur	سے ہ	# =	Za	/-	Date 9/27
Geoffrey D. Ris	sse	Time	Orinta	Pol	e Coinish		Printed S	صأه	· (A	j Marie	, i g					D.	٠	Ġ.	nealez	9/23/11
Challant		045	•			Time	1				()		Time	-	Printed .	1 4	CI_	\mathcal{L}_{α}	MEGIET.	- Time
Company Stellar Environm	1 1	077	Compa	any <u>N</u>	<u> </u>		Company _	61	_				1440	•	Compan	v	C	E	T	14:40
Turnaround Time: 5tano	dard-	5	Va				Relinquished I						Date	-	ceived by	,				Date
Comments: (9) 40 W		OA		7	red with	16	Signature _								Signature					Date
			1	9 \	VV/ 1/ b		D.			:				_						
							Printed				<u></u>		Time	-	Printed _					Time
						************	Company								Company	,				-

Lab job no. ____

WELL GAUGING DATA

Project # Nosz-Pcl Da	ate _	9/23/4	Client	stellar	

Site RR PSY Oakland

					Thickness	Volume of	<i>j.</i>		Survey	····
		Well		Depth to	of	Immiscibles	i		Point:	
177 1170	- m	Size	Sheen /			Removed	Depth to water		TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	হকু	Notes
<u>44-1</u>	0815	· · · · · · · · · · · · · · · · · · ·					4.80	19.10	**************************************	
MW-2	0772	1 oktoberno					22.88	3691	17. case page (17. ca	
wv-3	୦୪ <i>୦</i> ୧	Ц					21-29	44.84	**************************************	
WU-5	0876	4						26.80	**************************************	
Wir-6	0837	4					13.12	14.32	DITTER RESIDENCE	
wu7		ri.			-		13.27	25.17	A CONTRACTOR OF THE PARTY AND ADDRESS OF THE P	
MLY8	0855	2					12.72	aa.12	A PARA A CENTRAL PROPERTY OF THE PARA A CENTRAL PROPERTY OF TH	-
mu g	0846	2					1569	30.04	A PERMITANT MATERIAL PROPERTY OF THE PROPERTY	
MU-10	<i>७</i> ४ ५०	7-				1		28.16	ome of the same of	
MWH	0850	2					12.90	28.51	POPEROTE PRINCIPALITY	
Mu-12	0905	2					9.81	23.52		
							1.			
							The state of the s			
								v		
									, , , , , , , , , , , , , , , , , , ,	
	110									
			THE PERSON NAMED IN COLUMN NAM							and the state of t

WELLHEAD INSPECTION CHECKLIST

Page of

Date 1/23				Client	stella	Ý				
Site Address	7	67 Redu	\@	. 1886°						
Job Number						Ted	chnician	PC		
Well ID		Well Inspected - No Corrective Action Required		Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MW-1		- Ar					***************************************			
MWZ		Y								
MW 2 MW -3 MW-5 MW-6		M								
M45		У.			******************************					
MU-6		×								
MU-7		R								
WW- 8		Sta _{re}		K					K	
MW-9		X								
MW-10									×	
MU- U		*								
MUTE		X								
· · · · · · · · · · · · · · · · · · ·							277.22			
·										
			***************************************				s-2			
				X1			322			
								. 37 -		
NOTES:	Mw	-10 2/7 f	1	s strice	ed	al com	(dolici	out		
V	1W	-10 2/2 for	O	to Missi	v.			1		
		·		***************************************						
					ŕ	·			i	
		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		**

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAI	VIERR PSYLO	Kland		PROJECT NUM	MBER 10973-PC1		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:		
Myroni	617813	9/23/11 0640	4/7/10pH 3	4-00/7-00/10.0 5896	1010 WITTHN 10%:	TEMP. "C	INITIALS
Y5I5504	068142445	9 (70311 0690	244 24@ 152 Do-7	242.2	1	16.3) A to make a military make a make
							Saci
				e" .			
				·			
	A45						
	*					TTTE-000-00-00-00-00-00-00-00-00-00-00-00-0	-

Project #:	10923	-PC)		Clien	: Ste	llar	
Sampler: 5	PC			Date:	9 23		
Well I.D.:	MW-7	7		Well	Diamete	r: 2 3 (4) 6 8
Total Well	Depth (T)	D): % 6,	<i>q)</i>	Depth	to Wate	er (DTW): 2-	7.88
Depth to Fi	ree Produc	et:				Free Product (\$.
Referenced	l to:	(PVC)) Grade	D.O. 1	Meter (if	req'd):	(YSI) HACH
DTW with	80% Recl	narge [(I	Height of Wate	r Colum	n x 0.20) + DTW]: -7	5.69
Purge Method:	Bailer Disposable l Positive Air Electric Sub	Bailer Displacem		Waterr Peristalti action Pum	a 2	Sampling Meth	
1 Case Volume	Gals.) X Spec	3 ified Volur	= 243 nes Calculated V	Gals.	Well Diamet 1" 2" 3"	0.04 4 0.16 6	3,00
Time	Temp (°F or Ĉ	рН	Cond. (mS or (IS)	i .	bidity TUs)	Gals. Remove	ed Observations
0915	16.8	101	902.2	>(0	00	4.1	
0917	uall de	watere	2				
1356	189	7.50	961.1	715	0	Stronger-	
		t.,					
			÷				
Did well dev	vater?	Y es	No	Gallon	s actually	y evacuated:	10.5
Sampling Da	ite: 9 /23		Sampling Time	e: 1351	/ D:	Depth to Wa	
Sample I.D.:	MW-	2.		Labora	tory:	Kiff CalScier	nce Other C&T
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: See	CAC
B I.D. (if ap	plicable):		@ Time	Duplica	ite I.D. (if applicable)	
analyzed for	: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:	<i>2</i>
O. (if req'd): Pre	e-purge:		mg/I.	Po	ost-purge:	24.38 ^{mg} /L
R.P. (if req	'd): Pre	-purge:		mV	(Po	oct_nurge:	The same of the sa

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #	110923	-PCI	,	Clien	t: 5 \	1/2		
Sampler:				Date:	9/23/			,
Well I.D.	: MW-=			Well	Diamete	r: (2) 3	4	6 8,
. Province and the second	ll Depth (T		E rikunga cafa	Depth	to Wate	er (DTW):	3.77	
	Free Produc					ree Product	p <u>68</u> 982-	t):
Reference	ed to:	(VC)) Grade		Meter (if			YSD HACH
DTW witl	h 80% Recl	narge [(I	leight of Water	Colum	ın x 0.20) + DTW]:	15.	
Purge Method		Bailer Displacem		Waterr Peristalti tion Pumj	a .* c	Sampling Me		Bailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	_(Gals.) X e Spec	<u>ح</u> ified Volun	e 5.3 nes Calculated Vo	_Gals. lume	2" 3"	0.16 0.37	6° Other	1.47 radius ² * 0.163
Time	Temp (°F or C	рĤ	Cond. (mS or as)		bidity TUs)	Gals. Remo	ved	Observations
(0)0	153	6-76	651.9	81	E			
016	14.6	6-70	652.1	<u>45</u>	5	3.5		
1022	11.7	6.62	658.1	t c	3	5.7		
· · · · · · · · · · · · · · · · · · ·					2-1	a		
Did well de	water?	Yes (Ño)	Gallons	s actually	v evacuated:	5.	and the second s
ampling D	ate: ٩ [ريخ	dinare	Sampling Time:	103	garan.	Depth to W	ater:	14.60
ample I.D.	:MW-			Laborat		Kiff CalSci		Other C&T
nalyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D (Oxygena	ites (5)	Other: See	· / 1	300
B I.D. (if a	pplicable):		@ Time I	Duplica		f applicable		
nalyzed fo	r: TPH-G	BTEX 1)xygena	· · · · · · · · · · · · · · · · · · ·	Other:		
.O. (if req'	d): Pre	-purge:		mg/L	Po	st-purge:	The second second	mg/L
R.P. (if re	g'd): Pre	-purge:		mV	(Da	ot murco.		

Project #: 1	10923	-PCI		Client: Ste	lar	
Sampler: 5	PC			Date: 4 23		
Well I.D.:	MW-8			Well Diameter	: ② 3 4	6 8
Total Well	Depth (TI)): 2·2	- American	Depth to Wate	r (DTW):{7	
Depth to Fr					Free Product (fe	
Referenced	to:	(V)	Grade	D.O. Meter (if	req'd):	YSD HACH
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20) + DTW]: /4-	
*	Bailer Disposable E Positive Air Electric Subi Gals.) X Speci	Displaceme	Other	Waterra Peristaltic ction Pump Gals. Gals. Dlume	Other Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier 0.65 1.47
Time	Temp	pH	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations
1148	(69	7.44	774.7	>(OOO)	1.5	
154	15,9	7.15	742.5	>(@60)	3	
1200	15.4	7.10	711-6	7/000	4.5	
Did well dev	vater?	Yes (No)	Gallons actuall	। y evacuated: ५	5
Sampling Da	ate: 9 /23		Sampling Time	: 1217	Depth to Wate	r: [4.55
Sample I.D.:	Mw-	ζ		Laboratory:	Kiff CalScience	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	° 10°
EB I.D. (if a	pplicable):	•	@ Time	Duplicate I.D. (
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	*
O.O. (if req'o	i): Pr	e-purge:		mg/ _L Q	ost-purge:	mg/L
R.P. (if red	n'd): Pro	e-nurge		mV P	ost-purge:	Sa mV

Project #: \	10923	-PC)		Client: Ste	ar	
Sampler: 5	<u> </u>	··	# 03	Date: 9 73	(f) Command	er en
Well I.D.:	MW-9	;	:	Well Diameter	: Ø 3 4	6 8
Total Well	Depth (TI	D):3 _{0.6}	04	Depth to Wate	r₄(DTW):′/5.6	29
Depth to Fr				Thickness of F	ree Product (fe	eet):
Referenced	to:	(VC)	Grade	D.O. Meter (if	ręq'd):	(YSI) HACH
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20)) + DTW]: 溪	.56
0 *7	Bailer Disposable I Positive Air Electric Sub	Displacem	ent Extrac Other	Waterra Peristaltic tion Pump Well Diamete	Other Other Well 0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Spec	ified Volun		_ Gais.	0.37 Othe	
Time	Temp (°F or C	PH - pH	Cond. (mS or 168)	Turbidity (NTUs)	Gals. Removed	Observations
110	1546	6.79	744.7	667	2-3	
and and	15.72	6.73	850.2	396	46	
124	15-0	6.80	304.5	221	69	
Did well dev	water?	Yes	No)	Gallons actually	y evacuated: 🏠	9
Sampling Da	ate: 9 	Sayer Sayer	Sampling Time	and the second of the second o	Depth to Wate	
Sample I.D.:	Mw-	q		Laboratory:	Kiff CalScience	e Other C
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See (· oc
EB I.D. (if a	pplicable)	•	© Time	Duplicate I.D. (
Analyzed for	r: TPH-G	BTÊX	MTBE TPH-D	Oxygenates (5)	Other:	
O. (if req'o	d): Pr	e-purge:		mg/L Po	ost-purge:	0.84 mg/L
).R.P. (if red	n'd). Pr	e-nurge:		mV Co	et-nurge:	_lid mV

		· V	LIVIONII	OKIN	y DAIA 	/ SHE		-	
Project #:	10923	-PCI		Client	sle	llar			4.
Sampler:				Date:	9/23/				
Well I.D.:	MW-1	0		Well I)iameter	: D 3	4	6 8	<i>÷</i>
1	Depth (TI		5	Depth	to Wate	r (DTW)	12.5	5	
Depth to F	ree Produc	t:		Thickr	ness of F	ree Prodi	ict (fe	et):	
Referenced	d to:	(VC)	Grade	D.O. N	∕leter (if	req'd):		(YSI) HAC	CH
DTW with	80% Rech	arge [(F	Ieight of Water	Colum	n x 0.20) + DTW]:15.	7	
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Displacem		Waterra Peristaltic ction Pump	1	Sampling	Method:	Disposable Extraction Dedicated T	Bailer Port
2.5 I Case Volume	(,	3 ified Volum	= 7.5 nes Calculated Vo	_ Gals.	Well Diamet 1" 2" 3"	er Multiplier 0.04 0.16 0.37	Well 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0	
Time	Temp (°F or C)	pH	Cond. (mS or us)	1	bidity TUs)	Gals. Re	moved	Observat	ions
o९५ <u>7</u>		8.00	732.7	30	Z	2.5			
0950	195	6.99	797.8	2000	9	5			P100001100
0957	15.0	P8.0	7189	56		7.5			
			. Ca				AND SALES WALLES AND ALL SALES		
Did well de	water?	Yes (No)	 Gallon	s actuall	y evacuat	ed: 1	5	
Sampling D)ate: 9 (~ 3		Sampling Time	e: 175	O 1	Depth to	Water	::\3.e\	
Sample I.D.	:Ww-	0		Labora	tory:	Kiff Ca	lScience	Other_C	£T
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: \$	ee c	OC	
EB I.D. (if a	applicable)	•	@ Time	Duplica		(if applica	4460 15	TV.	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	. ,	Other:			
D.O. (if req	'd): Pr	e-purge:		mg/ _L	(P	ost-purge:		772	mg/ _L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	. •	ost-purge:)	53.	mV

WELL MONITORING DATA SHELF

Project #: 11	2923-1	PCI		Client: Selar										
Sampler: Pa	-	,		Date: 4 23 11										
Well I.D.: W				Well Diameter: 2 3 4 6 8										
Total Well D	9	:1a==		Depth to Water (DTW): 12-90										
		10.)	100	Thickness of F	ree Product (feet)	:								
Depth to Fre Referenced t		(FVC)	Grade	D.O. Meter (if req'd): YSD HACH										
		roe [(He	eight of Water	Column x 0.20)	+ DTW]: /6.0	No.								
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	iler isplacemen ersible	nt Extrac Other	Waterra Peristaltic tion Pump Well Diamet 1" 2"	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65 1.47								
1 Case Volume	jais.) A	3 ied Volum	es Calculated Vo	Gals. 3"	0.37 Other	radius ² * 0.163								
Time	Temp (°F or Ĉ)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations								
i way way way	20.3	7-74	670.1	71,050	2.5									
1720	195	7-79	6612	7(000	5									
1278	13.9	7-31	6536	>(ಎಎಂ	The state of the s									
					<u> </u>									
Did well de	water?	Yes	(Ng)	Gallons actua	lly evacuated:	7-6								
Sampling L	Date: 9 (7 :	z I n	Sampling Tin	ne: 1316	Depth to Water	13.50								
Sample I.D	2 2 225			Laboratory:	Kiff CalScience	Other CaT								
Analyzed f			мтве трн-р	Oxygenates (5)	Other: See C	ec								
EB I.D. (if			@ Time	Duplicate I.D	. (if applicable):									
Analyzed f			MTBE TPH-D	Oxygenates (5)	Other:									
D.O. (if red		re-purge	•	mg/L	Post-purge:	1,08 mg								
ORP (if i		re-nurge	A CONTROLLED TO THE CONTROLLED	mV .	Post-purge:	Joe m								

	W	LMONIT	JRING.	DAIA	SHL .		-						
Project #: 11 0 9 7	73-PC1		Client:	Stel	lar	· · · · · · · · · · · · · · · · · · ·							
Sampler: Pc	Date: 9 73 11												
Well I.D.: MW	Well Diameter: 2 3 4 6 8												
Total Well Depth	Depth to Water (DTW): q q\												
Depth to Free Pro			Thickness of Free Product (feet):										
Referenced to:	(PVC)	Grade	D.O. Meter (if req'd): YS) HACH										
DTW with 80% I	Recharge [(He	eight of Water	Column	x 0.20)	+ DTW]:	17.	55						
Purge Method: Bailer Dispos	sable Bailer ve Air Displacement c Submersible	nt Extrac Other	Waterra Peristaltic tion Pump Gals.	Vell Diamete 1" 2" 3"	Sampling N		Bailer Disposable Bailer Extraction Port Dedicated Tubing						
i i	Temp (°F or (C)) pH		Turbidity (NTUs)		Gals. Ren	noved	Observations						
iciz Mi	1 691	643.8	71000		2.2			:					
(049 15-	0 672	637.8	> (& c	2 0	4.4								
	6 674	638.7	7(86	0	6-6			<u>,</u>					
				e:									
				:									
Did well dewater	? Yes	(No)	Gallons	actual	y evacuat	ed: 💪		·\					
Sampling Date: 6	1/7 7/11	Sampling Tim	ie: [2 { Z	Name .	Depth to	Water	: 1018						
Sample I.D.: M			Labora	tory:	Kiff Ca	Science	Other <u>C&T</u>						
	грн-G втех	MTBE TPH-D	@xygena	ites (5)	Other: 5	ee c	OC						
EB I.D. (if applic	cable):	@ Time	Duplica	ate I.D.	(if application	7		<u>(</u>					
	грн-G ВТЕХ	MTBE TPH-D	Oxygena	ites (5)	Other:								
D.O. (if req'd):	Pre-purge:		mg/L	Q	Post-purge:			mg/I					
O.R.P. (if req'd):	Pre-purge:		тV), q	Post-purge:	>	- 61	mV					

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 231299 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2008-02

Location : Redwood Regional Park

Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	231299-001
MW-7	231299-002
MW-8	231299-003
MW-9	231299-004
MW-10	231299-005
MW-11	231299-006
MW-12	231299-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>09/30/2011</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 231299

Client: Stellar Environmental Solutions

Project: 2008-02

Location: Redwood Regional Park

Request Date: 09/23/11 Samples Received: 09/23/11

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/23/11. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low surrogate recovery was observed for bromofluorobenzene (FID) in the BS for batch 179417. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Carbonaceous BOD (SM5210B):

No analytical problems were encountered.

					Chain of		_	ecc	rd			2	3	12	9	9			Date _) no	
Laboratory Curtis and Tompkins, Ltd. Address 2323 Fifth Street Berkeley, California 94710				Method of Shipment Hand Delivery Shipment No.						3							Page .	1	of		
510-486-0900			— Aiı	Airbill No.								<u> </u>	2	Analysis Required				7 /			
	Regional Pa	ark		Pr Te Fa	ooler NoRicha oject ManagerRicha dephone No(510) 644- ax No(510) 644- amplers: (Signature)	ard Mak 3123 3859		- - - - /		No. of C	/ .	1, 3	9			800	200	//	//	Rem	narks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	1		eservation Chemical			/1	2/4	7 F		3	4		<u>/</u>				
M W-Z		9/23/	1355		antx	X	401/H250	N	8	X		×	X	1 7		×		_			
M W - 7		11	1032	1	_	11_	1		B	X	X	X	X	X	×	×		<u> </u>			
mw-8.			1212						8	X	X	X	K	7	メ	K		-			
Mw-9		$\bot \bot$	1305	1					5	*	×	X		-	-	-	_				
mw-10	-	$\bot \bot$	1750	\bot		\vdash		+	5	X	X	<u> </u>		+-	-	-	-	\vdash	_		
mw-11		$\bot \downarrow$	1315						5	×	7	X		-	-	, _		\vdash	 		
MW-12:		1	1212	. 4	7	1	T	L	8	X	×	X	*	メ	7	or .					
Relinquished by:		Date	Received Signal	/	Pot Hungly	Date 9/23/	Relinquished Signature	by:					Dat	e R	leceive Signa		ļ .				Date
Printed Printed Time Printed Company Company Company					Time Printed _							- Tim	е	Printed					Time		
Turnaround Time: 5 Day TAT						-		Relinquished by:					Dat	e F	Company Received by: Signature					Date	
Surface wat	er samples	collecte	d by St	ellar E	dwater samples only Environmental Solution ech Services	is.	Printed						_ Tim	18	Print	ed					Time
2-00							Company						_		Com	pany _					_

3 of 37

COOLER RECEIPT CHECKLIST

Login # 23 \ 29 Date Received 123 11 Number of coole Client SES Project 2008 - 02	
Date Opened 923 By (print) CH ^o Y (sign) Date Logged in V By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc)YEs	S (NO)
2A. Were custody seals present? TYES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival?	NO WA
2B. Were custody seals intact upon arrival? YES 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? YES 5. Is the project identifiable from custody papers? (If so fill out top of form) YES 6. Indicate the packing in cooler: (if other, describe))NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper to 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: \bigvee Wet \square Blue/Gel \square None Temp(°C) 2.	
Samples Received on ice & cold without a temperature blank (i (oole	v)
Samples received on ice directly from the field. Cooling process had begu	n
8. Were Method 5035 sampling containers present?	YES NO
If YES, what time were they transferred to freezer?	
9. Did all bottles arrive unbroken/unopened?	VES NO
10. Are samples in the appropriate containers for indicated tests?	XES) NO
11. Are sample labels present, in good condition and complete?12. Do the sample labels agree with custody papers?	YES) NO
13. Was sufficient amount of sample sent for tests requested?	SES NO
14. Are the samples appropriately preserved?	NO N/A
	NO N/A
	NO N/A
	NO N/A
18. Are bubbles > 6mm absent in VOA samples?	
19. Was the client contacted concerning this sample delivery?	YES (NO)
If YES, Who was called?ByDate:_	
COMMENTS	

Curtis & Tompkins Sample Preservation for 231299

Sample pH: -001a b c d e f g h	<2 [] [] [] [] [] []	>12 Other []
-002a b c d e f g h		
-003a b c d e f g h	[] [] [X] [] [] []	
-007a b c d e f g h		

Analyst:
Date: ___

Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report Lab #: 231299 Location: Redwood Regional Park EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2008-02 09/23/11 09/23/11 Matrix: Water Sampled: Units: ug/L Received: 09/28/11 Diln Fac: 1.000 Analyzed: 179417 Batch#:

Field ID: MW-2 Lab ID: 231299-001

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	780 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	100	78-123	EPA 8015B	
Bromofluorobenzene (PID)	103	80-120	EPA 8021B	

Field ID: MW-7 Lab ID: 231299-002

Type: SAMPLE

Analyte	Result	RL	Analysis	
Gasoline C7-C12	5,800 Y	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	97	0.50	EPA 8021B	
m,p-Xylenes	3.1 C	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	104	78-123	EPA 8015B	
Bromofluorobenzene (PID)	113	80-120	EPA 8021B	

Field ID: MW-8 Lab ID: 231299-003

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,700 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	6.6 C	0.50	EPA 8021B
Toluene	0.89	0.50	EPA 8021B
Ethylbenzene	120	0.50	EPA 8021B
m,p-Xylenes	11	0.50	EPA 8021B
o-Xylene	1.2 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	97	78-123	EPA 8015B	
Bromofluorobenzene (PID)	108	80-120	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B 231299 Lab #: Location: Stellar Environmental Solutions Client: Prep: Project#: 2008-02 Matrix: 09/23/11 Water Sampled: 09/23/11 Units: ug/L Received: 1.000 179417 Diln Fac: Analyzed: 09/28/11 Batch#:

Field ID: MW-9Lab ID: 231299-004

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,600 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	13	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	160	0.50	EPA 8021B
m,p-Xylenes	7.8 C	0.50	EPA 8021B
o-Xylene	2.4	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	101	78-123	EPA 8015B	
Bromofluorobenzene (PID)	109	80-120	EPA 8021B	

Field ID: MW-10Lab ID: 231299-005 Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	150 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	0.80 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	1.9	0.50	EPA 8021B
m,p-Xylenes	1.0	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	91	78-123	EPA 8015B	
Bromofluorobenzene (PID)	105	80-120	EPA 8021B	

Field ID: MW-11Lab ID: 231299-006

SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,200 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	12	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	44	0.50	EPA 8021B
m,p-Xylenes	2.2 C	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	100	78-123	EPA 8015B	
Bromofluorobenzene (PID)	111	80-120	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3 16.0

	Curtis & Tompkins Laboratories Analytical Report								
Lab #: Client: Project#:	231299 Stellar Environmental Solutions 2008-02	Location: Prep:	Redwood Regional Park EPA 5030B						
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 179417	Sampled: Received: Analyzed:	09/23/11 09/23/11 09/28/11						

Field ID: MW-12Lab ID: 231299-007

SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	530 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	2.2 C	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	93	78-123	EPA 8015B
Bromofluorobenzene (PID)	106	80-120	EPA 8021B

BLANK Lab ID: QC610989 Type:

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID) 83	78-123	EPA 8015B	
Bromofluorobenzene (PID) 92	80-120	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%
Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	231299	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02		
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC610986	Batch#:	179417
Matrix:	Water	Analyzed:	09/28/11
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	1,000	965.2	97	80-120	EPA 8015B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	80	78-123	EPA 8015B
Bromofluorobenzene (PID)	92	80-120	EPA 8021B

Page 1 of 1

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	231299	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2008-02							
Matrix:	Water	Batch#:	179417					
Units:	ug/L	Analyzed:	09/28/11					
Diln Fac:	1.000							

Type: BS Lab ID: QC610987

Analyte	Spiked	Result	%REC	Limits	Analysis
MTBE	10.00	10.28	103	78-122	EPA 8021B
Benzene	10.00	8.764	88	80-120	EPA 8021B
Toluene	10.00	9.400	94	80-120	EPA 8021B
Ethylbenzene	10.00	9.917	99	80-120	EPA 8021B
m,p-Xylenes	10.00	10.18	102	80-120	EPA 8021B
o-Xylene	10.00	9.714	97	80-120	EPA 8021B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	75 *	78-123	EPA 8015B
Bromofluorobenzene (PID)	80	80-120	EPA 8021B

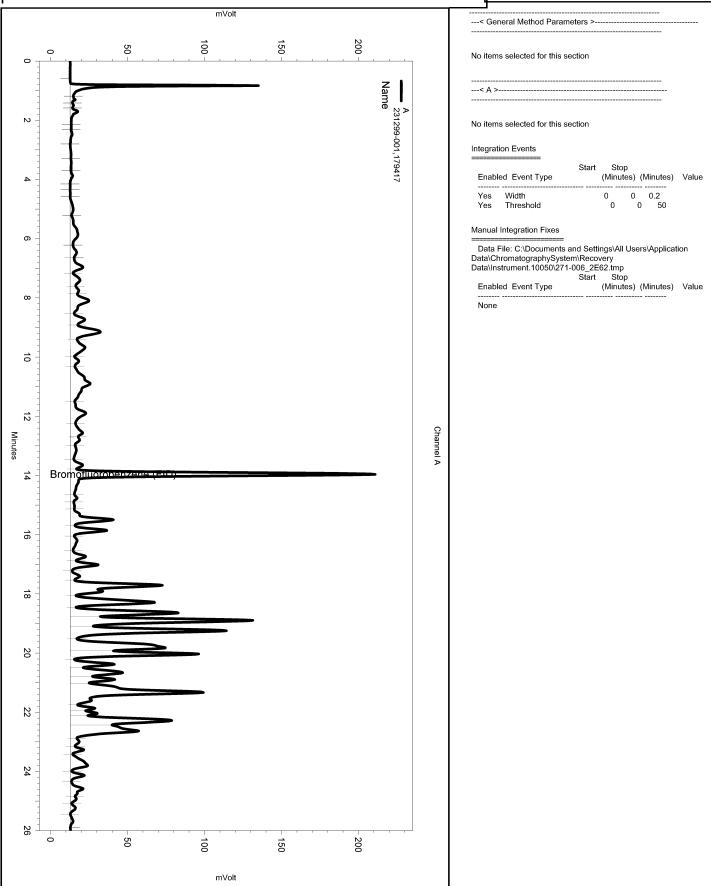
Type: BSD Lab ID: QC610988

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	ı	Analysis
MTBE	10.00	10.26	103	78-122	0	21	EPA	8021B
Benzene	10.00	8.886	89	80-120	1	20	EPA	8021B
Toluene	10.00	9.012	90	80-120	4	20	EPA	8021B
Ethylbenzene	10.00	9.158	92	80-120	8	20	EPA	8021B
m,p-Xylenes	10.00	9.185	92	80-120	10	20	EPA	8021B
o-Xylene	10.00	9.006	90	80-120	8	20	EPA	8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	79	78-123	EPA 8015B	
Bromofluorobenzene (PID)	85	80-120	EPA 8021B	

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

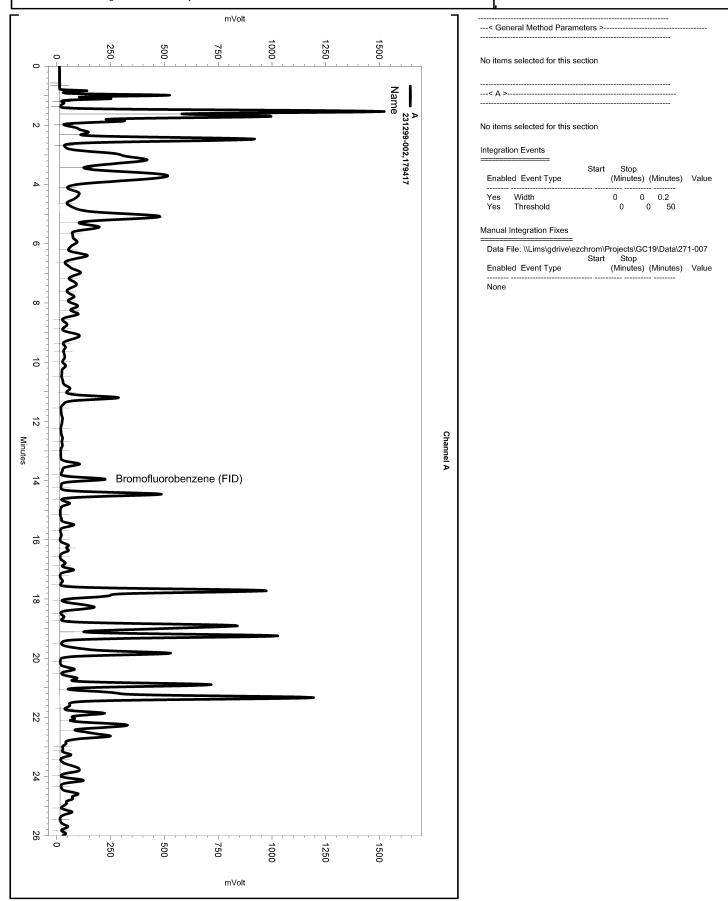
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq


Sample Name: 231299-001,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-006

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

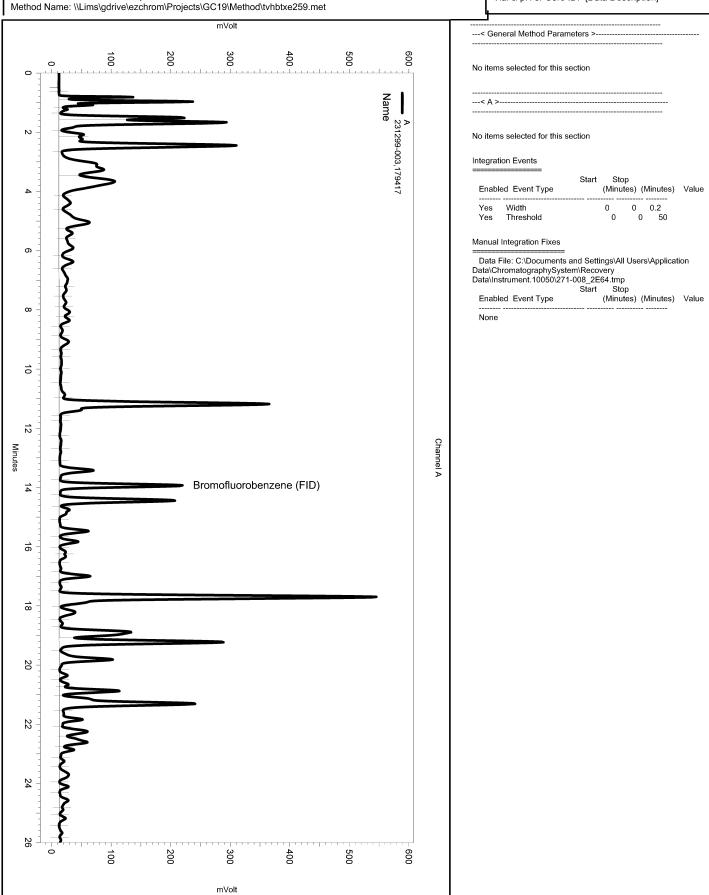
Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met


Software Version 3.1.7 Run Date: 9/28/2011 2:47:34 PM Analysis Date: 9/28/2011 3:16:42 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq Sample Name: 231299-002,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-007 Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met

Software Version 3.1.7 Run Date: 9/28/2011 3:25:10 PM Analysis Date: 9/29/2011 10:51:03 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

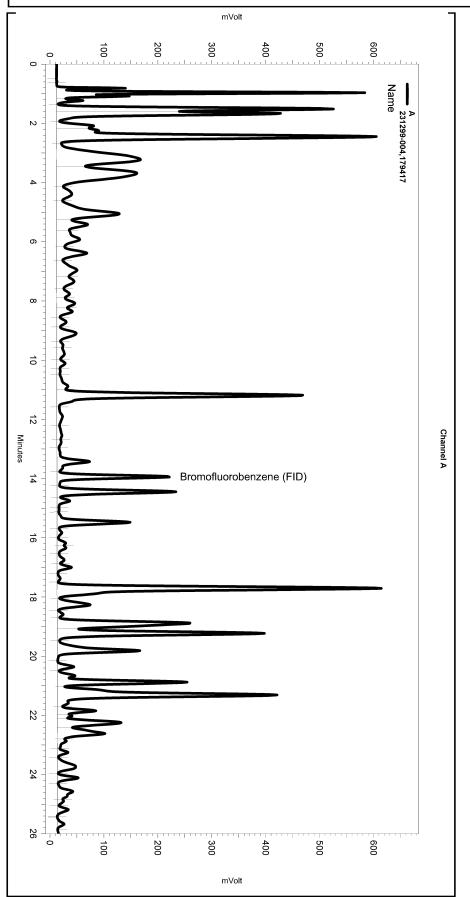


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq Sample Name: 231299-003,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-008

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

Software Version 3.1.7 Run Date: 9/28/2011 4:02:45 PM Analysis Date: 9/28/2011 4:31:49 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

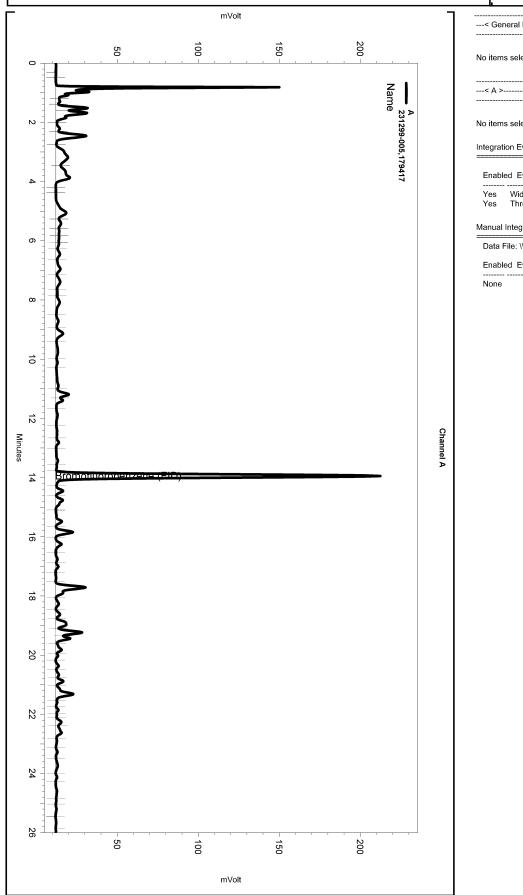


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq

Sample Name: 231299-004,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-009 Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met

Software Version 3.1.7 Run Date: 9/28/2011 4:40:20 PM Analysis Date: 9/29/2011 10:44:03 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

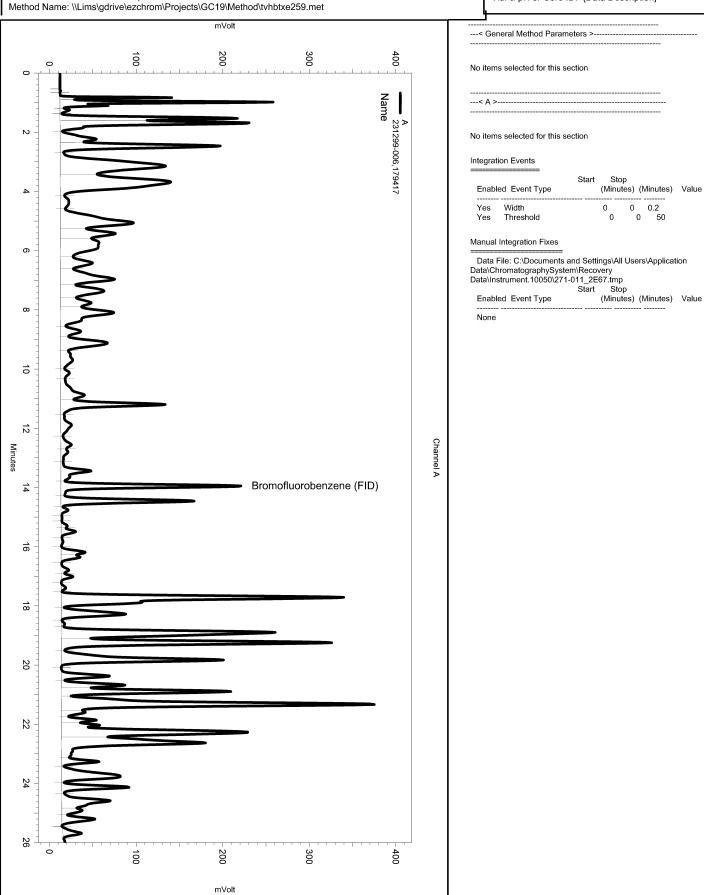

< Ger	neral Method Para	meters >-		 	
No item	s selected for this	section			
No item	s selected for this	section			
Integrati	ion Events				
Enable	ed Event Type	Start	Stop (Minutes)	(Minutes)	Value
	Width Threshold		0 0	0.2 0 50	
Manual	Integration Fixes	:			
D-4- F	File: \\Lims\gdrive\	ezchrom\F Start	Projects\GC Stop	19\Data\27	1-009
Data					

Sequence File: \\Lims\\gdrive\ezchrom\\Projects\\GC19\Sequence\271.seq

Sample Name: 231299-005,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-010 Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met

Software Version 3.1.7 Run Date: 9/28/2011 5:18:01 PM Analysis Date: 9/29/2011 10:53:04 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}


< General Method Parameters > 	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Star Enabled Event Type	t Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom'	
	(Minutes) (Minutes) Value

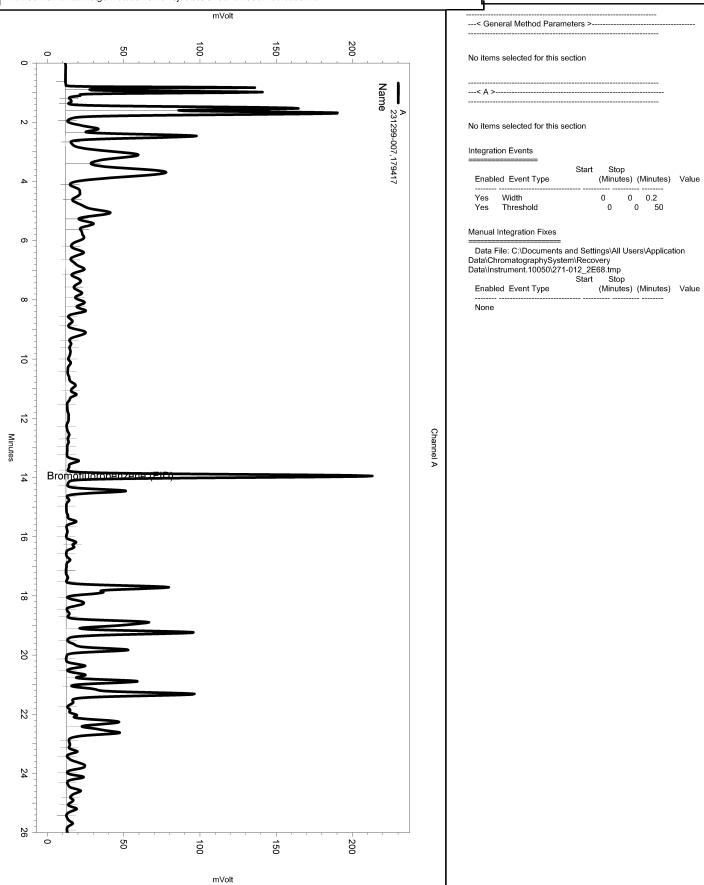
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq Sample Name: 231299-006,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-011

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

Software Version 3.1.7 Run Date: 9/28/2011 5:55:40 PM Analysis Date: 9/28/2011 6:24:48 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

 $Sequence\ File: \verb|\Lims\gdrive\| ezchrom \verb|\Projects\| GC19 \verb|\Sequence\| 271.seq \\$

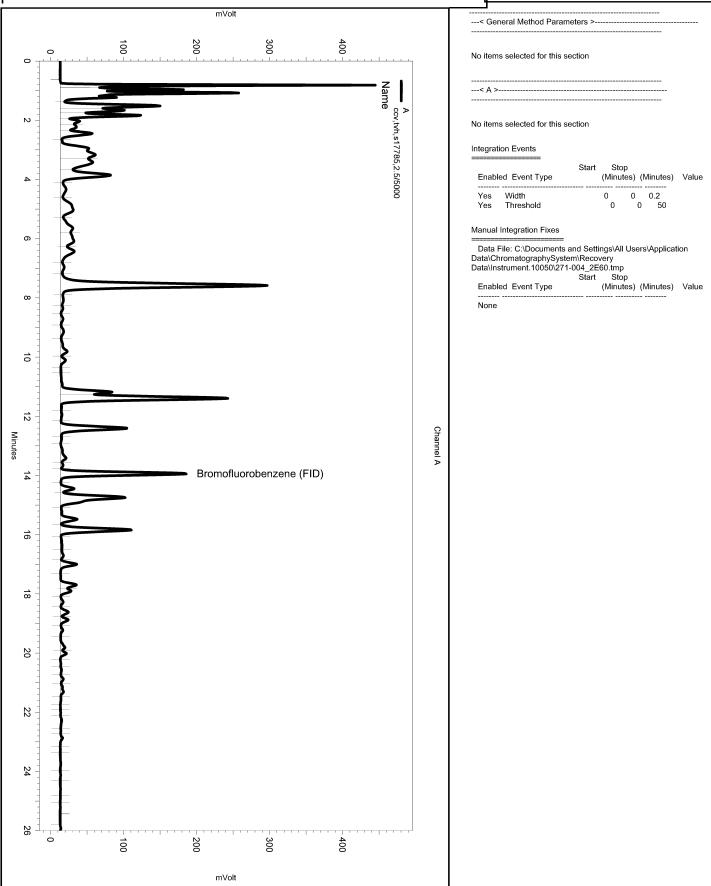

Sample Name: 231299-007,179417

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-012

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met

Software Version 3.1.7 Run Date: 9/28/2011 6:33:18 PM Analysis Date: 9/28/2011 7:02:25 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}



 $\label{lem:convergence} Sequence File: \verb|\Lims\gdrive\ezchrom\Projects\GC19\Sequence\271.seq| \\$ Sample Name: ccv,tvh,s17785,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\271-004

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe259.met

Software Version 3.1.7 Run Date: 9/28/2011 12:58:06 PM Analysis Date: 9/28/2011 1:27:14 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Total Extractable Hydrocarbons Lab #: 231299 Redwood Regional Park Location: EPA 3520C Client: Stellar Environmental Solutions Prep: Project#: 2008-02 Analysis: EPA 8015B 09/23/11 Matrix: Water Sampled: 09/23/11 Units: ug/L Received: Diln Fac: 1.000 09/23/11 Prepared: Batch#: 179283

Field ID: MW-2 Lab ID: 231299-001 Type: SAMPLE Analyzed: 09/25/11

 Analyte
 Result
 RL

 Diesel C10-C24
 810
 50

Surrogate %REC Limits
o-Terphenyl 99 68-120

Field ID: MW-7 Lab ID: 231299-002 Type: SAMPLE Analyzed: 09/25/11

AnalyteResultRLDiesel C10-C243,30050

Surrogate %REC Limits
o-Terphenyl 95 68-120

Field ID: MW-8 Lab ID: 231299-003 Type: SAMPLE Analyzed: 09/25/11

 Analyte
 Result
 RL

 Diesel C10-C24
 1,200
 50

Surrogate %REC Limits
o-Terphenyl 96 68-120

Field ID: MW-9 Lab ID: 231299-004 Type: SAMPLE Analyzed: 09/25/11

Analyte Result RL

Diesel C10-C24 1,900 50

Surrogate %REC Limits
o-Terphenyl 104 68-120

Field ID: MW-10 Lab ID: 231299-005 Type: SAMPLE Analyzed: 09/25/11

 Analyte
 Result
 RL

 Diesel C10-C24
 220 Y
 50

Surrogate %REC Limits
o-Terphenyl 99 68-120

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons 231299 Lab #: Location: Redwood Regional Park Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Sampled: EPA 8015B 09/23/11 Project#: 2008-02 Matrix: Water Received: 09/23/11 Units: ug/L 1.000 179283 Diln Fac: Prepared: 09/23/11 Batch#:

Field ID: MW-11 Lab ID: 231299-006 Type: SAMPLE Analyzed: 09/25/11

 Analyte
 Result
 RL

 Diesel C10-C24
 2,500
 50

Surrogate %REC Limits
o-Terphenyl 105 68-120

Field ID: MW-12 Lab ID: 231299-007 Type: SAMPLE Analyzed: 09/26/11

 Analyte
 Result
 RL

 Diesel C10-C24
 340 Y
 50

Surrogate %REC Limits
o-Terphenyl 104 68-120

Type: BLANK Analyzed: 09/26/11

Lab ID: QC610460

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 108 68-120

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Total Extractable Hydrocarbons							
Lab #:	231299	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2008-02	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC610461	Batch#:	179283				
Matrix:	Water	Prepared:	09/23/11				
Units:	ug/L	Analyzed:	09/26/11				

Cleanup Method: EPA 3630C

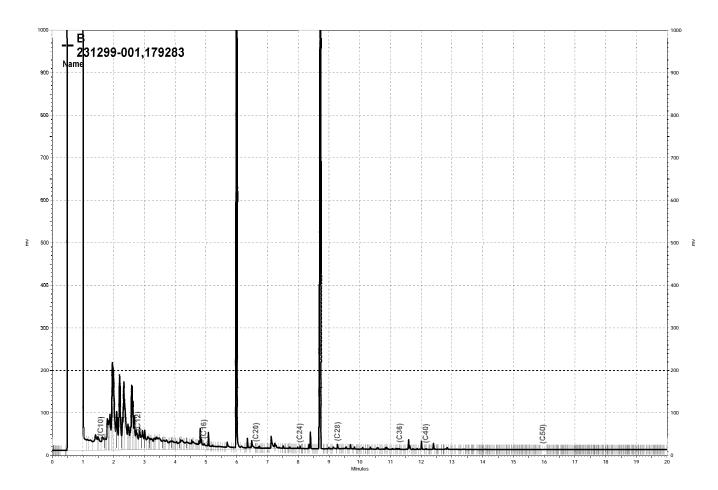
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,212	88	61-120

Surrogate	%REC	Limits
o-Terphenyl	92	68-120

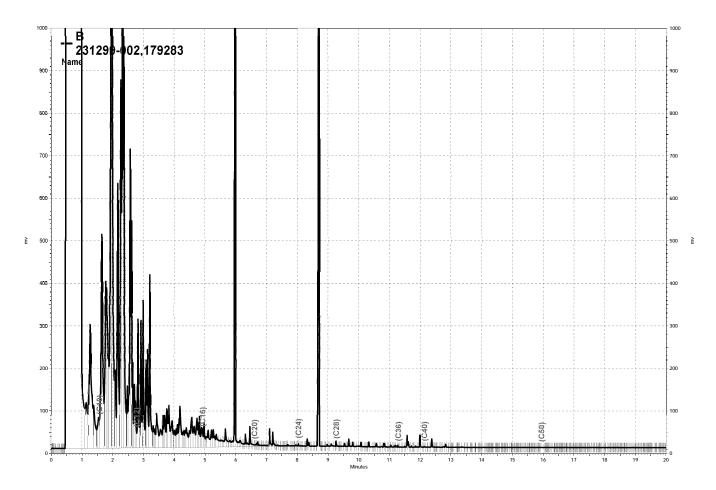
Page 1 of 1 9.0

Total Extractable Hydrocarbons							
Lab #: 231299	Location:	Redwood Regional Park					
Client: Stellar Environmental Solutions	Prep:	EPA 3520C					
Project#: 2008-02	Analysis:	EPA 8015B					
Field ID: ZZZZZZZZZ	Batch#:	179283					
MSS Lab ID: 231269-001	Sampled:	09/22/11					
Matrix: Water	Received:	09/23/11					
Units: ug/L	Prepared:	09/23/11					
Diln Fac: 1.000	Analyzed:	09/26/11					

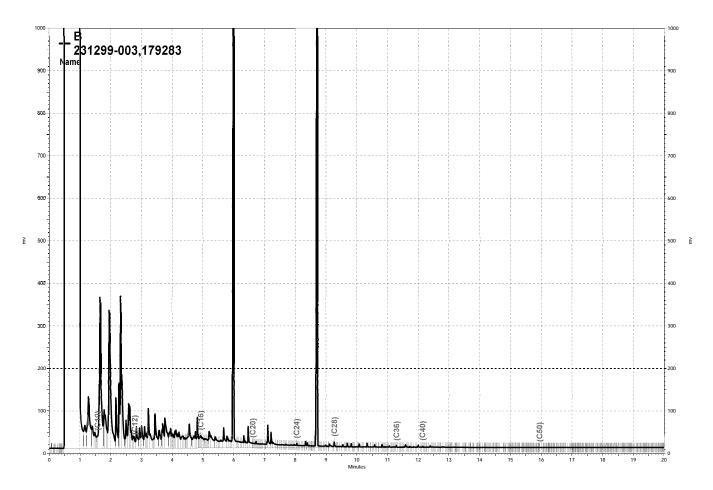
Type: MS Lab ID: QC610462

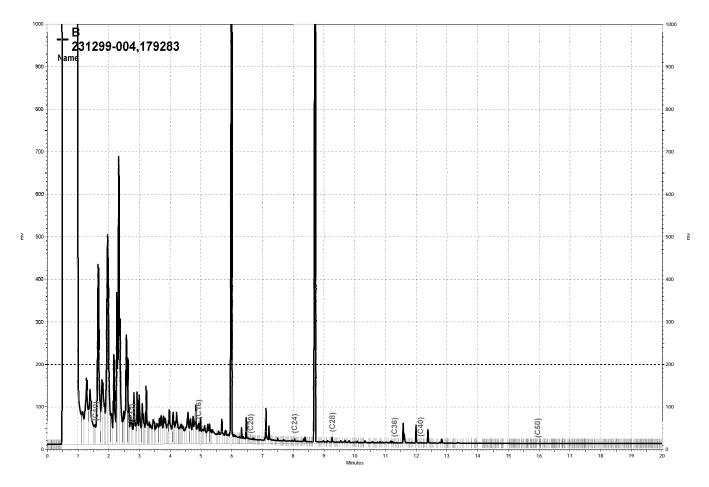

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	2,704	2,500	5,247	102	33-140

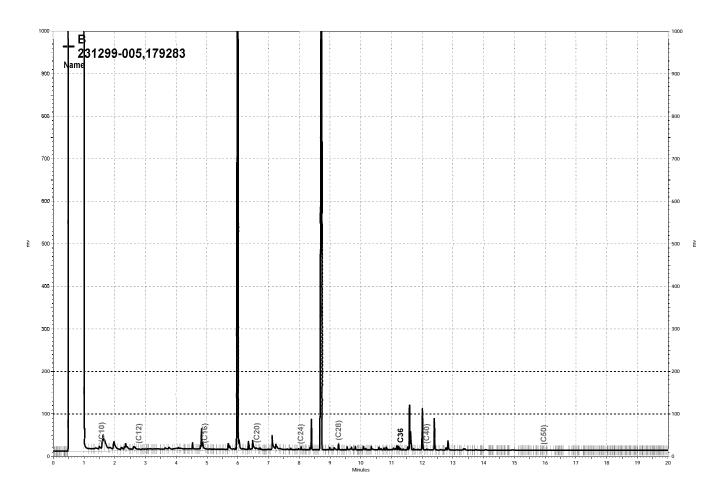
Surrogate	%REC	Limits	
o-Terphenyl	104	68-120	

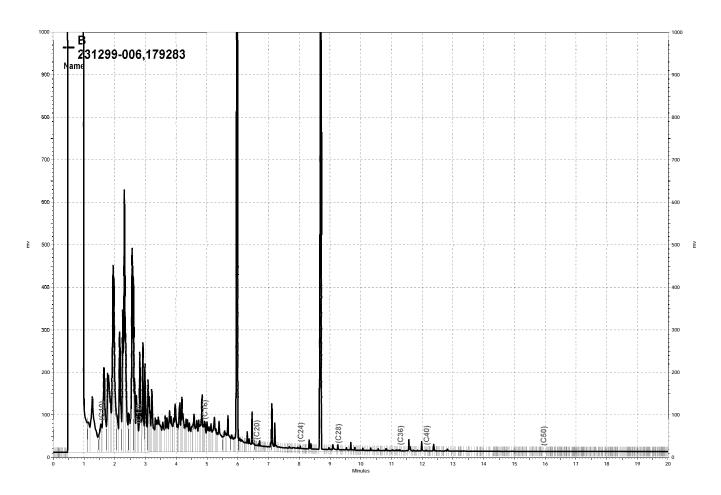

Type: MSD Lab ID: QC610463

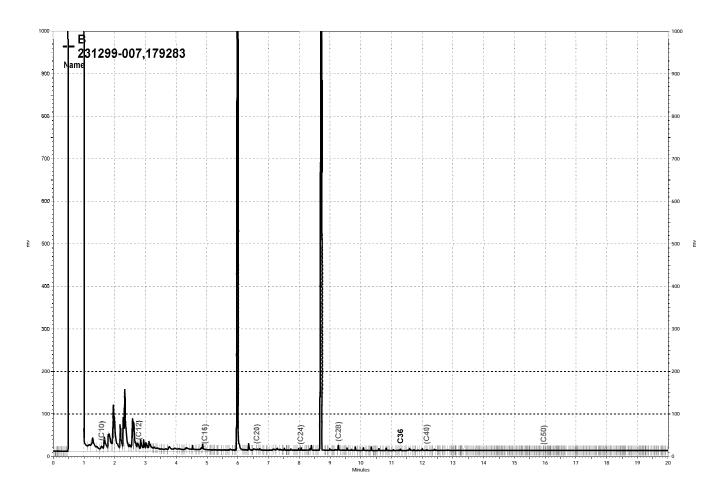
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	4,962	90	33-140	6	30

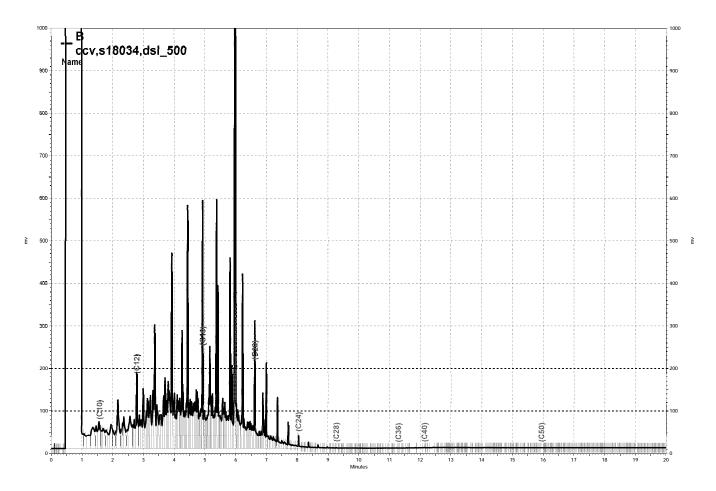

Surrogate	%REC	imits	
o-Terphenyl	89	58-120	


\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b023, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b024, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b025, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b026, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b027, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b028, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b029, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\268b017, B

Curtis & Tompkins Laboratories Analytical Report Lab #: 231299 Redwood Regional Park Location: Stellar Environmental Solutions Client: Prep: **METHOD** Project#: 2008-02 Analysis: EPA 300.0 Batch#: 179268 Matrix: Water 09/23/11 Units: mq/L Received:

Field ID: MW-2 Lab ID: 231299-001 Type: SAMPLE Sampled: 09/23/11 13:55

 Analyte
 Result
 RL
 Diln Fac
 Analyzed

 Nitrogen, Nitrate
 0.88
 0.05
 1.000
 09/23/11 15:53

 Sulfate
 110
 2.5
 5.000
 09/23/11 19:26

Field ID: MW-7 Diln Fac: 1.000

Type: SAMPLE Sampled: 09/23/11 10:32 Lab ID: 231299-002 Analyzed: 09/23/11 16:10

AnalyteResultRLNitrogen, NitrateND0.05Sulfate1.20.50

Field ID: MW-8 Diln Fac: 1.000

Type: SAMPLE Sampled: 09/23/11 12:12 Lab ID: 231299-003 Analyzed: 09/23/11 16:28

AnalyteResultRLNitrogen, NitrateND0.05Sulfate270.50

Field ID: MW-12 Diln Fac: 1.000

Type: SAMPLE Sampled: 09/23/11 12:12 Lab ID: 231299-007 Analyzed: 09/23/11 16:45

AnalyteResultRLNitrogen, NitrateND0.05Sulfate180.50

Type: BLANK Diln Fac: 1.000

Lab ID: QC610391 Analyzed: 09/23/11 13:53

AnalyteResultRLNitrogen, NitrateND0.05SulfateND0.50

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	231299	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	METHOD		
Project#:	2008-02	Analysis:	EPA 300.0		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC610392	Batch#:	179268		
Matrix:	Water	Analyzed:	09/23/11 14:10		
Units:	mg/L				

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	1.037	104	80-120
Sulfate	10.00	9.689	97	80-120

Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 2	231299	Location:	Redwood Regional Park			
Client: S	Stellar Environmental Solutions	Prep:	METHOD			
Project#: 2	2008-02	Analysis:	EPA 300.0			
Field ID:	ZZZZZZZZZ	Diln Fac:	1.020			
MSS Lab ID:	: 231288-001	Batch#:	179268			
Matrix:	Water	Sampled:	09/22/11 11:55			
Units:	mg/L	Received:	09/23/11			

Type: MS Analyzed: 09/23/11 20:53

Lab ID: QC610393

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	<0.01127	0.5100	0.5080	100	80-120
Sulfate	7.990	5.100	13.06	100	80-120

Type: MSD Analyzed: 09/23/11 21:11

Lab ID: QC610394

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Nitrogen, Nitrate	0.5100	0.5318	104	80-120	5	20
Sulfate	5 100	13 18	102	80-120	1	2.0

Biochemical Oxygen Demand						
Lab #:	231299	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solut	ions Prep:	METHOD			
Project#:	2008-02	Analysis:	SM5210B			
Analyte:	Biochemical Oxygen D	emand Batch#:	179275			
Matrix:	Water	Received:	09/23/11			
Units:	mg/L	Prepared:	09/23/11 19:25			
Diln Fac:	1.000	Analyzed:	09/28/11 17:30			

Field ID	Type	Lab ID	Result	RL	Sampled
MW-2	SAMPLE	231299-001	ND	12	09/23/11 13:55
MW-7	SAMPLE	231299-002	ND	12	09/23/11 10:32
MW-8	SAMPLE	231299-003	ND	10	09/23/11 12:12
MW-12	SAMPLE	231299-007	ND	10	09/23/11 12:12
	BLANK	QC610425	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Biochemical Oxygen Demand						
Lab #: 231299		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	METHOD			
Project#: 2008-0	2	Analysis:	SM5210B			
Analyte:	Biochemical Oxygen Demand	Batch#:	179275			
Field ID:	MW-12	Sampled:	09/23/11 12:12			
MSS Lab ID:	231299-007	Received:	09/23/11			
Matrix:	Water	Prepared:	09/23/11 19:25			
Units:	mg/L	Analyzed:	09/28/11 17:30			
Diln Fac:	1.000					

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC610426		198.0	198.8		100	85-115		
BSD	QC610427		198.0	212.8		107	85-115	7	20
SDUP	QC610428	<10.00		<10.00	10.00			NC	22

NC= Not Calculated RL= Reporting Limit

RPD= Relative Percent Difference

Page 1 of 1

Chemical Oxygen Demand						
Lab #:	231299	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	METHOD			
Project#:	2008-02	Analysis:	SM5220D			
Analyte:	Chemical Oxygen Demand	Batch#:	179415			
Matrix:	Water	Received:	09/23/11			
Units:	mg/L	Prepared:	09/28/11 13:00			
Diln Fac:	1.000	Analyzed:	09/28/11 15:00			

Field ID	Type	Lab ID	Result	RL	Sampled
MW-2	SAMPLE	231299-001	61	10	09/23/11 13:55
MW-7	SAMPLE	231299-002	38	10	09/23/11 10:32
MW-8	SAMPLE	231299-003	68	10	09/23/11 12:12
MW-12	SAMPLE	231299-007	25	10	09/23/11 12:12
	BLANK (QC610978	ND	10	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Chemical Oxygen Demand								
Lab #: 23129	9	Location:	Redwood Regional Park					
Client: Stella	ar Environmental Solutions	Prep:	METHOD					
Project#: 2008-02		Analysis:	SM5220D					
Analyte:	Chemical Oxygen Demand	Batch#:	179415					
Field ID:	ZZZZZZZZZ	Sampled:	09/27/11 15:00					
MSS Lab ID:	231369-001	Received:	09/27/11					
Matrix:	Water	Prepared:	09/28/11 13:00					
Units:	mg/L	Analyzed:	09/28/11 15:00					
Diln Fac:	1.000							

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC610979		75.00	70.11	93	90-110		
MS	QC610980	19.49	150.0	159.0	93	61-127		
MSD	QC610981		150.0	154.9	90	61-127	3	20

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 231300 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2010-02

Location : Redwood Regional Park

Level : II

 Sample ID
 Lab ID

 SW-2
 231300-001

 SW-3
 231300-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>09/30/2011</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 231300

Client: Stellar Environmental Solutions

Project: 2010-02

Location: Redwood Regional Park

Request Date: 09/23/11 Samples Received: 09/23/11

This data package contains sample and QC results for two water samples, requested for the above referenced project on 09/23/11. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low surrogate recovery was observed for bromofluorobenzene (FID) in the BS for batch 179417. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

	Chain of Custod			Lab job no.
Laboratory Curtis and Tompkins, Ltd. Address 2323 Fifth Street Berkeley, California 94710	Method of Shipment Hand Delivery	23	31300	Page of
Project Name Religional Park Project Number 2010-02	Airbill No Cooler No Project Manager Richard Makdisi Telephone No(510) 644-3123	Wo of Complete of	Analysis Required	Remarks
Depth Date Time T	Type/Size of Container Cooler Cher	mical		
	W Y Yes			
Printed Printed Printed	Pete Courish Time P	rinted Yete Cova139	Date Received by: Signature Cat Part Part	Date Vz3/10
Turnaround Time: Standard - 5 Val Comments: (a) 40 ML Vah pres	Reli	ompany BTS equished by: ignature	Date Received by: Signature	14.40 Date
to-oo-ooo		rinted	Time Printed	Time

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST

Login #	2313 St	Date F	Received 9/2 Project	3/11	Number of coolers	3 2
Date Opened Date Logged	963/11 in	By (print) By (print)	1.0HOY	(sign)_ (sign)_		
	come with a	shipping slip	(airbill, etc)		YES	10
How r	nany		YES (circle)		Date	NO NA
3. Were custo4. Were custo5. Is the project	dy papers da dy papers fi ect identifial	ry and intact w lled out proper	when received?	etc)?	YES (ES)	NO
Clot 7. Temperatur	h material e document	ation: *	ard S Notify PM if tem	tyrofoam perature ex	xceeds 6°C	
Type	of ice used:	Wet [Blue/Gel	None	Temp(°C) 2.9	
Sar	nples Recei	ved on ice & c	old without a ter	nperature l	olank (1 coole	/
					process had begun	
8. Were Meth	od 5035 sai	npling contair	_		У	YES NO
	les in the ap	propriate cont	med? ainers for indica ondition and cor			ES) NO ES) NO ES NO
12. Do the sar	nple labels a	agree with cus	tody papers?			ES NO
			nt for tests requerved?			ES NO NO N/A
15. Did you cl	heck preserv	atives for all l	oottles for each s		YES	NO (VA)
		ır preservative		177040		NO (N/A)
			AS for unpreserv samples?			
			this sample deli			ES (NO
If YES	S, Who was	called?	By		Date:	
COMMENTS						

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 231300 Location: Client: Stellar Environmental Solutions Prep: Project#: 2010-02 09/23/11 09/23/11 Water Matrix: Sampled: ug/L Received: Units: 1.000 09/28/11 Diln Fac: Analyzed: Batch#: 179417

Field ID: SW-2 Lab ID: 231300-001

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	92	78-123	EPA 8015B	
Bromofluorobenzene (PID)	104	80-120	EPA 8021B	

Field ID: SW-3 Lab ID: 231300-002

Type: SAMPLE

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	93	78-123	EPA 8015B	
Bromofluorobenzene (PID)	103	80-120	EPA 8021B	

Type: BLANK Lab ID: QC610989

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	83	78-123	EPA 8015B	
Bromofluorobenzene (PID)	92	80-120	EPA 8021B	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

7.0

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	231300	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2010-02				
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC610986	Batch#:	179417		
Matrix:	Water	Analyzed:	09/28/11		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	1,000	965.2	97	80-120	EPA 8015B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	80	78-123	EPA 8015B
Bromofluorobenzene (PID)	92	80-120	EPA 8021B

Page 1 of 1 8.0

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	231300	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2010-02				
Matrix:	Water	Batch#:	179417		
Units:	ug/L	Analyzed:	09/28/11		
Diln Fac:	1.000				

Type: BS Lab ID: QC610987

Analyte	Spiked	Result	%REC	Limits	Analysis
MTBE	10.00	10.28	103	78-122	EPA 8021B
Benzene	10.00	8.764	88	80-120	EPA 8021B
Toluene	10.00	9.400	94	80-120	EPA 8021B
Ethylbenzene	10.00	9.917	99	80-120	EPA 8021B
m,p-Xylenes	10.00	10.18	102	80-120	EPA 8021B
o-Xylene	10.00	9.714	97	80-120	EPA 8021B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	75 *	78-123	EPA 8015B
Bromofluorobenzene (PID)	80	80-120	EPA 8021B

Type: BSD Lab ID: QC610988

Analyte	Spiked	Result	%REC	Limits	RPD	Lin	1	Analysis
MTBE	10.00	10.26	103	78-122	0	21	EPA	8021B
Benzene	10.00	8.886	89	80-120	1	20	EPA	8021B
Toluene	10.00	9.012	90	80-120	4	20	EPA	8021B
Ethylbenzene	10.00	9.158	92	80-120	8	20	EPA	8021B
m,p-Xylenes	10.00	9.185	92	80-120	10	20	EPA	8021B
o-Xylene	10.00	9.006	90	80-120	8	20	EPA	8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	79	78-123	EPA 8015B	
Bromofluorobenzene (PID)	85	80-120	EPA 8021B	

9.0

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

Total Extractable Hydrocarbons Lab #: 231300 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 2010-02 EPA 8015B Analysis: Matrix: 09/23/11 Water Sampled: Units: 09/23/11 ug/L Received: 1.000 Diln Fac: Prepared: 09/23/11 Batch#: 179283 Analyzed: 09/26/11

Field ID: SW-2 Lab ID: 231300-001

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenvl	95	68-120

Field ID: SW-3 Lab ID: 231300-002

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	102	68-120

Type: BLANK Lab ID: QC610460

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits	
o-Terphenyl	108	68-120	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

3.0

Total Extractable Hydrocarbons						
Lab #:	231300	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C			
Project#:	2010-02	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC610461	Batch#:	179283			
Matrix:	Water	Prepared:	09/23/11			
Units:	ug/L	Analyzed:	09/26/11			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,212	88	61-120

Surrogate	%REC	Limits
o-Terphenyl	92	68-120

Page 1 of 1 4.0

	Total Extractable Hydrocarbons							
Lab #: 231300		Location:	Redwood Regional Park					
Client: Stella	r Environmental Solutions	Prep:	EPA 3520C					
Project#: 2010-0	2	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZZ	Batch#:	179283					
MSS Lab ID:	231269-001	Sampled:	09/22/11					
Matrix:	Water	Received:	09/23/11					
Units:	ug/L	Prepared:	09/23/11					
Diln Fac:	1.000	Analyzed:	09/26/11					

Type: MS

Lab ID: QC610462

Analyte	MSS Result	spiked	Result	%REC LIM	its
Diesel C10-C24	2,704	2,500	5,247	102 33-	140

Surrogate	%REC	Limits	
o-Terphenyl	104	68-120	

Type: MSD Lab ID: QC610463

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	4,962	90	33-140	6	30

Surrogate	%REC	Limits	
o-Terphenyl	89	68-120	

APPENDIX D Historical Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

					Well N				
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	N
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	N.
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	N.
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	Ν
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	Ν
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	Λ
9	May-97	67	< 50		< 0.5		< 1.0	14	N
				8.9		5.1			
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	N
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	Ν
12	Feb-98	2,000	200	270	92	150	600	1,112	Ν
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	8.0	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	_	< 2.
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<2
700	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
46d			9,100	1.6	<0.5	110	910.0	1021.6	9.5
46d		40,000			<0.5	<0.5	201.0	201.52	12
46d 47	Sep-08	9 200		0.52		-0.0	_01.0		
46d 47 48	Sep-08 Dec-08	9,200	2,200	0.52		7.0	25.0	45.4	14
46d 47 48 49	Sep-08 Dec-08 Mar-09	9,200 3,100	2,200 37,000	1.1	1.4	7.9	35.0	45.4	
46d 47 48 49 50	Sep-08 Dec-08	9,200 3,100 5,000	2,200 37,000 15,000	1.1 1.5	1.4 <0.5	9.8	39.0	50	13
46d 47 48 49	Sep-08 Dec-08 Mar-09	9,200 3,100	2,200 37,000	1.1	1.4				
46d 47 48 49 50	Sep-08 Dec-08 Mar-09 May-09	9,200 3,100 5,000	2,200 37,000 15,000	1.1 1.5	1.4 <0.5	9.8	39.0	50	13
46d 47 48 49 50	Sep-08 Dec-08 Mar-09 May-09 Jun-09	9,200 3,100 5,000 2,400	2,200 37,000 15,000 8,000	1.1 1.5 5.4	1.4 <0.5 <0.5	9.8 11	39.0 20.2	50 36.6	13 13
46d 47 48 49 50 51 52	Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09	9,200 3,100 5,000 2,400 1,900	2,200 37,000 15,000 8,000 3,100	1.1 1.5 5.4 1.6	1.4 <0.5 <0.5	9.8 11 11	39.0 20.2 23.8	50 36.6 38.2	13 13 7.1
46d 47 48 49 50 51 52 53 54	Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09 Sep-09 Dec-09	9,200 3,100 5,000 2,400 1,900 1,400 590	2,200 37,000 15,000 8,000 3,100 1,800 1,800	1.1 1.5 5.4 1.6 <0.5 <0.5	1.4 <0.5 <0.5 1.8 <0.5 <0.5	9.8 11 11 <0.5	39.0 20.2 23.8 4.2 1.2	50 36.6 38.2 4.24 2.4	13 13 7.1 12 3.6
46d 47 48 49 50 51 52 53 54	Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09 Sep-09 Dec-09 Mar-10	9,200 3,100 5,000 2,400 1,900 1,400 590 1,900	2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200	1.1 1.5 5.4 1.6 <0.5 <0.5	1.4 <0.5 <0.5 1.8 <0.5 <0.5	9.8 11 11 <0.5 1.2 <0.5	39.0 20.2 23.8 4.2 1.2 2.2	50 36.6 38.2 4.24 2.4 2.2	13 13 7.1 12 3.6 2.2
46d 47 48 49 50 51 52 53 54 55	Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09 Sep-09 Dec-09 Mar-10 Mar-10	9,200 3,100 5,000 2,400 1,900 1,400 590 1,900 2,000	2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200 4,300	1.1 1.5 5.4 1.6 <0.5 <0.5 <0.5	1.4 <0.5 <0.5 1.8 <0.5 <0.5 <0.5 <0.5	9.8 11 11 <0.5 1.2 <0.5 <0.5	39.0 20.2 23.8 4.2 1.2 2.2	50 36.6 38.2 4.24 2.4 2.2 3.45	13 13 7.1 12 3.6 2.2
46d 47 48 49 50 51 52 53 54 55	Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09 Sep-09 Dec-09 Mar-10	9,200 3,100 5,000 2,400 1,900 1,400 590 1,900	2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200	1.1 1.5 5.4 1.6 <0.5 <0.5	1.4 <0.5 <0.5 1.8 <0.5 <0.5	9.8 11 11 <0.5 1.2 <0.5	39.0 20.2 23.8 4.2 1.2 2.2	50 36.6 38.2 4.24 2.4 2.2	13 13 7.1 12 3.6 2.2

					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	ı	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
28	Dec-03	<50	<100	<0.3	< 0.3	<0.3	<0.6	_	< 5.0
29	Mar-04	<50	<100	< 0.3	<0.3	<0.3	<0.6	ı	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6		< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
	Groundwat	er monitorin	g in this w	ell discontin	ued with Ala	meda County He	alth Care Services	s Agency approva	ıl.

	Well MW-5											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA			
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA			
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA			
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA			
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2			
Gro	Groundwater monitoring in this well discontinued in 1998 with Alameda County Health Care Services Agency approval.											
		Subseq	uent groun	dwater mor	itoring cond	lucted to confirm	plume's southern l	limit	1			
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9			
15	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0			

					Well N	1W-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.60	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.90	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.60	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.50	92	<2.0
40	Jun-10	5,800	5,000	20	<0.5	140	9.90	170	<2.0
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.00	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.20	108	87.0

					Well N	1W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2.0
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	<0.5	22	<2.5	25	<10
42	Dec-10	180	260	<0.5	<0.5	5	0.99	6.4	7.2

					Well N	1W-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2.0
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2.0
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	l	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	l	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	<0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	<0.5	<0.5	0.69	<0.5	0.7	4.1

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10.000	3.000	250	9.9	700	527	1.487	< 4
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4.900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4.600	1,900	69	<2.5	300	206	575	< 10
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10
20	Jun-06	3.700	1.900	170	<1.0	230	14	414	< 4.0
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0
24	Jun-07	4	2,200	120	<0.5	140	6.6	267	<4.0
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0
31	Mar-09	4.100	4.600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.0
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.0
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3,000	2,200	18	<0.5	41	0.55	60	8.0
39	Dec-10	1,800	2,900	13	<0.5	49	1.9	64	15.0

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	٨
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Ν
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.

<u> </u>		Sampling I	ocation S	W-2 (Area	of Historica	I Contaminated	Groundwater Dis	charge)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40									
	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77 420	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	IVIAI-10								
51 52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
		<50 <50	240 66	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.5 <0.5	<2.0 <2.0

	Samp	ling Location	n SW-3 (E	ownstrean	n of Contan	ninated Groundy	vater Discharge L	ocation SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	< 50	<100	< 0.3	< 0.3	< 0.6	< 0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Sep-10	NS	NS	NS	NS	NS	NS	NS	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	NS

NS = Not Sampled (no surface water present during sampling event)