RECEIVED

9:19 am, Feb 04, 2011 Alameda County Environmental Health

FOURTH QUARTER 2010 GROUNDWATER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

January 2011

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

FOURTH QUARTER 2010 GROUNDWATER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

January 28, 2011

Project No. 2010-02

GEOSCIENCE & ENGINEERING CONSULTING

January 28, 2011

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report Redwood Regional Park Service Yard Site – Oakland, California ACEH Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted between October 1 and December 31, 2010 (Fourth Quarter 2010). This report also evaluates hydrochemical trends (including plume extent and stability) over the year of monitoring. In our professional opinion, continued groundwater monitoring can be reduced to semiannual monitoring based on the historical data collected and remediation completed. Groundwater monitoring and ongoing bioventing activities will be submitted in a semi-annual monitoring report and one annual monitoring report, respectively.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact Mr. Matt Graul of the EBRPD, or contact me directly at (510) 644-3123.

Sincerely,

Junie S. Makdini

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

Motthew Zan

Matt Graul, Stewardship Manager East Bay Regional Park District

cc: Carl Wilcox, California Department of Fish and Game State of California GeoTracker database / ACEH ftp database

TABLE OF CONTENTS

Sectio	n	Page
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Site Description Regulatory Oversight	1 1 2
2.0	PHYSICAL SETTING	6
	Site Lithology Hydrogeology	
3.0	REGULATORY CONSIDERATIONS	13
	Groundwater Contamination Surface Water Contamination	
4.0	FOURTH QUARTER 2010 ACTIVITIES	15
	Groundwater Level Monitoring and Sampling Creek Surface Water Sampling Bioventing-Related Activities ORC [™] Injection and Monitoring	17 17
5.0	FOURTH QUARTER 2010 ANALYTICAL RESULTS	19
	Groundwater and Surface Water Analytical Results Quality Control Sample Analytical Results	
6.0	EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY	Y23
	Contaminant Source Assessment Water Level Trends Hydrochemical Trends Plume Geometry and Migration Indications Closure Criteria Assessment and Proposed Actions	24 26 35
7.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	38
	Summary and Conclusions Proposed Actions	
8.0	REFERENCES AND BIBLIOGRAPHY	41

TABLE OF CONTENTS (continued)

Section	n	Page
9.0	LIMITATIONS	46

Appendices

Appendix A	Historical Groundwater Monitoring Water Level Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Analytical Results

TABLES AND FIGURES

Tables	Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data	16
Table 2 Electron Acceptors and Oxygen Demand	18
Table 3 Groundwater and Surface Water Samples Analytical Results	20

Figures Page
Figure 1 Site Location Map
Figure 2 Site Plan and Historical Sampling Locations4
Figure 3 Geologic Cross-Section Locations
Figure 4 Geologic Cross-Sections A-A' through C-C'8
Figure 5 Geologic Cross-Sections D-D' through F-F'9
Figure 6 Groundwater Elevation Map –December 16, 201011
Figure 7 Groundwater Analytical Results and Gasoline Plume – December 201021
Figure 8 Historical Groundwater Elevations in Key Site Wells25
Figure 9 Gasoline and Diesel Hydrochemical Trends in Well MW-228
Figure 10 Gasoline and Diesel Hydrochemical Trends in Well MW-829
Figure 11 Gasoline and Diesel Hydrochemical Trends in Well MW-1131
Figure 12 Gasoline and Diesel Hydrochemical Trends in Well MW-732
Figure 13 Gasoline and Diesel Hydrochemical Trends in Well MW-933
Figure 14 Gasoline and Diesel Hydrochemical Trends in Well MW-1034
Figure 15 Gasoline and Diesel Hydrochemical Trends in Well MW-12

1.0 INTRODUCTION

PROJECT BACKGROUND

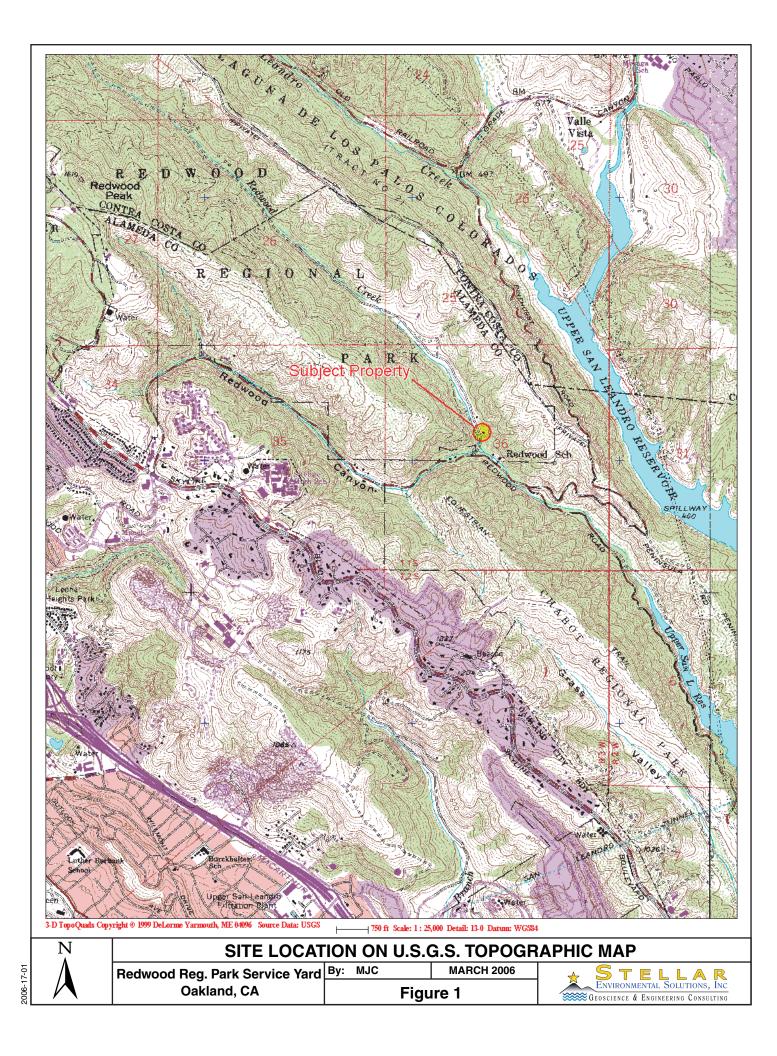
The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

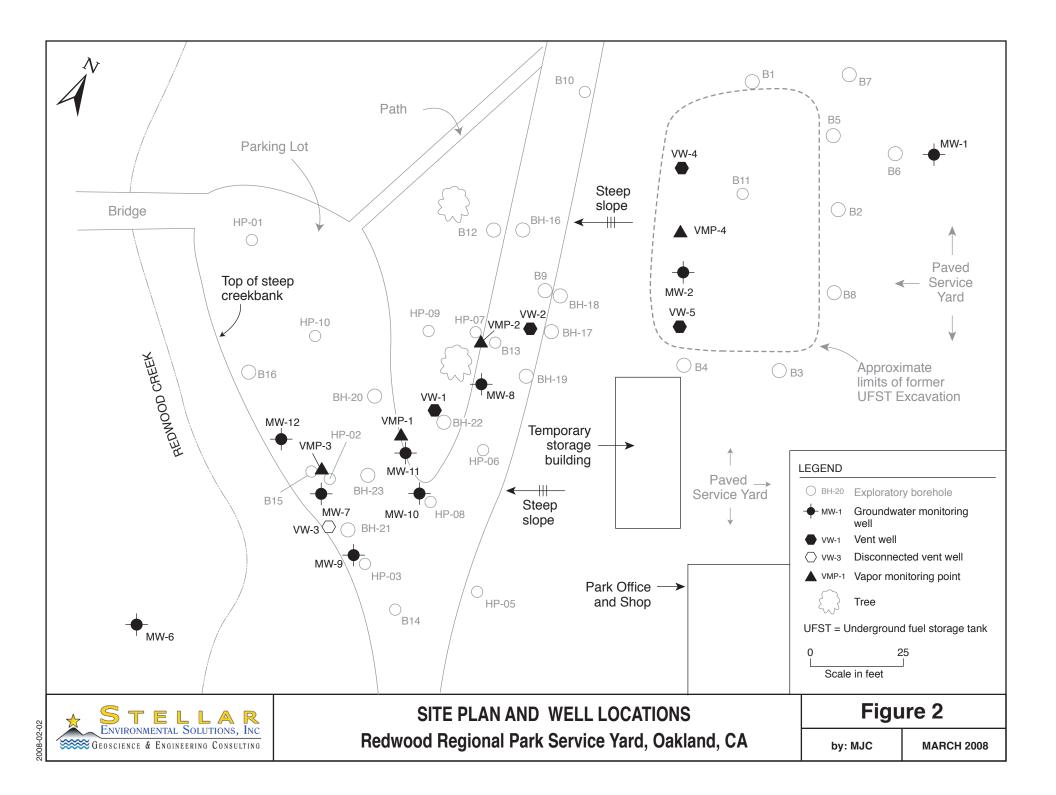
OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) between October 1 and December 31, 2010 (Fourth Quarter 2010):

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis
- Conducting monthly monitoring and maintenance of bioventing system operation
- Conducting a microbial respiration test (discussed in the Annual 2010 bioventing status report)

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS


Previous Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report lists all technical reports for the site. The general phases of site work included:


- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 48 groundwater monitoring events, conducted on a quarterly basis since project inception (November 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. However, the bioventing remedy has not been effective to date. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).

SITE DESCRIPTION

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.

Figure 1 shows the location of the project site. Figure 2 presents the site plan.

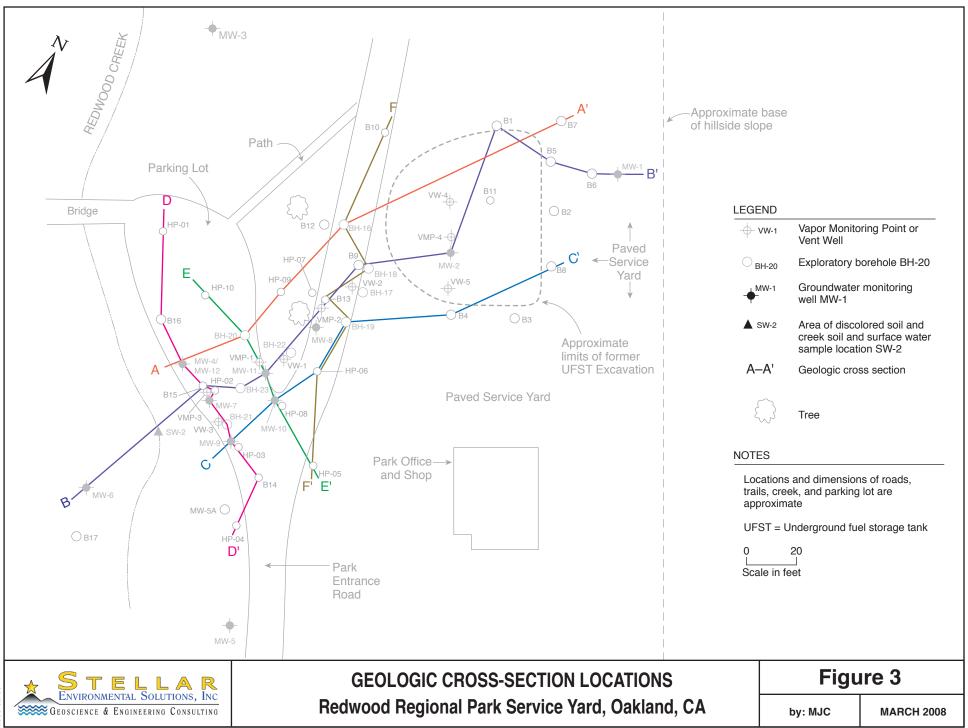
REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports have been submitted to these agencies. Historical ACEH-approved revisions to the groundwater sampling program have included:

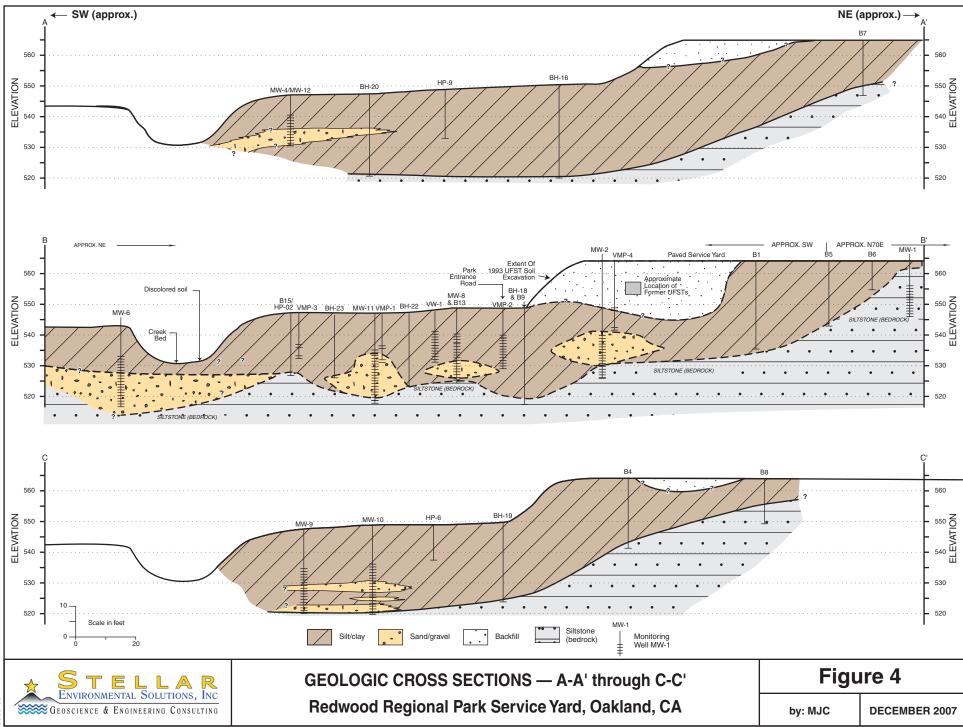
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Discontinuing field measurement and laboratory analyses for natural attenuation indicators, to be re-implemented following the bioventing corrective action.
- Reducing the frequency of creek surface water sampling from quarterly to semiannually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Q2 2005 have been uploaded to ACEH's file transfer protocol (ftp) system.

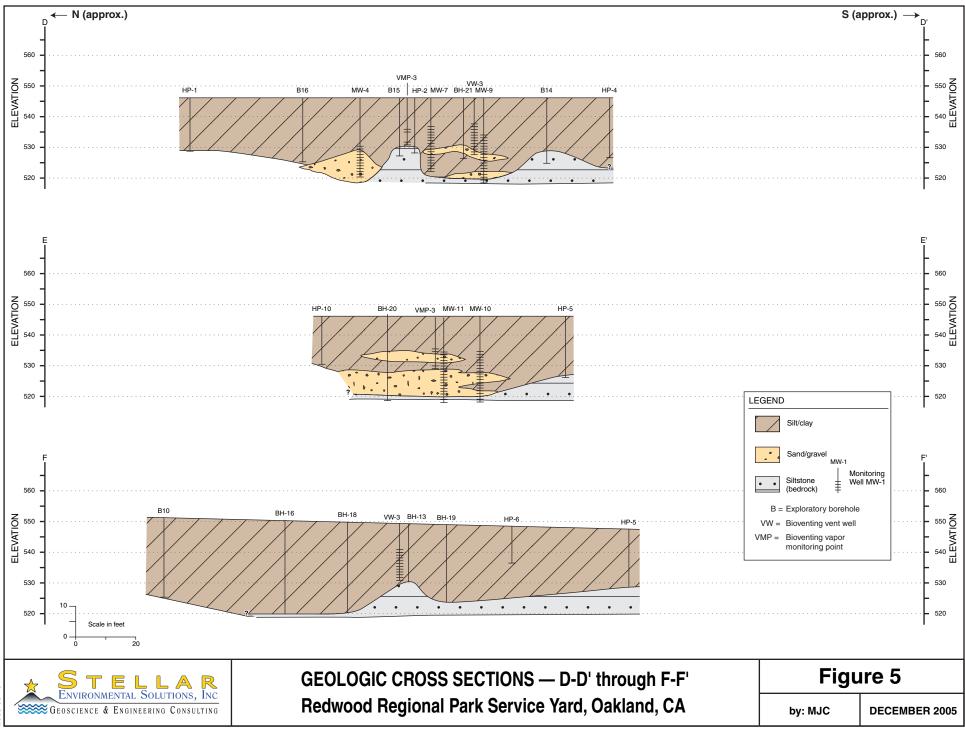
2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.

SITE LITHOLOGY


Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination were presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

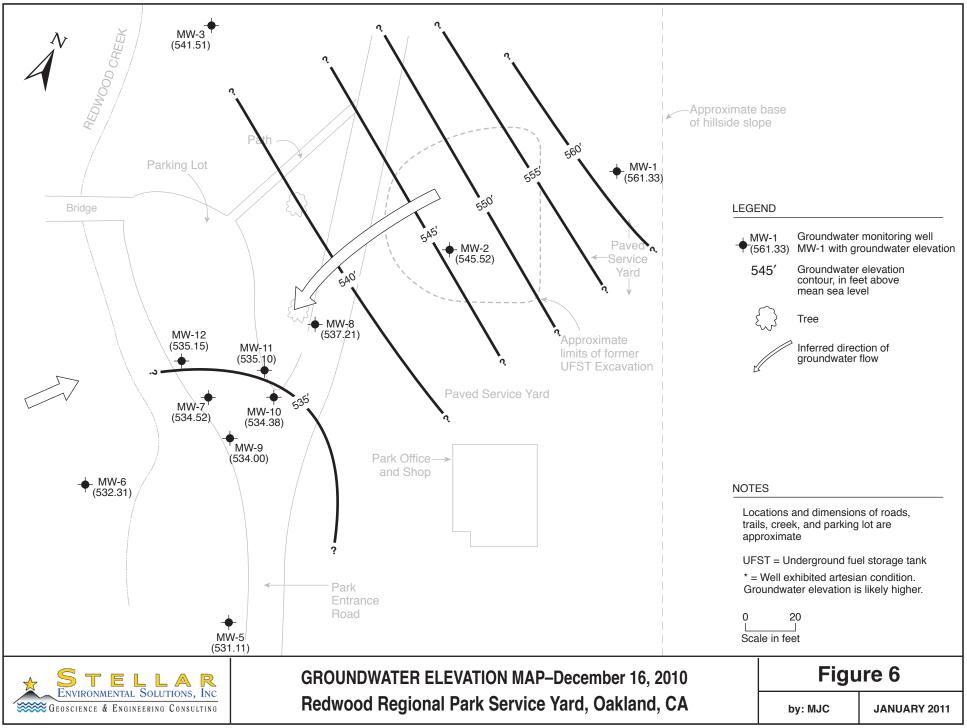

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

2008-02-05

2005-66-14

2005-66-13

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.


In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well equilibrated water levels. Table 1 (in Section 4.0) summarizes current event groundwater elevation data.

2010-02-10

In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill), the groundwater gradient is approximately 0.23 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.08 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow directions.

We assume a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 FOURTH QUARTER 2010 ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q4 2010), conducted in December 2010. A summary of bioventing-related activities is also provided.

Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the ACEH-approved Stellar Environmental technical workplan (Stellar Environmental, 2010).

The current (Q4 2010) event activities included:

- Measuring static water levels in all 11 of the site wells.
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12).
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.
- Conducting a respiration test to access the degree of microbial biodegradation activity at the site (discussed in quarterly bioventing status reports).

Redwood Creek surface water sampling and groundwater monitoring and sampling were conducted on December 16, 2010. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

Due to the recent ORCTM injections in March 2010, during this event Stellar Environmental also collected dissolved oxygen (DO) and alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to determine the effect of the treatment.

Table 1Groundwater Monitoring Well Construction and Groundwater Elevation Data –
December 16, 2010 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (12/16/10)	
MW-1	18	7 to17	565.83	561.33	
MW-2	36	20 to 35	566.42	545.52	
MW-3	42	7 to 41	560.81	541.51	
MW-5	26	10 to 25	547.41	531.11	
MW-6	26	10 to 25	545.43	532.31	
MW-7	24	9 to24	547.56	534.52	
MW-8	23	8 to 23	549.13	537.21	
MW-9	26	11 to 26	549.28	534.00	
MW-10	26	11 to 26	547.22	534.38	
MW-11	26	11 to 26	547.75	535.10	
MW-12	25	10 to 25	544.67	535.15	

Notes:

TOC = top of casing

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above U.S. Geological Survey mean sea level.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental 1998 workplan (Stellar Environmental, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity, DO, and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the

potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 52 gallons) from the current event was containerized in the onsite aboveground storage tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Stellar Environmental personnel on December 21, 2010. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a high stage due to recent rain and snow events; water depths ranged from approximately 1 to 2 feet with observed flow at both locations. Stellar Environmental did not observe any orange algae or sheen during this event, and no petroleum odors were detected.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for 1 month in January and February 2006. Bioventing system operations and maintenance (O&M) events have been conducted monthly since March 2006, but were decreased to quarterly monitoring in 2009. However, EBRPD staff monitors the system in the interim periods. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically had seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents. While these two wells had previously not shown any decrease in pressure (i.e. to indicate air was moving through the screen and into the soil), well VW-5 began showing a drop in pressure beginning in September 2010. This is discussed in more detail in the Annual 2010 Bioventing Report.

ORCTM INJECTION AND MONITORING

During this quarterly sampling event, alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed to track the ORCTM utilization. One concern about the use of ORCTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon

reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern. Table 2 includes the results of these additional analyses.

The effectiveness of the ORCTM injection corrective action program in reducing groundwater contaminant concentrations in site wells will continue to be evaluated. However, as three quarters of sampling has been conducted since the injection, Stellar Environmental recommends moving from quarterly to semiannual monitoring for groundwater monitoring in 2011.

The main active ingredient in Advanced ORCTM is magnesium peroxide. The optimal pH of such a system is adjusted to 7 to 9. Under these conditions, the remedy product will release its activity partially as hydrogen peroxide and partially as oxygen. This allows for the initial chemical oxidation to take place, starting the breakup of the contaminants. The oxygen is then released more slowly, which will assist bioremediation over a period of up to 1.5 years.

Because only a moderate reduction in hydrocarbon contaminant concentrations has been observed in the key site wells since the injection, it is suspected that microbial biodegradation activity may be occurring preferentially in natural site constituents, in competition with the target residual hydrocarbons. This hypothesis is also supported by the only rapid decrease in concentrations being observed in well MW-2, which is located in fill material in the historical excavation area. This hypothesis can be tested by continuing to collect additional site chemical parameters during sampling in subsequent semiannual monitoring events. Table 3 contains the results from the parameter analysis conducted during this December 2010 fourth quarter sampling event.

	Concentrations					
Location	Nitrates	Sulfates	BOD	COD		
MW-2	0.69	0.84	<5.0	<10		
MW-7	<0.05	22	15	34		
MW-8	< 0.05	72	<5.0	16		
MW-12	<0.05	120	<5.0	21		

Table 2Electron Acceptors and Oxygen Demand – December 16, 2010
Analytical Results

COD = Chemical oxygen demand

BOD = Biological oxygen demand

5.0 FOURTH QUARTER 2010 ANALYTICAL RESULTS

This section presents the field and laboratory results of the current monitoring event. Table 3 summarizes the contaminant analytical results. Figure 7 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

Q4 2010 groundwater contaminant concentrations were as follows: The ESL for TVHg was exceeded in six of the seven wells—MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12; although TVHg was also detected in MW-10 the concentration was below the ESL. Concentrations of TEHd exceeded the ESL in all seven wells sampled. The ESL for benzene was exceeded in MW-9 and MW-11. The ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11. Total xylenes were detected above the ESL in well MW-9. Concentrations of methyl tertiary-butyl ether (MTBE) in groundwater exceeded the ESL in MW-7, MW-8, MW-9, and MW-11. All of these concentrations exceeded the ESLs for residential areas where groundwater <u>is</u> a drinking water resource. No toluene was detected above the laboratory detection limit, which is below the ESL, in any of the seven wells sampled.

Well MW-9 contained the maximum TVHg groundwater concentration and MW-11 contained the maximum TEHd concentration. MW-11 is located in the center of the plume and MW-9 is located in the downgradient area of the plume, adjacent to Redwood Creek. The northern edge of this area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution.

There were no contaminants detected in SW-2 above the laboratory detection limit. Toluene and total xylenes were detected in located SW-3, but below the ESL.

Table 3Groundwater and Surface Water SamplesAnalytical Results – December 16, 2010Redwood Regional Park Corporation Yard, Oakland, California

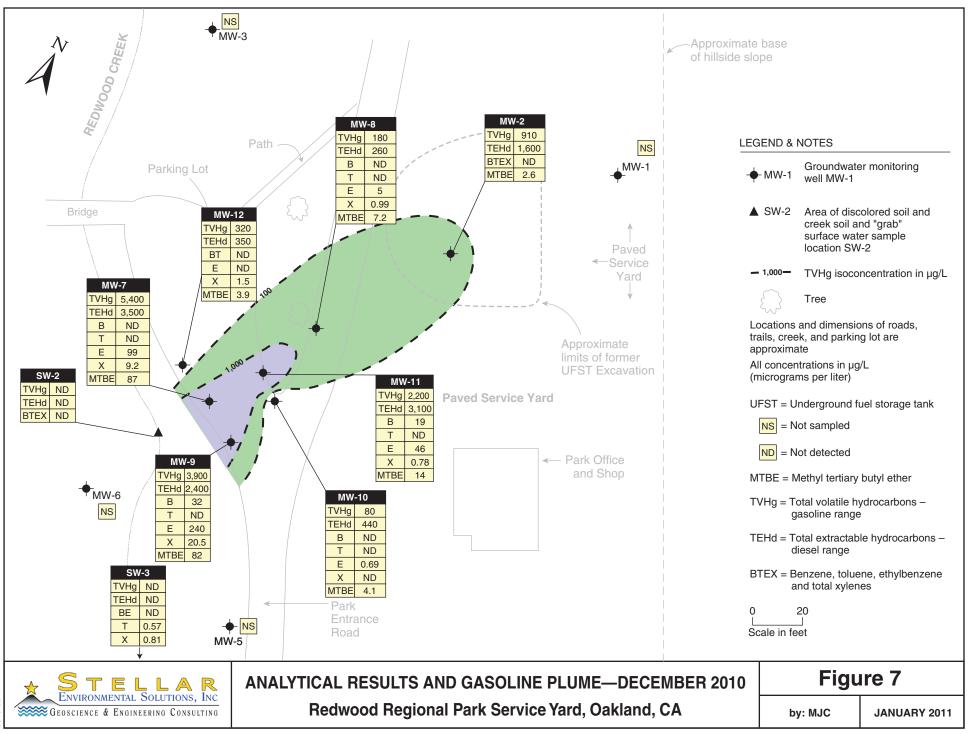
		Contaminant Concentrations						
Location	Dissolved Oxygen	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLE	GROUNDWATER SAMPLES							
MW-2	20.73	910	1,600	< 0.5	<0.5	<0.5	< 0.5	2.6
MW-7	0.47	5,400	3,500	<0.5	< 0.5	99	9.2	87
MW-8	0.25	180	260	<0.5	<0.5	5.4	0.99	7.2
MW-9	0.68	3,900	2,400	32	< 0.5	20.5	20.5	82
MW-10	0.61	80	440	<0.5	<0.5	0.69	< 0.5	4.1
MW-11	0.67	1,800	2,900	13	< 0.5	49	1.9	15
MW-12	0.98	320	350	< 0.5	< 0.5	1.5	<0.5	3.9
Groundwater ESLs ^(a)	NLP	100 / 210	100/ 210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SURFA	REDWOOD CREEK SURFACE WATER SAMPLES							
SW-2	NA	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<2.0
SW-3	NA	<50	<50	<0.5	0.57	< 0.5	0.81	<2.0
Surface Water Screening Levels ^(b)	NLP	100	100	1.0	40	30	20	5.0

Notes:

^(a) ESLs = Water Board Environmental Screening Levels (where groundwater <u>is/is not</u> a potential drinking water resource) (Water Board, 2008).

^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

NA = not analyzed NLP = no level published


MTBE = methyl tertiary-butyl ether

TVHg = total volatile hydrocarbons – gasoline range

TEHd = total extractable hydrocarbons – diesel range

All contaminant concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater <u>is</u> a potential drinking water resource.

Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

2010-02-1

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

6.0 EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. An assessment is made as to the nature of residual contaminated soil that acts as a continued source of groundwater contamination. A conceptual model (incorporating site lithology, hydrogeology, and hydrochemistry) is presented to explain the spatial extent and magnitude of the dissolved hydrocarbon plume.

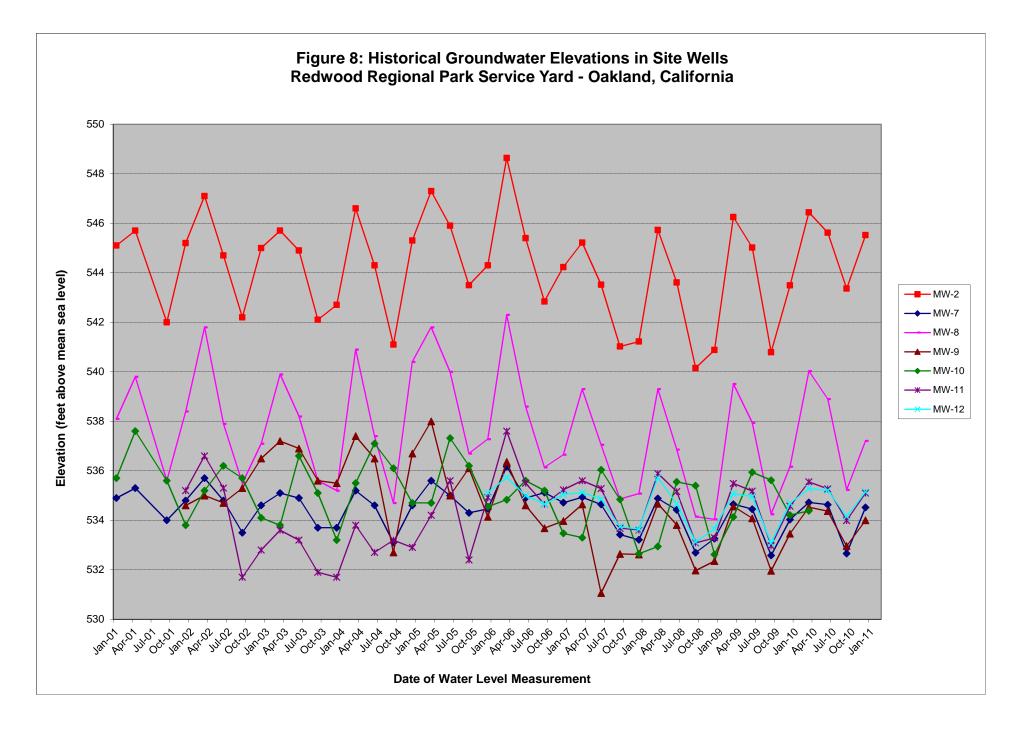
CONTAMINANT SOURCE ASSESSMENT

Site UFSTs were removed (i.e., discharge was discontinued) in 1993, and some but not all of the source area excavation contaminated soil was removed. That residual hydrocarbon contamination entrained in the soil and capillary fringe has been extremely hard to mitigate, with only partial success achieved through the bioventing and oxygen providing product in-situ injection that has been implemented since 2005.

Success at reducing the significant contamination in the mid-field plume area represented by well MW-8 has been achieved along with mitigation of the recent (2007 timeframe) increase at the upper plume area represented by well MW-2. But the lower plume area represented by the "guard" wells MW-7 and MW-9 have not been significantly reduced by the combination of bioventing and recent March 2010 ORC[™] injection.

Borehole soil sampling has provided data on the extent and magnitude of soil contamination in the vicinity of the former UFSTs ("source area") and the outlying area (in the capillary fringe above the groundwater plume). Soil contamination appears constrained to the unsaturated zone and the underlying saturated sediments on the weathered bedrock surface. The 2010 ORCTM injection effort was aimed at mitigating the apparent large mass of residual TPH contamination in the unsaturated zone, primarily in the area between the former UFSTs and the park entrance roadway, with the contaminated zone thinning toward Redwood Creek. Seasonal desorption of contamination in this unsaturated zone occurs during the rainy season and during high-water periods, acting as a long-term source of dissolved contamination. Previous ORCTM injection programs—which resulted in permanent reductions at the peripheral plume margins, but were followed by rebound (to pre-injection conditions) within the central portions of the plume—

indicate that site conditions support aerobic biodegradation. However, biodegradation is limited by oxygen deficiency in the unsaturated zone.


Based on this conceptual model—and using conservative assumptions for equilibrium partitioning, contaminant geometry, soil moisture, and previous laboratory analytical results for TPH in soil—estimates of TPH mass in soil were calculated based on 2004 and earlier borehole data. Residual TPH in vadose zone soil is estimated at 1,400 to 7,000 pounds (100 to 600 gallons of gasoline), compared to a mass of TPH in groundwater estimated at 1 to 10 pounds (0.1 to 1.0 gallon of gasoline). The hydrocarbon mass in groundwater is likely higher than originally estimated (based on post-2004 data).

Soil and groundwater contamination distribution and site lithologic and hydrogeologic conditions have shown that residual soil contamination, unless abated, will continue to be a source of long-term groundwater contamination via seasonal desorption and migration.

WATER LEVEL TRENDS

Appendix D contains historical groundwater elevation data. Figure 8 shows a trendline of site groundwater elevations in key wells (those within the contaminant plume). The data support the following conclusions:

- Groundwater elevations in all of the monitored site wells showed a seasonal fluctuation in 2010—from an average increase of 1.3 feet (from September to December) to a decrease of 1.7 feet (from June to September)—with an average elevation change in individual wells of 0.2 feet.
- In all wells, the lowest elevations have generally been observed during the end of the dry season and the highest elevations at the peak of the rainy season. This is a common seasonal trend observed in the upper water-bearing zone in the Bay Area.
- Groundwater elevation trends and magnitudes are similar between wells.
- Overall groundwater flow direction is consistently to the west-southwest (toward Redwood Creek). Localized (on the scale of tens of feet) groundwater flow direction appears to vary within the general flow direction, likely controlled by bedrock surface topography.
- The historical groundwater gradient in the area of the contaminant plume is consistently around 0.1 feet/foot.

Stellar Environmental Solutions, Inc.

HYDROCHEMICAL TRENDS

Concentrations of contaminants in an individual well can fluctuate over time for one or more reasons—contaminant migration, seasonal effects due to fluctuating groundwater levels (i.e., desorption from the unsaturated zone and/or dilution of saturated zone contamination), and/or natural attenuation (plus enhancement by active remediation measures such as ORC[™] injection and bioventing). These hydrochemical trends can result in changes in the lateral extent and magnitude of a dissolved contaminant plume.

The most consistent trend in the wells located within the centerline of the plume has been a seasonal influence of desorption following winter rains, with a resultant increase in dissolved hydrocarbon concentration in the groundwater.

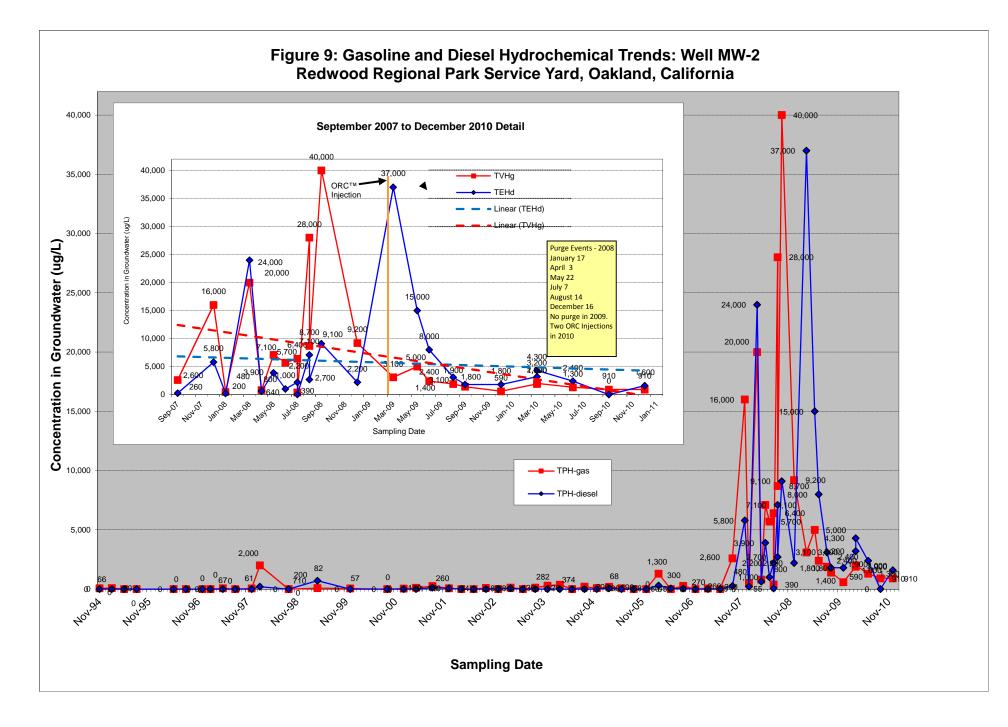
Because the quarter-to-quarter comparisons can be unduly influenced by seasonal effects that mask longer trends, it is useful to compare same-season data over time to determine if concentrations are increasing, decreasing, or remaining stable. Our evaluation of hydrochemical trends focuses on gasoline and diesel, which, when combined, represent the majority of the contaminant mass. To more closely evaluate plume stability differences, the following discussion focuses on four separate portions of the plume relative to the long axis (along the hydraulic gradient): "upgradient" (trailing edge of plume); "mid-plume"; "downgradient"; and "plume fringe."

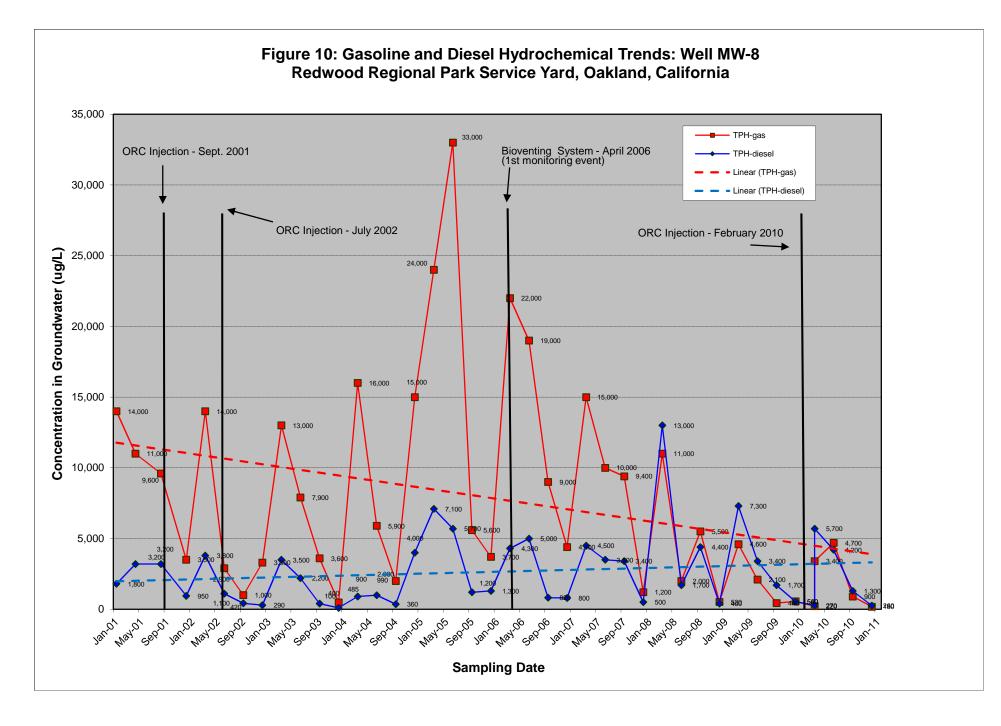
Important components of plume stability include: degree of contaminant fluctuations in individual wells over time; changes in the lateral extent of the plume; and changes in the location of the center of contaminant mass within the plume.

Historically, the contaminant plume appeared to have disconnected from the source such that historical downgradient concentrations were higher than upgradient (near the source) concentrations. However, a significant increase in gasoline and diesel concentrations in source area well MW-2 was observed beginning in approximately September 2007. The increase continued, even after individual purging events, into 2010. Stellar Environmental commenced with ORCTM injection near this well and in the general area of the plume in February 2010. Based on that apparent success, In March 2010, a wider ORCTM injection into areas of the plume was initiated. This has not resulted in the same success at reducing concentrations in the lower plume area as it did in the upper and mid-field of the plume. The two guard wells MW-7 and MW-9 have comparative TPHg + TPHd that appear relatively static for December 2009 compared to December 2010. Well MW-7 showed a combined 9,300 µg/L TPHg + TPHd in December 2010. Well MW-9 showed a combined 6,500 µg/L TPHg + TPHd in December 2009 compared with 6,300 µg/L TPHg + TPHd in December 2010.

Compared to Quarter 3 of 2010, gasoline concentrations decreased while diesel concentrations have increased.

To evaluate plume stability with regard to changes in the center of contaminant mass, we evaluated concentrations of TPH (gasoline and diesel combined) in individual wells over time. The data show no obvious correlation between maximum TPH concentrations and well locations, suggesting high plume instability. Since January 2001, maximum TPH concentrations have been variously detected in upgradient, mid-plume, and downgradient wells. These variations are likely due in large part to differing contaminant mass in unsaturated zone soils at particular locations, resulting in variable amounts of desorbed mass to the plume during high water conditions. The following discusses hydrochemical trends in each of the upgradient, mid-plume, and downgradient portions of the site, as well as at the fringes of the plume.


Upgradient Hydrochemical Trends


MW-2. As described in Section 4.0, this source area well historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. In March 2010, Stellar Environmental conducted a limited ORCTM injection, which has dramatically decreased concentrations of both gasoline and diesel over time. In September 2008, a new historic maximum of 40,000 µg/L of gasoline was observed in MW-2. In this December 2010 event the concentration measured 910 µg/L. A new historic maximum of diesel at 37,000 µg/L was observed in March 2009 compared to 1,600 µg/L observed in December 2010. Figure 9 shows hydrochemical trends for gasoline and diesel in MW-2.

Mid-Plume Trends

MW-8. Concentrations of TVHg in MW-8, located approximately 60 feet downgradient of MW-2, have been steadily decreasing since 2005: from 33,000 TPHg μ g/L observed in June 2005 to TPHg 180 μ g/L in this latest event. TEHd concentrations had remained fairly stable until a spike of 13,000 μ g/L was observed in March 2008; however, the concentration has since decreased to the 260 μ g/L observed in this latest event. This fluctuation demonstrates that significant contaminant mass entrained in the soil continues to "feed" the dissolved concentration, as demonstrated by periods of recharge represented during the March 2008 sampling event. As contaminant concentrations remain high in upgradient well MW-2, contaminant concentrations in this well will most likely rise as the plume migrates downgradient.

Figure 10 shows hydrochemical trends for gasoline and diesel in MW-8. Both gasoline and diesel concentrations have fluctuated widely but follow a well-established seasonal fluctuation pattern. The strong seasonal effect is visually apparent, with annual maximum concentrations

generally occurring in late winter/early spring (usually the March event), and annual minimum concentrations generally occurring in the fall/winter (usually the September or December events). Figure 10 features gasoline and diesel hydrochemical trends in MW-8; the seasonal hydrologic trends in groundwater monitoring well elevations are presented in Figure 8.

MW-11. This well is located in the lower part of the mid plume zone, along the plume centerline, approximately midway between upgradient well MW-8 and downgradient guard well MW-7. Figure 11 shows hydrochemical trends for gasoline and diesel in this well. Gasoline and diesel concentrations were greatly reduced in 2001, and this was followed by an equally large increase by late 2002. Since that time, concentrations have fluctuated widely, with a strong seasonal effect. However, both diesel and gasoline concentrations in this well demonstrated a consistent decreasing trend over the past two years.

Downgradient Hydrochemical Trends

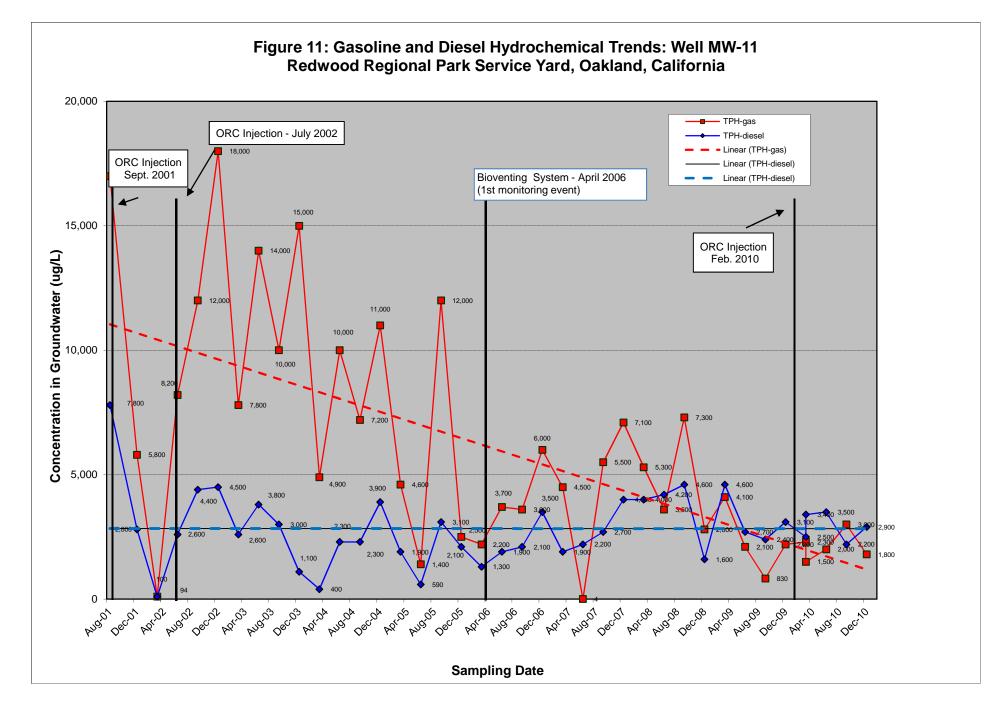
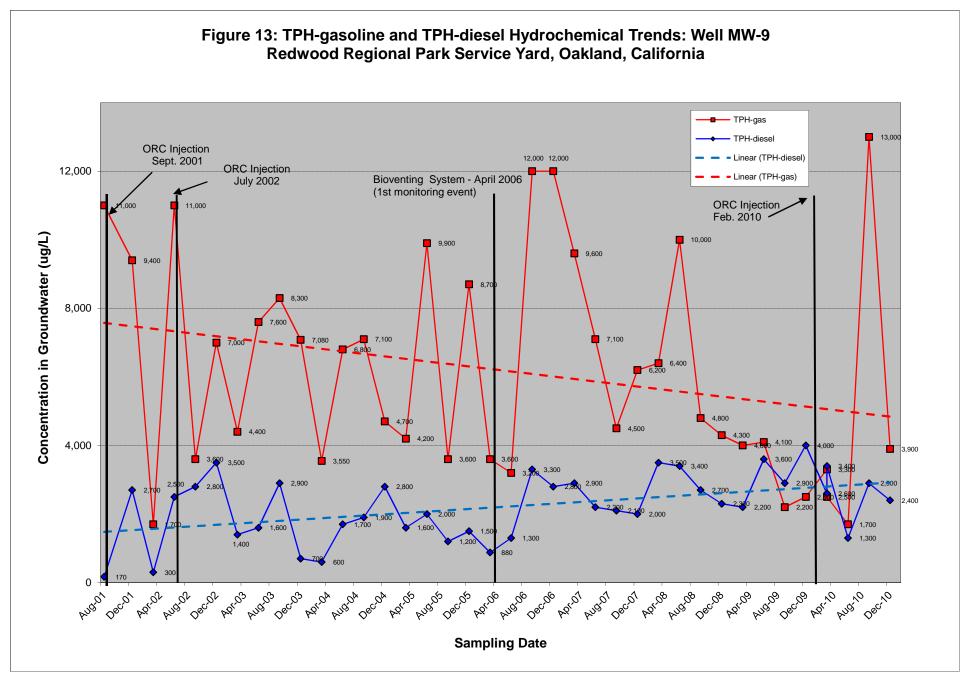
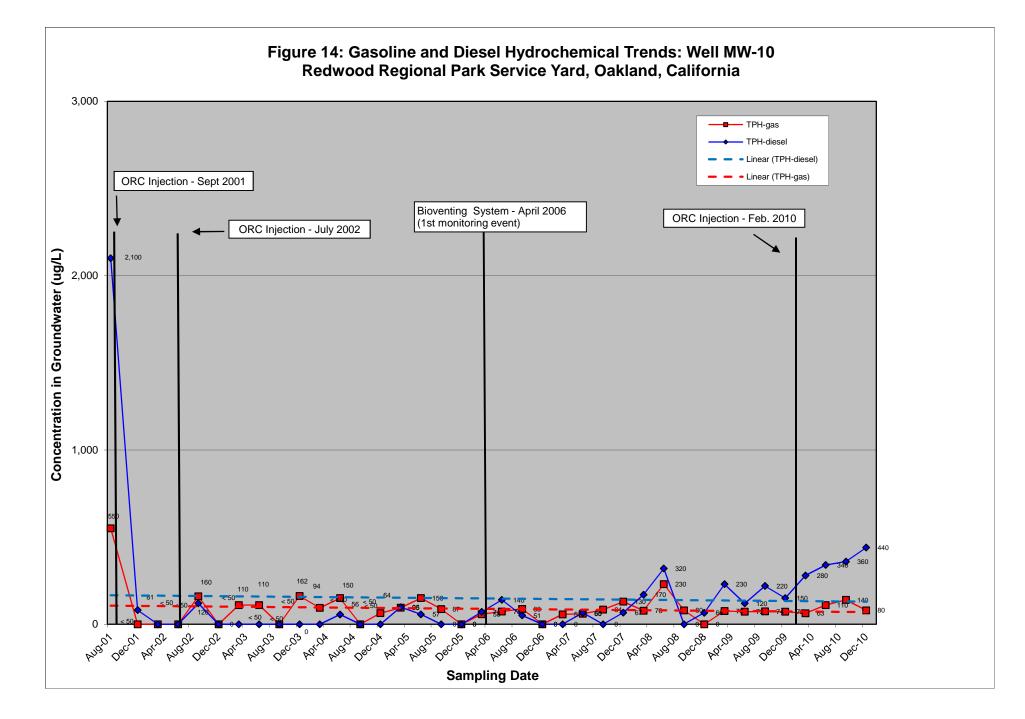

MW-7 and MW-9. These wells represent the high-concentration centerline of the plume at the downgradient area approximately 20 feet from Redwood Creek. Figure 12 shows hydrochemical trends for gasoline and diesel in MW-7. Gasoline has shown strong fluctuations in concentration, but with a general downward trend. However, diesel was observed to spike to a new historical TPHd maximum of 6,700 μ g/L in March 2009. However, the concentration has since remained fairly stable or slightly decreasing.


Figure 13 shows hydrochemical trends for gasoline and diesel in MW-9. This well has generally shown a fairly stable trend for diesel concentrations. However, a new historical maximum for gasoline at $13,000 \mu g/L$ was observed in September 2010.

Plume Fringe Zone Trends


MW-10. This well is located on the southern edge of the plume, in the mid-plume portion relative to the longitudinal axis. Figure 14 shows hydrochemical trends for gasoline and diesel in this well. Concentrations of gasoline generally remained stable compared to 2009, with only slight increases observed above 100 μ g/L. However, the diesel concentration appears to be slowly increasing and a new historic maximum of 440 μ g/L was observed during this December 2010 event.

MW-4 (former). This well was located on the northern edge of the plume, just upgradient of Redwood Creek. Other than an anomalous diesel detection in June 2004, no contamination had been detected in this well since December 2001. Due to poor recharge in this well, the well was destroyed in November 2005 and replaced by well MW-12 (in an adjacent position).



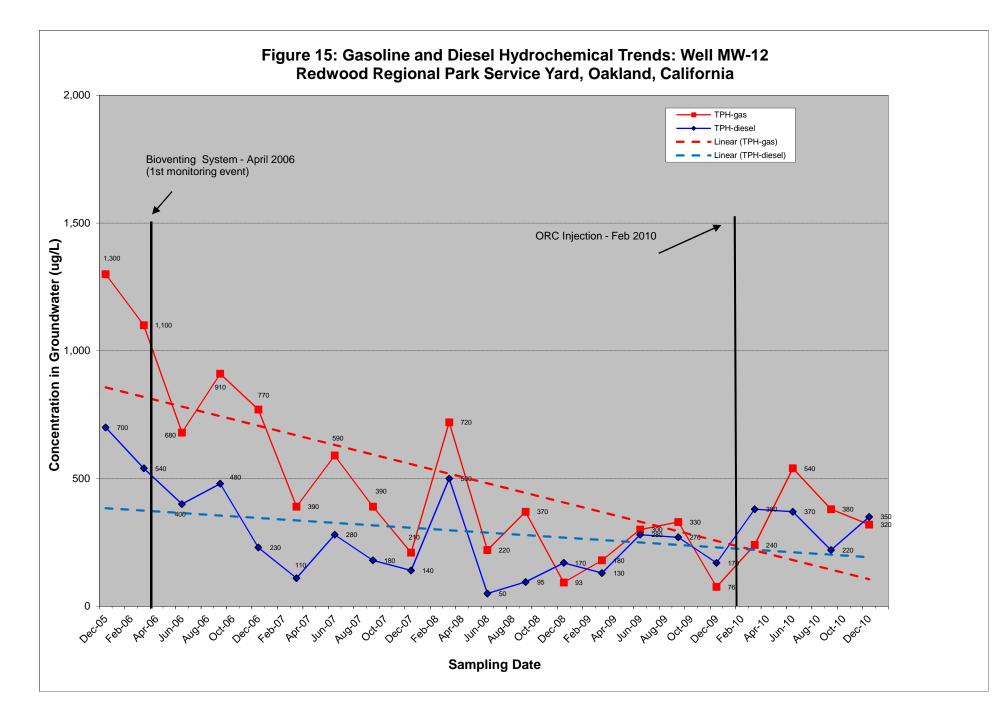
Stellar Environmental Solutions, Inc.

Stellar Environmental Solutions, Inc.

Stellar Environmental Solutions, Inc.

MW-12. The initial sampling of MW-12 shows elevated petroleum concentrations up to 1,300 μ g/L, but those concentrations declined until March 2008 when a spike was observed. Concentrations have fluctuated since then, but are below the historical maximum observed during the initial sampling. Figure 15 shows hydrochemical trends for gasoline and diesel in this well.

PLUME GEOMETRY AND MIGRATION INDICATIONS


The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination fluctuates between the upper portion of the plume (MW-2), the mid-portion of the plume (near MW-8), and the downgradient portion of the plume (at MW-7 and MW-9).

The plume geometry has not varied substantially over the past 4 years of monitoring, although seasonal fluctuations in contaminant concentrations have been observed. This is exhibited by higher concentrations in downgradient wells in some events, and in mid-plume or upgradient wells in other events.

CLOSURE CRITERIA ASSESSMENT AND PROPOSED ACTIONS

The Water Board and ACEH generally require that the following criteria be met before issuing regulatory closure of contaminant cases:

- 1. The contaminant source has been removed (i.e., the source of the discharge and obviously-contaminated soil). This criterion has not been fully met, with the recent data from well MW-2 suggesting more remaining mass than originally thought is present. While the UFSTs have been removed, borehole soil sampling has shown a substantial mass of residual source area soil contamination that will act as an ongoing source of groundwater contamination. As discussed below, a soil bioventing system has been installed as a corrective action to reduce contaminant mass. The bioventing system began operating in December 2005.
- 2. *The groundwater contaminant plume is well characterized, and is stable or reducing in magnitude and extent.* As discussed above, in our professional opinion, this criterion has not been met, and continued groundwater monitoring will be needed to demonstrate plume stability.
- If residual contamination (soil or groundwater) exists, there is no reasonable risk to sensitive receptors (i.e., contaminant discharge to surface water or water supply wells) or to site occupants. This criterion is generally met by conducting a Risk-Based Corrective Action assessment that models the fate and transport of residual contamination

in the context of potential impacts to sensitive receptors (e.g., water wells, residential and use). For this site, Redwood Creek is considered the primary sensitive receptor. The proposed corrective action is designed specifically to reduce the magnitude and duration of future contaminated groundwater discharge to Redwood Creek.

7.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994). A total of 11 site wells are available for monitoring, 7 of which are currently being monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for TPHg, TPHd, benzene, ethylbenzene, total xylenes, and MTBE in groundwater. No contaminants were detected in surface water sample SW-2 during this event. Toluene and total xylenes were detected in sample SW-3, but below the ESLs.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions. An instream bioassessment evaluation conducted in 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 1,000 µg/L of TVHg) is currently centered around wells MW-7, MW-9, and MW-11 which are in the lower to downgradient area of the plume. However, until the ORCTM injection in March 2010, the greatest zone of contamination was observed in MW-2, the historical source area well.

- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, midplume, and downgradient wells in recent history.
- The Fourth Quarter 2010 monitoring event took place approximately 8 months after the ORCTM treatment. The upgradient portion of the plume (particularly wells MW-8 and MW-11) showed the most hydrocarbon concentrations reductions compared with Q3-2010 as well as compared to the same quarter last year. However, the lower portion of the plume, specifically at well MW-9 and MW-10, show an increase in gasoline and diesel concentrations.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the drought-like conditions in 2006-2010 should have generated a relative increase in the effectiveness of the system. It appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.
- The 2010 ORCTM in-situ injection program was relatively effective in treating the upper and mid plume area zone but not effective in the lower plume zone.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions in 2011 to address the current site conditions and regulatory concerns:

- In our professional opinion, Redwood Creek surface water monitoring and groundwater monitoring can be reduced to semiannual monitoring based on the historical data collected and remediation completed. Groundwater monitoring and ongoing bioventing activities and assessment will be submitted as part of the semi-annual monitoring and annual monitoring report, repectively.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to evaluate additional corrective action measures to address lower plume area should elevated TPHg and TPHg concentrations persist there.

- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

8.0 REFERENCES AND BIBLIOGRAPHY

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORCTM Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.

- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.

- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.

- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD

7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored				Gro	undwater B	Elevations	(feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(=) (b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
	560.43	540.15	536.41		529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
9/18/2008		540.15		(b)			533.26		532.35	532.94		
12/17/2008	561.11		536.77	(b)	530.68	531.67		534.04			533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15

TOC = Top of well Casing (a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements. (b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

Chain of Custody Record

					Unum U		slouy n	eco	ľu										Lab job n	10	
Laboratory Curtis and To				N	lethod of Shipment <u>H</u>	and De	elivery												Date		······
Address 2323 Fifth Str					hipment No.			-					_					•.	Page	 !	1 ۱
Berkeley, Cal 510-486-0900			s	A	irbill No			-		_				.)				*****			
											/	<u> . </u>	~ _0_		Ana	lysis R	equirec	ł			
Project Owner East Bay		ark Dist	rict					-		/ ,	.	\sim	0	4		1	/	1	11.	7	
Site AddressOakland,	wood Road	****			roject Manager <u>Rich</u>		Ikdisi	-	/.	。/	ainers	5 4	75	5/			/ ,	Γ,		/	
				Te	elephone No. <u>(510)</u> 644			-	Filleron		/ ø	" \$	V.	' /	./	/ يىل	· /				
Project Name Redwood				Fa	ax No (510) 644	-3859		- /		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(A).	S 2	n /	14	¥/ 5	ŧ		/		Rema	arks
Project Number _2006_1	52008	- 07	2	Sa	amplers: (Signature)	h_	<u></u>	- /			Z 1	2.1		\$	7 L	^y A	4	/ /	/ /		
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	F	reservation Chemical		/ /	ß	87-6 82.			N'N'S	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20	S/				
MW-7		12/16	1015	W.	Various	Y	Tes	4	3	X	$\frac{1}{x}$	e l	(x	ίx		$f_{\mathbf{x}}$	([]			
MW-N		12/16	1205	\sim	3VOA, 2 Scont And	21	Yes		-	X	× ×		1	\sim							
MW-10		12/16	1230		300A,2500-LAND		yes			<u></u>	$\frac{1}{\chi}$	<u>`</u>	+	<u> </u>							****
12-12		12/16	1245		Various	~	Yes			X	x x	*	X	x	\approx	×					
mw-9		12/16	1300	ω	300A, 2 Som And	2	7e5	4			スメ		-			- 1					
MW-8		12/16	1310	ω	Various	7	Yes		_		x x		X	と	x	7					
MW-2		2/16	1330	~	Vardous	~	Ye.s				$\dot{\mathbf{x}}$	·	X	$\tilde{\mathbf{x}}$	ネ	、 ス				·····	
									<u> </u>			<u>`</u>	-~		`	-					
·																					
Relinquished by:		Date	Received		reda 1	Date	Relinquished by:	l :		l	l		Date		ceived	by:	l				
Signature	१	2/16/10		ure		12/16	Signature							1	Signati	•					Date
Printed Patrick H	asus	Time	Printec	M.	ah Snith	Time	Printed					-									
Stellar Environ	mental	4:55			CAT								Time		Printed	1					Tim
Company	[00	Compa	iny	<u> </u>	11:5						(·			Compa	iny					
Turnaround Time: 5 Day TAT						******	Relinquished by: Signature	1					Date	1	ceived	•					Date
Surface water	r samples ci	ollected	by Ste	llar En	water samples only vironmental Solutions		orginature								Signatu			******			
Groundwater	samples co	llected_	by Blai	ne Tec	h Services.	•	Printed						Time	ł	Printed					i	Time
							Company								Compa	nv.					
	****						1								Joinpa	··y					1

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

					CI	nain o	r Cu	stody I	Rec	ord									Lab job no	
aboratory <u>Curtis and To</u>					ethod of Ship	ment <u>Ha</u>	and De	livery											Date	A
ddress2323 Fifth Str Berkeley, Cal		~		- Sh	nipment No, _				*****										Page	0f
510-486-090		J		— Ai	rbill No						/									
roject Owner _East Bay	Pogional Da	rk Diete		Co	rbill No poler No											Analysis	s Require	ed		_/
	wood Road	IK DISU	ict		oject Manage							se l	5	. / .	/ /					/
Oakland,	California				lephone No.						of C	B 7	W/						'	
rolect Namo	Regional Pa	rk			x No					1	/.0'	$\langle \langle x \rangle$	7 7		/		/ /			Domeska
roject Number2010-0)2				mplers: (Sigr				/		/ * /				.	' /				Remarks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of		Pr	eservation			/1	×/1-	7 /							
SW-2	Creek	12-16-	10	W	YOML		Cooler Y	Chemical Yes (a)		12	({		-(-)				-{	(
SW-3	Creek	12-16-	10	W	40 MI		Y	Yes (a)		3	X X									······
Sw-2	Creek			w			ļ			3	1	3.05						_		
SW-3	Creek	L		W	Amber		7	NO		1		X								
······································	reen				Ambor	Lilev	У	NO		1		X								
																nite and the second				
							1													
and and an and a second se																				
······································																				
																		+		
								************	-											
_														++						
elinquished by: 77	ff-	Date	Received b	y:	~		Date	Relinguished	bv:					Date		aivod bur				
Signature	(AMB) 1	2-16-1	() Signatur	e _/_	2-2		12-16	0 Signature	_L	\sim				216/1	Si	ignaturé	100	NG	nu	Date
Steve Bittman Printed		Time	Printed .	Pecir	ick Har	ms	Time	Relinquished	Part	net	Here	n5	.				M'	ah	Sa +1	12/16/10
Stellar Enviror	nmental	145			aine Tech		IIMe	r mueu	and the second s					Time	Pi	rinted	<u> </u>	~		
Standard	°		Compan	y			1145	Company	151	ente	722	h		1455	С	ompany		Ca	t T	14:55
furnaround Time:(a) VOA w/ H								Relinquished	•					Date		vived by:				Date
Comments:						······		Signature				· - · - · · · · · · · · · · · · · · · ·			SI	gnature				
								Printed						Time	Pr	inted				Time
						· · · · · · · · · · · · · · · · · · ·		Company												

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

WELL GAUGING DATA

.

Project # ______ 101216-PH1

Date 12/16/10

Client Stellar

Site Redwood Regional Park, Oakland

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Immiscibles Removed	1 - C	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
100-1	6523	Ц				4.50	19.11		
mw-2	0827	Ц				20.90	37.47		
MW-3	6757	Ц				19:30	415.10		
MW-5	0706	4				16.30	27.02		
MW-6	651V	4				13.12	14.55		
MW-7	0540	2				13.04	25.34		
ANW - 8	0864	2				11.92	22.20		
MW-9	6849	2				15.28	30.25		
MW-10	oS36	2				12.84	28.36		
MW-11	୦ଟେଅ	2				12.65	28.64		
121-UA	०९५५	2				9.52	23.84	N I	
									en e in Salare
									2019

WELLHEAD INSPECTION CHECKLIST

Page _____ of ____

Date 12/1	6/10	Client	. Stell	ar En	Vironie	stal 3	Solutions	
Site Address _	retwood R	gional	Parks s	service	rad ,	oatch	line	
Job Number	01216-PH1	· · · · · · · · · · · · · · · · · · ·			chnician			
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
1-4114	<u>×</u>			- ⁻				
100-2				*				· ·
MW-3	·X							
<u>~~-5</u>	X				P			· ·
MW-6	<u> </u>							
MW-7								
mw-8		×					<u> </u>	
mu-9	. <u>X</u>							
mw-10							X	
<u></u>	\mathbf{X}						.1	
MW-12	<u>×</u>							
		- 1						
NOTES:	-8 3/3 6014	5 missly	- mu-	·10 2/2 5	tripped to	sbr		
					17			
						· · · · · · · · · · · · · · · · · · ·		
1								
			:'					
BLAINE TECH SERVICES, INC.	• • •	SAN JOSE	SACRAMENTO	LOS ANGELE	ES SAN DIE	GO	ww	w.blainetech.com
					•	ir.	•	
	•	·						

TEST EQUIPMENT CALIBRATION LOG

I							
PROJECT NA	ME Stellar Eur	Solutions @ Relluo	el Regional Parter	PROJECT NU	MBER 101216-PHI		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myson L. Utramoter II	6203098	12/16/10 0920	PH 7.00 10.00 4.00	6.98 10.04 4.07	73 - 273 (4. 123 4. 129	5,32	PA
			conductionty 3900 instem	4012	3920	· · ·	P4
782 550	5320390	12/18/10	10 1002	(12.0	10010		12.
8 							
				2			

		Vv	ELL MONIT	ORING	DATA	SHEET	<u>`</u>	
Project #:	.01216-PI	A1		Client:	Stell	1 m. e	in enter i	
Sampler:				Date:	12/16			
Well I.D.:	ANW-2			Well D	ameter	: 2 3	Ð	6 8
Total Well)): 37.2	47	Depth t	o Water	r (DTW)): 20,9	90
Depth to Fr	ee Product			Thickn	ess of F	ree Prod	uct (fee	xt):
Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):		B HACH
DTW with	80% Rech	arge [(H	leight of Water	Column	x 0.20)) + DTW]: 24	1.21
Purge Method:	Bailer Disposable B Positive Air I Electric Sibn	Displaceme		Waterra Peristaltic ction Pump		Sampling	g Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing
					Well Diamete	er Multiplier 0.04	r Well D 4"	Diameter Multiplier 0.65
10.7 ((1 Case Volume	Gals.) X Speci	3 ified Volum	$\frac{1}{1000} = \frac{32.3}{\text{Calculated Vo}}$	_ Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	1.47
Time	Temp (°F or °C)	рН	Cond. (mS or US)	1	oidity TUs)	Gals. Re	emoved	Observations
0930	12.6	6.71	896	612	>	and the second		
	and the second se	Dewo	sterel @	12 gai	110.5			
1330	(2.0	7.61	880	93		- ARC211.	-	
Did well de	water?		No			y evacua	ated:	12
Sampling D	Date: 2/		Sampling Time	e: 133	0	Depth to		
Sample I.D.	······································			Laborat		Kiff Ca	alScience	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: S	5ee c	oc
EB I.D. (if a	applicable)):	@ Time	Duplica		(if applic	<i>i</i> >-	<i>с</i>
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:		
D.O. (if req'	'd): Pr	re-purge:		^{mg} / _L	Р	ost-purge	:	26.73 ^{mg} /1
O.R.P. (if re	eq'd): Pr	re-purge:		mV	Р	ost-purge	:	175 mV

		V	ELL MONIT	ORING	DATA	SHEr	T		
Project #:	01216-P			Client:	Stall	cut			
Sampler: 🧧				Date:	12/1	6/10			
Well I.D.:	MW-7			Well D	iameter		3 4	68	
Total Well): _{25.}	34	Depth 1	to Wate	r (DTW	/): (3. <i>c</i>	>4	
Depth to Fr	ee Product			Thickn	ess of F	ree Pro	duct (fee	et):	
Referenced	to:	₽V₽	Grade	D.O. M	leter (if	req'd):		KA HAC	Ή
DTW with	80% Rech	arge [(H	eight of Water	Column	x 0.20)) + DTV	V]: 15.5	50	
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	.	Waterra Peristaltic ction Pump			ng Method: Other:	Bailer Disposable 1 Extraction Dedicated T	Bailer Port
1 Case Volume	Gals.) X Speci	<u>3</u> fied Volum	$= \frac{5.9}{Calculated Vol$	_Gals.	<u>Well Diamete</u> 1" 2" 3"	er Multipl 0.04 0.16 0.37	ier Well D 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0	163
Time	Temp (°F or °©)	pН	Cond. (mS or as)	1	oidity TUs)	Gals. I	Removed	Observati	ons
1003	11.0	7.di	770	96		2		Ar	
1006	11.9	6.93	761	31		6			
1007	12.2	6.90	756	24	9	6			
Did well de	water?	Yes	N	Gallons	s actuall	y evacı	iated: 🕻	5	
Sampling D	Date: 12/1	6/10	Sampling Tim	e: 1015	, B	Depth	to Water	r: 15.45	
Sample I.D.	· must	8		Labora	tory:	Kiff (CalScience	Other_CS	1
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	see c	66-	ę
EB I.D. (if a	applicable)	•	@ Time	Duplica	ate I.D.		icable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	Ank		
D.O. (if req	'd):Pi	re-purge:		^{mg} /L	P	ost-purg	e:	0.47	^{mg} /L
O.R.P. (if re	eq'd): Pi	e-purge:	:	mV	P	ost-purg	e:	Long	mV

		h	ELL MONIT	ORING DATA	A SHEET	
Project #:	101216-7	114		Client: Ste	ellar	
	24			1	16/10	
Well I.D.:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Well Diameter	r: 🖉 3 4	6 8
Total Well): 22.	20	Depth to Wate	er (DTW): 11.9	2
Depth to Fr	ee Product	[.		Thickness of I	Free Product (fee	et):
Referenced	to:	PVQ	Grade	D.O. Meter (if	freq'd):	YS) HACH
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.20) + DTW]: 13.9	97
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displaceme	nt Extrac Other	Waterra Peristaltic etion Pump 	Sampling Method: Other: ter Multiplier Well 1	Disposable Bailer Extraction Port Dedicated Tubing
1.6 (Gals.) X	3	= <u>L1,9</u>	Gals. 1"	0.04 4" 0.16 6"	0.65 1.47
1 Case Volume		fied Volum		2"	0.37 Other	radius ² * 0.163
Time	Temp (°F or °C	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations
1122	12.7	7.28	778	506	1.7	
1126	13.4	7,20	758	401	3.5	- 31
1130	13.5	7.17	752	417	5.0	DTW 14.63
			·			
Did well de	water?	Yes 🎸	N	Gallons actual	ly evacuated: 5	• •
Sampling D	vate: 12/	16/0	Sampling Tim	e: 1310	Depth to Wate	r: 12.68
Sample I.D.	· mu-	8		Laboratory:	Kiff CalScience	the CRT
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COL
EB I.D. (if a	applicable)	:	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P1	e-purge:	·	^{mg} /L I	Post-purge:	0.25 ^{mg} / _L
O.R.P. (if re	eq'd): Pr	e-purge:		mV I	Post-purge:	-15 mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

39

		Vv	ELL MONIT	ORING	DATA	SHEET	
Project #:	49-2150	(1		Client:	stell	rt	
Sampler:				Date:	12/1		
Well I.D.:				Well D	iameter		6 8
Total Well): 3 _{0.}	25	Depth t	o Wateı	r (DTW): 15,2	5
Depth to Fr	ee Product			Thickn	ess of F	ree Product (fee	et):
Referenced	to:	øve	Grade	D.O. M	leter (if	req'd):	KS HACH
DTW with	80% Rech	arge [(H	leight of Water	Column	x 0.20)	+ DTW]: 18	.27
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme nersible	ent Extrac Other		Well Diamete 1" 2"	Sampling Method: Other: ar Multiplier Well I 0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	う fied Volum			2 3"	0.18 0 0.37 Other	2
Time \059	Temp (°F or %)	рН 6.85	Cond. (mS or as) 885	1	idity Us) دو	Gals. Removed	Observations
1103	12.6	6.93	875	96		5.0	
1107	12.5	6.98	875	> 100		7.2	PTW 20-34
Did well de	uvotor?	Yes Z		Gallons	octually	y evacuated:	
			Nd Sampling Time			-	7:2-
Sampling D	· · · · · · ·		Sampling Time			Depth to Water	
Sample I.D.		2	work	Laborat		Kiff CalScience	e other <u>CQT</u>
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: See	200
EB I.D. (if a			Time			(if applicable):	
Analyzed fo		BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:	ma
D.O. (if req'	d): P1	e-purge:		^{mg} / _L	P	ost-purge:	0.68 ^{mg} / _L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:	29 mV

		h	ELL MONIT	ORING	G DATA	SHEET	
Project #:	101216-P	41		Client:	Stre	Mar	
	SH			Date:	12/10		
Well I.D.:	~~~~0			Well D	iameter		6 8
Total Well): 28.	36	Depth	to Wate	r (DTW): 🚬 🤇	R Y
Depth to Fr	ee Product	t.	Manna			ree Product (fee	
Referenced	to:	eve	Grade	D.O. M	leter (if	req'd):	NS) HACH
DTW with	80% Rech	arge [(H	eight of Water	Column	1 x 0.20))+DTW]: (5,2	94
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic etion Pump	<u>Well Diamet</u> 1"	0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing
$\frac{2-4}{1 \text{ Case Volume}}$	Gals.) X Speci	<u> </u>	$\frac{1}{1} = \frac{7.4}{\text{Calculated Vol}}$	_ Gals. olume	2" 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163
Time	Temp (°F or °G)	рН	Cond. (mS or as)		oidity TUs)	Gals. Removed	Observations
0944	11.6	7.30	775	167)	2.5	
6948	15-1	7.22	801	239	*****	5.0	
0952	12.0	7.20	717	715		7.5	OTW 19.30
Did well de	water?	Yes <	N0	Gallons	s actuall	y evacuated: –7	ـــــــــــــــــــــــــــــــــــــ
Sampling D	ate: 12/1	16/10	Sampling Tim	e: 1230	 >	Depth to Wate	r: (3.7)
Sample I.D.				Labora		Kiff CalScience	
Analyzed for			MTBE TPH-D	Oxygena	ates (5)	Other: See	L The
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:	
D.O. (if req	'd): Pr	re-purge:		^{mg} /L	P	ost-purge:	0.61 ^{mg} /L
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:	VZS mV

		• •					
Project #:	101216-9	41		Client:	an S and	lar	
Sampler:	M			Date:	12/1	16/10	
Well I.D.:	MW-IL			Well D		: ② 3 4	6 8
Total Well			.64	Depth 1	to Water	r (DTW): 12.6	55
Depth to Fr	ee Product	t:				ree Product (fee	
Referenced	to:	PNO	Grade	D.O. M	leter (if	req'd):	AS HACH
DTW with	80% Rech	arge [(H	leight of Water	Column	x 0.20)) + DTW]: 15.	8 H
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump		Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing
		<u>3</u> ified Volum	$\frac{1}{1} = \frac{7.7}{\text{Calculated Vo}}$	Gals.	Well Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	$\begin{array}{c c} Diameter & Multiplier \\ 0.65 \\ 1.47 \\ r & radius^2 * 0.163 \end{array}$
Time	Temp (°F or °C)	pH	Cond. (mS or (LS)	1	oidity TUs)	Gals. Removed	Observations
1147	11-8	7.16	753	40	,9	2.5	
1151	12.5	7.07	762	44	7	5.0	
1155	(2.7	7.08	766	34	3	7.7	
Did well dev	water?	Yes 🏑	No	Gallons	actuall;	y evacuated: -	7.7
Sampling D	ate: 21	16/10	Sampling Time	e: 120	5	Depth to Wate	r: 13.32
Sample I.D.				Labora	tory:	Kiff CalScience	e <u>Other CS-7</u>
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: See a	OC.
EB I.D. (if a	applicable)	1:	@ Time	Duplica	ate I.D. ((if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	. ,	Other:	
D.O. (if req'	d): Pr	re-purge:	n gan an a	^{mg} /L	Р	ost-purge:	0.67 ^{mg} / _L
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:	-5 mV

MONITODING DATA CIT

WELL MONITORING DATA SHEET

				т											
Project #: 🔪	01216-91	41		Client: <u>Stellar</u> Date: <u>12/16/10</u>											
Sampler:				Date: 12/16/10											
Well I.D.: ,				Well Diameter: 2 3 4 6 8											
Total Well I): 23.	84	Depth to Water (DTW): 9.52											
Depth to Fro	ee Product			Thickness of Free Product (feet):											
Referenced		€V?	Grade	D.O. Meter (if req'd): KS HACH											
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 12-35															
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ont Extrac Other		Peristaltic Disposable on Pump Extraction										
2.3 ((1 Case Volume	Gals.) X Speci	<u>3</u> fied Volum	$\frac{1}{1} = \frac{6.9}{\text{Calculated Vol}}$	_ Gals.	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163							
Time	Temp (°F or ℃	рН	Cond. (mS or (S))	Turbi (NT	Us)	Gals. Removed		Observations							
1037	1111	7.26	545	261											
10411	11.9	7.20	545	221		4.7									
1045	12.3	7.17	615	332	*	1.0		TU 14.76							
Did well de	water?	Yes	N9	Gallons	actually	y evacuated	 1:	ş [°]							
Sampling D	ate: 21	16/10	Sampling Tim												
Sample I.D.				Laborat	ory:	Kiff CalSc	ience	Other <u>CST</u>							
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Coc															
EB I.D. (if applicable): ^(a) Time Duplicate I.D. (if applicable):															
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:															
D.O. (if req'	d): Pi	re-purge:		mg/L	P	ost-purge:		0.93 ^{mg} / _L							
O.R.P. (if re	eq'd): Pr		mV	Р	ost-purge:		∖os mV								

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 224786 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2008-02
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

/hult

Project Manager

Date: <u>12/23/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 224786 Stellar Environmental Solutions 2008-02 Redwood Regional Park 12/16/10 12/16/10

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 12/16/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Biochemical Oxygen Demand (SM5210B):

No analytical problems were encountered.

22.0

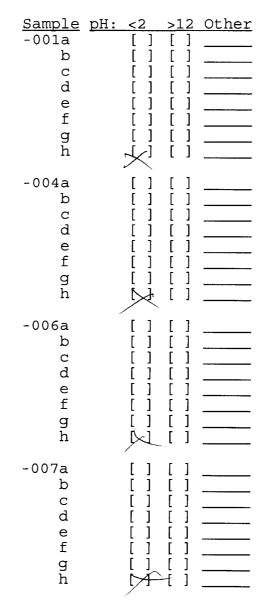
Chain of Custody Record

						Chain c	of Cu	istody Re	cor	d									Lab jot	o no. 📿	247	<u>18</u>
	Laboratory Curtis and To	<u>mpkins, Ltd</u>	l			lethod of Shipment	and De	elivery											Date _	10	1	-
	Address2323 Fifth Street Berkeley, California 94710			s	hipment No.							_						Page .	۱ (l i	_	
	510-486-0900				A	Shipment No.																
					— c	ooler No				/	/	<u> </u>	O		Ana	lysis R	equirec	1 t		/		
	Project Owner East Bay F	Regional Pa wood Road		rict							/ ,	1	$\sqrt{\mathbf{Y}}$	5								
	Site Address Oakland, (roject Manager <u>Rich</u>		kdisi		0	lainer	2	່ 1/ 🖬		/ ,	/ /	/ /		/ /	/		
	······					elephone No. (510) 644			/	Fillered	<u>ري</u> کړ	۳ ا	8 V	//	./	Jul/				/		
	Project Name Redwood				. —	ax No(510) 644				120	//e	7.5			1/5	₹∕	/			Rema	rks	
	Project Number	- 2008	- 07	2	Sa	amplers: (Signature)	m			/ /	4	'X	+	5		A/	<u>\</u>	/ /				
	Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	P Cooler	reservation Chemical		/K	S/n	The full (BOIS)	00 	× N N N N	5/()	A A A	<u>ک</u>					
1 -	MW-7		12/16	1015	W	Various	Y	Tes	8	X	X	×	>	$\langle \times \rangle$		X						1
2-	MW-11		12/16	12.05	Ś	3 VOA, 2 500 TLAN	21	Yes	চ	X	1											-
3-	MW-10			1		BUDA, 2 SOMLAN				-												-
ノ U~	4W-12		13/11	1245			<u>r</u>	YRS	5		$ \lambda $			<u> </u>						<u></u>		_
7						Various	<u>μ</u> Ζ_	Yes	8	X	イ	$ \chi $		X	\boldsymbol{X}	ス						
<u> </u>	mw-9	<u> </u>		1300		300A, 2 Som LAM	2	Tes	স	X	メ	$ \lambda $										
6 -	MW-8 MW-2		12/16	1310	ω	Various	7	Yes	8	X	×	$\boldsymbol{\lambda}$	X	と	x	X						1
7.	MW-2		12/16	1330	w	Varias	20	Yes	8				\mathbf{x}		ト							1
/							† * · · · ·	/ 20		\vdash	~	-	\rightarrow	<u> </u>	- (~						4
						· · · · · · · · · · · · · · · · · · ·														<u> </u>		
										ļ				ļ								
]
																						1
																						-
	Relinquished by: Signature		Date 2/16/17	Received Signati		egn	Date	Relinquished by: Signature		<u> </u>			Date		ceived Signati	•]				Date	
	Printed Patrick Ha	sur -	Time	Printed	<u>M,c</u>	ah Snith	Time	Printed														_
	Stellar Environn	nental	4:55										- Time		Printec	t t					Time	
ŀ		[`		Compa	ny		14:55	Company		<u> </u>		·····	-		Compa	any						
	Turnaround Time: 5 Day TAT							Relinquished by:					Date	Re	ceived	by:					Date	1
	Comments: Please provide	a GeoTra	cker ED	DF for g	roundv	vater samples only vironmental Solutions	·	Signature					-		Signati	ure				<u> </u>		
2000-00-01	Groundwater s	samples col	lected I	by Ste by-Blair	nar En 1e-Teci	vironmental Solutions	·	Printed					. Time	-	Printed	I					Time	-
2000								Company							Compa	iny						

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Ņ


3 of 39

~

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 224786 Date Received 2/16/10 Client <u>ARELLAR</u> Project EB RFD	Number of coolers Z
Date Opened <u>12/16/10</u> By (print) <u>MNUCAVIACE</u> (sign) Date Logged in <u>12/16/10</u> By (print) <u>Trag Babar</u> (sign)	
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	
 2A. Were custody seals present? □ YES (circle) on cooler How many Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top 6. Indicate the packing in cooler: (if other, describe) 	YES NO M/A
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation:	□ None □ Paper towels
Type of ice used: 🖉 Wet 🗌 Blue/Gel 🗌 None	Temp(°C) 3.1
Type of ice used: \square Wet \square Blue/Gel \square None \square Samples Received on ice & cold without a temperature l	blank w TEMP ÓLAHK
Samples received on ice directly from the field. Cooling	
	YES NO YES NO

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc 2

Analyst: _____ Date: _____ Page 1 of 1

	Curtis & Tom	npkins Labo	oratories An	alytical Re	port
Lab #: 224786 Client: Stellar Project#: 2008-02	Environmental	Solutions	Location: Prep:	Redwood EPA 503	l Regional Park 80B
Matrix: W Units: v	Nater 1g/L 1.000		Batch#: Sampled: Received:	170162 12/16/1 12/16/1	
	J-7 AMPLE		Lab ID: Analyzed:	224786- 12/20/2	
Analyte	9	Result		RL	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes		5,400 Y 87 ND ND 99 4.8		50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
o-Xylene		4.4	C	0.50	EPA 8021B
Surrogat Bromofluorobenzene Bromofluorobenzene	e (FID) 1	%REC Limits 00 75-130 09 58-121	Analys EPA 8015B EPA 8021B	3is -	
	V-11 MPLE		Lab ID: Analyzed:	224786- 12/20/2	
Analyte	9	Result		RL	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		1,800 Y 15 13 ND 49 1.9 ND	С	50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Surrogat	A	%REC Limits	Analys	rie -	
Bromofluorobenzene Bromofluorobenzene	e (FID) 9		EPA 8015B EPA 8021B	515	
1010 10 10	V-10 MPLE		Lab ID: Analyzed:	224786- 12/20/2	
Analyte	9	Result		RL	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes		80 Y 4.1 ND 0.69 ND ND		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
o-Xylene					
	:e (FID) 8	%REC Limits 8 75-130	Analys EPA 8015B	sis	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 3

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	224786	Location:	Redwood Regional Park
	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02		
Matrix:	Water	Batch#:	170162
Units:	ug/L	Sampled: Received:	12/16/10
Diln Fac:	1.000	Received:	12/16/10

Field ID: Type:	MW-12 SAMPLE		Lab ID: Analyze			
Ana	lyte	Result	t	RL	Analysis	
Gasoline C7-C1	2	320	Y	50	EPA 8015B	
MTBE		3	.9 C	2.0	EPA 8021B	
Benzene		ND		0.50	EPA 8021B	
Toluene		ND		0.50	EPA 8021B	
Ethylbenzene		1	.5 C	0.50	EPA 8021B	
m,p-Xylenes		ND		0.50	EPA 8021B	
o-Xylene		ND		0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	75-130	EPA 8015B	
Bromofluorobenzene (PID)	98	58-121	EPA 8021B	

Field ID: Type:	MW-9 SAMPLE			Lab ID: Analyzed:	22478 12/23	36-005 L/10		
Ana Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	3,9 ND	ult 00 Y 82 C 32 40 16 4.5 (2	RL 50 2.0 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA EPA	Analysis 8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B	
Bromofluoroben: Bromofluoroben: Field ID:	<u>zene (PID)</u> MW-8	98 75	mits -130 -121	Analy EPA 8015B EPA 8021B Lab_ID:	22478	36-006		
Type: Ana Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	SAMPLE lyte 2		ult 80 Y 7.2 5.4 0.99	Analyzed:	12/23 RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA EPA EPA	Analysis 8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B	

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	75-130	EPA 8015B	
Bromofluorobenzene (PID)	99	58-121	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

	Curtis & Tompkins Lab	ooratories Anal	ytical Report
Project#:	224786 Stellar Environmental Solutions 2008-02	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Sampled: Received:	170162 12/16/10 12/16/10

Field ID: Type:	MW-2 SAMPLE		o ID: 224786 alyzed: 12/21/	
Ana	lyte	Result	RL	Analysis
Gasoline C7-C1	2	910 Y	50	EPA 8015B
MTBE		2.6	2.0	EPA 8021B
Benzene		ND	0.50	EPA 8021B
Toluene		ND	0.50	EPA 8021B
Ethylbenzene		ND	0.50	EPA 8021B
m,p-Xylenes		ND	0.50	EPA 8021B
o-Xylene		ND	0.50	EPA 8021B

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene	(FID)	95	75-130	EPA 8015B	
Bromofluorobenzene	(PID)	106	58-121	EPA 8021B	

Type: Lab ID:	BLANK QC573205		Analyzed:	12/2	20/10		
A	nalyte	Result		RL		Analysis	
Gasoline C7-0	C12	ND		50	EPA	8015B	
MTBE		ND		2.0	EPA	8021B	
Benzene		ND		0.50	EPA	8021B	
Toluene		ND		0.50	EPA	8021B	
Ethylbenzene		ND		0.50	EPA	8021B	
m,p-Xylenes		ND		0.50	EPA	8021B	
o-Xylene		ND		0.50	EPA	8021B	

Surrogate		%REC	Limits	Analysis	
Bromofluorobenzene (FID)	85	75-130	EPA 8015B	
Bromofluorobenzene (PID)	99	58-121	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	224786	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02		
Matrix:	Water	Batch#:	170162
Units:	ug/L	Analyzed:	12/20/10
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC573202

Analyte	Spiked	Result	%REC	Limits	Analysis
MTBE	10.00	9.166	92	67-136	EPA 8021B
Benzene	10.00	9.748	97	74-121	EPA 8021B
Toluene	10.00	9.811	98	75-122	EPA 8021B
Ethylbenzene	10.00	9.666	97	75-122	EPA 8021B
m,p-Xylenes	10.00	9.528	95	76-123	EPA 8021B
o-Xylene	10.00	9.893	99	73-127	EPA 8021B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	90	75-130	EPA 8015B
Bromofluorobenzene (PID)	105	58-121	EPA 8021B

Type: BSD			Lab I	D:	QC57	3203			
Analyte	Spiked	Re	sult	%REC	Limits	RPD	Lim	•	Analysis
MTBE	10.00		9.188	92	67-136	0	39	EPA	8021B
Benzene	10.00		9.644	96	74-121	1	29	EPA	8021B
Toluene	10.00		9.008	90	75-122	9	20	EPA	8021B
Ethylbenzene	10.00		9.122	91	75-122	6	20	EPA	8021B
m,p-Xylenes	10.00		9.033	90	76-123	5	20	EPA	8021B
o-Xylene	10.00		9.447	94	73-127	5	20	EPA	8021B
Surrogate	%REC	Limits		Analysis					
Bromofluorobenzene (FID)	87	75-130	EPA 80	15B					
Bromofluorobenzene (PID)	103	58-121	EPA 80	21B					

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	224786	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02		
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC573204	Batch#:	170162
Matrix:	Water	Analyzed:	12/20/10
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	1,000	1,059	106	75-126	EPA 8015B

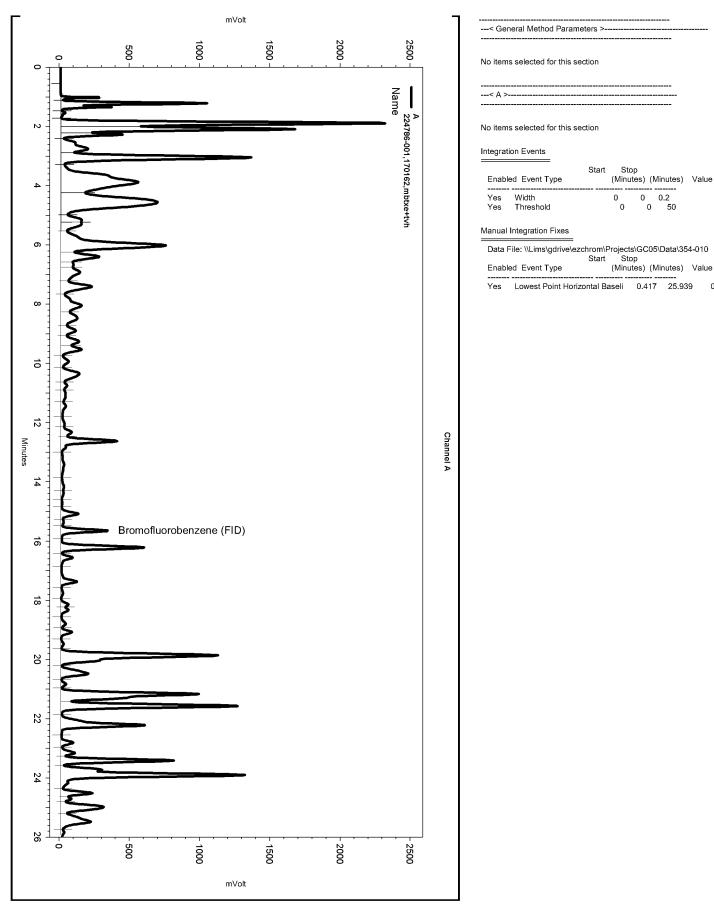
Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	87	75-130	EPA 8015B
Bromofluorobenzene (PID)	103	58-121	EPA 8021B

	Curtis & Tompkins Labor	ratories Analyt	ical Report
Lab #: 224786		Location:	Redwood Regional Park
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2008-0	02		
Field ID:	MW-10	Batch#:	170162
MSS Lab ID:	224786-003	Sampled:	12/16/10
Matrix:	Water	Received:	12/16/10
Units:	ug/L	Analyzed:	12/20/10
Diln Fac:	1.000		

Type:	MS		Lab ID:			QC	QC573206				
Anal	yte	MSS Result	Spik	ed	Resu	lt ⁹	REC	Limits	2	Analysis	
Gasoline C7	-C12	79.52	2,0	00	1,77	3 8	35	68-120	EPA	8015B	
		8-DEC	Timita		3	-					
	urrogate	%REC	Limits		Analysi	S					
Bromofluoro	benzene (FID)	89	75-130	EPA 8	3015B						
Bromofluoro	benzene (PID)	99	58-121	EPA 8	3021B						
Туре:	MSD			Lab	ID:	QC	25732	07			
Ana	lyte	Spiked	R	esult	%REC	Limit	s R	PD Lim		Analysis	
Gasoline C7	-C12	2,000	1	,777	85	68-12	20 0	26	EPA	8015B	
S	urrogate	%REC	Limits		Analysi	S					
Bromofluoro	benzene (FID)	90	75-130	EPA 8	3015B						

58-121 EPA 8021B

102


Bromofluorobenzene (PID)

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-001,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-010 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met

Software Version 3.1.7 Run Date: 12/20/2010 7:07:38 PM Analysis Date: 12/21/2010 12:57:52 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

0 0.2 0 50

0

Page 2 of 4 Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-002,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-012 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met

Software Version 3.1.7 Run Date: 12/20/2010 8:20:50 PM Analysis Date: 12/21/2010 1:02:09 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Start

Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-012 Start

00

Stop (Minutes) (Minutes) Value

0 0.2 0 50

Stop (Minutes) (Minutes) Value

0.284 25.784

0

---< General Method Parameters >

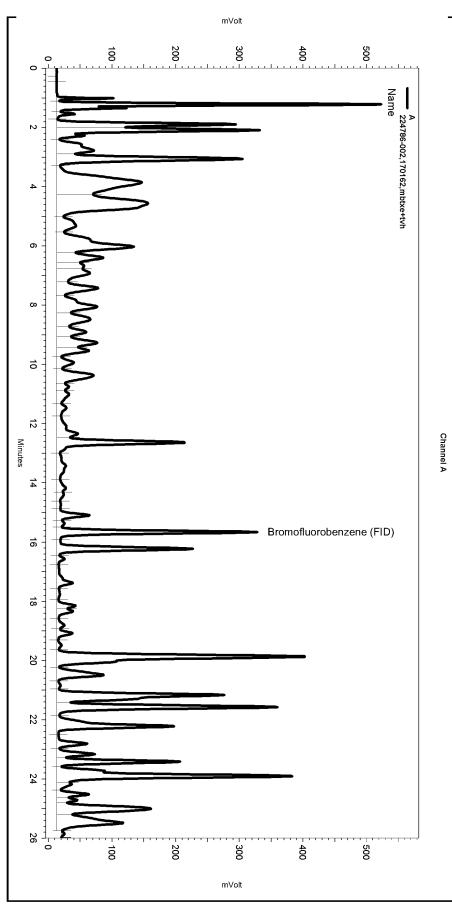
No items selected for this section

No items selected for this section

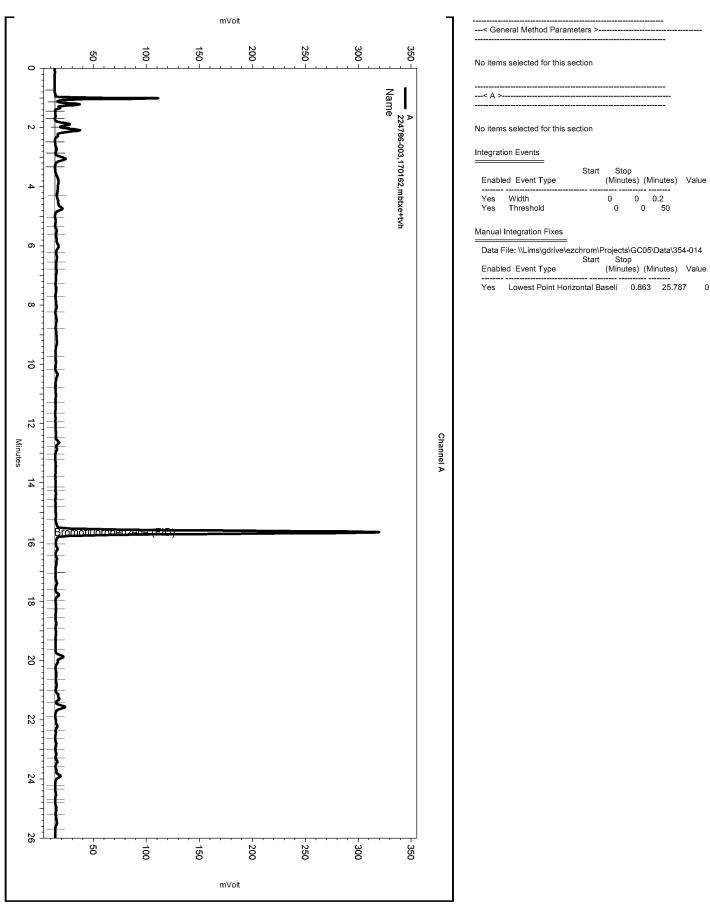
----< A >----

Yes Yes

Integration Events

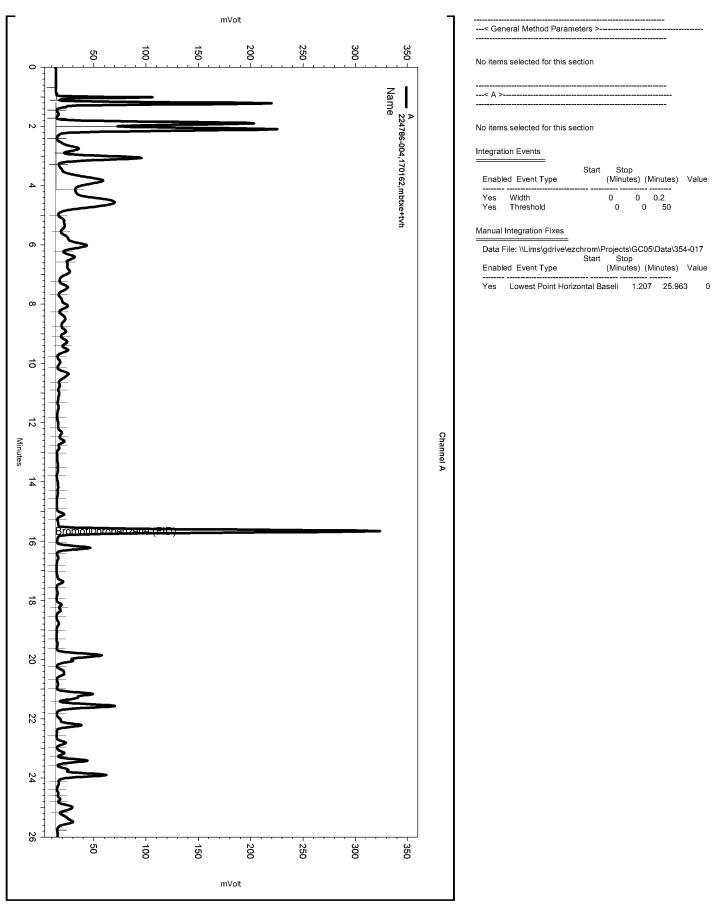

Enabled Event Type

Width


Enabled Event Type

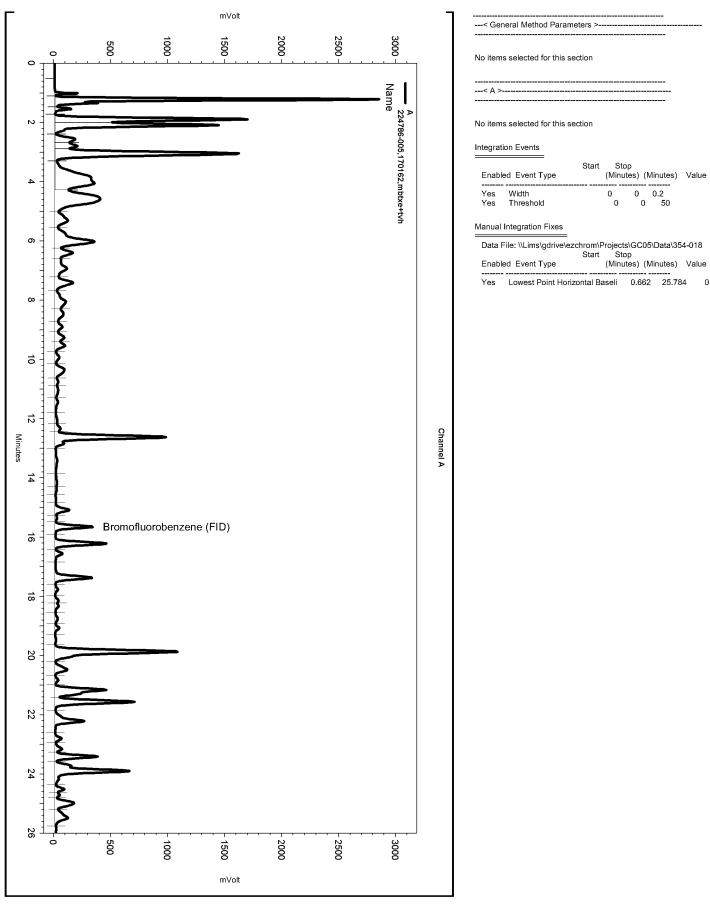
Yes Lowest Point Horizontal Baseli

Threshold Manual Integration Fixes



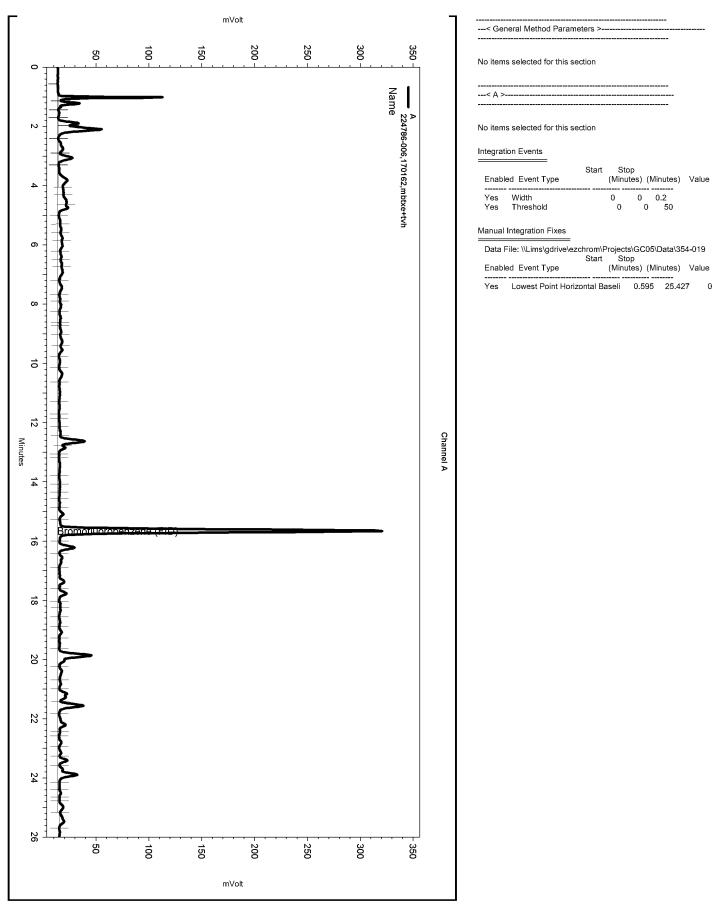
Page 2 of 4 Curtis & Tompkins Ltd. Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-003,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-014 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met Software Version 3.1.7 Run Date: 12/20/2010 9:33:57 PM Analysis Date: 12/21/2010 1:04:14 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Page 2 of 4 Curtis & Tompkins Ltd.


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-004,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-017 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met Software Version 3.1.7 Run Date: 12/20/2010 11:23:36 PM Analysis Date: 12/21/2010 1:07:14 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

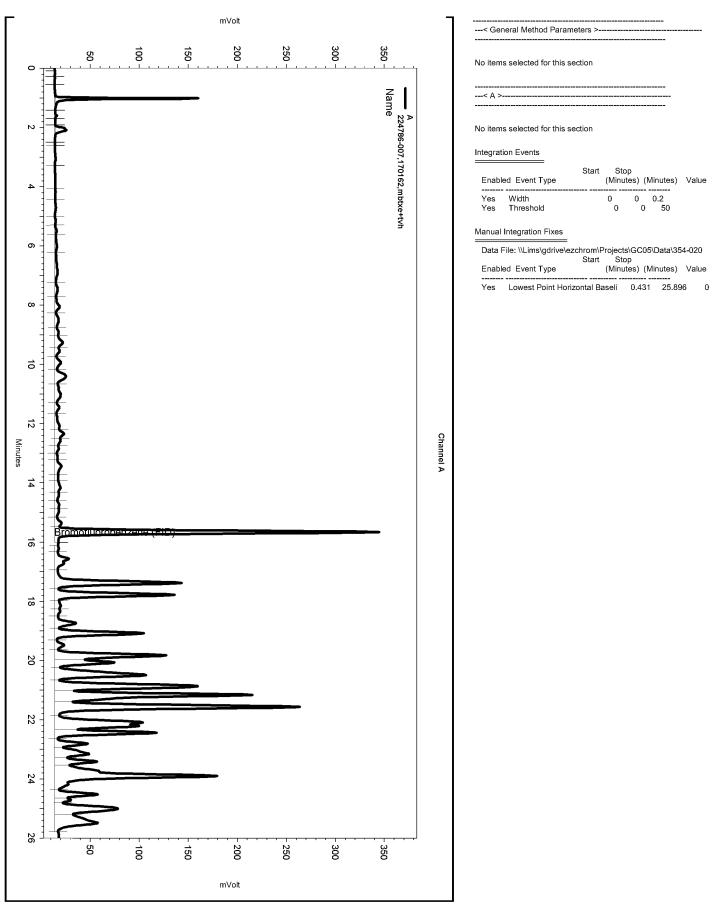
Page 2 of 4 Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-005,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-018 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met

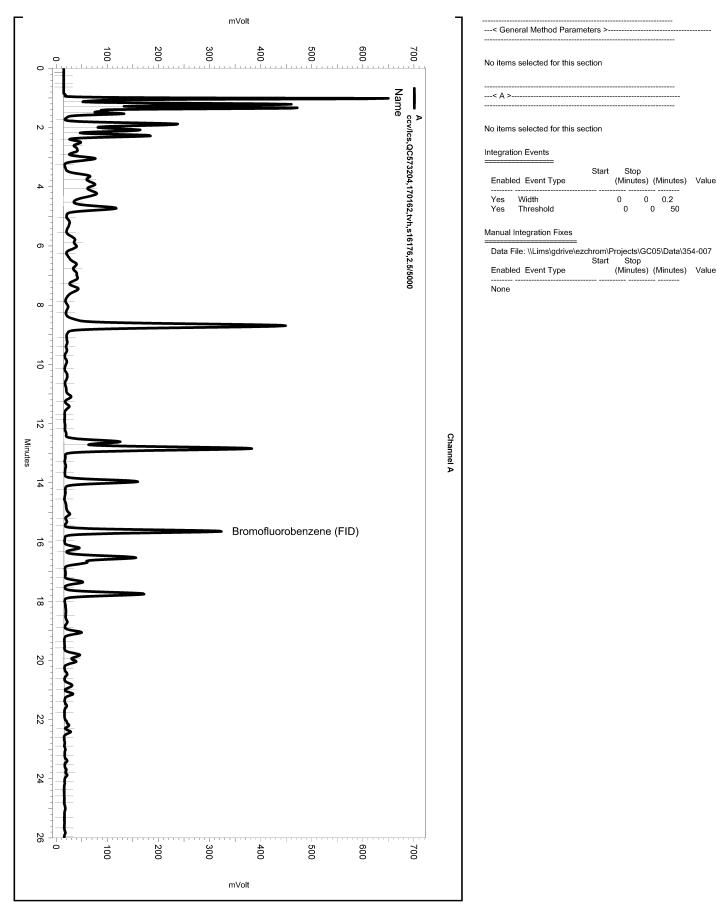

Software Version 3.1.7 Run Date: 12/21/2010 12:00:14 AM Analysis Date: 12/21/2010 1:08:25 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Page 2 of 4 Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-006,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-019 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met


Software Version 3.1.7 Run Date: 12/21/2010 12:36:51 AM Analysis Date: 12/21/2010 1:10:16 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Page 2 of 4 Curtis & Tompkins Ltd.


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: 224786-007,170162,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-020 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met

Software Version 3.1.7 Run Date: 12/21/2010 1:13:27 AM Analysis Date: 12/21/2010 1:11:46 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

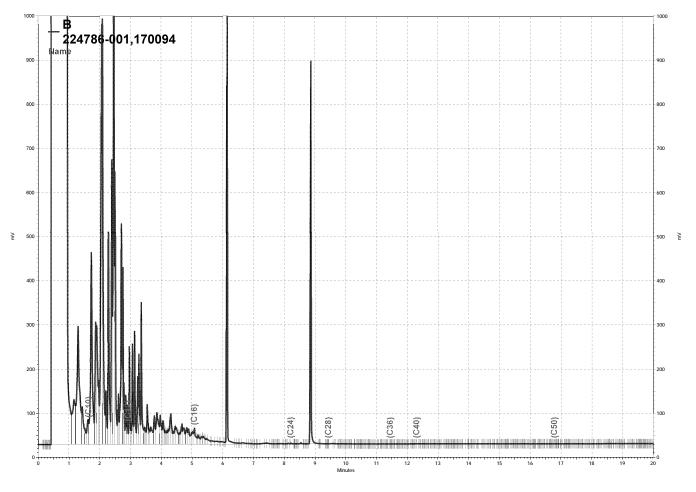
Page 2 of 4 Curtis & Tompkins Ltd.

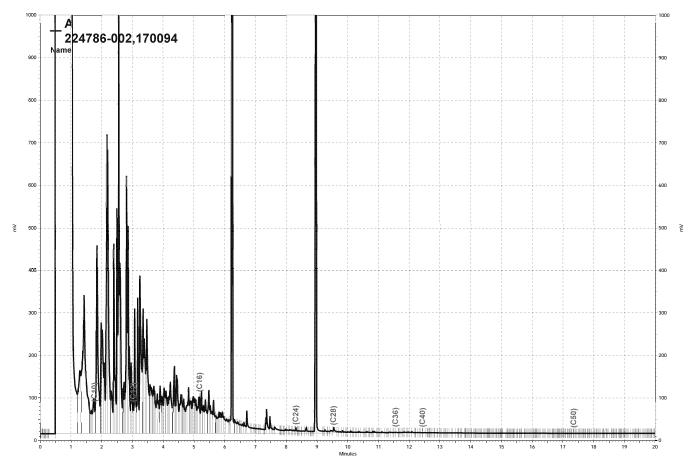
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\354.seq Sample Name: ccv/lcs,QC573204,170162,tvh,s16176,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\354-007 Instrument: GC05 Vial: N/A Operator: Tvh 3. Analyst (lims2k3\tvh3) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe349.met Software Version 3.1.7 Run Date: 12/20/2010 2:47:41 PM Analysis Date: 12/20/2010 6:12:49 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

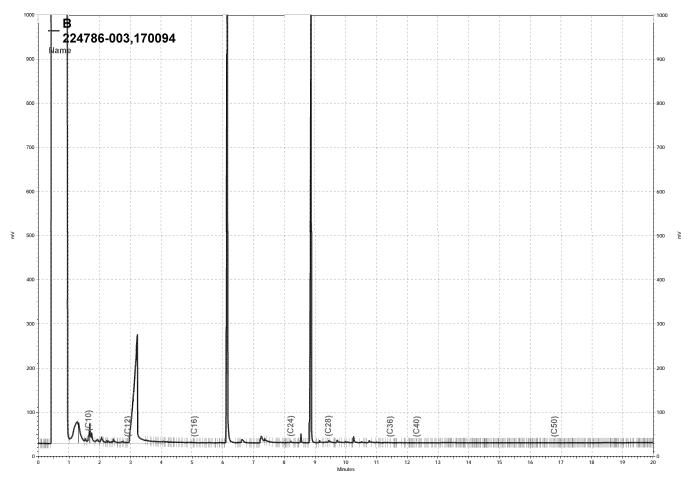
Page 2 of 4 (10) Curtis & Tompkins Ltd.

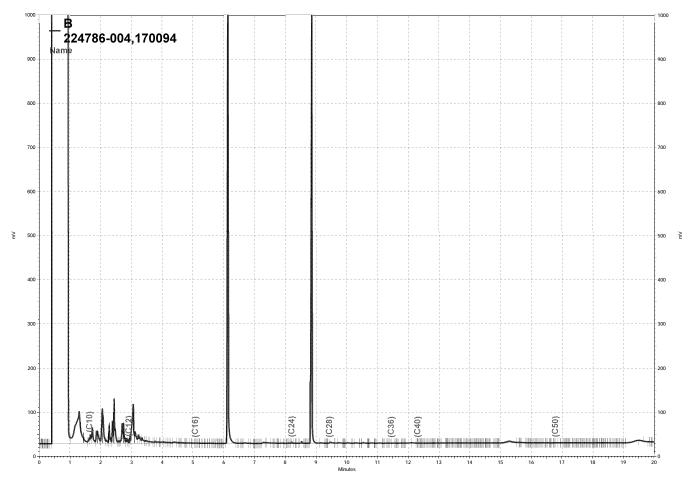
		Total E	xtracta	ble Hydroc	arbo	ns
Lab #: Client: Project#:		tal Solut	ions	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 170094			Sampled: Received: Prepared:		12/16/10 12/16/10 12/17/10
Field ID: Type:	MW-7 SAMPLE			Lab ID: Analyzed:		224786-001 12/19/10
Diesel Cl	Analyte	1	Result 3,500 Y	Analyzeu:	RL 50	12/17/10
o-Terphen	Surrogate yl	%REC 85	Limits 60-129			
Field ID: Type:	MW-11 SAMPLE			Lab ID: Analyzed:		224786-002 12/20/10
Diesel Cl	Analyte 0-C24		Result 2,900 Y		RL 50	
o-Terphen	Surrogate yl	% REC 114	Limits 60-129			
Field ID: Type:	MW-10 SAMPLE			Lab ID: Analyzed:		224786-003 12/19/10
Diesel Cl	Analyte 0-C24		Result 440 Y		RL 50	
o-Terphen	Surrogate yl	% REC 104	Limits 60-129			
Field ID: Type:	MW-12 SAMPLE			Lab ID: Analyzed:		224786-004 12/19/10
Diesel Cl	Analyte 0-C24		Result 350 Y		RL 50	
o-Terphen	Surrogate yl	%REC 105	Limits 60-129			
Field ID: Type:	MW-9 SAMPLE			Lab ID: Analyzed:		224786-005 12/19/10
Diesel Cl	Analyte 0-C24		Result 2,400 Y		RL 50	
o-Terphen	Surrogate yl	%REC 70	Limits 60-129			

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

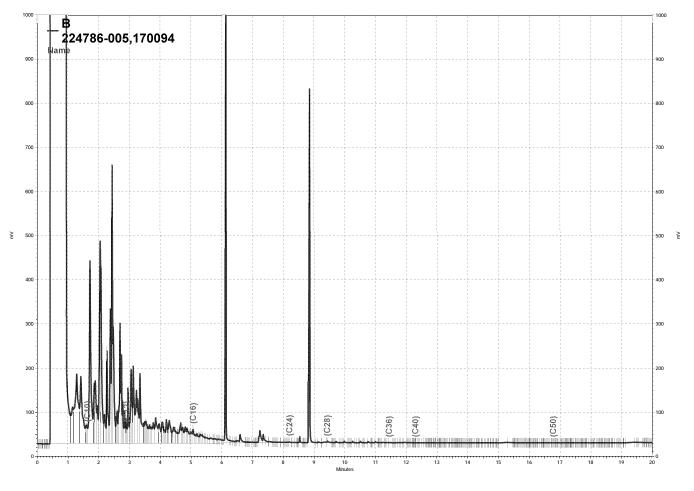

Page 1 of 2


	То	tal Extracta	ble Hydroca	rbons
Client: Ste Project#: 200		Solutions	Location: Prep: Analysis:	Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 170094		Sampled: Received: Prepared:	12/16/10 12/16/10 12/17/10
Field ID: Type:	MW-8 SAMPLE		Lab ID: Analyzed:	224786-006 12/19/10
Ar Diesel C10-C2	nalyte 24	Result 260 Y		RL 50
Sur o-Terphenyl	rrogate g	%REC Limits 98 60-129		
Field ID: Type:	MW-2 SAMPLE		Lab ID: Analyzed:	224786-007 12/20/10
Ar Diesel C10-C2	nalyte 24	Result 1,600 Y		RL 50
Sur o-Terphenyl	rrogate	%REC Limits 104 60-129		
Type: Lab ID:	BLANK QC572920		Analyzed:	12/19/10
Diesel C10-C2	nalyte 24	Result ND		RL 50
o-Terphenyl	rrogate	%REC Limits 109 60-129		

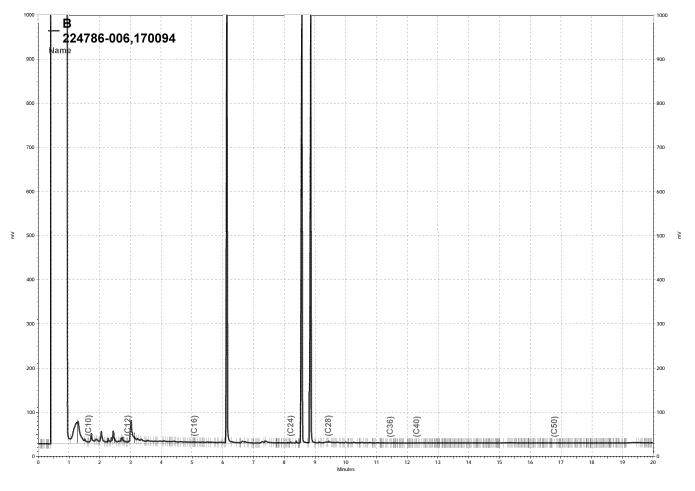

	r	otal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	224786			Location:	Redwood Regio	nal Park		
Client:	Stellar Environmenta	l Solut	cions	Prep:	EPA 3520C			
Project#:	2008-02			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	170094			
Units:	ug/L			Prepared:	12/17/10			
Diln Fac:	1.000			Analyzed:	12/19/10			
Type: Lab ID:	BS QC572921			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel Cl	0-C24		2,500	2,400	96	53-128		
	Surrogate	%REC	Limits					
o-Terphen	yl	102	60-129					
Type: Lab ID:	BSD QC572922			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel Cl	0-C24		2,500	2,775	111	53-128	14	48
	Surrogate	%REC	Limits					
o-Terphen	yl	112	60-129					

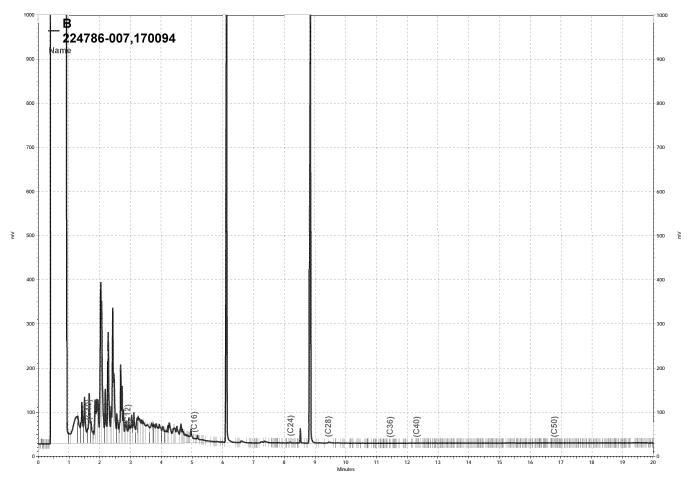


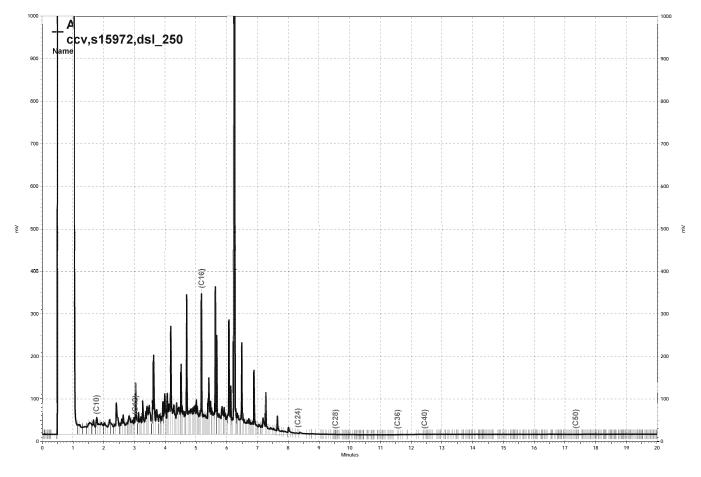
-- \\Lims\gdrive\ezchrom\Projects\GC14B\Data\353b025, B



-\Lims\gdrive\ezchrom\Projects\GC17A\Data\354a009, A




-- \\Lims\gdrive\ezchrom\Projects\GC14B\Data\353b028, B


-- \\Lims\gdrive\ezchrom\Projects\GC14B\Data\353b029, B

-\Lims\gdrive\ezchrom\Projects\GC14B\Data\353b030, B

-- \\Lims\gdrive\ezchrom\Projects\GC14B\Data\353b031, B

-\Lims\gdrive\ezchrom\Projects\GC17A\Data\353a004, A

	Curtis &	Tompkins Labor	atories Ana	lytical Report
Lab #: Client: Project#:	224786 Stellar Environment 2008-02	al Solutions	Location: Prep: Analysis:	Redwood Regional Park METHOD EPA 300.0
Matrix: Units:	Water mg/L		Received:	12/16/10
Field ID: Type:	MW-7 SAMPLE		Batch#: Sampled:	170052 12/16/10 10:15
Lab ID: Diln Fac:	224786-001 1.000		Analyzed:	12/17/10 03:12
27.1	Analyte	Result		RL
Nitrogen, Sulfate	Nitrate	ND 0.84		0.05 0.50
Field ID: Type:	MW-12 SAMPLE		Batch#: Sampled:	170052 12/16/10 12:45
Lab ID: Diln Fac:	224786-004 1.000		Analyzed:	12/17/10 03:47
	Analyte	Result		RL
Nitrogen, Sulfate	Nitrate	ND 22		0.05 0.50
Field ID: Type:	MW-8 SAMPLE		Lab ID: Sampled:	224786-006 12/16/10 13:10
	Analyte	Result	RL	Diln Fac Batch# Analyzed
Nitrogen,		ND	0.05	1.000 170052 12/17/10 04:22
Sulfate		72	2.5	5.000 170109 12/19/10 01:57
Field ID:	MW-2		Lab ID:	224786-007
Type:	SAMPLE		Sampled:	12/16/10 13:30
Nitrogen,	Analyte	Result 0.69	RL 0.05	Diln Fac Batch# Analyzed 1.000 170052 12/17/10 04:57
Sulfate	NILLALE	120	5.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Type: Lab ID:	BLANK QC572729		Batch#: Analyzed:	170052 12/17/10 02:03
	QC572729 1.000	Dogult	Analyzed:	12/17/10 02:03
Lab ID:	QC572729 1.000 Analyte	Result	Analyzed:	
Lab ID: Diln Fac:	QC572729 1.000 Analyte		Analyzed:	12/17/10 02:03 RL
Lab ID: Diln Fac: Nitrogen, Sulfate	QC572729 1.000 Analyte Nitrate	ND	Analyzed:	12/17/10 02:03 RL 0.05 0.50
Lab ID: Diln Fac: Nitrogen,	QC572729 1.000 Analyte	ND	Analyzed:	12/17/10 02:03 RL 0.05
Lab ID: Diln Fac: Nitrogen, Sulfate Type: Lab ID: Diln Fac:	QC572729 1.000 Analyte Nitrate BLANK QC572991	ND ND Result	Analyzed:	12/17/10 02:03 RL 170109 12/19/10 01:22 RL
Lab ID: Diln Fac: Nitrogen, Sulfate Type: Lab ID:	QC572729 1.000 Analyte Nitrate BLANK QC572991 1.000	ND ND	Analyzed:	12/17/10 02:03 RL 0.05 0.50 170109 12/19/10 01:22

RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	224786	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2008-02	Analysis:	EPA 300.0				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC572730	Batch#:	170052				
Matrix:	Water	Analyzed:	12/17/10 02:20				
Units:	mg/L						

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	0.9943	99	80-120
Sulfate	10.00	9.555	96	80-120

	Curtis & 1	Compkins Labor	atories Anal	ytical Repo	ort		
Lab #:	224786		Location:	Redwood R	egional H	Park	
Client:	Stellar Environmenta	al Solutions	Prep:	METHOD			
Project#:	2008-02		Analysis:	EPA 300.0			
Field ID:	ZZZZZZZZZZ		Diln Fac:	20.00			
MSS Lab II	D: 224780-001		Batch#:	170052			
Matrix:	Water		Sampled:	12/16/10	09:27		
Units:	mg/L		Received:	12/16/10			
Type: Lab ID:	MS QC572827 Analyte	MSS Result	Analyzed: Spiked	12/17/10 Resul		REC	Limits
Nitrogen,	Nitrate	0.9102	10.00	10.	95 10	0	80-120
Sulfate		72.88	100.0	163.	1 90)	80-120
Type: Lab ID:	MSD QC572828		Analyzed:	12/17/10	17:58		
	Analyte	Spiked	Res	ult %	REC Limi	ts R	PD Lim
Nitrogen,	Nitrate	10.00		10.53 96	80-1	20 4	20
Sulfate		100.0	1	61.7 89	80-1	.20 1	20

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	224786	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2008-02	Analysis:	EPA 300.0				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC572992	Batch#:	170109				
Matrix:	Water	Analyzed:	12/19/10 01:39				
Units:	mg/L						

	Analyte	Spiked	Result	%REC	Limits
Sulfate		10.00	9.829	98	80-120

		Tompkins Labor	atories A	-				
Lab #: 224	1786		Location:	F	Redwood Regiona	al Park		
Client: Ste	ellar Environmen	tal Solutions	Prep:	Μ	IETHOD			
Project#: 200	08-02		Analysis:	E	EPA 300.0			
Field ID:	ZZZZZZZZZZ		Diln Fac:	2	20.00			
MSS Lab ID:	224743-004		Batch#:	1	70109			
Matrix:	Water		Sampled:	1	2/15/10 09:40			
Units:	mg/L		Received:	1	2/15/10			
Type: Lab ID:	MS QC572993		Analyzed:	1	.2/19/10 05:43			
Anal	lyte	MSS Result	Spiked		Result	%REC	Lim	
Sulfate		98.91	100.0		195.9	97	80-	120
Туре:	MSD		Analyzed:	1	2/19/10 06:00			
Lab ID:	QC572994		-					
Ar	nalyte	Spiked		Result	%REC]	Limits	RPD	Lim
Sulfate		100.0		194.6	96 8	30-120	1	20

Lab #:224786Location:Redwood RegionalClient:Stellar Environmental SolutionsPrep:METHOD	
Client: Stellar Environmental Solutions Prep: METHOD	Park
Project#: 2008-02 Analysis: SM5210B	
Analyte: Biochemical Oxygen Demand Batch#: 170049	
Matrix: Water Received: 12/16/10	
Units: mg/L Prepared: 12/16/10 19:50	
Diln Fac: 1.000 Analyzed: 12/21/10 21:15	

Field ID	Lab ID	Result	RL	Sampled	
MW-7	224786-001	15	5.0	12/16/10 10:15	
MW-12	224786-004	ND	5.0	12/16/10 12:45	
MW-8	224786-006	ND	5.0	12/16/10 13:10	
MW-2	224786-007	ND	5.0	12/16/10 13:30	

ND= Not Detected RL= Reporting Limit Page 1 of 1

		:	Biochemical	Oxygen Demand				
Lab #:	224786			Location:	Redwood	Regio	nal Park	
Client:	Stella	r Environmental	Solutions	Prep:	METHOD			
Project#:	2008-0	2		Analysis:	SM5210B			
Analyte:		Biochemical Oxy	/gen Demand	Batch#:	170049			
Field ID:		ZZZZZZZZZZ		Sampled:	12/15/1	0 09:0	0	
MSS Lab I	D:	224733-001		Received:	12/15/1	0		
Matrix:		Water		Prepared:	12/16/1	0 19:5	0	
Units:		mg/L		Analyzed:	12/21/1	0 21:1	.5	
Diln Fac:		1.000						
Type La	b ID	MSS Result	Spiked	Result	RL	%REC	Limits RP	'D Lim
	77770		100 0	221 0		112	0E 11E	

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim
BS	QC572720		198.0	221.0		112	85-115	
BSD	QC572721		198.0	212.5		107	85-115 4	20
SDUP	QC572722	4,125		3,922	750.0		5	20

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

Chemical Oxygen Demand								
Lab #:	224786	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	METHOD					
Project#:	2008-02	Analysis:	SM5220D					
Analyte:	Chemical Oxygen Demand	Batch#:	170279					
Matrix:	Water	Received:	12/16/10					
Units:	mg/L	Prepared:	12/22/10 14:30					
Diln Fac:	1.000	Analyzed:	12/22/10 16:30					

Field ID	Type Lab ID	Result	RL	Sampled	
MW-7	SAMPLE 224786-001	34	10	12/16/10 10:15	
MW-12	SAMPLE 224786-004	21	10	12/16/10 12:45	
MW-8	SAMPLE 224786-006	16	10	12/16/10 13:10	
MW-2	SAMPLE 224786-007	31	10	12/16/10 13:30	
	BLANK QC573690	ND	10		

ND= Not Detected RL= Reporting Limit Page 1 of 1

Chemical Oxygen Demand									
Lab #: 2	24786	Location:	Redwood Regional Park						
Client: S	tellar Environmental Solutio	ns Prep:	METHOD						
Project#: 2	008-02	Analysis:	SM5220D						
Analyte:	Chemical Oxygen Demand	Batch#:	170279						
Field ID:	ZZZZZZZZZZ	Sampled:	12/15/10 11:10						
MSS Lab ID:	224740-002	Received:	12/15/10						
Matrix:	Water	Prepared:	12/22/10 14:30						
Units:	mg/L	Analyzed:	12/22/10 16:30						
Diln Fac:	1.000								
Type La	b ID MSS Result	Spiked	Result %REC Limits RPD	Lim					

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC573691		75.00	68.42	91	90-110		
MS	QC573692	52.37	150.0	180.3	85	65-131		
MSD	QC573693		150.0	184.8	88	65-131	2	20

and setting to the

H

Laboratory Job Number 224791 ANALYTICAL REPORT

Stellar Environmental Solutions 2198 6th Street Berkeley, CA 94710

Project : 2010-02 Location : Redwood Regional Park Level : II

<u>Sample ID</u>	<u>Lab ID</u>
SW-2	224791-001
SW-3	224791-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

/hult

Signature:

Project Manager

Date: <u>12/28/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 224791 Stellar Environmental Solutions 2010-02 Redwood Regional Park 12/17/10 12/16/10

This data package contains sample and QC results for two water samples, requested for the above referenced project on 12/17/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Chain of Custody Record

				C	hain o	f Cu	stody R	eco	rd								Lab job no. 2 Date	247
Laboratory <u>Curtis and T</u> Address 2323 Fifth S Berkeley, Ca 510-486-090	treet alifornia 94710			Method of Ship Shipment No Airbill No			livery	_	,	[7]				Analysis I	Required		Date Page	1
Site Address7867 Re Oakland	/ Regional Pa dwood Road , California I Regional Pa -02		<u>д</u>	Cooler No Project Manage Telephone No Fax No Samplers: <i>(Sigi</i>	er <u>Richa</u> (510) 644 (510) 644	ard Mal 3123		 _ _ _ /	Fillened MG	VIA BONAINAN	EH EF						Rei	marks
Field Sample Number	Location/ Depth	Date 12-16-1	Time Samı Typ O W	e 1ype/3ize 01		Cooler	eservation Chemical	1/-/		7_{-1}	1/		[]		(/	
SW-3	Creek	12-16-1		90 /12	VOAR	Y	Yes (a) Yes (a)		3 X 3 X									
- Sw-2 - Sw-3	Creek	12-16-		Amber		7	NO		1	X								
JW-S	Creek	12-16	-10 U	Ambou	Liter	Ч	NO		1	X								
Relinquished by: Signature Steve Bittman Printed	uttine 1	Date F 2-16-10 Time	leceived by: Signature Printed Res	mick Har	m5	Date 12-16- Time	Relinquished b	h		ims		Date	Recei	ved by: inature	Mico	RJ b	Cu- Snith	Dat - 12/1
Company Stellar Enviro		145		Blaine Tech	-	1145	Company _	Bler.	he Te			1455		mpany _		1	τ	- Tim _ / 4.
Turnaround Time:(a) VOA w/ Comments:	· · · · · · · · · · · · · · · · · · ·						Relinquished by Signature	'y :				Date	i	ved by: nature _				Date
							Printed					Time	Pri	nted				- Tim
							Company _						Co	mpany _				-

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

3 of 11

l 2

COOLER RECEIPT CHECKLIST Curtis & Tompkins, Ltd.
Login # 22479/ Date Received 2/16/10 Number of coolers 2 Client <u>million</u> Project FB RFD
Date Opened 12/16/W By (print) MNIUCALAR (sign) Table Date Logged in 12/7/ By (print) J. B. G. (sign) J. D. D.
1. Did cooler come with a shipping slip (airbill, etc)YES Shipping infoYES
2A. Were custody seals present? □ YES (circle) on cooler on samples □ NameDate
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Cardboard Styrofoam Paper towels
Type of ice used: \Box Wet \Box Blue/Gel \Box None Temp(°C) 3.1 \Box Samples Received on ice & cold without a temperature blank \Box $Terrir 6444$
\Box Samples Received on ice & cold without a temperature blank \Box TEMP 6444
Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present?YES NO If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened?YES NO 10. Are samples in the appropriate containers for indicated tests?YES NO 11. Are sample labels present, in good condition and complete?YES NO 12. Do the sample labels agree with custody papers?YES NO 13. Was sufficient amount of sample sent for tests requested?YES NO 14. Are the samples appropriately preserved?YES NO N/A 15. Are bubbles > 6mm absent in VOA samples?YES NO 16. Was the client contacted concerning this sample delivery?YES NO If YES, Who was called?YES NO If YES, Who was called?YES NO

÷

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Lab #: 2247	91			Location:		Redwood Reg	jional Park
	lar Environme	ental Solut	ions	Prep:		EPA 5030B	
Project#: 2010	-02						
Matrix:	Water			Sampled:		12/16/10	
Units:	ug/L			Received:		12/16/10	
Diln Fac:	1.000						
ield ID:	SW-2			Lab ID:		224791-001	
ype:	SAMPLE						
Analy	rte	Result	:	RL	Batch	# Analyzed	Analysi
Gasoline C7-C1	2	ND		50	17015	9 12/20/10	EPA 8015B
Benzene		ND		0.50		0 12/17/10	EPA 8021B
Toluene		ND		0.50	17009	0 12/17/10	EPA 8021B
Ethylbenzene		ND		0.50		0 12/17/10	EPA 8021B
m,p-Xylenes		ND		0.50		0 12/17/10	
o-Xylene		ND		0.50	17009	0 12/17/10	EPA 8021B
Surr	ogate	%REC	Limits	Batch# Anal;	yzed	Analys	is
Bromofluoroben	zene (FID)	92	75-130	170159 12/2	0/10 E	PA 8015B	
Bromofluoroben	zene (PID)	98	58-121	170090 12/1	7/10 E	PA 8021B	
ield ID: ype:	SW-3 SAMPLE			Lab ID:		224791-002	
Analy		Result	:	RL		# Analyzed	Analysis
Gasoline C7-C1	.2	ND		50		9 12/20/10	
Benzene		ND		0.50	17009	0 12/17/10	EPA 8021B
Toluene			57	0.50		0 12/17/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	93	75-130	170159 12/20/10	EPA 8015B
Bromofluorobenzene (PID)	99	58-121	170090 12/17/10	EPA 8021B

0.50

0.50

0.50

170090 12/17/10 EPA 8021B

170090 12/17/10 EPA 8021B

170090 12/17/10 EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 2

ND

ND

0.81 C

Ethylbenzene

m,p-Xylenes

o-Xylene

Lab #: Client:	224791 Stellar Environmer	ital Solut	ions	Location: Prep:		vood Regi 5030B	onal Park
Project#:							
Matrix:	Water			Sampled:	12/1	6/10	
Units:	ug/L			Received:	12/1	6/10	
Diln Fac:	1.000						
Type:	BLANK			Batch#:	1700	90	
Lab ID:	QC572906			Analyzed:	12/1	7/10	
	Analyte		Result		RL		Analysis
Benzene		NE)		0.50	EPA 8	
Toluene		NE)		0.50	EPA 8	021B
Ethylbenze	ene	NE)		0.50	EPA 8	021B
m,p-Xylene	28	NE)		0.50	EPA 8	021B
o-Xylene		NĽ)		0.50	EPA 8	021B
	Surrogate	%REC	Limits	Analys	sis		
Bromofluor	robenzene (FID)	92	75-130	EPA 8015B			
Bromofluor	cobenzene (PID)	94	58-121	EPA 8021B			

Туре:	BLANK	Analyzed:	12/20/10
Lab ID:	QC573190	Analysis:	EPA 8015B
Batch#:	170159		

Analyte	Result		RL	
Gasoline C7-C12	ND		50	
Surrogate	Result	%REC	Limits	
Bromofluorobenzene (FID)		90	75-130	
Bromofluorobenzene (PID)	NA			

C= Presence confirmed, but RPD between columns exceeds 40% NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 2

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	224791	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2010-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	170090
Units:	ug/L	Analyzed:	12/17/10
Diln Fac:	1.000		

Туре:	BS	Lab ID:	QC572	2903	
Ana	lyte	Spiked	Result	%REC	Limits
Benzene		10.00	10.13	101	74-121
Toluene		10.00	10.03	100	75-122
Ethylbenzene		10.00	9.720	97	75-122
m,p-Xylenes		10.00	10.09	101	76-123
o-Xylene		10.00	9.970	100	73-127

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	92	58-121

Type: BSD	Lab I	D: QC5729	04			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	10.00	10.27	103	74-121	1	29
Toluene	10.00	9.986	100	75-122	0	20
Ethylbenzene	10.00	9.782	98	75-122	1	20
m,p-Xylenes	10.00	10.08	101	76-123	0	20
o-Xylene	10.00	10.08	101	73-127	1	20
dumme met e	ADEC Limits					
Surrogate	%REC Limits					
Bromofluorobenzene (PID)	97 58-121					

Curtis & Tompkins Laboratories Analytical Report								
Lab #:	224791	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2010-02	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC573191	Batch#:	170159					
Matrix:	Water	Analyzed:	12/20/10					
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	983.3	98	75-126

Surrogate %		Limits
Bromofluorobenzene (FID)	103	75-130

	Curtis & Tompkins Labo	ratories Analyt	ical Report
Lab #: 224791		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2010-0	2	Analysis:	EPA 8015B
Field ID:	SW-2	Batch#:	170159
MSS Lab ID:	224791-001	Sampled:	12/16/10
Matrix:	Water	Received:	12/16/10
Units:	ug/L	Analyzed:	12/20/10
Diln Fac:	1.000		

Туре:	MS			Lab ID:	QC573192		
	Analyte	MSS 1	Result	Spiked	Result	%REC	Limits
Gasoline	C7-C12		16.42	2,000	1,876	93	68-120
	Surrogate	%RE	C Limits				
Bromofluc	probenzene (FID)	101	75-130				

Type:	MSD			Lab ID:	Ç	QC573193			
	Analyte		Spiked		Result	%REC	Limits	RPD	T.im
Gasoline	•		2,000		1,861	92	68-120	1	26
	a	0.D.T.C	•						
	Surrogate	%REC	Limits						
Bromofluc	orobenzene (FID)	100	75-130						

	т	'otal I	Extracta	able Hydrod	arbo	ns
Lab #:	224791	1 ~ 1 .		Location:		Redwood Regional Park
Client:	Stellar Environmenta	1 Solut	lons	Prep:		EPA 3520C
Project#:				Analysis:		EPA 8015B
Matrix:	Water			Sampled:		12/16/10
Units:	ug/L			Received:		12/16/10
Diln Fac:				Prepared:		12/17/10
Batch#:	170094			Analyzed:		12/19/10
Field ID:	SW-2			Lab ID:		224791-001
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl	0-C24	NE)		50	
	Surrogate	%REC	Limits			
o-Terphen	yl	107	60-129			
Field ID:	SW-3			Lab ID:		224791-002
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl	0-C24	NE)		50	
	Surrogate	%REC	Limits			
o-Terphen	lyl	105	60-129			
Туре:	BLANK			Lab ID:		QC572920
	Analyte		Result		RL	
Diesel Cl	0-C24	ND)		50	
	Surrogate	%REC	Limits			
o Torphon	1	100	60 120			

o-Terphenyl

109 60-129

	r	otal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	224791			Location:	Redwood Regio	nal Park		
Client:	Stellar Environmenta	l Solut	ions	Prep:	EPA 3520C			
Project#:	2010-02			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	170094			
Units:	ug/L			Prepared:	12/17/10			
Diln Fac:	1.000			Analyzed:	12/19/10			
Type: Lab ID:	BS QC572921			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel Cl(D-C24		2,500	2,400	96	53-128		
	Surrogate	%REC	Limits					
o-Terpheny	71	102	60-129					
Type: Lab ID:	BSD QC572922			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10	D-C24		2,500	2,775	111	53-128	14	48
	Surrogate	%REC	Limits					
o-Terpheny	/1	112	60-129					

APPENDIX D

Historical Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Event	Date	TVHg	TEHd	Benzene	Well M Toluene		Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	^
							2.5		/ /
3	May-95	< 50	< 50	3.9	< 0.5	1.6 < 0.5		8.0 5.7	
4	Aug-95	< 50	< 50	5.7	< 0.5		< 0.5	5.7	
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	/
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	/
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	/
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	/
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	1
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	1
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	1
12	Feb-98	2,000	200	270	92	150	600	1,112	1
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
21	Jun-02	< 50	< 50	2.3 < 0.5	< 0.5	< 0.5	1.3 < 0.5	0.0	7.7
22	Sep-02	< 50 98	< 50	< 0.5 5.0	< 0.5	< 0.5	< 0.5	_	13
23	Dec-02	98 < 50	< 50	4.3	< 0.5	< 0.5	< 0.5		13
								-	
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38			60	< 0.5	< 0.5		< 1.0	_	17
	Jun-06	< 50	60		< 0.0	< 0.5	< 1.0	_	
39	Jun-06 Sep-06	< 50 270	52	31	< 0.5	< 0.5 15	6.69	53	17
39 40		270						53 2	
40	Sep-06 Dec-06	270 < 50	52 < 50	31 2.1	< 0.5 < 0.5	15 < 0.5	6.69 < 0.5	2	17 16
40 41	Sep-06 Dec-06 Mar-07	270 < 50 59	52 < 50 < 50	31 2.1 4	< 0.5 < 0.5 < 0.5	15 < 0.5 < 0.5	6.69 < 0.5 < 0.5	2 < 0.5	17 16 14
40 41 42	Sep-06 Dec-06 Mar-07 Jun-07	270 < 50 59 <50	52 < 50 < 50 <50	31 2.1 4 3.5	< 0.5 < 0.5 < 0.5 < 0.5	15 < 0.5 < 0.5 <0.5	6.69 < 0.5 < 0.5 <0.5	2 < 0.5 3.5	17 16 14 8
40 41 42 43	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07	270 < 50 59 <50 2,600	52 < 50 < 50 <50 260	31 2.1 4 3.5 160	< 0.5 < 0.5 < 0.5 <0.5 <0.5 44	15 < 0.5 < 0.5 <0.5 86	6.69 < 0.5 < 0.5 <0.5 <0.5	2 < 0.5 3.5 721	17 16 14 8 15
40 41 42 43 44	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07	270 < 50 59 <50 2,600 16,000	52 < 50 < 50 260 5,800	31 2.1 4 3.5 160 23	< 0.5 < 0.5 < 0.5 <0.5 <0.5 44 91	15 < 0.5 < 0.5 <0.5 86 230	6.69 < 0.5 < 0.5 <0.5 <0.5 431 2,420	2 < 0.5 3.5 721 2764	17 16 14 8 15 16
40 41 42 43 44 44a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08	270 < 50 59 2,600 16,000 480	52 < 50 < 50 260 5,800 200	31 2.1 4 3.5 160 23 1.1	< 0.5 < 0.5 < 0.5 <0.5 44 91 3.2	15 < 0.5 < 0.5 <0.5 86 230 5.5	6.69 < 0.5 < 0.5 <0.5 431 2,420 68	2 < 0.5 3.5 721 2764 77.8	17 16 14 8 15 16 11
40 41 42 43 44 44 44a 45	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08	270 < 50 59 2,600 16,000 480 20,000	52 < 50 < 50 260 5,800 200 24,000	31 2.1 4 3.5 160 23 1.1 21	< 0.5 < 0.5 < 0.5 <0.5 44 91 3.2 39	15 < 0.5 < 0.5 <0.5 86 230 5.5 300	6.69 < 0.5 < 0.5 <0.5 431 2,420 68 2,620	2 < 0.5 3.5 721 2764 77.8 2980	17 16 14 8 15 16 11 13
40 41 42 43 44 44a 45 45a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08	270 < 50 59 2,600 16,000 480 20,000 800	52 < 50 < 50 260 5,800 200 24,000 640	31 2.1 4 3.5 160 23 1.1 21 2.6	< 0.5 < 0.5 < 0.5 <0.5 <0.5 44 91 3.2 39 2.1	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13	6.69 < 0.5 < 0.5 <0.5 431 2,420 68 2,620 155	2 < 0.5 3.5 721 2764 77.8 2980 172.7	17 16 14 8 15 16 11 13 13
40 41 42 43 44 44a 45 45a 46a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 May-08	270 < 50 59 2,600 16,000 480 20,000 800 7,100	52 < 50 < 50 260 5,800 200 24,000 640 3,900	31 2.1 4 3.5 160 23 1.1 21 2.6 14	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140	6.69 < 0.5 < 0.5 <0.5 431 2,420 68 2,620 155 710	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8	17 16 14 8 15 16 11 13 13 13
40 41 42 43 44 44a 45 45a 45a 46a 46a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 May-08 Jun-08	270 < 50 59 2,600 16,000 480 20,000 800 7,100 5,700	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140 80	6.69 < 0.5 < 0.5 <0.5 431 2,420 68 2,620 155 710 550	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6	17 16 14 8 15 16 11 13 13 13 11
40 41 42 43 44 44a 45 45a 45a 46a 46a 46a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08	270 < 50 59 <2,600 16,000 480 20,000 800 7,100 5,700 6,400	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000 2,200	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13	<0.5 <0.5 <0.5 <0.4 4 91 3.2 39 2.1 8.8 5.2 5.1	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140 80 140	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1	17 16 14 8 15 16 11 13 13 13 11 11 2.9
40 41 42 43 44 44a 45 45a 45a 46a 46a 46a 46b	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000 2,200 55	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140 80 140 4.6	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9
40 41 42 43 44 44a 45 45a 45a 46a 46a 46a	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08	270 < 50 59 <2,600 16,000 480 20,000 800 7,100 5,700 6,400	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000 2,200	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13	<0.5 <0.5 <0.5 <0.4 4 91 3.2 39 2.1 8.8 5.2 5.1	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140 80 140	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9
40 41 42 43 44 44a 45 45a 45a 46a 46a 46a 46b	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000 2,200 55	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77	15 < 0.5 < 0.5 <0.5 86 230 5.5 300 13 140 80 140 4.6	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9
40 41 42 43 44 44a 45 45a 46a 46a 46a 46b 46b 46c	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 May-08 Jun-08 Jun-08 Jul-08 Jul-08 Aug-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000	52 < 50 < 50 260 5,800 200 24,000 640 3,900 1,000 2,200 55 7,100	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 1.3 12	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19	15 < 0.5 < 0.5 < 0.5 86 230 5.5 300 13 140 80 140 4.6 260	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4 2,740	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 <
40 41 42 43 44 44a 45 45a 46a 46a 46a 46b 46c 46c 46d	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 May-08 Jun-08 Jun-08 Jul-08 Aug-08 Aug-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,700	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 1.3 12 5.7	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 < 3.5
40 41 42 43 44 44a 45a 45a 46a 46a 46b 46c 46c 46d 46d	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jun-08 Jun-08 Jun-08 Aug-08 Aug-08 Sep-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,700 9,100	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 1.3 1.2 5.7 1.6	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 550 570 44.4 2,740 900.0 910.0	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6	17 16 14 8 15 16 11 13 13 11 11 2.9 9 < 3.5 9.5
40 41 42 43 44 44a 45a 45a 46a 46a 46b 46c 46d 46d 47 48	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jun-08 Jun-08 Jun-08 Aug-08 Aug-08 Sep-08 Dec-08	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,700 9,100 2,200	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2.420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 < 3.5 9.5 12
40 41 42 43 44 45 45a 46a 46b 46c 46d 47 48 49	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jun-08 Jun-08 Aug-08 Aug-08 Sep-08 Dec-08 Mar-09	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200 3,100	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,700 9,100 2,200 37,000	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 1.2 5.7 1.6 0.52 1.1	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4	17 16 14 8 15 16 11 13 13 11 11 2.9 9 \$ \$ 5 9.5 9.5 12 14
40 41 42 43 44 45 45a 46a 46a 46b 46c 46d 46d 46c 46d 47 48 49 50 51	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jun-08 Jun-08 Aug-08 Sep-08 Dec-08 Mar-09 May-09 Jun-09	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200 3,100 5,000 2,400	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 1.2 5.7 1.6 0.52 1.1 1.5 5.4	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.4 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2.420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6	17 16 14 8 15 16 11 13 13 11 11 11 2.9 9 2.9 - 3.5 - 9.5 - 9.5 12 14 13 13 13
40 41 42 43 44 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jul-08 Aug-08 Sep-08 Dec-08 Mar-09 May-09 Jun-09 Aug-09	270 < 50 59 <50 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200 3,100 5,000 2,400 1,900	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000 3,100	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13 1.3 1.2 5.7 1.6 0.52 1.1 1.5 5.4 1.6	<0.5 <0.5 <0.5 <0.5 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.4 <0.5 <1.8	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2	17 16 14 8 15 16 11 13 13 11 11 11 2.9 9 9 - 3.5 3.5 9.5 12 14 13 13 7.1
40 41 42 43 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Jan-08 Mar-08 May-08 Jun-08 Jun-08 Jun-08 Aug-08 Aug-08 Sep-08 Dec-08 Mar-09 Jun-09 Jun-09 Sep-09	270 < 50 59 <500 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200 3,100 5,000 2,400 1,900 1,400	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,700 9,100 2,200 37,000 15,000 8,000 3,100 1,800	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52 1.1 1.5 5.4 1.6 <0.5	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.4 <0.5 <0.5 1.8 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 < 431 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8 4.2	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2 4.24	177 16 14 8 15 16 11 13 13 11 11 11 2.9 9 - - - - - - - - - - - - -
40 41 42 43 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Jan-08 Mar-08 Apr-08 Jun-08 Jul-08 Jul-08 Aug-08 Aug-08 Sep-08 Dec-08 Mar-09 Jun-09 Jun-09 Sep-09 Dec-09	270 < 50 59 <500 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 9,200 3,100 5,000 2,400 1,900 1,400 590	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000 3,100 1,800 1,800	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52 1.1 1.5 5.4 1.6 <0.5	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.8 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 431 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8 4.2 1.2	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2 4.24 2.4	177 16 14 8 15 16 11 13 13 13 11 11 2.9 9 9 3.5 .5 9.5 .2 14 13 13 .5 9.5 .2 14 13 13 .3 7.1 .1 12 .6
40 41 42 43 44 44 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Jan-08 Mar-08 Apr-08 Jun-08 Jul-08 Jul-08 Aug-08 Sep-08 Dec-08 Mar-09 Jun-09 Jun-09 Jun-09 Sep-09 Dec-09 Mar-10	270 < 50 59 <500 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 3,100 5,000 2,400 1,900 1,400 590 1,900	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52 1.1 1.5 5.4 1.6 <0.5	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.8 <0.5 5 .0.5 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 431 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8 4.2 1.2 2.2	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2 4.24 2.4 2.2	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 9 3.5 5 9.5 9.5 12 14 13 13 7.1 12 3.6 2.2
40 41 42 43 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 47 50 51 52 53 54 55 56	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Jan-08 Mar-08 Apr-08 Jun-08 Jun-08 Jun-08 Jun-08 Jun-08 Aug-08 Sep-08 Dec-08 Mar-09 Jun-09 Jun-09 Sep-09 Dec-09 Mar-10 Mar-10	270 < 50 59 <500 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 40,000 3,100 5,000 2,400 1,900 1,400 590 1,900 2,000	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200 4,300	31 2.1 4 3.5 160 23 1.1 21 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52 1.1 1.5 5.4 1.6 <0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 431 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8 4.2 1.2 2.2 3.5	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2 4.24 2.4 2.4 2.2 3.45	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 < 3.5 5 9.5 12 14 13 13 7.1 12 3.6 2.2 </td
40 41 42 43 44 44 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Jan-08 Mar-08 Apr-08 Jun-08 Jul-08 Jul-08 Aug-08 Sep-08 Dec-08 Mar-09 Jun-09 Jun-09 Jun-09 Sep-09 Dec-09 Mar-10	270 < 50 59 <500 16,000 480 20,000 800 7,100 5,700 6,400 390 28,000 8,700 3,100 5,000 2,400 1,900 1,400 590 1,900	52 < 50 < 50 260 24,000 640 3,900 1,000 2,200 55 7,100 2,200 37,000 15,000 8,000 3,100 1,800 1,800 3,200	31 2.1 4 3.5 160 23 1.1 2.6 14 9.4 13 1.3 12 5.7 1.6 0.52 1.1 1.5 5.4 1.6 <0.5	<0.5 <0.5 <0.5 <44 91 3.2 39 2.1 8.8 5.2 5.1 0.77 19 7.4 <0.5 <0.5 1.8 <0.5 5 .0.5 <0.5 <0.5	15 < 0.5	6.69 < 0.5 < 0.5 < 0.5 < 0.5 431 2,420 68 2,620 155 710 550 570 44.4 2,740 900.0 910.0 201.0 35.0 39.0 20.2 23.8 4.2 1.2 2.2	2 < 0.5 3.5 721 2764 77.8 2980 172.7 872.8 644.6 728.1 51.07 3031 1043.1 1021.6 201.52 45.4 50 36.6 38.2 4.24 2.4 2.2	17 16 14 8 15 16 11 13 13 13 11 11 2.9 9 9 3.5 5 9.5 9.5 12 14 13 13 7.1 12 3.6 2.2

					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0

					Well N	IW-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Gro	undwater m	nonitoring in	this well d	iscontinued	in 1998 with	Alameda County	/ Health Care Serv	vices Agency app	roval.
		Subseq	uent grour	dwater mor	itoring cond	lucted to confirm	plume's southern l	limit	
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0

					Well N	IW-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.60	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.90	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.60	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.50	92	<2.0
40	Jun-10	5,800	5,000	20	<0.5	140	9.90	170	<2.0
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.00	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.20	108	87.0

					Well N	IW-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2.0
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	<0.5	22	<2.5	25	<10
42	Dec-10	180	260	<0.5	<0.5	5	0.99	6.4	7.2

					Well N	IW-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2.0
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2.0
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	<0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	<0.5	<0.5	0.69	<0.5	0.7	4.1

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4.600	1.900	69	<2.5	300	206	575	< 10
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1.822	< 4.0
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0
24	Jun-07	4	2,200	120	<0.5	140	6.6	267	<4.0
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.0
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.0
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9
38	Sep-10	3.000	2.200	18	<0.5	41	0.55	60	8.0
39	Dec-10	1,800	2,900	13	<0.5	49	1.9	64	15.0

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

	Sam	pling Locat	ion SW-1	(Upstream	of Contami	nated Groundwa	ter Discharge Lo	cation SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
	Sampling a	at this location	on disconti	nued after A	pril 1999 wi	th Alameda Coun	ty Health Services	Agency approva	Ι.

		Sampling L	ocation S	W-2 (Area	of Historica	al Contaminated	Groundwater Dis	charge)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52									
52 53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0

	Sampli	ng Locatio	n SW-3 (D	ownstream	of Contan	ninated Groundw	ater Discharge L	ocation SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.(
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.(
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Sep-10	NS	NS	NS	NS	NS	NS	NS	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	N