RECEIVED

OCTOBER 20,2005

ALAMEDA COUNTY ENVIRONMENTAL HEALTH

SECOND QUARTER 2005 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

July 2005

SECOND QUARTER 2005 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

July 12, 2005

Project No. 2005-02

GEOSCIENCE & ENGINEERING CONSULTING

RECEIVED

OCTOBER 20,2005

ALAMEDA COUNTY ENVIRONMENTAL HEALTH

July 13, 2005

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Quarter 2005 Site Monitoring Report

Redwood Regional Park Service Yard Site – Oakland, California Alameda County Health Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced Stellar Environmental Solutions, Inc. report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted between April 1 and June 30, 2005 (Second Quarter 2005). The EBRPD has previously proposed to the regulatory agencies to implement bioventing as a site corrective action, and is currently conducting planning and procurement activities. When implemented, bioventing activities will be reported in technical submittals separate from the ongoing groundwater and surface water monitoring quarterly reports; salient summary discussions will be included in the quarterly groundwater monitoring reports.

If you have any questions regarding this report, please contact Mr. Neal Fujita of the EBRPD, or contact us directly at (510) 644-3123.

Sincerely,

Bruce M. Rucker, R.G., R.E.A.

Brue M. Pluly.

Project Manager

Richard S. Makdisi, R.G., R.E.A. Principal

Brudle S. Walding

cc: Carl Wilcox, California Department of Fish and Game John Wolfenden, Regional Water Quality Control Board Neal Fujita, East Bay Regional Park District

TABLE OF CONTENTS

Secti	Page	
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work	1
	Historical Corrective Actions and Investigations	2
	Site Description	
2.0	PHYSICAL SETTING	6
	Site LithologyHydrogeology	
3.0	Q2-2005 GROUNDWATER AND SURFACE WATER MONITORING EVENT ACTIVITIES	13
	Groundwater Level Monitoring and Sampling Creek Surface Water Sampling	
4.0	REGULATORY CONSIDERATIONS	16
	Groundwater Contamination Surface Water Contamination	
5.0	MONITORING EVENT ANALYTICAL RESULTS	18
	Current Event Groundwater and Surface Water Results	
6.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	21
	Summary and Conclusions Proposed Actions	
7.0	REFERENCES AND BIBLIOGRAPHY	24

TABLE OF CONTENTS (continued)

l	Pag	ge
LIMITA	TIONS	28
dices		
lix A	Historical Groundwater Monitoring Well Water Level Data	
lix B	Groundwater Monitoring Field Documentation	
lix C	Analytical Laboratory Report and Chain-of-Custody Record	
lix D	Historical Groundwater and Surface Water Analytical Results	
	LIMITA dices lix A lix B lix C	LIMITATIONS

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data - June 15, 2005 Monitoring Event Redwood Regional Park Corporation Yard, Oakland, California
Table 2	Groundwater and Surface Water Sample Analytical Results – June 15, 2005 Redwood Regional Park Corporation Yard, Oakland, California
Figures	Page
Figure 1	Site Location Map
Figure 2	Site Plan and Historical Sampling Locations
Figure 3	Geologic Cross-Section Locations
Figure 4	Geologic Cross-Sections A-A' through C-C'
Figure 5	Geologic Cross-Sections D-D' through F-F'
Figure 6	Groundwater Elevation Map – June 15, 2005
Figure 7	Groundwater Analytical Results and Gasoline Plume – June 2005

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (Alameda County Health) has provided regulatory oversight of the investigation since its inception (Alameda County Health Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) between April 1 and June 30, 2005:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant analysis and natural attenuation indicators; and
- Collecting surface water samples for contaminant analysis.

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Previous SES reports have provided a full discussion of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and evaluation of hydrochemical trends and plume stability. Section 7.0 (References and Bibliography) of this report provides a listing of all technical reports for the site. The following is a summary of the general phases of site work:

An October 2000 Feasibility Study report for the site, submitted to Alameda County Health, provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d).

- Two instream bioassessment events were conducted in April 1999 and January 2000 to evaluate potential impacts to stream biota associated with the site contamination (no impacts were documented).
- Additional monitoring well installations and corrective action by ORCTM injection proposed by SES were approved by the Alameda County Health, in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- A total of 34 groundwater monitoring events have been conducted on a quarterly basis since project inception (November 1994), and a total of 11 groundwater monitoring wells are currently available for monitoring. Seven site wells are included in the current groundwater monitoring program (the remaining four wells are outside the contaminant plume and are currently utilized only for water level monitoring).
- A bioventing pilot test was conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and a full-scale bioventing system design was submitted to Alameda County Health. Alameda County Health has not yet responded to the submittal and the work has not begun. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.

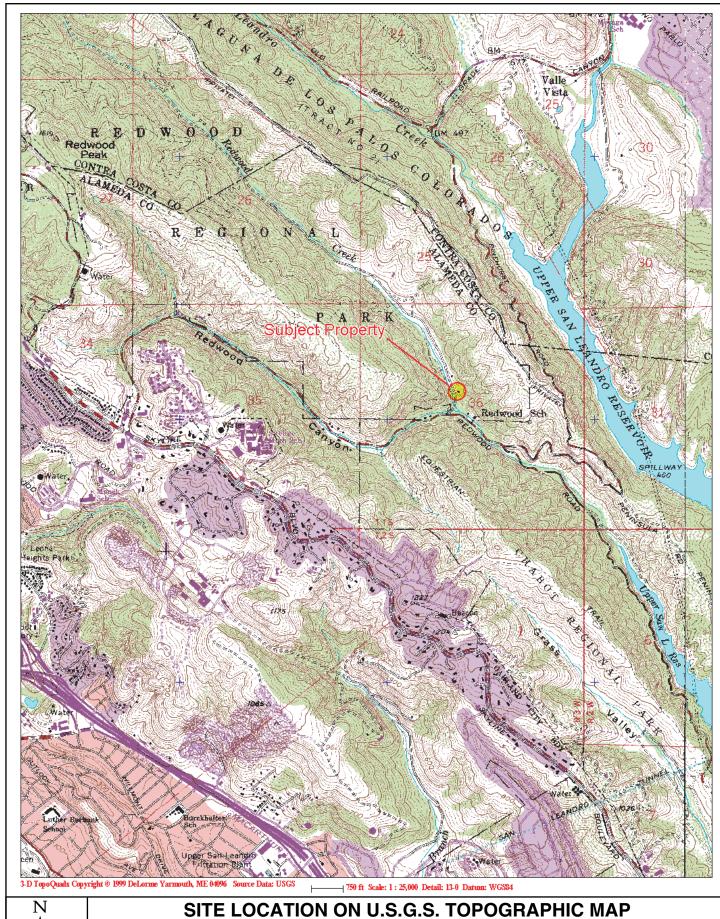
RELATED SITE ACTIVITIES

The EBRPD has proposed to implement bioventing as a corrective action to mitigate residual site contamination, the primary source of ongoing groundwater contamination. In May 2004, Alameda County Health approved conducting a bioventing pilot test to evaluate the feasibility of this strategy. In June 2004, four bioventing pilot test wells (one vent well and three vapor monitoring points) were installed; soil sampling during well installations was conducted; and water levels were measured at the installed wells (SES, 2004f). The pilot tests results report recommended, and EBRPD has proposed, to implement full-scale bioventing as a site corrective action; the pilot tests results report included a design for the full-scale system. In May 2005, Alameda County Health requested modifications to the full-scale design (Alameda County Health, 2005). Alameda County Health subsequently approved the original design (not including the requested modifications). The EBRPD is currently preparing a Request for Bid package for installation of the system. Bioventing activities have been/will be discussed in detail separate technical reports. No bioventing field activities were conducted in the current quarter.

SITE DESCRIPTION

Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to

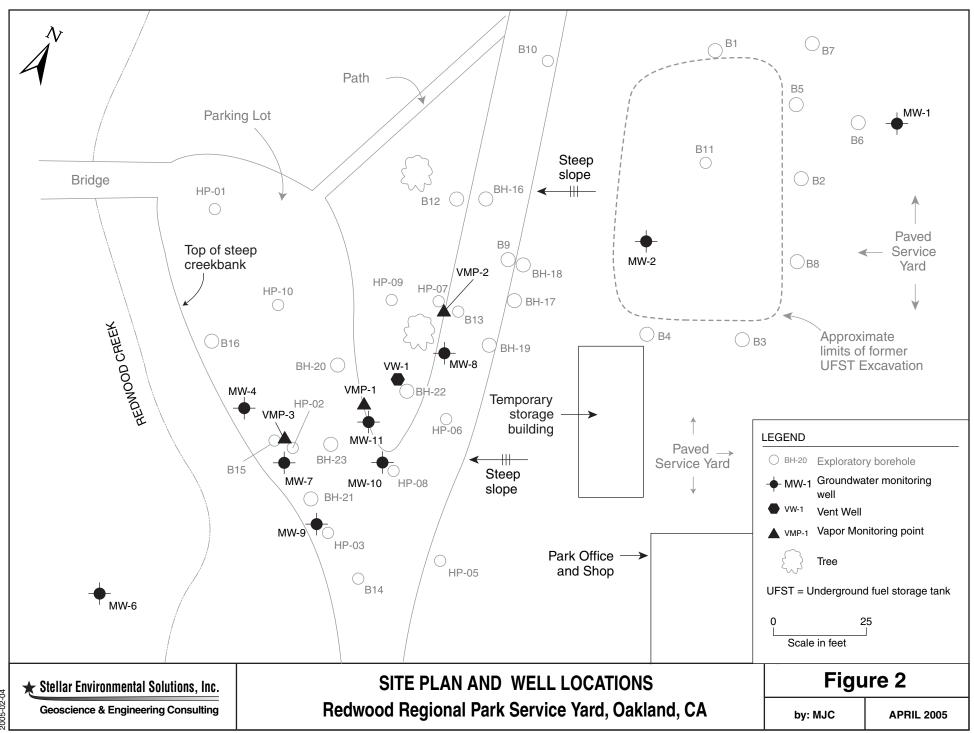
approximately 545 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 2 shows the site plan.


REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is Alameda County Health, with oversight provided by the Water Board. The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports are submitted to these agencies.

Historical Alameda County Health-approved revisions to the groundwater sampling program have included: 1) discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6; 2) discontinuing creek surface water sampling at upstream location SW-1; and 3) reducing the frequency of creek surface water sampling from quarterly to semi-annually (Alameda County Health, 1996). EBRPD has pro-actively elected not to implement the latter-approved revision due to continued concern over potential impacts to Redwood Creek.

In May 2005, Alameda County Health requested that groundwater monitoring well MW-4 be replaced due to progressive reduced groundwater entry into the well (Alameda County Health, 2005). The EBRPD is currently evaluating that request. It is likely that the replacement well will be installed (and the current MW-4 well will be decommissioned) in Third Quarter 2005.


Since 2001, Electronic Data Format (EDF) groundwater analytical results, well construction and water level data, and site maps have been successfully uploaded to the State Water Resources Control Board's GeoTracker database, in accordance with that agency's requirements for EDF submittals.

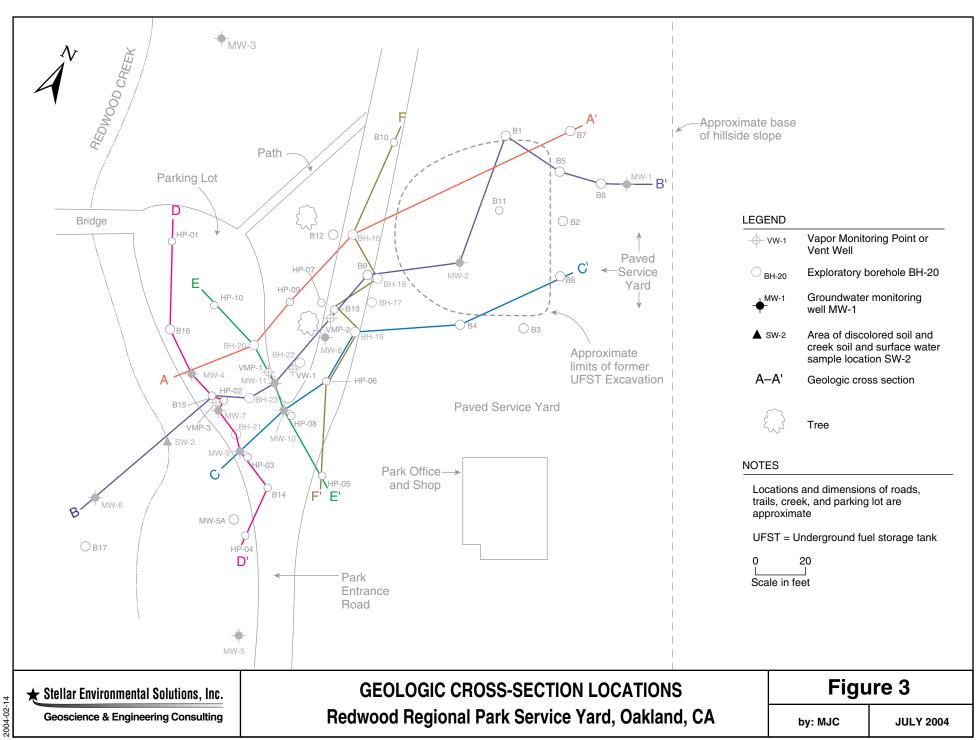
Redwood Reg. Park Service Yard Oakland, CA

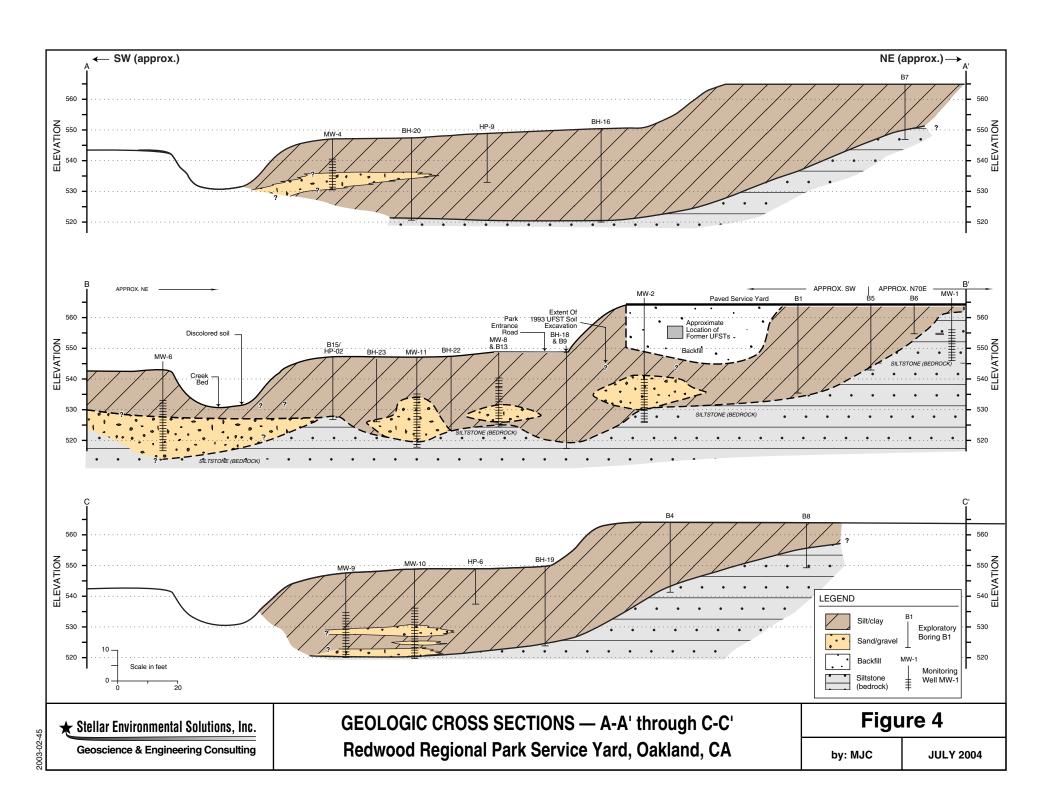
By: MJC APRIL 2004 Figure 1

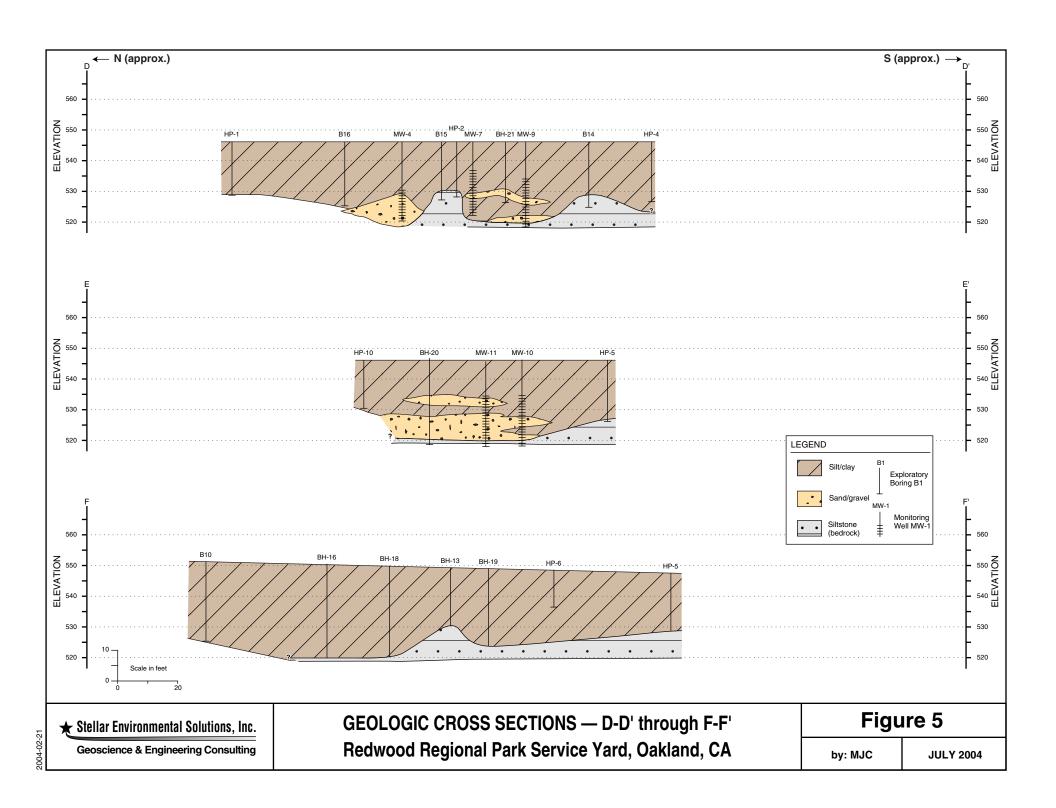
* Stellar Environmental Solutions, Inc. Geoscience & Engineering Consulting

2005-02-04

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous SES reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, Alameda County Health requested, via email, additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections parallel to and perpendicular to the contaminant plume's long axis.

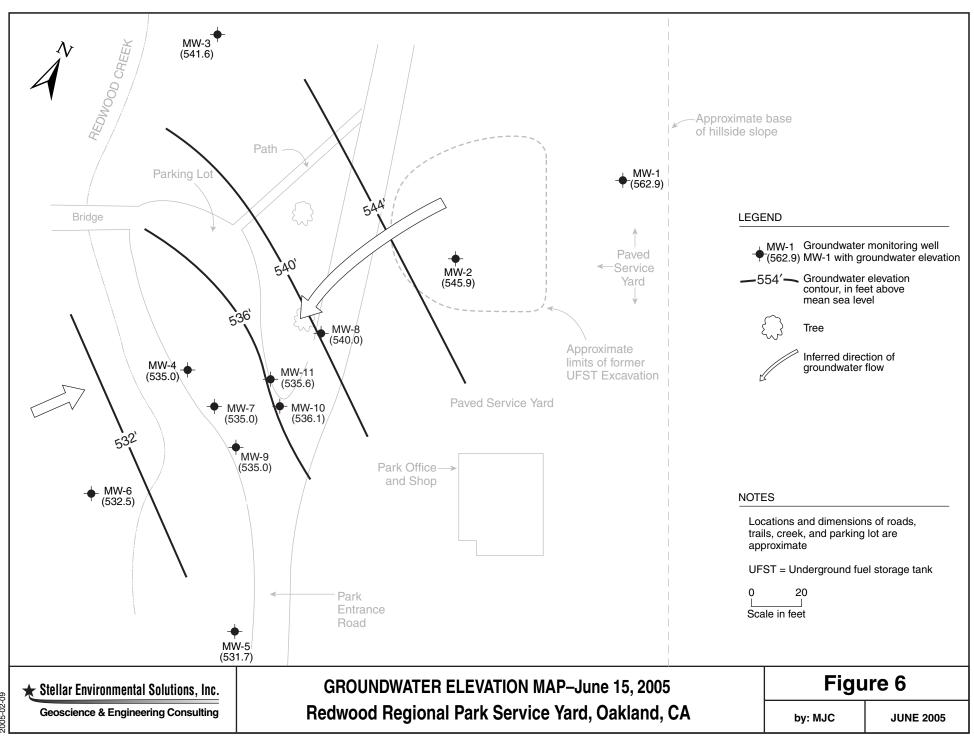

SITE LITHOLOGY


Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination) were presented in a previous report (SES, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous SES report (SES, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. That isopleth map and Figures 4 and 5 indicate the following: The bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see Cross Section F-F') and at downgradient location B15/HP-02 (see Cross-Section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.


The bedrock surface (and overlying unconsolidated sediment lithology) suggest that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well static water levels. Table 1 (in Section 3.0) summarizes current event groundwater elevation data. Appendix A contains historical groundwater elevation data. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are generally lower than in the surrounding area. As discussed in the previous sub-section, local groundwater flow direction is likely more variable than expressed by groundwater monitoring well data, due to localized bedrock surface topography.

In the upgradient portion of the site (between well MW-1 and the former UFST source area, in landslide debris), the groundwater gradient is approximately 0.2 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is

2005-02-09

approximately 0.1 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We assume a site groundwater velocity of 7 to 10 feet per year using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

3.0 Q2-2005 GROUNDWATER AND SURFACE WATER MONITORING EVENT ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q2 2005), conducted in June 2005. Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the Alameda County Health-approved SES technical workplan (SES, 1998a). Current event activities included:

- Measuring static water levels and field analyzing pre-purge groundwater samples for indicators of natural attenuation (dissolved oxygen [DO], ferrous iron, and oxidation-reduction potential [ORP]) in all 11 site wells.
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-4, MW-7, MW-8, MW-9, MW-10, and MW-11).
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.

Creek sampling and groundwater monitoring/sampling was conducted on June 15, 2005. Creek sampling was conducted by the SES project manager. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

Because it appears that the previously-injected ORCTM has been depleted, continued monitoring of the natural attenuation parameters—DO, ORP, nitrate, ferrous iron, and sulfate—is of marginal value until such time as additional corrective actions that would increase oxygen concentrations (e.g., bioventing) are implemented. Therefore, monitoring for natural attenuation parameters was discontinued following the Q3 2004 event.

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data
June 15, 2005 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth ^(a)	Groundwater Elevation ^(b)	
MW-1	18	7 to 17	565.9	3.00	562.9	
MW-2	36	20 to 35	566.5	20.59	545.9	
MW-3	42	7 to 41	560.9	19.33	541.6	
MW-4	26	10 to 25	548.1	13.13	535.0	
MW-5	26	10 to 25	547.5	15.81	531.7	
MW-6	26	10 to 25	545.6	13.11	532.5	
MW-7	24	9 to 24	547.7	12.66	535.0	
MW-8	23	8 to 23	549.2	9.22	540.0	
MW-9	27	12 to 27	549.4	14.45	535.0	
MW-10	28	13 to 28	547.3	11.20	536.1	
MW-11	MW-11 26 11 to 26		547.9	12.30	535.6	

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch-diameter; all other wells are 2-inch-diameter.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State of California Water Resources Control Board, 1989), and followed the methods and protocols approved by Alameda County Health in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-

⁽a) Depths are in feet relative to top of well casing.

⁽b) All elevations are relative to top of well casing, and are expressed as feet above U.S. Geological Survey (USGS) mean sea level. Elevations of wells MW-1 through MW-6 were surveyed by EBRPD relative to USGS Benchmark No. JHF-49. Wells MW-7 through MW-11 were surveyed by a licensed land surveyor using existing site wells as datum.

contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 80 gallons) from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES on June 15, 2005. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and SW-3 (approximately 500 feet downstream of the SW-2 location). In accordance with a previous SES recommendation approved by the Alameda County Health, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was flowing briskly between the two sampling locations; water depth was between 6 inches and 1 foot. At this location, where contaminated groundwater discharge to the creek has historically been observed, an orange algae was observed growing on the saturated portion of the creek bank. This algae likely is utilizing the petroleum as a carbon source, and therefore is a good indicator of the presence of petroleum contamination. However, neither petroleum sheen nor odor were evident on the water surface.

4.0 REGULATORY CONSIDERATIONS

The following is a summary of regulatory considerations regarding surface water and groundwater contamination. There are no Alameda County Health or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan (Regional Water Quality Control Board, 1986), all groundwater are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 4 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for sites where groundwater <u>is</u> a current or potential drinking water source; and 2) ESLs for sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL document (Water Board, 2004), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, Alameda County Health has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 4 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. EPA, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life.

As discussed in the ESL document (Water Board, 2004), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-4, MW-7, and MW-9).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

5.0 MONITORING EVENT ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the most recent monitoring event. Table 2 summarizes the contaminant analytical results of the current monitoring event. Figure 7 shows the current event contaminant analytical results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record for the current event. Appendix D contains a summary of historical groundwater and surface analytical results.

CURRENT EVENT GROUNDWATER AND SURFACE WATER RESULTS

Current quarter site groundwater maximum concentrations exceed their respective groundwater ESLs for all analytes except toluene (drinking water resource <u>is</u> threatened) and for all contaminants except toluene and MTBE (drinking water resource <u>is not</u> threatened). Maximum site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.

Maximum groundwater contaminant concentrations, except MTBE, were detected in well MW-8 (located approximately half the distance between the former source area and the creek). Maximum MTBE concentrations were detected in upgradient well MW-2. Elevated contaminant concentrations were also detected in mid-plume well MW-11 and downgradient wells MW-7 and MW-9. The northern and southern edges of the plume in the downgradient area of the plume appear to be well defined by wells MW-4 and MW-10. The current event contaminant plume geometry is consistent with recent historical contaminant distribution, showing the center of contaminant mass in groundwater to be located downgradient of the former source area.

Neither of the two surface water samples collected (SW-3 and SW-3) had detectable concentrations for any of the site contaminants analyzed.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

Table 2 Groundwater and Surface Water Sample Analytical Results – June 15, 2005 Redwood Regional Park Corporation Yard, Oakland, California

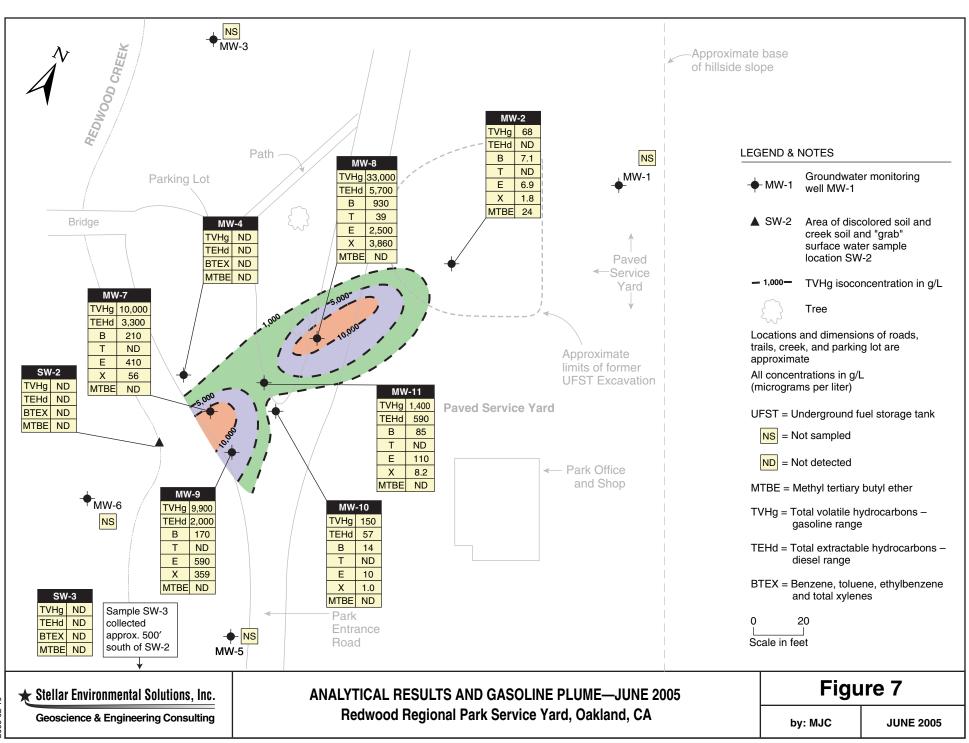
	Contaminant								
Location	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE		
GROUNDWATER SAMPLES									
MW-2	68	< 50	7.1	< 0.5	6.9	1.8	24		
MW-4	< 50	< 50	< 0.5	< 0.5	< 0.5	<1.0	<2.0		
MW-7	10,000	3,300	210	<1.0	410	56.2	<4.0		
MW-8	33,000	5,700	930	39	2,500	3,860	<20		
MW-9	9,900	2,000	170	<2.5	590	358.5	<10		
MW-10	150	57	14	< 0.5	10	1.0	<2.0		
MW-11	1,400	590	85	< 0.5	110	8.18	<2.0		
Groundwater ESLs (a)	100 / 500	100 / 640	1.0 / 46	40 / 130	30 / 290	13 / 13	5 / 1,800		
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	<50	<50	< 0.5	< 0.5	< 0.5	<1.0	<2.0		
SW-3	< 50	< 50	< 0.5	< 0.5	< 0.5	<1.0	<2.0		
Surface Water Screening Levels (a, b)	500	100	46	130	290	13	8,000		

Notes:

 $MTBE = methyl \ \textit{tertiary}\text{-butyl} \ ether$

 $TVHg = total\ volatile\ hydrocarbons$ - gasoline range

TEHd = total extractable hydrocarbons - diesel range


 $\mu g/L = \text{micrograms per liter, equivalent to parts per billion (ppb)}$

Samples in $bold\text{-}face\ type\ exceed\ the\ ESL\ and/or\ surface\ water\ screening\ levels.$

All concentrations expressed in $\mu g/L$.

⁽a) Water Board Environmental Screening Levels (drinking water resource threatened/not threatened) (Water Board, 2004).

⁽b) Lowest of chronic and acute surface water criteria published by the State of California, U.S. Environmental Protection Agency, or U.S. Department of Energy.

2005-02-11

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical findings.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (34 events in the initial site wells). A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current ground-water concentrations exceed regulatory screening levels for groundwater and surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low creek flow conditions. An in-stream bioassessment evaluation in 1999-2000 determined no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The groundwater contaminant plume has become disconnected from its original source, but continues to be fed from the residual hydrocarbon concentrations in the soil. The groundwater plume has migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek. The plume of groundwater contamination above screening levels appears to be approximately 120 feet long and approximately 50 feet wide. The zone of greatest contamination (greater than 10,000 μg/L TPH) is an approximately 20- to 30-foot-wide by 50-foot-long area extending from mid-plume well MW-8 to the most downgradient wells MW-7 and MW-9.

- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between mid-plume and downgradient wells in recent history. While recent groundwater contaminant concentrations are at or near sitewide historical maxima, there is no indication that maximum site groundwater concentrations are increasing, suggesting that "worst case" contaminant concentrations may have been reached.
- A two-phase ORCTM injection corrective action program was implemented at the site. In September 2001, approximately 3,000 pounds of ORCTM was injected into 44 boreholes over a 4,400-square foot area of the maximum groundwater contamination. In June 2002, approximately 1,000 pounds of ORCTM was injected in 30 boreholes over a smaller area that showed residual high contaminant concentrations following the initial injection phase. The ORCTM was injected over the full saturated interval (including the capillary fringe). The findings indicate that the corrective action was partially effective in reducing the lateral extent of the groundwater contaminant plume; however, initial contaminant reductions were followed by rebounding to pre-injection concentrations. The data suggest that site conditions support aerobic biodegradation when not limited by oxygen concentrations, notably on the plume margins and upgradient former source area, but not along the centerline of the contaminant plume.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally-unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek and ultimately obtain site closure.
- Soil bioventing is to be applied at the site to mitigate the residual unsaturated zone hydrocarbon contamination that continues to provide contaminant input to the groundwater. The bioventing project is currently under review and procurement by the EBRPD following approval of the remedy by Alameda County Health.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue the quarterly program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Install the proposed bioventing system as a corrective action to move the site toward closure.

- Decommission well MW-4 and install a replacement well.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.

7.0 REFERENCES AND BIBLIOGRAPHY

- Alameda County Health, 2005. Letter responding to October 2004 SES full-scale bioventing system design. May 31.
- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons, 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons, 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons, 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons, 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons, 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons, 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons, 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons, 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons, 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.

- Parsons, 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.
- Parsons, 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons, 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons, 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons, 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons, 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2004. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. February.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (SES), 2005a. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2005b. First Quarter 2005 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- SES, 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- SES, 2004b. Bioventing Feasibility Letter Report Redwood Regional Park Service Yard, Oakland, California. February 6.

- SES, 2004c. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- SES, 2004d. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- SES, 2004e. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- SES, 2004f. Bioventing Pilot Test Results Report, Redwood Regional Park Service Yard, Oakland, California. October 29.
- SES, 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- SES, 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- SES, 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- SES, 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- SES, 2003e. Letter to Alameda County Health Care Services Agency proposing bioventing as a corrective action remedy at Redwood Regional Park Service Yard, Oakland, California. November 6.
- SES, 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- SES, 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- SES, 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- SES, 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- SES, 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.

- SES, 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- SES, 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- SES, 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- SES, 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- SES, 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- SES, 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- SES, 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11
TOC Elevation	565.90	566.50	560.90	548.10	547.50	545.60	547.70	549.20	549.40	547.30	547.90
Date Monitored		Groundwater Elevations (feet above mean sea level)									
September 18, 1998	563.7	544.2	540.8	534.5	531.1	545.6					
April 6, 1999	565.2	546.9	542.3	535.6	532.3	532.9					
December 20, 1999	562.9	544.7	541.5	534.9	531.2	532.2					
September 28, 2000	562.8	542.7	538.3	532.2	530.9	532.0					
January 11, 2001	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1			
April 13, 2001	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8			
September 1, 2001	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6			
December 17, 2001	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2
March 14, 2002	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6
June 18, 2002	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3
September 24, 2002	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7
December 18, 2002	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8
March 27, 2003	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6
June 19, 2003	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2
September 10, 2003	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9
December 10, 2003	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7
March 18, 2004	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8
June 17, 2004	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7
September 21, 2004	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2
December 14, 2004	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9
March 16, 2005	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2
June 15, 2005	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6

TOC = Top of well Casing

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Proje	ct# <u>05 06</u>	15- OL	<u> </u>	Date 6-15-05	Client	Stellar	Envir.	
~	011	0-	0.4	m = lo 1 = 1				
Site_	reduced	Kcg.	rair	Oakland			· · · · · · · · · · · · · · · · · · ·	

			,	Thickness	Volume of	1			
	Well Size	Sheen /	Depth to Immiscible	of Immiscible	Immiscibles Removed	Depth to water	Depth to well	Survey	
Well ID	(in.)	Odor		Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or \mathcal{F}	
mw·1	4		***************************************			3.00	19.05		
nn-7	Ÿ	40 mm				20.59	<i>38.88</i>		5
мw ·3	Ч	verseerent verseeren verseerent verseerent verseerent verseerent verseerent verseeren verseerent verseerent verseerent verseerent verseerent verseeren verseerent verseerent verseeren verseerent verseeren verseeren verseeren verseeren verseeren verseeren verseeren verseeren v				19,33	45,15		
mw-4	4					13.13	26.48		S
mw-5	4		***************************************			15.81	27.00		
mw-6	4		41.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			13. 11	27.60		
aw-7	7		-			12.66	25.44	111111111111111111111111111111111111111	2
mw-8	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			9.22	22.38		
mw-9	2					14.45	30.37		
mw-10	2	romania e analis i ana	444L			11,20	28.37	n na ann an ann an ann an ann an ann an	
MW-11	2	***************************************	THE PROPERTY OF THE PROPERTY O			12.30	27.67	W	<u> </u>
1		Transmission of the Control of the C	Baselin i vicini i vi		real to the state of the state				
		and the second s	Remove	ed all	Caps pr	ior to g	augins		**************************************
		antin control of the		100 mm					
11411		The control of the co	and the second s						
		The second secon							
Average particular and a second particular and a secon				Life e de la constante de la c		nerwenness, and a second			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WELLHEAD INSPECTION CHECKLIST

Date 6-15	-05	Client	Stella	4 En	ric.			
Site Address _	Redwood	Regional	Park					
	050675- 05				hnician	DW		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
mw-1	X							
mw-2	X							
mw-3	X							
nw.y	×					,		
nw-5	\frac{\frac{1}{2}}{2}							
mw-6	X							
mw-7	¥							
mw-8	×							
mw-9	Y							
mw-10	Y							
mw-11	X				· · · · · · · · · · · · · · · · · · ·			
NOTES:								
•••								e de
								
Part of the second of the seco								

WELL MONITORING DATA SHEET

Project #: 6	<u> 50615 -</u>	OW-1		Chent:	Hel	lar th	ν	
Sampler: 🏚	W			Date:	6- 15	-05	•	
Well I.D.:	mw-2				iameter:		<u>(4)</u>	6 8
Total Well I	Depth (TD): 38.8	\$	Depth t	o Water	(DTW):	20.5	59
Depth to Fre	ee Product	•		Thickne	ess of Fi	ree Produc	t (fee	t):
Referenced	to:	PV	Grade	D.O. M	eter (if	req'd):		YSI HACH
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]:		
C	Bailer Disposable Ba Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Well Diamete	Sampling N	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X	3 fied Volum	$= \frac{35.7}{\text{Calculated Vo}}$	_ Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163
Time	Temp (Por °C)	рН	Cond. (mS or µS)	oidity TUs)	Gals. Ren	oved	Observations	
0914	59.6	6.8	1723	1:	36	12		cloudy
0917	59.2	6.9	1248	1.	33	24		u)
	well	dewa	tered @ 20	91.	DTW	36.90		
1110	59.1	8.4	806	19	7			DTW= 22.91
<u> </u>								
Did well de	water?	Yes	No	Gallons	s actuall	y evacuat	ed:	>9
Sampling D	ate: 6-19	5-05	Sampling Time	e: ///0		Depth to	Wate	r:
Sample I.D.	: MW -	2		Labora	tory:	Kiff Cal	Science	Other C+T
Analyzed for	or: (PH-)	BTEX	MTBE (TPH-D)	Oxygena	ates (5)	Other:		v
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applica	.ble):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:		
D.O. (if req	'd): P	re-purge:		mg/L	P	ost-purge:		mg/
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:		m√

W.LL MONITORING DATA SHELF

Project #:	50615-	ow - 1		Client:	Stel	lar	ENV.						
Sampler: 🔊				Date:	6- 15	-05							
Well I.D.:	mw-4	· · · · · · · · · · · · · · · · · · ·			iameter:		3 4	6 8					
Total Well I	Depth (TD)): 26.4	8	Depth t	o Water	· (DTV	V): 13.1.	3 ·					
Depth to Fre	ee Product:			Thickness of Free Product (feet):									
Referenced	to:	(V)	Grade	 	eter (if			YSI	НАСН				
DTW with 8	30% Recha	ırge [(H	leight of Water	Column	x 0.20)	+ DT	W]:						
C	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme		Waterra Peristaltic ction Pump	Well Diamete	•		Extr Dedic	Bailer osable Bailer raction Port cated Tubing				
	Gals.) X	3	= 26.1	_ Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.6 1.4	İ				
1 Case Volume	Speci	fied Volum	nes Calculated Vo	olume		0.37	Ottlei	14	dits - 0.103				
Time	Temp For °C)	рН	Cond. (mS or (S)		idity 'Us)	Gals.	Removed	Obs	servations				
0976	56.9	8.0	713	3	7	8	.7						
	well	dewat	ered @ 15	al. Dru									
1170	56.4	9.5	781	89	3	•		DTW:	= 1.85				
			·						4				
Did well de	water?	Yes	No	Gallons	s actuall	y evac	uated: /	5					
Sampling D	ate: 6-19	5-05	Sampling Tim	ie: //20	l	Deptl	to Wate	r:					
Sample I.D.	: MW-	Ч		Labora	tory:	Kiff	CalScience	Other	C+T				
Analyzed for	or: (PH-)	BTEX	MTBE (TPH-D)	Oxygena	ates (5)	Other:			v				
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if app	licable):						
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:			William to the state of the second section and the second section and the second section secti				
D.O. (if req	'd): P1	e-purge:		mg/L	P	ost-pur	ge:		mg/ _L				
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-pur	ge:		mV				

W. LL MONITORING DATA SHL_1

Project #:	50615.	ow-1		Client: Steller Env. Date: 6-15-05								
Sampler: D				Date:	6-15	-05						
Well I.D.:	mw-7					2 3 4	6 8					
Total Well I	Depth (TD): 25.4	14	Depth t	o Water	(DTW): 12.	66					
Depth to Fro				Thickne	ess of F	ree Product (fee	et):					
Referenced	to:	PVD	Grade	D.O. M	eter (if	req'd):	YSI	НАСН				
DTW with 8	80% Recha	arge [(H	eight of Water	Column	x 0.20)) + DTW]:	,					
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displacement Displacement Displacement	nt Extrac	Waterra Peristaltic	Well Diamete	Sampling Method: Other: Multiplier Well D 0.04 4"	Dispo Extra Dedic	Bailer sable Bailer action Port sated Tubing				
Case Volume	Gals.) X	3 fied Volum	${\text{des}} = \frac{6}{\text{Calculated Vo}}$	_ Gals.	2" 3"	0.16 6" 0.37 Other	1.4 rad	7 lius ² * 0.163				
Time	Temp Or °C)	рН	Cond. (mS or (S)	(NI	oidity 'Us)	Gals. Removed		ervations				
(047	60.0	7.2	816	\$	7 1000	2		/odor				
1049	58,3	7.1	843	3	67	4	ų.					
1051	57.3	7.1	845	/	76	6	h	4				
Did well de	water?	Yes (No No	Gallons	s actuall	y evacuated: 4	, ,					
Sampling D	ate: 6-19	<u> </u>	Sampling Time	e: /05	5	Depth to Wate	r:					
Sample I.D.				Labora	tory:	Kiff CalScience	Other_	C+T				
Analyzed for	ог: ТРН-Э	BTEX (MTBE (TPH-D)	Oxygena	ites (5)	Other:	· · · · · · · · · · · · · · · · · · ·	v.				
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):						
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	` '	Other:						
D.O. (if req	'd): P1	re-purge:		$^{ m mg}/_{ m L}$	F	Post-purge:		mg/ _L				
O.R.P. (if re	eq'd): Pi	re-purge:		mV	F	Post-purge:		mV				

W LL MONITORING DATA SHE

r		T 7		OIGITO	DAIA	DIII	
Project #:	50615-	ow-1		Client:	Stel	llar Env.	
Sampler: 🄉				Date:	6-15	ller Env.	
Well I.D.:	mw-8			!		3 4	6 8
Total Well 1	Depth (TD): 22.	38	Depth 1	o Water	(DTW): 9. 2	· >
Depth to Fre	ee Product	•				ree Product (fee	
Referenced	to:	PVD	Grade	D.O. M	leter (if	req'd):	YSI HACH
DTW with 8	80% Recha	arge [(H	leight of Water	Column	x 0.20)) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Well Diamete	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
2.1 (0 1 Case Volume	Gals.) XSpeci	3 fied Volum	$= \frac{6.3}{\text{Calculated Vo}}$!!	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp or °C)	pН	Cond. (mS or (as)	i	oidity ΓUs)	Gals. Removed	Observations
0959	58,1	7.2	807	28	3	2.1	odor /gray
1001	57.4	7-2	830	15	9	4.2	dor cloudy
1003	57.1	7.1	843	13	5	6.3	n u
	_						
Did well de			NO ·		s actuall	y evacuated: 4	5.3
Sampling D	ate: 6-13	5-05	Sampling Time	e: 100°	7	Depth to Water	r:
Sample I.D.	: MW -	8	M-11	Labora	tory:	Kiff CalScience	Other C+T
Analyzed for	or: (PH-)	BTEX	MTBE (TPH-D)	Oxygen	ates (5)	Other:	v
EB I.D. (if	applicable):	@ Time	Duplic	ate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	` '	Other:	
D.O. (if req	'd): P	re-purge:		mg/ _L	Р	ost-purge:	mg/ _L
O.R.P. (if re	eq'd): P	re-purge:		mV	Р	ost-purge:	mV

W_LL MONITORING DATA SHE_ f

ŗ · · · · · · · · · · · · · · · · · · ·					·								
Project #:	50615.	ow-1		Client	: Stel	llar Env.							
Sampler: 🔉				Date:	6-15	5-05							
Well I.D.:	mw-9					: 2 3 4	6 8						
Total Well I	Depth (TD): <i>30.</i> 3	32	Depth	to Water	r (DTW): / 4, 45	5						
Depth to Fro	ee Product			1		ree Product (fee							
Referenced	to:	PVO	Grade	D.O. Meter (if req'd): YSI HACH									
DTW with 8	80% Recha	arge [(H	leight of Water	r Column x 0.20) + DTW]:									
,	Bailer Disposable Ba Ositive Air E Electric Subm	Displaceme nersible	ent Extrac Other		3	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65 1.47						
1 Case Volume		fied Volum		_ Gals. olume	3"	0.37 Other	radius ² * 0.163						
Time	Temp For °C)	pН	Cond. (mS or us)	Gals. Removed	Observations								
1016	57.6	7.1	873	711	000	2.5	gray lodor						
1019	57.0	7.2	887	58	15	5.6	10 4						
1077	56.9	7.2	891	30	89	7.5	a 4						

Did well de	water?	Yes	<u> </u>	Gallor	ıs actuall	y evacuated:	7.5						
Sampling D	ate: 6-15	5-05	Sampling Tim	ie: <i>[0]</i>	6	Depth to Water	r:						
Sample I.D.	: MW -	9		Labora	atory:	Kiff CalScience	Other C+T						
Analyzed fo	or: (TPH-)	BTEX (MTBE (TPH-D)	H-D Oxygenates (5) Other:									
EB I.D. (if a	pplicable)	:	@ Time	Duplic									
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxyger	nates (5)	Other:	**************************************						
D.O. (if req'	d): Pr	e-purge:		mg/L Post-purge:									
O.R.P. (if re	ea'd): Pr	e-purge:		mV Post-purge									

W _LL MONITORING DATA SHL_1

Project #:	950615·	OW-1		Client: Steller Env. Date: 6-15-05									
Sampler: 🕻				Date:	6- 13	5-05							
Well I.D.:	mw-10					: (2) 3 4	6 8						
Total Well			7	Depth t	o Water	r (DTW): /1. 70	7						
Depth to Fr	ee Product	•		Thickness of Free Product (feet):									
Referenced	to:	PVO	Grade	D.O. Meter (if req'd): YSI HACH									
DTW with	80% Recha	arge [(H	leight of Water	Column	x 0.20) + DTW]:							
,	Bailer Disposable B Positive Air I Electric Subm	Displaceme nersible	Other	Waterra Peristaltic ction Pump	Well D <u>iamete</u> 1"	Sampling Method: Other: Multiplier Well E	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65						
2-7 1 Case Volume	Gals.) XSpeci	3 fied Volum	nes Calculated Vo	_ Gals. olume	2" 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163						
Time	Temp or °C)	pН	Cond. (mS or 🙉)		oidity TUs)	Gals. Removed	Observations						
0942	59.3	7.9	680	8	2	2.7							
0945	58.8	7.9	676	4	6	.5,4							
0948	57.8	7.9	698	4	2	8.1							
Did well de	ewater?	Yes (ND	Gallon	s actuall	ly evacuated:	8.1						
Sampling I	Date: 6-19	5-05	Sampling Tim	e: 095	2	Depth to Wate	r:						
Sample I.D	.: MW-	16		Labora	tory:	Kiff CalScience	e Other C+T						
Analyzed f	or: (PH-)	BTEX	MTBE (TPH-D)	Oxygena	ates (5)	Other:							
EB I.D. (if	applicable):	@ Time	Duplica	ate I.D.	(if applicable):							
Analyzed f	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygena	ates (5)	Other:	77774						
D.O. (if red	q'd): Pi	re-purge:		$^{ m mg}/_{ m L}$	F	Post-purge:	mg/[
O.R.P. (if r	req'd): Pi	re-purge:		mV	F	Post-purge:	mV						

W. LL MONITORING DATA SHELL

Project #:	350615-	ow - 1		Client:	Stel	llar Env.							
Sampler: 🕻				Date:	6-15	ller Env.							
Well I.D.:	mw-11					(2) 3 4	6 8						
Total Well	- · ·): 27.6	,7	Depth	to Water	:(DTW): /2.	3 0						
Depth to Fr	ee Product	:		Thickness of Free Product (feet):									
Referenced	to:	(FV)	Grade	D.O. N	Aeter (if	req'd):	YSI HACH						
DTW with	80% Recha	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]:							
[Bailer Disposable Ba Positive Air E Electric Subm Gals.) X	Displaceme nersible		Waterra Peristaltic tion Pump	Well Diamete	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47						
1 Case Volume	Speci	fied Volum	nes Calculated Vo	olume	3"	0.37 Other	radius ² * 0.163						
Time	Temp For °C)	pН	Cond. (mS or as)	1	bidity TUs)	Gals. Removed	Observations						
1033	57.7	7.5	716	> ,	1000	2.5	Brown						
1036	57.2	7.6	694	>1	000	5.0	и						
1039	56.9	7.6	704	>,	1000	7.5	u						
Did well de	ewater?	Yes	®	Gallor	ns actuall	y evacuated:	7.5						
Sampling D	Date: 6-19	5-05	Sampling Tim	e: 104	3	Depth to Wate	er:						
Sample I.D				Labor	atory:	Kiff CalScience	e Other C+T						
Analyzed for	or: (PH-)	BTEX	MTBE (TPH-D)	Oxyger									
EB I.D. (if	applicable)):	@ Time	Duplio	cate I.D.	(if applicable):							
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D		nates (5)	Other:							
D.O. (if rec	ı'd): Pı	re-purge:		mg/	L F	ost-purge:	mg/L						
ORP (ifr	ea'd). D	re_nurge		mV	/ т	Post nurge:	mV						

	0504 15-DU	(15 80 () 1 1 <u>1</u> V - 	الرئيسي د د.	1 84. :20		Chain o	f Cus	stody R	ecoi	rd			(80/5)		* 4	2		*	Lab job no.	
Laboratory _	Curtis and Ton	npkins, Ltd.			Ме	ethod of ShipmentHa	and Del	ivery	_				5	Υ					Date _ 6 - 1	1
Address	2323 Fifth Stre					nipment No			_				100						Page	of
·	Berkeley, Calif 510-486-0900	ornia 94/1	U			rbill No						7/	/ LE			alvsis R	equirec			
					Co	ooler No.				,		/ *		- /	7	7	7	7		
	er East Bay R		irk Disti	rict			e Ruck	er				كى ﴿	× /					/ ,	/- /- /-	İ
Site Address	Oakland, C					lephone No. (510) 644-	-3123		_	Fillered			′ /	/ ,	/ /	/ /	/ /	' /		
Project Nam	Redwood F	Regional Pa	ark			x No(510) 644-			/	' E /	No of Con.		//	' /					/ / Rei	marks
Project Num	0005.00	2			Sa	amplers: (Signature)	n fluly	Parid ()	Talk		/	1/ 1	/ /	/ ,	/ /	/ /	/ /	/ /	/ /	
Field S	ample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	eservation Chemical	1//	/ /			//	' /						
SW-	2	Creek	6/15	0810	w	WP Anter UCL DOW	/	NP HCL	Š	} ,		×								
5w-3		cieek	u	6680	W	u u		11	 		-+	x		\top	+	†			· · · · · · · · · · · · · · · · · · ·	
MW-11				0452		1		1	4	,		\ \ <u>\</u>				+				
mw-8				1007					† † ;	-		×		_	1	 				
	, , , , , , , , , , , , , , , , , , , ,			1026							` '	× -			+	-			· · · · · · · · · · · · · · · · · · ·	
MW-9			+		<u> </u>									-						
MW-11				1043	'						Ť	×		_		-	ļ			
mw-7	<u>-</u>		 - - - - - - - - - 	1055			-			\ <u>`</u>		/		_		<u> </u>				
MW-9	<u> </u>	1	()	11/0		() /		1	1	2	<u> </u>	6								
NW-4				1100		V		<u> </u>	\	り>	× <u> </u>	<u>/</u>								
<u>'</u>																				
							;													

Relinquished by	David C. 80	alt	Date	Received	d by: ر	Paris Capa	Date	Relinquished I	by:			 	Da	te F	Receive	d by:		<u></u>		Date
Signature	Naved or	acc	6-15		ture 🔾		15/15	Signature _					-		Signa	ture	····		P1111	-
Printed 	avid C. U	valter	Time	Printe	<u>a La</u>	Wanny Curt	Time	Printed					_ Tin	ne l	Printe	d				- Time
Company	Blaine Tec	<u></u>	1230	Comp	any <u>C</u>	+T	12:3	Company _							Comp	anv				
Turnaround Ti	_{ne:} 5 Day TAT			-				Relinquished t	oy:		-		Da	te F	Received					Date
Comments: _		le a GeoTra	acker E	DD as	well as	hard copy of report.		Signature _					-		Signa	ture				-
	imples collected	by stoler	Envil	a seria				Printed					Tin	ne	Printe	d				- Time
	•		127	e(T)	in	tact; on ic	E													
								Company _							Comp	any			·	-

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 21-JUN-05

Lab Job Number: 180030 Project ID: 2005-02

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:/

Reviewed by:

érations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of Z7

CASE NARRATIVE

Laboratory number: 180030

Client: Stellar Environmental Solutions

Project: 2005-02

Location: Redwood Regional Park

Request Date: 06/15/05 Samples Received: 06/15/05

This hardcopy data package contains sample and QC results for nine water samples, requested for the above referenced project on 06/15/05. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for trifluorotoluene (FID) in MW-9 (lab # 180030-005), due to interference from coeluting hydrocarbon peaks; the corresponding bromofluorobenzene (FID) surrogate recovery was within limits. High surrogate recovery was observed for trifluorotoluene (PID) in MW-11 (lab # 180030-006), due to interference from coeluting hydrocarbon peaks; the corresponding bromofluorobenzene (PID) surrogate recovery was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

050615-0) la - 1				Cilaiii Oi	Cus	sibuy net	JUIC	J			10°	•				Lab job no.	
Laboratory Curtis and To	•			Me	ethod of Shipment <u>Ha</u>	ınd D <u>eli</u>	very										Date <u>6</u>	- 13-0; 1
Address 2323 Fifth Str		-									\(\frac{1}{2}\)	ى ئ					Page	of
Berkeley, Cal	lifornia 9471	0							,		-/ <u>(</u>							
510-486-0900	0			Ai	rbill No				/		13		Α	Analysis F	Required	1 		_/
Project Owner <u>East Bay</u>	Regional Pa	ark Distr	ict	Co	ooler No						\ i \		/ /	/ /			/ / /	/
7867 Red	wood Road	ark Diod	101		Oject Manager	e Ruck	er		/_ /	/ ^{ja} ./	(Z)	/ /	/ /		/ /	/ /	' / /	
	California			— Те	lephone No. (510) 644-	3123		/	Fillered	<i>₹</i>		/ /		/ /	′ /			
- Redwood	Regional P	ark			ax No. (510) 644-	3859		/	افح / ک				/ /	′ /			/ /	Remarks
roject Name				'°	amplers: (Signature)		ParidCyla	l A	/ `,	/ 1 /		/ /	/ /		/ /	/ /		
Project Number <u>2005-</u>	UZ	-		Sa	amplers: (Signature)	rioun	par 40 july	y	′ /.		Z /	/ /		/ /	′ /			
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pre Cooler	eservation Chemical		16	ゴに	9 /		/ /	′ /				
		11-		туре	we Anber		NP	3	(·	-		\top		\neg	$\overline{}$			
SW->	Crock	6/15	0810	W	HCL DOG	/	Her		*	×		_		_	-			
5w-3	Clock	u	0879	V	u u		11	3	X	X								
MW-10			0452				1	4	×	ايوا							1	
								+;	T .	1					1-			
pur-8			1007	-					X	H		-			-	-		
MW-9			1026					$\perp \perp$	X	X		_	ļ. ļ.					
mw-11			1043	,			\ \		X	×								
_			1						×	V								
mw-7			1055					$\dashv \dagger$	1 -	1'		 			-			
MW-2		A	11/0		(-4	X							1		
NW-Y			1120					<i>!!</i>	/ >	Y								
- pun			1100															
		+	 			-		+	+			+		-	-			
			ļ						<u> </u>	-				-		-		
Relinquished by:	1.01	Date	Receive		1. 00	Date	Relinquished by:			•		Date	Rece	eived by:	-			10
Relinquished by: Signature David C.	svact		Signa	iture C	Lavenna City	1 4/15	Signature	_					Si	gnature .				
Printed David C.	1.12/1te	615	_	1	wann Cuch	`\	<u>/</u> ¥>					ļ	╣ _					L.
Printed Pay 4 C.	warup	Time	1		·	- Time	Printed					Time	Pr	rinted				1
Company Blaine 7	ech	1230	Comi	any C	+ T	12:3	Company						C	ompany .				
		<u> </u>		,			Relinquished by:					Date	Rece	eived by:				
Turnaround Time: 5 Day TA							Signature							gnature .				
					s hard copy of report.								_					
"Sw" Samples Colle	kg ph 214	er knu	Dr Maj	1501	110as		Printed					Time	Pr	rinted				
2.5	C.D	int	act	161	~ ICE								_					
							Company						0	ompany .				

	Total Volatile Hydrocarbons							
Lab #: Client: Project#:	180030 Stellar Environmental Solutions 2005-02	Location: Prep:	Redwood Regional Park EPA 5030B					
Matrix: Units: Batch#:	Water ug/L 102966	Sampled: Received: Analyzed:	06/15/05 06/15/05 06/15/05					

Lab ID: 180030-001 Diln Fac: 1.000 Field ID: SW-2 SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	101	63-141	EPA 8015B	
Bromofluorobenzene (FID)	108	79-139	EPA 8015B	
Trifluorotoluene (PID)	92	63-133	EPA 8021B	
Bromofluorobenzene (PID)	102	79-128	EPA 8021B	

SW-3 Lab ID: 180030-002 Diln Fac: 1.000 Field ID: Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	99	63-141	EPA 8015B	
Bromofluorobenzene (FID)	107	79-139	EPA 8015B	
Trifluorotoluene (PID)	90	63-133	EPA 8021B	
Bromofluorobenzene (PID)	100	79-128	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Total Volatile Hydrocarbons						
Lab #: Client: Project#:	180030 Stellar Environmental Solutions 2005-02	Location: Prep:	Redwood Regional Park EPA 5030B			
Matrix: Units: Batch#:	Water ug/L 102966	Sampled: Received: Analyzed:	06/15/05 06/15/05 06/15/05			

Lab ID: 180030-003 Diln Fac: 1.000 Field ID: MW-10 SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	150	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	14	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	10	0.50	EPA 8021B
m,p-Xylenes	1.0	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	114	63-141	EPA 8015B	
Bromofluorobenzene (FID)	105	79-139	EPA 8015B	
Trifluorotoluene (PID)	99	63-133	EPA 8021B	
Bromofluorobenzene (PID)	99	79-128	EPA 8021B	

במט וט: 180030-004 Diln Fac: 10 00 Field ID: 8-WM SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	33,000	500	EPA 8015B
MTBE	ND	20	EPA 8021B
Benzene	930	5.0	EPA 8021B
Toluene	39	5.0	EPA 8021B
Ethylbenzene	2,500	5.0	EPA 8021B
m,p-Xylenes	3,500	5.0	EPA 8021B
o-Xylene	360	5.0	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	113	63-141	EPA 8015B	
Bromofluorobenzene (FID)	117	79-139	EPA 8015B	
Trifluorotoluene (PID)	108	63-133	EPA 8021B	
Bromofluorobenzene (PID)	108	79-128	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

	Total Volatile Hydrocarbons							
	180030	Location:	Redwood Regional Park					
	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#: Matrix: Units: Batch#:	Water	Sampled:	06/15/05					
	ug/L	Received:	06/15/05					
	102966	Analyzed:	06/15/05					

Lab ID: 180030-005 Diln Fac: 5.000 Field ID: MW-9 SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	9,900	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	170	2.5	EPA 8021B
Toluene	ND	2.5	EPA 8021B
Ethylbenzene	590	2.5	EPA 8021B
m,p-Xylenes	350	2.5	EPA 8021B
o-Xylene	8.5	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	161 *	63-141	EPA 8015B	
Bromofluorobenzene (FID)	121	79-139	EPA 8015B	
Trifluorotoluene (PID)	119	63-133	EPA 8021B	
Bromofluorobenzene (PID)	110	79-128	EPA 8021B	

дар ID: 180030-006 Diln Fac: 1.000 Field ID: MW-11SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,400	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	85	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	110	0.50	EPA 8021B
m,p-Xylenes	7.6	0.50	EPA 8021B
o-Xylene	0.58	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	138	63-141	EPA 8015B	
Bromofluorobenzene (FID)	117	79-139	EPA 8015B	
Trifluorotoluene (PID)	136 *	63-133	EPA 8021B	
Bromofluorobenzene (PID)	106	79-128	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

	Total Volatile Hydrocarbons						
	180030	Location:	Redwood Regional Park				
	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#: Matrix: Units: Batch#:	Water	Sampled:	06/15/05				
	ug/L	Received:	06/15/05				
	102966	Analyzed:	06/15/05				

Lab ID: 180030-007 Diln Fac: 2.000 Field ID: MW-7 SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	10,000	100	EPA 8015B
MTBE	ND	4.0	EPA 8021B
Benzene	210	1.0	EPA 8021B
Toluene	ND	1.0	EPA 8021B
Ethylbenzene	410	1.0	EPA 8021B
m,p-Xylenes	54	1.0	EPA 8021B
o-Xylene	2.2 C	1.0	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	78	63-141	EPA 8015B	
Bromofluorobenzene (FID)	129	79-139	EPA 8015B	
Trifluorotoluene (PID)	90	63-133	EPA 8021B	
Bromofluorobenzene (PID)	112	79-128	EPA 8021B	

במט וט: 180030-008 Diln Fac: 1.000 Field ID: MW-2SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	68	50	EPA 8015B
MTBE	24	2.0	EPA 8021B
Benzene	7.1	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	6.9	0.50	EPA 8021B
m,p-Xylenes	1.8	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	98	63-141	EPA 8015B	
Bromofluorobenzene (FID)	105	79-139	EPA 8015B	
Trifluorotoluene (PID)	94	63-133	EPA 8021B	
Bromofluorobenzene (PID)	101	79-128	EPA 8021B	

ND= Not Detected

RL= Reporting Limit Page 4 of 5

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

	Total Volatile Hydrocarbons						
Lab #: Client: Project#:	180030 Stellar Environmental Solutions 2005-02	Location: Prep:	Redwood Regional Park EPA 5030B				
Matrix: Units: Batch#:	Water ug/L 102966	Sampled: Received: Analyzed:	06/15/05 06/15/05 06/15/05				

Lab ID: 180030-009 Diln Fac: 1.000 Field ID: MW-4 SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	100	63-141	EPA 8015B	
Bromofluorobenzene (FID)	108	79-139	EPA 8015B	
Trifluorotoluene (PID)	93	63-133	EPA 8021B	
Bromofluorobenzene (PID)	102	79-128	EPA 8021B	

BLANK Type: Lab ID: Diln Fac: 1.000 QC297557

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	97	63-141	EPA 8015B	
Bromofluorobenzene (FID)	103	79-139	EPA 8015B	
Trifluorotoluene (PID)	89	63-133	EPA 8021B	
Bromofluorobenzene (PID)	101	79-128	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

	Total Volati	le Hydrocarbo	ons
Lab #:	180030	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2005-02	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC297558	Batch#:	102966
Matrix:	Water	Analyzed:	06/15/05
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	21.04	105	67-125
Benzene	20.00	21.39	107	80-120
Toluene	20.00	21.96	110	80-120
Ethylbenzene	20.00	21.75	109	80-120
m,p-Xylenes	20.00	19.59	98	80-120
o-Xylene	20.00	21.54	108	80-120

Surrogate	%REC	Limits
Trifluorotoluene (PID)	95	63-133
Bromofluorobenzene (PID)	107	79-128

Page 1 of 1

	Total Volati	le Hydrocarbo	ons
Lab #:	180030	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2005-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC297559	Batch#:	102966
Matrix:	Water	Analyzed:	06/15/05
Units:	${ t ug/L}$		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	2,058	103	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	138	63-141
Bromofluorobenzene (FID)	123	79-139

Page 1 of 1 4.0

	Total Volati	le Hydrocarbons	3
Lab #: 180030		Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2005-0)2	Analysis:	EPA 8015B
Field ID:	SW-3	Batch#:	102966
MSS Lab ID:	180030-002	Sampled:	06/15/05
Matrix:	Water	Received:	06/15/05
Units:	ug/L	Analyzed:	06/15/05
Diln Fac:	1.000		

Type: MS

Lab ID: QC297702	Lab	ID:	QC297702
------------------	-----	-----	----------

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	12.77	2,000	1,924	96	80-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	138	63-141	
Bromofluorobenzene (FID)	116	79-139	

Type: MSD Lab ID: QC297703

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,000	99	80-120	4	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	137	63-141
Bromofluorobenzene (FID)	117	79-139

Total Extractable Hydrocarbons 180030 Redwood Regional Park Lab #: Location: Client: Stellar Environmental Solutions Prep: EPA 3520C EPA 8015B Project#: 2005-02 Analysis: Water 06/15/05 Matrix: Sampled: Units: 06/15/05 ug/L Received: 1.000 Diln Fac:

Field ID: SW-2 Batch#: 102992 SAMPLE 06/15/05 Type: Prepared: Lab ID: 180030-001 Analyzed: 06/16/05

Analyte Result RLDiesel C10-C24 50

Surrogate %REC Limits Hexacosane 123

Field ID: SW-3Batch#: 102992 06/15/05 SAMPLE Type: Prepared: Lab ID: 180030-002 Analyzed: 06/17/05

Analyte Result Diesel C10-C24

Surrogate %REC Limits Hexacosane 132 55-143

Field ID: MW-10Batch#: 102992 SAMPLE 06/15/05 Type: Prepared: Lab ID: 180030-003 Analyzed: 06/17/05

Result Analyte Diesel C10-C24

Surrogate %REC Limits Hexacosane 99 55-143

Field ID: 8-WMBatch#: 102992 Type: SAMPLE 06/15/05 Prepared: Lāb ID: 180030-004 Analyzed: 06/17/05

Result Analyte RLDiesel C10-C24 5,700 L Y 50

Surrogate %REC Limits Hexacosane 102 55-143

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 1 of 3

Total Extractable Hydrocarbons Redwood Regional Park EPA 3520C 180030 Lab #: Location: Client: Stellar Environmental Solutions Prep: EPA 8015B 06/15/05 Project#: 2005-02 <u> Analysis:</u> Matrix: Water Sampled: ug/L 06/15/05 Units: Received:

Field ID: MW - 9Batch#: 103034 SAMPLE 06/16/05 Type: Prepared: Lab ID: 180030-005 06/18/05 Analyzed:

Analyte Result RL Diesel C10-C24 2,000 L Y 50

Surrogate Limits Hexacosane 81 55-143

1.000

Field ID: MW-11Batch#: 102992 SAMPLE 06/15/05 Type: Prepared: Lab ID: 180030-006 Analyzed: 06/17/05

Analyte Result RL590 L Y Diesel C10-C24 50

Surrogate Limits 100 Hexacosane 55 - 143

Field ID: MW-7Batch#: 102992 Type: SAMPLE Prepared: 06/15/05 Lab ID: 180030-007 Analyzed: 06/17/05

Analyte Result RL

3,300 L Y Diesel C10-C24 50

Surrogate %REC Limits 100 55-143 Hexacosane

Field ID: Batch#: 102992 MW-2SAMPLE 06/15/05 Type: Prepared: Lab ID: 180030-008 Analyzed: 06/17/05

Analyte Result Diesel C10-C24 ND

Surrogate %REC Limits 95 Hexacosane 55-143

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 2 of 3

Diln Fac:

Total Extractable Hydrocarbons Redwood Regional Park EPA 3520C 180030 Lab #: Location: Client: Stellar Environmental Solutions Prep: EPA 8015B 06/15/05 Project#: 2005-02 <u> Analysis:</u> Matrix: Water Sampled: Units: ug/L 06/15/05 Received: Diln Fac: 1.000

Field ID: MW-4Batch#: 102992 SAMPLE 06/15/05 Type: Prepared: Lab ID: 180030-009 06/17/05 Analyzed:

Analyte Result RL Diesel C10-C24 ND 50

Surrogate Limits Hexacosane 104 55-143

Type: 06/15/05 BLANK Prepared: Lab ID: QC297661 06/16/05 Analyzed: Batch#: 102992 Cleanup Method: EPA 3630C

Analyte Result Diesel C10-C24 50

Surrogate %REC Limits 55-143 Hexacosane 112

Type: Lab ID: BLANK Prepared: 06/16/05 06/17/05 QC297816 Analyzed:

Batch#: 103034

Analyte Result RL Diesel C10-C24 50

Surrogate %REC Limits 55-143 106 Hexacosane

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 3 of 3

Total Extractable Hydrocarbons							
Lab #:	180030	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2005-02	Analysis:	EPA 8015B				
Matrix:	Water	Batch#:	102992				
Units:	ug/L	Prepared:	06/15/05				
Diln Fac:	1.000	Analyzed:	06/16/05				

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC297662

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,466	99	50-133

Surrogate	%REC	Limits
Hexacosane	116	55-143

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC297663

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,540	102	50-133	3	40

Surrogate	%REC	Limits
Hexacosane	116	55-143

Total Extractable Hydrocarbons							
Lab #:	180030	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2005-02	Analysis:	EPA 8015B				
Matrix:	Water	Batch#:	103034				
Units:	ug/L	Prepared:	06/16/05				
Diln Fac:	1.000	Analyzed:	06/17/05				

Type: BS

Lab ID: QC297817

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,349	94	50-133

Surrogate	%REC	Limits
Hexacosane	102	55-143

Type: BSD

Lab ID: QC297818

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,129	85	50-133	10	40

Surrogate	%REC	Limits
Hexacosane	91	55-143

APPENDIX D

Historical Groundwater and Surface Water Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

					Well M	IW-2			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6

				W	/ell MW-2 (d	continued)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81.0	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	< 0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	N/
12	Feb-98	5,300	340	110	24	320	402	856	N/
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0

				W	/ell MW-4 (continued)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
28	Dec-03	< 50	<100	< 0.3	< 0.3	< 0.3	< 0.6	_	< 5.0
29	Mar-04	< 50	<100	< 0.3	< 0.3	< 0.3	< 0.6	_	< 5.0
30	Jun-04	< 50	2,500	< 0.3	< 0.3	< 0.3	< 0.6	_	< 5.0
31	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0

					Well N	IW-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
Groundwater monitoring in this well discontinued in 1998 with Alameda County Health Care Services Agency approval.									oroval.
		Subseq	uent groun	dwater mor	itoring cond	ducted to confirm	plume's southern	limit	
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		5.9
15	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0

					Well N	1W-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	188.9	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	< 0.5	370	71.2	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56.2	676	<4.0

					Well N	1W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0

				V	/ell MW-8 (d	continued)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20

					Well N	IW-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	358.5	1,119	< 10

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	< 0.5	7.7	0.77	16.8	13
16	Jun-05	150	57	14	< 0.5	10	1.0	25	<2.0

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4,600	1,900	69	<2.5	300	205.7	575	< 10
16	Jun-05	1,400	590	85	< 0.5	110	8.18	203	< 2.0

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

	Samp	ling Locati	on SW-1 (Upstream c	of Contami	nated Groundwa	ter Discharge Lo	cation SW-2)				
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/			
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/			
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.			
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/-			
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA.			
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0			
	Sampling at this location discontinued after April 1999 with Alameda County Health Services Agency approval.											

Event	Date	TVHg	TEHd	Benzene	Toluene	I Contaminated Ethylbenzene	Total Xylenes	Total BTEX	MTBE
						-	-		
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	N/
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	N.
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N.
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N.
8	Aug-97	350	130	13	0.89	19	11	44	N.
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N.
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N.
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	-	< 5.
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.

	Sampli	ng Locatio	n SW-3 (D	ownstream	of Contam	inated Groundw	ater Discharge L	ocation SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5		NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	-	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	_	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		2.4
20	Sep-02	NS	NS	NS	NS	NS	NS	1	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	_	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	-	< 5.0
26	Mar-04	< 50	<100	< 0.3	< 0.3	< 0.6	< 0.6	-	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	_	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	_	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	-	< 2.0

NS = Not Sampled (no surface water present during sampling event)