RECEIVED

11:01 am, Apr 21, 2010

Alameda County
Environmental Health

FIRST QUARTER 2010 GROUNDWATER MONITORING AND OXYGEN RELEASE COMPOUND TREATMENT CORRECTIVE ACTION REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

April 2010

FIRST QUARTER 2010 GROUNDWATER MONITORING AND OXYGEN RELEASE COMPOUND TREATMENT CORRECTIVE ACTION REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 20, 2010

Project No. 2008-02

April 20, 2010

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Quarter 2010 Groundwater and Surface Water Monitoring and Oxygen Release

CompoundTM Treatment Corrective Action Report — Redwood Regional Park Service Yard

Site, Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes First Quarter 2010 groundwater and surface monitoring and sampling activities, conducted between January 1 and March 31, 2010. These activities include: the Oxygen Release CompoundTM remedial injection performed on February 1-2, 2010; a 30-day post-injection monitoring event conducted on March 2, 2010; and the quarterly sampling conducted on March 29, 2010. Ongoing bioventing activities are reported in technical submittals separate from the quarterly monitoring reports; however, brief summaries of salient information are included in the quarterly reports.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me (510-644-3123).

Sincerely,

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

Small S. Makdin

cc: Carl Wilcox, California Department of Fish and Game

Matt Graul, East Bay Regional Park District State of California GeoTracker System

Alameda County Department of Environmental Health ftp system

No 4652

PERED GEOLOGIC

NO 4652

PERED 9/20/2

PERED 9/20

TABLE OF CONTENTS

Secti	on	Page
1.0	INTRODUCTION	1
	Project Background	1
	Objectives and Scope of Work	
	Historical Corrective Actions and Investigations	
	Site Description	
	Regulatory Oversight	
2.0	PHYSICAL SETTING	6
	Site Lithology	6
	Hydrogeology	
3.0	REGULATORY CONSIDERATIONS	12
	Groundwater Contamination	12
	Surface Water Contamination	12
4.0	ORC TM INJECTION CORRECTIVE ACTION PROGRAM	14
	Background and Objectives of Site Corrective Action	14
	ORC TM Injection Method Remedial Process	
	ORC TM Injection Procedure	16
	Field Observations During the ORC TM Injection	18
	Pre and Post-ORC TM Injection Groundwater Elevations	
5.0	30-DAY POST-ORC™ INJECTION EVALUATION	22
	Overview	22
	Analytical Results	22
6.0	FIRST QUARTER 2010 QUARTERLY MONITORINGACTIVITIES	24
	Groundwater Level Monitoring and Sampling	24
	Creek Surface Water Sampling	
	Bioventing-Related Activities	27

TABLE OF CONTENTS (continued)

7.0 FIRST OLIARTER 2010 ANALYTICAL RESULTS	20
7.0 FIRST QUARTER 2010 ANALYTICAL RESULTS	28
Groundwater and Surface Water Analytical Results	28
Quality Control Sample Analytical Results	
Evaluation of Effect of February 2010 ORC TM Injection	31
Future ORC TM Monitoring Activities	37
8.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	39
Summary and Conclusions	39
Proposed Actions	
9.0 REFERENCES	42
10.0 LIMITATIONS	48
Appendices	
Appendix A Historical Groundwater Monitoring Well Water Level Elevation I	D ata
Appendix B Groundwater Monitoring Field Documentation	
Appendix C Analytical Laboratory Report and Chain-of-Custody Record	
Appendix D Historical Groundwater and Surface Water Analytical Results	
Appendix E Photodocumentation of ORC TM Injection Activity	
Appendix F City of Berkeley Drilling Permit and Waste Disposal Documentation	ion

TABLES AND FIGURES

Tables	Pa	ge
Table 1	Advanced ORC [™] Treatment Zone Injection Parameters	18
Table 2	Pre- and Post-ORC TM Injection Groundwater Elevation Data – February 1 and 2, 2010	21
Table 3	30-Day Post-Injection Groundwater Monitoring – March 2, 2010 Analytical Results	22
Table 4	Groundwater Monitoring Well Construction and Groundwater Elevation Data – March 29, 2010	26
Table 5	Groundwater and Surface Water Samples – March 29, 2010 Analytical Results	29
Figures	Pa	ge
Figure 1	Site Location Map	.4
Figure 2	Site Plan and Historical Sampling Locations	5
Figure 3	Geologic Cross-Section Locations	.7
Figure 4	Geologic Cross-Sections A-A' through C-C'	.8
Figure 5	Geologic Cross-Sections D-D' through F-F'	.9
Figure 6	February 2010 ORC TM Injection Layout	19
Figure 7	Cross-Section View of February 2010 ORC TM Injection Treatment Zones	20
Figure 8	Groundwater Elevation Map –March 29, 2010	25
Figure 9	Groundwater Analytical Results and Gasoline Plume – March 2010	30
Figure 10	Gasoline and Diesel Hydrochemical Trends in Well MW-2	32
Figure 11	Gasoline and Diesel Hydrochemical Trends in Well MW-7	33
Figure 12	Gasoline and Diesel Hydrochemical Trends in Well MW-8	34
Figure 13	Gasoline and Diesel Hydrochemical Trends in Well MW-9	35
Figure 14	Gasoline and Diesel Hydrochemical Trends in Well MW-11	36

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

The overall objective of the latest remedial action is to continue trying to reduce the residual hydrocarbons in the source area and in the downgradient slope area (which is inaccessible to any remedies other than in-situ). Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) between January 1 and March 31, 2010 (First Quarter 2010):

- Injecting Oxygen Release CompoundTM (ORCTM) across the site, in conformance with the ACEH-approved Remedial Action Workplan (RAW) of August 2009
- Conducting post-ORCTM injection monitoring to evaluate remedy effectiveness
- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis
- Performing quarterly monitoring and maintenance of bioventing system operation

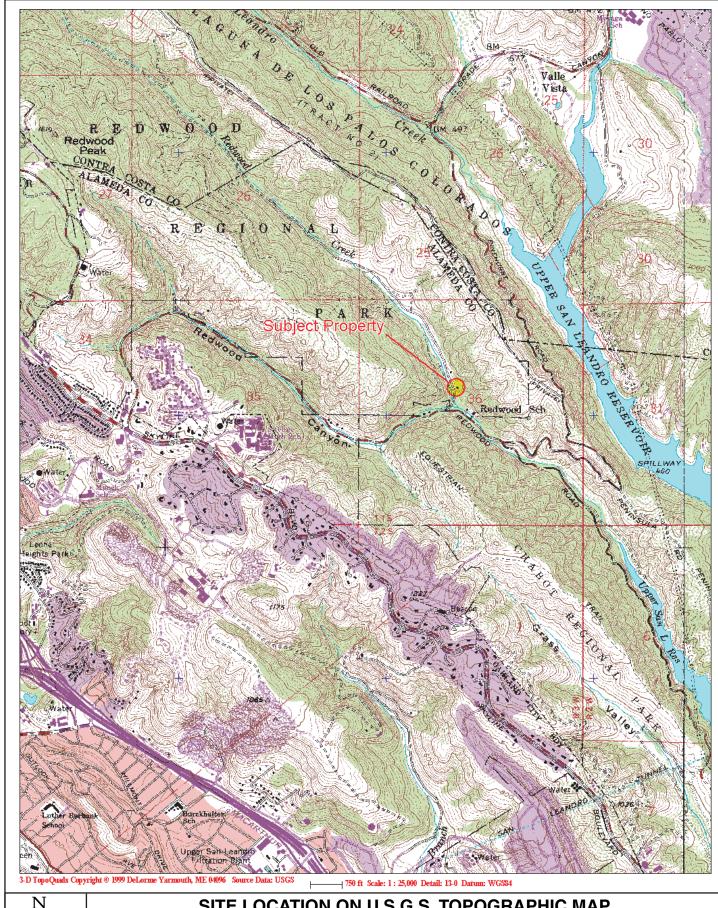
HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report lists all technical reports for the site.

The general phases of site work included:

- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and a request for the assessment and implementation of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- Groundwater monitoring and sampling, conducted on a quarterly basis since project inception (in November 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test, conducted in September and October 2004, to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. However, the bioventing remedy has not been effective to date. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A RAW (dated August 20, 2009) prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.
- An ORCTM injection conducted over the full footprint of plume that could be accessed during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).

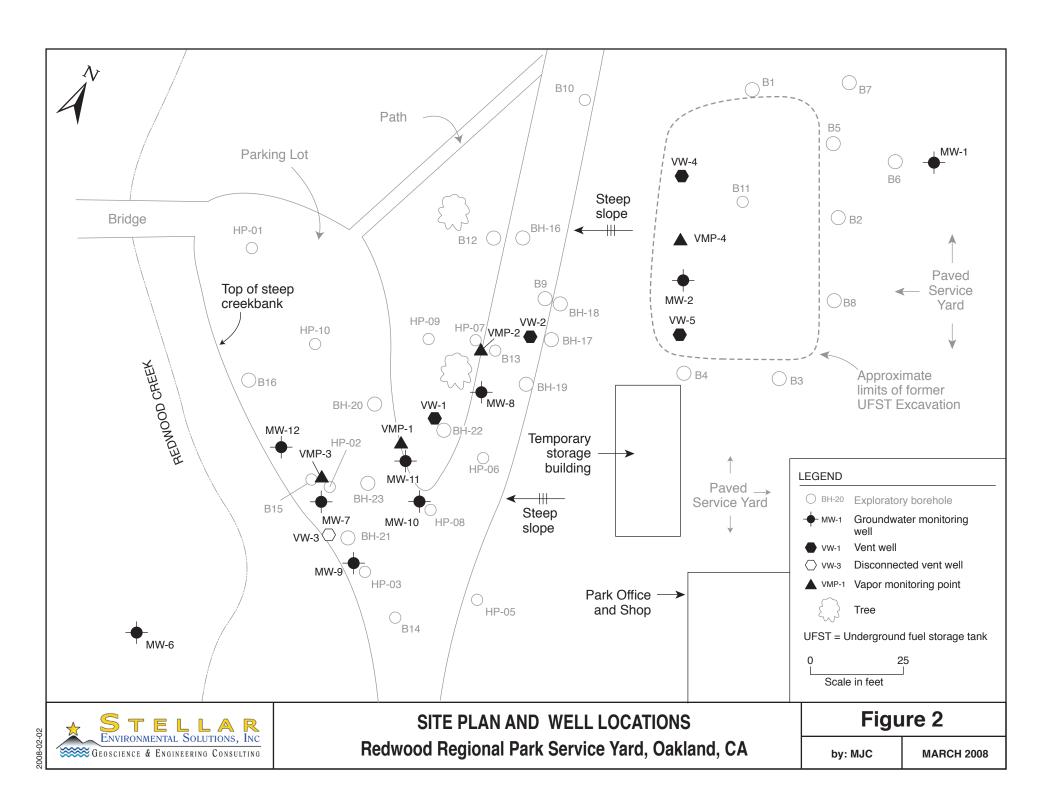
SITE DESCRIPTION


The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 1 shows the location of the project site, and Figure 2 presents the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports have been submitted to these agencies. Historical ACEH-approved revisions to the groundwater sampling program have included:

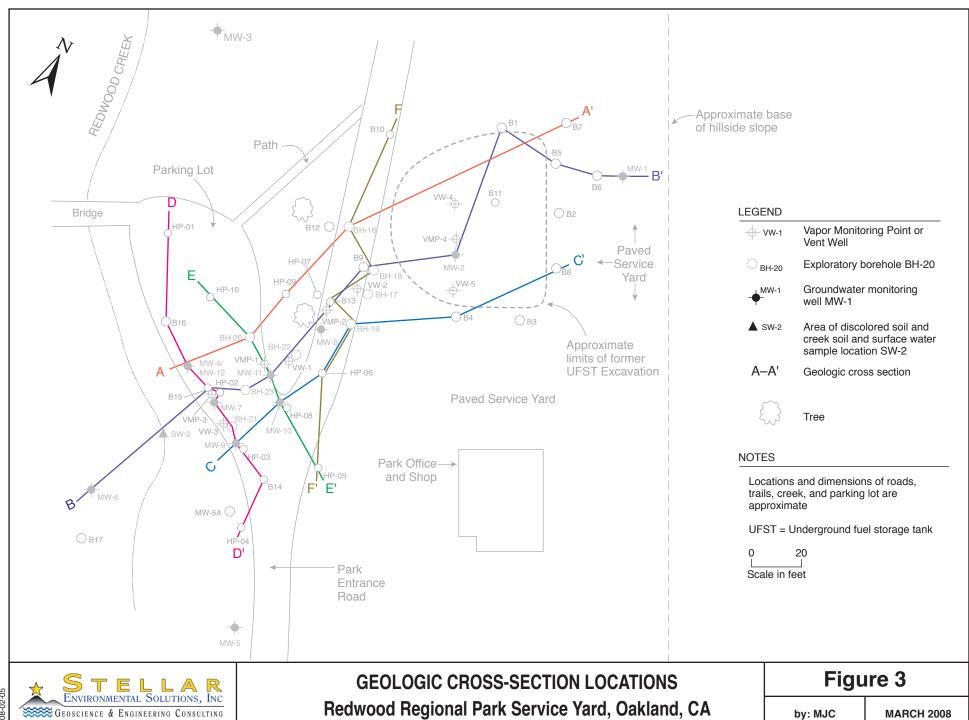
- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6
- Discontinuing creek surface water sampling at upstream location SW-1
- Reducing the frequency of creek surface water sampling from quarterly to semi-annually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

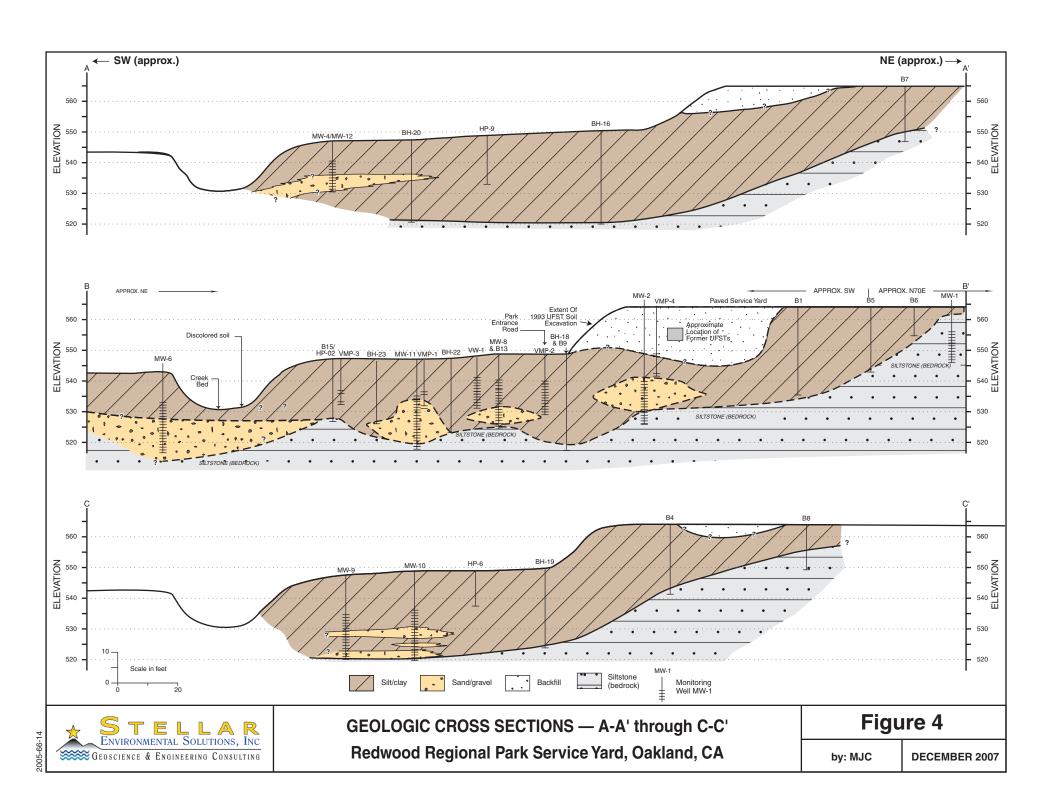

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

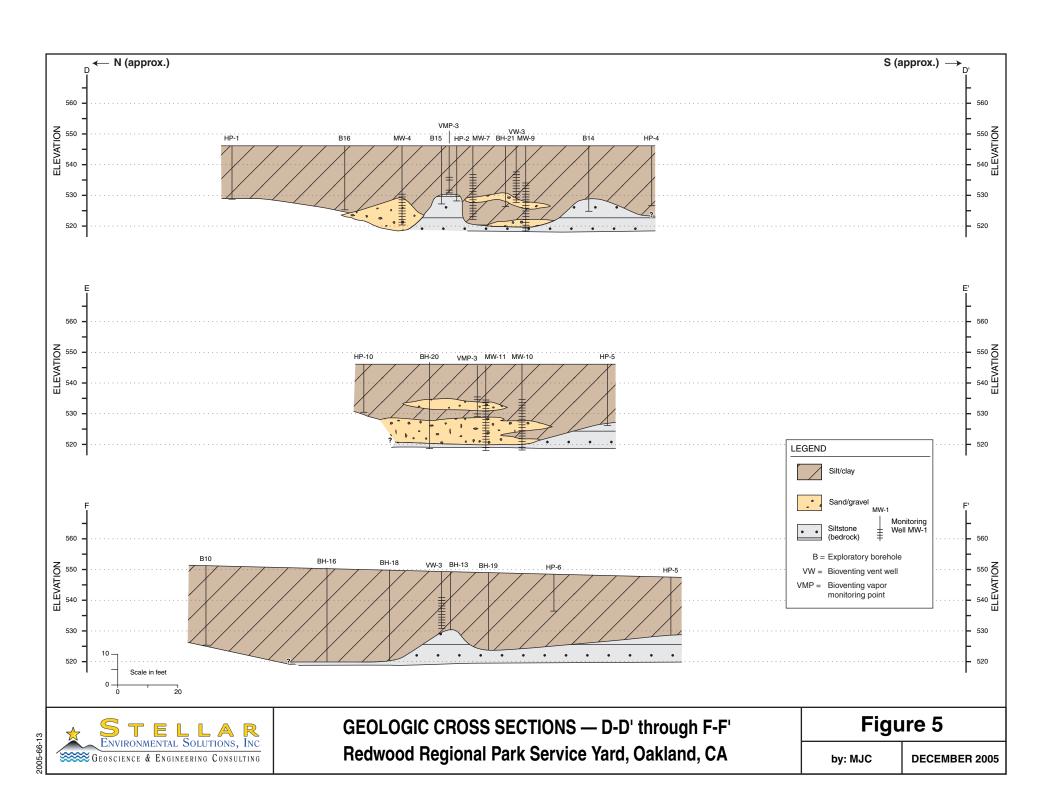
SITE LOCATION ON U.S.G.S. TOPOGRAPHIC MAP

Redwood Reg. Park Service Yard By: MJC Oakland, CA MARCH 2006 Figure 1

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.


SITE LITHOLOGY


Figure 3 shows the locations of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination are presented in a previous report (Stellar Environmental, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 in the most upgradient part of the site that abuts the canyon slope are inferred to be landslide debris.

A previous report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. As shown in Figures 4 and 5, the isopleth map indicates the following: The bedrock surface slopes steeply, approximately 0.3 feet/foot, from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the

southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that it may have undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We assume a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UFST installations (late 1970s). Locally, however, the groundwater velocity could

vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the First Quarter 2010 monitoring data contained in Section 6.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill), the groundwater gradient during this event was measured at approximately 0.20 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient during this event was approximately 0.1 feet per foot. The average groundwater elevation was 1.3 feet higher than the previous (December 2009) event, with the greatest increase of 3.9 feet measured in MW-8 and the lowest increase measured in MW-3 of 0.4 foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's San Francisco Bay Region Water Quality Control Plan (Water Board, 1995), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 5 (in Section 7.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is</u> a current or potential drinking water source; and 2) ESLs for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 5 (in Section 7.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 ORCTM INJECTION CORRECTIVE ACTION PROGRAM

This section discusses the ORCTM injection corrective action that was conducted on February 1 and 2, 2010, in accordance with the RAW (Stellar Environmental, 2009b). This injection was conducted by Vironex Drilling, a California-licensed hazardous drilling contractor, under the direct supervision of Stellar Environmental. Prior to the field activity, a drilling permit was obtained from Alameda County Public Works, and a site visit was made to mark the boring locations to obtain utility clearance from both Underground Service Alert and park maintenance personnel.

Photodocumentation of the injection field activity is contained in Appendix E. Appendix F includes the City of Berkeley drilling permit and associated waste disposal documentation.

BACKGROUND AND OBJECTIVES OF SITE CORRECTIVE ACTION

Following the initial (2001 and 2002) ORCTM injections in the downgradient portion of the plume area, a contaminant concentration rebound occurred within approximately 1 year. This lead to the realization that there was significant unrecorded contaminant mass upgradient of the injected area, despite base-of-excavation and other data points suggesting otherwise. Subsequent additional borings (BH-16 through BH-19) in 2003 confirmed the residual total petroleum hydrocarbon (TPH) mass upgradient. Due to the difficulty of excavating this area (a steep embankment slope), a soil bioventing system was installed to oxygenate the former UFST removal area. The bioventing remediation has been only partially successful, as it does not effectively address the residual contamination held in the stratigraphic traps in the saturated zone and capillary fringe zone.

Significant increases in the hydrocarbon concentrations in upgradient source area well MW-2, which was installed in the former UFST excavation in 1994, were observed in December 2007. These increases suggested that the previous 2 years of drought resulted in a release of hydrocarbons from the original UFST excavation area and/or capillary fringe, and saturated areas were exposed.

In March 2009, a small pilot test injection of ORCTM in the upgradient source area around well MW-2 was conducted to determine if ORCTM would be efficient in achieving dissolved hydrocarbon concentration reductions in the former source area. Subsequent monitoring showed a consistent reduction in both diesel- and gasoline-range hydrocarbons in MW-2.

Based on further examination of the 2001 and 2002 injection areas and considering the high variability of sediments, an in-situ injection design of "treatment zones" transverse to the plume (as opposed to the "area" design) was decided upon and implemented in February 2010. Advanced ORC[™] was selected to inoculate the groundwater in a treatment barrier design in the source zone and immediately downgradient in the downhill roadway area. This remedy was designed to create highly oxygenated barrier zones at critical locations transverse to the plume, focusing depth and loading based on lithology and known or suspected TPH mass.

The Advanced ORC[™] injections should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first 6 to 12 months. The mobility of the plume will likewise be reduced, although historical data from the last 6 years suggest that the remnant source between the corporation yard access road and the former UFST excavation area exhibits contaminant persistence due to probable hydrocarbons sorption and possibly lithologic (trap) causes. The idea of this revisited in-situ remedy (using Advanced ORC[™] in this case) is to also inject the oxygenating material in the upgradient source location where it can travel along the routes already established by the plume.

ORCTM INJECTION METHOD REMEDIAL PROCESS

The Advanced ORCTM product is a patented formulation of magnesium peroxide that produces a slow and sustained (upward of 12-month duration) release of molecular oxygen when in contact with soil moisture or groundwater. The Advanced ORCTM is a longer-lasting and more powerful oxygen delivery compound than the original ORCTM compound. The oxygen release function stimulates the growth of naturally occurring microbes that aerobically degrade petroleum hydrocarbons, using the carbon as a food source. This process is especially useful in areas where elevated levels of petroleum hydrocarbons have inhibited naturally occurring oxygen to levels below those required for microbial degradation. A smaller percentage of hydrocarbon degradation is anticipated via direct oxidation, especially in close proximity to the injection boreholes.

Advanced ORC[™] is a white powder with low solubility composed of a proprietary, high-oxygen-yielding calcium oxyhydroxide compound. When hydrated, Advanced ORC[™] is designed to release its full amount of oxygen (17 percent by weight) in approximately 1 year. This process enables aerobic microbes to significantly accelerate rates of bioremediation over longer periods of time. This ORC[™] has been engineered with Controlled Release Technology (CRT[™]), which retards the hydration of the calcium oxyhydroxide crystal and slows the formation oxygen in, and its release from, the crystal structure. The CRT[™] chemistry prevents premature release of oxygen that can lead to uncontrolled bubbling and oxygen waste via "blow off" prior to injection into a contaminated aquifer. CRT[™] involves the intercalation (permeation) of phosphate into the crystalline structure of calcium oxyhydroxide. Advanced ORC[™] has been tested in the

laboratory for oxygen release characteristics, and has been injected for aerobic bioremediation at several field sites.

The volume of dissolved hydrocarbons within the generalized area will likely be reduced within the first 12 months by 50 percent or more—according to the manufacturer's data. This approach ensures continued long-term treatment of remaining contaminants through low-cost bioremediation after the chemical oxidation treatment is completed.

ORCTM INJECTION PROCEDURE

Regenesis, the Advanced ORC^{TM} compound manufacturer, estimates that the radius of the product injection will be approximately 7.5 feet outside each injection point. However, Stellar Environmental designed a more conservative radius of 5.0 feet of effective injection, assuming sufficient overlap, to ensure that the ORC^{TM} reaches all target zones. Stellar Environmental placed the injection points on 10-foot (rather than 15-foot) centers, allowing for a more conservative 5 feet of outbound penetration to occur, while still providing effective coverage.

The injection system equipment consisted of:

- Direct-push Geoprobe® rig
- Drive rods (1½-inch outside diameter) and injection tooling with fluid deliver sub-assembly
- Injection pump rated for 5 gallons per minute at 200 pounds per square inch (psi) for sandy formations, and 800 psi for silt and clay formations (Geoprobe® DP-800)
- Injection hosing and a pressure relief valve with bypass
- Pressure gauges
- Power drill paint stirrer (3-inch diameter or smaller propeller tip)
- 5-amp sump pump (such as Little Giant) and hose
- One 55-gallon drum or similarly sized tank for ORCTM mixing
- Granular bentonite, quick-set grout concrete for closing and sealing injection holes
- Portable electric supply and water supplied by drilling contractor

A total of 24 borehole injections in four zones throughout the plume were advanced to deliver the Advanced ORC^{TM} product to treat and/or intercept all of the known and accessible hydrocarbon contamination.

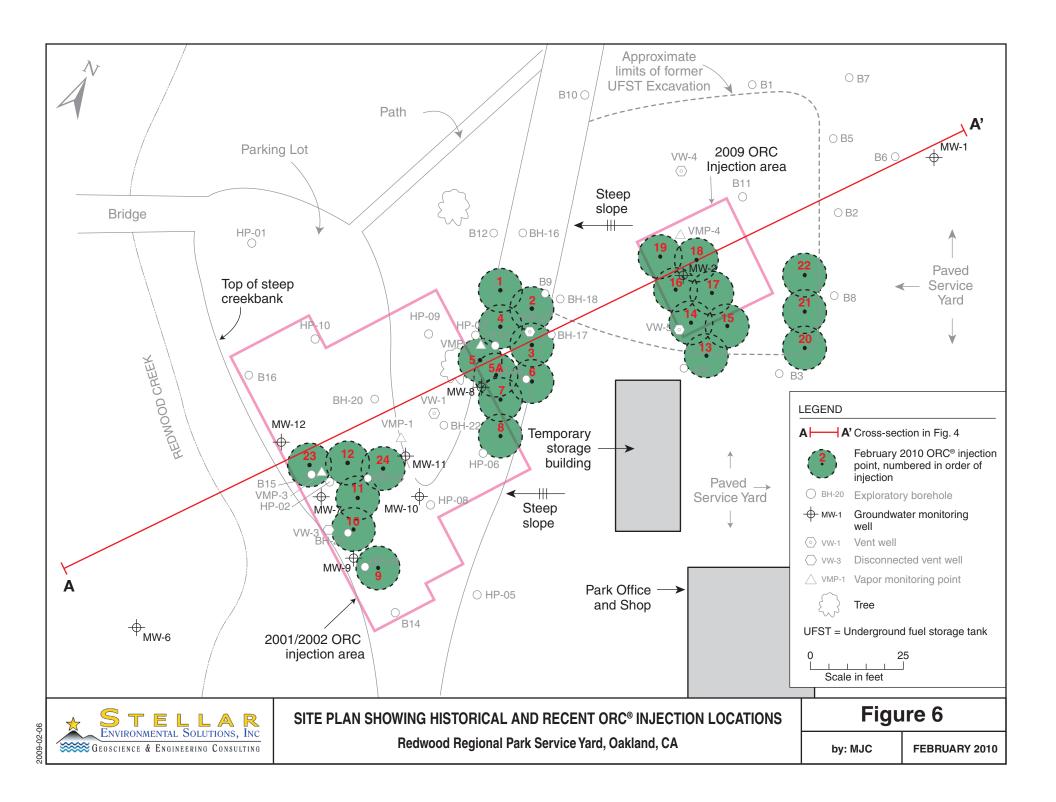
The Geoprobe[®] rig advanced an approximately 1.5-inch-diameter, hollow, steel-drive casing to the bottom of the treatment zone target depth. The casing was then lifted approximately 1 foot to

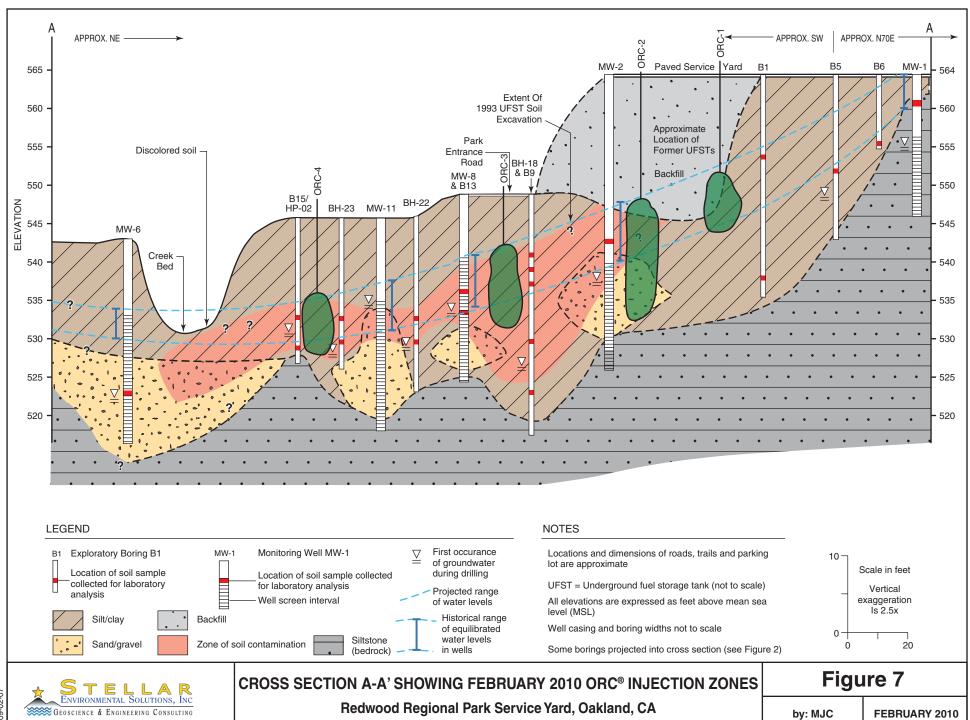
drop the sacrificial drive point and expose the inner screened casing through which the ORCTM slurry was pumped. A slurry of approximately 7 gallons of water to 25 pounds of ORCTM powder was mixed in a hopper to achieve a 30 percent solid slurry mixture. The slurry was transferred to an in-line hopper and pumped down the casing, through the screen, and into the formation at a pressure of approximately 200 psi. Care was taken to deliver an approximately uniform mass of ORCTM over each saturated interval. A waiting period of about 15 minutes was needed before disconnecting the injection apparatus and extracting the drill rods to allow the system to depressurize and prevent the ORCTM product from being extruded back up the rod assembly to the surface. "Short-circuiting" of the ORCTM slurry around the drive casing and to ground surface was not observed during the injection, indicating that the product was successfully delivered to the desired depth interval. Following full injection over the interval, the drive casing was fully withdrawn and the open portion of the borehole was filled with bentonite chips and hydrated or filled with cement grout.

The injection specifications for each of the treatment zones are shown in Table 1. The procedures for the treatment injections are as follows:

- The four project treatment zones transverse the plume (mainly in the upgradient plume area) over a combined total area of approximately 2,300 square feet; they are delineated separately in Table 1.
- A total of 24 injection points were drilled using direct-push technology to various depths in each of the treatment zones, as shown in Table 4.
- A total of approximately 2,075 pounds of ORCTM, mixed with water to achieve a 30-percent slurry mix, was delivered to the subsurface (25 pounds of Advanced ORCTM mixed with 7 gallons of water is equivalent to 8.4 pounds of ORCTM mixed with 2.3 gallons of water per foot).
- The oxidant loading was approximately 8.4 pounds per foot, which is based on a conservative average of 8,000 micrograms per liter (µg/L) of total volatile hydrocarbons as gasoline (TVHg) and total extractable hydrocarbons as diesel (TEHd).
- Delivery point spacing is approximately 10 feet.
- The thickness of the treatment zone ranges from 7 to 15 feet, as specified in Table 1, for each of the four treatment zones.
- The ideal injection schedule is during winter 2010 before the rainy season, to allow for optimum transport of the oxygenating compound.
- A total of 581 gallons of water was mixed with the 2,075 pounds of ORCTM and pumped into the 2,300-square-foot plume footprint. This translates into a total of 596 cubic feet across the 7-foot vertical interval.

Table 1
Advanced ORC[™] Treatment Zone Injection Parameters


ORCTM Treatment Zone (see figures for locations)	Treatment Zone Thickness	Treatment Zone Area (square feet)	Subsurface Treatment Zone Elevation Range (feet amsl)	Treatment Zone Depth Range (feet bgs)	Number of Bores in Treatmen t Zone	ORC TM Product Injected per Bore/Zone (pounds)
ORC-1	7 feet	300	545-552	12-19	3	59/177
ORC-2	15 feet	700	533-548	16-31	7	126/880
ORC-3	10 feet	750	532-542	7-17	8	84/670
ORC-4	7 feet	600	529-536	13-20	6	58/348


Figure 6 shows the historical (2001-2002 and 2009) injection areas and the current Advanced $ORC^{\text{\tiny TM}}$ injection treatment entailing the 24 injection bores. A longitudinal cross-section through the contaminant plume is presented in Figure 7 to illustrate the variable depth of the Advanced $ORC^{\text{\tiny TM}}$ injections and how they are related to both lithology and historical high-low water levels. This is a generalized depiction; the width of the injection material will be greater in some areas, as can be seen in Figure 6.

FIELD OBSERVATIONS DURING THE ORCTM INJECTION

Communication between boreholes was observed during injection in the upper ORCTM source areas (likely due to the relatively more permeable backfill in these areas). The communication was observed between boreholes 5 and 7 and between boreholes 15 and 17. Approximately 2.5 gallons of product was observed to extrude to the surface through borehole 15 while it was being injected into borehole 17; about 1 gallon was recovered and reinjected. Another 5 gallons of product was observed to extrude to the surface through borehole 20 while it was being injected into borehole 21; about 2 gallons was recovered and reinjected. As soon as this product extrusion occurred, the injection was immediately stopped and the formation was allowed to depressurize for about 15 minutes, after which the borehole was plugged with bentonite chips before injection was resumed.

During placement of ORCTM in bore 5 in injection area 3, the ground seal with the rod failed, and product began to extrude to the surface adjacent to the rod when the injector reached 12 foot bgs. This injection was discontinued. The failure likely occurred due to the presence of very loose soils in this area, indicated by the very low resistance during downhole advancement of the rods. However, the failure could also be related to cavities within the root system of the large Buckeye tree located less than 5 feet away.

The presence of either voids or loose porous soil in this area also explain why vent well VW-2 and the associated vapor monitoring points (VMP-2s and VMP-2d) show the most favorable bioventing activity across the site. Bore 5 was abandoned, and the product intended for delivery to the 7- to 12-foot-depth range in bore 5 was injected across this depth interval in alternate bore 5A (approximately 4 feet away in the direction of bore 7).

PRE AND POST-ORCTM INJECTION GROUNDWATER ELEVATIONS

Groundwater measurements were collected in four selected site wells before and after the injection activity on February 1 and 2, respectively. All four monitoring wells showed a rise in groundwater elevation greater than ½ foot immediately (within 1 hour) after injection into surrounding bores, attesting to the distribution of ORCTM product in these areas. Monitoring well MW-2 showed the most dramatic elevation increase (8.6 feet of groundwater rise) within 1 hour after injection of the surrounding bores. Only MW-10 failed to equilibrate to close to its pre-injection elevation. The water level data are summarized in Table 2.

 $\begin{array}{c} \textbf{Table 2} \\ \textbf{Pre- and Post-ORC}^{\text{TM}} \ \textbf{Injection Groundwater Elevation Data} - \\ \textbf{February 1 and 2, 2010} \end{array}$

Well ID	Well Depth	Screened Interval	TOC Elevation	Pre-Injection Groundwater Elevation (2/1/10)	Within 1 Hour Following Injection of Surrounding Bores	Post-Injection Groundwater Elevation (2/2/10)	
MW-2	36	20 to 35	566.42	545.64	554.19	545.62	
MW-8	23	8 to 23	549.13	537.95	538.53	538.02	
MW-10	26	11 to 26	547.22	535.09	535.72	535.53	
MW-12	25	10 to 25	544.67	535.25	535.82	535.19	

Notes:

TOC = top of casing

All elevations are expressed in feet above U.S. Geological Survey mean sea level.

5.0 30-DAY POST-ORCTM INJECTION EVALUATION

OVERVIEW

As requested by ACEH (in a letter to the EPRPD dated October 2, 2009), groundwater sampling of the five key plume wells (MW-2, MW-7, MW-8, MW-9, and MW-11) was conducted on March 2, 2010, approximately 1 month after the February 1-2, 2010 Advanced ORCTM injection event. This section presents the field and laboratory results of that monitoring event. Table 3 summarizes the contaminant analytical results. Appendix C contains the certified analytical laboratory report and chain-of-custody record.

Table 3
30-Day Post-Injection Groundwater Monitoring – March 2, 2010
Analytical Results

		Contaminant Concentrations						
Location	Dissolved Oxygen	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ
MW-2	3.22	1,900	3,200	< 0.5	< 0.5	< 0.5	2.2	2.2
MW-7	0.14	5,300	4,300	17	< 0.5	110	2.6	16
MW-8	0.37	220	270	0.84	< 0.5	14	3.1	3.9
MW-9	0.14	3,300	2,600	15	< 0.5	140	12	8.6
MW-11	0.15	2,300	2,500	13	< 0.5	59	0.79	3.4
Groundwater ESLs	NLP	100/210	100/210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800

Notes:

ESLs = Water Board Environmental Screening Levels, where groundwater is/is not a potential drinking water resource (Water Board, 2008)

 $TEHd = total \ extractable \ hydrocarbons - diesel \ range \\ TVHg = total \ volatile \ hydrocarbons - gasoline \ range \\ NLP = no \ level \ published$

All contaminant concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion. Samples in **bold-face** type exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

ANALYTICAL RESULTS

Volatile Organic Compounds

Groundwater contaminant concentrations exceeded the groundwater ESL for TVHg and TEHd in all five of the key plume wells sampled (MW-2, MW-7, MW-8, MW-9, and MW-11). The ESL for benzene was exceeded in MW-2, MW-7, MW-8, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; and the ESL for methyl tertiary-butyl ether

(MTBE) was exceeded in MW-7, MW-9, and MW-11. Total xylenes were detected in all five wells, but below the ESL. Toluene was not detected above the laboratory detection limit in any of the five wells.

The total TEHd and TVHg concentration ranged from 490 μ g/L in MW-8 to maximum of 9,600 μ g/L in MW-7 (located on the eastern side of Redwood Creek, downgradient of the original source area). The suggests that insufficient time has elapsed to see a reduction in concentration compared to both the baseline concentrations in the Fourth Quarter 2009 event and previous similar seasonal first-quarter events.

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as microbial respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

To help evaluate the effect of the February 2010 Advanced ORCTM injection, DO was measured in the site wells during the Fourth Quarter 2009 sampling event to establish a baseline for comparison in future monitoring events. Post-purge measurements during the Fourth Quarter 2009 event showed a maximum DO concentration of 0.47 mg/L in site wells. DO was at a high of 3.22 mg/L in key source area well MW-2 during the current monitoring. This concentration spike in MW-2 likely occurred due to its location in relatively more permeable backfill, in which groundwater and subsequently the ORCTM moves more rapidly. There was an overall decrease of 14.8 percent in DO concentration across the five key wells (MW-2, MW-7 MW-8, MW-9, and MW-11) compared to the December 2009 baseline, indicating that insufficient time had elapsed to see a response to the February 2010 ORCTM treatment. This suggests that 30 days is insufficient residence time for the ORCTM to affect the concentrations in the other key wells.

It should be noted that DO concentrations in the field are not indicative of the total amount of oxygen release by Advanced ORCTM, as the oxygen is rapidly utilized by microorganisms.

6.0 FIRST QUARTER 2010 QUARTERLY MONITORINGACTIVITIES

This section presents the quarterly creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (First Quarter 2010), conducted in March 2010. A summary of bioventing-related activities is also provided.

Groundwater and surface water analytical results are summarized in Section 7.0. Monitoring and sampling protocols were in accordance with the ACEH-approved workplan (Stellar Environmental, 1998a). Current First Quarter 2010 event activities included:

- Measuring static water levels in all 11 site wells
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12)
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3

Redwood Creek surface water sampling and groundwater monitoring and sampling was conducted on March 29, 2010. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event. Figure 8 is a groundwater elevation map constructed from the First Quarter 2010 event monitoring well elevation data. Table 4 summarizes the groundwater elevation data.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the workplan (Stellar Environmental, 1998a).

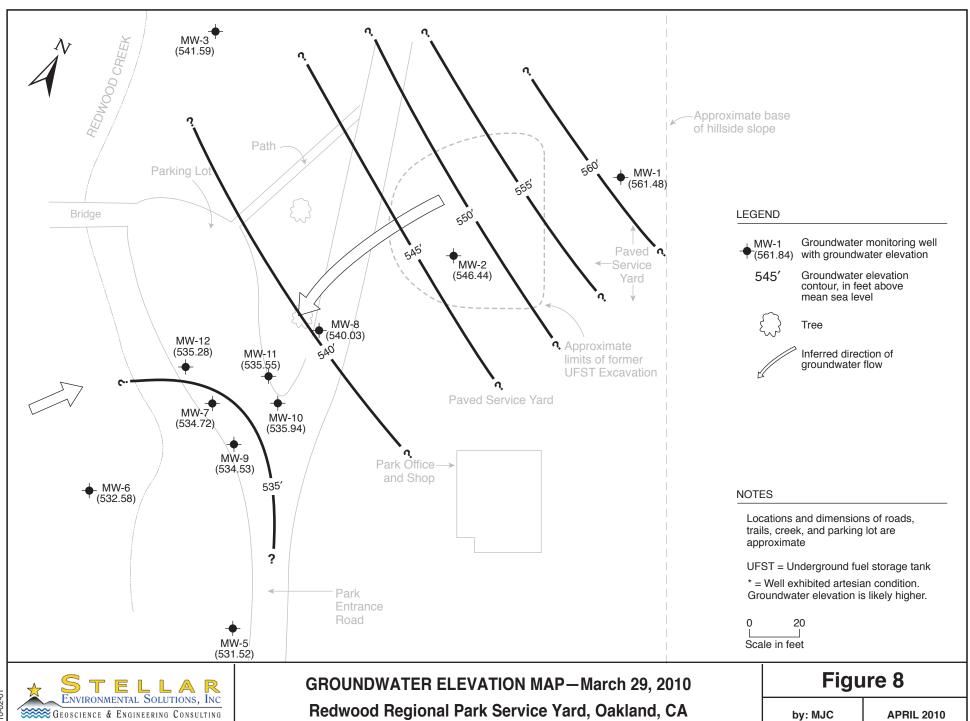


Table 4 Groundwater Monitoring Well Construction and Groundwater Elevation Data – March 29, 2010

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (3/29/10)
MW-1	18	7 to17	565.83	561.48
MW-2	36	20 to 35	566.42	546.44
MW-3	42	7 to 41	560.81	541.59
MW-5	26	10 to 25	547.41	531.52
MW-6	MW-6 26		545.43	532.58
MW-7	24	9 to24	547.56	534.72
MW-8	23	8 to 23	549.13	540.03
MW-9	26	11 to 26	549.28	534.53
MW-10	26	11 to 26	547.22	535.94
MW-11	26	11 to 26	547.75	535.55
MW-12	25	10 to 25	544.67	535.28

Notes:

TOC = top of casing

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above U.S. Geological Survey mean sea level.

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity, and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. In addition to the aquifer stability parameters, DO is being measured to evaluate the effects of the March 2009 and February 2010 ORCTM applications. To minimize the potential for cross contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 65 gallons) from the current event was containerized in the onsite aboveground storage tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by Stellar Environmental personnel on March 29, 2010. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a high stage due to recent rain events; water depths ranged from approximately 1 to 2 feet, and the creek was flowing steadily. Stellar Environmental did not observe any orange algae or sheen during this event, and no odors were detected.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for a 1-month period in January and February 2006. Bioventing system operations and maintenance events had been conducted monthly since March 2006; however, they have been reduced to quarterly events beginning in 2009. Redwood Regional Park staff check the system on a weekly basis to ensure that it is continuing to function properly, and will notify Stellar Environmental in the event of a problem. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically has seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents.

7.0 FIRST QUARTER 2010 ANALYTICAL RESULTS

This section presents the field and laboratory results of the current monitoring event. Table 5 summarizes the contaminant analytical results. Figure 9 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

First Quarter 2010 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in six of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12). TVHg was also detected in MW-10, but below the ESL. Contaminant concentrations of TEHd exceeded the ESL in all seven of the wells sampled. The ESL for benzene was exceeded in MW-7, MW-8, MW-9, MW-10, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-8. MTBE was only detected above the laboratory detection limit in well MW-9; however, the concentration was below the ESL. Toluene was not detected above the ESL in any of the seven wells sampled.

The maximum concentration of TVHg was detected in MW-8 (located just downgradient of the source area). MW-7 (located in the downgradient area of the plume) contained the highest concentration of TEHd. The northern edge of the plume in the downgradient area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution. While the center of contaminant mass in groundwater is generally located downgradient of the former source area, historically, contamination also has been observed in the former source area.

While contaminant concentrations remain elevated, a general decrease was observed in both gasoline and diesel concentrations as compared to the same quarter last year (March 2009).

No contaminants were detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2010 sampling event.

Table 5 Groundwater and Surface Water Samples – March 29, 2010 Analytical Results

	Dissolved	Contaminant Concentrations							
Location	Oxygen (mg/L)	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	
GROUNDWATER SAM	PLES								
MW-2	2.41	2,000	4,300	< 0.5	< 0.5	< 0.5	3.45	<2.0	
MW-7	0.38	2,600	6,100	11	< 0.5	76	4.5	<2.0	
MW-8	0.29	3,400	5,700	28	< 0.5	340	255.7	<2.0	
MW-9	1.01	2,500	3,400	16	< 0.5	70	15.4	2.1	
MW-10	0.49	63	280	1.3	< 0.5	2.7	0.94	<2.0	
MW-11	0.28	1,500	3,400	12	< 0.5	48	< 0.5	<2.0	
MW-12	1.05	240	380	< 0.5	< 0.5	2.7	< 0.5	<2.0	
Groundwater ESLs (a)	NLP	100/210	100/210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800	
REDWOOD CREEK SU	REDWOOD CREEK SURFACE WATER SAMPLES								
SW-2	NA	<50	<50	< 0.5	<0.5	< 0.5	<0.5	<2.0	
SW-3	NA	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.0	
Surface Water Screening Levels ^(b)	NLP	100	100	1.0	40	30	20	5.0	

Notes:

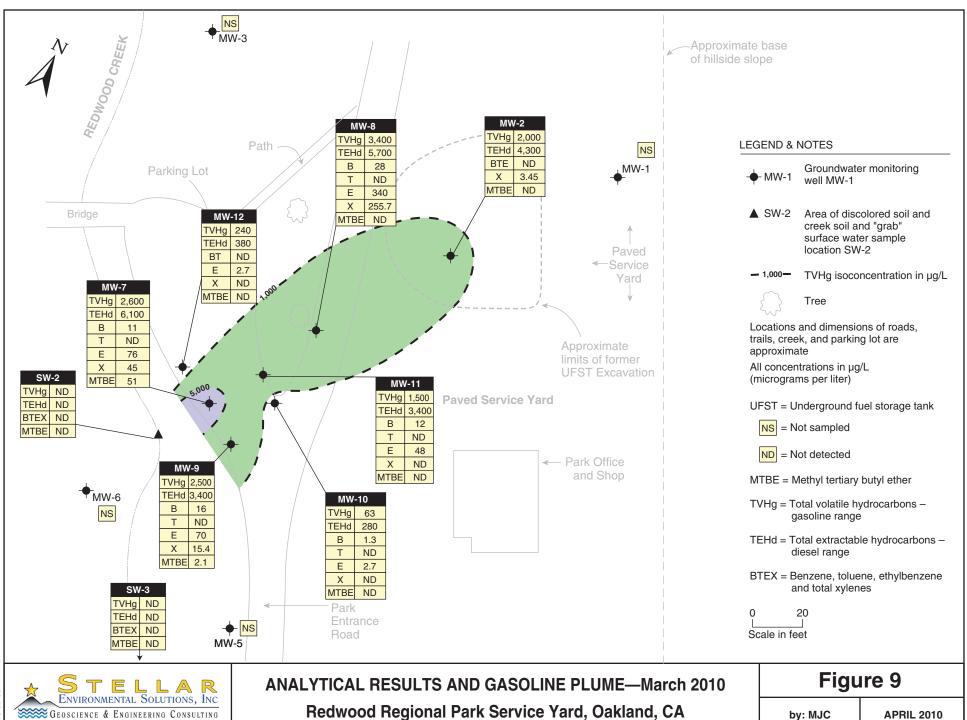
NA = not analyzed NLP = no level published

 $MTBE = methyl\ tertiary\text{-}butyl\ ether$

TEHd = total extractable hydrocarbons - diesel range

TVHg = total volatile hydrocarbons - gasoline range

All contaminant concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Samples in **bold-face** type exceed the ESLs and/or surface water screening levels where groundwater is a potential drinking water resource


Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L).

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

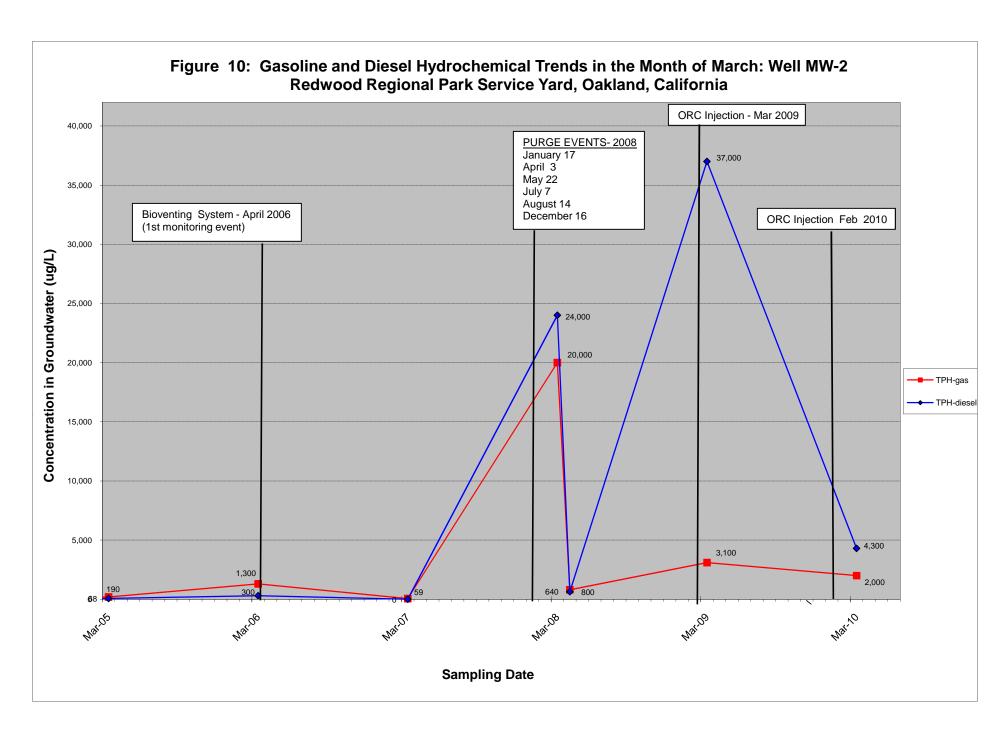
Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

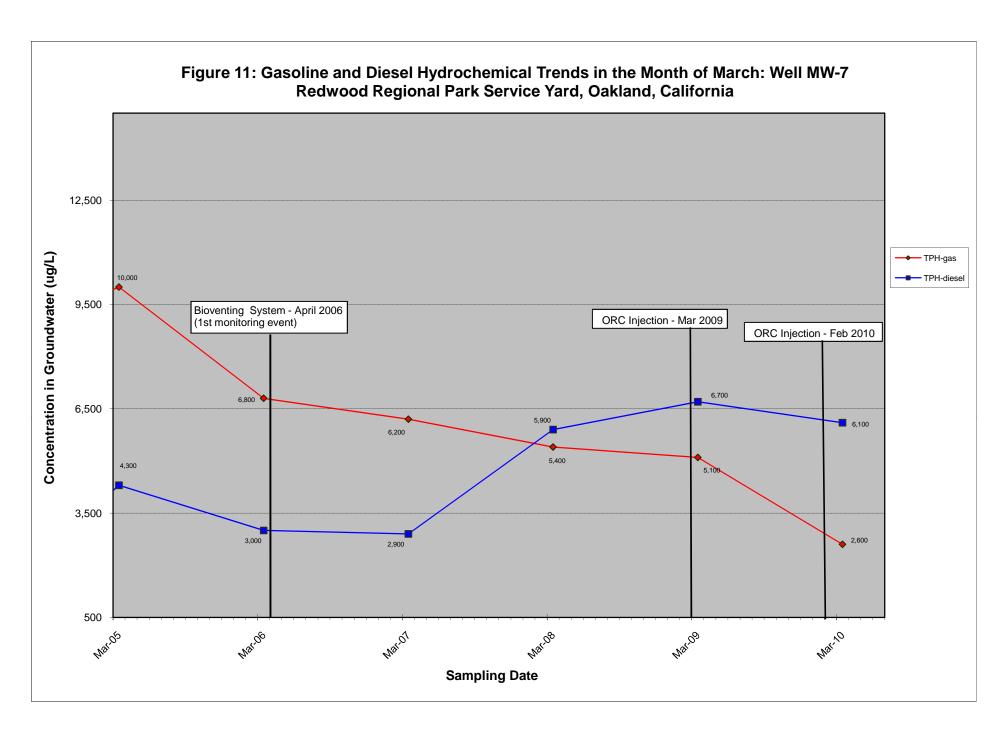
⁽a) ESLs = Water Board Environmental Screening Levels, where groundwater is/is not a potential drinking water resource (Water Board, 2008)

⁽b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008)

by: MJC

APRIL 2010


EVALUATION OF EFFECT OF FEBRUARY 2010 ORC™ INJECTION


Despite the emphasis on oxygen and aerobic degradation, it is well known and widely accepted that natural attenuation of petroleum hydrocarbons at many sites primarily occurs anaerobically using alternate electron acceptors such as NO₃-, Fe⁺³, SO₄-² and CO₂. However, clearly at this site, Advanced ORCTM is designed to provide a relatively long-term oxygen source for aerobic bioremediation. Laboratory studies have demonstrated a linear oxygen release rate of ORCTM as engineered by CRTTM (intercalation with phosphate), providing an efficient and steady supply of oxygen. Field results continue to confirm the efficacy of Advanced ORCTM as a cost-effective approach to contact recalcitrant residual hydrocarbons entrained in the subsurface materials and enhance natural attenuation.

The injection of the February 2010 ORCTM into the plume area follows a historical effort of remedial action to reduce the residual hydrocarbons in the source area and downgradient slope area that is inaccessible to any remedies other than in-situ. Historical efforts to address the continued hydrocarbon input into the groundwater has focused on enhancing reduction of the residual hydrocarbons entrained in subsurface material and/or stratigraphic traps. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface. As described in the analytical results below, this most recent remedial action continues to support the trend line of a reduction in hydrocarbon plume concentrations, but the concentration still remains well above the ESLs. The following is a discussion of the effect of the February 2010 ORCTM injection remedy.

Groundwater Analytical Results

The 30-day post-injection monitoring and First Quarter 2010 monitoring event took place approximately 60 days after the ORCTM treatment. The results of the monitoring suggest that either insufficient time had elapsed for the treatment to reduce hydrocarbon concentrations or an in-situ interference with the microbial activity is affecting the hydrocarbon reduction process. However, the overall concentrations of TVHg and TEHd in the five key site wells (with the exception of MW-2) during the March 2010 event are 15 to 200+ percent lower than concentrations detected during previous first-quarter events since March 2006. Source area monitoring well MW-2 showed significant increases in hydrocarbon concentrations since December 2007, attributed to the previous 2 years of drought that resulted in a release of hydrocarbons from the original UFST excavation area. The TVHg and TEHd concentration trends for the past 5 years of first-quarter events in wells MW-2, MW-7, MW-8, MW-9, and MW-11 are presented in Figures 10, 11, 12, 13, and 14, respectively.

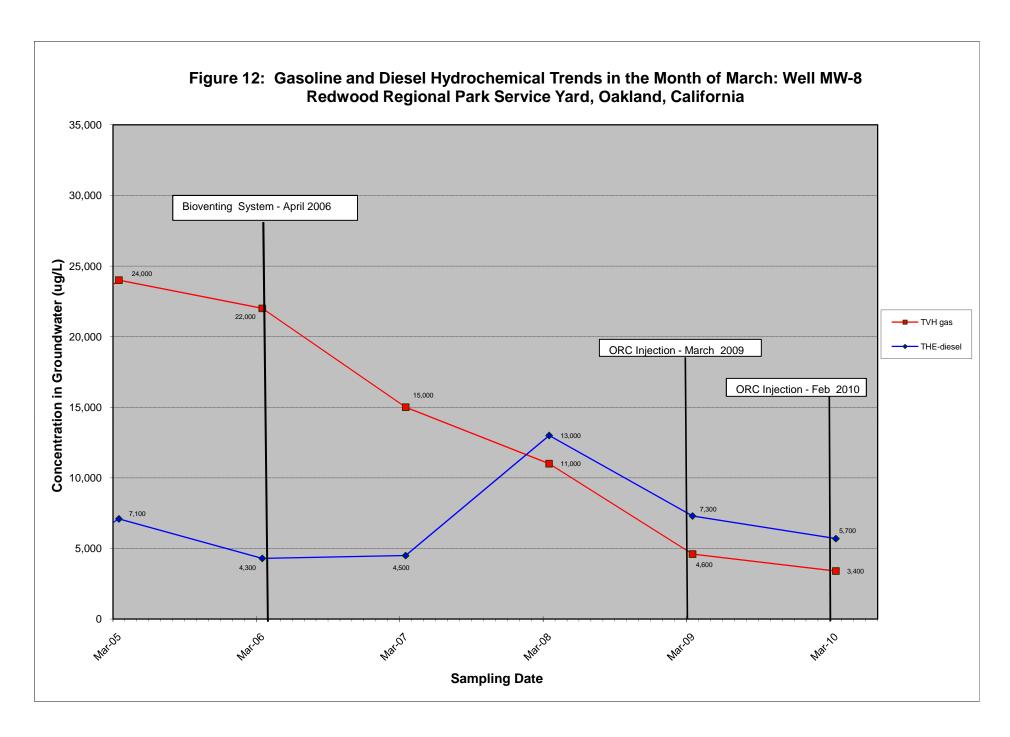
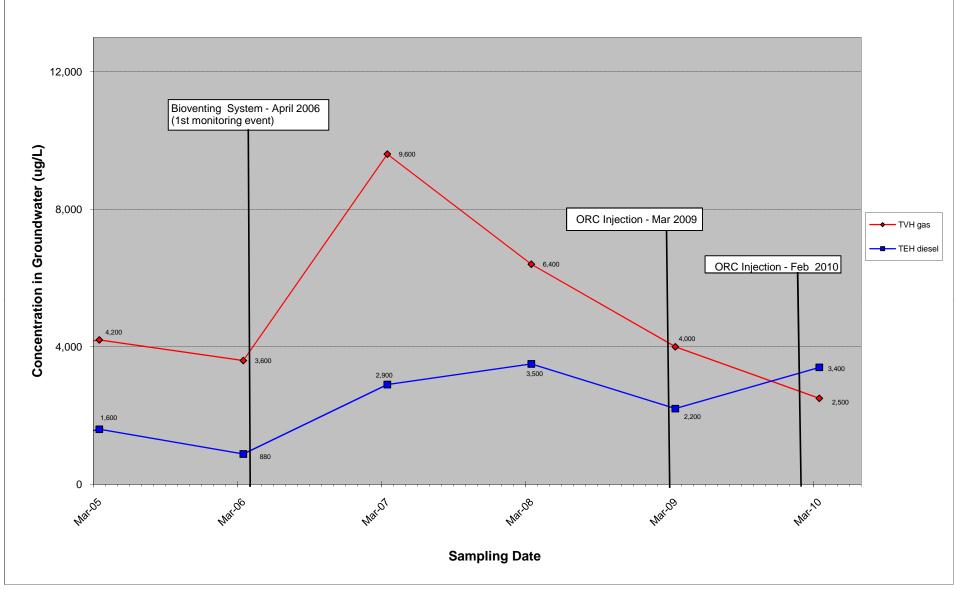
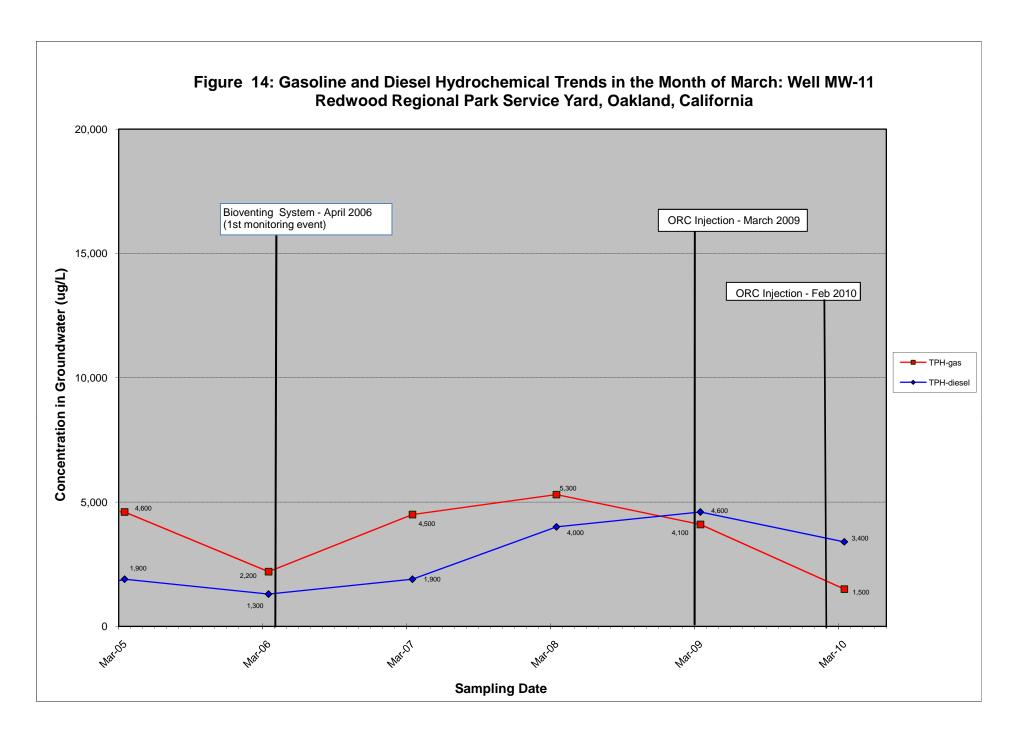




Figure 13: TPH-gasoline and TPH-diesel Hydrochemical Trends in the Month of March: Well MW-9 Redwood Regional Park Service Yard, Oakland, California

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 mg/L of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

DO in MW-2 had been measured throughout 2009 to monitor the March 2009 pilot ORCTM injection. The DO concentration was at a high of 1.32 mg/L in June 2009, but reduced to 0.2 mg/L in December 2009—a return to the pre-ORCTM injection level.

During the First Quarter 2010 sampling event, DO concentrations in site wells ranged from 0.28 to 2.41 mg/L. An overall DO increase of 34.2 percent was measured in the five key wells (MW-2, MW-7 MW-8, MW-9 and MW-11), which indicates a favorable response to the February 2010 ORCTM treatment.

FUTURE ORCTM MONITORING ACTIVITIES

The effectiveness of the ORCTM injection corrective action program in reducing groundwater contaminant concentrations in site wells will continue to be evaluated in subsequent quarterly groundwater monitoring events. This evaluation will occur though the comparison of the preinjection baseline data with post-injection groundwater monitoring well analytical results over subsequent quarterly sampling events. The post-injection groundwater data are evaluated in the context of effectiveness of the corrective action, including DO and hydrochemical trends.

The main active ingredient in Advanced ORCTM is magnesium peroxide. The optimal pH of such a system is adjusted to 7 to 9. Under these conditions, the solid peroxygens will release their activity partially as hydrogen peroxide and partially as oxygen. This allows for the initial chemical oxidation to take place, starting the breakup of the contaminants. The oxygen is then released more slowly, which will assist bioremediation over a period of up to 1.5 years. Although hydroxide radicals can be generated from hydrogen peroxide at this pH, iron will precipitate as ferric hydroxide.

Because only a moderate reduction in hydrocarbon contaminant concentrations has been observed in the key site wells 60 days post-injection, it is suspected that microbial biodegradation activity may be occurring preferentially in natural site constituents, in competition with the target residual hydrocarbons. This hypothesis can be tested by collecting additional site chemical parameters during sampling in subsequent quarterly monitoring events.

In the next quarterly sampling, alternate electron acceptors such as NO_3^- , Fe^{+3} , SO_4^{-2} and NH^{4+} will be analyzed for, along with ORC^{TM} signature amino acids, to track the ORC^{TM} utilization. One concern about the use of ORC^{TM} is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks such as reduced Fe, NH^{4+} , and S^{-2} can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

8.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- The overall objective of the current (additional) remedial action is to continue trying to reduce the residual hydrocarbons in the source area and in the downgradient slope area (which is inaccessible to any remedies other than in-situ). Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface. As described in the report, the First Quarter 2010 remedial action continues to support the trend line of a reduction in hydrocarbon plume concentrations, although the levels remain above the ESLs.
- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994. A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for TVHg, TEHd, benzene, ethylbenzene, total xylenes, and MTBE in groundwater and TEHd in surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low-creek flow conditions. An in-stream bioassessment evaluation conducted from 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28

- feet bgs) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- To address concerns raised by ACEH in its March 24, 2009 letter regarding source area and overall sitewide contamination, Stellar Environmental developed a corrective action workplan entailing injection of Advanced ORCTM. On February 1-2, 2010, in accordance with the ACEH-approved workplan, a total of 24 injection points were drilled to various depths using direct-push technology to deliver approximately 2,075 pounds of Advanced ORCTM mixed in a 30 percent water slurry mix to the subsurface.
- In accordance with ACEH requirements, groundwater sampling of the five key plume wells (MW-2, MW-7, MW-8, MW-9, and MW-11) was conducted on March 2, 2010, approximately 1 month after the February 1-2, 2010 Advanced ORCTM injection event. The analytical results, as well as the measured DO concentrations, show that the ORCTM had not been given sufficient time to significantly affect contaminant concentrations.
- First Quarter 2010 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in six of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12). TVHg was also detected in MW-10, but below the ESL. TEHd concentrations exceeded the ESL in all seven of the wells sampled.
- The ESL for benzene was exceeded in MW-7, MW-8, MW-9, MW-10, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-8. MTBE was only detected above the laboratory detection limit in well MW-9; however, the concentration was below the ESL. Toluene was not detected above the ESL in any of the seven wells sampled.
- While concentrations of both gasoline and diesel remain elevated, they have generally decreased since the First Quarter 2009 event.
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, midplume, and downgradient wells in recent history.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the heterogeneous environment in the location of the plume limits effectiveness; with only MW-8 in the upper center of the plume area showing a significant reduction in hydrocarbon concentrations. In other areas of the plume, it appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.

■ Moderate initial lowering of the hydrocarbon contaminant concentrations has been observed in the key site wells in both the 30-day post-injection and quarterly monitoring (equivalent to 60-day post-injection) events. This may be due to the recharge influencing distribution of the injected Advanced ORCTM product, or it could reflect that microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue to monitor the February 2010 ORCTM injection remedy effectiveness during regular quarterly sampling events. Include the collection of additional site chemical parameters during sampling in subsequent quarterly monitoring events to investigate whether microbial biodegradation activity is occurring preferentially in natural site constituents in competition with the target residual hydrocarbons.
- Continue the quarterly monitoring program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to operate the bioventing system as a part of the overall corrective action program, although it has limited potential to achieve significant reduction in contaminant mass throughout the affected area.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to the ACEH ftp system.

9.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008.

 Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010. Fourth Quarter 2009 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009a. Fourth Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009b. Remedial Action Workplan for Oxygen Releasing Compound ORC® Application to Source Area Contamination, Redwood Regional Park Service Yard, 7867 Redwood Road, Oakland, California. August 20.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008b. First Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008c. Second Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008d. Third Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 7.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

10.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by Stellar Environmental since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The Stellar Environmental personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored				Gro	undwater E	levations (feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7		533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6		531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0		530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5		531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7		531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8		531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99		530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/2007	560.62	541.22	536.85		530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/2008	561.76	545.73	541.63		531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6		530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41		529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77		530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51		531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38		531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33		529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22		530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59		531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

TEST EQUIPMENT CALIBRATION LOG

				PROJECT NUM	IBER		
EQUIPMEN NUMBER	١T	TEST	USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
622 60	<i>3</i> Z	3-2-10 630		04 7,0,10,1,4,0 Cond 3900	Yes		
		3-2-10	AO NTO 100 NTO 800 NTO			COStant of State (State State	BP
98 B100 9	51	3-2-10 630	100% 170	10.08 mg/	yes	17.50	BP
				e',			
•					,		

	EQUIPMEN NUMBER 622 60	EQUIPMENT NUMBER 622 66 32	EQUIPMENT DATE/TIME OF TEST 622 66 32 3-2-10 6 30 3-2-10 6 30 3-2-10 6 30 3-2-10 6 30	EQUIPMENT DATE/TIME OF STANDARDS USED 022 66 32 3-2-10 PH 7.0,10.0,9.0 6 30 30 NTO 6 30 800 NTO 08 8100 951 3-2-10 6 30 100%, P6	EQUIPMENT DATE/TIME OF STANDARDS USED EQUIPMENT READING 622 66 32 3-2-10 PM 7.0,10.0,9.0 PM 7.0,10.1,9.0 Cond 3900 3-2-10 100 NTO 100 NTO 100 NTO 100 NTO 10.08 Mg/L	EQUIPMENT NUMBER DATE/TIME OF STANDARDS EQUIPMENT CALIBRATED TO: OR WITHIN 10%: 022 66 32 3-2-10 PH 7-0/00,9-0 PH 7-0/01,9-0 PLS 3-2-10 100 NTD 100	EQUIPMENT NUMBER DATE/TIME OF TEST USED EQUIPMENT READING OR WITHIN 10%: TEMP. 622 6 32 3-2-10 630 70 700 700 700 700 700 700 700 700 70

WELLHEAD INSPECTION CHECKLIST

Page _ _ of _ _ _

Date 3-2-1	0	Client	Stella	Roduc	ood Re	eqiona l	Park	Service		
Site Address Ru	dwood Regi	ional A	Park s	ervice;	Yard	Oaklan	d CA			
Job Number					chnician					
Well ID	Welf Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)		
MW-1 *	X									
MW-2 &	X			٨						
MW-3 *	X									
MW-5 }	X					,				
MW-6 *	_ X									
MW-7 A	X									
MW - 8		×								
MW-9 A										
MW-10										
MW-11 +	X	-								
MW-12	X									
* lock	ced sta	ndpip	<u>e</u>							
NOTES: MW-10 2/2 tabs stripped, MW-8 3/3 tabs stripped, 3/3 bolts missing										
			****	· · · · · · · · · · · · · · · · · · ·	•••					
							**			

WELL GAUGING DATA

Project # 100302 - BPI Date 03-02-10 Client 5 + ellar

Site Redwood Regional Park service Yord Oakland CA

		Well Size	Sheen /	Depth to	Thickness of Immiscible	Volume of Immiscibles		Denth to well	Survey Point: TOB or	
Well ID	Time	(in.)	Odor	1	Liquid (ft.)		(ft.)	bottom (ft.)	TOC	Notes
MW-1	950	4				\- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.07	19,12		
MW-Z	955	4				A41.0 - J	19.85	38.42		
MW-3	945	4					18,96	45.68		·
MW-5	1	<u></u>					15,51	27.02		
MW-6	925	4					11.92	13.80		
MW-7	900	2				***************************************	12.78	25,35	car.	
MW-7 MW-8	935	2					10,16	22.11		
MW - 9	855	2			****		14.62	30.:29		
MW-10	930	2					11.39	28.34		
MW-11 MW-12	405	2			***************************************		12.13	29.56	1	
MW-12	915	2					9,19	32.72		
***************************************		***************************************			: .					
***					-					

		Wi	ELL MONITO	RING DATA S	HEET 7				
Project #	: 10 03	0 Z - B	PI	Client: 5	tellar Envl	Pedwood Regional Park			
Sampler:			·	Start Date:	03-02-1	I			
Well I.D.	: MW-2	Som.		Well Diamete	r: 2 3 4	6 8			
Total We	ell Depth:	38.	42	Depth to Wate	Depth to Water: 19.85				
Before:		After:		Before:	Before: After:				
Depth to	Free Produc	ct:		Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
	Bailer Disposable Bailer Positive Air Die Electric Submer	splacement ersible	Waterra Peristaltic Extraction Pum Other 70 Recharge = Gals. Calculated Volun	23.56 Well Diame 1" 2" 3"	Disposable Extraction Dedicated Other:	Port Tubing			
	Temp.		Conductivity (mS	Turbidity	C.1. P.	Observations			
Time	© For °C)	9,5	ŒμS)	(NTU)	Gals. Removed	Observations			
1034	59:1		690.1	454					
NE	CC VE	WATER	FD @ 15	Gallons	VIW 3	5.0(
1320	58.5	10.0	642.0	183		DTW: 23.16			
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	15.0			
Sampling	Time:	3 20		Sampling Date	: 03-02-	10			
Sample I.	D.: MW	1-2		Laboratory:	STE	Cat			
Analyzed	for:	PH-G BTEX	MTBE TPH-D	Sother: SEE	ECOC				
Equipme	nt Blank I.D).:	@ Time	Duplicate I.D.	•				
Analyzed	for: TF	PH-G BTEX	MTBE TPH-D	Other:					
D.O. (if r	eq'd):	ALANGO AND	Pre-purge	: mg/L	Post-purge:	3, 22 mg/L			
ORP (if r	ea'd).		Pre-purge	: mV	Post-purge:	mV			

WELL MONITORING DATA SHEET

		W H				Partical
Project #	: 10 03	0 Z - B	PI	Client: 5	tellar Env	Degional Park
Sampler:	~ ~			Start Date:	03-02-1	0
Well I.D.	: MW	7		Well Diamete	r: 2 3 4	6 8
Total We	ll Depth:	25.3	5	Depth to Wate	er: 12.78	
Before:		After:		Before:		After:
Depth to	Free Produc	ot:		Thickness of I	Free Product (feet):
Referenc	ed to:	PVC	Grade	D.O. Meter (it	f req'd):	YSI HACH
	od: Bailer Disposable Bai Positive Air Dis Electric Subme	splacement rsible	Sampling Mo	Disposable Extraction Dedicated Other:	Port Tubing	
1 Case Volum	ne Spec	cified Volumes	Calculated Volume		0.37 Other	Taulus 0.105
Time	Temp.	рН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations
11 00	55.2	7.1	792.3	274	Z.0	odor
1105	55.2	6.7	8/6.3	222	4.0	
1110	55.3	6.7	806.2	193	6.0	7
		•				
						PTW: 13.90
Did well	dewater?	Yes	No	Gallons actual	lly evacuated: (2	0.0
Sampling	Time:		5	Sampling Date	e: 03-02-	10
Sample I.	D.: MW	- F		Laboratory:	AL	CAT
Analyzed	for:TP	H-G BTEX	MTBE TPH-D	Other: $S \in \mathcal{C}$	E COC	
Equipmen	nt Blank I.D	•	@ Time	Duplicate I.D.	•	
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:		
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	0,14 mg/L
ORP (if r	eq'd):		Pre-purge:	mV	Post-purge:	mV

WILL MONITORING DATA SHEET

		V A	TATOLATE OF	CITO DIVITE					
Project #:	10 03	0 Z - B	PI	Client: 5	tellar Env	Degional Park			
Sampler:	BP			Start Date:	03-02-1	0			
Well I.D.:	MW-8	,		Well Diamete	r: 2 3 4	6 8			
Total Well		22.11		Depth to Wate	er: 10.16	a			
Before:		After:		Before: After:					
Depth to Fr	ee Produc	et:		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH			
Po El	ailer isposable Bai ositive Air Di ectric Subme	splacement rsible	Waterra Peristaltic Extraction Pump Other		Disposable Extraction Dedicated Other:	Port Tubing			
1.9 (G 1 Case Volume	als.) XSpec	= cified Volumes	5.7 Gals. Calculated Volume	3"	0.10 0 0.37 Other	radius ² * 0.163			
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations			
1218	57,1	7.1	845.2	435	1.9				
1222	57.4	7,	843,0	473	3.8				
1226	57.9	Commences of the Commen	843,3	274	5.7				
·									
						DTW: 11.0Z			
Did well de	water?	Yes	No	Gallons actual	ly evacuated:	5.7			
Sampling T	ime:	123	50	Sampling Date	: 03-02-	10			
Sample I.D.	: MW			Laboratory:	ŞTĹ	C+T			
Analyzed fo	or: TP	H-9 BTEX	MTBE TPH-D	Other: SEE	ELOC				
Equipment 1	Blank I.D		@ Time	Duplicate I.D.	:				
Analyzed fo	or: TP	H-G BTEX	MTBE TPH-D	Other:					
D.O. (if req'	d):		Pre-purge:	mg/L Post-purge		037 ^{mg} /L			
)RP (if req'	d):		Pre-purge:	mV	Post-purge:	mV			

WELL MONITORING DATA SHEET

		CILL IVICIALI CA							
Project #: /0 030	Z-B	PI	Client: 5	tellar Env	@ Regional Park				
Sampler: BP			Start Date:	03-02-1	1				
Well I.D.: MW-9			Well Diamete	r: 2 3 4	6 8				
	30.29		Depth to Water: 14.62						
Before: A	After:		Before: After:						
Depth to Free Product:			Thickness of	Free Product (feet	(r):				
Referenced to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH				
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other 8070 recharge = 17.75 Gals. Gals.) X Gals.) X Gals.) X Sampling Method: Extraction Bailer Disposable Bailer Extraction Port Extraction Pump Other: 1" 0.04 4" 0.66 2" 0.16 6" 1.4									
	ed Volumes	Calculated Volume		0.37 Other	radius ² * 0.163				
Time (°F) or °C)	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations				
1140 55.6	6.8	957.3	176	2.5	odor				
	6,8	965.6	514	5,0	1				
1152 56,1	6.8	984.4	> (000	7.5	Ţ				
					DTW: 17.25				
Did well dewater? Ye	es	No	Gallons actual	ly evacuated:	7,5				
Sampling Time:	120	0	Sampling Date	: 03-02-	10				
Sample I.D.: MW -	9		Laboratory:	SPL	CIT				
Analyzed for: TPH.	BTEX	MTREO TPH-D	Other: SEE	COC					
Equipment Blank I.D.:		@ Time	Duplicate I.D.						
Analyzed for: TPH-0	3 BTEX	MTBE TPH-D	Other:		: :				
D.O. (if req'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	O (mg/L				
ORP (if req'd):		Pre-purge:	mV	Post-purge:	mV				

WELL MONITORING DATA SHEET

		L V V	ULL MOUTH OF	CELVO EDIREIRO		
Project #	: 10 03	0 Z - B	PI	Client: 5	tellar Env	Degional Park
Sampler:	- ~			Start Date:	03-02-1	į į
Well I.D.	: MW-1	·		Well Diamete	er: 2 3 4	6 8
Total We		28.56)	Depth to Wate	er: 12.13	
Before:		After:		Before:		After:
Depth to	Free Produ	ct:		Thickness of	Free Product (feet):
Reference	ed to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH
2.6	Bailer Disposable Bai Positive Air Di Electric Subme	splacement ersible 80		Well Diamo	Disposable Extraction Dedicated Other:	Port Tubing
1 Case Volun	· · · · · · · · · · · · · · · · · · ·	cified Volume	1	<u> </u>	Γ	
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations
1250	55.7	7.1	743.8	371	2.6	cloudy
1255	55.9	6.9	773.2	381	5.z	(
1300	56.1	6,8	783.0	348	7.8	
						DTW : 12.72
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	7.8
Sampling	Time:	1305	-	Sampling Date	e: 03-02-	10
Sample I.	D.: MW			Laboratory:	SPL	CFT
Analyzed	for:	H-O BTEX	MTBEO TPH D	Other: 5 E	E coc	
Equipmen	nt Blank I.D		@ Time	Duplicate I.D.		
Analyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:		
D.O. (if re	eq'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:) 0.15 mg/L
ORP (if re	eq'd):		Pre-purge:	mV	Post-purge:	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Stellar E	nv. Redwood Reg	ional Park	PROJECT NUI	MBER 100329	- BP1	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myron L Ultrametar	6223839	3/29/10	PH 7.00 10.00 4.00	PH 6.99 9.48 4.01	ges	19.7	BP
			us 3900	us 3901	ges	19.7	Bp
Y51550	0341029 AH	0705	100%	9870	ges		Bp
Torbidine ter Hach	0903060	3/29/10	0.1, ZO,NTV 100, 800	100, 800	505	Carrier Communication Communic	BP

WELL GAUGING DATA

Project # 1003 29 - BPI Date 3/29/10 Client Stellar Env. Site Redwood Regional Parks Service Yard Oak land (A

	Well ID MW - 1 MW - 2			Sheen / Odor	1	Thickness of Immiscible Liquid (ft.)		Depth to water (ft.) 4.35	bottom (ft.) 19.10 37.48	Survey Point: TOB or TOC	Notes
-	MW-3 MW-5							19.22			
	MW-6		4					12.85	13,275	3	
	MW-7	0905	2			-		12.84	25.32		
		0 900	2						22.16		
	MW . 9							14.75	,	THE ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION AND ACTION AND ACTION ACTION AND ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION AC	
	MW-10		2					11.28	28.35	guiden private de la companya de la	
	MW-11		2					12.20	28.69		
-	MW-12	0850	2					9.39	23.84		
	AMW-	6 06	stru	c tion	@ 14'	dep th	to be	Hom Z	.53		
			į								

WELLHEAD INSPECTION CHECKLIST

Page _______ of _____

Date 3/24//	······································	Client	Stellar	- EAV.				<u>18.838 dan minan manadikan me</u> s
Site Address R	edwood &				Yard	Oakl	ind, C	A
Job Number			·		, chnician	BP	•	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
MW-1 *	×				Wellbox		below)	below)
MW-Z A	X			Ä.				
MW-3 A	×							
MW-5 #	*							
MW-6 A	X							
MW-7 A	×							
MW . 8		*						
MW-9 *								
MW-10								
MW·11 &	×							
MW-12	×							
			_					
A = LO	(KED	5 TAN	DPIPE					
				/ 1				
NOTES:	1-8 3/3	bo//3 n	nissing,	/ MW -1	10 3/2/	abs sh	ripped	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			

VILL MONITORING DATA SHLET

Project #: 1003 Z9 -BP1				Client: Stellar Env/ Redwood Regional			
				Date: 3/29/10			
Well I.D.:	MW-	2		Well Diameter: 2 3 (4) 6 8			
Total Well			7.48	Depth to Water (DTW): 19, 98			
Depth to Fi				Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(E	leight of Water	Column x 0.20)) + DTW]:	73.48	
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displacemo	ent Extrac Other WC: 17	<u> </u>	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Speci	3 fied Volun	= 34.2	_ Gals. 1" 2"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47	
Time	Temp (°For °C)	pН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1006	59.5	8.17	706	212	11. 4		
Well		rtere	1 @ 15	212 gallons		DTW: 32,82	
1420	58.9	8.92	632	123	de autorio de la companio de la comp		
Did well de			No	Gallons actually	y evacuated:	15.0	
Sampling D	ate: 3/29	10	Sampling Time	: 14 20	Depth to Water	r: 27.82	
Sample I.D.	: MW -	2		Laboratory:	Kiff CalScience		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC	
EB I.D. (if a	pplicable):	•	@ .	Duplicate I.D. (
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:							
D.O. (if req'd): Pre-purge: Post-purge: Z, 4/ mg/L							
ORP (if reald): Pre-purge: mV Post purge: mV							

			I				•
Project #: 1003 Z9 -BP1				Client:	Ste	llar Env/	ledwood Regional Parks Service Yard
Sampler: BP						29/10	
Well I.D.:		Well Dia	Well Diameter: 2 3 4 6 8				
Total Well	5.32	Depth to	Depth to Water (DTW): 12.84				
Depth to F		Thicknes	Thickness of Free Product (feet):				
Referenced	Grade	D.O. Me	D.O. Meter (if req'd): YSI HACH				
DTW with	80% Rech	arge [(F	Height of Water	Column	(0.20)) + DTW]:	15.34
Purge Method: 2.0 1 Case Volume	Disposable E Positive Air Electric Subr	Displacem nersible	Other	_ Gals.	ell Diamete 1" 2" 3"	Other Other	Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier 0.65 1.47
Time	Temp (°Eor °C)	рН	Cond. (mS or (µS)	Turbid (NTU	•	Gals. Removed	Observations
1100	55.4	7.39	756	14	3	2.0	
1106	55.0	7.23	766	11 2	2	4.0	
1112	55.6	7.21	764	19	5	6.6	
_			•			·	
Did well de	No	Gallons actually evacuated: 6.0					
Sampling D	ate: 3/29	/10	Sampling Time	: 1/2	ð	Depth to Water	r: 14,80
Sample I.D.	: MW -	7		Laborator	у:	Kiff CalScience	e Other (47
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other: 5E	ECOC
EB I.D. (if a	pplicable):		@ Time	Duplicate	I.D. (if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:	
D.O. (if req'd): Pre-purge: mg/L Post-purge: 0.38 mg/L							
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV							

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

W LLL MONITORING DATA SHLLT

		·		LORGING DIERI	A CHURANCE			
Project #: 100329-BP1				Client: 54e	llar Env/	/ Redwood Regional Parks Service Yafd		
Sampler: BP				Date: 3/z 9/10				
Well I.D.:	MW-	8		Well Diameter	r: 2 3 4	6 8		
Total Well	Depth (TI)): 2	2.16	Depth to Water (DTW): 9.10				
Depth to F	ree Produc	t:		Thickness of Free Product (feet):				
Referenced	l to:	PVO	Grade	D.O. Meter (if	D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20) + DTW]: //	1.71		
Purge Method:	Disposable I	Displacem	Other	Waterra Peristaltic ction Pump 13.06 Well Diamet	Sampling Method Other	Extraction Port Dedicated Tubing		
2.0 1 Case Volume	Gals.) XSpeci	3 fied Volum	= 6.0	Gals. 1" 2"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp (°Eor °C)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1731	57.8	7.28	990	99	2.0			
1236	57.8	7.14	964	194	4,0			
1242	58.0	7.20	945	160	6.0			
			·					
						·		
Did well dewater? Yes (No) Gallons actually evacuated: 6.0						6.0		
Sampling D	ate: 3/29	10	Sampling Time	: 1750	Depth to Wate	r: <i>1</i> 0.27		
Sample I.D.: MW - 8 Laboratory: Kiff CalScience Other (47								
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: 5E	ECOC		
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. (
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'd): Pre-purge: mg/L Post-purge: 0, 29 mg/L								
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV								

	ę.	V	A A TITITI TARANI AN E					
Project #: 1003 Z9 -BP1				Client: 54e	llar Env/	l Redwood Regional Parks Service Yard		
					Date: 3/29/10			
Well I.D.:	MW-	9		Well Diameter	Well Diameter: 2 3 4 6 8			
Total Well	Depth (TI)): 3 <i>t</i>	0.24	Depth to Wate	Depth to Water (DTW): /4.75			
Depth to F	ree Produc	t:		Thickness of F	Thickness of Free Product (feet):			
Referenced	i to:	PVÇ) Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20)) + DTW]:	17.85		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other:								
2.5 (1 Case Volume		3 ified Volum	= 7.5		ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163		
Time	Temp (°For °C)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1157	56.3	7.06	913	150	2.5	odor/speen		
1202	56.5	7.08	915	378	5.0	odor/speen odor/shein odor/shein		
1208	56.5	7.10	909	7/000	7.5	odor/steen		
						<i>(</i>		
	3							
Did well dev	water?	Yes (No	Gallons actually	y evacuated:	7.5		
Sampling D	ate: 3/29	10	Sampling Time	e: /2/5	Depth to Water	r: 17.65		
Sample I.D.	Sample I.D.: MW - 9 Laboratory: Kiff CalScience Other C47							
Analyzed fo	r: TPH-G	BTEX		Oxygenates (5)	Other: 5E	ECOC		
EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):								
Analyzed for	r: TPH-G	BTEX 1	MTBE TPH-D		Other:			
D.O. (if req'd): Pre-purge: Mg/L Post-purge: 1.0/ mg/L								
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV								

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

			YV		III / E II /					
Project #:	10032	9 -BP	7/	Client:	Ste	llar Env/	l Redwood Regional Parks Service Yard			
Sampler:				Date:	3/	29/10				
Well I.D.:	MW-	10		Well Dia	Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI	D): 7	2 8.35	Depth to	Wate	er (DTW): /	1.28			
Depth to Fi	ree Produc	t:		Thicknes	ss of F	Free Product (fe	eet):			
Reference	l to:	PVC	> Grade	D.O. Me	ter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	Ieight of Water	Column >	x 0.20) + DTW]:	14.69			
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Displaceme	Other	Waterra Peristaltic ction Pump		Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing			
2.7 1 Case Volume		3 ified Volum	$\frac{WC: /7}{\text{nes}} = \frac{8.1}{\text{Calculated Vo}}$	_ Gals.	2" 3"	0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163			
Time	Temp (°Eor °C)	рН	Cond. (mS or µS)	Turbid (NTU	-	Gals. Removed	Observations			
1031	57.8	8,38	775	120	4	7.7				
1038	57.8	8.19	810	170	7	5.4				
10 43	57.9	7.84	832	33	4	8.1				
1049	58.0	7.55	824	58	5	10.8				
1053	58.0	7.53	8/9	610	0	13.5	DTW: 18.05			
Did well dev	water?	Yes (No	Gallons a	ctually	y evacuated:	13.5			
Sampling Da	ate: 3/29	10	Sampling Time	: 134	0	Depth to Wate:	r: 12.68			
Sample I.D.:	MW-	10		Laborator	у:	Kiff CalScience				
Analyzed for	r: ТРН-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other: 5E	ECOC			
EB I.D. (if a	pplicable):		Time	Duplicate	I.D. (if applicable):				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:				
D.O. (if req'o	d): Pro	e-purge:	nang nagarakan Chana Shining and Shining a	mg/L	Po	ost-purge:	0.49 mg/L			
O.R.P. (if red	q'd): Pro	e-purge:		mV	Po	ost-purge:	mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Project #:	10032	9-BP	7	Client: 54e	lar Envy	I Redwood Regional Parks Service Yafd			
Sampler:	BP			Date: 3/29/10					
Well I.D.:	MW-	//		Well Diameter	r:23 4	6 8			
Total Well	Depth (TI)): Z	8.69	Depth to Wate	er (DTW):	17.20			
Depth to F	ree Produc	t:		Thickness of F	Free Product (fe				
Referenced	l to:	(PVC)	> Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	15.50			
Purge Method:	Bailer Disposable E Positive Air Electric Sub	Displaceme	Other	Waterra Peristaltic ction Pump	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
Z,6 1 Case Volume		3 fied Volum	$\frac{\mathcal{W}: \mathcal{V}}{\mathcal{C}} = \frac{7.8}{\text{Calculated Vo}}$	_ Gals. 1" 2"	0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 radius² * 0.163			
Time	Temp (°Eor °C)	рН	Cond. (mS or (mS)	Turbidity (NTUs)	Gals. Removed	Observations			
1307	56.3	7.47	702,000	301	7.6				
1313	56.1	7.43	716	233	5, z				
13 20	56.2	7.29	723	204	7.8				
1325	56.2	7.28	733	168	10.4				
Did well dev	water?	Yes (No)	Gallons actually	y evacuated:	10.4			
Sampling D	ate: 3/29	10	Sampling Time	: 1330	Depth to Wate	r: 13.71			
Sample I.D.	: MW -	//			Kiff CalScience	e Other (47			
Analyzed fo	r: трн-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: $5E$	ECOC			
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. (
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	J 0 , ,	Other:				
D.O. (if req'o	d): Pro	e-purge:	and the state of t	mg/L Po	ost-purge:	0.28 mg/L			
O.R.P. (if re	q'd): Pro	e-purge:		mV Po	ost-purge:	mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WILL MONITORING DATA SHELT

				. Ontai vo en a a i	R CHEMES R				
Project #:	10032	9 -BF	2/	Client: 5/e	lar Env/	l Redwood Regional Parks Service Yafd			
Sampler:	BP			Date: $3/29/10$					
Well I.D.:	MW-	12		Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI)): 2	23.84	Depth to Wate	r (DTW):	9.39			
Depth to Fr	ree Produc	t:		Thickness of F	Free Product (fe	eet):			
Referenced	l to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	Height of Water	Column x 0.20) + DTW]:	12.28			
Purge Method:	Bailer Disposable E Positive Air Electric Sub	Displacem	ent Extrac	Waterra Peristaltic tion Pump	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
			WC: 14	Well Diamete		Diameter Multiplier			
2.3 (1 Case Volume	Gals.) X Speci	3 ified Volum			0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 radius ² * 0.163			
Time	Temp (°For °C)	рН	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations			
1135	54.9	7.24	659	208	2.3				
1139	55.2	7.13	673	250	4.6				
11 43	55.4	7.11	677	375	6.9	PTW: 14.02			
Did well dev	water?	Yes (No	Gallons actually	y evacuated:	6.9			
Sampling Da	ate: 3/29	110	Sampling Time	: 1350	Depth to Wate	r: 10.5Z			
Sample I.D.	: MW -	12		Laboratory:	Kiff CalScience	e Other C47			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: $5E$	ECOC			
EB I.D. (if a	pplicable):	•	@ Time	Duplicate I.D. (
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'o	d): Pro	e-purge:	a case and the second s	mg/L Po	ost-purge:	1.05 mg/L			
O.R.P. (if red	q'd): Pro	e-purge:		mV Po	ost-purge:	mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 218550 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2008-12

Location : Redwood Regional Park

Level : II

Sample ID	<u>Lab ID</u>
MW-2	218550-001
MW-7	218550-002
MW-8	218550-003
MW-9	218550-004
MW-11	218550-005

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

The Bour

Date: <u>03/09/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 218550

Client: Stellar Environmental Solutions

Project: 2008-12

Location: Redwood Regional Park

Request Date: 03/02/10 Samples Received: 03/02/10

This data package contains sample and QC results for five water samples, requested for the above referenced project on 03/02/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low surrogate recovery was observed for trifluorotoluene (FID) in MW-7 (lab # 218550-002); the corresponding bromofluorobenzene (FID) surrogate recovery was within limits. High surrogate recoveries were observed for bromofluorobenzene (FID) and trifluorotoluene (FID) in a number of samples. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

119550

		Chain of Cu					stody Record							Moss				Lab job no. 100302-BP1				
Address Curtis and Tom 2323 Fifth Stree Berkeley, Califo	et			SI	ethod of Shipment <u>H</u> nipment No					_	 ,	,		(j	l 				Date Page	3/ 1	2/ _ ol _	i 0
510-486-0900			*.***	Ai	rbill No.			_						Ŏ,	An	alysis F	Require	d			/	
Project Owner East Bay R. Site Address Oakland, C.	ood Road	ırk Dist	rict	— Pr	ooler No oject ManagerRich	ard Mal				No. of C.	^{nlai} ners	(80,1)		LOOP OF			/	7	7/	7/		
Project Name Redwood R		ark			elephone No. <u>(510) 644</u> ax No. <u>(510) 644</u>			-	Fillen	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			•/ /	y /	/ /	′ /						
Project Number			2_		amplers: (Signature)		Fall	- _ /	/ /	/ × ⁸ /	H. H.	(بر"				/ ,	/ ,	/ ,	/ /	Re	emarks	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container		eservation Chemical		/ /		J'H'A		T ////	/. /	/ /	' /						
MW-Z		3/2/10	1320	W	4		HCL			. /	×	メ	-	-(-	\top	f	1	f				
MW-7			1115	1 .	4		UNPRES			*	\neg	×	-	+	-			-	 			
MW-8			1230		4		THUNPRES			×	メ	×	_	-	+-	-		-	-			
MW 9		3/4/10		W	4		UNPRES			*	×			_	+-	 		 				
MW-11		3/2/10		N	4		HCLUNPRES								1							
																					-	
																	<u> </u>					
					<u> </u>																	
		-																				
	 																<u> </u>					
Relinquished by:						<u></u>														<i></i>		
Signature		Date	Received Signat	•		Date	Relinquished b	y S	<u>~</u>	Q	1	,	Da - 3/ -	lio	Receive Signa	• /	20) { =	4	-ak	/	Date 2/0
Printed		Time	Printed	·		Time	Printed		en 1				- Tir		Print	ed E	ot.	6a	ica	() 2 le >		ime
Company Stellar Environm	ental		Compa	any			Company _				_					pany _	C¢.	ナ				03
Turnaround Time: 5 Day TAT	· · · · · · · · · · · · · · · · · · ·						Relinquished b						Da	ite	Receive							Date
Comments: Please previde	a GeoTra	cker El	OF for e	round	water samples only	MED	Signature						-		Sign	ature _					-	
Groundwater s	amples co	Jected lected	by 600	Harten De Ter	virenmental Solutions		Printed						_ Tir	ne l	Print	ed					_ -	ime

Company

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

2000-00-01

COOLER RECEIPT CHECKLIST

Login# Z18550 Client STRLLOR	Date Received	S/Z/ID ect REDWOOD	Number of coole	rs L PARK
Date Opened 3/2/10 By (p Date Logged in By (p	orint) M.VILL XI		- 10 -	re
1. Did cooler come with a shipp Shipping info	ing slip (airbill, etc)	YES	S 2500
2A. Were custody seals present? How many 2B. Were custody seals intact up	Name			NO N/A
 3. Were custody papers dry and 4. Were custody papers filled ou 5. Is the project identifiable from 6. Indicate the packing in cooler 	intact when receive t properly (ink, sign n custody papers?	ned, etc)? (If so fill out top	YES YES	
☐ Bubble Wrap ☐ Cloth material ☐ 7. Temperature documentation:	Foam blocks Cardboard	☐ Bags ☐ Styrofoam	☐ None ☐ Paper to	wels
Type of ice used: We	et Blue/Gel	□None	Temp(°C)	
Samples Received on	ice & cold without	a temperature b	lank	+
☐ Samples received on i		-		1
8. Were Method 5035 sampling If YES, what time were to	containers present			YES XO
9. Did all bottles arrive unbroken	/unopened?		7	ES NO
10. Are samples in the appropria	te containers for in	dicated tests?		ES NO
11. Are sample labels present, in12. Do the sample labels agree w			(TES NO
13. Was sufficient amount of san	aple sent for tests re	equested?		ES NO
14. Are the samples appropriately	y preserved?			NO N/A
15. Are bubbles > 6mm absent in				NO N/A
16. Was the client contacted cond	cerning this sample	delivery?		YES NO
If YES, Who was called?	· · · · · · · · · · · · · · · · · · ·	_ву	Date:	
COMMENTS				
		-		
•				

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis & Tompkins Laboratories Analytical Report								
Lab #: Client:	218550 Stellar Environmental Solutions	Location: Prep:	Redwood Regional Park EPA 5030B						
Project#:	2008-12	-							
Matrix:	Water	Batch#:	160633						
Units:	ug/L	Sampled:	03/02/10						
Diln Fac:	1.000	Received:	03/02/10						

Field ID: MW-2Lab ID: 218550-00 Analyzed: 03/04/10 Lab ID: 218550-001 Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,900 Y	50	EPA 8015B
MTBE	2.2 C	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	2.2	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	136	48-162	EPA 8015B	
Bromofluorobenzene (FID)	172 *	52-158	EPA 8015B	
Trifluorotoluene (PID)	119	21-180	EPA 8021B	
Bromofluorobenzene (PID)	141	26-167	EPA 8021B	

Lab ID: 218550-002 Analyzed: 03/05/10 Field ID: MW-7SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	5,300	50	EPA 8015B
MTBE	16 C	2.0	EPA 8021B
Benzene	17 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	110	0.50	EPA 8021B
m,p-Xylenes	2.6 C	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	0 *	48-162	EPA 8015B
Bromofluorobenzene (FID)	143	52-158	EPA 8015B
Trifluorotoluene (PID)	37	21-180	EPA 8021B
Bromofluorobenzene (PID)	87	26-167	EPA 8021B

Page 1 of 3

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 218550 Location: Stellar Environmental Solutions Client: Prep: Project#: 2008-12 160633 Matrix: Water Batch#: 03/02/10 Units: ug/L Sampled: Diln Fac: 1.000 Received: 03/02/10

Field ID: 8-WMLab ID: 218550-003 SAMPLE Analyzed: 03/04/10 Type:

Analyte	Result	RL	Analysis	
Gasoline C7-C12	220	50	EPA 8015B	
MTBE	3.9	2.0	EPA 8021B	ļ
Benzene	0.84	0.50	EPA 8021B	ļ
Toluene	ND	0.50	EPA 8021B	ļ
Ethylbenzene	14	0.50	EPA 8021B	ļ
m,p-Xylenes	3.1	0.50	EPA 8021B	ļ
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	132	48-162	EPA 8015B	
Bromofluorobenzene (FID)	134	52-158	EPA 8015B	
Trifluorotoluene (PID)	101	21-180	EPA 8021B	
Bromofluorobenzene (PID)	114	26-167	EPA 8021B	

Field ID: MW-9Lab ID: 218550-004 SAMPLE 03/04/10 Type: Analyzed:

Analyte	Result	RL	Analysis
Gasoline C7-C12	3,300	50	EPA 8015B
MTBE	8.6 C	2.0	EPA 8021B
Benzene	15	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	140	0.50	EPA 8021B
m,p-Xylenes	12 C	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	355 *	48-162	EPA 8015B	
Bromofluorobenzene (FID)	212 *	52-158	EPA 8015B	
Trifluorotoluene (PID)	103	21-180	EPA 8021B	
Bromofluorobenzene (PID)	133	26-167	EPA 8021B	

Page 2 of 3

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 218550 Location: Stellar Environmental Solutions Client: Prep: Project#: 2008-12 160633 Matrix: Water Batch#: 03/02/10 Units: ug/L Sampled: Diln Fac: 1.000 Received: 03/02/10

Field ID: Lab ID: 218550-005 MW-11SAMPLE Analyzed: 03/05/10 Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,300	50	EPA 8015B
MTBE	3.4 C	2.0	EPA 8021B
Benzene	13	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	59	0.50	EPA 8021B
m,p-Xylenes	0.79	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	274 *	48-162	EPA 8015B	
Bromofluorobenzene (FID)	132	52-158	EPA 8015B	
Trifluorotoluene (PID)	42	21-180	EPA 8021B	
Bromofluorobenzene (PID)	86	26-167	EPA 8021B	

Type: BLANK Analyzed: 03/04/10 Lab ID: QC534895

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	142	48-162	EPA 8015B	
Bromofluorobenzene (FID)	166 *	52-158	EPA 8015B	
Trifluorotoluene (PID)	129	21-180	EPA 8021B	
Bromofluorobenzene (PID)	146	26-167	EPA 8021B	

Page 3 of 3

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	218550	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2008-12	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	160633
Units:	ug/L	Analyzed:	03/04/10
Diln Fac:	1.000		

Type: BS Lab ID: QC534896

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.78	108	36-168
Benzene	10.00	9.594	96	69-121
Toluene	10.00	10.24	102	64-132
Ethylbenzene	10.00	9.569	96	64-136
m,p-Xylenes	10.00	9.512	95	63-138
o-Xylene	10.00	9.531	95	64-135

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	130	21-180	
Bromofluorobenzene (PID)	146	26-167	

Type: BSD Lab ID: QC534897

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	11.08	111	36-168	3	35
Benzene	10.00	9.427	94	69-121	2	24
Toluene	10.00	9.524	95	64-132	7	27
Ethylbenzene	10.00	9.622	96	64-136	1	27
m,p-Xylenes	10.00	9.213	92	63-138	3	32
o-Xylene	10.00	9.645	96	64-135	1	27

Surrogate	%REC	Limits
Trifluorotoluene (PID)	117	21-180
Bromofluorobenzene (PID)	128	26-167

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	218550	Location:	Redwood Regional Park		
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B		
Project#:	2008-12	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC534898	Batch#:	160633		
Matrix:	Water	Analyzed:	03/04/10		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,861	93	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	160	48-162
Bromofluorobenzene (FID)	145	52-158

Page 1 of 1 4.1

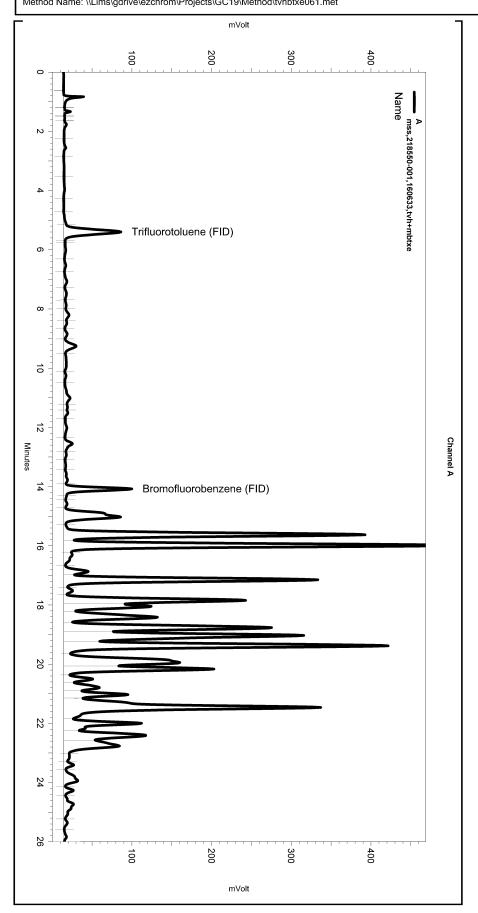
Curtis & Tompkins Laboratories Analytical Report						
Lab #: 218550	0	Location:	Redwood Regional Park			
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B			
Project#: 2008-1	12	Analysis:	EPA 8015B			
Field ID:	MW-2	Batch#:	160633			
MSS Lab ID:	218550-001	Sampled:	03/02/10			
Matrix:	Water	Received:	03/02/10			
Units:	ug/L	Analyzed:	03/04/10			
Diln Fac:	1.000					

Type: MS

Lab ID: QC534899

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,864	2,000	3,595	87	49-129

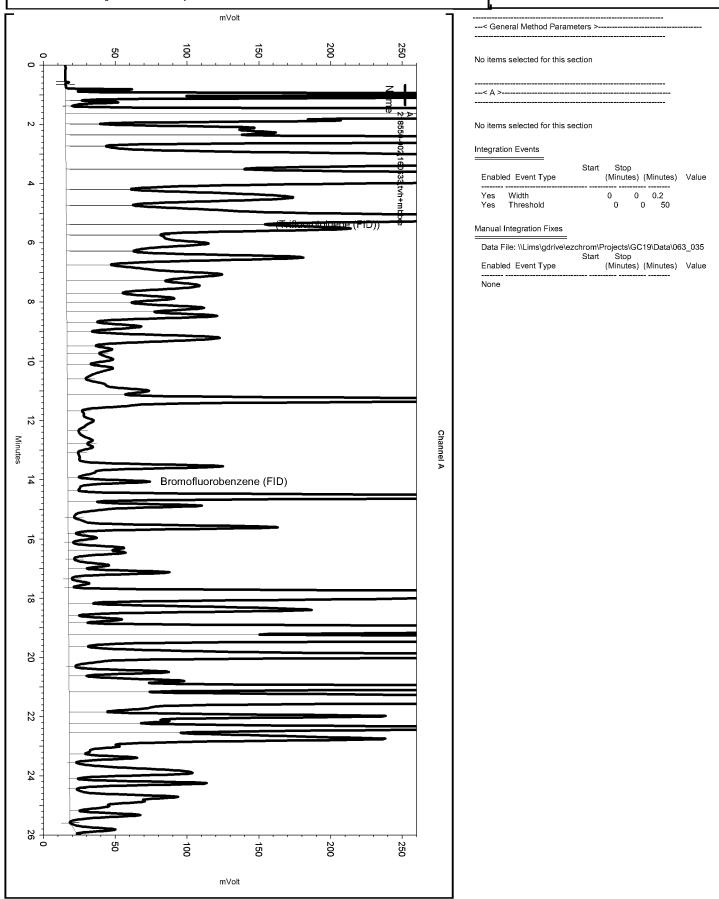
Surrogate	%REC	Limits	
Trifluorotoluene (FID)	181 *	48-162	
Bromofluorobenzene (FID)	184 *	52-158	


Type: MSD Lab ID: QC534900

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	3,769	95	49-129	5	19

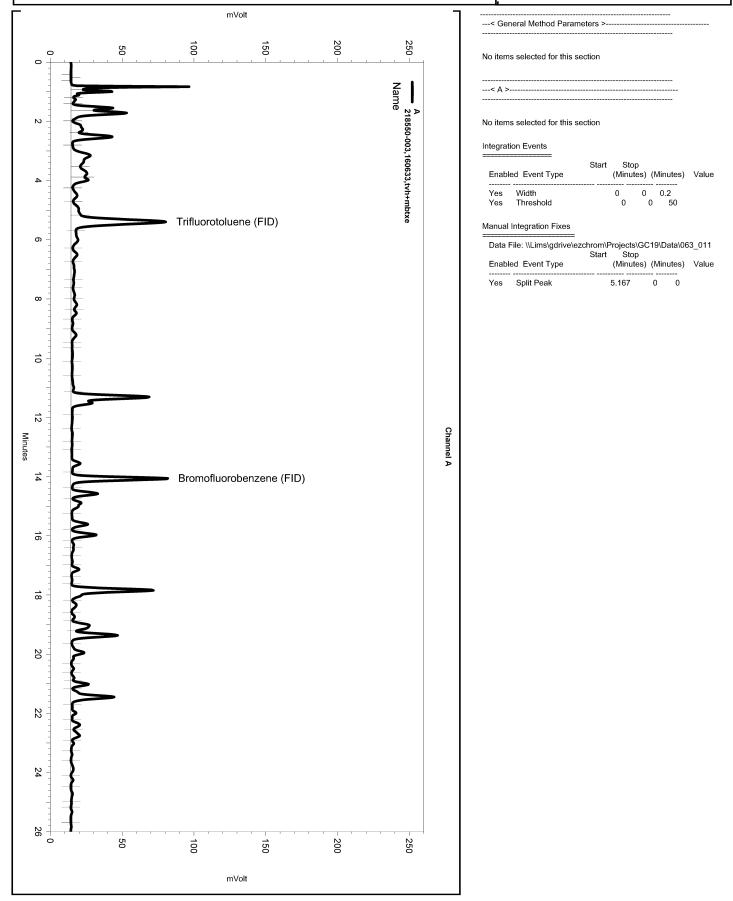
^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: mss,218550-001,160633,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_006
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe061.met

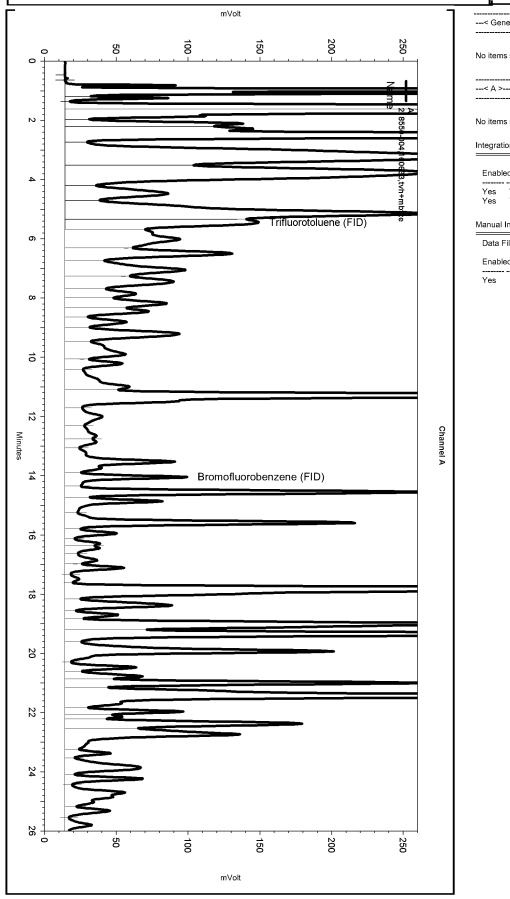

Software Version 3.1.7 Run Date: 3/4/2010 3:49:15 PM Analysis Date: 3/5/2010 2:12:54 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_006 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0 Yes Split Peak 5.148 0 0 Yes Split Peak 5.696 0 0 Yes Split Peak 14.306 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: 218550-002,160633,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_035
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe061.met

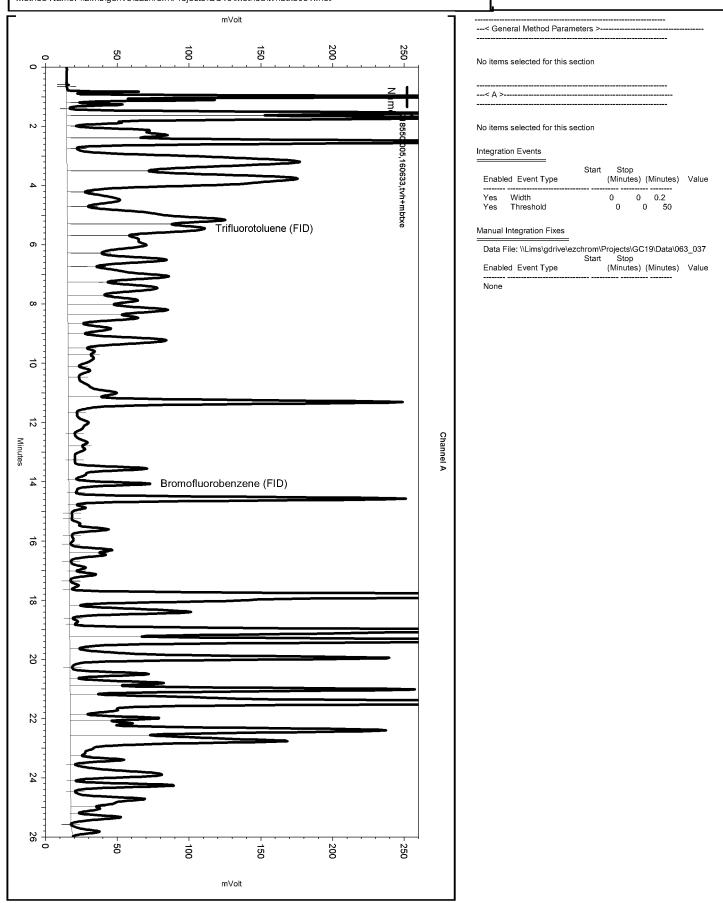

Software Version 3.1.7 Run Date: 3/5/2010 10:11:37 AM Analysis Date: 3/9/2010 12:47:04 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: 218550-003,160633,tvh+mbtxe


Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_011 \
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) \
Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe061.met

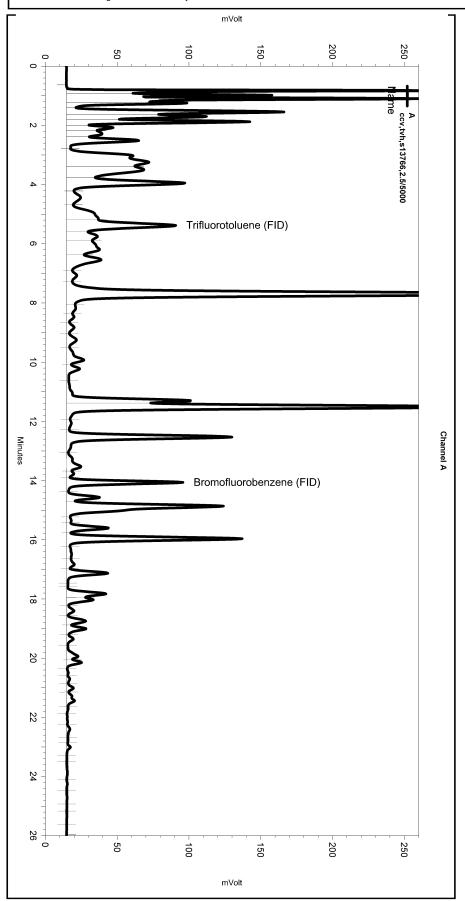
Software Version 3.1.7 Run Date: 3/4/2010 6:57:20 PM Analysis Date: 3/5/2010 2:13:30 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.3

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: 218550-004,160633,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_012
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe061.met


Software Version 3.1.7 Run Date: 3/4/2010 7:34:59 PM Analysis Date: 3/9/2010 12:40:40 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.3

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
lata anatina Essata
Integration Events
Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2
Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_012 Start Stop
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: 218550-005,160633,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\063_037
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe061.met


Software Version 3.1.7 Run Date: 3/5/2010 11:26:43 AM Analysis Date: 3/9/2010 12:43:12 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\063.seq Sample Name: ccv,tvh,s13766,2.5/5000

Data File: \\\Lims\\gdrive\ezchrom\\Projects\\GC19\\Data\\063_003\\Instrument: GC19 \((Offline)\) Vial: N/A \(Operator: Tvh 1. Analyst \((lims2k3\tvh1)\) Method \(Name: \\Lims\\gdrive\ezchrom\\Projects\\GC19\\Method\tvhbtxe061.met\)

Software Version 3.1.7 Run Date: 3/4/2010 9:15:26 AM Analysis Date: 3/5/2010 1:15:18 PM
Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: {Data Description}

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\\	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
Yes Split Peak	5.183 0 0

Total Extractable Hydrocarbons Lab #: 218550 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 2008-12 EPA 8015B Analysis: Matrix: 03/02/10 Water Sampled: Units: ug/L Received: 03/02/10 1.000 Diln Fac: Prepared: 03/04/10 Batch#: 160635

Field ID: MW-2 Lab ID: 218550-001 Type: SAMPLE Analyzed: 03/05/10

Analyte	Result	RL	
Diesel C10-C24	3,200	50	

Surrogate %REC	Limits
-Terphenyl 101	39-150

Field ID: MW-7 Lab ID: 218550-002 Type: SAMPLE Analyzed: 03/05/10

Analyte	Result	RL	
Diesel C10-C24	4,300	50	

Surrogate	%REC	Limits	
o-Terphenyl	102	39-150	

Field ID: MW-8 Lab ID: 218550-003 Type: SAMPLE Analyzed: 03/05/10

Analyte	Result	RL	
Diesel C10-C24	270 Y	50	

Surrogate	%REC	Limits
o-Terphenyl	102	39-150

RL= Reporting Limit

Page 1 of 2

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

Total Extractable Hydrocarbons Lab #: 218550 Redwood Regional Park Location: Client: Stellar Environmental Solutions EPA 3520C Prep: EPA 8015B Project#: 2008-12 Analysis: 03/02/10 Matrix: Water Sampled: Units: ug/L Received: 03/02/10 Diln Fac: 1.000 Prepared: 03/04/10 Batch#: 160635

Field ID: MW-9 Lab ID: 218550-004 Type: SAMPLE Analyzed: 03/05/10

 Analyte
 Result
 RL

 Diesel C10-C24
 2,600
 50

Surrogate %REC Limits
o-Terphenyl 97 39-150

Field ID: MW-11 Lab ID: 218550-005 Type: SAMPLE Analyzed: 03/05/10

 Analyte
 Result
 RL

 Diesel C10-C24
 2,500
 50

Surrogate %REC Limits
o-Terphenyl 101 39-150

Type: BLANK Analyzed: 03/07/10

Lab ID: QC534906

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 105 39-150

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Total Extract	able Hydrocar	rbons
Lab #:	218550	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2008-12	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC534907	Batch#:	160635
Matrix:	Water	Prepared:	03/04/10
Units:	ug/L	Analyzed:	03/05/10

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,335	93	34-144

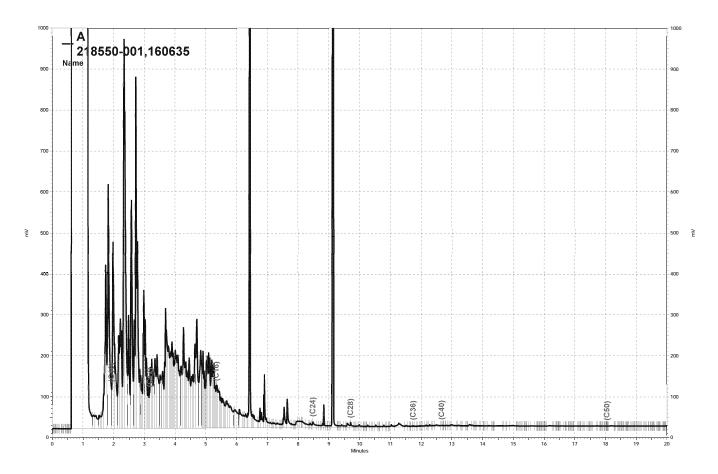
Surrogate	%REC	Limits
o-Terphenyl	103	39-150

Page 1 of 1 7.0

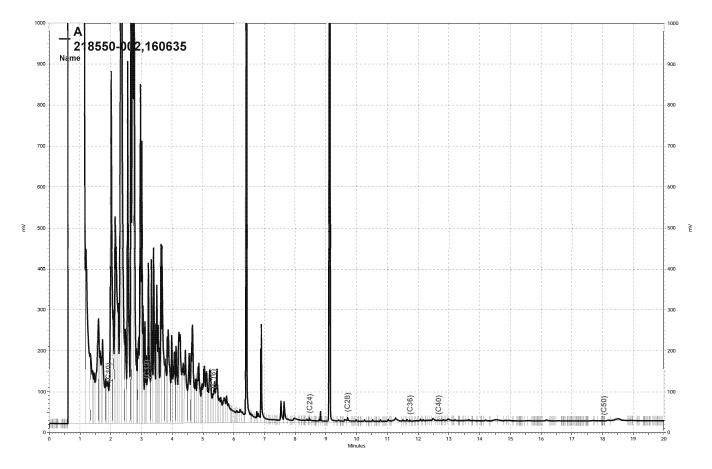
Total Extractable Hydrocarbons				
Lab #: 218550		Location:	Redwood Regional Park	
Client: Stella	ar Environmental Solutions	Prep:	EPA 3520C	
Project#: 2008-1	.2	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZ	Batch#:	160635	
MSS Lab ID:	218563-001	Sampled:	03/02/10	
Matrix:	Water	Received:	03/02/10	
Units:	ug/L	Prepared:	03/04/10	
Diln Fac:	1.000	Analyzed:	03/05/10	

Type: MS Cleanup Method: EPA 3630C

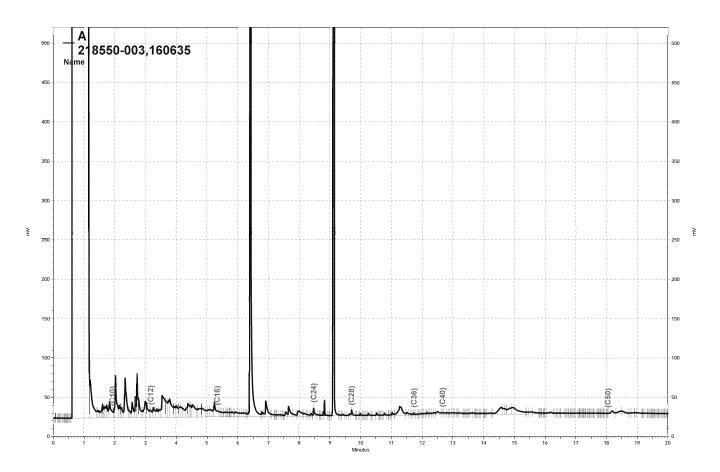
Lab ID: QC534908

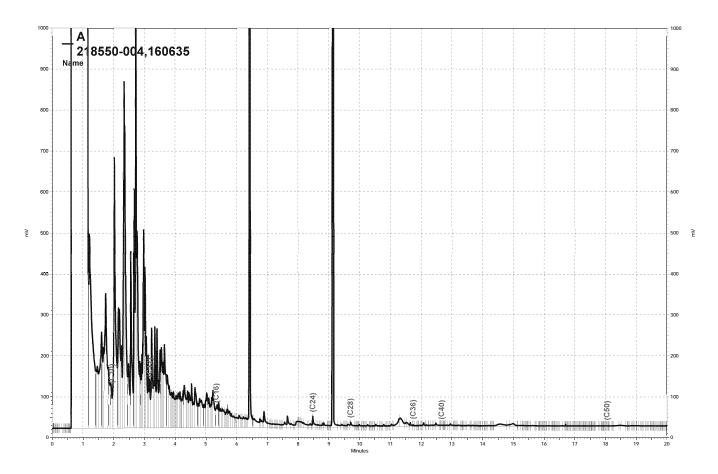

Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	143.6	2,500	2,403	90 21-160

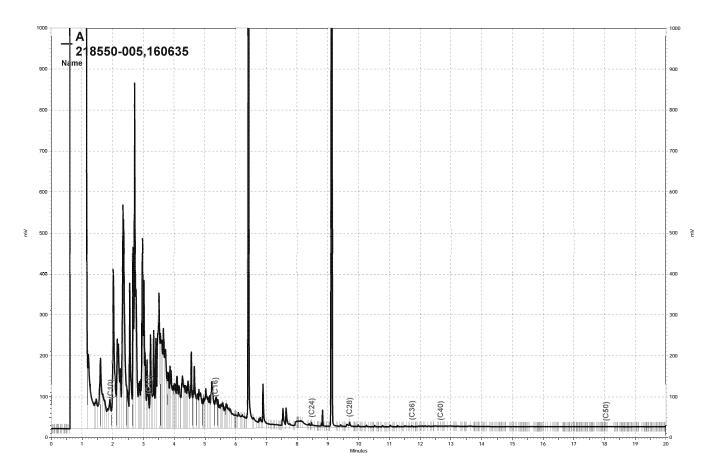
Type: MSD Cleanup Method: EPA 3630C

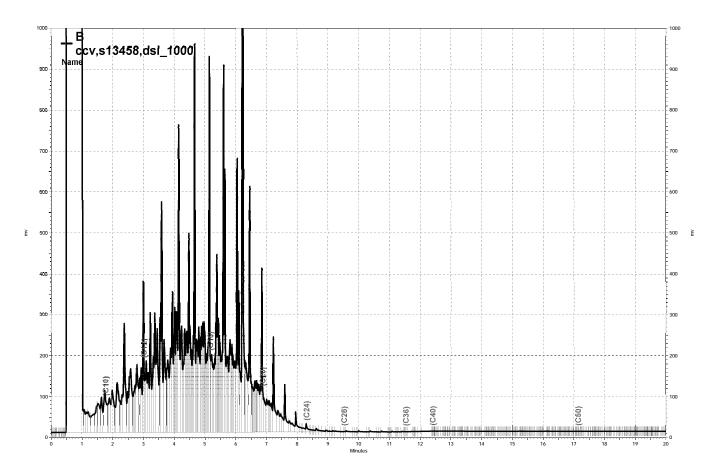

Lab ID: QC534909

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,526	95	21-160	5	58


Surrogate	%REC	Limits
o-Terphenyl	111	39-150


\Lims\gdrive\ezchrom\Projects\GC17A\Data\064a019, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\064a020, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\064a021, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\064a022, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\064a027, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\064b012, B

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 219145 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2008-12

Location : Redwood Regional Park

Level : II

Sample ID	<u>Lab ID</u>
MW-2	219145-001
MW-7	219145-002
MW-8	219145-003
MW-9	219145-004
MW-10	219145-005
MW-11	219145-006
MW-12	219145-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>04/06/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 219145

Client: Stellar Environmental Solutions

Project: 2008-12

Location: Redwood Regional Park

Request Date: 03/29/10 Samples Received: 03/29/10

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 03/29/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for trifluorotoluene (FID) in MW-11 (lab # 219145-006); the corresponding bromofluorobenzene (FID) surrogate recovery was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Walys	
-------	--

Chain of Custody Record

_aboratory <u>Curtis and To</u> Address <u>2323 Fifth Str</u> Berkeley, Cal	eet					ipment <u>H</u>		elivery	- -	orc	Å									•	5/2 9/ — of -	
510-486-0900				— A	irbi l l No						/		7			Ar	alysis R	equired				
Project Owner East Bay 7867 Red Oakland, 6	wood Road	ark Dist	rict	— P	ooler No roject Mana		ard Ma				C Wered	of Containers	rex-4 (BOIS)		(5/0)		//	7/	7/	7/1	-	·
Project Name Redwood	Regional Pa	ark			ax No	(510) 644			-	/4			7 ×	7.0		/ /				/ /	Remarks	
Project Number 2006-1		08.	12		amplers: (Si		B	Pen	_ /	/ /	/ *	7	*/	, d , t				/ /	/ /		nemarks	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	1	of Container	Cooler	Preservation]/			L/0			/ /	/ /	' /		/ ,			
MW-2		349/10	1420	 	4AmL V	OA/Amber		HCL/NP	_	4	×	×	×		$\overline{}$	-/-	f	ff	f			P
MW-7			1120			A/Amer		HCL/NP		4	×	×	x	$\neg \dagger$			 					
7 MW-7		3/10				OA/Ambel		HCL/ NP		4	×	X				-	-		_			
1 MW-9			1215	1	1	OA/A how		HCL/NO		4	X	メ	×									
MW-10			1340	i		Alimer		FICL/N7		4	X	×	×	-	+	-	-	\vdash				
MM-11		729/10	1330		1	A/Amber	1	HKYNP		4	X	×	×		_	+	-	\vdash	-			
2 MW-12		3/24/10	1350	(u)		A/Amber		HCL/NP		4	×	×	×			_	-		+			
						2. PANDA		110-7104		-	/			+					+			
					_											+						
								 	-					_	_	+		\vdash	-			
														-			-		+			
							-							\dashv			-	\vdash	+			
elinquished by: Signature		Date	Received Signat	. /-	2~4	કૃત	Date 3/24	. ' 7	30	1	Jo	e y	alj	7 3	ate	Receive	•					Date
Printed		Time	Printed	B.	en Pa	une 11	Time	—-!· i	2	+ 6	- 	ر) ور سوا	ler	- ├─	-/-	Delet	- 4				_	
Company Stellar Environi	mental		Compa		Blaine		1545		C	17	<u>-</u>			_ ,	ime 45	Print						Time
urnaround Time: 5 Day TAT							,,	Relinquished b	y:					- D	ate	Com					=	Date
Please provid	le a GeoTra	cker El	OF for g	ground	water samı	ples only		Signature						-		Signa	•				`	- 410
Surface water Groundwater	r samples co samples co	ollected llected	i by Ste by Blai	ellar Er ne Tec	vironmenta h Services	al Solutions	;.	Printed			•				ime	Printe	ed				<u> </u>	Time
			,					1						1 "								rime

Company

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Login# 79145	Date Receive	3.29.10	Number of coo	lers/
Client STEWAR		Project Repu	on leterance	PARK
Date Opened 329-10 B Date Logged in B	,	sig L (sig	m) and	
1. Did cooler come with a sh Shipping info	ipping slip (airbill	, eíc)	Y	ES &D
2A. Were custody seals pres How many	Name	ircle) on coole	Date	X NO ES - NO (N)A
2B. Were custody seals intact 3. Were custody papers dry at 4. Were custody papers filled 5. Is the project identifiable 6. Indicate the packing in cool	and intact when rec d out properly (ink, from custody pape	signed, etc)? rs? (If so fill out	Ø A	NO S
☐ Bubble Wrap ☐ Cloth material 7. Temperature documentation	☐ Cardboard	Bags Styrofoan	□ None □ Paper	towels
Type of ice used: Samples Received			,= -	
☐ Samples received	on ice directly from	n the field. Cooli	ing process had beg	gun
8. Were Method 5035 sample			A CANADA	YES RO
If YES, what time we 9. Did all bottles arrive unbro			·	OF NO
10. Are samples in the appro			ş?	ES NO
11. Are sample labels present	t, in good condition	and complete?		NO NO
12. Do the sample labels agree				NO SES NO
13. Was sufficient amount of	sample sent for te	sts requested?		_XODS NO
14. Are the samples appropris	ately preserved?		ZE 8	AVK OK
15. Are bubbles > 6mm abset				AVN ON
16. Was the client contacted of				YES NO
If YES, Who was call	ed?	Ву	Date	·
COMMENTS SAMPLE # 007	-1/3 was	BROCE WHI	he lugging in	<u> </u>

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219145 Location: Client: Stellar Environmental Solutions Prep: Project#: 2008-12 03/29/10 03/29/10 Water Matrix: Sampled: ug/L Units: Received: 1.000 04/05/10 Diln Fac: Analyzed: Batch#: 161659

Field ID: MW-2Lab ID: 219145-001

SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,000	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	0.75	0.50	EPA 8021B
o-Xylene	2.7	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	106	48-162	EPA 8015B	
Bromofluorobenzene (FID)	111	52-158	EPA 8015B	
Trifluorotoluene (PID)	92	21-180	EPA 8021B	
Bromofluorobenzene (PID)	92	26-167	EPA 8021B	

Field ID: MW-7Lab ID: 219145-002

SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	2,600	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	11 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	76	0.50	EPA 8021B
m,p-Xylenes	2.7 C	0.50	EPA 8021B
o-Xylene	1.8	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	150	48-162	EPA 8015B
Bromofluorobenzene (FID)	95	52-158	EPA 8015B
Trifluorotoluene (PID)	94	21-180	EPA 8021B
Bromofluorobenzene (PID)	77	26-167	EPA 8021B

ND= Not Detected

RL= Reporting Limit

Page 1 of 4

7.0

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219145 Location: Client: Stellar Environmental Solutions Prep: Project#: 2008-12 03/29/10 Matrix: Water Sampled: 03/29/10 Units: ug/L Received: Diln Fac: 1.000 Analyzed: 04/05/10 <u> 16</u>1659 Batch#:

Field ID: MW-8Lab ID: 219145-003

SAMPLE Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	3,400	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	28	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	340	0.50	EPA 8021B
m,p-Xylenes	250	0.50	EPA 8021B
o-Xylene	5.7	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	160	48-162	EPA 8015B	
Bromofluorobenzene (FID)	109	52-158	EPA 8015B	
Trifluorotoluene (PID)	120	21-180	EPA 8021B	
Bromofluorobenzene (PID)	96	26-167	EPA 8021B	

MW-9 219145-004 Field ID: Lab ID:

SAMPLE Type:

Analyte	Result	RL	Analysis	
Gasoline C7-C12	2,500	50	EPA 8015B	
MTBE	2.1 C	2.0	EPA 8021B	
Benzene	16 C	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	70	0.50	EPA 8021B	
m,p-Xylenes	9.5	0.50	EPA 8021B	
o-Xylene	5.9	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	157	48-162	EPA 8015B	
Bromofluorobenzene (FID)	142	52-158	EPA 8015B	
Trifluorotoluene (PID)	138	21-180	EPA 8021B	
Bromofluorobenzene (PID)	114	26-167	EPA 8021B	

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219145 Location: Stellar Environmental Solutions Client: Prep: Project#: 2008-12 Water 03/29/10 Matrix: Sampled: 03/29/10 Units: ug/L Received: 1.000 Diln Fac: Analyzed: 04/05/10 161659 Batch#:

Field ID: MW - 10Lab ID: 219145-005

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	63	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	1.3	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	2.7	0.50	EPA 8021B
m,p-Xylenes	0.94	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	104	48-162	EPA 8015B
Bromofluorobenzene (FID)	102	52-158	EPA 8015B
Trifluorotoluene (PID)	89	21-180	EPA 8021B
Bromofluorobenzene (PID)	93	26-167	EPA 8021B

219145-006 Field ID: MW-11Lab ID:

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,500	50	EPA 8015B
MTBE	2.6 C	2.0	EPA 8021B
Benzene	12	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	48	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	164 *	48-162	EPA 8015B	
Bromofluorobenzene (FID)	115	52-158	EPA 8015B	
Trifluorotoluene (PID)	114	21-180	EPA 8021B	
Bromofluorobenzene (PID)	95	26-167	EPA 8021B	

Page 3 of 4

7.0

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219145 Location: Stellar Environmental Solutions Client: Prep: Project#: 2008-12 Water 03/29/10 Matrix: Sampled: 03/29/10 Units: ug/L Received: Diln Fac: 1.000 Analyzed: 04/05/10 161659 Batch#:

Field ID: MW-12 Lab ID: 219145-007

Type: SAMPLE

Analyte	Result	RL	Analysis
Gasoline C7-C12	240	50	EPA 8015B
MTBE	3.6	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	2.7	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	126	48-162	EPA 8015B	
Bromofluorobenzene (FID)	108	52-158	EPA 8015B	
Trifluorotoluene (PID)	101	21-180	EPA 8021B	
Bromofluorobenzene (PID)	97	26-167	EPA 8021B	

BLANK Lab ID: QC539098 Type:

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	48-162	EPA 8015B	
Bromofluorobenzene (FID)	93	52-158	EPA 8015B	
Trifluorotoluene (PID)	89	21-180	EPA 8021B	
Bromofluorobenzene (PID)	85	26-167	EPA 8021B	

Page 4 of 4

7.0

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	219145	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2008-12	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC539099	Batch#:	161659				
Matrix:	Water	Analyzed:	04/05/10				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	985.5	99	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	48-162
Bromofluorobenzene (FID)	100	52-158

Page 1 of 1 8.0

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 219145		Location:	Redwood Regional Park				
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2008-1	12	Analysis:	EPA 8015B				
Field ID:	MW-2	Batch#:	161659				
MSS Lab ID:	219145-001	Sampled:	03/29/10				
Matrix:	Water	Received:	03/29/10				
Units:	ug/L	Analyzed:	04/05/10				
Diln Fac:	1.000						

Type: MS

Lab ID: QC539100

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,033	2,000	3,715	84	49-129

Surrogate	%REC	Limits
Trifluorotoluene (FID)	134	48-162
Bromofluorobenzene (FID)	120	52-158

Type: MSD Lab ID: QC539101

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	3,744	86	49-129	1	19

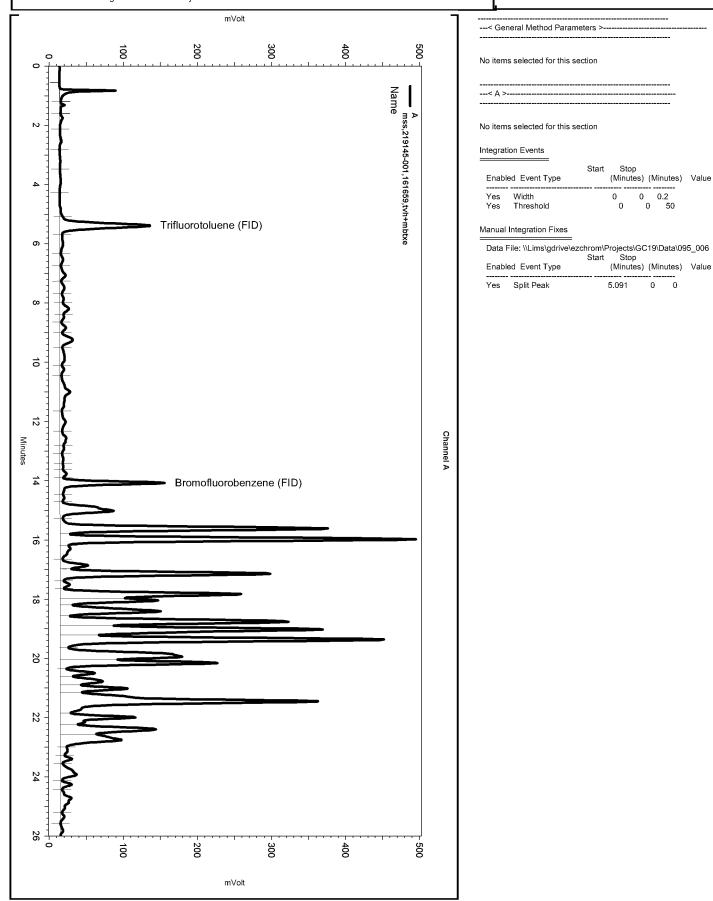
Surrogate	%REC	Limits
Trifluorotoluene (FID)	130	48-162
Bromofluorobenzene (FID)	117	52-158

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	219145	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2008-12	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	161659				
Units:	ug/L	Analyzed:	04/05/10				
Diln Fac:	1.000						

Type: BS Lab ID: QC539102

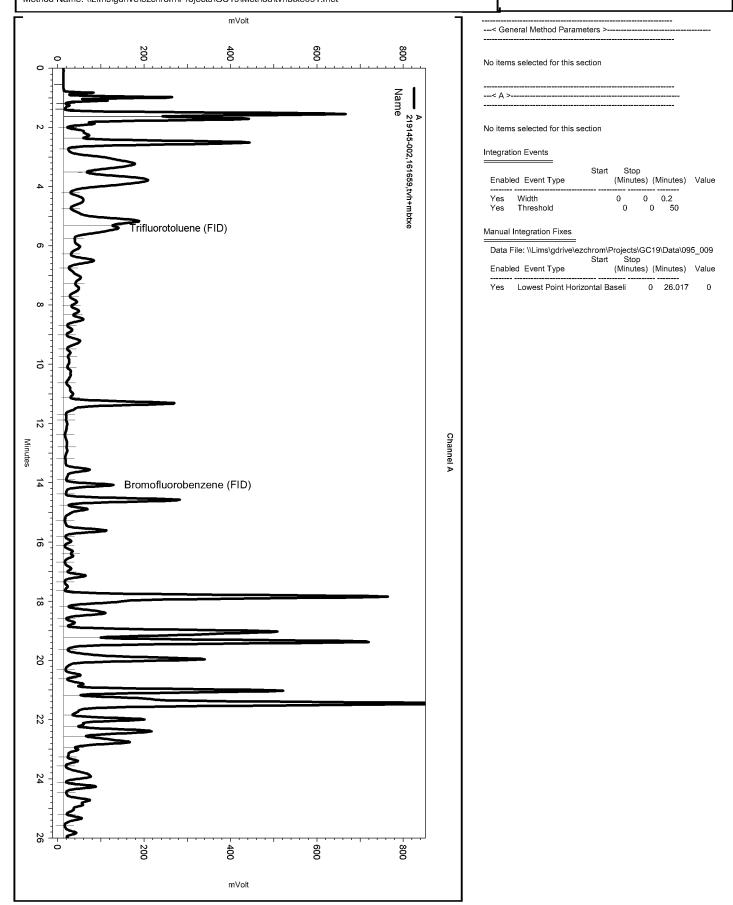
Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.08	111	36-168
Benzene	10.00	10.09	101	69-121
Toluene	10.00	10.26	103	64-132
Ethylbenzene	10.00	10.65	106	64-136
m,p-Xylenes	10.00	10.51	105	63-138
o-Xylene	10.00	10.90	109	64-135

Surrogate	%REC	Limits
Trifluorotoluene (PID)	89	21-180
Bromofluorobenzene (PID)	88	26-167

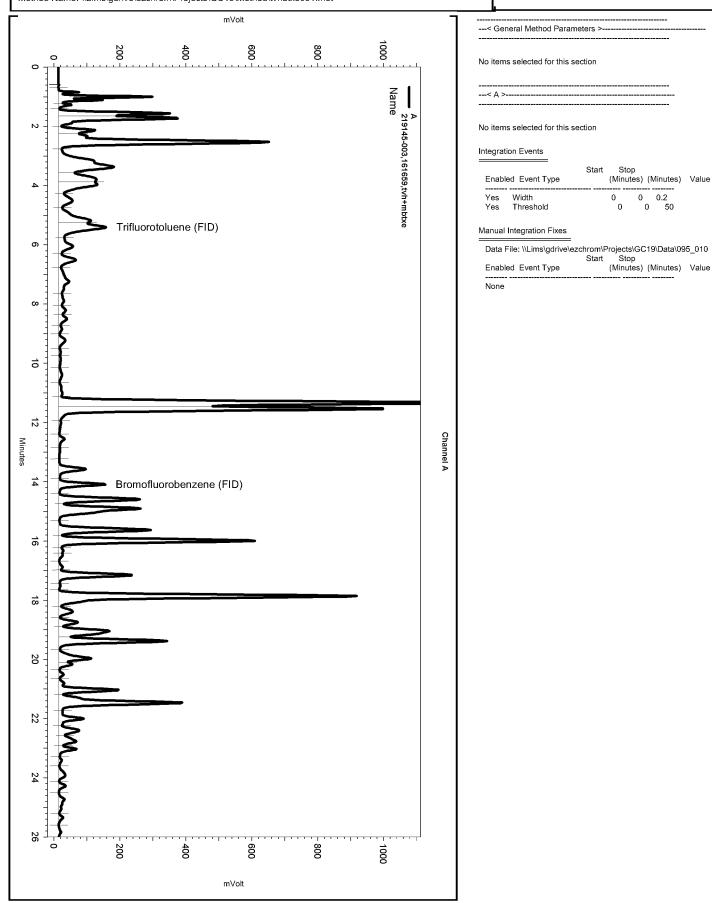

Type: BSD Lab ID: QC539103

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.98	110	36-168	1	35
Benzene	10.00	10.14	101	69-121	0	24
Toluene	10.00	10.61	106	64-132	3	27
Ethylbenzene	10.00	10.31	103	64-136	3	27
m,p-Xylenes	10.00	10.66	107	63-138	1	32
o-Xylene	10.00	10.74	107	64-135	1	27

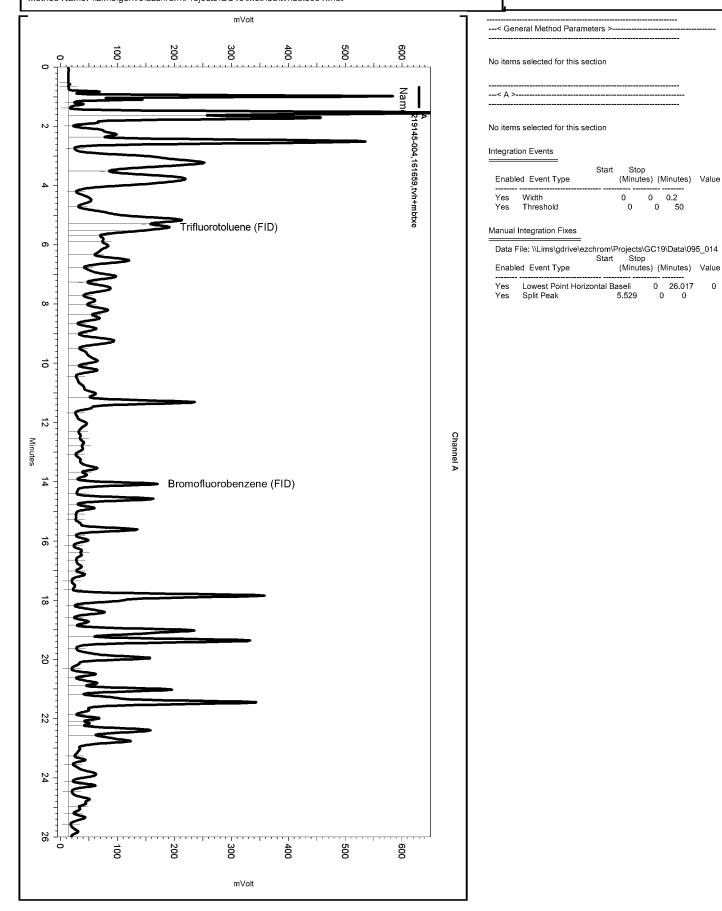
Surrogate	%REC	Limits
Trifluorotoluene (PID)	90	21-180
Bromofluorobenzene (PID)	89	26-167


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: mss,219145-001,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_006 |
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

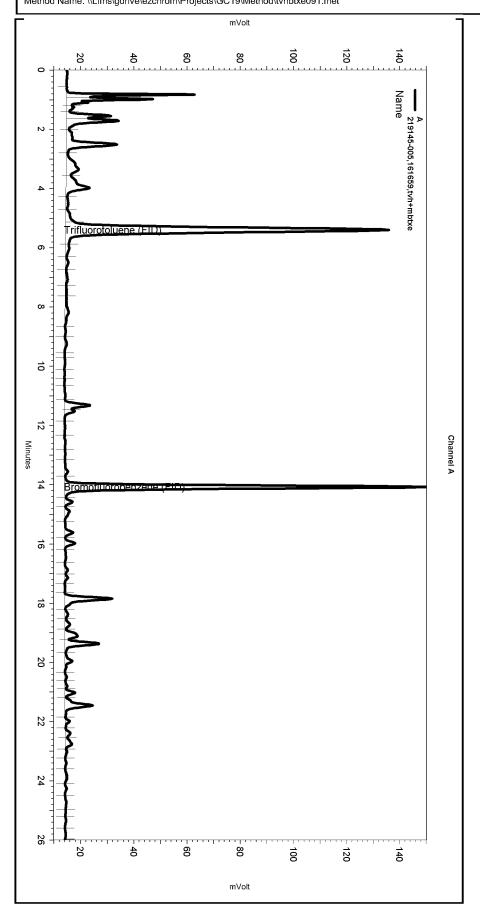
Software Version 3.1.7 Run Date: 4/5/2010 4:16:33 PM Analysis Date: 4/6/2010 4:10:09 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-002,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_009
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 6:09:15 PM Analysis Date: 4/6/2010 4:10:29 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

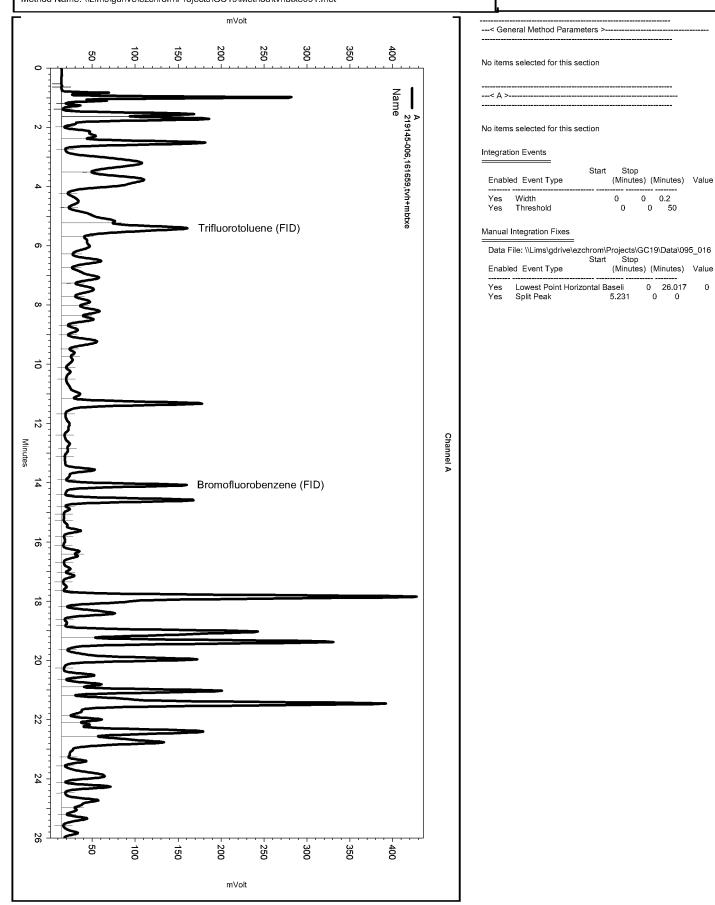

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-003,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_010
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 6:46:55 PM Analysis Date: 4/6/2010 4:10:35 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

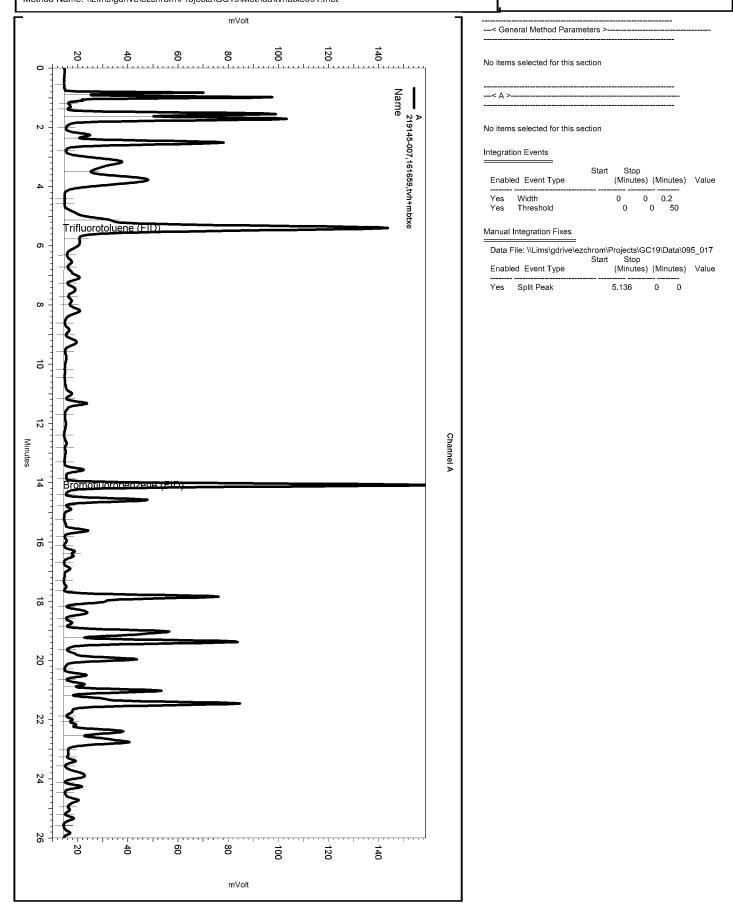

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-004,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_014
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 9:17:25 PM Analysis Date: 4/6/2010 4:22:56 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

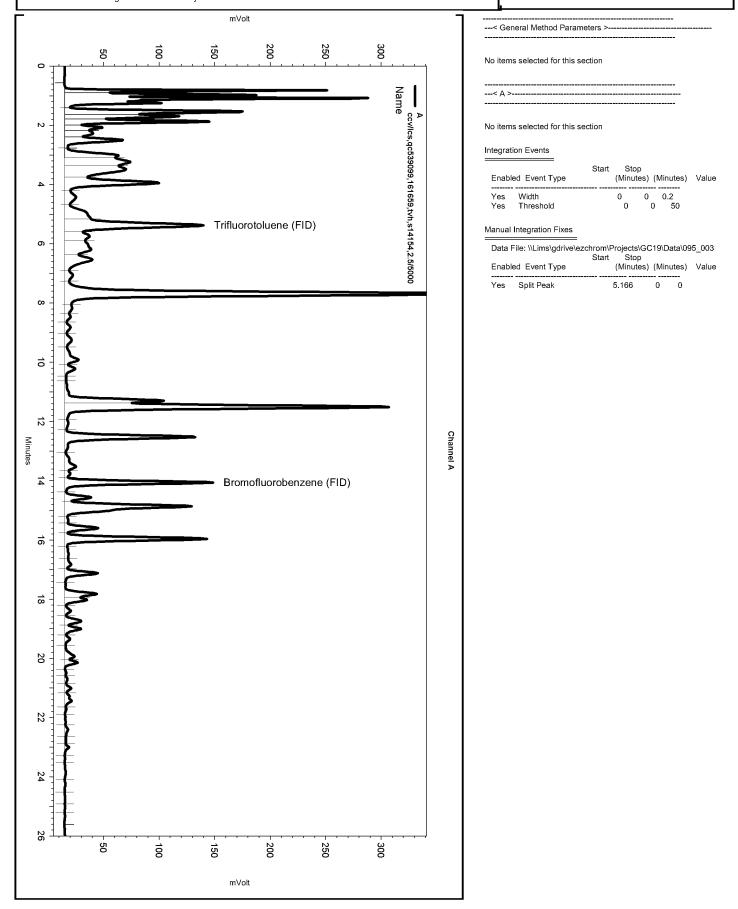
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-005,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_015
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met


Software Version 3.1.7 Run Date: 4/5/2010 9:55:00 PM Analysis Date: 4/6/2010 4:23:03 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

< General Method Parameters	>
No items selected for this section	
A >	
No items selected for this section	
Integration Events	
Sta Enabled Event Type	rt Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchron	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Split Peak	5.139 0 0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-006,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_016
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 10:32:34 PM Analysis Date: 4/6/2010 4:23:11 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: 219145-007,161659,tvh+mbtxe
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_017
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 11:10:06 PM Analysis Date: 4/6/2010 4:23:18 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\095.seq Sample Name: ccv/lcs,qc539099,161659,tvh,s14154,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\095_003 Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe091.met

Software Version 3.1.7 Run Date: 4/5/2010 10:24:13 AM Analysis Date: 4/6/2010 3:49:25 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Total Extractable Hydrocarbons Lab #: 219145 Redwood Regional Park Location: EPA 3520C Client: Stellar Environmental Solutions Prep: Project#: 2008-12 Analysis: EPA 8015B 03/29/10 Water Matrix: Sampled: 03/29/10 Units: ug/L Received: Diln Fac: 1.000 03/31/10 Prepared: Batch#: 161523 Analyzed: 04/01/10

Field ID: MW-2 Lab ID: 219145-001

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 4,300
 50

Surrogate %REC Limits
o-Terphenyl 115 39-150

Field ID: MW-7 Lab ID: 219145-002

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 6,100
 50

Surrogate %REC Limits
o-Terphenyl 112 39-150

Field ID: MW-8 Lab ID: 219145-003

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 5,700
 50

Surrogate %REC Limits
o-Terphenyl 114 39-150

Field ID: MW-9 Lab ID: 219145-004

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 3,400
 50

Surrogate %REC Limits
o-Terphenyl 106 39-150

Field ID: MW-10 Lab ID: 219145-005

Type: SAMPLE

Analyte Result RL
Diesel C10-C24 280 Y 50

Surrogate %REC Limits
o-Terphenyl 121 39-150

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

3.0

Total Extractable Hydrocarbons 219145 Lab #: Location: Redwood Regional Park Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Sampled: EPA 8015B 03/29/10 Project#: 2008-12 Matrix: Water 03/29/10 Units: ug/L Received: Diln Fac: 1.000 Prepared: 03/31/10 Batch#: 161523 Analyzed: 04/01/10

Field ID: MW-11 Lab ID: 219145-006

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 3,400
 50

Surrogate %REC Limits
o-Terphenyl 116 39-150

Field ID: MW-12 Lab ID: 219145-007

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 380 Y
 50

 Surrogate
 %REC
 Limits

 o-Terphenyl
 109
 39-150

Type: BLANK Lab ID: QC538529

AnalyteResultRLDiesel C10-C24ND50

Surrogate %REC Limits
o-Terphenyl 100 39-150

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Total Extractable Hydrocarbons							
Lab #:	219145	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C				
Project#:	2008-12	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC538530	Batch#:	161523				
Matrix:	Water	Prepared:	03/31/10				
Units:	ug/L	Analyzed:	04/01/10				

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,631	105	34-144

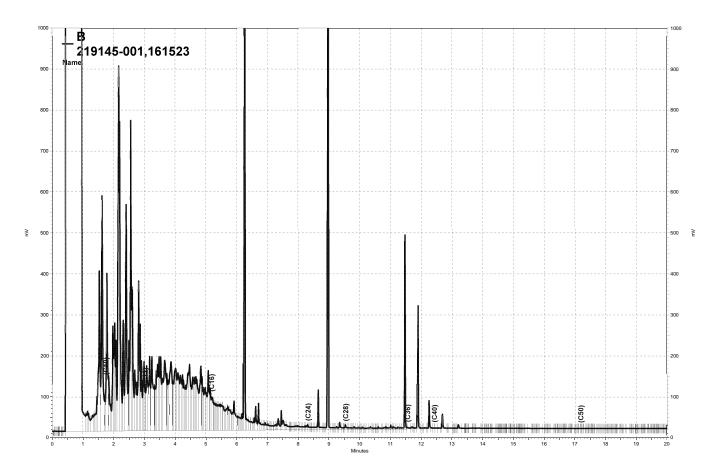
Surrogate	%REC	Limits
o-Terphenyl	116	39-150

Page 1 of 1 4.0

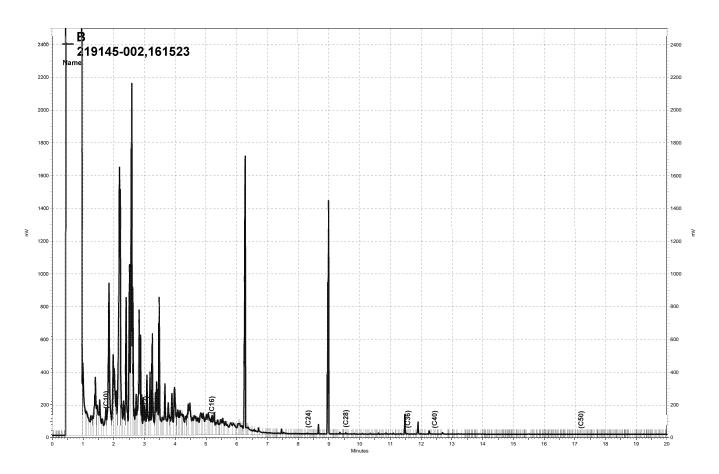
Total Extractable Hydrocarbons						
Lab #: 219145		Location:	Redwood Regional Park			
Client: Stella	ar Environmental Solutions	Prep:	EPA 3520C			
Project#: 2008-1	12	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	161523			
MSS Lab ID:	219133-003	Sampled:	03/30/10			
Matrix:	Water	Received:	03/30/10			
Units:	ug/L	Prepared:	03/31/10			
Diln Fac:	1.000	Analyzed:	04/02/10			

Type: MS Cleanup Method: EPA 3630C

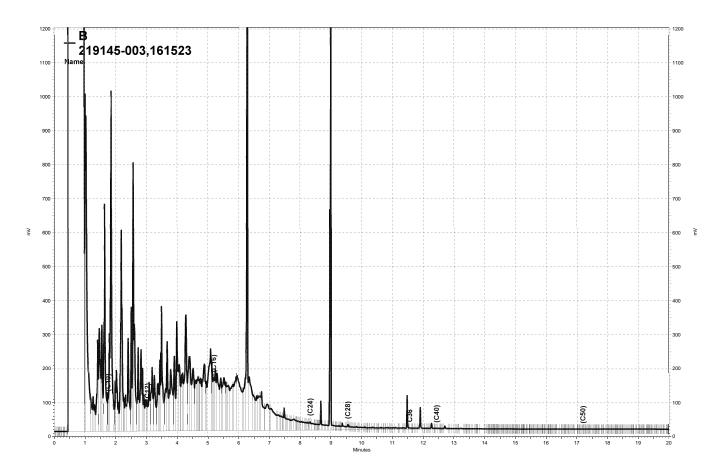
Lab ID: QC538531

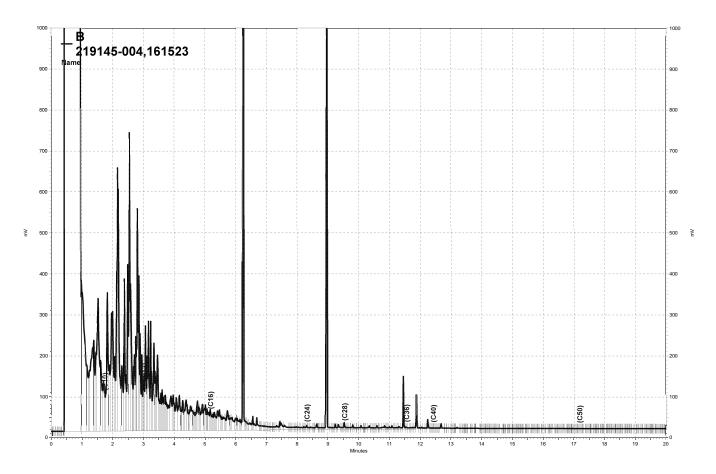

Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	12.95	2,500	2,458	98 21-160

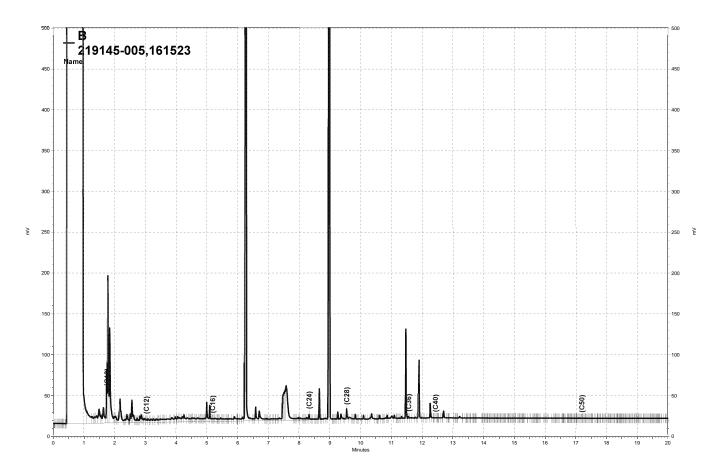
Type: MSD Cleanup Method: EPA 3630C

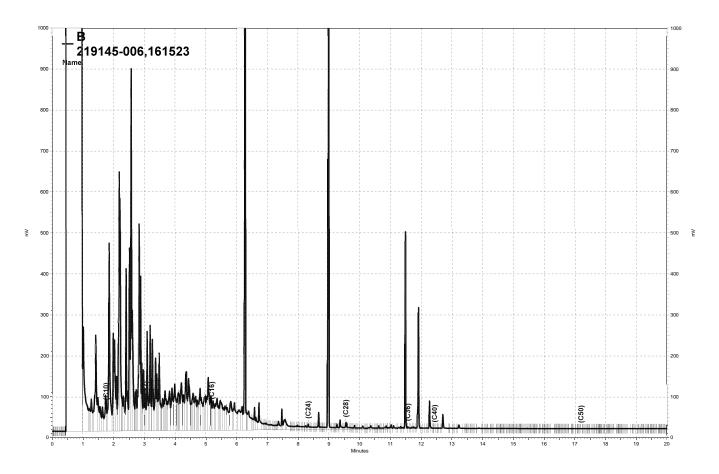

Lab ID: QC538532

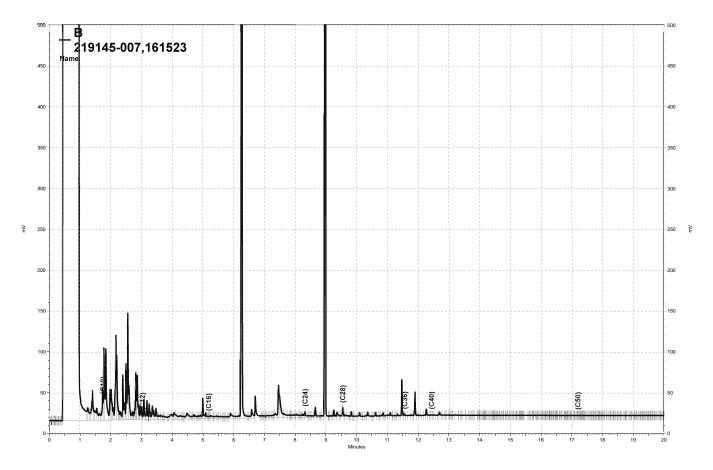
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,590	103	21-160	5	58

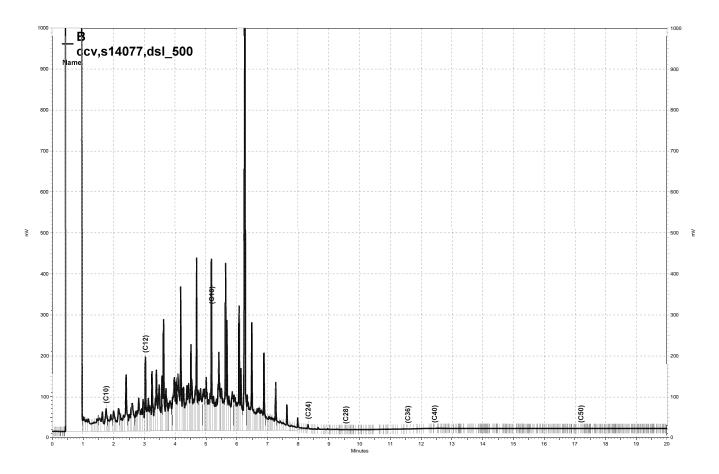

Surrogate	%REC	Limits
o-Terphenyl	114	39-150


\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b021, B


\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b022, B


\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b023, B


\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b024, B


\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b025, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b026, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b027, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\091b018, B

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 219146 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2010-02

Location : Redwood Regional Park

Level : II

 Sample ID
 Lab ID

 SW-2
 219146-001

 SW-3
 219146-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>04/06/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 219146

Client: Stellar Environmental Solutions

Project: 2010-02

Location: Redwood Regional Park

Request Date: 03/29/10 Samples Received: 03/29/10

This data package contains sample and QC results for two water samples, requested for the above referenced project on 03/29/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

719196 Chain of Custody Record

Laboratory <u>Curtis and Ton</u> Address <u>2323 Fifth Stre</u> Berkeley, Calif	et				ethod of Shipment H	and De	livery	_										Date	1 f
510-486-0900	011110 3471			Ai	rbill No						7 /	/	-	Ar	nalysis F	Required	i		
Project Owner East Bay R Site Address Oakland, C	ood Road	ırk Distr	ict	— Pr	ooler No oject ManagerRich lephone No(510) 644		kdisi	_	Fille	No or Contain			7/						
Project Name	-	rk		Fa	x No(510) 644 amplers: (Signature)		Sw			,	100 A) /	//	/ /		//	//	Rema	rks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	eservation Chemical	1/		//7			/ /	/ /					
SW-2	Creek	3-29-1	PINDC		3 VOA: 2500W	Y	Yes (a)	N	5		7	f		-(T	f		<u>/</u>	
SW-3	Creek	3-29-1		w	J	Y	Yes (a)	j	5	$\stackrel{()}{\times}$	Ž								
					,					+	-								
															-			•	
Relinquished by: Signature Teal Glass Printed		Date 3-29-10 Time	Received Signat Printed	ure 🛂	3 col Ben Fanell	Date 12-18	Relinquished to 109 Signature (7	Bu	Bi n P	Relavel	2 3	Date	Receive Sign	ature _	(I) Pat	H 60	Mangly medez	Date Skg/
Stellar Environn		145	Compa	Bla	aine Tech	1149	Company _				Tech		45	Com	npany _	C	97	<i></i>	15:45
Turnaround Time: (a) VOA w/ HO Comments:							Relinquished to	py:					Date	Receive	ed by:	****			Date
				-			Printed					_ -	Time	Print	ted			V	Time
							Company _					_		Com	pany _				

* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Lab job no. ...

	3.29.10		
Chent Stewne F	Toject Remain	16 Brune	PACK
Date Opened 3-19-10 By (print) S. EVA Date Logged in By (print)	sign)	fant	
Date Logged in By (print)	(sign)	J	
1. Did cooler come with a shipping slip (airbill, Shipping info	etc)	YE	S &D
2A. Were custody seals present? \(\subseteq YES \) (ci		on samples Date	MO
How many Name 2B. Were custody seals intact upon arrival?			S NO MA
3. Were custody papers dry and intact when reco			ONO TO
4. Were custody papers filled out properly (ink,5. Is the project identifiable from custody paper		of form) (YE	
6. Indicate the packing in cooler: (if other, described)		01 101111)(112	
☐ Bubble Wrap ☐ Foam blocks☐ Cloth material ☐ Cardboard 7. Temperature documentation:	Bags Styrofoam	□ None □ Paper t	owels
Type of ice used: Wet Blue/G	el DiNone	Temn(°C)	
Samples Received on ice & cold with			
			an.
Samples received on ice directly from	-	process had begi	_
 Were Method 5035 sampling containers press If YES, what time were they transferred to 			YES NO
9. Did all bottles arrive unbroken/unopened?			YES NO
10. Are samples in the appropriate containers fo			YES NO
11. Are sample labels present, in good condition			YES NO
12. Do the sample labels agree with custody paper			YES NO
13. Was sufficient amount of sample sent for test			YES NO
14. Are the samples appropriately preserved?		YES	AVM OM
15. Are bubbles > 6mm absent in VOA samples?)	YES	AVK OK
16. Was the client contacted concerning this sam If YES, Who was called?	ple delivery?	W.*	YES NO
If YES, Who was called?	By	Date:	
COMMENTS			
	· · · · · · · · · · · · · · · · · · ·	·	

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219146 Location: Client: Stellar Environmental Solutions Prep: Project#: 2010-02 03/29/10 03/29/10 Matrix: Water Sampled: ug/L 1.000 Units: Received: Diln Fac:

Field ID: SW-2Batch#: 161615 Type: SAMPLE Analyzed: 04/03/10

Lab ID: 219146-001

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	99	48-162	EPA 8015B	
Bromofluorobenzene (FID)	101	52-158	EPA 8015B	
Trifluorotoluene (PID)	95	21-180	EPA 8021B	
Bromofluorobenzene (PID)	99	26-167	EPA 8021B	

Field ID: SW-3 Batch#: 161659 Analyzed: 04/06/10 Type: SAMPLE Lab ID: 219146-002

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	48-162	EPA 8015B	
Bromofluorobenzene (FID)	104	52-158	EPA 8015B	
Trifluorotoluene (PID)	90	21-180	EPA 8021B	
Bromofluorobenzene (PID)	91	26-167	EPA 8021B	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

7.0

Curtis & Tompkins Laboratories Analytical Report Redwood Regional Park EPA 5030B Lab #: 219146 Location: Client: Stellar Environmental Solutions Prep: Project#: 2010-02 Matrix: Water Sampled: 03/29/10 Received: 03/29/10 Units: ug/L Diln Fac: 1.000

Type: BLANK Batch#: 161615 Lab ID: QC538909 Analyzed: 04/03/10

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	100	48-162	EPA 8015B	
Bromofluorobenzene (FID)	100	52-158	EPA 8015B	
Trifluorotoluene (PID)	99	21-180	EPA 8021B	
Bromofluorobenzene (PID)	100	26-167	EPA 8021B	

Type: BLANK Batch#: 161659 Lab ID: QC539098 Analyzed: 04/05/10

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	102	48-162	EPA 8015B	
Bromofluorobenzene (FID)	93	52-158	EPA 8015B	
Trifluorotoluene (PID)	89	21-180	EPA 8021B	
Bromofluorobenzene (PID)	85	26-167	EPA 8021B	

ND= Not Detected RL= Reporting Limit

Page 2 of 2

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	219146	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2010-02	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC538910	Batch#:	161615				
Matrix:	Water	Analyzed:	04/03/10				
Units:	ug/L						

Analyte	Spiked	Result	%REC Li	mits
Gasoline C7-C12	1,000	1,003	100 73	-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	118	48-162
Bromofluorobenzene (FID)	107	52-158

Page 1 of 1 8.0

Curtis & Tompkins Laboratories Analytical Report							
Lab #: 219146	5	Location:	Redwood Regional Park				
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B				
Project#: 2010-0	02	Analysis:	EPA 8015B				
Field ID:	SW-2	Batch#:	161615				
MSS Lab ID:	219146-001	Sampled:	03/29/10				
Matrix:	Water	Received:	03/29/10				
Units:	ug/L	Analyzed:	04/03/10				
Diln Fac:	1.000						

Type: MS Lab ID: QC538911

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<10.56	2,000	1,926	96	49-129

Surrogate	%REC	%REC	Limits
Trifluorotoluene (FID)	119) 119	48-162
Bromofluorobenzene (FID)	104	FID) 104	52-158

Type: MSD Lab ID: QC538912

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,064	103	49-129	7	19

	Curtis & Tompkins Labo	ratories Anal	ytical Report
Lab #:	219146	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2010-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	161615
Units:	ug/L	Analyzed:	04/03/10
Diln Fac:	1.000		

Type: BS Lab ID: QC538913

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.46	115	36-168
Benzene	10.00	10.42	104	69-121
Toluene	10.00	10.73	107	64-132
Ethylbenzene	10.00	10.36	104	64-136
m,p-Xylenes	10.00	11.04	110	63-138
o-Xylene	10.00	10.80	108	64-135

Surrogate	%REC	Limits
Trifluorotoluene (PID)	96	21-180
Bromofluorobenzene (PID)	99	26-167

Type: BSD Lab ID: QC538914

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	11.75	117	36-168	2	35
Benzene	10.00	10.59	106	69-121	2	24
Toluene	10.00	10.95	109	64-132	2	27
Ethylbenzene	10.00	10.48	105	64-136	1	27
m,p-Xylenes	10.00	11.47	115	63-138	4	32
o-Xylene	10.00	11.05	111	64-135	2	27

Surrogate	%REC	Limits
Trifluorotoluene (PID)	97	21-180
Bromofluorobenzene (PID)	101	26-167

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	219146	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2010-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC539099	Batch#:	161659
Matrix:	Water	Analyzed:	04/05/10
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	985.5	99	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	48-162
Bromofluorobenzene (FID)	100	52-158

Page 1 of 1 11.0

	Curtis & Tompkins Labo	ratories Anal	ytical Report
Lab #: 219146		Location:	Redwood Regional Park
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2010-0	02	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	161659
MSS Lab ID:	219145-001	Sampled:	03/29/10
Matrix:	Water	Received:	03/29/10
Units:	ug/L	Analyzed:	04/05/10
Diln Fac:	1.000		

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,033	2,000	3,715	84	49-129

Surrogate	%REC	Limits
Trifluorotoluene (FID)	134	48-162
Bromofluorobenzene (FID)	120	52-158

Type: MSD Lab ID: QC539101

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	3,744	86	49-129	1	19

Surrogate	%REC	Limits
Trifluorotoluene (FID)	130	48-162
Bromofluorobenzene (FID)	117	52-158

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	219146	Location:	Redwood Regional Park			
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B			
Project#:	2010-02	Analysis:	EPA 8021B			
Matrix:	Water	Batch#:	161659			
Units:	ug/L	Analyzed:	04/05/10			
Diln Fac:	1.000					

Type: BS Lab ID: QC539102

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.08	111	36-168
Benzene	10.00	10.09	101	69-121
Toluene	10.00	10.26	103	64-132
Ethylbenzene	10.00	10.65	106	64-136
m,p-Xylenes	10.00	10.51	105	63-138
o-Xylene	10.00	10.90	109	64-135

Surrogate	%REC	Limits
Trifluorotoluene (PID)	89	21-180
Bromofluorobenzene (PID)	88	26-167

Type: BSD Lab ID: QC539103

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	10.98	110	36-168	1	35
Benzene	10.00	10.14	101	69-121	0	24
Toluene	10.00	10.61	106	64-132	3	27
Ethylbenzene	10.00	10.31	103	64-136	3	27
m,p-Xylenes	10.00	10.66	107	63-138	1	32
o-Xylene	10.00	10.74	107	64-135	1	27

Surrogate	%REC	Limits
Trifluorotoluene (PID)	90	21-180
Bromofluorobenzene (PID)	89	26-167

Total Extractable Hydrocarbons Lab #: 219146 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 2010-02 EPA 8015B Analysis: Matrix: Water 03/29/10 Sampled: Units: ug/L Received: 03/29/10 1.000 Diln Fac: Prepared: 03/31/10 Batch#: 161523

Field ID: SW-2 Lab ID: 219146-001 Type: SAMPLE Analyzed: 04/01/10

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	110	39-150

Field ID: SW-3 Lab ID: 219146-002 Type: SAMPLE Analyzed: 04/02/10

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	98	39-150

Type: BLANK Analyzed: 04/01/10

Lab ID: QC538529

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	100	39-150

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Total Extractable Hydrocarbons								
Lab #:	219146	Location:	Redwood Regional Park						
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C						
Project#:	2010-02	Analysis:	EPA 8015B						
Type:	LCS	Diln Fac:	1.000						
Lab ID:	QC538530	Batch#:	161523						
Matrix:	Water	Prepared:	03/31/10						
Units:	ug/L	Analyzed:	04/01/10						

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,631	105	34-144

Surrogate	%REC	Limits
o-Terphenyl	116	39-150

Page 1 of 1 4.0

Total Extractable Hydrocarbons								
Lab #: 219146	5	Location:	Redwood Regional Park					
Client: Stella	ar Environmental Solutions	Prep:	EPA 3520C					
Project#: 2010-0	02	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZZ	Batch#:	161523					
MSS Lab ID:	219133-003	Sampled:	03/30/10					
Matrix:	Water	Received:	03/30/10					
Units:	ug/L	Prepared:	03/31/10					
Diln Fac:	1.000	Analyzed:	04/02/10					

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC538531

Analyte	MSS Result	Spiked	Result	%REC Li	mits
Diesel C10-C24	12.95	2,500	2,458	98 21	-160

Surrogate	%REC	Limits	
o-Terphenyl	107	39-150	

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC538532

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,590	103	21-160	5	58

APPENDIX D

Historical Groundwater and Surface Water Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Event	D-4-	T\#1	TELL	Donne	Well M		Total Valence	Total DTEV	MITO
Event 1	Date Nov 04	TVHg	TEHd	Benzene	Toluene		Total Xylenes	Total BTEX	MTBE
	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	٨
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	٨
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	٨
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	٨
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	٨
12	Feb-98	2,000	200	270	92	150	600	1,112	1
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5		< 2
25	Mar-03	130	82	39		20	4.1	63	16
					< 0.5				
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
		7,100			8.8	140			11
46a	May-08		3,900	14			710	872.8	
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	11	20.2	36.6	13
52	Aug-09	1,900	3,100	1.6	1.8	11	23.8	38.2	7.1
53	Sep-09	1,400	1,800	<0.5	<0.5	<0.5	4.2	4.24	12
54	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6
	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
55									

					Well N	IW-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	67	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2.0	200	144	409	NA
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	l	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	-	< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	l	< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0
(Groundwat	er monitorin	g in this w	ell discontin	ued with Al	ameda County H	ealth Care Servic	es Agency appro	val.

	Well MW-5										
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA		
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA		
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2		
Grou	undwater m	onitoring in	this well d	iscontinued	in 1998 wi	h Alameda Coun	ty Health Care Se	ervices Agency a	pproval.		
	Subsequent groundwater monitoring conducted to confirm plume's southern limit										
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9		
15	Sep-04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0		

					Well N	IW-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0
12	Dec-03	9,140	1,100	62	45	295	184	586	89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.12	185	260
36	Sep-09	4,400	4,700	<0.5	<0.5	96	5.60	102	3.5
37	Dec-09	4,900	4,500	< 0.5	< 0.5	90	2.90	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.60	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.50	92	<2.0

					Well N	IW-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10
10	Jun-03	7.900	2.200	370	7.4	620	562	1,559	< 4.0
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5.600	1.200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5.000	500	28	1,800	1.897	4,700	<20
			,			,			
23 24	Sep-06 Dec-06	9,000 4,400	820 800	170 75	7.7 4.2	730 320	539 246	1,447 645	<10 < 2.0
25		15.000	4,500	340	19	1,300	1,275	2,934	
	Mar-07		,			,	· ·		< 20
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0
27 28	Sep-07 Dec-07	9,400 1,200	3,400 500	200 15	6.9 0.88	1,000 95	773 57.7	1,980 168.58	<8.0 <2.0
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<20
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	<0.5	340	255.7	624	<2.0

					Well N	IW-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2.0
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2.0
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2.0
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2.0
34	Dec-09	72	150	0.6	<0.5	1.6	1.2	3.4	<2.0
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2.0

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0
24	Jun-07	4	2,200	120	<0.5	140	6.6	267	<4.0
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	<0.5	19	<0.5	30	<2.0
34	Dec-09	2,200	3,100	19	<0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.0

					Well M	W-12			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)									
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0

	5	Sampling L	ocation S	N-2 (Area c	of Historica	I Contaminated	Groundwater Di	scharge)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
8	Aug-97	350	130	13	0.89	19	11	44	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0

	Samplir	ng Location	1 SW-3 (D	ownstream	of Contan	ninated Groundy	vater Discharge	Location SW-2)	
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	N/
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
								< 0.5	
23 24	Jun-03	< 50 NS	< 50 NS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
25	Sep-03 Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS NS
28	Sep-04 Dec-04	NS	NS	NS -0.5	NS <0.5	NS -0.5	NS 110	NS -1.0	NS · 2.6
29		<50	<50	<0.5		<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0

| So | Mar-10| <50| <50| <5.0| <5.0| <5.0| NS = Not Sampled (no surface water present during sampling event)

APPENDIX E

Photodocumentation of ORCTM Injection Activity

Subject: Geopobe drill with rods connected to ORCTM feed hose

Site: Redwood Regional Park Service Yard, Oakland, CA

Date Taken: February 1, 2010 Project No.: SES 2010-2

Photographer: H. Pietropaoli Photo No.: 01

Subject: ORC TM mixing truck in treament zone 3					
Site: Redwood Regional Park Service Yard, Oakland, CA					
Date Taken: February 1, 2010 Project No.: SES 2010-02					
Photographer: H. Pietropaoli Photo No.: 02					

Subject: Inside the ORC TM mixing unit					
Site: Redwood Regional Park Service Yard, Oakland, CA					
Date Taken: February 1, 2010 Project No.: SES 2010-02					
Photographer: H. Pietropaoli Photo No.: 03					

Subject: Injection borehole locations marked for utility clearance in treatment zone 4					
Site: Redwood Regional Park Service Yard, Oakland, CA					
Date Taken: February 1, 2010 Project No.: SES 2010-02					
Photographer: H. Pietropaoli Photo No.: 04					

Subject: Geopobe mixing truck connected to ORC™ feed hose in lower area

Site: Redwood Regional Park Service Yard, Oakland, CA

Date Taken: February 1, 2010 Project No.: SES 2010-2

Photographer: H. Pietropaoli Photo No.: 05

Subject: Drill rig injecting in lower zone boerehole

Site: Redwood Regional Park Service Yard, Oakland, CA

Date Taken: February 1, 2010 Project No.: SES 2010-02

Photographer: H. Pietropaoli Photo No.: 06

Subject: Drill and mixing rigs set up in upper area treatment zone 2

Site: Redwood Regional Park Service Yard, Oakland, CA

Date Taken: February 2, 2010 Project No.: SES 2010-02

Photographer: H. Pietropaoli Photo No.: 07

Subject: Drill and mixing rigs set up in upper area treatment zone 1

Site: Redwood Regional Park Service Yard, Oakland, CA

Date Taken: February 2, 2010 Project No.: SES 2010-02

Photographer: H. Pietropaoli Photo No.: 08

Subject: View of 1-foot injector tip				
Site: Redwood Regional Park Service Yard, Oakland, CA				
Date Taken: February 1, 2010	Project No.: SES 2010-2			
Photographer: H. Pietropaoli	Photo No.: 09			

Subject: Grouting of borehole after injection				
Site: Redwood Regional Park Service Yard, Oakland, CA				
Date Taken: February 1, 2010	Project No.: SES 2010-02			
Photographer: H. Pietropaoli	Photo No.: 10			

APPENDIX F

City of Berkeley Drilling Permit and Waste Disposal Documentation

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/20/2010 By jamesy Permit Numbers: W2010-0050 Permits Valid from 01/26/2010 to 02/10/2010

Application Id: 1263412510061 City of Project Site:Oakland

Site Location: Redwood Regional Park Service Corporation Yard

7867 REDWOOD Road

Oakland, CA

94619

Project Start Date: 01/26/2010 Completion Date:02/10/2010

Assigned Inspector: Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant: Stellar Environmental Solutions, Inc - Henry **Phone:** 510-644-3123 x12

Pietropaoli

2198 Sixth Street, Berkeley, CA 94710

Property Owner: Neal Fujita/Dee Rosario East Bay Regional Park Phone: 510-544-2327 x258

District

P.O. Box 5381, Oakland, CA 94605

Client: Henry Pietropaoli Stellar Environmental Phone: 510-644-3123 x12

Solutions

2198 Sixth Street, Berkeley, Calif, CA 94710

Contact: Henry Pietropaoli Phone: 510-644-3123

Cell: 510-926-9416

Total Due: \$265.00

Receipt Number: WR2010-0019 Total Amount Paid: \$265.00

Payer Name: Henry Pietropaoli Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 24 Boreholes

Driller: Vironex - Lic #: 705927 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2010-	01/20/2010	04/26/2010	24	2.25 in.	31.00 ft
0050					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

Alameda County Public Works Agency - Water Resources Well Permit

- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

	y -, c	Generator, Ma		: DTSC P.O. E	3ox 400 Sa	cramento. C	a. 95812-(0400 w	ithin 30 da	V8**			
Ple	ase pri	nt or type. (Form design		(12-pitch) typewriter		2. Page 1 of 3. Eme			4. Manifest	Form	ımber	MB No. 2050-00	
	W	ASTE MANIFEST	CAC 00	2 650 40	5	1 1-8	300-424-9	300	00;	0/6	2067	JJK	
	5. Ge	5 Generator's Name and Mailing Address Generator's Site Address (if different than mailing address)											
	39	3950 PERALTA OAKS COURT 7P65 REDIVUOD RUAD											
		OAKLANS, CA 94619 1015 Phone: (510) 644 - 2327											
	0. 118	6. Transporter 1 Company Name Evergreen Environmental Services								CAD982413262			
	7. Tra	ansporter 2 Company Nam	е				U.S. EPA ID N	lumber					
	8. De	8. Designated Facility Name and Site Address Evergreen Oil, Inc.							U.S. EPA ID N	lumber			
	6880 Smith Ave. Newark, Ca. 94560 Facility's Phone: 510-795-4400						CAD980887418						
	9a.	9b. U.S. DOT Description	on (including Proper S	Shipping Name, Hazard (Class, ID Number,		10. Conta	iners	11. Total	12. Unit	13. Wa	ste Codes	
	НМ			1	200:0 101	0000 110	No.	Туре	Quantity	Wt./Vol.		1	
GENERATOR	X	NOS (CAL ERG # 154	CIUM HYD	ROXIDE),	B, UNIBE	be, PGI	001	Dim	0030	G	5002	122	
GEN		2.											
		3.						-			and the colony of		
		3.											
		4.						-					
		4.									**************************************		
	1	Lipecial Handling Instruction		mation					1		-		
	93	1) 1x55 GA	1 -										
	2	EAR APPRO	PRIATE	PROTECTIVE	CLOTHI	NC 4	ERUIPN	1ENT	,				
		GENERATOR'S/OFFERO marked and labeled/placar											
		Exporter, I certify that the of certify that the waste min	contents of this consig	gnment conform to the te	erms of the attache	d EPA Acknowledgmen	t of Consent.	-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. and r rimary	
	Gene	rator's/Offeror's Printed/Ty	ped Name		,,,,	Signature	- 1	< 0	,		Month	Day Year	
+	16. In	ALLY International Shipments	CAHIL				elly	2.	alul	<u></u>	12	196 10	
INT	Tran	sporter signature (for expo	rts only):	U.S.		Export from U.S.	Port of e	ntry/exit: ving U.S.:		1-/		E. E. Constitution of	
FED	17. T	ransporter Acknowledgmen		als									
TRANSPORTED	×1	Sporter 1 Printed/Typed Nar		2		Signature × •	1001	200	3mi	0 h	Month	Day Year	
ANS	Trans	porter 2 Printed/Typed Nar		-		Signature	1000	Oma s		1	Month	Day Year	
	-												
1	-	iscrepancy Discrepancy Indication Spa	ace	·L.		Г	7					1	
			Quant	ity	Туре	L	Residue		Partial Rej	ection		Full Rejection	
1	18b. A	Alternate Facility (or Gener	ator)			- N	lanifest Referenc	e Number:	U.S. EPA ID N	Number			
FACILITY									1		·		
ED FA	Facilit	ty's Phone: Signature of Alternate Facil	ity (or Generator)	3			Month Day Yi						
DESIGNATED								1 1					
FSIG	19. H	azardous Waste Report Ma	the state of the s	codes (i.e., codes for haz	zardous waste treat	ment, disposal, and red	cycling systems)		4.				
1				far.		3.			4.				
		esignated Facility Owner o	r Operator: Certificati	on of receipt of hazardou	us materials covere		ept as noted in Ite	m 18a				D	
1	Time	w ypou name				Signature					Month	Day Year	