RECEIVED

9:48 am, Oct 23, 2009

Alameda County Environmental Health

THIRD QUARTER 2009 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

October 2009

THIRD QUARTER 2009 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

October 20, 2009

Project No. 2009-02

GEOSCIENCE & ENGINEERING CONSULTING

October 20, 2009

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist, Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Third Quarter 2009 Site Monitoring Report

Redwood Regional Park Service Yard Site - Oakland, California

Alameda County Environmental Health Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced Stellar Environmental Solutions, Inc. report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities between July 1 and September 30, 2009 (Third Quarter 2009) with an additional discussion of the sampling of monitoring well MW-2 conducted on August 7, 2009. Remedial bioventing activities are reported in separate technical submittals; however, a summary of these activities is included in the quarterly groundwater monitoring report.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact Mr. Neal Fujita of the EBRPD, or contact us directly at (510) 644-3123.

Sincerely,

Richard Makdisi, R.G., R.E.A.

Januar S. Waldin

Principal

cc: Carl Wilcox, California Department of Fish and Game Neal Fujita, East Bay Regional Park District State of California GeoTracker system Alameda County Environmental Health 'ftp' system

TABLE OF CONTENTS

Section		
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations	1
	Site Description	2
2.0	PHYSICAL SETTING	6
	Site Lithology	
3.0	Q3 2009 ACTIVITIES	13
	Groundwater and Surface Water Monitoring Activities Bioventing-Related Activities Monitoring Well MW-2 Monitoring	15
4.0	REGULATORY CONSIDERATIONS	18
	Groundwater Contamination	
5.0	MONITORING EVENT ANALYTICAL RESULTS	20
	Current Event Groundwater and Surface Water Results	
6.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	23
	Summary and Conclusions	
7.0	REFERENCES AND BIBLIOGRAPHY	27
8.0	LIMITATIONS	32

Appendices

Appendix A	Historical Groundwater Monitoring Well Water Level Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Groundwater and Surface Water Analytical Results

TABLES AND FIGURES

Tables Page			
Table 1 Well Construction and Groundwater Elevation Data – September 2009			
Table 2 Groundwater and Surface Water Sample Analytical Results – September 2009 21			
Figures Page			
Figure 1 Site Location Map			
Figure 2 Site Plan and Historical Sampling Locations			
Figure 3 Geologic Cross-Section Locations			
Figure 4 Geologic Cross-Sections A-A' through C-C'			
Figure 5 Geologic Cross-Sections D-D' through F-F'			
Figure 6 Groundwater Elevation Map – September 25, 2009			
Figure 7 Gasoline and Diesel Hydrochemical Trends in Monitoring Well MW-2			
Figure 8 Groundwater Analytical Results and Gasoline Plume – September 2009			

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (Alameda County Environmental Health) has provided regulatory oversight of the investigation since its inception (Alameda County Environmental Health Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) between August 1 and September 30, 2009:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant analysis and natural attenuation indicators;
- Collecting surface water samples for contaminant analysis; and
- Additional sampling of groundwater from monitoring well MW-2.

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Previous SES reports have provided discussions of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and hydrochemical trends and plume stability. Section 7.0 (References and Bibliography) of this report provides a listing of all technical reports for the site.

The general phases of site work included:

■ An October 2000 Feasibility Study report for the site submitted to Alameda County Environmental Health, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d).

- Two instream bioassessment events conducted in April 1999 and January 2000 to evaluate potential impacts to stream biota associated with the site contamination (no impacts were documented).
- Additional monitoring well installations and corrective action by ORCTM injection proposed by SES and approved by Alameda County Environmental Health in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- A total of 50 groundwater monitoring events, conducted on a quarterly basis since project inception (November 1994); a total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An additional ORCTM injection was conducted during the last quarter on March 10, 2009 to control elevated levels of hydrocarbons in the source area represented by MW-2.

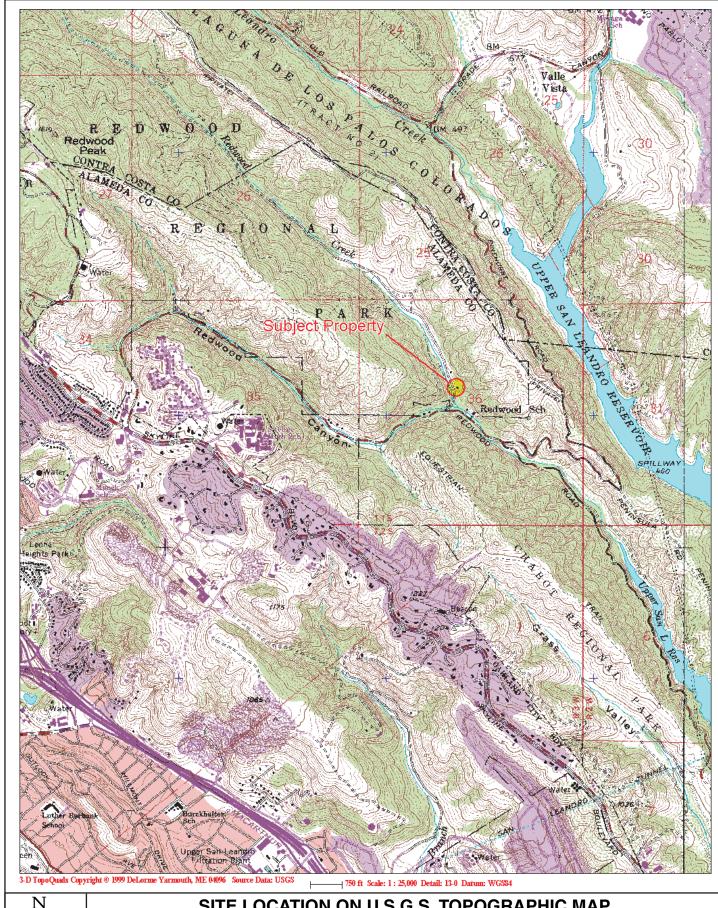
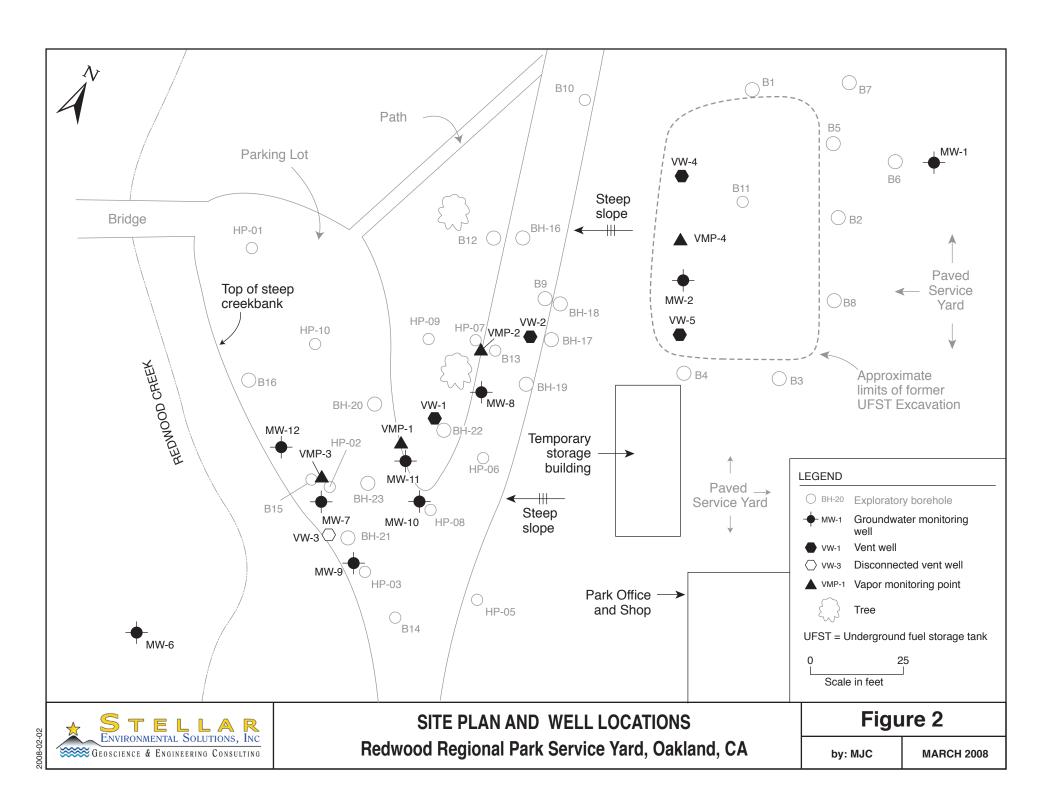

SITE DESCRIPTION

Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 2 shows the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is Alameda County Environmental Health (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. Historical Alameda County Environmental Health-approved revisions to the groundwater sampling program have included:


- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6;
- Discontinuing creek surface water sampling at upstream location SW-1

SITE LOCATION ON U.S.G.S. TOPOGRAPHIC MAP

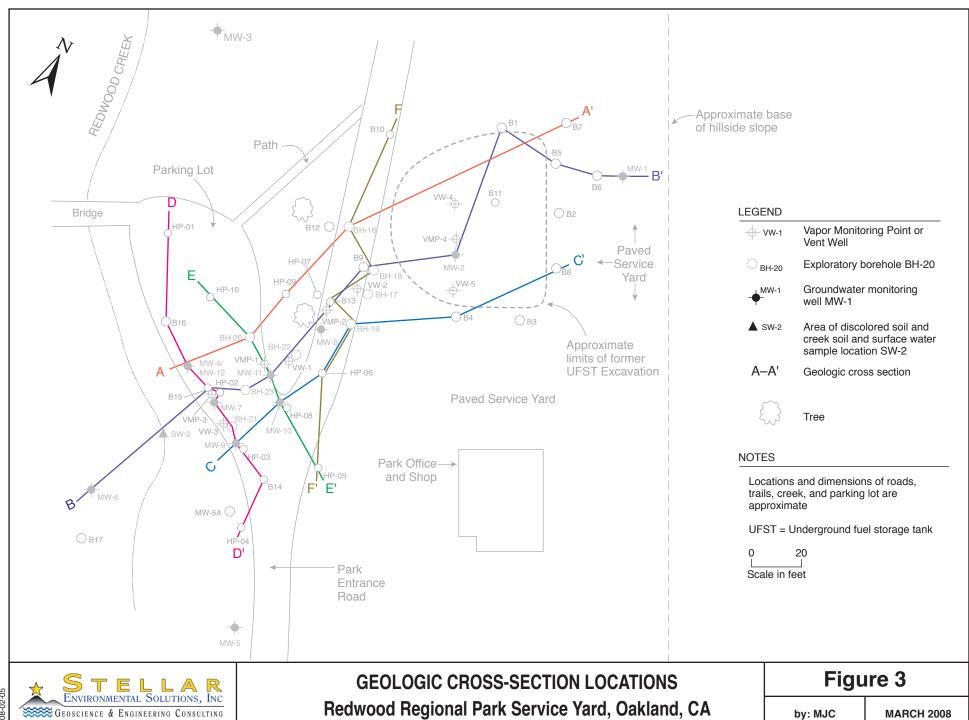
Redwood Reg. Park Service Yard By: MJC Oakland, CA MARCH 2006 Figure 1

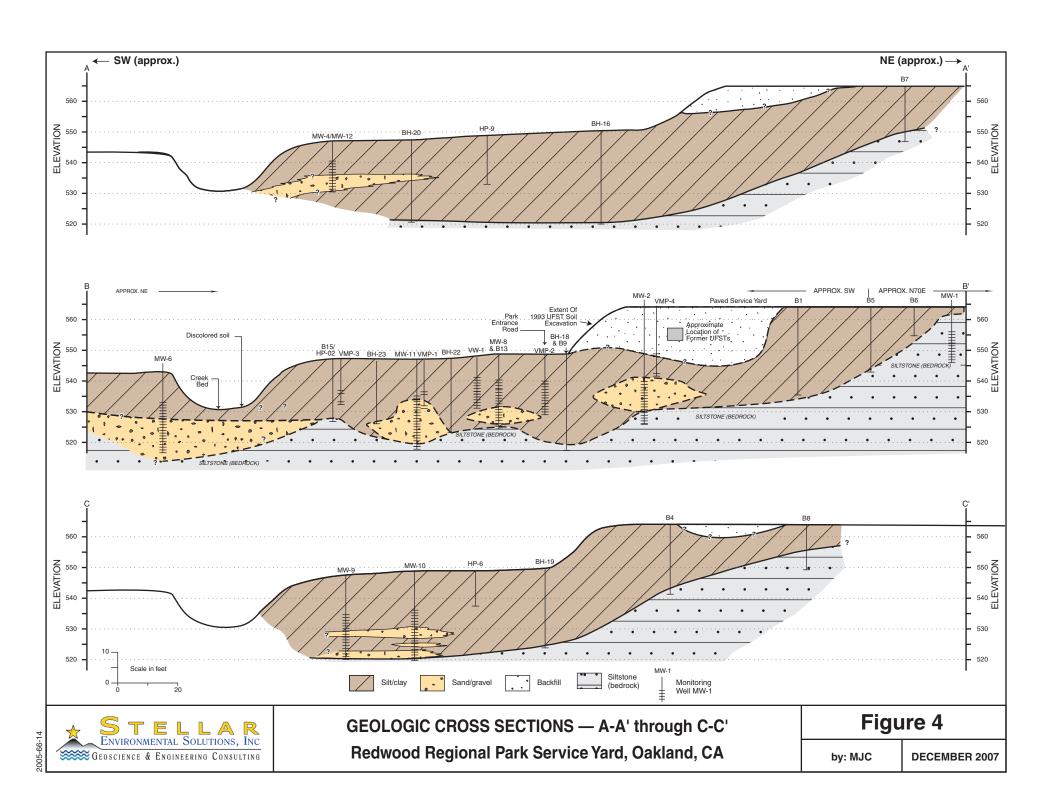
- Discontinuing field measurement and laboratory analyses for natural attenuation indicators, to be re-implemented following the bioventing corrective action; and
- Reducing the frequency of creek surface water sampling from quarterly to semi-annually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

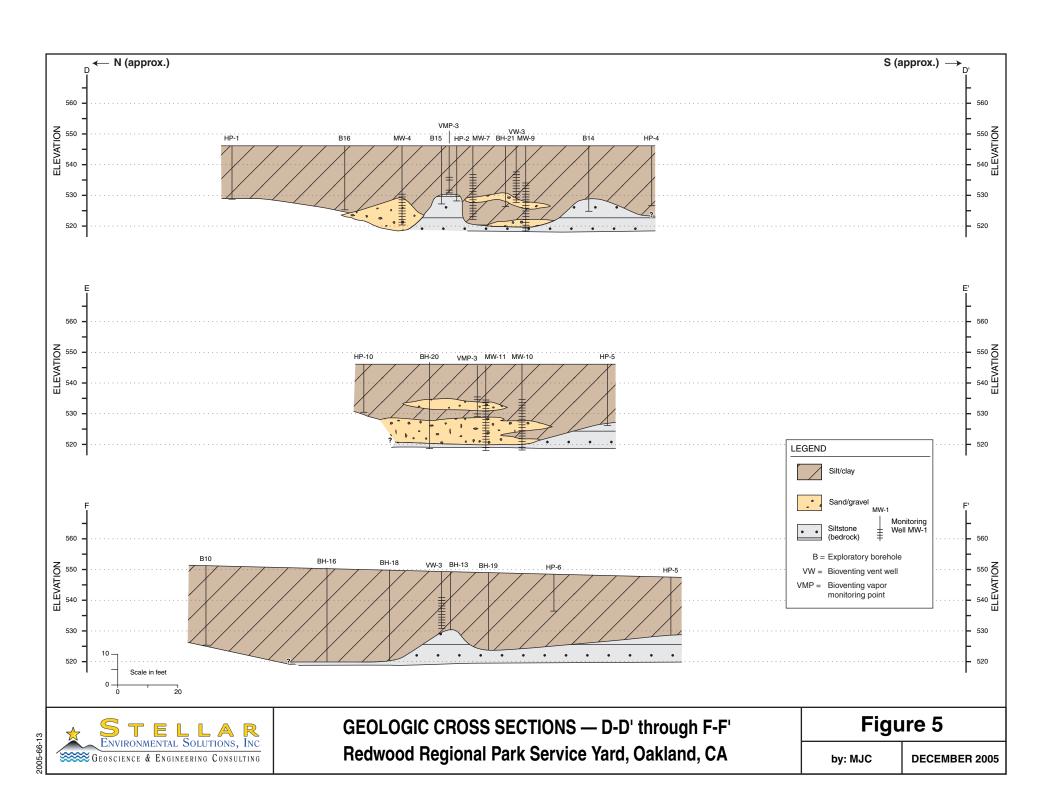
In addition, SES submitted a Remedial Action Workplan for Advanced Oxygen Releasing Compound ORC® Application to Source Area Contamination to ACEH on August 20, 2009. The Workplan was approved by ACEH and Mr. Jerry Wickham, the site regulator on October 2, 2009. SES is currently in the process of scheduling the work. This Workplan was requested by ACEH in a March 24, 2009 letter from Mr. Jerry Wickham requesting a Pilot Test Work Plan (PTWP) or Corrective Action Plan (CAP) be completed by May 27, 2009. Mr. Wickham subsequently gave EBRPD a 90-day extension, until August 27, 2009, to complete the PTWP or CAP.

The site is in compliance with State of California GeoTracker requirements for uploading of electronic data and reports. In addition, electronic copies of technical documentation reports published since Q2-2005 have been uploaded to Alameda County Environmental Health's file transfer protocol (ftp) system.

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous SES reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, Alameda County Environmental Health requested, via email, additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections parallel to and perpendicular to the contaminant plume's long axis.

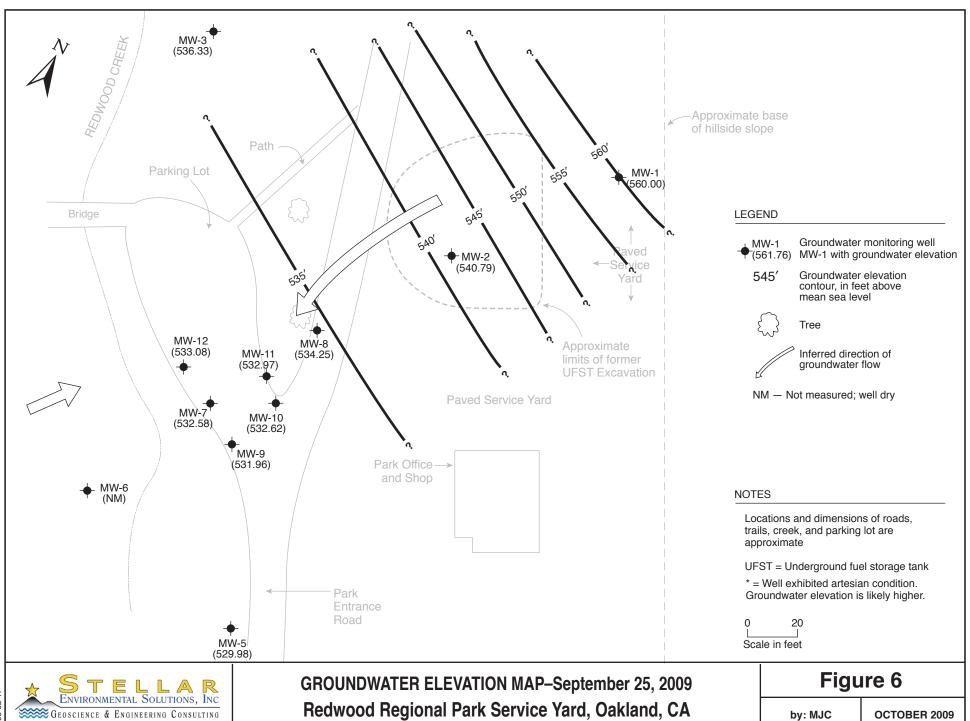

SITE LITHOLOGY


Figure 3 shows the location of the geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination was presented in a previous report (SES, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous SES report (SES, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map from that report, and Figures 4 and 5 from this report, indicate the following: the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-towest slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general

topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.


In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that area may have at one time undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well equilibrated water levels. Table 1 (in Section 3.0) summarizes current event groundwater elevation data. Appendix A contains historical groundwater elevation data. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous sub-section, local groundwater flow direction is likely more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

In the upgradient portion of the site (between well MW-1 and MW-2, in landslide deposit and the former UFST excavation backfill), the groundwater gradient is approximately 0.21 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.09 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UFST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

3.0 Q3 2009 ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q3 2009), conducted on September 25, 2009 and an additional discussion of purging and sampling of monitoring well MW-2 that was conducted on August 7, 2009. A summary of bioventing-related activities is also provided.

GROUNDWATER AND SURFACE WATER MONITORING ACTIVITIES

Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the Alameda County Environmental Health-approved SES technical workplan (SES, 1998a). Current event activities included:

- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Collecting an extra sample and chemical parameter measurements from MW-2 in August 2009 to document the affect of the ORCTM injection.

Creek sampling and groundwater monitoring/sampling was conducted on September 25, 2009. The creek sampling was conducted by the SES project manager. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

Because it appears that the previously-injected ORCTM has been depleted, continued monitoring of the natural attenuation parameters—dissolved oxygen, oxidation-reduction potential, nitrate, ferrous iron, and sulfate—is of marginal value until such time as additional corrective actions that would increase oxygen concentrations are implemented. Thus, monitoring for natural attenuation parameters was discontinued following the Q3 2004 event. However, these parameters were measured in MW-2 (discussed below) to monitor the recent ORCTM injection in that area.

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data –
September 25, 2009 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval Depth	TOC Elevation	Groundwater Elevation (9/25/09)	
MW-1	18	7 to17	565.83	560.00	
MW-2	36	20 to 35	566.42	540.79	
MW-3	42	7 to 41	560.81	536.33	
MW-5	26	10 to 25	547.41	529.98	
MW-6	MW-6 26 10 to 25		545.43	NM	
MW-7	24	9 to24	547.56	532.58	
MW-8	23	8 to 23	549.13	529.98	
MW-9	26	11 to 26	549.28	531.96	
MW-10	26	11 to 26	547.22	532.62	
MW-11	MW-11 26 11 to 26		547.75	532.97	
MW-12	7-12 25 10 to 25		544.67	533.08	

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All depth and elevations are feet (above U.S. Geological Survey mean sea level for elevations).

NM = Not measured, well dry

Groundwater Level Monitoring and Sampling

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by Alameda County Environmental Health in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the

potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 46 gallons) from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

Creek Surface Water Sampling

Surface water sampling was conducted by SES on September 25, 2009. Surface water sample collection was attempted from two Redwood Creek locations: SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and SW-3 (approximately 500 feet downstream of the SW-2 location). However, there was no water present in the SW-3 location. In accordance with a previous SES recommendation approved by Alameda County Environmental Health, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a very low stage with a maximum water depth of 7 inches. The water at SW-2 was more an isolated pond then a moving stream, with no water located in the down flow direction. At the SW-2 location, where contaminated groundwater discharge to the creek historically has been observed, a small amount of orange algae was noted growing on the saturated portion of the creek bank. This algae likely is utilizing the petroleum as a carbon source, and therefore is a good indicator of the presence of petroleum contamination. However, neither petroleum sheen nor odor was evident on the water surface. Orange algae, sheen, and/or odor were not observed at the SW-3 location.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for one month in January and February 2006. Bioventing system operations and maintenance (O&M) events had been conducted monthly since March 2006; however, they have been reduced to quarterly events beginning in 2009. East Bay Regional Redwood Park staff has been checking the system on a weekly basis to ensure it is functioning properly, and will notify SES in the event of a problem. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically has seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents.

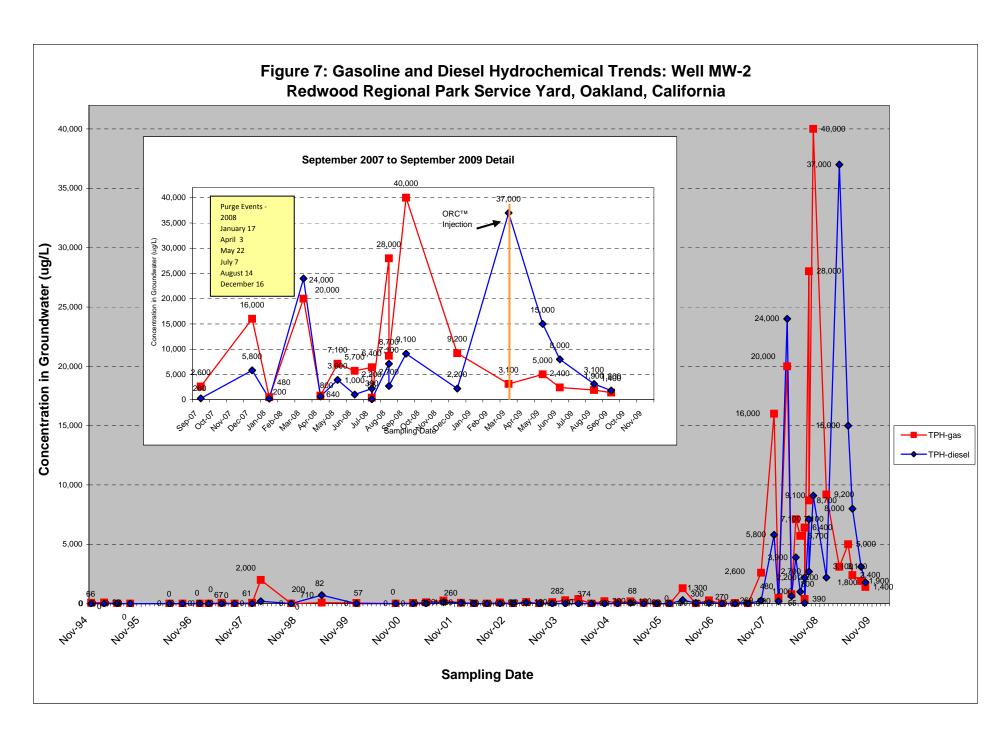
MONITORING WELL MW-2 ORCTM INJECTION AND MONITORING

Monitoring well MW-2, installed in the area of the former UFSTs, historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. The increase in all petroleum hydrocarbons at MW-2 initially raised concern that the cause was local (a significant reduction occurred after pumping 100 gallons or less). In 2008, SES initialized a program of more frequent monitoring and purging at MW-2 to mitigate against higher concentrations migrating downgradient toward Redwood Creek. The program showed limited success, with concentrations declining after limited purging, but rapidly increasing between monitoring events. This was the basis for this aggressive corrective action program involving the injection of the ORC® compound to provide a catalyst for enhanced biodegradation to occur. The remedy was designed to coincide with the higher groundwater elevations typically observed in spring.

Groundwater samples taken six days after the March 10, 2009 injection showed concentrations of total extractable hydrocarbons as diesel (TEHd) and total volatile hydrocarbons as gasoline (TVHg) at 37,000 micrograms per liter (μ g/L) and 3,100 μ g/L, respectively. Since that first post-injection sampling event, concentrations of TVHg and TEHd have steadily decreased, and were observed at 1,400 μ g/L and 1,800 μ g/L during the latest September 2009 event. Table 2 shows the post-ORC[®] injection monitoring analytical results. Figure 7 shows the TEHd and TVHg concentration plot for MW-2 over time. See Appendix C for the certified laboratory analytical reports.

Table 2
Post-ORC® Injection Monitoring Analytical Results
Monitoring Well MW-2

Date Sampled	TVHg (µg/L)	TEHd (µg/L)	DO (mg/L)
3-10-09	3,100	37,000	0.2
5-5-09	5,000	15,000	0.86
6-10-09	2,400	8,000	1.35
8-7-09	1,900	3,100	0.46
9-25-09	1,400	1,800	0.18


Notes

 $TVHg = Total\ volatile\ hydrocarbons\ as\ gasoline$

TEHd = Total extractable hydrocarbons as gasoline

 $\mu g/L = micrograms \ per \ liter$

mg/L = milligrams per liter

4.0 REGULATORY CONSIDERATIONS

The following is a summary of regulatory considerations regarding surface water and groundwater contamination. There are no Alameda County Environmental Health or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1986), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source; and 2) ESLs for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL document (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, Alameda County Environmental Health has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 2 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water Board, 2008), benthic

communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9 and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be considered by the lead regulatory agency, ADEH, only after the groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria and/or have been demonstrated to have reached an de-minimus asymptotic concentration. Residual contaminant concentrations in excess of screening level criteria might also be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

5.0 MONITORING EVENT ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the most recent monitoring event. Table 2 summarizes the contaminant analytical results, and Figure 7 shows the contaminant analytical results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record for the current event; Appendix D contains a summary of historical groundwater and surface analytical results.

CURRENT EVENT GROUNDWATER AND SURFACE WATER RESULTS

The most salient results of the Q3-2009 groundwater monitoring event is that contaminant concentrations were consistently lower than either Q2-2009 or the same time last year, Q3-2008, with the $1,000\,\mu\text{g/L}$ plume footprint significantly reduced. Well MW-2, where ORC® was injected upgradient earlier in 2009, showed significantly lower TEHd, TVHg, benzene, ethylbenzene, total xylenes, and MTBE concentrations.

While some improvement in concentrations occurred, the current quarter site groundwater concentrations in all but one of the sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12) exceeded their respective groundwater ESLs for TEHd, and TVHg under both the *groundwater* <u>is</u> and <u>is not</u> a drinking water resource criteria. The remaining well, MW-10, did not exceed the ESL for TVHg; however the ESL where groundwater <u>is</u> and <u>is not</u> a likely drinking water resource for TEHd was exceeded for this well.

Concentrations of benzene exceeded the ESL for drinking water in all wells except MW-2, MW-7, and MW-12, where the concentrations were below the laboratory detection limit. Ethylbenzene concentrations exceeded the ESL for where groundwater is and is not a drinking water resource in MW-7, MW-8, and MW-9. Ethylbenzene was detected in MW-11 and MW-12, but at levels below the most conservative ESL. There were no total xylenes detected above the most conservative ESL in any of the wells during this sampling event. Total xylenes were detected in well MW-2, MW-7, MW-8, and MW-9 but at levels below both ESLs. MTBE was found above the drinking water criteria in well MW-2. MTBE was also detected in wells MW-7 and MW-8 but at levels below the ESL. Toluene was not detected above the laboratory detection limit in any of the wells sampled.

Table 2 Groundwater and Surface Water Sample Analytical Results – September 25, 2009 Redwood Regional Park Corporation Yard, Oakland, California

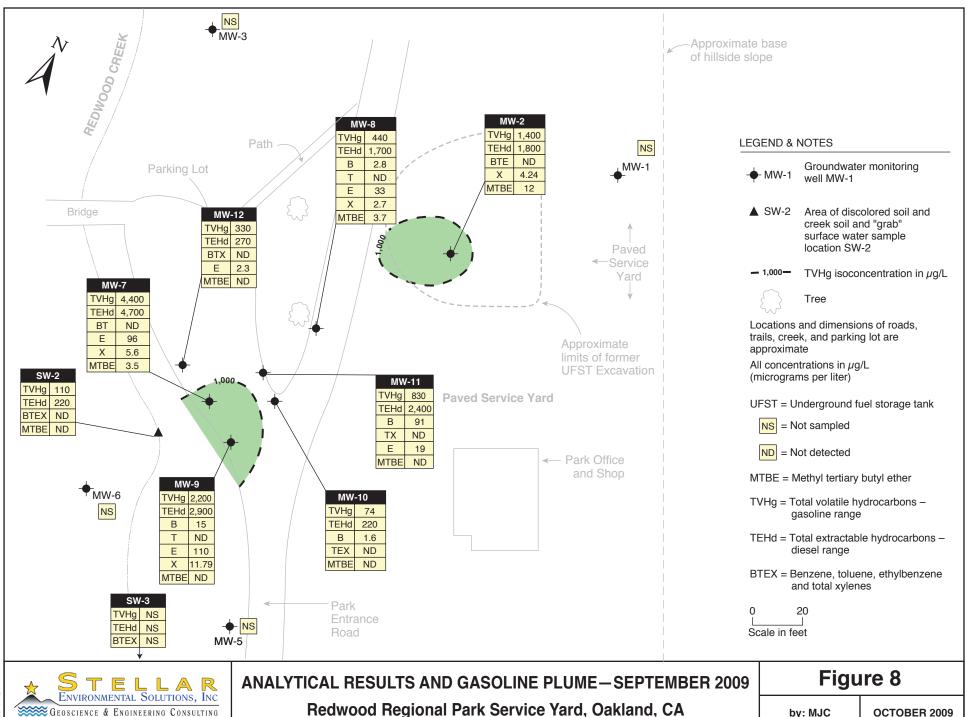
	Contaminant						
Location	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLES							
MW-2	1,400	1,800	< 0.5	< 0.5	< 0.5	4.24	12
MW-7	4,400	4,700	< 0.5	< 0.5	96	5.6	3.5
MW-8	440	1,700	2.8	< 0.5	33	2.7	3.7
MW-9	2,200	2,900	15	< 0.5	110	11.79	<2.0
MW-10	74	220	1.6	< 0.5	< 0.5	< 0.5	<2.0
MW-11	830	2,400	11	< 0.5	19	< 0.5	<2.0
MW-12	330	270	< 0.5	< 0.5	2.3	< 0.5	<2.0
Groundwater ESLs (a)	100 / 210	100/ 210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800
REDWOOD CREEK SURFACE WATER SAMPLES							
SW-2	110	220	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
SW-3	NS	NS	NS	NS	NS	NS	NS
Surface Water Screening Levels (a, b)	100	100	1.0	40	30	20	5.0

Notes:

 $MTBE = methyl \ \textit{tertiary}\text{-butyl} \ ether$

TVHg = total volatile hydrocarbons - gasoline range

TEHd = total extractable hydrocarbons - diesel range


All concentrations expressed in micrograms per liter (µg/L), equivalent to parts per billion.

Samples in **bold-face type** exceed the ESL and/or surface water screening levels where groundwater is a potential drinking water resource.

NS = Not sampled, dry

⁽a) Water Board Environmental Screening Levels (groundwater is/is not a potential drinking water resource) (Water Board, 2008).

⁽b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

by: MJC

OCTOBER 2009

GEOSCIENCE & ENGINEERING CONSULTING

The maximum TVHg and TEHd concentrations were detected in well MW-7, a downgradient well. The maximum benzene concentration was detected in well MW-8 (located in the middle of the plume) and the maximum ethylbenzene concentration in MW-9 (a downgradient well). The northern edge of the plume in the downgradient area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5.

Samples were not collected at surface water location SW-3, as there was no water present at the time of sampling. Surface water sample SW-2 contained concentrations of TVHg and TEHd above the surface water screening levels at $110 \,\mu g/L$ and $220 \,\mu g/L$, respectively.

Laboratory quality control samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Contaminant concentrations in Q3-2009 were lower than either Q2-2009 or Q3-2008, with the 1,000 µg/L plume footprint significantly reduced, possibly as a result of lower water levels. Well MW-2, where ORC® was injected upgradient earlier in 2009, showed significantly lower TEHd, TVHg, benzene, ethylbenzene, total xylenes, and MTBE concentrations.
- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (50 events in the initial site wells). A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for TEHd, TVHg, benzene, ethylbenzene, total xylenes, and MTBE in groundwater; and TVHg and TEHd in surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low creek flow conditions. An in-stream bioassessment evaluation conducted from 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet bgs) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- Current quarter site groundwater concentrations in all but one of the sampled (MW-2, MW-7, MW-8, MW 9, MW-11, and MW-12) exceeded their respective groundwater ESLs for

- TEHd, and TVHg under both the groundwater is and is not a drinking water resource criteria The remaining well, MW-10, did not exceed the ESL for TVHg; however the ESL where groundwater is and is not a drinking water resource for TEHd was exceeded for this well.
- Concentrations of benzene exceeded the ESL for drinking water in all wells except MW-2, MW-7, and MW-12, where the concentrations were below the laboratory detection limit.
- Ethylbenzene concentrations exceeded the ESL where groundwater is and is not a drinking water resource in MW-7, MW-8, and MW-9. Ethylbenzene was detected in MW-11 and MW-12, but at levels below the most conservative ESL.
- There were no total xylenes detected above the most conservative ESL in any of the wells during this sampling event.
- MTBE was found above the drinking water criteria in well MW-2. MTBE was also detected in wells MW-7 and MW-8 but at levels below the ESL.
- Toluene was not detected above the laboratory detection limit in any of the wells sampled.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination for TVHg and TEHd is currently centered around MW-7 at 4,400 μg/L and 4,700 μg/L, respectively.
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, midplume, and downgradient wells in recent history.
- Since September 2007, contaminant concentrations in well MW-2 (located in the source area) have increased dramatically, suggesting desorption from the original upgradient source area as a result of a drought-induced drop in water levels. Additional groundwater purging on MW-2 failed to reduce concentrations over time. The limited remedial application of ORCTM injected into the upper yard area (source area) in March 2009 appears to have had a beneficial impact of reducing dissolved hydrocarbon concentrations.
- Samples taken immediately after the injection, and in one to two month intervals since then (May, June, August, and during this event in September) have shown concentrations of both TVHg and TEHd to be decreasing. The ORCTM injection should be effective in reducing the contaminant concentration of the plume in MW-2 by accelerating the biodegradation significantly within approximately the first 6-12 months.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the heterogeneous environment where the plume is located limits effectiveness; with only MW-8 in the upper center of the plume

area showing a significant reduction in hydrocarbon concentrations. In other areas of the plume, it appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.

■ SES submitted a Remedial Action Workplan for Advanced Oxygen Releasing Compound ORC® Application to Source Area Contamination on behalf of EBRPD on August 20, 2009. The Workplan was approved on October 2, 2009 and is in the process of being implemented.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Implement the Stellar Environmental August 20, 2009 Remedial Action Workplan approved by ACEH to further mitigate the groundwater plume, preferably at the start of the rainy season.
- Sample MW-2 between regular quarterly sampling events to monitor the ORCTM injection remedy effectiveness as part of the CAP follow up.
- Continue the quarterly monitoring program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to operate the bioventing system as a part of the overall corrective action program, although it has limited potential to achieve significant reduction in contaminant mass throughout the affected area.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp system.

7.0 REFERENCES AND BIBLIOGRAPHY

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008.

 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (SES), 2009a. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORCTM Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009b. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.

- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2007d. Fourth Quarter 2006 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2005b. First Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Second Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.

- Stellar Environmental Solutions, Inc. (SES), 2005d. Third Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.

- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California.

 October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California.

 October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored				Gro	undwater E	levations ((feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
	560.43		536.41									
9/18/2008 12/17/2008	561.11	540.15 540.88	536.41	(b)	529.85 530.68	531.11 531.67	532.69 533.26	534.15 534.04	531.97 532.35	532.65 532.94	533.09 533.29	533.12 533.66
				(b)								
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

Chain of Custody Record

Laboratory <u>Curtis and Tompkins, Ltd.</u> Address <u>2323 Fifth Street</u> Berkeley, California 94710			Me Sh	ethod of Shipment Ha	nd Deliv	/ery												Date . Page	1	1 01
510-486-0900		•	— Ai	rdiii No						7	7	. ^	1	An	alysis F	Require	d		7	
Project Owner East Bay Regional Park Site Address 7867 Redwood Road Oakland, California	Distric	et .	— Pr	ooler NoRicha roject ManagerRicha elephone No(510) 644-0	rd Mako			Fillege	No. of Co.	Sniainers	100 Kg	100°								
Project Name Redwood Regional Parl	k			ax No(510) 644-3		<u> </u>	/	/ * /	/ so. /	\G\	Jag P							//	Ren	narks
Project Number <u>2006-46</u> 2008 -	02		Sa	amplers: (Signature) $oldsymbol{\mathcal{I}}$	1				/;	\checkmark/i	X	7/			/ ,	/ ,	/ /	/ /		
Field Sample Number Location/	Date	Time	Sample Type	Type/Size of Container	Pres	ervation Chemical	/ ,	/ ,				7 /	/ /	/ /						
	17/09	0845	W	3×40mL WAVIORS	X	MONE -	1	4	Ź	X	X	-(-	-(-	+	+	$\overline{}$		·. ·	
	, ,		V	7 2	$\overline{}$	NONE	\top	1		/-	-				-	-				· .
									1		\dashv				-	-				
											-				-					
																	-			
V - 2, 4			- <u>-</u>								+				+	-				
					•								-							
															-	-		 		
							\top		_	_					<u> </u>	+				
								-							+-	+	+			
													-	= -	-	-		-	 ,	
			*					\dashv			\dashv		-			-		-		
Signature 7	Date 1	Received Signate	•	100 be	Date 7/09	Relinquished by						- D	ate	Receiv	ed by:					Date -
0.11. =	757	Printed	ny <u>' (</u>	cey 86519	Firme.	Printed						- Ti	me	Prin	ted		· §.,.			- Time
Turnaround Time: 5 Day TAT						Relinquished by	:					D	ate	Receiv						Date
Please provide a GeoTrac	ker-EE	F for g	rounc	dwater samples only		Signature						-		Sigr	ature .					-
-Surface water samples co	llected lected	by Ste by Blai	ne Te	ch-Selvices.	•	Printed						- Ti	me	Prin	ted					- Time
				1/2/29		Company						_		Con	npany .					_

WELLHEAD INSPECTION CHECKLIST

Page _____ of ____

Date 3/7/0)	_ Client	STEILA	1/2	·			
Site Address Pro	D WOOD P	2F 610 NA	L PSI	zk SVC	YAR	D OA	RLAND	CA
Job Number	090807	-mu1		Tec				
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Olher Action Taken (explain below)	Well Not Inspected (explain below)
MW-2	\otimes	3388	Loa	LON		/	John	30.000
- fe A		7300		٨				
3								
<u></u>								
1 page 100 -								
			,					
) + 2								
			•			- WF III		
NOTES:		L						
	· · · · · · · · · · · · · · · · · · ·							
							:	
			• • •		· · · · · · · · · · · · · · · · · · ·			

WELL GAUGING DATA

Project # 09	0307-WW1	Date _ 3 7	1/09	Client STEUAR
				_
Site PED WOOD	PE GIUNAL	PARK; SUC.	y ARED	OARLAND, MA

<u> </u>	W						,		i	
		*** **				Volume of			Survey	
		Well	~:	Depth to	of	Immiscibles			Point:	
11175	m'	Size	Sheen /	Immiscible	Immiscible	Removed	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOB or	Notes
MW-2	0822	4					23.55	38.80	TUC	

										, i
						····				
		-								
				Territoria						

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	IE RED WOD	REG. PARK S ARIAND,	NC. YARD	PROJECT NUM	1BER 090807-4	rw (
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST		EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	°C TEMP.	INITIALS
HACH 2100P TURBIDMETER	060608017051	3/7/09	NTU: 201,20	NTU. 20.1,20		NH	br
MY PON L UNTRANETER	6222 712		PH: 4,7,10 Cond: 3900,00	PH: 7.00; N.00		20.7	un
Y S 1 550 A	06E1424A		10 mg/L	120: 96.09. @9.80 mg/L	yes	23.7	ww
			J				
			-	ť.			

LL MONITORING DATA SHI

Project #:	09080	7-W	~!	Client	STE	LAR			
Sampler:	m			Date:	$\sim 1 - 1$	υ9			
Well I.D.:	MW-2	2		Well I) Diameter	: 2 3	<u>(4)</u>	6 8	
Total Well	Depth (TI)): 35	3.80	Depth	to Wate	r (DTW):	23	. 55	***************************************
Depth to Fr	ee Produc	t:		Thickr	ness of F	ree Product	t (feet	t):	
Referenced	to:	≠vc)) Grade	D.O. N	Aeter (if	req'd):		YSI HACH	
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20)) + DTW]:	26	.60	
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump		Sampling Me	ethod: Other:	Bailer Disposable Bai Extraction Por Dedicated Tubi	rt
1 Case Volume	Gals.) XSpec	3 ified Volun	$\frac{1}{10000000000000000000000000000000000$	_ Gals.	Well Diamete 1" 2" 3"	0.04 0.16 0.37	Well Dia 4" 6" Other	ameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp	pН	Cond. (mS or as)	1	oidity ΓUs)	Gals. Remo	ved	Observation	ıs
0836	16.3	6.26	947	6	4	9.9		adur	
0838	15-8	6.85	864	35	5	19.8		((
0840	16.1	7.05	942	4	(1)	29.7		· · ·	
					·				
Did well dev	water?	Yes (No)	Gallons	s actuall;	y evacuated	1: Z	'9.7	
Sampling D	ate: 8 7/	09	Sampling Time	e: 08	42	Depth to W	/ater:	26.31	
Sample I.D.	: Mw-7	<u>ا</u>		Labora	tory:	Kiff CalSc	ience	Other Call	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: 5	ee	WC	
EB I.D. (if a	pplicable)	:	(i) Time	Duplica	ate I.D. ((if applicab)	le):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:			
D.O. (if req'	d): Pr	e-purge:	The state of the s	mg/L	P	ost-purge.		0.46	mg/L
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:			mV

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME	ME STELLAR	01 >7 2	4 Drown	PROJECT NUMBER	BER 640927-		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF STANDARDS TEST USED	.11	EQUIPMENT READING	BRAT	- 11	0 5 1 1 2
HACH EIGOP OF TUBBIDITY METER	060600017121	9-25-09	5 /60/580	545/25/5	70%		WILLY C
my hon ULTAMBTER	7209729	9-25-09	4.0/7.0/10.0	4.01/7.05/	765	C. 4. A	
V	73	7.5	CHOOCELVIT	3865	765	65.5	(\(\(\tau \)
751 550 D.O. ME	06 E 22 6 83 4 B	0001	(00%	1.7:1	765		I
			·				
							-

Page of ____

WELLHEAD INSPECTION CHECKLIST

				>161	-L or 12				
Date _	9-	-25-09	_ Client	REDV	100D	ROGI	OMAL	PARK	8012 VI
Site Add	ress	OAKLA	~D,	CA					
Job Num	ber	690925	- FSI		. Te	chnician	FS		,
Well	ID	Well Inspected - No Corrective Action Required	Waler Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
Mw-1	A								
MW-2	4				7.				
MW-3	4				4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
MW-5	Ь								
Mw-6	4								
Mw-7	. 4								
8-wm			3/25	Bout	5	m1531m	<u>.</u>		
Mw-9	4			~ · · · · · · · · · · · · · · · · · · ·					
Mw-10	-	×F	2/2	TA	35	STRIP	PE D		
Mw-11	予	~							
MW-12									
*	LO	CKED STA	D PI PE						
NOTE	 S:						L		
	_							· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·								

WELL GAUGING DATA

Project # _	09 09 25 - FSI	_ Date	Client _	STELLAR	
		_			

Site REDWOOD REGIONAL PARK, OAKLAND

<u> </u>		1	<u> </u>		r				·	
	İ				Thickness	1			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /				Depth to water		TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOC	Notes
Mn-1	845	Н					5.83	1876	Toc	14.
Mw-2	835	4					25.63	38.73		
Mw-3	912	-					24.48	45.86		
MW-5	855	4					17, 43	26,96		
MW-6	935	4					DPM	14.1)		
MW-7	905	2					14.98	25.20	Salar Canada Can	
Mar - 8	920	2					14.88	72.12		
NW-9	900	2					17.32	30.05		
MW-10	925	2					14.60	28.15		
Mw-11	916	2					14.78	28_50		
MW-12	936	2					11.59	23.59	V	
					A-1-1-1					
					***			ALLO M		
				2000						
-										

V LL MONITORING DATA SHE

Project #:	090	925	- FS 1	Clien	t: STEL	LAR	ENV.	@ REDWOOD REGIONAL	
Sampler:	F	5		Date:	9	- 25	-09		
Well I.D.:	M~	- 2		Well	Diamete		3 4) 6 8 ,	
Total Well	Depth (TI	D): 3	873	Depth	to Wate	er (DT	W): 2	5,63	
Depth to F	ree Produc	t:		Thick	ness of F	ree P	roduct (fe		
Reference	d to:	(PVC	> Grade		Meter (if			YSI HACH	
DTW with	80% Rech	arge [(F	Height of Water	Colum	ın x 0.20) + D'	ΓW]:	28.25	
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme	ent Extra Other	Waterr Peristalti ction Pum	С	Samj	oling Method	Bailer Disposable Baile Extraction Port Dedicated Tubing	
l Case Volume	Gals.) X	3 ified Volun	$= \frac{25.8}{\text{Calculated Vo}}$	_	Well Diamete 1" 2" 3"	0.04 0.16 0.37	iplier Well 4" 6" Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163	
Time	Temp (For °C)	pH 7.4	Cond. (mS or (S)	(N	bidity TUs)		Removed	Observations	
1013 W	61.6	S.S. R DEN	983	& &	12		CALS	O DO R	36.0
1240	67.0.3F	7.(897	-	16	-			
Did well de	water? 🗸	Yes	No	Gallon	s actuall	y evac	cuated:	12	
Sampling D	ate: 9-29	5-09	Sampling Time	e: (2	40	Deptl	n to Wate	r: 26.88	
Sample I.D.	: ~	w-2		Labora	itory:	Kiff	CalScience	Other C#T	
Analyzed fo	or: TPH-G) RTEX	MTBE TPH-D	Oxygen	ates (5)	Other:			
EB I.D. (if a	applicable)	•	@ Time	Duplic	ate I.D. (if app	licable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:		Andrew Control of the	
O.O. (if req'	d): Pr	e-purge:		mg/ _L	Po	ost-pur	ge:	5.68	mg/L
D.R.P. (if re	eq'd): Pro	e-purge:		mV	Po	ost-pur	ge:	- CT STANDARD COUNTY SEA OF THE INTERNAL AND AND THE STANDARD COUNTY SEA ALSO AND AND COUNTY SEA AND AND COUNTY SEA AND COUNTY	mV ./

L MONITORING DATA SH

Project #	796	925	- FS 1	Client:	STELL	AR	EmV.	@	REDWOOD REGIONAL PAP		
Sampler:	F	5		Date:	9-	25	- 09				
Well I.D.	:	1~-7	7	Well Diameter: 2 3 4 6 8							
Total We	ll Depth (T	D): 2	5.20	Depth to Water (DTW): 14 98							
Depth to I	Free Produc	et:		Thickness of Free Product (feet):							
Reference	ed to:	(PVC	> Grade	D.O. Meter (if req'd): YSI HACH							
DTW with	1 80% Recl	arge [(I	Height of Water	· Column	x 0.20)	+ DT\	W]:	7	-o 5		
Purge Method	Bailer Visposable I Positive Air Electric Sub	Displaceme	ent Extrac Other				ng Method Other:		Bailer Disposable Bailer Extraction Port Dedicated Tubing		
1.7 1 Case Volume		3 ified Volun	= 5.1 nes Calculated Vo	Gals.	ell Diameter 1" 2" 3"	Multiplie 0.04 0.16 0.37	er Well I 4" 6" Other	Diamete	r <u>Multiplier</u> 0.65 1.47 radius ² * 0.163		
Time	Temp For °C)	рН	Cond. (mS or 🔕)	Turbid (NTU	-	Gals. R	emoved		Observations		
1054	58.2	6.9	791	7100	0 0	1 .	.7 ODOR		ODOR		
1056	574	6.7	786	71000	>	3.4	4		۷,		
10 59	57.2	6.7	787	7 (60	0	5.	l		٠,		
						· · · · · · · · · · · · · · · · · · ·					
Did well de	water?	Yes (NO	Gallons a	l ctually	evacua	ited:	2.	1		
Sampling D)ate: 9-25	-09	Sampling Time	: 13.0	5 D	epth to	o Water	: 1	5.05		
Sample I.D	.: nn	, - 7		Laborator			IScience		ther CIT		
Analyzed fo	or: TPH-G	RTEX (MTBE (TPH-D)	Oxygenates	(5) O	ther:					
EB I.D. (if a	applicable):		(i) Time	Duplicate	I.D. (if	applic	able):				
Analyzed fo	or: TPH-G	BTEX 1		Oxygenates		ther:					
O.O. (if req	'd): Pre	-purge:	MATERIAL CONTRACTOR AND ACTION OF THE STATE	mg/L	Post	t-purge:			mg/L		
D.R.P. (if re	eq'd): Pre	-purge:		mV	Post	-purge:			mV		

			LIMONI	TORIN	G DAT	'A SH					
Project #:	796	925	- F5 1	Clien	t: STEL	LAR E	mv.	e REDWOOD REGIONAL PAP			
Sampler:		5		Date:		-25 -		(1)			
Well I.D.:	MM	- 8		Well Diameter: (2) 3 4 6 8							
Total Well	Depth (T)	D): 1	22.12	Depth to Water (DTW): (4-88							
Depth to F	ree Produc	et:		Thick	ness of l	Free Produ	ict (fe				
Referenced	l to:	(PVC	> Grade		Meter (i			YSI HACH			
DTW with	80% Rech	narge [(Height of Wate:		***************************************]:	16.32			
Purge Method:	Bailer Disposable I Positive Air Electric Subi	Displacen	nent Extra Other	Waterr Peristalti ction Pumj	С	Sampling	Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
l Case Volume	Gals.) XSpec	3 ified Volu	mes = 3.6	_ Gals. olume	Well Diamet 1" 2" 3"	ter Multiplier 0.04 0.16 0.37	Well i 4" 6" Other	Diameter Multiplier 0.65 1.47 radius² * 0.163			
Time	Temp (F)r °C)	pН	Cond. (mS or (aS))	1	bidity TUs)	Gals. Ren	noved	Observations			
1141	60.9	7.0	829	710	500	(-2					
1144	60.1	6.9	819	710	00	2.4					
((47	60.4	6.9	833	710	9 9	3.6					
Did well dev	water?	Yes		Collon	2 0 0 0 11			0			
			Samilina Time			y evacuate		3.6			
Sampling Da		<u> </u>	Sampling Time		25	Depth to					
Sample I.D.:				Labora	tory:	Kiff CalS	cience	Other C#T			
Analyzed fo) ETEX	(MTBE) (TPH-D) @	Oxygena	ites (5)	Other:					
EB I.D. (if a		•	Time	Duplica	ate I.D. ((if applical	ole):				
analyzed for	· · · · · · · · · · · · · · · · · · ·	BTEX	MTBE TPH-D	Oxygena	. ,	Other:					
0.0. (if req'o	d): Pro	e-purge:		mg/L	Pe	ost-purge:	A CANADA	mg/L			

mV

Post-purge:

O.R.P. (if req'd):

			LL MONI	TORING DAT	ASH						
Project #:	09 e	925	- F5 I	Client: STEL	Client: STELLAR ENV. @ REDWOOD						
Sampler:	F	5		Date: 9							
Well I.D.:	MN	1-9		Well Diameter: 2 3 4 6 8							
Total Well	Depth (T	D): 3	30.05	Depth to Wate	er (DTW):	7.32					
Depth to F	ree Produc	et:		Thickness of I	Free Product (fe						
Reference	d to:	(PVC	> Grade	D.O. Meter (it	·	YSI HACH					
DTW with	80% Recl	narge [(]	Height of Wate	r Column x 0.20		19.86					
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other: Other:											
2. l_(I Case Volume	Gals.) XSpec	3 ified Volum	= 6.3 Calculated V	Gals. Olume Well Diamet 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163					
Time	Temp (°F) r °C)	рН	Cond. (mS or QS)	Turbidity (NTUs)	Gals. Removed	Observations					
1125	58.7	6.5	839	71000	2.1	ODOR					
1128	57.8	6.8	936	71000	4.2						
1132	57.7	c.8	954	71000	6.3						

Did well de	water?	Yes (NO	 Gallons actuall	y evacuated:	6.3					
Sampling D	ate: 9-29	5-09	Sampling Time	e: 13 10	Depth to Water						
Sample I.D.	; :	N-9		Laboratory:	Kiff CalScience						
analyzed fo	r: (PH-G) RTEX	MTBE TPH-D	Oxygenates (5)	Other:						
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D. ((if applicable):	1					
analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
O. (if reg'	d): Pr	e-purge:	The second secon	mg/1 Po	ost-nurge:	mg/,					

mV

Post-purge:

O.R.P. (if req'd):

LL MONITORING DATA SH

			TATOLIAN I	I ORIIA DAI	F& OLL					
Project #:	796	925	- F5 I	Client: STEL	LAR ENV.	e REDWOOD REGIONAL PAR				
Sampler:		<u> </u>		Date: 9-25-09						
Well I.D.:	M W		10	Well Diameter: 2 3 4 6 8						
Total Well	Depth (T)	D): 2	8.15	Depth to Wate	er (DTW):	14.60				
Depth to F	ree Produc	et:		Thickness of	Free Product (fe	eet):				
Referenced	l to:	(PVC	> Grade	D.O. Meter (in		YSI HACH				
DTW with	80% Rech	narge [(I	Height of Water	Column x 0.20)) + DTW]:	17.31				
Purge Method:		Bailer Displacem		Waterra Peristaltic tion Pump	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing				
2,2 ((I Case Volume	Gals.) XSpec	3 ified Volur		_ Gals. lunne	Nultiplier Well	Diameter Multiplier 0.65 1.47 r radius² * 0.163				
Time	Temp °For °C)	pН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations				
1036	60.3	7.0	859	169	2.2					
(038	59.3	7.0	852	458	4.4					
1041	54.1	6.9	810	340	6.6					
Did well dev	water?	Yes (No.	Gallons actuall	y evacuated:	6.6				
Sampling Da	ate: 9-25	-09	Sampling Time	: 1255	Depth to Wate	r: 14.70				
ample I.D.:	Mu	v - 10]	Laboratory:	Kiff CalScience	Other CtT				
alyzed for	r: TPH-G) RTEX	MTBE TPH-D (Oxygenates (5)	Other:					
B I.D. (if a _l	pplicable):		(i) Time	Duplicate I.D. ((if applicable):					
nalyzed for	TPH-G	BTEX	МТВЕ ТРН-D (• • • • • • • • • • • • • • • • • • • •	Other:					
O. (if req'c	d): Pre	e-purge:		mg/L Po	ost-purge:	mg/L				

mV

Post-purge:

O.R.P. (if req'd):

			V LL MONI'	TORING DAT	TA SH						
Project #:	୭୩୯	0925	- F5 I	Client: STE	LLAR ENV.	@ REDWOOD REGIONAL PAR					
Sampler:		5		Date:	1-25-09	1					
Well I.D.:	M	n - 11		Well Diameter: 2 3 4 6 8							
Total Well	Depth (T	D): 2	28.50	Depth to Water (DTW): (4 78							
Depth to F	ree Produc	et:		Thickness of	Free Product (fe						
Referenced	l to:	(PVC	> Grade	D.O. Meter (i		YSI HACH					
DTW with	80% Recl	narge [(.	Height of Water			17.52					
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Displacen	nent Extra Other	Waterra Peristaltic ction Pump Well Diame	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing					
1 Case Volume	Gals.) XSpec	3 ified Volum	= 6.6	Gals.	0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163					
Time	Temp °Før °C)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations					
1154	59.5	6.9	794	667	2.2						
1158	59.4	6.7	848	250	4.4						
1202	59.6	6.7	857	592	6.6						
Did well dev	water?	Yes (No	Gallons actual	ly evacuated:	6.6					
Sampling Da	ate: 9-2	5-09	Sampling Time	: 1340	Depth to Water	: 14.93					
Sample I.D.:	<u> </u>	11-w.		Laboratory:	Kiff CalScience						
Analyzed for	r: TPH-G	RTEX	MTBE (TPH-D)	Oxygenates (5)	Other:						
EB I.D. (if a	pplicable)		<u> </u>	Duplicate I.D.	Ouplicate I.D. (if applicable):						
analyzed for		BTEX		Oxygenates (5)	Other:						
O.O. (if req'o	1): Pr	e-purge:		mg/L P	ost-purge:	mg/L					

mV

Post-purge:

O.R.P. (if req'd):

LL MONITORING DATA SH

Project #:	79c	926	- FS 1	Client: STE	LAR ENV.	@ REDWOOD					
Sampler:	F		E outs' 1		-25-09	@ REGIONAL PAI					
Well I.D.:		[W·12]		Well Diameter: 2 3 4 6 8							
Total Well			-3.59		Depth to Water (DTW): (1.59						
Depth to F	ree Produc	et:			Free Product (fe						
Referenced		(PVC	> Grade	D.O. Meter (i		YSI HACH					
DTW with	80% Rech	arge [(I	Height of Water	r Column x 0.20	0) + DTW]:	13.99					
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier Multiplier											
Lase Volume	Gals.) X	3 ified Volun	nes Calculated Vo	_ Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47					
Time	Temp (F)r °C)	рН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations					
1110	58.2	6.8	685	461	2						
1113	57.3	6.7	666	713	4						
1116	56.9	6.6	660	71000	6						
Did well der	water?	Yes '	NO)	Gallons actuall	y evacuated:	6					
Sampling Da	ate: 9-25	-09	Sampling Time	: 1312	Depth to Wate						
Sample I.D.:		v-12		Laboratory:	Kiff CalScience						
analyzed for	r: TPH-G	RTEX (MTBE (TPH-D)	Oxygenates (5)	Other:						
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. ((if applicable):						
analyzed for	TPH-G	BTEX	**************************************	Oxygenates (5)	Other:						
O.O. (if req'o	d): Pre	e-purge:		mg/ _L P	ost-purge:	mg/L					
R.P. (if red	g'd): Pre	e-purge:		mV P	ost-purge:	mV					

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 214036 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2008-02

Location : Redwood Regional Park

Level : II

Sample ID MW-2 <u>Lab ID</u> 214036-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature

Project Manager

Date: <u>08/17/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 214036

Client: Stellar Environmental Solutions

Project: 2008-02

Location: Redwood Regional Park

Request Date: 08/07/09 Samples Received: 08/07/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 08/07/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for bromofluorobenzene (FID) in MW-2 (lab # 214036-001); the corresponding trifluorotoluene (FID) surrogate recovery was within limits. High surrogate recovery was observed for bromofluorobenzene (PID) in MW-2 (lab # 214036-001); the corresponding trifluorotoluene (PID) surrogate recovery was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

214036

Chain of Custody Record

Lab job no	
1/2	69
Date 8//	1
Page	01

Laboratory Curtis and Tom					ethod of Shipment <u>Ha</u>			-											Page _	1 of	1
Address 2323 Fifth Stre Berkeley, Calif		<u> </u>		— St	nipment No.			-		_							••				
510-486-0900	011110 0 11 11	<u> </u>		Ai	rbill No.			-					N		Analy	sis Re	quired	_,		/	
Project OwnerEast Bay R	egional Pa	rk Distri	ict		ooler No.			-		/	//	/ci./	80/	$\sqrt{}$					/ /		
Site Address		n Diou			roject Manager <u>Richa</u>		lisi	-	/	\ <u> </u>	ainers		/ ∤ ∧	/ /	/ /	/ /	' /	' /	′ /		
Site Address Oakland, California Telephone No. (510) 644-3123					No. of Co.		di	/\v3\						//							
Project Name Redwood F	Regional Pa	ark		Fa	ax No(510) 644-	- Toronton		- ,	/ .	ر بخخ /	/ (\$\f	W.	γ	/ ,	/ ,	/ ,	/ ,	/ /	/ /	Remar	rks
Project Number -2006-10	7 200B	-02	_	Sa	amplers: <i>(Signature)</i>	N		_ /		/;	*/ ,	XX.	*/ /								
	Location/		Γ	Sample	T	Pre	servation			13	15 / T		/ /								
Field Sample Number	Depth	Date	Time	Туре	Type/Size of Container 3×40×1 UDA Vims	Cooler	Chemical HCL	/	_	//>	/ .y /	14				\leftarrow		-	<u>/</u>		
MW-2		2/1/09	0845	W	1 x1LAMBER	X	NOVE		4	X	X	X									
										Ì											
		1																			
											1	_									
		ļ				\vdash								ļ —			-	-			
						1								-			-				
	r			ļ		ļļ								 		ļ.,		<u> </u>			
															L	<u> </u>					
																	}		ļ		
	1	1	 																		
	-		ļ	 		+			-			_		 			\vdash				
		 		ļ		<u> </u>		<u> </u>	ļ	-			_	ļ		-		-	<u> </u>		
A		Д				Ļl	····							<u> </u>	<u> </u>						1
Relinquished by:		Date		d by:	I wo by	Date	Relinquished t	•					Date	Re	eceive Signa	-					Date
	,	3/7/09	Signa	ature /	D	2/7/09	Signature _				***************************************		-		Signa						
Printed WILLIAM W	DNG	Time	Print	ed 🎞	cey Dasia	Time.	Printed						Time	•	Printe	ed					Time
Stellar Enviror	mental		Com	((Caf-1	101.3	Company .								Comr	nanv					
Company		L	Com	party			Relinquished					Date									
Turnaround Time: 5 Day TAT			DE for		dwater samples only		Signature .						_			iture _					
-Surface water	rsamples	collecte	d by S	tellar E	nvironmental Solution		-								<u> </u>						
*Greundwater	samples c	cllected	by Bl	aine Te	ech Services.		Printed						- Tim	9	Printe	ed					Time
					1/2/05		Company .						-		Comp	oany					

Curtis & Tompkins,	47
--------------------	----

CHECKTIZL	KECEILL	COOPER

Rev. 6 Number 1 of 3 Effective: 23 July 2008 s/Cooler Receipt Checklist_rv6.doc	Z:/qc/forms/checklist	Z		Client Services 2.1.1	SOP Volume: Section: Page:
				·	*.
				S	COMMENTS
Date: XES NO	e delivery?	lqmss sidt ga		lient contacted S, Who was ca	
KES NO N/A				les > 6mm abs	
TES NO N/A				subjes sppropi	
ON SEA				icient amount c	
KES NO	es ua combieres	agueu apoisii. Tagainna n	oog m an ree with c	ole labels prese Simple labels ag	es of of of of the sa
ON SEA	Gated tests?	ontainers tor i	opnate oog gi _e te	nce japeje brese. Nice iu nic appi	11. Are samp
SEZ NO				tles arrive unb	
	freezer?			s, what time w	
VES 10				lms 2632 bod	
process had begun	ne field. Cooling	irectly from th	b əəi no l	mples received	es 🗆
lank	it a temperature b	k cold withou	s əəi no b	mples Receive	es 💆
Temp(°C)	onoV □	ləD/əul8 🗌	Wet	of ice used: ঽ	Type
☐ None ☐ Paper towels	sgs& X meoloryl2 □	postq postq	□ Card	bble Wrap oth material are documentat	□CI
Date VES NO VA	ved? gned, etc)? (If so fill out top	Mame urival? St when receiv operly (ink, sig stody papers?	s noqu to satai bas ord tuo be uo mori e	many stody seals inta ody papers dry ody papers filld	How 2B. Were cust 4. Were cust 5. Is the pro
on samples ON	le) on cooler			ping info stody seals pre	
KES AO		ılip (airbill, et	s gniqqid	r come with a s	
JANNY KAND	(ngis) 102)	Mhas	By (print) By (print)	1907-8 mil	Date Openeo
Number of coolers	8-7-04 8 Po-C-8	te Received organization		1/4056 Hellar Envir	Login # Client

	Curtis & Tompkins Laboratories Analytical Report									
Lab #:	214036	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B							
Project#:	2008-02									
Field ID:	MW-2	Batch#:	153893							
Matrix:	Water	Sampled:	08/07/09							
Units:	ug/L	Received:	08/07/09							
Diln Fac:	1.000	Analyzed:	08/14/09							

Type: SAMPLE Lab ID: 214036-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,900	50	EPA 8015B
MTBE	7.1	2.0	EPA 8021B
Benzene	1.6	0.50	EPA 8021B
Toluene	1.8 C	0.50	EPA 8021B
Ethylbenzene	11	0.50	EPA 8021B
m,p-Xylenes	3.8	0.50	EPA 8021B
o-Xylene	20 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	108	63-146	EPA 8015B	
Bromofluorobenzene (FID)	192 *	70-140	EPA 8015B	
Trifluorotoluene (PID)	97	50-140	EPA 8021B	
Bromofluorobenzene (PID)	155 *	56-132	EPA 8021B	

Type: BLANK Lab ID: QC507716

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	97	63-146	EPA 8015B
Bromofluorobenzene (FID)	92	70-140	EPA 8015B
Trifluorotoluene (PID)	87	50-140	EPA 8021B
Bromofluorobenzene (PID)	81	56-132	EPA 8021B

^{*=} Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 1 of 1 6.0

C= Presence confirmed, but RPD between columns exceeds 40%

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	214036	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	153893
Units:	ug/L	Analyzed:	08/14/09
Diln Fac:	1.000		

Type: BS Lab ID: QC507717

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.789	98	53-152
Benzene	10.00	9.198	92	79-120
Toluene	10.00	10.69	107	76-122
Ethylbenzene	10.00	10.96	110	77-125
m,p-Xylenes	10.00	10.07	101	76-126
o-Xylene	10.00	9.556	96	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	80	50-140
Bromofluorobenzene (PID)	79	56-132

Type: BSD Lab ID: QC507718

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	22.24	111	53-152	13	37
Benzene	20.00	19.55	98	79-120	6	20
Toluene	20.00	20.11	101	76-122	6	21
Ethylbenzene	20.00	20.22	101	77-125	8	21
m,p-Xylenes	20.00	16.83	84	76-126	18	23
o-Xylene	20.00	17.58	88	77-126	8	21

Surrogate	%REC	Limits
Trifluorotoluene (PID)	87	50-140
Bromofluorobenzene (PID)	87	56-132

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	214036	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC507719	Batch#:	153893
Matrix:	Water	Analyzed:	08/14/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,027	103	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	113	63-146
Bromofluorobenzene (FID)	113	70-140

Page 1 of 1 8.0

Curtis & Tompkins Laboratories Analytical Report				
Lab #: 214036	5	Location:	Redwood Regional Park	
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B	
Project#: 2008-0)2	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZ	Batch#:	153893	
MSS Lab ID:	214183-001	Sampled:	08/13/09	
Matrix:	Water	Received:	08/13/09	
Units:	ug/L	Analyzed:	08/14/09	
Diln Fac:	1.000			

Type: MS

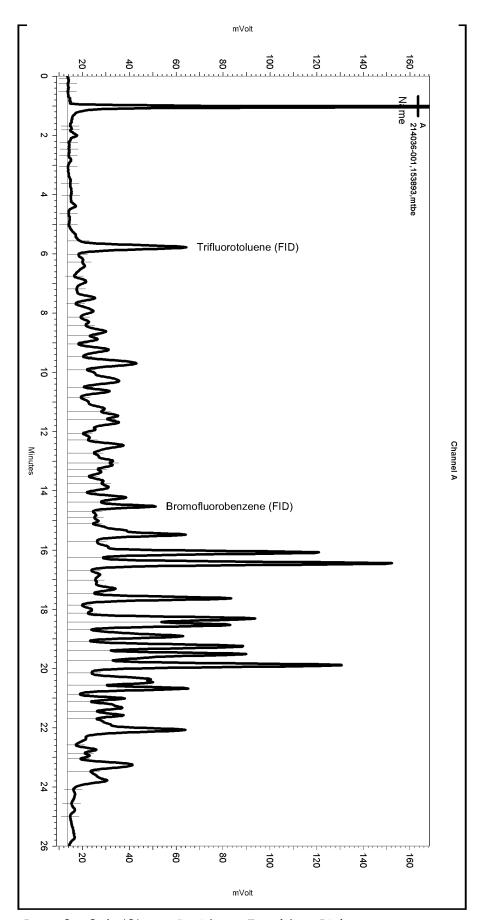
Lab ID: QC507720

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	20.32	2,000	1,401	69	66-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	112	63-146
Bromofluorobenzene (FID)	125	70-140

Type: MSD Lab ID: QC507721

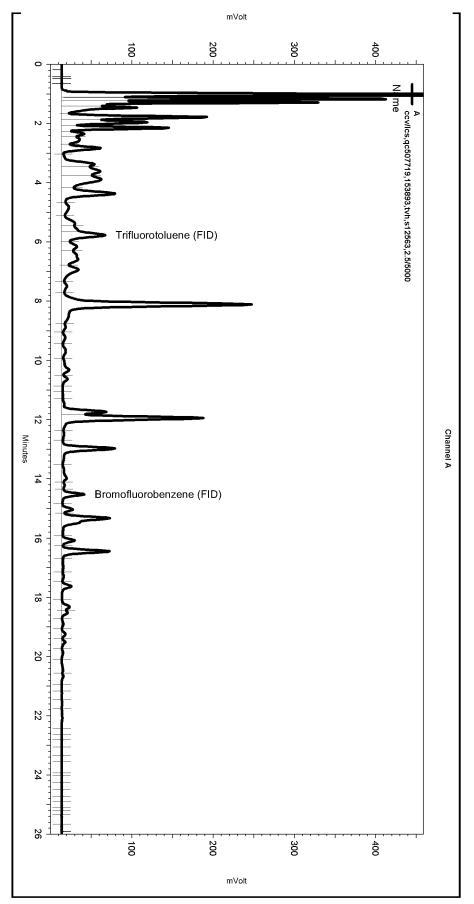
Analyte	Spiked	Result	%REC	Limits	RPD Li
Gasoline C7-C12	2,000	1,688	83	66-120	19 20


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\226.seq

Sample Name: 214036-001,153893,mtbe

Data File: \\Lims\\gdrive\ezchrom\\Projects\\GC04\Data\\226_012 \\
Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) \\
Method Name: \\Lims\\gdrive\ezchrom\\Projects\\GC04\Method\tvhbtxe219.met

Software Version 3.1.7


Run Date: 8/14/2009 7:09:37 PM Analysis Date: 8/15/2009 8:34:35 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

	neral Method Para					
No item	s selected for this	section				
< A >						
No item	s selected for this	section				
Integrat	ion Events					
Enabl	ed Event Type	Start			/linutes)	Value
	Width Threshold		0	0	0.2 50	
Manual	Integration Fixes	_				
Data	File: \\Lims\gdrive\	ezchrom∖l Start	Projects Sto		I\Data\22	6_012
Enabl	ed Event Type		(Minut		/linutes)	Value
	Lowest Point Ho Split Peak					0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\226.seq Sample Name: ccv/lcs,qc507719,153893,tvh,s12563,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\226_005 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/14/2009 12:06:38 PM Analysis Date: 8/15/2009 8:27:36 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section Integration Events Start Enabled Event Type	
Yes Width Yes Threshold	0 0 0.2
Manual Integration Fixes	0 00
Data File: \\Lims\gdrive\ezchrom\Pi	rojects\GC04\Data\226_005 Stop
Enabled Event Type	(Minutes) (Minutes) Value
Yes Split Peak 5	5.644 0 0

	Total Extract	able Hydrocar	rbons
Lab #:	214036	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2008-02	Analysis:	EPA 8015B
Field ID:	MW-2	Sampled:	08/07/09
Matrix:	Water	Received:	08/07/09
Units:	ug/L	Prepared:	08/07/09
Diln Fac:	1.000	Analyzed:	08/10/09
Batch#:	153666		

Lab ID: 214036-001 Type: SAMPLE

Analyte	Result	RL
Diesel C10-C24	3,100 Y	50

Surrogate	%REC	Limits
o-Terphenvl	106	61-127

Type: BLANK Lab ID: QC506729

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	107	61–127

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

2.0

	Total Extract	able Hydrocar	rbons
Lab #:	214036	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2008-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506730	Batch#:	153666
Matrix:	Water	Prepared:	08/07/09
Units:	ug/L	Analyzed:	08/10/09

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,663	107	50-120

Surrogate	%REC	Limits
o-Terphenyl	107	61-127

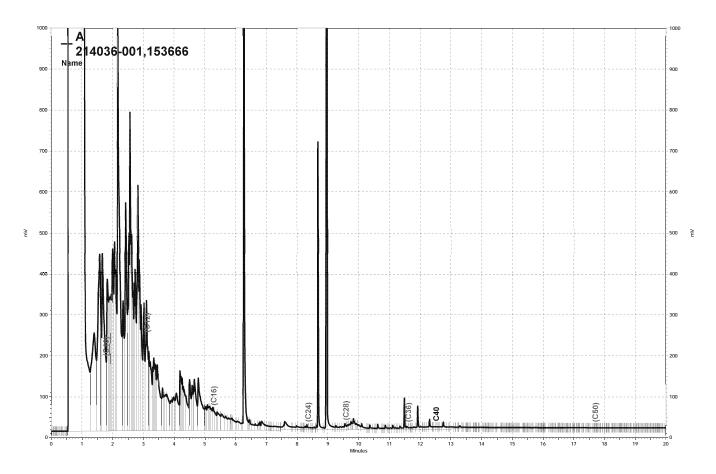
Page 1 of 1 3.0

	Total Extract	able Hydrocarl	oons
Lab #: 214036	5	Location:	Redwood Regional Park
Client: Stella	ar Environmental Solutions	Prep:	EPA 3520C
Project#: 2008-0	02	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	153666
MSS Lab ID:	214047-001	Sampled:	08/06/09
Matrix:	Water	Received:	08/06/09
Units:	ug/L	Prepared:	08/07/09
Diln Fac:	1.000	Analyzed:	08/10/09

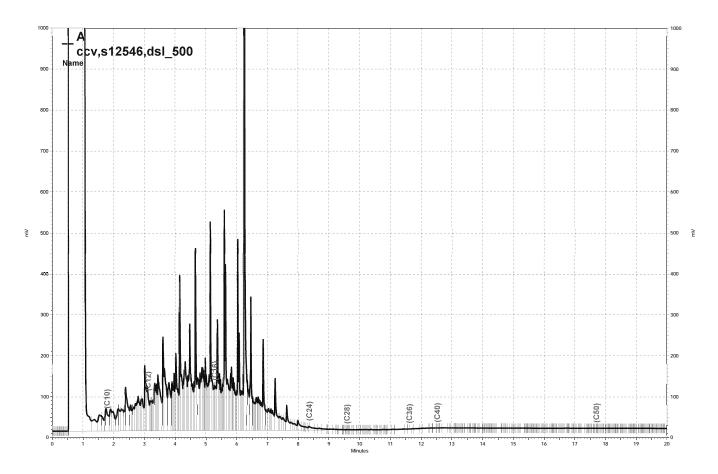
Type: MS Cleanup Method: EPA 3630C

Lab ID: QC506731

Analyte	MSS Result	Spiked	Result	%REC Limi	lts
Diesel C10-C24	57.06	2,500	2,430	95 38-1	L27


Surrogate	%REC	Limits	
o-Terphenyl	97	61-127	

Type: MSD Cleanup Method: EPA 3630C


Lab ID: QC506732

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	1,920	75	38-127	23	37

Surrogate	%REC	Limits	
o-Terphenyl	78	61-127	

\Lims\gdrive\ezchrom\Projects\GC17A\Data\222a028, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\222a016, A

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 215247 ANALYTICAL REPORT

Stellar Environmental Solutions

Project : 2009-02

2198 6th Street

Location : Redwood Regional Park

Berkeley, CA 94710

Level : II

Sample ID	Lab ID
MW-2	215247-001
MW-7	215247-002
MW-8	215247-003
MW-9	215247-004
MW-10	215247-005
MW-11	215247-006
MW-12	215247-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>10/08/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 215247

Client: Stellar Environmental Solutions

Project: 2009-02

Location: Redwood Regional Park

Request Date: 09/25/09 Samples Received: 09/25/09

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/25/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

2 15247 Chain of Custody Record

Laboratory Curtis and Tomple Address 2323 Fifth Street Berkeley, Californ 510-486-0900 Project Owner East Bay Rec 7867 Redwood Oakland, Cali Project Name Redwood Rec Project Number 2006-16	nia 94710 gional Park Dis od Road fornia gional Park	trict	- Sh - Air - Co - Pro - Tel - Fa:	chain of ethod of Shipment Hanipment No. ———————————————————————————————————	and De ard Mal 3123 3859	ivery	ec - - - - - -		,	H. G. Comainers	FX (80/5)	(80°L) (80°L)	Ar	nalysis f	Require	ed	Lab job no	
Field Sample Number	Location/ Date	Time	Sample Type	Type/Size of Container	Pr Cooler	eservation Chemical	/		1	7/0	5/ /S	y / ,	/ /					
MW-2	<u></u>	1240	W	VOA × 3	\ -	HEL VOA	<u> </u>	4	V	~	1 1		-(-	$\overline{}$	\top		
Mw-7		1305	1	AMBER-ILXI	×	1	-	1	X	X	✓		+		+	 -		
MM- 8		1	+	1	*×			H	 	-				_	_	+		
		1325						-	X	$\frac{1}{2}$	X			_	-	 	W	
Mw-9		1310			λ	 		-	X	X	X				-	 		
Mw - 10		1255	\perp		X			-	X	X	X			_		-		
WW-11		1340	1		\times			Ц.	X	X	X							
MW-12	1	1312	1	4	X	J		J	X	X	X							
																	4 70 40 40 40 40	
Relinquished by:	Date	Received	ov:		Date	Relinquished	DV.					Date	Baceis	and by:				Date
Signature F. SRIVENG	9-25-0	i	_	7	925	Signature	=		-5	<u> </u>	- ~ · ~ ·	- 92500	Sign	nature .	M.	1	Snith	- 9/25/
BLAING TECH SERVI Stellar Environme	Time	Printed Compar	BL BL	A 1.45 TECH	Time	ŀ							1	nted ∠		<u> </u>	T 115	- Time
Turnaround Time: 5 Day TAT Comments: Please provide a	a GeoTracker I	EDF for g	round	water samples only		Relinquished Signature						Date —	Receiv	ved by:				Date _
Surface water sa Groundwater sa				nvironmental Solutions ch Services.	s	Printed	· · · · · ·		<u>. </u>		·	Time	Prir	nted		······································		_ Time
						Company _						-	Cor	mpany .				-

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Tracy Babjar

From:

"Richard Makdisi" < Rmakdisi@stellar-environmental.com>

To:

<tracy.babjar@ctberk.com>

Cc:

"Teal Glass" <tglass@stellar-environmental.com>

Sent: Subject: Friday, October 09, 2009 8:24 AM RE: 2008-12 - C&T Data (215247)

Hi Tracy—do not know what the BTS people were thinking about putting on the erroneous SES job number 2008-12 job number on this Redwood project COC: The SES' job number for this redwood site is 2009-02. --R

From: Tracy Babjar [mailto:tracy.babjar@ctberk.com]

Sent: Thursday, October 08, 2009 4:50 PM **To:** Rmakdisi@stellar-environmental.com **Subject:** 2008-12 - C&T Data (215247)

Hi Richard,

Please find attached the following files:

- Invoice
- PDF Deliverable
- EDF EDD (215247 edf.zip)

Email was also sent to: TGlass@stellar-environmental.com, hpietropaoli@stellar-environmental.com

C&T sends its e-reports via the Internet as Portable Document Format (PDF) files. Reports in this format, when accompanied by a signed cover page, are considered official reports. **No hardcopy** reports will be sent either by fax or U.S. Postal Service unless otherwise requested. You may distribute your PDF files electronically or as printed hardcopies, as long as they are distributed in their entirety.

COOLER RECEIPT CHECKLIST

Login# 215747 Date Received 9-5	Number of coolers
Client Project	EBBD
Date Opened 9-25 Date Logged in 9/8/9 By (print) J. Governor	(sign) (sign)
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? \(\subseteq YES \) (circle) on How many \(\subseteq Name \)	D .
2B. Were custody seals intact upon arrival?	YES NO (N/A
3. Were custody papers dry and intact when received?	XES NO
4. Were custody papers filled out properly (ink, signed, etc.	c)?
5. Is the project identifiable from custody papers? (If so fi6. Indicate the packing in cooler: (if other, describe)	ill out top of form) OBS NO
Bubble Wrap	gs \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	rofoam Paper towels
7. Temperature documentation:	·
Type of ice used: ₩et ☐ Blue/Gel ☐ N	Tone Temp(°C)
Samples Received on ice & cold without a temp	perature blank
☐ Samples received on ice directly from the field.	Cooling process had begun
8. Were Method 5035 sampling containers present?	YES KO).
If YES, what time were they transferred to freezer?	
9. Did all bottles arrive unbroken/unopened?	(YES NO
10. Are samples in the appropriate containers for indicated	
11. Are sample labels present, in good condition and comp	
12. Do the sample labels agree with custody papers?	YES NO
13. Was sufficient amount of sample sent for tests requeste	
14. Are the samples appropriately preserved?	VES NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
16. Was the client contacted concerning this sample delive	
If YES, Who was called?By	Date:
COMMENTS	

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report								
Lab #: Client:	215247 Stellar Environmental Solution:	Location: s Prep:	Redwood Regional Park EPA 5030B					
Project#:		E						
Matrix:	Water	Batch#:	155723					
Units:	ug/L	Sampled:	09/25/09					
Diln Fac:	1.000	Received:	09/25/09					

Field ID: MW-2Lab ID: 215247-001 בים ישוי Analyzed: 10/06/09 Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,400 Y	50	EPA 8015B
MTBE	12	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	0.94 C	0.50	EPA 8021B
o-Xylene	3.3 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	107	64-147	EPA 8015B	
Bromofluorobenzene (FID)	116	71-138	EPA 8015B	
Trifluorotoluene (PID)	80	45-151	EPA 8021B	
Bromofluorobenzene (PID)	86	54-134	EPA 8021B	

Field ID: MW-7בים בים: Analyzed: Lab ID: 215247-002 SAMPLE 10/07/09 Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	4,400 Y	50	EPA 8015B
MTBE	3.5 C	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	96 C	0.50	EPA 8021B
m,p-Xylenes	5.6 C	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	142	64-147	EPA 8015B
Bromofluorobenzene (FID)	119	71-138	EPA 8015B
Trifluorotoluene (PID)	103	45-151	EPA 8021B
Bromofluorobenzene (PID)	92	54-134	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

RL= Reporting Limit

Page 1 of 4

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 215247 Location: Stellar Environmental Solutions Client: Prep: Project#: 2009-02 155723 Matrix: Water Batch#: 09/25/09 Units: ug/L Sampled: Diln Fac: 1.000 Received: 09/25/09

Field ID: MW-8 Lab ID: 215247-003 Type: SAMPLE Analyzed: 10/06/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	440	50	EPA 8015B
MTBE	3.7 C	2.0	EPA 8021B
Benzene	2.8	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	33 C	0.50	EPA 8021B
m,p-Xylenes	2.7	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	118	64-147	EPA 8015B	
Bromofluorobenzene (FID)	112	71-138	EPA 8015B	
Trifluorotoluene (PID)	87	45-151	EPA 8021B	
Bromofluorobenzene (PID)	85	54-134	EPA 8021B	

Field ID: MW-9 Lab ID: 215247-004 Type: SAMPLE Analyzed: 10/07/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,200	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	15	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	110 C	0.50	EPA 8021B
m,p-Xylenes	11	0.50	EPA 8021B
o-Xylene	0.79	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	121	64-147	EPA 8015B	
Bromofluorobenzene (FID)	112	71-138	EPA 8015B	
Trifluorotoluene (PID)	86	45-151	EPA 8021B	
Bromofluorobenzene (PID)	84	54-134	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 215247 Location: Stellar Environmental Solutions Client: Prep: Project#: 2009-02 155723 Matrix: Water Batch#: 09/25/09 Units: ug/L Sampled: Diln Fac: 1.000 Received: 09/25/09

Field ID: MW-10 Lab ID: 215247-005 Type: SAMPLE Analyzed: 10/06/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	74 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	1.6	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	111	64-147	EPA 8015B	
Bromofluorobenzene (FID)	108	71-138	EPA 8015B	
Trifluorotoluene (PID)	84	45-151	EPA 8021B	
Bromofluorobenzene (PID)	85	54-134	EPA 8021B	

Field ID: MW-11 Lab ID: 215247-006 Type: SAMPLE Analyzed: 10/07/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	830 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	11	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	19	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	139	64-147	EPA 8015B	
Bromofluorobenzene (FID)	113	71-138	EPA 8015B	
Trifluorotoluene (PID)	87	45-151	EPA 8021B	
Bromofluorobenzene (PID)	87	54-134	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 4

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 215247 Location: Stellar Environmental Solutions Client: Prep: Project#: 2009-02 155723 Matrix: Water Batch#: 09/25/09 Units: ug/L Sampled: Diln Fac: 1.000 Received: 09/25/09

Field ID: MW-12 Lab ID: 215247-007 Type: SAMPLE Analyzed: 10/06/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	330	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	2.3	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	125	64-147	EPA 8015B	
Bromofluorobenzene (FID)	105	71-138	EPA 8015B	
Trifluorotoluene (PID)	81	45-151	EPA 8021B	
Bromofluorobenzene (PID)	82	54-134	EPA 8021B	

Type: BLANK Analyzed: 10/06/09

Lab ID: QC515352

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	100	64-147	EPA 8015B	
Bromofluorobenzene (FID)	101	71-138	EPA 8015B	
Trifluorotoluene (PID)	77	45-151	EPA 8021B	
Bromofluorobenzene (PID)	79	54-134	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 4 of 4

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	215247	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2009-02	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	155723				
Units:	ug/L	Analyzed:	10/06/09				
Diln Fac:	1.000						

Type: BS Lab ID: QC515353

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	8.839	88	58-143
Benzene	10.00	9.749	97	75-116
Toluene	10.00	9.738	97	72-124
Ethylbenzene	10.00	11.32	113	74-127
m,p-Xylenes	10.00	11.08	111	73-128
o-Xylene	10.00	11.13	111	73-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	83	45-151
Bromofluorobenzene (PID)	85	54-134

Type: BSD Lab ID: QC515354

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	8.190	82	58-143	8	31
Benzene	10.00	8.881	89	75-116	9	22
Toluene	10.00	8.379	84	72-124	15	24
Ethylbenzene	10.00	9.031	90	74-127	22	25
m,p-Xylenes	10.00	9.447	94	73-128	16	27
o-Xylene	10.00	9.598	96	73-126	15	25

Surrogate	%REC	Limits
Trifluorotoluene (PID)	86	45-151
Bromofluorobenzene (PID)	85	54-134

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	215247	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC515355	Batch#:	155723
Matrix:	Water	Analyzed:	10/06/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	913.8	91	77-118

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	64-147
Bromofluorobenzene (FID)	107	71-138

Page 1 of 1 5.1

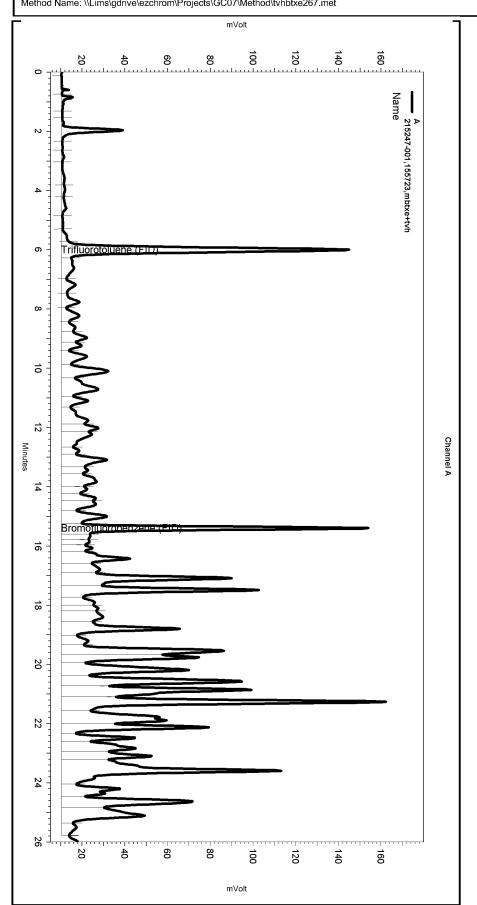
Curtis & Tompkin	s Laboratories Anal	ytical Report
Lab #: 215247	Location:	Redwood Regional Park
Client: Stellar Environmental Soluti	ions Prep:	EPA 5030B
Project#: 2009-02	Analysis:	EPA 8015B
Field ID: MW-12	Batch#:	155723
MSS Lab ID: 215247-007	Sampled:	09/25/09
Matrix: Water	Received:	09/25/09
Units: ug/L	Analyzed:	10/06/09
Diln Fac: 1.000		

Type: MS

Lab ID:	QC515356
---------	----------

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	334.3	2,000	2,515	109	66-110

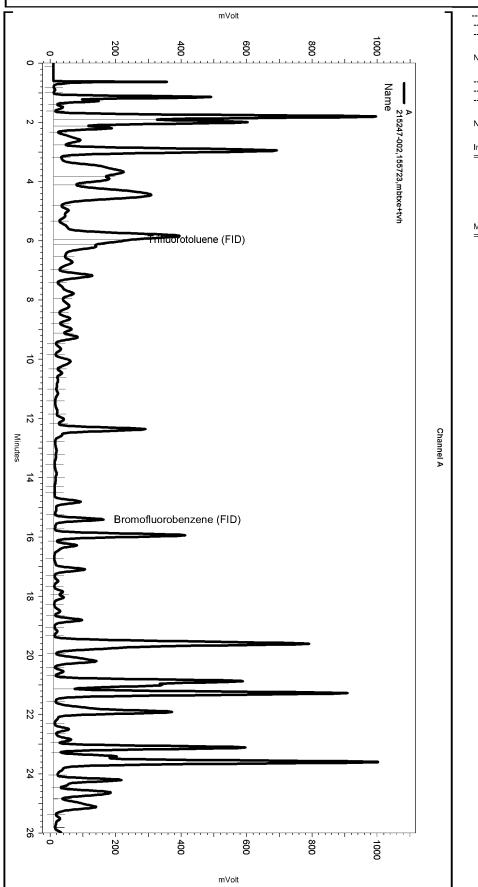
Surrogate	%REC	Limits
Trifluorotoluene (FID)	124	64-147
Bromofluorobenzene (FID)	107	71-138


Type: MSD Lab ID: QC515357

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,511	109	66-110	0	11

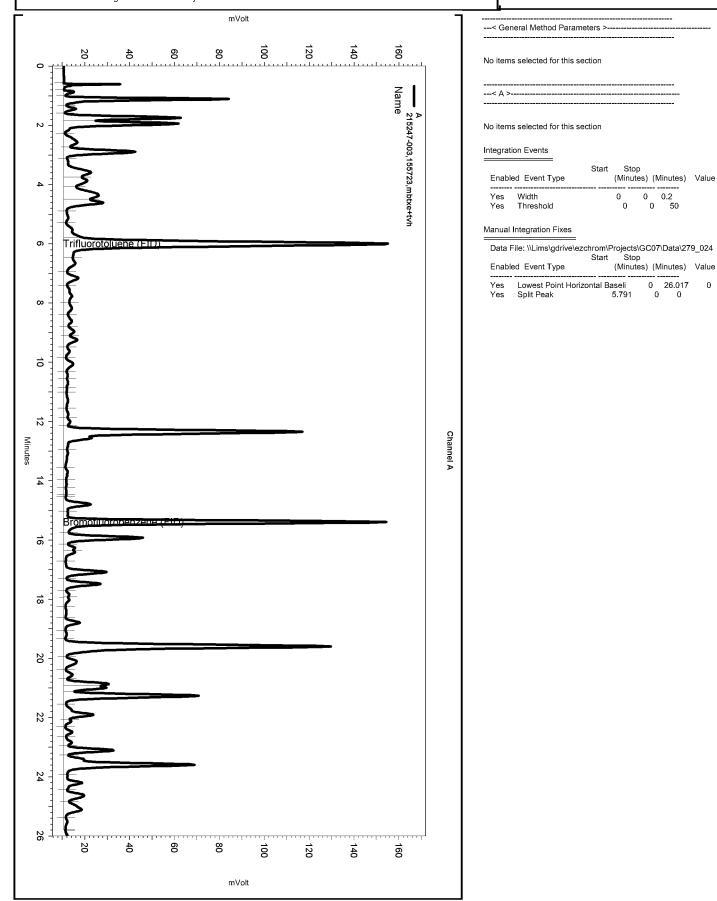
	Surrogate	%REC	Limits
	coluene (FID)	132	64-147
Bromofluoro	cobenzene (FID)	107	71-138

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-001,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_023 |
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

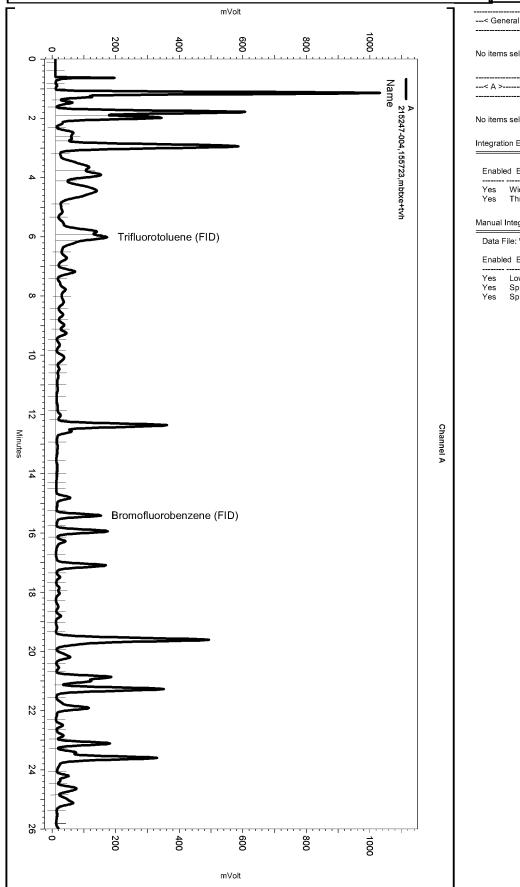

Software Version 3.1.7 Run Date: 10/6/2009 10:56:38 PM Analysis Date: 10/7/2009 9:39:28 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters >
No items selected for this section
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_023 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 5.722 0 0 Yes Split Peak 15.596 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-002,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_026
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

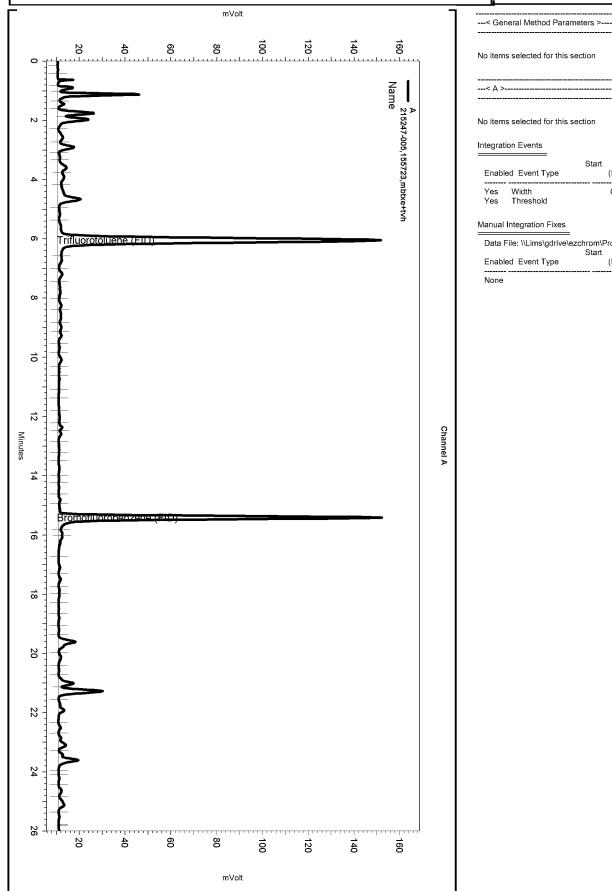

Software Version 3.1.7 Run Date: 10/7/2009 12:44:31 AM Analysis Date: 10/7/2009 9:49:52 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters >
No items selected for this section
A>
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_026 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 5.947 0 0 Yes Split Peak 6.128 0 0

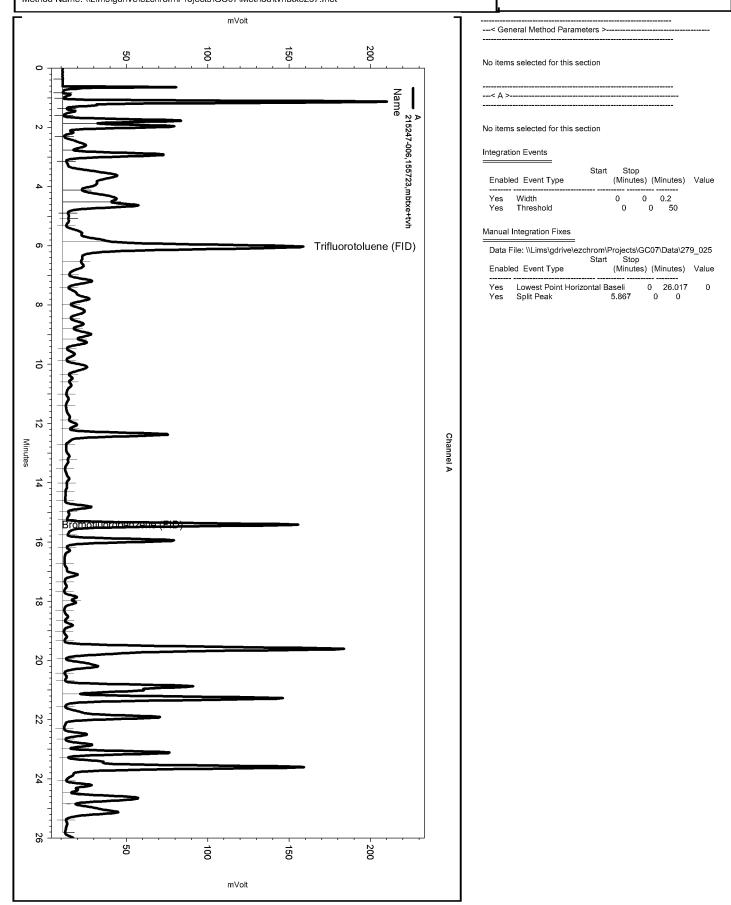

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-003,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_024
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

Software Version 3.1.7 Run Date: 10/6/2009 11:32:33 PM Analysis Date: 10/7/2009 9:41:54 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

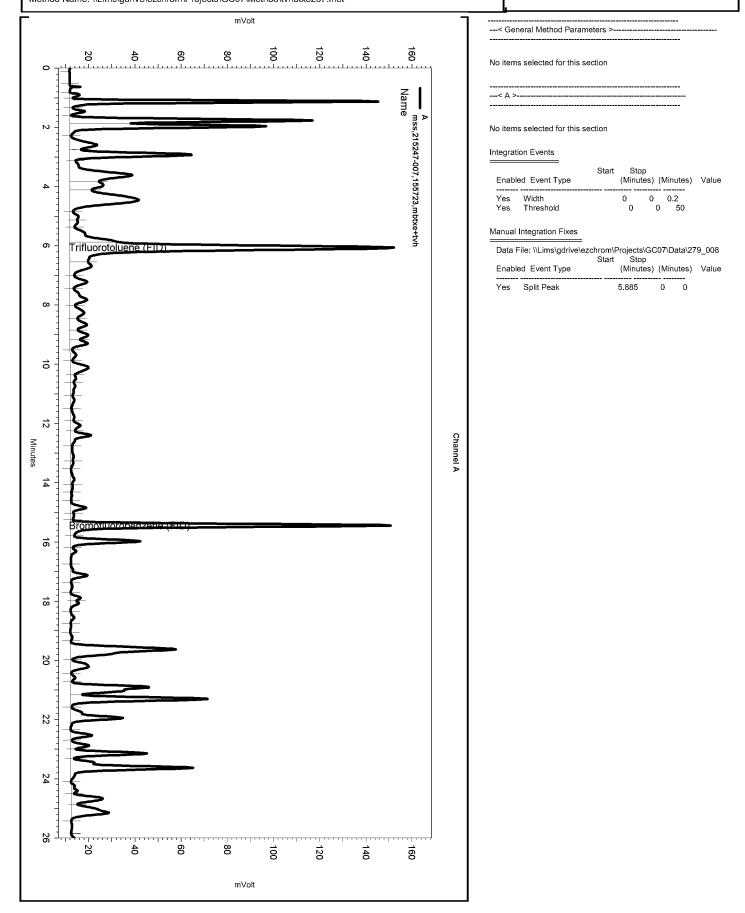
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-004,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_028 Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met


Software Version 3.1.7 Run Date: 10/7/2009 1:56:32 AM Analysis Date: 10/7/2009 10:05:05 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters >
No items selected for this section
A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
(windes) (windes) value
Yes Width 0 0 0.2
Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_028 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0.034 26.017 0 Yes Split Peak 5.913 0 0 Yes Split Peak 6.141 0 0

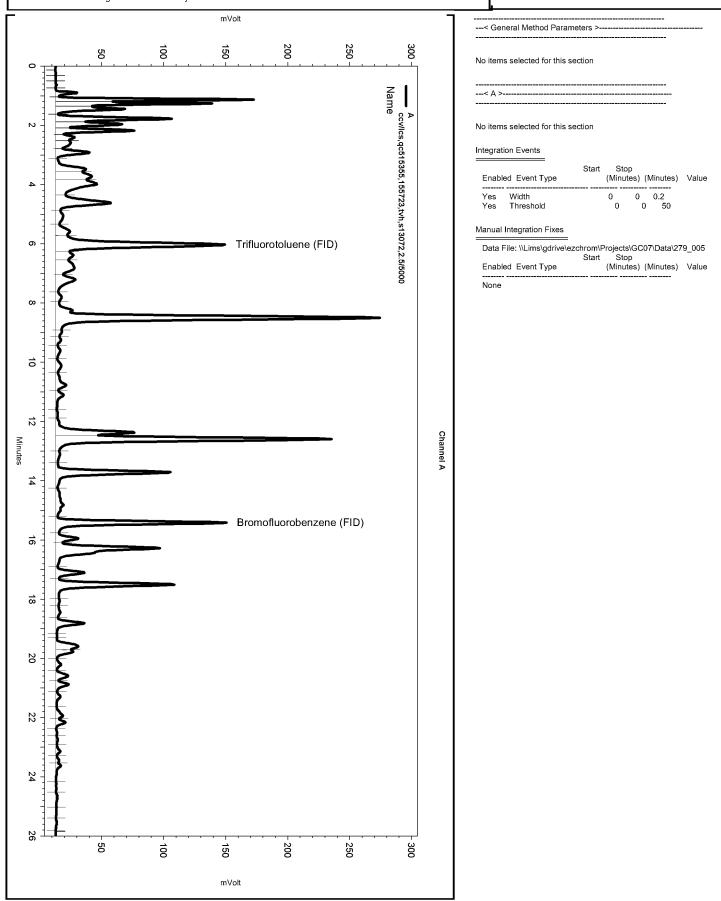

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-005,155723,mbtxe+tvh Data File: \\Lims\gdrive\ezchrom\Projects\\GC07\Data\279_022 \\
Instrument: GC07 \((Offline\)) \(Vial: \N/A\) \(Operator: \text{Tvh 2. Analyst (lims\2k3\tvh2)}\) \\
Method \(Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met\)

Software Version 3.1.7 Run Date: 10/6/2009 10:20:39 PM Analysis Date: 10/7/2009 9:34:59 AM Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: a1.0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: 215247-006,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_025
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

Software Version 3.1.7 Run Date: 10/7/2009 12:08:33 AM Analysis Date: 10/7/2009 9:46:09 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: mss,215247-007,155723,mbtxe+tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_008
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met


Software Version 3.1.7 Run Date: 10/6/2009 1:56:29 PM Analysis Date: 10/7/2009 9:11:16 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\279.seq Sample Name: ccv/lcs,qc515355,155723,tvh,s13072,2.5/5000

Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\279_005 |
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

Software Version 3.1.7 Run Date: 10/6/2009 9:59:43 AM Analysis Date: 10/7/2009 8:58:02 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Total Extractable Hydrocarbons Lab #: 215247 Redwood Regional Park Location: EPA 3520C Client: Stellar Environmental Solutions Prep: Project#: 2009-02 Analysis: EPA 8015B 09/25/09 Matrix: Water Sampled: 09/25/09 Units: ug/L Received: Diln Fac: 1.000 10/02/09 Prepared: Batch#: 155600

Field ID: MW-2 Lab ID: 215247-001 Type: SAMPLE Analyzed: 10/07/09

 Analyte
 Result
 RL

 Diesel C10-C24
 1,800 Y
 50

Surrogate %REC Limits
o-Terphenyl 102 60-130

Field ID: MW-7 Lab ID: 215247-002 Type: SAMPLE Analyzed: 10/07/09

 Analyte
 Result
 RL

 Diesel C10-C24
 4,700 Y
 50

Surrogate %REC Limits
o-Terphenyl 112 60-130

Field ID: MW-8 Lab ID: 215247-003 Type: SAMPLE Analyzed: 10/07/09

 Analyte
 Result
 RL

 Diesel C10-C24
 1,700 Y
 50

Surrogate %REC Limits
o-Terphenyl 100 60-130

Field ID: MW-9 Lab ID: 215247-004 Type: SAMPLE Analyzed: 10/07/09

Surrogate %REC Limits
o-Terphenyl 97 60-130

Field ID: MW-10 Lab ID: 215247-005 Type: SAMPLE Analyzed: 10/07/09

AnalyteResultRLDiesel C10-C24220 Y50

Surrogate %REC Limits
0-Terphenyl 103 60-130

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons 215247 Lab #: Location: Redwood Regional Park Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Sampled: EPA 8015B 09/25/09 Project#: 2009-02 Matrix: Water 09/25/09 Received: Units: ug/L 1.000 155600 Diln Fac: Prepared: 10/02/09 Batch#:

Field ID: MW-11 Lab ID: 215247-006 Type: SAMPLE Analyzed: 10/07/09

 Analyte
 Result
 RL

 Diesel C10-C24
 2,400 Y
 50

Surrogate %REC Limits
o-Terphenyl 97 60-130

Field ID: MW-12 Lab ID: 215247-007 Type: SAMPLE Analyzed: 10/07/09

 Analyte
 Result
 RL

 Diesel C10-C24
 270 Y
 50

Surrogate %REC Limits
o-Terphenyl 89 60-130

Type: BLANK Analyzed: 10/06/09

Lab ID: QC514877

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 103 60-130

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

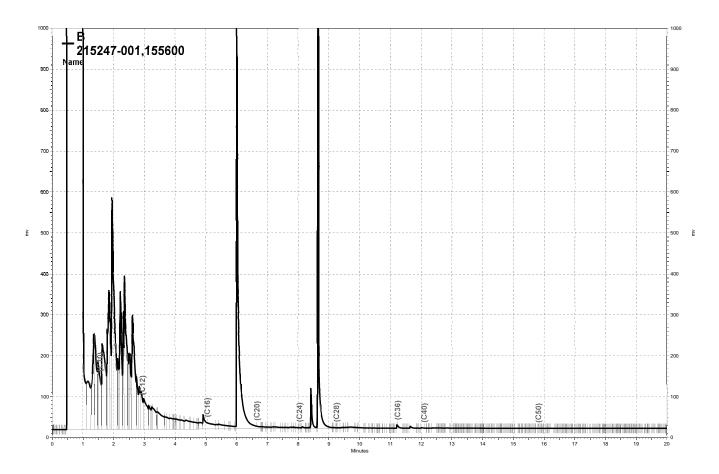
Page 2 of 2

	Total Extract	able Hydrocar	rbons
Lab #:	215247	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2009-02	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	155600
Units:	ug/L	Prepared:	10/02/09
Diln Fac:	1.000	Analyzed:	10/06/09

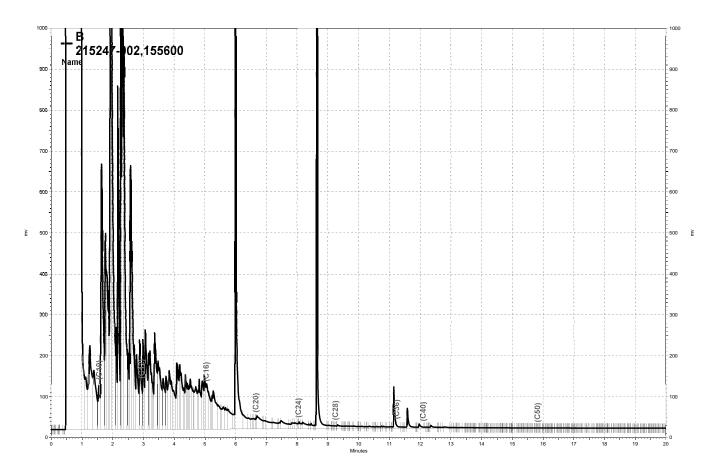
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC514878

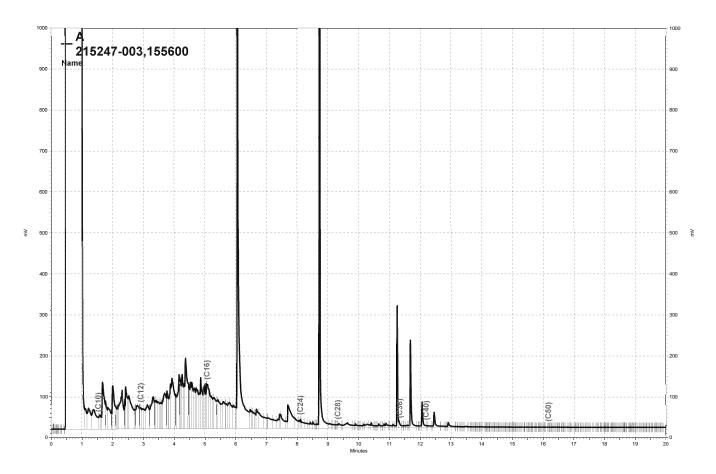
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,092	84	53-122

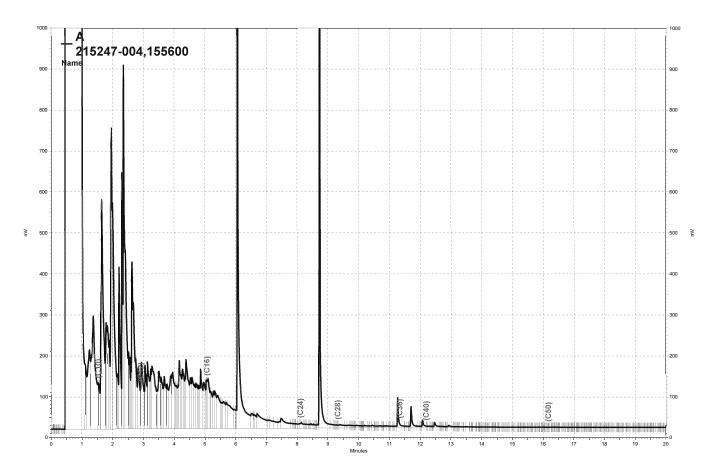

Surrogate	%REC	Limits	
o-Terphenvl	101	50-130	

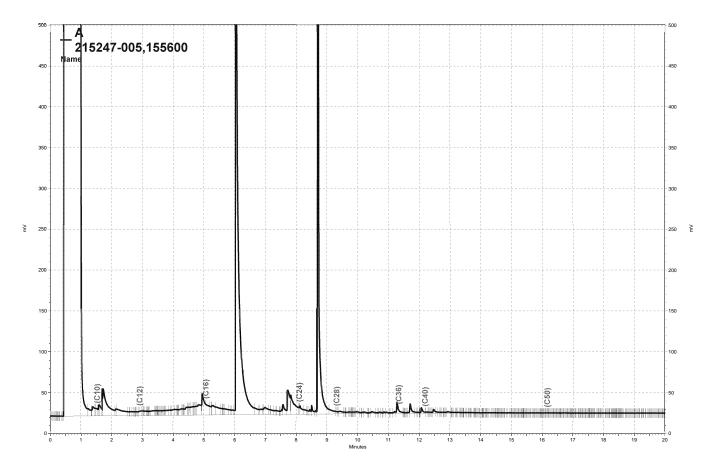
Type: BSD Cleanup Method: EPA 3630C

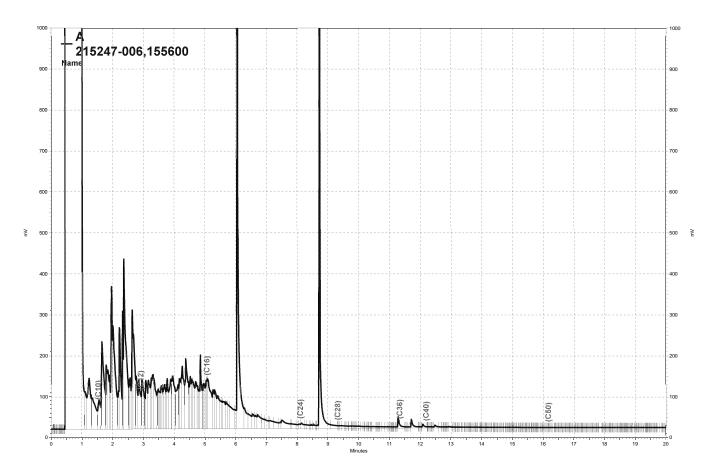

Lab ID: QC514879

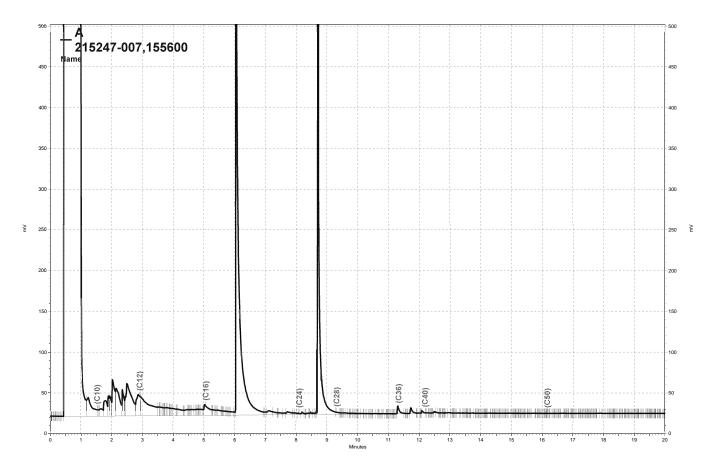
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,020	81	53-122	4	36

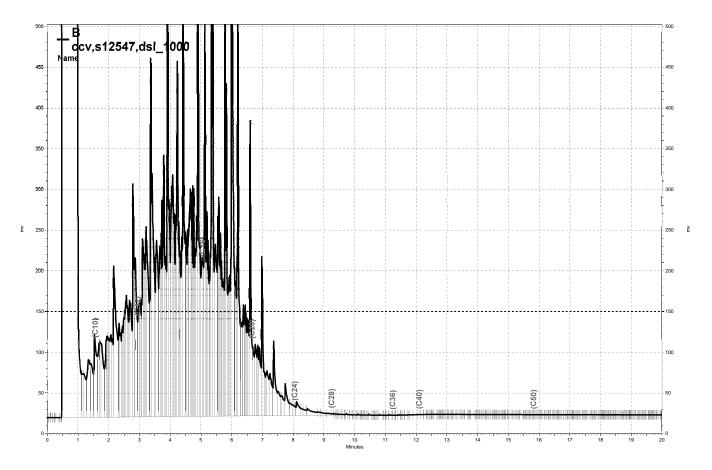

Surrogate	%REC	Limits
o-Terphenyl	99	60-130


\Lims\gdrive\ezchrom\Projects\GC15B\Data\280b026, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\280b027, B


\Lims\gdrive\ezchrom\Projects\GC17A\Data\280a018, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\280a019, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\280a020, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\280a021, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\280a022, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\280b016, B

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 215253 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2009-02

Location : Redwood Regional Park

Level : II

<u>Sample ID</u> SW-2 <u>Lab ID</u> 215253-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature

Project Manager

Date: <u>10/07/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 215253

Client: Stellar Environmental Solutions

Project: 2009-02

Location: Redwood Regional Park

Request Date: 09/25/09 Samples Received: 09/25/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 09/25/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High response was observed for benzene in the CCV analyzed 10/03/09 13:01; affected data was qualified with "b". High recoveries were observed for gasoline C7-C12 in the MS/MSD of SW-2 (lab # 215253-001); the LCS was within limits, and the associated RPD was within limits. High recovery was observed for benzene in the BS for batch 155630; the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated sample. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Lab job no. <u>2/52</u>53

Laboratory Curtis and For				Me	ethod of Shipment <u>H</u>	and Del	ivery	_											1 Page	1 of	
Address 2323 Fifth Stre Berkeley, Cali		<u> </u>		Sh	nipment No.		·····	_											1 ugo	·	-
510-486-0900				— Aiı	rbill No.						$\overline{}$	$\overline{\lambda}$			Ana	ılysis R	equirec	i			
Project Owner East Bay F Site Address 7867 Redv Oakland, O		rk Distr	ict	— Pr	ooler No oject ManagerRich lephone No(510) 644	ard Mal		<u> </u>	/	or or	Somainers 2	(2) (2) (3) (4) (4)		\int			//	//			
	Regional Pa	ark	44-	Fa	x No. (510) 644 amplers: (Signature)		Dew	- - - /					7		//	/,	//	//	Ren	narks	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pr	eservation Chemical]/		//	-/ <i>F</i>	7 /	/ /	′ /							ŀ
SW-2	Creek	9-25-0	1020	W	3 VOA, 500 ml	Y	Yes (a)	N	4	X	X						f =		/		1
SW-3	Creek	9 -25-0	-	₩	3 VOA; 500 ml	Υ	Yes (a)	W	4	X	X	_		-1		1					1
						ļ			-												
												_		_	-	-	ļ				-
						-						-		-	-		ļ				-
														+	-	-	-				-
		<u></u>												+		<u> </u>	ļ				$\frac{1}{2}$
		<u> </u>												+	+	 	 	1			-
		-				-								-							-
Relinquished by: Signature Teal Glass	W	Date 9-25-09		ture	-7	Date - 9-25-0		7	I			\ 7 •	Da	ite I				12		Date - 9/25/	19
Printed		Time	Printe		うやいいいででい	111110	Printed _	ξ <u>3</u>	Ri	<u>، د س</u>	~ v T	<u> </u>	- Ti	ne	Printe	ed <u></u>	<u> </u>	<u>ah</u> - 1	Snith	- Time	1
Stellar Environ		1030	Comp	Bla any	aine Tech	- (H 5 6	Company .	BL	a , ~	J 17	ال د ز	4	_ iH	50	Comp	pany _		<u> </u>	T	14:5	þ
Standard - Turnaround Time: (a) VOA w/ F Comments:							Relinquished Signature						- Da	ite l	Receive Signa	d by:				Date -	
				* *-	,		Printed						- Ti	ne	Printe	ed				- Time	1
	····						Company .						_		Com	pany _				_	

COOLER RECEIPT CHECKLIST

Login # 215253 Client SLS	Date Received Pro	9-5 ject E/	Number of coole 3尺々D	ers
Date Opened 9-25 By Date Logged in 9/28/9 By	(print) J. Goge (print) Servin	(sign)	June	
Did cooler come with a ship Shipping info	pping slip (airbill, etc	·)	YES	S NO
2A. Were custody seals present How many	Name upon arrival? id intact when receive out properly (ink, sig	ed? med, etc)?	ZES	NO NO
6. Indicate the packing in cool Bubble Wrap Cloth material 7. Temperature documentation	☐ Foam blocks ☐ Cardboard	e) Bags Styrofoam	☐ None	wels
Type of ice used:	Wet □ Blue/Gel	□None	Temp(°C)	
Samples Received of			- 1	
☐ Samples received or				า
8. Were Method 5035 sampling	·	•		YES (TO)
If YES, what time were	e they transferred to			1125 (00)
9. Did all bottles arrive unbrok	ten/unopened?			YES NO
10. Are samples in the approp				YES NO
11. Are sample labels present,12. Do the sample labels agree	_	*		YES NO
13. Was sufficient amount of s				VES NO
14. Are the samples appropriat		equested:		NO N/A
15. Are bubbles > 6mm absent				NO N/A
16. Was the client contacted co	oncerning this sample	e delivery?		YES NO
If YES, Who was called	d?	_ By	Date:	
COMMENTS				

SOP Volume:

Client Services

Section: Page: 1.1.2

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis & Tompkins Lab	oratories Anal	Lytical Report
Lab #:	215253	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02		
Field ID:	SW-2	Batch#:	155630
Matrix:	Water	Sampled:	09/25/09
Units:	ug/L	Received:	09/25/09
Diln Fac:	1.000	Analyzed:	10/03/09

Type: SAMPLE Lab ID: 215253-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	110	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	115	64-147	EPA 8015B
Bromofluorobenzene (FID)	107	71-138	EPA 8015B
Trifluorotoluene (PID)	79	45-151	EPA 8021B
Bromofluorobenzene (PID)	81	54-134	EPA 8021B

Type: BLANK Lab ID: QC515000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	105	64-147	EPA 8015B	
Bromofluorobenzene (FID)	106	71-138	EPA 8015B	
Trifluorotoluene (PID)	75	45-151	EPA 8021B	
Bromofluorobenzene (PID)	77	54-134	EPA 8021B	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	215253	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02		
Matrix:	Water	Batch#:	155630
Units:	ug/L	Analyzed:	10/03/09
Diln Fac:	1.000		

Type: BS Lab ID: QC515001

Analyte	Spiked	Result	%REC	Limits	Analysis
MTBE	10.00	11.27	113	58-143	EPA 8021B
Benzene	10.00	12.01 b	120 *	75-116	EPA 8021B
Toluene	10.00	11.26	113	72-124	EPA 8021B
Ethylbenzene	10.00	11.48	115	74-127	EPA 8021B
m,p-Xylenes	10.00	11.46	115	73-128	EPA 8021B
o-Xylene	10.00	11.43	114	73-126	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	105	64-147	EPA 8015B	
Bromofluorobenzene (FID)	107	71-138	EPA 8015B	
Trifluorotoluene (PID)	81	45-151	EPA 8021B	
Bromofluorobenzene (PID)	82	54-134	EPA 8021B	

Type: BSD Lab ID: QC515002

Analyte	Spiked	Result	%REC	Limits	RPD	Lin	1	Analysis
MTBE	20.00	17.48	87	58-143	25	31	EPA	8021B
Benzene	20.00	19.37 b	97	75-116	21	22	EPA	8021B
Toluene	20.00	18.63	93	72-124	19	24	EPA	8021B
Ethylbenzene	20.00	19.39	97	74-127	17	25	EPA	8021B
m,p-Xylenes	20.00	20.20	101	73-128	13	27	EPA	8021B
o-Xylene	20.00	19.98	100	73-126	13	25	EPA	8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	103	64-147	EPA 8015B	
Bromofluorobenzene (FID)	107	71-138	EPA 8015B	
Trifluorotoluene (PID)	81	45-151	EPA 8021B	
Bromofluorobenzene (PID)	83	54-134	EPA 8021B	

Page 1 of 1

6.1

^{*=} Value outside of QC limits; see narrative

b= See narrative

RPD= Relative Percent Difference

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	215253	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02		
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC515003	Batch#:	155630
Matrix:	Water	Analyzed:	10/03/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	2,000	2,255	113	77-118	EPA 8015B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	124	64-147	EPA 8015B	
Bromofluorobenzene (FID)	113	71-138	EPA 8015B	
Trifluorotoluene (PID)	107	45-151	EPA 8021B	
Bromofluorobenzene (PID)	87	54-134	EPA 8021B	

Page 1 of 1 7.0

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 215253	3	Location:	Redwood Regional Park			
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B			
Project#: 2009-0	02					
Field ID:	SW-2	Batch#:	155630			
MSS Lab ID:	215253-001	Sampled:	09/25/09			
Matrix:	Water	Received:	09/25/09			
Units:	ug/L	Analyzed:	10/03/09			
Diln Fac:	1.000					

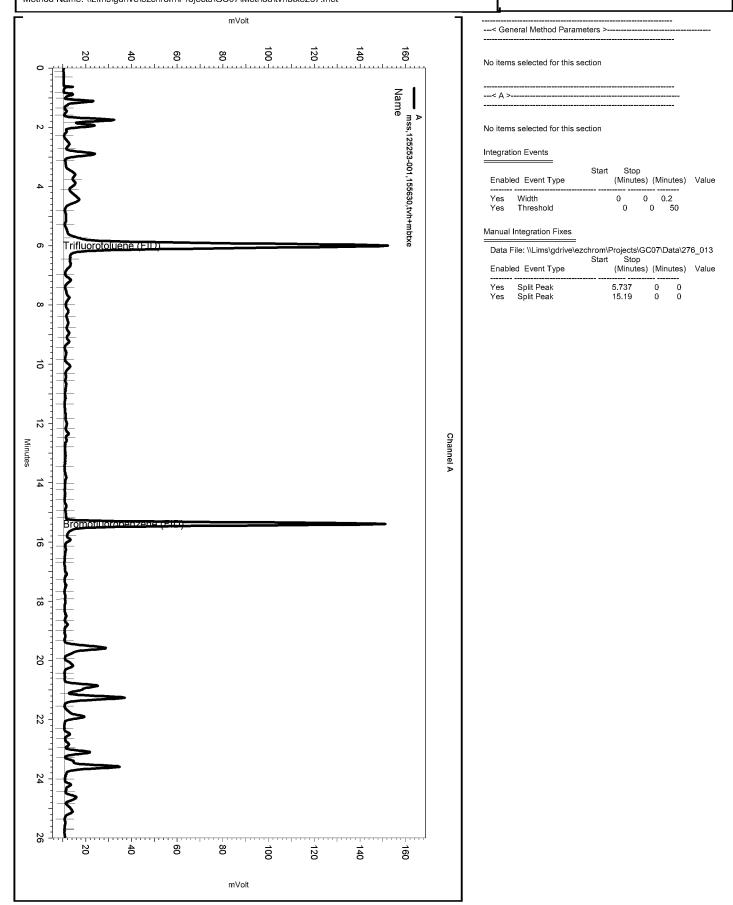
Type: MS Lab ID: QC515004

Analyte	MSS Result	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	114.9	2,000	2,352	112 *	66-110 E	EPA 8015B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	132	64-147	EPA 8015B
Bromofluorobenzene (FID)	113	71-138	EPA 8015B
Trifluorotoluene (PID)	111	45-151	EPA 8021B
Bromofluorobenzene (PID)	89	54-134	EPA 8021B

Type: MSD Lab ID: QC515005

Analyte	Spiked	Result	%REC	Limits RPD	Lim	Analysis
Gasoline C7-C12	2,000	2,479	118 *	66-110 5	11	EPA 8015B

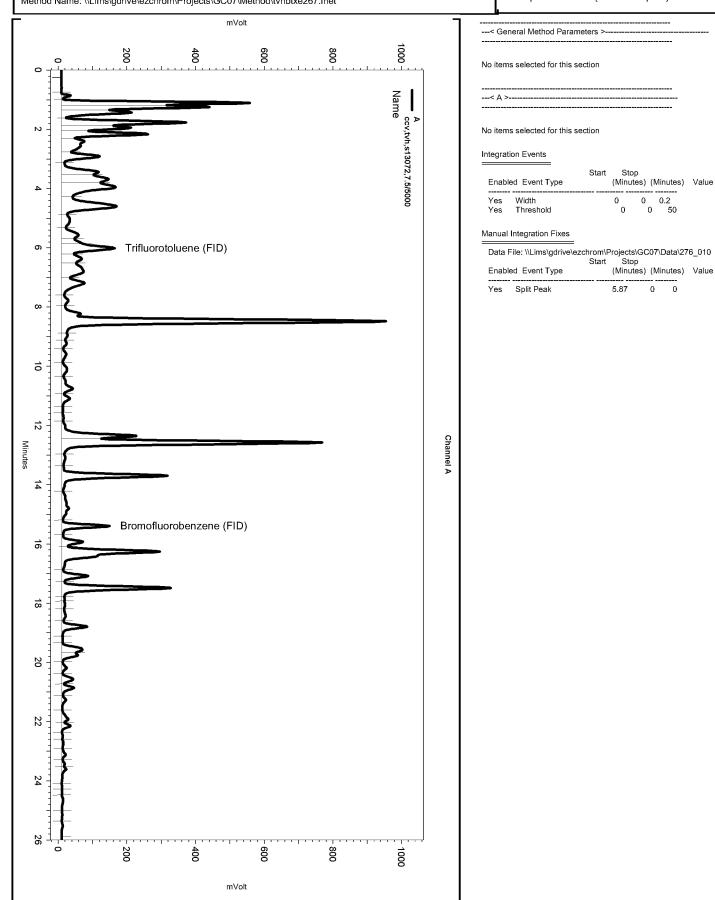

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	133	64-147	EPA 8015B
Bromofluorobenzene (FID)	116	71-138	EPA 8015B
Trifluorotoluene (PID)	113	45-151	EPA 8021B
Bromofluorobenzene (PID)	89	54-134	EPA 8021B

8.0

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\276.seq Sample Name: mss,125253-001,155630,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\276_013
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

Software Version 3.1.7 Run Date: 10/3/2009 7:50:22 PM Analysis Date: 10/5/2009 1:57:03 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0



Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\276.seq Sample Name: ccv,tvh,s13072,7.5/5000

Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\276_010

Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe267.met

Software Version 3.1.7
Run Date: 10/3/2009 5:28:59 PM
Analysis Date: 10/5/2009 1:56:44 PM
Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: {Data Description}

	Total Extractable Hydrocarbons						
Lab #:	215253	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2009-02	Analysis:	EPA 8015B				
Field ID:	SW-2	Sampled:	09/25/09				
Matrix:	Water	Received:	09/25/09				
Units:	ug/L	Prepared:	09/30/09				
Diln Fac:	1.000	Analyzed:	10/01/09				
Batch#:	155489						

Type: SAMPLE Lab ID: 215253-001

Analyte	Result	RL	
Diesel C10-C24	220 Y	50	

Surrogate	%REC	Limits	
o-Terphenyl	94	60-130	

Type: BLANK Lab ID: QC514411

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	105	60-130

 $\begin{tabular}{ll} Y= Sample exhibits chromatographic pattern which does not resemble standard \\ \end{tabular}$

ND= Not Detected

RL= Reporting Limit

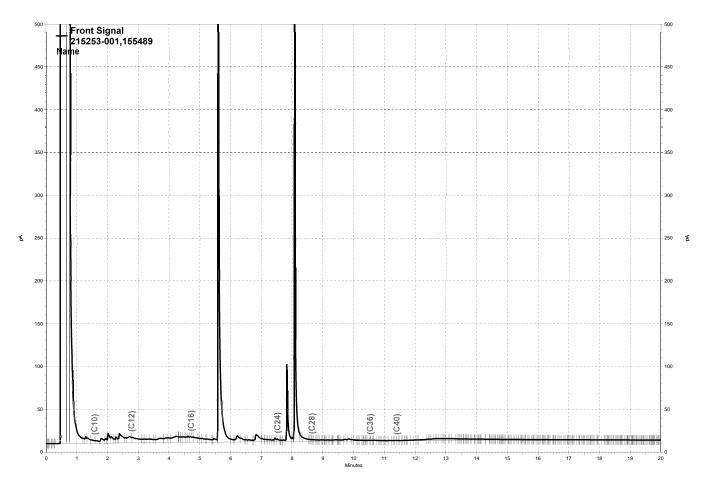
Page 1 of 1

	Total Extract	able Hydrocar	rbons
Lab #:	215253	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2009-02	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	155489
Units:	ug/L	Prepared:	09/30/09
Diln Fac:	1.000	Analyzed:	10/01/09

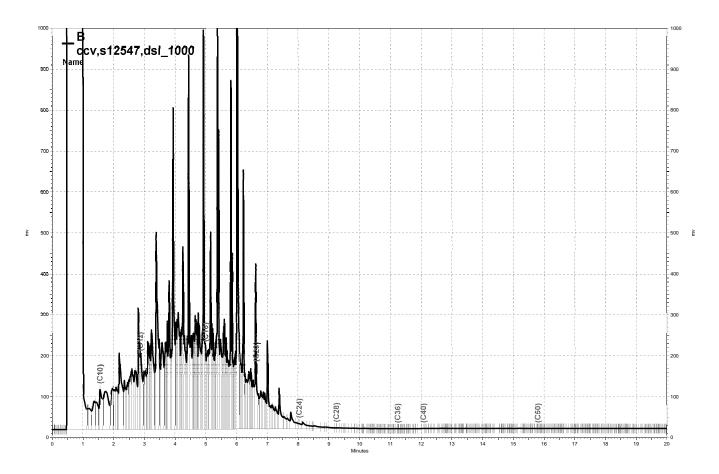
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC514412

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,410	96	53-122


Surrogate	%REC	Limits
o-Terphenyl	102	60-130

Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC514413

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,499	100	53-122	4	36

Surrogate	%REC	Limits	
o-Terphenyl	106	60-130	

G:\ezchrom\Projects\GC27\Data\274a008.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\274a012, B

APPENDIX D

Historical Groundwater and Surface Water Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

					Well M	W-2			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xvienes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA NA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	NA NA
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	N/
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	N/
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA.
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	N/
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	N
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	N
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	N
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	N
12	Feb-98	2,000	200	270	92	150	600	1,112	N.
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
						< 0.5			
16	Sep-00	< 50	< 50	0.72	< 0.5		< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	8.0	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	_	< 2.
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	-	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<2
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
49		F 000	15,000	1.5	< 0.5	9.8	39.0	50	13
49 50	May-09	5,000	13,000	1.0	٦٥.٥	0.0			
	May-09 Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
50		-							

					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	I	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	-	< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	l	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
(Groundwat	er monitorin	g in this w	ell discontin	ued with Al	ameda County H	ealth Care Servic	es Agency appro	val.

					Well N	IW-5					
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA		
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2		
Grou	undwater m	onitoring in	this well d	iscontinued	in 1998 wi	h Alameda Coun	ty Health Care Se	ervices Agency a	pproval.		
	Subsequent groundwater monitoring conducted to confirm plume's southern limit										
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9		
15	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0		

					Well N	IW-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.60	102	3.5

					Well N	IW-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	3	<0.5	33	2.7	39	3.7

					Well N	IW-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2.0

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5		25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0

	Well MW-11											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10			
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10			
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4			
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4			
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10			
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10			
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53			
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10			
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4			
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173			
11	Mar-04	4,900	400	72	17	342	233	664	61			
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10			
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10			
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10			
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10			
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0			
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0			
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10			
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10			
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0			
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0			
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0			
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0			
24	Jun-07	4	2,200	120	<0.5	140	6.6	267	<4.0			
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0			
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35			
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8			
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0			
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0			
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0			
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0			
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3			
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.0			

Well MW-12											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0		
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49		
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0		
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21		
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0		
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0		
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0		
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0		
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0		
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0		
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0		
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0		
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0		
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0		
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0		
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0		

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/			
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/			
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			

		Sampling L	ocation S	W-2 (Area d	of Historica	I Contaminated	Groundwater Di	scharge)	
Event	Date	TVHq	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0

	Samplin	ng Location	n SW-3 (D	ownstream	of Contan	ninated Groundy	vater Discharge	Location SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	< 50	<100	< 0.3	< 0.3	< 0.6	< 0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50 <50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43		NS	NS				NS	NS	
45	Sep-08 Dec-08	<50	360	NS <5.0	<5.0	NS <5.0	<5.0	<5.0	NS <2.0
46	Mar-09	<50 <50		<0.5	<0.5	<0.5	<0.5	0.5	<2.0
	Jun-09	<50 <50	<50						
47 48			<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS

NS = Not Sampled (no surface water present during sampling event)