RECEIVED

9:02 am, Apr 19, 2010

Alameda County Environmental Health

Sacramento, California 95818

April 15, 2010

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Semi-Annual Summary Report—Fourth Quarter 2009 –First Quarter 2010 76 Service Station # 0018 RO # 0243 6201 Claremont Ave. Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

April 15, 2010

Ms. Barbara Jakub Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94502-6577

RE: Semi-Annual Summary Report – Fourth Quarter 2009 through First Quarter 2010 Delta Project No.: C1Q-0018-106 ACEH Case No: RO243

Dear Ms. Jakub:

On behalf of ConocoPhillips (COP), Delta Consultants (Delta) is forwarding the semi-annual summary report for the following location:

Service Station

Location

ConocoPhillips Site No. 0018

6201 Claremont Avenue Oakland, California

Sincerely, Delta Consultants

mes B. Baujan

James B. Barnard Project Manager California Registered Professional Geologist #7478

Cc: Mr. Terry Grayson - ConocoPhillips (electronic copy only)

PREVIOUS ASSESSMENT ACTIVITIES

<u>March 1997</u> Kaprealian Engineering Inc. (KEI) collected nine soil and one grab groundwater sample during UST and product line replacement activities. One soil sample collected from the UST excavation contained 2.6 milligrams per kilograms (mg/kg) of total petroleum hydrocarbons as gasoline (TPHg). Another soil sample collected from beneath a dispenser island contained 1.4 mg/kg TPHg, 0.012 mg/kg benzene, and 1.4 mg/kg methyl tert butyl ether (MTBE). The groundwater sample collected from the UST excavation contained 6,100 micrograms per liter (μ g/L) of TPHg and 54 μ g/L benzene. (KEI, 1997)

<u>March 1998</u> Tosco was issued a Notice of Responsibility by Alameda County Health Care Services (ACHCS).

<u>July 2000</u> Gettler-Ryan Inc. (GR) installed three groundwater monitoring wells (MW-1 through MW-3) to depths of 30 feet below ground surface (bgs). Five soil samples were collected from the borings for the wells. Sample MW-1-25.5, from a depth of 25.5 foot bgs, contained 19 mg/kg of TPHg and 0.018 mg/kg of benzene. Initial groundwater samples contained low (<120 micrograms per liter (ug/l)) concentrations of TPHg, benzene, and MTBE.

<u>November 2000</u> A quarterly monitoring program, utilizing the three on-site monitoring wells (MW-1 through MW-3), was initiated. (GR, 2000)

October 2003 Site environmental consulting responsibilities were transferred to TRC.

<u>January 2006</u> TRC completed a No Further Action Required Report – Request for Closure.

<u>April 2006</u> TRC completed a sensitive receptor survey.

<u>October 2007</u> Site environmental consulting responsibilities were transferred to Delta Consultants.

SENSITIVE RECEPTORS

A sensitive receptor survey for the site was conducted in April 2006. According to the Department of Water Resources (DWR) records, no water supply wells are located within a one-half mile radius of the site (TRC, 2006).

REMEDIATION STATUS

Remediation is not currently being conducted at the site.

MONITORING AND SAMPLING

The groundwater monitoring well network, consisting of three on-site monitoring wells, was been monitored and sampled on a quarterly basis between fourth quarter 2000 and first quarter 2009. Following the first quarter 2009 sampling event, the monitoring and sampling frequency of wells at this site was reduced to semi-annual, to be conducted during the first and third quarters. During the most recent groundwater sampling event conducted on March 17, 2010, reported depth to groundwater ranged from 15.39 feet (MW-3) to 16.43 feet (MW-2) below top of casing (TOC), with a 5.16 feet average increase in groundwater elevation across the site. Groundwater elevation beneath the site typically fluctuates by approximately 5 feet annually. A historical groundwater flow (rose) diagram is included as Attachment A.

The groundwater flow direction during the first quarter 2010 was reported south at a gradient of 0.02 feet per feet (ft/ft). This is not consistent with a gradient of 0.01 ft/ft southwest during the previous sampling event (9/30/09). Reported historical groundwater flow direction has been primarily to the southwest.

During the fourth quarter 2009 through first quarter 2010, groundwater samples were collected from all three on-site wells (MW-1, MW-2, and MW-3). Samples were analyzed for TPHg, benzene, toluene, ethyl-benzene and xylenes (BTEX), MTBE, and ethanol by US Environmental Protection Agency (EPA) Method 8260B. In addition, well MW-1 was also analyzed for fuel oxygenates (tert butyl alcohol (TBA), ethyl tert butyl ether (ETBE), tert amyl methyl ether (TAME), and di-isopropyl ether (DIPE)), 1,2-dichloroethane (1,2-DCA), and ethylene dibromide (EDB) by EPA Method 8260B.

Constituents of Concern:

TPHg was above laboratory indicated reporting limits in groundwater samples collected from one of the three wells sampled with a maximum concentration of 320 μ g/L in MW-1 during the current sampling event. This is an increase from a maximum concentration of 62 μ g/L in this well during the previous sampling event (9/30/09).

MTBE was above laboratory indicated reporting limits in groundwater samples collected from one of the three wells sampled with a maximum concentration of 11 μ g/L in MW-1 during the current sampling event. This is a decrease from a maximum concentration of 14 μ g/L in this well during the previous sampling event.

All other analytes (BTEX, and other fuel oxygenates) were all below laboratory indicated reporting limits in all wells sampled during the current sampling event.

The MTBE concentration in well MW-1 has been below 20 μ g/L for the past twelve consecutive sampling events. The maximum historical MTBE concentration detected in MW-1 was 150 μ g/L in February and August 2001. MTBE has never been detected in well MW-2, and has only been detected sporadically in well MW-3. The most recent detection of MTBE in well MW-3 was at a concentration of 3.4 μ g/L (September 2006). Benzene was not detected in any of the three wells during the first quarter 2009 sampling event. Benzene has not been detected in any site well since at 2005.

A copy of TRC's *Semi-Annual Monitoring Report – October 2009 through March 2010* is included as Attachment B.

CONCLUSIONS AND RECOMMENDATIONS

Currently, TPHg and MTBE concentrations are only present in well MW-1 and continue to fluctuate with seasonal variation in groundwater elevation; however there is no clear correlation between groundwater elevation and higher or lower concentrations of TPHg and MTBE. Historic data shows that MTBE and TPHg concentrations have remained fairly stable overall since 2005. Since the third quarter of 2005, TPHg and MTBE concentrations in MW-1 show respective maximum concentration of 570 μ g/L and 18 μ g/L, while current concentrations are 320 μ g/l and 11 μ g/l, respectively.

In Delta's Site Conceptual Model (SCM) dated September 12, 2008 Delta proposed the advancement of two soil borings in the location of the former UST pit and the collection of soil samples. Delta also recommended collection of a groundwater sample southwest of the site. The purpose of this investigation is to fill data gaps in the former UST footprint and downgradient of well MW-1 in order to request case closure.

Delta submitted a *Work Plan for Additional Assessment*, dated July 6, 2009, further detailing the soil borings proposed in the September 2008 SCM.

At this time, Delta recommends continued groundwater monitoring on a semiannual basis, pending results of the additional investigation proposed in Delta's July 2009 work plan. Groundwater samples from the site wells have never been reported to contain TBA, ETBE, TAME, DIPE 1,2-DCA, EDB or ethanol, with the exception of November 23, 2004, at which time TBA was reported in MW-1 at a concentration of 7.4 μ g/l. Delta recommends discontinuing analysis of TBA. Delta also recommends discontinuing analysis of ETBE, TAME, DIPE 1,2-DCA, EDB or ethanol, as they have not historically been detected in groundwater samples from site wells.

Following completion of the scope proposed Delta's July 2009 work plan, contingent upon the analytical results of samples gathered during the investigation, Delta will either make recommendations for further assessment, or request final case closure.

RECENT CORRESPONDENCE

In correspondence dated July 24, 2009, the ACEH requested that groundwater monitoring and sampling frequency of this site be reduced from quarterly to semi-annual.

In correspondence dated August 13, 2009, the ACEH approved the general scope of Delta's *Work Plan for Additional Assessment*, dated July 6.

In email correspondence dated September 23, 2009, Delta notified the ACEH of the work dates scheduled to complete the work proposed in Delta's *Work Plan for Additional Assessment*, dated July 6, 2009.

FOURTH QUARTER 2009 THROUGH FIRST QUARTER 2010 ACTIVITIES

- TRC performed the semi-annual monitoring and sampling event on March 17, 2010, and prepared their results in *Semi-Annual Monitoring Report October 2009 through March 2010*, dated March 30, 2010.
- Delta prepared this *Semi-Annual Summary Report Fourth Quarter 2009 through First Quarter 2010.*

SECOND QUARTER THROUGH THIRD QUARTER 2010 ACTIVITIES

• TRC will perform the semi-annual monitoring and sampling event, and prepare a semi-annual monitoring report.

• Delta will prepare and submit a semi-annual summary report.

<u>REMARKS</u>

The descriptions, conclusions, and recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. For any reports cited that were not generated by Delta, the data from those reports is used "as is" and is assumed to be accurate. Delta does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were conducted. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

CONSULTANT: Delta Consultants

* * * * * *

Attachment A – Historical Groundwater Flow Direction (Rose) Diagram Attachment B – Semi-Annual Monitoring Report – October 2009 through March 2010

ATTAHMENT A Historical Groundwater Flow Direction (Rose) Diagram

Historic Groundwater Flow Directions Site No. 0018 6201 Claremont Avenue Oakland, California

Legend

Concentric circles represent quarterly montoring events. Third Quarter 2000 through First Quarter 2010. 28 data points shown.

Groundwater Flow Direction

ATTACHMENT B

Semi-Annual Monitoring Report – October 2009 through March 2010

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 Fax

www.TRCsolutions.com

DATE: March 30, 2010

TO: ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN: MR. TERRY GRAYSON

- SITE: 76 STATION 0018 6201 CLAREMONT AVENUE OAKLAND, CALIFORNIA
- RE: SEMI-ANNUAL MONITORING REPORT OCTOBER 2009 THROUGH MARCH 2010

Dear Mr. Grayson:

Please find enclosed our Semi-Annual Monitoring Report for 76 Station 0018, located at 6201 Claremont Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Korona Groundwater Program Operations Manager

CC: Mr. James Barnard, Delta Consultants (4 copies)

Enclosures 20-0400/0018R24.QMS

SEMI-ANNUAL MONITORING REPORT OCTOBER 2009 THROUGH MARCH 2010

76 STATION 0018 6201 Claremont Avenue Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

GONAL O No. 6) 6 DENNISE. JENSEN æ No. 3531 Senior Project Geologist, Irvine Operations Date: je, CALIF

LIST OF ATTACHMENTS										
Summary Sheet	Summary of Gauging and Sampling Activities									
Tables	Table Key Contents of TablesTable 1: Current Fluid Levels and Selected Analytical ResultsTable 1a: Additional Current Analytical ResultsTable 2: Historic Fluid Levels and Selected Analytical ResultsTable 2a: Additional Historic Analytical Results									
Figures	Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map Figure 4: Dissolved-Phase MTBE Concentration Map									
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time									
Field Activities	General Field Procedures Field Monitoring Data Sheet – 3/17/10 Groundwater Sampling Field Notes – 3/17/10									
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records									
Statements	Purge Water Disposal Limitations									

Summary of Gauging and Sampling Activities October 2009 through March 2010 76 Station 0018 6201 Claremont Avenue Oakland, CA

Project Coordinator: Telephone:	Terry Grayson 916-558-7666	Water Compi	Water Sampling Contractor: TRC Compiled by: Daniel Lee					
Date(s) of Gauging/Sa	mpling Event: 3/17/	/10	-					
Sample Points								
Groundwater wells: Purging method: Sub Purge water disposal: Other Sample Points:	3 onsite, 0 offs omersible pump Crosby and Overton 0 Type:	ite Points on treatment faci	gauged: 3 Po lity	ints sampled: 3				
Liquid Phase Hydroc	carbons (LPH)							
Sample Points with LPI LPH removal frequency Treatment or disposal	H: 0 Maximum th y: of water/LPH:	ickness (feet): Met	hod:					
Hydrogeologic Para	meters							
Depth to groundwater Average groundwater Average change in gro Interpreted groundwat Current event: 0 Previous event: 0	(below TOC): Mir elevation (relative to a undwater elevation sir ter gradient and flow c .02 ft/ft, south .01 ft/ft, southwest	himum: 15.39 fee wailable local datu nce previous event lirection: t (9/30/09)	t Maximur m): 193.32 fee : 5.61 feet	n: 16.43 feet t				
Selected Laboratory	Results							
Sample Points with det Maximum reported	tected Benzene: (benzene concentratio	0 Sample Poin n:	ts above MCL (1.0	0 µg/l):				
Sample Points with T Sample Points with N	PH-G by GC/MS /ITBE 8260B	1 Maximum: 1 Maximum:	320 μg/l (MW- 11 μg/l (MW-1	-1))				

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
µg/l	=	micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l	=	milligrams per liter (approx. equivalent to parts per million, ppm)
ND<	=	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)

D = duplicate

P =	no-purge sample
-----	-----------------

=	di-isopropyl ether
=	ethyl tertiary butyl ether
=	methyl tertiary butyl ether
=	polychlorinated biphenyls
=	tetrachloroethene
=	tertiary butyl alcohol
=	trichloroethane
=	trichloroethene
=	total petroleum hydrocarbons with gasoline distinction
=	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
=	total petroleum hydrocarbons with diesel distinction
=	total recoverable petroleum hydrocarbons
=	tertiary amyl methyl ether
=	1,2-dichloroethane (same as EDC, ethylene dichloride)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- Prior to the 1st quarter 2010, the word "monitor" was used in table comments interchangeably with the word "gauge". Starting in the 1st quarter 2010, the word "monitor" is used to include both "gauge" and "sample".

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 0018 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 0018

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 17, 2010 76 Station 0018

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	l	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-1	WW-1 (Screen Interval in feet: 10.0-30.0)													
3/17/10	208.15	15.63	0.00	192.52	5.21		320	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
MW-2			(Scree	n Interval	l in feet: 10.	0-30.0)								
3/17/10) 210.27	16.43	0.00	193.84	5.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-3 (Screen Interval in feet: 10.0-30.0)														
3/17/10) 208.98	15.39	0.00	193.59	5.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Table 1 aADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 0018

Date			Ethylene-				
Sampled		Ethanol	dibromide	1,2-DCA			
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1							
3/17/10	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-2							
3/17/10		ND<250					
MW-3							
3/17/10		ND<250					

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1			(Scre	en Interva	l in feet: 10.	.0-30.0)								
8/24/0	0 208.15	18.55	0.00	189.60		120		0.67	ND	0.86	1.4	54	54	
11/16/0	00 208.15	20.30	0.00	187.85	-1.75	169		ND	1.20	1.74	0.629	68.6	97.7	
2/9/01	208.15	20.16	0.00	187.99	0.14	330		1.3	ND	1.0	4.6	140	150	
5/11/0	1 208.15	17.68	0.00	190.47	2.48	1250		ND	ND	ND	ND	145	122	
8/10/0	1 208.15	20.38	0.00	187.77	-2.70	580		ND<0.50	ND<0.50	ND<0.50	ND<0.50	110	150	
11/7/0	1 208.15	22.68	0.00	185.47	-2.30	250		ND<0.50	1.5	ND<0.50	ND<0.50	120	100	
2/6/02	2 208.15	16.20	0.00	191.95	6.48	790		ND<2.5	12	8.8	ND<2.5	90	72	
5/8/02	2 208.15	17.54	0.00	190.61	-1.34	890		ND<2.5	ND<2.5	ND<2.5	ND<2.5	78	81	
8/9/02	2 208.15	20.21	0.00	187.94	-2.67		450	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
11/29/0	02 208.15	22.33	0.00	185.82	-2.12		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		72	
2/3/03	3 208.15	16.41	0.00	191.74	5.92		540	ND<0.50	ND<0.50	ND<0.50	ND<1.0		40	
5/5/03	3 208.15	16.09	0.00	192.06	0.32		670	ND<2.5	ND<2.5	ND<2.5	ND<5.0		57	
9/4/03	3 208.15	21.46	0.00	186.69	-5.37									No analysis; past holding time
11/13/0	03 208.15	21.52	0.00	186.63	-0.06		97	ND<0.50	5.0	0.82	3.5		29	
1/29/0	4 208.15	17.51	0.00	190.64	4.01		520	ND<0.50	ND<0.50	ND<0.50	ND<1.0		44	
5/7/04	4 208.15	16.74	0.00	191.41	0.77		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		25	
8/27/0	4 208.15	19.40	0.00	188.75	-2.66		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
11/23/0	04 208.15	19.82	0.00	188.33	-0.42		410	ND<0.50	ND<0.50	ND<0.50	ND<1.0		45	
2/9/05	5 208.15	15.81	0.00	192.34	4.01		5700	ND<0.50	ND<0.50	ND<0.50	ND<1.0		40	
6/16/0	5 208.15	15.85	0.00	192.30	-0.04		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	
9/27/0	5 208.15	19.15	0.00	189.00	-3.30		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		19	
12/30/0	05 208.15	14.62	0.00	193.53	4.53		68	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	continued													
3/8/06	208.15	11.69	0.00	196.46	2.93		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
6/8/06	208.15	14.28	0.00	193.87	-2.59		66	ND<0.50	ND<0.50	ND<0.50	ND<1.0		16	
9/15/0	6 208.15	17.49	0.00	190.66	-3.21		96	ND<0.50	ND<0.50	ND<0.50	ND<0.50		6.1	
12/22/0	06 208.15	18.68	0.00	189.47	-1.19		570	ND<0.50	ND<0.50	ND<0.50	ND<0.50		18	
3/28/0	7 208.15	18.40	0.00	189.75	0.28		190	ND<0.50	ND<0.50	ND<0.50	ND<0.50		18	
6/25/0	7 208.15	20.01	0.00	188.14	-1.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.2	
9/22/0	7 208.15	21.23	0.00	186.92	-1.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		14	
12/14/0	208.15	21.02	0.00	187.13	0.21		76	ND<0.50	ND<0.50	ND<0.50	ND<1.0		16	
3/26/0	8 208.15	16.87	0.00	191.28	4.15		230	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
6/20/0	8 208.15	18.82	0.00	189.33	-1.95		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	
9/19/0	8 208.15	21.11	0.00	187.04	-2.29		63	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
12/22/0	08 208.15	20.82	0.00	187.33	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.6	
3/27/0	9 208.15	16.00	0.00	192.15	4.82		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
9/30/0	9 208.15	20.84	0.00	187.31	-4.84		62	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	
3/17/1	0 208.15	15.63	0.00	192.52	5.21		320	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
MW_2			(Scro	on Intorva	l in foot• 10	0-30 0)								
8/24/0	0 210.27	19.69	0.00	190.58	 	ND		ND	ND	ND	ND	ND	ND	
11/16/0	0 210.27	21.61	0.00	188.66	-1.92	ND		ND	ND	ND	ND	ND	ND	
2/9/01	210.27	21.52	0.00	188.75	0.09	ND		ND	ND	ND	ND	ND	ND	
5/11/0	1 210.27	18.76	0.00	191.51	2.76	ND		ND	ND	ND	ND	ND	ND	
8/10/0	1 210.27	21.65	0.00	188.62	-2.89	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	
11/7/0	1 210.27	21.05	0.00	186.02	-2.60	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND < 5.0	ND < 1.0	
2/6/07	210.27	19.00	0.00	102.02	-2.00	ND <50		ND<0.50	ND <0.50	ND<0.50	ND <0.50	ND~2.5	11D<1.0	
2/0/02	210.27	10.22	0.00	192.03	0.05			TVD<0.30	TVD<0.30	11D<0.30	ND<0.30	11D<2.3		

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water Flevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2	continued													
5/8/02	2 210.27	18.63	0.00	191.64	-0.41	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
8/9/02	2 210.27	21.53	0.00	188.74	-2.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/29/0	02 210.27	23.73	0.00	186.54	-2.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/3/03	3 210.27	17.43	0.00	192.84	6.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
5/5/03	3 210.27	17.15	0.00	193.12	0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
9/4/03	3 210.27	22.75	0.00	187.52	-5.60									No analysis; past holding time
11/13/0	03 210.27	23.02	0.00	187.25	-0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
1/29/0	4 210.27	18.73	0.00	191.54	4.29		ND<50	0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
5/7/04	4 210.27	17.79	0.00	192.48	0.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
8/27/0	4 210.27	19.66	0.00	190.61	-1.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0	04 210.27	21.20	0.00	189.07	-1.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
2/9/05	5 210.27	16.72	0.00	193.55	4.48		ND<50	0.69	1.5	ND<0.50	1.4		ND<0.50	
6/16/0	5 210.27	16.73	0.00	193.54	-0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/0	5 210.27	20.41	0.00	189.86	-3.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/30/0	05 210.27	14.79	0.00	195.48	5.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/8/06	5 210.27	13.25	0.00	197.02	1.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/8/06	5 210.27	15.36	0.00	194.91	-2.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/15/0	6 210.27	18.61	0.00	191.66	-3.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/22/0	06 210.27	20.01	0.00	190.26	-1.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/28/0	7 210.27	19.60	0.00	190.67	0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/25/0	7 210.27	21.34	0.00	188.93	-1.74		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/22/0	7 210.27	22.71	0.00	187.56	-1.37		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/14/0	07 210.27	22.52	0.00	187.75	0.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-2	continued													
3/26/0	8 210.27	17.79	0.00	192.48	4.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/20/0	8 210.27	21.13	0.00	189.14	-3.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/19/0	8 210.27	22.62	0.00	187.65	-1.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	08 210.27	22.55	0.00	187.72	0.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/27/0	9 210.27	16.88	0.00	193.39	5.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/30/0	9 210.27	22.22	0.00	188.05	-5.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/17/1	0 210.27	16.43	0.00	193.84	5.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-3			(Scre	en Interva	l in feet: 10.	0-30.0)								
8/24/0	0 208.98	18.68	0.00	190.30		ND		ND	ND	ND	ND	4.7	2.3	
11/16/0	00 208.98	20.56	0.00	188.42	-1.88	ND		ND	ND	ND	ND	ND	ND	
2/9/01	208.98	20.45	0.00	188.53	0.11	ND		ND	ND	ND	ND	ND	ND	
5/11/0	1 208.98	17.75	0.00	191.23	2.70	ND		ND	ND	ND	ND	ND	ND	
8/10/0	1 208.98	3 20.70	0.00	188.28	-2.95	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	
11/7/0	1 208.98	3 23.02	0.00	185.96	-2.32	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	1.5	
2/6/02	2 208.98	8 17.19	0.00	191.79	5.83	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
5/8/02	2 208.98	17.59	0.00	191.39	-0.40	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
8/9/02	2 208.98	20.48	0.00	188.50	-2.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/29/0	02 208.98	3 22.64	0.00	186.34	-2.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/3/03	3 208.98	16.46	0.00	192.52	6.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
5/5/03	3 208.98	16.16	0.00	192.82	0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
9/4/03	3 208.98	8 21.71	0.00	187.27	-5.55									No analysis; past holding time
11/13/0)3 208.98	3 21.93	0.00	187.05	-0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
1/29/0	4 208.98	8 17.79	0.00	191.19	4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
5/7/04	4 208.98	3 16.79	0.00	192.19	1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.55	
8/27/0	4 208.98	3 19.70	0.00	189.28	-2.91		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0	04 208.98	3 20.30	0.00	188.68	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
2/9/0	5 208.98	3 15.72	0.00	193.26	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.6	
6/16/0	5 208.98	3 15.67	0.00	193.31	0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/30/0	5 208.98	3 19.47	0.00	189.51	-3.80		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	9/27/05 samples broke during shipment.
12/30/0	05 208.98	3 15.84	0.00	193.14	3.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/8/00	5 208.98	12.06	0.00	196.92	3.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/8/00	5 208.98	3 13.82	0.00	195.16	-1.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/15/0	6 208.98	3 17.67	0.00	191.31	-3.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.4	
12/22/0	06 208.98	8 19.10	0.00	189.88	-1.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/28/0	208.98	8 18.60	0.00	190.38	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/25/0	208.98	3 20.30	0.00	188.68	-1.70		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/22/0	208.98	8 21.61	0.00	187.37	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/14/0	07 208.98	3 21.43	0.00	187.55	0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/26/0	8 208.98	8 16.74	0.00	192.24	4.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/20/0	8 208.98	8 19.05	0.00	189.93	-2.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/19/0	8 208.98	3 21.49	0.00	187.49	-2.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	08 208.98	3 21.40	0.00	187.58	0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/27/0	9 208.98	3 15.88	0.00	193.10	5.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/30/0	9 208.98	3 21.21	0.00	187.77	-5.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/17/1	0 208.98	3 15.39	0.00	193.59	5.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

		Ethylene-				
	Ethanol	dibromide	1,2-DCA			
TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
ND	ND			ND	ND	ND
ND	ND			ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND<100	ND<1000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
7.5	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	TBA (μg/l) ND ND ND ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10	Ethanol TBA (8260B) (μg/l) (μg/l) ND ND ND <	Ethanol Ethylene- TBA (8260B) (EDB) ($\mu g/l$) ($\mu g/l$) ($\mu g/l$) ND ND ND ND ND ND ND ND ND <td>EthanolEthylene- dibromide$1,2$-DCATBA(8260B)(EDB)(EDC)$(\mug/l)$$(\mug/l)$$(\mug/l)$$(\mug/l)$$(\mug/l)$$(\mug/l)$$(\mug/l)$$(\mug/l)$ND2.0ND<100</td> ND<500	EthanolEthylene- dibromide $1,2$ -DCATBA(8260B)(EDB)(EDC) (\mug/l) (\mug/l) (\mug/l) (\mug/l) (\mug/l) (\mug/l) (\mug/l) (\mug/l) ND2.0ND<100	Ethylene- EthanolEthylene- ($\mu g/l$)Ethanoldibromide $1,2$ -DCATBA($8260B$)(EDB)(EDC)DIPE ($\mu g/l$)($\mu g/l$)ND2.0ND<20	Ethylene- Ethanol dibromide 1,2-DCA TBA (8260B) (EDB) (EDC) DIPE ETBE ($\mu g/l$) ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

		Ethylene-				
	Ethanol	dibromide	1,2-DCA			
TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
ntinued						
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
ND	ND			ND	ND	ND
ND	ND			ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND
ND<100	ND<1000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	ND<500					
	ND<500					
	ND<50					
	ND<50					
	ND<50					
	ND<50					
	ND<50					
	TBA (μg/l) ntinued ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<20 	Ethanol TBA (8260B) (µg/l) (µg/l) ntinued ND<10	Ethanol Ethylene- Ethanol dibromide TBA (8260B) (EDB) (µg/l) (µg/l) (µg/l) ntinued ND<10	Ethanol Ethylene- Ethanol dibromide 1,2-DCA TBA (8260B) (EDB) (EDC) (µg/l) (µg/l) (µg/l) (µg/l) mtinued ND<10	Ethylene- Ethanol dibromide 1,2-DCA TBA (8260B) (EDB) (EDC) DIPE $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ ntinued ND<10	Ethanol dibromide 1,2-DCA TBA (8260B) (EDB) (EDC) DIPE ETBE (µg/) (µg/) (µg/) (µg/) (µg/) (µg/) ntinued ND<10

Date Sampled		Ethanol	Ethylene- dibromide	1,2-DCA			
	TBA (ug/l)	(8260B) (ug/l)	(EDB) (µg/l)	(EDC) (ug/l)	DIPE (ug/l)	ETBE (ug/l)	TAME (ug/l)
MW 2	mtinued	(18.1)	(118/1)	(18)-)	(m8/1)	(1.8.1)	(1.8,1)
9/27/05		ND<250					
12/30/05		ND<250					
3/8/06		ND<250					
6/8/06		ND<250					
9/15/06		ND<250					
12/22/06		ND<250					
3/28/07		ND<250					
6/25/07		ND<250					
9/22/07		ND<250					
12/14/07		ND<250					
3/26/08		ND<250					
6/20/08		ND<250					
9/19/08		ND<250					
12/22/08		ND<250					
3/27/09		ND<250					
9/30/09		ND<250					
3/17/10		ND<250					
MW-3							
8/24/00	ND	ND			ND	ND	ND
11/16/00	ND	ND			ND	ND	ND
2/9/01	ND	ND	ND	ND	ND	ND	ND
5/11/01	ND	ND	ND	ND	ND	ND	ND
8/10/01	ND<100	ND<1000000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
11/7/01	ND<20	ND<500000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
8/9/02			ND	ND			

Date Sampled	TBA	Ethanol	Ethylene- dibromide	1,2-DCA	DIPE	FTRE	TAME
	(µg/l)	(8200B) (µg/l)	(LDB) (µg/l)	(EBC) (µg/l)	(μg/l)	(µg/l)	(µg/l)
MW-3 co	ntinued						
11/29/02			ND	ND			
2/3/03			ND<2.0	ND<2.0			
5/5/03			ND<1.0	ND<1.0			
11/13/03		ND<500					
1/29/04		ND<500					
5/7/04		ND<50					
8/27/04		ND<50					
11/23/04		ND<50					
2/9/05		ND<50					
6/16/05		ND<50					
9/30/05		ND<250					
12/30/05		ND<250					
3/8/06		ND<250					
6/8/06		ND<250					
9/15/06		ND<250					
12/22/06		ND<250					
3/28/07		ND<250					
6/25/07		ND<250					
9/22/07		ND<250					
12/14/07		ND<250					
3/26/08		ND<250					
6/20/08		ND<250					
9/19/08		ND<250					
12/22/08		ND<250					
3/27/09		ND<250					

CTRC

Date			Ethylene-							
Sampled		Ethanol	dibromide	1,2-DCA						
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME			
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)			
MW-3 co	ontinued									
9/30/09		ND<250								
3/17/10		ND<250								

FIGURES

MS=1:40 0018-003 L:IGraphics\QMS NORTH-SOUTH\x-0000\0018+\0018-QMS-(NEW).DWG Mar 30, 2010 - 10:29am bschmidt

GRAPHS

Groundwater Elevations vs. Time 76 Station 0018

Benzene Concentrations vs Time 76 Station 0018

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ¹/₂-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

FIELD MONITORING DATA SHEET

. }.

Technician: A. Wilkes	Job #/Task #: _	173845 FAZO	Date: <u>03/17/10</u>
Site #00\8	Project Manager_	A. Collins	Pageof

			T-4-1	Depth	Depth	Product	Time		
Well#	тос	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes	
MW-3	1	1057	30.22	15.39			1128	7"	
MW-Z	.J	1101	29.54	16.43	a gi a gi di		1143	Z ''	
Mw-1	<u> </u>	i106	30.00	15.63	disparation	Constanting of the second	1207	2"	
FIELD DATA	A COMPL	ETE	QA/QC	;	COC	W	ELL BOX C	ONDITION SHEETS	
MANIFEST	MANIFEST DRUM INVENTORY TRAFFIC CONTROL								

GROUNDWATER SAMPLING FIELD NOTES Vidulus

Å.

Site: 0018 Project No.:	173845	Date: 03/17/16
Well No	Purge Method:Sub	۶ ۱
Depth to Water (feet):	Depth to Product (feet):	
Total Depth (feet) 30.22	LPH & Water Recovered (gallons):	
Water Column (feet): 4,83	Casing Diameter (Inches):2	
80% Recharge Depth(feet): 18.36	1 Well Volume (gallons):3	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Pre-Purge								
1118			3	625.3	18.7	6.25			
	-		b	608.9	18.9	6.22			
	1123		9	581.1	19.2	6.26			
	-								
Stati	c at Time Sa	ampled	Tota	Sample Time					
	18.36			1128					
Comments	:			5	· · · · · · · · · · · · · · · · · · ·				
				· ·					

Well No	MW-2	
Depth to Water	(feet):	16.43
Total Depth (fee	et)	29.54
Water Column (i	feet):	13.11
80% Recharge I	Depth(fe	et):9.05

Purge Method:	Sub
Depth to Product (feet):	
LPH & Water Recovered (gallo	ons):
Casing Diameter (Inches):	2
1 Well Volume (gallons):	3

•

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge								
1135			3	511.6	19.7	6.43			
			ko .	513.	19.7	6.41			
	1139		9	511.5	20.0	6-36			
	•								
Stati	c at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	4
	17.33			9	-	1143			
Comments									
		· · · · · · · · · · · · · · · · · · ·		++++					····

GROUNDWATER SAMPLING FIELD NOTES

	Technician:	A. Vidueus		
Site: 00\8	Project No.:	13845	Date:	03/17/10
Well No		Purge Method:	ю	
Depth to Water (feet):	15.63	Depth to Product (feet):	Construction of the second sec	
Total Depth (feet)	30.00	LPH & Water Recovered (gallons	;):	
Water Column (feet):	14.37	Casing Diameter (Inches):	Z	
80% Recharge Depth(feet):_	18,50	1 Well Volume (gallons):	3.	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge					1			
1250 115	0		3	682.0	21.1	6.4.0			
			6	701.4.	20.9	6.38			
	1155		9	706.3	20.9	6.42			
Stati	l ic at Time Sa	ampled	Tota	l al Gallons Pur	ged	<u> </u>	Sample	Time	l
	18.50	>		9			1207	1	
Comments	•					· · · · · · · · · · · · · · · · · · ·			

Well No._____

Purge Method:_____

Depth to Water (feet):_____

Total Depth (feet)_____

Water Column (feet):_____

80% Recharge Depth(feet):_____

Depth to Product (feet):_____

LPH & Water Recovered (gallons):_____

.

Casing Diameter (Inches):_____

1 Well Volume (gallons):_____

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge								
							·		
Stat	c at Time Sa	ampled	Tota	al Gallons Pur	ged	Sample Time			I
Comments	•								

Date of Report: 03/23/2010

Anju Farfan

TRC

123 Technology Drive Irvine, CA 92618

 RE:
 0018

 BC Work Order:
 1003718

 Invoice ID:
 B077538

Enclosed are the results of analyses for samples received by the laboratory on 3/17/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

olly mayers

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

	Environmental Testing Labo	pratory Since 1949				
TRC 123 Technology Irvine, CA 92618	Drive		Project: Project Number: Project Manager:	Reported: 03/23/2010 16:27		
			Laboratory / Client San	nple Cross Refe	erence	
Laboratory	Client Sample Information	n				
1003718-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0018 MW-3 TRCI		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/17/2010 20:45 03/17/2010 11:28 Water	Delivery Work Order: Global ID: T0600102231 Location ID (FieldPoint): MW-3 Matrix: W Sample QC Type (SACode): CS Cooler ID:
1003718-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0018 MW-2 TRCI		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/17/2010 20:45 03/17/2010 11:43 Water	Delivery Work Order: Global ID: T0600102231 Location ID (FieldPoint): MW-2 Matrix: W Sample QC Type (SACode): CS Cooler ID:
1003718-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0018 MW-1 TRCI		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/17/2010 20:45 03/17/2010 12:07 Water	Delivery Work Order: Global ID: T0600102231 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:

BC Laboratories, Inc.

ML

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1003718-01	Client Sample	e Name:	0018, MW-3, 3/17/2	010 11:28:00	AM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Toluene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368		
Toluene-d8 (Surrogate)	95.4	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368		
4-Bromofluorobenzene (Surrogate)	97.7	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:34	KEA	MS-V12	1	BTC1368		

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1003718-02	Client Sample	e Name:	0018, MW-2, 3/17/2	010 11:43:00	AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Toluene	ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368		
Toluene-d8 (Surrogate)	89.8	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368		
4-Bromofluorobenzene (Surrogate)	96.5	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 22:15	KEA	MS-V12	1	BTC1368		

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1003718-03	Client Sample	e Name:	0018, MW-1, 3/17/2	010 12:07:00	PM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Methyl t-butyl ether		11	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Toluene		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Ethanol		ND	ug/L	250	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
Total Purgeable Petrole Hydrocarbons	um	320	ug/L	50	Luft-GC/MS	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368	ND	
1,2-Dichloroethane-d4 (S	urrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368		
Toluene-d8 (Surrogate)		97.5	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368		
4-Bromofluorobenzene (Surrogate)	108	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/10	03/22/10 21:57	KEA	MS-V12	1	BTC1368		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

TRC 123 Technology Drive Irvine, CA 92618 Project: 0018

Reported: 03/23/2010 16:27

Project Number: 4512968258

Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	<u>ol Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BTC1368	Matrix Spike	1003610-08	ND	24.350	25.000	ug/L		97.4		70 - 130
		Matrix Spike Duplicate	1003610-08	ND	23.420	25.000	ug/L	3.9	93.7	20	70 - 130
Toluene	BTC1368	Matrix Spike	1003610-08	ND	23.940	25.000	ug/L		95.8		70 - 130
		Matrix Spike Duplicate	1003610-08	ND	23.060	25.000	ug/L	3.7	92.2	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BTC1368	Matrix Spike	1003610-08	ND	9.9600	10.000	ug/L		99.6		76 - 114
		Matrix Spike Duplicate	1003610-08	ND	9.8000	10.000	ug/L		98.0		76 - 114
Toluene-d8 (Surrogate)	BTC1368	Matrix Spike	1003610-08	ND	10.110	10.000	ug/L		101		88 - 110
		Matrix Spike Duplicate	1003610-08	ND	10.000	10.000	ug/L		100		88 - 110
4-Bromofluorobenzene (Surrogate)	BTC1368	Matrix Spike	1003610-08	ND	10.010	10.000	ug/L		100		86 - 115
		Matrix Spike Duplicate	1003610-08	ND	9.9200	10.000	ug/L		99.2		86 - 115

TRC 123 Technology Drive Irvine, CA 92618 Project: 0018

Reported: 03/23/2010 16:27

Project Number: 4512968258 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

							Control Limits						
					Spike			Percent		Percent			
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Benzene	BTC1368	BTC1368-BS1	LCS	22.300	25.000	0.50	ug/L	89.2		70 - 130			
Toluene	BTC1368	BTC1368-BS1	LCS	21.360	25.000	0.50	ug/L	85.4		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BTC1368	BTC1368-BS1	LCS	10.230	10.000		ug/L	102		76 - 114			
Toluene-d8 (Surrogate)	BTC1368	BTC1368-BS1	LCS	10.060	10.000		ug/L	101		88 - 110			
4-Bromofluorobenzene (Surrogate)	BTC1368	BTC1368-BS1	LCS	9.8400	10.000		ug/L	98.4		86 - 115			

TRC	Project:	0018
123 Technology Drive	Project Number:	4512968258
Irvine, CA 92618	Project Manager:	Aniu Farfan

Reported: 03/23/2010 16:27

Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL M	DL Lab Quals
Benzene	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
1,2-Dibromoethane	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
1,2-Dichloroethane	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Ethylbenzene	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Methyl t-butyl ether	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Toluene	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Total Xylenes	BTC1368	BTC1368-BLK1	ND	ug/L	1.0	
t-Amyl Methyl ether	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
t-Butyl alcohol	BTC1368	BTC1368-BLK1	ND	ug/L	10	
Diisopropyl ether	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Ethanol	BTC1368	BTC1368-BLK1	ND	ug/L	250	
Ethyl t-butyl ether	BTC1368	BTC1368-BLK1	ND	ug/L	0.50	
Total Purgeable Petroleum Hydrocarbons	BTC1368	BTC1368-BLK1	ND	ug/L	50	
1,2-Dichloroethane-d4 (Surrogate)	BTC1368	BTC1368-BLK1	102	%	76 - 114 (LCL - U	CL)
Toluene-d8 (Surrogate)	BTC1368	BTC1368-BLK1	99.1	%	88 - 110 (LCL - U	CL)
4-Bromofluorobenzene (Surrogate)	BTC1368	BTC1368-BLK1	99.1	%	86 - 115 (LCL - U	CL)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

E	C Laboratories, Inc.		
TRC 123 Technology Drive Irvine, CA 92618		Project: 0018 Project Number: 4512968258 Project Manager: Anju Farfan	Reported: 03/23/2010 16:27
Notes	And Definitions		
MDL	Method Detection Limit		
ND	Analyte Not Detected at or above the reporting limit		
PQL	Practical Quantitation Limit		

1 1

RPD Relative Percent Difference

LABORATORIES INC.														
Submission #: $0.0.5/10$			1			SHIPPI			<u> </u>					
	ALION and Deliv	rerv 🛙		lc	e Chest		None							
Clab Field Service A Other (Specify)					Box D Other D (Specify)									
		and Divergence is being the many statement of				and an advertised of the second dataset and			Anna Christen and Anna Anna Anna Anna Anna Anna Anna					
Refrigerant: Ice 🖉 Blue Ice 🗆	None	🗆 Oth	ner 🗆 🛛 🖸	Comments	s:				<u></u>					
Sustady Saals Ice Chest	Containe	rs 🗆	None 🕅	Commer	nts:									
Intact? Yes D No D	ntact? Yes													
All samples received? Yes A No A	ll samples	containers	s intact? Ye	No C)	Descrip	tion(s) mate	h COC? Ye	\$∕€PN0 □					
		G.F.	0	<u>–</u> –––––––––––––––––––––––––––––––––––		10:41	1.2	Deterrition	Zhilm	~				
COC Received Em	issivity:신		ontainer:	<u>× \ 1/ </u>	nermomete		<u>c. 9</u>	Daternine	- Aline	LIOC				
Ø/YES □ NO Ter	nperature:	A 4	<u>. S</u> .	с / с	MB_	°C		Analyst In	it <u>X</u>					
					SAMPLEN	JUMBERS								
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10				
T GENERAL MINERAL/ GENERAL PHYSICAL														
PT PE UNPRESERVED														
OT INORGANIC CHEMICAL METALS			_											
PT INORGANIC CHEMICAL METALS														
PT CYANIDE														
PT NITROGEN FORMS														
PT TOTAL SUI.FIDE	ļ									· · · ·				
202. NITRATE / NITRITE										· · ·				
PT TOTAL ORGANIC CARBON								· · · · · · · · · · · · · · · · · · ·						
PT TQX		· · · · · · · · · · · · · · · · · · ·	·											
PT CHEMICAL OXYGEN DEMAND	 					<u></u>	- 2, 2, 4, 4							
PTA PHENOLICS							· · ·							
40ml VOA VLAL TRAVEL BLANK	A Z	3 A 3	A 13	ζ ι ι	1) () . () ()	(1	(
40ml VOA VIAL					•	•• :								
PT ODOR						1999 - C				ļ				
RADIOLOGICAL														
BACTERIOLOGICAL					ļ			-	<u> </u>					
40 ml VOA VLAL- 504							_			1				
QT EPA 508/608/8080	_	_							+					
QT EPA 515.1/8150														
QT EPA 525	_													
QT EPA 525 TRAVEL BLANK								_	+	1				
100ml EPA 547				-	· · · · ·	_				1				
100mi EPA 531.1								-						
QT EPA 548	-				-	-		-						
QT EPA 549														
Q1 EPA 632	-													
	-			-										
KOZ LAD		-			-									
32 OZ. JAR														
SOIL SLEEVE														
PCB VIAL														
PLASTIC BAG														
FERROUS IRON										_				
ENCORE									<u></u>	<u> </u>				

10-03718 BC LABORATORIES, INC. 4100 Atlas Court (661) 327-4911 Bakersfield, CA 93308 FAX (661) 327-1918					D8 CHAIN OF CUSTODY										
						Ana	aly	sis	Red	ງມອ	este)d			
Bill to: Co	onoco Phillips/ TRC	Consultant Firm: TR	MATRIX	5				by B260F							
Address:	6201 Claremont Ave	21 Technology Driv Irvine, CA 92618-230 Attn: Anju Farfan	e)2	Ground- water (S) Soil	, Gas by 801			full list w/ oxygenates	' 8260B, EDB			B			luested
City:	3akland	4-digit site#: 06ほ Workorder # 0062	3-4512968258	(WW) Waste- water	y 8021B	3015M	oy 8015		/MTBE/OXYS BY	8260B	C/MS	by 8261			ime Rec
State: CA	Zip:	Project #: 17384	15	(SL) Sludge	/MTBE b	by 8				- by	V G(Ë			nd L
Conoco P	Phillips Mgr: Terry Gray!	on Sampler Name: An	drew Vidiers			BAS				ION	р С	MTT /			arou
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX	ЧЧ	НЦ	8260	BTEX	ЕТНА	Hd	XJLA			Turnë
-1		Mw-3	03/17/16 1128	GW						\times	X	X			STP
-2		MW-Z	1 143									X			
3		MW-1	1207						X	V	\vee				\checkmark
								107							
					_						 				
										<u></u>					
Comments: Relinquished by: (Signature)			Signature)		Received by: Date & Time				1 <u>4</u> 3	8					
Relinquished by: (Signature)			Signature) 3/1=	2/10	Received by: Date & Time			ime	17	30					
GLOBAL I	7060010223	Relinquished by: (S	Relinquished by: (Signature) 347.10			Rec	Leceived by:			Date & Time 3-17-70 2042					
<u>.</u>							v -	\bigcirc							

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells is accumulated at TRC's groundwater monitoring field office at Concord, California, for transportation by a licensed carrier to an authorized disposal facility. Currently, non-hazardous purge water is transported under a bulk non-hazardous waste manifest to Crosby and Overton, Inc. in Long Beach, California.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.