

RECEIVED

10:35 am, Jan 28, 2010

Alameda County Environmental Health ARCADIS U.S., Inc.
100 Montgomery Street, Suite 300
San Francisco, California 94105
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

Re: Fourth Quarter 2009 Ground-Water Monitoring Report Former BP Station #11124 3315 High Street Oakland, California ACEH Case #RO0000239

ENVIRONMENTAL

"I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Date:

01/19/2010

Contact:

Hollis E. Phillips

Phone:

415.374.2744 ext 13

Email:

Hollis.phillips@arcadisus.com

Our ref:

GP09BPNA.C113

Submitted by:

ARCADIS U.S., Inc.

Hollis E. Phillips, PG Project Manager

Fourth Quarter 2009 Ground-Water Monitoring Report

Former BP Station #11124 3315 High Street, Oakland, California ACEH Case #RO0000239

Prepared for

Ms. Hollis Phillips, PG Senior Geologist ARCADIS-US, Inc. 100 Montgomery Street, Ste. 300 San Francisco, California 94104

On behalf of
Atlantic Richfield Company
PO Box 1257
San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

19 January 2010

Project No. 09-88-652

19 January 2010

Project No. 09-88-652

ARCADIS-US, Inc. 100 Montgomery Street, Ste. 300 San Francisco, CA 94104

Attn.: Ms. Hollis Phillips, PG - Senior Geologist

Fourth Quarter 2009 Ground-Water Monitoring Report, Former BP Station #11124, Re:

3315 High Street, Oakland, California; ACEH Case # RO0000239

Dear Ms. Phillips:

Attached is the Fourth Quarter 2009 Ground-Water Monitoring Report for Former BP Station #11124 located at 3315 High Street, Oakland California (Site). This report presents a summary of results from ground-water monitoring and sampling conducted at the Site during the Fourth Quarter of 2009.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Jason Duda **Project Scientist**

Thomas A. Venus, P.E.

Senior Engineer

Enclosures

Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site) cc: Ms. Shelby Lathrop, ConocoPhillips, 76 Broadway, Sacramento, California 95818 Electronic copy uploaded to GeoTracker

> NEVADA **ARIZONA CALIFORNIA TEXAS**

STATION #11124 GROUND-WATER MONITORING REPORT

Facility: #11124 Address: 3315 High Street, Oakland, California

ARCADIS Project Manager: Ms. Hollis Phillips, PG

Consulting Co./Contact Persons: Broadbent & Associates, Inc.(BAI)/Jason Duda & Tom Venus

(530) 566-1400

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case # RO0000239

Consultant Project No.: 09-88-652

Facility Permits/Permitting Agency: None

WORK PERFORMED THIS QUARTER (Fourth Quarter 2009):

1. Submitted *Third Quarter 2009 Ground-Water Monitoring Report* (BAI, 10/5/2009).

2. Conducted ground-water monitoring/sampling for Fourth Quarter 2009. Work performed by BAI on 28 October 2009.

WORK PROPOSED FOR NEXT QUARTER (First Quarter 2010):

1. Prepared and submitted Fourth Quarter 2009 Ground-Water Monitoring Report (contained herein).

2. No environmental work is scheduled to be conducted at the Site during the First Quarter of 2010.

QUARTERLY RESULTS SUMMARY:

Current phase of project: Ground-Water Monitoring/Sampling

Frequency of ground-water Semi-Annually (20 & 40): Wells MW-1, MW-2, MW-4,

monitoring: MW-5 and MW-6

Frequency of ground-water Semi-Annually (2Q & 4Q): Wells MW-1, MW-5 and MW-6

sampling: Annually (20): Wells MW-2 and MW-4

Is free product (FP) present on-site: No

Current remediation techniques: NA

Depth to ground water (below TOC): 9.38 ft (MW-4) to 10.34 ft (MW-1)

General ground-water flow direction: Southwest

Approximate hydraulic gradient: 0.01 ft/ft

DISCUSSION:

Fourth quarter 2009 ground-water monitoring/sampling was conducted at Former BP Station #11124 on 28 October 2009 by BAI personnel. Water levels were gauged in the five wells at the Site. No irregularities were noted during water level gauging. Depth-to-water level measurements ranged from 9.38 ft at MW-4 to 10.34 ft at MW-1. Resulting ground-water surface elevations ranged from 147.00 ft above datum at well MW-1 to 144.96 ft at well MW-2. Ground-water monitoring field data sheets are provided within Appendix A. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. A Site Location Map is provided as Drawing 1. Potentiometric ground-water elevation contours are presented in Drawing 2.

Consistent with the current ground-water sampling schedule, water samples were collected from wells MW-1, MW-5, and MW-6. No irregularities were reported during sampling. Samples were submitted to TestAmerica Laboratories, Inc. (Pleasanton, California) under chain-of-custody protocol for laboratory analysis of Gasoline Range Organics (GRO, C6-C12); Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX); Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Ethanol, 1,2-Dichloroethane (1,2-DCA), 1,2-Dibromomethane (EDB), Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol

(TBA), and Tert-Amyl Methyl Ether (TAME) by EPA Method 8260B. No significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

GRO was detected above the laboratory reporting limit in two of the three wells sampled at concentrations of 81 micrograms per liter (μ g/L) in well MW-6 and 370 μ g/L in well MW-5. MTBE was detected above the laboratory reporting limit in two of the three wells sampled at concentrations of 120 μ g/L in well MW-6 and 830 μ g/L in well MW-5. TBA was detected above the laboratory reporting limit in two of the three wells sampled at concentrations of 6.5 μ g/L in well MW-6 and 37 μ g/L in well MW-5. TAME was detected above the laboratory reporting limit in well MW-5 at a concentration of 3.1 μ g/L. Remaining fuel constituents were not detected above their respective laboratory reporting limits in the three wells sampled this quarter. Historic laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation pages are provided in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS:

Water level elevations were between historic minimum and maximum ranges for each well, as summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the southwest at approximately 0.01 ft/ft, consistent with historical data (see Table 3). Detected analyte concentrations were within the historic minimum and maximum ranges recorded for each well with the exception of a recorded historic maximum of TBA in well MW-6. No environmental work is currently scheduled to be conducted at the Site during the First Quarter of 2010. Semi-annual ground-water monitoring and sampling will be conducted during the Second Quarter of 2010.

CLOSURE:

The findings presented in this report are based upon: observations of BAI field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by TestAmerica Laboratories, Inc. (Pleasanton, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARCADIS-US, Inc. and Atlantic Richfield Company (a BP affiliated company). It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

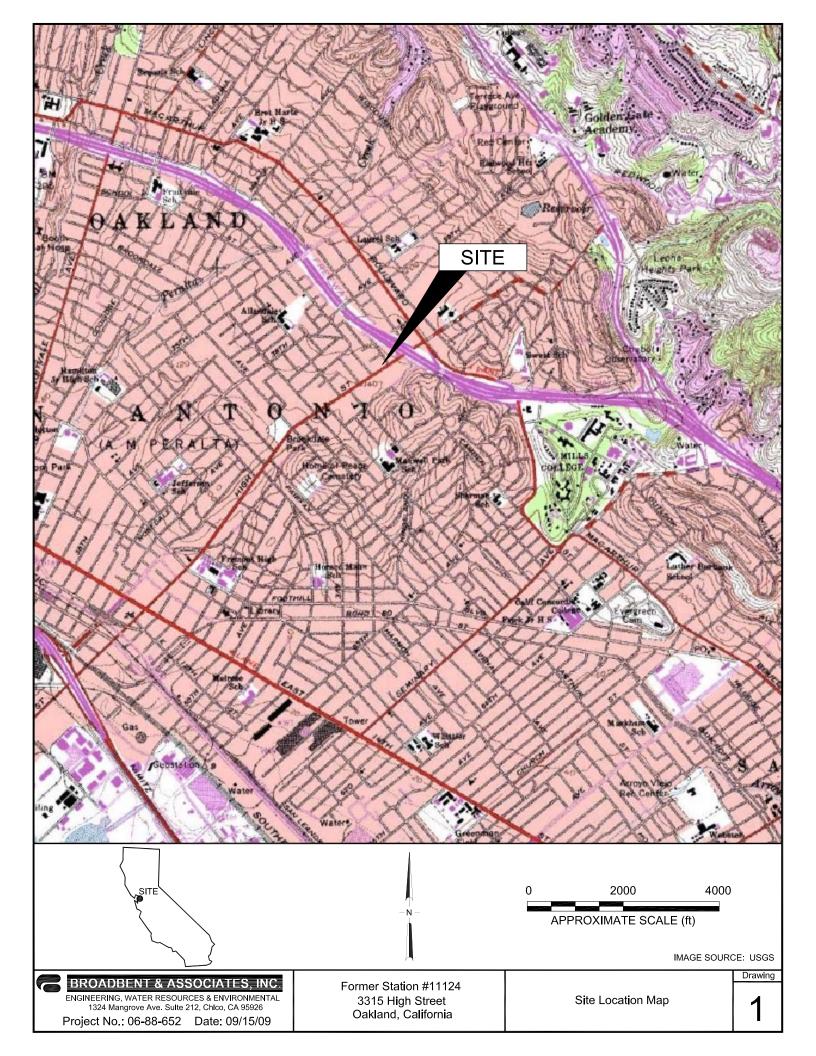

- Drawing 1. Site Location Map, Former BP Service Station #11124, 3315 High St., Oakland, California
- Drawing 2. Ground-Water Elevation Contours and Analytical Summary Map, 28 October 2009, Former BP Service Station #11124, 3315 High Street, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Former BP Service Station #11124, 3315 High St., Oakland, California

Table 2. Summary of Fuel Additives Analytical Data, Former BP Service Station #11124, 3315 High St., Oakland, California

Table 3. Historical Ground-Water Flow Direction and Gradient, Former BP Service Station #11124, 3315 High St., Oakland, California

Appendix A. BAI Ground-Water Sampling Data Package (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)

Appendix B. GeoTracker Upload Confirmation Receipts



Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

			тос		Product	Water Level		C		: (/						DRO/	
Well and			Elevation	DTW	Thickness	Elevation	GRO/		псентан	ons in (µg/l Ethyl-	Total		DO			TPHd	TOG
Sample Date	P/NP	Footnote	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(μg/L)	(μg/L)
MW-1															_		
10/19/2004	P		154.99	10.50		144.49	<50	<0.50	< 0.50	<0.50	<0.50	14	0.96	SEQM	6.9		
01/13/2005	P		154.99	9.00		145.99	<50	<0.50	< 0.50	<0.50	< 0.50	33	2.5	SEQM	6.4		
02/24/2006	P	С	154.99	10.42		144.57	55	<0.50	< 0.50	<0.50	<0.50	51		SEQM	6.8		
5/30/2006	P		154.99	10.94		144.05	50	<0.50	< 0.50	<0.50	< 0.50	58		SEQM	6.6		
8/28/2006	P		154.99	10.61		144.38	50	<0.50	< 0.50	<0.50	<0.50	< 0.50		TAMC	7.0		
11/2/2006	P		154.99	10.83		144.16	<50	<0.50	< 0.50	<0.50	< 0.50	9.8	1.40	TAMC	6.99		
2/6/2007	P	d	157.34	9.88		147.46	<50	<0.50	< 0.50	<0.50	< 0.50	1.1	2.76	TAMC	7.10		
3/13/2007	P		157.34	9.62		147.72							2.63	TAMC	7.30	<48	
5/8/2007	P		157.34	9.62		147.72	<50	<0.50	< 0.50	<0.50	<0.50	19	2.65	TAMC	7.01	<49	
8/7/2007	P		157.34	10.82		146.52	<50	< 0.50	< 0.50	< 0.50	< 0.50	5.0	3.15	TAMC	7.33	<49	
11/13/2007			157.34	10.52		146.82							4.79	TAMC	6.58	<48	
12/20/2007	NP	e	157.34	10.47		146.87	<50	< 0.50	< 0.50	< 0.50	< 0.50	10	1.14	TAMC	6.97		
2/29/2008	P		157.34	9.32		148.02	<50	<0.50	< 0.50	<0.50	< 0.50	7.4	3.14	CEL	7.64	<50	
5/23/2008	P		157.34	10.73		146.61	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.76	CEL	6.83	<50	
8/20/2008	P		157.34	11.35		145.99	<50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	4.01	CEL	6.73	<50	
11/13/2008	P		157.34	10.73		146.61	<50	<0.50	< 0.50	<0.50	< 0.50	0.92	3.96	CEL	7.07		
2/5/2009	P		157.34	10.43		146.91	<50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	3.20	CEL	7.10		
5/14/2009	NP		157.34	9.77		147.57	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.6	1.63	CEL	6.43		
8/4/2009	P		157.34	11.31		146.03	<50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	1.59	CEL	7.31		
10/28/2009	P		157.34	10.34		147.00	<50	<0.50	<0.50	<0.50	<1.0	<0.50	2.09	TAMC	6.7		
MW-2																	
10/19/2004		b	152.02	9.45		142.57											
01/13/2005	P		152.02	6.43		145.59	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.47	SEQM	6.4		
02/24/2006	P		152.02	7.88		144.14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.7		
5/30/2006	P		152.02	7.98		144.04	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.7		
8/28/2006	P		152.02	9.38		142.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		TAMC	6.7		
11/2/2006			152.02	9.85		142.17											
2/6/2007	P	d	154.35	8.40		145.95	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5.10	TAMC	7.02		
3/13/2007	P		154.35	7.55		146.80							4.83	TAMC	7.17	52	
5/8/2007	P		154.35	7.70		146.65	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.40	TAMC	7.12	<48	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

			mod		D 1 (TT 4 T 1				•						DDO/	
Well and			TOC Elevation	DTW	Product Thickness	Water Level Elevation	GRO/	C	oncentration	ons in (µg/l Ethyl-	L) Total		DO			DRO/ TPHd	TOG
Sample Date	P/NP	Footnote	(feet)	(feet)	(feet)	(feet)	TPH ₂	Benzene	Toluene	Benzene	Xvlenes	MtBE	(mg/L)	Lab	рΗ	111α (μg/L)	(μg/L)
	1/111	Toothote	(Icct)	(Icci)	(Icci)	(ICCI)	IIIIg	Denzene	Totache	Denzene	zyrenes	WIDE	(mg/L)	Lab	pii	(µg/L)	(μg/L)
MW-2 Cont.																	
8/7/2007	P		154.35	9.77		144.58	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.47	TAMC	7.19	<47	
11/13/2007			154.35	9.30		145.05							4.90	TAMC	7.02	<48	
12/20/2007	NP	e	154.35	9.34		145.01	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.62	TAMC	7.44		
2/29/2008	P	f	154.35	7.35		147.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.39	CEL	7.76	64	
5/23/2008	P		154.35	9.28		145.07	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.93	CEL	7.07	< 50	
8/20/2008	P		154.35	10.74		143.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.0	CEL	6.91	< 50	
11/13/2008	P		154.35	10.11		144.24	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.03	CEL	7.00		
2/5/2009			154.35	9.41		144.94											
5/14/2009	NP		154.35	8.52		145.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.69	CEL	6.67		
8/4/2009			154.35	10.58		143.77											
10/28/2009			154.35	9.39		144.96										-	
MW-4																	
10/19/2004	P		152.77	9.55		143.22	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.82	SEQM	7.0		
01/13/2005		a	152.77														
02/24/2006	P		152.77	7.86		144.91	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	7.1		
5/30/2006	P		152.77	8.04		144.73	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.9		
8/28/2006	P		152.77	9.36		143.41	< 50	< 0.50	< 0.50	< 0.50	< 0.50	16		TAMC	6.5		
11/2/2006	P		152.77	9.92		142.85	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.23	TAMC	6.79		
2/6/2007	P	d	155.10	8.40		146.70	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.43	TAMC	7.10		
3/13/2007	P		155.10	7.56		147.54							2.53	TAMC	7.18	<49	
5/8/2007	P		155.10	7.68		147.42	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.78	TAMC	7.28	<48	
8/7/2007	P		155.10	9.83		145.27	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.70	TAMC	7.13	<48	
11/13/2007			155.10	9.28		145.82							5.71	TAMC	7.11	<48	
12/20/2007	NP	e	155.10	9.23		145.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.13	TAMC	7.16		
2/29/2008	P		155.10	7.27		147.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.5	4.26	CEL	8.03	< 50	
5/23/2008	P		155.10	9.32		145.78	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.43	CEL	7.11	< 50	
8/20/2008	P		155.10	10.86		144.24	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.01	CEL	7.10	< 50	
11/13/2008	P		155.10	10.23		144.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.97	CEL	7.09		
2/5/2009			155.10	9.32		145.78											
5/14/2009	NP		155.10	8.40		146.70	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.96	CEL	7.02		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

			mod							•	- \					DDG/	
Well and			TOC Elevation	DTW	Product Thickness	Water Level Elevation	GRO/	C	oncentrati	ons in (µg/ Ethvl-	L) Total		DO			DRO/ TPHd	TOG
Sample Date	P/NP	Footnote	(feet)	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(μg/L)	10G (μg/L)
MW-4 Cont.	_,_,		(2223)	()	(222)	(===)					5		(F	(F-8)	(F-8)
8/4/2009			155.10	10.61		144.49											
10/28/2009			155.10	9.38		145.72											
MW-5																	
3/13/2007	P	d	155.45	8.72		146.73	880	< 0.50	< 0.50	< 0.50	< 0.50	1,400	1.84	TAMC	7.36	<48	
5/8/2007	P	с	155.45	8.42		147.03	920	<5.0	< 5.0	<5.0	< 5.0	1,300	3.26	TAMC	7.50	<48	
8/7/2007	P	c	155.45	9.88		145.57	1,300	<10	<10	<10	<10	1,600	3.54	TAMC	7.34	<48	
11/13/2007	P	с	155.45	9.68		145.77	950	<10	<10	<10	<10	1,400	4.68	TAMC	6.99	<48	
2/29/2008	P		155.45	8.15		147.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1,100	4.84	CEL	7.93	< 50	
5/23/2008	P		155.45	9.80		145.65	< 50	<20	<20	<20	<20	1,200	0.49	CEL	6.89	< 50	
8/20/2008	P		155.45	10.88		144.57	< 50	<20	<20	<20	<20	1,200	3.11	CEL	6.80	< 50	
11/13/2008	P		155.45	12.10		143.35	< 50	<20	<20	<20	<20	1,100	2.99	CEL	7.16		
2/5/2009	P		155.45	9.64		145.81	< 50	<20	<20	<20	<20	270	2.87	CEL	7.07		
5/14/2009	P		155.45	9.07		146.38	93	<10	<10	<10	<10	470	1.67	CEL	7.02		
8/4/2009	P		155.45	9.61		145.84	< 50	<20	<20	<20	<20	890	1.60	CEL	7.13		
10/28/2009	P		155.45	9.68		145.77	370	<0.50	<0.50	<0.50	<1.0	830	1.1	TAMC	7.0		
MW-6																	
3/13/2007	P	d	154.59	7.82		146.77	86	< 0.50	<0.50	< 0.50	< 0.50	88	1.92	TAMC	7.21	<48	
5/8/2007	P	c	154.59	7.92		146.67	88	< 0.50	< 0.50	< 0.50	< 0.50	120	1.87	TAMC	7.50	<48	
8/7/2007	P	c	154.59	9.85		144.74	67	< 0.50	< 0.50	< 0.50	< 0.50	85	3.60	TAMC	7.25	<47	
11/13/2007	P	С	154.59	9.71		144.88	67	<1.0	<1.0	<1.0	<1.0	98	4.44	TAMC	7.16	<48	
2/29/2008	P		154.59	8.86		145.73	< 50	< 0.50	< 0.50	< 0.50	< 0.50	130	4.35	CEL	7.82	< 50	
5/23/2008	P		154.59	9.98		144.61	< 50	<2.5	<2.5	<2.5	<2.5	150	0.62	CEL	7.12	<50	
8/20/2008	P		154.59	10.98		143.61	< 50	<2.5	<2.5	<2.5	<2.5	140	2.20	CEL	6.96	<50	
11/13/2008	P		154.59	10.70		143.89	< 50	<2.5	<2.5	<2.5	<2.5	160	2.30	CEL	7.13		
2/5/2009	P		154.59	10.85		143.74	< 50	<2.5	<2.5	<2.5	<2.5	160	2.34	CEL	7.06		
5/14/2009	P		154.59	8.61		145.98	<50	<1.0	<1.0	<1.0	<1.0	66	1.81	CEL	6.98		
8/4/2009	P		154.59	10.37		144.22	< 50	<2.5	<2.5	<2.5	<2.5	140	1.86	CEL	7.27		
10/28/2009	P		154.59	9.48		145.11	81	<0.50	<0.50	< 0.50	<1.0	120		CEL	6.8		

ABBREVIATIONS AND SYMBOLS:

- --- = Not analyzed/measured/applicable
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in ft bgs

GRO = Gasoline range organics

GWE = Groundwater elevation in ft

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing in ft

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

SEQM = Sequoia Analytical Morgan Hill (Laboratory)

FOOTNOTES:

- a = Well inaccessible.
- b = Well is dry.
- c = Hydrocarbon result for GRO partly due to individual peak(s) in quantitative range.
- d = Well survey by Morrow Surveying on 12/27/2006.
- e = Well re-sampled due to insufficient laboratory analysis of previous sampling event on 11/13/2007. The depth to water and resulting water level elevation from 11/13/2007 will be used for reporting purposes for Fourth Quarter 2007.
- f = The hydrocarbon pattern for DRO in the sample does not match that of the diesel standard used to calculate results.

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for DO and pH were obtained through field measurements.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through September 30, 2009. GRO analysis was changed to EPA method 8260B (C6-C12) for the time period October 1, 2009 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and	Concentrations in (μg/L)								
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
10/19/2004	<100	<20	14	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
01/13/2005	<100	<20	33	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/24/2006	<300	<20	51	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	58	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	<20	9.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	1.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	19	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	5.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	7.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	0.92	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/5/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/14/2009	<300	<10	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/4/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
10/28/2009	<100	<4.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
01/13/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and	Concentrations in (μg/L)								
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-2 Cont.									
5/14/2009	<300	<10	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	
MW-4									
10/19/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	1.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/14/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-5									
3/13/2007	<3,000	<200	1,400	<5.0	<5.0	6.5	<5.0	< 5.0	
5/8/2007	<3,000	<200	1,300	< 0.50	< 0.50	7.0	< 0.50	< 0.50	
8/7/2007	<6,000	<400	1,600	<10	<10	<10	<10	<10	
11/13/2007	<6,000	<400	1,400	<10	<10	<10	<10	<10	
2/29/2008	<300	42	1,100	< 0.50	< 0.50	4.9	< 0.50	< 0.50	
5/23/2008	<12,000	<400	1,200	<20	<20	<20	<20	<20	
8/20/2008	<12,000	<400	1,200	<20	<20	<20	<20	<20	
11/13/2008	<12,000	<400	1,100	<20	<20	<20	<20	<20	
2/5/2009	<12,000	<400	270	<20	<20	<20	<20	<20	
5/14/2009	<6,000	<200	470	<10	<10	<10	<10	<10	
8/4/2009	<12,000	<400	890	<20	<20	<20	<20	<20	
10/28/2009	<100	37	830	<0.50	<0.50	3.1	<0.50	< 0.50	
MW-6									

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-6 Cont.									
3/13/2007	<300	<20	88	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	120	< 0.50	< 0.50	0.61	< 0.50	< 0.50	
8/7/2007	<300	<20	85	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2007	<600	<40	98	<1.0	<1.0	<1.0	<1.0	<1.0	
2/29/2008	<300	<10	130	< 0.50	< 0.50	0.71	< 0.50	< 0.50	
5/23/2008	<1,500	< 50	150	<2.5	<2.5	<2.5	<2.5	<2.5	
8/20/2008	<1,500	< 50	140	<2.5	<2.5	<2.5	<2.5	<2.5	
11/13/2008	<1,500	< 50	160	<2.5	<2.5	<2.5	<2.5	<2.5	
2/5/2009	<1,500	< 50	160	<2.5	<2.5	<2.5	<2.5	<2.5	
5/14/2009	<600	<20	66	<1.0	<1.0	<1.0	<1.0	<1.0	
8/4/2009	<1,500	< 50	140	<2.5	<2.5	<2.5	<2.5	<2.5	
10/28/2009	<100	6.5	120	<0.50	<0.50	<0.50	< 0.50	< 0.50	

ABBREVIATIONS AND SYMBOLS:

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromomethane

 $\mu g/L = micrograms per liter$

< = Not detected at or above laboratory reporting limit

NOTES:

All fuel oxygenate compounds are analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #11124, 3315 High St., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
11/12/1990		
7/15/1991	Southwest	0.0174
10/15/1991	Southwest	0.0182
1/15/1992	South-Southwest	0.014
4/17/1992	South	0.014
9/30/1992	South-Southwest	0.018
12/17/1992	North	0.01
3/15/1993	South	0.007
10/19/2004	South-Southwest	0.022
1/13/2005		
2/24/2006	Southeast	0.01
5/30/2006	East-Southeast	0.007
8/28/2006	South	0.012
11/2/2006	South	0.013
3/13/2007	Southwest	0.006
5/8/2007	South-Southwest	0.009
8/7/2007	Southwest	0.01
11/13/2007	Southwest	0.01
12/17/2007	Southwest	0.01
2/29/2008	Southwest	0.009
5/23/2008	Southwest	0.01
8/20/2008	Southwest	0.02
11/13/2008	Southwest	0.02
2/5/2009	Southwest	0.01
5/14/2009	Southwest	0.01
8/4/2009	Southwest	0.02
10/28/2009	Southwest	0.01

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

BAI GROUND-WATER SAMPLING DATA PACKAGE (INCLUDES FIELD DATA SHEETS, LABORATORY ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION, AND FIELD PROCEDURES)

Groundwater Sampling Data Sheet

Well I.D.:			M	W-1					
Project Na	ime/Loc	ation:	BP	1/124	1			Project #	#: 09-88-652
Sampler's	Name:		T. G	eddes	E, G	wer	A CONSTRUCTION OF THE PARTY OF	Date: /	0/28/09
Purging E	quipmer	nt:	Bad	ler					
Sampling	Equipm	ent:	Вæ	iler					
Casing Ty	pe: PVC	:		<i>A</i> 1	ř				
Casing Dia	ameter:				i	nch		*UNIT	CASING VOLUMES
Total Well	Depth:			19:	<u>39 </u>	eet		2"	= 0.16 gal/lin ft.
Depth to \	Water:			- 10.	.34 f	eet		3"	= 0.37 gal/lin ft.
Water Col	umn Th	ickness:		= <u>J.</u>	<u>98</u> f	eet		4"	= 0.65 gal/lin ft.
Unit Casin	g Volun	ne*:		X		allon / fo	oot	6"	= 1.47 gal/lin ft.
Casing Wa	ter Vol	ume:		=	4 9	allons			
Casing Vo	lume:			x	<u>3</u> e	ach		•	
Estimated	Purge \	Volume:		= 4,	<u> </u>	allons			•
Free produ	uct mea	suremer	nt (if pre	esent):					
Purged (gallons)	Time (24:00)	DO	ORP (mV)	Fe	1	ictance (S)	Temperature (Fahrenheit)	рН	Observations
0	1432	2.09	ral		326.		21.4	7.0	
.02	1434	X	×	Χ	323,	9	22.8	6.7	
4	1436	Х	Х	Χ	318.	9	224	6.7	
		Х	Х	X					
		Х	X	Х					
		X	×	Х					
		Х	×	X				·	
		Х	Х	Х					
Total Wate	er Volur	ne Purge	:d:		L		gallons		
Depth to \	Nater at	t Sample	Collect	ion:			feet		
Sample C	ollection	on Time	:		[44	.b		Pur	ged Dry? (Y /🕠)
Comment	s:								
ł									

Groundwater Sampling Data Sheet

Well I.D.:		_	MU	<u>/-5</u>				
Project Na	ame/Loc	ation:	BP	11124			Project #	±: 09.88-652
Sampler's	Name:		1.0	scades	E. Farrar	-		6/28/09
Purging E	quipmer	nt:	Brei					,
Sampling	Equipm	ent:		ler				
Casing Ty	pe: PVC			_	V			
Casing Di	ameter:			2	inch		*UNIT	CASING VOLUMES
Total Wel	l Depth:			29	.0 feet		2"	= 0.16 gal/lin ft.
Depth to	Water:			- 9. E	§ feet		3"	= 0.37 gal/lin ft.
Water Col	lumn Thi	ckness:		= 19.	32 feet		4"	= 0.65 gal/lin ft.
Unit Casir	ng Volum	ne*:		×	gallon / fe	oot	6"	= 1.47 gal/lin ft.
Casing Wa	ater Volu	ıme:		= 3. (gallons			
Casing Vo	lume:				3 each			
Estimated	l Purge \	/olume:		= 9.	3 gallons			
Free prod	uct mea	suremer	nt (if pr	esent):				
Purged	Time	DO	ORP	Fe	Conductance	Temperature	рН	Observations
(gallons)	(24:00)	, ,	(mV)		(μS)	*(Fahrenheit)		
D_	14/4	1. mg	<u> </u>		552.6	21.9	7.1	
2	1416	Х	X	Х	533.8	21.9	7.0	
3	1418	Х	Х	Х	5321	21.3	7.0	
		Х	X	X		7		
		Х	Х	Х				
		X	Χ	Х	·	:		
		Х	Χ	X				
		Х	Х	Х				
Total Wat	er Volun	ne Purge	ed:		. 3	gallons		
Depth to	Water at	: Sample	Collec	tion:	14.28	feet		
Sample (Collectio	on Time	:	·	1426		Purg	ged Dry? (Y)N)
Comment	c. 5/n	nella	<u></u>	a DV	***************************************	-		
Comment	<i>3.</i>) <i>[i</i>	دى		7				
					· · · · · · · · · · · · · · · · · · ·			

Groundwater Sampling Data Sheet

Well I.D.:			MW-	6						
Project Na	ame/Loca	ation:	BP 11	124				Project :	#: 09-68-652	
Sampler's	Name:		E. Fan	v T	- 6e0	ol-e		Date: /	d28109	
Purging E	quipmen	t:	Bij/r							
Sampling	Equipme	ent:	D4.10							
Casing Ty	pe: PVC)					
Casing Dia	ameter:			0	hae	inch		*UNI	CASING VOLUMES	
Total Well	Depth:				3 7	_ feet 2 <i>9.</i>	73	2"	= 0.16 gal/lin ft.	
Depth to \	Nater:		***************************************	- 9,	UR	_feet		3"	= 0.37 gal/lin ft.	
Water Col	umn Thi	ckness	:	= <u>20</u>	.25	_feet		4"	= 0.65 gal/lin ft.	
Unit Casin	ig Volum	e*:		x []	<i>f</i>	_gallon / f	oot	6"	= 1.47 gal/lin ft.	
Casing Wa	ater Volu	me:		= 3.	<u> 24 </u>	gallons				
Casing Vo	lume:			x	3	_each				
Estimated	Purge V	olume	r !	= 9.	72	gallons				
Free prod	uct meas	sureme	nt (if pre	esent):						
Purged	Time	DO	ORP	Fe	Cor	nductance	Tempereture	рH	Observations	
(gallons)	(24:00)		(mV)	· · · · · · · · · · · · · · · · · · ·	-	(μS)	(Fahrenheit)			_
0	1350				5	10.9	22.9	6.9		
	[353]	Χ	×	Χ	55	9,5	21.5	6.9		
	135%	Χ	х	Х	56 S	7	2/1	6.8		
		Х	Х	Χ						
		Χ	Х	Х						
		X	Х	Х						
		Χ	X	Х						
		Х	X	Χ			7			
Total Wate	er Volum	ie Purg	ed:				gallons			
Depth to \	Water at	Sampi	e Collect	ion:			feet			
Sample C	ollectio	n Tim	e:			yoe		Pur	ged Dry?(Y (N)	
Comments	s: Wel	l pr	<i>(55</i> 0017	ed.	Allow	ed to	stabal	150		
		1								
					•••					

PROJECT NO.: 89-88-652
COMMENTS: Equip: Geosquirt Tubing Bailers DO wli Ec/pH WELL HEAD CONDITION: Cond. Alk. **MEASURING** PRODUCT Temp. Redox Iron DO (mg/l) Time DTW (FT) ρН Well ID (C/F) THICKNESS VAULT, BOLTS, CAP, LOCK, ETC POINT (X100) (mV) (mg/l) (mg/l) 7.39 9.38 14.48 560 21.5 535 21.7 21.5 7.0 9.68 6.8 10.34 220 MW-1 1432

ANALYTICAL REPORT

Job Number: 720-23728-1

Job Description: BP #11124, Oakland

For:
ARCADIS U.S., Inc.
155 Montgomery Street
Suite 1500
San Francisco, CA 94104

Attention: Hollis Phillips

Approved for releas Dimple Sharma Project Manager I 11/9/2009 4:09 PM

Dimple Sharma
Project Manager I
dimple.sharma@testamericainc.com
11/09/2009

cc: Mr. Jason Duda Mr. Ben McKenna

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-23728-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-5 (720-23728-2).

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-6 (720-23728-3).

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
-					
720-23728-2	MW-5				
Methyl tert-butyl ethe	er	830	10	ug/L	8260B/CA_LUFTMS
TBA		37	4.0	ug/L	8260B/CA_LUFTMS
TAME		3.1	0.50	ug/L	8260B/CA_LUFTMS
Gasoline Range Org	ganics (GRO)-C6-C12	370	50	ug/L	8260B/CA_LUFTMS
720-23728-3	MW-6				
Methyl tert-butyl eth	er	120	0.50	ug/L	8260B/CA LUFTMS
TBA		6.5	4.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Org	ganics (GRO)-C6-C12	81	50	ug/L	8260B/CA_LUFTMS

METHOD SUMMARY

Client: ARCADIS U.S., Inc.

Job Number: 720-23728-1

Description	Lab Location	Method I	Preparation Method
Matrix: Water			
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_	_LUFTMS
Purge and Trap	TAL SF	;	SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-23728-1	MW-1	Water	10/28/2009 1440	10/29/2009 1400
720-23728-2	MW-5	Water	10/28/2009 1420	10/29/2009 1400
720-23728-3	MW-6	Water	10/28/2009 1400	10/29/2009 1400

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Client Sample ID: MW-1

Lab Sample ID: 720-23728-1 Date Sampled: 10/28/2009 1440

Client Matrix: Water Date Received: 10/29/2009 1400

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-60617 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 103109009.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

Date Analyzed: 10/31/2009 1521 Final Weight/Volume: 10 mL

Date Prepared: 10/31/2009 1521

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		67 - 130
Toluene-d8 (Surr)	98		70 - 130

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Client Sample ID: MW-5

Lab Sample ID: 720-23728-2 Date Sampled: 10/28/2009 1420

Client Matrix: Water Date Received: 10/29/2009 1400

8260B/CA	LUFTMS	8260B /	CA L	UFT	MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-60617 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 103109012.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 10/31/2009 1701
 Final Weight/Volume:
 10 mL

Date Prepared: 10/31/2009 1701

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	37		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	3.1		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	370		50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130
Toluene-d8 (Surr)	97		70 - 130

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Client Sample ID: MW-5

Lab Sample ID: 720-23728-2 Date Sampled: 10/28/2009 1420

Client Matrix: Water Date Received: 10/29/2009 1400

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-60704 Instrument ID: HP4

Preparation: 5030B Lab File ID: 11020930.D Dilution: 20 Initial Weight/Volume: 10 mL

Date Analyzed: 11/03/2009 0115 Final Weight/Volume: 10 mL Date Prepared: 11/03/2009 0115

Analyte Result (ug/L) Qualifier RL
Methyl tert-butyl ether 830 10

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9767 - 1301,2-Dichloroethane-d4 (Surr)10267 - 130Toluene-d8 (Surr)9970 - 130

Job Number: 720-23728-1 Client: ARCADIS U.S., Inc.

Client Sample ID: MW-6

Lab Sample ID: 720-23728-3 Date Sampled: 10/28/2009 1400 Client Matrix:

Date Received: 10/29/2009 1400 Water

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-60704 Instrument ID: HP4

Preparation: 5030B Lab File ID: 11020927.D Dilution: Initial Weight/Volume: 10 mL 11/02/2009 2335 Date Analyzed: Final Weight/Volume: 10 mL

Date Prepared: 11/02/2009 2335			
Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	120		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	6.5		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	81		50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130
Toluene-d8 (Surr)	99		70 - 130

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Section	Qualifier	Description
GC/MS VOA		
	4	MS MSD: The analyte present in the original cample is 4 times
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control
		limits are not applicable.

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-606	17				
LCS 720-60617/4	Lab Control Sample	T	Water	8260B/CA_LUFT	
LCS 720-60617/6	Lab Control Sample	T	Water	8260B/CA_LUFT	
LCSD 720-60617/5	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
LCSD 720-60617/7	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-60617/8	Method Blank	Т	Water	8260B/CA_LUFT	
720-23728-1	MW-1	Т	Water	8260B/CA_LUFT	
720-23728-1MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-23728-1MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-23728-2	MW-5	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-607	04				
LCS 720-60704/4	Lab Control Sample	T	Water	8260B/CA_LUFT	
LCS 720-60704/6	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-60704/5	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
LCSD 720-60704/7	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
MB 720-60704/8	Method Blank	T	Water	8260B/CA_LUFT	
720-23728-2	MW-5	T	Water	8260B/CA_LUFT	
720-23728-3	MW-6	Т	Water	8260B/CA_LUFT	
720-23728-3MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-23728-3MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	

Report Basis

T = Total

Quality Control Results

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Method Blank - Batch: 720-60617 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-60617/8 Analysis Batch: 720-60617 Instrument ID: Agilent 75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 103109008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 10/31/2009 1432 Final Weight/Volume: 10 mL Date Prepared: 10/31/2009 1432

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Surrogate	% Rec	Acceptance Lim	its
4-Bromofluorobenzene	93	67 - 130	
1,2-Dichloroethane-d4 (Surr)	101	67 - 130	
Toluene-d8 (Surr)	98	70 - 130	

Quality Control Results

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-60617 Preparation: 5030B

LCS Lab Sample ID: LCS 720-60617/4

Client Matrix: Water Dilution: 1.0

Date Analyzed: 10/31/2009 1219 Date Prepared: 10/31/2009 1219 Analysis Batch: 720-60617

Prep Batch: N/A Units: ug/L Instrument ID: Agilent 75MSD Lab File ID: 103109004.D

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-60617/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 10/31/2009 1252 Date Prepared: 10/31/2009 1252 Analysis Batch: 720-60617

Prep Batch: N/A Units: ug/L Instrument ID: Agilent 75MSD Lab File ID: 103109005.D

Lab File ID: 103109005.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

<u>% Rec.</u>							
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Methyl tert-butyl ether	105	102	66 - 138	2	20		
Benzene	101	110	80 - 130	8	20		
EDB	110	110	70 - 143	0	20		
1,2-DCA	105	108	70 - 133	3	20		
Ethylbenzene	107	117	80 - 139	9	20		
Toluene	103	112	80 - 126	8	20		
TBA	98	117	70 - 130	18	20		
Ethanol	103	125	66 - 160	20	20		
DIPE	104	109	80 - 139	5	20		
TAME	101	102	80 - 131	1	20		
Ethyl t-butyl ether	99	103	70 - 141	4	20		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene		103	101		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)		99	97		6	7 - 130	
Toluene-d8 (Surr)		100	101		7	0 - 130	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-60617 Preparation: 5030B

LCS Lab Sample ID: LCS 720-60617/6

Client Matrix: Water Dilution: 1.0

Date Analyzed:

10/31/2009 1326 Date Prepared: 10/31/2009 1326

Analysis Batch: 720-60617

Prep Batch: N/A

Units: ug/L

Instrument ID: Lab File ID:

Agilent 75MSD 103109006.D

Initial Weight/Volume: Final Weight/Volume:

10 mL 10 mL

LCSD Lab Sample ID: LCSD 720-60617/7

Client Matrix: Water Dilution: 1.0

10/31/2009 1359 Date Analyzed: Date Prepared: 10/31/2009 1359 Analysis Batch: 720-60617

Prep Batch: N/A Units: ug/L

Instrument ID: Lab File ID:

Agilent 75MSD 103109007.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

% Rec.

Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C6-C12	88	89	30 - 130	1			
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	1	01	101		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	1	01	100		6	7 - 130	
Toluene-d8 (Surr)	1	00	100		7	0 - 130	

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-60617 Preparation: 5030B

MS Lab Sample ID: 720-23728-1 Analysis Batch: 720-60617 Instrument ID: Agilent 75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 103109010.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

 Date Analyzed:
 10/31/2009
 1554
 Final Weight/Volume:
 10 mL

 Date Prepared:
 10/31/2009
 1554

MSD Lab Sample ID: 720-23728-1 Analysis Batch: 720-60617 Instrument ID: Agilent 75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 103109011.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 10/31/2009 1628 Final Weight/Volume: 10 mL

Date Prepared: 10/31/2009 1628

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	104	104	60 - 138	0	20		
Benzene	106	108	60 - 140	2	20		
EDB	112	110	60 - 140	2	20		
1,2-DCA	110	112	60 - 140	1	20		
Ethylbenzene	110	113	60 - 140	2	20		
Toluene	105	109	60 - 140	3	20		
TBA	103	107	60 - 140	3	20		
Ethanol	116	135	60 - 140	15	20		
DIPE	112	113	60 - 140	1	20		
TAME	103	103	60 - 140	0	20		
Ethyl t-butyl ether	105	106	60 - 140	1	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
4-Bromofluorobenzene		104	103		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)		100	99		6	7 - 130	
Toluene-d8 (Surr)		101	100		7	0 - 130	

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Method Blank - Batch: 720-60704 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-60704/8 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 11020926.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 11/02/2009 2303 Final Weight/Volume: 10 mL Date Prepared: 11/02/2009 2303

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	96	67 - 130	
1,2-Dichloroethane-d4 (Surr)	97	67 - 130	
Toluene-d8 (Surr)	99	70 - 130	

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-60704 Preparation: 5030B

LCS Lab Sample ID: LCS 720-60704/4 Analysis Batch: 720-60704

Instrument ID: Agilent 75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 11020922.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

11/02/2009 2051 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 11/02/2009 2051

LCSD Lab Sample ID: LCSD 720-60704/5 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD Prep Batch: N/A Lab File ID: Client Matrix: Water 11020923.D

Dilution: Units: ug/L Initial Weight/Volume: 1.0 10 mL 11/02/2009 2126 Date Analyzed: Final Weight/Volume: 10 mL

Date Prepared: 11/02/2009 2126

	(-	<u>% Rec.</u>						
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual	
Methyl tert-butyl ether	95	92	66 - 138	3	20			
Benzene	104	105	80 - 130	1	20			
EDB	105	103	70 - 143	2	20			
1,2-DCA	102	101	70 - 133	2	20			
Ethylbenzene	112	114	80 - 139	2	20			
Toluene	106	107	80 - 126	1	20			
TBA	102	104	70 - 130	2	20			
Ethanol	111	116	66 - 160	5	20			
DIPE	102	104	80 - 139	2	20			
TAME	93	91	80 - 131	2	20			
Ethyl t-butyl ether	96	96	70 - 141	0	20			
Surrogate	L	.CS % Rec	LCSD %	Rec	Accep	tance Limits		
4-Bromofluorobenzene	1	03	102		6	7 - 130		
1,2-Dichloroethane-d4 (Surr)	9	8	97		67 - 130			
Toluene-d8 (Surr)	1	02	102		7	0 - 130		

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-60704 Preparation: 5030B

LCS Lab Sample ID: LCS 720-60704/6 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 11020924.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 11/02/2009 2158 Final Weight/Volume: 10 mL Date Prepared: 11/02/2009 2158

LCSD Lab Sample ID: LCSD 720-60704/7 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 11020925.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL
Date Analyzed: 11/02/2009 2230 Final Weight/Volume: 10 mL

% Rec. Analyte **RPD** LCS LCSD Limit RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C6-C12 91 90 30 - 130 0 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 103 102 67 - 130 1,2-Dichloroethane-d4 (Surr) 100 100 67 - 130 Toluene-d8 (Surr) 102 102 70 - 130

Date Prepared:

11/02/2009 2230

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-60704 Preparation: 5030B

MS Lab Sample ID: 720-23728-3 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 11020928.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

 Date Analyzed:
 11/03/2009
 0009
 Final Weight/Volume:
 10 mL

 Date Prepared:
 11/03/2009
 0009
 10 mL

MSD Lab Sample ID: 720-23728-3 Analysis Batch: 720-60704 Instrument ID: Agilent 75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 11020929.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 11/03/2009 0042 Final Weight/Volume: 10 mL
Date Prepared: 11/03/2009 0042

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	94	23	60 - 138	6	20	4	4
Benzene	104	104	60 - 140	0	20		
EDB	108	103	60 - 140	5	20		
1,2-DCA	107	105	60 - 140	1	20		
Ethylbenzene	108	109	60 - 140	1	20		
Toluene	103	105	60 - 140	2	20		
TBA	102	102	60 - 140	0	20		
Ethanol	130	123	60 - 140	6	20		
DIPE	109	109	60 - 140	0	20		
TAME	111	106	60 - 140	5	20		
Ethyl t-butyl ether	102	99	60 - 140	3	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
4-Bromofluorobenzene		104	104		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)		102	100		6	7 - 130	
Toluene-d8 (Surr)		101	101		7	0 - 130	

San Francisco

1220 Quarry Lane

720-23728 Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Pleasanton, CA 94566

-hono	025	101	1010	for	025	600 20	102

phone 925.484.1919 fax 925.600.3002																			TestAmerica Laboratories, Inc.
Client Contact	Project Manager: Jason Duda			Site Contact: Tway beddes						Date: 15/24/69						COC No:			
Broadbent and Associates, Inc.	Tel/Fax: 53	0-566-1400	/530-566-14	01		Lab Contact: Dimple Sharma							Carrier: T. Geldes						of COCs
Address: 1324 Mangrove Ave. Suite 212		Analysis Tu	rnaround 7	Γime															Job No.
City/State/Zip: Chico, CA 95926	Calendar (C) or Work Days (W)																		
(530) 566-1400 Phone		AT if different f	rom Below 5	-anda	Ar														
(530) 566-1401 FAX		2	weeks										1				1		SDG No.
Project Name: BP 11124		1	week				1							1					
Site: 3315 High Street, Oakland, CA		2	days			a			CA		11								
P O # GP09BPNA.C113		1	day			Sampl		tes	1,2-D							1			
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered Sam	BTEX	5 Oxygenates	EDB and 1,2-DC	Ethanol									Sample Specific Notes:
MW-1	18/28/09	1440		40	6V	X	X	Х	х	Х									
MW-5		1420			(X	X	Х	X	x									
MW-6	V	1400		V	V	X	X	Х	X	х									
Trajo Blank		100				П													Hold Tryo & Kinh
						П													
* * * * * * * * * * * * * * * * * * * *						П													
7						П													
						П													
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaO	H; 6= Other	r																	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison I	, 🗆	Unknown			S				s al (/ o Clie			Dispo					etained Archive	d longer than 1 month) For Months
Special Instructions/QC Requirements & Comments:								70				8:							2'5,C
Relinquished by: Relinquished by:	Sompany:	+ d A59	DC.	Date/Ti	169 14		eceiy			eH	,			_		TĂ(F		Date/Time:
Relinquished by:	Company:			Date/11	me:	IR	eceiv	ea by							ompa	uty.			Date/Time.
Relinquished by:	Company:			Date/Ti			eceiv	ed by	7:					C	ompa	my:			Date/Time:
			I	age	20 c	of 12	21												

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc. Job Number: 720-23728-1

Login Number: 23728 List Source: TestAmerica San Francisco

Creator: Hoang, Julie List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

BROADBENT & ASSOCIATES INC. FIELD PROCEDURES

A.1 QUALITY ASSURANCE/QUALITY CONTROL FIELD PROTOCOLS

Field protocols have been implemented to enhance the accuracy and reliability of data collection, ground-water sample collection, transportation and laboratory analysis. Discussion of these protocols is provided below.

A.1.1 Water Level & Free-Product Measurement

Prior to ground-water sample collection from each monitoring well, the presence of separate-phase hydrocarbons (SPH or free product, FP) and depth to ground water shall be measured. Depth to ground water will be measured with a standard water level indicator that has been decontaminated prior to its use in accordance with procedures discussed below. Depth to groundwater will be gauged from a saw cut notch at the top of the well casing on each well head. Where FP is suspected, the initial gauging will be done with an oil-water interface probe. Once depth to water has been measured, the first retrieval of a new disposable bailer will be scrutinized for the presence of SPH/FP.

A.1.2 Monitoring Well Purging

Subsequent to measuring depth to ground water and prior to the collection of ground-water samples, purging of standing water within the monitoring will be performed if called for. Consistent with the American Society for Testing and Materials (ASTM) Standard D6452-99, Section 7.1, the well will be purged of approximately three wetted-casing volumes of water, or until the well is dewatered, or until monitored field parameters indicate stabilization. The well will be purged using a pre-cleaned disposable bailer or submersible pump and disposable plastic tubing dedicated to each individual well. The well will be purged at a low flow rate to minimize the possibility of purging the well dry. So that the sample collected is representative of formation water, several field parameters will be monitored during the purging process. The sample will not be collected until these parameters (i.e. temperature, pH, and conductivity) have stabilized to within 10% of the previously measured value. If a well is purged dry, the sample should not be collected until the well has recovered to a minimum 50% of its initial volume.

A.1.3 Ground-Water Sample Collection

Once the wells are satisfactorily purged, water samples will be collected from each well. Water samples for organic analyses will be collected using a pre-cleaned, new, disposable bailer and transferred into the appropriate, new, laboratory-prepared containers such that no head space or air bubbles are present in the sample container (if appropriate to the analysis). The samples will be properly labeled (i.e. sample identification, sampler initials, date/time of collection, site location, requested analyses), placed in an ice chest with bagged ice or ice substitute, and delivered to the contracted analytical laboratory.

A.1.4 Surface Water Sample Collection

Unless specified otherwise, surface water samples will be collected from mid-depth in the central area of the associated surface water body. Water samples will be collected into appropriate, new, laboratory-prepared containers by dipping the container into the surface water unless the container has a preservative present. If a sample preservative is present, a new, cleaned non-preserved surrogate container will be used to obtain the sample which will then be directly transferred into a new, laboratory-provided, preserved container. Samples will be properly labeled and transported as described above.

A.1.5 Decontamination Protocol

Prior to use in each well, re-usable ground-water sampling equipment (e.g., water level indicator, oil-interface probe, purge pump, etc.) will be decontaminated. Decontamination protocol will include thoroughly cleaning with a solution of Liquinox, rinsing with clean water, and final rinsing with control water (potable water of known quality, distilled, or de-ionized water). Pre-cleaned new disposable bailers and disposable plastic tubing will be dedicated to each individual well.

A.1.6 Chain of Custody Procedures

Sample identification documents will be carefully prepared so identification and chain of custody can be maintained and sample disposition can be controlled. The sample identification documents include Chain-of-Custody (COC) records and Daily Field Report forms. Chain of custody procedures are outlined below.

Field Custody Procedures

The field sampler is individually responsible for the care and custody of the samples collected until they are properly transferred.

Samples will have unique labels. The information on these labels will correspond to the COC which shows the identification of individual samples and the contents of the shipping container. The original COC will accompany the shipment and a copy will be retained by the field sampler.

Transfer of Custody and Shipment

A COC will accompany samples during transfer and shipment. When transferring samples, the individual relinquishing and the individual receiving the samples will each sign, date, and note the time on the COC. This documents the sample custody transfer.

Samples will be packaged properly for shipment and dispatched to the appropriate laboratory for analysis, with a separate COC accompanying each shipment. Shipments will be accompanied by the original COC. Samples will be delivered by BAI personnel to the laboratory, or shipped by responsible courier. When a shipping courier is utilized, the sample shipment number will be identified on the COC.

A.1.7 Field Records

In addition to sample identification numbers and COC records, Daily Field Report records will be maintained by field staff to provide daily records of significant events, observations, and measurements during field investigations. These documents will contain observed information such as: the personnel present, site conditions, sampling procedures, measurement procedures, calibration records, equipment used, supplies used, etc. Field measurements will be recorded on the appropriate forms. Entries on the data forms will be signed and dated. The data forms will be kept as permanent file records.

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 4Q09 GEO_WELL 11124

Facility Global ID: T0600100919
Facility Name: BP #11124
File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 1/5/2010 2:58:21 PM

Confirmation Number: 4408166050

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Other

Submittal Title: 4Q09 GW Monitoring

Facility Global ID: T0600100919
Facility Name: BP #11124

File Name: 11124-720-23728-1.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 1/5/2010 3:01:18 PM

Confirmation Number: 6243348479

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California