RECEIVED

9:01 am, Jul 14, 2010

Alameda County
Environmental Health

SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

July 2010

SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

July 12, 2010

Project No. 2008-02

July 12, 2010

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Quarter 2010 Groundwater and Surface Water Monitoring Report — Redwood

Regional Park Service Yard Site, Oakland, California (ACEH Fuel Leak Case No.

RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes Second Quarter 2010 groundwater and surfacewater monitoring activities conducted on June 22, 2010. In addition to the activities typically conducted during a quarterly groundwater monitoring event, water quality parameters including dissolved oxygen were taken to assess the effectiveness of the ORCTM injection conducted during the first quarter of 2010. Ongoing bioventing activities are reported in technical submittals separate from the quarterly monitoring reports; however, brief summaries of salient information are included in the quarterly reports.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

Brust S. Makdin

cc: Carl Wilcox, California Department of Fish and Game

Matt Graul, East Bay Regional Park District State of California GeoTracker System

Alameda County Department of Environmental Health ftp system

TABLE OF CONTENTS

Secti	on	Page
1.0	INTRODUCTION	1
	Project Background	1
	Objectives and Scope of Work	1
	Historical Corrective Actions and Investigations	1
	Site Description	2
	Regulatory Oversight	3
2.0	PHYSICAL SETTING	6
	Site Lithology	6
	Hydrogeology	
3.0	REGULATORY CONSIDERATIONS	12
	Groundwater Contamination	12
	Surface Water Contamination	
4.0	SECOND QUARTER 2010 QUARTERLY MONITORING ACTIVITIES	14
	Groundwater Level Monitoring and Sampling	14
	Creek Surface Water Sampling	
	Bioventing-Related Activities	
5.0	SECOND QUARTER 2010 ANALYTICAL RESULTS	18
	Groundwater and Surface Water Analytical Results	18
	Quality Control Sample Analytical Results	19
	Evaluation of Effect of February 2010 ORC TM Injection	21
	ORC TM Monitoring Activities	22
6.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	24
	Summary and Conclusions	24
	Proposed Actions	26
7.0	REFERENCES	27
8 N	IMITATIONS	33

TABLE OF CONTENTS (continued)

Section		Page
Appendices		
Appendix A Appendix B Appendix C Appendix D	Historical Groundwater Monitoring Well Water Level Elevation Data Groundwater Monitoring Field Documentation Analytical Laboratory Report and Chain-of-Custody Record Historical Groundwater and Surface Water Analytical Results	

TABLES AND FIGURES

Tables Page
Table 1 Groundwater Monitoring Well Construction and Elevation Data – June 22, 201016
Table 2 Groundwater and Surface Water Samples – June 22, 2010 Analytical Results19
Table 3 Electron Acceptors and Oxygen Demand – June 22, 2010 Analytical Results23
Figures Page
Figure 1 Site Location Map
Figure 2 Site Plan and Historical Sampling Locations
Figure 3 Geologic Cross-Section Locations
Figure 4 Geologic Cross-Sections A-A' through C-C'
Figure 5 Geologic Cross-Sections D-D' through F-F'
Figure 6 Groundwater Elevation Map – June 22, 2010
Figure 7 Groundwater Analytical Results and Gasoline Plume – June 201020

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

The overall objective of the latest remedial action is to continue trying to reduce the residual hydrocarbons in the source area and in the downgradient slope area (which is inaccessible to any remedies other than in-situ). Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) between April 1 and June 30, 2010 (Second Quarter 2010):

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis
- Performing quarterly monitoring and maintenance of bioventing system operation

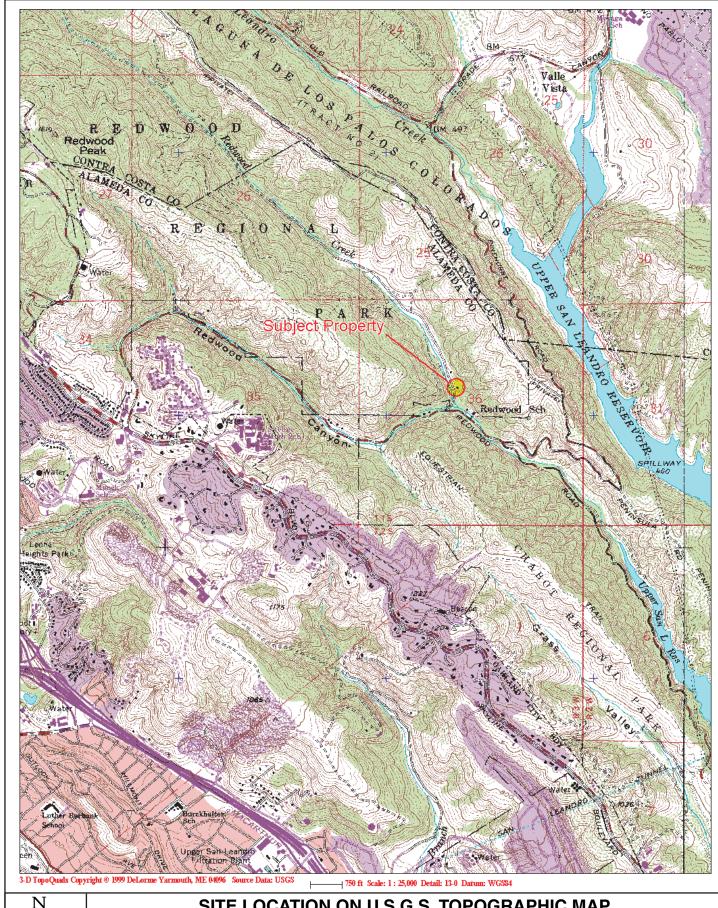
HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report lists all technical reports for the site.

The general phases of site work included:

- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and a request for the assessment and implementation of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- Groundwater monitoring and sampling, conducted on a quarterly basis since project inception (in November 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test, conducted in September and October 2004, to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. However, the bioventing remedy has not been effective to date. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A RAW (dated August 20, 2009) prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).

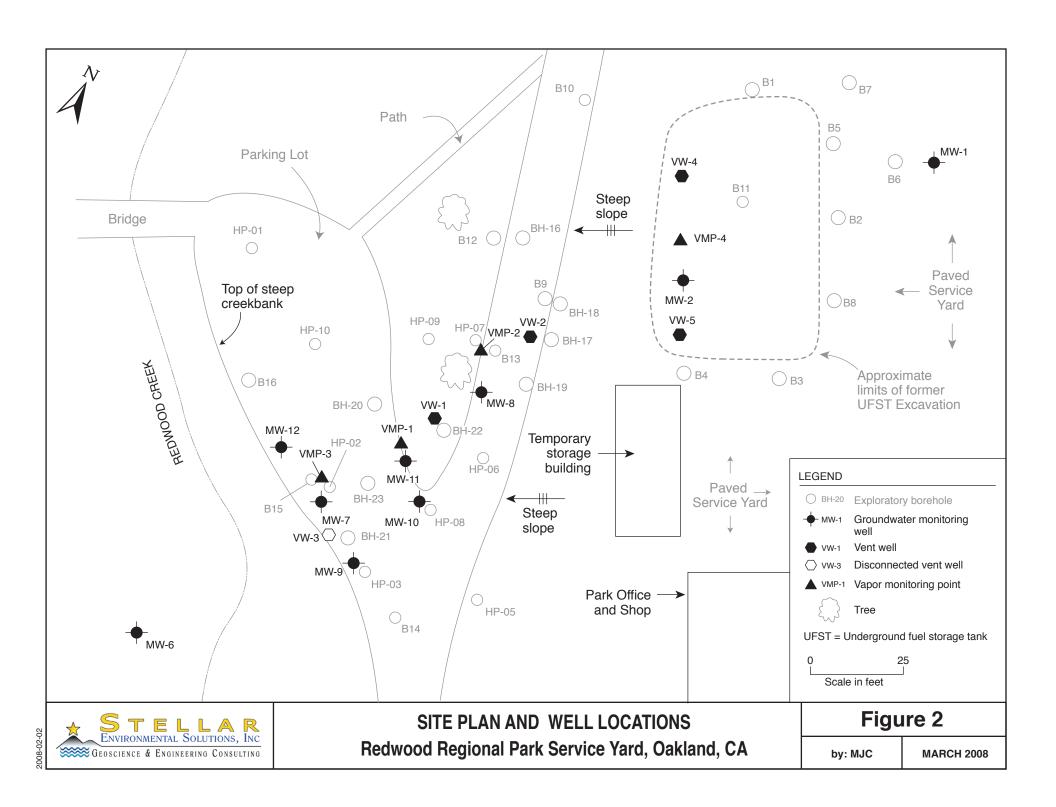
SITE DESCRIPTION


The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 1 shows the location of the project site, and Figure 2 presents the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports have been submitted to these agencies. Historical ACEH-approved revisions to the groundwater sampling program have included:

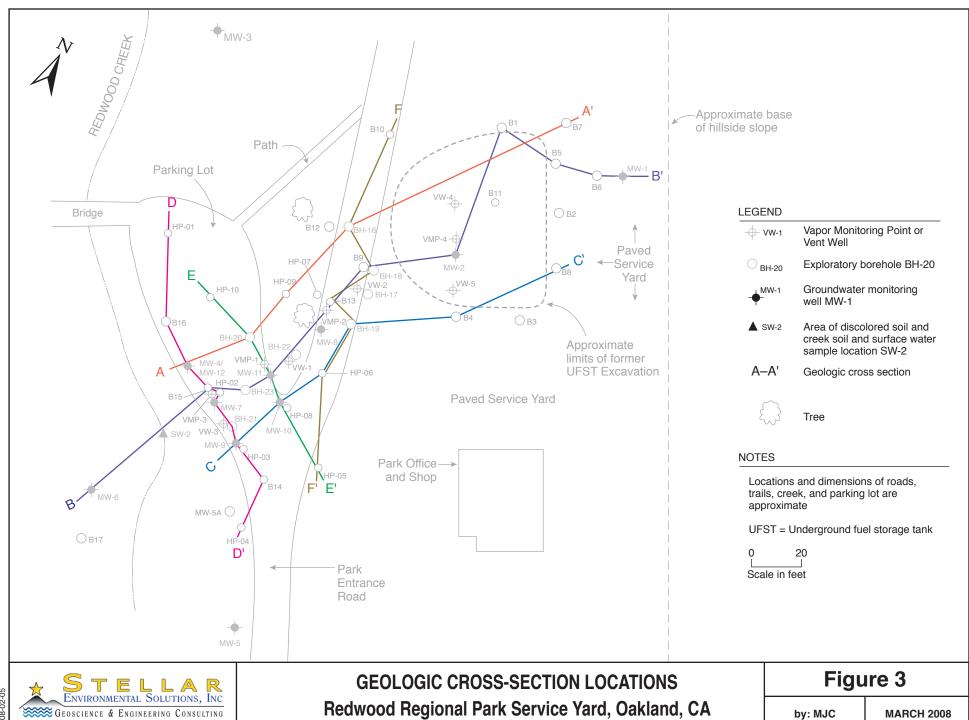
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6
- Discontinuing creek surface water sampling at upstream location SW-1
- Reducing the frequency of creek surface water sampling from quarterly to semi-annually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

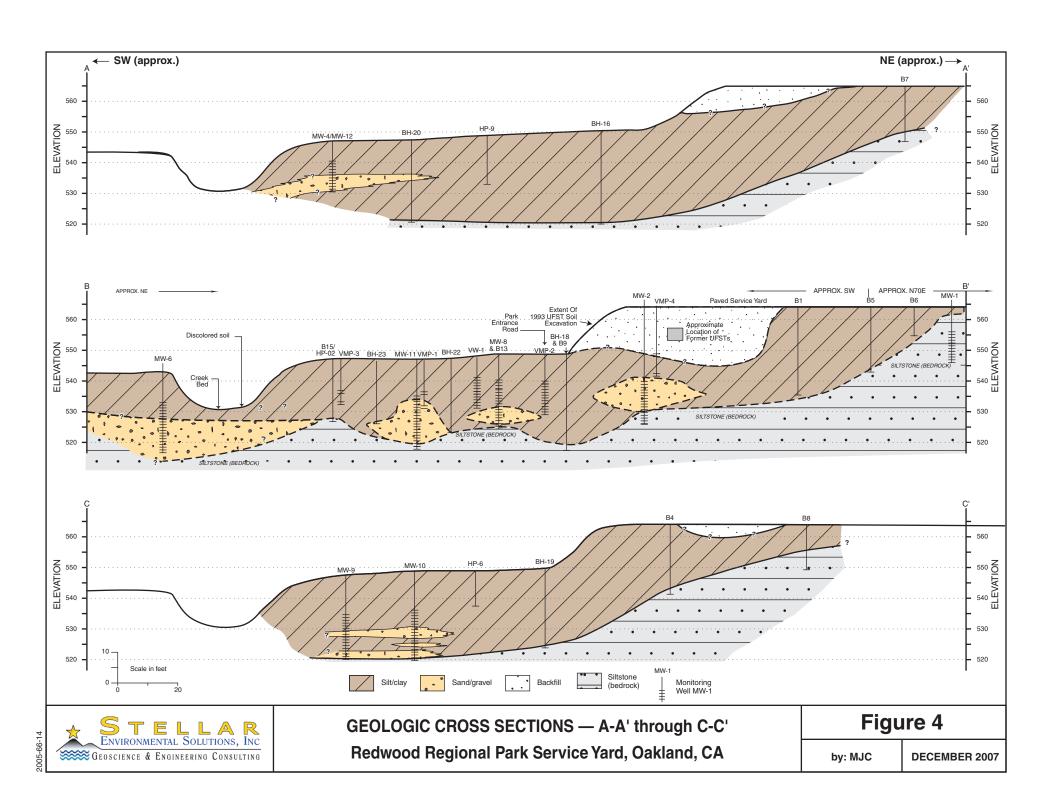

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

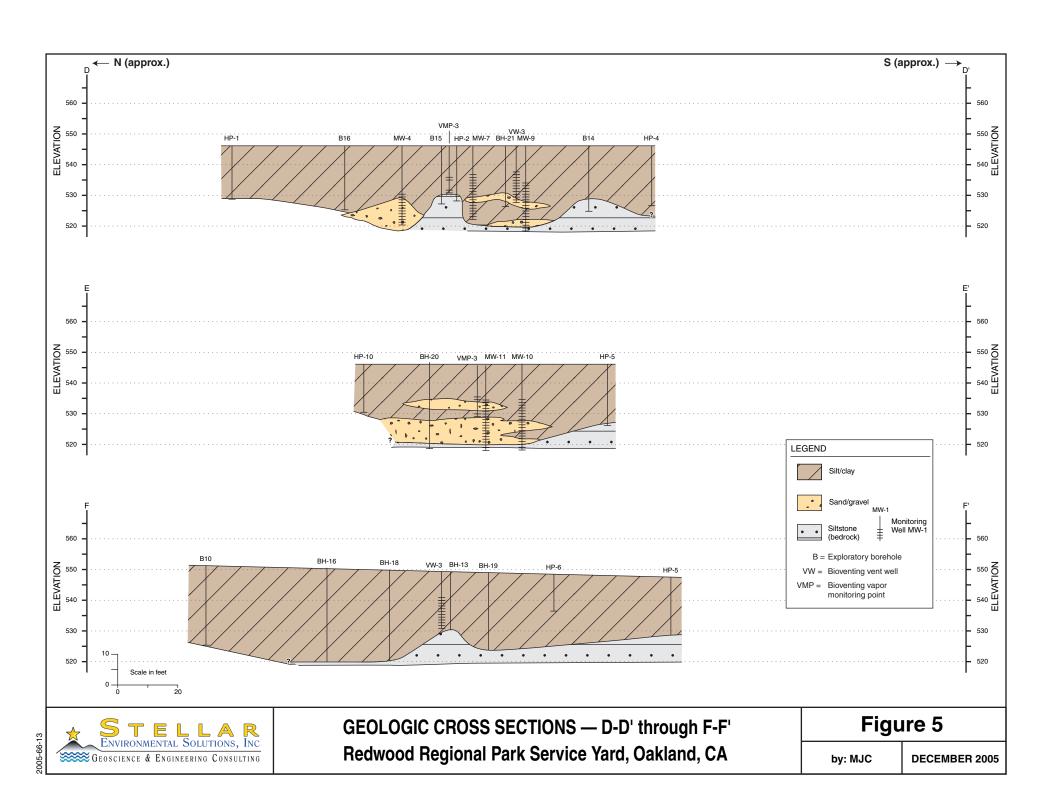
SITE LOCATION ON U.S.G.S. TOPOGRAPHIC MAP

Redwood Reg. Park Service Yard By: MJC Oakland, CA MARCH 2006 Figure 1

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.


SITE LITHOLOGY


Figure 3 shows the locations of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination are presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 in the most upgradient part of the site that abuts the canyon slope are inferred to be landslide debris.

A previous report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. As shown in Figures 4 and 5, the isopleth map indicates the following: The bedrock surface slopes steeply, approximately 0.3 feet/foot, from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the

southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that it may have undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We assume a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UFST installations (late 1970s). Locally, however, the groundwater velocity could

vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the Second Quarter 2010 monitoring data contained in Section 6.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill), the groundwater gradient during this event was measured at approximately 0.13 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient during this event was approximately 0.13 feet per foot. The average groundwater elevation was 0.3 feet lower than the previous (March 2010) event, with the greatest decrease of 1.1 feet measured in MW-8 and the lowest decreases measured in wells MW-12 and MW-7 of 0.1 foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan (Water Board, 1995), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 5 (in Section 7.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source; and 2) ESLs for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 5 (in Section 7.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

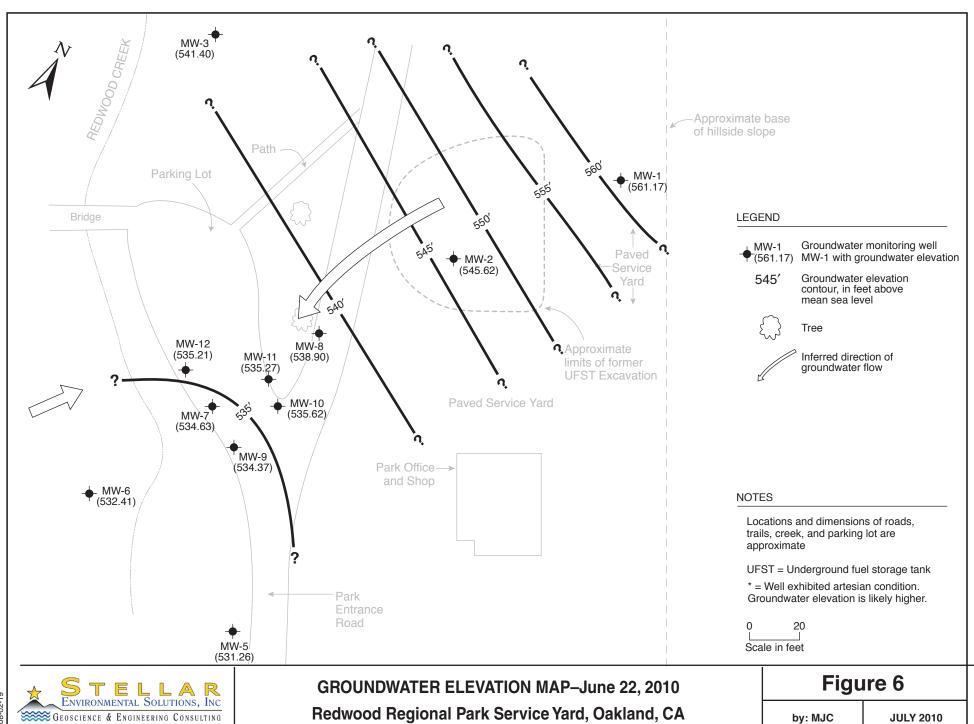
Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 SECOND QUARTER 2010 QUARTERLY MONITORING ACTIVITIES

This section presents the quarterly creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Second Quarter 2010), conducted in June 2010. A summary of bioventing-related activities is also provided.


Groundwater and surface water analytical results are summarized in Section 7.0. Monitoring and sampling protocols were in accordance with the ACEH-approved workplan (Stellar Environmental, 1998a). Current Second Quarter 2010 event activities included:

- Measuring static water levels in all 11 site wells
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as chemical parameters including dissolved oxygen (DO) from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12)
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3

Redwood Creek surface water sampling and groundwater monitoring and sampling was conducted on June 22, 2010. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event. Figure 6 is a groundwater elevation map constructed from the Second Quarter 2010 event monitoring well elevation data. Table 1 summarizes the groundwater elevation data.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the workplan (Stellar Environmental, 1998a).

2008-02-19

Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data – June 22, 2010

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (6/22/10)
MW-1	18	7 to17	565.83	561.17
MW-2	36	20 to 35	566.42	545.62
MW-3	42	7 to 41	560.81	541.40
MW-5	26	10 to 25	547.41	531.26
MW-6	26	10 to 25	545.43	532.41
MW-7	24	9 to24	547.56	534.63
MW-8	23	8 to 23	549.13	538.90
MW-9	26	11 to 26	549.28	534.37
MW-10	26	11 to 26	547.22	535.62
MW-11	26	11 to 26	547.75	535.27
MW-12	25	10 to 25	544.67	535.21

Notes:

TOC = top of casing

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above U.S. Geological Survey mean sea level.

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity, and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. In addition to the aquifer stability parameters, DO is being measured to evaluate the effects of the March 2009 and February 2010 ORCTM applications. To minimize the potential for cross contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 57 gallons) from the current event was containerized in the onsite aboveground storage tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Stellar Environmental personnel on June 22, 2010. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendations approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a medium stage; water depths ranged from approximately 1 to 1.5 feet, and the creek was flowing. Stellar Environmental did not observe any orange algae or sheen during this event, and no odors were detected.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for a 1-month period in January and February 2006. Bioventing system operations and maintenance events had been conducted monthly since March 2006; however, they have been reduced to quarterly events beginning in 2009. Redwood Regional Park staff checks the system on a weekly basis to ensure that it is continuing to function properly, and will notify Stellar Environmental in the event of a problem. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically has seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents.

5.0 SECOND QUARTER 2010 ANALYTICAL RESULTS

This section presents the field and laboratory results of the current monitoring event. Table 2 summarizes the contaminant analytical results. Figure 7 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

Second Quarter 2010 site groundwater contaminant concentrations exceeded the groundwater ESL for total volatile hydrocarbons as gasoline (TVHg) and total extractable hydrocarbons as diesel (TEHd) in all of the seven wells sampled. The ESL for benzene was exceeded in MW-7, MW-8, MW-9, MW-10, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-8. Methyl tertiary butyl ether (MTBE) was above the ESL in wells MW-8, MW-9, and MW-11. Toluene was not detected above the ESL in any of the seven wells sampled.

The maximum concentration of TVHg and TEHd was detected in MW-7 (located in the downgradient area of the plume). The northern edge of the plume in the downgradient area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution. While the center of contaminant mass in groundwater is generally located downgradient of the former source area, historically, contamination also has been observed in the former source area. Contaminant concentrations, in general, slightly increased as compared to the same time last year.

TEHd was detected at surface water sampling location SW-2 at 240 micrograms per liter (μ g/L); which is above the ESL of 100 μ g/L. No other contaminants were detected above their respective laboratory detection limits. No contaminants were detected above their respective laboratory detection limits in surface water sample location SW-3 during this June 2010 sampling event.

Table 2 Groundwater and Surface Water Samples – June 22, 2010 Analytical Results

	Oxygen	D'anda l	Contaminant Concentrations						
Location	Reduction Potential (mV)	Dissolved Oxygen (mg/L)	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLES									
MW-2	12	24.01	1,300	2,400	< 0.5	< 0.5	< 0.5	1.74	<2.0
MW-7	88	0.31	5,800	5,000	20	< 0.5	140	9.9	<2.0
MW-8	20	0.30	4,700	4,200	27	2.9	400	103.2	27
MW-9	36	0.65	1,700	1,300	13	<0.5	48	4.9	11
MW-10	48	1.32	110	340	1.4	< 0.5	2.6	0.74	2.4
MW-11	53	0.70	2,000	3,500	14	<0.5	42	0.92	7.9
MW-12	31	3.08	540	370	< 0.5	<0.5	3.5	< 0.5	<2.0
Groundwater ESLs ^(a)	NLP	NLP	100/210	100/210	1.0 / 46	4.0 / 130	30 / 43	20/100	5.0 / 1,800
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	NA	NA	<50	240	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
SW-3	NA	NA	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	<2.0
Surface Water Screening Levels ^(b)	NLP	NLP	100	100	1.0	40	30	20	5.0

Notes:

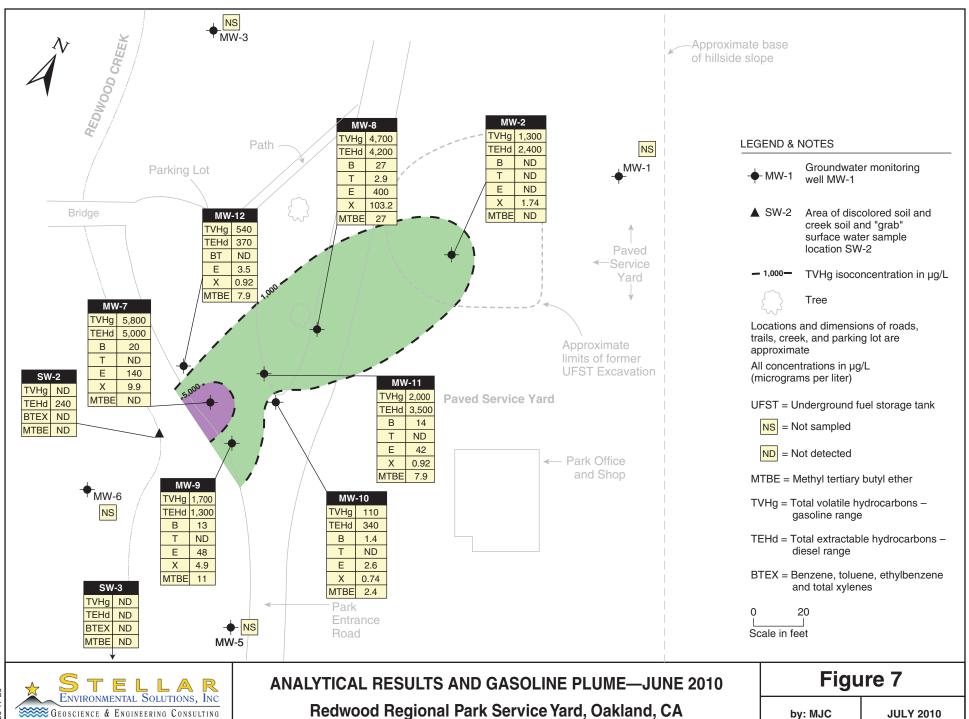
NA = not analyzed NLP = no level published

MTBE = methyl tertiary-butyl ether

 $TEHd = total\ extractable\ hydrocarbons\ -\ diesel\ range$

TVHg = total volatile hydrocarbons - gasoline range

All contaminant concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Samples in **bold-face** type exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource


Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

⁽a) ESLs = Water Board Environmental Screening Levels, where groundwater is/is not a potential drinking water resource (Water Board, 2008)

⁽b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008)

2006-17-26

EVALUATION OF EFFECT OF FEBRUARY 2010 ORCTM INJECTION

Despite the emphasis on oxygen and aerobic degradation, it is well known and widely accepted that natural attenuation of petroleum hydrocarbons at many sites primarily occurs anaerobically using alternate electron acceptors such as NO₃-, Fe⁺³, SO₄-² and CO₂. However, clearly at this site, Advanced ORCTM is designed to provide a relatively long-term oxygen source for aerobic bioremediation. Laboratory studies have demonstrated a linear oxygen release rate of ORCTM as engineered by CRTTM (intercalation with phosphate), providing an efficient and steady supply of oxygen. Field results continue to confirm the efficacy of Advanced ORCTM as a cost-effective approach to contact recalcitrant residual hydrocarbons entrained in the subsurface materials and enhance natural attenuation.

The injection of the February 2010 ORCTM into the plume area followed a historical effort of remedial action to reduce the residual hydrocarbons in the source area and downgradient slope area that is inaccessible to any remedies other than in-situ. Historical efforts to address the continued hydrocarbon input into the groundwater have focused on enhancing reduction of the residual hydrocarbons entrained in subsurface material and/or stratigraphic traps. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface. As described in the analytical results below, this most recent remedial action continues to support the trend line of a reduction in hydrocarbon plume concentrations, but the concentration still remains well above the ESLs. The following is a discussion of the effect of the February 2010 ORCTM injection remedy.

Groundwater Analytical Results

The Second Quarter 2010 monitoring event took place approximately 150 days after the ORCTM treatment. The results of the post injection monitoring suggested that either insufficient time had elapsed for the treatment to reduce hydrocarbon concentrations or an in-situ interference with the microbial activity is affecting the hydrocarbon reduction process. Only well MW-2 showed a significant decrease in this quarter compared the previous March 2010 Quarterly sampling. However, the overall concentrations of TVHg and TEHd in the five key site wells during the March 2010 event are 15 to 200 percent lower than concentrations detected during previous first-quarter events since March 2006. Source area monitoring well MW-2, has been the anomalous well relative to the hydrochemical trends in the other wells; MW-2 showed significant increases in hydrocarbon concentrations since December 2007. This can be attributed to the previous two years of drought that resulted in a release of hydrocarbons from the original UFST excavation area, before the initial local ORCTM treatment in 2007 that successfully reduced it.

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

During the First Quarter 2010 sampling event, DO concentrations in site wells ranged from 0.28 mg/L to 2.41 mg/L. During this Second Quarter 2010 sampling event, DO concentrations ranged from 0.30 mg/L to 24.01 mg/L. An average DO increase of 3.49 mg/L was measured in the wells, which indicates a favorable response to the February 2010 ORCTM treatment.

ORCTM MONITORING ACTIVITIES

During this quarterly sampling event, alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed to track the ORCTM utilization. One concern about the use of ORCTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern. Table 3 includes the results of these additional analyses.

The effectiveness of the ORCTM injection corrective action program in reducing groundwater contaminant concentrations in site wells will continue to be evaluated in subsequent quarterly groundwater monitoring events. This evaluation will occur though the comparison of the preinjection baseline data with post-injection groundwater monitoring well analytical results over subsequent quarterly sampling events. The post-injection groundwater data are evaluated in the context of effectiveness of the corrective action, including DO and hydrochemical trends.

The main active ingredient in Advanced ORCTM is magnesium peroxide. The optimal pH of such a system is adjusted to 7 to 9. Under these conditions, the remedy product will release its activity partially as hydrogen peroxide and partially as oxygen. This allows for the initial chemical oxidation to take place, starting the breakup of the contaminants. The oxygen is then released more slowly, which will assist bioremediation over a period of up to 1.5 years.

Because only a moderate reduction in hydrocarbon contaminant concentrations has been observed in the key site wells 150 days post-injection, it is suspected that microbial biodegradation activity may be occurring preferentially in natural site constituents, in competition with the target residual hydrocarbons. This hypothesis can be tested by continuing

to collect additional site chemical parameters during sampling in subsequent quarterly monitoring events. Table 3 contains the results from the parameter analysis conducted during this June 2010 second quarter sampling event.

Table 3
Electron Acceptors and Oxygen Demand – June 22, 2010
Analytical Results

	Concentrations						
Location	Nitrates	Sulfates	BOD	COD			
MW-2	0.69	180	<2.0	23			
MW-7	< 0.05	1.5	17	34			
MW-8	< 0.05	19	11	45			
MW-12	< 0.05	22	<5.0	16			

COD = Chemical oxygen demand BOD = Biological oxygen demand

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- The overall objective of the current (additional) remedial action is to continue trying to reduce the residual hydrocarbons in the source area and in the downgradient slope area (which is inaccessible to any remedies other than in-situ). Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface. As described in the report, the Second Quarter 2010 remedial action continues to support the trend line of a reduction in hydrocarbon plume concentrations, although the levels remain above the ESLs.
- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994. A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include TVHg; TEHd; benzene, toluene, ethylbenzene, and total xylenes (BTEX); and MTBE. Current groundwater concentrations exceed regulatory screening levels for TVHg, TEHd, benzene, ethylbenzene, total xylenes, and MTBE in groundwater and TEHd in surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low-creek flow conditions. An in-stream bioassessment evaluation conducted from 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28

- feet bgs) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- To address concerns raised by ACEH in its March 24, 2009 letter regarding source area and overall sitewide contamination, Stellar Environmental developed a corrective action workplan entailing injection of Advanced ORCTM. On February 1-2, 2010, in accordance with the ACEH-approved workplan, a total of 24 injection points were drilled to various depths using direct-push technology to deliver approximately 2,075 pounds of Advanced ORCTM mixed in a 30 percent water slurry mix to the subsurface.
- In accordance with ACEH requirements, groundwater sampling of the five key plume wells (MW-2, MW-7, MW-8, MW-9, and MW-11) was conducted on March 2, 2010, approximately 1 month after the February 1-2, 2010 Advanced ORCTM injection event. Subsequent quarterly monitoring events have shown a slight increase in DO signifying the ORCTM is present in the system; however, concentrations have not substantially decreased.
- Second Quarter 2010 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg and TEHd in all seven wells sampled.
- The ESL for benzene was exceeded in MW-7, MW-8, MW-9, MW-10, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-8. MTBE was above the ESL in wells MW-8, MW-9, and MW-11. Toluene was not detected above the ESL in any of the seven wells sampled.
- TEHd was detected at surface water sampling location SW-2 at 240 μg/L; which is above the ESL of 100 μg/L. No other contaminants were detected above their respective laboratory detection limits. No contaminants were detected above their respective laboratory detection limits in surface water sample location SW-3 during this June 2010 sampling event.
- Contaminant concentrations, in general, slightly increased as compared to the same time last year.
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, midplume, and downgradient wells in recent history.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the heterogeneous environment in the location of the plume limits effectiveness; with only MW-8 in the upper center of the plume area showing a significant reduction in hydrocarbon concentrations. In other areas

- of the plume, it appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.
- Moderate initial lowering of the hydrocarbon contaminant concentrations has been observed in the key site wells in both the 30-day post-injection and quarterly monitoring (equivalent to 60-day post-injection) events. This may be due to the recharge influencing distribution of the injected Advanced ORCTM product, or it could reflect that microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue to monitor the February 2010 ORCTM injection remedy effectiveness during regular quarterly sampling events. Include the collection of additional site chemical parameters during sampling in subsequent quarterly monitoring events to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- Continue the quarterly monitoring program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to operate the bioventing system as a part of the overall corrective action program, although it has limited potential to achieve significant reduction in contaminant mass throughout the affected area.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to the ACEH ftp system.

7.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008.

 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. First Quarter 2010 Groundwater Monitoring and ORCTM Injection Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Fourth Quarter 2009 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009a. Fourth Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009b. Remedial Action Workplan for Oxygen Releasing Compound ORC® Application to Source Area Contamination, Redwood Regional Park Service Yard, 7867 Redwood Road, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008b. First Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008c. Second Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008d. Third Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by Stellar Environmental since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The Stellar Environmental personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored		Groundwater Elevations (feet above mean sea level)										
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7		533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6		531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0		530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5		531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7		531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8		531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99		530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85		530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63		531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6		530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41		529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77		530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51		531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38		531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33		529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22		530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59		531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40		531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	MEStellar Env.	Rechood Legion	nal Park	PROJECT NUM	MBER 10062	z-BP1	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:		INITIALS
MYRONL ULTRAMETER	6223839	0740	ph 7.00 10.00 4.00	7.09 10.12 4.03	yes	64.1	BP
			390045	3 89 746	yes	64.3	вР
04 44 1 -			237 AV	21.1°C 235AV	45	21.1°C	BP
PO Meter 131 550 Turbidinater	08 B100 951	6/24/10	100%00	98.77 00, 22,104	yes		BP
1	08/20 CO 33778	0750	0.1, 20, 100 800 NIUS	0, 22,104 806, NTOS	415	disconnection of the second connections.	BP
					Å.		
		Br -					
				·			

WELLHEAD INSPECTION CHECKLIST

Page _ / _ of _ _ /

Date <u>6/22</u> Site Address <u>A</u> Job Number <u>/</u>			nail f		chnician	1 CR Y		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MW-1*	X							
MW-2 *	X			٨		X		
MW-3A	X							
MW-54	X							
MW-34 MW-54 MW-64	*							
MW-7 *	×			:				
MW-8	A CONTRACT	X				· .		
MW-9 *	X							
1W-10					<i>3</i>			
1W-11 *	X						.,	
1W-12	X	-						
		,		*				
*.	4=	locked	(s A	and o	De			
				7	7			·
			·					
NOTES: MA	1-10-2.	ale.	4			14/120	3/2 4-14	,
16-10 7/2 p	olfs sta	roped	- ON WOLL	w sea	/ / 4	F1W-8.	-/3 DO/1-	<u> </u>
		*/				·	**************************************	# 14 A
•		- J	g g					

WELL GAUGING DATA

Project # <u>60622-B</u>	P Date	6/22/10	Client Stellas	Env. Solutions
Site Redwood Reg	gional Pust	s service	Yard	

	Well ID	Time	Well Size (in.)	Sheen / Odor	ì	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
	MW-1	0 920	4					4.66	19.07	called and other states of the	
4	HW-Z	0923	4					20.80	37.38		
	MW-3	0912	4				***************************************	19.41	45.0 =	>	
	MW-S	0858	Ч					16.15	27.01		⁷ લન <u>ન</u> ૂક્ષ
; -	MW-6	0909	4					13.02	27.42		
+	MW-7	0901	2			- 1889 - 1889		12,93	25.28		
4	MW-8	0916	2			· · · · · · · · · · · · · · · · · · ·		10.23	22.10		
۸.	MW-9	0855	2					1491	30.21		
- Calmania	MW-10	0850	2					11.60	28.30		
9% - 2000	MW-II	6906	2	***************************************				12.48	28.58		
Ŧ	MN-12	0903	2					9.46	23.81		
				g.							
						* * * * * * * * * * * * * * * * * * * *					
							\$ \$				
	3 3 34	*									
								A A			
							**				

WELL MONITORING DATA SHEET

WELL MONT	URING DATA SHEET
Project #: 1006 Z Z - BP1	Client: Bitellar Env. Solutions (d
Sampler: BP	Start Date: 6/22/10
Well I.D.: MW - 2	Well Diameter: 2 3 4 6 8
Total Well Depth: 37.38	Depth to Water: 20.80
Before: After:	Before: 20.80 After: 29.07
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC Grade	D.O. Meter (if req'd): (YSI) HACH
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction I Electric Submersible Other	Sampling Method: Disposable Bailer Extraction Port Dedicated Tubing Other: UC:16.58 Well Diameter Multiplier Well Diameter Multiplier
$\frac{10.8 \text{ (Gals.) X}}{1 \text{ Case Volume}} = \frac{37.9 \text{ Gal}}{2 \text{ Calculated Volumes}}$	als. 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius ** 0.163
Temp. Conductivity (For °C) pH or µS)	(mS Turbidity (NTU) Gals. Removed Observations
0930 62.3 6.27 994	1.1 381 10.8
Well Dewatered @ 12 gallon	5 12.0 074:33.34
1320 62.7 6.87 871,	6 25160 -
Did well dewater? Yes No	Gallons actually evacuated: /Z.O
Sampling Time: 1320	Sampling Date: 6/22/10
Sample I.D.: MW-Z	Laboratory: STL (C4T)
Analyzed for: TPH-G BTEX MTBE TPH-	-D Other: 3EE COC
Equipment Blank I.D.: @	Dunlicate I.D.
Analyzed for: TPH-G BTEX MTBE TPH-	
D.O. (if req'd): Pre-pu	urge: Post-purge: 24.0/ mg/L
ORP (if req'd):	arge: mV Post-purge: /2 mV

profession and the second		Name of Participation of the P
V LL	MONITORING DATA	SH ET

		V	LL MUNITUR				
Project #	: 1006	22-B	PI	Client: Redwood Regional Parks Service Yard			
Sampler:	BP			Start Date: 6/22/10			
Well I.D	: MW-	tan F		Well Diamete	r: (2) 3 4	6 8	
Total We	ell Depth:	25.7	- S	Depth to Wate	er: /2.93		
Before:		After:		Before: 12	. 93	After: 14.74	
Depth to	Free Produ	ct:		Thickness of	Free Product (fee		
Referenc	ed to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH	
Purge Meth	Bailer Disposable Ba Positive Air D Electric Subme	isplacement	Waterra Peristaltic Extraction Pump Other	Sampling Mo	Disposable Extraction Dedicated Other:	Port Tubing	
2.0 1 Case Volur	_(Gals.) X ne Spe	3 =	- 6.0 Gals.	1" 2"	0.04 4" 0.16 6" 0.37 Other	viameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations	
1042	56.9	7,54	776.5	48	2.0	odov	
1045	56.4	7.38	805.5	57	4.0		
1048	56.4	7.36	778.2	51	6.0	V	
· · · · · · · · · · · · · · · · · · ·	, A.,			•		DTW:14.74	
Did well o	dewater?	Yes	No	Gallons actual	ly evacuated:	6.0	
Sampling	Time:	1055		Sampling Date	: 6/22/1	0	
Sample I.	D.: MW-	F		Laboratory:	STL (C4T)	
Analyzed	for: TP	H-G BTEX	МТВЕ ТРН-D	Other:	SEE COL		
Equipmen	t Blank I.D	.:	@ Time	Duplicate I.D.:			
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:			
D.O. (if re	eq'd):	d _a :	Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	0.3/ mg/L	
ORP (if re	eq'd):		Pre-purge:	mV	Post-purge;) 88 mV	

		V	LL MONITOR					
Project #	#: <i>100</i> 6	22-B	P1	Client: Stellar Env. Solutions (2) Client: Redwood Regional Parks Service Yard				
Sampler	: BP			Start Date: 6/22/10				
Well I.D	:: MW-	8		Well Diamet	er: 2 3 4	6 8		
Total Wo	ell Depth:	22.1	0	Depth to War	ter: /0.23			
Before:		After:		Before:	10.23	After:		
Depth to	Free Produ	ct:	Management of the state of the	Thickness of	Free Product (fee	t): «		
Reference	ed to:	PVC	Grade	D.O. Meter (i	if req'd):	ÝSI HACH		
Purge Meth	Bailer Disposable Ba Positive Air D Electric Subme	isplacement	Waterra Peristaltic Extraction Pump Other WC. /		Disposable Extraction Dedicated Other:	Port		
/ 9 1 Case Volui		3 =	5.7 Gals.	1" 2"	0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163		
Time	Temp. For °C)	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations		
1152	59.0	7.01	706.9	448	1.9			
1155	58.7	6.86	807.3	7/000	3, 8			
1158	58.7	6.82	786.8	71000	5.7	DTW:13.07		
			-			*		
Did well	dewater?	Yes	NO	Gallons actua	lly evacuated:	5.7		
Sampling	Time:	310		Sampling Dat	e: 6/22/1	0		
Sample I.	D.: MW-	8		Laboratory:	STL (C4T)		
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:	SEE COL	7.		
Equipmer	ıt Blank I.D	• •	@ Time	Duplicate I.D.	•			
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:				
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	0.30 mg/L		
ORP (if re	ea'd):		Pre-purge:	mV	Post-purge:	*7 0 mV		

							\$11	
\mathbf{v}	T.T.	MO	VITO	ORING	DAT	'A S	H	7.1
W %		IVAC			27/3		B B	R

		V	LL MONITOR				
Project #	: 1006	22-B	PI	Client: Redwood Regional Parks Service Yand			
Sampler:	BP			Start Date: 6/22/10			
Well I.D.	: MW-	9		Well Diamete	er: (2) 3 4	6 8	
Total We	ell Depth:	30.2	1	Depth to Wate	er: 14.97		
Before:		After:		Before:	14.91	After: /5, 2/	
Depth to	Free Produ	ct:	man par	Thickness of	Free Product (feet	• "]	
Referenc	ed to:	(PVC)	Grade	D.O. Meter (i	f req'd):	YSI HACH	
Purge Meth	od: Bailer Disposable Bai Positive Air Di Electric Subme	splacement	Waterra Peristaltic Extraction Pump Other		Disposable Extraction Dedicated ' Other: eter Multiplier Well Di	Port Tubing iameter Multiplier	
7.5 1 Case Volum		= cified Volumes	7.5 Gals. Calculated Volume	2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163	
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations	
1135	57.4	6.64	9/7.3	489	2.5		
1138	57.1	6.74	861.0	71000	5,0	cloudy grey	
114/	57.5	6.84	847.9	71000	7.5	+	
·						DSW:21,07	
		, -					
Did well	dewater?	Yes	(No)	Gallons actual	ly evacuated:	7.5	
Sampling	Time:	1255		Sampling Date	e: 6/22/1	0	
Sample I.	D.: MW-	9		Laboratory:	STL (C4T)	
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:	SEE COC		
Equipmer	t Blank I.D	:	@ Time	Duplicate I.D.			
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:		487	
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}\!/_{ m L}$	Post-purge:	0.65 mg/L	
ORP (if re	eq'd):		Pre-purge:	mV	Post-purge:	36 mV	

V LL MONITORING DAT.	A CYMPE NOC
	Var of Alle a
	N 178 17 18 18 18 18 18 18 18 18 18 18 18 18 18

		V	LL MONITOR						
Project #	: 1006	22-B	PI	Client: Redwood Regional Parks Service Yard					
Sampler	BP			Start Date: 6/22/10					
Well I.D	: MW-	10		Well Diamete	er: 2 3 4	6 8			
Total We	ell Depth:	28.3	50	Depth to Wat	er: //.60				
Before:		After:		Before: /	1.60	After: /2.25			
Depth to	Free Produ	ct:	ng-Chhaiseann	Thickness of	Free Product (feet	· · · · · · · · · · · · · · · · · · ·			
Referenc	ed to:	PVC	Grade	D.O. Meter (i	f req'd):	YSD HACH			
Purge Meth	Bailer Disposable Bailer Positive Air Disposable Bailer	isplacement	Waterra Peristaltic Extraction Pump	Sampling M	ethod: Bailer Disposable Extraction Dedicated Other:	Port			
2.7 1 Case Volur	_(Gals.) X ne Spe	= cified Volumes	8.1 Gals.	Well Diame 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	iameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163			
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations			
10.20	60.5	8.50	760.8	119	2.7				
10:23	59.7	8.25	793.4	44	5.4				
10.26	59.1	8.97	778.2	47	8.1				
10:29	60.0	7.94	768.5	56	10.8	DTW: 22.70			
				·					
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	8.1 10.8			
Sampling	Time:	1235		Sampling Date	e: 6/22/1	0			
Sample I.	D.: MW-	10		Laboratory:	STL (C4T)			
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:	SEE COC				
Equipmen	t Blank I.D	·.:	@ Time	Duplicate I.D.					
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:					
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}\!/_{ m L}$	Post-purge:	/.32 ^{mg} / _L			
ORP (if re	eq'd):		Pre-purge:	mV	Post-purge:	98 mV			

30000			700 181	
W LL	MONITORII	NG DATA	SH	

W LI	L MONITOR	RING DATA S		
Project #: 1006 ZZ - BP1	1	Client: Stell	ar Env. Solutional	ions (d Parks Service Yard
Sampler: BP		Start Date: 6	. /	
Well I.D.: MW - 1/	- C4-145	Well Diamete	er: 2 3 4	6 8
Total Well Depth: 28.58		Depth to Wate	er: /z.48	
Before: After:		Before: / 2	2.48	After: /3.44
Depth to Free Product:	·		Free Product (feet	
Referenced to: PVC	Grade	D.O. Meter (it	f req'd): (YSI HACH
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible	Waterra Peristaltic Extraction Pump Other		Disposable Extraction Dedicated Other:	Port Tubing
	7 - B Gals. Calculated Volume	Well Diame 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	ameter Multiplier 0.65 1.47 radius² * 0.163
Time For pH Co.	nductivity (mS or μS)	Turbidity (NTU)	Gals. Removed	Observations
1210 57.7 7.07	692.8	262	2.6	odor
1213 56.9 6.90	716.7	118	5.2	
1216 56.7 6.82	719.6	46	7.8	
				DTW:13.44
				·
Did well dewater? Yes (No	Gallons actual	ly evacuated:	7.8
Sampling Time: 1720		Sampling Date	: 6/22/1	0
Sample I.D.: MW-11		Laboratory:	STL (C4T)
Analyzed for: TPH-G BTEX M	ГВЕ ТРН-D	Other:	SEE COC	
Equipment Blank I.D.:	Time	Duplicate I.D.:	P	
Analyzed for: TPH-G BTEX MT	гве ТРН-D (Other:		
O.O. (if req'd):	Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	0,70 mg/L
ORP (if req'd):	Pre-purge:	mV	Post-purge:	53 mV

F .					- 2	
W.W	* TE	TO AN A THIN	PATER TERM	A FET A CET	CAR	787
W.W.						- A
A A	المظالمة	TATA TATE T	ORING			

		W.	LL MONITOR			4.				
Project #	: 1006	22-B	PI	Client: Stellar Env. Solutions () Client: Redwood Regional Parks Service Yard						
Sampler:	BP			Start Date: 6/22/10						
Well I.D.	: MW-	12		Well Diamete	r: 2 3 4	6 8				
Total We	ell Depth:	23.	81	Depth to Wate	er: 9.46					
Before:		After:		Before:	9.46	After: 10,03				
Depth to	Free Produ	ct:		Thickness of I	Free Product (feet); transport.				
Referenc	ed to:	PVC	Grade	D.O. Meter (it	f req'd):	YSI, HACH				
Purge Meth	od: Bailer Disposable Bai Positive Air Di Electric Subme	isplacement	Waterra Peristaltic Extraction Pump		Disposable Extraction Dedicated ' Other:	Port Tubing				
2.3 1 Case Volum	(Gals.) X	= cified Volumes	6, 9 Gals.	Well Diame 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	ameter Multiplier 0.65 1.47 radius ² * 0.163				
Time	Temp.	рН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations				
1117	56.6	7,02	681.5	268	2.3					
1120	56.2	6,94	698.2	Z 8 Z	4.6					
1123	56.5	6.90	688.4	3 2 /	6.9	DTW:16.21				
		THE STATE OF THE S	×							
					A CONTRACTOR OF THE PROPERTY O					
Did well o	lewater?	Yes	No	Gallons actual	ly evacuated:	6,9				
Sampling	Time:	1243	5	Sampling Date	: 6/22/1	0				
Sample I.	D.: MW-	12		Laboratory:	STL (C4T)				
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:	SEE COC					
Equipmen	t Blank I.D).;	@ Time	Duplicate I.D.:						
Analyzed	for: TP	H-G BTEX	МТВЕ ТРН-D	Other:		**.				
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	3.08 mg/L				
ORP (if re	eq'd):		Pre-purge:	mV	Post-purge:	> 3				

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 220869 ANALYTICAL REPORT

Stellar Environmental Solutions

Project : 2006-16 2198 6th Street

Berkeley, CA 94710

Location : Redwood Regional Park

Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	220869-001
MW-7	220869-002
MW-8	220869-003
MW-9	220869-004
MW-10	220869-005
MW-11	220869-006
MW-12	220869-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Date: <u>06/29/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 220869

Client: Stellar Environmental Solutions

Project: 2006-16

Location: Redwood Regional Park

Request Date: 06/22/10 Samples Received: 06/22/10

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 06/22/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low recoveries were observed for gasoline C7-C12 in the MS/MSD of MW-2 (lab # 220869-001); the LCS was within limits, and the associated RPD was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Biochemical Oxygen Demand (SM5210B):

No analytical problems were encountered.

Chain of Custody Record

220869 Lab job 110.	
Date 6/22/10	<u> </u>
Page of	_

Laboratory <u>Curtis and To</u>		<u> </u>			ethod of Shipment H	and Del	ivery												Page _	1	1
Address 2323 Fiπn Sti Berkeley, Ca		0		S	hipment No.								_	_							
510-486-090				A	irbill No								3	ì	An	alysis F	Require	d		$\overline{}$	
Project Owner East Bay	Regional Pa	ark Distr	rict	_ c	ooler No.							1	χ_{∞}	$\overline{\gamma}$	7	7	7	7	77		į
	wood Road		101	— Р	roject Manager <u>Rich</u>	ard Mal	disi	_		/ ,	ر يقي /	/ 57/		5				/ ,	/ /		
SHE AUGUESS	California				elephone No. (510) 644				_/.	"lered	, , , ,	-8/)	/	/ /	/ /	′ /			d wi
Project Name Redwood	Regional P	ark			ax No(510) 644				/4		Containers		$\Rightarrow $	/~	_e/				//	Rer	marks
Project Number 2006-	16				amplers: (Signature)	37	ZII	 /	/ /	/	•	/بد	9/		7 <u>,</u>	$\mathcal{Y}_{\mathcal{L}}$	У,	/ /	/ /		
Field Sample Number	Location/ Depth	Date	Time	Sample Type		Pro	eservation]/					4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Ü					
MW - 2	Сери	6/22/10	1370	W	40 m (VOA/ESUML pol) SOOM CHASS IL poly	Cooler	Chemical HCL4	N	8	X	V	×	× >		-{	1	+	f	$\overline{}$		4
MW-7			1055	W	YOU'L YOA/LSONL Pary SOO ML GASS/IL Pory		42504 HCL4	N	8	X	λ	X	XX			+	┪┈				
MW-8		e/22/10			40ml VOA/250ml poly		HEL & HEL & HESOY	N	8	X	<u> </u>	•	XX	_	<u> </u>		 	 -			
MW-9			1255	w	SOOML GLASS/IL Poly		He Soy HCL	N		X	X	X			1	+-	-	4			
MW-10		6/22/10		w	GOOME GIASS	-	HCL	N	5	X	×	X		+-	-	-	-	-			
HW-11		\$/24/10		W	YOML YOU		HCL	N	ح.	\ <u>\</u>		×		+	+-	+	-	-			
MW-12			1245		TOO AN C GOLOGS TOME VOA 250 AL POLY		HCL +	N	5	X	X X	-	<u> </u>	_		,	-	+			
710-12		77 - 1.0	1245		Come Colors 12 Poly		Hisay	 	8	_	^	×	×y	(X	(×	+-	-	 	<u> </u>		
		-				-		-						+	+-		-	╁	<u> </u>		
				- · <u>.</u>		-	· · · · · · · · · · · · · · · · · · ·	-						-		-	-	 	ļ		
		 						 						-				 	<u> </u>		
		-				 		-	<u> </u>						_	-		ļ			i
Relinquished by:		<u> </u>			h /			<u> </u>	L						Ш.						
Signature	u	Date 6/22/	Received Signat	·/-	athornely	Date	Relinquished Signature	by:					_ Da	ite	Receive Sion	ed by: ature _					Date
Printed Ben Pa		10		P	et Garales	1/22/															<u> </u>
Blain Tech		Time	Printed		Cd +	14.40	Printed						— Tir	ne	Print	ted					— Tim
Company	incital-	1440	Compa	any	<u>C¥ /</u>	90	Company						_ -		Com	pany .					-
Turnaround Time: 5 Day TAT							Relinquished	•					Da	ate	Receive	•					Dati
Comments: Please provi	de a GeoTra	acker E	DF for	ground	lwater samples only		Signature						-		Sign	ature .					- \
Groundwate					nvironmental Solution ch Services.	s. ———	Printed						_ Tir	ne	Print	led					- Tim
							Company								Com	nanv					

13

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST

Login # 7 2869 Date Received 6.22.10 Number of	f coolers 🥏
Client STEUME EN. Project Francis FEE	mer Brek
·	
Date Opened 6-12-10 By (print) 5-15-25 (sign) Date Logged in By (print) (sign)	1
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? TYES (circle) on cooler on sample How many Name Date 2B. Were custody seals intact upon arrival?	
3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc.)?	YES NO NA YES NO YES NO
5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)	MES NO
[On the motorial On the control On	lone aper towels
Type of ice used: Wet Blue/Gel None Temp(°C)	7.5.2.3
☐ Samples Received on ice & cold without a temperature blank	0-10-
☐ Samples received on ice directly from the field. Cooling process had	begun
8. Were Method 5035 sampling containers present?	YES NO
9. Did all bottles arrive unbroken/unopened?	(YES NO
10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete?	VES NO
12. Do the sample labels agree with custody papers?	NO YES NO
13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved?	NO NO
15 Are hubbles \ 6 mm = 1 m + 1 \ XXQ +	ES NO N/A
16. Was the client contacted concerning this sample delivery?	ES NO N/A
	YES NO ate:
COMMENTS	

SOP Volume: Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report Lab #: 220869 Location: Redwood Regional Park EPA 5030B Stellar Environmental Solutions Client: Prep: Project#: 2006-16 06/22/10 Matrix: Water Sampled: Units: uq/L Received: 06/22/10

Field ID: MW-2 Lab ID: 220869-001 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	1,300 Y	50	164332 06/23/10	EPA 8015B
MTBE	ND	2.0	164373 06/25/10	EPA 8021B
Benzene	ND	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	ND	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	0.80	0.50	164373 06/25/10	EPA 8021B
o-Xylene	0.94 C	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Ana	lyzed	Analysis
Bromofluorobenzene (FID)	102	70-140	164332 06/	23/10	EPA 8015B
Bromofluorobenzene (PID)	98	54-134	164373 06/	25/10	EPA 8021B

Field ID: MW-7 Lab ID: 220869-002 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	5,800 Y	50	164332 06/23/10	EPA 8015B
MTBE	ND	2.0	164373 06/25/10	EPA 8021B
Benzene	20	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	140	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	8.9	0.50	164373 06/25/10	EPA 8021B
o-Xylene	1.0 C	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	121	70-140	164332 06/23/10	EPA 8015B
Bromofluorobenzene (PID)	102	54-134	164373 06/25/10	EPA 8021B

Field ID: MW-8 Lab ID: 220869-003 Type: SAMPLE

Analyte Result RL Diln Fac Batch# Analyzed Analysis 164332 06/24/10 Gasoline C7-C12 700 EPA 8015B 50 1.000 MTBE 27 10 5.000 164373 06/25/10 EPA 8021B 2.5 5.000 27 164373 06/25/10 EPA 8021B Benzene Toluene 2.9 5.000 164373 06/25/10 EPA 8021B Ethylbenzene 400 2.5 5.000 164373 06/25/10 EPA 8021B 2.5 164373 06/25/10 m,p-Xylenes 99 5.000 EPA 8021B o-Xylene 4.2 5.000 164373 06/25/10 EPA 8021B

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	127	70-140	1.000	164332 06/24/10	EPA 8015B
Bromofluorobenzene (PID)	95	54-134	5.000	164373 06/25/10	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40%

6.0

Y= Sample exhibits chromatographic pattern which does not resemble standard

NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 220869 Location: Client: Stellar Environmental Solutions Prep: Project#: 2006-16 06/22/10 Matrix: Water Sampled: Units: ug/L Received: 06/22/10

Field ID: MW-9 Lab ID: 220869-004 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	1,700 Y	50	164332 06/24/10	EPA 8015B
MTBE	11	2.0	164373 06/25/10	EPA 8021B
Benzene	13	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	48	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	4.9	0.50	164373 06/25/10	EPA 8021B
o-Xylene	ND	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis	
Bromofluorobenzene (FID)	115	70-140	164332 06/24/10	EPA 8015B	
Bromofluorobenzene (PID)	97	54-134	164373 06/25/10	EPA 8021B	

Field ID: MW-10 Lab ID: 220869-005 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	110 Y	50	164332 06/24/10	EPA 8015B
MTBE	2.4 C	2.0	164373 06/25/10	EPA 8021B
Benzene	1.4 C	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	2.6	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	0.74 C	0.50	164373 06/25/10	EPA 8021B
o-Xylene	ND	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	108	70-140	164332 06/24/10	EPA 8015B
Bromofluorobenzene (PID)	95	54-134	164373 06/25/10	EPA 8021B

Field ID: MW-11 Lab ID: 220869-006 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	2,000 Y	50	164332 06/24/10	EPA 8015B
MTBE	7.9	2.0	164373 06/25/10	EPA 8021B
Benzene	14	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	42	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	0.92 C	0.50	164373 06/25/10	EPA 8021B
o-Xylene	ND	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	118	70-140	164332 06/24/10	EPA 8015B
Bromofluorobenzene (PID)	95	54-134	164373 06/25/10	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40%

Page 2 of 3

6.0

Y= Sample exhibits chromatographic pattern which does not resemble standard

NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 220869 Location: Stellar Environmental Solutions Client: Prep: Project#: 2006-16 Water Matrix: Sampled: 06/22/10 Units: ug/L Received: 06/22/10

Field ID: MW-12 Lab ID: 220869-007 Type: SAMPLE Diln Fac: 1.000

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	540	50	164332 06/24/10	EPA 8015B
MTBE	7.5	2.0	164373 06/25/10	EPA 8021B
Benzene	ND	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	3.5	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	ND	0.50	164373 06/25/10	EPA 8021B
o-Xylene	ND	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	113	70-140	164332 06/24/10	EPA 8015B
Bromofluorobenzene (PID)	96	54-134	164373 06/25/10	EPA 8021B

Type: BLANK Batch#: 164332 Lab ID: QC549819 Analyzed: 06/23/10 Diln Fac: 1.000 Analysis: EPA 8015B

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	Result	%REC	Limits	
Bromofluorobenzene (FID)		95	70-140	•
Bromofluorobenzene (PID)	NA			

Type: BLANK Batch#: 164373 Lab ID: QC549985 Analyzed: 06/24/10 Diln Fac: 1.000 Analysis: EPA 8021B

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate		Result	%REC	Limits
Bromofluorobenzene (F	FID) NA			
Bromofluorobenzene (F	PID)		94	54-134

Page 3 of 3

6.0

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Batch QC Report

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	220869	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2006-16	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC549820	Batch#:	164332				
Matrix:	Water	Analyzed:	06/23/10				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	961.7	96	73-127

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	96	70-140

Page 1 of 1 9.0

Batch QC Report

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 22086	9	Location:	Redwood Regional Park				
Client: Stell	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2006-	16						
Field ID:	MW-2	Batch#:	164332				
MSS Lab ID:	220869-001	Sampled:	06/22/10				
Matrix:	Water	Received:	06/22/10				
Units:	ug/L	Analyzed:	06/24/10				
Diln Fac:	1.000						

Type: MS Lab ID: QC549821

Analyte	MSS Result	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	1,266	2,000	2,141	44 *	68-120 E	EPA 8015B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	101	70-140	EPA 8015B	
Bromofluorobenzene (PID)	112	54-134	EPA 8021B	

Type: MSD Lab ID: QC549822

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analysis
Gasoline C7-C12	2,000	2,274	50 *	68-120	6	20	EPA 8015B

Surrogate	%REC	Limits	Analysis
Bromofluorobenzene (FID)	107	70-140	EPA 8015B
Bromofluorobenzene (PID)	120	54-134	EPA 8021B

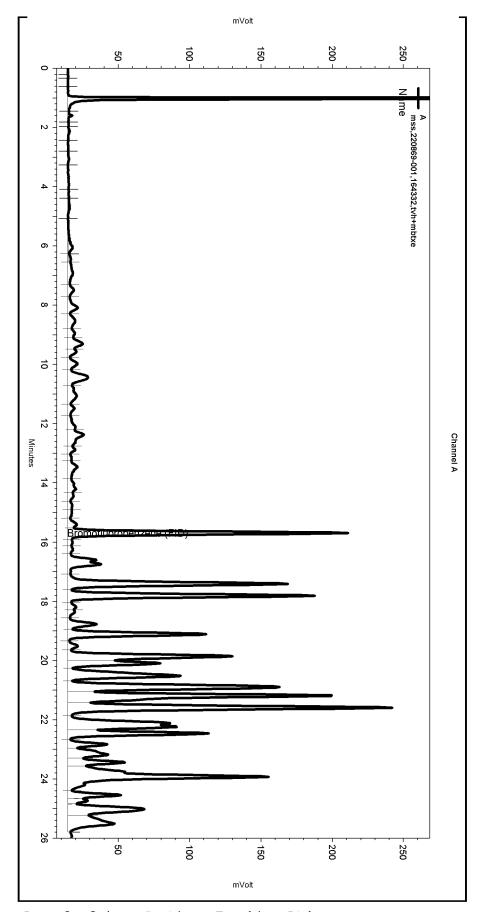
^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

Batch QC Report

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	220869	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2006-16	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	164373				
Units:	ug/L	Analyzed:	06/24/10				
Diln Fac:	1.000						

Type: BS Lab ID: QC549989

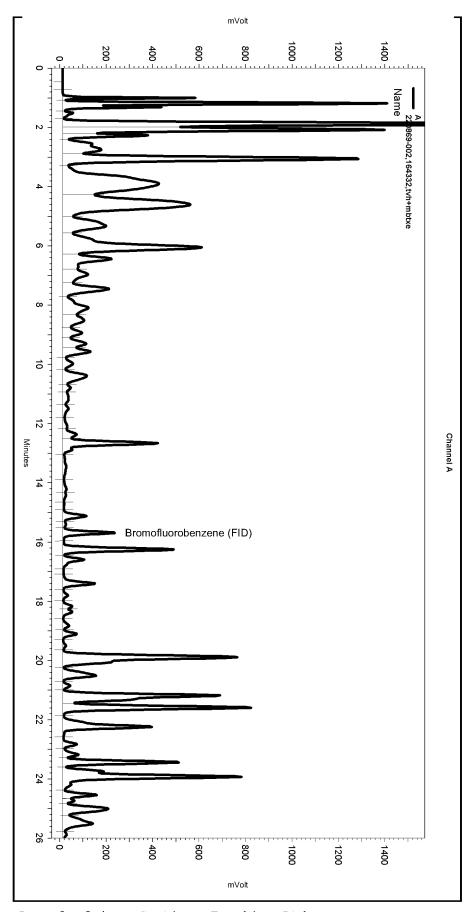
Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.06	101	57-150
Benzene	10.00	10.04	100	70-122
Toluene	10.00	9.953	100	72-125
Ethylbenzene	10.00	9.643	96	72-126
m,p-Xylenes	10.00	10.03	100	73-126
o-Xylene	10.00	9.864	99	71-127


Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	94	54-134	

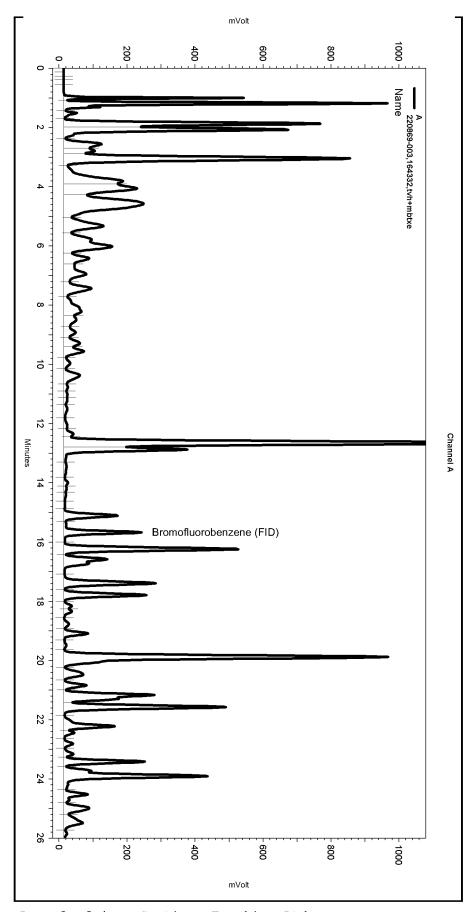
Type: BSD Lab ID: QC549990

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.713	97	57-150	4	46
Benzene	10.00	10.63	106	70-122	6	33
Toluene	10.00	10.48	105	72-125	5	25
Ethylbenzene	10.00	10.32	103	72-126	7	26
m,p-Xylenes	10.00	10.71	107	73-126	7	25
o-Xylene	10.00	10.43	104	71-127	6	25

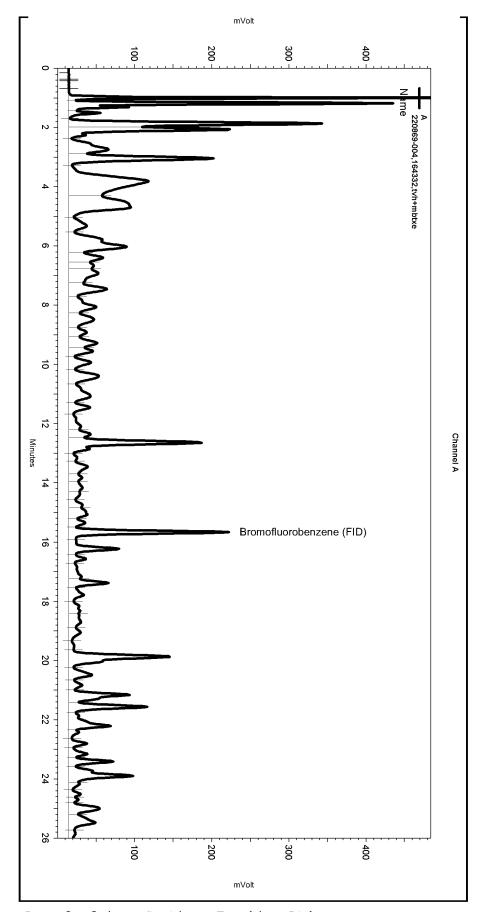
Surrogate	%REC	Limits
Bromofluorobenzene (PID	93	54-134


Software Version 3.1.7 Run Date: 6/23/2010 6:48:56 PM Analysis Date: 6/24/2010 1:37:13 PM Sample Amount: 5 Multiplier: 5

< General Method Parameters >				
No items selected for this section				
< A >				
No items selected for this section				
Integration Events				
Start Stop Enabled Event Type (Minutes) (Minutes) Value				
Yes Width 0 0 0.2 Yes Threshold 0 0 50				
Manual Integration Fixes				
Data File: \\Lims\\gdrive\ezchrom\\Projects\\GC05\\Data\174_006 Start Stop				
Enabled Event Type (Minutes) (Minutes) Value				
Yes Lowest Point Horizontal Baseli 0 26.017 0				

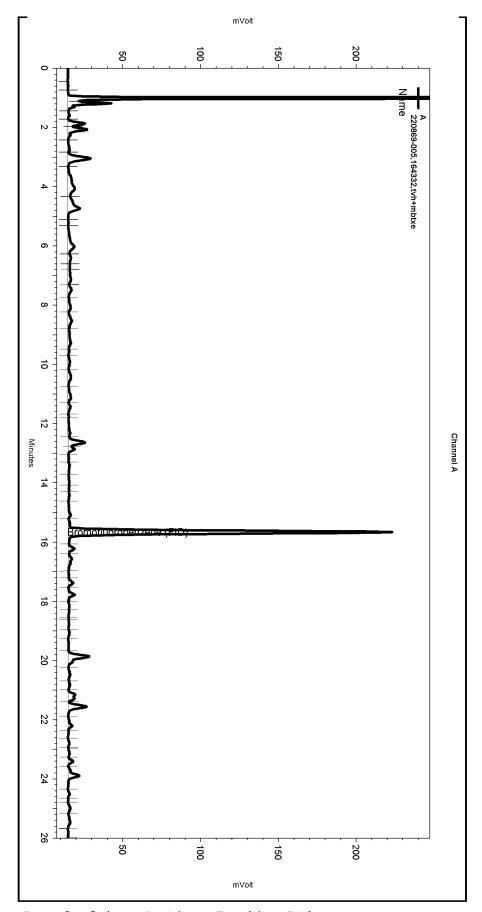

Software Version 3.1.7

Run Date: 6/23/2010 9:51:52 PM Analysis Date: 6/24/2010 1:53:45 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

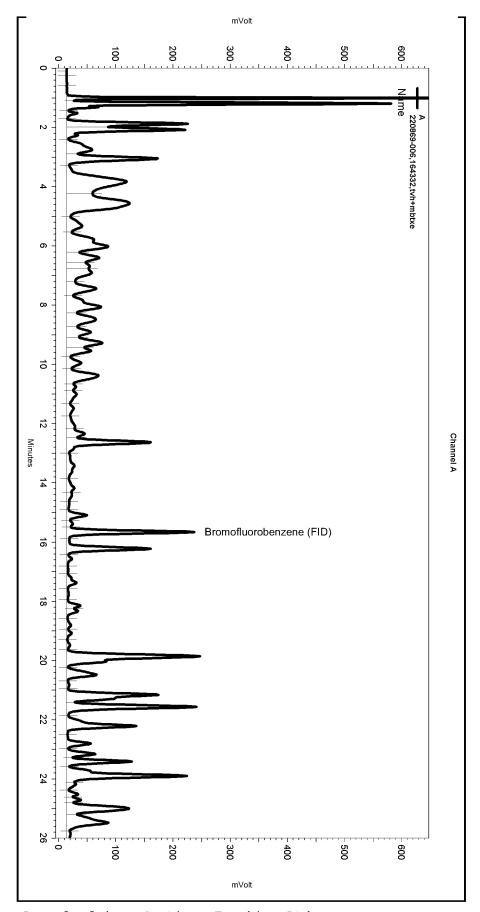

< Ge	neral Method Para	meters >-				
No item	ns selected for this	section				
< A >						
No item	ns selected for this	section				
Integrat	tion Events					
Enabl	led Event Type	Start			/linutes)	Value
Yes Yes	Width Threshold		0	0	0.2 50	
Manual	Integration Fixes					
Data	File: \\Lims\gdrive\				5\Data\17	4_011
Enabl	led Event Type	Start	Sto (Minut		/linutes)	Value
Yes	Lowest Point Ho	rizontal B	aseli	0	26.017	0

Software Version 3.1.7 Run Date: 6/24/2010 12:54:42 AM Analysis Date: 6/24/2010 2:00:30 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
	value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\\	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal B	aseli 0 26.017 0


Software Version 3.1.7 Run Date: 6/24/2010 2:07:54 AM Analysis Date: 6/24/2010 3:31:13 PM Sample Amount: 5 Multiplier: 5

< General Method Parameters >-					
No items selected for this section					
< A >					
No items selected for this section					
Start Enabled Event Type	Stop (Minutes) (Minutes) Value				
Yes Width	0 0 0.2				
Yes Threshold	0 0 50				
Manual Integration Fixes					
Data File: \\Lims\gdrive\ezchrom\\					
Enabled Event Type	(Minutes) (Minutes) Value				
Yes Lowest Point Horizontal B	aseli 0 26.017 0				

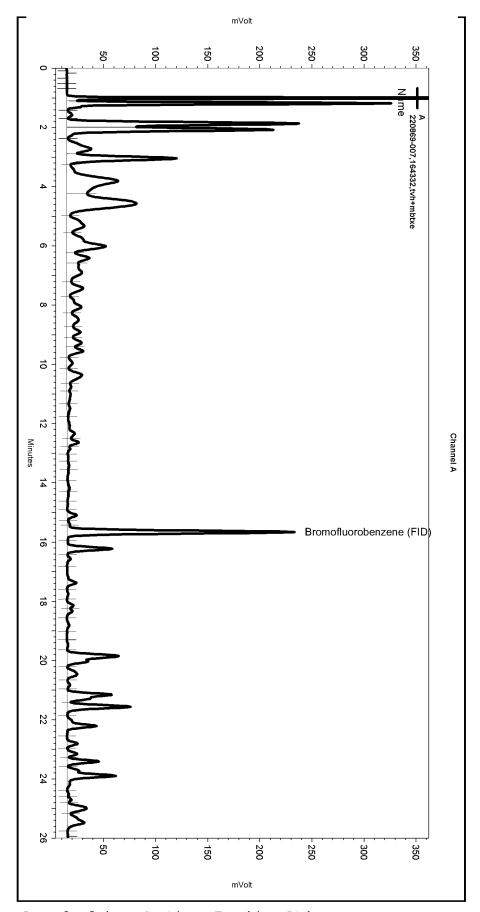

Software Version 3.1.7 Run Date: 6/24/2010 2:44:30 AM

Analysis Date: 6/24/2010 3:38:11 PM Sample Amount: 5 Multiplier: 5

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\F	
Enabled Event Type	(Minutes) (Minutes) Value
None	

Software Version 3.1.7 Run Date: 6/24/2010 3:21:06 AM Analysis Date: 6/24/2010 3:44:53 PM Sample Amount: 5 Multiplier: 5

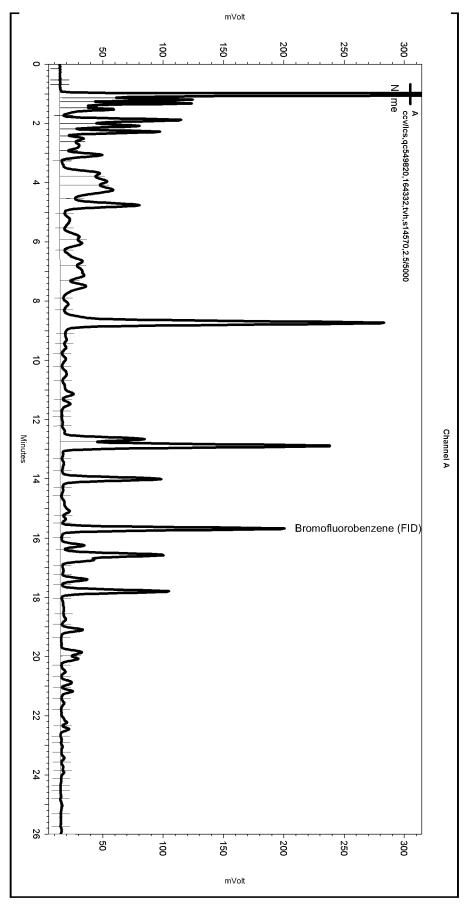
	< General Method Parameters >	>	
N	lo items selected for this section		
	< A >		
N	No items selected for this section ntegration Events	t Stop	_
	Enabled Event Type	(Minutes) (Minutes) Value 0 0 0.2	3
	Yes Threshold	0 0 50	
٨	Manual Integration Fixes		
	Data File: \\Lims\gdrive\ezchrom\		į
	Enabled Event Type	(Minutes) (Minutes) Value	Э
	Ves Lowest Point Horizontal F	Baseli 0 26.017 0	


Sample Name: 220869-007,164332,tvh+mbtxe

Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\174_021

Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe165.met


Software Version 3.1.7 Run Date: 6/24/2010 3:57:41 AM Analysis Date: 6/24/2010 3:49:44 PM Sample Amount: 5 Multiplier: 5

< General Method Parameters >				
No items selected for this section				
< A >				
No items selected for this section				
Integration Events				
Start Enabled Event Type	Stop (Minutes) (Minutes) Value			
Yes Width Yes Threshold	0 0 0.2 0 0 50			
Manual Integration Fixes				
Data File: \\Lims\gdrive\ezchrom\				
Start Enabled Event Type	Stop (Minutes) (Minutes) Value			
Yes Split Peak	15.432 0 0			

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\174.seq Sample Name: ccv/lcs,qc549820,164332,tvh,s14570,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\174_003 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe165.met

Software Version 3.1.7 Run Date: 6/23/2010 1:09:32 PM Analysis Date: 6/24/2010 1:14:17 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	(Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\	
Enabled Event Type	(Minutes) (Minutes) Value
None	

Total Extractable Hydrocarbons Lab #: 220869 Redwood Regional Park Location: EPA 3520C Client: Stellar Environmental Solutions Prep: Project#: 2006-16 Analysis: EPA 8015B 06/22/10 06/22/10 Matrix: Water Sampled: Units: ug/L Received: Diln Fac: 1.000 06/23/10 Prepared: Batch#: 164328

Field ID: MW-2 Lab ID: 220869-001 Type: SAMPLE Analyzed: 06/24/10

 Analyte
 Result
 RL

 Diesel C10-C24
 2,400
 50

Surrogate %REC Limits
o-Terphenyl 106 60-129

Field ID: MW-7 Lab ID: 220869-002 Type: SAMPLE Analyzed: 06/25/10

 Analyte
 Result
 RL

 Diesel C10-C24
 5,000
 50

Surrogate %REC Limits o-Terphenyl 94 60-129

Field ID: MW-8 Lab ID: 220869-003 Type: SAMPLE Analyzed: 06/24/10

 Analyte
 Result
 RL

 Diesel C10-C24
 4,200
 50

Surrogate %REC Limits
o-Terphenyl 98 60-129

Field ID: MW-9 Lab ID: 220869-004 Type: SAMPLE Analyzed: 06/24/10

 Analyte
 Result
 RL

 Diesel C10-C24
 1,300
 50

Surrogate %REC Limits
o-Terphenyl 88 60-129

Field ID: MW-10 Lab ID: 220869-005 Type: SAMPLE Analyzed: 06/24/10

AnalyteResultRLDiesel C10-C2434050

Surrogate %REC Limits
o-Terphenyl 102 60-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons 220869 Lab #: Location: Redwood Regional Park Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Sampled: EPA 8015B 06/22/10 Project#: 2006-16 Water Matrix: 06/22/10 Units: ug/L Received: Diln Fac: 1.000 Prepared: 06/23/10 Batch#: 164328

Field ID: MW-11 Lab ID: 220869-006 Type: SAMPLE Analyzed: 06/25/10

 Analyte
 Result
 RL

 Diesel C10-C24
 3,500
 50

Surrogate %REC Limits
o-Terphenyl 121 60-129

Field ID: MW-12 Lab ID: 220869-007 Type: SAMPLE Analyzed: 06/25/10

 Analyte
 Result
 RL

 Diesel C10-C24
 370 Y
 50

Surrogate %REC Limits
o-Terphenyl 114 60-129

Type: BLANK Analyzed: 06/24/10

Lab ID: QC549799

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 95 60-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Total Extractable Hydrocarbons					
Lab #:	220869	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C		
Project#:	2006-16	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC549800	Batch#:	164328		
Matrix:	Water	Prepared:	06/23/10		
Units:	ug/L	Analyzed:	06/24/10		

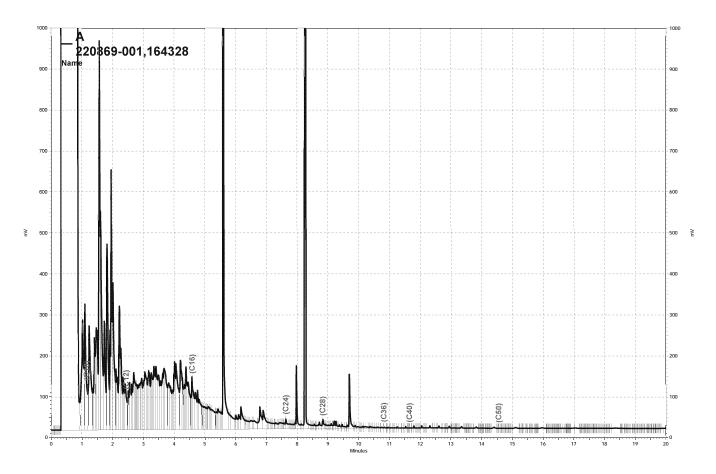
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,288	92	54-125

Surrogate	%REC	Limits
o-Terphenyl	94	60-129

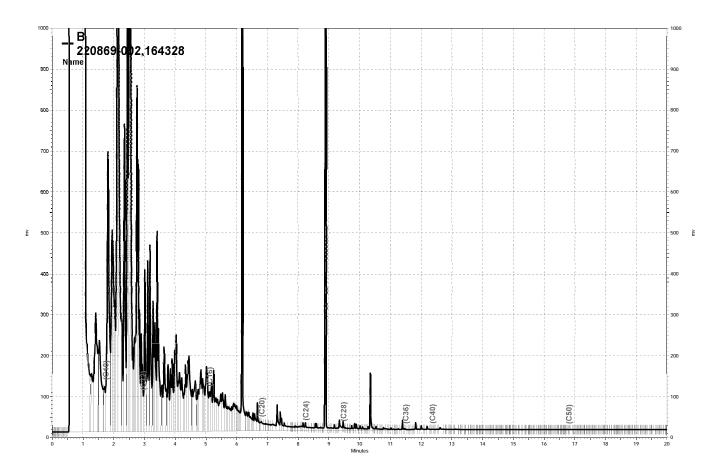
Page 1 of 1

Total Extractable Hydrocarbons								
Lab #: 220869	Lab #: 220869 Location: Redwood Regional Park							
Client: Stella	r Environmental Solutions	Prep:	EPA 3520C					
Project#: 2006-1	.6	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZZ	Batch#:	164328					
MSS Lab ID:	220873-007	Sampled:	06/22/10					
Matrix:	Water	Received:	06/22/10					
Units:	ug/L	Prepared:	06/23/10					
Diln Fac:	1.000	Analyzed:	06/25/10					

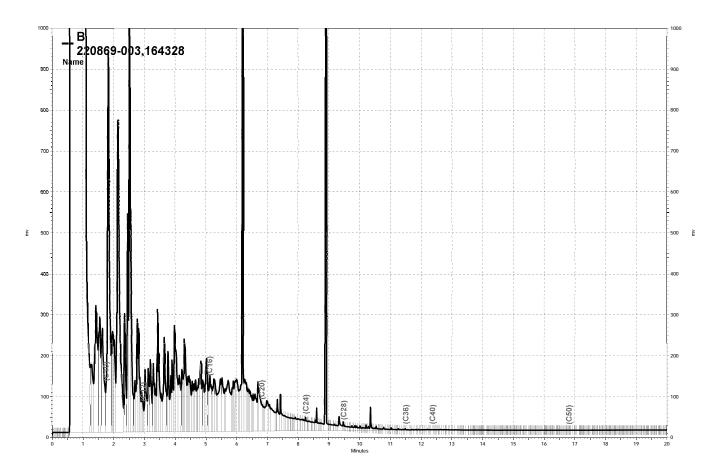
Type: MS Lab ID: QC549801

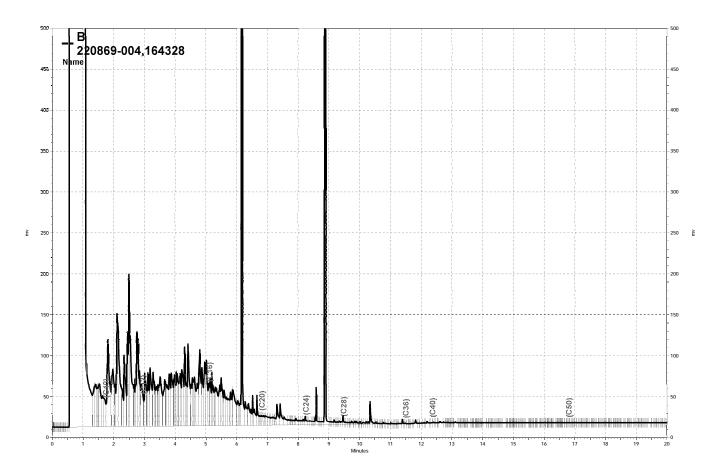

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	574.1	2,500	2,768	88	46-131

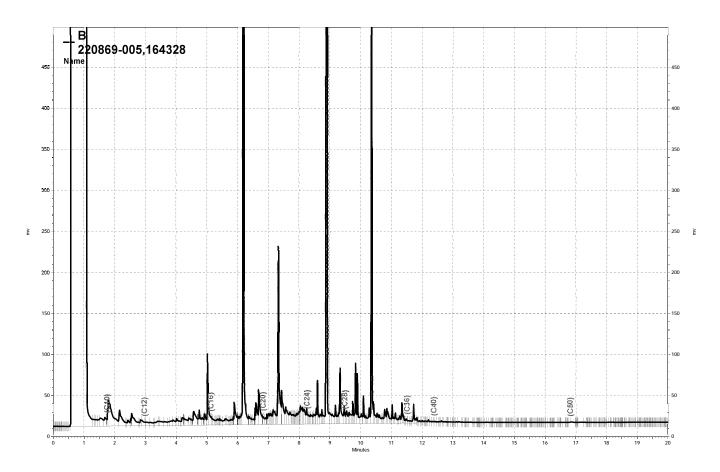
Surrogate	%REC	Limits	
o-Terphenyl	97	60-129	

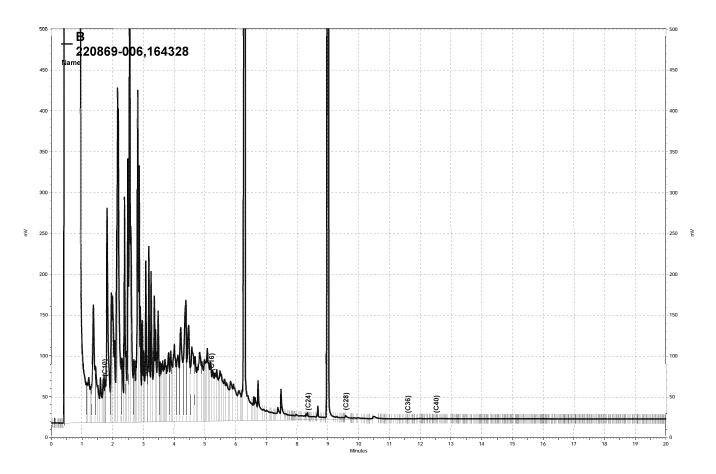

Type: MSD Lab ID: QC549802

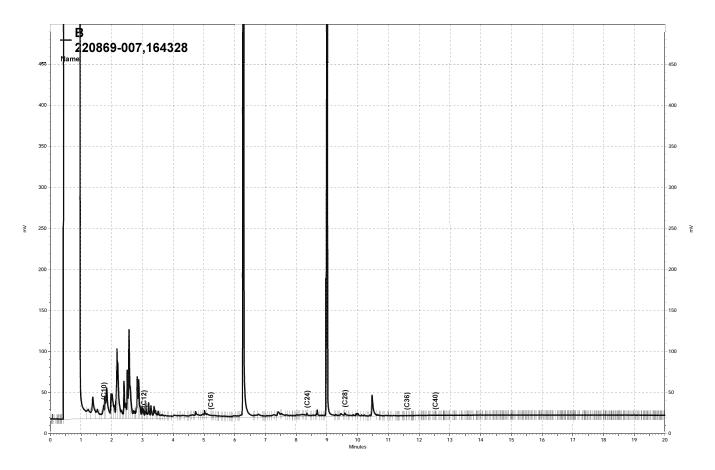
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,833	90	46-131	2	61

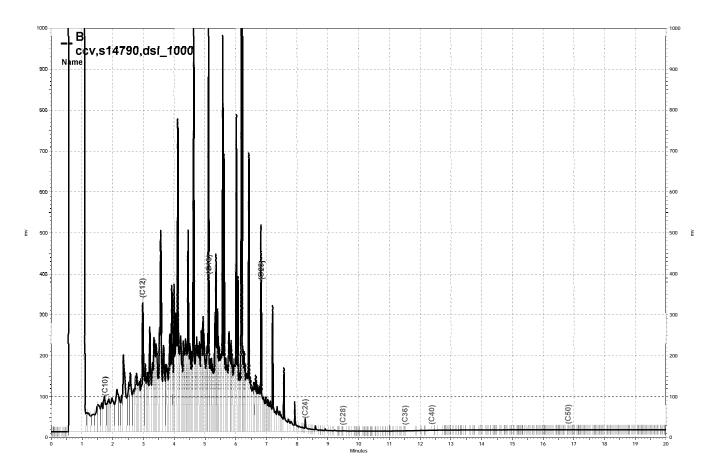

Surrogate	%REC	Limits	
o-Terphenyl	96	60-129	


\Lims\gdrive\ezchrom\Projects\GC17A\Data\175a018, A


\Lims\gdrive\ezchrom\Projects\GC15B\Data\176b006, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\175b027, B


\\Lims\gdrive\ezchrom\Projects\GC15B\Data\175b028, B


\\Lims\gdrive\ezchrom\Projects\GC15B\Data\175b029, B

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\176b006, B

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\175b029, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\175b017, B

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park Lab #: 220869 Location: Client: METHOD Stellar Environmental Solutions Prep: Project#: 2006-16 Analysis: EPA 300.0 Batch#: 164286 Matrix: Water 06/22/10 Units: mq/L Received:

Field ID: MW-2 Lab ID: 220869-001 Type: SAMPLE Sampled: 06/22/10 13:20

 Analyte
 Result
 RL
 Diln Fac
 Analyzed

 Nitrogen, Nitrate
 0.69
 0.05
 1.000
 06/22/10 19:51

 Sulfate
 180
 2.5
 5.000
 06/22/10 15:01

Field ID: MW-7 Diln Fac: 1.000

Type: SAMPLE Sampled: 06/22/10 10:55 Lab ID: 220869-002 Analyzed: 06/22/10 18:58

AnalyteResultRLNitrogen, NitrateND0.05Sulfate1.50.50

Field ID: MW-8 Diln Fac: 1.000

Type: SAMPLE Sampled: 06/22/10 13:10 Lab ID: 220869-003 Analyzed: 06/22/10 19:33

AnalyteResultRLNitrogen, NitrateND0.05Sulfate190.50

Field ID: MW-12 Diln Fac: 1.000

Type: SAMPLE Sampled: 06/22/10 12:45 Lab ID: 220869-007 Analyzed: 06/22/10 19:16

AnalyteResultRLNitrogen, NitrateND0.05Sulfate220.50

Type: BLANK Diln Fac: 1.000

Lab ID: QC549632 Analyzed: 06/22/10 10:33

AnalyteResultRLNitrogen, NitrateND0.05SulfateND0.50

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	220869	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	METHOD		
Project#:	2006-16	Analysis:	EPA 300.0		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC549633	Batch#:	164286		
Matrix:	Water	Analyzed:	06/22/10 10:50		
Units:	mg/L				

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	1.010	101	80-120
Sulfate	10.00	9.944	99	80-120

Page 1 of 1 4.0

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	220869		Location:	Redwood Regional Park		
Client:	Stella	r Environmental Solutions	Prep:	METHOD		
Project#:	2006-1	б	Analysis:	EPA 300.0		
Field ID:		ZZZZZZZZZZ	Diln Fac:	500.0		
MSS Lab II	D:	220873-007	Batch#:	164286		
Matrix:		Water	Sampled:	06/22/10 13:35		
Units:		mg/L	Received:	06/22/10		

Type: MS

Lab ID: QC549634

Analyte	MSS Result	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	<0.1127	250.0	255.7	102	80-120
Sulfate	2.324	2,500	2,661	106	80-120

Analyzed: 06/22/10 21:00

Type: MSD Analyzed: 06/22/10 21:18

Lab ID: QC549635

Analyte	Spiked	Result	%REC	Limits	RPI	Lim
Nitrogen, Nitrate	250.0	266.4	107	80-120	4	20
Sulfate	2,500	2,583	103	80-120	3	20

	Biochemical	Oxygen Demand	
Lab #:	220869	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	2006-16	Analysis:	SM5210B
Analyte:	Biochemical Oxygen Demand	Batch#:	164353
Matrix:	Water	Received:	06/22/10
Units:	mg/L	Prepared:	06/24/10 10:30
Diln Fac:	1.000	Analyzed:	06/29/10 11:50

Field ID	Type	Lab ID	Result	RL	Sampled
MW-2	SAMPLE	220869-001	ND	5.0	06/22/10 13:20
MW-7	SAMPLE	220869-002	17	5.0	06/22/10 10:55
MW-8	SAMPLE	220869-003	11	5.0	06/22/10 13:10
MW-12	SAMPLE	220869-007	ND	5.0	06/22/10 12:45
	BLANK	QC549905	ND	5.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Biochemical Oxygen Demand								
Lab #: 220869		Location:	Redwood Regional Park					
Client: Stella	ar Environmental Solutions	Prep:	METHOD					
Project#: 2006-1	L6	Analysis:	SM5210B					
Analyte:	Biochemical Oxygen Demand	Batch#:	164353					
Field ID:	MW-2	Sampled:	06/22/10 13:20					
MSS Lab ID:	220869-001	Received:	06/22/10					
Matrix:	Water	Prepared:	06/24/10 10:30					
Units:	mg/L	Analyzed:	06/29/10 11:50					
Diln Fac:	1.000							

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits RPD	Lim
BS	QC549906		198.0	190.5		96	85-115	
BSD	QC549907		198.0	201.5		102	85-115 6	20
SDUP	QC549908	<5.000		<5.000	5.000		0	21

RL= Reporting Limit

RPD= Relative Percent Difference

Chemical Oxygen Demand										
Lab #:	220869	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	ar Environmental Solutions Prep: METHOD								
Project#:	2006-16	Analysis:	SM5220D							
Analyte:	Chemical Oxygen Demand	Batch#:	164449							
Matrix:	Water	Received:	06/22/10							
Units:	${ m mg/L}$	Prepared:	06/28/10 12:00							
Diln Fac:	1.000	Analyzed:	06/28/10 14:00							

Field ID	Type	Lab ID	Result	RL	Sampled
MW-2	SAMPLE 2	220869-001	23	10	06/22/10 13:20
MW-7	SAMPLE 2	220869-002	34	10	06/22/10 10:55
MW-8	SAMPLE 2	220869-003	45	10	06/22/10 13:10
MW-12	SAMPLE 2	220869-007	16	10	06/22/10 12:45
	BLANK (QC550287	ND	10	

ND= Not Detected RL= Reporting Limit

Page 1 of 1 15.0

Chemical Oxygen Demand									
Lab #: 22086	9	Location:	Redwood Regional Park						
Client: Stella	ar Environmental Solutions	Prep:	METHOD						
Project#: 2006-	16	Analysis:	SM5220D						
Analyte:	Chemical Oxygen Demand	Batch#:	164449						
Field ID:	ZZZZZZZZZ	Sampled:	06/16/10 09:40						
MSS Lab ID:	220768-004	Received:	06/16/10						
Matrix:	Water	Prepared:	06/28/10 12:00						
Units:	mg/L	Analyzed:	06/28/10 14:00						
Diln Fac:	1.000								

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC550288		75.00	77.03	103	90-110		
MS	QC550289	<10.00	150.0	162.1	108	67-130		
MSD	QC550290		150.0	150.6	100	67-130	7	20

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 220868 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2010-02

Location : Redwood Regional Park

Level : II

 Sample ID
 Lab ID

 SW-2
 220868-001

 SW-3
 220868-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>06/28/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 220868

Client: Stellar Environmental Solutions

Project: 2010-02

Location: Redwood Regional Park

Request Date: 06/22/10 Samples Received: 06/22/10

This data package contains sample and QC results for two water samples, requested for the above referenced project on 06/22/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High responses were observed for many analytes in the CCV analyzed 06/23/10 23:41; affected data was qualified with "b". Low recoveries were observed for gasoline C7-C12 in the MS/MSD for batch 164332; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Chain of Custody Record

7708 Lab job no	_
Date	

Laboratory Curtis and Tompkins, Ltd. Address 2323 Fifth Street Berkeley, California 94710				ethod of Shipment H	and De	livery	_											Date 1 Page o	1 f	
510-486-0900		0			rbill No.					/	7	/\	,		Analys	sis Req	quired			
Project Owner East Bay F Site Address 7867 Redv	Regional Pa	ırk Distr	rict		ooler No roject ManagerRich	ard Ma	kdisi	_	,	/,	, iers			//	7 /	/ /	7		7//	
Oakland, (California				Project Manager <u>Richard Makdisi</u> Telephone No. (510) 644-3123 Fax No. (510) 644-3859							3_	/ /							
Redwood F Project Name	-	rk			ax No(510) 644		0 Ph			8	4	X9			/ ,	/ ,		/ .	Rema	rks
Project Number 2010-03	2				amplers: (Signature)	Tal	Sw	$\overline{\mathbf{y}}$	/ /	/ /i	\$	\mathcal{J}	/ /	/ /	' /					
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	P	reservation Chemical	7/		//	7/	7 /			/ /	/ ,	/ ,	/ ,		
SW-2	Creek	6-22-1	POR45	W	3 70A 2500 ML	Υ	Yes (a)	N	5	X							1			
SW-3	Creek	6-22-1	හිත	w	J 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Υ	Yes (a)	N	5	X	X									
		<u> </u>																		
		-																		
		 				<u> </u>							-			_			<u> </u>	
		 				ļ							-							
						+										-	\dashv			
													-			-				
															-					
Relinquished by: Signature	lest	Date 3-29-16	Received	by:	BRU	Date	Relinquished O Signature	by: E	 حـک	22	≥0 i	1	Date	1	eived b	· / 1	7	1		Date
Teal Glass	6	22-1	5		en Panell					Par	ا م		6/22	2	Signatur	_	1/	GDU r	J. J.	6/27/10
Stellar Environ	mental (716	Printed		aine Tech	Time						′	Time		rinted	1 40	<u> </u>	<u>501</u>		i iiine i
CompanyStandard -		710	Compa	any	Teon	091			une) e	ch		1440	<u>'</u>	Compan	у		_ 4		1940
Turnaround Time:							Relinquished Signature	-					Date	1	eived b Signatur	•				Date
Comments:	-			······																
							Printed						Time	P	rinted .					Time
							Company							0	ompan	у				

COOLER RECEIPT CHECKLIST

Login # 210968 Date Received 6.12.10 Number of coo	lers 2
Client STEUME EM. Project Francis REGIM	n prex
Date Opened 6-12-10 By (print) 5-12-15 (sign) Date Logged in By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc) Y Shipping info	ES NO
2A. Were custody seals present? \(\subseteq YES \) (circle) on cooler on samples How many \(\subseteq Name \) Date \(\subseteq Date \)	NO
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)	ES NO NA BS NO ES NO ES NO
Bubble Wrap Feam blocks Bags None Cloth material Cardboard Styrofoam Paper 7. Temperature documentation:	r towels
Type of ice used: Wet Blue/Gel None Temp(°C)	?·5 ₁ 2·3
☐ Samples Received on ice & cold without a temperature blank	•
☐ Samples received on ice directly from the field. Cooling process had be	gun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES O
9. Did all bottles arrive unbroken/unopened?	(YES NO
10. Are samples in the appropriate containers for indicated tests?11. Are sample labels present, in good condition and complete?	VES NO NO
12. Do the sample labels agree with custody papers?	NO NO
13. Was sufficient amount of sample sent for tests requested?	NO
14. Are the samples appropriately preserved?	
	NO N/A
16. Was the client contacted concerning this sample delivery? Date	YES NO
IT TES, Who was cancer	J
COMMENTS	

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report Lab #: 220868 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2010-02 06/22/10 Matrix: Sampled: Water Units: ug/L Received: 06/22/10 1.000 Diln Fac:

Field ID: SW-2 Lab ID: 220868-001

Type: SAMPLE

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	ND	50	164332 06/23/10	EPA 8015B
MTBE	ND	2.0	164373 06/25/10	EPA 8021B
Benzene	ND	0.50	164373 06/25/10	EPA 8021B
Toluene	ND	0.50	164373 06/25/10	EPA 8021B
Ethylbenzene	ND	0.50	164373 06/25/10	EPA 8021B
m,p-Xylenes	ND	0.50	164373 06/25/10	EPA 8021B
o-Xylene	ND	0.50	164373 06/25/10	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Bromofluorobenzene (FID)	104	70-140	164332 06/23/10	EPA 8015B
Bromofluorobenzene (PID)	95	54-134	164373 06/25/10	EPA 8021B

Field ID: SW-3 Batch#: 164332 Type: SAMPLE Analyzed: 06/23/10

Lab ID: 220868-002

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	70-140	EPA 8015B	
Bromofluorobenzene (PID)	118	54-134	EPA 8021B	

NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Curtis & Tompkins Laboratories Analytical Report Lab #: 220868 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2010-02 06/22/10 Matrix: Water Sampled: Units: ug/L Received: 06/22/10 1.000 Diln Fac:

Type: BLANK Batch#: 164332 Lab ID: QC549819 Analyzed: 06/23/10

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	95	70-140	EPA 8015B	
Bromofluorobenzene (PID)	106	54-134	EPA 8021B	

Type: BLANK Analyzed: 06/24/10 Lab ID: QC549985 Analysis: EPA 8021B

Batch#: 164373

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
m,p-Xylenes o-Xylene	ND	0.50	

Surrogate		Result	%REC	Limits
Bromofluorobenzene (FID) NA			
Bromofluorobenzene (PID)		94	54-134

NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	220868	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2010-02	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC549820	Batch#:	164332				
Matrix:	Water	Analyzed:	06/23/10				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	961.7	96	73-127

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	96	70-140

Page 1 of 1 4.0

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 220868	3	Location:	Redwood Regional Park				
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2010-0	02	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZZ	Batch#:	164332				
MSS Lab ID:	220869-001	Sampled:	06/22/10				
Matrix:	Water	Received:	06/22/10				
Units:	ug/L	Analyzed:	06/24/10				
Diln Fac:	1.000						

Type: MS Lab ID: QC549821

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,266	2,000	2,141	44 *	68-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	101	70-140

Type: MSD Lab ID: QC549822

Analyte	Spiked	Result	%REC	Limits	RPD L	Lim
Gasoline C7-C12	2,000	2,274	50 *	68-120		20

	Surrogate	%REC	Limits	
Bro	mofluorobenzene (FID)	107	70-140	

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	220868	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2010-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	164332
Units:	ug/L	Analyzed:	06/23/10
Diln Fac:	1.000		

Type: BS Lab ID: QC549823

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.34	103	57-150
Benzene	10.00	10.64	106	70-122
Toluene	10.00	10.26	103	72-125
Ethylbenzene	10.00	10.53	105	72-126
m,p-Xylenes	10.00	10.29	103	73-126
o-Xylene	10.00	10.16	102	71-127

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	97	54-134

Type: BSD Lab ID: QC549824

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.74 b	107	57-150	4	46
Benzene	10.00	10.83 b	108	70-122	2	33
Toluene	10.00	10.35 b	104	72-125	1	25
Ethylbenzene	10.00	10.56 b	106	72-126	0	26
m,p-Xylenes	10.00	10.41 b	104	73-126	1	25
o-Xylene	10.00	10.53 b	105	71-127	4	25

Surrogate	%REC	Limits
Bromofluorobenzene (P	98	54-134

b= See narrative

RPD= Relative Percent Difference

Page 1 of 1

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	220868	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2010-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	164373
Units:	ug/L	Analyzed:	06/24/10
Diln Fac:	1.000		

Type: BS Lab ID: QC549989

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.06	101	57-150
Benzene	10.00	10.04	100	70-122
Toluene	10.00	9.953	100	72-125
Ethylbenzene	10.00	9.643	96	72-126
m,p-Xylenes	10.00	10.03	100	73-126
o-Xylene	10.00	9.864	99	71-127

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	94	54-134

Type: BSD Lab ID: QC549990

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.713	97	57-150	4	46
Benzene	10.00	10.63	106	70-122	6	33
Toluene	10.00	10.48	105	72-125	5	25
Ethylbenzene	10.00	10.32	103	72-126	7	26
m,p-Xylenes	10.00	10.71	107	73-126	7	25
o-Xylene	10.00	10.43	104	71-127	6	25

Surrogate	%REC	Limits
Bromofluorobenzene (PID	93	54-134

Total Extractable Hydrocarbons Lab #: 220868 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 2010-02 EPA 8015B Analysis: Matrix: 06/22/10 Water Sampled: Units: ug/L Received: 06/22/10 1.000 Diln Fac: Prepared: 06/23/10 Batch#: 164328 Analyzed: 06/24/10

Field ID: SW-2 Lab ID: 220868-001

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	240 Y	50	

Surrogate	%REC	Limits
o-Terphenyl	102	60-129

Field ID: SW-3 Lab ID: 220868-002

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	99	60-129

Type: BLANK Lab ID: QC549799

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits	
o-Terphenyl	95	60-129	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Total Extractable Hydrocarbons					
Lab #:	220868	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C			
Project#:	2010-02	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC549800	Batch#:	164328			
Matrix:	Water	Prepared:	06/23/10			
Units:	ug/L	Analyzed:	06/24/10			

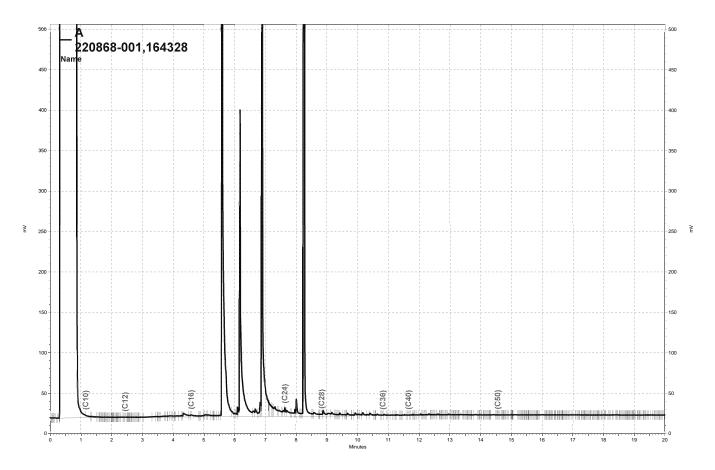
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,288	92	54-125

Surrogate	%REC	Limits
o-Terphenyl	94	60-129

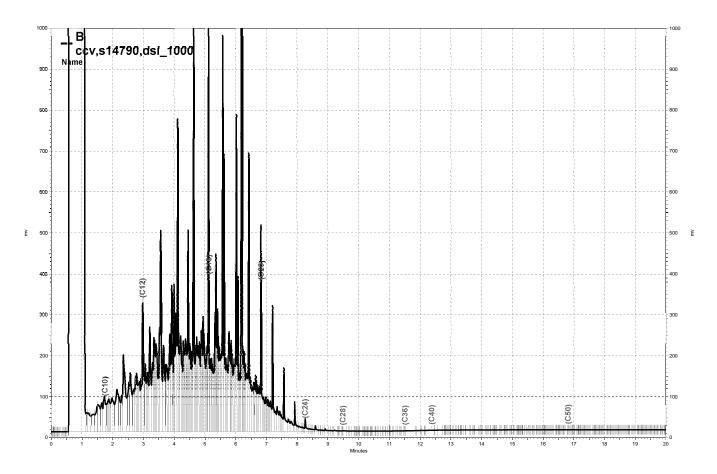
Page 1 of 1 9.0

Total Extractable Hydrocarbons					
Lab #: 220868	3	Location:	Redwood Regional Park		
Client: Stella	ar Environmental Solutions	Prep:	EPA 3520C		
Project#: 2010-0	02	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Batch#:	164328		
MSS Lab ID:	220873-007	Sampled:	06/22/10		
Matrix:	Water	Received:	06/22/10		
Units:	ug/L	Prepared:	06/23/10		
Diln Fac:	1.000	Analyzed:	06/25/10		

Type: MS Lab ID: QC549801


Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	574.1	2,500	2,768	88	46-131

Surrogate	%REC	imits	
o-Terphenyl	97	50-129	


Type: MSD Lab ID: QC549802

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,833	90	46-131	2	61

Surrogate	%REC	Limits	
o-Terphenyl	96	60-129	

\Lims\gdrive\ezchrom\Projects\GC17A\Data\175a016, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\175b017, B

APPENDIX D

Historical Groundwater and Surface Water Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

	D.:	T. (1.			Well N		T	T	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene		Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	٨
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	٨
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	٨
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	٨
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	
12	Feb-98	2,000	200	270	92	150	600	1,112	- 1
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	_	< 2
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	1.3	19	260	2,740	3031	9 <
46d	Aug-08 Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
			9,100					1043.1	
47	Sep-08	40,000		1.6	<0.5 <0.5	110 <0.5	910.0	1021.6 201.52	9.5
48	Dec-08	9,200	2,200	0.52			201.0		12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
52	Aug-09	1,900	3,100	1.6	1.8	11	23.8	38.2	7.1
53	Sep-09	1,400	1,800	<0.5	<0.5	<0.5	4.2	4.24	12
54	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
	Mar-10	2,000	4,300	< 0.5	<0.5	<0.5	3.5	3.45	<2
56	IVIAI-10	-,	-,						

					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	I	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	l	< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
29	Mar-04	<50	<100	< 0.3	<0.3	<0.3	<0.6	l	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6		< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
	Croundwat	ar monitorin	a in this w	ell discontin	ued with Al	ameda County H	ealth Care Service	es Agency appro	val

					Well N	1W-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Grou	undwater m	·					ty Health Care Se	0 , .	proval.
	1 . 04				_		plume's southern	i iimit	
14	Jun-04	< 50	<50				< 0.5		5.9 < 2.0
15	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< .

					Well N	1W-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.60	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.90	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.60	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.50	92	<2.0
40	Jun-10	5,800	5,000	20	<0.5	140	9.90	170	<2.0

					Well N	1W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2.0
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27

					Well N	1W-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2.0
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2.0
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0
37	Jun-10	110	340	1.4	<0.5	2.6	0.74	4.7	2.4

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0
24	Jun-07	4	2,200	120	<0.5	140	6.6	267	<4.0
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.0
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.0
37	Jun-10	2,000	3,500	14	<0.5	42	0.92	57	7.9

Well MW-12									
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	8.0	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

	Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)										
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	ı	NA		
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA		
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA		
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA		
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA		
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA		
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA		
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0		
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0		
	Sampling at this location discontinued after April 1999 with Alameda County Health Services Agency approval.										

	Sampling Location SW-2 (Area of Historical Contaminated Groundwater Discharge)								
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	< 0.3	< 0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51									

Date TVHg		Samplii	ng Location	n SW-3 (D	ownstream	of Contam	ninated Groundy	vater Discharge	Location SW-2)	
1	Event									MTBE
2	1	May-95	< 50	< 50	< 0.5	< 0.5	•	< 0.5	< 0.5	NA
4 Aug-96 69 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		-								NA
4 Aug-96 69 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	4		69	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7 Aug-97 < 50										NA
7 Aug-97 < 50	6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	7	Aug-97		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	8	-								NA
10	9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
12 Dec-99 < 50 <50 <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2.6 < 2.6 < 2.1 <	10	Sep-98			< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
12 Dec-99 < 50 <50 <50 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2.6 < 2.6 < 2.1 <	11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
14	12									< 2.0
15	13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
15	14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16 Sep-01										
17										NS
18										
19										
20 Sep-02 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
21 Dec-02 < 50										
22 Mar-03 < 50										
23										
24 Sep-03 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
25 Dec-03 60 < 100 < 0.3 < 0.3 < 0.3 < 0.6 < 5.0 26 Mar-04 < 50										
26 Mar-04 <50										
27 Jun-04 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
28 Sep-04 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
29 Dec-04 <50										
30 Mar-05 <50										
31 Jun-05 <50										
32 Sep-05 <50										
33 Dec-05 <50										
34 Mar-06 <50		·								
35 Jun-06 <50										
36 Sep-06 <50 120 <0.5 <0.5 <0.5 <0.5 7.8 37 Dec-06 <50										
37 Dec-06 <50										
38 Mar-07 <50										
39 Jun-07 <50										
40 Sep-07 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
41 Dec-07 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
42 Mar-08 <50										NS
43 Jun-08 <50										
44 Sep-08 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
45 Dec-08 <50										
46 Mar-09 <50										
47 Jun-09 <50										
48 Sep-09 NS NS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
49 Dec-09 <50										NS
50 Mar-10 <50 <50 <5.0 <5.0 <5.0 <5.0 <5.0 <0.5										
 										
	51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0

NS = Not Sampled (no surface water present during sampling event)