STELLAR ENVIRONMENTAL SOLUTIONS

2198 SIXTH STREET, BERKELEY, CA 94710 Tel: 510.644.3123 FAX: 510.644.3859

TRANSMITTAL MEMORANDUM

TRANSMITT	AL INIED	NORANDUN					
Age Dept. Hazar 1131 h	NCY OF ENI DOUS ARBOI	OUNTY HEALTH CARE SERVICES VIRONMENTAL HEALTH MATERIALS DIVISION R BAY PKWY, SUITE 250 A 94502	DATE:	5/6/03			
ATTENTION:	MR.	SCOTT SEERY	File:	SES-2003-0	2		
SUBJECT:		WOOD REGIONAL PARK FUEL K SITE					
WE ARE SENDING:		M HEREWITH	☐ Under Separate Cover				
		VIA MAIL	□ VIA				
THE FOLLOV	VING:	FIRST QUARTER 2003 SITE MO REDWOOD REGIONAL PARK SE CALIFORNIA (MAY 2003)			LAND,		
		☐ As REQUESTED	☐ For	YOUR APPROV	AL		
		☐ FOR REVIEW	For	YOUR USE			
		☐ FOR SIGNATURE	☐ For	Your Files			
	M. Ru	BURGER (EBRPD) GG (FISH & GAME) EWER (REGIONAL BOARD)	BY: <u>E</u>	Bruce Rucker	BMR		

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel: (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

May 5, 2003

Mr. Scott O. Secry
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health, Hazardous Materials Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

Subject:

First Quarter 2003 Site Monitoring Report

Redwood Regional Park Service Yard Site - Oakland, California

Dear Mr. Seery:

Attached is the referenced Stellar Environmental Solutions, Inc. (SES) report for the underground fuel storage tank site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District, and follows previous site investigation and remediation activities associated with former leaking underground fuel storage tanks, conducted since 1993. The key regulatory agencies for this investigation are the Alameda County Health Care Services Agency, the California Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted in March 2003 (First Quarter 2003) and also evaluates the efficacy of the ORCTM injection corrective action program implemented to address groundwater contamination. If you have any questions regarding this report, please contact Mr. Ken Burger of the East Bay Regional Park District, or contact us directly at (510) 644-3123.

No. 6814

Sincerely,

Bruce M. Rucker, R.G., R.E.A.

- Bure M. Kuly.

Project Manager

Richard S. Makdisi, R.G., R.E.A.

Principal

cc: Michael Rugg, California Department of Fish and Game Roger Brewer, California Regional Water Quality Control Board

Ken Burger, East Bay Regional Park District

Z:PROJECTS:EBRPD2003-02-EBRPD Redwood/Reports/Q1-2003/REPGET-Q1-2003(FINAL).doc

FIRST QUARTER 2003 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

May 5, 2003

Project No. 2003-02

May 5, 2003

Mr. Scott O. Seery
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health, Hazardous Materials Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

Subject:

First Quarter 2003 Site Monitoring Report

Redwood Regional Park Service Yard Site-Oakland, California

Dear Mr. Seery:

Attached is the referenced Stellar Environmental Solutions, Inc. (SES) report for the underground fuel storage tank site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District, and follows previous site investigation and remediation activities associated with former leaking underground fuel storage tanks, conducted since 1993. The key regulatory agencies for this investigation are the Alameda County Health Care Services Agency, the California Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted in March 2003 (First Quarter 2003) and also evaluates the efficacy of the ORCTM injection corrective action program implemented to address groundwater contamination. If you have any questions regarding this report, please contact Mr. Ken Burger of the East Bay Regional Park District, or contact us directly at (510) 644-3123.

Sincerely,

Bruce M. Rucker, R.G., R.E.A. Project Manager

Richard S. Makdisi, R.G., R.E.A. Principal

cc: Michael Rugg, California Department Fish and Game Roger Brewer, California Regional Water Quality Control Board Ken Burger, East Bay Regional Park District

TABLE OF CONTENTS

Sectio	n	F	Page
1.0	INTROI	DUCTION	1
	Objectiv Site Des	Backgrounders and Scope of Workeriptionery Oversight	1 2
2.0	PHYSIC	CAL SETTING	5
3.0		NT GROUNDWATER AND SURFACE WATER ORING EVENT ACTIVITIES	8
		water Level Monitoring and Samplingurface Water Sampling	
4.0	REGUL	ATORY CONSIDERATIONS	11
		water ContaminationWater Contamination	
5.0	MONIT	ORING EVENT ANALYTICAL RESULTS	13
	Current	Event Groundwater Results Event Natural Attenuation Parameters Results Control Sample Analytical Results	13
6.0	SUMMA	ARY, CONCLUSIONS, AND PROPOSED ACTIONS	19
		y and Conclusionsd Actions	
7.0	REFERI	ENCES AND BIBLIOGRAPHY	21
8.0	LIMITA	TIONS	24
Apper	ndices		
Appen Appen	ndix B	Groundwater Monitoring Field Documentation Analytical Laboratory Reports and Chain-of-Custody Records Historical Groundwater and Surface Water Analytical Results	

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data Redwood Regional Park Corporation Yard, Oakland, California
Table 2	Groundwater and Surface Water Sample Analytical Results – March 27, 2003 Redwood Regional Park Corporation Yard, Oakland, California
Table 3	Groundwater Sample Analytical Results Natural Attenuation Indicators – March 27, 2003 Redwood Regional Park Corporation Yard, Oakland, California
Figures	Page
Figure 1	Site Location Map3
Figure 2	Site Plan and Historical Sampling Locations
Figure 3	Groundwater Elevation Map – March 27, 2003
Figure 4	Groundwater Results – March 27, 2003

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Health Care Services Agency (ACHCSA) has provided regulatory oversight of the investigation since its inception. Other regulatory agencies with historical involvement in site review include the California Regional Water Quality Control Board (RWQCB) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) in March 2003:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant analysis and natural attenuation indicators;
- Collecting surface water samples for contaminant analysis; and
- Evaluating the efficacy of the ORCTM injection corrective action program implemented at the site.

Previous SES reports (see References section) have provided a full discussion of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and evaluation of hydrochemical trends and plume stability. An October 2000 Feasibility Study report for the site, submitted to ACHCSA, provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d). Additional monitoring well installations and corrective action by ORCTM injection proposed by SES were approved by the ACHCSA in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection have been conducted: September 2001 and July 2002. A total of 25 groundwater monitoring events have been conducted on a quarterly basis

since inception (November 1994), and a total of 11 groundwater monitoring wells are currently available for monitoring.

SITE DESCRIPTION

Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 545 feet amsl at Redwood Creek which defines the approximate western edge of the project site with regard to this investigation. Figure 2 shows the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACHCSA, with oversight provided by the RWQCB. The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports are submitted to these agencies. The most recent ACHCSA directive regarding the site (letter dated January 8, 2001) approved the ORCTM injection corrective action and requested continued quarterly groundwater monitoring and sampling. Historical ACHCSA-approved revisions to the groundwater sampling program have included: 1) discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6; 2) discontinuing creek surface water sampling at upstream location SW-1; and 3) reducing the frequency of creek surface water sampling from quarterly to semi-annually (ACHCSA, 1996). The latter recommendation has not yet been implemented due to continued concern over potential impacts to Redwood Creek.

Electronic Data Format (EDF) groundwater analytical results from the groundwater monitoring events beginning in the third quarter of 2001 have been successfully uploaded to the State of California Water Resources Control Board's GeoTracker database, in accordance with that agency's requirements for EDF submittals. Historical site groundwater and surface water analytical results are presented in Appendix C.

2.0 PHYSICAL SETTING

Following is a brief summary of the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. A full discussion is presented in the SES June 1999 report.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet which is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe.

Figure 3 is a groundwater elevation map constructed from the current event monitoring well static water levels, and Table 1 (in Section 3.0) summarizes current event groundwater elevation data. The groundwater gradient is relatively steep—approximately 2 feet per foot—between well MW-1 and the former UFST source area, resulting from the topography and the highly disturbed nature of sediments in the landslide debris. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient is approximately 0.1 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We estimated site groundwater velocity at 7 to 10 feet per year using site-specific empirical data, from the date of UST installation in the late 1970s to the date when contamination was first observed in Redwood Creek (1993).

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site.

3.0 CURRENT GROUNDWATER AND SURFACE WATER MONITORING EVENT ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent event. Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the ACHCSA-approved SES technical workplan (SES 1998a). Current event activities included:

- Measuring static water levels and field analyzing pre-purge groundwater samples for indicators of natural attenuation (dissolved oxygen, ferrous iron, and redox potential) in all 11 site wells;
- Collecting pre-purge groundwater samples for laboratory analysis of the natural attenuation indicators nitrate and sulfate from monitoring wells MW-3, MW-4, MW-7, and MW-8;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within the groundwater plume (MW-2, MW-4, MW-7, MW-8, MW-9, MW-10, and MW-11); and
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.

Creek sampling and monitoring/sampling was conducted on March 27, 2003. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2. Well construction information and water level data are summarized in Table 1. Appendix A contains the groundwater monitoring field records.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the direct supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (RWQCB, 1989), and followed the methods and protocols approved by the ACHCSA in the SES 1998 workplan (SES, 1998a).

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (3/27/03)
MW-1	18	7 to17	565.9	562.6
MW-2	36	20 to 35	566.5	545.7
MW-3	42	7 to 41	560.9	541.7
MW-4	26	10 to 25	548.1	534.8
MW-5	26	10 to 25	547.5	531.6
MW-6	26	10 to 25	545.6	532.4
MW-7	24	9 to24	547.7	535.1
MW-8	23	8 to 23	549.2	539.9
MW-9	26	11 to 26	549.4	537.2
MW-10	26	11 to 26	547.3	536.2
MW-11	26	11 to 26	547.9	533.6

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2inch diameter.

All elevations are feet above USGS mean sea level. Elevations of wells MW through MW-6 were surveyed by EBRPD relative to USGS Benchmark No. JHF-49. Wells MW-7 through MW-11 were surveyed by a licensed land surveyor using existing site wells as datum.

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled.

The well development, purge water, and decontamination rinseate (approximately 90 gallons) from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time it will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES on March 27, 2003. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and from location

SW-3 (approximately 500 feet downstream from SW-2). In accordance with a previous ACHCSA-approved SES recommendation, upstream sample location SW-1 was not sampled.

At the time of sampling, the creek was flowing upstream and downstream of the sampling locations. Water depths ranged from approximately 6 to 12 inches. At the SW-2 location, where contaminated groundwater discharge to the creek has historically been observed, a petroleum odor was noted, as was an orange algae growing on the saturated portion of the creek bank. It is likely that this algae is utilizing the petroleum as a carbon source, and is therefore a good indicator of the presence of petroleum contamination.

4.0 REGULATORY CONSIDERATIONS

The following is a summary of regulatory considerations regarding surface water and groundwater contamination. There are no ACHCSA or RWQCB cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), RWQCB approval for this exclusion has not been obtained for the site. As summarized in Table 2 (Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) RWQCB Tier 1 Risk-Based Screening Levels (RBSLs) for sites where groundwater is a current or potential drinking water source; and 2) RBSLs for sites where groundwater is not a current or potential drinking water source.

As stipulated in the RBSL document (August 2000, Interim Final), the RBSLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater RBSLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Excedance of RBSLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, the ACHCSA has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should primarily be evaluated in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 2 (Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the RWQCB's RBSL document, benthic

communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-4, MW-7, and MW-9).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

5.0 MONITORING EVENT ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the most recent monitoring event. Table 2 summarizes the contaminant analytical results of the current monitoring event, and Table 3 summarizes natural attenuation indicator results from the current event. Figure 4 shows the current event contaminant analytical results and the inferred limits of the total petroleum hydrocarbons as gasoline (TPHg) groundwater plume. Appendix B contains the certified analytical laboratory report and chain-of-custody records for the current event.

CURRENT EVENT GROUNDWATER RESULTS

Current site groundwater contaminant concentrations exceed their respective groundwater RBSLs (for both cases in which the drinking water resource is and is not threatened)—with the exception of toluene, which does not exceed either set of criteria. Site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.

Maximum or near maximum groundwater contaminant concentrations were detected in well MW-8 (approximately halfway between the former source area and the creek), except for MTBE that was detected at maximum concentrations in further downgradient wells MW-7 and MW-11. The northern and southern edges of the plume appear to be well defined by wells MW-4 and MW-10.

Site-sourced contaminants detected in the surface water sample from location SW-2 included MTBE (2.8 μ g/L) and ethylbenzene (0.56 μ g/L). No contaminants were detected in the downstream creek sample SW-3.

CURRENT EVENT NATURAL ATTENUATION PARAMETERS RESULTS

Pre-purge groundwater samples from selected wells were collected and analyzed for indicators of the natural biodegradation of the hydrocarbon contamination or "natural attenuation." Petroleum hydrocarbons require molecular oxygen to efficiently break down the ring structure of specific constituents. Although biodegradation of hydrocarbons can occur under anaerobic conditions, hydrocarbon biodegradation is greatest under aerobic conditions. As a result of the demonstrated degradability of petroleum hydrocarbons, remediation by natural attenuation has been found to be a viable option for addressing many hydrocarbon plumes, replacing the need for active remediation.

Table 2
Groundwater and Surface Water Sample
Analytical Results – March 27, 2003
Redwood Regional Park Corporation Yard, Oakland, California

	Concentrations in µg/L											
Compound	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ					
GROUNDWATE	ER SAMPLES	7				<u> </u>	<u> </u>					
MW-2	130	82	39	<0.5	20	4.1	16					
MW-4	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0					
MW-7	10,000	3,600	210	12	360	143	45					
MW-8	13,000	3,500	610	12	1,100	958	<10					
MW-9	4,400	1,400	320	6.9	400	93	<2.0					
MW-10	110	<50	10	< 0.5	12	1.3	11					
MW-11	7,800	2,600	170	4.7	530	337	53					
Groundwater RBSLs ^(a)	100/500	100/640	1.0/46	40/130	30/290	13/13	5/1,800					
REDWOOD CRI	EEK SURFAC	CE WATER SA	AMPLES									
SW-2	<50	<50	< 0.5	<0.5	0.56	< 0.5	2.8					
SW-3	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.0					
Surface Water Screening Levels (a, b)	500	640	46	130	290	13	8,000					

Notes

MTBE = Methyl tertiary-butyl ether.

TPHg = Total petroleum hydrocarbons gasoline range (equivalent to total volatile hydrocarbons gasoline range).

TPHd = Total petroleum hydrocarbons diesel range (equivalent to total extractable hydrocarbons diesel range).

 μ g/L = Micrograms per liter, equivalent to parts per billion (ppb).

⁽a) RWQCB Risk-Based Screening Levels (drinking water resource threatened/not threatened) (RWQCB, 2000).

⁽b) Lowest of chronic and acute surface water criteria published by the State of California, U.S. Environmental Protection Agency, or U.S. Department of Energy.

Table 3
Groundwater Sample Analytical Results
Natural Attenuation Indicators – March 27, 2003
Redwood Regional Park Corporation Yard, Oakland, California

Sample I.D.	Nitrate (as Nitrogen) (mg/L)	Sulfate (mg/L)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)	Redox Potential (milliVolts)
MW-1	NA	NA	1.0	0.0	157
MW-2	NA	NA	1.5	0.2	146
MW-3	<0.05	35	2.7	0.0	141
MW-4	0.28	48	8.6	0.0	125
MW-5	NA	NA	0.5	0.2	142
MW-6	NA	NA	0.7	0.2	134
MW-7	<0.05	<0.5	2.9	4.4	85
MW-8	<0.05	21	0.7	2.2	138
MW-9	<0.05	65	0.4	0.2	40
MW-10	0.22	72	3.2	0.0	139
MW-11	<0.05	10	0.8	3.2	-40

Notes:

mg/L = Milligrams per liter, equivalent to parts per million (ppm).

NA = Not analyzed.

However, such natural attenuation only occurs if the concentration of hydrocarbons is low enough to facilitate the infiltration of natural oxygen through the interstitial space around the contamination, supporting the microorganisms for which the contamination is a food source (thus "attenuating" it). The concentration in soil or groundwater above which natural attenuation is unlikely to take place is still the subject of various research studies. In general, biodegradation of petroleum hydrocarbons in groundwater has a significant role in creating a stable plume and minimizing groundwater contaminant plume extent and concentrations over time. Evidence of the historical occurrence and potential for future occurrence of biodegradation can be obtained from analysis of groundwater for specific biodegradation-indicator parameters, including dissolved oxygen, oxidation-reduction potential (ORP), and general mineral analyses.

2003-02-07

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically-favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 mg/L of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

Current monitoring event DO concentrations ranged from 0.4 mg/L to 8.6 mg/L. There was no clear correlation between DO and hydrocarbon concentrations in the current event; however, in general, monitoring wells upgradient and crossgradient of the plume had higher DO concentrations than monitoring wells within and downgradient of the plume. This trend is to be expected when oxygen is currently limiting hydrocarbon biodegradation. The elevated DO concentration in MW-4 may be a function of localized supersaturation at this well resulting from the previous ORCTM injection.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP or redox potential) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive). Therefore, groundwater ORP values inside a hydrocarbon plume are typically less than those measured outside the plume.

For this monitoring event, for the four monitoring wells within the 1,000-µg/L TPHg contour (MW-7, MW-8, MW-9, and MW-11) (see Figure 4), ORP values ranged from -40 mV to +138 mV. Other monitoring wells showed positive ORP values ranging from +134 mV to +157 mV. Thus, the ORP values showed the expected general inverse correlation with hydrocarbon concentrations; however, ORP values did not specifically correlate with TPHg concentrations in individual monitoring wells.

General Mineral Analyses

An inverse relationship between general minerals—including ferrous iron, nitrate, and sulfate—and hydrocarbon concentrations is indicative of the occurrence of anaerobic biodegradation. Specifically, anaerobic degradation of hydrocarbon compounds is indicated when DO concentrations are low (less than 1.0 mg/L), ORP is low (less than 50 mV), and general mineral concentrations are below background.

In the current site monitoring event, for the four wells within the 1,000-µg/L TPHg contour, nitrate concentrations were generally lower and ferrous iron concentrations were generally higher than for other monitoring wells. These results indicate that some degree of anaerobic degradation is likely occurring within the plume. The results are also consistent with the DO and ORP data, supporting the conclusion that oxygen is currently limiting the more efficient aerobic biodegradation process. Sulfate concentration showed no discernable trend, indicating that anaerobic biodegradation is probably within the iron-reducing redox environment rather than the sulfate-reducing environment.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix B).

6.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

The following conclusions and proposed actions are focused on the findings of the current event activities, as well as salient historical findings.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted approximately on a quarterly basis since November 1994 (25 events in the original wells). The existing well layout fully constrains the lateral extent of groundwater contamination, and the vertical (lowest) limit is very likely the top of the siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock upward through the capillary fringe.
- Current site groundwater contaminant concentrations exceed their respective groundwater RBSLs (both for cases in which the drinking water resource is and is not threatened)—with the exception of toluene, which does not exceed either set of criteria. Site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.
- Historical monitoring data indicate that the groundwater contaminant plume has become disconnected from the former source, and has migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek. There are currently two zones of maximum groundwater contamination (TPHg greater than 10,000 μg/L) centered around wells MW-7 (immediately upgradient of the creek) and MW-8 (approximately 75 feet upgradient of the creek). The area of groundwater contamination in excess of screening level criteria appears to be no greater than 100 feet long by 40 feet wide, significantly less than the area of contamination that existed prior to the ORC™ injections. Maximum groundwater concentrations for the majority of the contaminants have reached the most downgradient wells (just upgradient of the creek).
- No contaminants were detected in the current event site surface water (creek samples) above screening-level criteria. Contaminants detected in the creek surface water sample below screening-level criteria included ethylbenzene and MTBE, and there continues to be visual evidence of contaminated groundwater discharge at the downgradient creek bank.
- Hydrochemical (contaminant and natural attenuation parameter) trends indicate that the first phase of the ORCTM injection (September 2001) was generally successful in increasing DO

levels and reducing groundwater contaminant concentrations, although the active life of the ORCTM (reported by the vendor to be 6 to 9 months) appears to have been exceeded between the second and third post-injection events in some of the wells. A second phase of the ORCTM injection, conducted in July 2002, appears to have been effective in controlling the lateral limits of the plume, but it has not been effective in reducing the magnitude of contamination within the centerline of the plume. The active life of the ORCTM from the second injection event has likely been exceeded.

■ Although previous ORCTM injections have been effective in controlling the lateral limits of the plume, they have not been effective in reducing the magnitude of contamination within the centerline of the plume. Based on historical concentrations in well MW-8, it appears likely that a continued contaminant mass input to the downgradient area (the focus area of the ORCTM corrective action) is migrating from an upgradient "source" (i.e. light non-aqueous phase liquid [LNAPL] petroleum in the unsaturated zone). SES and Regenesis (the manufacturer of ORCTM) are currently conducting a critical evaluation of historical data to determine the cost-effectiveness and technical efficacy of performing additional injections with a modified injection design and protocol. SES is also conducting an evaluation of other potentially-viable corrective action strategies that might prove to be more appropriate.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue the quarterly program of creek and groundwater sampling and reporting.
- Complete a critical technical evaluation of the efficacy of the ORCTM corrective action in the Q2 2003 report following the collection and analyses of the June 2003 groundwater monitoring data, and then make a recommendation as to the need for (and most appropriate strategy of) additional corrective action.

7.0 REFERENCES AND BIBLIOGRAPHY

- California State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons, 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons, 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons, 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons, 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons, 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons, 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons, 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons, 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons, 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994
 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.

- Parsons, 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.
- Parsons, 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons, 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons, 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons, 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons, 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region, 2000. Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Interim Final. August.
- Stellar Environmental Solutions (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- SES, 2002a. Year 2001 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- SES, 2002b. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- SES, 2002c. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- SES, 2002d. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- SES, 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.

Page 22

SES, 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.

- SES, 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- SES, 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- SES, 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- SES, 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- SES, 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- SES, 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- SES, 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

WELL GAUGING DATA

Project # <u>030327 -0 w-1</u> Date	3-27-03	Client Stellar Envisonment Solution
-------------------------------------	---------	-------------------------------------

Site Redwood Regional Park Oakland

	7	1	T	Thickness	Volume of	 		т	
	Well		Depth to	of	Immiscibles		1	Curvey	
	Size	Sheen /	Immiscible	1	Removed	Depth to water	Depth to well	Survéy	
Well ID	(in.)	Odor	Liquid (ft.)	ľ		(ft.)	bottom (ft.)	or 100	
	 		Diquid (IL)	Biquio (III,)	(mi)	(11.)	bottom (it.)	01(100)	
mw-1	1 4					3,30	18.85		60
<u> </u>	 		<u> </u>			7,70		100	<u> </u>
mw-2	4					20,77	38.82		
		it i							
mw-3	4					19.23	44.10		Glais
	1 1					1 110 -		<u> </u>	Clas
mw-4	4					13.26	26.51		
71107						7.00		-	,
mw-5	4	,				15.92	26.92		(~ ~
7114 0	1 .	<u> </u>				13.10	79		60
mw-6	4					17 12	27.93		60
746-6	! 7	<u> </u>				13.23	~ (-1)		60
mw-7						12.64	25.33		
141002	2		<u> </u>			12.6	P3-3-		
	2			İ		9.35	22.21		
mw-8						7.50			
a	2				1	15 211	3.		
mw-9						12.24	26.00		
	<u> </u>		į			11.46	N 1 32		
mw-10	a					11.14	28.75		
	2				-	,	~ :		
mW-11	0					14.30	26.00		
			-			100			
							1		
\ \ \ _		,	[mL		, ,		4		
*	Repla	ced 22	44 Key	th gat	c w/ 2	357 /a	ا ع		***************************************
	1	-	7	/ /					
		Laperthe		d reprinted	į				A PARAMETER STATE OF THE STATE
					·				
	-			1 National State					
		, i		i i					
		į		nacional p		and the constraints			
			1			PERMIT			
					Į.	BATT MACABON	-		
<u>-</u>									

WELL MONITORING DATA SHEET

							_				
Project #	: 03032	7-0W-1		Client: Stellar Envir. Sol. @ Ledwood Reg. Back Das							
Well I.D.: Mw-)					Start Date: 3-27						
					Well Diameter: 2 3 4 6 8 Depth to Water: 3.3¢						
											Before: After:
Depth to Free Product:					eness of F	ree Produ	uct (feet)	·:			
Referenced to: (PVC) Grade					Meter (if		YS				
Purge Meth	od: Bailer Disposable Bai Middleburg Electric Subme		Waterra Peristaltic Extraction Pump Other			C Disposable Extraction Dedisated	Bailer Port Tubing	meter Multiplier			
	_(Gals.) X(Sauge onl	y =		l" 2"	0.04 0.16	4" 6"	0.65 1.47			
Gals.	,	<u> </u>			3"	0.37	Other	radius ² * 0.163			
Time	Temp. (°F or °C)	pН	Conductivity (mS or µS)	Turbio	lity (NTU)	Gals. Rei	noved	Observations			
Did well	dewater?	Yes	No	Gallo	ns actuall	y evacua	ted:				
Sampling	Time:				ling Date:						
Sample I.		$\overline{}$			atory:						
Analyzed	1 /	BTEX N	TPH-D	Other:		LI CIS I	TOMPREY	ν			
	nt Blank I.D		@ Time		cate I.D.:						
Analyzed			ИТВЕ ТРН-D	Other:							
D.O. (if re	eq'd): Fe	>= ()	Pre-purge:	Ì	<i>O</i> mg/L	Post	-purge:	mg/L			
ORP (if re		······································	Pre-purge:	15	(7 _{mV}	Post	-purge:	m\			
				Γ			•				

YY JULIE IYIY INLLY JIXLINYY JIALA SHIR.R	ONITORING DATA SHEET
---	----------------------

: 03032 Dave W	7-0W-1		Client: Stellar	Envir. Sol. @	Ledwood Reg. Bark Ou			
Dave W								
سين			Start Date: 3-27					
: MW-F			Well Diameter	: 2 3 4	6 8			
ell Depth:	38.82		Depth to Wate	r: <i>20,</i> 77				
	After:		Before:		After:			
Free Produ	ct:		Thickness of F	ree Product (fee				
ed to:	PVC	Grade			YSI HACH			
Middleburg		Waterra Peristaltic Extraction Pump Other	Other:	C Disposable Bailer Extraction Port Dedicated Tubing Head of the Market State of the	Diameter <u>Multiplier</u>			
_(Gals.) X	3	= 35.1	_ 2" 3"	0.16 6"	0.65 1.47 r radius ² * 0.163			
Temp.	рН	Conductivity (mS or us)	Turbidity (NTU)	Gals. Removed	Observations			
58.5	6.8	920	25	12				
58.8	6.8	937	58	24				
59.1	6.8	926	286	36	nest age			
ewater?	Yes (N ₀	Gallons actually	y evacuated: 3	6			
Fime: $\int_{\mathcal{O}_i}$	48		Sampling Date:	3-27-63				
).: Mw-a	· }				52r			
or: TPH-G	BTEX M			· is if				
Blank I.D.	:	@ Time	Duplicate I.D.:					
or: TPH-G	BTEX M	TBE TPH-D	Other:					
1'd): FE+	>= 0,2	Pre-purge:	1,5 ^{mg} / _L	Post-purge:	^{mg} /L			
ղ'd)։		Pre-purge:	146 mV	Post-purge:	mV			
	Free Produced to: od: Bailer Disposable Bai Middleburg Electric Subme (Gals.) X Temp. (For °C) 58.5 59.1 ewater? Fime: [D; Or: TPH-G Blank I.D. for: TPH-G I'd): FET	After: Free Product: ed to: Pvc od: Bailer Disposable Bailer Middleburg Electric Submersible (Gals.) X 3 Temp. (For °C) pH 58.5 6.8 59.1 6.8 59.1 6.9 ewater? Yes Fime: 10: 48 O: MW-7 for: TPH-G BTEX M Blank I.D.: for: TPH-G BTEX M J'd): FE ** = 0. } J'd):	After: Free Product: ed to: Disposable Bailer Disposable Bailer Middleburg Electric Submersible (Gals.) X Temp. Conductivity (mS or us) 58.5 6.8 9.26 58.8 6.8 9.37 59.1 6.9 Pre-purge: d'd): Pre-purge: d'd): Pre-purge:	After: Before: Thickness of Fold to: PVC Grade D.O. Meter (if Sampling Method: Other: Other: Well Diameter Peristaltic Extraction Pump Other: Well Diameter Peristaltic In the state of the sampling Method: Sampling Method: Well Diameter Paristaltic In the state of the sampling Method: Sampling Method: Well Diameter Paristaltic In the state of the sampling of t	After: Before: Tree Product: Thickness of Free Product (fee doto: PvC Grade D.O. Meter (if req'd): Dedicated Tubing Other Temp. (Gals.) X 3 = 35.1 Temp. (Por °C) pH Conductivity (mS or us) Turbidity (NTU) Gals. Removed 58.5 (8.8 937 58 24 59.1 (8.8 9			

WELL	\mathbf{N}	ION	ПТ	OR	INC	DAT	ГΔ	SHEE	17
	. 17.			$\mathbf{v}_{\mathbf{I}}$		11/7	_		

Project #: 030327-0w-1	Client: Stellar Envir. Sol. @ Reduced Reg. Back Oaklan L				
Sampler: Dave 42.	Start Date: 3-27				
Well I.D.: MW-3	Well Diameter: 2 3 (4) 6 8				
Total Well Depth: 44,10	Depth to Water: 19,23				
Before: After:	Before: After:				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: (PVC) Grade	D.O. Meter (if req'd): (YSI) HACH				
Purge Method: Bailer Waterra Disposable Bailer Petistaltic Middleburg Extraction Pump Electric Submersible Other	Other: Well Diameter Multiplier Well Diameter Multiplier				
Gals.) X =	1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius ² * 0.163				
Temp. (°F or °C) pH (mS or us) Grab sample for Nitrate + Su 9:15 53.6 7,5 774	Turbidity (NTU) Gals. Removed Observations				
Did well dewater? Yes No	Gallons actually evacuated:				
Sampling Time: 9115	Sampling Date: 3-27-63				
Sample I.D.: 45 MW-3	Other: Witnate/Sulfate				
Analyzed for: TPH-G BTEX MTBE TPH-D	,				
Equipment Blank I.D.:	Duplicate I.D.:				
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:				
D.O. (if req'd): FE+>= () Pre-purge:	2,7 ^{mg} / _L Post-purge: ^{mg} / _L				
ORP (if req'd): Pre-purge:	7 /4/ mV Post-purge: mV				
Blaine Tech Services, Inc. 1680 Roger	's Ave., San Jose, CA 95112 (408) 573-0555				

WET T	MONITORING DAT	ra chiert
77 5 6 6		IAOHLUL

		<u> </u>		OKING DATA			
Project #: 030327-0W-1				Client: Stellar Envir. Sol. @ Reduced Reg. Bark Oakle			
Sampler: Dave W				Start Date: 3-27			
Well I.D.: Mw-4			Well Diameter: 2 3 (4) 6 8				
Total Well Depth: 26,51			Depth to Water: 13.26				
Before: After:				Before: After:			
Depth to Free Product:				Thickness of Free Product (feet):			
Reference	ed to:	PVC)	Grade	D.O. Meter (if	req'd):	YSV HACH	
Purge Metho	nd·			Sampling Method:	Bailer		
1 dige Modic	Bailer		Waterra		X'Disposable Bailer		
	Disposable Bai	ler	Peristaltic	/	Extraction Port		
	Middleburg	101	Extraction Pump		Dedicated Tubing		
Y	Electric Subme	rsible	Other	Other:	Š	•	
Λ.	, Diversite Saomie	101014		Well Diamete		Diameter Multiplier	
0 /			AC C	1"	0.04 4"	0.65	
8.6	_(Gals.) X	<u> </u>	= 25,8	2"	0.16 6" 0.37 Othe	I .47 r radius ² * 0,163	
Gals.					,		
	Temp.		Conductivity				
Time	(°F or °C)	pН	(mS or µS)	Turbidity (NTU)	Gals. Removed	Observations	
11:17	58.8	8.4	750	69	9		
	well de	watered	00 16	1	24.72		
1405	57,6	8,3	714	8		DTW=21,30	
Did well	dewater?	Ves	No	Gallons actuall	y evacuated: 1	16	
Sampling	Time: 100	rate/Sulfa	te = 11205 14205	Sampling Date	: 3-27-63		
Sample I.	D.: mw-4			Laboratory: C	artis + Tompi	kins	
Analyzed	for: TPH-G	BTEX N	мтве трн-D	Laboratory: Contract Other: Nitrat	e/Sulfate		
Equipmen	nt Blank I.D).:	@ Time	Duplicate I.D.:	(
Analyzed	for: TPH-G	BTEX N	MTBE TPH-D	Other:			
D.O. (if re	eq'd): FE	12 = 0	Pre-purge:	Srb mg/L	Post-purge:	mg/L	
ORP (if re	eq'd):	==	Pre-purge:) 125 mV	Post-purge:	mV	

WELL MONITORING DATA SHEET

Project #: 030327-0w-1				Client: Stellar Envir. Sol. @ Ledwood Reg. Bark Oak				
Sampler: Dave W			Start Date: 3-27					
Well I.D.: mw-5				Well Diameter: 2 3 4 6 8				
Total Well Depth: 26.97				Depth to Water: 15.93				
Before: After:				Before: After:				
Depth to	Free Produc	ct:		Thickness of Free Product (feet):				
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if req'd): (YSI) HACH				
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other				Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65				
Gals.	(Gals.) X		=	_	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163
Time	Temp. (°F or °C)	pН	Conductivity (mS or µS)	Turbid	ity (NTU)	Gals. Re	moved	Observations
Did well o	· . <u>.</u> ·	Yes	No		ns actuall	-		
Sample I	D.;/			Labor	7		Tomokin	
Analyzed	$\overline{}$	BTEX N	итве тен-о	Other:	<u> - Cr</u>	V V') /	(origina) A	
Equipmen	ıt Blank I.D	•:	@ Time	Duplio	cate I.D.:			
Analyzed	for: трн-G	BTEX A	итве трн-d	Other:				
D.O. (if re	eq'd): Fe'	P= 0,2	Pre-purge:	0.	5 mg/L	Post	-purge:	mg/L
ORP (if re	eq'd):		Pre-purge:) 14	/) mV	Post	-purge:	mV

WELL MONITORING DATA SHEL	\mathbf{E}
---------------------------	--------------

		* 1		UXIII	GDAIA	A SHEET	
Project #	: 030327	7-0W-1		Client	: Stellar	Envir. Sol. @	Reduced Reg. Bark Oakla
Sampler:	Dave W.			1	Date: _	_	
1	: MW-6			Well I	Diameter	: 2 3 4	0 6 8
	ell Depth:			Depth	to Wate	r: 13.2 3	
Before:		After:		Before	e:		After:
Depth to	Free Produc	et:		Thick	ness of F	ree Product (fe	et):
Referenc	ed to:	PVC	Grade	 	Meter (if		YST HACH
Purge Meth	od: Bailer Disposable Bai Middleburg Electric Subme		Waterra Peristaktic Extraction Pump Other	Samplin	ng Method:	Disposable Bailer Extraction Port Dedicated Tubing	
Gals.	(Gals.) X		=	_	Well Diameter 1" 2" 3"	er <u>Multiplier Well</u> 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius² * 0.163
Time	Temp. (°F or °C)	pН	Conductivity (mS or µS)	Turbidi	ty (NTU)	Gals. Removed	Observations
			,				
Did well o		Yes	No	Gallon	s actuall	y evacuated:	
Sampling	Tilne:	<u> </u>		Sampli	ng Pate	: 3-27-03	
Sample I.	D.:\	$\overline{}$		Labora	tory:\C	Atis + Tompi	kins'
Analyzed	for: трн-G	BTEX		Other:	· ·	····	
Equipmen	t Blank I.D.		@ Time	Duplic	ate I.D.:		
Analyzed	for: TPH-G	BTEX N	ИТВЕ ТРН-D	Other:			
D.O. (if re	eq'd): FE+	>= 017	Pre-purge:	٥,-	$\int_{-\infty}^{-\infty} mg/L$	Post-purge:	mg/L
ORP (if re	eq'd):		Pre-purge:) 13	y mV	Post-purge:	mV
					-		

WELL MONITORING DATA SHEET

T						~ ~ = = = = =			
Project #	: 03032	7-0W-1		Client	: Stellar	Envir. So.	1. B	Ledwer a	I Reg. Bark Oak
Sampler				ł	Date: _	_	-		
Well I.D	.: Mw	7		Well I	Diameter	: 🕭 3	4	6	8
Total We	ell Depth:	25.33		Depth	to Wate	r: 12.69	í		
Before:	· .	After:		Before				After	:
Depth to	Free Produ	ct:		Thickr	ness of F	ree Produ	ct (fe	et):	
Referenc	ed to:	PVC	Grade	D.O. N	Aeter (if	req'd):		∕⁄SĨ⟩	НАСН
2.0	od: Bailer Disposable Bai Middleburg Electric Subme	ersible	Waterra Peristaltic Extraction Pump Other		,	Extraction Dedicated 7 Per Multiplier 0.04 0.16	Bailer Port Tubing Well 4" 6"	Diangter	<u>Multiplier</u> 0.65 1.47
Gals.	Tomas	 				0.37	Othe		radius ² * 0.163
Time	Temp.	pН	Conductivity (mS or \(\mu \text{S} \)	Turbidi	ty (NTU)	Gals. Rem	oved	C	Observations
12143	568	6-9	912	>20	00	2		Stran	ig gus oder
12045	56.8	6.8	922	73.	00	У		,	
12048	56.6	6.9	905	73.	<i>0</i> 0	b			
Did well		Yes	(b)			y evacuat		6	
Sampling	Time: \mathcal{O}	ate/Sulfat Shexa= 12				: 3-27			
Sample I.	D.: MW-	7		Labora	tory: C	artis t	Tomps	kins'	
Analyzed	for: Ten-G	BTEX 1	мтве трн-д	Other:	Nitret	- SaHat	₹		
Equipmer	ıt Blank I.D	·:	(a) Time	Duplic	ate I.D.:	<u></u>			
Analyzed	for: TPH-G	BTEX 1	MTBE TPH-D	Other:					
D.O. (if re	eq'd): FE	12= 4,4	Pre-purge:	2.	g mg/L	Post-	purge:		mg/L
ORP (if re			Pre-purge:	5 85	5 mV	Post-	purge:		mV

WELL MONITORING DATA SHEET

ow-1	Clier	it: Stellar	Envir. Sol. @4	Redwood Reg. Bark Oak
	Start	Date: =	3-27	
	Well	Diameter	: 2 3 4	6 8
1,21	Dept	h to Wate	r: 9.35	
fter:	Befor	re:		After:
	Thick	kness of F	ree Product (fee	et):
PVC) C	Grade D.O.	Meter (if	req'd):	увг насн
Peristal Extracti	a Itic ion Pump	Other:	C Disposable Bailer Extraction Port Dedicated Tubing	Diameter <u>Multiplier</u> 0.65 1.47
		3"	0.37 Othe	r radius ² * 0.163
	~~_ ·	dity (NTU)	Gals. Removed	Observations
7.2 /c	700	200	2.1	gas oder Brow
7.1 10	018 7	200	4.2	
7. 1 10	129 7	200	6.3	ge Hing clearer
				gas oder ucry stra
		ns actuall	y evacuated:	6.3
154 14 12 3 5 = 17:23	Samp	ling Date	: 3-27-63	
	Labor	ratory: C	artis + Tomp	tins
втех мтве	TPH-D Other:	Nitrat	e/sulfate	
@			f	
втех мтве	TPH-D Other:			
= 2,7 P	re-purge: O,	J mg/L	Post-purge:	^{mg} /∟
	re-purge:	38 mV	Post-purge:	mV
	Waterra Peristal Extraction Condition Extraction Peristal Extraction Peristal Extraction Peristal Extraction Peristal Peristal	Start Well Depting There: Before Thick PVC) Grade D.O. Sample Waterra Peristaltic Extraction Pump Other Conductivity pH (mS of uS) Turbic 7. 2 1000 7. 1 1029 7. 1 1029 Sample Samp	Start Date: Well Diameter Depth to Water Before: Thickness of F PVC Grade D.O. Meter (if Sampling Method: Waterra Peristaltic Extraction Pump Other: Other: Conductivity pH (mS or us) Turbidity (NTU) 7. 2 000 7200 7. 1029 7200 7. 1029 7200 7. 1029 7200 Callons actuall Sampling Date Laboratory: Conductivity ETEX MTBE TPH-D Other: Time Duplicate I.D.: BTEX MTBE TPH-D Other: 2 2, 2 Pre-purge: O, 7 mg/L	Well Diameter: 2 3 4 Depth to Water: 9.35 fiter: Before: Thickness of Free Product (feet PVC) Grade D.O. Meter (if req'd): Sampling Method: Bailer Y Disposable Bailer Extraction Pump Other: Other: Well Diameter Multiplier Well 1 0.04 4" 2" 0.16 6" 3" 0.37 Othe Conductivity PH (mS or us) Turbidity (NTU) Gals. Removed 7. 2 1000 7 200 2.1 7. 1 1029 7 200 4.3 7. 1 1029 7 200 4.3 Total Conductivity PS Gallons actually evacuated: Sampling Date: 3-27-63 Laboratory: Curlis + Tomps BTEX MTBE PH-D Other: Duplicate I.D.: BTEX MTBE TPH-D Other: 2 Pre-purge: C1 mg/L Post-purge:

WELL MONITORING	DATA	SHEET
-----------------	------	-------

		W	ELL MONIT	ORING DATA	SHEET	
Project #:	030327	7-0W-1		Client: Stellar	Envir. Sol. @A	educed Reg. Back Oak
	Dave h			Start Date: 3	3-27	
Well I.D.	: mw-9			Well Diameter	: 2 3 4	6 8
	ll Depth: 🧯	26.00		Depth to Water	: 12.24	
Before:		After:		Before:		After:
Depth to	Free Produc	et:		Thickness of F	ree Product (fee	et):
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd): (YSI) HACH
	od: Bailer Disposable Bai Middleburg Electric Subme _(Gals.) X	rsible	Waterra Peristaltic Extraction Pump Other = 6,6	,	Disposable Bailer Extraction Port Dedicated Tubing	Diameter <u>Multiplier</u> 0.65 1.47 r radius ² * 0.163
Time	Temp.	pН	Conductivity (mS or (uS)	Turbidity (NTU)	Gals. Removed	Observations
13:41	600	8.5	783	7200	2,2	Brown
13:44	59.2	8,4	767	7200	44	
13247	58.7	8,3	787	>200	6.6	
Did well o		Yes	No	Gallons actuall	y evacuated:	6.6
Sampling	Time: 04	zik (Sulfato ecs 2 325 a	2 13,35	Sampling Date	: 3-27-63	
	D.: MW-9			Laboratory: C	artis + Tompi	kins
Analyzed	for TPH-G	BTEX)	мтве трн-і	Other: Nitra		
Equipmen	t Blank I.D	.;	@ Time	Duplicate I.D.:	•	
Analyzed	for: TPH-G	BTEX N	мтве трн-d	Other:		
D.O. (if re	eq'd): FE	(,0 = 4)	Pre-purge:	Or if mg/L	Post-purge:	mg/L
ORP (if re	eq'd):		Pre-purge:	47) mV	Post-purge:	mV

WELL MONITORING DATA SHEET

Project #	: 03032	7-0W-1		Client	: Stellar	Envir. Sol. @	Sedwood Reg. Bark Oak
I .	Dave W.				Date: =	_	
	: MW-10			Well	Diameter	: ② 3 4	6 8
Total We	ell Depth:	28,75		Depth	to Wate	r: /// //	
Before:		After:		Befor		,	After:
Depth to	Free Produ	ct:		Thick	ness of F	ree Product (fe	et):
Referenc	ed to:	/PVC)	Grade	D.O. 1	Meter (if	req'd): (YSV HACH
Purge Meth	od: Bailer Disposable Bai Middleburg Electric Subme	ersible	Waterra Peristaltic Extraction Pump Other	•	Other:	Extraction Port Dedicated Tubing Multiplier Well 0.04 4" 0.16 6"	Diameter Multiplier 0.65 1.47
Gals.					3"	0.37 Othe	r radius ² * 0.163
Time	Temp.	pН	Conductivity (mS or (LS)	Turbid	ity (NTU)	Gals. Removed	Observations
11341	59.7	8-6	703	. 19	9	3	
[[]45	58,7	8-5	704	(0	ÿ	6	
(1249	57.1	817	721	1) O	9	
Did well	VZ	Yes	Do 2 11:29			y evacuated.	9
Sampling		iers = 11.5	4			: 3-27-03	
Sample I.	D.: prw-10			Labora	atory: C	artis + Tomps e / Sulfate	king
Analyzed	for: FPH-G	BTEX 1		Other:	Nitrat	e/Sulfate	
Equipmen	nt Blank I.D).:	@ Time	Duplio	cate I.D.:	(
Analyzed	for: TPH-G	BTEX 1	MTBE TPH-D	Other:			
D.O. (if r	eq'd): FE	13 = (7)	Pre-purge:	3.	$\mathcal{J}^{\text{hig}}_{\text{L}}$	Post-purge:	^{mg} /L
ORP (if re	eq'd):	J	Pre-purge:	13	9 mV	Post-purge:	mV

WELL MONITORING DATA SHEET

**************************************	IUNITUKING DATA SHEET
Project #: 030327-0W-/	Client: Stellar Envir. Sol. @ Redwood Reg. Bark Oak
Sampler: Deve 10	Start Date: 3-27
Well I.D.: MW-1	Well Diameter: 2 3 4 6 8
Total Well Depth: H.vo	Depth to Water: 1430
Before: After:	Before: After:
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: (PVC) Gra	ade D.O. Meter (if req'd): (ysr) HACH
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Electric Submersible Other	n Pump Dedicated Tubing
$\frac{19}{\text{Gals.}} \text{ (Gals.) X } = 52$	2" 0.16 6" 1.47 3" 0.37 Other radius ² * 0.163
Temp. Conduction (mS or C) pH (~ ' l
17:19 587 6.8 102	0 >200 4
13,21 58,3 6.8 1023	y >200 G
Did well dewater? Yes (No)	Gallons actually evacuated:
Sampling Time: Others - 13:27	Sampling Date: 3-27-63
Sample I.D.: Mw-{{	Laboratory: Curtis + Tompkins
Analyzed for: ТРН-G ВТЕХ МТВЕ Т	TPH-D Other: Nitrate/Sc/fale
Equipment Blank I.D.:	Time Duplicate I.D.:
Analyzed for: трн-с втех мтве т	TPH-D Other:
D.O. (if req'd): FE+2 3,2 (Pre-	e-purge: OB mg/L Post-purge: mg/L
ORP (if req'd):	e-purge: – 40 mV Post-purge: mV

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkely, CA 94710

Date: 14-APR-03 Lab Job Number: 164435

Project ID: 030327-DW-1

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

roject Manage

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of _3

Chain of Custody Record

aboratory Curns	\$ 100	vp K1	15	— Meti	liad of Shipment		<u> </u>	•		-							Pag	38 <u> </u>	
ddress <u>BEZKELEY</u>	, ca				pment Na, sill No,			- -	/	7	<u></u>			Analyal	e Requ	ired	 -	/	
lient STELLAR ddress 2198 S17 BRKELET	0771 59 1. CS	<u> </u>		Pro Telo	oler NoBR Ject ManagerBR ephone No. 520 -	644.	Rucker 3123	<u>-</u> - /	Pilled St.	STE.	THE FEE	TE EMA	7		[Be	snanrk a
roject Name REDW roject Number 030	27-0W	101 A -/	z YA	Sali	nplers: (Signature)	Davie	Mala	-//	/ §	18				/ /	//	//			A1
Flaid Sample Number	Location/ Depth	Delo	Time	Sample Typo	Type/Size of Container	Torno.	Chemical		./1	7_		-/-		-/		/- -			
mw-2		3-27	10:48	W			HCL	<u>. 5</u>	X	X	_			_	┼				
mw-3			9:15		·		none		_	<u> </u>	X	_		_	-	 	!		
			11105				non-e				x	_		_ _	_	ļ		·	
mw-y			14:05				HCL none	<u> </u>	<u> </u>					1	4	 	-		
mw-7			12:38				none					_ _		***************************************					
		-	12:53				Helmane		7 ×	X				15	<u> </u>	<u> </u>	<u> </u>	2.	
mw7			12305				April		7		x			_		<u> </u>	. 75		<u></u>
Mw-8			לביב <i>ו</i>				ACL MINE	S	بر ا-	<u>ر</u>		\bot			_	<u> </u>			
mu-8			1313				Aoux	1			<u>x</u>								
mw-a			13:57				ACL none	5	٦ ـ	- ×								. <u> </u>	
mw- 9						 	none			1	70							<u></u>	
mw-10		 	11:39	 		 	Helinone	Ę	7	را ک									
MW-10	1 10	<u> </u>	<u> </u>	icelved by			Relinguis		<u> </u>	<u>` 1</u>	 		Date	flec	elved t	yı			_ Dela
Signature David C.	net		į.	Signatur		一刻	Signal Printe						- '	s	ignatu	ra			-
Printed David C	Walte	<u> </u>	-27		4. alm	P/ I	1						7ims	- F	Printed				- Time
Company 775	. <u>.</u>		55	Printed (- 11	ne Comp	·		 			-					<u> </u>	_
Reston		[/]		Compan	<u> </u>	$=$ $\!$	Relinguis						=		ompai elved				Date
Comments:			-				Neutidos	•					- Date		Signatu	-			-
	Correct?			┼	Received 1	On Ice	Printa	d					_	4					_
Preservation	O D N/A			<u>,></u> €	3 Cold - □ Ambien		rtact comp	iny					Time		Printed				- Timo
To Jes of the	_			<u> </u>			. Beast	en <u>.</u>					_	(Сотра	пу			<u>- L</u>

aboratory C+7				Me1	thod of Shipmeni								1	6	-(·	, ,									
ddress Beckele	у			Shi	ipment Nobill Na				-			7	/1				An	olyals	Requi	rod	7	7 /		7	'
Hent Stallar Enddress 2198 Sixt Beckeley Cooled Name Religion	Co Regiona	1 fee	k	Pro Tel	ephone No. 576	ee R.	uke . 3(3	<u> </u>	. /		Ka of C			THE TOTAL	J. S. W. S.	/.			//		//	//	/ п	onterks	
roject Number 036	Location/	<u> </u>	Time	Sample Type	mplers: (Signature) 🗸	Temp	020112			<u>/</u>	R	Y/	3				<u>/</u> ,		\angle	<u>/</u>	4	_	!		
mw-U	Бири	3-27	13:00	W			non	t		155			X		_	-									_
mw-11			נונו	1			1tc4	<u> የተያተረ</u>		1	*														
							ļ				ļ	_	-												
			<u> </u>	<u> </u>																					
		-																		-			· · · ·		
							ļ					-		-		_									
			-	-								-	<u> </u>				-								
^																1		Auce	ived b	\					els
Relinquished by Signature	glabe	.]	Date A	eceived b Signetu		13	23/2	lelingvisk Signett Printet	ure -							Di	ste i		gnatur					- "	BIE
Printed David & U	Jailer		rimo Si O	Printed	_	T	itme	Compa	iny _							TI	me		betní					— TI	lmā
Aseton		′.)!()	Compa	<u>C.T</u>	<u>-12</u>		Hosevi Slinguis		ıy:						D	eta		rived b					t	ale
Comments:							_	Signel Printe				- 				-			ignatul	·• —				_ _ _	
							_	Сопр Веаво	-								me		ompan					_ '	lme -
																									-

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park Location: Lab #: 164435 EPA 5030B Stellar Environmental Solutions Prep: Client: Project#: STANDARD 03/27/03 03/27/03 Matrix: Water Sampled: ug/L 80329 Received: Units: Batch#:

Field ID: Type: Lab ID:

MW-2

SAMPLE

Diln Fac: Analyzed: 1.000 03/27/03

164435-001

Analysis Analyte reside. 8015B 50 Gasoline C7-C12 130 EPA 8021B 2.0 MTBE 16 0.50 **EPA 8021B** 39 Benzene EPA 8021B Toluene ND**EPA 8021B** 20 0.50 Ethylbenzene EPA 8021B EPA 8021B m,p-Xylenes 0.50 3.4 o-Xylene 0.50 0.73

Surrogate	\$REC	i sindice	Analysis
Trifluorotoluene (FID)	99	68-145	8015B
Bromofluorobenzene (FID)	100	66-143	8015B
Trifluorotoluene (PID)	96	53-143	EPA 8021B
Bromofluorobenzene (PID)	100	52-142	EPA 8021B

Field ID:

MW-4

SAMPLE

Diln Fac: Analyzed:

1.000 03/27/03

Type: Lab ID: 164435-003

M2-72-72-72-72-72-72-72-72-72-72-72-72-72		-	Asset 100 at 1	¥
Analyte Gasoline C7-C12	ND	50	8015B	P
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	ı
Ethylbenzene	ND	0.50	EPA 8021B	,
m,p-Xylenes	ND	0.50	EPA 8021B	
lo-Xvlene	ND	0.50	EPA 8021B	

1	Survogate	%REC	Totalia isa	Analysis	
	Trifluorotoluene (FID)	101	68-145	8015B	_1
	Bromofluorobenzene (FID)	104	66-143	8015B	
	Trifluorotoluene (PID)	98	53-143	EPA 8021B	
			E0 140	DIA COSID	,
	Bromofluorobenzene (PID)	104	52-14 <u>2</u>	EPA 6021B	

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 1 of 4

Sample Name : 164435-001,80329

: G:\GC19\DATA\086x016.raw FileName

: TVHBTXE Method

Start Time : 0.00 min

End Time : 26.80 min

Plot Offset: 2 mV

Sample #: c1

Page 1 of 1

Date: 3/28/03 09:24 AM

Time of Injection: 3/27/03 07:01 PM

Low Point : 1.52 mV High Point : 267.52 mV

Plot Scale: 266.0 mV

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 164435 Location: Client: Stellar Environmental Solutions Prep: STANDARD Project#: 03/27/03 03/27/03 Water Sampled: Matrix: ug/L 80329 Units: Received: Batch#:

Field ID: Type: Lab ID: MW-7

SAMPLE 164435-004 Diln Fac:

5.000

Analyzed:

03/27/03

Analyte		RL	Āna	Tve e
Gasoline C7-C12	10,000	250	8015B	
MTBE	45	C 10	EPA 8021B	
Benzene	210	2.5	EPA 8021B	
Toluene	12	C 2.5	EPA 8021B	
Ethylbenzene	360	2.5	EPA 8021B	
m.p-Xvlenes	140	2.5	EPA 8021B	
o-Xylene	3.	4 2.5	EPA 8021B	

Surrogate	%REC	a semple (1898)	Analysis	
Trifluorotoluene (FID)	114	68-145	8015B	
Bromofluorobenzene (FID)	103	66-143	8015B	
Trifluorotoluene (PID)	111	53-143	EPA 8021B	
Bromofluorobenzene (PID)	101	52-142	EPA 8021B	

Field ID: Type: Lab ID: MW - 8

SAMPLE

LE

Diln Fac:

5.000

Analyzed:

03/27/03

Lab ID:	164435-005		•	•	_
Ала	lyte	Result	RI	Analys	18
Gasoline C7-C1:	2	13,000	250	8015B	
MTBE		ND	10	EPA 8021B	
Benzene		610	2.5	EPA 8021B	_
Toluene		12	2.5	EPA 8021B	
Ethylbenzene		1,100	2.5	EPA 8021B	Ì
m,p-Xylenes		900	2.5	EPA 8021B	
o-Xylene		58	2.5	EPA_8021B	

			
Surrogate	#REC	Limits	Ana vsis
Trifluorotoluene (FID)	123	68-145	8015B
Bromofluorobenzene (FID)	101	66-143	8015B
Trifluorotoluene (PID)	122	53-143	EPA 8021B
Bromofluorobenzene (PID)	101	52-142	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 2 of 4

Page 1 of 1

ample Name : 164435-004,80329

Sample #: d1 Date: 3/28/03 10:50 AM : G:\GC19\DATA\086X021.raw : TVHBTXE ethod Time of Injection: 3/27/03 09:51 PM Start Time : 0.00 min End Time : 26.80 min Low Point : -5.11 mV High Point: 409.91 mV Scale Factor: 1.0 Plot Offset: -5 mV Plot Scale: 415.0 mV MW-7 Response [mV] 1.36 -1.73 -2.132.33 -2.57 C-6 >-2.86 -3.18 3.47 54.389 -5.33 C-7 -5.90 6.63 6.97 6.84 TRIFLUO -7.54 >--8.01 C-8 9.77 10.03 10.41 -10.80 -11:48 11.82 -12,93 -13.13 -13.63 14:33 15.45¹⁸ BROMOF --15.72 ----16.21 -16.6416.53 C-10 -17.26 -17.63 18:99 ळ. -18.52 ---18.81 -19.16 -19.54 -20.07 ---20.39 20.8120.68 -21.06 21.66 -22.27 -22.65 -22.97 C-12 <u>-23.33</u> -24.37

Sample #: d1 Date: 3/28/03 09:25 AM Sample Name: 164435-005,80329 Page 1 of 1 : G:\GC19\DATA\086x023.raw FileName Time of Injection: 3/27/03 10:59 PM : TVHBTXE Method Low Point: -10.30 mV Plot Scale: 526.0 mV High Point: 515.75 mV Start Time : 0.00 min End Time : 26.80 min Plot Offset: -10 mV Scale Factor: 1.0 MW-8 Response [mV] C-6

| C-7
| TR||
| C-8
| 1D -+CB -1.01 -1.36 1.51 ≤–1.73 $=2.32^{13}$ 2.56 2.87 ≥3.20 3.47 -4.33 --4.61 -5.355.91 6.38 6.64 6.85 TRIFLUO --7.54 -8.01 10.40 10.81 -11:48 -11.83 -12.38 -12.64 -13.65 >−14.17 ·14.52 14.94 15.418 **BROMOF** --15.72 -<u>16.22</u> ---16.52 C-10 17.27 17.63 18:99 -18.51 18,81 -19.16 -19.55 -20.07 ---20.40 ---20.68 -----21.06 ≥=21.66 ≥=21.89 -22.26 -22.66 -22.67 -23.33 23.56 -23.89 -24.37

> -24.98 -25.45 25.85 26.20

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B 164435 Lab #: Location: Client: Stellar Environmental Solutions Prep: Project#: STANDARD 03/27/03 03/27/03 Water Sampled: Matrix: Units: Batch#: ug/L 80329 Received:

Field ID: Type: Lab ID: MW-9

SAMPLE

164435-006

Diln Fac: Analyzed: 1.000

03/27/03

Analyte	Result	RL	Analysis
Gasoline C7-C12	4,400	50	8015B
MTBE	ND	2.0	EPA 8021B
Benzene	320	0.50	EPA 8021B
Toluene	6.9	0.50	EPA 8021B
Ethylbenzene	400	0.50	EPA 8021B
m,p-Xylenes	87	0.50	EPA 8021B
o-Xylene	6.2	0.50	EPA 8021B
·			

Surrogate	A REC	Limits	Analysis
Trifluorotoluene (FID)	123	68-145	8015B
Bromofluorobenzene (FID)	108	66-143	8015B
Trifluorotoluene (PID)	120	53-143	EPA 8021B
Bromofluorobenzene (PID)	105	52-142	EPA 8021B

Field ID:

MW-10

Type: Lab ID: SAMPLE

164435-007

Diln Fac: Analyzed: 1.000

03/27/03

Analyte	Result	RL	Analiysus	
Gasoline C7-C12	110	50	8015B	
MTBE	15	2.0	EPA 8021B	
Benzene	11	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	12	0.50	EPA 8021B	
m,p-Xylenes	1.3	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

		vancordant booker apparations	
Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	112	68-145	8015B
Bromofluorobenzene (FID)	108	66-143	8015B
Trifluorotoluene (PID)	103	53-143	EPA 8021B
Bromofluorobenzene (PID)	107	52-142	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected
RL= Reporting Limit
Page 3 of 4

Sample Name : 164435-006,80329 Page 1 of 1 Sample #: dl Date : 3/28/03 10:17 AM FileName : G:\GC19\DATA\086X019.raw Time of Injection: 3/27/03 08:44 PM Method : TVHBTXE High Point: 455.92 mV Start Time : 0.00 min End Time : 26.80 min Low Point : -7.58 mV Plot Scale: 463.5 mV Plot Offset: -8 mV Scale Factor: 1.0 MW-9 Response [mV] C-6 C-7 TRIF -+CB 1,15 -1.37 1.00 2.32 3.47 -5.35-5.89 27.75 6.976.85⁶³ TRIFLUO --8,03 -8.61 9.01 9.42 ₹0.01 10.41 -10.81 11:18 11.83 12.38 -12.64 -13.13 13,63 -14.17 14.52 -14.93 -15.45 **BROMOF-**15.72 -16.21 C-10 16.52 17.26 17.63 -18.95 -18.55 ----18.81 19.16 -19.55 -20.07 ----20.39 20.68 21.06 -21.89 21.66 -22.26 -22.66 22.97 ≈23.34 -23.57 -23.88 24.60 37

Sample Name: 164435-007,80329

: G:\GC19\DATA\086x018.raw ileName

: TVHBTXE Method

End Time : 26.80 min Start Time : 0.00 min Scale Factor: 1.0 Plot Offset: -0 mV

=13.12.93

14.18

15,18

-16.21 16.52

-17.26 -17.62 18:94

18.50 18.82 19.15 -19.54

20.07 -20.39 -20.68 --21.06

21.66 22.28 22.66 -22.97

24.38 24.96 -15.72

BROMOF -

C-10

C-12

Sample #: d1 Date: 3/28/03 09:24 AM

Time of Injection: 3/27/03 08:09 PM

High Point: 302.40 mV Low Point : -0.15 mV

Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report Lab #: 164435 Client: Stellar Environmental Solutions Project#: STANDARD Redwood Regional Park Location: Prep: EPA 5030B 03/27/03 03/27/03 Matrix: Water Sampled: ug/L 80329 Received: Units: Batch#:

Field ID: Type: Lab ID:

MW-11

SAMPLE 164435-008 Diln Fac:

Analyzed:

5.000 03/28/03

Analyte	Result		Analysi	3
Gasoline C7-C12	7,800	250	8015B	
MTBE	. 53 C	10	EPA 8021B	
Benzene	170	2.5	EPA 8021B	
Toluene	4.7 C	2.5	EPA 8021B	
Ethylbenzene	530	2.5	EPA 8021B	
m,p-Xvlenes	330	2.5	EPA 8021B	
o-Xvlene	6.8	2.5	EPA 8021B	

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	130	68-145	8015B
Bromofluorobenzene (FID)	102	66-143	8015B
Trifluorotoluene (PID)	105	53-143	EPA 8021B
Bromofluorobenzene (PID)	101	52-142	EPA 8021B

Type: Lab ID:

BLANK

1.000

Diln Fac: Analyzed: 03/27/03 QC209215

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B	
MTBE	ND	2.0	EPA 8021B	1
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	_
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	MD	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	•

Surrogate	9:100(kitani tes	Analysis
Trifluorotoluene (FID)	93	68-145	8015B
Bromofluorobenzene (FID)	96	66-143	8015B
Trifluorotoluene (PID)	92	53-143	EPA 8021B
Bromofluorobenzene (PID)	97	52-142	EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 4 of 4

Sample Name : 164435-008,80329 Sample #: d1 Page 1 of 1 : G:\GC19\DATA\086x025.raw Date: 3/28/03 09:25 AM FileName Time of Injection: 3/2B/03 12:07 AM : TVHBTXE Method Start Time : 0.00 min End Time : 26.80 min Low Point : -7.21 mV High Point: 457.89 mV Scale Factor: 1.0 Plot Offset: -7 mV Plot Scale: 465.1 mV MW-11 Response [mV] +CB 1.02 1.15 -1.51 1.73 $\frac{2.32}{2.32}$ C-6 -3.47 5.34 C-7 -5.91 6.39 6.64 6.85 TRIFLUO -7.55 -8.01 -8.78 C-8 9.44 9.78 10.03 -10.41 -10.80 11:48 11.83 12 38 -12.93 13.13 -13.64 -14.17 -14.85 ≻-15.18 -15.44 **BROMOF** --15.72 -16.22 ---16.53 C-10 17.26 -17.63 18:99 $\overline{\infty}$ -18.52 ---18.81 19.16 -19.54 20 -20.07 ---20.40 ---20.8168 -21.06 ≥=21.66 ==21.89 -22.27 22.66 22.97 C-12 <u>23.33</u>23.57 -24.37 24.97

Sample Name : ccv/lcs,qc209217,80329,03ws0417,2.5/5000

: G:\GC19\DATA\086X002.RAW

MethodStart Time : 0.07 min

FileName

End Time : 26.75 min

Plot Offset: 12 mV

Sample #:

Date: 3/28/03 11:31 AM

Time of Injection: 3/27/03 10:25 AM

High Point : 92.23 mV Low Point : 12.31 mV

Page 1 of 1

Plot Scale: 79.9 mV

Curtis & Tompkins Laboratories Analytical Report Lab #: 164435 Redwood Regional Park Location: Client: Stellar Environmental Solutions Prep: EPA 5030B Project#: STANDARD Analysis: 8015B Type: LCS Diln Fac: 1.000 Lab ID: QC209217 Batch#: 80329 Matrix: Water Analyzed: 03/27/03 Units: ug/L

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,034	103	79-120
MTBE		NA		
Benzene		NA		
Toluene		NA		
Ethylbenzene		NA		
m,p-Xylenes o-Xylene		NΆ		
o-Xylene		NA		

Surrogate	Res	ult %REC	Limite	
Trifluorotoluene (FID)		114	68-145	
Bromofluorobenzene (FID)		99	66-143	
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA_			

	Curtis & Tompkins Labo	oratories Ana	lytical Report
Lab #:	164435	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	STANDARD		
Туре:	BS	Diln Fac:	1.000
Lab ID:	QC209216	Batch#:	80329
Matrix:	Water	Analyzed:	03/27/03
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	N	A ⁷			
MTBE	10.00	9.876	99	51-125	EPA 8021B
Benzene	10.00	9.958	100	65-122	EPA 8021B
Toluene	10.00	9.457	95	67-121	EPA 8021B
Ethylbenzene	10.00	9.705	97	70-121	EPA 8021B
m,p-Xylenes	20.00	19.65	98	72-125	EPA 8021B
o-Xylene	10.00	10.10	101	73-122	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	95	68-145	8015B	
Bromofluorobenzene (FID)	98	66-143	8015B	
Trifluorotoluene (PID)	94	53-143	EPA 8021B	
Bromofluorobenzene (PID)	99	52-142	EPA 8021B	

Curtis & Tompkins Laboratories Analytical Report

Location:

Lab #: 164435 Client: Stellar Environmental Solutions

ug/L

Redwood Regional Park

lient: Stellar Environmental Solutions Prep: EPA 5030B

Project#: STANDARD

Units:

Type: BSD Diln Fac: Lab ID: QC209287 Batch#:

1.000 80329

Lab 1D: QC209287 Batch#: 80329
Matrix: Water Analyzed: 03/27/03

Analyte Spiked Result %REC Limits RPD Lim Analysis Gasoline C7-C12 MTBE 20.00 20.71 104 51-125 20 EPA 8021B Benzene 20.00 19.76 99 65-122 1 20 EPA 8021B

Toluene 67-121 1 20 EPA 8021B 20.00 18.69 93 Ethylbenzene 70-121 0 20 EPA B021B 20.00 19.35 97 m,p-Xylenes 40.00 38.43 72-125 20 EPA 8021B 96 2

o-Xylene 20.00 20.14 101 73-122 0 20 EPA 8021B

Surrogate %REC Limits Analysis Trifluorotoluene (FID) 98 68-145 8015B Bromofluorobenzene (FID) 98 66-143 8015B Trifluorotoluene (PID) 96 EPA 8021B 53-143 Bromofluorobenzene (PID) 98 52-142 EPA 8021B

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park Location: 164435 Lab #: EPA 5030B Client: Stellar Environmental Solutions Prep: 8015B Project#: STANDARD Analysis: Field ID: ZZZZZZZZZZ Batch#: 80329 03/27/03 MSS Lab ID: 164425-001 Sampled: Received: 03/27/03 Matrix: Water 03/27/03 Units: ug/L Analyzed: Diln Fac: 1.000

Type:

MS

Lab ID:

QC209285

Analyte	MSS Result	Spiked	Result	%REC	. Limit
Gasoline C7-C12	25.91	2,000	2,062	102	67-12
MTBE			NA		
Benzene			NA		
Toluene			NA		
Ethylbenzene			NA		
m,p-Xylenes			NA		
Ethylbenzene m,p-Xylenes o-Xylene		·	NA		

Surrogate	Rei	sult %REC	Limite	
Trifluorotoluene (FID)		118	68-145	
Bromofluorobenzene (FID)		106	66-143	
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

Type:

MSD

Lab ID:

QC209286

Analyte	Spiked	Result	%REC	Limite	RPI) Tim
Gasoline C7-C12	2,000	2,082	103	67-120	1	20
MTBE		NA				
Benzene		NA				•
Toluene		NA				_
Ethylbenzene		NA				
m,p-Xylenes o-Xylene		NA				1
o-Xylene		NA				

Surrogate	Resu	lt %REC	Limits	
Trifluorotoluene (FID)		117	68-145	
Bromofluorobenzene (FID)		106	66-143	
Trifluorotoluene (PID)	NA	•		
Bromofluorobenzene (PID)	NA			

NA= Not Analyzed RPD= Relative Percent Difference Page 1 of 1

Total Extractable Hydrocarbons Lab #: 164435 Redwood Regional Park Location: Client: Stellar Environmental Solutions **EPA 3520C** Prep: Project#: 030327-DW-1 EPA 8015B 03/27/03 03/27/03 <u> Analysis:</u> Matrix: Water Sampled: ug/L Received: Units: 1.000 03/31/03 Diln Fac: Prepared: Batch#: 80432

Field ID: ype:

MW-2

SAMPLE

Lab ID:

164435-001

Analyzed:

04/02/03

Analyte Diesel C10-C24

Result 82 L

39-137

50

Surrogate

Hexacosane

ield ID: ype:

MW-4

SAMPLE

Lab ID:

164435-003

Analyzed:

04/02/03

Result Diesel C10-C24 50

*REC Limits Surrogate

Hexacosane

106 39-137

Field ID:

Туре:

MW-7

Lab ID:

164435-004

Analyte

SAMPLE

Analyzed:

04/02/03

Diesel Cl0-C24

Result

3,600 L Y

50

Surrogate Hexacosane

%REC Limits 39-137 98

ield ID:

ype:

MW - 8

SAMPLE

Lab ID:

164435-005

Analyte Result

Analyzed:

04/02/03

Diesel Clo-C24

3,500 L Y

Surrogate

Hexacosane

%REC Limits 106 39-137

Field ID: Type:

MW - 9

SAMPLE

Lab ID:

Analyzed:

164435-006

Analyte

Result

04/02/03

RL

Diesel C10-C24

1,400 L Y

50

Surrogate %REC Limits Hexacosane 39-137

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected

AL= Reporting Limit Page 1 of 2

10.0

Sample Name : 164435-001,80432

: G:\GC11\CHA\090A065.RAW FileName

Start Time : 0.01 min

: ATEHOB4.MTH

End Time : 31.91 min

Sample #: 80432

Page 1 of 1

Date: 4/2/03 11:55 AM
Time of Injection: 4/2/03 09:00 AM

High Point : 416.21 mV Low Point : 8.57 mV

Sample Name : 164435-004,80432

: G:\GC11\CHA\090A067.RAW FileName

Method : ATEH084.MTH

Sample #: 80432 Date: 4/2/03 11:57 AM

Time of Injection: 4/2/03 10:20 AM

High Point: 1024.00 mV

Page 1 of 1

Sample Name : 164435-005,80432

: G:\GC11\CHA\090A068.RAW FileName

Method : ATEHOB4.MTH Start Time : 0.00 min

0.0 Scale Factor:

End Time : 31,90 min Plot Offset: -26 mV

Sample #: 80432 Date: 4/2/03 11:57 AM

Time of Injection: 4/2/03 11:01 AM

Low Point : -26.02 mV High Point: 1024.00 mV

Page 1 of 1

Plot Scale: 1050.0 mV

Sample Name: 164435-006,80432

FileName : G:\GC11\CHA\090A069.RAW

: ATEHO84.MTH Method

Start Time : 0.01 min

Scale Factor: 0.0

End Time : 31.91 min

Sample #: 80432

Page 1 of 1

Date: 4/2/03 12:46 PM

Time of Injection: 4/2/03 11:41 AM

Low Point : 7.79 mV High Point: 498.83 mV

Plot Scale: 491.0 mV

Total Extractable Hydrocarbons Redwood Regional Park EPA 3520C Lab #: 164435 Location: Stellar Environmental Solutions 030327-DW-1 Prep: Analysis: Client: EPA 8015B 03/27/03 03/27/03 Project#: Matrix: Sampled: Water Units: ug/L Received: 03/31/03 Diln Fac: 1.000 Prepared: Batch#: 80432

Field ID: Type:

MW-10

SAMPLE

Lab ID: Analyzed:

164435-007

Analyte Diesel Cl0-C24

Result ND

04/03/03

50

AREC Limits Surrogate Hexacosane 39-137

Field ID: Type:

MW-11

SAMPLE

Lab ID:

164435-008

Analyzed:

04/03/03

RL Analyte Result Diesel C10-C24 50 2,600 L

104

Surrogate

*REC Limits

39-137

Hexacosane

BLANK

Analyzed:

04/02/03

Type: Lab ID:

QC209620

Result

71

Diesel Cl0-C24

ND

Surrogate Hexacosane

%REC Limits

102

39-137

L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2

Sample Name : 164435-008,80432

: G:\GC15\CHB\091B070.RAW FileName

Method : BTEH091.MTH

End Time : 31.91 min Sample #: 80432

Date: 4/4/03 08:35 AM

Time of Injection: 4/3/03 02:48 PM

High Point : 753.14 mV

Page 1 of 1

Sample Name : ccv, 03ws0276, ds1

: G:\GC13\CHB\090B008.RAW FileName

: BTEH083.MTH Method

: 0.01 min Start Time Scale Factor: 0.0

Plot Offset: 24 mV

End Time : 31.91 min

Sample #: 500mg/L

Date: 3/31/03 06:37 PM

Time of Injection: 3/31/03 05:52 PM

Low Point : 24.33 mV

High Point : 303.00 mV

Page 1 of 1

Plot Scale: 278.7 mV

Total Extractable Hydrocarbons Lab #: 164435 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 030327-DW-1 Analysis: EPA 8015B Matrix: Water Batch#: 80432 03/31/03 Units: ug/L Prepared: Diln Fac: 1.000 Analyzed: 04/02/03

Type:

BS

Lab ID:

QC209621

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	2,391	96	37-120	

	Surrogate		Limits
8	Hexacosane	104	39-137

Type:

BSD

Lab ID:

QC209622

Analyte		Result	%REC	Limits		Lim
Diesel Cl0-C24	2,500	2,471	99	37-120	3	26

Surrogate	%RE	C Limits
Hexacosane	111	39-137

	Nitrat	re Nitrogen	
Lab #:	164435	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Analysis:	EPA 300.0
Project#:	030327-DW-1		
Analyte:	Nitrogen, Nitrate	Batch#:	80412
Matrix:	Water	Sampled:	03/27/03
Units:	mg/L	Received:	03/27/03
Diln Fac:	1.000	Analyzed:	03/28/03

Field ID	Type	Lab ID	Re	sult	RL	
MW-3	SAMPLE	164435-002	ND		0.05	
MW-4	SAMPLE	164435-003		0.28	0.05	
MW - 7	SAMPLE	164435-004	ND		0.05	
MW-8	SAMPLE	164435-005	ND		0.05	
MW - 9	SAMPLE	164435-006	ND		0.05	
MW-10	SAMPLE	164435-007		0.22	0.05	
MW-11	SAMPLE	164435-008	ND		0.05	•
	BLANK	QC209545	ND	•	0.05	

	Nitrat	e Nitrogen	
Lab #: 1644:	35	Location:	Redwood Regional Park
Client: Stell	lar Environmental Solutions	Analysis:	EPA 300.0
Project#: 03032	27-DW-1		
Analyte:	Nitrogen, Nitrate	Batch#:	80412
Field ID:	ZZZZZZZZZZ	Sampled:	03/17/03
MSS Lab ID:	164236-004	Received:	03/18/03
Matrix:	Water	Analyzed:	03/28/03
Units:	mg/L	•	

Туре	Lab ID 1	MSS Result	Spiked	Result	%REC	Limits	RPE	Lim	Diln Fa	e
BS	QC209546		1.000	0.9814	98	90-110			1.000	
BSD	QC209547		1.000	0.9556	96	90-110	3	20	1.000	
MS	QC209548	8.388	50.00	58.11	99	80-120			100.0	ł
MSD	QC209549		50.00	54.88	93	80-120	6	20	100.0	

	St	ulfate	
Lab #:	164435	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Analysis:	EPA 300.0
Project#:	030327-DW-1		
Analyte:	Sulfate	Sampled:	03/27/03
Matrix:	Water	Received:	03/27/03
Units:	mg/L	Analyzed:	03/28/03
Batch#:	80412	-	

Field TD	Type Lab ID	Result	RL	Diln Fac	
MW-3	SAMPLE 164435-002	35	0.50	1.000	
MW-4	SAMPLE 164435-003	48	0.50	1.000	
MW - 7	SAMPLE 164435-004	ND	0.50	1.000	
MW - 8	SAMPLE 164435-005	21	0.50	1.000	
MW-9	SAMPLE 164435-006	65	1.0	2.000	
MW-10	SAMPLE 164435-007	72	1.0	2.000	
MW-11	SAMPLE 164435-008	10	0.50	1.000	
	BLANK OC209545	ND	0.50	1.000	

	Sti	lfate	
Lab #: 164435	· · · · · · · · · · · · · · · · · · ·	Location:	Redwood Regional Park
Client: Stella	r Environmental Solutions	Analysis:	EPA 300.0
Project#: 030327	-DW-1	-	
Analyte:	Sulfate	Batch#:	80412
Field ID:	ZZZZZZZZZ	Sampled:	03/17/03
MSS Lab ID:	164236-004	Received:	03/18/03
Matrix:	Water	Analyzed:	03/28/03
Units:	mg/L		

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPI) Lim	Diln Fac
BS	QC209546		10.00	9.573	96	90-110			1.000
BSD	QC209547		10.00	9.594	96	90-110	0	20	1.000
MS	QC209548	127.4	500.0	593.9	93	72-125			100.0
MSD	QC209549		500.0	597.5	94	72-125	1	20	100.0

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkely, CA 94710

Date: 14-APR-03 Lab Job Number: 164425

Project ID: 2003-02

Location: Redwood Park Service Yard

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 0

CHAIN OF CUSTODY FORM

Page <u>1</u> of <u>1</u>

Analyses

Curtis & Tompkins, Ltd.

				KINS, LIO / Since 1878										C&T 164425 [ysc				
	23 Be (5	23 F rkele 10)48	ifth S y, C 36-09					Sampler: 1	Bu	<u>د</u>	Ru	lin						4							
roject No	: 0)00.	3- <i>0</i> :	*				Report To:				50	whe			·	Ì	8030	Ì					_	_
				Park Service	e 4	lar	<u>d</u>	Company:	S	tell	i ê	<u>Z</u> Ŋv	'(D'	mental Solvitons		£		8							:
roject P.0							_	Telephone:			.5	<u> </u>	- 6	·44-31 <u>3</u> 3		本工	3	78 E	N						
urnaroun		me:	5	Pay			_	Fax:		•		5	(0)	644-3851			8	¥	5108)						
					N	lat	<u> </u>		P	res	erv	ativ	/e			5	+	Υ.	I	1				1	
aboratory Number	S	mpl	e ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	H 건	H ₂ SO	HNO3	ICE		Field Notes	(1	TV# (8015)	ग्रह	TEH						
	İ																-		Ļ	 		\dashv	4	\dashv	
	51	n-9		3147/03	Ш	Ľ	4	<u>a</u>	1	<u> </u>	<u> </u>	/		40ml Volls		_	X,	X.	1	╁	╀╌┼	\dashv	\dashv	\dashv	-
>	_ _			835	-	X	$\perp \! \! \perp$	1	 	L		1	<u> </u>	1-r awre			X	~	X	┼─	╀	\dashv	\dashv	\dashv	\dashv
<u></u>	<u>\$</u> \	<u>w-3</u>	: 	ગંચાવ્ય		X		9	~	_		1	_	40 ml vons	\dashv		λ	V	X.	╁─	╁	\dashv	\dashv	-	-
	_		<u> </u>	850	\dashv	X	$\vdash \vdash$	1			H	 	╀	1-r empl	-		-	一	╇	\vdash	1	十	十	-	_
<u>- + 0</u>			<u> </u>		╁┤	H	-		-		<u> </u>		╁	-				\vdash	+	\vdash	+-+		寸	_	
T T S	+		<u> </u>		╁┥	Н	⊢┼┈		├-,										T	╁╌	\Box	\top	\dashv	寸	
<u> </u>	+		<u> </u>		+	\vdash	\vdash	 	H	-	-	T p	100	ervation Correct?					上		\Box				
<u> </u>	+-		<u>: </u>		╂╾┨	H	\vdash		H	\vdash		ø	Yes	□ No □ N/A				D.		I			. 7		
<u>a</u>	+			<u></u>	+	H	\vdash				<u> </u>		Ľ				e l	old	E	7CU	Ten in bien	On			
	╁				\mathbf{H}			 	厂	T									L	<u> </u>	noiei		7	rtadi	
	1		<u> </u>		1	Н	\Box											L	L						二
Notes:							1 1	<u> </u>	Г		-		R	ELINQUISHED BY:				RI	ECF	ΞIVI	ED E	3Y:			
								-	4	Su	<u>سو \</u>	η <u>.</u> -	h	In 3/27/03 9/25 DATE/TIME			3	> ⁻	27	-o(75 e	DA₹	<u>≥</u> f	9:2 IME	<u>s</u>
			!											DATE/TIME		>						DAT	E/T	IME	
			t :							_				- DATE/TIME				-	••			DAT	ΈΛΤ	IME	

Signature

Curtis & Tompkins Laboratories Analytical Report Redwood Park Service Yard 164425 Location: Lab #: EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2003-02 03/27/03 Sampled: Matrix: Water 03/27/03 Received: Units: ug/L 03/27/03 Diln Fac: 1.000 Analyzed: Batch#: 80329

Field ID:

SW-2

Lab ID:

164425-001

Type:

SAMPLE

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B	
MTBE	2.8	2.0	EPA 8021B	7
Benzene	ND	0.50	EPA 8021B	6
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	0.56	0.50	EPA 8021B	Ī
	ND	0.50	EPA 8021B	
m,p-Xylenes o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	105	68-145	8015B	
Bromofluorobenzene (FID)	105	66-143	8015B	
Trifluorotoluene (PID)	101	53-143	EPA 8021B	•
Bromofluorobenzene (PID)	105	52-142	EPA 8021B	

Field ID:

SW-3

Lab ID:

164425-002

Type:

SAMPLE

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	_
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	1
	ND	0.50	EPA 8021B	
m,p-Xylenes o-Xylene	ND	0.50	EPA 8021B	ſ

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	101	68-145	8015B
Bromofluorobenzene (FID)	106	66-143	8015B
Trifluorotoluene (PID)	99	53-143	EPA 8021B
Bromofluorobenzene (PID)	103	52-142	EPA 8021B

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Curtis & Tompkins La	boratories Anal	ytical Report
Lab #:	164425	Location:	Redwood Park Service Yard
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-02		
Matrix:	Water	Sampled:	03/27/03
Units:	ug/L	Received:	03/27/03
Diln Fac:	1.000	Analyzed:	03/27/03
Batch#:	80329		

Type:

BLANK

Lab ID:

QC209215

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes o-Xylene	ND	0.50	EPA 8021B	
o-Xylene	ND .	0.50	EPA 8021B	

Surrogate	% R W (Timita	lnatusta
Trifluorotoluene (FID)	93	68-145	8015B
Bromofluorobenzene (FID)	96	66-143	8015B
Trifluorotoluene (PID)	92	53-143	EPA 8021B
Bromofluorobenzene (PID)	97	52-142	EPA 8021B

	Curvis & Tompkins Lab	oratories Anal	lytical Report
Lab #:	164425	Location:	Redwood Park Service Yard
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2003-02	Analysis:	8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC209217	Batch#:	80329
Matrix: Units:	Water ug/L	Analyzed:	03/27/03

Analyte	Spiked	Result	%RBC	Limits	
Gasoline C7-C12	1,000	1,034	103	79-120	
MTBE		NA			
Benzene		NA			1
Toluene		NA			
Ethylbenzene		NA			
m,p-Xylenes		NA			
m,p-Xylenes o-Xylene		NA			

Surrogate	Resul	t %REC	Limits	
Trifluorotoluene (FID)		114	68-145	
Bromofluorobenzene (FID)		99	66-143	
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

Curtis & Tompkins Laboratories Analytical Report

Lab #: 164425 Location: Redwood Park Service Yard

Client: Stellar Environmental Solutions Prep: EPA 5030B

Project#: 2003-02

 Type:
 BS
 Diln Fac:
 1.000

 Lab ID:
 QC209216
 Batch#:
 80329

Matrix: Water Analyzed: 03/27/03

Units: ug/L

Analyte	Spiked	Result	%REC	Limits	Analysis
Gasoline C7-C12	. NA	1			
MTBE	10.00	9.876	99	51-125	EPA 8021B
Benzene	10.00	9.958	100	65-122	EPA 8021B
Toluene	10.00	9.457	95	67-121	EPA 8021B
Ethylbenzene	10.00	9.705	97	70-121	EPA 8021B
m,p-Xylenes	20.00	19.65	98	72-125	EPA 8021B
o-Xylene	10.00	10.10	101	73-122	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	95	68-145	8015B
Bromofluorobenzene (FID)	98	66-143	8015B
Trifluorotoluene (PID)	94	53-143	EPA 8021B
Bromofluorobenzene (PID)	99	52-142	EPA 8021B

Curtis & Tompkins Laboratories Analytical Report Redwood Park Service Yard 164425 Location: Lab #: EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2003-02 BSD Diln Fac: 1.000 Type: 80329 Lab ID: QC209287 Batch#: Analyzed: 03/27/03 Matrix: Water Units: ug/L

Gasoline C7-C12	NA	`					Call in International	
MTBE	20.00	20.71	104	51-125	5	20	EPA	8021B
Benzene	20.00	19.76	99	65-122	1	20	EPA	8021B
Toluene	20.00	18.69	93	67-121	1	20	EPA	8021B
Ethylbenzene	20.00	19.35	97	70-121	0	20	EPA	8021B
m,p-Xylenes	40.00	38.43	96	72-125	2	20	EPA	8021B
-Xylene	20.00	20.14	101	73-122	0	20	EPA	8021B

Surrogate	%REC	' Limits	Analysis
Trifluorotoluene (FID)	98	68-145	8015B
Bromofluorobenzene (FID)	98	66-143	8015B
Trifluorotoluene (PID)	96	53-143	EPA 8021B
Bromofluorobenzene (PID)	98	52-142	EPA 8021B

	Curtis & Tompkins Labo	oratories Anal	vtical Report
Lab #: 16442	5	Location:	Redwood Park Service Yard
Client: Stell:	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2003-	02	Analysis:	8015B
Field ID:	SW-2	Batch#:	80329
MSS Lab ID:	164425-001	Sampled:	03/27/03
Matrix:	Water	Received:	03/27/03
Units:	ug/L	Analyzed:	03/27/03
Diln Fac:	1.000	-	

Type:

MS

Lab ID:

QC209285

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	25.91	2,000	2,062	102	67-120
MTBE			NA		•
Benzene			NA		
Toluene			NA		1
Ethylbenzene			NA		
m,p-Xylenes			NA		ì
m,p-Xylenes o-Xylene			NA		

Surrogate	R	esult %REC	Limits	
Trifluorotoluene (FID)		118	68-145	
Bromofluorobenzene (FID)		106	66-143	
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

Type:

MŞD

Lab ID:

QC209286

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,082	103	67-120	1	20
MTBE		NA				
Benzene		NA				
Toluene		NA				
Ethylbenzene		NA				
m,p-Xylenes o-Xylene		NA]
o-Xylene		NA			T	

Surrogate	Re	sult %REC	Limits
Trifluorotoluene (FID)		117	68-145
Bromofluorobenzene (FID)		106	66-143
Trifluorotoluene (PID)	NA		
Bromofluorobenzene (PID)	NA		

NA= Not Analyzed RPD= Relative Percent Difference Page 1 of 1

Total Extractable Hydrocarbons Redwood Park Service Yard Location: Lab #: 164425 EPA 3520C Client: Stellar Environmental Solutions Prep: EPA 8015B Analysis: Project#: 2003-02 03/27/03 Sampled: Matrix: Water Received: 03/27/03 ug/L Units: 04/01/03 Diln Fac: 1.000 Prepared: 04/03/03 80470 Analyzed: Batch#:

Field ID:

SW-2

Lab ID:

164425-001

Type:

SAMPLE

Analyte	Result		
Diesel C10-C24	ND	50	,

Surrogate AREC Limits
Hexacosane 102 39-137

Field ID:

SW-3

Lab ID:

164425-002

Type:

SAMPLE

	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC		
Hexacosane	104	39-137	

Type:

BLANK

Lab ID:

QC209772

Analyte	Result	RI	
Diesel C10-C24	ND	50	

Surrogate	%REC			
Hexacosane	115	39-137		

ND= Not Detected RL= Reporting Limit Page 1 of 1

Total Extractable Hydrocarbons

Lab #: 164425

Redwood Park Service Yard

Client:

Stellar Environmental Solutions

Location: Prep:

EPA 3520C

Project#: 2003-02

Analysis:

EPA 8015B

Matrix:

Water

Batch#:

80470

Units:

ug/L

Prepared:

04/01/03

Diln Fac:

1.000

Type:

BS

Analyzed:

04/02/03

ab ID:

QC209773

Analyte

Spiked

Result

AREC Limits

Diesel C10-C24

2,500

2,718

109 37-120

Surrogate

Hexacosane

%REC Limits 108

39-137

BSD

Analyzed:

04/03/03

ab ID:

QC209774

Analyte	Spiked	Result	*REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,807	112	37-120	3	26

Surrogate %REC Limits 39-137 108 Hexacosane

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

					Well N	IW-2			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	29.6	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA.
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31,4	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7
14	Арг-99	82	710	4.2	< 0.5	3.4	4	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6

	Well MW-2 (continued)												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2				
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		7.7				
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13				
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5		< 2.0				
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16				

			_		Well N	IW-4			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4	2	26	14	45.9	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20.1	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66.0	5.0

	Well MW-4 (continued)												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0				
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0				
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0				
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0				
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0				
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0				
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0				

				,	Well N	IW-5			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	·	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
(Groundwate	er monitorin	g in this we	ell discontin	ued with Ala	ameda County He	ealth Care Service	s Agency approv	/al

					Well N	1W-7			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
11	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.
8	Dec-02	9,600	3,700	110	< 0.5	400	188.9	699	< 2.
9	Mar-03	10,000	3,600	210	12	360	143	725	45

					Well N	1W-8			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10

					Well N	NW-9			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0

Well MW-10										
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40	
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25	
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0	
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0	
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26	
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		16	
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15	

	Well MW-11										
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10		
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10		
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4		
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4		
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10		
6	Dec-02	18,000	4,500	420	< 2.5	1100	912	2,432	< 10		
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53		

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
11	Арг-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0

	S	ampling Lo	cation SV	V-2 (Area o	f Historical	Contaminated (Groundwater Dis	charge)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	· < 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8

	Samplin	ng Location	SW-3 (Do	ownstream	of Contam	inated Groundw	ater Discharge L	ocation SW-2)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	*****	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	· <u></u>	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	<u>—</u>	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
16	Sep-01	ŅS	NS	NS	NS	NS	NS		NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	2.4
20	Sep-02	NS	NS	NS	NS	NS	· NS	·	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0

NS = Not Sampled (no surface water present during sampling event)