RECEIVED

2:25 pm, Jul 01, 2009

Alameda County Environmental Health

SECOND QUARTER 2009 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

July 2009

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

SECOND QUARTER 2009 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

July 1, 2009

Project No. 2009-02

2198 Sixth Street, Suite 201-Berkeley, CA 94710 Tel: (510)644-3123 · Fax: (510)644-3859

GEOSCIENCE & ENGINEERING CONSULTING

July 1, 2009

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist, Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Quarter 2009 Site Monitoring Report Redwood Regional Park Service Yard Site – Oakland, California Alameda County Environmental Health Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced Stellar Environmental Solutions, Inc. report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities between April 1 and June 31, 2009 (Second Quarter 2009) with an additional discussion of the sampling of monitoring well MW-2 conducted on May 5, 2009. Remedial bioventing activities are reported in separate technical submittals; however, a summary of these activities is included in the quarterly groundwater monitoring report.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact Mr. Neal Fujita of the EBRPD, or contact us directly at (510) 644-3123.

Sincerely,

Jours S. Makdin

Richard Makdisi, R.G., R.E.A. Principal

cc: Carl Wilcox, California Department of Fish and Game Neal Fujita, East Bay Regional Park District State of California GeoTracker system Alameda County Environmental Health 'ftp' system

TABLE OF CONTENTS

Section		Page	
1.0	INTRODUCTION	1	
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Site Description Regulatory Oversight		
2.0	PHYSICAL SETTING	6	
	Site Lithology Hydrogeology		
3.0	Q2 2009 ACTIVITIES	13	
	Groundwater and Surface Water Monitoring Activities Bioventing-Related Activities Monitoring Well MW-2 ORC TM Injection and Monitoring	15	
4.0	REGULATORY CONSIDERATIONS		
	Groundwater Contamination Surface Water Contamination		
5.0	MONITORING EVENT ANALYTICAL RESULTS		
	Current Event Groundwater and Surface Water Results Quality Control Sample Analytical Results		
6.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS		
	Summary and Conclusions Proposed Actions		
7.0	REFERENCES AND BIBLIOGRAPHY		

Appendices

Appendix A Historical Groundwater Monitoring Well Water Level Data
 Appendix B Groundwater Monitoring Field Documentation
 Appendix C Analytical Laboratory Report and Chain-of-Custody Record
 Appendix D Historical Groundwater and Surface Water Analytical Results

TABLES AND FIGURES

Tables

Page

Table 1 Monitoring Well Construction and Groundwater Elevation Data – June 10, 2009... 14Table 2 Groundwater and Surface Water Sample Analytical Results – June 10, 2009.......... 21

FiguresPageFigure 1 Site Location Map3Figure 2 Site Plan and Historical Sampling Locations4Figure 3 Geologic Cross-Section Locations7Figure 4 Geologic Cross-Sections A-A' through C-C'8Figure 5 Geologic Cross-Sections D-D' through F-F'9Figure 6 Groundwater Elevation Map – June 10, 200911Figure 7 Gasoline and Diesel Hydrochemical Trends in Monitoring Well MW-217Figure 8 Groundwater Analytical Results and Gasoline Plume – June 200923

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (Alameda County Environmental Health) has provided regulatory oversight of the investigation since its inception (Alameda County Environmental Health Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) between April 1 and June 31, 2009:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant analysis and natural attenuation indicators;
- Collecting surface water samples for contaminant analysis; and
- Additional sampling of groundwater from monitoring well MW-2.

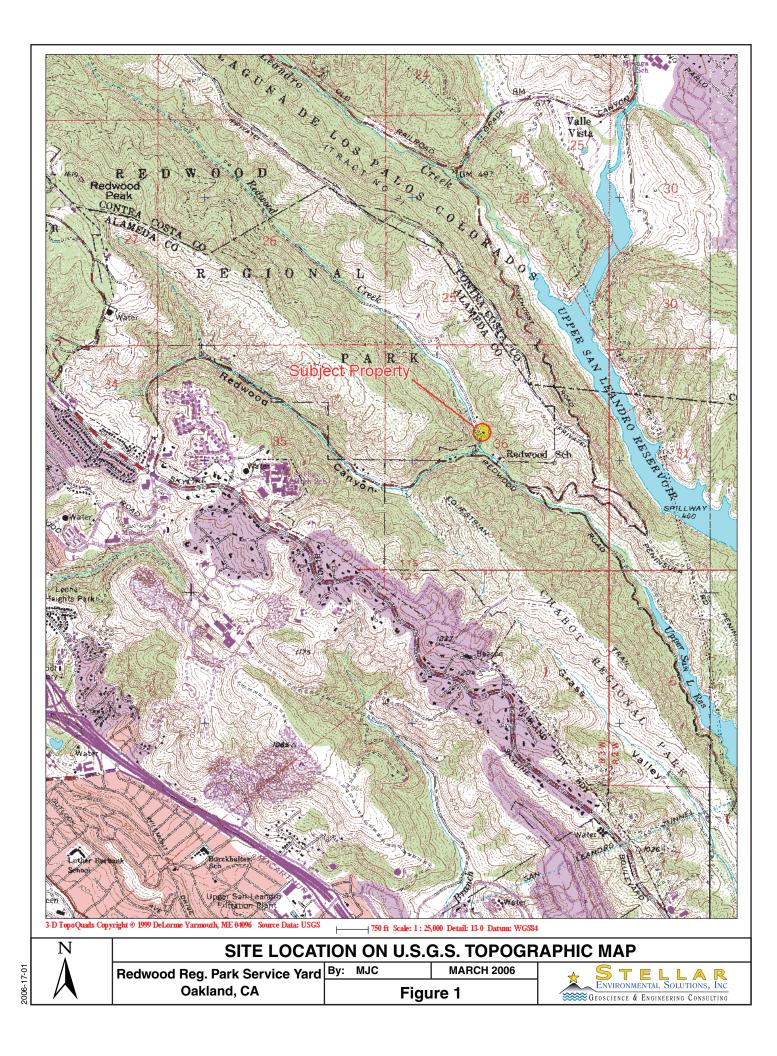
HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

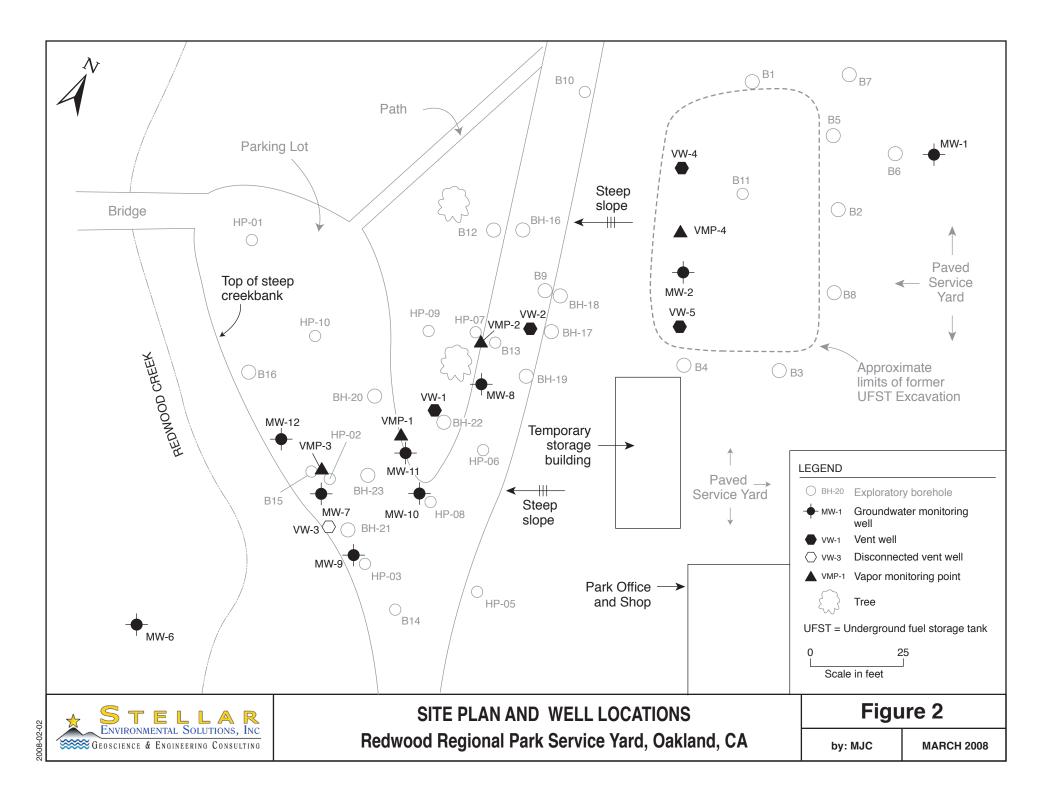
Previous SES reports have provided discussions of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and hydrochemical trends and plume stability. Section 7.0 (References and Bibliography) of this report provides a listing of all technical reports for the site.

The general phases of site work included:

An October 2000 Feasibility Study report for the site submitted to Alameda County Environmental Health, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d).

- Two instream bioassessment events conducted in April 1999 and January 2000 to evaluate potential impacts to stream biota associated with the site contamination (no impacts were documented).
- Additional monitoring well installations and corrective action by ORCTM injection proposed by SES and approved by Alameda County Environmental Health in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- A total of 50 groundwater monitoring events, conducted on a quarterly basis since project inception (November 1994); a total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An additional ORCTM injection was conducted during the last quarter on March 10, 2009 to control elevated levels of hydrocarbons in the source area represented by MW-2.


SITE DESCRIPTION


Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 2 shows the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is Alameda County Environmental Health (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. Historical Alameda County Environmental Health-approved revisions to the groundwater sampling program have included:

- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6;
- Discontinuing creek surface water sampling at upstream location SW-1

- Discontinuing field measurement and laboratory analyses for natural attenuation indicators, to be re-implemented following the bioventing corrective action; and
- Reducing the frequency of creek surface water sampling from quarterly to semi-annually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

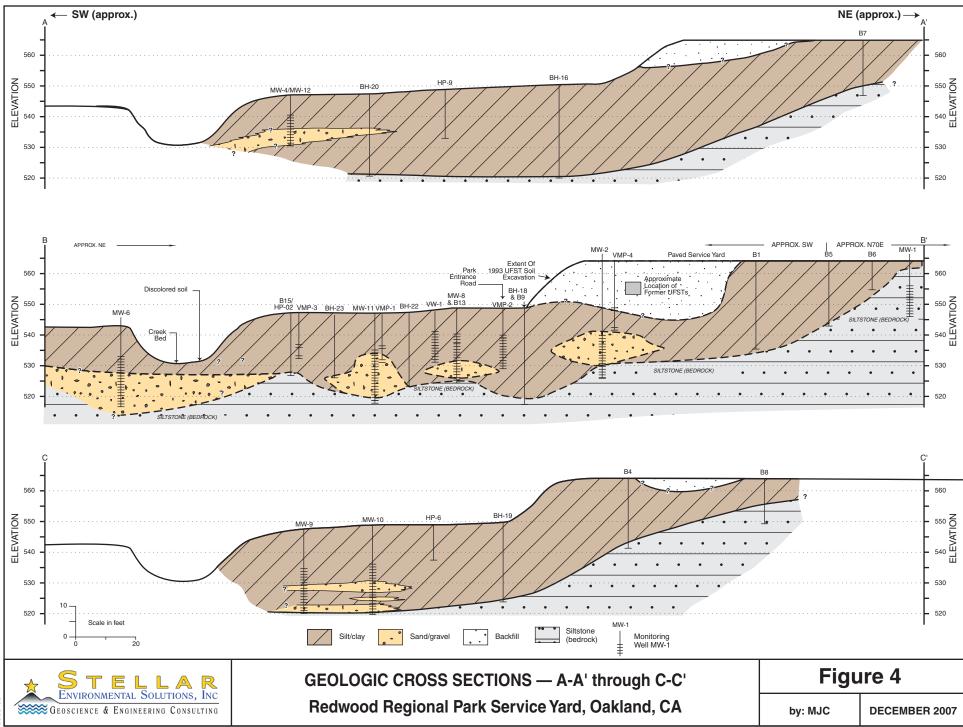
All workplans and reports have been submitted to these agencies with the exception of a response to the ACEH March 24, 2009 letter from Mr. Jerry Wickham requesting a Pilot Test Work Plan (PTWP) or Corrective Action Plan (CAP) be completed by May 27, 2009. Mr. Wickham subsequently gave EBRPD a 90-day extension, until August 27, 2009, to complete the PTWP or CAP. SES is currently working on the CAP on behalf of EBRPD and will have it submitted to Mr. Wickham before the August 27, 2009 deadline.

The site is in compliance with State of California GeoTracker requirements for uploading of electronic data and reports. In addition, electronic copies of technical documentation reports published since Q2-2005 have been uploaded to Alameda County Environmental Health's file transfer protocol (ftp) system.

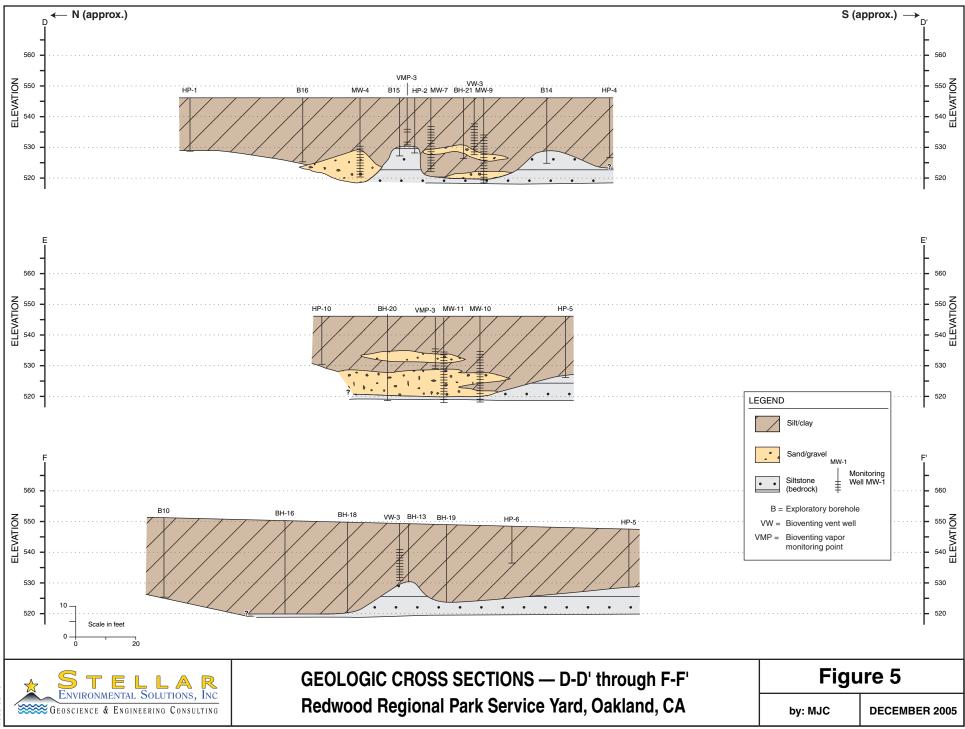
2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous SES reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, Alameda County Environmental Health requested, via email, additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections parallel to and perpendicular to the contaminant plume's long axis.

SITE LITHOLOGY


Figure 3 shows the location of the geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination was presented in a previous report (SES, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarsegrained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

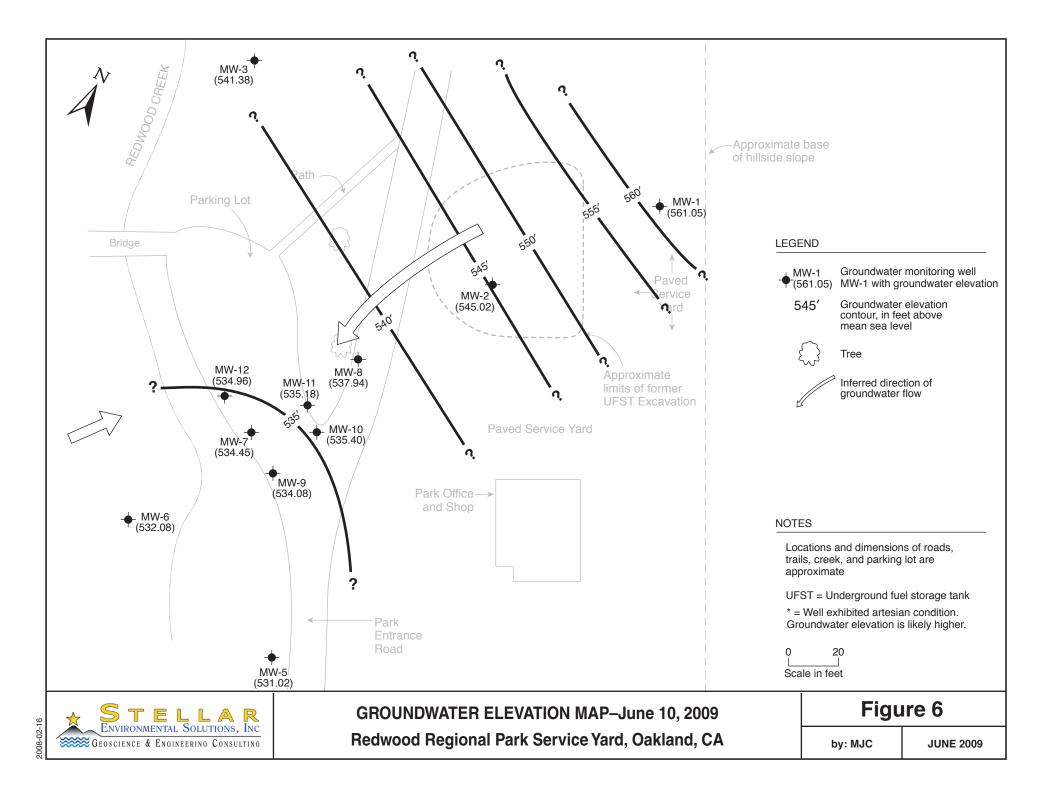

A previous SES report (SES, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map from that report, and Figures 4 and 5 from this report, indicate the following: the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general

2008-02-05

2005-66-14

2005-66-13

topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.


In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well equilibrated water levels. Table 1 (in Section 3.0) summarizes current event groundwater elevation data. Appendix A contains historical groundwater elevation data. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous sub-section, local groundwater flow direction is likely more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

In the upgradient portion of the site (between well MW-1 and MW-2, in landslide deposit and the former UFST excavation backfill), the groundwater gradient is approximately 0.21 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.09 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UFST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

3.0 Q2 2009 ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q2 2009), conducted on June 10, 2009 and an additional discussion of purging and sampling of monitoring well MW-2 that was conducted on May 5, 2009. A summary of bioventing-related activities is also provided.

GROUNDWATER AND SURFACE WATER MONITORING ACTIVITIES

Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the Alameda County Environmental Health-approved SES technical workplan (SES, 1998a). Current event activities included:

- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3; and
- Collecting an extra sample and chemical parameter measurements from MW-2 in May 2009 to document the affect of the ORCTM injection.

Creek sampling and groundwater monitoring/sampling was conducted on June 10, 2009. The creek sampling was conducted by the SES project manager. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

Because it appears that the previously-injected ORCTM has been depleted, continued monitoring of the natural attenuation parameters—dissolved oxygen, oxidation-reduction potential, nitrate, ferrous iron, and sulfate—is of marginal value until such time as additional corrective actions that would increase oxygen concentrations are implemented. Thus, monitoring for natural attenuation parameters was discontinued following the Q3 2004 event. However, these parameters were measured in MW-2 (discussed below) to monitor the recent ORCTM injection in that area.

Table 1

Groundwater Monitoring Well Construction and Groundwater Elevation Data – June 10, 2009 Monitoring Event Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval Depth	TOC Elevation	Groundwater Elevation (6/10/09)	
MW-1	18	7 to17	565.83	561.05	
MW-2	36	20 to 35	566.42	545.02	
MW-3	42	7 to 41	560.81	541.38	
MW-5	MW-5 26		547.41	531.02	
MW-6	26	10 to 25	545.43	532.08	
MW-7	24	9 to24	547.56	534.45	
MW-8	23	8 to 23	549.13	537.94	
MW-9	26	11 to 26	549.28	534.08	
MW-10	26	11 to 26	547.22	535.40	
MW-11	26	11 to 26	547.75	535.11	
MW-12	25	10 to 25	544.67	534.96	

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All depth and elevations are feet (above U.S. Geological Survey mean sea level for elevations).

Groundwater Level Monitoring and Sampling

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by Alameda County Environmental Health in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 61 gallons) from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

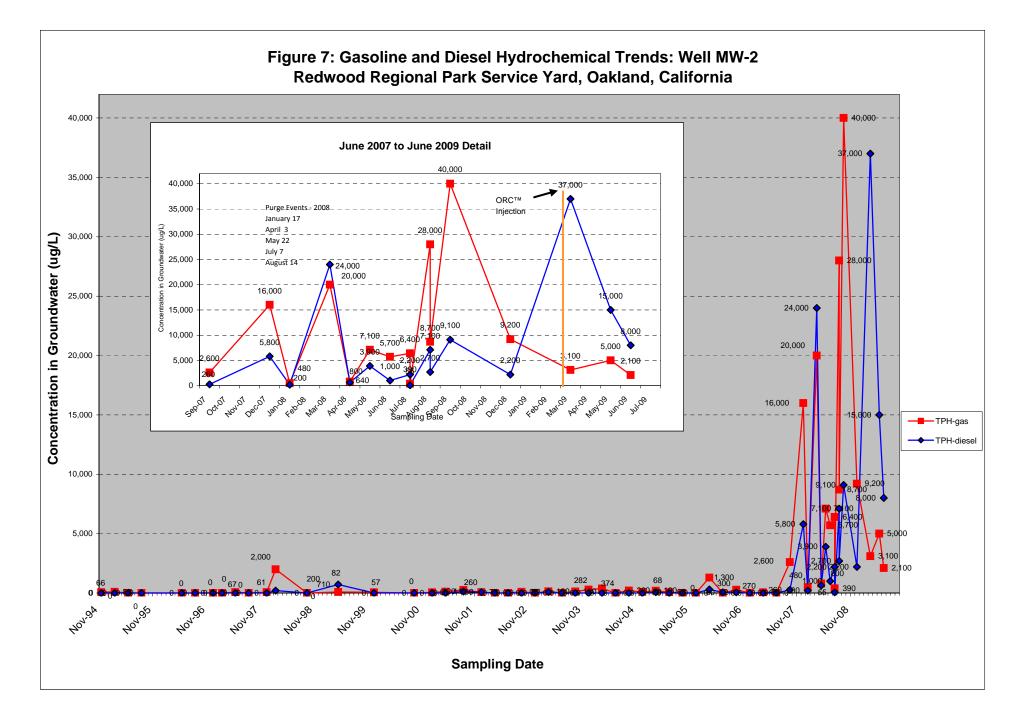
Creek Surface Water Sampling

Surface water sampling was conducted by SES on June 10, 2009. Surface water samples were collected from two Redwood Creek locations: SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and SW-3 (approximately 500 feet downstream of the SW-2 location). In accordance with a previous SES recommendation approved by Alameda County Environmental Health, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a high stage; water depths were approximately 0.5 to 1.0 foot with a light flow. At the SW-2 location, where contaminated groundwater discharge to the creek historically has been observed, an orange algae was noted growing on the saturated portion of the creek bank. This algae likely is utilizing the petroleum as a carbon source, and therefore is a good indicator of the presence of petroleum contamination. However, neither petroleum sheen nor odor was evident on the water surface. Orange algae, sheen, and/or odor were not observed at the SW-3 location.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for one month in January and February 2006. Bioventing system operations and maintenance (O&M) events had been conducted monthly since March 2006; however, they have been reduced to quarterly events beginning in 2009. East Bay Regional Redwood Park staff has been checking the system on a weekly basis to ensure it is functioning properly, and will notify SES in the event of a problem. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically has seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents.


MONITORING WELL MW-2 ORCTM INJECTION AND MONITORING

Monitoring well MW-2, installed in the area of the former UFSTs, historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. The increase in all petroleum hydrocarbons at MW-2 initially raised concern that the cause was local (a significant reduction

occurred after pumping 100 gallons or less). In 2008, SES initialized a program of more frequent monitoring and purging at MW-2 to mitigate against higher concentrations migrating downgradient toward Redwood Creek. The program showed limited success, with concentrations declining after limited purging, but rapidly increasing between monitoring events. This was the basis for this aggressive corrective action program involving the injection of the ORCTM compound to provide a catalyst for enhanced biodegradation to occur. The remedy was designed to coincide with the higher groundwater elevations typically observed in spring.

Groundwater samples taken six days after the March 10, 2009 injection showed concentrations of total extractable hydrocarbons as diesel (TEHd) and total volatile hydrocarbons as gasoline (TVHg) at 37,000 micrograms per liter (μ g/L) and 3,100 μ g/L, respectively. Dissolved oxygen (DO) was measured at 0.2 milligrams per liter (mg/L). During the May 5, 2009 sampling of MW-2, TEHd and TVHg were measured at 15,000 μ g/L and 5,000 μ g/L, respectively. DO was measured at 0.86 mg/L. During the June 10, 2009 sampling event, TEHd was measured at 8,000 μ g/L and TVHg at 2,400 μ g/L. DO as measured at 1.35 mg/L. Therefore, concentrations of diesel have been steadily reducing since the injection. Gasoline concentrations since the injection have not be steadily reducing (there was a rise from the March 10 event to the May 5 event) but have been reducing overall. The concentration of DO has also been increasing, as should be expected as the ORCTM begins to take effect.

Figure 7 shows the TEHd and TVHg concentration plot for MW-2 over time. See Appendix C for the certified laboratory analytical reports.

Stellar Environmental Solutions, Inc.

4.0 REGULATORY CONSIDERATIONS

The following is a summary of regulatory considerations regarding surface water and groundwater contamination. There are no Alameda County Environmental Health or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1986), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is a current or potential drinking water source</u>; and 2) ESLs for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL document (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, Alameda County Environmental Health has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 2 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water Board, 2008), benthic

communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9 and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be considered by the lead regulatory agency, ADEH, only after the groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria and/or have been demonstrated to have reached an de-minimus asymptotic concentration. Residual contaminant concentrations in excess of screening level criteria might also be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

5.0 MONITORING EVENT ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the most recent monitoring event. Table 2 summarizes the contaminant analytical results, and Figure 7 shows the contaminant analytical results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record for the current event; Appendix D contains a summary of historical groundwater and surface analytical results.

CURRENT EVENT GROUNDWATER AND SURFACE WATER RESULTS

Current quarter site groundwater concentrations in all but one of the sampled monitoring wells (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12) exceeded their respective groundwater ESLs for TEHd, and TVHg under both the *groundwater* <u>is</u> and <u>is not</u> a drinking water resource criteria The remaining well, MW-10, did exceed the ESL for TEHd where groundwater is a drinking water resource but did not exceed the ESL where groundwater is not a drinking water resource. While TVHg was detected in MW-10, the concentration was below both the drinking water and non-drinking water ESLs.

Concentrations of benzene exceeded the ESL for drinking water in all wells except MW-12, where the concentration was below the laboratory detection limit. Ethylbenzene concentrations exceeded the ESL for where groundwater is and is not a drinking water resource in MW-7, MW-8, MW-9, and MW-11. Total xylenes exceeded the groundwater ESLs under both criteria in wells MW-2, MW-8, and MW-9. MTBE was found above the drinking water criteria in wells MW-2, MW-8, MW-9, and MW-9, and MW-11. However, the concentrations were below the non-drinking water ESL. MTBE was below the laboratory detection limit in all other wells. Toluene was not detected above the laboratory detection limit in any of the wells sampled.

The maximum TVHg, benzene, and MTBE concentrations were detected in well MW-7, a downgradient well. The maximum total xylene concentration was detected in well MW-8 and the maximum ethylbenzene concentration in MW-9. The maximum TEHd concentration was observed in MW-2, located in the former source area. This anomaly is discussed in more detail in Section 3.0. The northern edge of the plume in the downgradient area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on

Table 2
Groundwater and Surface Water Sample
Analytical Results – June 10, 2009
Redwood Regional Park Corporation Yard, Oakland, California

	Contaminant										
Location	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE				
GROUNDWATER SAMPLES											
MW-2	2,400	8,000	5.4	<0.5	11	20.2	13				
MW-7	4,600	5,400	40	<0.5	140	5.12	260				
MW-8	2,100	3,400	32	<0.5	260	80.8	55				
MW-9	4,100	3,600	62	<0.5	280	41.7	160				
MW-10	72	120	2.0	<0.5	4.4	1.3	<2.0				
MW-11	2,100	2,700	38	<0.5	80	3.3	40				
MW-12	300	280	<0.5	<0.5	4.6	<0.5	<2.0				
Groundwater ESLs ^(a)	100 / 210	100/ 210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800				
REDWOOD CREEK SURFACE WATER SAMPLES											
SW-2	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0				
SW-3	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0				
Surface Water Screening Levels ^(a, b)	100	100	1.0	40	30	20	5.0				

Notes:

^(a) Water Board Environmental Screening Levels (groundwater *is/is not* a potential drinking water resource) (Water Board, 2008).

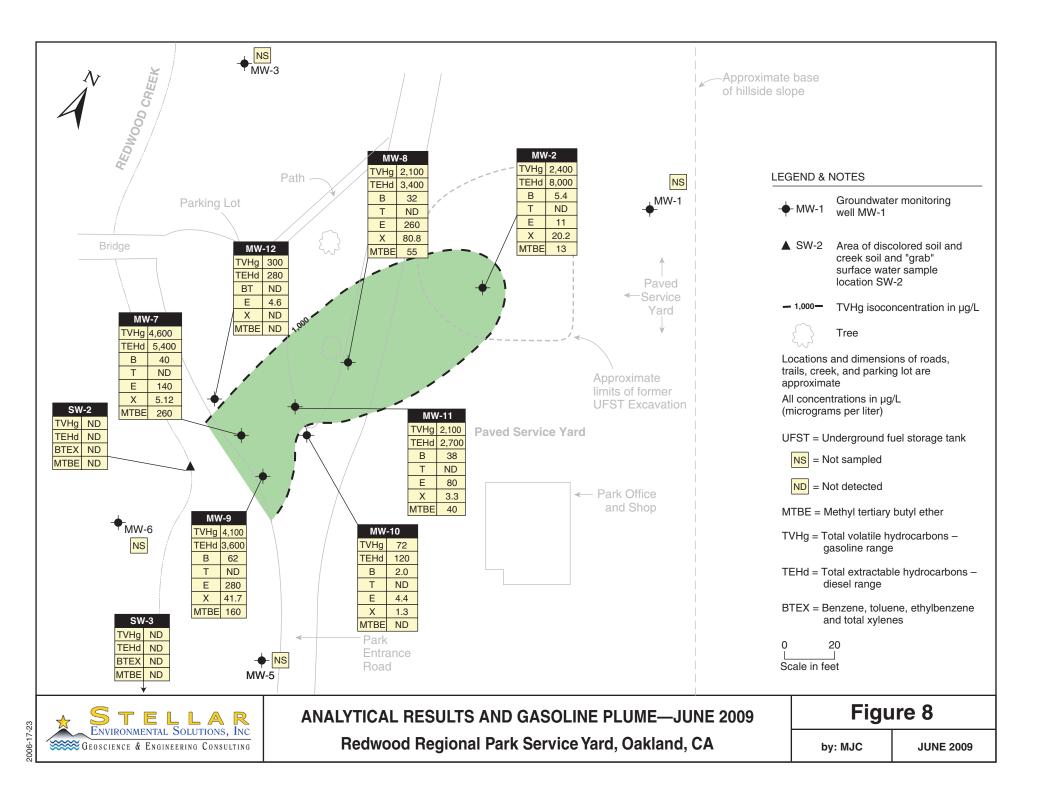
^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

MTBE = methyl *tertiary*-butyl ether

TVHg = total volatile hydrocarbons - gasoline range

TEHd = total extractable hydrocarbons - diesel range

All concentrations expressed in micrograms per liter (µg/L), equivalent to parts per billion.


Samples in **bold-face type** exceed the ESL and/or surface water screening levels where groundwater is a potential drinking water resource.

historical groundwater data, it appears to be located between well MW-9 and well MW-5.

Neither of the two surface water samples collected, SW-2 and SW-3, contained contaminants at concentrations above the laboratory detection limits for TEHd, TVHg, BTEX, and MTBE.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (50 events in the initial site wells). A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for TPHg, TPHd, benzene, ethylbenzene, total xylenes, and MTBE in groundwater and TPHd in surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low creek flow conditions. An in-stream bioassessment evaluation conducted from 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet bgs) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- First quarter 2009 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in six of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12). TVHg was also detected in MW-10, but below the ESL. Contaminant concentrations of TEHd exceeded the ESL in all seven of the wells sampled.
- The ESL for benzene was exceeded in MW-2, MW-7, MW-8, MW-9, MW-10 and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-2, MW-8, and MW-9; and the ESL for methyl tertiary-

butyl ether (MTBE) was exceeded in MW-2, MW-7, MW-8, MW-9, and MW-11. Toluene was not detected above the laboratory detection limit in any of the seven wells sampled.

- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination for TVHg is currently centered around MW-7 (at 4,600 µg/L) while the greatest zone of TEHd contamination is currently centered around MW-2 (at 8,000 µg/L).
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells in recent history.
- Since September 2007, contaminant concentrations in well MW-2 (located in the source area) have increased dramatically, suggesting desorption from the original upgradient source area as a result of a drought-induced drop in water levels. Additional groundwater purging on MW-2 failed to reduce concentrations over time; therefore, a limited remedial application of ORCTM was injected into the upper yard area (source area) in March 2009.
- Samples taken immediately after the injection, two months later in May, and again for this groundwater monitoring event in June have shown levels of dissolved oxygen (DO) to be rising, and concentrations of both TVHg and TEHd decreasing. The ORCTM injection should be effective in reducing the contaminant concentration of the plume in MW-2 by accelerating the biodegradation significantly within approximately the first 6-12 months.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the heterogeneous environment where the plume is located limits effectiveness; with only MW-8 in the upper center of the plume area showing a significant reduction in hydrocarbon concentrations. In other areas of the plume, it appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.
- A letter dated March 24, 2009 from Mr. Wickham of ACEH, written after reviewing the ORCTM injection workplan, commented that it would not do much to reduce the overall source area contribution. SES agrees with that assessment. However, the small injected volumes were not intended to achieve a broad remediation goal. The intent was to determine if a pathway to well MW-2 was achievable through nearby injections, as well as locally reduce the high gasoline concentrations exhibited in MW-2. Mr. Wickham gave the EBRPD a 90-day extension to submit a Pilot Test Work Plan (PTWP) or Corrective Action Plan (CAP). This extension resulted in a August 27, 2009 deadline.
- SES is currently working on the CAP on behalf of EBRPD and will have it submitted to Mr. Wickham before the August 27, 2009 deadline requested.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Complete the referenced CAP on or before August 27, 2009 to address the continued source area hydrocarbon input.
- Sample MW-2 between regular quarterly sampling events to monitor the ORCTM injection remedy effectiveness as part of the CAP follow up.
- Continue the quarterly monitoring program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to operate the bioventing system as a part of the overall corrective action program, although it has limited potential to achieve significant reduction in contaminant mass throughout the affected area.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp system.

7.0 REFERENCES AND BIBLIOGRAPHY

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (SES), 2009. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.

- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2007d. Fourth Quarter 2006 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2005b. First Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Second Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Third Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.

- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.

- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored				Gro	undwater E	Elevations	(feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	545.6						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08

TOC = Top of well Casing (a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements. (b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Project # 090610MM Date 6-10-09 Client STELLAR

Site PEDWOUD REGIONAL PARK SERVICE YARD, OAKLAND

					Thickness				Survey	
		Well Size	Sheen /	Depth to	of Immiscible	Immiscibles			Point:	
Well ID	Time	(in.)	Odor		Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	TOB or	Notes
		`_´					()		1	
MW-1	858	4					4.78	19.13		4.0
Mw-2-	853	4					21.40	39.95		5
MW-3	916	4					19.43	45.80		6.0
MW-5	911	ц					16.39	27.00		6.0
Mw-6	947	ł					13.35	14.21	a na	6.0
MW-7	935	2					13.11	25.34		S
MW-8	954	2					11.19	22.26		V
Mw-9	932	2					15.20	30.25	And a second	S
MW-10	926	2					11.82	28.42		S
MM-11	929	2				-	12.64	28.13		V
MW-12	939	2					9.71	2-3.88		S
	·									
-										
								91 - 1 day - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

WELLHEAD INSPECTION CHECKLIST

Page ____ of ____

-	PEDWOOD 090610AK-1	I-KIIQAN				Ale	AKLAND	ter Carlonnan Alexandra da anticipada da a
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
					Wellbox		below)	below)
MW-1 MW-2				ñ.				
MW-3					· · ·			
NW-S								
1W-6								
MW-7								
MW-8		~				·		
MW-9	~			••				
MW-10								
MW-11			·····					
MW-12						analis, at a line of a few processing of before		
general and an entry of the star and a second						****		
99-19 95			м 					
						······································		
NOTES: <u>s</u>	TANDPIPE MW-7, N	: Mw -	1, Mw.	2, M	N-3, M	w-5,.	MW-10-N	w-11,
MW-6,	MW-7, N	W-9	, <u>m</u>	W-8:	3/3	Boc	TS MIS.	SING
							· · · · · · · · · · · · · · · · · · ·	
								<u></u>

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	IE STELLAR	(PEDWOOD)	LEGIONAL LICE YARD	PROJECT NUMBER OGOGIOAL							
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS				
YSI 550	083100 951	6-10-09	100.090	109.4	Ý		AR				
ULTR AMETOR	-6222815	6-10-09 1000	PH 4,7,10	4.0, 7.0, 10.0	Y	67.1	Arc				
J	L	L	CADUCAVITY	3900	4	68.9	Ar				
				ť,							

		N	L MONII	ORIN	G DATA	A SHE .'			
Project #:	090610	AKI		Client	: Ste	ELLAR	ENV	NPO.	Soundars
Sampler:	AK			Date:	6-1	10-09			
Well I.D.:	MW-	2		Well I	Diametei	:: 2 3	4	68	
Total Well	Depth (TI	D): 39	8.95	Depth	to Wate	er (DTW):	2	1.40	
Depth to F1	ree Produc	t:		Thick	ness of F	Free Produc	ct (fee	et):	
Referenced	to:	PVC	Grade	D.O. 1	Meter (if	'req'd):	(YSI	НАСН
DTW with	80% Rech	arge [(H	Height of Water	Colum	n x 0.20) + DTW]:		24.9	
Purge Method: M-55	Bailer Disposable E Positive Air I Electric Subr	Displaceme	e 1	Waterra Peristaltic tion Pump	Well Diamete		Other: Well D	Extr Dedic	Bailer sable Bailer action Port cated Tubing
I Case Volume		<u>3</u> fied Volun	$= \frac{34.2}{\text{Calculated Vo}}$	-	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.6 1.4 rac	
Time	Temp (🍊 or °C)	рН	Cond. (mS or 🔊)		bidity TUs)	Gals. Rem	oved	Obs	ervations
1326	60.0	7.3	915	13	32	11.5			
DEWAT	EFED	C	15.0	GALL	CNS			DIM:	33.19
1355	60.6	7.0	920		39				
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuate	d:	15.0	
Sampling Da	ate:6-10-0	29	Sampling Time	: 135	5	Depth to V	Vater	: 24	
Sample I.D.:	- MW-2	-		Labora	tory:	Kiff CalSo	cience	Other_	CZT
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ntes (5)	Other:	SEE	COC	
EB I.D. (if a	pplicable)	•	@ Time	Duplica	ate I.D. (if applicab			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:			
D.O. (if req'a	d): Pro	e-purge:		^{mg} /L	Po	ost-purge:		1.3	5 ^{mg} / _L

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

mV

Post-purge:

тV

O.R.P. (if req'd):

Pre-purge:

Project #: 090610AK1 Client: STELLAR ENVIRO. SOLVIGUS Sampler: Date: AK 6-10-09 Well I.D.: Well Diameter: (2)MW-7 3 4 6 8 Depth to Water (DTW): Total Well Depth (TD): 25.34 13.11 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVG D.O. Meter (if req'd): Grade YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 15.55 Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other___ Dedicated Tubing Other: 12.23 Well Diameter Well Diameter Multiplier Multiplier 1" 0.04 4" 0.65 1.9 2" 0.16 6" 1.47 (Gals.) X 5.8 2 Gals. 3" $radius^2 * 0.163$ 0.37 Other I Case Volume Specified Volumes Calculated Volume Temp Cond. Turbidity $(e^{\text{E}} \text{or }^{\circ} C)$ (mS or μ S) Time pН (NTUs) Gals. Removed Observations 288 2.0 902 1034 56.1 6.9 21000 1038 55.9 6.9 901 4.0 55.9 6.8 885 21000 1041 6.0 70 Þ 80 NOT Did well dewater? RD Yes Gallons actually evacuated: 6.0 Sampling Date: 6-10-09 Sampling Time: 1250 Depth to Water: 13.28 Sample I.D.: MW-7 Other CZT Laboratory: Kiff CalScience Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE COC a) EB I.D. (if applicable): Duplicate I.D. (if applicable): Time Analyzed for: TPH-G BTEX MTBE Oxygenates (5) Other: TPH-D mg/L nig/L D.O. (if req'd): Pre-purge: Post-purge: O.R.P. (if req'd): Pre-purge: mV Post-purge: mλ

LL MONITORING DATA SH

Project #: 090610AK1 Client: STELLAR ENVIRO. SOLMANS Sampler: Date: AK 6-10-09 Well I.D.: MW-8 Well Diameter: (2) 3 6 4 8 Total Well Depth (TD): Depth to Water (DTW): 22.26 11.19 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC D.O. Meter (if req'd): Grade YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 13.40 Bailer Purge Method: Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other_ Dedicated Tubing Other: 11.07 Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 1.8 2" 5.3 6" (Gals.) X 3 0.16 1.47 Gals. 3" 0.37 Other $radius^2 * 0.163$ 1 Case Volume Specified Volumes Calculated Volume Temp Cond. Turbidity $(\mathcal{B} or ^{\circ}C)$ Time рΗ (mS or B) (NTUs) Gals. Removed Observations 59.1 7.2 899 1153 2.0 187 59.2 1156 7.0 924 200 4.0 1159 59.2 7.0 942 351 6.0 Did well dewater? Yes NO Gallons actually evacuated: 6.0 Sampling Date: 6-10-09 Sampling Time: 1200 Depth to Water: 13.35 Sample I.D.: MW-8 Laboratory: Other CAT Kiff CalScience Analyzed for: TPH-G BTEX MTBE Oxygenates (5) TPH-D Other: SEE COC a) EB I.D. (if applicable): Duplicate I.D. (if applicable): Time Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: mg/L ng/L D.O. (if req'd): Pre-purge: Post-purge:

L MONITORING DATA SHI

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

тV

Post-purge:

m\

O.R.P. (if req'd):

Pre-purge:

Project #: 090610AK1 Client: STELLAR ENVIPO. SOLMANS Sampler: AK Date: 6-10-09 Well I.D.: MW-9 Well Diameter: \mathcal{O} 3 4 6 8 Total Well Depth (TD): Depth to Water (DTW): 30.25 15.20 Depth to Free Product: Thickness of Free Product (feet): Referenced to: evd. D.O. Meter (if req'd): Grade YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 18.21 Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: 15.05 Well Diameter Well Diameter Multiplier Multiplier 0.04 1" 4" 0.65 2.4 2" 7.2 6" 0.16 (Gals.) X | 47 Gals. 3" 0.37 I Case Volume Other $radius^2 * 0.163$ Specified Volumes Calculated Volume Temp Cond. Turbidity $(\mathcal{O} r^{\circ}C)$ Time pН (mS or uS) (NTUs) Gals. Removed Observations 1112 >1000 56.2 6.8 25 1055 ODER 56.3 5.0 1115 6.8 > 1000 1033 OVER 56.4 1119 6.9 7.5 1008 >1000 ODOR 2020 (\rightarrow) NOT Did well dewater? N Yes Gallons actually evacuated: 7.5 Sampling Date: 6-10-09 Sampling Time: 1310 Depth to Water: 15.49 Sample I.D.: MW-9 Other CAT Laboratory: Kiff CalScience Analyzed for: TPH-G BTEX MTBE Oxygenates (5) TPH-D Other: SEE COC (a) EB I.D. (if applicable): Duplicate I.D. (if applicable): Time Analyzed for: TPH-G BTEX MTBE TPH-D Other: Oxygenates (5) mg/L ^{mg}/_l D.O. (if req'd): Pre-purge: Post-purge: O.R.P. (if req'd): Pre-purge: тV Post-purge: m∖

L MONITORING DATA SH

LL MONITORING DATA SH

Project #:	090610	AKI.		Client:	ST	ELLAR	ENVI	PO. SOLV	lans
Sampler:	AK			Date:	6-	10-09			
Well I.D.:	MW-	-10		Well Dia	imete	er: 🙆 3	4	6 8	
Total Wel	l Depth (TI	D): 29	8.42	Depth to	Wate	er (DTW):		82	
Depth to F	Free Produc	:t:		Thicknes	s of l	Free Produc			
Reference	d to:	EVE	Grade	D.O. Me				SI HACH	
DTW with	1 80% Rech	arge [(I	Height of Wate	r Column >	c 0.20)) + DTW]:		15.14	
Purge Method:		Displacem		Waterra Peristaltic action Pump		Sampling M	lethod:	Bailer Disposable Bail Extraction Por Dedicated Tubin	t
16.60			·	We	ll Diame		Other: Well Dian	neter Multiplier]
2.6 I Case Volume		3 ified Volur	$= \frac{7.9}{\text{Calculated V}}$	Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" _ Other	0.65 1.47 radius ² * 0.163	
Time	Temp (D or °C)	pH	Cond. (mS or 🔊	Turbid (NTU:	-	Gals. Remo	oved	Observations	5
1014	58.7	8.0	823	53	7	2.20	5		
1017	58.6	7.2	870	71000	3	5.50	0		
1021	59.6	7.3	790	5100	0	8.25	5		
1024	58.6	7.3	782	> 100	o	11.00			
NOT	0 0	090							
Did well de	water?	Yes	No	Gallons ad	ctuall	y evacuated	1:	11.00	
Sampling D)ate: 6-1	0-09	Sampling Tim	e: 1240	0	Depth to V	Vater:	12.28	
Sample I.D.	.: MN	1-10		Laborator	y:	Kiff CalSc	ience	Other CZT	
Analyzed fo	Dr: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:	SEE (:0C	
EB I.D. (if a	applicable)	:	@ Time	Duplicate	I.D. ((if applicab			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates		Other:	,		
D.O. (if req	'd): Pro	e-purge:	xWarraennanung A-Q4/49,4% od занрызонның найдыла	^{mg} /L	P	ost-purge:		MÜRÜLÜR İNCÜLERÜLÜRÜLÜRÜLÜRÜRÜRÜRÜRÜRÜRÜRÜRÜRÜRÜRÜR	^{mg} /L
D.R.P. (if re	eq'd): Pro	e-purge:		mV	Р	ost-purge:		analamuidan alocutae a genu da taa taa taa taa taa taa taa taa taa	mV

L MONITORING DATA SH

, ,

Project #:	090610	AKI		Client:	STI	ELLAR	ENV	120. Solution	
Sampler:	AK			Date:	6-	10-09			
Well I.D.:	Mw.			Well Dia			4	6 8	
Total Well	Depth (TI): 2	-8.13	Depth to	Wate	er (DTW):	12	. 64	
Depth to F	ree Produc					Free Produ	6 6		
Referenced	1 to:	Eye	Grade	D.O. Me				YSI HACH	
DTW with	80% Rech	arge [(H	leight of Wate	r Column z	x 0.20) + DTW]	: 1	5.85	
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Ailer Displaceme		Waterra Peristaltic action Pump		Sampling N	Method:	Bailer Disporation Bailer Extraction Port Dedicated Tubing	
16.09				We	ell Diamete	er Multiplier	Other: Well Dia	ameter Multiplier	7
2.6 1 Case Volume	Gals.) X Speci	3 fied Volum	es Calculated	1 Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163	
Time	Temp (° P or °C)	рН	Cond. (mS or µ ©)	Turbid (NTU	-	Gals. Rem	loved	Observations	
12-17	56.9	7.4	709	> 100	0	2.7	5		
1220	56.7	7.0	732	> 1024	v	5.5	ø		
1223	565	6.9	744	7100	v	8.25	5		
									_
Did well de	water?	Yes	NJ	Gallons a	ctuall	y evacuate	d:	8.25	
Sampling D	ate: 6-10-	09	Sampling Time	e: 1225		Depth to V	Water:	B.75	
Sample I.D.	: Mw-11			Laborator	y:	Kiff CalS	cience	Other C&T	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:	SEE	COC	
EB I.D. (if a	pplicable):		@ Time	Duplicate	I.D. (if applicat			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	·····	Other:			
D.O. (if req'	d): Pre	e-purge:		^{mg} /L	Pc	ost-purge:		mg/	L
D.R.P. (if re	q'd): Pre	e-purge:		mV	Po	ost-purge:			7

Project #:	090610	AKI		Client	: ST	ELLAR	ENV	NPO. SOLMANS
Sampler:	AK			Date:	6-	10-09		
Well I.D.:	MW-	12		Well I	Diamete	er: 🖉 3	4	6 8
Total Well	Depth (TI	D): 2:	3.88	Depth	to Wate	er (DTW):	9	
Depth to Fi	ee Produc	t:		Thick	ness of l	Free Produ	ct (fee	et):
Referenced	to:	TO	Grade	D.O. 1	Meter (i	f req'd):		YSI HACH
DTW with	80% Rech	arge [(F	Height of Wate	r Colum	n x 0.20)) + DTW]	:	12.54
Purge Method:	Bailer Disposable Positive Air Electric Subr	Displacem	ent Extra Other	Waterra Peristaltic action Pump	2	Sampling N	√lethod: Other:	Bailer Dispo able D ailer Extraction Port Dedicated Tubing
14.17					Well Diame		Well D	
2.3 (0 I Case Volume	Gals.) X Spec	<u>3</u> ified Volum	$= \frac{6.8}{\text{Calculated V}}$	Gals.	2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163
Time	Temp (Dor °C)	рН	Cond. (mS or µ S)		bidity ΓUs)	Gals. Rem	loved	Observations
1055	55.6	7.2	673	> (0	ro	2.5	-	
1058	555	6.8	683	>10	es	5.0		
1101	55.b	6.8	692	>10	vo	7.5		
NOT @	800	20						
Did well dev	water?	Yes	B	Gallon	s actuall	 y evacuate	ed:	7.5
Sampling Da	ate: 6-10)-09	Sampling Tim	e: 130	0	Depth to	Water	
Sample I.D.:			<u> </u>	Labora	tory:	Kiff CalS	cience	Other_C‡T
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	SEE	COC
EB I.D. (if a	pplicable)	:	@ Time	Duplica	nte I.D.	(if applicat		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:		
D.O. (if req'	d): Pr	e-purge:	n fa fa fan fan fan fan fan fan fan fan	^{mg} /L	P	ost-purge:		mg/L
).R.P. (if red	q'd): Pre	e-purge:	<u></u>	mV	Р	ost-purge:		mV
).R.P. (if red								

V _L MONITORING DATA SHI

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 212783 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2006-16
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-2	212783-001
MW-7	212783-002
MW-8	212783-003
MW-9	212783-004
MW-10	212783-005
MW-11	212783-006
MW-12	212783-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager Project Manager

Signature:

Date: <u>06/18/2009</u>

Date: 06/18/2009

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212783 Stellar Environmental Solutions 2006-16 Redwood Regional Park 06/10/09 06/10/09

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 06/10/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for bromofluorobenzene (FID) in MW-2 (lab # 212783-001), due to interference from coeluting hydrocarbon peaks; the corresponding trifluorotoluene (FID) surrogate recovery was within limits. High surrogate recoveries were observed for trifluorotoluene (FID) in a number of samples, due to interference from coeluting hydrocarbon peaks; the corresponding bromofluorobenzene (FID) surrogate recoveries were within limits. High surrogate recoveries were observed for bromofluorobenzene (PID) and trifluorotoluene (PID) in MW-8 (lab # 212783-003), MW-9 (lab # 212783-004), and MW-11 (lab # 212783-006), due to interference from coeluting hydrocarbon peaks. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Chain of Custody Record

Laboratory <u>Curtis and Tom</u> Address <u>2323 Fifth Stre</u> Berkeley, Califi 510-486-0900	et			SI	ethod of Shipment						/				Date <u>6/10</u> Page	109 01
Project Owner <u>East Bay R</u> Site Address 7867 Redw	0-486-0900 Airbill No East Bay Regional Park District Cooler No 7867 Redwood Road Project ManagerRichard Oakland, California Telephone No Redwood Regional Park 510) 644-312				chard Makdisi							Analysis Required				
Project Name <u>Redwood R</u> Project Number <u>2006-16</u>		ark			x No(510) 644 amplers: <i>(Signature)</i>		<u> </u>		No. Or		4				Rer	narks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container		eservation Chemical		IT IT		TEH-D	/ /				
MW-2 MW-7		6/10	1355	W	3VOA/1 AMB	V	HCYNONE	4	+1	(+	X					
MW-8			1250			+-+		4	++	· +	¥ ×					
MW-9			1310			+		4	+-	r + r +	$\frac{1}{x}$		┼─┼╴			
MW-10			1240					4	2 5	<u> </u>	X					
MW-1)			1225					4	44		×					
MW-12-			1300	•			V	4	× ×	< X	×					
Relinquished by:		Date	Received	by:		Date	Relinguished by:				Date		ceived by			1 -
Relinquished by: Signature Stand FREE Printed JVSNA FREE Company Stellar Environm	<u></u> -	9/10 Time 1452	Signatu Printed Compa		KRESS ANNE TELH	1452	Printed	AF	55		- 6/1 - Time - 145	rO e	Signature Printed _	Pat	Sonzale- Sonzale- is & Tompki	Da 1991 1919
Turnaround Time: 5 Day TAT Comments: Please provide Surface water s Groundwater s	samples co	ollected	by Ste	llar En	water samples only vironmental Solutions	 	Relinquished by: Signature				Date	e Re	ceived by Signature	:		Da
	ampies-col	iected.	oy-Blaii	he lec	n Services		Printed				Time		Printed _			Tim

Stellar Environmental Solutions \star

2198 Sixth Street #201, Berkeley, CA 94710

OOLED DECENT CHECKLICT

COOLER RECEIPT CHECKLIST Curtis & Tompk	tins, Ltd.
Login # $2/2780/21278$, Date Received $11/6$ Number of coolers Client $5/5$ Project $2009-02/2006$	<u> </u>
Date Opened $\frac{1}{12}$ By (print) $\frac{1}{12}$	
1. Did cooler come with a shipping slip (airbill, etc)YES NO	<u>></u>
2A. Were custody seals present? □ YES (circle) on cooler on samples □ I How many Name Date 2B. Were custody seals intact upon arrival? YES NO 3. Were custody papers dry and intact when received? YES NO 4. Were custody papers filled out properly (ink, signed, etc)? YES NO 5. Is the project identifiable from custody papers? (If so fill out top of form) YES NO 6. Indicate the packing in cooler: (if other, describe)	N/A
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Styrofoam Styrofoam Styrofoam	14
Type of ice used: Wet Blue/Gel None Temp(°C)	
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? YES If YES, what time were they transferred to freezer? YES 9. Did all bottles arrive unbroken/unopened? YES 10. Are samples in the appropriate containers for indicated tests? YES	NO NO
11. Are sample labels present, in good condition and complete? YES 12. Do the sample labels agree with custody papers? YES 13. Was sufficient amount of sample sent for tests requested? YES	NO NO NO
15. Are bubbles > 6mm absent in VOA samples? YES NO 16. Was the client contacted concerning this sample delivery? YES	N/A N/A NO
If YES, Who was called? By Date: COMMENTS	

SOP Volume: **Client Services** Section: 1.1.2 Page: 1 of 1

4 of 32

t.

	Curtis & Tompkins	Laboratories A	nalytical Repor	t
Lab #: 212783 Client: Stella Project#: 2006-1	r Environmental Solutio	Location: ns Prep:	Redwood Re EPA 5030B	gional Park
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	06/10/09 06/10/09	
	MW-2 SAMPLE	Lab ID: Analvzed:	212783-001 06/16/09	
Analyt Gasoline C7-C12 MTBE	2,40 1	0 3	2.0 152000	Analysis EPA 8015B EPA 8021B
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND 1	5.4 C 1 5.2 5	0.50 152049 0.50 152049 0.50 152049	EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Surrog		imita Batab#	Analygig	

Surrogate	%REC	Limits	Batch#	Analysis	
Trifluorotoluene (FID)	112	63-146	152049 E	IPA 8015B	
Bromofluorobenzene (FID)	143 *	70-140	152049 E	IPA 8015B	
Trifluorotoluene (PID)	115	50-140	152049 E	IPA 8021B	
Bromofluorobenzene (PID)	120	56-132	152049 E	SPA 8021B	

Field ID: MW-7 Type: SAMPLE		Lab ID: Analyzed:	212783-002 06/16/09	
Analyte	Result	RL	Batch#	Analysis
Gasoline C7-C12	4,600	50	152049 EPA	8015B
MTBE	260 C	2.0	152000 EPA	8021B
Benzene	40 C	0.50	152049 EPA	8021B
Toluene	ND	0.50	152049 EPA	8021B
Ethylbenzene	140	0.50	152049 EPA	8021B
m,p-Xylenes	4.5	0.50	152049 EPA	8021B
o-Xylene	0.62 C	0.50	152049 EPA	8021B
Surrogate	%REC Limits	Batch# Analy	ysis	
Trifluorotoluene (FID)		152049 EPA 8015B		
Bromofluorobenzene (FID)	127 70-140	152049 EPA 8015B		
Trifluorotoluene (PID)		152049 EPA 8021B		
Bromofluorobenzene (PID)	127 56-132	152049 EPA 8021B		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 4

	Curtis & Tompkins Lab	ooratories Anal	ytical Report
Lab #: Client: Project#:	212783 Stellar Environmental Solutions 2006-16	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	06/10/09 06/10/09

Field ID: Type:	MW-8 SAMPLE		ab ID: nalyzed:	212783-003 06/16/09	
Anal	yte	Result	RL	Batch#	Analysis
Gasoline C7-C1	2	2,100	50	152049 EP	A 8015B
MTBE		55 C	2.0	152000 EP	A 8021B
Benzene		32 C	0.50	152049 EP	A 8021B
Toluene		ND	0.50	152049 EP	A 8021B
Ethylbenzene		260	0.50	152049 EP	A 8021B
m,p-Xylenes		75	0.50	152049 EP	A 8021B
o-Xylene		5.8 C	0.50	152049 EP	A 8021B

Surrogate	%REC	Limits	Batch#	Analysis
Trifluorotoluene (FID)	154 *	63-146	152049	EPA 8015B
Bromofluorobenzene (FID)	117	70-140	152049	EPA 8015B
Trifluorotoluene (PID)	148 *	50-140	152049	EPA 8021B
Bromofluorobenzene (PID)	126	56-132	152049	EPA 8021B

Field ID: MW-9 Type: SAMPLE	1	Lab ID: Analyzed:	212783-004 06/16/09	
Analyte	Result	RL	Batch#	Analysis
Gasoline C7-C12	4,100	50	152049 EPA	8015B
MTBE	160 C	2.0	152000 EPA	8021B
Benzene	62 C	0.50	152049 EPA	8021B
Toluene	ND	0.50	152049 EPA	8021B
Ethylbenzene	280	0.50	152049 EPA	8021B
m,p-Xylenes	37	0.50	152049 EPA	8021B
o-Xylene	4.7	0.50	152049 EPA	8021B
Surrogate	%REC Limits	Batch# Anal	lysis	
Trifluorotoluene (FID)	149 * 63-146	152049 EPA 8015B		
Bromofluorobenzene (FI		152049 EPA 8015B		
Trifluorotoluene (PID)		152049 EPA 8021B		
Bromofluorobenzene (PI	ID) 133 * 56-132	152049 EPA 8021B		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 4

Curtis	& Tompkins Labo	ratories An	alytical Report	:
Lab #: 212783 Client: Stellar Environme Project#: 2006-16	ental Solutions	Location: Prep:	Redwood Reg: EPA 5030B	ional Park
Matrix: Water Units: ug/L Diln Fac: 1.000		Sampled: Received:	06/10/09 06/10/09	
Field ID: MW-10 Type: SAMPLE		Lab ID:	212783-005	
Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND 72 ND 2.0 C ND 4.4 1.3 C ND	50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	152049 06/17/09 152000 06/16/09 152049 06/17/09 152049 06/17/09 152049 06/17/09 152049 06/17/09 152049 06/17/09 152049 06/17/09	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Surrogate	%REC Limits	Batch# Analy	zed Analys:	s
Trifluorotoluene (FID) Bromofluorobenzene (FID) Trifluorotoluene (PID) Bromofluorobenzene (PID)	109 63-146 107 70-140 111 50-140 113 56-132	152049 06/17 152049 06/17 152049 06/17 152049 06/17	7/09 EPA 8015B 7/09 EPA 8015B 7/09 EPA 8021B	
Field ID: MW-11 Type: SAMPLE		Lab ID:	212783-006	
Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2,100 40 C 38 C ND 80 2.1 1.2 C	50 2.0 0.50 0.50 0.50 0.50 0.50	152049 06/17/09 152000 06/16/09 152049 06/17/09 152049 06/17/09 152049 06/17/09 152049 06/17/09 152049 06/17/09	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Surrogate	%REC Limits	Batch# Analy	zed Analys:	s
Trifluorotoluene (FID) Bromofluorobenzene (FID) Trifluorotoluene (PID) Bromofluorobenzene (PID)	194 * 63-146 132 70-140 168 * 50-140	152049 06/17 152049 06/17 152049 06/17 152049 06/17 152049 06/17	7/09 EPA 8015B 7/09 EPA 8015B 7/09 EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 4

	Curtis &	Tompkins Labo	ratories A	nalytical Report
	212783 Stellar Environmen 2006-16	ntal Solutions	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000		Sampled: Received:	06/10/09 06/10/09
Field ID: Type:	MW-12 SAMPLE		Lab ID:	212783-007
A	nalyte	Result	RL	Batch# Analyzed Analysis
Gasoline C MTBE Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ne	300 ND ND ND 4.6 ND ND	50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	152049 06/17/09 EPA 8015B 152000 06/16/09 EPA 8021B 152049 06/17/09 EPA 8021B
	Surrogate	%REC Limits	Batch# Anal	yzed Analysis
Trifluorot Bromofluor Trifluorot	oluene (FID) obenzene (FID) oluene (PID) obenzene (PID)	120 63-146 108 70-140 120 50-140 117 56-132		7/09 EPA 8015B 7/09 EPA 8015B 7/09 EPA 8021B
Type: Lab ID: Batch#:	BLANK QC500037 152000		Analyzed: Analysis:	06/15/09 EPA 8021B
		Degult		
N (THE DE	Analyte	Result		RL
MTBE	Analyte	ND Result		RL 2.0
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID)		%REC 96 94	2.0 Limits 50-140
Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID)	ND Result NA	96	2.0 Limits
Trifluorot Bromofluor Trifluorot Bromofluor Type:	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID) BLANK QC500241	ND Result NA NA	96 94 Batch#:	2.0 Limits 50-140 56-132 152049 06/16/09
Trifluorot Bromofluor Trifluorot Bromofluor Type:	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID) BLANK QC500241 Analyte 7-C12	ND Result NA	96 94 Batch#:	2.0 Limits 50-140 56-132 152049 06/16/09
Trifluorot Bromofluor Trifluorot Bromofluor Type: Lab ID: Gasoline C Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID) BLANK QC500241 Analyte 7-C12	ND Result NA NA NA ND ND ND ND ND ND ND ND ND ND ND ND	96 94 Batch#: Analyzed:	2.0 Limits 50-140 56-132 152049 06/16/09 <u>RL Analysis</u> 50 EPA 8015B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B
Trifluorot Bromofluor Trifluorot Bromofluor Type: Lab ID: Gasoline C Benzene Toluene Ethylbenze m,p-Xylene o-Xylene Trifluorot Bromofluor Trifluorot	Surrogate oluene (FID) obenzene (FID) oluene (PID) obenzene (PID) BLANK QC500241 Analyte 7-C12 ne s	ND Result NA NA NA NA ND ND ND ND ND ND ND ND ND ND ND ND ND	96 94 Batch#:	2.0 Limits 50-140 56-132 152049 06/16/09 <u>RL Analysis</u> 50 EPA 8015B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B 0.50 EPA 8021B

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	212783	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152000
Units:	ug/L	Analyzed:	06/15/09
Diln Fac:	1.000		

Туре:	BS			Lab ID:	QC500	038			
	Analyte		Spiked		Result	%REC	Limits		
MTBE			10.00		10.44	104	53-152		
	Surrogate	%REC	Limits						
Trifluoro	otoluene (PID)	99	50-140						
Bromofluc	probenzene (PID)	96	56-132						
Туре:	BSD			Lab ID:	QC500	039			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
MTBE			20.00		20.61	103	53-152	1	37

Surrogate	%REC	Limits
Trifluorotoluene (PID)	102	50-140
Bromofluorobenzene (PID)	103	56-132

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	212783	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152049
Units:	ug/L	Analyzed:	06/16/09
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC500242

Analyte	Spiked	Result	%REC	Limits
Benzene	10.00	9.167	92	79-120
Toluene	10.00	9.579	96	76-122
Ethylbenzene	10.00	9.590	96	77-125
m,p-Xylenes	10.00	10.12	101	76-126
o-Xylene	10.00	9.235	92	77-126

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	100	50-140	
Bromofluorobenzene (PID)	101	56-132	

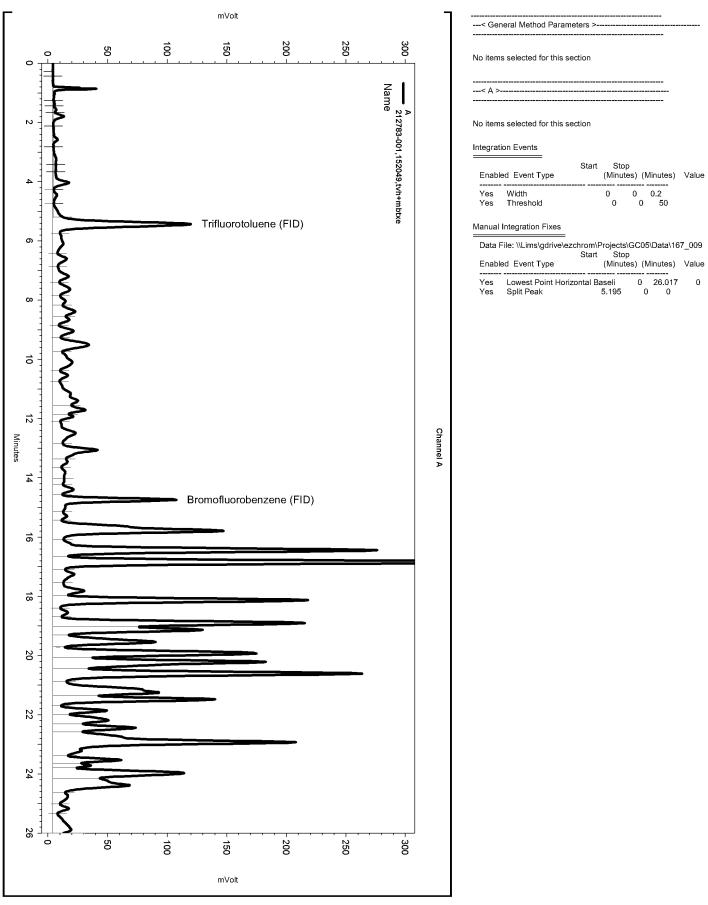
Type: BSD	Lab II	QC50	0243			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	20.00	19.41	97	79-120	6	20
Toluene	20.00	19.94	100	76-122	4	21
Ethylbenzene	20.00	19.65	98	77-125	2	21
m,p-Xylenes	20.00	20.38	102	76-126	1	23
o-Xylene	20.00	18.51	93	77-126	0	21
Surrogate	%REC Limits					

Surroyate	3REC	LIMICS	
Trifluorotoluene (PID)	106	50-140	
Bromofluorobenzene (PID)	110	56-132	

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	212783	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC500244	Batch#:	152049
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	873.7	87	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	63-146
Bromofluorobenzene (FID)	105	70-140


	Curtis & Tompkins Labor	ratories Analyt	ical Report
Lab #: 212783		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2006-1	6	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	152049
MSS Lab ID:	212844-001	Sampled:	06/12/09
Matrix:	Water	Received:	06/15/09
Units:	ug/L	Analyzed:	06/17/09
Diln Fac:	1.000		

Type:	MS			Lab ID:		QC500245		
	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limits
Gasoline	C7-C12	2	20.01	2,000		1,666	82	66-120
	Surrogate	%REC	Limits					
Trifluoro	toluene (FID)	132	63-146					
Bromofluc	probenzene (FID)	111	70-140					
Type:	MSD			Lab ID:		QC500246		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		1,635	81	66-120	2 20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	132	63-146
Bromofluorobenzene (FID)	110	70-140

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-001,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_009 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

Software Version 3.1.7 Run Date: 6/16/2009 6:27:49 PM Analysis Date: 6/17/2009 10:18:42 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: c1.3

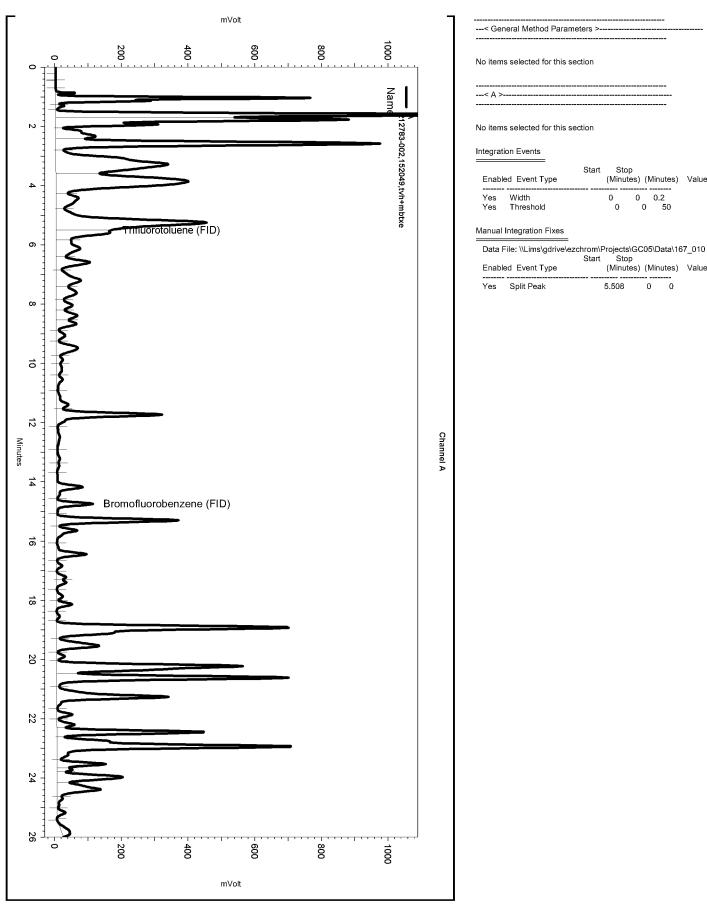
Page 2 of 4 (2) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-002,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_010 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

Start

Start

0


5.508

Stop (Minutes) (Minutes) Value

0 0.2 0 50

Stop (Minutes) (Minutes) Value

0 0

Page 2 of 4 (2) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-003,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_011 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

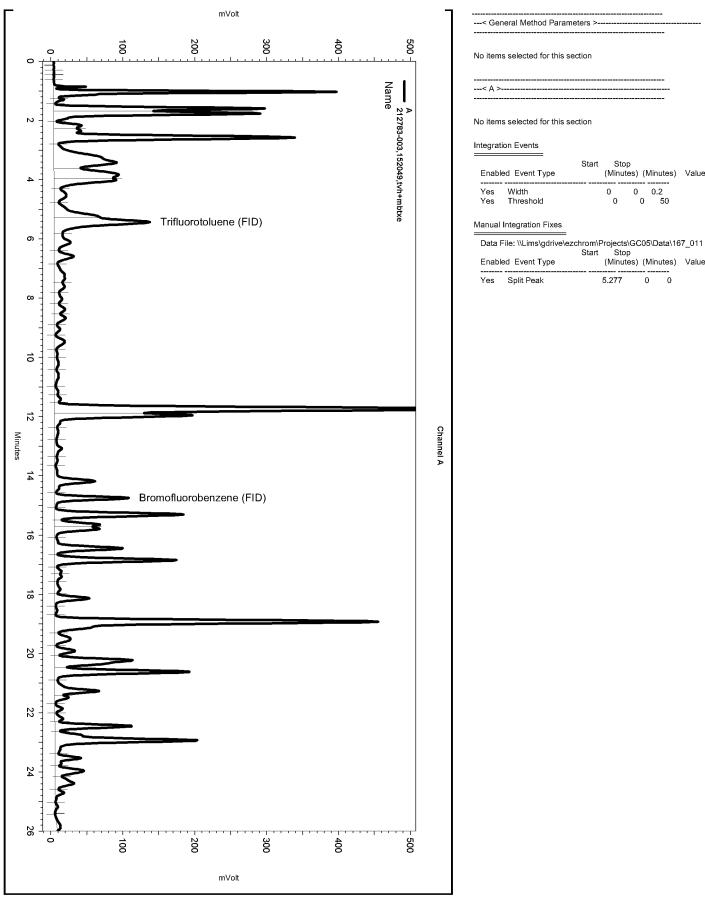
Start

Start

Width

Threshold

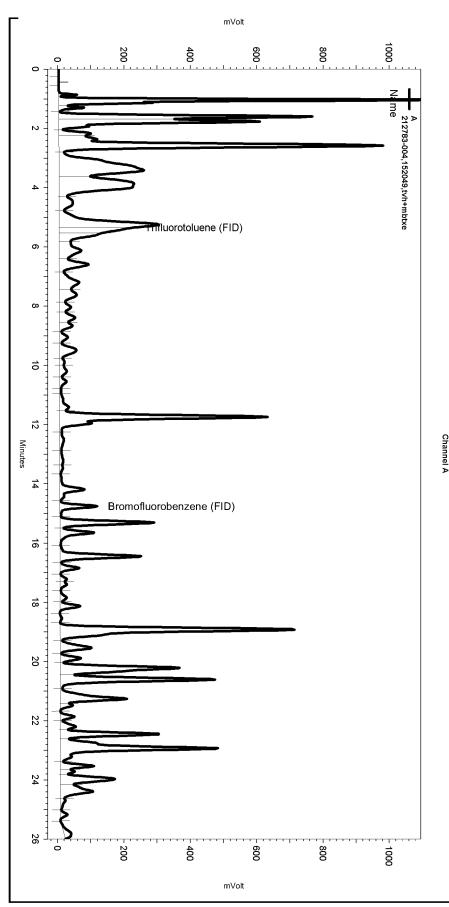
0

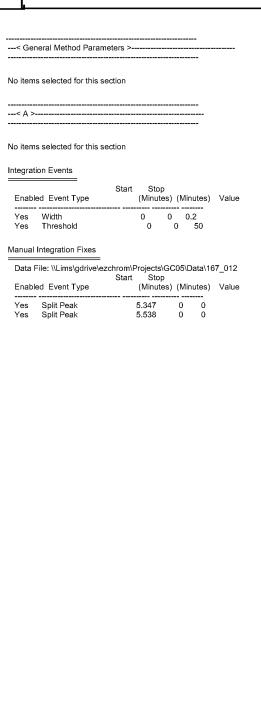

5.277

Stop (Minutes) (Minutes) Value

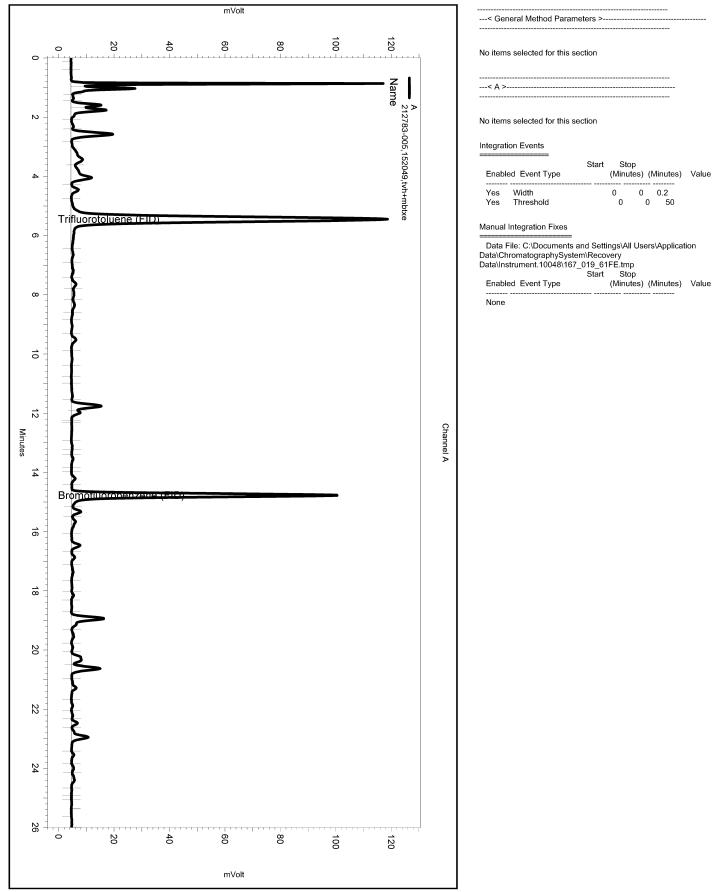
0 0.2 0 50

Stop (Minutes) (Minutes) Value

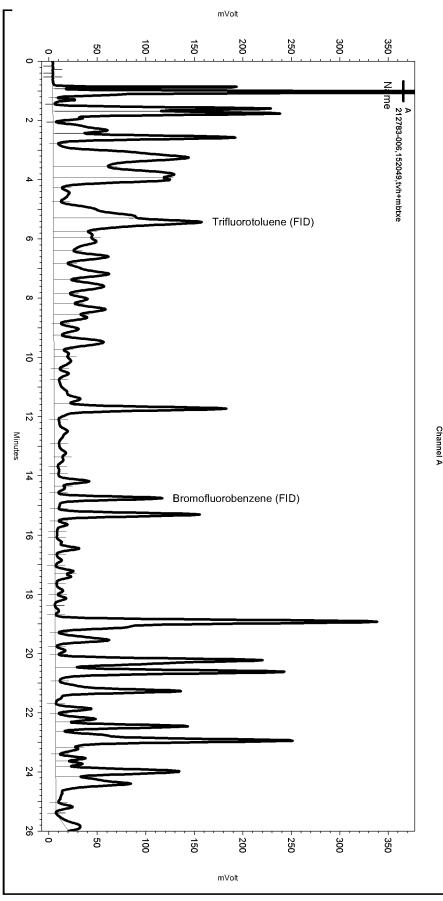

0 0

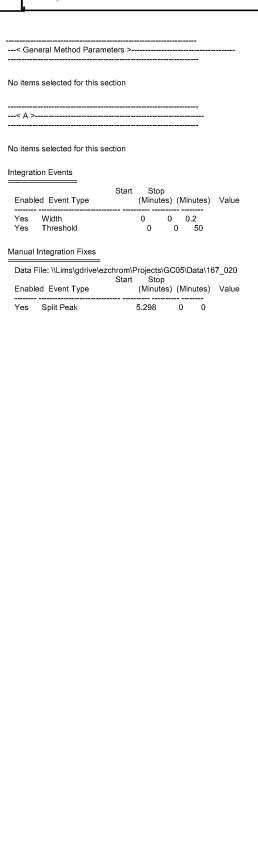


Page 2 of 4 (2) Curtis & Tompkins Ltd.


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-004,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_012 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

Software Version 3.1.7 Run Date: 6/16/2009 8:14:39 PM Analysis Date: 6/17/2009 10:23:23 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: c1.3

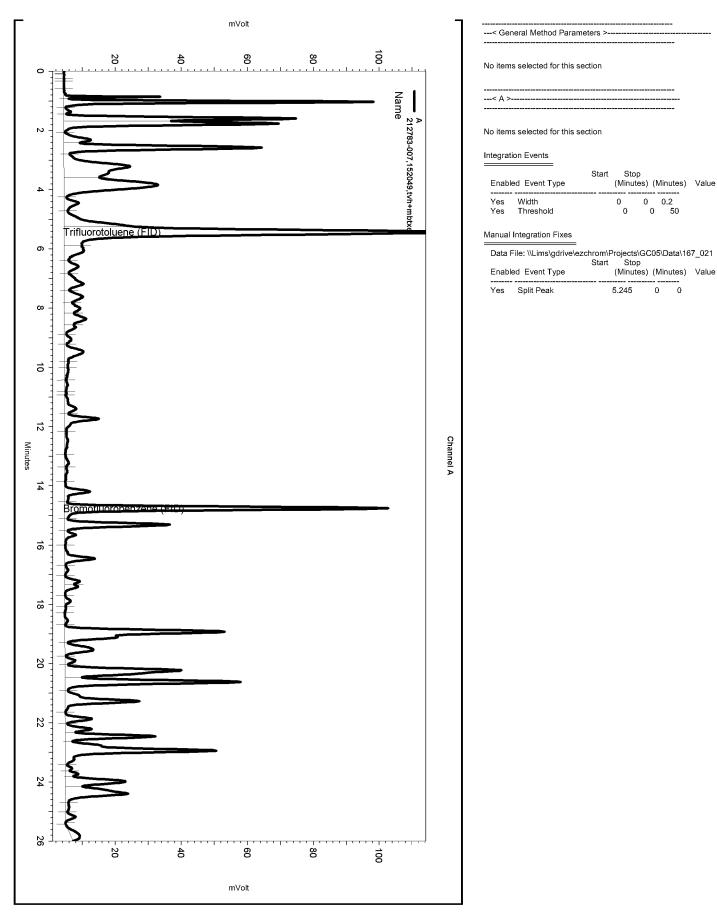

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-005,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_019 Instrument: GC05 Vial: N/A Operator: lims2k3\tvh3 Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met Software Version 3.1.7 Run Date: 6/17/2009 12:23:35 AM Analysis Date: 6/17/2009 12:52:20 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: c1.3



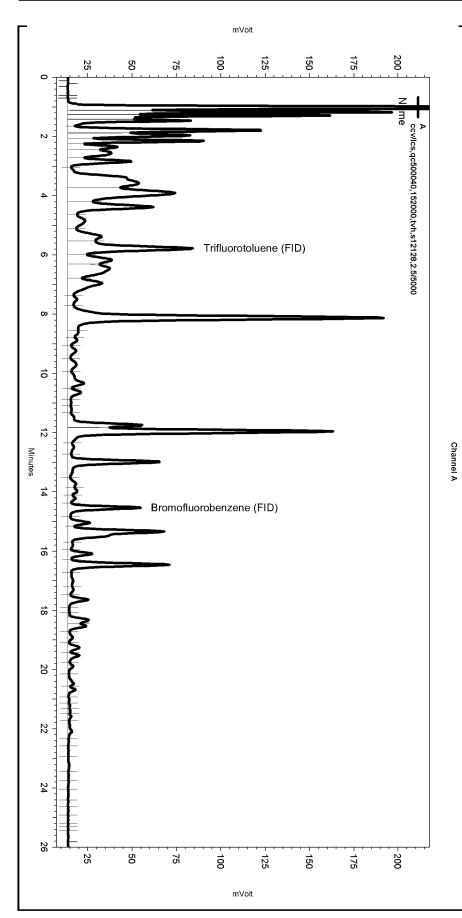
Page 2 of 4 (23) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-006,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_020 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

Software Version 3.1.7 Run Date: 6/17/2009 12:59:12 AM Analysis Date: 6/17/2009 10:25:42 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: c1.3



Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212783-007,152049,tvh+mbtxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_021 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met


Software Version 3.1.7 Run Date: 6/17/2009 1:34:45 AM Analysis Date: 6/17/2009 10:27:10 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: c1.3

0

Page 2 of 4 (2) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\166.seq Sample Name: ccv/lcs,qc500040,152000,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Software Version 3.1.7 Run Date: 6/15/2009 11:51:18 AM Analysis Date: 6/16/2009 7:21:19 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

items selected for this section							
A > items selected for this section agration Events abled Event Type Start Stop (Minutes) (Minutes) Value (Minutes) Va	< Gene	eral Method	d Parame				
A > items selected for this section agration Events mabled Event Type Start Stop (Minutes) (Minutes) Value (Minutes) (Minutes) (Minutes) (Minutes) (Minutes) (Minutes) Value (Minutes) (Mi	items	selected fo	or this sec	ction			
egration Events nabled Event Type Start Stop (Minutes) (Minutes) Value (Minutes) (Minutes) Value (Minutes) (Minutes) Value (Minutes) (Minutes) Value Start Stop nabled Event Type (Minutes) Value	< A >						
Start Stop nabled Event Type (Minutes) (Minutes) Value es Width 0 0 es Threshold 0 0 nual Integration Fixes tata File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Start Stop nabled Event Type (Minutes) (Minutes) Value	items	selected fo	or this see	ction			
nabled Event Type (Minutes) (Minutes) Value es Width 0 0 0.2 es Threshold 0 0 50 nual Integration Fixes Tata File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Start Stop nabled Event Type (Minutes) (Minutes) Value	egratio	n Events					
es Width 0 0 0.2 es Threshold 0 0 50 nual Integration Fixes tata File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Start Stop nabled Event Type (Minutes) (Minutes) Value					(Minute	es)) Value
ata File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Start Stop nabled Event Type (Minutes) (Minutes) Value	res	Width					
Start Stop nabled Event Type (Minutes) (Minutes) Value	anual Ir	ntegration	Fixes				
	Data Fi	le: \\Lims\g	jdrive\ezc	hrom\F Start	Projects ⁾ Stop	GC	
		d Event I	/pe		(Minute	es)) Value
	vone						

		Total Ext	ractable Hydrod	carbons	
Lab #: Client: Project#:		al Solutions	Analysis:	Redwood Regi EPA 3520C EPA 8015B	onal Park
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 152044		Sampled: Received: Prepared:	06/10/09 06/10/09 06/16/09	
Field ID: Type:	MW-2 SAMPLE		Lab ID: Analyzed:	212783-001 06/17/09	
Diesel C1	Analyte 0-C24	Res	_	RL 50	
o-Terphen	Surrogate yl		mits -127		
Field ID: Type:	MW-7 SAMPLE		Lab ID: Analyzed:	212783-002 06/17/09	
Diesel C1	Analyte 0-C24	Res 5,4	ult 00 Y	RL 50	
o-Terphen	Surrogate		mits -127		
0 icipiicii	ý -	05 01	127		
Field ID: Type:	MW-8 SAMPLE		Lab ID: Analyzed:	212783-003 06/17/09	
Diesel Cl	Analyte 0-C24	Res 3,4	ult 00 Y	RL 50	
o-Terphen	Surrogate yl		mits -127		
Field ID: Type:	MW-9 SAMPLE		Lab ID: Analyzed:	212783-004 06/17/09	
Diesel Cl	Analyte 0-C24	Res 3,6	ult 00 Y	RL 50	
o-Terphen	Surrogate yl	%REC Li 95 61-	mits -127		
Field ID: Type:	MW-10 SAMPLE		Lab ID: Analyzed:	212783-005 06/18/09	
Diesel Cl	Analyte 0-C24	Rest 12	ult 20 Y	RL 50	
o-Terphen	Surrogate yl		mits -127		

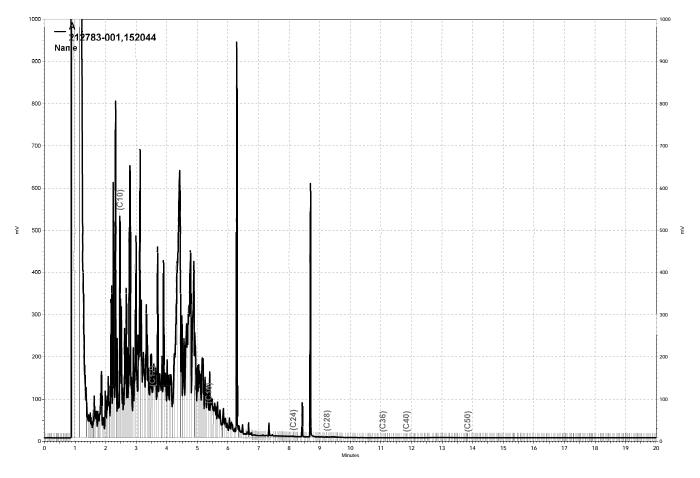
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 2

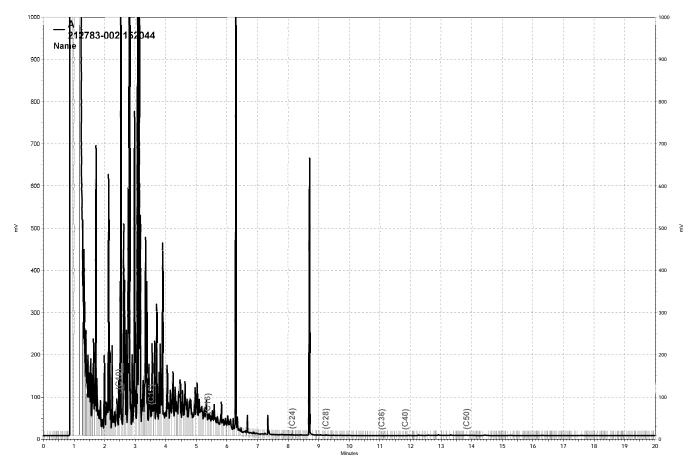
	Tot	tal Extract	able Hydroca	arbons	
Project#: 2006 Matrix:	lar Environmental 5-16 Water	Solutions	Location: Prep: Analysis: Sampled:	Redwood Regional Park EPA 3520C EPA 8015B 06/10/09	
Units: Diln Fac: Batch#:	ug/L 1.000 152044		Received: Prepared:	06/10/09 06/16/09	
Field ID: Type:	MW-11 SAMPLE		Lab ID: Analyzed:	212783-006 06/18/09	
Ana Diesel C10-C24	lyte l	Result 2,700 Y		RL 50	
o-Terphenyl		%REC Limits 75 61-127			
Field ID: Type:	MW-12 SAMPLE		Lab ID: Analyzed:	212783-007 06/18/09	
Ana Diesel C10-C24	alyte H	Result 280 Y		RL 50	
Surr o-Terphenyl	cogate 9	%REC Limits 98 61-127			
Type: Lab ID:	BLANK QC500218		Analyzed:	06/18/09	
Ana Diesel C10-C24	alyte I	Result ND		RL 50	
Surr o-Terphenyl	cogate 9	%REC Limits 98 61-127			

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 2}$

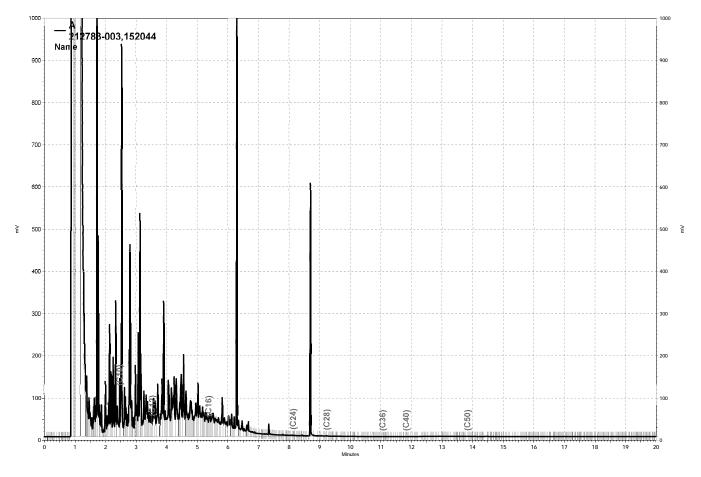
Total Extractable Hydrocarbons										
Lab #:	212783	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C							
Project#:	2006-16	Analysis:	EPA 8015B							
Type:	LCS	Diln Fac:	1.000							
Lab ID:	QC500219	Batch#:	152044							
Matrix:	Water	Prepared:	06/16/09							
Units:	ug/L	Analyzed:	06/18/09							

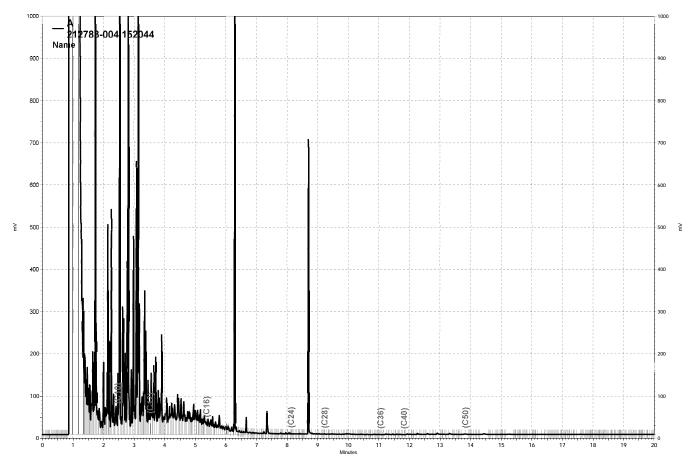

Cleanup Method: EPA 3630C

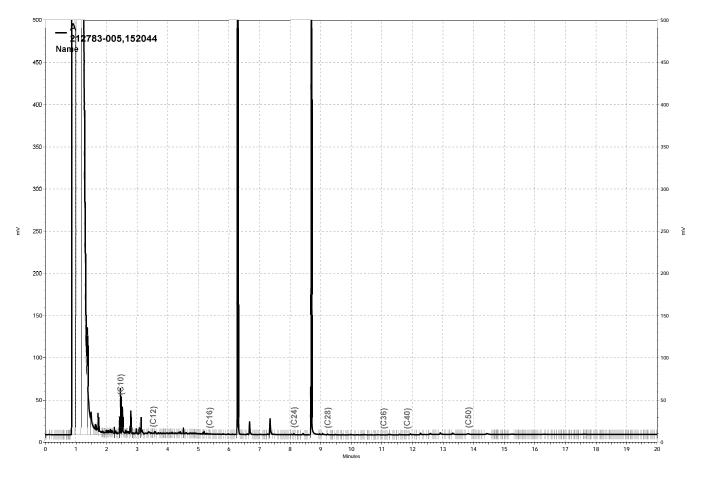
Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,313	93	50-120
Surrogate	%REC	Limits			
o-Terphenyl	102	61-127			

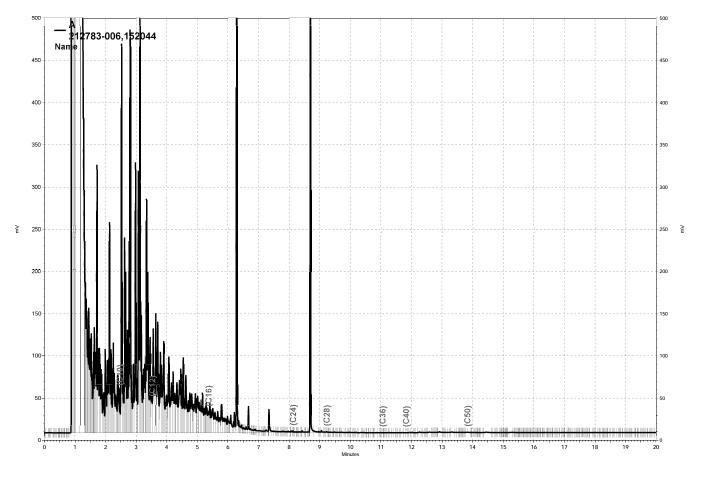


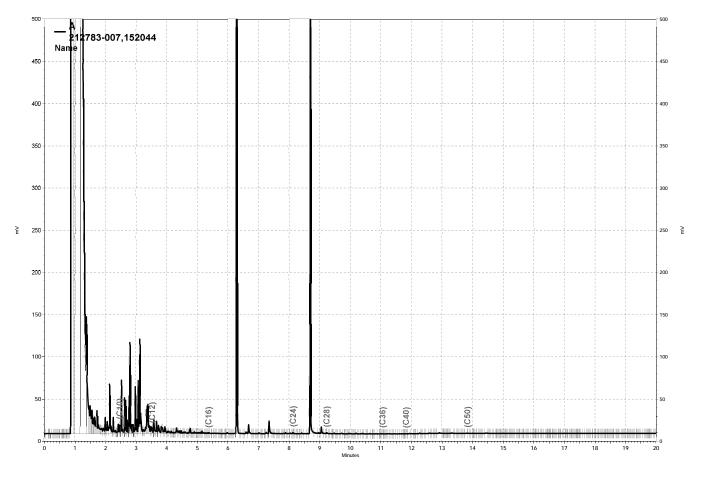
	Total H	Extracta	able Hydro	ocarbo	ns			
Lab #: 212783			Location:		Redwood Regio	onal Park	_	
Client: Stellar Environment	al Solut	ions	Prep:		EPA 3520C			
Project#: 2006-16			Analysis:		EPA 8015B			
Field ID: ZZZZZZZZZ			Batch#:		152044			
MSS Lab ID: 212822-024			Sampled:		06/11/09			
Matrix: Water			Received:		06/12/09			
Units: ug/L			Prepared:		06/16/09			
Diln Fac: 1.000			Analyzed:		06/18/09			
Type: MS Analyte Diesel C10-C24	MSS Res	ult .42	Lab ID: Spiked 2,551		QC500220 Result 2,531	%REC 97	Limi 38-1	
Surrogate	%REC	Limits						
o-Terphenyl	106	61-127						
Type: MSD			Lab ID:		QC500221			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C10-C24		2,500		2,443	95	38-127	2	37
Surrogate	% REC	Limits						

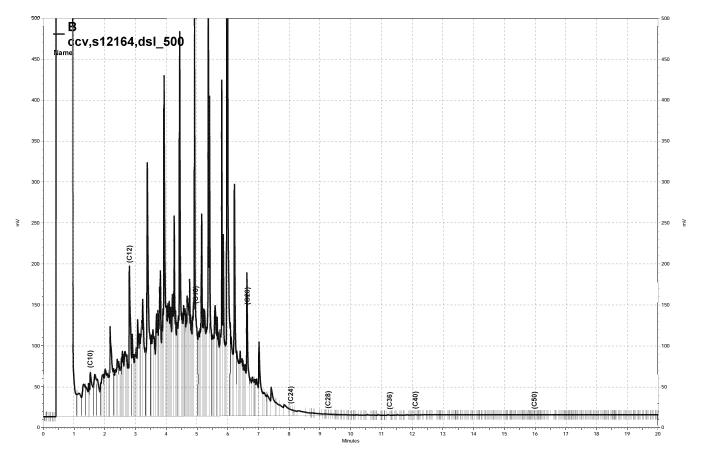

o-Terphenyl 109 61-127


-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a025, A


-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a031, A


-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a032, A


-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a033, A


-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a034, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\168a035, A

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\168a036, A

-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\167b098, B

and setting to the

H

Laboratory Job Number 212780 ANALYTICAL REPORT

<u>Sample ID</u>	<u>Lab ID</u>
SW-2	212780-001
SW-3	212780-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager

Signature:

Senior Program Manager

Date: 06/16/2009

Date: 06/17/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212780 Stellar Environmental Solutions 2009-02 Redwood Regional Park 06/10/09 06/10/09

This data package contains sample and QC results for two water samples, requested for the above referenced project on 06/10/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Chain of Custody Record

						Chain c	of Cu	stody F	Reco	orc	1								Lab joł	o no. <u>21</u>	278 -09 1
Laboratory <u>Cur</u>	tis and Tom	npkins. Ltd.			M	ethod of ShipmentH	and De	liverv											Date	6-10	-09
Address232	23 Fifth Stre	et				hipment No.													Page	۱ ٥	I
Ber	keley, Calif	ornia 9471	0								/					·					
510	-486-0900												12			Analysi	is Requ	ired	, , ,	/	
Project Owner _	East Bay R	egional Pa	rk Distr	ict		ooler No					/	/ /	/\v/			/ /	/ /	/ /	'	/	
Site Address	7867 Redw	ood Road				roject Manager <u>Rich</u>		kdisi		/	0	ainer		/ /	/ /	/				/	
	Oakland, C				Те	elephone No. (510) 644	-3123				or	A AL	5/ /	/ /		/	/			/	
Project Name	Redwood F	-	ar K		Fa	ax No(510) 644	-3859		-	/	/ %	07	50			'. /	' /	/ /		Rema	ırks
Project Number.	2009-02				Sa	amplers: <i>(Signature)</i>	Inl	Jes	2/	/	:	E/									
Field Sample	e Number	Location/ Depth	Date		Sample Type	Type/Size of Container	P	reservation Chemical]/	/	/F	74	/ /			/ /		/ /			
SW-2		Creek	6-10-0	9000	W	VOA, 1 L	Y	Yes (a)	N	Π	X	\mathbf{X}^{\dagger}		-(/	-	{	_(-			
SW-3		Creek	6 10 0		w	4 VOA, 1 L	Y	Yes (a)		$\frac{1}{1}$				_	·						
			0-10-0	9020		5			\mathcal{N}	4	\sim	\mathbf{X}		_							
							-										+				
							-		-												
												$ \rightarrow $									
													\rightarrow	+							
															\geq						
																		-			
						-															
Relinquished by.	0 11	14	Date	Received	by: 1		Date	Relinquished	by:	n	1.	I		Date	Rece	ived by	y: /	$\overline{\mathbf{a}}$	1	7	Date
Signature	<u>LJJ</u>		Date 3-16-09	Signatu		Jan	- 3-16-0	9 Signature	$- \wedge$	YO)	h			6/10	Si	gnature	• ()-	6ł	La	Alf	6/10/
Teal G	Blass	6	10-0) Printed	.1	KRESS			IT	ie	ES	S					Pr	1 (Souza	0.1	109
			Time	rnneu		· -	- Time		<u> </u>					Time		inted _	10		,	<u>ec</u>	Time
Company	lar Environr	<u>nental</u> <i>I</i> Q	46	Compa		aine Tech	- 104	Company	E	SLA	NNE	TEC	24	1452	/ ca	ompany	y Cu	inti	is to	mpkins	2:52
Turnaround Time: _	Standard -	5 Day	L					Relinquished	by:				···· <u>-</u> ··	Date	Rece	eived by			•		Date
(a)) VOA w/ H	CL						Signature							Si	gnature	e		,		
Comments:																					
								Printed						Time	Pr	inted _				<u> </u>	Time
								Company							Co	ompany	y				
A 01-11- E	vironmental S	Polution-															-		t #201. Be		J

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

3 of 11

COOLER RECEIPT CHECKLIST Curtis & Tompkins, Ltd
Login # $2/2780/2/2782$ Date Received $1/100$ Number of coolers Client $5/5$ Project $2009-02/2006-10$
Date Opened $\frac{4}{2}$ By (print) $\frac{7}{4}$ By (pri
1. Did cooler come with a shipping slip (airbill, etc)YES NOYES
2A. Were custody seals present? □ YES (circle) on cooler on samples How many Name Date
2B. Were custody seals intact upon arrival?
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Styrofoam Styrofoam
Type of ice used: \bigvee Wet \Box Blue/Gel \Box None Temp(°C)
Samples Received on ice & cold without a temperature blank
□ Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present?YES NO
9. Did all bottles arrive unbroken/unopened?
10. Are samples in the appropriate containers for indicated tests? YES NO 11. Are sample labels present, in good condition and complete? YES NO
11. Are sample labels present, in good condition and complete? YES NO 12. Do the sample labels agree with custody papers? YES NO
13. Was sufficient amount of sample sent for tests requested?
14. Are the samples appropriately preserved? YES NO N/A 15. Are bubbles > 6mm absent in VOA samples? YES NO N/A
16. Was the client contacted concerning this sample delivery?YES NO
If YES, Who was called? By Date:
COMMENTS

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Ţ

Curtis & Tompkins Laboratories Analytical Report										
Lab #:	212780	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B							
Project#:	2009-02									
Matrix:	Water	Batch#:	151971							
Units:	ug/L	Sampled:	06/10/09							
Diln Fac:	1.000	Received:	06/10/09							

Field ID:	SW-2	Lab ID:	212780-001
Type:	SAMPLE	Analyzed:	06/13/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	85	63-146	EPA 8015B	
Bromofluorobenzene (FID)	96	70-140	EPA 8015B	
Trifluorotoluene (PID)	99	50-140	EPA 8021B	
Bromofluorobenzene (PID)	107	56-132	EPA 8021B	

Field ID:	SW-3	Lab ID:	212780-002
Type:	SAMPLE	Analyzed:	06/14/09

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	86	63-146	EPA 8015B	
Bromofluorobenzene (FID)	97	70-140	EPA 8015B	
Trifluorotoluene (PID)	94	50-140	EPA 8021B	
Bromofluorobenzene (PID)	103	56-132	EPA 8021B	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	212780	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02		
Matrix:	Water	Batch#:	151971
Units:	ug/L	Sampled:	06/10/09
Diln Fac:	1.000	Received:	06/10/09
Type:	BLANK	Analyzed:	06/13/09

Type: Lab ID: BLANK QC499927

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate %RE	C :	Limits		Analysis
Trifluorotoluene (FID) 80		63-146	EPA	8015B
Bromofluorobenzene (FID) 80		70-140	EPA	8015B
Trifluorotoluene (PID) 87		50-140	EPA	8021B
Bromofluorobenzene (PID) 83		56-132	EPA	8021B

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	212780	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2009-02	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	151971				
Units:	ug/L	Analyzed:	06/13/09				
Diln Fac:	1.000						

Type:

BS

Lab ID:

QC499928

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.26	103	53-152
Benzene	10.00	8.546	85	79-120
Toluene	10.00	8.743	87	76-122
Ethylbenzene	10.00	9.802	98	77-125
m,p-Xylenes	10.00	9.697	97	76-126
o-Xylene	10.00	9.510	95	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	96	50-140
Bromofluorobenzene (PID)	103	56-132

Type: BSD	Lab	ID: QC499	929			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	20.32	102	53-152	1	37
Benzene	20.00	18.18	91	79-120	6	20
Toluene	20.00	17.34	87	76-122	1	21
Ethylbenzene	20.00	18.28	91	77-125	7	21
m,p-Xylenes	20.00	18.00	90	76-126	7	23
o-Xylene	20.00	17.22	86	77-126	10	21
Gurragata	%REC Limits					
Surrogate						
Trifluorotoluene (PID)	94 50-140					

56-132

98

Bromofluorobenzene (PID)

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	212780	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC499930	Batch#:	151971
Matrix:	Water	Analyzed:	06/13/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	899.1	90	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	111	63-146
Bromofluorobenzene (FID)	106	70-140

	Curtis & Tompkins Labor	ratories Analyt	ical Report
Lab #: 212780		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2009-0	2	Analysis:	EPA 8015B
Field ID:	SW-2	Batch#:	151971
MSS Lab ID:	212780-001	Sampled:	06/10/09
Matrix:	Water	Received:	06/10/09
Units:	ug/L	Analyzed:	06/14/09
Diln Fac:	1.000		

Type:	MS			Lab ID:		QC499931		
	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limits
Gasoline (C7-C12	1	6.16	2,000		1,984	98	66-120
	Surrogate	%REC	Limits					
Trifluorot	toluene (FID)	144	63-146					
Bromofluor	robenzene (FID)	135	70-140					
Туре:	MSD			Lab ID:		QC499932		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline (C7-C12		2,000		1,953	97	66-120	2 20
	Surrogate	%REC	Limits					
Trifluorot	toluene (FID)	145	63-146					

70-140

131

Bromofluorobenzene (FID)

		Total I	Extracta	ble Hydroc	arbo	ns
Lab #:	212780			Location:		Redwood Regional Park
Client:	Stellar Environmen	tal Solut	iong	Prep:		EPA 3520C
Project#:		car sorut	.10115	Analysis:		EPA 8015B
Matrix:	Water			Sampled:		06/10/09
Units:	ug/L			Received:		06/10/09
Diln Fac:				Prepared:		06/12/09
Batch#:	151963			Analyzed:		06/15/09
Field ID:	SW-2			Lab ID:		212780-001
Туре:	SAMPLE					
	Analyte		Result		RL	
Diesel Cl	0-C24	NI)		50	
	a	*DEC	Limits			
o-Terphen	Surrogate	%REC 101	61-127			
Field ID: Type:	SW-3 SAMPLE			Lab ID:		212780-002
	Analyte		Result		RL	
Diesel C1	0-C24	NI)		50	
	Surrogate	%REC	Limits			
o-Terphen	yl	99	61-127			
				tab TD.		07400004
Type:	BLANK			Lab ID:		QC499894
	Analyte		Result		RL	
Diesel C1	0-C24	NI)		50	
	Surrogate	%REC	Limits			
o-Terphen	yl	84	61-127			

	I	otal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	212780			Location:	Redwood Regio	onal Park		
Client:	Stellar Environmenta	l Solut	cions	Prep:	EPA 3520C			
Project#:	2009-02			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	151963			
Units:	ug/L			Prepared:	06/12/09			
Diln Fac:	1.000			Analyzed:	06/15/09			
Type: Lab ID:	BS QC499895			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel C1	0-C24		2,500	1,918	77	50-120		
	Surrogate	%REC	Limits					
o-Terphen	yl	82	61-127					
Type:	BSD			Cleanup Method:	EPA 3630C			
Lab ID:	QC499896							
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C1	0-C24		2,500	2,008	80	50-120	5	37
	Surrogate	%REC	Limits					
o-Terphen	yl	80	61-127					

and setting to the

H

Laboratory Job Number 211911 ANALYTICAL REPORT

Stellar Environmental Solutions 2198 6th Street Berkeley, CA 94710 Project : 2008-02 Location : Redwood Regional Park Level : II

<u>Sample ID</u> MW-2 <u>Lab ID</u> 211911-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager

Signature:

mature: An

Project Manager

Signature:

NELAP # 01107CA

Date: 05/12/2009

Date: 05/15/2009

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 211911 Stellar Environmental Solutions 2008-02 Redwood Regional Park 05/05/09 05/05/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 05/05/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for bromofluorobenzene (FID) in MW-2 (lab # 211911-001), due to interference from coeluting hydrocarbon peaks; the corresponding trifluorotoluene (FID) surrogate recovery was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Laboratory Curtis and Tompkins, Ltd.	Μ	Chain of Method of Shipment <u>Har</u>		tody R	ecc	ן <i>ן</i> ord)										1	990505 109	<u>5</u> -RMI
Address 2323 Fifth Street		Shipment No			_						3					Page		_ of	-
Berkeley, California 94710 510-486-0900					_		/	7	7		0,	م ۸n	alysis A	equirec	1			/	
Project Owner <u>East Bay Regional Park District</u> Site Address <u>7867 Redwood Road</u> Oakland, California Project Name <u>Redwood Regional Park</u> Project Number 2006-16 2008-02	C F T F	Cooler No Project Manager <u>Richa</u> Felephone No(510) 644-3 Fax No(510) 644-3 Samplers: <i>(Signature)</i>	rd Mak 3123 3859		- - - -		No. or	1.	1 (1) (0) (0) (1)		8000						Re	emarks	
Field Sample Number Location/ Date	Sampl	e Type/Size of Container		servation	1/	/	//	Ð~	7 F	7	/ /					/			170
Mw-Z Sisis	туре	3 × 40 m VOA		Chemical HCL		4	*	×	~				Í			Í			
													_						_
						-													_
														+					-
							[
													-	_				<u></u>	
						-										-	``		
									<u>`</u>										
1					\square														
Relinquished by: Signature	eceived by: Signature	Pat Langl	Date SIS/00	Relinquished Signature				,		-	Date		ved by: nature .					Date	
Printed Time	Printed <u>MC</u>	xt Gonzalez	Time 11:22	Printed						- [Time	Prii	nted					— Time	
Company	Company	urtis & lompling		Company	by:						Date	+	mpany ved by:			. s*e ⁻¹		Date	
Turnaround Time: <u>5 Day TAT</u>	F-for-grou	ndwater samples only*		Signature	•					_			nature						
		Environmental Solution	Br	Printed _						-	Time	Pri	nted					Time	,
9-00-divator samples collected		5/4	<u> ~</u>	Company								Co	mpany					_	

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST

COOLER RECEIPT CHECKLIST	CUT Curtis & Tompkins, Ltd.
Login # 211911 Date Received 5-5-9 Client STETUAR Project REPHIC	Number of coolers &
Login # 211911 Date Received $5-5-9$ Client $Stelute2$ Project $Fermine$ Date Opened $5-9$ By (print)Date Logged in g By (print)	Handen -
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How manyName 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 	on samples NO DateYES NO
 3. Were custody sears infact upon affival? 3. Were custody papers dry and infact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top 6. Indicate the packing in cooler: (if other, describe) 	VES NO ATA VES NO TES NO o of form) (YES NO
Bubble WrapFoam blocksCloth materialCardboard7. Temperature documentation:	
Type of ice used: Wet Blue/Gel	Temp(°C)
Samples Received on ice & cold without a temperature b	blank
☐ Samples received on ice directly from the field. Cooling	process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers for indicated tests?	VES NO
11. Are sample labels present, in good condition and complete?	TES NO
12. Do the sample labels agree with custody papers?	JES NO
13. Was sufficient amount of sample sent for tests requested?	TES NO
14. Are the samples appropriately preserved?	TES NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
16. Was the client contacted concerning this sample delivery?	
COMMENTS Jur 3 Vous Brown (uttive Kaing)	locypain.
·	

SOP Volume: **Client Services** Section: 1.1.2 Page: 1 of 1

•

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	211911	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-02		
Field ID:	MW-2	Batch#:	150809
Matrix:	Water	Sampled:	05/05/09
Units:	ug/L	Received:	05/05/09
Diln Fac:	1.000	Analyzed:	05/08/09

Type:

SAMPLE

Lab ID: 211911-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	5,000	50	EPA 8015B
MTBE	13	2.0	EPA 8021B
Benzene	1.5 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	9.8	0.50	EPA 8021B
m,p-Xylenes	11 C	0.50	EPA 8021B
o-Xylene	28	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	128	63-146	EPA 8015B
Bromofluorobenzene (FID)	407 *	70-140	EPA 8015B
Trifluorotoluene (PID)	126	50-140	EPA 8021B
Bromofluorobenzene (PID)	255 *	56-132	EPA 8021B

Type: BLANK	Lab	ID: QC49	95173	
Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	86	63-146	EPA 8015B
Bromofluorobenzene (FID)	90	70-140	EPA 8015B
Trifluorotoluene (PID)	93	50-140	EPA 8021B
Bromofluorobenzene (PID)	88	56-132	EPA 8021B

*= Value outside of QC limits; see narrative

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	211911	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2008-02	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC495174	Batch#:	150809				
Matrix:	Water	Analyzed:	05/08/09				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,114	111	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	108	63-146
Bromofluorobenzene (FID)	99	70-140

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 211911		Location:	Redwood Regional Park			
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B			
Project#: 2008-0	2	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	150809			
MSS Lab ID:	211964-002	Sampled:	05/06/09			
Matrix:	Water	Received:	05/06/09			
Units:	ug/L	Analyzed:	05/09/09			
Diln Fac:	1.000					

Type: MS			Lab ID:		QC495175		
Analyte	MSS Re	esult	Spike	d	Result	%REC	Limits
Gasoline C7-C12	29	98.2	2,000		1,980	84	66-120
Surrogate	%REC	Limits					
Trifluorotoluene (FID)	77	63-146					
Bromofluorobenzene (FI	D) 121	70-140					
Type: MSD			Lab ID:		QC495176		
					-		
Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline C7-C12		2,000		1,930	82	66-120	3 20
Surrogate	%REC	Limits					

	Surrogate	%REC	Limits
5	Trifluorotoluene (FID)	75	63-146
Η	Bromofluorobenzene (FID)	118	70-140

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	211911	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2008-02	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	150809				
Units:	ug/L	Analyzed:	05/08/09				
Diln Fac:	1.000						

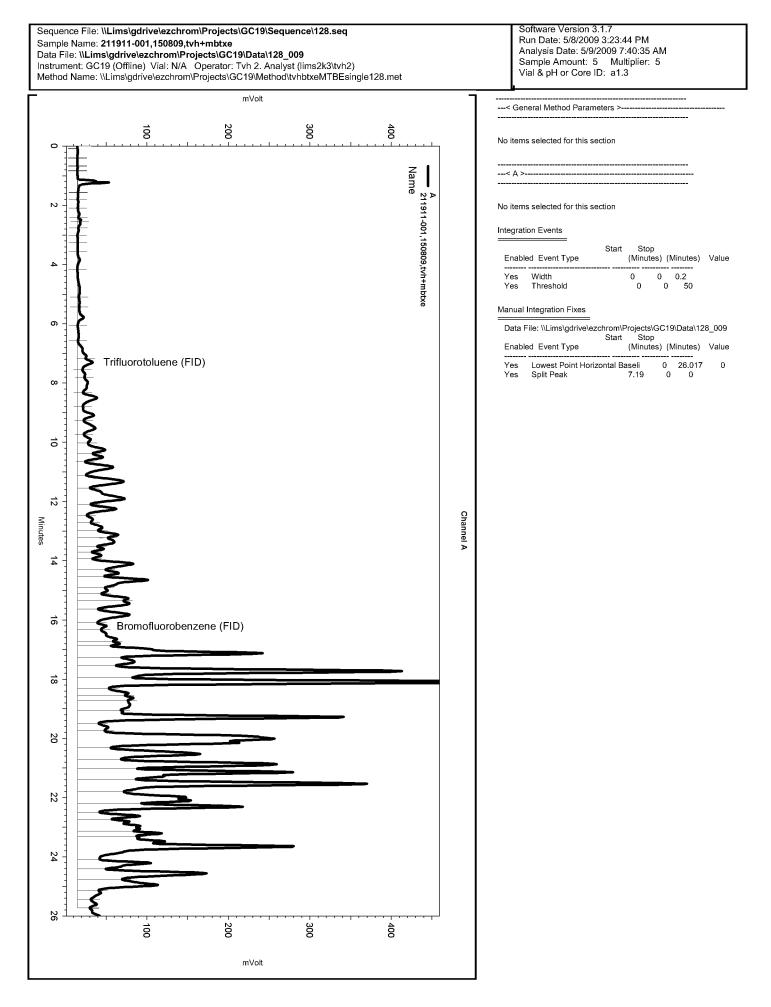
Type:

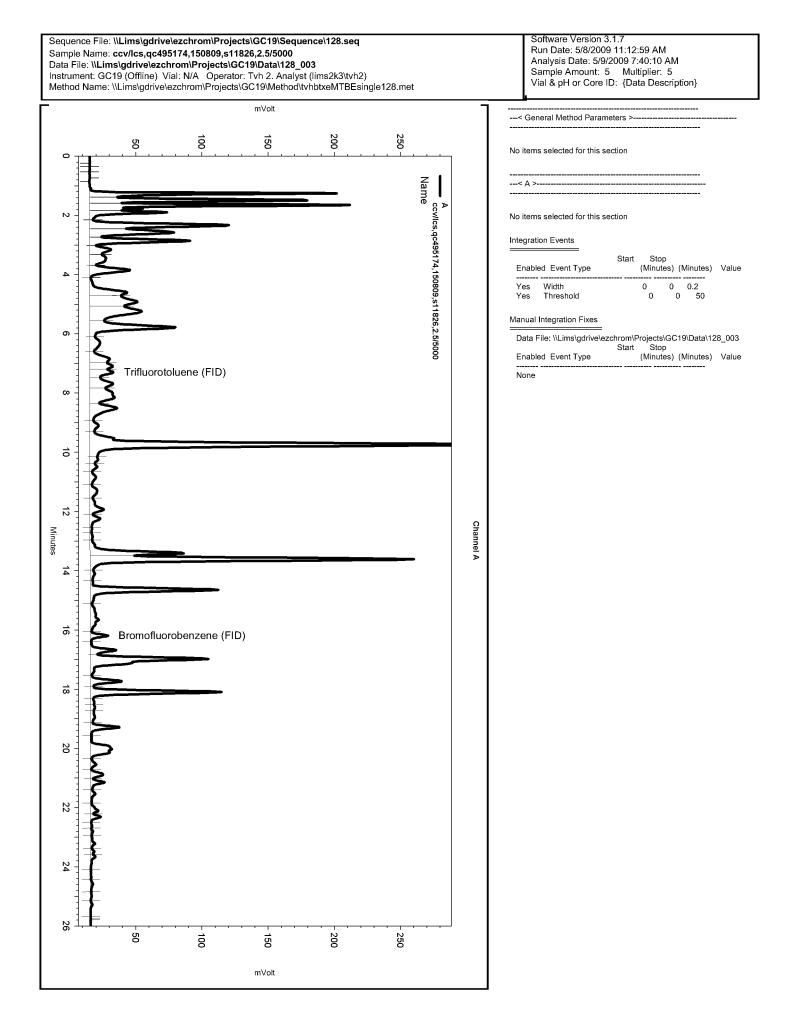
BS

Lab ID:

QC495177

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.00	100	53-152
Benzene	10.00	9.345	93	79-120
Toluene	10.00	10.21	102	76-122
Ethylbenzene	10.00	10.52	105	77-125
m,p-Xylenes	10.00	10.34	103	76-126
o-Xylene	10.00	10.26	103	77-126


Surrogate	%REC	Limits
Trifluorotoluene (PID)	93	50-140
Bromofluorobenzene (PID)	96	56-132


Type: BSD	Lab I	D: QC495	178			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.24	102	53-152	2	37
Benzene	10.00	9.384	94	79-120	0	20
Toluene	10.00	10.29	103	76-122	1	21
Ethylbenzene	10.00	10.72	107	77-125	2	21
m,p-Xylenes	10.00	10.59	106	76-126	2	23
o-Xylene	10.00	10.43	104	77-126	2	21
Surrogate	%REC Limits					
Trifluorotoluene (PID)	103 50-140					

105

56-132

Bromofluorobenzene (PID)

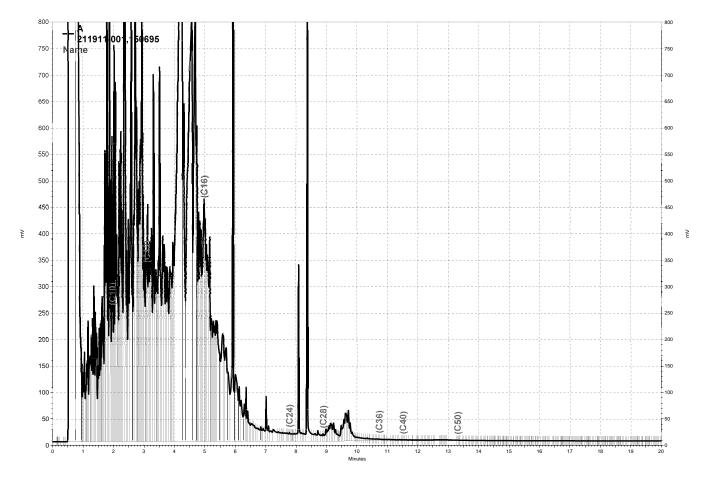
		Total 1	Extracta	ble Hydroc	arboi	ns
Lab #:	211911			Location:		Redwood Regional Park
	Stellar Environment	al Solut	cions	Prep:		EPA 3520C
Project#:	2008-02			Analysis:		EPA 8015B
Field ID:	MW-2			Batch#:		150695
Matrix:	Water			Sampled:		05/05/09
Units:	ug/L			Received:		05/05/09
Diln Fac:	1.000			Prepared:		05/05/09
Type: Lab ID:	SAMPLE 211911-001			Analyzed:		05/08/09
Diesel C10	Analyte D-C24	1	Result L5,000 Y		RL 50	
Diesel C10	0-C24	%REC				
Diesel ClC o-Terpheny	Surrogate		L5,000 Y			
	Surrogate	%REC	L5,000 Y Limits	Analyzed:		05/07/09
o-Terpheny Type:	D-C24 Surrogate yl BLANK	%REC	L5,000 Y Limits	Analyzed:		05/07/09
o-Terpheny Type:	D-C24 Surrogate yl BLANK QC494741 Analyte	%REC	Limits 61-127 Result	Analyzed:	50	05/07/09
o-Terpheny Type: Lab ID:	D-C24 Surrogate yl BLANK QC494741 Analyte	%REC 95	Limits 61-127 Result	Analyzed:	50 	05/07/09

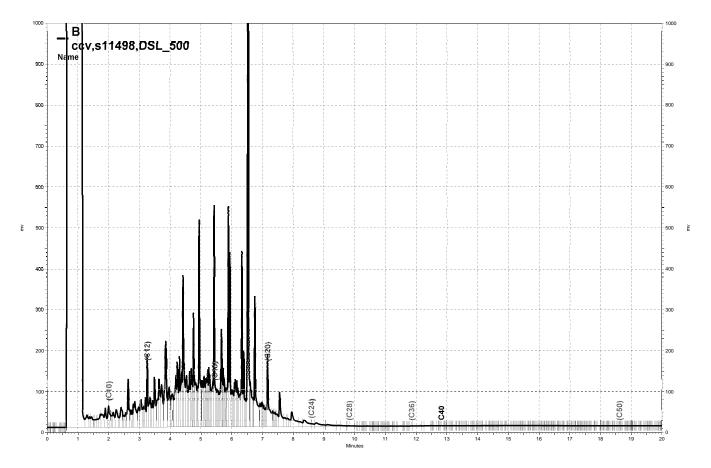
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

	Total Extractable Hydrocarbons										
Lab #:	211911	Location:	Redwood Regional Park								
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C								
Project#:	2008-02	Analysis:	EPA 8015B								
Type:	LCS	Diln Fac:	1.000								
Lab ID:	QC494742	Batch#:	150695								
Matrix:	Water	Prepared:	05/05/09								
Units:	ug/L	Analyzed:	05/07/09								
	Analyte Spik	ed Rest	ult %REC Limits								

Diesel C10-C24	2,500	2,427	97	50-120	
Surrogate	%REC Limits				


o-Terphenyl 108 61-127


Batch QC Report

	Total Extracta	able Hydrocar	bons			
Lab #: 211911		Location:	Redwood Regio	onal Park	:	
Client: Stellar Environ	mental Solutions	Prep:	EPA 3520C			
Project#: 2008-02		Analysis:	EPA 8015B			
Field ID: ZZZZZZZ	ZZ	Batch#:	150695			
MSS Lab ID: 211756-0	02	Sampled:	04/28/09			
Matrix: Water		Received:	04/28/09			
Units: ug/L		Prepared:	05/05/09			
Diln Fac: 1.000		Analyzed:	05/07/09			
Type: MS Analyte Diesel C10-C24	MSS Result 1,166	Lab ID: Spiked 2,500	QC494743 Result 3,170	%REC 80	Limi 38-1	
Diesel CIU C24	1,100	2,500	5,170	00	50 I	. 2 1
Surrogate	%REC Limits					
o-Terphenyl	117 61-127					
Type: MSD		Lab ID:	QC494744			
Analyte	Spiked	Res	ult %REC	Limits	RPD	Lim
Diesel C10-C24	2,500	3,1	04 77	38-127	2	37
Surrogate	%REC Limits					

o-Terphenyl 116 61-127

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\128a013, A

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\127b004, B

APPENDIX D

Historical Groundwater and Surface Water Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Well MW-2											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons	
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA	70.3	
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	NA	118.6	
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	NA	8	
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA	5.7	
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0	
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0	
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA	7.9	
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	NA	1.24	
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA	81	
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA	5.6	
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	NA	92.4	
12	Feb-98	2,000	200	270	92	150	600	1,112	NA	3312	
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	7.0	7	
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5	811.1	
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5	88.01	
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9	8.62	
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0	68.8	
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10	147.4	
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27	451.7	
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6	171.56	
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2	14.2	
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	7.7	7.7	
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	—	13	116.0	
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	—	< 2.0	4.3	
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16	291.1	
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7	10.6	
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23	152.6	
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4	299.8	
29	Mar-04	374	<100	81	1.2	36	7.3	126	18	517.5	
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15	15.8	
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16	239.7	
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20	117.6	
33	Mar-05	190	68	27	<0.5	14	11	52	26	336.0	
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24	107.8	
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23	25.5	
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23	26.9	

Well MW-2 (con't)											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons	
37	Mar-06	1300	300	77	4.4	91	250	422	18	2040.4	
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17	77.0	
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17	391.7	
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16	18.1	
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14	77.0	
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	4	8	11.5	
43	Sep-07	2,600	260	160	44	86	431	721	15	3596.0	
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16	24580.0	
44a	Jan-08	480	200	1.1	3.2	5.5	68	78	11	768.8	
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13	46993.0	
45a	Apr-08	800	640	2.6	2.1	13	155	173	13	1625.7	
45b	May-08	7,100	3,900	14	8.8	140	710	873	11	11883.8	
46	Jun-08	5,700	1,000	9.4	5.2	80	550	645	11	7355.6	
46a	Jul-08	6,400	2,200	13	5.1	140	570	728	2.9	9331.0	
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51	9	505.1	
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<20	38131.0	
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043	3.5	12446.6	
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1022	9.5	50131.1	
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	202	12	11613.5	
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45	14	40159.4	
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13	20063.3	
51	Jun-09	2,100	8,000	5.4	<0.5	11	20.2	36.6	13	10149.6	

						Well MW-4	Ļ			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Nov-94	2,600	230	120	4.8	150	88	363	NA	3,193
2	Feb-95	11,000	330	420	17	440	460	1,337	NA	12,667
3	May-95	7,200	440	300	13	390	330	1,033	NA	8,673
4	Aug-95	1,800	240	65	6.8	89	67	227	NA	2,267
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA	1,338
6	Aug-96	3,700	120	63	2.0	200	144	409	NA	4,229
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA	3,182
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA	3,674
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA	512
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA	2,193
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA	1,207
12	Feb-98	5,300	340	110	24	320	402	856	NA	6,496
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23	1,927
14	Apr-99	2,900	710	61	1.2	120	80	263	32	3,905
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0	1,476
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4	973
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4	2,323
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0	2,871
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0	2,156
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0	111
21	Mar-02	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2.0	0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2.0	0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0	0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	—	< 5.0	0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	—	< 5.0	0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	—	< 2.0	0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0	0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	—	< 2.0	0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	—	< 2.0	0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0	0

	Well MW-5											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	50		
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA	70.6		
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	80		
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2	0		
	Gro	oundwater r	nonitoring	in this well	discontinue	d in 1998 with Al	ameda County He	ealth Care Servic	es Agency a	approval.		
	Subsequent groundwater monitoring conducted to confirm plume's southern limit											
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9	5.9		
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0	0		

						Well MW-7	,			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Jan-01	13,000	3,100	95	4	500	289	888	95	17,083
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52	17,900
3	Aug-01	12,000	5,000	55	25	440	198	718	19	17,737
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10	14,477
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200	13,667
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18	13,569
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0	14,220
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0	13,999
9	Mar-03	10,000	3,600	210	12	360	143	725	45	14,370
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200	14,270
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0	13,897
12	Dec-03	9,140	1,100	62	45	295	184	586	89	10,915
13	Mar-04	8,170	600	104	41	306	129	580	84	9,434
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0	12,431
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0	13,623
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0	12,709
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0	14,891
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0	13,976
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0	10,774
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0	6,412
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110	10,342
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10	10,896
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49	11,931
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0	10,012
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0	9,339
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0	10,017
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0	9,613
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7	7,729
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51	11,537
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0	8,502
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0	9,331
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0	7,214
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51	12,022
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260	10,445

						Well MW-8	3			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96	17,933
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42	16,298
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14	13,891
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0	5,262
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240	21,417
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19	4,409
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0	1,556
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0	4,050
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10	19,180
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0	11,659
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0	4,644
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0	668
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90	20,536
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10	8,010
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10	2,742
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10	22,581
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10	36,201
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20	46,029
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20	7,867
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20	5,786
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20	31,060
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20	28,225
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10	11,267
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0	5,845
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20	22,434
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0	15,076
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0	14,780
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0	1,869
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76	26,289
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0	4,033
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0	10,817
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5	950
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20	13,004
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55	5,928

						Well MW-9)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Aug-01	11,000	170	340	13	720	616	1,689	48	12,907
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10	13,192
3	Mar-02	1,700	300	53	4.2	120	67	244	20	2,264
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85	14,910
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0	7,150
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10	11,766
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0	6,620
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0	10,487
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10	12,704
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10	9,254
11	Mar-04	3,550	600	122	15	313	84	534	35	4,719
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10	9,569
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10	10,174
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10	8,130
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10	6,249
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10	13,019
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0	5,416
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0	11,555
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0	4,892
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2	4,908
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0	16,892
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10	16,463
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10	13,862
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0	10,158
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0	7,310
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0	8,720
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38	10,668
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10	14,230
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0	7,869
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0	7,014
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0	6,395
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160	8,244

						Well MW-1	D			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40	2,782
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25	106
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0	7
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0	10
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26	326
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15	149
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0	135
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0	10
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9	187
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0	110
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15	244
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8	9
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10	82
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13	223
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0	232
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0	96
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8	9
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8	143
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3	226
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6	149
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7	5
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1	66
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0	133
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6	94
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0	539
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4	256
28	Jun-08	230	320	12	<0.5	9.9	3.5	25.4	<2.0	575
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0	85
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1	69
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0	307
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0	200

						Well MW-1	1			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10	26,371
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10	9,601
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4	197
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4	12,113
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10	18,277
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10	24,932
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53	11,495
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10	19,613
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4	14,487
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173	18,519
11	Mar-04	4,900	400	72	17	342	233	664	61	6,025
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10	13,717
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10	10,755
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10	16,560
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10	7,075
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0	2,193
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0	16,922
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10	4,996
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10	3,662
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0	6,014
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0	6,019
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0	9,859
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0	6,688
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.0	6,767
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0	8,482
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35	11,357
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8	9,572
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0	8,141
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0	12,145
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0	4,576
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0	8,816
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3	4,925

Well MW-12											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons	
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0	2,039	
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49	1,699	
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0	1,087	
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21	1,422	
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0	1,009	
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0	503	
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0	875	
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0	575	
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0	353	
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0	1,236	
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0	272	
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0	469	
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0	264	
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0	312	
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0	585	

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

	Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	50		
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0	0		
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
		Sampling a	at this loca	tion discont	tinued after	April 1999 with A	lameda County F	lealth Services A	gency appr	oval.		

(all concentrations in ug/L, equivalent to parts per billion [ppb])

			Sampling	Location S	SW-2 (Area	of Historical Co	ontaminated Gro	undwater Discha	arge)		
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbon	s
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA	139.5	
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA	212.9	
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
8	Aug-97	350	130	13	0.89	19	11	44	NA	523.59	
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		0
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3	89.1	
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2	1637.2	
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4	272.6	
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0	0.53	
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10	670.4	
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0	833	
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8	3.36	
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0	288.3	
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0	86	
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0	1.1	
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0	0.83	
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0	640.7	
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0		0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	62	
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	110	
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0	156.81	
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0		0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0	77	
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0	561.5	
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0	130.61	
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0		0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0	1224.3	
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0	83	
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0		0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0		0

	· ·	Sampli	ng Locati	on SW-3 (E	Downstrear	n of Contamina	ted Groundwate	Discharge Loca	ation SW-2	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	74
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	69
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS	0
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0	60
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.0	0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	120
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8	127.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0	0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	200
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	55
43	Sep-08	NS	NS	<0.5 NS	×0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	NS	NS
44 45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	360
46 47	Mar-09 Jun-09	<50 <50	<50 <50	<0.5 <5.0	<0.5 <5.0	<0.5 <5.0	<0.5 <5.0	0.5 <5.0	<2.0 <2.0	0 0

NS = Not Sampled (no surface water present during sampling event)