

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257

San Ramon, CA 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

30 April 2009

Re: First Quarter 2009 Ground-Water Monitoring Report

Former BP Station # 11124 3315 High Street

3315 High Street Oakland, California ACEH Case # RO0000239

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

RECEIVED

9:45 am, May 01, 2009

Alameda County

Environmental Health

Submitted by:

Paul Supple

Environmental Business Manger

First Quarter 2009 Ground-Water Monitoring Report

Former BP Station #11124 3315 High Street Oakland, California

Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

30 April 2009

Project No. 06-88-652

30 April 2009

Project No. 06-88-652

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re:

First Quarter 2009 Ground-Water Monitoring Report, Former BP Station #11124,

3315 High Street, Oakland, California; ACEH Case # RO0000239

Dear Mr. Supple:

Attached is the *First Quarter 2009 Ground-Water Monitoring Report* for Former BP Station #11124 located at 3315 High Street, Oakland California (Site). This report presents a summary of results from ground-water monitoring and sampling conducted at the Site during the First Ouarter of 2009.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Robert H. Miller, P.G., C.HG. Principal Hydrogeologist

flubert It Mill

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site)

Ms. Shelby Lathrop, ConocoPhillips, 76 Broadway, Sacramento, California 95818

Electronic copy uploaded to GeoTracker

NEVADA ARIZONA

CALIFORNIA

TEXAS

ROBERT

No. 561

STATION #11124 QUARTERLY GROUND-WATER MONITORING REPORT

Facility: #11124 Address: 3315 High Street, Oakland, California

Environmental Business Manager: Mr. Paul Supple

Consulting Co./Contact Persons: Broadbent & Associates, Inc.(BAI)/Rob Miller & Tom Venus (530) 566-1400

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case # RO0000239

Consultant Project No.: 06-88-652

Facility Permits/Permitting Agency: None

WORK PERFORMED THIS QUARTER (First Quarter 2009):

1. Submitted Fourth Quarter 2008 Ground-Water Monitoring Report.

2. Conducted ground-water monitoring/sampling for First Quarter 2009. Work performed by Stratus Environmental, Inc. (Stratus) on 5 February 2009.

WORK PROPOSED FOR NEXT QUARTER (Second Quarter 2009):

1. Prepared and submitted First Quarter 2009 Ground-Water Monitoring Report (contained herein).

2. Conduct quarterly ground-water monitoring/sampling for Second Quarter 2009.

QUARTERLY RESULTS SUMMARY:

Current phase of project: **Ground-Water Monitoring/Sampling** Frequency of ground-water **Quarterly: Wells MW-1, MW-2, MW-4, MW-5 and MW-6** monitoring: Frequency of ground-water sampling: Quarterly: Wells MW-1, MW-5 and MW-6 Annually (Second Quarter): Wells MW-2 and MW-4 No Is free product (FP) present on-site: Current remediation techniques: Depth to ground water (below TOC): 9.32 ft (MW-4) to 10.85 ft (MW-6) General ground-water flow direction: Southwest Approximate hydraulic gradient: 0.01 ft/ft

DISCUSSION:

First quarter 2009 ground-water monitoring/sampling was conducted at Former BP Station #11124 on 5 February 2009 by Stratus personnel. Water levels were gauged in the five wells at the Site. No irregularities were noted during water level gauging. Depth-to-water level measurements ranged from 9.32 ft at MW-4 to 10.85 ft at MW-6. Resulting ground-water surface elevations ranged from 146.91 ft above mean sea level (msl) at well MW-1 to 143.74 ft above msl at well MW-6. Water level elevations were between historic minimum and maximum ranges for each well, as summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the southwest at approximately 0.01 ft/ft, consistent with historical data (see Table 3). Ground-water monitoring field data sheets are provided within Appendix A. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. Potentiometric ground-water elevation contours are presented in Drawing 1.

Consistent with the current ground-water sampling schedule, water samples were collected from wells MW-1, MW-5, and MW-6. No irregularities were reported during sampling. Samples were

submitted to Calscience Environmental Laboratories, Inc. (Garden Grove, California) under chain-of-custody protocol for laboratory analysis of Gasoline Range Organics (GRO, C6-C12) by EPA Method 8015B; Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8260B; and Methyl tert-butyl ether (MTBE), Ethyl tert-butyl ether (ETBE), Ethanol, 1,2-Dichloroethane (1,2-DCA), 1,2-Dibromomethane (EDB), Di-isopropyl ether (DIPE), tert-Butyl alcohol (TBA), and tert-Amyl methyl ether (TAME) by EPA Method 8260B. No significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

MTBE was detected above the laboratory reporting limit in two of the three wells sampled at concentrations up to 270 micrograms per liter ($\mu g/L$) in well MW-5. GRO and the remaining fuel constituents were not detected above their respective laboratory reporting limits in the three wells sampled this quarter. Detected analyte concentrations were within the historic minimum and maximum ranges recorded for each well with the following exception: MTBE reached a historic minimum concentration in well MW-5 (270 $\mu g/L$). Historic laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 1. A copy of the laboratory analytical report, including chain-of-custody documentation, is provided in Appendix A. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation pages are provided in Appendix B.

CLOSURE:

The findings presented in this report are based upon: observations of Stratus field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

- Drawing 1. Ground-Water Elevation Contours and Analytical Summary Map, 5 February 2009, Former BP Service Station #11124, 3315 High Street, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #11124, 3315 High St., Oakland, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #11124, 3315 High St., Oakland, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #11124, 3315 High St., Oakland, California
- Appendix A. Stratus Ground-Water Sampling Data Package (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)
- Appendix B. GeoTracker Upload Confirmations

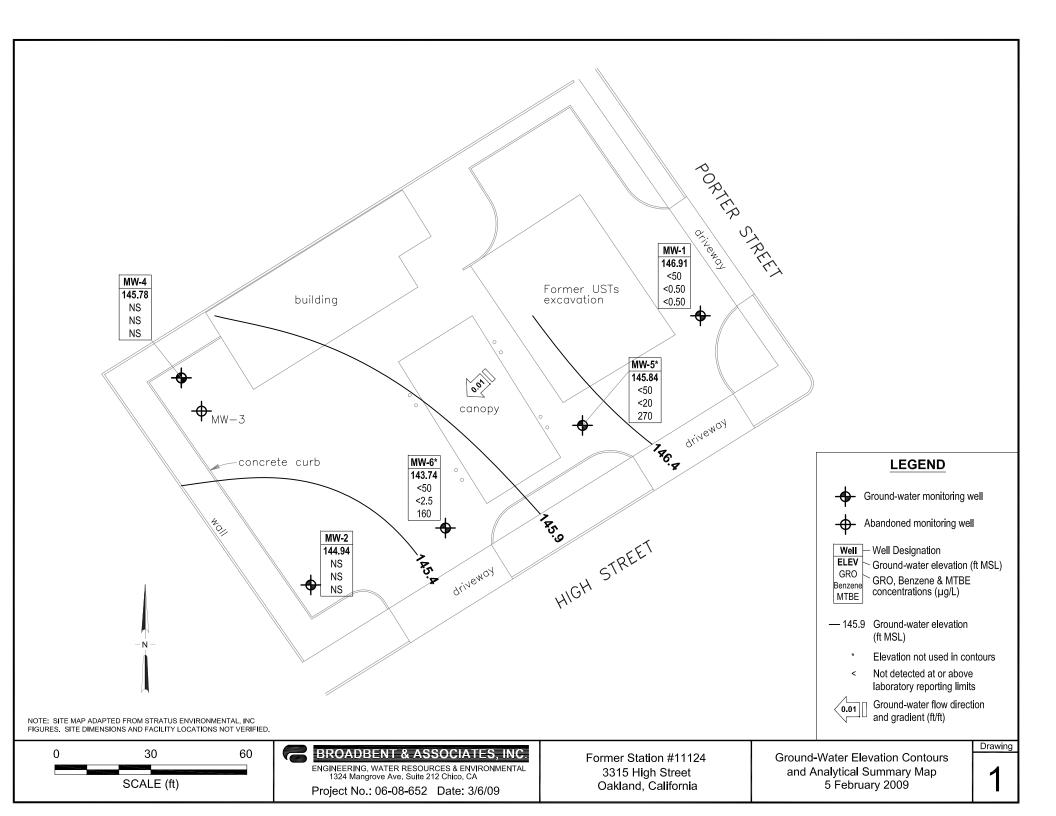


Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

			TOC		Product	Water Level		C	oncentrati	ons in (μg/l	L)					DRO/	
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG
Sample Date	P/NP	Footnote	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)
MW-1																	
10/19/2004	P		154.99	10.50		144.49	< 50	< 0.50	< 0.50	< 0.50	< 0.50	14	0.96	SEQM	6.9		
01/13/2005	P		154.99	9.00		145.99	< 50	< 0.50	< 0.50	< 0.50	< 0.50	33	2.5	SEQM	6.4		
02/24/2006	P	С	154.99	10.42		144.57	55	< 0.50	< 0.50	< 0.50	< 0.50	51		SEQM	6.8		
5/30/2006	P		154.99	10.94		144.05	50	< 0.50	< 0.50	< 0.50	< 0.50	58		SEQM	6.6		
8/28/2006	P		154.99	10.61		144.38	50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		TAMC	7.0		
11/2/2006	P		154.99	10.83		144.16	< 50	< 0.50	< 0.50	< 0.50	< 0.50	9.8	1.40	TAMC	6.99		
2/6/2007	P	d	157.34	9.88		147.46	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	2.76	TAMC	7.10		
3/13/2007	P		157.34	9.62		147.72							2.63	TAMC	7.30	<48	
5/8/2007	P		157.34	9.62		147.72	< 50	< 0.50	< 0.50	< 0.50	< 0.50	19	2.65	TAMC	7.01	<49	
8/7/2007	P		157.34	10.82		146.52	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.0	3.15	TAMC	7.33	<49	
11/13/2007			157.34	10.52		146.82							4.79	TAMC	6.58	<48	
12/20/2007	NP	e	157.34	10.47		146.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	10	1.14	TAMC	6.97		
2/29/2008	P		157.34	9.32		148.02	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.4	3.14	CEL	7.64	<50	
5/23/2008	P		157.34	10.73		146.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.76	CEL	6.83	< 50	
8/20/2008	P		157.34	11.35		145.99	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.01	CEL	6.73	<50	
11/13/2008	P		157.34	10.73		146.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.92	3.96	CEL	7.07		
2/5/2009	P		157.34	10.43		146.91	<50	<0.50	<0.50	<0.50	<0.50	<0.50	3.20	CEL	7.10		
MW-2																	
10/19/2004		b	152.02	9.45		142.57											
01/13/2005	P		152.02	6.43		145.59	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.47	SEQM	6.4		
02/24/2006	P		152.02	7.88		144.14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.7		
5/30/2006	P		152.02	7.98		144.04	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.7		
8/28/2006	P		152.02	9.38		142.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		TAMC	6.7		
11/2/2006			152.02	9.85		142.17											
2/6/2007	P	d	154.35	8.40		145.95	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5.10	TAMC	7.02		
3/13/2007	P		154.35	7.55		146.80							4.83	TAMC	7.17	52	
5/8/2007	P		154.35	7.70		146.65	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.40	TAMC	7.12	<48	
8/7/2007	P		154.35	9.77		144.58	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.47	TAMC	7.19	<47	
11/13/2007			154.35	9.30		145.05							4.90	TAMC	7.02	<48	
12/20/2007	NP	e	154.35	9.34		145.01	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.62	TAMC	7.44		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

	Surviva will 1 in the state of																
			TOC		Product	Water Level		C	oncentrati	ons in (µg/	L)					DRO/	
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG
Sample Date	P/NP	Footnote	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)
MW-2 Cont.																	
2/29/2008	P	f	154.35	7.35		147.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.39	CEL	7.76	64	
5/23/2008	P		154.35	9.28		145.07	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.93	CEL	7.07	< 50	
8/20/2008	P		154.35	10.74		143.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.0	CEL	6.91	<50	
11/13/2008	P		154.35	10.11		144.24	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.03	CEL	7.00		
2/5/2009			154.35	9.41		144.94			-								
MW-4																	
10/19/2004	P		152.77	9.55		143.22	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.82	SEQM	7.0		
01/13/2005		a	152.77														
02/24/2006	P		152.77	7.86		144.91	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	7.1		
5/30/2006	P		152.77	8.04		144.73	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		SEQM	6.9		
8/28/2006	P		152.77	9.36		143.41	< 50	< 0.50	< 0.50	< 0.50	< 0.50	16		TAMC	6.5		
11/2/2006	P		152.77	9.92		142.85	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.23	TAMC	6.79		
2/6/2007	P	d	155.10	8.40		146.70	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.43	TAMC	7.10		
3/13/2007	P		155.10	7.56		147.54							2.53	TAMC	7.18	<49	
5/8/2007	P		155.10	7.68		147.42	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.78	TAMC	7.28	<48	
8/7/2007	P		155.10	9.83		145.27	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.70	TAMC	7.13	<48	
11/13/2007			155.10	9.28		145.82							5.71	TAMC	7.11	<48	
12/20/2007	NP	e	155.10	9.23		145.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.13	TAMC	7.16		
2/29/2008	P		155.10	7.27		147.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.5	4.26	CEL	8.03	<50	
5/23/2008	P		155.10	9.32		145.78	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.43	CEL	7.11	<50	
8/20/2008	P		155.10	10.86		144.24	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.01	CEL	7.10	<50	
11/13/2008	P		155.10	10.23		144.87	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.97	CEL	7.09		
2/5/2009			155.10	9.32		145.78											
MW-5																	
3/13/2007	P	d	155.45	8.72		146.73	880	< 0.50	< 0.50	< 0.50	< 0.50	1,400	1.84	TAMC	7.36	<48	
5/8/2007	P	С	155.45	8.42		147.03	920	<5.0	< 5.0	<5.0	<5.0	1,300	3.26	TAMC	7.50	<48	
8/7/2007	P	c	155.45	9.88		145.57	1,300	<10	<10	<10	<10	1,600	3.54	TAMC	7.34	<48	
11/13/2007	P	С	155.45	9.68		145.77	950	<10	<10	<10	<10	1,400	4.68	TAMC	6.99	<48	
2/29/2008	P		155.45	8.15		147.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1,100	4.84	CEL	7.93	<50	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11124, 3315 High St., Oakland, CA

			TOC		Product	Water Level		С	oncentrati	ons in (µg/	L)					DRO/	
Well and Sample Date	P/NP	Footnote	Elevation (feet msl)		Thickness (feet)	Elevation (feet msl)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MtBE	DO (mg/L)	Lab	pН	TPHd (µg/L)	TOG (µg/L)
MW-5 Cont.																	
5/23/2008	P		155.45	9.80		145.65	< 50	<20	<20	<20	<20	1,200	0.49	CEL	6.89	< 50	
8/20/2008	P		155.45	10.88		144.57	< 50	<20	<20	<20	<20	1,200	3.11	CEL	6.80	< 50	
11/13/2008	P		155.45	12.10		143.35	< 50	<20	<20	<20	<20	1,100	2.99	CEL	7.16		
2/5/2009	P		155.45	9.64		145.81	< 50	<20	<20	<20	<20	270	2.87	CEL	7.07		
MW-6																	
3/13/2007	P	d	154.59	7.82		146.77	86	< 0.50	< 0.50	< 0.50	< 0.50	88	1.92	TAMC	7.21	<48	
5/8/2007	P	с	154.59	7.92		146.67	88	< 0.50	< 0.50	< 0.50	< 0.50	120	1.87	TAMC	7.50	<48	
8/7/2007	P	c	154.59	9.85		144.74	67	< 0.50	< 0.50	< 0.50	< 0.50	85	3.60	TAMC	7.25	<47	
11/13/2007	P	с	154.59	9.71		144.88	67	<1.0	<1.0	<1.0	<1.0	98	4.44	TAMC	7.16	<48	
2/29/2008	P		154.59	8.86		145.73	< 50	< 0.50	< 0.50	< 0.50	< 0.50	130	4.35	CEL	7.82	<50	
5/23/2008	P		154.59	9.98		144.61	< 50	<2.5	<2.5	<2.5	<2.5	150	0.62	CEL	7.12	< 50	
8/20/2008	P		154.59	10.98		143.61	< 50	<2.5	<2.5	<2.5	<2.5	140	2.20	CEL	6.96	< 50	
11/13/2008	P		154.59	10.70		143.89	< 50	<2.5	<2.5	<2.5	<2.5	160	2.30	CEL	7.13		
2/5/2009	P		154.59	10.85		143.74	< 50	<2.5	<2.5	<2.5	<2.5	160	2.34	CEL	7.06	1	

ABBREVIATIONS AND SYMBOLS:

- --- = Not analyzed/measured/applicable
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

ft bgs = Feet below ground surface

ft MSL = Feet above mean sea level

DTW = Depth to water in ft bgs

GRO = Gasoline range organics

GWE = Groundwater elevation in ft MSL

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing in ft MSL

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

SEQM = Sequoia Analytical Morgan Hill (Laboratory)

FOOTNOTES:

- a = Well inaccessible.
- b = Well is dry.
- c = Hydrocarbon result for GRO partly due to individual peak(s) in quantitative range.
- d = Well survey by Morrow Surveying on 12/27/2006.
- e = Well re-sampled due to insufficient laboratory analysis of previous sampling event on 11/13/2007. The depth to water and resulting water level elevation from 11/13/2007 will be used for reporting purposes for Fourth Quarter 2007.
- f = The hydrocarbon pattern for DRO in the sample does not match that of the diesel standard used to calculate results.

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for DO and pH were obtained through field measurements.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
10/19/2004	<100	<20	14	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
01/13/2005	<100	<20	33	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/24/2006	<300	<20	51	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	58	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	<20	9.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	1.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	19	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	5.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	7.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	0.92	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/5/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
01/13/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
02/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-4									
10/19/2004	<100	<20	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and				Concentrati					
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-4 Cont.									
02/24/2006	<300	<20	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	
5/30/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/28/2006	<300	<20	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/2/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/6/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/7/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
12/20/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/29/2008	<300	<10	1.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/23/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-5									
3/13/2007	<3,000	<200	1,400	<5.0	<5.0	6.5	<5.0	< 5.0	
5/8/2007	<3,000	<200	1,300	< 0.50	< 0.50	7.0	< 0.50	< 0.50	
8/7/2007	<6,000	<400	1,600	<10	<10	<10	<10	<10	
11/13/2007	<6,000	<400	1,400	<10	<10	<10	<10	<10	
2/29/2008	<300	42	1,100	< 0.50	< 0.50	4.9	< 0.50	< 0.50	
5/23/2008	<12,000	<400	1,200	<20	<20	<20	<20	<20	
8/20/2008	<12,000	<400	1,200	<20	<20	<20	<20	<20	
11/13/2008	<12,000	<400	1,100	<20	<20	<20	<20	<20	
2/5/2009	<12,000	<400	270	<20	<20	<20	<20	<20	
MW-6									
3/13/2007	<300	<20	88	< 0.50	<0.50	<0.50	< 0.50	< 0.50	
5/8/2007	<300	<20	120	< 0.50	< 0.50	0.61	< 0.50	< 0.50	
8/7/2007	<300	<20	85	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/13/2007	<600	<40	98	<1.0	<1.0	<1.0	<1.0	<1.0	
2/29/2008	<300	<10	130	< 0.50	< 0.50	0.71	< 0.50	< 0.50	
5/23/2008	<1,500	<50	150	<2.5	<2.5	<2.5	<2.5	<2.5	
8/20/2008	<1,500	< 50	140	<2.5	<2.5	<2.5	<2.5	<2.5	

Table 2. Summary of Fuel Additives Analytical Data Station #11124, 3315 High St., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-6 Cont.									
11/13/2008	<1,500	<50	160	<2.5	<2.5	<2.5	<2.5	<2.5	
2/5/2009	<1,500	<50	160	<2.5	<2.5	<2.5	<2.5	<2.5	

ABBREVIATIONS AND SYMBOLS:

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromomethane

 $\mu g/L = micrograms per liter$

< = Not detected at or above laboratory reporting limit

NOTES:

All fuel oxygenate compounds are analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #11124, 3315 High St., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
11/12/1990		
7/15/1991	Southwest	0.0174
10/15/1991	Southwest	0.0182
1/15/1992	South-Southwest	0.014
4/17/1992	South	0.014
9/30/1992	South-Southwest	0.018
12/17/1992	North	0.01
3/15/1993	South	0.007
10/19/2004	South-Southwest	0.022
1/13/2005		
2/24/2006	Southeast	0.01
5/30/2006	East-Southeast	0.007
8/28/2006	South	0.012
11/2/2006	South	0.013
3/13/2007	Southwest	0.006
5/8/2007	South-Southwest	0.009
8/7/2007	Southwest	0.01
11/13/2007	Southwest	0.01
12/17/2007	Southwest	0.01
2/29/2008	Southwest	0.009
5/23/2008	Southwest	0.01
8/20/2008	Southwest	0.02
11/13/2008	Southwest	0.02
2/5/2009	Southwest	0.01

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

STRATUS GROUND-WATER SAMPLING DATA PACKAGE (INCLUDES FIELD DATA SHEETS, LABORATORY ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION, AND FIELD PROCEDURES)

February 12, 2009

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

Groundwater Sampling Data Package, ARCO Service Station No. 11124, located Re:

at 3315 High Street, Oakland, California

General Information

Data Submittal Prepared / Reviewed by: Carol Huff / Jay Johnson

Phone Number: (530) 676-6000

On-Site Supplier Representative: Roberto Heimlich

Sampling Date: February 5, 2009

Unusual Field Conditions: None noted.

Scope of Work Performed: Quarterly monitoring and sampling.

Variations from Work Scope: None noted.

This submittal presents the data collected in association with routine groundwater monitoring. The attachments include field data sheets, non-hazardous waste data form, chain of custody documentation, certified analytical results, and field procedures for groundwater sampling documentation. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Jay R. Johnson

Sincerely,

STRATUS ENVIRONMENTAL INC.

Yay R. Johnson, P. Project Manager

Attachments:

- Field Data Sheets
- Non-Hazardous Waste Data Form
- Chain of Custody Documentation
- Certified Analytical Results
- Field Procedures for Groundwater Sampling

cc: Mr. Paul Supple, BP/ARCO

BP Alameda Portfolio

HYDROLOGIC DATA SHEET

AT:	1	:	^	r
14 []			u	U

Gauge	Date:	2/5	09

Project Name: 3315 High Street, Oakland

Field Technician: ROBERTO

Project Number: 11124

TOC = Top of Well Casing Elevation
TOS = Depth to Top of Screen
DTW = Depth to Groundwater Below TOC
DTB = Depth to Bottom of Well Casing Below TOC

DIA = Well Casing Diameter ELEV = Groundwater Elevation DUP = Duplicate

WELL OR LOCATION	TIME			MEASU	REMENT				SHEEN CONFIRMATION	COMMENTS	
		тос	TOS	DTW	DTB	DIA	ELEV		(w/baller)		
MW-1 MW-2 MW-4 MW-5 MW-6	11:06			10.43	31.61	2"		Y E5			
MW-2	11:18			9.41	28.07	2"					
MW-4	11:30			9.32	30.11	2"					
mw-5	11:12			9.61	29.75	2"		YES			
mw-6	11:24			10.85	29.50	2"		yE5			
						·		,			
				_							
		1									

Calibration Date

pH/Conductivity/temperature Meter - YSI Model 63

pH 2/5/09

DO Meter - YSI 55 Series (DO is always measured before purge)

2/5/09

Please refer to groundwater sampling field procedures

DO 2(5/09

Conductivity

BP ALAMEDA PORTFOLIO											
WA	ATER SAMPLE FI	ELD DATA SHEE	Γ								
PROJECT #: 11124 CLIENT NAME: LOCATION: Oakland - 3315 High Street	PURGED BY: SAMPLED BY: eet	RH RH	WELL I.D.: MI SAMPLE I.D.: MI QA SAMPLES:								
DATE PURGED 2/5/09 DATE SAMPLED 2/5/09 SAMPLE TYPE: Groundwater x	START (2400hr) SAMPLE TIME (2400hr) Surface Water	12:13 12:25 Treatment Effit		2:22							
CASING DIAMETER: 2" (0.17)	(0.38) 4"	67) 5" (1.02)	6" 8" (2.60)	Other							
DEPTH TO BOTTOM (feet) = 3/. 6 DEPTH TO WATER (feet) = /0 - 4 WATER COLUMN HEIGHT (feet) = Z/. /	3	CASING VOLI CALCULATEI ACTUAL PUR	PURGE (gal) = /0	8							
-	FIELD MEASU	IREMENTS									
DATE TIME (2400hr) (gal) 2/5/09 /2:/5 4 // /2:/9 // // // // // // // // // // // // /	(degrees C) (umhos/cm) (u. 52.9 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	PLE TURBIDITY:	TURBIDITY (NTU)							
80% RECHARGE: YES NO	ANALYSES:	6	ND								
ODOR: VO SAMPLE VES	SEL / PRESERVATIVE:	6 VOA	5 /HCL								
PURGING EQUIPMENT Bladder Pump Centrifugal Pump Submersible Pump Peristalic Pump Other: Pump Depth: 30 WELL INTEGRITY: 6000 REMARKS: 003,20	C) Inless Steel)	Bladder Pump Centrifugal Pump Submersible Pump Peristalic Pump	PLING EQUIPMENT Bailer (Teflon) Bailer (PV Bailer (Stainless Ste Dedicated CK#: MAST								
SIGNATURE: While			***************************************	Page of							

	BP ALAMEDA P	ORTFOLIO		
W	ATER SAMPLE FIEL	D DATA SHEET		
PROJECT #: 11124 CLIENT NAME: LOCATION: Oakland - 3315 High St		EH eH	WELL I.D.: MA SAMPLE I.D.: MA QA SAMPLES:	1-5 w-5
DATE PURGED 2/5/09 DATE SAMPLED 2/5/09 SAMPLE TYPE: Groundwater x	START (2400hr) //; SAMPLE TIME (2400hr) Surface Water	38 //: 50 Treatment Effluent	END (2400hr) //	:45
CASING DIAMETER: 2" (0.17)	3" 4" (0.67)	5" (1.02)	(1.50) 8" (2.60)	Other ()
DEPTH TO BOTTOM (feet) = 25.7 DEPTH TO WATER (feet) = 9.6 WATER COLUMN HEIGHT (feet) = 20./		CASING VOLUM CALCULATED PI ACTUAL PURGE	URGE (gal) = /0 •	2
	FIELD MEASURE	MENTS		
DATE TIME VOLUME (2400hr) (2/5/09 1/:40 3 1/:42 6 1/:44 10.5	(degrees C) (um) 19.2 20.0 30.6 SAMPLE INFORM	CTIVITY pH (units 2 8 6 . 9 7 / 7 . 0 7 . 0	36 clia	TURBIDITY (NTU)
SAMPLE DEPTH TO WATER: //. 0 Z	-		E TURBIDITY:	hor
	ANALYSES:	5 W 6 VOAS,	1402	
PURGING EQUIPMENT Bladder Pump Bailer (To Bailer (Properties) Centrifugal Pump Bailer (Store) Submersible Pump Bailer (Store) Peristalic Pump Dedicated Other: Pump Depth: 29	VC)	Bladder Pump Centrifugal Pump Submersible Pump Peristalic Pump	NG EQUIPMENT Bailer (Teflon) Bailer (PVG Bailer (Stainless Ste Dedicated	C or <u>√</u> disposable) el)
DDW-DV6 00 3 9 7		LOCK	H: MAST	<i>FR</i>
SIGNATURE THAT				Page of

PROJECT #: 11124
CLIENT NAME: SAMPLED BY: PH SAMPLE I.D.: PH SAMPLE SAMPLES: DATE PURGED PH START (2400hr) PH SAMPLE TIME (2400hr) PH SAMPLE TIME (2400hr) PH SAMPLE TYPE: PH Groundwater PH SAMPLE TIME (2400hr) PH SAMPLE TYPE: PH SAMPLE TIME (2400hr) PH SAMPLE TYPE: PH SAMPLE TIME (2400hr) PH SAMPLE TIME (2400hr) PH SAMPLE TIME (2400hr) PH SAMPLE TYPE: PH SAMPLE TIME (2400hr) PH SAMPLE TIME TIME TIME TIME TIME TIME TIME TIM
DATE SAMPLED $2/5/09$ SAMPLE TIME (2400hr) $12:07$ SAMPLE TYPE: Groundwater x Surface Water Treatment Effluent Other CASING DIAMETER: $2"$ $3"$ $4"$ $5"$ $6"$ $8"$ Other Casing Volume: (gallons per foot) 0.17 0.38
Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) (2.60) (0.67) DEPTH TO BOTTOM (feet) = 29.50 CASING VOLUME (gal) = 3.1 DEPTH TO WATER (feet) = 10.85 CALCULATED PURGE (gal) = 9.5 WATER COLUMN HEIGHT (feet) = 13.6 ACTUAL PURGE (gal) = 10.85
DEPTH TO WATER (feet) = 12.85 CALCULATED PURGE (gal) = 9.5 WATER COLUMN HEIGHT (feet) = 18.6 ACTUAL PURGE (gal) = 12.5
FIELD MEASUREMENTS
TELD MEADOREMIA()
DATE TIME (2400hr) (gal) (degrees C) (umhos/cm) (units) (visual) (NTU) 2/5/09 11:57 3 2C.66 57/ 7.31 Cason 11:59 6 21.7 56/ 7.08 12:01 10 24.7 584 7.06
SAMPLE DEPTH TO WATER:
80% RECHARGE: Yes NO ANALYSES: SIVO ODOR: NO SAMPLE VESSEL / PRESERVATIVE: 6 VOAS / HCL
PURGING EQUIPMENT Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Peristalic Pump Depth: Other: Pump Depth: 28
WELL INTEGRITY: 6000 REMARKS: DO Z.34 SIGNATURE: MINISTER Page of

WELLHEAD OBSERVATION FORM

BARASHIA SE	FB1 (85)		244.	
Established Sec. 1			716	75 S. S. S.
		FAR SOCIAL	SELECTAL S	
7 E		2 3	191	

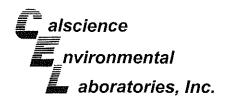
Site Name/Number: BP 11124 Date: 2/5/09 Technican: 6085850

Well I.D.	Box in Good Condition?	Lock Missing?	Water in Wellbox?	Water Level Relative to Cap?	Well Cap?	Bolts Missing?	Bolts Stripped?	Bolt Holes Stripped?	Cracked or Broken Lid?	Cracked or Broken Box?	Grout Level more than 1ft below TOC?	Additional Comments (such as missing led, concere needs replacement, or other - explain)
	X = Yes Blank = No	X = Yes (replaced) Blank = No	X = Yes Blank = No	A = Above cap B = Below cap L = Level w/cap	I ≃ Innet M ≃ Musing or Compromised (replaced)	X = Yes Blank = No	X = Yrs Blank = No	X = Yes Blank = No	X = Yes Blassk = No	X – Yes Blunk = No	X = Yes Blank = No	
mu-1					<u> </u>	NA	NA	NA				NO BOLTS TYPELID
MW-2	<i>y</i>					NA	NA	NA	•			
mu-4	7				<u></u>	<i></i>						
m w- 5	/_											
mw-6					\mathcal{I}							
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
									J	******		

DRUM INVENTORY	GENERAL SITE CONDITIONS
Drums on site? Yes No (circle) Type and # / Steel: Plastic:	Make notes on housekeeping conditions (such as trash around remediation system enclosure/compound, bent or missing bollards, signs missing from compound fences, grafitti on compound, etc.)
Note whether drums are full or empty, solids or liquids: 3/4 CONCRETE — REST WATER	SITE AND BUILDING ARE FENCED IN & LOCKED. HOWEVER SOMEDNE HAS BROKEN INTO BUILBING AND
Drum label info (description, date, contact info):	STARTED STEALING ELECTRICAL WIRES. DOOR HAS BEEN PIPED OPEN, WINDOWS ARE BROKEN AND WINDOW FEME ON REAR SIDE IS BEING REMOVED.

NO. 669829

NON-HAZARDOUS WASTE DATA FORM


AGS				I.D. NO.	are seements.
NAME BP WEST COAS	ST PRODUCTS LI	LC ARCO #	11/24		
	NTA MARGARITA	3315 AICH	PELAND	PROFILE NO.	
CITY, STATE, ZIPCA 9268	8			PHONE NO(>
CONTAINER	3S: No	VOLU	ME 31.5	WEIGHT	
TYPE: TANK	C DUMP	DRUMS CARTON	is 🗆 OTHER		
WASTE DESCRIPTION ON - H	IAZARDOUS WAT	rer .	GENERATING PROC	WELL PURGING/DECO	N WATER
	WASTE PF 99-100%	PM %	COM	PONENTS OF WASTE	PPM %
1. YVAIEN	33-100%		5		-
2. TPH	<u><1%</u>		6		
3			7. BESI	· *	
V			, . <u></u>		
4	_ D solid D	LIQUID SLUDGE	8	OTHER	
PHOPERHEO PR		•			
HANDLING INSTRUCTIONS:	WEAR ALL APP	ROPRIATE PROT	ECTIVE CLOT	HING	
THE GENERATOR CER	TIFIES THAT THE				, ,
WASTE AS DESCRI NON-HAZARDOUS.		Larry Moothart I		- Mea	2/5/04
Transporter		Transporter		EPA	BATE
NAME STRATUS EN	IVIRONMENTAL			NO.	
ADDRESS 3330 CAME	RON PARK DR			SERVICE ORDER NO	
CITY, STATE, 2 CAMERON	IDADY CA OSCO	ro			
				. PICK UP DATE	
PHONE NO. 530-676-20	031	ELBERTO 1	He was to a		' / /
		The Control of the			~ 1r1 i
TRUCK, UNIT, I.D. NO.		TYPED OR PRINTED FULL		Jann.	- 2/5/14 DATE
INSTRAT. IN	c	,		EPA ID.	2/5/14 DATE
NAME INSTRAT, IN		,		I.D. NO.	2/5/1.4 DATE
INSTRAT. IN		,		I.D. NO.	
NAME INSTRAT, IN	RT RD #C	,		I.D. NO. DISPOS	
NAME INSTRAT, IN ADDRESS 1105 AIRPOI	RT RD #C A, CA 94571	,		I.D. NO. DISPOS	
NAME INSTRAT, IN	RT RD #C A, CA 94571	,		I.D. NO. DISPOS	
NAME INSTRAT, IN ADDRESS 1105 AIRPOI	RT RD #C A, CA 94571	TYPED OR PRINTED FULL	NAME & SIGNATURE	I.D. NO. DISPOS	R
NAME INSTRAT, IN ADDRESS 1105 AIRPOI	RT RD #C A, CA 94571	,	NAME & SIGNATURE	I.D. NO. DISPOS	
NAME INSTRAT, IN ADDRESS 1105 AIRPOI	RT RD #C A, CA 94571	TYPED OR PRINTED FULL	NAME & SIGNATURE	I.D. NO. DISPOS	R
NAME INSTRAT, IN ADDRESS 1105 AIRPOR CITY, STATE, ZIPRIO VIST PHONE NO. 530-753-18	RT RD #C A, CA 94571 B29 OLD/NEW L	TYPED OR PRINTED FULL TYPED OR PRINTED FULL A TONS	NAME & SIGNATURE	I.D. NO. DISPOS	R
INSTRAT, IN ADDRESS 1105 AIRPOR CITY, STATE, ZIPRIO VIST PHONE NO. 530-753-18	RT RD #C A, CA 94571 B29	TYPED OR PRINTED FULL TYPED OR PRINTED FULL	NAME & SIGNATURE	I.D. NO. DISPOS	R

Laboratory Management Program LaMP Chain of Custody Record

BP/ARC Project Name: BP/ARCO 11124

Page	1	
------	---	--

	CA BP affiliated company	BP/ARC Pro	-									/dd/y ımbe	y): <u>1</u> r:	4 D	ay T	AT		Rush TAT:	Yes	No X							
Lab Na				вр/А	RC F	acility	Add	iress:	-	3315	Hìgh :	Street	t			****			Consi	ultant/C	ontra	actor.		Strat	us Environmental In	.	
Lab Ac	Idress: 7440 Lincoln Way, Garden G	rove, CA 92841		City,	State	e, ZIP	Code	9 :		Oakla	and, C	A							Consi	ultant/C	ontre	actor	Projec	t No:			
Lab Pi	A: Richard Villafania		· ··	Lead	Reg	ulatory	/ Age	ency:		Alam	eda C	ounty	7						Addre	ss: 3	330	Came	eron P	ark D	rive, #550, Cameror	Park, CA 9	5682
Lab Ph	one: 714-895-5494 Fax: 714-895	-7501	***************************************	Califo	ornia	Globa	i ID	No.:		T060	01001	919							Consultant/Contractor PM: Jay Johnson								
Lab Si	nipping Acent:			Enfo	s Pro	posal	No:								Phone: 530-676-6000 Fax: 530-676-6005												
Lab Bo	ottle Order No:			Acco	ountin	ig Mod	le:		Pro	vision	X	00	C-BU		000	C-RM			Email	EDD 1	o:	chut	ff@s	tratu	sinc.net		
Other	Info:			Stag	e: Bi	P/ARC	WBS	Stage	В	Ac	tivity:	BP/A	IRC W	/BS Ad	Activity Invoice To: BP/ARC X Contractor						•						
BP/AR	C EBM: Paul Supple		-		Ma	trix		No	. Co	ntain	ers /	Pres	erva	ive			F	₹equ	estec	i Anal	yse:	3			Report Ty	e & QC L	evel
EBM F	Phone: 925-275-3801	Fax:					Ī	ő																	Sta	ndard X	
EBM E	imail: paul.supple@bp.com						ı	Containers																	Full Data Pa	kage	•
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor		Total Number of Cont	Unpreserved	H ₂ SO,	HNO3	HCI	Methanol		GRO by 8015M	BTEX/5 FO* by 8260	Ethanol by 8260	EDB by 8260	1,2-DCA by 8260						Note: If sample not of Sample" in comment and initial any prepri Cor *Oxy = MTBE DIPE, TBA	s and single-s nted sample d nments	trike out escription.
	MVV-1	2/5/09	12:25		Х		1	6				х	T		X	X	X	X	Х								
	MW-5		11:50		Х		1	6				Х			Х	Х	Х	Х	Х					<u> </u>			
	MW-6		12:07		Х			6				X			Х	Х	Х	Х	Х								·
	TB11124 Z/5/09-5:00		5:00		Χ			2				X													ON HOLD		-
																									***************************************		····
Sampl	er's Name: ROBERTO M	EINLICH				Re	line	quist	ned E	3y / A	ffilla	tion			Da	ate	Tir	ne			Acc	epte	d By	/ Aff	iliation	Date	Time
Sampl	er's Company: Stratus Environm	nental Inc.																									
Shipm	ent Method:	Ship Date:				,																					
	ent Tracking No:			<u>L</u>																							
Spec	ial Instructions: TB Sample ON H	IOLDI Coresu	lts to miller@bi	oadbe	ntino	c.com																					
<u> </u>	THIS LINE - LAB USE ONLY: Custo	ody Seals In Pla	ce: Yes / No	1	Temp	Blank	: Ye	s / No	,	C-	ooler '	Temp	on Re	eceipt:			_°F/C		Tri	p Blani	: Ye	s/No		М	S/MSD Sample Sub	mitted: Yes	/ No

February 19, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-02-0581

> Client Reference: **BP / ARCO 11124**

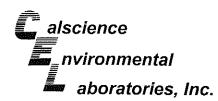
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/6/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental

Laboratories, Inc.

Richard Villafania

Richard Vellar).

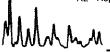
Project Manager

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

02/06/09 09-02-0581 EPA 5030B EPA 8015B (M)

Project: BP / ARCO 11124

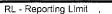

Page 1 of 1

MW-1 09-02-0581-1-C 02/05/09 12:25 Aqueous GC 30 02/13/09 02/13/09 17:48 090213 Parameter Result RL DE Qual Units Value	Project: BP / ARCO 11124							Pa	ige 1 of 1
Parameter Result RL DE Qual Units	Client Sample Number					Instrument		-	QC Batch ID
Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-5 09-02-0581-2-8 02/05/09 Aqueous GC 30 02/13/09 02/13/09 18:22 0902138 Parameter Result RL DE Qual Units Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 18:22 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 15:34 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 15:34 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 15:34 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 02/13/09 15:34 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09	MW-1		09-02-0581-1-C	02/05/09 12:25	Aqueous	GC 30	02/13/09	02/13/09 17:48	090213B01
Surrogates: REC (%) Control Limits Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
1,4-Bromofluorobenzene 88 38-134 38-134 38-	Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
MW-5	Surrogates:	REC (%)	Control Limits		Qual				
Parameter Result RL DE Qual Units	1,4-Bromofluorobenzene	88	38-134						
Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual 1.4-Bromofluorobenzene 94 38-134 MW-6 09-02-0581-3-B 02/05/09 Aqueous GC 30 02/13/09 02/13/09 15:34 090213E Parameter Result RL DF Qual Units Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual 1.4-Bromofluorobenzene 95 38-134 Method Blank 099-12-695-435 N/A Aqueous GC 30 02/13/09 02/13/09 13:53 Parameter Result RL DF Qual Units Operation of the property of the	MW-5		09-02-0581-2-B	02/05/09 11:50	Aqueous	GC 30	02/13/09	02/13/09 18:22	090213B01
REC (%) Control Limits Qual	<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
1,4-Bromofluorobenzene 94 38-134 3	Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
MW-6 09-02-0581-3-B 02/05/09 Aqueous flat Aqueous flat GC 30 02/13/09 flat 09/13/09 flat <td>Surrogates:</td> <td>REC (%)</td> <td>Control Limits</td> <td></td> <td>Qual</td> <td></td> <td></td> <td></td> <td></td>	Surrogates:	REC (%)	Control Limits		Qual				
Parameter Result RL DE Qual Units	1,4-Bromofluorobenzene	94	38-134						
Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Límits Qual 1,4-Bromofluorobenzene 95 38-134 Method Blank 099-12-695-435 N/A Aqueous GC 30 02/13/09 02/13/09 13:53 Parameter Result RL DF Qual Units Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual	MW-6		09-02-0581-3-B	02/05/09 12:07	Aqueous	GC 30	02/13/09		090213B01
Surrogates: REC (%) Control Limits Qual 1,4-Bromofluorobenzene 95 38-134 Method Blank 099-12-695-435 N/A Aqueous GC 30 02/13/09 02/13/09 090213B Parameter Result RL DF Qual Units Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
A-Bromofluorobenzene 95 38-134	Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Method Blank 099-12-695-435 N/A Aqueous GC 30 02/13/09 13:53 090213B Parameter Result RL DF Qual Units Gasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual	Surrogates:	REC (%)	Control Limits		Qual				
13:53 13:5	1,4-Bromofluorobenzene	95	38-134						
Sasoline Range Organics (C6-C12) ND 50 1 ug/L Surrogates: REC (%) Control Limits Qual	Method Blank		099-12-695-435	N/A	Aqueous	GC 30	02/13/09	02/13/09 13:53	090213B01
Surrogates: REC (%) Control Limits Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
	Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
,4-Bromofluorobenzene 97 38-134	Surrogates:	REC (%)	Control Limits		Qual				
	,4-Bromofluorobenzene	97	38-134						

RL - Reporting Limit ,

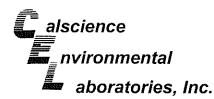
DF - Dilution Factor ,

Qual - Qualifiers


Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: Units: 02/06/09 09-02-0581 EPA 5030B EPA 8260B ug/L

Project: BP / ARCO 11124


Page 1 of 2

Project: BP / ARCO 11	124									Pag	e 1 of 2
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/I I Analy		QC Batch IE
MW-1			09-02-	0581-1-D	02/05/09 12:25	Aqueous	GC/MS BB	02/18/09	02/18 15:0		090218L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	E)	ND	0.50	1	
,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alco	•	•	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)	•	ND	0.50	1	
Foluene	ND	0.50	1		Tert-Amyl-Met			ND	0.50	1	
(ylenes (total)	ND	0.50	1		Ethanol	• ,	,	ND	300	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	·	Qual
,2-Dichloroethane-d4	106	73-157			Dibromofluoro	methane		106	82-142		
Foluene-d8	102	82-112			1,4-Bromofluo	robenzene		80	75-105		
MW-5			09-02-	0581-2-D	02/05/09 11:50	Aqueous	GC/MS BB	02/18/09	02/18 18:5		090218L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	20	40		Methyl-t-Butyl	Ether (MTRI	F)	270	20	40	
.2-Dibromoethane	ND	20	40		Tert-Butyl Alco	,		ND	400	40	
,2-Dichloroethane	ND	20	40		Diisopropyl Ett	, ,		ND	20	40	
thylbenzene	ND	20	40		Ethyl-t-Butyl E			ND	20	40	
oluene	ND	20	40		Tert-Amyl-Met	, ,		ND	20	40	
(ylenes (total)	ND	20	40		Ethanol	nyi Euler (17	-1VIL)	ND	12000	40	
Surrogates:	REC (%)	Control	40	Qual	Surrogates:		1	REC (%)	Control	40	Qual
sarroguico.	1120 (70)	Limits		<u>cruci</u>	<u>ourrogates.</u>		-	VEQ (70)	Limits		<u>wuai</u>
.2-Dichloroethane-d4	109	73-157			Dibromofluoro	methane		111	82-142		
oluene-d8	102	82-112			1,4-Bromofluo			80	75-105		
MW-6			09-02-0	0581-3-D	02/05/09 12:07		GC/MS BB		02/18 19:2		090218L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
			_		Methyl-t-Butyl	CHOOK / NATIO	=1	100		5	
enzene	ND	2.5	5		Men iyi-i-butyi	Crist (intide	-)	160	2.5		
	ND ND	2.5 2.5	5 5		Tert-Butyl Alco	•	-)	ND	2.5 50	5	
,2-Dibromoethane					Tert-Butyl Alco Diisopropyl Eth	ohol (TBA) ner (DIPE)	-)				
,2-Dìbromoethane ,2-Dichloroethane	ND ND ND	2.5	5		Tert-Butyl Alco	ohol (TBA) ner (DIPE)	-)	ND	50	5 5 5	
,2-Dibromoethane ,2-Dichloroethane thylbenzene	ND ND	2.5 2.5	5 5		Tert-Butyl Alco Diisopropyl Eth	ohol (TBA) ner (DIPE) ther (ETBE)	,	ND ND	50 2.5	5 5	
,2-Dibromoethane ,2-Dichloroethane thylbenzene oluene	ND ND ND	2.5 2.5 2.5	5 5 5		Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl E	ohol (TBA) ner (DIPE) ther (ETBE)	,	ND ND ND	50 2.5 2.5	5 5 5	
,2-Dibromoethane ,2-Dichloroethane thylbenzene oluene ylenes (total)	ND ND ND ND	2.5 2.5 2.5 2.5	5 5 5 5	Qual	Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Ethyl-t-Amyl-Metl	ohol (TBA) ner (DIPE) ther (ETBE)	AME)	ND ND ND ND	50 2.5 2.5 2.5	5 5 5 5	Qual
denzene ,2-Dibromoethane ,2-Dichloroethane dhylbenzene foluene (ylenes (total) durrogates: ,2-Dichloroethane-d4	ND ND ND ND ND	2.5 2.5 2.5 2.5 2.5 Control	5 5 5 5	Qual	Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl E Tert-Amyl-Meth Ethanol	ohol (TBA) ner (DIPE) ther (ETBE) hyl Ether (TA	AME)	ND ND ND ND ND REC (%)	50 2.5 2.5 2.5 1500 Control	5 5 5 5	Qual

DF - Dilution Factor ,

Qual - Qualifiers

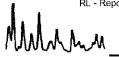
Analytical Report

Stratus Environmental, inc.

3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

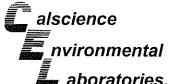
Work Order No: Preparation: Method: Units:

Date Received:


02/06/09 09-02-0581

EPA 5030B EPA 8260B

ug/L Page 2 of 2


Project: BP / ARCO 11124

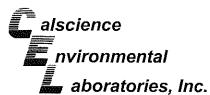
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/T d Analyz		QC Batch ID
Method Blank			099-12	-703-719	N/A	Aqueous	GC/MS BB	02/18/09	02/18/ 14:3		090218L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)	·	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	ner (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)	l .	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:		Ţ	REC (%)	Control Limits		<u>Qual</u>
1,2-Dichloroethane-d4	107	73-157			Dibromofluoro	methane		106	82-142		
Toluene-d8	100	82-112			1,4-Bromofluoi	robenzene		86	75-105		

orting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

aboratories, Inc.


Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

02/06/09 09-02-0581 **EPA 5030B** EPA 8015B (M)

Project BP / ARCO 11124

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-6	Aqueous		02/13/09		02/13/09	090213801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	85	96	38-134	12	0-25	

Quality Control - Spike/Spike Duplicate

atus Environmental inc

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 02/06/09 09-02-0581 EPA 5030B EPA 8260B

Project BP / ARCO 11124

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
MW-1	Aqueous	GC/MS BB	02/18/09	02/18/09	090218S01

Parameter	MS 9/ DEC	MCD 9/ DEC	N/DEC CI	555	DDD 01	0 - 10
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifi
Benzene	108	104	86-122	4	0-8	
Carbon Tetrachloride	116	112	78-138	3	0-9	
Chlorobenzene	106	102	90-120	4	0-9	
1,2-Dibromoethane	102	98	70-130	4	0-30	
1,2-Dichlorobenzene	107	106	89-119	1	0-10	
1,1-Dichloroethene	96	89	52-142	8	0-23	
Ethylbenzene	104	98	70-130	5	0-30	
Toluene	109	102	85-127	6	0-12	
Trichloroethene	105	102	78-126	3	0-10	
Vinyl Chloride	79	80	56-140	1	0-21	
Methyl-t-Butyl Ether (MTBE)	105	107	64-136	2	0-28	
Tert-Butyl Alcohol (TBA)	107	102	27-183	5	0-60	
Diisopropyl Ether (DIPE)	107	108	78-126	0	0-16	
Ethyl-t-Butyl Ether (ETBE)	107	106	67-133	1	0-21	
Tert-Amyl-Methyl Ether (TAME)	107	105	63-141	3	0-21	
Ethanol	108	109	11-167	1	0-64	

MMAMM

Quality Control - LCS/LCS Duplicate

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-02-0581 EPA 5030B EPA 8015B (M)

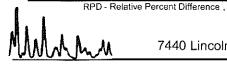
Project: BP / ARCO 11124

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD Batcl Number	1
099-12-695-435	Aqueous	GC 30	02/13/09	02/13	/09	090213B01	
Parameter	LCS %F	REC LCSD	<u>%REC %</u>	<u> REC CL</u>	RPD	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	103		6	78-120	177	0-20	LR,BA

Muhana_

RPD - Relative Percent Difference ,

Quality Control - LCS/LCS Duplicate


Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-02-0581 EPA 5030B EPA 8260B

Project: BP / ARCO 11124

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-703-719	Aqueous	GC/MS BB	02/18/09 02/18/09		090218L	01	
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	103	104	87-117	82-122	1	0-7	
Carbon Tetrachloride	112	112	78-132	69-141	1	0-8	
Chlorobenzene	102	103	88-118	83-123	1	0-8	
1,2-Dibromoethane	102	101	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	105	105	88-118	83-123	0	0-8	
1,1-Dichloroethene	103	102	71-131	61-141	1	0-14	
Ethylbenzene	104	104	80-120	73-127	0	0-20	
Toluene	104	107	85-127	78-134	3	0-7	
Trichloroethene	101	102	85-121	79-127	1	0-11	
Vinyl Chloride	81	80	64-136	52-148	1	0-10	
Methyl-t-Butyl Ether (MTBE)	102	103	67-133	56-144	1	0-16	
Tert-Butyl Alcohol (TBA)	104	96	34-154	14-174	7	0-19	
Diisopropyl Ether (DIPE)	102	103	80-122	73-129	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	102	104	73-127	64-136	2	0-11	
Tert-Amyl-Methyl Ether (TAME)	103	106	69-135	58-146	3	0-12	
Ethanol	97	88	34-124	19-139	10	0-44	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed:

LCS ME CL validation result: Pass

CL - Control Limit

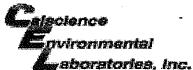
Glossary of Terms and Qualifiers

Work Order Number: 0

09-02-0581

Qualifier	<u>Definition</u>						
AX	Sample too dilute to quantify surrogate.						
BA	There was no MS/MSD analyzed with this batch due to insufficient sample volume (NR = not reported). See Blank Spike/Blank Spike Duplicate.						
BA,AY	Relative percent difference out of control, matrix interference suspected.						
BB	Sample > 4x spike concentration.						
BF	Reporting limits raised due to high hydrocarbon background.						
вн	Reporting limits raised due to high level of non-target analytes.						
BU	Sample analyzed after holding time expired.						
BV	Sample received after holding time expired.						
BY	Sample received at improper temperature.						
CL	Initial analysis within holding time but required dilution.						
CQ	Analyte concentration greater than 10 times the blank concentration.						
CU	Surrogate concentration diluted to not detectable during analysis.						
DF	Reporting limits elevated due to matrix interferences.						
ET	Sample was extracted past end of recommended max. holding time.						
EY	Result exceeds normal dynamic range; reported as a min est.						
GS	Internal standard recovery is outside method recovery limit.						
IB	CCV recovery abovelimit; analyte not detected.						
IH	Calibrtn. verif. recov. below method CL for this analyte.						
IJ	Calibrtn. verif. recov. above method CL for this analyte.						
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.						
LA	Confirmatory analysis was past holding time.						
LG	Surrogate recovery below the acceptance limit.						
LH	Surrogate recovery above the acceptance limit.						
LM,AY	MS and/or MSD above acceptance limits. See Blank Spike (LCS). Matrix interfence suspected.						
LN,AY	MS and/or MSD below acceptance limits. See Blank Spike (LCS). Matrix interfence suspected.						
LQ	LCS recovery above method control limits.						
LR	LCS recovery below method control limits.						

Work Order Number: 09-02-0581


Qualifier	<u>Definition</u>
MB	Analyte present in the method blank.
MG	Analyte is a suspected lab contaminate.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.

Laboratory Management Program LaMP Chain of Custody Record

Page 1 of 1

BP/ARC Project Name: BP/ARCO 11124 Req Due Date (mm/dd/yy): 14 Day TAT Rush TAT: Yes No X BP/ARC Facility No: 11124 O A BP affiliated company Lab Work Order Number: 0581 CalScience Lab Name: BP/ARC Facility Address: 3315 High Street Consultant/Contractor: Stratus Environmental Inc. Lab Address: 7440 Lincoln Way, Garden Grove, CA 92841 City, State, ZIP Code: Oakland, CA Consultant/Contractor Project No: Lab PM: Richard Villafania Lead Regulatory Agency: Alameda County Address: 3330 Cameron Park Drive, #550, Cameron Park, CA 95682 Lab Phone: 714-895-5494 Fax: 714-895-7501 California Global ID No.: T06001001919 Consultant/Contractor PM: Jay Johnson Lab Shipping Acent: Enfos Proposal No: 530-676-6000 Fax: 530-676-6005 Lab Bottle Order No: Accounting Mode: Provision X OOC-BU OOC-RM Email EDD To: chuff@stratusinc.net Other info: Stage: BP/ARC WBS Stage Activity: BP/ARC WBS Activity Invoice Ta: BP/ARC X Contractor BP/ARC EBM: Paul Supple Matrix No. Containers / Preservative Requested Analyses Report Type & QC Level EBM Phone: 925-275-3801 Fax: Standard _X_ Total Number of Containers EBM Email: paul.supple@bp.com Full Data Package __ Note: If sample not collected, indicate "No Sample" in comments and single-strike out 8260 and initial any preprinted sample description. Ethanol by 8260 GRO by 8015M BTEX/5 FO* by Lab Water / Liquid Sample Description EDB by 8260 Date Time Soil / Solid No. Air / Vapor 盃 Comments Unpreser Methanol 1,2-DCA H₂SO₄ HNO *Oxy = MTBE, TAME, ETBE, 모 DIPE, TBA MW-1 2/5/09 12:25 Х 6 Х Х Х Х Х Х MW-5 11:50 Χ 6 Х Х Х Х Х Х MW-6 Х 6 Х 12:07 Х Х Х Х Х TB11124 2/5/09-5:00 2 5:00 ON HOLD Sampler's Name: ROBERTO HEIMLICH Relinquished By / Affiliation Date Time Accepted By / Affiliation Date Time Sampler's Company: Stratus Environmental Inc. \ØX\}^a GSO Shipment Method: Ship Date: Shipment Tracking No: 106279819 Special Instructions: T8 Sample ON HOLD! Cc results to rmiller@broadbentinc.com THIS LINE - LAB USE ONLY: Custody Seals in Place: Yes / No Temp Blank: Yes / No Cooler Temp on Receipt: °F/C Trip Blank: Yes / No MS/MSD Sample Submitted: Yes / No.

Air: Tedlar® Summa®

Preservative: h:HCL n:HNO₃ na₂:Na₂S₂O₃ na:NaOH

A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle

Container: C:Clear

WORK	ORDER	#:	09-02-	5	જ	-7

SAMPLE RECEIPT FORM Cooler ___ of ___ aboratories, Inc. Stratus DATE: 02/06/09 CLIENT: TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) 3.3 °C-0.2 °C (CF) = 3.1 °C **☑** Blank **Temperature** □ Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by:_____). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: NC Ambient Temperature: Air ☐ Filter ☐ Metals Only ☐ PCBs Only **CUSTODY SEALS INTACT:** ☑ Not Present ☐ Cooler ☐ No (Not Intact) □ N/A Initial: NC ☐ Sample ☐ No (Not Intact) ✓ Not Present, Initial: Y

			<u> </u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete	\square		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	Ø		
Sample container(s) intact and good condition	$ ot \square$		
Correct containers and volume for analyses requested			
Analyses received within holding time	Ø		
Proper preservation noted on COC or sample container			
Volatile analysis container(s) free of headspace	Ø		
Tedlar bag(s) free of condensation			Z
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores®	□TerraCor	es® 🗆	
Water: □VOA ŽVOAh □VOAna₂ □125AGB □125AGBh	□125AGBpo	 ₁ □1AGB	□1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1F			
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂			

po₄:H₃PO₄ s:H₂SO₄

znna:ZnAc2+NaOH

SOP T100_090 (12/10/08)

Checked/Labeled by:

Reviewed by:

Scanned by:

ATTACHMENT

FIELD PROCEDURES FOR GROUNDWATER SAMPLING

The sampling procedures for groundwater monitoring events are contained in this appendix.

Groundwater and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

Prior to measuring the depth to liquid in the well, the well caps are removed and the liquid level allowed to stabilize. A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the groundwater depth in monitoring wells that do not contain LPH. Depth to groundwater or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typically a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Groundwater

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Sampling

In many cases, determining whether to purge or not to purge wells prior to sample collection is made in the field and is often based on depth to water relative to the screen interval of the well. Site-specific field data sheets present details associated with the purge method and equipment used.

Monitoring wells, when purged, use a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water has been removed. Field measuring equipment is calibrated and maintained according to the manufacturer's instructions. If three well volumes cannot be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a groundwater sample is then collected from each of the wells using disposable bailers.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These

bottles will be filled completely to prevent air accumulation in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Groundwater Sample Labeling and Preservation

Samples are collected in appropriate containers supplied by the laboratory. All required chemical preservation is added to the bottles prior to delivery to Stratus. Sample label information includes a unique sample identification number, job identification number, date, and time. After labeling, all groundwater samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip and temperature blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

All reusable sampling equipments are cleaned using phosphate-free detergents and rinsed with de-ionized water.

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 1Q09 GEO_WELL 11124

Facility Global ID: T0600100919
Facility Name: BP #11124
File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/15/2009 4:35:39 PM

Confirmation Number: 2402874171

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 1Q09 GW Monitoring

Facility Global ID: T0600100919
Facility Name: BP #11124
File Name: 09020581.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/15/2009 4:39:04 PM

Confirmation Number: 9399105250

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California