STELLAR ENVIRONMENTAL SOLUTIONS

2198 SIXTH STREET, BERKELEY, CA 94710 Tel: 510.644.3123 * FAX: 510.644.3859

JAN 2 3 2002

TRANSMITTAL MEMORANDUM

I RANSMITTAL IVIEMORANDUM									
AGEN DEPT. C HAZARD	ICY OF ENVII OOUS MA ARBOR I	NTY HEALTH CARE SERVICES RONMENTAL HEALTH ATERIALS DIVISION BAY PKWY, SUITE 250 94502	DATE:	1/17/02					
ATTENTION:	Scott	r Seery	FILE:	SES-2001-53					
Ѕивјест:	REDW LEAK	OOD REGIONAL PARK FUEL SITE							
		,							
WE ARE SEND	DING:	M HEREWITH	☐ Und	ER SEPARATE COVER					
		☑ VIA MAIL	□ VIA						
THE FOLLOWI	F	YEAR 2001 ANNUAL SUMMARY REGIONAL PARK SERVICE YAR (NOV. 2001)							
		☐ As REQUESTED	☐ For	YOUR APPROVAL					
		☐ For review	Ø For	YOUR USE					
		☐ FOR SIGNATURE	☐ For	Your Files					
	l. Rugo	RGER (EBRPD) S (FISH & GAME) SWER (REGIONAL BOARD)	BY: <u>B</u>	Bruce Rucker					

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel: (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

January 15, 2002

Mr. Scott O. Seery
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health, Hazardous Materials Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

Subject: Year 2001 Annual Summary Report

Redwood Regional Park Service Yard Site - Oakland, California

Dear Mr. Seery:

Attached is the Stellar Environmental Solutions (SES) Year 2001 Annual Summary Report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District, and follows previous site investigation and remediation activities associated with former leaking underground fuel storage tanks, conducted since 1993. The key regulatory agencies for this investigation are the Alameda County Health Care Services Agency, the California Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes activities conducted from October through December 2001, including groundwater monitoring and sampling of site wells and surface water sampling. Hydrochemical trends and an initial assessment of the ORCTM injection corrective action are also discussed. If you have any questions regarding this report, please contact Mr. Ken Burger of the East Bay Regional Park District, or contact us directly at (510) 644-3123.

Sincerely,

Bus M. Ruly.

Bruce M. Rucker, R.G., R.E.A.

Project Manager

Richard S. Makdisi, R.G., R.E.A.

Principal

cc: Michael Rugg, California Department of Fish and Game Roger Brewer, California Regional Water Quality Control Board Ken Burger, East Bay Regional Park District

YEAR 2001 ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

JAN 2 3 2002

Prepared For:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared By:

STELLAR ENVIRONMENTAL SOLUTIONS 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

January 15, 2002

Project No. 2001-53

TABLE OF CONTENTS

Section	n		Page
1.0	INTROI	DUCTION	3
	Objectiv Site Des	Background and Previous Activitieses and Scope of Work	3 4
2.0	PHYSIC	AL SETTING	7
3.0	DECEM	BER 2001 CREEK AND GROUNDWATER SAMPLING	10
	Groundy Creek St	vater Level Monitoring and Samplingurface Water Sampling	10 11
4.0		NT MONITORING EVENT ANALYTICAL RESULTS GULATORY CONSIDERATIONS	13
	Groundy Natural	ory Considerations	17
5.0		CHEMICAL TRENDS AND EVALUATION OF CTIVE ACTION EFFECTIVENESS	21
6.0	SUMMA	ARY, CONCLUSIONS AND PROPOSED ACTIONS	23
		y and Conclusions	
7.0	REFERE	ENCES AND BIBLIOGRAPHY	26
8.0	LIMITA	TIONS	29
APPEN	NDICES		
Append Append	dix B	Groundwater Well Development and Monitoring Field Records Analytical Laboratory Reports and Chain-of-Custody Records Historical Analytical Results	

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data, Redwood Regional Park Corporation Yard, Oakland, California11
Table 2	Groundwater and Surface Water Sample Analytical Results – December 2001, Redwood Regional Park Corporation Yard, Oakland, California
Table 3	Groundwater Sample Analytical Results Natural Attenuation Indicators – December 17, 2001, Redwood Regional Park Corporation Yard, Oakland, California
Figures	Page
Figure 1	Site Location Map5
Figure 2	Site Plan and Historical Sampling Locations
Figure 3	Groundwater Elevation Map – December, 2001
Figure 4	Groundwater and Surface Water Analytical Results – Decemmber 2001

1.0 INTRODUCTION

PROJECT BACKGROUND AND PREVIOUS ACTIVITIES

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or more of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Health Care Services Agency (ACHCSA) has provided regulatory oversight of the investigation since its inception. Other regulatory agencies with historical involvement in site review include the California Regional Water Quality Control Board (RWQCB) and the California Department of Fish and Game (CDFG).

The following phases of site investigation and corrective action have been completed:

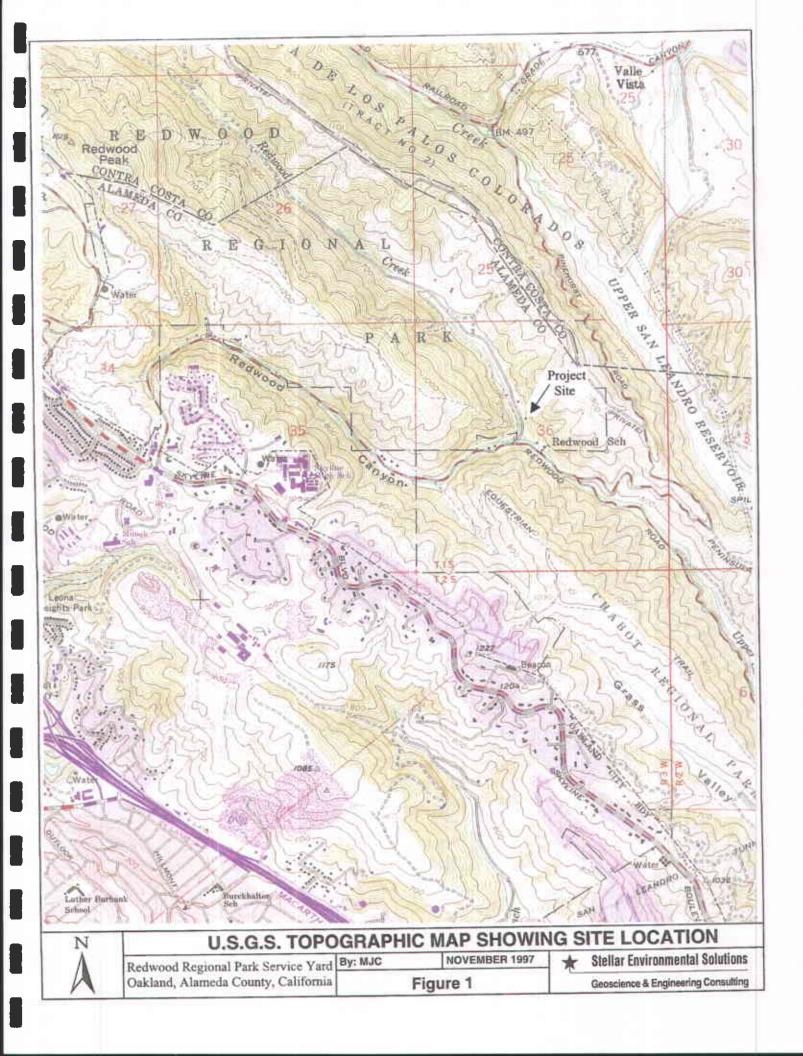
- May and June 1993: Site USTs were removed.
- September and October 1993: Initial site characterization (17 exploratory boreholes).
- October 1994: Installation of six groundwater monitoring wells.
- November 1994 to April 1999: Quarterly groundwater and surface water monitoring (14 events).
- April 1999: Additional site characterization (10 exploratory boreholes) and initial instream bioassessment event.
- December 1999 to September 2000: Quarterly groundwater and surface water monitoring (two events).
- December 2000: Installation of two additional groundwater monitoring wells.
- January 2001 to August 2001: Quarterly groundwater and surface water monitoring (three events) and second instream bioassessment event.
- September 2001: Installation of three additional groundwater monitoring wells and injection of ORCTM via 44 exploratory injection boreholes.
- December 2001: Quarterly groundwater and surface water monitoring (one event).

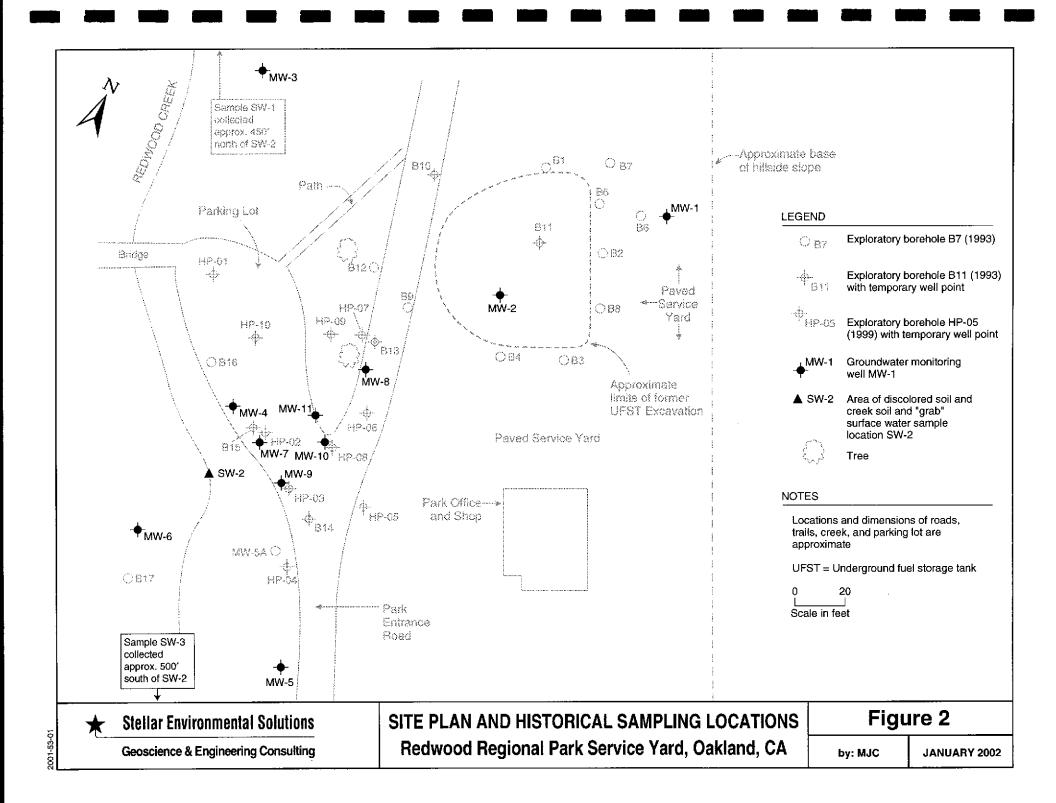
OBJECTIVES AND SCOPE OF WORK

This report discusses activities conducted from October through December 2001, including:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant concentrations and natural attenuation indicators;
- Collecting surface water samples for contaminant analysis; and
- Evaluating hydrochemical trends and assessing the effectiveness of the ORCTM injection program in the central area of contamination.

Previous SES reports submitted in June 1999 and April 2000 provided a full discussion of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and evaluation of hydrochemical trends and plume stability. An October 2000 Feasibility Study report for the site, submitted to ACHCSA, provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d). The well installations, monitoring, and ORCTM injection activities completed by SES were presented in the October 2001 Well Installation, Site Monitoring, and Corrective Action Report.


SITE DESCRIPTION


The project site is located at 7867 Redwood Road in Oakland, Alameda County, California. Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 545 feet amsl at Redwood Creek, which approximately defines the western edge of the project site with regard to this investigation. Figure 2 shows the site plan.

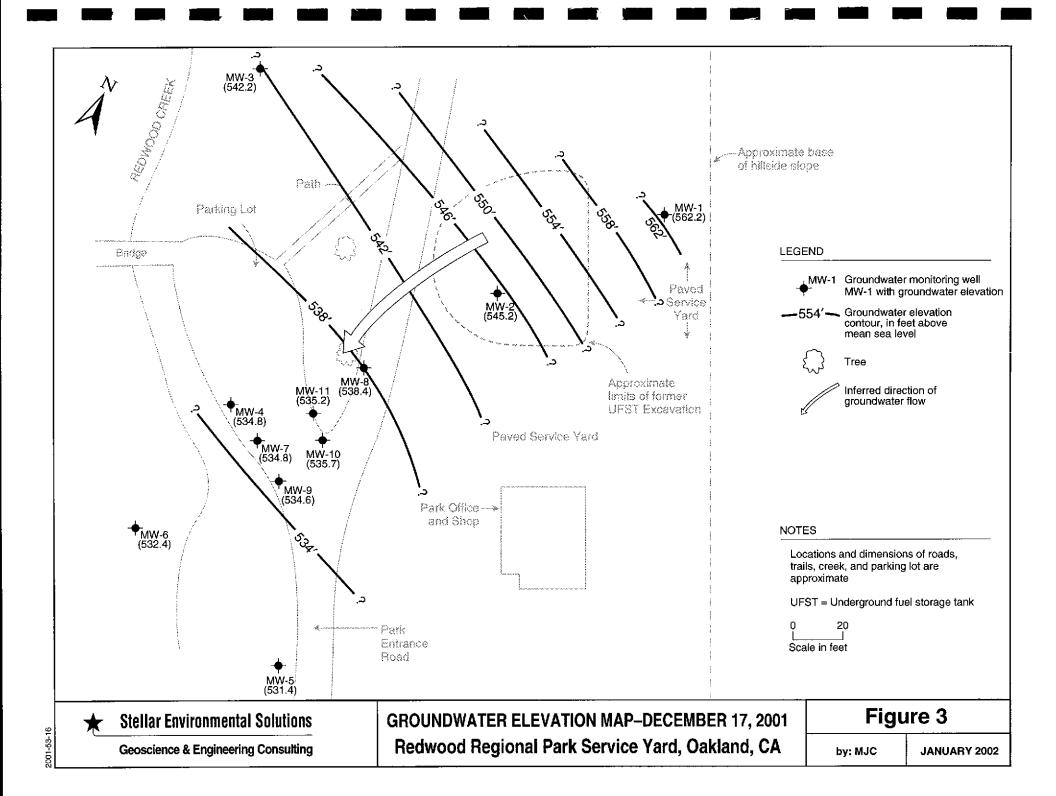
REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACHCSA, with oversight provided by the RWQCB. The CDFG is also involved due to concerns over water quality impacts to Redwood Creek. All workplans and reports are submitted to these agencies. The most recent ACHCSA directive regarding the site (letter dated January 8, 2001) approved the ORCTM injection corrective action and requested continued quarterly groundwater monitoring and sampling.

Historical ACHCSA-approved revisions to the groundwater sampling program have included: 1) discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6; 2) discontinuing creek surface water sampling at upstream location SW-1; and 3) reducing the frequency of creek surface water sampling from quarterly to semi-annually (ACHCSA, 1996). The latter recommendation has not yet been implemented due to continued concern over potential impacts to Redwood Creek.

2.0 PHYSICAL SETTING

Following is a brief summary of the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. A full discussion is presented in the SES June 1999 report.


Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit was encountered that laterally grades to a clay or silty clay. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet which is saturated in the rainy period (late fall through early spring) and unsaturated the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Local groundwater flow direction has been consistently measured as northeast to southwest.

Figure 3 is a groundwater elevation map constructed from the current event monitoring well static water levels, and Table 1 (in Section 4.0) summarizes current event groundwater elevation data. The groundwater gradient is relatively steep—approximately 2 feet per foot—between well MW-1 and the former UFST source area, resulting from the topography and the highly disturbed nature of sediments in the landslide debris. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.1 feet per foot. The direction of shallow groundwater flow during the current event was west-southwest (toward Redwood Creek), which is consistent with site historical groundwater flow direction.

From site-specific empirical data (using the estimated time for UFST-sourced contamination to reach Redwood Creek), a conservative estimate of groundwater velocity within the aquifer material is at 7 to 10 feet per year, with the rate of movement within the clay rich zones being substantially less.

Redwood Creek borders the site to the west, and is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths to 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater) in the vicinity of the site that discharges into Upper San Leandro Reservoir, located approximately 1 mile southeast of the site.

3.0 DECEMBER 2001 CREEK AND GROUNDWATER SAMPLING

This section presents the creek surface water and groundwater sampling and analytical methods for the current event. Groundwater and surface water analytical results are summarized in Section 4.0. Monitoring and sampling protocols were in accordance with the ACHCSA-approved SES technical workplan (SES 1998a). Activities included:

- Measuring static water levels and field analyzing pre-purge groundwater samples for indicators of natural attenuation (dissolved oxygen, ferrous iron, and redox potential) in all site wells (MW-1 through MW-11);
- Collecting pre-purge groundwater samples for laboratory analysis of the natural attenuation indicators nitrate and sulfate from monitoring wells MW-3, MW-4, and MW-7 through MW-11;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within the groundwater plume (MW-2, MW-4, and MW-7 through MW-11); and
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.

Creek sampling and groundwater monitoring/sampling was conducted on December 17, 2001. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2. Well construction information and water level data are summarized in Table 1. Appendix A contains the groundwater monitoring field record.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the direct supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (RWQCB, 1989), and followed the methods and protocols approved by the ACHCSA in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (12/01)
MW-1	18	7 to17	565.9	562.2
MW-2	36	20 to 35	566.5	545.2
MW-3	42	7 to 41	560.9	542.2
MW-4	26	10 to 25	548.1	534.8
MW-5	26	10 to 25	547.5	531.4
MW-6	26	10 to 25	545.6	532.4
MW-7	24	9 to24	547.7	534.8
MW-8	23	8 to 23	549.2	538.4
MW-9	26	11 to 26	549.4	534.6
MW-10	26	11 to 26	547.3	535.7
MW-11	26	11 to 26	547.9	535.2

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are feet above USGS mean sea level. Elevations of Wells MW-1 through MW-6 were surveyed by EBRPD relative to USGS Benchmark No. JHF-49. Wells MW-7 through MW-11 were surveyed by a licensed land surveyor using existing site wells as datum.

of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of a minimum of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled.

Approximately 100 gallons of well purge water and decontamination rinseate from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES on December 17, 2001. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and location SW-3

(approximately 500 feet downstream from SW-2) (see Figure 2 for locations). In accordance with a previous ACHCSA-approved SES recommendation, upstream sample location SW-1 was not sampled.

At the time of sampling, water in the creek was relatively high and flowing briskly between locations SW-2 and SW-3. Creek water depth was approximately 1 to 2 feet. Because of the high water flow, the historically-observed (during low water conditions) petroleum sheen at SW-2 was not evident.

4.0 CURRENT MONITORING EVENT ANALYTICAL RESULTS AND REGULATORY CONSIDERATIONS

This section presents the field and laboratory analytical results of the most recent monitoring event, preceded by a brief summary of regulatory considerations regarding surface water and groundwater contamination. Table 2 and Figure 4 summarize the contaminant analytical results of the current monitoring event; Table 3 summarizes natural attenuation indicator results from the current event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Section 5.0 contains a detailed discussion of hydrochemical and surface water trends and a preliminary evaluation of the effectiveness of the ORCTM injection corrective action. Appendix C contains a tabular summary of historical groundwater and surface water analytical results and hydrochemical trend plots.

REGULATORY CONSIDERATIONS

Groundwater Contamination

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), RWQCB approval for this exclusion has not been obtained for the site. As summarized in Table 2, site groundwater contaminant levels are compared to two sets of criteria: 1) RWQCB Tier 1 Risk-Based Screening Levels (RBSLs) for sites where groundwater is a current or potential drinking water source; and 2) RBSLs for sites where groundwater is not a current or potential drinking water source.

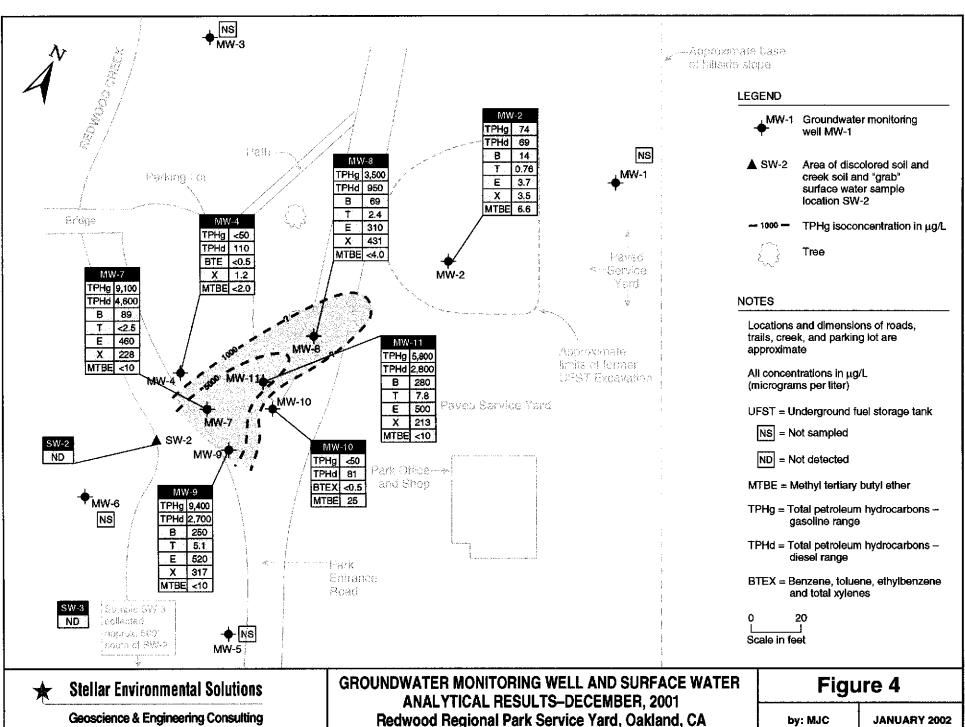
As stipulated in the RBSL document (August 2000, Interim Final), the RBSLs are not cleanup criteria; rather they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater RBSLs are include one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of RBSLs suggests that additional investigation and/or remediation is warranted. While drinking water standards (e.g., Maximum Contaminant Levels [MCLs]) are

Table 2 Groundwater and Surface Water Sample Analytical Results – December 2001 Redwood Regional Park Corporation Yard, Oakland, California

Paris de Carriera	Concentrations in µg/L									
Compound	ТРИд	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE			
		GF	ROUNDWAT	ER SAMPLE	S	Manual system for				
MW-2	74	69	14	0.76	3.7	3.5	6.6			
MW-4	< 50	110	< 0.5	< 0.5	< 0.5	1.2	< 2.0			
MW-7	9,100	4,600	89	< 2.5	460	228	< 10			
MW-8	3,500	950	69	2.4	310	431	< 4.0			
MW-9	9,400	2,700	250	5.1	520	317	< 10			
MW-10	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	25			
MW-11	5,800	2,800	280	7.8	500	213	< 10			
Groundwater RBSLs ^(a)	100 / 500	100 / 640	1.0 / 46	40 / 130	30 / 290	13 / 13	5.0 / 1,800			
	F	REDWOOD C	REEK SURF	ACE WATE	R SAMPLES		<u> </u>			
SW-2	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0			
SW-3	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0			
Surface Water Screening Levels (a, b)	500	640	46	130	290	13	8,000			

Notes:

MTBE = Methyl tertiary-butyl ether.


TPHg = Total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons - gasoline range).

TPHd = Total petroleum hydrocarbons - diesel range (equivalent to total extractable hydrocarbons - diesel range).

 $\mu g/L$ = Micrograms per liter, equivalent to parts per billion (ppb).

⁽a) RWQCB Risk-Based Screening Levels (drinking water resource threatened/not threatened) (RWQCB, 2000).

⁽b) Lowest of chronic and acute surface water criteria published by the State of California, U.S. Environmental Protection Agency, or U.S. Department of Energy.

001-53-17

Table 3
Groundwater Sample Analytical Results
Natural Attenuation Indicators – December 17, 2001
Redwood Regional Park Corporation Yard, Oakland, California

Sample LD:	Nitrogen (as Nitrate) (mg/L)	Sulfate (mg/L)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)	Redox Potential (milliVolts)
MW-1	NA	NA	2.9	0.2	167
MW-2	NA	NA	3.2	0.5	84
MW-3	0.03	36	2.8	0.1	59
MW-4	0.57	76	9.8	0.4	38
MW-5	NA	NA	2.7	0.4	95
MW-6	NA	NA	2.5	0.4	146
MW-7	< 0.05	15	2.5	3.7	-47
MW-8	< 0.05	85	4.0	0.2	163
MW-9	< 0.05	20	2.4	3.6	-22
MW-10	0.56	61	> 15.0	0.1	48
MW-11	< 0.05	67	2.2	0.0	-51

Notes:

mg/L = Milligrams per liter, equivalent to parts per million (ppm).

NA = Not analyzed.

published for the site contaminants of concern, the ACHCSA has indicated that impacts to nearby Redwood Creek are of primary importance and that site target cleanup standards should be primarily evaluated within the context of surface water quality criteria.

Surface Water Contamination

As summarized in Table 2, site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the RWQCB August 2000 RBSL document, benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

- As shown on Figure 4, the area of groundwater contamination in excess of screening level criteria appears no greater than 150 feet long and 250 feet wide, and may be less.
- The groundwater contaminant plume has become disconnected from the former source and migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek.
- The zone of greatest contamination is an approximately 60-foot by 60-foot area just upgradient of the three downgradient wells bordering the creek bank. Current and historical data suggest that maximum concentrations for the majority of the contaminants have not yet reached the creek, but will reach the creek within one to two years if unabated. Therefore, continued discharge of elevated concentrations could continue for at least several years.
- While discharge of the hydrocarbon plume to the creek is occurring, no site-sourced contaminants in excess of surface water screening level criteria were detected in either surface water sample.

NATURAL ATTENUATION INDICATORS

Pre-purge groundwater samples from selected wells were collected and analyzed for indicators of the natural biodegradation of the hydrocarbon contamination or "natural attenuation." Petroleum hydrocarbons require molecular oxygen to break down the ring structure of specific constituents. Accordingly, although biodegradation of hydrocarbons can occur under anaerobic conditions, hydrocarbon biodegradation is greatest under aerobic conditions. As a result of the demonstrated degradability of petroleum hydrocarbons, remediation by natural attenuation has been found to be a viable option for addressing many hydrocarbon plumes, replacing the need for more aggressive remediation. However, such natural attenuation only occurs if the concentration of hydrocarbons is low enough to facilitate the infiltration of natural oxygen through the interstitial space around the contamination, supporting the microorganisms for which the contamination is a food source, thus "attenuating" it. The concentration in soil or groundwater above which natural attenuation is unlikely to take place is still the subject of various research studies. In general, biodegradation of petroleum hydrocarbons in groundwater has a significant role in creating a stable plume and minimizing groundwater plume configuration and concentrations over time. Evidence of the historical occurrence and potential for future occurrence of biodegradation can be obtained from analysis of groundwater for specific biodegradation-indicator parameters, including dissolved oxygen, oxidation-reduction potential (ORP), and general mineral analyses (ferrous iron, nitrate, and sulfate).

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically-favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 mg/L of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. Current monitoring event DO concentrations ranged from 2.4 to > 15 mg/L.

The extremely high level of DO in MW-10 (> 15 mg/L) and the relatively low levels of TPH compared to the previous quarter indicate that groundwater in the immediate vicinity has been highly oxygenated due to the recent ORC injection program. Natural attenuation of the contamination is thus being enhanced at that location. In other site wells, there is no direct correlation between DO and TPH concentrations. As discussed in detail in Section 5.0, dissolved oxygen levels generally increased following the September 2001 ORCTM injection program.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing conditions, the ORP of groundwater is positive; while in reducing conditions, the ORP is typically negative (or less positive). Reducing conditions (less positive ORP) are consistent with occurrence of anaerobic biodegradation. Therefore, ORP values of groundwater inside a hydrocarbon plume are typically less than those measured outside the plume.

Current monitoring event ORP concentrations ranged from -47 to 167 mV. Of the four wells with pronounced hydrocarbon contamination (MW-7, MW-8, MW-9, and MW-11) the ORP values for three of the wells (MW-7, MW-9, and MW-11) showed the expected inverse correlation with TPH. The ORP value for MW-8 did not show the expected inverse correlation. The wells outside the TPH plume also showed an inverse correlation with TPH (elevated ORP and low to no TPH).

General Mineral Analyses

An inverse relationship between general minerals—including ferrous iron (Fe_2^+), nitrate (NO_3^-), and sulfate (SO_4^{-2})—and hydrocarbon concentrations is also indicative of the occurrence of biodegradation. Specifically, anaerobic degradation and oxidation of compounds is implied where general mineral concentrations are low and TPH concentrations are high.

5.0 HYDROCHEMICAL TRENDS AND EVALUATION OF CORRECTIVE ACTION EFFECTIVENESS

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. A preliminary evaluation of the effectiveness of the ORCTM injection corrective action is also made. Appendix C contains hydrochemical trend plots for key site contaminants in those site wells with at least 1 year of monitoring data (MW-4, MW-7, and MW-8).

All petroleum-impacted wells showed a decrease in contaminant concentrations relative to the previous quarter (the first monitoring event following the ORCTM injection program), with some exceptions: TPHd increased in well MW-9; ethylbenzene increased slightly in well MW-2; and benzene, ethylbenzene and xylenes increased slightly in well MW-7. A general decrease of contaminant concentrations was expected in the December event due to seasonal impacts of dilution from rainwater recharge. Because only one monitoring event has occurred since the ORC injection program, it is too early to determine the extent to which the decreased contaminant concentrations are also the result of the ORC injection, and if the downward trend will continue.

Three wells within the contaminant plume (MW-4, MW-7, and MW-8) have at least four quarters of analyses for the primary site contaminants (TPHg, TPHd, benzene, and MTBE). Well MW-4 has shown an overall decrease in all contaminant concentrations over the year of monitoring, including a decrease between the pre- and post-ORC injection events. Contaminant concentrations in the most recent event (indicative of wet weather conditions) are well below the concentrations of the previous wet weather event (January 2001). Well MW-8 has shown similar downward trends for all contaminants except TPHd (the concentration of which is equivalent to that measured a year ago). Well MW-7 has shown a downward trend for TPHg and MTBE. Benzene in this well is at approximately the same concentration as a year ago, while TPHd has increased slightly.

Because of the general decrease in contaminant concentrations, the lateral limits of contamination (iscontours) have decreased relative to the previous event, with the center of contaminant mass moving downgradient, toward Redwood Creek.

Appendix C contains a plot showing dissolved oxygen (DO) concentrations in petroleum-impacted wells MW-7 and MW-8 over the first year of monitoring in those wells. A substantial increase in DO is indicated following the September 2001 ORCTM injection program. In the three newer wells (MW-9, MW-10, and MW-11) installed at the time of the ORC program, only MW-10 has shown an increased DO level since the ORC injection. While the data suggest some increase in DO at some locations, there is insufficient data (only one post-injection monitoring event) for a rigorous evaluation of DO trends.

In summary, the December 2001 data show a reduction in both contaminant magnitude and extent compared to the previous years of monitoring results.

Approximately 3 months has passed since the ORC injection. The useful life of injected ORC is generally 6 to 9 months. The effectiveness of the ORC injection program will be better evaluated following the results of the next two monitoring events. If these events continue to show a downward trend of contaminant concentrations, but concentrations remain above screening level criteria, a second (more focused) ORC injection program would be appropriate to effect additional contaminant reductions.

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (20 events). A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- The first phase of an anticipated two-phase ORCTM injection corrective action program was implemented in September 2001. Approximately 3,000 pounds of ORCTM was injected into 44 boreholes over a 4,400-square foot area of the maximum groundwater contamination. The ORCTM was injected over the full saturated interval (including capillary fringe). The corrective action is designed to facilitate biodegradation within the central area of the plume, with the ultimate objective of reducing or eliminating continued discharge of contaminated groundwater to Redwood Creek.
- Current site groundwater contaminant concentrations exceed their respective groundwater RBSLs (for both cases where drinking water resource is and is not threatened), with the exception of toluene, which does not exceed either set of criteria. Site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.
- Maximum groundwater contaminant concentrations for TPHg and TPHd were detected in wells MW-9 and MW-7, respectively (both located at the extreme downgradient edge of the site, immediately upgradient of Redwood Creek). Maxima for other site contaminants were detected in wells MW-10, MW-11, and MW-8 (located at least 50 feet upgradient of Redwood Creek). Concentrations in former source area well MW-2 (approximately 130 feet upgradient of Redwood Creek) are approximately one order of magnitude below downgradient well concentrations.
- The existing well layout fully constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feeet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe.

- The area of groundwater contamination in excess of screening level criteria is no greater than 150 feet long and 250 feet wide, and is likely to be less.
- The groundwater contaminant plume has become disconnected from the former source and has migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek.
- The zone of greatest contamination is an approximately 60-foot by 60-foot area just upgradient of the three downgradient wells bordering the creek bank. Current and historical data suggest that maximum concentrations for the majority of the contaminants have not yet reached the creek, but will reach the creek within one to two years if unabated. Therefore, continued discharge of elevated concentrations could continue for at least several years.
- No site-sourced contaminants were detected in the two surface water samples.
- In general, petroleum-impacted wells showed a decrease in contaminant concentrations relative to the previous quarter, the first monitoring event following the ORCTM injection program.
- Three wells within the contaminant plume (MW-4, MW-7, and MW-8) have at least four quarters of analyses for the primary site contaminants (TPHg, TPHd, benzene, and MTBE). Well MW-4 has shown an overall decrease in all contaminant concentrations over the year of monitoring, including a decrease between the pre- and post-ORC injection events, although much of this may reflect the natural decrease in concentration associated with winter recharge.
- Contaminant concentrations in the most recent event (indicative of wet weather conditions) are well below the concentrations of the previous wet weather event (January 2001). Well MW-8 has shown similar downward trends for all contaminants except TPHd (the concentration of which is equivalent to that measured a year ago). Well MW-7 has shown a downward trend for TPHg and MTBE. Benzene in this well is at approximately the same concentration as a year ago, while TPHd has increased slightly.
- Because of the general decrease in contaminant concentrations, the lateral limits of contamination (iscontours) have decreased relative to the previous event, with the center of contaminant mass moving downgradient, toward Redwood Creek.
- Following the September 2001 ORCTM injection program, a substantial increase in dissolved oxygen in groundwater is indicated. While the data suggest some increase in DO at some locations, insufficient data (only one post-injection monitoring event) exists for a rigorous evaluation of DO trends.
- Natural attenuation is suggested to be occurring at the site, mainly at the plume margins and former source area. Prior to ORCTM injection, natural attenuation was likely minimal to non-

existent in the higher concentration portion along the centerline of the plume due to limited oxygen content, suggesting that natural attenuation has not historically been sufficient to mitigate impacts to the creek.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue the quarterly program of creek and groundwater sampling and reporting.
- Evaluate the results of the next two quarterly events in the context of the efficacy of the corrective action, and implement the second ORCTM injection phase, if warranted.

7.0 REFERENCES AND BIBLIOGRAPHY

- Alameda County Health Care Services (ACHCSA), 2000. Letter to Mr. Ken Burger of East Bay Regional Park District. August 22.
- California State Water Resources Control Board (SWRCB), 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure State of California Leaking Underground Fuel Tank Task Force. October.
- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons, 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons, 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons, 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons, 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons, 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons, 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons, 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.

- Parsons, 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons, 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons, 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.
- Parsons, 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons, 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons, 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons, 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons, 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board San Francisco Bay Region (RWQCB), 2000.

 Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted for Soil and Groundwater, Interim Final. August.
- Stellar Environmental Solutions (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- SES, 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- SES, 2001c. Well Installation, Site Monitoring and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- SES, 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.

- SES, 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- SES, 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- SES, 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- SES, 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- SES, 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed these activities are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

WELL GAUGING DATA

Project#	0/1217-MAI) Date	12/17/01	Client	Sidle	<i>_</i>	
	Duit .		Chent	STURE	CNV.	Solution

Site Redwood Regional Park Service Yard, Dabland

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)		Depth to well bottom (ft.)	Survey Point: TOP	0.0
mw-1	4					3.68	18.85	100	Z.9
MW-2	4			•		21.28	38.82	(3.2
nw-3	4					18.75	44.10		2.8
mw-4	4					13.35	26.51		
MW-5	4					16.15	26.92		9.8
mw-6	4					13.20	27.43		27
MW-7	2.					12.95		-/	2.5
mw-8	2					10.80	25.33	-	Z. \$
mu-9	Z		-						4.0
MW-10						14.80	26.00		24
·	Z					11.68	2875		715.0
MW-11	2					12.71	26.00		2.2
								*	
						1			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

	<u> </u>		VELL MONIT	ORING DATA	A S.ÆET			
Project #	: Redwood Rg	would level S	fernce Yord	Client: Steller Env. Silvetuns				
Sampler	the N			Start Date: 12/17/01				
Well I.D	: MW-			Well Diameter: 2 3 (4) 6 8				
Total We	ell Depth:	18,85		Depth to Wate	er: 3,68			
Before:		After:		Before:		After:		
Depth to	Free Produ	ict:		Thickness of I	Free Product (fe	et):		
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	ŶŚI HACH		
Purge Meth	od: Bailer Disposable Ba Middleburg Electric Subm	/. ,	Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier		
1 Case Volur	_(Gals.) X	ecified Volum	= nes Calculated Vo	_ Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations		
929	53.8	6-B	884	22	0	Clear		
,								
		·						
					Frances Iron =	2		
Did well	dewater?	Yes (No)	Gallons actuall	y evacuated:	0		
Sampling	Time:			Sampling Date	: iztaloi			
Sample I.	D.: Mh/-			Laboratory:	inhis & Tombi	75		
Analyzed	for TPH-	BTEX	MIBE TPH-D	Other: Nitrate	Sulfates			
Equipmer	nt Blanck I.I	D.: /	@ Time	Duplicate LD.:				
Analyzed	før: TPH-0	BTEX	МТВЕ ТРН-D	Other:	1-			
D.O. (if r	eq'd):		Pre-purge:	2.9 mg/L	Post-purge:	mg/ _L		
ORP (if re	ea'd):		Pre-purge:	167 mV	Post-purge:	${ m mV}$		

			WELL MONIT	FORING DAT	A STEET		
Project #	t: Redwood Re		Service Yard	Client: Stellar Env. Solutions			
Sampler	: Hake N			Start Date: /	2/17/01		
Well I.D).: MW- Z			Well Diamete	er: 2 3 (4	6 8	
Total We	ell Depth:	38.82		Depth to Wate	er: 21,28		
Before:		After:		Before:		After:	
Depth to	Free Prod	uct:		Thickness of l	Free Product (fe		
Referenc	ed to:	PVC	Grade	D.O. Meter (if		ŶŚI HACH	
Purge Meth	od: Bailer Disposable B Middleburg Electric Subn	,	Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier	
il. 4 1 Case Volur	_(Gals.) X _ me Sp	3 ecified Volur	= 34.7 nes Calculated Vo	Gals. 1"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47	
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations	
957	57.6	7.1	885	106	11.4	cloudy, adon	
959	58.2	7.1	896	7200	228	ti a	
1005	58.5	7.1	887	7200	34.2	11 4	
					Ferrous Iran	,5	
Did well	dewater?	Yes (<u>(N6)</u>	Gallons actuall	y evacuated: उ	4.2	
Sampling	Time: 10	10		Sampling Date	: 12/11/01		
Sample I.	D.: MW-	7		Laboratory: Ca	arts & Tombi	-2 S	
Analyzed	for < TPH-	G BTEX	MTBE TPH-D	Other: Market	15. Itales	`	
Equipmer	nt Blank I.I	D.:	@ Time	Duplicate I.D.:			
Analyzed	for: TPH-0	G BTEX	MTBE TPH-D	Other:			
D.O. (if re	eq'd):		Pre-purge:	3,2 mg/L	Post-purge:	$^{\sf mg}\!/_{ m L}$	
ORP (if re	.a'd).		Pre-purger	84 mV	Post-purge:	m abla	

		<u></u> √	VELL MONIT	FORING DAT	A SAEET			
Project #	t: Reduced Rg				vor Env Silutur	1.5		
Sampler:	: Make A			Start Date:	Start Date: 12/17/01			
Well I.D	: MW-3			Well Diamet	er: 2 3 (4) 6 8		
Total We	ell Depth:	44.10		Depth to Wat	ter: 18.75			
Before:		After:		Before:		After:		
Depth to	Free Produ	uct:		Thickness of	Free Product (fe	et):		
Reference	ed to:	(PVC)	Grade	D.O. Meter (i		YŚI HACH		
Purge Metho	Bailer Disposable Ba Middleburg Electric Subm		Waterra Peristaltic Extraction Pump Other = 47.5	Othe Gals. Sampling Metho Othe	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65 1.47		
l Case Volun	ne Spe	ecified Volum	 		0.37 Othe			
Time	Temp (°F)	pH ·	Cond.	Turbidity	Gals. Removed	Observations		
1020	56.7	7.4	623	17	0	clear		
<u> </u>					·			
			ļ					
			I		Femus Iron	- 1		
Did well (dewater?	Yes (No)	Gallons actua	lly evacuated:	0		
Sampling	Time: 102	25		Sampling Date	e: 12/11/01			
Sample I.!	D.: MW-	3		Laboratory: C	unhs & Tombio	7.5		
Analyzed	for TPH-C	G BTEX	MTBE TPU.D	Other Mirate	/Sulfates			
Equipmer	nt Blank I.I	D.:	@ Time	Duplicate I.D.				
Analyzed	for: трн-с	G BTEX	MTBE TPH-D	Other:				
D.O. (if re	eq'd):		Pre-purge:	2.8 mg/L	Post-purge:	mg/ _L		
ORP (if re			Pre-purge:	59 mV	Post-purge:	mV		

			WELL MONI	TORING DATA	A SAEET			
Project 7	#: Redwood 2		Service Yard		Client: Steller Env. Solution:			
Sampler	: Huke N			Start Date: /2	2/17/01			
Well I.D): MW-	<i>†</i>		Well Diameter	er: 2 3 4	0 6 8		
Total W	ell Depth:	26.51		Depth to Wate				
Before:		After:		Before:		After:		
Depth to	Free Prod	luct:		Thickness of J	Free Product (fe			
Referenc	ed to:	PVC	Grade	D.O. Meter (if		ŶŚI HACH		
Purge Meth	hod: Bailer Disposable B Middleburg Electric Subn		Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing			
8.6 1 Case Volum	me Sp	7 pecified Volum	= 25.8 mes Calculated Vo	Gals.	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp (°F)		Cond.	Turbidity	Gals. Removed	Observations		
1048	56.0	8.9	816	119	8:6	Cloudy, Brown		
io D	\$6.6	9.0	782	79	17-2	less cloudy		
1055	56.6	9.1	761	68	Z5.8	(,		
					Ferrous Iron	.4		
Did well	dewater?	Yes (No	Gallons actually	y evacuated:	25.8		
Sampling	Time: U	(00)		Sampling Date:	: 12/11/01			
Sample I.	D.: MW-	4		Laboratory: Ca	irhs & Tombi	7.5		
Analyzed	for STPH-C	G BTEX	мтвіх трн-р	Other: Wimate	/Sulfates (Po	e-Purge)		
Equipmen	nt Blank I.I	D .:	(a) Time	Duplicate I.D.:				
Analyzed	for: TPH-C	G BTEX	MTBE TPH-D	Other: 🗸				
).O. (if re	eq'd):		Pre-purge:	9.8 ^{mg} / _L	Post-purge:	$^{ m mg}/_{ m L}$		
ORP (if re	-a'd).	 _	Pre-purge:	38 mV	Post purge	m.V		

			NELL MONIT	ORING	G DAT	A SAEET	_	
Project #: Redused Regioned Park Service Yard				Client: Steller Env. Silveding				
Sampler: +6k 1/				Start I	Start Date: 12/17/01			
Well I.D.: MW-5				Well I	Well Diameter: 2 3 4 6 8			
Total Well Depth: 26.92				Depth	Depth to Water:/6.15			
Before: After:				Before	Before: After:			
Depth to	Depth to Free Product:				Thickness of Free Product (feet):			
Referenc	ed to:	PVC)	Grade	 	Meter (if		YSI HACH	
Purge Meth	od: Bailer Disposable B Middleburg Electric Subm	/	Waterra Peristaltic Extraction Pump Other		ampling Method: Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier			
1 Case Volun	ne Sp	pecified Volun		_ Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47	
Time	Temp (°F)	pН	Cond.	Turb	oidity	Gals. Removed	Observations	
	No p	purze :	Sample Fo	F	Errous	Iron, D.C	7. A ORP	
						Ferous Inn	+ , 4	
Did well c	Yes	No	Gallons	Gallons actually evacuated:				
Sampling Time:				Samplii	Sampling Date: i2/n/or			
Sample I.D.: MW-5 La					Laboratory: Curhs & Tem Lins			
Analyzed	for TPH-	G BTEX		·		Sulfates		
Equipmen	nt Blank I.I	D.:	@ Time]	Duplica	ıte I.D.:			
Analyzed	for: TPH-0	G BTEX	MTBE TPH-D (Other:				
D.O. (if re	:q'd):		Pre-purge:	2.7	mg/L	Post-purge:	^{mg} / _L	
ORP (if req'd):			Pre-purge:	95	mV	Post-purge:	${ m mV}$	

	WELL MONI	TORING DAT	'A SAEET					
Project #: Redward Lgund Park		Client: Steller Env. Silveturs						
Sampler: +6k x/		Start Date: /	Start Date: 12/17/01					
Well I.D.: MW-6		Well Diamete	er: 2 3 4	6 8				
Total Well Depth: 27.9:	3	Depth to Wate	er: 13.20					
Before: After:		Before:		After:				
Depth to Free Product:		Thickness of 1	Free Product (fe					
Referenced to:	Grade	D.O. Meter (it	· · · · · · · · · · · · · · · · · · ·	YSI HACH				
Purge Method: Bailer Disposable Bailer Middleburg Electric Submersible	Waterra Peristaltic Extraction Pump Other	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing					
(Gals.) X 1 Case Volume Specified Volume	= mes Calculated Vo	Gals. Dlume	ter Multiplier Wel 0.04 4" 0.16 6" 0.37 Oth	1 <u>Diameter</u> <u>Multiplier</u> 0.65 1.47 ter radius ² * 0.163				
Time Temp (°F) pH	Cond.	Turbidity	Gals. Removed	Observations				
12-13 55.3 6.9	564	18	0	Clear				
			From Inn	.4				
Did well dewater? Yes	No	Gallons actuall	y evacuated:	-				
Sampling Time:		Sampling Date: 12/n/or						
Sample I.D.: MW-C		Laboratory: Curhs & Temlins						
Analyzed for TPH-G BTEX	· · · · · · · · · · · · · · · · · · ·	Other: Nimate / Sulfates						
Equipment Blank I.D.:	(a) Time	Duplicate I.D.:						
Analyzed for: трн-G втех	MTBE TPH-D	Other:						
D.O. (if req'd):	Pre-purge:	2.5 mg/L	Post-purge:	^{mg} /L				
ORP (if req'd):	Pre-purge:	146 mV	Post-purge:	mV				

			VELL MONI	FORING DAT	'A SaiEET						
Project #	: Redwood Re		Service Yard		Client: Stellar Env. Solutions						
Sampler	the N			Start Date:	Start Date: 12/17/01						
Well I.D	Well I.D.: Mw-7				er: ② 3 4	6 8					
Total Well Depth: 25.33				Depth to Wat	er:						
Before:		After:		Before: 12	is	After:					
Depth to	Free Prod	uct:		Thickness of	Free Product (fe	eet):					
Referenc	ed to:	PVC	Grade	D.O. Meter (i		ŶŜI HACH					
Purge Meth	od: Bailer Disposable B Middleburg Electric Subn		Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier					
2.0 1 Case Volur	_(Gals.) X _ ne Sp	3 pecified Volur	= 6.0 nes Calculated Vo	Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47					
Time	Temp (°F)	pΗ·	Cond.	Turbidity	Gals. Removed	Observations					
1341	58.9	68	721	7200	20	Brown / Grey Cloudy , oder					
1344	\$ 8.0	6.8	695	7200	4.0	11 11 11 11					
1347	57.6	6.8	705	7200	6.0	il it to be					
					Ferrous Iron	3.7					
Did well	dewater?	Yes (No	Gallons actual	ly evacuated:	6.0					
Sampling	Time: 1	352		Sampling Date	e: 12/17/01						
Sample I.	D.: MW-	7		Laboratory: C	urtis & Tombin	25					
Analyzed	for≤ TPH-	G BTEX	мтв є трн-d	Other: Notate	Sulfates C	The Purze)					
Equipmen	t Blank I.I	D.:	@ Time	Duplicate I.D.:							
Analyzed	for: TPH-	G BTEX	МТВЕ ТРН-D	Other:							
D.O. (if re	eq'd):		Pre-purgè:	2.5 mg/L	Post-purge:	mg _/ L					
ORP (if re	eq'd):		Pre-purge:	~47 mV	Post-purge:	${ m mV}$					

<u> </u>			VELL MONIT	FORING DAT	A SaiEET					
Project	4: Redused Re	simed Art S	Service Yord	Client: Stell	Client: Steller Env. Silvedians					
Sampler	: the N			Start Date: 12/17/01						
Well I.L): MW-8			Well Diamete	r: 🔔 3 4	6 8				
Total Well Depth: 22 21			Depth to Wate	 						
Before: After:			Before:		After:					
Depth to	Free Prod	uct:		Thickness of l	Free Product (fe	eet):				
Referenced to: PVC Grade				D.O. Meter (i	freq'd): (ÝŚI HACH				
Purge Met	hod: Bailer Bisposable B Middleburg Electric Subn		Waterra Peristaltic Extraction Pump Other		Disposable Bailer Extraction Port Dedicated Tubing					
1, 8 1 Case Volu	(Gals.) X meSp	> ecified Volum		Gals. Gume Well Diame 1" 2" 3"	ter Multiplier Weli 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius² * 0.163				
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations				
1237	58.1	7.3	771	7200	1.8	Silly Brown High turbouds try				
1240	58.1	7.1	801	7200	3.6	" 4 oder				
1243	58.6	7.1	804	7200	5-4	u 4 (1				
					Ferrous Iron	2				
Did well	dewater?	Yes (Ño	Gallons actual	y evacuated:	5.4				
Sampling	g Time: /	248		Sampling Date	: 12/11/01					
Sample I	.D.: MW-E	5		Laboratory: C	artis & Tombi	ns				
Analyzed	for TPH-	G BTEX	мтве трн-р	Other: Whate	/Sulfates (Pa	e Page)				
Equipme	nt Blank I.I	D.::	@ Time	Duplicate I.D.:						
Analyzed	l for: TPH-	G BTEX	MTBE TPH-D	Other:						
D.O. (if r	eq'd):		Pre-purge:	4.0 mg/L	Post-purge:	mg/L				
ORP (if r	eq'd):		Pre-purge:	163 mV	Post-purge:	mV				

		APTIT MONT	TOKIN	(G DAT	A SALEET			
: Redward Le						ns		
: Mike N			Start	Date: /	2/17/01			
: MW- C	7		Well	Diamete	er: 6 3 4	1 6 8		
Total Well Depth: 26.00					<u> </u>			
	After:			<u> </u>	·	After:		
Free Prod	uct:		Thick	mess of I	Free Product (fe			
ed to:	PVC	Grade			<u> </u>	YSI HACH		
Middleburg		Waterra Peristaltic Extraction Pump Other	Samplin	Other	Disposable Bailer Extraction Port Dedicated Tubing			
_(Gals.) X _ ne Sp	ecified Volur	$\underline{} = \underbrace{5 \cdot 4}_{\text{Calculated Vo}}$	Gals.	2"	0.16 6" 0.37 Othe	1.47		
Temp (°F)		Cond.		rbidity	Gals. Removed			
58.4	6.9	892			1.8	Brown, Cloudy		
584	6.9	897	7-	200	3.6	26 4		
58.0	6.8	899	77	200	5.4	le u e		
					Ferrous Iron	3.6		
lewater?	Yes (No	Gallon	s actuall		5.4		
Time: 13	323	-	Sampling Date: 12/17/01					
): MW-	9		Laboratory: Curhs & Tembins					
for <u>TPH</u>	G BTEX	МТВЕ ТРН-D	Other: Notate / Sulfates (Par Purge)					
t Blank I.I	J.:	<u> </u>			<u> </u>			
for: TPH-G	G BTEX	MTBE TPH-D (Other:					
q'd):		Pre-purgè:	2.4	L mg/L	Post-purge:	mg/ _L		
q'd):		Pre-purge:	-27	z _m v	Post-purge:	mV		
	Free Product to: Bailer Disposable By Middleburg Electric Subm (Gals.) X Temp (°F) So 4 So 6 Fine: 13 Con TPH-Condition	Electric Submersible (Gals.) X (Gals.) X (See Specified Volum Temp (°F) pH (So. 4 6.9 (So. 6.9 (So. 6.8 (Constitution of the second of	Eldward Lowned Rank Since Yard Hule N Hule N After: Free Product: ed to: PVC Grade od: Bailer Waterra Prisposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other (Gals.) X = 5.4 e Specified Volumes Calculated Vo Temp (°F) pH Cond. S& 4 6.9 \$9.7 S& 6.9 \$9.7 Fine: 1323 O.: MW-9 for: TPH-G BTEX MTBE TPH-D Gald): Pre-purge:	Clien Clie Clien Clied Clien Clien Clien Clien Clien Clien Clien Clien Clied Clien Cli	Client: Stem Hule N Start Date: N Well Diamete Depth to Wate After: Before: Free Product: Thickness of I add: Sampling Method Bailer Waterra Peristaltic Middleburg Extraction Pump Electric Submersible Other Other (Gals.) X (a) Specified Volumes Calculated Volume (Gals.) X (b) Specified Volumes Calculated Volume (Gals.) X (c) Specified Volumes Calculated Volume (Gals.) X (d) Specified Volumes Calculated Volume (Gals.) X (a) Specified Volumes Calculated Volume (Gals.) X (b) Specified Volumes Calculated Volume (Gals.) X (c) Specified Volumes Calculated Volume (Gals.) X (d) Specified Volumes Calculated Volume (D) Specified Volumes (Gals.) X (d) Specified Volumes Calculated Volume (D) Specified Volumes (Gals.) X (d) Specified Volumes Calculated Volumes (Gals.) X (d) Specified Volumes Calculated Volumes (d) Specified Volumes Calculated Volumes (Gals.) X (d) Specified Volumes Calculated Volumes (d) Specified Volumes (d)	Start Date: 12/17/01 Start Date: 12/17/01 Well Diameter: ② 3 4 After: Before: Free Product: Thickness of Free Product (feed to: PVC) Grade D.O. Meter (if req'd): Osposable Bailer Bailer Waterra Disposable Bailer Peristaltic Extraction Pump Dedicated Tubing Other Other: (Gals.) X		

ſ			VELL MONI	TOKING DAT	A SalEET				
Project #	: Redward Re	grand Park	Service Yard	Client: Steller Env. Salutums					
Sampler	: Make N			Start Date: 12/17/01					
Well I.D	: MW-C	0		Well Diamete	r: ② 3 4	6 8			
Total W	ell Depth:	28.75		Depth to Wate	er: 11.68				
D.C.				Before:		After:			
Depth to	Free Prod	uct:		Thickness of l	Free Product (fe	eet):			
Referenc	ed to:	PVC	Grade	D.O. Meter (if		ŶŚI HACH			
Purge Meth	od: Bailer Disposable B Middleburg Electric Subn	,	Waterra Peristaltic Extraction Pump Other		Disposable Bailer Extraction Port Dedicated Tubing				
2.7 1 Case Volui	_(Gals.) X _ ne Sp	3 pecified Volum	nes Calculated Vo	Gals. Olume Well Diamet	er <u>Multiplier Well</u> 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius² * 0.163			
Time	Temp (°F)	 	Cond.	Turbidity	Gals. Removed	Observations			
1138	56.7	9.8	867	7200	2.7	Brown , Cloudy			
1141	57.4	8.9	855	7200	5.4	Brown			
1145	56.9	9.0	839	7700	8.1	11 4			
					Ferrous Iron	- 1			
Did well	dewater?	Yes (No	Gallons actuall	y evacuated:	8.1			
Sampling	Time: "	(I)		Sampling Date	: 12/11/01				
Sample I.	D.: MW-	ιÒ	· · ·	Laboratory: C	irts & Tombio	25			
Analyzed	for TPH-	G BTEX	МТВКО ТРН-D	Other: Nitrate	/Sulfates (Pr	re Proge)			
Equipmen	ıt Blank I.I	D.:	Time	Duplicate I.D.:					
Analyzed	for: TPH-0	G BTEX	MTBE TPH-D	Other: // fry	de checked t	this D.O. readin			
D.O. (if re	:q'd):		Pre-purge:	7 (5.0 mg/L	Post-purge:	mg/ _L			
ORP (if re	:a'd):		Pre-purge:	49 mV	Post-purge:	mVi			

			WELL MONI	TURING DAT	'A SHEET					
Project	#: Redwood R	Egunul Art	Service Yord		Client: Steller End Solutions					
Sampler	T: Make N	(Start Date: 12/17/01					
Well I.L): MW-1	!/			Well Discourse (a)					
Total Well Depth: 26.00				Depth to Water		4 6 8				
Before:		After:		Before:		10				
Depth to	Free Prod				T. D. 1. (C.	After:				
Referenc		PVC	Grade	D.O. Meter (if	Free Product (fe					
Purge Meti	hod: Bailer Disposable B Middleburg Electric Subn		Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing	·				
Z.Z I Case Volum		Decified Volum	= 6.6 nes Calculated Vo	Gals.	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	<u>Diameter Multiplier</u>				
Time	Temp (°F)	 	Cond.	Turbidity	Gals. Removed	Observations				
1413	58.6	9.2	758	>200	22	Brown, Sulty				
1417	58.0	8.9	892	7200	4.4	;, Cr				
1420	57.8	7.8	914	7 200	6.6	er ee				
1423	57.8	7.6	960	7200	8.8	10 11				
			·		Ferrous Inn	0				
oid well o	dewater?	Yes (Ng	Gallons actuall	y evacuated: 6	0.6				
ampling	Time: 1	425		Sampling Date:						
ample I.I	D.: MW-1	11		Laboratory: C.	irtis & Tombin	25				
nalyzed	for< TPH-C	3 BTEX	MTBE TPH-D	Other: Withoute	Sulfates Ci	Re-Parza)				
quipmen	t Blank I.D).;	@	Duplicate I.D.:						
nalyzed	for: TPH-G	G BTEX I		Other:						
.O. (if re	q'd):		Pre-purge:	2.2 mg/L	Post-purge:	mg/L				
RP (if red	a'd):		Pre-purge.	-5/ mV	Post rurge:	V				

Curtis & Tompkins, Ltd., Analytical Laboratories. Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 11-JAN-02

Lab Job Number: 156131 Project ID: 2001-53

Location: Redwood Park Service Yard

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operat ons Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of _____

Laboratory Number: 156131 Receipt Date: 12/17/01

Client: Stellar Environmental Solutions

Project#: 2001-53

Location: Redwood Park Service Yard

CASE NARRATIVE

This hardcopy data package contains sample and QC results for two water samples that were received on December 17, 2001. The samples were received cold and intact.

TVH/BTXE: High Triflurotoluene surrogate recoveries were observed for the matrix spikes of sample CT# 156132-001. This is due to hydrocarbons coeluting with the surrogate peaks. No other analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

						Cha	h of	Cus	tody Re	56	d l		1		4	F,	1		Į.		ab ob	/o1
Laboratory	<i>ેડડેેેેે કે</i>	FIRM	Storet			thod of Shipmen			flurre d				İ	50) د	3	1				Date 13/17	of <u>1</u>
Address	Berkel 5	10 486	94710 0104	<u> </u>	- Air	bill No	-				/		/	7	7	7	Analysis	s Req	uired	7	///	
Project Owner Site Address	East Bay 7867	Red woo	I Rd. CA	↑ Qui	Pro	oject Manager lephone No. <u>(51</u>	0) 644-3	123	ker		Fillered	No. of Commissions	/ -		46/2	-//	/,		/		// Ben	narks
Project Name Project Number	Keymon	od Park,	Scrains	Yard	- -	x No(51 implers: <i>(Signatu</i>	0) 644-3	859 N. Y		//	/,	& / //	V. 466.					//				
Field Sam	ple Number	Lecation/ Depth	Date	Time	Sample Type	Type/Size of Conf	fainer	Pre Cooler	Servation Chemical	-{	-{	/	7			- {	-{	1	-{	<u> </u>	/	
SW-2			13)[7]	905	H 2 0	HOMI VOR		X	Hcl		3	χ	X									
5w-2			1	ર ૧	1	1-Lamber g	1955	X	None		1		<u> </u>	X		-		_			<u> </u>	
5w-3			}	115	H	40 ml vo!	A	γ	HCI		9	X	X					_ _		_		
5w-3			1	14	J	1-Lamber	glass	χ	None	_	1	-		X								
					1						1							_	-			
	Rece	ived 🗖 D Ambien	t 🖂	ntact		F		Presi	rvation Corre	ct?			-									
						 - 		T) 18:			_			<u> </u>								
] Signature —	Bin. Land		Date 1-/17/01	Receive Signs	ed by:	LEST	2	12/14/0	Relinquished by Signature —	y :					Date		celved i Signatu			• = =-		Date
l	iche M. Rui Idla (Env		Time	Print	_{ed} <u>S</u>	tevenE-S	Stanley 1	Time 0955						[Time		Printed Compa					Time
Company 2	C	erk OK	L	Com	pany			<u> </u>	Relinguished b	y:					Date	Re	ceived Signati	by:				Date
Comments: _									Printed				<u></u> .	_	Time		Printed	ı				Time
0-00-000									Company _	····	·			_ [Compa	any				_

Curtis & Tompkins Laboratories Analytical Report Redwood Park Service Yard 156131 Location: Lab #: EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2001-53 12/17/01 Sampled: Water Matrix: 12/20/01 Received: Units: ug/L 12/22/01 Analyzed: Diln Fac: 1.000 Batch#: 68989

Field ID:

SW-2

Lab ID:

156131-001

Type:

SAMPLE

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B(M)	
MTBE	ND	2.0	EPA 8021B	,
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	ì
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	¥REC	Limits	Analysis
Trifluorotoluene (FID)	110	59-135	8015B(M)
Bromofluorobenzene (FID)	106	60-140	8015B(M)
Trifluorotoluene (PID)	84	56-142	EPA 8021B
Bromofluorobenzene (PID)	80_	55-149	EPA 8021B

Field ID:

SW-3

Type:

SAMPLE

Lab ID:

156131-002

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	8015B(M)	f
MTBE	ND	2.0	EPA 8021B	ſ
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	108	59-135	8015B(M)
Bromofluorobenzene (FID)	107	60-140	8015B(M)
Trifluorotoluene (PID)	84	56-142	EPA 8021B
Bromofluorobenzene (PID)	80	55-149	EPA 8021B

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Curtis & Tompkins Labo	oratories Anal	ytical Report
_Lab #:	156131	Location:	Redwood Park Service Yard
lient:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2001-53		
<u>M</u> atrix:	Water	Sampled:	12/17/01
nits:	ug/L	Received:	12/20/01
nits: iln Fac:	1.000	Analyzed:	12/22/01
Batch#:	68989		

Type:

BLANK

Lab ID: QC166105

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	8015B(M)
TBE	N D	2.0	EPA 8021B
enzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
thylbenzene	ND	0.50	EPA 8021B
p-Xylenes	ND	0.50	EPA 8021B
,p-Xylenes o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
rifluorotoluene (FID)	109	59-135	8015B(M)
Bromofluorobenzene (FID)	112	60-140	8015B(M)
rifluorotoluene (PID)	86	56-142	EPA 8021B
romofluorobenzene (PID)	81	55-149	EPA 8021B

	Gasoline by	/ GC/FID CA LU	PT
Lab #: Client: Project#:	156131 Stellar Environmental Solutions 2001-53	Location: Prep: Analysis:	Redwood Park Service Yard EPA 5030B 8015B(M)
Type: Lab ID: Matrix: Units:	LCS QC166106 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 68989 12/22/01

Analyte	Spiked	Pagn 18	\$3813(0	Dimits	
Gasoline C7-C12	2,000	1,957	98	73-121	

Surrogate	2RE	C Limits	
Trifluorotoluene (FID)	121	59-135	
Bromofluorobenzene (FID)	111	60-140	

Benzene, Toluene, Ethylbenzene, Xylenes

Lab #: 156131

Client: Stellar Environmental Solutions

Project#: 2001-53

Type:

Lab ID:

LCS

Matrix: Units:

QC166109

Water ug/L

Location:

Prep:

Redwood Park Service Yard EPA 5030B Analysis: EPA 8021B Diln Fac: 1.000

Batch#: Analyzed:

68989 12/22/01

MTBE Analyte	Spiked	xX(x) xx x x x		
Benzene	20.00	Result	\RE(Limits
Toluene	20.00	24.39	122	51-125
Ethylbenzene	20.00	19.13	96	67-117
m,p-Xylenes	20.00	19.76	99	69-117
o-Xylene	40.00	20.17 40.42	101	68-124
	20.00	21.85	101	70-125
Surrogate	Spec 11	21.65	109	65-129

Surrogate			21.	85 109	65-129
Trifluorotoluene (Pin)	€R EC	Limits			
Bromofluorobenzene (PID)	85 84	56-142			
	04	55-149			

Gasoline by GC/FID CA LUFT Redwood Park Service Yard Location: EPA 5030B prep: 156131 Stellar Environmental Solutions 8015B(M) Lab #: <u> Analysis:</u> Client: 1.000 Project#: 2001-53 Diln Fac: 68989 ZZZZZZZZZZ Batch#: Field ID: 12/17/01 156132-001 Sampled: MSS Lab ID: 12/20/01 Received: Water Matrix: ug/LUnits:

MS

Analyzed:

12/27/01

Type:	MS QC166107				%REC	Limits
Lab ID:	-	MSS Result	Spiked	Result 1,918	93	65-131
Anal)/ t.8	49.44	2,000	1,020		
Gasoline C7-C1	.2					
Sur	rogate	%REC Limits 152 * 59-135				

	% REC	Limits
Surrogate	152 *	59-135
Trifluorotoluene (FID)	114	60-140_
Bromofluorobenzene (FID)		

Analyzed:

12/28/01

		Allo	TIYECU			-
Type:	MSD QC166108			₹RBC	imits RPD	
Lab ID:	Analyte	Spiked	Result 1,953		65-131 2	20
Gasoline C7	-C12	2,000				_
0.0000000000000000000000000000000000000	Surrogate	153 * 59-135				

Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID)	153 * 112	59-135 60-140	
Bromoliuologem			

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Total Extractable Hydrocarbons 156131 Location: Redwood Park Service Yard Stellar Environmental Solutions ient: Prep: EPA 3520C <u> Project#: 2001-53</u> Analysis: 8015B(M) Matrix: Water Sampled: 12/17/01 its: ug/L Received: 12/20/01 In Fac: 1.000 Prepared: 12/28/01 Batch#:

F#ld ID:

SW-2

69105

SAMPLE

Lab ID:

156131-001

Analyzed:

12/30/01

Analyte Result esel C10-C24 ND 50

Surrogate %REC Limits xacosane 44-121

ld ID:

SW-3

Туре: SAMPLE Lab ID:

156131-002

Analyzed:

12/30/01

Result ND

Surrogate %REC Limits xacosane

44-121

Type: Lab ID:

BLANK

QC166531

Analyzed:

12/31/01

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24

Result

Surrogate Hexacosane

Limits 44-121

Not Detected L= Reporting Limit Page 1 of 1

Total Extractable Hydrocarbons Redwood Park Service Yard Location: 156131 Lab #: **EPA 3520C** Stellar Environmental Solutions Prep: Client: 8015B(M) Analysis: Project#: 2001-53 69105 Batch#: Water Matrix: 12/28/01 Prepared: ug/L Units: 12/31/01 Analyzed: 1.000 Diln Fac:

Type:

BS

Cleanup Method: EPA 3630C

Lab ID:

QC166532

Pegul L	
gathed Result	
Spiked Result	
Analyte spiked	
	15-110
2,117	
2,500	

Diesel C10-C24	2,500	
	%RBC Limits	
Surrogate	91 44-121	
Hexacosane	21 -14-171	

Type:

BSD

Cleanup Method: EPA 3630C

Lab ID:

QC166533

100 10			_		The state of the s	respondent contractions and contractions of
			00.000000000000000000000000000000000000		731717	7 1 m
· · · · · · · · · · · · · · · · · · ·			* * * RC	Limits		
	Spiked	Result		000000000000000000000000000000000000000		
Analyte				45-110	16	22
anary co	NAME OF TAXABLE PARTY O	1,802	72	40-110	10	
500000000000000000000000000000000000000	2,500	1,002	· ·			
Diesel C10-C24	2,500					
Dieger Cro ca-						and the second second second

Diesel C10-C24		4
Dieser cro ca.		
		17700 000 000 000 1700 000 000
	Compa Timite	
Surrogal	%REC Limits	
SULLUGA:		ì
		1
77 #0 53 70	76 44-121	
Hexacosane		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 11-JAN-02 Lab Job Number: 156050 Project ID: 2001-53

Location: Redwood Park Service Yard

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

peration

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of _____

Laboratory Number: 156050 Receipt Date: 12/17/01

Client: Stellar Environmental Solutions

Project#: 2001-53

Location: Redwood Park Service Yard

CASE NARRATIVE

This hardcopy data package contains sample and QC results for eight water samples that were received on December 17, 2001. The samples were received cold and intact.

TVH/BTXE: High Triflurotoluene surrogate recoveries were observed in samples MW-8, MW-9 and MW-7 (156050-005, 006 and -007). This is due to hydrocarbons coeluting with the surrogate peaks.

The blank spike surrogate recovery failed low due to an air bubble in the surrogate line. High relative percent difference was observed for MTBE in the BS/BSD for batch #69021. Both recoveries were within criteria. No other analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

General Chemistry: No analytical problems were encountered.

Laboratory (urtis + To	ompkins Li	d.		Me	elhod of Shipment	and del	Jala A	_		,			_	_	_		,	Page 1	, _2
Address 3333	tith 3 thy CA 10 /486-	न्यः निम्रा ० १० ०)	Air	ipment No			_	/	//	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		_ _ -		ahysis i	Require-			
Oaki	Kedwood land. CA	Kv.		1.	oler No	-3123	લ્લ	- - - /	Pilliana Contraction of the Cont	Commanions		101/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	**/ **/ /	//	//	//	//	Rema	urks
Project Name Reduced	1 Pak Sc 201-53	wee	Yard		x No(510) 644 implers: <i>(Signature)</i> L			- /	/ }		7			//	/ ,	//	//		
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	eservation Chemical	/_/	1	<u> </u>	/_	7./	/	_/		_	_	/	
Mw-3		13/17/01	1625	430	500 ml Pely	χ	NoNe	1	_	ļ	X			_		-	<u> </u>		
				1					_			-	_		- -	-	<u> </u>		
MM-3			1010		40ml VOAs		HCI	0	X		ļ		-	_	-	-	 - -		
"	/		tetë:		1-Lamber glass	-	None	1	-	X	ļ	-		-	-				
Mw-4		1	1/05		500 mi poly	1	none	1	 •	-	X			_			 		
(4.44-4	//	H	1100	+	40 ml voks	 	HCI	1	X				-						
u	/	1	1140		1-L maker glass		Nove	1		Χ									
	/															_	<u> </u>		<u> </u>
Mw-10			ust		500 ml poly		none	<u> </u>	<u> </u>		X		1			_			
н			11.50	17	40 ml Vons		Hel	,))	(
η		1	1158	1	1-Lamber glass	1	None			χ	<u> </u>					_ _			
Relinquished by:		Date	Receive Signa	- (Jem C)	Date	Relinguished Signature	by:	_			C	ete		ved by: nature				Date
Printed Michael Ahma	knbr	Time	Print	ad <u>[</u>	!alivered	Time	Printed				. 		lme	Prl	nted _			<u> </u>	Time
Company Blaine Tech Services 1535 Company			pany	Oat		Company	Company					Company							
Turnaround Time: 2 week 0K					R		Relinquished Signature	Refinquished by: Signature				ate	Received by: Da Signature		Date				
Sampling (only)	by Blai	pe Te	ch so	vices	(San Jose CA)		Printed				············	_ -	īme	Pri	nted	-			Time
80000	,						Company							Co	mpany				

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Gasoline by GC/FID CA LUFT Redwood Park Service Yard Location: 156050 Lab #: EPA 5030B Prep: Stellar Environmental Solutions Client: 8015B(M) <u> Analysis:</u> Project#: 2001-53 12/17/01 Sampled: Water Matrix: 12/17/01 Received: ug/L Units:

Field ID:

8-WM

Type:

SAMPLE

Lab ID:

156050-005

Diln Fac:

1.000

Batch#:

68962

Analyzed:

12/21/01

Analyte	Result	RL	
Gasoline C7-C12	3,500	50	

Surrogate *REC LI	A
	9-135
)-140

Field ID:

MW - 9

vne: SAMPLE

Type: Lab ID:

156050-006

Diln Fac:

1.000

Batch#:

68962

Analyzed:

12/21/01

		PI	
Analyte	Result	50	
Gasoline C7-C12	9,400	50	

Surrogate	\$REC	Limits
Trifluorotoluene (FID)	147 *	59-135
Bromofluorobenzene (FID)	130	60-140

Field ID:

MW-7

Type:

SAMPLE

Lab ID:

156050-007

Diln Fac:

5.000

Batch#:

69021

Analyzed:

12/26/01

Analyte		Rij	
31 32 33 3	9,100	250	
Gasoline C/-Cl2			

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	173 *	59-135	
Bromofluorobenzene (FID)	106	60-140	

*= Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

Gasoline by GC/FID CA LUFT

ab #: 156050 Location: Redwood Park Service Yard

Project#: 2001-53 Prep: EPA 5030B
Analysis: 8015B(M)

 Matrix:
 Water
 Sampled:
 12/17/01

 Inits:
 ug/L
 Received:
 12/17/01

eld ID:

MW-11

Type: 🖺b ID: SAMPLE

156050-008

Diln Fac:

Batch#:

5.000 69021

Analyzed:

12/26/01

Analyte Result RL
Gasoline C7-C12 5,800 250

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	130	59-135	
Promofluorobenzene (FID)	106	60-140	

/pe: Lab ID: BLANK

QC165983

Batch#:

68962

Analyzed:

12/21/01

Diln Fac:

1.000

	Analyte	Result		
ı `	Gasoline C7-C12	ND	50	

Surrogate	\$RE	7 Limits
Trifluorotoluene (FID)	106	59-135
Bromofluorobenzene (FID)	107	60-140

ype: ab ID: BLANK

Batch#:

69021

QC166215

Analyzed:

12/26/01

Diln Fac:

1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	*REC	Limits
Trifluorotoluene (FID)	105	59-135
Bromofluorobenzene (FID)	98	60-140

*= Value outside of QC limits; see narrative

D= Not Detected

RL= Reporting Limit

Page 3 of 3

Sample Name: 156050-002,68962

: g:\gc04\data\355j021.raw : TVHBTXE FileName

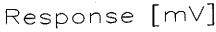
Method

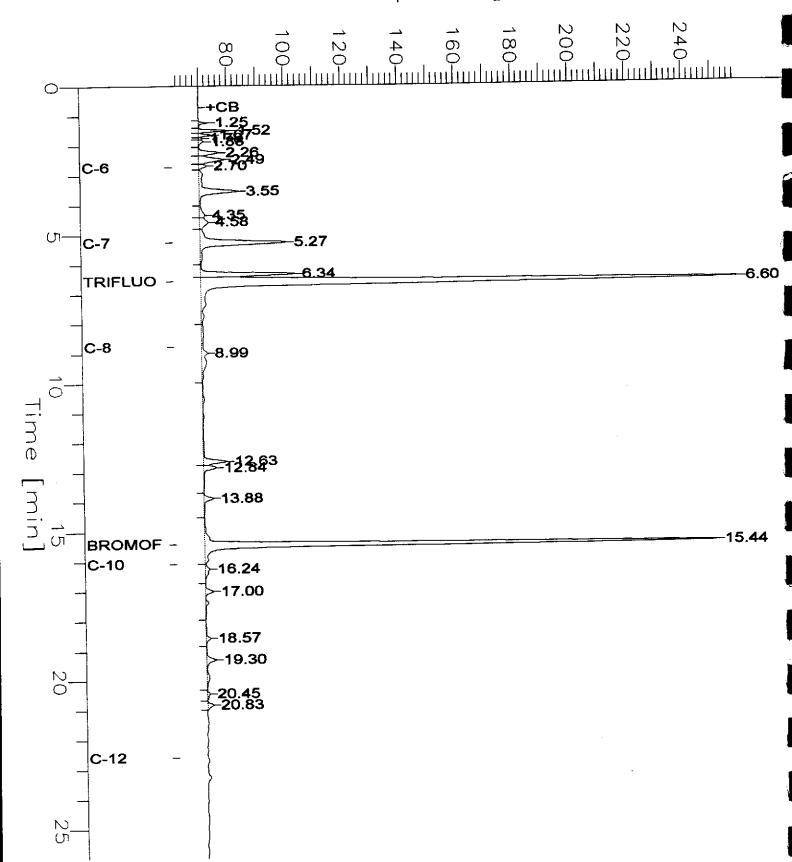
Start Time : 0.00 min Scale Factor: 1.0

End Time : 26.00 min

Plot Offset: 60 mV

Sample #: cl


Date: 12/22/01 12:53 PM Time of Injection: 12/21/01 07:23 PM


Low Point : 60.46 mV

Plot Scale: 199.2 mV

High Point : 259.68 mV

Page 1 of 1

ple Name : 156050-005,68962 Sample #: cl Page 1 of 1 : G:\GC04\DATA\355J024.raw Date: 12/22/01 12:04 PM poc : TVHBTXE Time of Injection: 12/21/01 09:10 PM Start Time : 0.00 min End Time : 26.00 min High Point : 786.49 mV Low Point: 34.22 mV Scale Factor: 1.0 Plot Offset: 34 mV Plot Scale: 752.3 mV Response [mV] 30 +CB 1.26 **1.**₹₹68 **₹1.89** 2.28 C-6 -3.55 €3.94 4.59 C-7 -5.27 -5.79 TRIFLUO -6.60 7.30 7.78 8.36 C-8 10.11 10.57 12.64 -12.8 13.36 ---13.88 14.55 15!42⁸⁹ U) BROMOF -15.44 15.94 C-10 -16.25 16.39 17.00 17.38 17.86 18.23 18.56 19.30 19.83 20.57 20.89 20.83 21,43 21,59 22,59 22,69 23,06 23,27 C-12 -24.04 24.63 N (Ji 25.26 ~25.75

Sample Name : 156050-006,68962

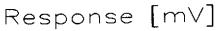
: G:\GC04\DATA\355J028.raw FileName

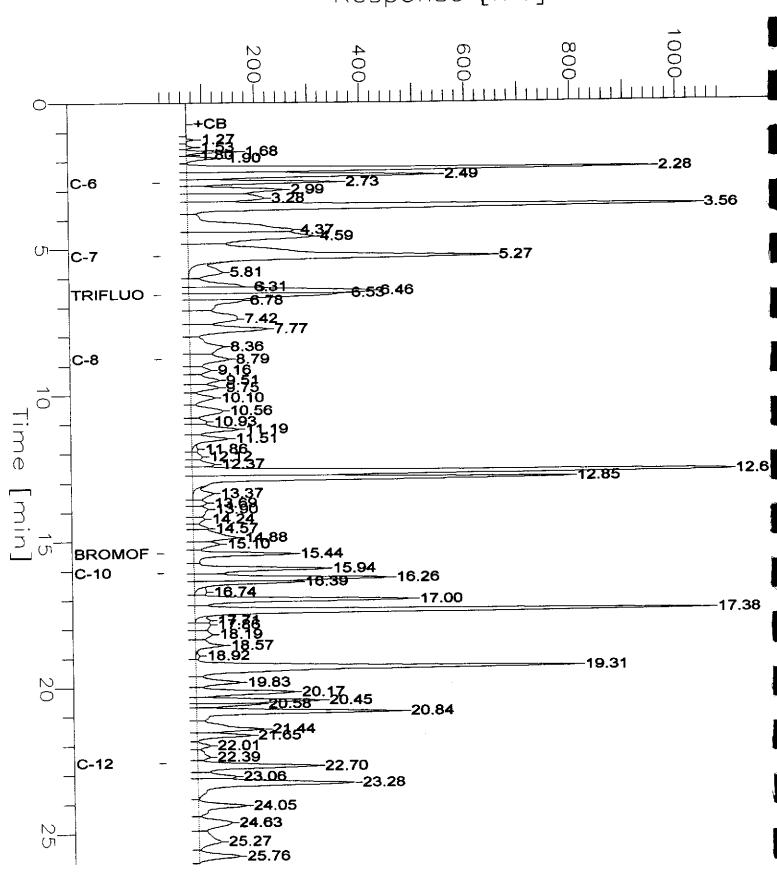
: TVHBTXE Method

Start Time : 0.00 min Scale Factor: 1.0

End Time : 26.00 min

Plot Offset: 20 mV


Page 1 of 1


Sample #: cl Date : 12/26/01 12:14 PM

Time of Injection: 12/21/01 11:33 PM

High Point: 1094.40 mV

Low Point : 19.54 mV Plot Scale: 1074.9 mV

Sample #: C1

Page 1 of 1

ample Name : 156050-007,69021

eName : G:\GC04\DATA\360J010.raw Date: 12/27/01 06:38 AM hod : TVHBTXE Time of Injection: 12/26/01 08:01 PM Start Time : 0.00 min End Time : 26.00 min High Point: 358.53 mV Low Point : 54.81 mV Scale Factor: 1.0 Plot Offset: 55 mV Plot Scale: 303.7 mV Response [mV] N 350 N 300 00 Ŋ 00 \bigcirc +CB 1.26 1.53 1.68 **=1.89** 2.27 2.48 C-6 3.54 4.59 C-7 5.24 5.68 TRIFLUO -6.58 7.29 7.73 8.48 C-8 9.17 9.47 10.08 \circ -10.51 11.57 1294 -12.62 -12.83 13.87 -15.18^{14.88} **BROMOF** -15.43 15.93 --- 16.24 C-10 16.37 16.99 17.3 **⊱17:83** 18.26 18.55 18.89 19.29 19.82 20.15 20.44 20.82 -21.64^{21.43} C-12 22.68 23.04 23.26 -24.03 -24.60 (Ji) 25.24 25.74

Page 1 of 1 Sample #: C1 Sample Name : 156050-008,69021 Date: 12/27/01 06:21 AM : G:\GC04\DATA\360J011.raw Time of Injection: 12/26/01 08:36 PM FileName : TVHBTXE Method High Point : 291.27 mV Low Point : 58.40 mV End Time : 26.00 min Start Time : 0.00 min Plot Scale: 232.9 mV Plot Offset: 58 mV Scale Factor: 1.0 Response [mV] 250 G 0 +CB -1.26 1.53 11/8858 C-6 3.54 4.58 5.27 (JI C-7 **⊱5.67** 6.59 TRIFLUO -7.29 7.74 8.35 C-8 9.74 10.12 -10.53 Time [min] 11.51 12.36 12.83 13.87 14.88 -15.43 **BROMOF** 15,93 -16.24 C-10 16.99 17.36 ₹**17.68** ≥18.27 18.55 19.29 20.16 20.44 20.82 19.82 =21484 21.99 22.37 C-12 22.68 23.05 23.25 25.25

25.74

e Name : CCV/LCS,QC165984,68962,01WS2177,5/5000 Page 1 of 1 Sample #: Date: 12/21/01 09:03 AM : G:\GC04\DATA\355J003.raw Time of Injection: 12/21/01 08:37 AM : TVHBTXE High Point : 399.39 mV tart Time : 0.00 min End Time : 26.00 min Low Point : 52.53 mV Plot Offset: 53 mV Plot Scale: 346.9 mV cale Factor: 1.0 Response [mV] 20 25 —1.25 ₹.88 C-6 4.39 4.75 -5.25 C-7 5.71 ~6.24 TRIFLUO --6.60-7.79 8.36 C-8 8.98 9.74 10.09 10.59 12.63 12.85 -13.37 -13.88 BROMOF -15.44 <u>15.94</u> C-10 16.24 -16.38 17.00 -17.37 -18.57 ≥16°43° -19.84 -20.18 -20.45 -20.83 ==21.435 212.22 C-12 Basolina 24.70 -25.75

Toluene, Ethylbenzene, Xylenes Benzene, 156050 Redwood Park Service Yard Lab #: Location: Stellar Environmental Solutions EPA 5030B Client: Prep: Project#: 2001-53 <u> Analysis:</u> EPA 8021B Sampled: 12/17/01 Water Matrix: uq/L 12/17/01 Units: Received:

Field ID: Type: Lab ID:

MW-2 SAMPLE 156050-002 Diln Fac: Batch#: Analyzed:

1.000 68962 12/21/01

Result MTBE 2.0 6.6 Benzene 14 0.50 0.50 0.76 Toluene 0.50 Ethylbenzene 3.7 m,p-Xylenes o-Xylene 0.50 2.0 0.50

Surrogate Trifluorotoluene (PID) 84 56-142 Bromofluorobenzene (PID)

Field ID:

MW - 4 SAMPLE Diln Fac: Batch#:

1.000 68962

Type: Lab ID: 12/21/01 156050-003 Analyzed:

MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	\mathbf{N} D	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	0.54	0.50	
o-Xylene	0.67	0.50	

*REC Limits Surrogate Trifluorotoluene (PID) 82 56-142 Bromofluorobenzene (PID) 82 55-149

Field ID: Type: Lab ID:

MW-10 SAMPLE 156050-004 Diln Fac: Batch#: Analyzed:

1.000 68962 12/21/01

Analyte Result MTBE 2.0 0.50 0.50 ND Benzene Toluene ND ND 0.50 Ethylbenzene m,p-Xylenes ND 0.50 0.50 o-Xvlene ND

Surrogate REC Limits Trifluorotoluene (PID) 83 56-142 Bromofluorobenzene (PID) 55-149 84

ND= Not Detected RL= Reporting Limit Page 1 of 3

Benzene, Toluene, Ethylbenzene, Xylenes Lab #: 156050 Location: Redwood Park Service Yard Client: Stellar Environmental Solutions Prep: Analysis: EPA 5030B Project#: 2001-53 EPA 8021B Water 12/17/01 12/17/01 latrix: Sampled: nits: uq/L Received:

eld ID: Type: Lab ID:

MW - 8 SAMPLE 156050-005 Diln Fac: Batch#: Analyzed:

2.000 69021 12/26/01

Analyte TBE ND 4.0 Benzene 69 1.0 **T**oluene 2.4 1.0 thylbenzene 310 1.0 ,p-Xylenes o-Xylene 410 1.0

Surrogate rifluorotoluene (PID) 92 56-142 romofluorobenzene (PID)

eld ID:

MW - 9

Diln Fac:

5.000 69021

Type: Lab ID: SAMPLE Batch#: 156050-006 12/26/01 Analyzed:

Analyte	Result	RL	
TBE	ND	10	
Benzene	250	2.5	
Toluene	5.1	2.5	İ
thylbenzene	520	2.5	
,p-Xylenes	310	2.5	i
o-Xylene	7.0	2.5	

Surrogate *RKC Limits rifluorotoluene (PID) 95 56-142 75 romofluorobenzene (PID) 55-149

eld ID: Type: Lab ID:

MW - 7 SAMPLE 156050-007 Diln Fac: Batch#: Analyzed:

5.000 69021 12/26/01

Analyte Result TBE ND 10 2.5 Benzene 89 ND oluene thylbenzene 460 2.5 .,p-Xylenes o-Xylene 2.5 220 -8.0

Surrogate 56-142 55-149 rifluorotoluene (PID) 100 romofluorobenzene (PID) 79

Not Detected RE= Reporting Limit Page 2 of 3

Toluene, Ethylbenzene, Xylenes Benzene, 156050 Lab #: Redwood Park Service Yard Location: Prep: Analysis: EPA 5030B Client: Stellar Environmental Solutions 2001-53 EPA 8021B Project#: 12/17/01 12/17/01 Water Sampled: Matrix: Units: uq/L Received:

Field ID:

MTBE

Benzene

Toluene

Ethylbenzene m,p-Xylenes o-Xylene

MW-11 SAMPLE 156050-008 Diln Fac: Batch#: Analyzed:

5.000 69021 12/26/01

Type: Lab ID:

10 2.5 280 7.8 500 200 13

Surrogate
Trifluorotoluene (PID) REC 88 56-142 Bromofluorobenzene (PID) 75 55-149

Type: Lab ID:

BLANK QC165983 Batch#:

68962

Diln Fac:

1.000

Analyzed: 12/21/01

AGENEZE e	Rosult	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	NDND_	0.50	

TREC Vinits Surrogate Trifluorotoluene (PID) 56-142 55-149 80 78 Bromofluorobenzene (PID)

Type: Lab ID:

MTBE

Benzene

Toluene

BLANK QC166215 Batch#:

69021 12/26/01

0.50

Diln Fac:

Ethylbenzene

m,p-Xylenes o-Xylene

Ĩ.000

<u>Analyte</u>

Analyzed:

2.0 0.50 0.50 0.50 0.50

Surrogate	\$REC	Limits	
Trifluorotoluene (PID)	78	56-142	
Bromofluorobenzene (PID)	74	55-149	

Regule

ND

ND ND

ND

ND

ND

ND= Not Detected RL= Reporting Limit Page 3 of 3

Gasoline by GC/FID CA LUFT

ab #: 156050 Location: Redwood Park Service Yard

lient: Stellar Environmental Solutions Prep: EPA 5030B

 Project#: 2001-53
 Analysis: 8015B(M)

 Type:
 LCS

 Diln Fac: 1.000

 ab ID:
 QC165984
 Batch#:
 68962

 Matrix:
 Water
 Analyzed:
 12/21/01

Watrix: Water Analyzed: 12/21, Units: ug/L

Analyte	Spiked	Result	%REC	<u> Bylinki († 18</u>
Gasoline C7-C12	2,000	2,049	102	73-121

	Surrogate	%REC	Limits
Г	Trifluorotoluene (FID)	120	59-135
	Bromofluorobenzene (FID)	106	60-140

Gasoline by GC/FID CA LUFT

156050 Lab #:

Prep:

Redwood Park Service Yard

Client:

Stellar Environmental Solutions

EPA 5030B

Project#: 2001-53

Analysis: Water

8015B(M)

Matrix: Units:

ug/L

Batch#:

Location:

69021

Diln Fac:

1.000

Analyzed:

12/26/01

Type:

ВŞ

Lab ID:

QC166216

Analyte	Spiked	Result	*RBC	Limits	
Gasoline C7-C12	2,000	1,933	97	73-121	

Surrogate	#REC	Limits
Trifluorotoluene (FID)	123	59-135
Bromofluorobenzene (FID)	102	60-140

Type:

BSD

Lab ID:

QC166217

Analyte	Spiked	Result	#REC	Linits	55.50	Lim
Gasoline C7-C12	2,000	1,960	98	73-121	1	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	123	59-135
Bromofluorobenzene (FID)	103	60-140

Benzene, Toluene, Ethylbenzene, Xylenes Lab #: 156050 Location: Redwood Park Service Yard lient: Stellar Environmental Solutions Prep: EPA 5030B roject#: 2001-53 Analysis: EPA 8021B Type: LCS Diln Fac: 1.000 ab ID: QC165985 Batch#: 68962 atrix: Water Analyzed: 12/21/01 Units: ug/L

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.46	97	51-125
Benzene	20.00	18.09	90	67-117
oluene	20.00	17.33	87	69-117
#thylbenzene	20.00	19.29	96	68-124
m,p-Xylenes	40.00	37.63	94	70-125
-Xylene	20.00	19.93	100	65-129

Surrogate	%REC	Timits
rifluorotoluene (PID) 81	56-142
romofluorobenzene (P	ID) 78	55-149

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	156050	Location:	Redwood Park Service Yard
Client: Project#:	Stellar Environmental Solutions	Prep: Analysis:	EPA 5030B EPA 8021B
Matrix:	Water	Batch#:	69021
Units:	ug/L	Analyzed:	12/26/01
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC166273

Analyte	Spiked	Result	%REC	Limits	
MTBE	20.00	20.08	100	51 -125	1
Benzene	20.00	17.32	87	67-117	ļ
Toluene	20.00	17.06	85	69-117	!
Ethylbenzene	20.00	18.09	90	68-124	
m,p-Xylenes	40.00	36.04	90	70-125	
o-Xylene	20.00	19.03	95	65-129	

Surrogate	9,1	REC	Limits	
Trifluorotoluene (PID)	22	*	56-142	 ļ
Bromofluorobenzene (PID)	21	*	55-149	

Type:

BSD

Lab ID: QC166274

Analyte	Spiked	Result	HRE(Limite	RPI) Lim
MTBE	20.00	13.81	69	51-125	37	* 20
Benzene	20.00	16.73	84	67-117	3	20
Toluene	20.00	16.35	82	69-117	4	20
Ethylbenzene	20.00	18.03	90	68-124	0	20
m,p-Xylenes	40.00	36.08	90	70-125	0	20
o-Xylene	20.00	19.04	95	65-129	0	20

Surrogate		C Limits	
Trifluorotoluene (PI	D) 79	56-142	
Bromofluorobenzene (PID) 76	55-149	

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Gasoline by GC/FID CA LUFT Lab #: 156050 Location: Redwood Park Service Yard lient: Stellar Environmental Solutions Prep: **EPA** 5030B roject#: 2001-53 Analysis: 8015B(M) Field ID: ZZZZZZZZZZ Batch#: 68962 SS Lab ID: 156053-001 Sampled: 12/17/01 atrix: Water Received: 12/17/01 Units: ug/L Analyzed: 12/21/01 Diln Fac: 1.000

pe:

MS

Lab ID:

QC165986

ALIALYCO	ASS Result	Spiked	Result	*REC	Limits
asoline C7-C12	<33.00	2,000	2,038	102	65-131
Surrogate	%REC Limits				
Trifluorotoluene (FID)	124 59-135				

60-140

Spiked

112

ne ·

MSD

Analyte

romofluorobenzene (FID)

Lab ID:

QC165987

Result %REC Limits RPD Lim

asoline C7-C12	2,000	1,982	99	65-131	3	20
Surrogata	%RBC Limite					

Surrogate	%RB(Limite
rifluorotoluene (FID)	124	59-135
Fromofluorobenzene (FID)	114	60-140

Total Extractable Hydrocarbons Redwood Park Service Yard EPA 3520C Location: 156050 Lab #: Stellar Environmental Solutions Prep: Client: 8015B(M) 12/17/01 12/17/01 <u> Analysis:</u> Project#: 2001-53 Sampled: Water Matrix: Units: ug/L Received: 12/28/01 Prepared: 1.000 Diln Fac: Analyzed: <u>12/31/01</u> Batch#: 69105

Field ID: Type:

MW - 2

SAMPLE

Lab ID:

156050-002

Reside Analyte 50 Diesel Cl0-C24 69 Y

Limits Surrogate %REC 100 44-121 Hexacosane

Field ID:

Type:

MW-4

SAMPLE

Lab ID:

156050-003

Result Analyte 50 Diesel C10-C24 110 Y

REC Limits Surrogate 44-121 Hexacosane

Field ID:

Type:

MW-10 SAMPLE Lab ID:

156050-004

50

50

Analyte Diesel C10-C24

%REC Limits Surrogate 44-121 Hexacosane

Field ID:

MW - 8

Lab ID:

156050-005

Type:

SAMPLE

Result

Analyte 950 L Y Diesel C10-C24

Limits Surrogate 85 44-121

Hexacosane

MW - 9

Lab ID:

156050-006

Field ID: Type:

SAMPLE

Analyte Result

Result 81 Y

2,700 L Y 50 Diesel Cl0-C24

*REC Limits Surrogate 44-121 Hexacosane

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard ND= Not Detected

RL= Reporting Limit Page 1 of 2

Total Extractable Hydrocarbons b #: 156050 Location: Redwood Park Service Yard EPA 3520C Stellar Environmental Solutions Client: Prep: 8015B(M) 12/17/01 Analysis: Sampled: oject#: 2001-53 Water trix: its: ug/L 12/17/01 Received: 1.000 12/28/01 Diln Fac: Prepared: <u>Batch#:</u> 69105 <u> Analyzed:</u> <u>12/31/01</u>

Field ID: T_{3} e :

MW-7

SAMPLE

Lab ID:

156050-007

Analyte Diesel C10-C24

Result 4,600 L Y RL 50

Surrogate REC Limits

xacosane

99 44-121

ld ID:

MW-11 SAMPLE Lab ID:

156050-008

Analyte

Result

RL.

esel C10-C24

2,800 L Y

50

Surrogate Hexacosane

%REC Limits 91 44-121

Cleanup Method: EPA 3630C

Type: Lab ID: BLANK QC166531

Result

RL

Analyte Diesel C10-C24

ND

50

Surrogate xacosane

%REC Limits 74 44-121

L= Lighter hydrocarbons contributed to the quantitation Sample exhibits fuel pattern which does not resemble standard Not Detected Re- Reporting Limit Page 2 of 2

Sample Name : 156050-002,69105 FileName

: G:\GC15\CHB\364B023.RAW

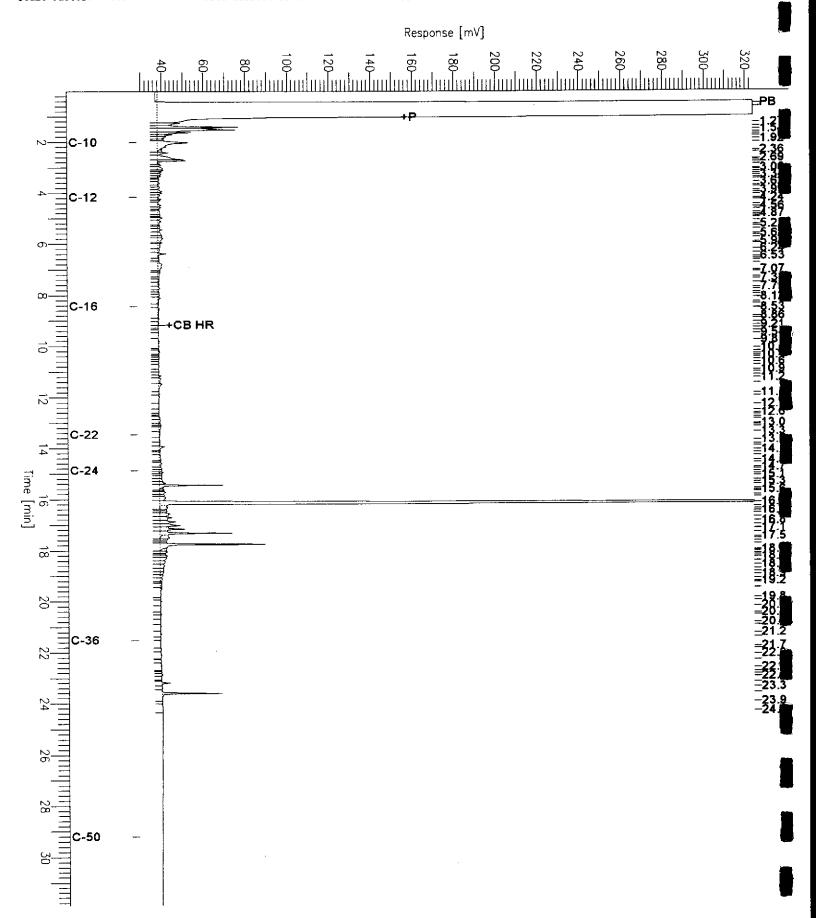
: BTEH365.MTH Method

Start Time : 0.01 min Scale Factor: 0.0

End Time : 31.91 min

Plot Offset: 28 mV

Sample #: 69105


Page 1 of 1

Date: 12/31/2001 03:59 PM

Time of Injection: 12/31/2001 09:44 AM Low Point : 28.16 mV

High Point : 323.76 mV

Plot Scale: 295.6 mV

ple Name : 156050-003,69105

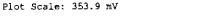
: G:\GC15\CHB\364B024.RAW

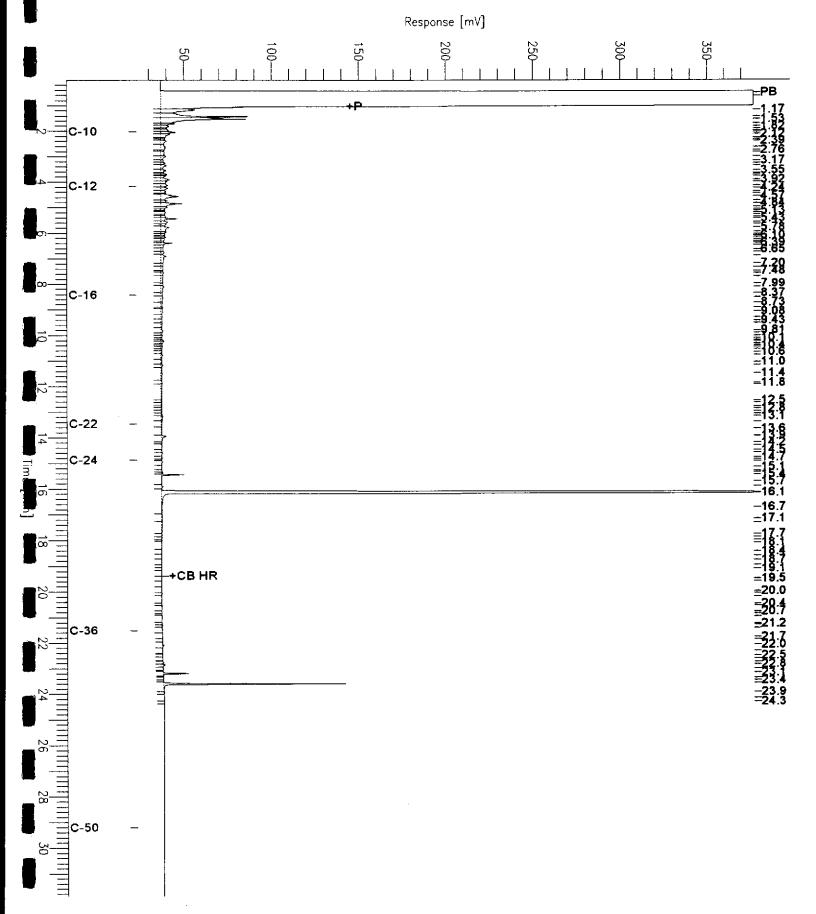
hod

Start Time : 0.01 min Scale Factor: 0.0

: BTEH365.MTH

End Time : 31.91 min Plot Offset: 23 mV


Sample #: 69105


Page 1 of 1

Date: 12/31/2001 04:00 PM

Time of Injection: 12/31/2001 10:24 AM

Low Point : 22.97 mV High Point : 376.89 mV

Sample Name : 156050-004,69105

FileName : G:\GC15\CHB\364B025.RAW

Method : BTEH365.MTH

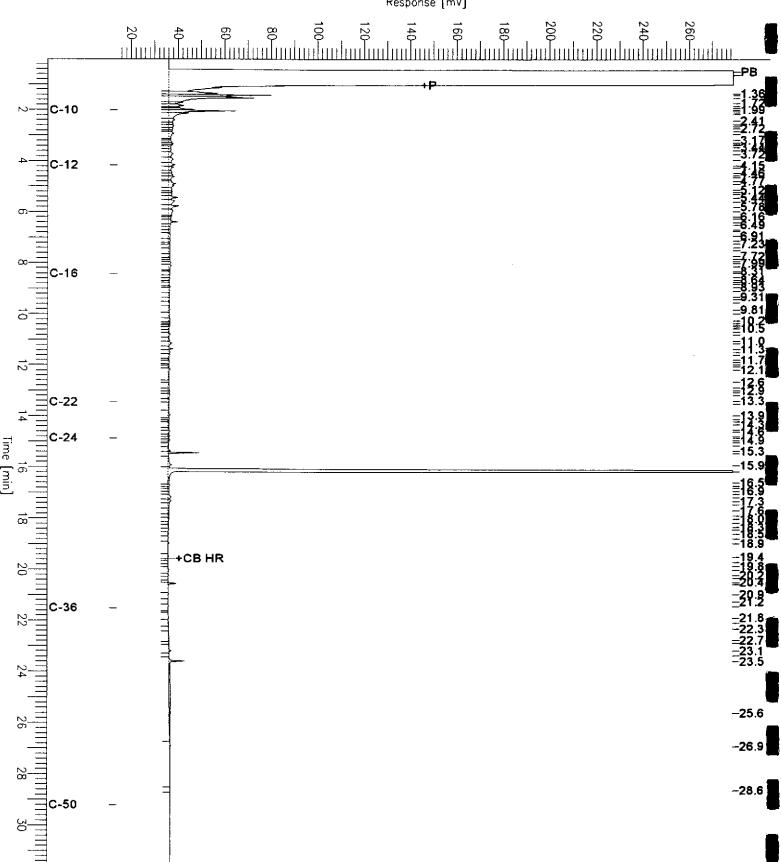
Start Time : 0.01 min Scale Factor:

End Time : 31.91 min

Plot Offset: 14 mV

Sample #: 69105

Page 1 of 1


Date: 12/31/2001 04:00 PM

Time of Injection: 12/31/2001 11:05 AM

Low Point : 14.04 mV Plot Scale: 265.1 mV

High Point : 279.18 mV

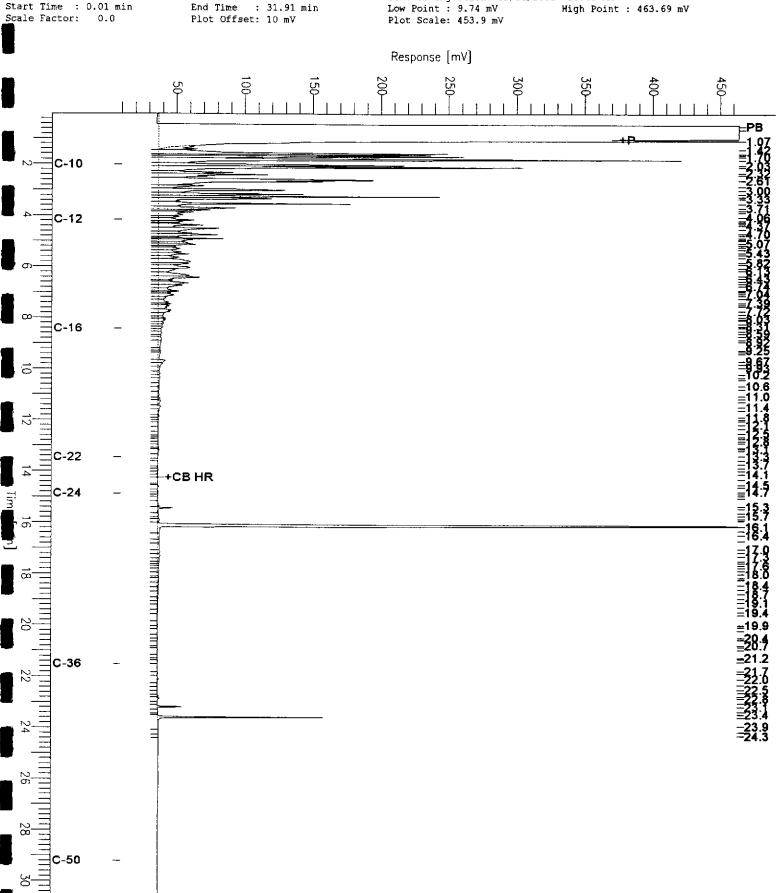
mple Name : 156050-005,69105

: G:\GC15\CHB\364B026.RAW

thod : BTEH365.MTH

Start Time : 0.01 min

End Time : 31.91 min


Sample #: 69105

Date: 12/31/2001 04:01 PM

Time of Injection: 12/31/2001 11:46 AM

High Point : 463.69 mV

Page 1 of 1

Sample Name : 156050-006,69105

: G:\GC15\CHB\364B027.RAW FileName

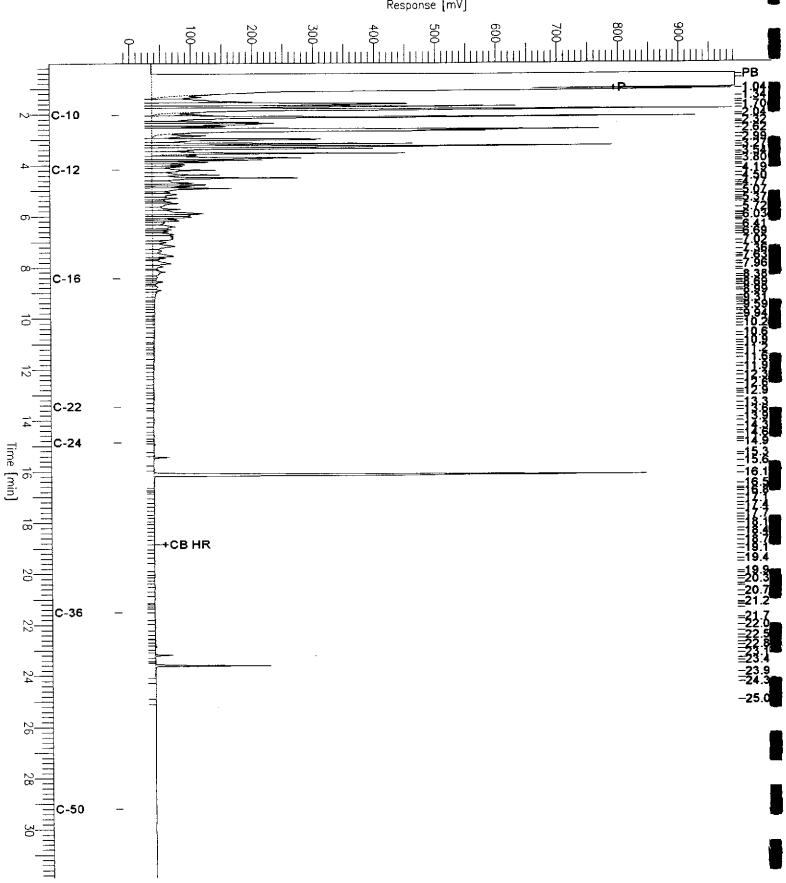
: BTEH365.MTH Method

Start Time : 0.01 min Scale Factor: 0.0

End Time : 31.91 min Plot Offset: -17 mV

Sample #: 69105

Date : 12/31/2001 04:02 PM


Time of Injection: 12/31/2001 12:26 PM

Low Point: -16.95 mV Plot Scale: 1010.4 mV

High Point: 993.47 mV

Page 1 of 1

Sample Name : 156050-007,69105

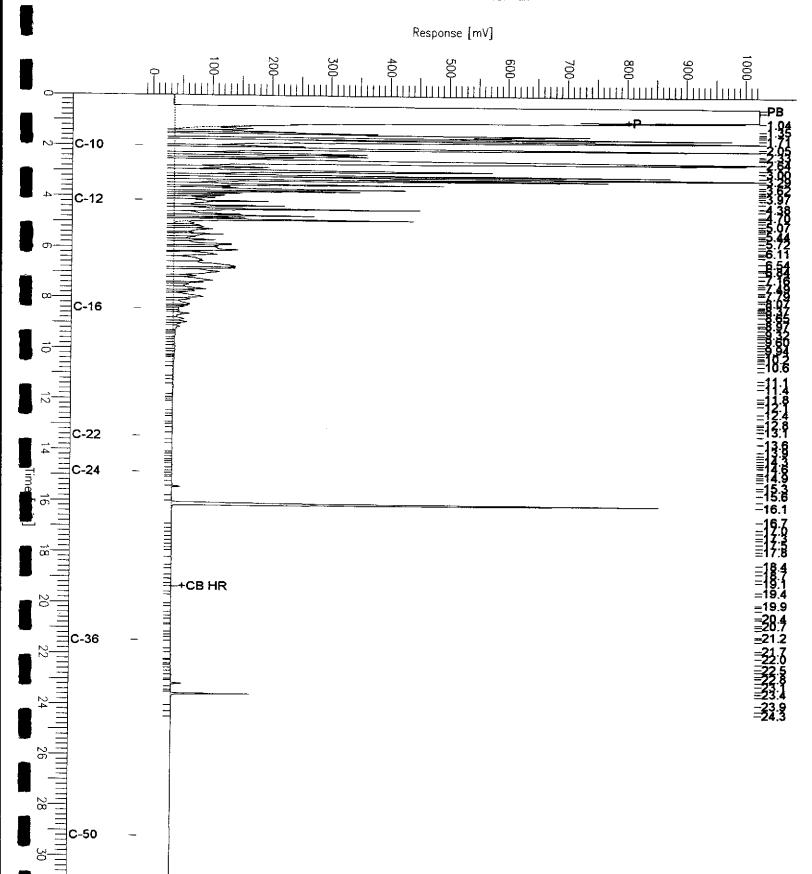
ileName : G:\GC15\CHB\364B034.RAW

: BTEH361.MTH

ethod : BTEH361.N tart Time : 0.00 min Scale Factor: 0.0

End Time : 31.90 min

Plot Offset: -18 mV


Sample #: 69105

Page 1 of 1

Date : 01/02/2002 11:46 AM
Time of Injection: 12/31/2001 05:20 PM

High Point : 1024.00 mV

Low Point : -17.74 mV Plot Scale: 1041.7 mV

Sample Name : 156050-008,69105

: G:\GC15\CHB\364B035.RAW FileName

: BTEH361.MTH

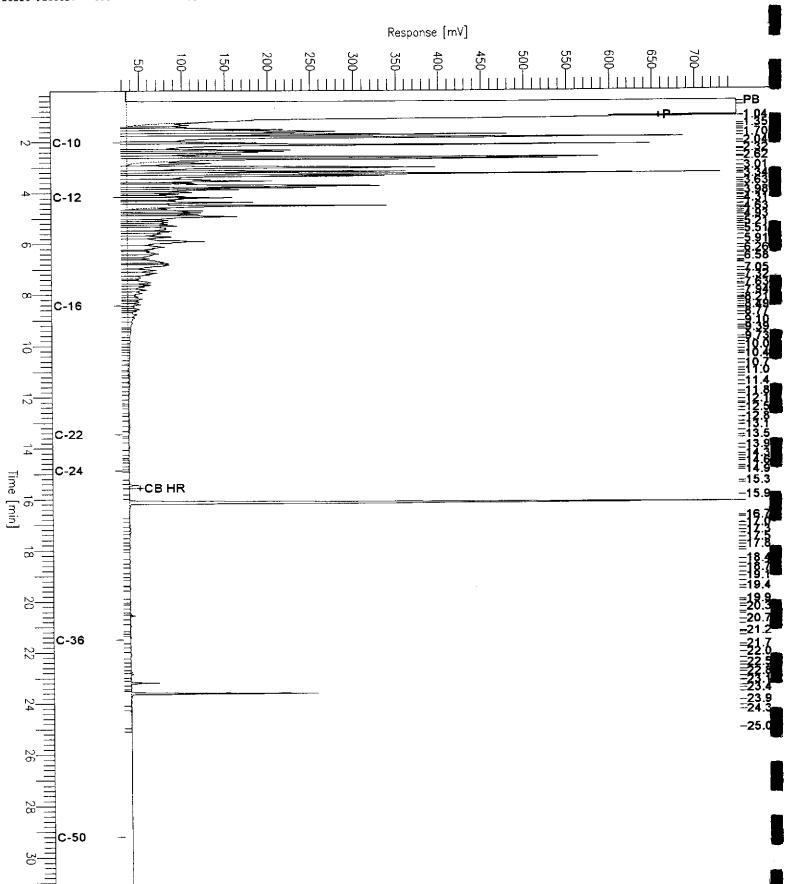
Start Time : 0.01 min Scale Factor: 0.0

End Time : 31.91 min

Plot Offset: 29 mV

Sample #: 69105

Page 1 of 1


Date: 01/02/2002 11:47 AM

Time of Injection: 12/31/2001 06:01 PM

Low Point : 28.66 mV

High Point : 749.41 mV

Plot Scale: 720.8 mV

le Name : ccv,01ws2297,dsl

: G:\GC15\CHB\364B002.RAW

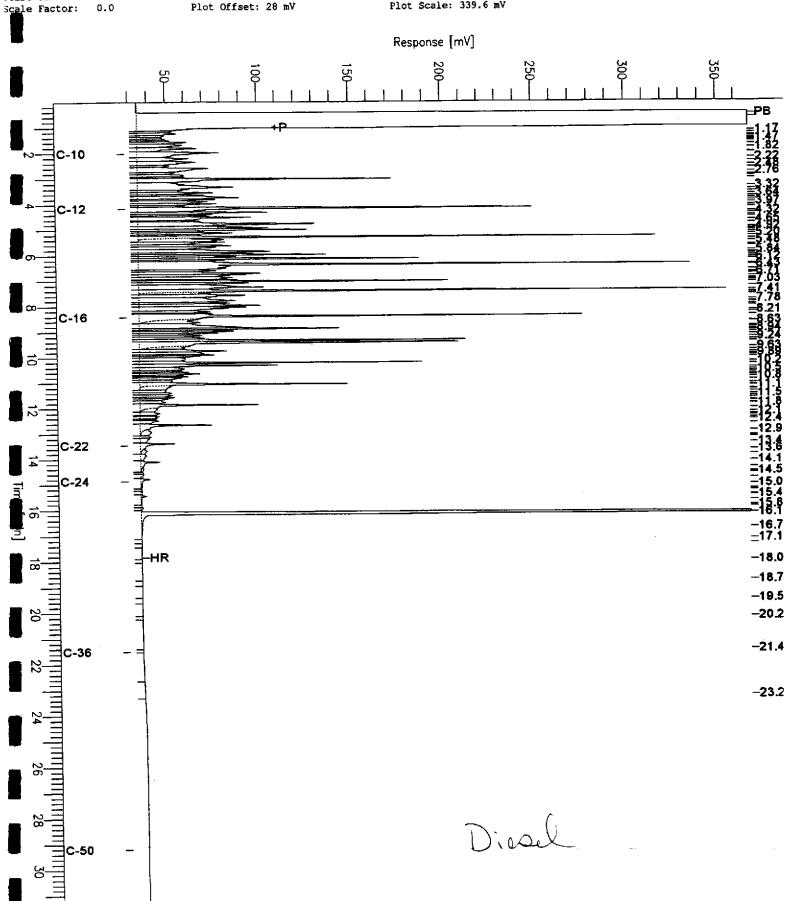
: BTEH361.MTH

Start Time : 0.01 min

End Time : 31.91 min

Sample #: 500mg/L

Date: 12/31/2001 07:38 AM


Time of Injection: 12/30/2001 07:33 PM

Low Point : 28.31 mV

High Point : 367.88 mV

Page 1 of 1

Plot Scale: 339.6 mV

Total Extractable Hydrocarbons Redwood Park Service Yard Location: 156050 Lab #: EPA 3520C Stellar Environmental Solutions Prep: Client: 8015B(M) Analysis: Project#: 2001-53 69105 Water Batch#: Matrix: 12/28/01 Prepared: Units: ug/L 12/31/01 Analyzed: 1.000 Diln Fac:

Type:

Cleanup Method: EPA 3630C

Lab ID:

QC166532

Analyt	e Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	2,117	85	45-110	

	S.D.E.C	T.imite		
Surrogate	2.5	44 101		
Hexacosane	91	44-121		

Type:

BSD

Lab ID:

QC166533

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%RE(: Limits	RPD	Lim
Diesel C10-C24	2,500	1,802	72	45-110	16	22

%REC Limits Surrogate 44-121 Hexacosane

	Nitra	te Nitrogen	
Lab #:	156050	Location:	Redwood Park Service Yard
lient:	Stellar Environmental Solutions	Prep:	METHOD
roject#:	2001-53	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	68862
atrix:	Water	Sampled:	12/17/01
hits:	mg/L	Received:	12/17/01
Diln Fac:	1.000	Analyzed:	12/18/01

Field ID	Type Lab ID	Result	RL
MW-3	SAMPLE 156050-001	0.03 Ј	0.05
<u>M</u> W-4	SAMPLE 156050-003	0.57	0.05
N-10 N-8	SAMPLE 156050-004	0.56	0.05
™ v - 8	SAMPLE 156050-005	ND	0.05
MW-9	SAMPLE 156050-006	ND	0.05
W-7	SAMPLE 156050-007	ND	0.05
W-11	SAMPLE 156050-008	ND	0.05
	BLANK QC165619	ND	0.05

J= Estimated value = Not Detected

Reporting Limit

	St	ilfate	
Lab #: Client: Project#:	156050 Stellar Environmental Solutions	Location: Prep: Analysis:	Redwood Park Service Yard METHOD EPA 300.0
Analyte: Matrix: Units: Batch#:	Sulfate Water mg/L 68862	Sampled: Received: Analyzed:	12/17/01 12/17/01 12/18/01

Field ID	Type Lab ID	Result	RL	Diln Pac
MW-3	SAMPLE 156050-001	36	0.50	1.000
MW-4	SAMPLE 156050-003	76	5.0	10.00
MW-10	SAMPLE 156050-004	61	5.0	10.00
MW-8	SAMPLE 156050-005	85	5.0	10.00
MW-9	SAMPLE 156050-006	20	0.50	1.000
MW-7	SAMPLE 156050-007	15	0.50	1.000
MW-11	SAMPLE 156050-008	67	5.0	10.00
1111 #±	BLANK QC165619	ND	0.50	1.000

Nitrate Nitrogen

Lab #: 156050 Location: Redwood Park Service Yard METHOD

lient: Stellar Environmental Solutions Prep: EPA 300.0 roject#: 2001-53 Analysis:

Analyte: Nitrogen, Nitrate 68862 Batch#: leld ID: 12/17/01 MW-3 Sampled:

12/17/01 S Lab ID: 156050-001 Received:

12/18/01 Matrix: Water Analyzed: mg/L nits:

25/20	e Lab ID	MSS Result	Spiked	Result	%REC	Limita	RPI) Lim	Diln Fac	2
BS	QC165620		2.000	2.070	104	80-110			1.000	
SD	QC165621		2.000	2.080	104	80-110	0	20	1.000	
7.5	QC165622	0.03160	10.00	10.20	102	80-111			10.00	
MSD	QC165623		10.00	10.12	101	80-111	1	20	10.00	

Redwood Park Service Yard

Sulfate

156050 Lab #: Client:

Stellar Environmental Solutions

Project#: 2001-53

Analyte:

Field ID:

MSS Lab ID:

Matrix:

Units:

Sulfate MW-3

156050-001

Water

mg/L

Location:

Prep:

Analysis: Batch#:

Sampled: Received: Analyzed: METHOD EPA 300.0 68862

12/17/01 12/17/01

12/18/01

Type	Lab ID MS	S Result	Spiked	Result	%REC	Limits	RPD	Lim	Diln Fac
BS	QC165620		20.00	20.36	102	80-110			1.000
BSD	QC165621		20.00	20.39	102	80-110	0	20	1.000
MS	QC165622	36.37	100.0	137.4	101	71-128			10.00
MSD	QC165623		100.0	134.7	98	71-128	2	20	10.00

HISTORICAL GRAB-GROUNDWATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in μg/L, equivalent to parts per billion [ppb])

Sample ID	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
		Octol	ber 1993 Ex	cploratory l	Borehole Sampl	ing		
B10-GW	< 50	570	< 1	< 1	< 1	< 1		NA.
B11-GW	1,400	1,300	16	42	33	170	261	NA
B-13-GW	810,000	2,300,000	12,000	18,000	22,000	73,000	125,000	NA
B-14-GW	19,000	4,500	30	< 1	350	850	1,230	NA
B-15-GW	16,000	99,000	20	< 1	330	810	1,160	NA
		Apr	il 1999 Exp	loratory Bo	orehole Samplin	g		
HP-01-GW	1,300	850	< 0.5	< 0.5	< 0.5	0.67	0.67	< 2
HP-02-GW	31,000	270,000	760	12	1,100	833	2,705	260
HP-03-GW	3,700	1,400	25	0.71	130	40.5	196	31
HP-04-GW	67	< 50	< 0.5	< 0.5	< 0.5	< 0.5		15
HP-05-GW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		18
HP-06-GW	54,000	16,000	830	< 13	2,800	11,000	14,630	190
HP-07-GW	42,000	15,000	750	49	2,500	5,290	8,589	230
HP-08-GW	13,000	1,900	150	5.4	570	931	1,656	120
HP-92-GW	40,000	6,700	1,700	110	2,100	6,890	10,800	200
HP-10-GW	23,000	8,400	53	3.2	600	928	1,584	57
HP-11-GW	2,000	440	30	0.85	92	53.3	176	31

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in $\mu g/L$, equivalent to parts per billion [ppb])

					Well N	1W-2			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	29.6	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.24	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31.4	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		7
14	Apr-99	82	710	4.2	< 0.5	3.4	4	11.6	7.5
15	Dec-99	57	<50	20	0.61	5.9	<0.5	26.5	4.5
16	Sep-00	< 50	<50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	<50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	<50	10	< 0.5	11	6.4	27.4	10.0
19	Aug-01	260	120	30	6.7	1.6	6.4	44.7	27.0
20	Dec-01	74	69	14	0.76	3.7	3.5	22.0	6.6

					Well N	IW-4			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	66.5	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	92.9	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	102.5	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	52.6	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54.2	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	<50	8.9	< 0.5	68	26.9	104	23
14	Apr-99	2,900	710	61	1.2	120	80.4	263	32
15	Dec-99	1,000	430	4	2	26	13.9	45.9	<2
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20.1	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	64.9	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66.0	5
19	Aug-01	1,300	810	3.2	4.0	29	9.7	45.9	<2
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	<2

(continued)

•					Well N	1W-5			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
G	Groundwate	r monitorin	g in this we	ell discontin	ued with Al	ameda County H	ealth Care Servic	es Agency appro	val

	Well MW-7													
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE					
1	Jan-01	13,000	3,100	95	4	500	289	888	95					
2	Apr-01	13,000	3,900	140	<0.5	530	278	948	52					
3	Aug-01	12,000	5,000	55	25	440	198.2	718	19					
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10					

	Well MW-8												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96				
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42				
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14				
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0				

	Well MW-9												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Sep-01	11,000	170	340	13	720	616	1,689	48				
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10				

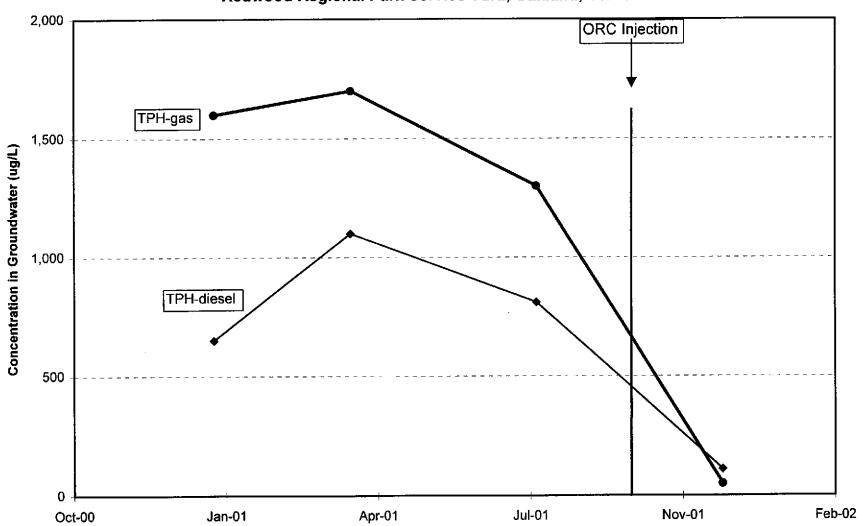
	Well MW-10												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Sep-01	550	2,100	17	< 0.5	31	43.5	92	40				
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	25				

	Well MW-11												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Sep-01	17,000	7,800	390	17	820	344	1,571	< 10				
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10				

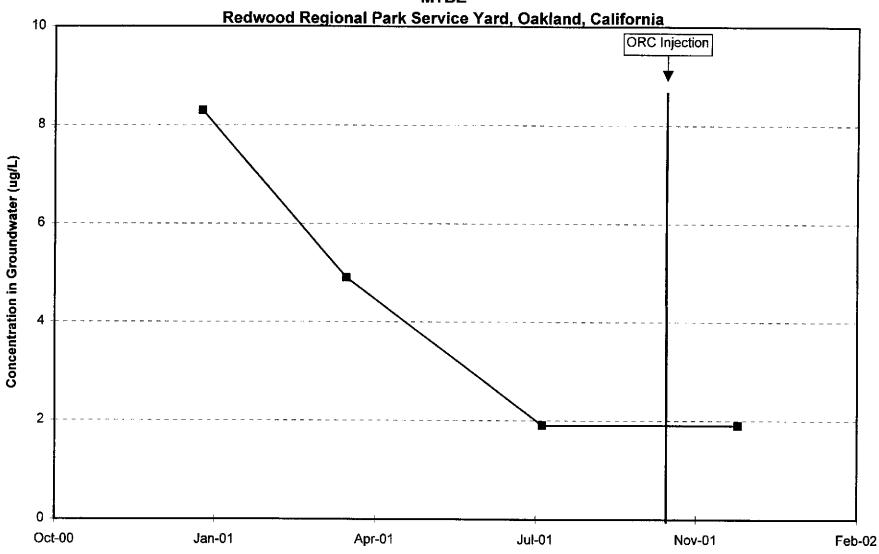
HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in μg/L, equivalent to parts per billion [ppb])

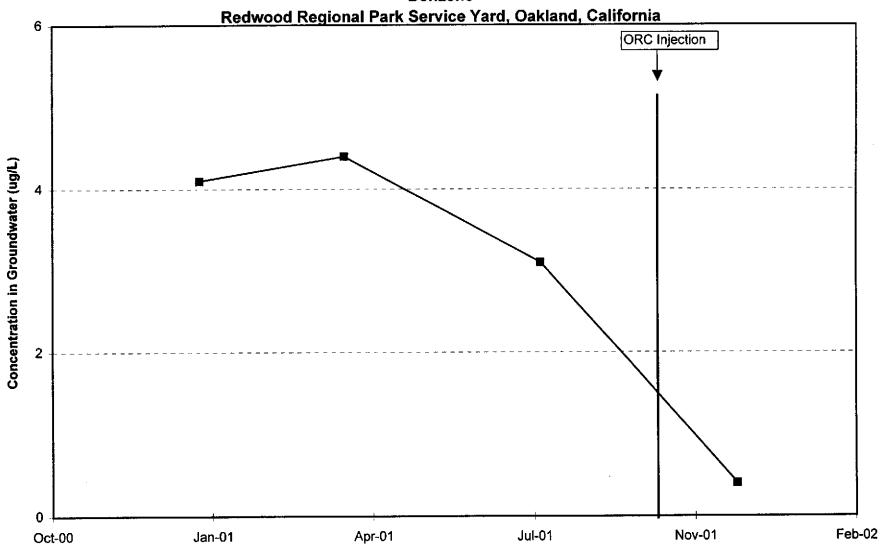
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA.
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NΑ
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2

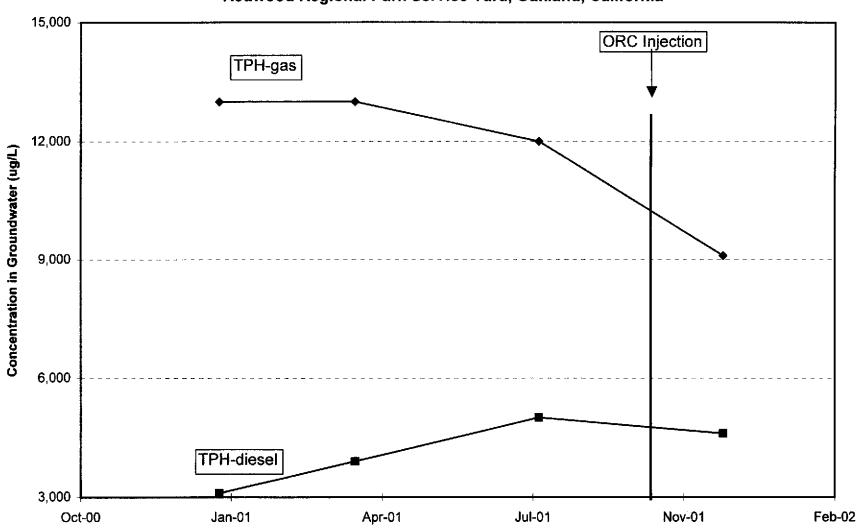

		Sampli	ng Locati	on SW-2 (A	rea of Cor	ntaminated Grou	ındwater Dischai	rge)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	12.9	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Aug-97	350	130	13	0.89	19	10.7	43.6	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10.0	1.0	47	27	85.0	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20.4	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	•	< 2

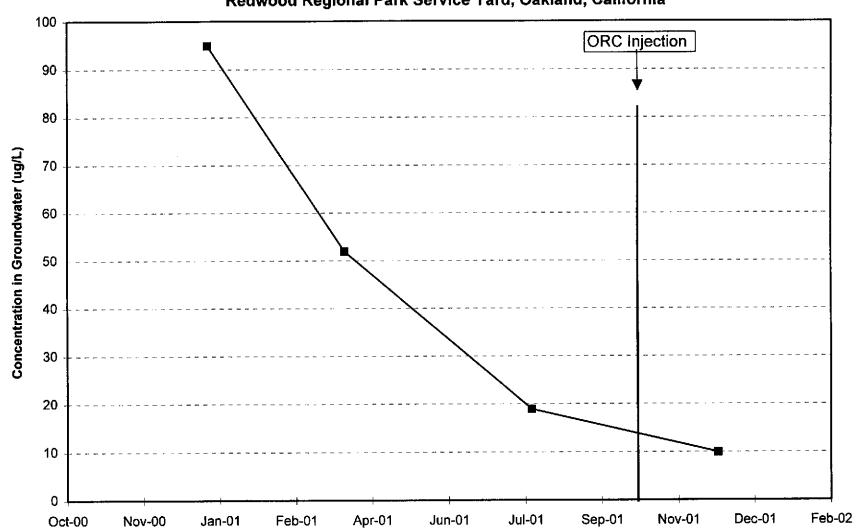
	Samplin	ng Location	1 SW-3 (D	ownstream	of Contan	ninated Groundy	vater Discharge	Location SW-2)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5		NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
13	Sep-00	NS	NS	NS	NS	NS	NS	_	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
16	Sep-01	NS	NS	NS	NS	NS	NS		NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	•	< 2

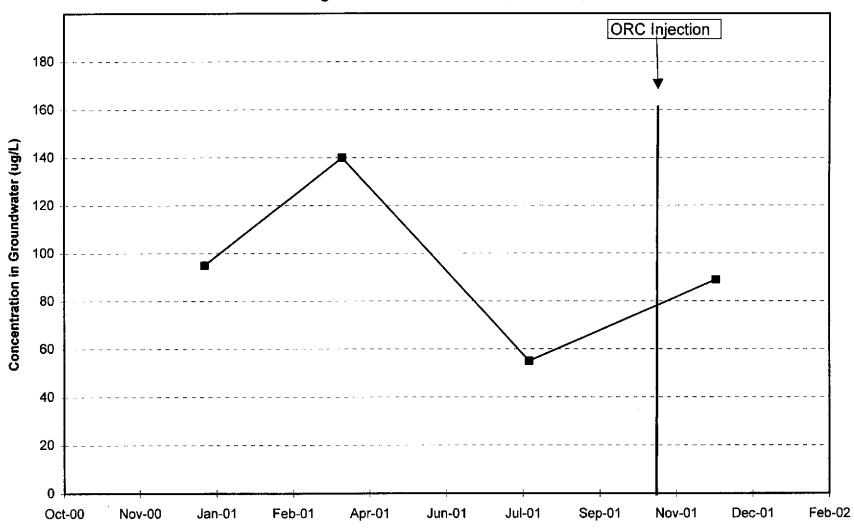

NS = Not Sampled (no surface water present during sampling event)

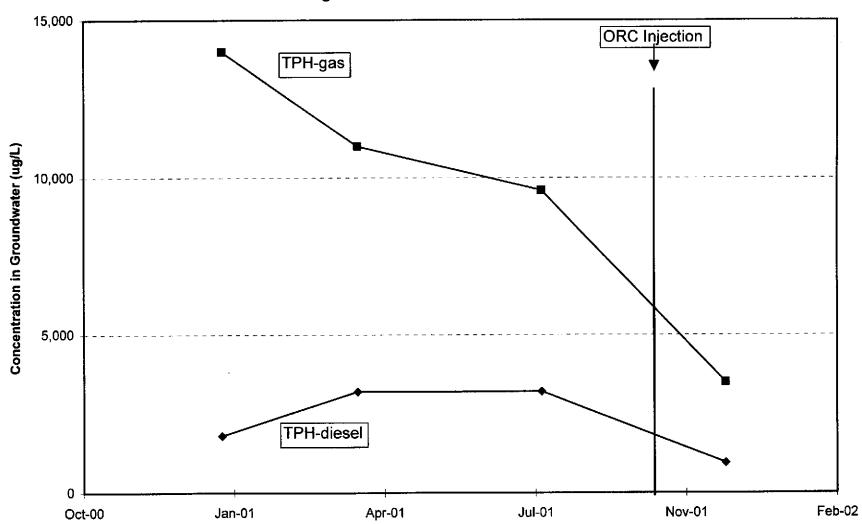
NA = Not Analyzed for this constituent

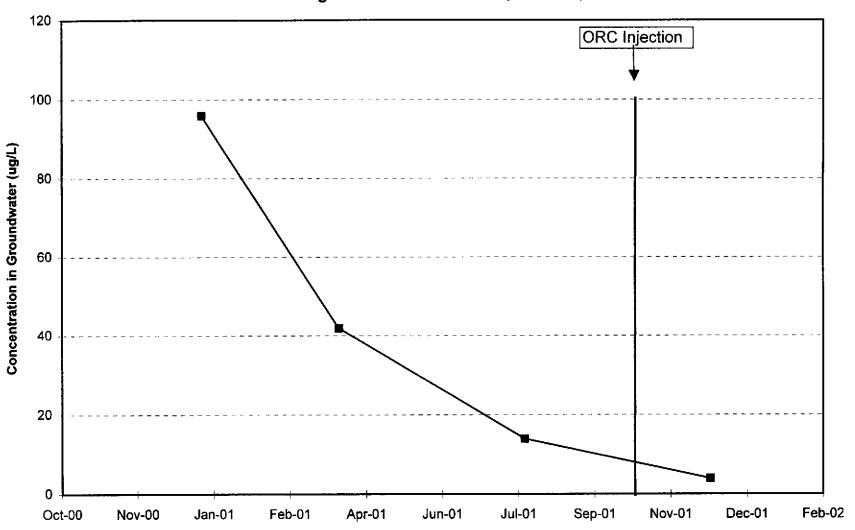

Year 2001 Ground Water Analytical Results: Well MW-4
TPH-gasoline and TPH-diesel
Redwood Regional Park Service Yard, Oakland, California

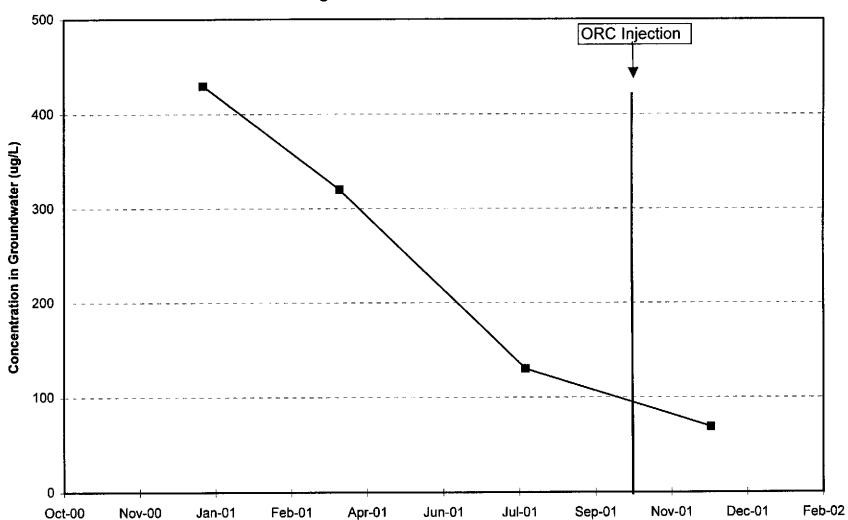

Year 2001 Ground Water Analytical Results: Well MW-4 MTBE

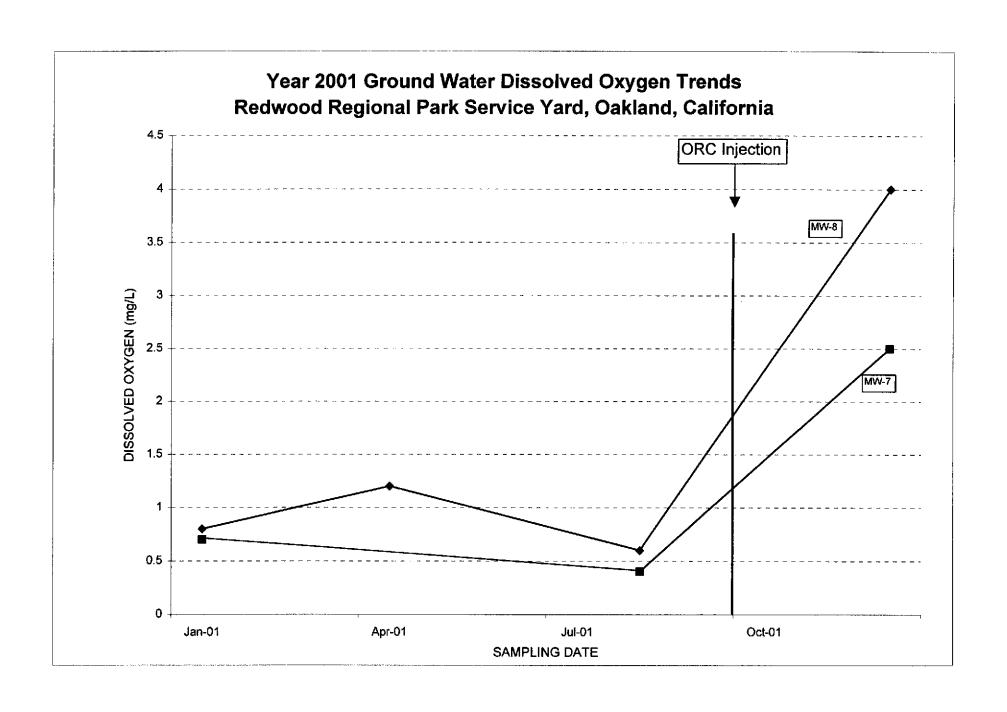

Year 2001 Ground Water Analytical Results: Well MW-4
Benzene


Year 2001 Groundwater Analytical Results: Well MW-7
TPH-gasoline and TPH-Diesel
Redwood Regional Park Service Yard, Oakland, California


Year 2001 Ground Water Analytical Results: Well MW-7
MTBE
Redwood Regional Park Service Yard, Oakland, California


Historical Ground Water Analytical Results: Well MW-7
Benzene
Redwood Regional Park Service Yard, Oakland, California


Year 2001 Groundwater Analytical Results: Well MW-8
TPH-gasoline and TPH-diesel
Redwood Regional Park Service Yard, Oakland, California



Year 2001 Ground Water Analytical Results: Well MW-8
MTBE
Redwood Regional Park Service Yard, Oakland, California

Historical Ground Water Analytical Results: Well MW-8
Benzene
Redwood Regional Park Service Yard, Oakland, California

