RECEIVED

10:47 am, Apr 13, 2009

Alameda County Environmental Health

FIRST QUARTER 2009 GROUNDWATER MONITORING AND OXYGEN RELEASE COMPOUND[™] TREATMENT CORRECTIVE ACTION REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

April 2009

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

FIRST QUARTER 2009 GROUNDWATER MONITORING AND OXYGEN RELEASE COMPOUND[™] TREATMENT CORRECTIVE ACTION REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 10, 2009

Project No. 2008-02

GEOSCIENCE & ENGINEERING CONSULTING

April 10, 2009

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound[™] Treatment Corrective Action Report; Redwood Regional Park Service Yard Site – Oakland, California ACEH Fuel Leak Case No. RO0000246

Dear Mr. Wickham:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted between January 1 and March 31, 2009 (First Quarter 2009), as well as the remedial action conducted on March 10, 2009. Ongoing bioventing activities are reported in technical submittals separate from the ongoing water monitoring quarterly reports; summaries of salient information will be included in the quarterly reports. SES has reviewed your letter of March 24, 2009 and will be responding as requested.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact Mr. Neal Fujita of the EBRPD, or contact me directly at (510) 644-3123.

Sincerely,

Panal S. Makdin

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

cc: Carl Wilcox, California Department of Fish and Game;
Neal Fujita, East Bay Regional Park District;
State of California GeoTracker System; ACEH ftp System

TABLE OF CONTENTS

Section		
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Site Description Regulatory Oversight	1 1 2 2
2.0	PHYSICAL SETTING	6
	Site Lithology Hydrogeology	6 10
3.0	REGULATORY CONSIDERATIONS	13
	Groundwater Contamination Surface Water Contamination	13 13
4.0	FIRST QUARTER 2009 ACTIVITIES	15
	Groundwater Level Monitoring and Sampling Creek Surface Water Sampling Bioventing-Related Activities	16 17 17
5.0	FIRST QUARTER 2009 ANALYTICAL RESULTS	18
	Groundwater and Surface Water Analytical Results Quality Control Sample Analytical Results	18 19
6.0	ORCTM INJECTION CORRECTIVE ACTION PROGRAM	21
	Objectives of Corrective Action Method Description Injection Procedure Future Activities	21 24 24 26
7.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	27
	Summary and Conclusions Proposed Actions	27 29
8.0	REFERENCES	
9.0	LIMITATIONS	35

Section

Appendices

Appendix A	Historical Groundwater Monitoring Well Water Level Elevation Data
Appendix B	Groundwater Monitoring Field Documentation
Appendix C	Analytical Laboratory Report and Chain-of-Custody Record
Appendix D	Historical Groundwater and Surface Water Analytical Results

TABLES AND FIGURES

Tables	Page
Table 1 Well Construction and Groundwater Elevation Data – March 16, 2009.	16
Table 2 Groundwater and Surface Water Sample Analytical Results – March 16,	200919
Figures	Page
Figure 1 Site Location Map	3
Figure 2 Site Plan and Historical Sampling Locations	4
Figure 3 Geologic Cross-Section Locations	7
Figure 4 Geologic Cross-Sections A-A' through C-C'	8
Figure 5 Geologic Cross-Sections D-D' through F-F'	9
Figure 6 Groundwater Elevation Map –March 16, 2009	11
Figure 7 Groundwater Analytical Results and Gasoline Plume – March 2009	20
Figure 8 Hydrochemical Trend in MW-2	22
Figure 9 ORC [™] Injection Layout	23

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) between January 1 and March 31, 2009 (First Quarter 2009):

- Collecting water levels in site wells to determine shallow groundwater flow direction
- Sampling site wells for contaminant analysis and natural attenuation indicators
- Collecting surface water samples for contaminant analysis
- Conducting quarterly monitoring and maintenance of bioventing system operation
- Injecting Oxygen Release Compound (ORC)TM near well MW-2

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Previous SES reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report lists all technical reports for the site.

The general phases of site work included:

- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by SES and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted—in September 2001 and July 2002.
- A total of 49 groundwater monitoring events, conducted on a quarterly basis since project inception (November 1994). A total of 11 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. However, the bioventing remedy has not been effective to date. Bioventing activities conducted to date have been, and will continue to be, discussed in bioventing-specific technical reports, and updates will be provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An additional ORCTM injection was conducted during this quarter on March 10, 2009 to control elevated levels of hydrocarbons in the source area represented by MW-2.

SITE DESCRIPTION

The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 1 shows the location of the project site, and Figure 2 presents the site plan.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports have been submitted to these agencies. Historical ACEH-approved revisions to the groundwater sampling program have included:

- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6
- Discontinuing creek surface water sampling at upstream location SW-1
- Discontinuing field measurement and laboratory analyses for natural attenuation indicators, to be re-implemented following the bioventing corrective action
- Reducing the frequency of creek surface water sampling from quarterly to semiannually. The latter recommendation has not yet been implemented due to the EBRPD's continued concern over potential impacts to Redwood Creek.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Q2 2005 have been uploaded to ACEH's file transfer protocol (ftp) system. Per ACEH's October 31, 2005 directive entitled "Miscellaneous Administrative Topics and Procedures," effective January 31, 2006, paper copies of reports will no longer be provided to ACEH.

A Letter dated March 24, 2009 from Mr. Wickham commented on the review of the workplan to inject ORCTM in the area near site well MW-2, which has shown a recent history of increased concentrations. The letter commented that the workplan implementation would not reduce the overall source area contaminant contribution. SES agrees with that assessment. However, the small injected volumes were not intended to achieve a broad remediation goal. The intent was to determine if a pathway to well MW-2 was achievable through nearby injections, as well as locally reduce the high gasoline concentrations exhibited in MW-2. SES will provide responses to the timetable set for the technical reports requested.

2.0 PHYSICAL SETTING

This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous SES reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis.

SITE LITHOLOGY

Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination were presented in a previous report (SES, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous SES report (SES, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map indicates the following (as shown in Figures 4 and 5): The bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the local groundwater flow direction. On the

2008-02-05

2005-66-14

2005-66-13

southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see cross-section F-F') and at downgradient location B15/HP-02 (see cross-section B-B'). Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that it may have historically undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well equilibrated water levels. Table 1 (in Section 4.0) summarizes current event groundwater elevation data.

In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill), the groundwater gradient during this event was measured at approximately 0.22 feet per foot.

Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient during this event was approximately 0.1 feet per foot. The average groundwater elevation was 2.36 feet higher than the previous (December 2008) event, with the greatest increase of 5.5 feet measured in MW-8 and the lowest increase measured in MW-1 of 0.7 foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We assume a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

3.0 REGULATORY CONSIDERATIONS

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwaters are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is a current or potential drinking water source</u>.

As stipulated in the ESL guidance (Water Board, 2008), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 2 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

4.0 FIRST QUARTER 2009 ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q1 2009), conducted in March 2009. A summary of bioventing-related activities is also provided.

Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the ACEH-approved SES technical workplan (SES, 1998a). Current Q1 2009 event activities included:

- Measuring static water levels in all 11 of the site wells.
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12).
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.

Redwood Creek surface water sampling and groundwater monitoring and sampling were conducted on March 16, 2009. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

Table 1Groundwater Monitoring Well Construction and Groundwater Elevation Data –
March 16, 2009 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (3/16/09)
MW-1	18	7 to17	565.83	561.84
MW-2	36	20 to 35	566.42	546.25
MW-3	42	7 to 41	560.81	541.87
MW-5	26	10 to 25	547.41	531.63
MW-6	26	10 to 25	545.43	532.58
MW-7	24	9 to24	547.56	534.65
MW-8	23	8 to 23	549.13	539.51
MW-9	26	11 to 26	549.28	534.56
MW-10	26	11 to 26	547.22	535.55
MW-11	26	11 to 26	547.75	535.49
MW-12	25	10 to 25	544.67	535.08

Notes:

TOC = top of casing

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above U.S. Geological Survey mean sea level.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity, and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. In addition to the aquifer stability parameters, dissolved oxygen is being measured in monitoring well MW-2 to

evaluate the effects of the March 2009 ORC[™] application. To minimize the potential for crosscontamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

The sampling-derived purge water and decontamination rinseate (approximately 62 gallons) from the current event was containerized in the onsite aboveground storage tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES personnel on March 16, 2009. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination), and at SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous SES recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was at a high stage due to recent rain events; water depths ranged from approximately 1 to 2 feet and it was flowing steadily. SES did not observe any orange algae or sheen during this event or smell any odors.

BIOVENTING-RELATED ACTIVITIES

The bioventing system was installed and started up in December 2005/January 2006. Weekly system monitoring and air flow optimization events were conducted for one month in January and February 2006. Bioventing system operations and maintenance (O&M) events had been conducted monthly since March 2006; however, they have been reduced to quarterly events beginning in 2009. East Bay Regional Redwood Park staff have been checking the system on a weekly basis to ensure it is functioning properly, and will notify SES in the event of a problem. As noted previously, two new bioventing wells (VW-4 and VW-5) were installed on March 4, 2008 to augment the system, and VW-3, which historically has seen no change in pressurization, was disconnected. Bioventing activities are discussed in detail in separate technical documents.

5.0 FIRST QUARTER 2009 ANALYTICAL RESULTS

This section presents the field and laboratory results of the current monitoring event. Table 2 summarizes the contaminant analytical results. Figure 7 shows the contaminant results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

First quarter 2009 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in six of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12). TVHg was also detected in MW-10, but below the ESL. Contaminant concentrations of TEHd exceeded the ESL in all seven of the wells sampled. The ESL for benzene was exceeded in MW-2, MW-7, MW-8, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total xylenes was exceeded in MW-2, MW-8, and MW-9; and the ESL for methyl tertiary-butyl ether (MTBE) was exceeded in MW-2 and MW-7. Toluene was not detected in any of the seven wells sampled above the ESL. Toluene was detected in MW-2, but below the ESL.

The maximum concentration of TVHg was detected in MW-7 (located on the eastern side of Redwood Creek, downgradient of the original source area). MW-2 (located in the upgradient area of the plume in the location of the historical excavation) contained the highest concentration of TEHd. The northern edge of the plume in the downgradient area of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution. While the center of contaminant mass in groundwater is generally located downgradient of the former source area, historically, contamination also has been observed in the former source area.

To monitor the affects of the ORCTM injection (discussed in the next section), DO was measured in MW-2 at 0.2 mg/L. This measurement will serve as the baseline measurement for comparison in future monitoring events to determine the affect of the ORCTM injection.

There were no contaminants detected above their respective laboratory detection limits in either surface water sample location SW-2 or SW-3 during this March 2009 sampling event.

Table 2Groundwater and Surface Water SampleAnalytical Results – March 16, 2009Redwood Regional Park Corporation Yard, Oakland, California

	Contaminant Concentrations							
Location	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	
GROUNDWATER SAMPLES								
MW-2	3,100	37,000	1.1	1.4	7.9	35	14	
MW-7	5,100	6,700	19	<0.5	140	12.3	51	
MW-8	4,600	7,300	55	<5.0	410	639	<20	
MW-9	4,000	2,200	<2.0	<0.5	160	34.9	<2.0	
MW-10	76	230	<2.0	< 0.5	1.4	< 0.5	<2.0	
MW-11	4,100	4,600	18	< 0.5	82	8.0	<2.0	
MW-12	180	130	<0.5	<0.5	1.7	<0.5	<2.0	
Groundwater ESLs ^(a)	100 / 210	100/ 210	1.0 / 46	4.0 / 130	30 / 43	20 / 100	5.0 / 1,800	
REDWOOD CREEK SURFACE WATER SAMPLES								
SW-2	<50	<0.5	<5.0	<5.0	<5.0	<5.0	<2.0	
SW-3	<50	<0.5	<5.0	<5.0	<5.0	<5.0	<2.0	
Surface Water Screening Levels ^(b)	100	100	1.0	40	30	20	5.0	

Notes:

^(a) ESLs = Water Board Environmental Screening Levels (where groundwater <u>is/is not</u> a potential drinking water resource) (Water Board, 2008)

^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008)

MTBE = methyl *tertiary*-butyl ether

TVHg = total volatile hydrocarbons - gasoline range

TEHd = total extractable hydrocarbons - diesel range

All concentrations are expressed in micrograms per liter ($\mu g/L$), equivalent to parts per billion. Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater <u>is</u> a potential drinking water resource.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

6.0 ORCTM INJECTION CORRECTIVE ACTION PROGRAM

The following discusses the Oxygen Release Compound ORC[™] injection corrective action at the site that was conducted on March 10, 2009 in accordance with the SES Workplan, dated February 12, 2009. This pilot test injection was conducted by RSI Drilling, a California licensed hazardous drilling contractor, under the direct supervision of SES. Figure 8 shows the array of injection points around MW-2. These are numbered in the order in which they were injected.

OBJECTIVES OF CORRECTIVE ACTION

This treatment entailed a limited remedial application of ORCTM into the upper yard area (source area) to address the rising hydrocarbon concentration observed at well MW-2. The three principal objectives of the pilot test injection were to:

- Determine if a pathway to well MW-2 was achievable through nearby injection at the depth intervals used;
- Ascertain if the injected ORCTM resulted in beneficial reduction of the high gasoline concentrations previously reported; and
- Evaluate the the efficacy of using ORCTM or a similar oxygen introducing compound to further reduce source area residual contamination.

Monitoring well MW-2, installed in the area of the former UFSTs, historically has shown low to trace (sometimes non-detectable) contaminant levels. However, since September 2007, well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. The increase in all petroleum hydrocarbons at MW-2 initially raised concern that the cause was local (a significant reduction occurred after pumping 100 gallons or less). In 2008, SES initialized a program of more frequent monitoring and purging at MW-2 to mitigate against higher concentrations migrating downgradient toward Redwood Creek. The program showed limited success, with concentrations declining after limited purging, but rapidly increasing between monitoring events. This was the basis for this aggressive corrective action program involving the injection of the ORCTM compound to provide a catalyst for enhanced biodegradation to occur. The remedy was designed to coincide with the higher groundwater elevations typically observed in spring.

2006-17-1

METHOD DESCRIPTION

The ORC[™] product is a patented formulation of magnesium peroxide that produces a slow and sustained (generally 6- to 12-month duration) release of molecular oxygen when in contact with soil moisture or groundwater. The oxygen release function stimulates the growth of naturally-occurring microbes that will aerobically degrade petroleum hydrocarbons, using the carbon as a food source. This process is especially useful in areas where elevated levels of petroleum hydrocarbons have inhibited naturally-occurring oxygen to levels below those required for microbial degradation. A smaller percentage of hydrocarbon degradation is anticipated via direct oxidation, especially in close proximity to the injection boreholes.

INJECTION PROCEDURE

The oxygen releasing compound ORCTM was selected to inoculate the groundwater in accessible areas surrounding monitoring well MW-2. This passive remedial technique creates a highly oxygenated zone in the areas where natural attenuation is limited by oxygen availability. For the subject site, the ORCTM was delivered as a slurry across the saturated interval via injection by a direct-push Geoprobe[®] rig. The nine injection points are shown on Figure 8.

The injection system equipment mobilized to the site for the injection consisted of:

- Direct-push Geoprobe[®] rig;
- Drive rods (typically 1¹/₂-inch outside diameter) and injection tooling with fluid delivery sub-assembly;
- Injection pump rated for 5 gallons per minute (gpm) at 200 pound per square inch (psi) for sandy formations, and 800 psi for silt and clay formations;
- Injection hosing with pressure gauge and a pressure relief valve with a bypass;
- Power drill paint stirrer (3-inch-diameter or smaller propeller tip);
- Truck mounted mixing ORC^{TM} tank and hopper;
- Granular bentonite, quick-set grout concrete for closing and sealing injection holes;
- Water supply; and
- Electrical generator.

The specifications of the injection included:

■ The projected "hot spot" area covered an estimated 300 square feet area: approximately 20 feet by 15 feet.

- A total of 9 injection points were drilled using direct-push technology to a depth of 25 feet.
- A total of approximately 270 pounds of ORCTM mixed with water to achieve a 30 percent solid slurry was delivered to the subsurface (30 lbs of ORCTM mixed with 12 gallons of water was injected into each bore)
- The oxidant loading was approximately 3 pounds per foot.
- Delivery point spacing was approximately 7-10 feet.
- The saturated thickness of the treatment zone (including capillary fringe) is 10 feet, from 15 to 25 feet below bgs or between elevations 538 to 548 feet amsl.

The ORC[™] injection should be effective in reducing the contaminant concentration in MW-2 by accelerating the biodegradation significantly within the first 6-12 months or so. The mobility of the plume will likewise be reduced in the area, although historical data suggests that this "hotspot" area in the vicinity of monitoring well MW-2 exhibits low mobility due to other, possibly lithologic reasons. The volume of dissolved hydrocarbons within the MW-2 area will likely be reduced within the first 6 to 9 months by 50 percent of more—according to the manufacturer's data.

The Geoprobe[®] rig advanced an approximately 1.5-inch-diameter, hollow, steel drive casing to 25 feet bgs, the bottom of the pre-determined saturated interval. The casing was then lifted approximately 1 foot to drop the sacrificial drive point and expose the inner screened casing through which the ORCTM slurry was pumped. A slurry of approximately 1.25 gallons of water to 3 pounds of ORCTM powder was mixed in buckets. The slurry was transferred to an in-line hopper and pumped down the casing, through the screen, and into the formation at a pressure of approximately 200 psi. Care was taken to deliver an approximately uniform mass of ORCTM over each saturated interval. A waiting period of about 15 minutes was needed before disconnecting the injection apparatus and extracting the drill rods to allow the system to depressurize and prevent the ORCTM product from being extruded back up the rod assembly to the surface. "Short-circuiting" of the ORCTM slurry around the drive casing and to ground surface was not observed during the injection indicating that the product was successfully delivered to the desired depth interval. Following full injection over the interval, the drive casing was fully withdrawn and the open portion of the borehole was filled with bentonite chips and hydrated.

Communication between boreholes was observed only between injection boreholes 5 and 6 in which product was observed to extrude to the surface through borehole 5 while injecting into borehole 6. The injection was immediately stopped, the formation was allowed to depressurize for about 15 minutes at which time borehole 5 was replugged with bentonite chips from a depth

of 10 feet bgs to the surface prior to resuming the injection of borehole 6. Approximately 1.5 gallons of slurry observed exit borehole 5 was recovered and injected down borehole 6.

FUTURE ACTIVITIES

The ORCTM was able to migrate to the area of the MW-2 but preferential pathways also clearly occur in the subsurface environment in this area. The effectiveness of the ORCTM injection corrective action program in reducing groundwater contaminant concentrations in MW-2 will continue to be evaluated. This evaluation will occur though the comparison of the pre-injection baseline data with post-injection groundwater monitoring well analytical results over subsequent quarterly and monthly sampling events. The post-injection groundwater data will be evaluated in the context of effectiveness of the corrective action, including indicators of dissolved oxygen and hydrochemical trends. It is possible that an additional injection will be required if groundwater contamination persists beyond the active life of the ORCTM (estimated to be approximately 9 months).

7.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (49 events in the initial site wells). A total of 11 site wells are available for monitoring; 7 of the available wells are currently monitored for contamination.
- Site contaminants of concern include gasoline, diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for TPHg, TPHd, benzene, ethylbenzene, total xylenes, and MTBE in groundwater and TPHd in surface water.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. A stream bioassessment concluded that there were no direct impacts to the surface water benthic community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, and benzene, and generally only under low creek flow conditions. An in-stream bioassessment evaluation conducted from 1999 to 2000 determined that there were no impacts to the benthic macroinvertebrate community.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical limit is very likely the top of the near-surface (25 to 28 feet bgs) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- First quarter 2009 site groundwater contaminant concentrations exceeded the groundwater ESL for TVHg in six of the seven wells sampled (MW-2, MW-7, MW-8, MW-9, MW-11, and MW-12). TVHg was also detected in MW-10, but below the ESL. Contaminant concentrations of TEHd exceeded the ESL in all seven of the wells sampled.
- The ESL for benzene was exceeded in MW-2, MW-7, MW-8, and MW-11; the ESL for ethylbenzene was exceeded in MW-7, MW-8, MW-9, and MW-11; the ESL for total

xylenes was exceeded in MW-2, MW-8, and MW-9; and the ESL for methyl tertiarybutyl ether (MTBE) was exceeded in MW-2 and MW-7. Toluene was not detected in any of the seven wells sampled above the ESL. Toluene was detected in MW-2, but below the ESL.

- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination for TVHg is currently centered around MW-7 (greater than 5,000 µg/L) while the greatest zone of TEHd contamination is currently centered around MW-2 (greater than 10,000 µg/L).
- The contaminant plume is neither stable nor reducing, as groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells in recent history.
- Since September 2007, contaminant concentrations in well MW-2 (located in the source area) have increased dramatically, suggesting desorption from the original upgradient source area as a result of a drought-induced drop in water levels. Additional groundwater purging on MW-2 failed to reduce concentrations over time; therefore, a limited remedial application of ORCTM was injected into the upper yard area (source area) in March 2009.
- The pilot test was conducted to evaluate subsurface acceptance of the injected compound, and its affect on reducing gasoline concentrations at MW-2. A total of 9 injection points were drilled using direct-push technology to a depth of 25 feet bgs. A total of approximately 270 pounds of ORCTM was mixed with water to achieve a 30 percent solid slurry and was delivered to the subsurface. The ORCTM injection should be effective in reducing the contaminant concentration of the plume in MW-2 by accelerating the biodegradation significantly within approximately the first 6-12 months.
- Soil bioventing is a proven technology for contaminant mass removal in the unsaturated zone, under conditions similar to the site. However, the heterogeneous environment where the plume is located limits effectiveness; with only MW-8 in the upper center of the plume area showing a significant reduction in hydrocarbon concentrations. In other areas of the plume, it appears as if tight soil morphology is preventing air saturation in several of the vent wells, and the system is therefore performing at a less-than-optimal level.
- A letter dated March 24, 2009 from Mr. Wickham of ACEH, written after reviewing the ORCTM injection workplan, commented that it would not do much to reduce the overall source area contribution. SES agrees with that assessment. However, the small injected volumes were not intended to achieve a broad remediation goal. The intent was to determine if a pathway to well MW-2 was achievable through nearby injections, as well

as locally reduce the high gasoline concentrations exhibited in MW-2. SES will provide responses to the timetable set for the technical reports requested.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Respond to the technical report request in the ACEH letter dated March 24, 2009.
- Sample MW-2 between regular quarterly sampling events to monitor the ORCTM injection remedy effectiveness as part of the pilot test follow up.
- Continue the quarterly monitoring program of creek and groundwater sampling and reporting.
- Continue to inform regulators of site progress and seek their concurrence with proposed actions.
- Continue to operate the bioventing system as a part of the overall corrective action program, although it has limited potential to achieve significant reduction in contaminant mass throughout the affected area.
- Continue to evaluate analytical results (and bioventing contaminant removal data) in the context of hydrochemical trends, impacts of groundwater contamination on Redwood Creek, and effectiveness of the corrective action.
- Continue to make required Electronic Data Format uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp system.

8.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.
- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Initial values produced February 2005, Revised May 2008.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. Remedial Action Workplan for Oxygen Releasing Compound ORC[®] Application to Source Area Contamination, Redwood Regional Park Service Yard, 7867 Redwood Road, Oakland, California. February 12.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.

- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring Report,Redwood Regional Park Service Yard, Oakland, California.October 7.
- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.

- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.

- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	-6 MW-7 MW		MW-8 MW-9		MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored				Gro	undwater E	levations (feet above	mean sea	level)			
09/18/98	563.7	544.2	540.8	534.5	531.1	545.6						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2						
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
09/10/03	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
12/10/03	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.0	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/07	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
12/6/07	560.62	541.22	536.85	(b)	530.68	531.48	533.21	535.08	532.62	533.3	533.61	533.64
3/14/08	561.76	545.73	541.63	(b)	531,34	532.30	534.88	539,30	534.67	536.04	535.89	535.72
6/13/08	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/08	560.43	540.15	536.41	(b)	529,85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/08	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/09	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08

TOC = Top of well Casing (a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements. (b) Well decomissioned and replaced by MW-12 in December 2005.

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Project # 090316-201 Date 3/16/09 Client Steller Site <u>Regtonal Park Senvice yurd</u>. OALLAND, CA

		Well		Depth to	Thickness of	Volume of Immiscibles			Survey Point:	
Well ID	Time	Size (in.)	Sheen / Odor	Immiscible Liquid (ft.)	Immiscible Liquid (ft.)	Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	TOB or	Notes
MW-3	0830	4					18.94	45.01		6.6
MW-7	0835	2	:				12.91	25.35		5
$MW \cdot 9$	0839	2					14.72	30.18		5
MW-5	0841	4					15.78	26.94		G.O.
mw-n	0845	2					9.59	23.84		5
m W-H	0850	2					12.26	28.71		5
MW-10	08 53	2					11.67	28.34		5
MW-8	0900	2					9.62	22.29		S
MW-6	0905	4					12.85	14.56		GO
Keller-L	6912	4	odur				20.17	38 84		D.05
KNW-1	0917	4					3.99	19.11	¥	60

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE www.blainetech.com

WELLHEAD INSPECTION CHECKLIST

Date 3/16/09 Client <u>stellar</u> service yurd Site Address Reduced Regional Pare JO/AC Job Number 090316- JU Technician Debris Other Action Well Not Well Inspected -Water Bailed Wellbox Cap Removed Lock Taken Inspected No Corrective From Components Replaced From Replaced (explain (explain Action Required Wellbox Well ID Cleaned Wellbox below) below) \checkmark MW-3 1 MW -7 mw-9 \checkmark MW-5 MW-12 \mathcal{V} MW-N V pe \sim mw-10 MW-9 3/3 Bolts issin. MWG \checkmark stand Pil MW-2 \leq T MC- 1 6

NOTES:

BLAINE TECH SERVICES, INC.

Page ____ of ____

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Reduced	Regional Pask		PROJECT NUM)		
EQUIPMENT NAME	EQUIPMENT NUMBER	J DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
ASE 550 AD metr	09 3100951	2116/09 0650		91.3 010	yes	17.8°C	50
Myron L Vitrametr II	6222814	i- 1 .	Pit 4 3400 45	4 3895 7 10	yes yes	(7.6°C	70
Huch Turbidinets	070900025694	0655 .,	5/5001 900	4.8/496/191	yes,	17. 5°C	50
					· · · · · · · · · · · · · · · · · · ·		
			•	in the second			
			· ·		2		
		<u> </u>			· ·		
					<u></u>		
						<u></u>	
:							

Project #:	090316-	· 501		Client: stellar									
Sampler:	JU/AC			Date:	3/16	109							
Well I.D.:	MW-2)		Well I	Diameter	: 2 3 4	6 8						
Total Well	Depth (TD): 39	x .84	Depth	to Water	r (DTW): 20	./2						
Depth to Fr	ee Product			Thickr	ness of F	ree Product (fee	et):						
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH									
DTW with	80% Rech	arge [(H	leight of Water	: Column x 0.20) + DTW]: 23.90									
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	ent Extrac Other	Waterra Peristaltic tion Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing						
12.1 (C 1 Case Volume	Gals.) X Speci	3 fied Volun	= 36.3 $Calculated Vo$	≥ Gals. blume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163						
Time	Temp (°F or °C)	pН	Cond. (mS or (LS)	Tur (N	bidity TUs)	Gals. Removed	Observations						
J 39	60.0	6.40	1043	38	/	12.5	odar						
	Dewa	resal	@ 20 g.	Mon S									
1100	58.4	6.88	942.3	40	25		0657						
Did well de	water?	Yes	No	Gallon	s actuall	y evacuated:	20.0						
Sampling D	ate: 3/16/0	1	Sampling Time	e: [[[0	Depth to Water	r: 23.41)						
Sample I.D.	: MW-	2		Labora	tory:	Kiff CalScience	Other <u>C</u> :T						
Analyzed fo)r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	Cor.						
EB I.D. (if a	applicable)	:	@ Time	Duplic	ate I.D. ((if applicable):							
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:							
D.O. (if req'	'd): Pr	e-purge:		^{mg} /L	Ē	ost-purge:	0.13 ^{mg} /L						
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Po	ost-purge:	mV						

LLL MONITORING DATA SH. _T

Project #:	090316.	- Jol		Client: stellar								
Sampler:	JU/AC			Date:	3116	109						
Well I.D.:	MU	ŀ		Well I	Diameter	: 2 3	4	6 8				
Total Well	Depth (TI)): 24	5.35	Depth	to Water	r (DTW):	12.	91				
Depth to Fr	ee Produc	t:		Thick	ness of F	ree Produc	t (fee	et):				
Referenced	to:	(PVC)	Grade	D.O. 1	Meter (if	req'd):		YSI HACH				
DTW with	80% Rech	arge [(H	leight of Water	r Column x 0.20) + DTW]: 15.40								
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Bailer Displaceme nersible Z	ent Extrac Other	Waterra Peristaltic ction Pump	a D Well Diamete 1" 2"	Sampling M <u>r Multiplier</u> 0.04 0.16	ethod: Other: <u>Well E</u> 4" 6"	Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47				
1 Case Volume	Sais.) XSpeci	ified Volun	$\frac{1}{1} = 0.0$	_ Gais. plume	3"	0.37	Other	radius ² * 0.163				
Time	Temp (For °C)	рН	Cond. (mS or (µS)	Tur (N	bidity TUs)	Gals. Rem	oved	Observations				
1037	55.0	6.76	991	24	4	2						
1643	55.l	6.67	866	39	8	4						
1048	55,3	6.73	872	95	,7	6						
Did well de	water?	Yes (No	Gallon	s actuall	y evacuate	d:	6.0				
Sampling D	ate: 3/16/0	4	Sampling Tim	e: 105	5	Depth to V	Nate	14.60				
Sample I.D.	: MW-	7		Labora	atory:	Kiff CalS	cience	Other <u>C</u> ;T				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: Se	2	Cor				
EB I.D. (if a	applicable)):	(2) Time	Duplicate I.D. (if applicable):								
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:		Ne hanna k the summer and the second state of summer second states				
D.O. (if req	'd): Pi	re-purge:		^{mg} /L	. P	ost-purge:		^{mg} /L				
O.R.P. (if re	eq'd): P	re-purge:		mV	P	ost-purge:		mV				

LL MONITORING DATA SH , T

Project #:	090316	- 61		Client: steller								
Sampler:	30/AC			Date:	3 6	109						
Well I.D.:	MW-	8		Well I	Diameter	: (2) 3 4	6 8					
Total Wel	l Depth (TI	D):	22.29	Depth	to Wate	r (DTW):	9.62					
Depth to F	Free Produc	t:		Thickr	ness of F	ree Product (fe	et):					
Reference	d to:	PVC	Grade	D.O. N	/leter (if	req'd):	YSI HACH					
DTW with	1 80% Rech	arge [(H	leight of Water	r Colum	n x 0.20) + DTW]:	2.15					
Purge Method:	Bailer Disposable E Positive Air Electric Subi	Bailer Displacemo mersible	ent Extra Other	Waterra Peristaltic ction Pump	Well Diamete	Sampling Method Other r Multiplier Well	: Bailer Đisposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier					
2.0 1 Case Volume	(Gals.) X eSpec	<u>3</u> ified Volur	$= \frac{6.0}{\text{Calculated V}}$	_ Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163					
Time	Temp ODor °C)	рН	Cond. (mS or uS)	Turl (N	bidity ГUs)	Gals. Removed	Observations					
1125	59.4	7.02	845.	158	Ż	2						
1130	59.8	7.01	895	981		4						
135	60.6	6.98	813	>1000)	6						
Did well de	ewater?	Yes (No	Gallons	s actuall	y evacuated:	6.6					
Sampling I	Date: 3/16/0	1	Sampling Tim	e: 1145	5	Depth to Wate	r: 10,55					
Sample I.E).: MW-	8		Labora	tory:	Kiff CalScience	e Other <u>c</u> !T					
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See	Core					
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D. ((if applicable):						
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:						
D.O. (if red	ן'd): Pı	e-purge:		mg/L	Pe	ost-purge:	mg/L					
O.R.P. (if r	req'd): Pi	e-purge:		mV	Po	ost-purge:	mV					

LL MONITORING DATA SH , T

Project #:	090316	- bi		Client: steller								
Sampler:	JO/AC			Date:	3/16	109						
Well I.D.:	MW-	9		Well I	Diameter	:(2) 3 4	6 8					
Total Well	Depth (TI	D): 74	0.18	Depth	to Wate	r (DTW): 14	.27					
Depth to Fi	ree Produc	t:		Thick	ness of F	ree Product (fe	et):					
Referenced	l to:	(PVC)	Grade	D.O. N	Aeter (if	req'd):	YSI HACH					
DTW with	80% Rech	arge [(E	leight of Water	Colum	n x 0.20)) + DTW]: /	2.81					
Purge Method:	Bailer Đisposable E Positive Air Electric Subr	Bailer Displaceme nersible	ont Extrac Other	Waterra Peristaltic ction Pump	Well Diamete	Sampling Method Other <u>r Multiplier Well</u> 0.04 4"	: Bailer Dedicated Tubing Diameter Multiplier 0.65					
$\frac{2.5}{1 \text{ Case Volume}}$	Gals.) X	3	$=\frac{7.5}{Calculated Vc}$	Gals.	2" 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163					
Time 1115 1118	Temp (Por °C) 56.6	рН 6.7.7 6 74	Cond. (mS or (13) 943	Tur (N'	bidity TUs) 5 694	Gals. Removed	Observations					
1171	50.0	1 74	763 91E	5-6) - (000	5.0						
	56.1				, >1000	f: 7						
Did well de	water?	Yes (No	Gallon	s actually	y evacuated:	75					
Sampling D	ate: 3/16/0	9	Sampling Time	e: 113		Depth to Wate	r: 17.80					
Sample I.D.	: MW-	9		Labora	tory:	Kiff CalScience	e Other C					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: Syr	Cert.					
EB I.D. (if a	applicable)):	(2) Time	Duplic	ate I.D. (if applicable):	and the second					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:						
D.O. (if req'	'd): Pr	e-purge:	en nen en fan de fan	^{mg} /L	Po	ost-purge:	^{mg} /L					
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Po	ost-purge:	mV					

LL MONITORING DATA SH , T

Project #: 090316-501 Client: stellar Sampler: JO/AC Date: 3116/09 Well I.D.: MW-10 Well Diameter: (2) 3 4 6 8 Total Well Depth (TD): 28.34 Depth to Water (DTW): 11.67 Depth to Free Product: Thickness of Free Product (feet): PVC Referenced to: D.O. Meter (if req'd): Grade YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 15.00 Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic CDisposable Bailer Positive Air Displacement Extraction Pump **Extraction Port** Electric Submersible Other Dedicated Tubing Other: Well Diameter Well Diameter Multiplier Multiplier 1" 0.04 4" 0.65 2.6 (Gals.) X 3 7.8 2" 0.16 6" 1.47 Gals. 3" $radius^2 * 0.163$ 0.37 Other I Case Volume Calculated Volume Specified Volumes Temp Cond. Turbidity E or °C) Time (mS or aS pН (NTUs) Gals. Removed Observations 7.99 768 1011 57.9 207 2.6 7.95 748 1015 795 54.0 5.7 7.8 7.92 1019 833 2000 581 (No) Did well dewater? Gallons actually evacuated: Yes 7.8 Sampling Time: 1025 Sampling Date: 3/6/09 Depth to Water: \5,00 Sample I.D.: MW-10 Other C:T Laboratory: Kiff CalScience Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Loc a) EB I.D. (if applicable): Duplicate I.D. (if applicable): Time Analyzed for: TPH-G BTEX Oxygenates (5) MTBE TPH-D Other: ^{mg}/L ^{mg}/₁ D.O. (if req'd): Pre-purge: Post-purge: O.R.P. (if req'd): mV Pre-purge: m√ Post-purge:

LL MONITORING DATA SH _ T

Project #: 090316-501 Client: stellar Sampler: JU/AC Date: 3116/09 Well I.D.: MW- 11 Well Diameter: (2) 3 4 6 - 8 Total Well Depth (TD): 28.71 Depth to Water (DTW): 12.26 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC D.O. Meter (if req'd): Grade YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 15.55 Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic ←Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 7.9 3 LG (Gals.) X 2" 6" 0.16 1.47 Gals. 3" 0.37 $radius^2 * 0.163$ Other I Case Volume Specified Volumes Calculated Volume Temp Cond. Turbidity $(^{\circ}\hat{\mathbf{F}})$ or $^{\circ}\mathbf{C}$) $(mS \text{ or}(\mu S))$ Time pН (NTUs) Gals. Removed Observations 7.04 703 2.6 >1000 1150 56.5 7,04 >1000 5.2 1155 212 56.6 7.03 51000 1200 56.6 730 26 Did well dewater? ĺΝð Gallons actually evacuated: Yes 7.8 Sampling Time: 1205 Depth to Water: 13.17 Sampling Date: 3/16/09 Sample I.D.: MW-Other C:T Laboratory: l CalScience Kiff Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: see coc a) EB I.D. (if applicable): Duplicate I.D. (if applicable): Time Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: mg/_F ^{mg}/1 D.O. (if req'd): Pre-purge: Post-purge: O.R.P. (if req'd): mV Pre-purge: Post-purge: m\

LL MONITORING DATA SH _ T

LL MONITORING DATA SH .T	
--------------------------	--

Project #:	090316.	- <u>b</u> (Client: Stelley-									
Sampler:	JO/AC			Date:	3/16	109							
Well I.D.:	MW- 1	2		Well I	Diameter	:(2) 3 4	6 8						
Total Well	Depth (TI)): Z	3.84	Depth	to Wate	r (DTW): С	59						
Depth to Fr	ee Produc	 t:		Thick	ness of F	ree Product (fe	eet):						
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH									
DTW with	80% Rech	arge [(H	leight of Water	r Column x 0.20) + DTW]: 12.44									
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	ailer Displaceme nersible	ent Extrac Other = 6.9	Waterra Peristaltic ction Pump Gals.	Well Diamete	Sampling Methor Othe <u>r Multiplier Wel</u> 0.04 4" 0.16 6"	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing r: Diameter Multiplier 0.65 1.47						
1 Case Volume	Speci	fied Volum	nes Calculated Vo	_ ouns. olume	3"	0.37 Oth	er radius ² * 0.163						
Time	Temp (°F) or °C)	pН	Cond. (mS or(µS)	Tur (N	bidity TUs)	Gals. Removed	Observations						
1039	54.2	6.92	644	462	2	2.3							
1044	54.7	6.91	661	776	2	4.8							
1049	54.8	6.93	665	>100	0	6.9							
		× .											
Did well de	water?	Yes (No)	Gallon	s actuall	y evacuated:	6.9						
Sampling D	ate: 3/16/0	Contraction	Sampling Time	e: 105	;5	Depth to Wate	er: 12.00						
Sample I.D.	: MW-	12		Labora	tory:	Kiff CalScienc	e Other_C:T						
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	Col						
EB I.D. (if a	pplicable)	:	(2) Time	Duplic	ate I.D. ((if applicable):							
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	······································						
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:	nıg/L						
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV						

Chain of Custody Record

					Chain o	f Cu	stody R	lec	ord	Ł				·					Lab job no.	<u>0903i6</u> 116151
Laboratory <u>Curtis and To</u> Address <u>2323 Fifth Str</u>	mpkins, Ltd. eet			Me Sh	ethod of Shipment <u>Ha</u>	and De	livery												Date Page	0/
Berkeley, Cali	ifornia 94710)		— Air	hill No					/						abuaia 🗆				
	, 			Co	oler No					/		k	1/5	1			equirea 7			-/
Project Owner <u>East Bay 1</u> 7867 Redu	Regional Par	<u>k Distr</u>	ict	 Pr/	piect Manager Richa	ard Ma	disi			/	Ser .	S.	Š.	R.	5	/				/
Site AddressOakland, (California			— ты	enhone No. (510) 644-	·3123	74151	_	/	ered	ontain	6/3		3 0 0	5/		' /	' /		
Redwood	Regional Pa	rk		'C'	× No (510) 644-	3859		_	14	<u>ال</u> کر		<u>)</u> /3	13	/~	[]					Bomarka
Project Number 2006-1	6			_ 'a. 	molore: (Signatura)	1 x	/	- ,	/ /	/ *	~~/	, J	J.	Q/	/			/ /		nemarks
	Logation/	1		0a	mpiers. (Signature)			-/	/		÷ 4	3/e	\$/¥			' /				
Field Sample Number	Depth	Date	Time	Туре	Type/Size of Container	Cooler	Chemical	\mathbb{Z}	/	$/\vec{R}$	/@	15	12/		_/_				<u> </u>	
MW-Z	23.40	3/(6	1106	ω	1 MP Amber 1L	Y	YHO		4	$ \varphi $	\checkmark	\times	\times							
Mw-7	14.60	1	1055	1	1	1	1		1	1	¥	2	X							
Mw-8	10.55		1145						T	x	2	V	4							
Mw-9	17.80		1130							~	X	4	1			-				
MW - 10	15.00		1025							4	4		2							
NW-11	13.17		1205							~	4	7 7	4							1.
Mcv-12	12.00	J	1055						IJ	え	4	ý l	$\frac{1}{4}$		_					
· · ·				- W	•															
· ·		-			,	*			-											-
	-																	;	· · · · · · · · · · · · · · · · · · ·	<u>.</u>
								· ·												
									1											
Relinquished by:	·	Date	Received t	y:	D. M. A	Date	Relinguished	 by:						ate	Receive	d by:				Date
Signature	<u> </u>		Signatu		+ Longely	5116	Signature _	-	_						Signa	ture				Duic
Printed		Time	Printed	<u>1997</u>	<u>Gonzalez</u>	Time	Printed								Printe	d				
Stellar Environ	imental	327		$C_{\rm o}$	the & Tomokin							- ''	line	1 1110					. Ime	
5 Day TAT			Compar	<u>یک ای</u>		Company						-		Company						
Turnaround Time: 5 Day TAT Please provid		ckor El		round	vator camples only		Date Rece Signature Si						Heceive	d by: iture				Date		
Comments: Surface wate	r samples co	ollected	by Ste	lar En	vironmental Solutions															
Groundwater	samples co	llected	by Blair	ne Tech Services.				Time Print					Printed Time							
	-				······	- Company Company														

Stellar Environmental Solutions

*

2198 Sixth Street #201, Berkeley, CA 94710

Chain of Custody Record

Laboratory <u>Curtis and Ton</u> Address <u>2323 Fifth Stre</u> Berkeley Calif	npkins, Ltd. et			Me Sh	ethod of Shipment <u>H</u>	and Del	livery	^ _ ^		- - -								Date 1 Page	1 of	
510-486-0900	01111a 347 10			Air	bill No	• • • • • • • • • • • • • • • • • • •				/	7	1	,	,	Anal	ysis Re	equired		/	
Project Owner <u>East Bay R</u> Site Address 7867 Redw Oakland, C Redwood F	egional Pa vood Road alifornia Regional Pa	rk Distr	ict	Co Pro Tel	oler No oject Manager <u>Rich</u> lephone No(510) 644	ard Mal	<disi< td=""><td></td><td></td><td>or C</td><td>-containers</td><td>A BIG</td><td></td><td>$\left \right$</td><td>/</td><td></td><td></td><td></td><td></td><td></td></disi<>			or C	-containers	A BIG		$\left \right $	/					
Project Name2009-02 Project Number	2			Fa Sa	x No(510) 644 implers: (<i>Signature</i>)	-3859	Her	<u>}</u>	_	vi Vi	EV EV	Z/					/ /		Ren	narks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pr	eservation Chemical]/	/	/F	717	!			/ .				/	
SW-2	Creek	3-16-0	994	w	4 VOA, 1 L	Y	Yes (a)	N	5	X	X			(([($\left[\right]$		
SW-3	Creek	3-16-0	020	W	4 VOA, 1 L	Y	Yes (a)	N	5	X	X									
			/							$ \sim$									-	· ·
	\vdash																			
	-		\sim														<u> </u>		•	
						-														
	-	-											_							
												-	+-	\vdash						
									2					÷.			<u> </u>			
Relinquisher by: Signature Teal Glass Printed Company Stellar Environ	mental	Date 3-16-09 Time D30	Received Signat Printed Compa		use or t-z	Date - 3-16-(- Time	Relinquished I	dis tr	e c	r2 vt	tz tcc		Date 3/(4/ Time 1327	169 7-	Comp	d D	Pat Pat	r Ha Ge tis t	nealez Tomofic	
Turnaround Time: Standard - (a) VOA w/ H Comments:	5 Day	······································					Relinquished I Signature	by:					Date	Re	signat	i by:			<u>-</u>	Date
							Printed	·					Time		Printeo	d	<u></u>			- Time
Stellar Environmental	Solutiono						Company _]		Comp	any				-

2198 Sixth Street #201, Berkeley, CA 94710

Lab job no. _

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 210695 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2006-16
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

210695-001
210695-002
210695-003
210695-004
210695-005
210695-006
210695-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager

Signature:

Senior Program Manager

Date: <u>03/24/2009</u>

Date: <u>03/24/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 210695 Stellar Environmental Solutions 2006-16 Redwood Regional Park 03/16/09 03/16/09

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 03/16/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for trifluorotoluene (PID) in MW-7 (lab # 210695-002); the corresponding bromofluorobenzene (PID) surrogate recovery was within limits. High surrogate recoveries were observed for trifluorotoluene (FID) in MW-9 (lab # 210695-004) and MW-11 (lab # 210695-006); the corresponding bromofluorobenzene (FID) surrogate recoveries were within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

ZIO (295 Chain of Custody Record

1

Laboratory <u>Curtis</u> and To	mpkins. Ltd.			м	ethod of S	Chain o	f Cua	stody Re	ecoi	rď	0	-K		ţ					Lab job n Date		:16 - 1
Address2323 Fifth Str	reet			N	hinment Nr				•										Page	l of	1
Berkeley, Cal	lifornia 94710)		A:		·													07. A 11		
510-486-0900	J			AI							/ /	/ /		-	A	nalysis f	Require	d /		_/	
Project OwnerEast Bay	Regional Par	rk Dist	rict	— _	ooler No					/		, /	<u> </u>	1/N	ho/	'/		/		/	
Site Address 7867 Red	wood Road			Pi	roject Mana	ager <u>Richa</u>	ard Mał			00	"taine		<u> </u>	(v)	ð/		/ /			/	
Daturad	Desired D			Te	elephone N	0. (510) 044	0050		· /		/ ్రీ /	Q/	5/3	¥/(· /				
Project NameRedwood	Regional Pa	irk .		Fa	ix No	(510) 644-	3859			/	^ي / ^ي	<u> </u>	<u>s</u> / S	10	7 /		/	/		Remarks	
Project Number 2006-1	6			Sa	amplers: (S	Signature) 🖌	A-	<u> </u>		/	/5	×./	~~~/	4/				'	' /		
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size	e of Container	Pr	eservation Chemical	/ /		2/2	5/	\mathbb{E}/\mathbb{E}	5/		//			/		
MW-Z	23.40	3/(6	1106	ω	I NP	Amber 1L	Y	YHCI	2	$\{ \}$	$\rho _{\mathcal{Y}}$	(×	< ×								
MW - 7	14.60	1	1055	1		1	,	1			× ×	11	X						,		
Mw-8	10.55		1145								x u	Ñ	4				1				
Mw-9	17.80		1130								X X		1 1								
Mw - 10	15.00		1025								4 -	44	1			_					
MW-11	13,17		1205							-	< ج	c 7	4					1			
Mw-12	12.00	•	1055	•		4	¥			X	• 4	4	4								
																-				·	
						·····			_		-		†			-					
													+								
\bigcirc																	+				
Relinquished by:	···	Date	Received	by:	DI M		Date	Relinquished by:		_!		1	- I	Date	Recei	/ed by:					Date
Signature	<u> </u>		Signati	ure (27	THIC	mally	Linka	Signature							Sig	nature _					
Printed		Time	Printed	R-	t. Go	nzalez	Time	Brinted					-		-						
Stellar Environ	imental [327		C	whick	Tomokin	1.77	-						lime	Phi	ned	<u> </u>				lime
		1	Compa				1 2,	Company					=	Data	Cor	npany _					
Please provid	de a GeoTrad	cker Fl	DF for c	round	water san	nles only		Signature		-				Dale	Sig	nature				'	Jate
Surface wate	r samples col	lected	by Ste	llar En	vironmen	tal Solutions	•	Printed						Time	Prir	ited					īme
						-		Company													
······································								Company							Cor	npany _	~			I	

Stellar Environmental Solutions ★

3 of 34

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST	CUTIS & Tompkins, Ltd.
Login # 210695 Date Received 3/16/69 Client Sellar Project Project Redu	Number of coolers
Date Opened 3//6/07 By (print) Dutlow (sign) Date Logged in By (print) (sign)	ple
L. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How manyName	on samples 1-HO Date YES NO N/A YES NO Of form) (TES NO
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:	 None Paper towels
Type of ice used: 💾 Wet 🗌 Blue/Gel 🗌 None	Temp(°C)
Samples Received on ice & cold without a temperature bla	ank
Samples received on ice directly from the field. Cooling p	rocess had begun
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 	rocess had begun YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 	YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11 Are sample labels present in good condition and complete? 	YES NO YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO YES NO YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 	YES NO YES NO YES NO YES NO YES NO YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO VES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	VES NO VES NO
 Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By	YES NO YES NO
Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO N/A YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By	YES NO YES NO
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO N/A YES NO Date:
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO YES NO YES NO YES NO YES NO N/A YES NO N/A YES NO Date:
Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present?	YES NO YES NO Date:
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By	rocess had begun YES NO YES NO YES NO YES NO YES NO N/A YES NO N/A YES NO Date:
□ Samples received on ice directly from the field. Cooling p 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO YES NO YES NO YES NO YES NO YES NO YES NO N/A YES NO N/A YES NO Date:

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis &	Tompkins Labo	ratories An	alytical	Report	
Lab #: 210695 Client: Stellar Environmen Project#: 2006-16	tal Solutions	Location: Prep:	Redwo EPA 5	ood Regional Park 5030B	
Matrix: Water Units: ug/L		Sampled: Received:	03/16 03/16	5/09 5/09	
Field ID:MW-2Type:SAMPLELab ID:210695-001		Diln Fac: Batch#: Analyzed:	1.000 14901 03/19) _7)/09	
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	3,100 14 1.1 1.4 7.9 13 C 22 C	CCC	50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Trifluorotoluene (FID) Bromofluorobenzene (FID) Trifluorotoluene (PID) Bromofluorobenzene (PID)	REC Limits 120 63-146 134 70-140 113 50-140 112 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B	315		
Field ID: MW-7 Type: SAMPLE Lab ID: 210695-002		Diln Fac: Batch#: Analyzed:	1.000 14901 03/19) 17 9/09	
Analyte	Result		RL	Analysis	
Gasoline C/-Cl2 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	5,100 51 C 19 C ND 140 C 8.3 4.0	C C	50 2.0 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogate	%REC Limits	Analys	sis		
Trifluorotoluene (FID) Bromofluorobenzene (FID) Trifluorotoluene (PID) Bromofluorobenzene (PID)	141 63-146 114 70-140 151 * 50-140 100 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 5

Г

	Curtis & To	mpkin	s Labor	atories A	nalytical	Report	
Lab #: 210695 Client: Stellar Project#: 2006-10	r Environmental	Soluti	lons	Location: Prep:	Redwo EPA 5	ood Regiona 5030B	al Park
Matrix: Units:	Water ug/L			Sampled: Received:	03/16 03/16	5/09 5/09	
Field ID: I Type: S Lab ID: 2	MW-8 SAMPLE 210695-003			Diln Fac: Batch#: Analyzed:	10.00 14898 03/18) 31 3/09	
Analy	te	I	Result		RL	Ar	nalysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND	4,600 55 410 610 29		500 20 5.0 5.0 5.0 5.0 5.0 5.0 5.0	EPA 8012 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8021	IB IB IB IB IB
7	- I -	0.DEC		1			
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) ne (FID) (PID) ne (PID)	108 102 123 109	63-146 70-140 50-140 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B	515		
Field ID: I Type: S Lab ID: 2	MW-9 SAMPLE 210695-004			Diln Fac: Batch#: Analyzed:	1.000 14901 03/19) _7 9/09	
Analyt	te	I	Result		RL		lalysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND	18 C 160 C 31 C 3.9 (2	2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8019 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8023)B LB LB LB LB LB
Surroga	ate	%REC	Limits	Analy	sis		
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) ne (FID) (PID) ne (PID)	1 <u>48 *</u> 108 132 96	63-146 70-140 50-140 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 5

	Curtis & T	'ompkin	s Labor	ratories A	nalytical	Report	E
Lab #: 210695 Client: Stellar Project#: 2006-16	Environmenta	l Solut	lons	Location: Prep:	Redwo EPA 5	od Reg 5030B	ional Park
Matrix: Units:	Water ug/L			Sampled: Received:	03/10 03/10	5/09 5/09	
Field ID: M Type: S Lab ID: 2	W-10 AMPLE 10695-005			Diln Fac: Batch#: Analyzed:	1.000 1490] 03/19) _7 9/09	
Analyt	e	F	Result		RL		Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND	76 Y 1.4 1.4		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA EPA EPA	8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B
Surroga	te	%REC	Limits	Analv	vsis		
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) e (FID) (PID) e (PID)	104 95 93 88	63-146 70-140 50-140 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B			
Field ID: M Type: S Lab ID: 2	W-11 AMPLE 10695-006			Diln Fac: Batch#: Analyzed:	1.000 14901 03/19) _7 9/09	
Analyt	e	F	Result		RL		Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND	18 C 18 C 82 C 8.0	с	50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA EPA EPA EPA	8015B 8021B 8021B 8021B 8021B 8021B 8021B 8021B
Surroga	te	%REC	Limits	Analy	vsis		
Trifluorotoluene Bromofluorobenzen Trifluorotoluene Bromofluorobenzen	(FID) .e (FID) (PID) .e (PID)	223 * 126 124 115	63-146 70-140 50-140 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 5

C	urtis & Tompkins	Laboratories	Analytical Repo	rt
Lab #: 210695 Client: Stellar Er Project#: 2006-16	nvironmental Solution	Location: ns Prep:	Redwood Re EPA 5030B	egional Park
Matrix: Wat Units: ug/	cer /L	Sampled: Received:	03/16/09 03/16/09	
Field ID: MW-3 Type: SAME Lab ID: 2106	L2 PLE 595-007	Diln Fac: Batch#: Analyzed:	1.000 149017 03/19/09	
Analyte	Rea	sult	RL	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND	180 Y 1.7	50 EP 2.0 EP 0.50 EP	A 8015B A 8021B A 8021B A 8021B A 8021B A 8021B A 8021B A 8021B
Surrogate	%RFC I.	imita Anal	veie	
Trifluorotoluene (FI Bromofluorobenzene (Trifluorotoluene (PI Bromofluorobenzene (ID 112 63 (FID) 95 70 ID) 102 50 (PID) 89 56	3-146 EPA 8015B 0-140 EPA 8015B 0-140 EPA 8021B 5-132 EPA 8021B		
Type: BLAN Lab ID: QC48 Diln Fac: 1.00	JK 37771 00	Batch#: Analyzed:	148981 03/18/09	
Analyte	Rea	sult	RL	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 EP 2.0 EP 0.50 EP	A 8015B A 8021B A 8021B A 8021B A 8021B A 8021B A 8021B A 8021B
Surrogate	%REC L:	imits Anal	lysis	
Trifluorotoluene (FJ Bromofluorobenzene (Trifluorotoluene (PJ Bromofluorobenzene (ID) 91 63 (FID) 88 7(ID) 88 5((PID) 90 56	3-146 EPA 8015B 0-140 EPA 8015B 0-140 EPA 8021B 5-132 EPA 8021B		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 4 of 5

	Curtis & Tompkins La	aboratories Anal	ytical Report	
Lab #: Client: Project#:	210695 Stellar Environmental Solutions 2006-16	Location: Prep:	Redwood Regional Park EPA 5030B	
Matrix: Units:	Water ug/L	Sampled: Received:	03/16/09 03/16/09	
Type: Lab ID: Diln Fac:	BLANK QC487904 1.000	Batch#: Analyzed:	149017 03/19/09	
~ 1	Analyte Resul	lt R	L Analysis	

Anaryce	Rebuit		Anarysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	103	63-146	EPA 8015B	
Bromofluorobenzene (FID)	99	70-140	EPA 8015B	
Trifluorotoluene (PID)	99	50-140	EPA 8021B	
Bromofluorobenzene (PID)	94	56-132	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 5 of 5

Curtis & Tompkins Laboratories Analytical Report									
Lab #:	210695	Location:	Redwood Regional Park						
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B						
Project#:	2006-16	Analysis:	EPA 8015B						
Type:	LCS	Diln Fac:	1.000						
Lab ID:	QC487772	Batch#:	148981						
Matrix:	Water	Analyzed:	03/18/09						
Units:	ug/L								

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	873.1	87	76-121

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	101	63-146	
Bromofluorobenzene (FID)	105	70-140	

	Curtis & Tompkins Labo	oratories Ana	lytical Report
Lab #:	210695	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	148981
Units:	ug/L	Analyzed:	03/18/09
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC487773

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.17	102	53-152
Benzene	10.00	10.02	100	79-120
Toluene	10.00	10.62	106	76-122
Ethylbenzene	10.00	11.06	111	77-125
m,p-Xylenes	10.00	10.81	108	76-126
o-Xylene	10.00	10.82	108	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	99	50-140
Bromofluorobenzene (PID)	101	56-132

Type: BSD			Lab ID:	QC4	87774			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
MTBE		20.00		18.48	92	53-152	10	37
Benzene		20.00		18.77	94	79-120	7	20
Toluene		20.00		18.36	92	76-122	15	21
Ethylbenzene		20.00		18.46	92	77-125	18	21
m,p-Xylenes		20.00		18.05	90	76-126	18	23
o-Xylene		20.00		18.40	92	77-126	16	21
Surrogate	%REC	Limits						
Trifluorotoluene (PID)	104	50-140						

107

56-132

Bromofluorobenzene (PID)

	Curtis & Tompkins Labo	ratories Anal	ytical Report
Lab #:	210695	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	148981
MSS Lab ID	210699-001	Sampled:	03/13/09
Matrix:	Water	Received:	03/16/09
Units:	ug/L	Analyzed:	03/19/09
Diln Fac:	1.000		

Туре:	MS			Lab ID:		QC487775		
	Analyte	MSS Re	sult	Spike	ed	Result	%REC	Limits
Gasoline	C7-C12	1	9.61	2,000)	1,617	80	66-120
	Surrogate	%REC	Limits					
Trifluor	otoluene (FID)	106	63-146					
Bromoflu	Bromofluorobenzene (FID)		70-140					
Type:	MSD			Lab ID:		QC487776		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		1,568	77	66-120	3 20

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	120	63-146	
Bromofluorobenzene (FID)	115	70-140	

	Curtis & Tompkins Labo	oratories Ana	lytical Report
Lab #:	210695	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2006-16	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	149017
Units:	ug/L	Analyzed:	03/19/09
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC487908

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.00	100	53-152
Benzene	10.00	9.238	92	79-120
Toluene	10.00	9.564	96	76-122
Ethylbenzene	10.00	9.893	99	77-125
m,p-Xylenes	10.00	10.01	100	76-126
o-Xylene	10.00	9.623	96	77-126

Surrogate	%REC	imits	
Trifluorotoluene (PID)	97	0-140	
Bromofluorobenzene (PID)	94	6-132	

Туре:	BSD			Lab ID:	QC48	7909			
Ar	nalyte		Spiked		Result	%REC	Limits	RPD	Lim
MTBE			10.00		12.11	121	53-152	19	37
Benzene			10.00		9.604	96	79-120	4	20
Toluene			10.00		10.10	101	76-122	5	21
Ethylbenzene			10.00		10.29	103	77-125	4	21
m,p-Xylenes			10.00		10.64	106	76-126	6	23
o-Xylene			10.00		10.29	103	77-126	7	21
Sui	rrogate	%REC	Limits						
Trifluorotolu	uene (PID)	101	50-140						

94

56-132

Bromofluorobenzene (PID)

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	210695	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2006-16	Analysis:	EPA 8015B				
Matrix:	Water	Batch#:	149017				
Units:	ug/L	Analyzed:	03/19/09				
Diln Fac:	1.000						

BS

Lab ID:

QC488097

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	994.4	99	76-121

Surrogate	%REC	%REC Lim
Trifluorotoluene (FID)	116	116 63-
Bromofluorobenzene (FID)	103	103 70-

Type: B	SD	Lab	ID: QC488	098			
Analyt	e	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		2,000	1,804	90	76-121	10	21
Surroga	te %REC	Limits					
Trifluorotoluene	(FID) 132	63-146					

70-140

104

Bromofluorobenzene (FID)

		Total Extracta	able Hydroc	arbon	S	
Lab #: Client: Project#:	210695 Stellar Environmen 2006-16	tal Solutions	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B	
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 148997		Sampled: Received: Prepared:		03/16/09 03/16/09 03/18/09	
Field TD:	MW - 2		Lab ID:		210695-001	
Туре:	SAMPLE		Analyzed:		03/23/09	
Diesel Cl(Analyte D-C24	Result 37,000 Y		RL 50		
	Surrogate	%REC Limits				
o-rerpneny	ΎΤ	100 61-127				
Field ID: Type:	MW-7 SAMPLE		Lab ID: Analyzed:		210695-002 03/23/09	
Diesel Cl(Analyte	Result 6,700 Y		RL 50		
	Surrogate	%REC Limits				
o-Terpheny	<i>y</i> 1	106 61-127				
Field ID: Type:	MW-8 SAMPLE		Lab ID: Analyzed:		210695-003 03/23/09	
Diesel C10	Analyte D-C24	Result 7,300 Y		RL 50		
	Surrogate	%REC Limits				
0-terplieny	Ϋ́⊥	101 61-127				
Field ID: Type:	MW-9 SAMPLE		Lab ID: Analyzed:		210695-004 03/23/09	
Diesel C10	Analyte	Result 2,200 Y		RL 50		
	Surrogate	%REC Limits				
o-Terpheny	γ⊥	107 61-127				
Field ID: Type:	MW-10 SAMPLE		Lab ID: Analyzed:		210695-005 03/23/09	
Diesel Cl(Analyte	Result 230 Y		RL 50		
0-Ternhens	Surrogate	% REC Limits				
o rerbueny	<u>z</u> –					

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 1\ of\ 2}$

		Total 1	Extracta	ble Hydroc	arboi	ns
Lab #: Client: Project#:	210695 Stellar Environment 2006-16	al Solut	ions	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 148997			Sampled: Received: Prepared:		03/16/09 03/16/09 03/18/09
Field ID: Type:	MW-11 SAMPLE			Lab ID: Analyzed:		210695-006 03/23/09
	Analyte		Result		RL	
Diesel Cl()-C24		4,600 Y		50	
o-Terpheny	Surrogate /1	%REC 110	Limits 61-127			
Field ID: Type:	MW-12 SAMPLE			Lab ID: Analyzed:		210695-007 03/23/09
Diesel Cl(Analyte D-C24		Result 130 Y		RL 50	
o-Terpheny	Surrogate /l	% REC 121	Limits 61-127			
Type: Lab ID:	BLANK QC487835			Analyzed:		03/22/09
	Analyte		Result		RL	
Diesel Cl(J-C24	NI)		50	
o-Terpheny	Surrogate	%REC 118	Limits 61-127			

	Total Extractable Hydrocarbons											
Lab #:	210695	Location:	Redwood Regional Park									
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C									
Project#:	2006-16	Analysis:	EPA 8015B									
Type:	LCS	Diln Fac:	1.000									
Lab ID:	QC487836	Batch#:	148997									
Matrix:	Water	Prepared:	03/18/09									
Units:	ug/L	Analyzed:	03/22/09									

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,707	108	50-120
Surrogate	%REC	Limits			
o-Terphenyl	109	61-127			

		Total I	Extracta	ble Hydrocarbo	ns					
Lab #: 2100	695			Location:	Redwood Regional Park					
Client: Stellar Environmental Sol			ions	Prep:	EPA 3520C					
Project#: 2000	5-16			Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZZ			Batch#:	148997					
MSS Lab ID:	210541-013			Sampled:	03/09/09					
Matrix:	Water			Received:	03/10/09					
Units:	ug/L			Prepared:	03/18/09					
Diln Fac:	1.000									
Type: Lab ID:	MS QC487837			Analyzed: Cleanup Method:	03/22/09 EPA 3630C					
Analy	yte	MSS Result		Spiked	Result	%REC	Limi	ts		
Diesel C10-C24	4	-1/	96	2 5 0 0	0 (07	105	20 1	27		
	I	<14		2,500	2,627	105	38-1	21		
Suri	rogate	%REC	Limits	2,500	2,627	105	38-1	21		
Sur: o-Terphenyl	rogate	%REC 109	Limits 61-127	2,500	2,627	105	38-1			
o-Terphenyl	rogate MSD	* REC	Limits 61-127	Analyzed:	03/23/09	105	38-1			
Sur o-Terphenyl Type: Lab ID:	MSD QC487838	* REC	Limits 61-127	Analyzed: Cleanup Method:	03/23/09 EPA 3630C	105	38-1			
Surr o-Terphenyl Type: Lab ID: Ana	MSD QC487838	%REC 109	Limits 61-127 Spiked	2,500 Analyzed: Cleanup Method: Result	2,627 03/23/09 EPA 3630C %REC	Limits	38-1 	Lim		
Surr o-Terphenyl Type: Lab ID: Diesel C10-C24	MSD QC487838 alyte	%REC 109	Limits 61-127 Spiked 2,500	Analyzed: Cleanup Method: Result 2,641	03/23/09 EPA 3630C %REC 106	105 Limits 38-127	88-1 RPD 1	Lim 37		
Surr o-Terphenyl Type: Lab ID: Diesel C10-C24	MSD QC487838 alyte 4 rogate	%REC %REC	Limits 61-127 Spiked 2,500 Limits	Analyzed: Cleanup Method: 2,641	2,62/ 03/23/09 EPA 3630C %REC 106	105 Limits 38-127	88-1 RPD 1	Lim 37		

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\081a029, A

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\081a030, A

- \\Lims\gdrive\ezchrom\Projects\GC26\Data\081a031, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\081a029, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\081a030, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\081a031, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\081a032, A

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\081a018, A

and setting to the

H

Laboratory Job Number 210675 ANALYTICAL REPORT

Stellar Environmental SolutionsProjec2198 6th StreetLocationsBerkeley, CA 94710Level	: 2009-02 n : Redwood Regional Park : II
--	--

<u>Sample ID</u>	<u>Lab ID</u>
SW-2	210675-001
SW-3	210675-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager

Signature:

Senior Program Manager

Date: 03/23/2009

Date: 03/23/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 210675 Stellar Environmental Solutions 2009-02 Redwood Regional Park 03/16/09 03/16/09

This data package contains sample and QC results for two water samples, requested for the above referenced project on 03/16/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Laboratory Curtis and To						//./											
Laboratory Curtis and To				Chain o	of Cu	ustody	Rec	ord									
	ompkins, Ltd.															Lab job no	
Address2323 Fifth St	reet		- <u> </u>	ietriod of Shipment	and De	elivery										Date	1
Berkeley, Ca	lifornia 94710		— s	nipment No												Page	_ of
	J		A	irbill No						17.	Ŧ		Analysis	Require			7
Project Owner <u>East Bay</u>	Regional Park D	vistrict	C	ooler No							77	7	77		-7-	7-7-1	
Site AddressOakland	Wood Road		Pi	roject Manager <u>Rick</u>	nard Ma	kdisi			iners 1	$^{\prime}/\varpi$	/ /	/ /	/ /		/ /		
Redwood	Regional Park		Te	elephone No. (510) 644	1-3123			Merce		$\overline{\mathcal{X}}$		/ /			' /		
Project Name 2009-C	2	·	Fa	ax No(510) 644	-3859	- <u>NO</u> -	-		\$°.0	\mathcal{A}	7 /				/	// 8/	e marka
Project Number			Sa	amplers: (Signaturé)	al	/ Ret	1-1	- /	I	7-4						/ "	indiks
Field Sample Number	Location/ Da	te Time	Sample	Type/Size of Containor	T P	reservation	/ ٦			V.	/ /		/ /	' /			
SW-2	Creek 3-1	5-09	Type W		Cooler	Chemical	-1/		1	$\int \int$		LI	/ /		/ /	/	
SW-3		0945		+ VOA, T L	Y	Yes (a)	\mathcal{N}	5	X X	1				1	f f		
·	Cieek 3-16	°-0#0>0	W	4 VOA, 1 L	Y	Yes (a)	N	5	XX	11		╡╸┼		+			
								-	-¥-1	┼╾┼		+-+			╞╼┼		
					1							- +			\vdash		
						<u> </u>	+			$ \downarrow \downarrow $							
		-+7			ļ												
						ł											
														1			
							1-1				_				-+-		
										┝━┢			_	$ \downarrow \downarrow$			
								\rightarrow									
		++								\rightarrow							
		+												<u>├</u> -			
	Ļ							,					+		$ \rightarrow $		
Signature	Las Date	Received t	y: h	an	Date	Rélinquished t	∟ >y:		_ >						<u> </u>		- <u>-</u>
Teal Glass	3-16-0)9 Signatu	° <u>- </u>	-U	3-16-0	g Signature _	<u>_</u> {		7_		7/1/1/4	Sigi	nature	H	Ha	nah	Date
Printed	Time	Printed	Jos	e ortz		- Drinted (dece	art	-17		SIG	1			0	0,0	1-1160
Stellar Environr	nental	2	Blai	ne Tech	Ime			<u> </u>			Time	Prin	ted	<u>a</u>	<u>(70</u>	rale 2	Time
Standard -		Compan	y			Company +	tola	<u>19</u> 0	120	:h	1>07	Con		whi	's (-	Tomptin	1:7-1
Turnaround Time:						Relinquished o	y:				Date	Receiv	ed by:			- par	+
Comments:						Signature				<u> </u>		Sign	ature				Date
; 						Printed											
											Time	Print	ed				Time
						Company						Com	Danv				

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST	
Login # 210675 Date Received 3/16/09 Number of coolers Decisional Project Decisional Dec	K.
Date Opened 3/16/09 By (print) <u>Dic Ouro</u> (sign) <u>Dic Ca</u> Date Logged in <u>By (print)</u> (sign) <u>Dic Ca</u>	
1. Did cooler come with a shipping slip (airbill, etc)YES_NO	
2A. Were custody seals present? □ YES (circle) on cooler on samples □ NO How manyNameDate 2B. Were custody seals intact upon arrival?YES NO 3. Were custody papers dry and intact when received?YES NO 4. Were custody papers filled out properly (ink, signed, etc)?YES NO 5. Is the project identifiable from custody papers? (If so fill out top of form)YES NO 6. Indicate the packing in cooler: (if other, describe)	·
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Styrofoam Styrofoam	
Type of ice used: Wet Blue/Gel None Temp(°C)	
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer? YES NO 9. Did all bottles arrive unbroken/unopened? YES NO 10. Are samples in the appropriate containers for indicated tests? YES NO 11. Are sample labels present, in good condition and complete? YES NO 12. Do the sample labels agree with custody papers? YES NO 13. Was sufficient amount of sample sent for tests requested? YES NO 14. Are the samples appropriately preserved? YES NO N/A 15. Are bubbles > 6mm absent in VOA samples? YES NO N/A 16. Was the client contacted concerning this sample delivery? YES NO If YES, Who was called? By Date:	
COMMENTS	
SOP Volume:Client ServicesRev. 6 Number 1 of 3Section:1.1.2Effective: 23 July 2008Page:1 of 1Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc	

. .

	Curtis & I	Compkins Labo	ratories An	alytical	Repor	t
Lab #:	210675		Location:	Redy	wood Reg	gional Park
Client:	Stellar Environmenta	l Solutions	Prep:	EPA	5030B	
Project#:	2009-02					
Matrix:	Water		Sampled:	03/	16/09	
Units:	ug/L		Received:	03/	16/09	
Diln Fac:	1.000		Analyzed:	03/	17/09	
Batch#:	148934					
Field ID: Type:	SW-2 SAMPLE		Lab ID:	210	675-001	
	Analyte	Result		RL		Analysis
Gasoline (C7-C12	ND		50	EPA	8015B
MTBE -		ND		2.0	EPA	8021B
Benzene		ND		0.50	EPA	8021B
Toluene		ND		0.50	EPA	8021B
Ethylbenze	ene	ND		0.50	EPA	8021B
m,p-Xylene	es	ND		0.50	EPA	8021B
o-Xylene		ND		0.50	EPA	8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	107	63-146	EPA 8015B	
Bromofluorobenzene (FID)	107	70-140	EPA 8015B	
Trifluorotoluene (PID)	79	50-140	EPA 8021B	
Bromofluorobenzene (PID)	81	56-132	EPA 8021B	

Lab ID:

210675-002

Field ID: Type: SW-3 SAMPLE

Analyte Result RL Analysis 50 EPA 8015B Gasoline C7-C12 ND MTBE ND 2.0 EPA 8021B Benzene ND 0.50 EPA 8021B Toluene ND 0.50 EPA 8021B Ethylbenzene ND 0.50 EPA 8021B EPA 8021B m,p-Xylenes ND 0.50 o-Xylene EPA 8021B ND 0.50

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	110	63-146	EPA 8015B	
Bromofluorobenzene (FID)	107	70-140	EPA 8015B	
Trifluorotoluene (PID)	84	50-140	EPA 8021B	
Bromofluorobenzene (PID)	83	56-132	EPA 8021B	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	210675	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02		
Matrix:	Water	Sampled:	03/16/09
Units:	ug/L	Received:	03/16/09
Diln Fac:	1.000	Analyzed:	03/17/09
Batch#:	148934		

Type:

BLANK

Lab ID: QC487573

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	111	63-146	EPA 8015B	
Bromofluorobenzene (FID)	108	70-140	EPA 8015B	
Trifluorotoluene (PID)	82	50-140	EPA 8021B	
Bromofluorobenzene (PID)	81	56-132	EPA 8021B	

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	210675	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	148934
Units:	ug/L	Analyzed:	03/17/09
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC487574

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	8.485	85	53-152
Benzene	10.00	8.819	88	79-120
Toluene	10.00	9.123	91	76-122
Ethylbenzene	10.00	9.736	97	77-125
m,p-Xylenes	10.00	9.285	93	76-126
o-Xylene	10.00	9.766	98	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	83	50-140
Bromofluorobenzene (PID)	81	56-132

Type: BSD			Lab ID:	QC487	7575			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
MTBE		10.00		9.898	99	53-152	15	37
Benzene		10.00		10.62	106	79-120	19	20
Toluene		10.00		11.20	112	76-122	20	21
Ethylbenzene		10.00		11.55	115	77-125	17	21
m,p-Xylenes		10.00		11.41	114	76-126	21	23
o-Xylene		10.00		11.48	115	77-126	16	21
Surrogate	%REC	Limits						
Trifluorotoluene (PID)	83	50-140						

56-132

82

Bromofluorobenzene (PID)

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	210675	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC487576	Batch#:	148934
Matrix:	Water	Analyzed:	03/17/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	997.2	100	76-121

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	123	63-146	
Bromofluorobenzene (FID)	105	70-140	

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	210675	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2009-02	Analysis:	EPA 8015B
Field ID:	SW-2	Batch#:	148934
MSS Lab II	210675-001	Sampled:	03/16/09
Matrix:	Water	Received:	03/16/09
Units:	ug/L	Analyzed:	03/17/09
Diln Fac:	1.000		

Type:	MS			Lab ID:		QC487577		
	Analyte	MSS Re	esult	Spike	ed	Result	%REC	Limits
Gasoline	C7-C12	2	21.57	2,000)	1,618	80	66-120
	Surrogate	%REC	Limits					
Trifluoro	otoluene (FID)	135	63-146					
Bromofluc	probenzene (FID)	113	70-140					
				- 1				
Type:	MSD			Lab ID:		QC487578		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		1,831	90	66-120	12 20

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	145	63-146	
Bromofluorobenzene (FID)	118	70-140	

		Total E	xtracta	ble Hydroc	arboi	ns
Lab #:	210675			Location:		Redwood Regional Park
Client:	Stellar Environment	al Solut	ions	Prep:		EPA 3520C
Project#:	2009-02			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		03/16/09
Units:	ug/L			Received:		03/16/09
Diln Fac:	1.000			Prepared:		03/16/09
Batch#:	148922			Analyzed:		03/18/09
Field ID: Type:	SW-2 SAMPLE			Lab ID:		210675-001
	Analyte		Result		RL	
Diesel C10	-C24	ND			50	
	Surrogate	%REC	Limits			
o-Terpheny Field ID: Type:	SW-3 SAMPLE	103	61-127	Lab ID:		210675-002
	Analyte		Result		RL	
Diesel C10	-C24	ND			50	
	Surrogate	%REC	Limits			
o-Terpheny	-1	98	61-127			
Туре:	BLANK			Lab ID:		QC487533
	Analyte		Result		RL	
Diesel C10	-C24	ND			50	
	Surrogate	%REC	Limits			

o-Terphenyl

119 61-127

Total Extractable Hydrocarbons									
Lab #:	210675	Location:	Redwood Regional Park						
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C						
Project#:	2009-02	Analysis:	EPA 8015B						
Type:	LCS	Diln Fac:	1.000						
Lab ID:	QC487534	Batch#:	148922						
Matrix:	Water	Prepared:	03/16/09						
Units:	ug/L	Analyzed:	03/18/09						

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	1,996	80	50-120
Surrogate	%REC	Limits			
o-Terphenyl	84	61-127			

		Total	Extracta	ble Hydrocarbo	ns			
Lab #: 210	675			Location:	Redwood Regio	nal Park		
Client: Ste	llar Environment	al Solut	tions	Prep:	EPA 3520C			
Project#: 200	9-02			Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:	148922			
MSS Lab ID:	210606-002		Sampled:	03/11/09				
Matrix:	Water			Received:	03/12/09			
Units:	ug/L			Prepared:	03/16/09			
Diln Fac:	1.000			Analyzed:	03/18/09			
Type: Lab ID:	MS QC487535			Cleanup Method:	EPA 3630C			
Anal	yte	MSS Rea	sult	Spiked	Result	%REC	Limi	ts
Anal Diesel C10-C2	yte 4	MSS Rea	sult 8.115	Spiked 2,500	Result 2,132	%REC 85	Limi 38-1	ts 27
Anal Diesel C10-C2	yte 4 rogate	MSS Res	sult 8.115 Limits	Spiked 2,500	Result 2,132	%REC 85	Limi 38-1	ts 27
Anal Diesel C10-C2 Sur o-Terphenyl	yte 4 rogate	MSS Res <8 %REC 89	sult 3.115 Limits 61-127	Spiked 2,500	Result 2,132	%REC 85	Limi 38-1	ts 27
Anal Diesel C10-C2 Sur o-Terphenyl	yte 4 rogate	MSS Re: <1 89	sult 8.115 Limits 61-127	Spiked 2,500	Result 2,132	% REC 85	Limi 38-1	ts 27
Anal Diesel C10-C2 Sur o-Terphenyl Type: Lab JD:	yte 4 rogate MSD 0C487536	MSS Re: <8 89	sult 8.115 Limits 61-127	Spiked 2,500 Cleanup Method:	Result 2,132 EPA 3630C	% REC 85	Limi 38-1	ts 27
Anal Diesel C10-C2 Sur o-Terphenyl Type: Lab ID:	yte 4 rogate MSD QC487536	MSS Re: <8 %REC 89	sult 8.115 Limits 61-127	Spiked 2,500 Cleanup Method:	Result 2,132 EPA 3630C	%REC 85	Limi 38-1	ts27
Anal Diesel C10-C2 Sur o-Terphenyl Type: Lab ID: An	yte 4 rogate MSD QC487536	MSS Res < %REC 89	sult 3.115 <u>Limits</u> 61-127 Spiked	Spiked 2,500 Cleanup Method: Result	Result 2,132 EPA 3630C %REC	%REC 85	Limi 38-1	ts 27 Lim
Anal Diesel C10-C2 Sur o-Terphenyl Type: Lab ID: Diesel C10-C2	yte 4 rogate MSD QC487536 alyte 4	MSS Re: <8 89	sult 8.115 Limits 61-127 Spiked 2,500	Spiked 2,500 Cleanup Method: Result 2,323	Result 2,132 EPA 3630C %REC 93	%REC 85 	Limi 38-1 	ts 27 Lim 37
Anal Diesel C10-C2 Sur o-Terphenyl Type: Lab ID: <u>An</u> Diesel C10-C2	yte 4 rogate MSD QC487536 alyte 4	MSS Re:	sult 3.115 Limits 61-127 Spiked 2,500 Limits	Spiked 2,500 Cleanup Method: Result 2,323	Result 2,132 EPA 3630C %REC 93	%REC 85 	Limi 38-1 RPD 9	ts 27 <u>Lim</u> 37

APPENDIX D

Historical Analytical Results

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Well MW-2										
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA	70.3
2	Feb-95	89	< 50	18	2.4	1.7	7.5	30	NA	118.6
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8.0	NA	8
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA	5.7
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA	0
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA	7.9
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	NA	1.24
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA	81
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA	5.6
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31	NA	92.4
12	Feb-98	2,000	200	270	92	150	600	1,112	NA	3312
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	7.0	7
14	Apr-99	82	710	4.2	< 0.5	3.4	4.0	12	7.5	811.1
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5	88.01
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9	8.62
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0	68.8
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10	147.4
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27	451.7
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6	171.56
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2	14.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	7.7	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	—	13	116.0
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	—	< 2.0	4.3
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16	291.1
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7	10.6
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23	152.6
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4	299.8
29	Mar-04	374	<100	81	1.2	36	7.3	126	18	517.5
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15	15.8
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16	239.7
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20	117.6
33	Mar-05	190	68	27	<0.5	14	11	52	26	336.0
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24	107.8
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23	25.5
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23	26.9

Well MW-2 (con't)												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
37	Mar-06	1300	300	77	4.4	91	250	422	18	2040.4		
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	_	17	77.0		
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17	391.7		
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16	18.1		
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14	77.0		
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8	11.5		
43	Sep-07	2,600	260	160	44	86	431	721	15	3596.0		
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16	24580.0		
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11	768.8		
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13	46993.0		
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13	1625.7		
45b	May-08	7,100	3,900	14	8.8	140	710	872.8	11	11883.8		
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11	7355.6		
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9	9331.0		
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9	505.1		
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<20	38131.0		
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5	12446.6		
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5	50131.1		
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12	11613.5		
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14	40159.4		
	Well MW-4											
-------	-----------	----------	------------	----------------	--------------	------------------	------------------	-----------------	------------	--------------------	--	--
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Nov-94	2,600	230	120	4.8	150	88	363	NA	3,193		
2	Feb-95	11,000	330	420	17	440	460	1,337	NA	12,667		
3	May-95	7,200	440	300	13	390	330	1,033	NA	8,673		
4	Aug-95	1,800	240	65	6.8	89	67	227	NA	2,267		
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA	1,338		
6	Aug-96	3,700	120	63	2.0	200	144	409	NA	4,229		
7	Dec-96	2,700	240	19	< 0.5	130	93	242	NA	3,182		
8	Feb-97	3,300	< 50	120	1.0	150	103	374	NA	3,674		
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA	512		
10	Aug-97	1,900	150	8.6	3.5	78	53	143	NA	2,193		
11	Dec-97	1,000	84	4.6	2.7	61	54	123	NA	1,207		
12	Feb-98	5,300	340	110	24	320	402	856	NA	6,496		
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23	1,927		
14	Apr-99	2,900	710	61	1.2	120	80	263	32	3,905		
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.0	1,476		
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4	973		
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4	2,323		
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0	2,871		
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0	2,156		
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0	111		
21	Mar-02	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2.0	0		
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2.0	0		
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0		
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	—	< 5.0	0		
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6		< 5.0	0		
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6	_	< 5.0	0		
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0	0		
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0	0		
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0	0		
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0		< 2.0	0		
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0	0		
		Groundwa	ter monito	ring in this v	vell discont	inued with Alame	da County Health	Care Services A	gency appr	oval.		

	Well MW-5											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	50		
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA	70.6		
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	80		
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0		
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2	0		
	Groundwater monitoring in this well discontinued in 1998 with Alameda County Health Care Services Agency approval.											
			Subse	equent grou	ndwater mo	onitoring conduct	ed to confirm plun	ne's southern limi	it			
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	5.9	5.9		

< 0.5

< 1.0

< 2.0

0

<50

< 50

< 0.5

< 0.5

15

Sep-04

	Well MW-7											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Jan-01	13,000	3,100	95	4	500	289	888	95	17,083		
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52	17,900		
3	Aug-01	12,000	5,000	55	25	440	198	718	19	17,737		
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10	14,477		
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200	13,667		
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18	13,569		
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0	14,220		
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2.0	13,999		
9	Mar-03	10,000	3,600	210	12	360	143	725	45	14,370		
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200	14,270		
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0	13,897		
12	Dec-03	9,140	1,100	62	45	295	184	586	89	10,915		
13	Mar-04	8,170	600	104	41	306	129	580	84	9,434		
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0	12,431		
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2.0	13,623		
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2.0	12,709		
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2.0	14,891		
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4.0	13,976		
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4.0	10,774		
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4.0	6,412		
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110	10,342		
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	< 10	10,896		
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	49	11,931		
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2.0	10,012		
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	< 2.0	9,339		
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4.0	10,017		
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<2.0	9,613		
28	Dec-07	4,800	2,800	<0.5	<0.5	100	26.5	126.5	2.7	7,729		
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51	11,537		
31	Jun-08	4,800	3,500	55	<0.5	140	7.03	202	<2.0	8,502		
32	Sep-08	6,400	2,800	22	<0.5	100	9.30	131	<2.0	9,331		
33	Dec-08	3,500	3,600	5	<0.5	100	9.10	114	<2.0	7,214		
34	Mar-09	5,100	6,700	19	<0.5	140	12.30	171	51	12,022		

	Well MW-8											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96	17,933		
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42	16,298		
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14	13,891		
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.0	5,262		
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240	21,417		
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19	4,409		
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0	1,556		
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.0	4,050		
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 10	19,180		
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.0	11,659		
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.0	4,644		
12	Dec-03	485	100	19	1.5	26	36	83	< 5.0	668		
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90	20,536		
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 10	8,010		
15	Sep-04	2,000	360	100	< 2.5	180	102	382	< 10	2,742		
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	< 10	22,581		
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10	36,201		
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20	46,029		
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20	7,867		
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20	5,786		
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20	31,060		
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20	28,225		
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10	11,267		
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2.0	5,845		
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	< 20	22,434		
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4.0	15,076		
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8.0	14,780		
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2.0	1,869		
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76	26,289		
31	Jun-08	2,000	1,700	27	2.5	190	113.2	333	<2.0	4,033		
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2.0	10,817		
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5	950		
34	Mar-09	4,600	7,300	55.0	<5.0	410	639.0	1,104	<20	13,004		

						Well MW-9)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Aug-01	11,000	170	340	13	720	616	1,689	48	12,907
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10	13,192
3	Mar-02	1,700	300	53	4.2	120	67	244	20	2,264
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85	14,910
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0	7,150
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10	11,766
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0	6,620
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0	10,487
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10	12,704
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10	9,254
11	Mar-04	3,550	600	122	15	313	84	534	35	4,719
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 10	9,569
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 10	10,174
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 10	8,130
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 10	6,249
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 10	13,019
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2.0	5,416
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4.0	11,555
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4.0	4,892
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2	4,908
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1.0	16,892
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	< 10	16,463
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	< 10	13,862
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4.0	10,158
25	Sep-07	4,500	2,100	60	3.8	420	227	710	<4.0	7,310
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2.0	8,720
27	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38	10,668
28	Jun-08	10,000	3,400	89	<2.5	510	231.0	830.0	<10	14,230
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2.0	7,869
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2.0	7,014
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2.0	6,395

Well MW-10										
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40	2,782
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25	106
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0	7
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0	10
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26	326
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15	149
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0	135
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0	10
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9	187
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0	110
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15	244
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8	9
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10	82
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13	223
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2.0	232
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2.0	96
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8	9
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8	143
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3	226
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6	149
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7	5
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1	66
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0	133
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6	94
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2.0	539
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4	256
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2.0	575
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0	85
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1	69
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2.0	307

	Well MW-11											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10	26,371		
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10	9,601		
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4	197		
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4	12,113		
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10	18,277		
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10	24,932		
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53	11,495		
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10	19,613		
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< 4	14,487		
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173	18,519		
11	Mar-04	4,900	400	72	17	342	233	664	61	6,025		
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10	13,717		
13	Sep-04	7,200	2,300	340	< 2.5	840	75	1,255	< 10	10,755		
14	Dec-04	11,000	3,900	180	5.1	780	695	1,660	< 10	16,560		
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 10	7,075		
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.0	2,193		
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.0	16,922		
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 10	4,996		
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 10	3,662		
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.0	6,014		
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.0	6,019		
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.0	9,859		
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.0	6,688		
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.0	6,767		
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.0	8,482		
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35	11,357		
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8	9,572		
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.0	8,141		
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.0	12,145		
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.0	4,576		
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0	8,816		

	Well MW-12											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0	2,039		
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49	1,699		
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0	1,087		
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21	1,422		
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0	1,009		
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0	503		
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0	875		
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0	575		
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0	353		
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0	1,236		
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0	272		
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0	469		
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0	264		
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0	312		

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

	Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons			
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA	50			
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA	0			
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA	0			
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA	0			
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0	0			
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0	0			
	Sampling at this location discontinued after April 1999 with Alameda County Health Services Agency approval												

(all concentrations in ug/L, equivalent to parts per billion [ppb])

	Sampling Location SW-2 (Area of Historical Contaminated Groundwater Discharge)											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA	139.5		
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA	212.9		
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
8	Aug-97	350	130	13	0.89	19	11	44	NA	523.59		
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA	0		
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3	89.1		
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2	1637.2		
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4	272.6		
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0	0.53		
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10	670.4		
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0	833		
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8	3.36		
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0	0		
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0	288.3		
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0	86		
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0	1.1		
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0	0.83		
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0	640.7		
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0	0		
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	62		
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	110		
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0	156.81		
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0	0		
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0	77		
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0	561.5		
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0	130.61		
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	0		
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0	1224.3		
46	Dec-08	<50	83	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0	83		
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0	0		

	Sampling Location SW-3 (Downstream of Contaminated Groundwater Discharge Location SW-2)											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	Total Hydrocarbons		
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	74		
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	69		
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	0		
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
13	Sep-00	NS	NS	NS	NS	NS	NS	NS	NS	NS		
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
16	Sep-01	NS	NS	NS	NS	NS	NS	< 0.5	NS	0		
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	2.4		
20	Sep-02	INS	150	105	105	NS 105	NS 105	NS 105	12.0	NS		
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	0		
24	Sep-03	60	NS 	NS	NS	NS	NS < 0.6	NS	NS	60 60		
25	Dec-03	.50	< 100	< 0.3	< 0.5	< 0.5	< 0.0	<0.0	< 5.0	00		
20	Iviar-04	<30 NS	<100 NS	<0.5	<0.3	<0.0	<0.0	<0.0	< 5.0	0		
21	Son-04	NS	NS	NS	NS	NS	NS	NS	NS	NS		
20	Dec-04	<50	<50	<0.5	<0.5	N3	< 1.0	-10	< 2.0	0		
30	Mar-05	<50	<50	<0.0	<0.0	<0.5	< 1.0	<1.0	< 2.0	0		
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	120		
36	Sep-06	<50	120	<0.5	<0.5	<0.5	<0.5	0.5	7.8	127.8		
37	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0	0		
38	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	3.3	3.3		
39	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0	0		
40	Sep-07	NS	NS	NS	NS	NS	NS	NS	NS	NS		
41	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS	NS		
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	200		
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	55		
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS	NS		
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	360		
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0	0		

NS = Not Sampled (no surface water present during sampling event)