

Carryl MacLeod Project Manager, Marketing Business Unit

August 11, 2017

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

By Alameda County Environmental Health 9:06 am, Aug 11, 2017

Dear Mr. Detterman:

Attached for your review is the *Request for Case Closure* for former Chevron-branded service station 94612, located at 3616 San Leandro Street in Oakland, California (Case #: RO0000233). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached report submitted on my behalf to Alameda County Environmental Health's FTP server and the State Water Resources Control Board's GeoTracker[™] Website.

If you have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or <u>travis.flora@stantec.com</u>.

Sincerely,

Markan

Carryl MacLeod Project Manager

> Chevron Environmental Management Company 6001 Bollinger Canyon Road, San Ramon, CA 94583 Tel 925 842 3201 CarrylMacLeod@chevron.com

Request for Case Closure

Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California Case #: RO0000233

Prepared for: Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

August 11, 2017

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

This document entitled Request for Case Closure was prepared by Stantec Consulting Private Limited ("Stantec") for the account of Chevron Environmental Management Company (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Lack (signature)

Fo Sucheon Sung Project Specialist

Orm O'Ma Reviewed by

Erin O'Malley Project Engineer

Reviewed by

(signature)

Travis L. Flora Senior Project Manager

Reviewed by (signature)

Dorota Runyan, P.E. Senior Engineer

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

Table of Contents

1.0	INTRODU	CTION	1
2.0 2.1	SITE BACI SITE DESC	KGROUND CRIPTION AND LAND USE	2
2.2 2.3	REGIONA RELEASE I	AL AND LOCAL GEOLOGY AND HYDROGEOLOGY HISTORY	2 3
2.4 2.5	PREVIOU: OFF-SITE S	s investigations and remediation Sources	3 5
3.0	EXTENT O	F PETROLEUM HYDROCARBONS	8
3.1	EXTENT O	F PETROLEUM HYDROCARBONS IN SOIL	8
3.2	EXTENT O 3.2.1	PETROLEUM HYDROCARBONS IN GROUNDWATER Plume Stability	8 9
4.0	SITE CON	CEPTUAL MODEL	.10
4.1	CURRENT	AND FUTURE LAND USES	.10
4.2	WATER SI	JRVEY	.10
	4.2.1	Groundwater Wells	.10
	4.2.2	Surface Water Bodies	.
4.3	CONDUI		
4.4		ALLY EXPOSED POPULATIONS	.12
	4.4.1	Off Site Current or Potential Populations	12
	4.4.Z 1 1 3	Potential Sensitive Populations	12
45		F PATHWAY ANALYSIS	13
4.6	RISK EVAI	LUATION	.14
5.0	LTCP EVA	LUATION	.15
5.1	GENERAL	_ CRITERIA	.15
5.2	MEDIA-SF	PECIFIC CRITERIA	.17
	5.2.1	Groundwater-Specific Criteria	.17
	5.2.2 5.2.3	Direct Contact and Outdoor Air Exposure Criteria	.17
6.0	RECOMM	IENDATIONS	.20
7.0	REFERENC	CES	.21

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

LIST OF TABLES

Table 1	. Well Details / Screen Interval Assessment – Second Quarter 2017
Table 2	Groundwater Monitoring Data and Analytical Results
Table 3	Groundwater Analytical Results – Oxygenate Compounds
Table 4	Groundwater Analytical Results – Metals and PPL Volatiles
Table 5	Groundwater Analytical Results – PCBs
Table 6	Grab Groundwater Analytical Results
Table 7	Soil Analytical Results
Table 8	Soil Vapor Analytical Results – 1999 Soil Vapor Survey
Table 9	Soil Vapor Analytical Results – 2008 Soil Vapor Investigation

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	
Figure 3	Groundwater Elevation Contour Map – Second Quarter 2017
Figure 4	Groundwater Flow Direction Rose Diagram – Second Quarter 2017
Figure 5	Site Plan Showing Groundwater Concentrations – Second Quarter 2017
Figure 6	TPH-GRO Isoconcentration Map – Second Quarter 2017
Figure 7	Benzene Isoconcentration Map – Second Quarter 2017
Figure 8	Exposure Pathway Flow Chart

LIST OF APPENDICES

Appendix A	Soil Boring and Well Construction Logs
Appendix B	Historical Geologic Cross-Sections A-A' and B-B'
Appendix C	Hydrographs
Appendix D	SWRCB LTCP Checklist

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

1.0 Introduction

On behalf of Chevron Environmental Management Company (CEMC), Stantec Consulting Services Inc. (Stantec) is pleased to submit this *Request for Case Closure* for Former Chevronbranded Service Station 94612, located at 3616 San Leandro Street, Oakland, Alameda County, California (Site - shown on **Figure 1**).

In a letter dated May 6, 2014, Alameda County Department of Environmental Health (ACDEH) approved Stantec's *Site Conceptual Model and Data Gap Work Plan*, dated February 28, 2014, and requested a Soil and Groundwater Investigation Report. The scope of work included advancement of two off-site soil borings. While conducting a utility locate for the investigation, a high priority petroleum pipeline was discovered underground adjacent to the original proposed soil boring locations, so the proposed borings were relocated to down-gradient off-site private properties. Due to issues obtaining access to the off-site private properties, Stantec has been unable to conduct the requested investigation.

In a letter dated June 7, 2017, ACDEH requested a Work Plan Addendum to relocate the proposed soil borings to on Site and provide technical justification for the groundwater-specific criteria of the State Water Resources Control Board (SWRCB) Low-Threat Underground Storage Tank (UST) Case Closure Policy (LTCP). ACDEH also requested the Site be put on an interim semiannual (previously annual) groundwater monitoring and sampling interval. This report provides an updated Site Conceptual Model (SCM) summarizing current Site conditions and compares these conditions to the closure criteria specified in the LTCP. As described in the following sections, based on Stantec's review of current conditions, the Site meets the general and media-specific criteria for closure specified in the LTCP and should be closed.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

2.0 Site Background

2.1 SITE DESCRIPTION AND LAND USE

The Site is a former Chevron-branded service station located on the northern corner at the intersection of San Leandro Street and 37th Avenue in Oakland, California. The Site is currently comprised of two commercial-zoned parcels (Alameda County Assessor's Parcel Number [APN] 33-2178-9-1 and APN 33-2178-10) owned by separate private parties. A one-story commercial building occupies the northwestern parcel, while the southeastern parcel is a paved parking lot. A Chevron-branded service station operated at the Site from approximately 1967 until 1976.

Former Site features consisted of three gasoline USTs (two 10,000-gallon and one 5,000-gallon) located in the northwestern portion of the Site, a 1,000-gallon waste oil UST located in the northern portion of the Site, two fuel dispenser islands located in the southern portion of the Site, associated product piping, and a station building with two hydraulic hoists located in the center of the Site. In 1976, the service station was closed and all Site features including USTs, dispenser islands, hydraulic hoists, and conveyance lines were removed. The Site remained a vacant lot until the existing building was constructed in approximately 1988. A Site Plan is shown on **Figure 2**.

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded to the northwest by a residence, to the northeast by a Bay Area Rapid Transit (BART) parking lot and elevated rail tracks, on the southeast by 37th Avenue followed by a commercial building, and on the southwest by San Leandro Street followed by a mixed commercial and residential area.

2.2 REGIONAL AND LOCAL GEOLOGY AND HYDROGEOLOGY

The Site lies conformably above Holocene-age, medium-grained alluvium consisting of unconsolidated, moderately to poorly sorted, fine-grained sand, silt, and clayey silt, with a few thin beds of coarse sand. These materials are underlain by late Pleistocene-age alluvium consisting of weakly consolidated, slightly weathered, poorly sorted clay, silt, sand, and gravel (Conestoga-Rovers & Associates [CRA], 2009).

Soil boring and well construction logs are included in **Appendix A**. Historical geologic crosssections A-A' and B-B' prepared for the *Case Closure Request*, dated February 2, 2009 (CRA, 2009) are included in **Appendix B**. These cross-sections show Site stratigraphy; historical low and high depth-to-groundwater (DTW) measurements; the DTW measurements collected on November 13, 2008; soil and groundwater sample depths; and total petroleum hydrocarbons as gasoline range organics (TPH-GRO), total petroleum hydrocarbons as diesel range organics (TPH-DRO), benzene, and methyl *tertiary*-butyl ether (MtBE) analytical results for select soil and groundwater samples collected during historical assessments. As shown in the soil boring logs and illustrated on the cross-sections, soils beneath the Site generally consist of silt and clay interbedded with silty to clayey sand and gravel strata to the greatest depth explored (approximately 31 feet below ground surface [bgs]). As further detailed in Section 2.5, the

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

service station was closed before MtBE was used as an additive, so MtBE impacts are attributed to an off-site source.

Well construction details and an assessment of whether Second Quarter 2017 groundwater samples were collected when groundwater elevations were measured across the well screen intervals are presented in **Table 1**. During Second Quarter 2017, wells MW-2 through MW-4 were screened across the prevailing groundwater table, while the groundwater elevation in well VH-1 was measured above the upper screen interval, and the entire screen interval was submerged.

Historical groundwater elevation data are presented in **Table 2**. The historical range of DTW measurements for the Site is approximately 5 to 16 feet below top of casing (TOC). During Second Quarter 2017, DTW measurements for the Site ranged from 8.42 to 9.16 feet below TOC. Based on a review of historical soil boring logs and hydrologic data, there is no evidence of multiple shallow aquifers (groundwater-bearing zones) at the Site. A groundwater elevation contour map (based on Second Quarter 2017 data) is shown on **Figure 3**, and a Groundwater 1993 to Second Quarter 2017 (65 sampling events) is shown on **Figure 4**. The predominant direction of groundwater flow at the Site has been toward the south-southwest (Stantec, 2017).

2.3 RELEASE HISTORY

In 1976, all Site features associated with the former service station were removed. Although no release was documented, any releases are believed to have occurred prior to the removal of Site features in 1976.

A hazardous materials release and notification report, dated February 22, 1988, is on file with ACDEH. The report states that an unknown amount of gasoline was released to the subsurface at the Site, which was discovered during assessment activities on February 19, 1988 (ACDEH, 1988).

In a letter dated September 13, 1994, a Groundwater Technology, Inc. (GTI) representative stated that there was a hole in the property fence just southeast of the warehouse building along San Leandro Street. Just inside the fence, used motor oil stains were observed on the ground (unpaved lot). In addition, a broken car battery was found on the ground (GTI, 1994).

In February 1997, the property owner indicated a kerosene spill of unknown volume had occurred within the warehouse building on Site and that the spill had spread into the rest room where well VH-1 is located. During routine groundwater monitoring, it was noted that the spill was cleaned up adequately and there were no signs of liquid product, but the rest room exhibited a strong kerosene odor (Chevron Products Company [Chevron], 1997).

2.4 PREVIOUS INVESTIGATIONS AND REMEDIATION

Historical groundwater monitoring data and analytical results are summarized in **Table 2** through **Table 6**. Historical soil analytical results are summarized in **Table 7**. Historical soil vapor analytical

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

results are summarized in **Table 8** and **Table 9**. Locations of historical soil borings, monitoring wells, and soil vapor probes are shown on **Figure 2**. Soil boring and well construction logs are included in **Appendix A**.

As described above, in 1976, the service station was closed and all Site features including USTs, dispenser islands, hydraulic hoists, and conveyance lines were removed (CRA, 2009). Further documentation on these activities could not be found in ACDEH records, and it is unknown if soil sampling or excavation of impacted soil, if present, was conducted.

In February 1988, Rogers/Pacific oversaw advancement of three on-site geotechnical soil borings (B-1 through B-3) to total depths of 21.5 feet bgs (borings B-1 and B-3) and 26.5 feet bgs (boring B-2). A strong gasoline odor was observed in saturated soil in all three borings at a depth of approximately 20 feet bgs. No soil samples were collected for laboratory analysis during this investigation (Vonder Harr Hydrology [Vonder Harr], 1988).

In August 1988, Vonder Harr oversaw installation of one on-site groundwater monitoring well (VH-1) to an approximately total depth of 30 feet bgs. TPH-GRO were not detected above laboratory reporting limits (LRLs) in any soil sample collected during this investigation, while the maximum concentration of benzene in soil (0.042 milligrams per kilogram [mg/kg]) was detected in the sample collected at 20.5 feet bgs (Vonder Harr, 1988).

In February 1993, GTI oversaw installation of two on-site groundwater monitoring wells (MW-2 and MW-3) to a total depth of approximately 20 feet bgs. Petroleum hydrocarbons were not detected above LRLs in any soil sample collected during this investigation (GTI, 1993).

In August 1995, GTI oversaw installation of one off-site groundwater monitoring well (MW-4) to a total depth of approximately 20 feet bgs and advancement of one on-site soil boring (SB-1) to a total depth of 21.5 feet bgs. The maximum concentration of TPH-GRO in soil (16 mg/kg) was detected in the sample collected from boring SB-1 at 21.5 feet bgs, while benzene was not detected above LRLs in any soil sample collected. A grab groundwater sample was collected from boring SB-1 at 18 feet bgs, and TPH-GRO and benzene were detected at concentrations of 21,000 micrograms per liter (µg/L) and 240 µg/L, respectively (GTI, 1995).

In June 1998, oxygen release compound (ORC) was installed in wells VH-1, MW-2, and MW-3 (Chevron, 1998a). Based on available historical information, it is believed that ORC was only applied on this one occasion; however, this was never specifically documented. After installation of the ORC, dissolved oxygen (DO) levels in wells VH-1, MW-2, and MW-3 were not significantly different than the levels in down-gradient background well MW-4, indicating the ORC had little success in increasing DO levels to stimulate aerobic biodegradation.

In February 1999, Gettler-Ryan Inc. (G-R) oversaw advancement of two on-site soil borings (VB-1 and VB-2) and subsequent collection of soil vapor samples from each of the borings at a depth of approximately 3 feet bgs. No soil samples were collected for laboratory analysis during this investigation. Soil vapor samples were analyzed for toxic organics (G-R, 1999). All detected concentrations are below soil gas California Regional Water Quality Control Board – San

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

Francisco Bay Region (RWQCB) Tier 1 Environmental Screening Levels (ESLs) and do not indicate a vapor intrusion risk at the Site.

In July 2001, G-R oversaw advancement of three on-site soil borings (GP-1 through GP-3) to total depths of 15 feet bgs (borings GP-2 and GP-3) and 16 feet bgs (boring GP-1). Petroleum hydrocarbons were not detected above LRLs in any soil sample collected during this investigation; although, a soil sample was not collected from boring GP-1 at 15.5 feet bgs, where the reported photoionization detector (PID) reading was 1,413 parts per million (ppm). Elevated PID readings were not present at total depth in soil borings GP-2 and GP-3 (G-R, 2002a).

In March 2002, G-R oversaw advancement of three off-site, down-gradient soil borings (HA-1 through HA-3) to total depths of 9.5 feet bgs (boring HA-2) and 10 feet bgs (borings HA-1 and HA-3). Petroleum hydrocarbons were not detected above LRLs in any soil sample collected from borings HA-2 and HA-3. Minor detections of toluene, ethylbenzene, and total xylenes were detected in the soil sample collected from boring HA-1 at 5 feet bgs; however, TPH-GRO and benzene were not detected above LRLs in that sample. Grab groundwater samples were collected from soil borings HA-1 through HA-3 at total depth, and petroleum hydrocarbons were not detected above LRLs in any of the groundwater samples (G-R, 2002a).

In May 2008, CRA oversaw installation of four on-site soil vapor probes (VP-1 through VP-4) to total depths of 6 feet bgs and advancement of three on-site soil borings (SB-2 through SB-4) to total depths of 12 feet bgs. Of the soil samples collected during this investigation, only MtBE was detected above LRLs, and it was detected at a maximum concentration of 0.001 mg/kg in the sample collected from boring SB-4 at 12 feet bgs (within the saturated zone), which is below the Tier 1 soil ESL for MtBE (0.023 mg/kg). Grab groundwater samples were collected from boreholes VP-3 and VP-4 and borings SB-2 through SB-4 at a depth of 10.5 feet bgs, and maximum concentrations of TPH-GRO, TPH-DRO, and benzene (1,100 µg/L, 560 µg/L, and 36 µg/L, respectively) were detected in the sample collected from borehole VP-3. Soil vapor sampling was conducted at vapor probes VP-1 through VP-4 in June 2008. Maximum concentrations of TPH-GRO in soil vapor (4.5 micrograms per cubic meter [µg/m³] and 1,200 µg/m³, respectively) were detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentration of benzene (8.2 µg/m³) was detected in the sample collected from vapor probe VP-4, while the maximum concentratio

2.5 OFF-SITE SOURCES

In the cover letter that accompanied the Second Quarter 1998 groundwater monitoring report, dated June 30, 1998, Chevron stated there was no explanation for the presence of MtBE at the Site, because Chevron did not use this oxygenate in gasoline until 1991 (Chevron, 1998b), and the gasoline USTs were removed in 1976. Therefore, the MtBE concentrations detected in groundwater are due to an additional off-site source. The TPH-DRO concentrations consistently detected in groundwater in well MW-3 may also be due to an off-site source, because it does not appear that diesel was ever dispensed at the Site, and TPH-DRO was not detected in any soil

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

sample collected at the Site. In approximately half of the groundwater samples in which TPH-DRO was detected, the laboratory noted unidentified hydrocarbons were observed during analysis, which could indicate hydrocarbons heavier than diesel. Hydrocarbons heavier than diesel would most likely be expected in the area of well MW-3, because it is adjacent to the former waste oil UST. Another indication that off-site sources may be contributing to Site impacts is that strong gasoline odors were observed in boring B-1, located approximately 28 feet north (up-gradient) of the former gasoline USTs associated with the Site.

On June 4, 2002, G-R conducted a Site vicinity survey to identify potential off-site sources. Two operating service stations were identified during the survey; Tony's Express Auto Services is located at 3609 International Boulevard, approximately 620 feet north-northeast (up-gradient) of the Site and Guy's Service Station is located at 3820 San Leandro Street, approximately 500 feet southeast (cross-gradient) of the Site (G-R, 2002b). Guy's Service Station has an open case with the ACDEH (Case No. RO0000089), but given that it is located cross-gradient of the Site, it is unlikely to be contributing to petroleum hydrocarbon concentrations at the Site. Although the ACDEH case for Tony's Express Auto Services (Case No. RO0000265) was closed on January 18, 2011, when the furthest down-gradient well associated with that site (well MW-12, located approximately 345 feet up-gradient of the Site) was last sampled in August 2008, the MtBE concentration was 13 μ g/L, which is consistent with MtBE concentrations detected at the Site (ranging from 1 to 2 μ g/L during Second Quarter 2017) (SWRCB, 2017a).

A recent Site vicinity survey identified two additional sites as potential off-site sources. Fruitvale Bart is located from the western edge of Fruitvale Avenue to the eastern edge of 37th Avenue and Fruitvale Transit Village is located from 3501 to 3601 East 12th Street. Fruitvale Bart has an open case with the ACDEH (Case No. RO0002490) and Fruitvale Transit Village has an open case with the RWQCB (Case No. 01S0639) (ACDEH, 2017; SWRCB, 2017a).

Groundwater samples were collected from the Fruitvale Transit Village site in locations approximately 320 and 400 feet north (up-gradient) of the Site (borings TR-7 and TR-8, respectively; depths of 16 feet bgs) in 2005 and maximum TPH-GRO, TPH-DRO, total petroleum hydrocarbons as motor oil (TPH-MO), benzene, and MtBE concentrations were 26,000 µg/L, 5,200 µg/L, 350 µg/L, 12 µg/L, and 22 µg/L, respectively (soil concentrations were relatively low). Additional groundwater samples were collected in similar locations in 2016 (borings TR-11 and TR-12; depth of 9.5 feet bgs) and maximum TPH-GRO, TPH-DRO, TPH-MO, and MtBE concentrations were 120 µg/L, 160 µg/L, 350 µg/L, and 2 µg/L, respectively (benzene was nondetect). In a letter dated March 6, 2017, the RWQCB indicated the case is eligible for closure under the LTCP and that the groundwater pollution is likely due to migration from off-site and upgradient sources (SWRCB, 2017a).

In association with the Fruitvale Bart site, a soil sample was collected from a test pit (Test Pit 19) approximately 50 feet north (up-gradient) of the Site in 1999 (depth of 2 to 3 feet bgs) and TPH-DRO and TPH-MO were detected at concentrations of 2,800 mg/kg and 6,000 mg/kg, respectively. A groundwater sample was collected in approximately the same location (boring GW3) in 2000 and TPH-GRO, TPH-DRO, benzene, and MtBE concentrations in that sample were

.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

380 µg/L, 96 µg/L, 6.0 µg/L, and 110 µg/L, respectively. The boring log indicates that groundwater was encountered at approximately 14 feet bgs, and it is assumed that the groundwater sample was collected at this depth (ACDEH, 2017). GeoTracker[™] lists the Fruitvale Bart site as being inactive since January 21, 2016 (SWRCB, 2017a).

Based on the petroleum hydrocarbon concentrations observed in soil and groundwater at the identified up-gradient sites, all may have contributed to Site impacts; however, given that the Fruitvale Bart site is closer to the Site and has higher concentrations, it is more likely that impacts may have originated from that site.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

3.0 Extent of Petroleum Hydrocarbons

3.1 EXTENT OF PETROLEUM HYDROCARBONS IN SOIL

Historical soil sample analytical results are presented in **Table 7.** Soil analytical results are compared to Tier 1 ESLs (RWQCB, 2016).

Based on soil analytical results collected from 1988 to 2008, there have been slight detections of TPH-GRO, benzene, toluene, ethylbenzene, and total xylenes (BTEX Compounds), and total lead in shallow soil; however, no soil samples collected in association with the Site exhibited concentrations of petroleum hydrocarbons above Tier 1 soil ESLs and historical assessment activities have provided adequate lateral and vertical coverage of former fueling features in vadose zone soil. Therefore, the lateral and vertical extents of petroleum hydrocarbons in soil are considered defined, and this is not considered a data gap.

There are reports of strong gasoline odor in borings B-1 through B-3 at 20 feet bgs; however, odor is subjective, especially within the saturated zone. In addition, historical soil samples were collected from borehole VH-1 at 20.5 and 25.5 feet bgs, which is near borings B-1 through B-3, and the reported concentrations are below Tier 1 ESLs. Soil data from VH-1 defines the vertical extent of petroleum hydrocarbons in soil in the area of borings B-1 through B-3. Elevated PID readings were reported in borehole MW-2 at 15 and 19 feet bgs, borehole MW-3 at 15 feet bgs, boring GP-1 at 15.5 feet bgs, and boring SB-1 at 21.5 feet bgs. Of these samples, only the soil sample collected from boring SB-1 at 21.5 feet bgs was submitted for laboratory analysis, and the reported concentrations were below Tier 1 soil ESLs by up to one order of magnitude.

3.2 EXTENT OF PETROLEUM HYDROCARBONS IN GROUNDWATER

Historical groundwater analytical results are included in **Table 2** through **Table 6**. A figure showing the Second Quarter 2017 groundwater analytical data plotted on a Site map is included as **Figure 5**. A TPH-GRO isoconcentration map for Second Quarter 2017 is shown on **Figure 6**. A benzene isoconcentration map for Second Quarter 2017 is shown on **Figure 7**. These maps illustrate the approximate lateral extent of dissolved-phase impacts.

During Second Quarter 2017, maximum concentrations of TPH-GRO, benzene, toluene, total xylenes, and MtBE (3,000 μ g/L, 5 μ g/L, 0.9 μ g/L, 2 μ g/L, and 2 μ g/L, respectively) were observed in well VH-1, located approximately 6 feet from the former gasoline USTs. The TPH-GRO concentrations in wells VH-1, MW-2, and MW-3 are above the Tier 1 ESL for TPH-GRO of 100 μ g/L and the benzene concentration in well VH-1 is above the Tier 1 ESL for benzene of 5 μ g/L. Ethylbenzene was not detected above LRLs and toluene, ethylbenzene, and MtBE (attributed to an off-site source) were not detected above the Tier 1 ESL (100 μ g/L, 20 μ g/L, and 5 μ g/L, respectively). TPH-DRO was detected above the Tier 1 ESL (100 μ g/L) in the one well in which it is analyzed, well MW-3, located approximately 4 feet from the former waste oil UST (Stantec, 2017).

The TPH-GRO plume is defined to the southeast by concentrations below LRLs in well MW-4, and

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

the benzene plume is defined to the northeast and southeast by concentrations below LRLS in wells MW-2, MW-3, and MW-4. The plumes are also delineated to the southwest and west using historical groundwater samples collected from borings HA-1, HA-2, HA-3, SB-3, and SB-4. The TPH-GRO and benzene plumes are adequately defined.

Based on a review of historical boring and well logs and hydrologic data, there is no evidence of multiple shallow aquifers (groundwater-bearing zones) at the Site, and previously collected groundwater samples appear representative of Site groundwater, including the current delineation of the dissolved-phase plume.

3.2.1 Plume Stability

Hydrographs based on current and historical groundwater elevations and analytical results are included in **Appendix C**. Current and historical groundwater quality data indicate the dissolvedphase petroleum hydrocarbon plume associated with the Site is generally stable or decreasing in overall size and concentration. During Second Quarter 2017, all concentrations of TPH-GRO, TPH-DRO, BTEX Compounds, and MtBE (attributed to an off-site source) were within historical limits at all wells sampled. Concentrations appear to have an inverse relationship with changes in groundwater elevation; however, overall stable or decreasing concentration trends are still observed (Stantec, 2017).

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

4.0 Site Conceptual Model

An updated SCM was prepared to identify complete and potentially complete exposure pathways relevant to human health risks at the Site based on analyses of the following components:

- Current and future land uses;
- Water well, surface water, and conduit surveys;
- Potentially exposed populations; and
- Complete and potentially complete exposure pathways.

4.1 CURRENT AND FUTURE LAND USES

Land use near the Site consists of a mixture of commercial and residential properties. The Site is bounded to the northwest by a residence, to the northeast by a BART parking lot and elevated rail tracks, on the southeast by 37th Avenue followed by a commercial building, and on the southwest by San Leandro Street followed by a mixed commercial and residential area.

The Site and properties to the northwest, southwest, and southeast of the Site are zoned as commercial (mixed housing and business), while the properties to the northeast of the Site are zoned for transit oriented purposes.

Based on the land use of the Site and its location at a major intersection, the Site will likely continue to be used for commercial purposes in the future.

4.2 WATER SURVEY

The Site is located in the East Bay Plain groundwater basin, which has been designated as having existing beneficial uses for municipal, domestic, industrial process, industrial service, and agricultural water supply (RWQCB, 2011).

4.2.1 Groundwater Wells

A well survey was conducted in 1993 (using information provided by the California Department of Water Resources [DWR]) to identify water supply wells within a 0.5-mile (2,640-foot) radius of the Site (GTI, 1993). Out of the 36 active wells identified, the records indicated three water supply wells within the radius, which includes one irrigation well and two wells with unknown uses. The irrigation well is located approximately 0.29 miles (1,531 feet) northeast (up-gradient) of the Site. One of the wells with an unknown use is located approximately 0.26 miles (1,373 feet) west (cross-gradient) of the Site, and the other is located approximately 0.46 miles (2,429 feet) westsouthwest (cross- to down-gradient) of the Site. Total depth information was not available for these wells. Based on the predominant direction of groundwater flow at the Site (south-

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

southwest), the distance to the water supply wells, the limited extent of the plume, and the location of the water supply wells up-gradient or cross-gradient of the Site, the water supply wells are not likely to be impacted by the dissolved-phase petroleum hydrocarbon plume. A recent review of the SWRCB GeoTrackerTM GAMA Database did not identify any additional water supply wells within a 0.5-mile (2,640-foot) radius of the Site (SWRCB, 2017b). Given the limited extent of the dissolved-phase petroleum hydrocarbon plume, it does not appear that additional research on water supply wells in the area is necessary.

4.2.2 Surface Water Bodies

The United States Geological Survey (USGS) 7.5-minute Oakland East Quadrangle topographic map and aerial photos from Google Earth® were reviewed to identify any surface water within a 0.5-mile radius of the Site. The nearest surface water body is the Inner Oakland harbor of the Oakland-Alameda Estuary, located approximately 2,350 feet southwest (down-gradient) of the Site. Based on the distance to this surface water body, it is unlikely that it will be impacted by the dissolved-phase petroleum hydrocarbon plume associated with the Site.

4.3 CONDUIT SURVEY

A Site Plan showing the location of utilities in the vicinity and down-gradient of the Site is shown on Figure 2. Underground utilities that have been identified down-gradient of the Site beneath San Leandro Street include sanitary sewer, natural gas, and water lines. In addition, a Shell fuel pipeline has been reported trending along the south side of San Leandro Street. The depth and flow directions of these utilities are unknown. In March 2002, three down-gradient hand-augered soil borings (HA-1 through HA-3) were advanced to depths of 9.5 feet bgs (boring HA-2) and 10 feet bgs (borings HA-1 and HA-3) to evaluate if the utilities were acting as preferential pathways. Borings HA-1 and HA-2 were located on either side of the sanitary sewer line in San Leandro Street and boring HA-3 was located on the up-gradient side of the natural gas line. Concentrations of petroleum hydrocarbons in grab groundwater samples collected from the borings were below LRLs and it was concluded that the sanitary sewer and natural gas lines did not appear to be acting as preferential pathways (G-R, 2002a). Boring HA-3 and well MW-4 are in locations where they could intersect any groundwater leaving the Site before reaching the trench for the natural gas line, and groundwater concentrations in those locations are below LRLs. In addition, based on concentrations below LRLs in boring HA-2, the plume does not appear to extend to the sanitary sewer line, the water line, or the fuel line at the estimated depth of these utilities.

Based on these data, there is no evidence to suggest utility trenches are acting as preferential pathways for the dissolved-phase plume associated with the Site, and the dissolved-phase plume is defined by these samples. Therefore, additional assessment of utilities and other sensitive receptors (basements, crawl spaces, dewatering sump pumps, etc.) is not warranted and the Site satisfies the groundwater-specific criteria of the LTCP regarding plume definition, as described in Section 5.2.1.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

4.4 POTENTIALLY EXPOSED POPULATIONS

4.4.1 On-Site Current or Potential Populations

Based on the current and likely future use of the Site as commercial, the current or future potentially exposed populations on Site include commercial workers, customers, and construction workers.

4.4.2 Off-Site Current or Potential Populations

Based on the current and likely future use of adjacent and down-gradient properties as commercial or residential, the current or future potentially exposed populations off Site include commercial workers, customers, construction workers, and residents.

4.4.3 Potential Sensitive Populations

Stantec conducted a survey to determine if any potential sensitive populations were located in the vicinity of the Site. Potential sensitive populations are people who would potentially be more susceptible to risks resulting from exposure to Site-related hydrocarbons such as school-age children, medically-compromised people, and the elderly. The potential sensitive populations located within a 0.5-mile (2,640-foot) radius of the Site are listed in the following table:

Potential Sensitive Receptor	Address	Distance from Site (feet)	Direction from Site
Ascend Elementary School	3709 E. 12th St.	264	E, cross-gradient
Las Bougainvilleas Retirement Community	1223 37th Ave.	422	NE, up-gradient
DeColores Head Start	1155 35th Ave.	581	N-NE, up-gradient
Twenty-Four Hour Oakland PTC	3500 E. 9th St.	686	SW, down-gradient
Arise High School	3301 E. 12th St.	845	NW, cross-gradient
St. Elizabeth Elementary and Middle Schools	1516 33rd Ave.	1,690	N, cross-gradient
St. Elizabeth High School	1530 34th Ave.	1,742	N, cross-gradient
Oakland Charter Middle School	3001 International Blvd.	2,270	NW, cross-gradient
Fruitvale Health Care Center	3020 E. 15th St.	2,376	NW, cross-gradient
Lazear Elementary School	824 29th Ave.	2,534	W-NW, cross-gradient
Rose Garden Residential Care	1615 High St.	2,534	E, cross-gradient

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

Based on the predominant direction of groundwater flow associated with the Site (southsouthwest), only one of identified potential sensitive populations within a 0.5-mile (2,640-foot) radius of the Site (Twenty-Four Hour Oakland PTC) is located down-gradient. However, based on its distance from the Site (approximately 0.13 miles [686 feet]) and the limited extent of the current dissolved-phase plume (less than 250 feet), Twenty-Four Hour Oakland PTC is unlikely to be at risk from exposure to Site-related petroleum hydrocarbons.

4.5 EXPOSURE PATHWAY ANALYSIS

An exposure pathway is considered complete or potentially complete if it meets four basic requirements: 1) presence of chemical sources; 2) release and transport within an environmental medium; 3) an exposure route; and 4) a receptor. A graphical representation of the exposure pathway analysis for the Site is shown on **Figure 8**.

Incomplete exposure pathways are justified as follows:

- The ingestion of groundwater and dermal contact with groundwater exposure pathways are considered incomplete for all human receptors because there is no mechanism for deliberate consumption of the groundwater (no Site or nearby down-gradient water supply wells), and because excavation at or below the groundwater table is unlikely. Although excavation work to access the utilities within San Leandro Street would likely encounter groundwater, the identified utilities do not appear to be acting as preferential pathways.
- The ingestion and dermal contact surface soil exposure pathways are considered incomplete for all human receptors, because no shallow (less than 10 feet bgs) soil impacts were observed in association with the Site.
- The ingestion, dermal contact, and inhalation of outdoor particulates from excavated soil exposure pathways are considered incomplete for all human receptors, because excavation to potentially impacted depths, which were below the groundwater table, is unlikely.
- The soil gas emission pathways (inhalation of indoor and outdoor air) are considered incomplete for all human receptors as no shallow (less than 10 feet bgs) soil impacts were observed in association with the Site.

Potentially complete exposure pathways are summarized as follows:

• The groundwater emission pathways (inhalation of indoor and outdoor air) are considered potentially complete for on-site and off-site receptors due to the potential for petroleum hydrocarbons in shallow groundwater to volatilize and be inhaled in the indoor or outdoor air.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

4.6 **RISK EVALUATION**

The groundwater emission pathways (inhalation of indoor and outdoor air) are considered potentially complete for on-site and off-site receptors; however, soil vapor sampling was conducted beneath the current on-site building in June 2008 and all results are below Tier 1 ESLs; therefore, there is no indication of a vapor intrusion risk for on-site or off-site human receptors associated with this pathway. Furthermore, as indicated on the ACDEH's LTCP checklist on GeoTracker[™], dated June 7, 2017, Site conditions meet the petroleum vapor intrusion to indoor air and direct contact and outdoor air exposure criteria set forth in the LTCP.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

5.0 LTCP Evaluation

This section presents the low-threat general and media-specific criteria defined by the SWRCB's LTCP (SWRCB, 2012a) and includes an evaluation of Site conditions compared to these criteria. This evaluation correlates with the ACDEH evaluation (LTCP Checklist) presented in GeoTracker™, dated June 7, 2017, with the exception of the portion regarding the groundwater media-specific criteria. The ACDEH LTCP Checklist does not identify the groundwater media-specific criteria as being satisfied; however, Stantec presents justification for why this criterion is satisfied below. A completed SWRCB LTCP Checklist is included in **Appendix D**.

5.1 GENERAL CRITERIA

• Is the unauthorized release located within the service area of a public water system?

Yes. The Site is located within the service area of the East Bay Municipal Utility District.

- Does the unauthorized release consist only of petroleum?
- Yes. The constituents of concern (COCs) at the Site are petroleum hydrocarbons associated with gasoline hydrocarbons from a former service station, including TPH-GRO and BTEX compounds.
- Has the unauthorized ("primary") release from the UST system been stopped?

Yes. As detailed in Section 2.0, all Site features associated with the former service station were removed in 1976 (41 years ago). This includes three gasoline USTs (two 10,000-gallon and one 5,000-gallon) located in the northwestern portion of the Site, a 1,000-gallon waste oil UST located in the northern portion of the Site, two fuel dispenser islands located in the southern portion of the Site, associated product piping, and a station building with two hydraulic hoists located in the center of the Site (CRA, 2009).

Dissolved-phase petroleum hydrocarbon concentrations associated with the Site are decreasing, indicating that there is no longer a petroleum hydrocarbon source propagating on Site.

• Has free product been removed to the maximum extent practicable (per CCR Chapter 16 Section 2655 a-c)?

Not applicable. Free product has not been observed or documented in any Site wells todate; therefore, no free product removal activities have been conducted at any Site wells.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

• Has a Conceptual Site Model that assesses the nature, extent, and mobility of the release been developed?

Yes. This document assesses the nature, extent, and mobility of the release.

• Has secondary source been removed to the extent practicable?

Yes. Historical remedial efforts at the Site have consisted of installation of ORC in wells VH-1, MW-2, and MW-3 in June 1998 and natural attenuation processes.

According to the frequently asked questions sheet included in the LTCP, "following removal or destruction of the secondary source, additional removal or active remedial actions shall not be required by regulatory agencies unless: (1) necessary to abate a demonstrated threat to human health, or (2) the groundwater plume does not meet the definition of low-threat as described in the policy." As described in Section 4 of this report, there is no demonstrated threat to human health at the Site, and as described below in Section 5.2.1, the groundwater plume meets LTCP groundwater-specific criteria; therefore, further active remediation at the Site is not warranted.

• Has soil or groundwater been tested for MtBE and results reported in accordance with Health and Safety Code section 25296.15?

Yes. MtBE was analyzed in soil samples collected in association with the Site beginning in July 2001. MtBE was routinely analyzed in groundwater during monitoring and sampling events since Fourth Quarter 1995. Results have been reported to ACDEH and uploaded to GeoTracker™.

 Does nuisance as defined by Water Code section 13050 exist at the site? A "nuisance" is defined as anything which meets the following (1) Is injurious to health, or is indecent or offensive to the senses, or an obstruction to the free use of property; (2) Affects at the same time an entire community or neighborhood; (3) Occurs during, or as a result of, the treatment or disposal of wastes.

No. The conditions of "nuisance" as defined by Water Code section 13050 do not exist at the Site.

• Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?

No.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

5.2 MEDIA-SPECIFIC CRITERIA

5.2.1 Groundwater-Specific Criteria

The information presented below should clarify the evaluation of groundwater media-specific LTCP criteria, as presented in the GeoTracker™ LTCP Checklist, dated June 7, 2017. Current Site conditions satisfy groundwater-specific criteria scenario #2 as follows:

- The contaminant plume that exceeds water quality objectives (described in Section 3.2) is less than 250 feet in length;
- There is no free product;
- There are no water supply wells or surface water bodies identified within 1,000 feet of the defined plume boundary; and
- Dissolved benzene and MtBE concentrations are below 3,000 µg/L and 1,000 µg/L, respectively.

5.2.2 Petroleum Vapor Intrusion to Indoor Air Criteria

Current Site conditions satisfy criteria "a" based on scenario #4 for a bioattenuation zone (Direct Measurement of Soil Gas Concentrations) as follows:

1. There is a minimum of five vertical feet of soil between the soil vapor measurement and the foundation of an existing building or ground surface of future construction.

Soil vapor samples were collected beneath the current on-site building from vapor probes VP-1 through VP-4 in June 2008. These probes have screen interval depths ranging from 5.25 to 5.75 feet bgs.

2. TPH (TPHg + TPHd) is less than 100 mg/kg (measured in at least two depths within the fivefoot zone).

TPH concentrations were below LRLs and therefore less than 100 mg/kg in all historical soil samples collected from 0 to 5 feet bgs.

3. Oxygen is greater than or equal to four percent measured at the bottom of the five-foot zone.

Oxygen was measured in soil vapor samples collected from vapor probes VP-1 through VP-4, and all oxygen levels were greater than 4 percent, but less than levels that would indicate leakage of outside air.

Because conditions satisfy the criteria for a bioattenuation zone, soil gas screening levels for low-threat consideration are $85,000 \ \mu g/m^3$ benzene, $1,100,000 \ \mu g/m^3$ ethylbenzene, and

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

93,000 µg/m³ naphthalene for the more conservative residential land use; although, it is likely that this Site will continue to be used for commercial purposes. Benzene and ethylbenzene concentrations in soil vapor samples collected from probes VP-1 through VP-4 (shown in **Table 9**) are below these screening levels.

Soil vapor samples collected from probes VP-1 through VP-4 were not analyzed for naphthalene; however, the naphthalene concentration that would potentially be present can be back-calculated using the maximum concentrations of TPH-GRO and TPH-DRO in the soil vapor samples and the Leaking Underground Fuel Tank (LUFT) Guidance Manual average naphthalene percentages in gasoline and diesel of 0.25 percent and 0.26 percent, respectively (SWRCB, 2012b). Maximum concentrations of TPH-GRO and TPH-DRO in the soil vapor samples were 4.5 μ g/m³ and 1,200 μ g/m³, respectively, in the sample collected from probe VP-4. This amounts to approximately 3.13 μ g/m³ naphthalene [(0.0025*4.5 μ g/m³ TPH-GRO)+ (0.0026*1,200 μ g/m³ TPH-DRO) = 3.13 μ g/m³ naphthalene]. Therefore, the estimated concentrations of naphthalene in the soil vapor samples collected from probes VP-1 through VP-4 would also be below the screening levels, and Site conditions satisfy the LTCP petroleum vapor intrusion to indoor air criteria.

5.2.3 Direct Contact and Outdoor Air Exposure Criteria

Current Site conditions satisfy the LTCP direct contact and outdoor air exposure criteria.

The concentrations of benzene and ethylbenzene in the upper 10 feet of soil are less than the residential and commercial/industrial limits for direct contact and outdoor air exposure specified in Table 1 of the LTCP.

It does not appear that soil samples were analyzed for naphthalene from 0 to 10 feet bgs as specified in the LTCP; however, benzene exclusion criteria are considered conservative for naphthalene given that naphthalene is less volatile than benzene and is typically present in gasoline at much lower fractions than benzene (SWRCB, 2012c). Using SWRCB staff precedent from recent case closure reviews, "the relative concentration of naphthalene in soil can be conservatively estimated using published relative concentrations of naphthalene and benzene in gasoline" (SWRCB, 2017c). The lack of naphthalene data is not considered a data gap, and Site conditions can be assessed by using benzene concentrations. Gasoline mixtures contain approximately 2% benzene and 0.25% naphthalene (SWRCB, 2012b); therefore, benzene can be directly substituted for naphthalene concentrations with an approximate safety factor of eight. As previously described, the concentrations of benzene in the upper 10 feet of soil are less than the residential and commercial/industrial limits for direct contact and outdoor air exposure specified in Table 1 of the LTCP; therefore, it is anticipated that the estimated naphthalene concentrations across the Site are also below the residential and commercial/industrial limits presented in Table 1 of the LTCP.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

Polynuclear aromatic hydrocarbons (PAHs) were not historically included in the analytical suite for soil; however, the groundwater sample collected from well MW-3 in August 2011 was analyzed for PAHs and all concentrations were below LRLs, with the exception of naphthalene, which was detected at a concentration of 2 µg/L. There is no evidence to suggest a release from the former waste oil UST is impacting soil or groundwater, and the LTCP checklist provided by ACDEH on GeoTracker[™] states that the Site meets the criteria for direct contact and outdoor air exposure set forth in the LTCP. Therefore, further analysis of PAHs is not warranted.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

6.0 Recommendations

Based on the results and conclusions presented herein, Stantec requests that ACDEH proceed with low-threat case closure. Site conditions meet the general and media-specific criteria established in the SWRCB's LTCP and pose a low threat to human health, safety, and the environment. Groundwater monitoring and sampling will cease while ACDEH evaluates this case for closure.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

7.0 References

ACDEH, 1988. Hazardous Materials Release and Notification Report. February 22.

ACDEH, 2017. Alameda County Environmental Health LOP Document search, website download from http://gis.acgov.org/DEH/InspectionResults/?SITE=LOP

Chevron, 1997. Letter to Mr. Barney Chan, Alameda County Health Care Services Department of Environmental Health re: Former Chevron Service Station #9-4612, 3616 San Leandro Street, Oakland, California. March 14.

Chevron, 1998a. Letter to Mr. Barney Chan, Alameda County Health Care Services Department of Environmental Health re: Former Chevron Service Station #9-4612, 3616 San Leandro Street, Oakland, California. September 11.

Chevron, 1998b. Letter to Mr. Barney Chan, Alameda County Health Care Services Department of Environmental Health re: Former Chevron Service Station #9-4612, 3616 San Leandro Street, Oakland, California. June 30.

CRA, 2008. Subsurface and Soil Vapor Investigation Report. August 25.

CRA, 2009. Case Closure Request. February 2.

G-R, 1999. Limited Soil Vapor Survey Report. March 31.

G-R, 2002a. Additional Site Investigation Report. May 3.

G-R, 2002b. Offsite Source Survey Report. January 17.

GTI, 1993. Additional Environmental Assessment Report. April 12.

GTI, 1994. Letter to Mr. Mike Chamberline, Groundwater Technology, Inc. re: Up-gradient Well Location, 3616 San Leandro Boulevard, Oakland, California. September 13.

GTI, 1995. Additional Site Assessment Report. September 29.

RWQCB, 2011. San Francisco Bay Region (Region 2) Water Quality Control Plan (Basin Plan), revised December 31, 2011.

RWQCB, 2016. Update to Environmental Screening Levels. May 22.

Stantec, 2017, Second Quarter 2017 Annual Groundwater Monitoring Report. July 1.

SWRCB, 2012a. Low Threat Underground Storage Tank Case Closure Policy. Effective August 17.

Former Chevron-branded Service Station 94612, 3616 San Leandro Street, Oakland, California August 11, 2017

SWRCB, 2012b. Leaking Underground Fuel Tank Guidance Manual. September.

SWRCB, 2012c. Technical Justification for Groundwater Media-Specific Criteria. April 24.

SWRCB, 2017a. GeoTracker™, website download from <u>http://geotracker.swrcb.ca.gov/</u>

SWRCB, 2017b. GeoTracker[™] GAMA, website download from <u>http://geotracker.waterboards.ca.gov/gama/</u>

SWRCB, 2017c. Proposed Closure of Underground Storage Tank (UST) Cases, UST Case Closure Summaries. Last Updated April 21, 2017. Accessed on May 2. <u>http://www.waterboards.ca.gov/water_issues/programs/ustcf/prop_closure_cases.shtml</u>

Vonder Harr, 1988. Letter to Ms. Kay Huffman, Chevron USA re: Former Chevron SS #9-4612, San Leandro St. at 37th, Oakland, California. September 16.

TABLES

Table 1 Well Details / Screen Interval Assessment Second Quarter 2017

Former Chevron-Branded Service Station 94612

3616 San Leandro Street, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet below TOC)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
VH-1	08/09/88	Monitoring	4	27.91	30.00	28.97	8.88	10-30	Depth-to-groundwater above screen interval.
MW-2	02/01/93	Monitoring	2	28.05	20.00	19.46	9.06	5-20	Depth-to-groundwater within screen interval.
MW-3	02/01/93	Monitoring	2	29.04	20.00	17.96	9.16	5-20	Depth-to-groundwater within screen interval.
MW-4	08/15/95	Monitoring	2	27.27	20.00	17.84	8.42	7-20	Depth-to-groundwater within screen interval.
Notes:									

bgs = below ground surface

msl = mean sea level

TOC = top of casing

 1 = As measured on June 29, 2017.

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE	TOG
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
VH-1												
08/10/88		13.00				11,000	3,300	200	520	540		
06/01/89		10.32				15,000	2,200	120	540	310		
09/15/89		15.69				5,600	1,900	90	350	160		
12/08/89		14.77				11,000	1,900	69	270	99		
03/07/91		11.26				4,500	820	39	120	77		
09/24/91		12.98				3,300	520	19	39	27		
01/08/92		13.77				5,000	600	34	81	76		
04/20/92		8.18				7,400	670	60	110	140		
03/26/93	27.85	6.71	21.14			4,900	600	40	72	94		
05/27/93	27.85	8.58	19.27			13,000	1,600	120	230	220		
08/18/93	27.85	10.46	17.39			2,700	210	10	8.1	18		
11/03/93	27.85	12.57	15.28			4,600	680	42	35	68		
02/10/94	27.85	9.08	18.77			1,900	260	19	22	29		
05/12/94	27.85	8.09	19.76			2,000	390	28	3.9	29		
08/26/94	27.85	10.75	17.10			4,900	500	<5.0	23	31		
11/14/94	27.85	9.45	18.40			760	69	<2.0	<2.0	2.2		
02/01/95	27.85	5.97	21.88			1,300	120	5.9	<0.5	13		
05/12/95	27.85	7.71	20.14			4,400	460	31	45	49		
08/22/95	27.85	9.26	18.59			2,900	310	15	28	32		
12/19/95	27.85	8.80	19.05			930	53	<2.5	<2.5	<2.5	39	
01/31/96	27.85	5.50	22.35			3,700	320	<10	41	40	180	
04/30/96	27.85	8.04	19.81			3,900	270	<20	<20	<20	120	
08/01/96	27.85	9.18	18.67			2,700	140	11	18	28	200	
10/30/96	27.85	10.76	17.09			2,700	140	<12	<12	<12	280	
02/07/97	27.85	8.10	19.75			220	13	0.6	<0.5	1.6	15	
05/07/97	27.85	9.52	18.33			5,200	33	12	21	26	330	
07/22/97	27.85	10.42	17.43			4,200	80	<10	16	24	400	
11/03/97	27.85	11.00	16.85			2,400	150	6.8	6.5	9.5	510	
01/28/98	27.85	7.10	20.75			850	69	4.8	5.0	11	38/48 ¹²	
05/08/98	27.85	7.71	20.14			4,200	200	30	40	42	310/20012	
07/29/98	27.85	9.45	18.40			3,800	54	10	27	30	35/290 ¹²	
11/06/98	27.85	10.70	17.15			4,800	100	20	12	23	360/210 ¹²	
02/09/995	27.85	5.98	21.87			2,950	79.5	<10	<10	<10	435/312 ¹²	
05/13/99	27.85	8.14	19.71			4,180	147	12.8	16.5	20.3	433/24512	
09/07/99	27.85	9 91	17 94			2 750	57.6	<50	6.53	<50	297/233 ¹²	
11/24/99	27.85	10.49	17.36			2,750	38	3 18	2.54	-0.0 5 21	216 ^{1,12}	
11/24/77	27.05	10.47	17.00			2,000	07	0.10	2.54	J.ZI	20 5/11 012	
02/25/00	27.85	6.65	21.20			120	2.7	<0.5	<0.5	<0.5	20.5/11.9	

WELL ID/		TOC*	DTW	GWE (ms/)	TPH-MO	TPH-DRO	TPH-GRO	B (1177 //)	T (117/1)	E	X	MtBE	TOG
DAIE		(11.)	(11.)	(msi)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
VH-1 (cont)							1 1008					aaa (11a ¹²	
05/10/00		27.85	8.09	19.76			1,400*	63	3.3	3.1	4.9	230/110-	
//31/00**		27.85	9.55	18.30			360-	22	2.7	1.6	3.1	100/88**	
10/30/00		27.85	9.94	17.91			987.0	47.0	1.00	<0.500	1.80	153/130**	
02/05/01		27.91	8.68	19.23			2,670	42.7	<5.00	<5.00	<5.00	225/16012	
05/07/01''		27.91	8.30	19.61			1,800°	100	8.2	10	7.9	440/11012	
08/06/01		27.91	9.82	18.09			1,000°	67	6.1	2.1	7.1	270/14012	
11/12/01		27.91	10.62	17.29			220	1.2	<0.50	<0.50	<1.5	63/6112	
02/11/02		27.91	8.08	19.83			1,700	33	<5.0	6.3	3.8	64/5212	
05/13/02		27.91	8.70	19.21			2,700	54	4.1	5.6	6.2	100/8012	
08/09/02		27.91	9.41	18.50			2,400	37	2.4	1.2	3.4	86/89 ¹²	
11/07/02		27.91	10.57	17.34			150	1.3	<0.50	<0.50	<1.5	56/5012	
02/04/0311		27.91	8.28	19.63			1,700	40	3.1	7.8	5.0	100/53 ¹²	
05/05/0311		27.91	7.50	20.41			2,100	44	3.4	3.7	5.2	96/62 ¹²	
09/06/03 ^{11,14}	ł	27.91	9.60	18.31			690	7	0.6	<0.5	0.6	59	
11/14/03 ^{11,14}	ł	27.91	9.92	17.99			1,000	3	0.6	2	0.7	47	
02/13/0414,15	5	27.91	7.93	19.98			2,400	30	2	4	3	47	
05/13/0414		27.91	8.67	19.24			1,900	49	4	3	5	74	
08/17/0414		27.91	9.65	18.26			1,800	11	1	0.9	2	58	
11/10/04		27.91	INACCESSIBLE										
02/08/0514		27.91	7.83	20.08			2,700	26	3	4	5	48	
06/03/0514		27.91	8.20	19.71			3,100	40	5	6	9	45	
08/05/05 ¹⁴		27.91	10.10	17.81			2,500	34	4	0.6	6	46	
12/02/0514		27.91	8.98	18.93			3,500	69	7	2	8	57	
03/03/0614	NP ¹⁸	27.91	7.25	20.66			4,100	37	6	6	8	40	
05/31/0614	NP ¹⁸	27.91	8.17	19.74			4,100	33	5	3	8	34	
08/18/0614		27.91	9.12	18.79			3,300	23	4	1	5	33	
11/17/0614		27.91	9.27	18.64			3,200	18	3	0.6	3	33	
02/09/0714	NP ¹⁸	27.91	8.38	19.53			3,600	23	4	2	5	28	
05/11/07 ¹⁴	NP ¹⁸	27.91	8.38	19.53			3,200	14	3	1	5	26	
08/10/0714	NP ¹⁸	27.91	9.50	18.41			2,400	10	2	0.6	3	21	
11/08/0714	NP ¹⁸	27.91	9.66	18.25			3,000	10	2	0.5	2	18	
02/07/0814	NP ¹⁸	27.91	7.15	20.76			4,000	14	3	5	5	14	
05/02/0814	NP ¹⁸	27.91	8.95	18.96			3,000	14	3	2	4	17	
07/31/0814	NP ¹⁸	27.91	9.68	18.23			2,700	13	2	0.8	3	14	
11/13/0814	NP ¹⁸	27.91	10.18	17.73			2,500	6	1	<0.5	1	12	
02/02/0914	NP ¹⁸	27.91	9.91	18.00			4.000	7	1	<0.5	1	12	
05/01/0914	NP ¹⁸	27.91	9.16	18.75			3.900	20	3	3	6	15	
08/10/0914	NP ¹⁸	27 91	9.67	18.24			1,400	6	1	<0.5	1	11	
01/29/1014	NP ¹⁸	27.91	7.23	20.68			3,700	- 24	4	5	5	13	

Table 2 Groundwater Monitoring Data and Analytical Results Former Chevron-branded Service Station 94612

WELL ID/		TOC*	DTW (#)	GWE	TPH-MO	TPH-DRO	TPH-GRO	B	T (ug/l)	E	X	MtBE	TOG
		(11.)	(11.)	(IIISI)	(µg/L)	(µg/L)	(µg/L)	(µg/r)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
VH-1 (cont)													
08/23/10	NP ¹⁰	27.91	9.28	18.63			3,600	18	3	2	4	9	
08/22/1114		27.91	9.28	18.63			3,400	12	2	0.8	3	7	
05/10/12 ¹⁴	NP ¹⁸	27.91	8.26	19.65			3,100	12	3	2	4	6	
05/08/1314	NP ¹⁸	27.91	8.98	18.93			3,500	12	2	1	5	5	
05/13/14 ¹⁴	NP ¹⁸	27.91	8.71	19.20			390	<0.5	<0.5	<0.5	<0.5	2	
05/14/15 ¹⁴	NP ¹⁸	27 91	9 1.5	18 76			290	<0.5	<0.5	<0.5	<0.5	2	
05/02/16 ¹⁴	NP ¹⁸	27.01	8 30	19.41			310	<0.5	<0.5	<0.5	<0.5	1	
04/00/17 ¹⁴	NID ¹⁸	27.71	8.30	17.01			310	<0.5 _	<0.5	<0.5	<0.5	1	
06/29/17	NP	27.91	8.88	19.03			3,000	5	0.9	<0.5	2	2	
MW-2													
02/16/93		27.51					9,200	720	110	250	170		
03/26/93		27.51	7.62	19.89									
05/27/93		27.51	9.47	18.04			360	5.3	2.1	1.8	2.5		
08/18/93		27.51	11.05	16.46			9,400	1,100	76	110	100		
11/03/93		27.51	12.95	14.56			8,600	390	20	2./	120		
02/10/94		27.51	9.79	17.72			2,700	370	38	44	41		
05/12/94		27.51	8.92	18.59			3,800	650	76	15	62		
06/26/94		27.31	11.37	10.14			16,000 5 100	1,300	2/0	20 42	120		
02/01/95		27.31	7.04	20.47			4 900	520	10	43	27		
02/01/93		27.31	9.75	20.47			8,700 7,700	510	02	170	100		
09/12/75		27.51	10.14	17.25			1,700	220	14	41	47		
12/19/95		27.51	9.46	17.55			4,500	220	<10	19	4/	220	
01/31/96		27.51	5.40	21.91			3,900	320	18	72	39	<25	
04/30/96		27.51	8.83	18.68			5 600	200	36	55	47	170	
08/01/96		27.51	10.26	17.25			6.200	190	15	62	59	220	
10/30/96		27.51	11.48	16.03			5,700	190	<25	67	36	260	
02/07/97		27.51	9.40	18.11			8,300	210	34	70	59	330	
05/07/97		27.51	9.94	17.57			6,900	190	12	38	37	530	
07/22/97		27.51	11.15	16.36			10,000	18	25	62	41	630	
11/03/97		27.51	11.58	15.93			6,500	260	8.5	26	14	590/9.6 ^{4,12}	
01/28/98		27.51	8.13	19.38			6,700	65	13	67	54	280/9412	
05/08/98		27.51	8.62	18.89			5,500	91	38	43	61	220/62 ¹²	
07/29/98		27.51	10.45	17.06			3,600	41	8.9	3.6	14	16/94 ¹²	
11/06/98		27.51	11.62	15.89			6,900	77	<5.0	14	17	290/11012	
02/09/99 ⁵		27.51	6.90	20.61			8,070	75.6	<10	<10	<10	397/144 ¹²	
05/13/99		27.51	9.30	18.21			5,890	120	<5.0	12.5	26.6	401/69.412	
09/07/99		27.51	10.94	16.57			5,820	41.2	<5.0	14.6	<5.0	260/14512	

3616 San Leandro Street Oakland, California

WELL ID/ TOC* DTW GWE TPH-MO TPH-DRO **TPH-GRO** В T Ε Х MIBE TOG DATE (ft.) (ft.) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (msl) (µg/L) (µg/L) (µg/L) MW-2 (cont) 120^{1,12} 11/24/99 27.51 11.53 15.98 5,940 40.9 <10 10.8 <10 ---------321/12112 02/25/00 27.51 6.51 21.00 6,370 101 9.37 39.8 33.2 ---------6,100⁸ 560/120¹² 05/10/00 27.51 9.02 18.49 ---110 13 27 31 ___ ---200/13012 07/31/0011 3,000⁸ 27.51 10.33 17.18 75 14 28 28 ---------6.810¹⁰ 372/140¹² 10/30/0011 27.51 10.56 16.95 162 <15.0 ------<5.00 8.05 ---02/05/0111 285/14012 28.05 9.58 18.47 5,860 28.4 6.86 16.2 11.8 ---------05/07/0111 540/8812 4,700⁶ 28.05 9.20 18.85 120 15 30 42 ---------08/06/0111 490/11012 28.05 10.74 17.31 3,700⁶ 120 <20 28 33 ---------**93/98**¹² 11/12/0111 28.05 27 22 11.45 16.60 ------7,000 29 <10 ---90/86¹² 02/11/0211 28.05 9.06 18.99 5,900 43 15 24 27 ---------120/4712 05/13/0211 28.05 9.64 5,500 26 23 26 18.41 ------5.2 ---100/69¹² 08/09/0211 28.05 10.29 17.76 5,700 26 3.7 26 50 ---------<100/69¹² 11/07/0211 28.05 11.27 16.78 5,900 33 4.4 23 21 ---------<50/55¹² 02/04/0311 28.05 9.13 18.92 5,400 22 4.7 13 14 ---------<50/3112 05/05/0311 28.05 8.38 19.67 4,500 23 4.7 12 15 ---------09/06/0311,14 28.05 3.200 13 2 7 7 10.40 17.65 54 ___ ---___ 11/14/0311,14 28.05 10.62 17.43 4,000 11 2 7 6 55 ------___ 02/13/0414,15 28.05 8.79 19.26 ---6,200 6 2 8 8 31 ------05/13/04¹⁴ 28.05 9.56 18.49 3,200 6 3 13 11 34 ---------08/17/0414 7 5 28.05 10.48 17.57 ---4,300 1 6 46 ------11/10/04¹⁴ 28.05 9.53 5 7 37 18.52 3,000 1 6 ---------02/08/0514 2 28.05 8.71 19.34 4,700 3 10 8 22 ---------06/03/0514 28.05 9.01 19.04 4,100 4 3 15 11 23 ---------08/05/0514 28.05 9.76 18.29 ---3,500 4 1 <0.5 8 23 ------12/02/0514 28.05 9.64 18.41 2,900 4 2 3 3 24 ---------03/03/0614 5 28.05 8.04 5 6 4 9 20.01 ---3,800 ------05/31/0614 28.05 9.01 4,600 2 3 3 8 19.04 1 ___ ------08/18/0614 28.05 9.91 18.14 4,300 2 1 11 7 14 ------___ 11/17/0614 28.05 9.95 4,600 2 0.7 7 18.10 ------4 14 ---02/09/07¹⁴ 28.05 9.10 18.95 3,600 1 0.6 3 3 9 ---------05/11/07¹⁴ 9.12 2 5 5 28.05 18.93 ---3,600 1 8 ------08/10/07¹⁴ 28.05 10.20 17.85 3,600 1 1 7 4 9 ------11/08/07¹⁴ 28.05 10.35 17.70 3,600 2 0.7 5 2 7 ---------02/07/0814 28.05 7.92 3 20.13 5,000 1 1 5 5 ---------05/02/0814 28.05 9.49 18.56 3,300 0.9 3 2 ------1 4 ---07/31/0814 28.05 10.35 17.70 ---3,000 2 0.6 2 1 5 ---___ 11/13/0814 28.05 10.81 17.24 3,800 2 0.5 2 0.8 4 ---------02/02/09¹⁴ 2 2 28.05 9.97 18.08 3,500 0.6 1 5 ------05/01/0914 2 3 28.05 9.70 3,900 4 4 18.35 ---1

--

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE	TOG
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)												
08/10/0914	28.05	10.38	17.67			3,100	2	0.8	2	1	4	
01/29/10 ¹⁴	28.05	7.98	20.07			3,200	1	0.8	2	1	5	
08/23/10 ¹⁴	28.05	10.03	18.02			3,500	1	0.6	1	07	3	
08/22/1114	28.05	9.73	18.32			3 700	1	0.6	1	0.9	3	
$05/10/12^{14}$	28.05	8.95	19.10			2,600	0.8	0.8	1	1	3	
05/08/13 ¹⁴	20.05	0.75	10.20			2,000	0.0	0.0	0.5	0.7	2	
05/13/14 ¹⁴	20.05	7.00	10.37			2,800	0.7	0.5	0.5	0.7	2	
05/13/14	28.05	9.41	18.64			2,400	0.8	<0.5	<0.5	<0.5	2	
05/14/15	28.05	9.85	18.20			2,400	0.7	<0.5	<0.5	<0.5	I	
05/02/16	28.05	9.01	19.04			3,000	0.5	<0.5	<0.5	<0.5	0.9	
06/29/17'*	28.05	9.06	18.99			2,000	<3	<3	<3	<3	<3	
MW-3	20 50					2 500	<0 F	0 1		77		
02/16/93	28.50	7 18	21.32			3,500	<0.5	0.1	4.0			
05/27/93	28.50	9.33	19.17			4,200	580	84	150	100		
08/18/93	28.50	12.00	16.50		1,400	910	12	3.7	6.2	3.8		<5,000
11/03/93	28.50	13.29	15.21			5,300	29	1.9	0.6	27		
02/10/94	28.50	9.63	18.87		<50	63	<0.5	0.7	<0.5	<0.5		
05/12/94	28.50	8.77	19.73		84	<50	<0.5	0.5	<0.5	<0.5		
08/26/94	28.50	11.42	17.08			2,100	12	<0.5	5.0	0.5		
11/14/94	28.50	10.07	18.43			140	0.78	<0.5	<0.5	<0.5		
02/01/95	28.50	0.27	22.21		<50 E 40 ²	<30	<0.5	<0.5	<0.5 1.0	<0.5		
05/12/95	28.50	8.07	20.43		540	330	13	1.1	1.9	0.69		
08/22/95	28.50	9.95	18.55		550	980	32	<1.0	<1.0	<1.0		
12/19/95	28.50	9.40	19.10		<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
01/31/96	28.50	5.05	23.45		< 50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
04/30/96	28.50	8.40	20.10		240-	320	2.4	<0.5	0.75	<0.5	7.8	
08/01/96	28.50	9.80	18.70		470 ²	980	9.6	<0.5	0.98	2.2	54	
10/30/96	28.50	11.48	17.02		760 ²	2,000	14	<10	<10	<10	140	
02/07/97	28.50	8.60	19.90		61 ²	200 ²	<0.5	<0.5	<0.5	<0.5	8.9	
05/07/97	28.50	9.01	19.49		550 ²	3,500	14	3.9	3.6	8.0	160	
07/22/97	28.50	11.12	17.38		800 ²	3,500	55	<10	<10	<10	150	
11/03/97	28.50	11.51	16.99		910 ²	4,100	140	<5.0	<5.0	<5.0	380	
01/28/98	28.50	7.34	21.16			1,100	24	<1.2	<1.2	2.8	33/6.112	
05/08/98	28.50	8.06	20.44		250 ²	990	3.6	7.7	0.7	2.2	37/7.512	
07/29/98	28.50	10.25	18.25		290 ²	1,200	13	<0.5	<0.5	1.4	11/2812	
11/06/98	28.50	11.39	17 11		390 ²	2,600	53	<2.5	<2.5	30	91/41 ¹²	
02/09/995	28.50	6.10	22.40		184 ²	406	<1.0	4.03	<1.0	<1.0	17.7/1.97 ¹²	

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MfBE	TOG
DATE	(ft.)	(ff.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3 (cont)												
05/13/99	28.50	9.12	19.38			615	13.8	1.05	<0.5	<0.5	43.5/21.2 ¹²	
09/07/99	28.50	10.73	17.77		528 ²	2,710	<5.0	<5.0	<5.0	<5.0	96.3/57.9 ¹²	
11/24/99	28.50	11.13	17.37		1,070 ²	5,530	<5.0	<5.0	5.59	<5.0	66 ^{1,12}	
02/25/00	28.50	6.28	22.22			189	4.68	<0.5	<0.5	<0.5	11.9/<2.0 ¹²	
03/01/00	28.50	6.70	21.80		380 ²							
05/10/00	28.50	8.60	19.90		830 ⁷	1,600 ⁶	22	<10	<10	<10	100/51 ¹²	
07/31/0011	28.50	10.07	18.43		49 0 ⁷	2,200 ⁶	76	10	<5.0	13	230/52 ¹²	
10/30/0011	28.50	10.53	17.97		580 ⁹	3,320 ¹⁰	<5.00	<5.00	<5.00	<15.0	147/64 ¹²	
02/05/0111	29.04	9.26	19.78			3,960	<5.00	6.02	<5.00	<5.00	159/70 ¹²	
05/07/0111	29.04	8.75	20.29			2,800 ⁶	61	12	<10	20	230/4912	
05/10/0111	29.04	8.83	20.21		390 ¹³							
08/06/0111	29.04	10.45	18.59		870 ⁷	1,600 ⁶	39	14	1.3	5.6	130/4312	
11/12/0111	29.04	11.22	17.82		1,400	3,100	3.6	23	2.3	5.6	40/46 ¹²	
02/11/0211	29.04	8.38	20.66		700	4,000	10	<5.0	4.2	5.5	44/42 ¹²	
05/13/0211	29.04	9.20	19.84		730	2,500	18	<5.0	<5.0	5.2	44/32 ¹²	
08/09/0211	29.04	10.17	18.87		560	2,700	17	<5.0	<5.0	<10	45/33 ¹²	
11/07/0211	29.04	11.13	17.91		660	2,600	24	<5.0	2.0	4.8	51/37 ¹²	
02/04/0311	29.04	8.60	20.44		370	2,200	13	1.5	2.7	5.0	<50/2412	
05/05/0311	29.04	7.82	21.22		580	2,100	14	1.8	2.0	3.9	<20/19 ¹²	
09/06/0311,14	29.04	10.25	18.79		780	1.800	2	0.6	0.6	1	28	
11/14/0311,14	29.04	10.52	18.52		860	2.000	1	0.6	0.6	0.9	30	
02/13/0414,15	29.04	8.28	20.76		590	3,600	1	0.6	1	2	21	
05/13/0414	29.04	9.17	19.87		670	1.600	1	< 0.5	0.5	1	20	
08/17/0414	29.04	10.25	18.79		900	2.500	1	< 0.5	<0.5	0.7	25	
11/10/04 ¹⁴	29.04	9.23	19.81		780	1.500	1	0.6	0.5	1	27	
02/08/0514	29.04	8 12	20.92		530	2,500	1	0.6	2	3	11	
06/03/0514	29.04	8.57	20.47		600	1,700	1	< 0.5	0.7	1	9	
08/05/0514	29.04	10.60	18 44		530 ¹⁶	980	0.6	<0.5	<0.5	0.8	9	
12/02/0514	29.04	9.58	19.46		1,400 ¹⁷	2 400	1	2	0.8	1	7	
03/03/06 ¹⁴	29.04	7.58	21.46		530	2,300	0.8	1	<0.5	1	4	
05/31/06 ¹⁴	29.04	8 53	20.51		480	2,000	0.6	<0.5	<0.5	0.8	4	
08/18/06 ¹⁴	29.04	9.71	19 33		410	2,700	<0.5	<0.5	<0.5	0.6	6	
$11/17/06^{14}$	27.04	9.81	19.23		390	2,700	<0.5	<0.5	<0.5	1	4	
02/09/07 ¹⁴	29.04	8.88	20.16		640	2,000	<0.5	<0.5	<0.5	1	3	
$0.5/11/07^{14}$	27.04	8 71	20.10		350	1 /00	<0.5	<0.5	<0.5	י כ	2	
08/10/07 ¹⁴	27.04	0.71	10.04		340	1,400	<0.5	<0.5	<0.5	2	2	
11/08/07 ¹⁴	27.04 20 ∩ A	7.70 10.11	12.00		J40	1,000	<0.5	<0.5	<0.5	۱ ۲۰۰۶	Z <0.5	
02/07/08 ¹⁴	27.04	7 00	10.70		44U 300	2 100	~0.0 ~0 F	~0.5	~∪.J 1	~0.5	~0.3	
05/02/08 ¹⁴	27.04	/.20	21./0		320	2,100	~0.5 ∠0.5	U./	۱ ۲۰۰۶	Z	0.7	
00/02/00	27.04	7.18	17.86		260	1,300	<0.5	<0.5	<0.5	<0.5	2	

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	Т	E	Х	MtBE	TOG
DATE	(ft.)	(ff.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3 (cont)												
07/31/0814	29.04	10.13	18.91		500	2,900	<0.5	<0.5	<0.5	<0.5	1	
11/13/0814	29.04	10.58	18.46		880	1,800	<0.5	<0.5	<0.5	<0.5	2	
02/02/0914	29.04	9.58	19.46		31019	2,000	<0.5	<0.5	<0.5	<0.5	2	
05/01/0914	29.04	9.40	19.64		51 ²⁰	1,500	<0.5	<0.5	<0.5	<0.5	2	
08/10/0914	29.04	10.21	18.83		470	1,300	<0.5	<0.5	<0.5	<0.5	3	
01/29/10 ¹⁴	29.04	7.39	21.65		420	2.600	<0.5	<0.5	2	1	1	
08/23/1014	29.04	9.70	19.34		410	2.000	<0.5	<0.5	<0.5	<0.5	2	
08/22/1114	29.04	9.96	19.08	<41/<40 ²¹	500/250 ²¹	2.500	<0.5	<0.5	<0.5	<1	2	
05/10/1214	29.04	8.50	20.54		350/160 ²¹	1.300	<0.5	<0.5	<0.5	<0.5	1	
05/08/13 ¹⁴	29.04	9.40	19.64		460/140 ^{21,22}	1 700	<0.5	<0.5	<0.5	<0.5	2	
05/13/14 ¹⁴	29.04	9.03	20.01		200/140 ^{21,22}	1,700	<0.5	<0.5	<0.5	<0.5	1	
$05/14/15^{14}$	27.04	9.53	19.51		260/120 ^{21,22}	1,200	<0.5	<0.5	<0.5	<0.5	1	
05/02/16 ¹⁴	27.04	8.55	20.49		160 ^{21,22}	2 000	<0.5	<0.5	<0.5	<0.5	0.8	
06/29/17 ¹⁴	27.04	0.00	10.99		140 ^{21,22}	1 400	<0.5	<0.5	<0.5	<0.5	1	
00/2//1/	27.04	7.10	17.00		140	1,400	NO.5	NO.5	NU.5	NO.5		
MW-4	07.07					0 (00	100	10	10	10		
08/22/95	27.27	9.11	18.16			9,600	100	<10	<10	<10		
01/31/96	27.27	5.60	21.67			<50	< 0.5	<0.5	<0.5	< 0.5	<2.5	
04/30/96	27.27	7.00	20.27			<50	< 0.5	<0.5	<0.5	<0.5	<2.5	
08/01/96	27.27	9.15	18.12			<50	<0.5	<0.5	<0.5	<0.5		
10/30/96	27.27	10.74	16.53			110	<0.5	<0.5	<0.5	<0.5	<2.5	
02/07/97	27.27	7.80	19.47			80	<0.5	<0.5	<0.5	<0.5	4.1	
05/07/97	27.27	5.85	21.42			<50	<0.5	<0.5	<0.5	<0.5	<2.5	
07/22/97	27.27	10.05	17.22			150	<0.5	<0.5	<0.5	<0.5	<2.5	
11/03/97	27.27	10.72	16.55			52	0.9	<0.5	<0.5	<0.5	3	
01/28/98	27.27	6.51	20.76			<50	<0.5	<0.5	<0.5	<0.5	<2.5/<2.0 ¹²	
05/08/98	27.27	7.02	20.25			56	<0.5	<0.5	<0.5	<0.5	<2.5/<2.012	
07/29/98	27.27	8.95	18.32			<50	0.9	<0.5	<0.5	<0.5	<2.5/<2.012	
11/06/98	27.27	10.59	16.68			72	<0.5	<0.5	<0.5	<0.5	<2.5/<2.012	
02/09/99	27.27	5.86	21.41			<50	<0.5	<0.5	<0.5	<0.5	<2.0/<1.112	
05/13/99	27.27	7.95	19.32			<50	<0.5	<0.5	<0.5	<0.5	<5.0/<2.012	
09/07/99	27.27	9.48	17.79			70.2	<0.5	<0.5	<0.5	<0.5	<2.0/<1.0 ¹²	
11/24/99	27.27	10.05	17.22			227	<0.5	<0.5	<0.5	<0.5	< 0.5 ¹²	
02/25/00	27.27	INACCESSIBL	E									
03/01/00	27.27	6.17	21.10			<50	<0.5	<0.5	<0.5	<0.5	<2.5/<2.012	
05/10/00	27.27	INACCESSIBL	E - CAR PAR	KED OVER WEL	L							
07/31/00	27.27	9.37	17.90			<50	<0.50	<0.50	<0.50	< 0.50	<2.5/<2.012	
Table 2Groundwater Monitoring Data and Analytical ResultsFormer Chevron-branded Service Station 946123616 San Leandro Street

Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MfBE	TOG
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont)												
10/30/00	27.27	9.47	17.80			54.0 ¹⁰	<0.500	<0.500	<0.500	<1.50	<2.50/<2.0 ¹²	
02/05/01	27.27	INACCESSIBL	E - CAR PARK	ED OVER WELL								
05/07/01	27.27	7.81	19.46			<50	<0.50	<0.50	<0.50	<0.50	<2.5/<2.012	
08/06/01	27.27	9.78	17.49			<50	1.1	0.52	<0.50	1.1	6.0/<2.012	
11/12/01	27.27	10.41	16.86			93	<0.50	<0.50	<0.50	<1.5	<2.5/<212	
02/11/02	27.27	7.64	19.63			<50	<0.50	<0.50	<0.50	<1.5	<2.5/<212	
05/13/02	27.27	8.32	18.95			54	<0.50	0.84	<0.50	<1.5	<2.5/<212	
08/09/02	27.27	9.25	18.02			54	<0.50	<0.50	<0.50	<1.5	<2.5/<212	
11/07/02	27.27	10.42	16.85			<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ¹²	
02/04/03	27.27	7.75	19.52			<50	<0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ¹²	
05/05/03	27.27	6.90	20.37			<50	<0.5	<0.5	<0.5	<1.5	<2.5/<0.5 ¹²	
09/06/03 ¹⁴	27.27	9.50	17.77			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/14/03 ¹⁴	27.27	9.80	17.47			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/13/04 ¹⁴	27.27	7.36	19.91			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/13/04 ¹⁴	27.27	8.28	18.99			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/17/04 ¹⁴	27.27	9.63	17.64			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/10/04 ¹⁴	27.27	8.46	18.81			52	<0.5	<0.5	<0.5	<0.5	<0.5	
02/08/0514	27.27	7.20	20.07			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
06/03/05 ¹⁴	27.27	7.61	19.66			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/05/05 ¹⁴	27.27	9.44	17.83			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
12/02/0514	27.27	8.35	18.92			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
03/03/0614	27.27	6.45	20.82			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/31/0614	27.27	7.51	19.76			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/18/0614	27.27	8.42	18.85			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/17/06 ¹⁴	27.27	8.96	18.31			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/09/0714	27.27	7.73	19.54			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/11/0714	27.27	7.60	19.67			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/10/0714	27.27	9.01	18.26			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/08/0714	27.27	9.26	18.01			<50	<0.5	<0.5	<0.5	1	1	
02/07/0814	27.27	6.38	20.89			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/02/0814	27.27	8.12	19.15			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
07/31/0814	27.27	9.28	17.99			75	<0.5	<0.5	<0.5	<0.5	<0.5	
11/13/0814	27.27	9.93	17.34			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/02/0914	27.27	9.02	18 25			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/01/0914	27.27	8 29	18.98			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/10/09 ¹⁴	27.27	9.50	17 77			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
01/29/10 ¹⁴	27.27	6.57	20.70			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/23/10 ¹⁴	27 .27 97 97	8.07	18 31	-	_	<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/22/11 ¹⁴	27.27 07.07	0.70	18 40			~50	<0.5	<0.5	<0.5	<0.5	<0.5	
50/22/11	Z1.Z1	0.00	10.42			~50	NU.5	~ 0.5	~ 0.5	~0.5	~ 0.5	

Table 2Groundwater Monitoring Data and Analytical ResultsFormer Chevron-branded Service Station 94612

3616 San Leandro Street Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE	TOG
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont)												
05/10/1214	27.27	7.55	19.72			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/08/1314	27.27	8.58	18.69			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/13/1414	27.27	8 29	18.98			< 50	<0.5	<0.5	<0.5	<0.5	<0.5	
$05/14/15^{14}$	27.27	0.27	19.44			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/02/14 ¹⁴	27.27	7.44	10.40			<50	<0.J	<0.J	<0.J	<0.5	<0.5	
03/02/16	27.27	/.64	19.63			<50	<0.5	<0.5	<0.5	<0.5	<0.5	
06/29/17	27.27	8.42	18.85			79	<0.5	<0.5	<0.5	<0.5	<0.5	
TRIP BLANK												
05/27/93						<50	<0.5	<0.5	<0.5	<1.5		
08/18/93					1,400	<50	<0.5	<0.5	<0.5	<1.5		<5,000
11/03/93						<50	<0.5	<0.5	<0.5	<0.5		
02/10/94					<50	<50	<0.5	<0.5	<0.5	<0.5		
05/12/94					84	<50	<0.5	<0.5	<0.5	<0.5		
08/26/94						<50	<0.5	<0.5	<0.5	<0.5		
11/14/94						<50	<0.5	<0.5	<0.5	<0.5		
02/01/95						<50	<0.5	<0.5	<0.5	<0.5		
05/12/95						<50	<0.5	<0.5	<0.5	<0.5		
08/22/95						<50	<0.5	<0.5	<0.5	<0.5		
12/19/95						<50	<0.5	<0.5	<0.5	<0.5	<2.5	
01/31/96						<50	<0.5	<0.5	<0.5	<0.5	<2.5	
04/30/96						<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5	
10/20/07						<50	<0.5	< 0.5	< 0.5	<0.5	<2.5	
10/30/96						<50	<0.5	< 0.5	< 0.5	<0.5	<2.5	
02/07/97						<50	<0.5	< 0.5	< 0.5	<0.5	<2.5	
03/07/77						<50	<0.5	<0.5	<0.5	<0.5	<2.5	
01/22/11						<50	<0.5	<0.5	<0.5	<0.5	<2.0 ¹²	
01/20/70						<50	<0.5	<0.5	<0.5	<0.5	<2 0 ¹²	
07/00/00						<50	<0 F	<0 F	<0 F	<0 F	<2 0 ¹²	
07/29/98						<50	<0.5	<0.5	<0.5	<0.5	<2.0	
02/02/20						<50	<0.5	<0.5	<0.5	<0.5	<2.5	
02/09/99						<50	<0.5	<0.5	<0.5	<0.5	<2.0	
05/13/99						<50	<0.5	<0.5	<0.5	<0.5	<5.0/<2.0**	
09/07/99						<50	<0.5	<0.5	<0.5	<0.5	<2.0	
11/24/99						<50	<0.5	<0.5	<0.5	< 0.5	<2.5	
02/25/00						<50	<0.5	<0.5	<0.5	<0.5	<5.0	
03/01/00						<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/10/00						<50	<0.50	<0.50	<0.50	< 0.50	<2.5	
07/31/00						<50	<0.50	<0.50	<0.50	<0.50	<2.5	

Table 2Groundwater Monitoring Data and Analytical ResultsFormer Chevron-branded Service Station 946123616 San Leandro Street

Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE	TOG
DATE	(ft.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TRIP BLANK (cont)												
10/30/00						<50.0	<0.500	<0.500	<0.500	<1.50	<2.50	
02/05/01						<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	
05/07/01						<50	<0.50	<0.50	<0.50	<0.50	<2.5	
05/10/01						<50	<0.50	<0.50	<0.50	<0.50	<2.5	
08/06/01						<50	<0.50	<0.50	<0.50	<0.50	<2.5	
QA												
11/12/01						<50	< 0.50	<0.50	<0.50	<1.5	<2.5	
02/11/02						<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	
03/13/02						<50	<0.50	<0.50	<0.50	<1.5	<2.5	
11/07/02						<50	<0.50	<0.50	<0.50	<1.5	<2.5	
02/04/03						<50	<0.50	< 0.50	<0.50	<1.5	<2.5	
05/05/03						<50	<0.5	<0.5	<0.5	<1.5	<2.5	
09/06/03 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/14/0314						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/13/0414						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/13/04 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/17/04 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/10/04 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/08/05 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
06/03/05 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/05/05 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
12/02/0514						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
03/03/06 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/31/06 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/18/06 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/17/06 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/09/07 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/11/07 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/10/07 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/08/07 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/07/0814						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/02/0814						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
07/31/0814						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/13/0814						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
02/02/0914						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/01/09 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/10/09 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/08/1314						<50	<0.5	<0.5	<0.5	<0.5	<0.5	

Table 2Groundwater Monitoring Data and Analytical ResultsFormer Chevron-branded Service Station 946123616 San Leandro Street

Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-MO	TPH-DRO	TPH-GRO	В	T	E	X	MfBE	TOG
DATE	(ff.)	(#.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
QA (cont)												
05/13/14 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/14/1514						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/02/16 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	
06/29/17 ¹⁴						<50	<0.5	<0.5	<0.5	<0.5	<0.5	

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 10, 2000 were compiled from reports prepared by Blaine Tech Services, Inc. Groundwater monitoring data and laboratory analytical results from May 10, 2000 to May 10, 2012 were provided by Gettler-Ryan Inc. Current groundwater monitoring data was provided by Gettler-Ryan Inc. Current laboratory analytical results were provided by Eurofins Lancaster Laboratories.

TOC = Top of Casing (ft.) = Feet GWE = Groundwater Elevation (msl) = Mean sea level DTW = Depth to Water TPH = Total Petroleum Hydrocarbons MO = Motor Oil DRO = Diesel Range Organics GRO = Gasoline Range Organics B = Benzene T = Toluene E = Ethylbenzene X = Xylenes MtBE = Methyl tertiary-butyl ether TOG = Total Oil and Grease (µg/L) = Micrograms per liter NP = No purge --- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank

- * TOC elevations were re-surveyed on March 8, 2001, by Virgil Chavez Land Surveying. The benchmark for the survey was a City of Oakland benchmark, being a cut square top of curb at the centerline return at the northwest corner of East 14th and 37th Avenue, (Benchmark Elevation = 38.21 feet, NGVD 29).
- ¹ Lab could not get a good ion chromatogram match for MtBE. See laboratory report.
- ² Chromatogram pattern indicates an unidentified hydrocarbon.
- ³ No value for MtBE could be determined; see lab report for analyses.
- ⁴ Confirmation run.
- ⁵ ORC was installed.
- ⁶ Laboratory report indicates gasoline C6-C12.
- ⁷ Laboratory report indicates unidentified hydrocarbons <C16.
- ⁸ Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons <C6.
- ⁹ Laboratory report indicates unidentified hydrocarbons >C16.
- ¹⁰ Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- ¹¹ ORC in well.
- ¹² MtBE by EPA Method 8260.
- ¹³ Laboratory report indicates unidentified hydrocarbons C9-C17.
- ¹⁴ BTEX and MtBE by EPA Method 8260.
- ¹⁵ ORC removed from well.
- ¹⁶ Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It eludes in the TPH-DRO range earlier and later than #2 fuel.
- ¹⁷ Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It eludes in the TPH-DRO range earlier than #2 fuel.
- ¹⁸ No purge; unable to access well with truck.
- ¹⁹ Laboratory report indicates the LCS/LCSD recovery for the TPH-DRO analysis is outside the QC limits. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction so all results are reported from the original extract. Similar results were obtained in both extracts.
- ²⁰ Laboratory report indicates the surrogate data is outside the QC limits. Results from the reextraction are within the limits. The hold time had expired prior to the reextraction. Therefore, all results are reported from the original extract. The TPH-DRO result for the reextraction was 190 ug/L.
- ²¹ Analyzed with silica gel cleanup.
- ²² Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.

Table 3Groundwater Analytical Results - Oxygenate CompoundsFormer Chevron-branded Service Station 946123616 San Leandro StreetOakland, California

WELL ID	DATE	ethanol (µg/l)	ΤΒΑ (μg/L)	DIPE (µg/L)	EtBE (µg/L)	TAME (µg/L)
VH-1	02/05/01	<500	<50	<2.0	<2.0	<2.0
MW-2	02/05/01	<500	<50	<2.0	<2.0	<2.0
MW-3	02/05/01 08/22/11	<500 <50	<50 <5	<2.0 <0.5	<2.0 <0.5	<2.0 <0.5

Table 3Groundwater Analytical Results - Oxygenate CompoundsFormer Chevron-branded Service Station 946123616 San Leandro StreetOakland, California

EXPLANATIONS:

TBA = Tertiary-Butyl Alcohol DIPE = Di-Isopropyl Ether EtBE = Ethyl Tertiary-Butyl Ether TAME = Tertiary-Amyl Methyl Ether (μg/L) = Micrograms per liter -- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Table 4Groundwater Analytical Results - Metals and PPL VolatilesFormer Chevron-branded Service Station 946123616 San Leandro StreetOakland, California

WELL ID/ DATE	Cadmium (µg/L)	Chromium (µg/L)	Lead (µg/L)	Nickel (µg/L)	Zinc (µg/L)	n- Butylbenzene (µg/L)	sec- Butylbenzene (µg/L)	tert- Butylbenzene (µg/L)	Naphthalene (µg/L)
MW-3 08/22/11	2.6	173	8.3	308	123	3	3	4	2

EXPLANATIONS:

(µg/L) = Micrograms per liter

PPL = priority pollutant list

Only metals and PPL volatiles with historically detected concentrations are shown.

ANALYTICAL METHODS:

PPL volatiles by EPA Method 8260B Wear metals by EPA Method 6010B

Table 5Groundwater Analytical Results - PCBs

Former Chevron-branded Service Station 94612

3616 San Leandro Street

Oakland, California

WELL ID/	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
DATE	(µg/L)						
MW-3							
08/22/11	<0.099	<0.099	<0.099	<0.099	<0.099	<0.099	<0.15

EXPLANATIONS:

ANALYTICAL METHODS:

(µg/L) = Micrograms per liter

PCBs = Polychlorinated Biphenyls

PCBs by EPA Method 8082

Table 6 Grab Groundwater Analytical Results

Former Chevron-branded Service Station 94612

3616 San Leandro Street

Oakland, California

Borehole/ Sample ID	Sample Depth (feet bgs)	Date Collected	TPH-GRO (μg/L)	TPH-DRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	MłBE (µg/L)	1,2-DCA (µg/L)	1,2-DBA (µg/L)
SB-1	18	08/15/95	21,000		240	760	900	2,800			
HA-1	10	03/05/02	<50		<0.50	<0.50	<0.50	<1.5	<2.5		
HA-2	9.5	03/05/02	<50		<0.50	<0.50	<0.50	<1.5	<2.5		
HA-3	10	03/05/02	<50		<0.50	<0.50	<0.50	<1.5	<2.5		
VP-3	10.5	05/29/08	1,100	560	36	3	13	2	15	<0.5	<0.5
VP-4	10.5	05/29/08	<50	<290	<0.5	<0.5	<0.5	<0.5	5	<0.5	<0.5
SB-2	10.5	05/28/08	<50	350	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SB-3	10.5	05/29/08	71	<290	<0.5	<0.5	<0.5	<0.5	11	<0.5	<0.5
SB-4	10.5	05/29/08	<50	<290	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5
ESLs ⁽¹⁾			100	100	1	40	13	20	5	0.5	0.05

Notes:

(1) California Regional Water Quality Control Board, San Francisco Bay Region, "Update to Environmental Screening Levels." February 22, 2016. Tier 1 ESLs. **Bold** text denotes detected concentrations. **Bold/blue** text denotes detected concentrations above Tier 1 ESLs.

Abbreviations:

feet bgs = feet below ground surface µg/L = micrograms per liter TPH-GRO = total petroleum hydrocarbons as gasoline range organics TPH-DRO = total petroleum hydrocarbons as diesel range organics MtBE = methyl *tertiary* -butyl ether 1,2-DCA = 1,2-dichloroethane 1,2-DBA = 1,2-dibromoethane -- = not analyzed ESL = Environmental Screening Level

Table 7 Soil Analytical Results Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California

Borehole/ Sample ID	Sample Depth (feet bgs)	Date Collected	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	MtBE (mg/kg)	1,2-DCA (mg/kg)	1,2-DBA (mg/kg)	Total Lead (mg/kg)
VH-1	20.5	08/10/88	<0.5		0.042	<0.005	< 0.005	< 0.005				6
VH-1	25.5	08/10/88	<0.5		0.036	< 0.005	< 0.005	< 0.005		-	-	6
MW-2	5	02/01/93	<]		< 0.005	< 0.005	< 0.005	< 0.005		-	-	
MW-2	10	02/01/93	<]		< 0.005	< 0.005	< 0.005	< 0.005				
MW-3	5	02/01/93	<]		< 0.005	< 0.005	< 0.005	< 0.005				
MW-3	10	02/01/93	<]		< 0.005	< 0.005	< 0.005	< 0.005				
MW-4	16.5	08/15/95	<]		< 0.005	< 0.005	< 0.005	< 0.005				
MW-4	21.5	08/15/95	2		< 0.005	0.014	0.007	0.010		-	-	-
SB-1	21.5	08/15/95	16		< 0.005	0.12	0.21	1.1				
GP-1	6	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.20			
GP-1	9	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.20	-	1	-
GP-2	6	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.20	-	-	-
GP-2	8.5	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.20	-	-	-
GP-3	5.5	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.20	-	-	-
GP-3	8.5	07/03/01	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.20	-	-	-
HA-1	5	03/05/02	<1.0		< 0.0050	0.0098	0.016	0.089	< 0.050	-	-	-
HA-2	5	03/05/02	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
HA-3	5	03/05/02	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
VP-1	4	05/28/08	<1.0	<4.0	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
VP-2	4	05/28/08	<1.0	<4.0	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
VP-3	4	05/29/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	< 0.0009	< 0.0009	
VP-3	8	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
VP-3	12	05/29/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	< 0.0009	< 0.0009	
VP-4	4	05/29/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	< 0.0009	< 0.0009	
VP-4	8	05/29/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	
VP-4	11.5	05/29/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	0.0005	< 0.0009	< 0.0009	
SB-2	4	05/28/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	< 0.0009	< 0.0009	
SB-2	8	05/28/08	<1.0	<4.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	< 0.0009	< 0.0009	
SB-2	12	05/28/08	<1.0	<4.0	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
SB-3	4	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
SB-3	8	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
SB-3	12	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	< 0.001	< 0.001	0.0007	< 0.001	< 0.001	
SB-4	4	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
SB-4	8	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	
SB-4	12	05/29/08	<1.0	<4.0	< 0.0005	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	
ESLs ⁽¹⁾			100	240	0.044	2.9	1.4	2.3	0.023	0.0045	0.00033	80

Notes:

(1) California Regional Water Quality Control Board, San Francisco Bay Region, "Update to Environmental Screening Levels." February 22, 2016. Tier 1 ESLs. Bold text denotes detected concentrations. Bold/blue text denotes detected concentrations above Tier 1 ESLs.

Abbreviations:

Abbreviations: feet bgs = feet below ground surface mg/kg = milligrams per kilogram TPH-GRO = total petroleum hydrocarbons as gasoline range organics TPH-DRO = total petroleum hydrocarbons as diesel range organics MtBE = methyl tertiary-butyl ether 1.2-DCA = 1.2-dichloroethane

1,2-DBA = 1,2-dibromoethane

-- = not analyzed

ESL = Environmental Screening Level

Table 8Soil Vapor Analytical Results - 1999 Soil Vapor SurveyFormer Chevron-branded Service Station 94612

3616 San Leandro Street

Oakland, California

Borehole/ Sample ID	Date Collected	Benzene (µg/m³)	Toluene (µg/m³)	Total Xylenes (µg/m³)	Ethanol (µg/m³)	Acetone (μg/m³)	2-Propanol (µg/m³)	Chloromethane (µg/m³)	Methylene Chloride (µg/m³)	TCE (µg/m³)	Styrene (µg/m³)	1,2,4-TMB (µg/m ³)	Freon 12 (µg/m ³)
VB-1	02/16/99	9	200	15	33	215	924	<]	2	4	5	4	22
VB-2	02/16/99	6	22	8	36	29	95	2	<3	<4	<3	<4	24
ESLs ⁽¹⁾		48	160,000	52,000	NE	15,000,000	NE	47,000	1,400	340	470,000	NE	NE

Notes:

(1) California Regional Water Quality Control Board, San Francisco Bay Region, "Update to Environmental Screening Levels." February 22, 2016. Tier 1 ESLs.

Bold text denotes detected concentrations. Bold/blue text denotes detected concentrations above Tier 1 ESLs.

Only compounds that were detected in one or more soil vapor samples collected during the soil vapor survey in 1999 are included in this table.

Abbreviations:

μg/m³ = micrograms per cubic meter TCE = trichloroethene 1,2,4-TMB = 1,2,4-trimethylbenzene ESL = Environmental Screening Level NE = ESL not established

Table 9 Soil Vapor Analytical Results - 2008 Soil Vapor Investigation

Former Chevron-branded Service Station 94612

3616 San Leandro Street Oakland, California

Borehole/ Sample ID	Date Collected	TPH-GRO (μg/m³)	TPH-DRO (µg/m ³)	Benzene (µg/m³)	Toluene (µg/m³)	Ethylbenzene (µg/m³)	Total Xylenes ⁽¹⁾ (µg/m³)	MłBE (µg/m³)	1,2-DCA (µg/m³)	1,2-DBA (µg/m³)	Oxygen (%)	Carbon Dioxide (%)	Helium (%)
VP-1	06/18/08	2.6	950	8.2	5.5	<5.6	20	<4.6	<5.2	<9.9	7.5	5.8	<0.13
VP-2	06/18/08	2.6	1,000	<3.8	<4.5	<5.2	<5.2	<4.3	<4.8	<9.1	2.5	6.1	<0.012
VP-3	06/18/08	2.2	1,100	<3.8	<4.5	<5.2	8.4	<4.3	<4.8	<9.1	9.4	7.5	<0.12
VP-4	06/18/08	4.5	1,200	<3.7	<4.4	<5.0	<5.0	<4.2	<4.7	<9.0	12	6.6	<0.12
ESLs ⁽²⁾		50,000	68,000	48	160,000	560	52,000	5,400	54	2.3	NE	NE	NE

Notes:

(1) Total xylenes is the sum of m,p-xylene and o-xylene. If either m,p-xylene and o-xylene was non-detect, the detected value was used. If both were non-detect, the highest detection limit was used.

(2) California Regional Water Quality Control Board, San Francisco Bay Region, "Update to Environmental Screening Levels." February 22, 2016. Tier 1 ESLs.

Bold text denotes detected concentrations. Bold/blue text denotes detected concentrations above Tier 1 ESLs.

Abbreviations:

µg/m³ = micrograms per cubic meter

TPH-GRO = total petroleum hydrocarbons as gasoline range organics

TPH-DRO = total petroleum hydrocarbons as diesel range organics

MtBE = methyl tertiary -butyl ether

1,2-DCA = 1,2-dichloroethane

1,2-DBA = 1,2-dibromoethane

ESL = Environmental Screening Level

NE = ESL not established

FIGURES

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2q17\figures\cad\dwg_21162402_94612_2q17.dwg|Jopalekopsahl | Jul 17, 2017 at 9:47 | Layout: fig1_slm

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2017_ltcr\figures\dwg_21162402_94612_2q17.dwg | Jopalekopsahl | Aug 07, 2017 at 10:31 | Layout: fig3_gwe

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2017_ltcr\figures\dwg_21162402_94612_2q17.dwg|Jopalekopsahl|Aug 07, 2017 at 10:32|Layout: fig4_rose

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2017_ltcr\figures\dwg_21162402_94612_2q17.dwg|Jopalekopsah|Aug 07, 2017 at 10:33|Layout: fig5_gwc

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2017_ltcr\figures\dwg_21162402_94612_2q17.dwg | Jopalekopsahl | Aug 07, 2017 at 10:34 | Layout: fig6_tphg

	LEGEND		
		APPROXIMATE PROPERTY BOUNE	DARY
	UST	UNDERGROUND STORAGE TANK	
	•	GROUNDWATER MONITORING W	/ELL
	(3,000)	TPH-GRO CONCENTRATION (µg/	L)
		INFERRED TPH-GRO CONTOUR	
	TPH-GRO	TOTAL PETROLEUM HYDROCARB AS GASOLINE RANGE ORGANIC	ONS S
	(µg/L)	MICROGRAMS PER LITER	
Ň			
AENITARY			
UND			
	×.	N	
(1444	4		
		-=	-
		The second s	
		0 40	80
e by Stantec, Inc.	as to the accuracy, reliabili	APPROXIMATE SCALE	ere compiled from
nformation may r e updated withou	not meet National Map Acc at notification. Any reproduc	uracy Standards. This product was developed election may result in a loss of scale and or information	ctronically, and may
			FIGURE:
2 ET	TPH-GRO ISC	DCONCENTRATION MAP -	6
A .	5200		0

APPROVED BY:

DATE:

07/17/17

TLF

CHECKED BY:

EEO/MRK

JRO

FILEPATH:U:\211602402\05_report_deliv\deliverables\reports\2017_ltcr\figures\dwg_21162402_94612_2q17.dwg|Jopalekopsah|Aug 07, 2017 at 10:34|Layout: fig7_benz

									POTEN	TIALLY EXPOSED HUMAN REC	EPTORS	
PRIMARY SOURCE	PRIMARY TRANSPORT MECHANISM	SECONDARY SOURCE	TRANSPORT MECHANISM	TERTIARY SOURCE	TRANSPORT MECHANISM	QUATERNARY SOURCE	EXPOSURE ROUTE	Future On-Site Commercial / Industrial Worker	Future On-Site Construction Worker	Current or Future Off-Site Commercial / Industrial Worker	Current or Future Off-Site Construction Worker	Current or Future Off-site Resident
	Direct Soil Contract	Surface Sails (0.2 ft bas)					Incestion			1	1	1
	Direct soli Conider	Sundce soils (0-3 mbgs)					Dermal Contact					
		Excavated Soils					Ingestion					
		(Subsurface to Surface Soils)					Dermal Contact					
	Wind or Excavation	Outdoor Air					Inhalation			1		1
	Activities	(Particulates)					in indialion				l	
	Soil Gas Emission	Indoor Air (Volatiles)					Inhalation					
		Outdoor Air (Volatiles)					Inhalation					
	-	Groundwater					Ingestion					
Conteninente	Infiltration and Percolation						Dermal Contact					
in Soil	rain, snow). Leading to		Volatilization	Air (Volatiles)			Inhalation					
	Leaching, Solubilization,			(
<u></u>	and Suspension		Surface Discharge	Surface Water			Ingestion					
							Dermal Contact					
					Volatilization	Air (Volatiles)	Inhalation			1		1
					/ Ordinizarior	/ ii (/ oldinios)	in indialion					
					Fish Uptake	Fish	Ingestion					
											r	
			L	Sediments			Dermal Contact					
							Definidi Conider					
	Stormwater Runoff	Surface Water	1				Ingestion					
							Dermal Contact					
			Volatilization	Air (Volatiles)			Inhalation			1		1
			Foldmitzanorr	74 (10101005)			in indialion					
			Fish Uptake	Fish			Ingestion					
											r	
		Sediments					Ingestion Dermal Contact					
							Delinidi Conider					
Contaminants	Direct Groundwater Contact						Ingestion					
in Groundwater							Dermal Contact					
	Volatilization	Indoor Air (Volatiles)					Inhalation					
		Outdoor Air (Volatiles)					Inhalation					
		Coldeol / II (Foldmos)					in indianon					
	Surface Discharge	Surface Water					Ingestion					
							Dermal Contact					
			Volatilization	Air (Volatiles)			Inhalation			1		1
1										1	I	1
1			Fish Uptake	Fish			Ingestion					
		Sediments					Ingestion					
										•	•	•
LEGEND					D	ATE: 08/01/13	Former	Chevron-Branded Service	itation 94612		FIGURE 8	
Exposure pathway is c	complete or potentially complete.				D	RAWN BY: EEO		3616 San Leandro Stree	ſ	EXPOS	SURE PATHWAY FLOW	CHART
exposure pathway is in	icompiere.				A	FEROVED BT: ILF		Cakiana, Cantolina				

APPENDIX A Soil Boring and Well Construction Logs

DRILL RIG Continuous Flight Auger	SURFACE E	LEVATION	30 fe	et		OGGEU	sy K	5	
DEPTH TO GROUNDWATER 14 feet ATOD	BORING DI	METER 6	inch	nes		DATE DE		2/10/8	38
DESCRIPTION AND CLASSIFIC	ATION			DEPTH	*1*	TANGT S/FT)	12A Xt 14-1	51TY 51TY	
DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	(#EET)	1AM2	PL NC JI	CONTE	DEN DEN	
CLAY, homogeneous, less than 2% of sample is comprised of charred fragments	Dusky Vellowis) brown			- 1 - - 2 - 2					
CLAY, silty, charred fragments common	Light			- 3 -			15	111	
Plasticity Data: depth 5'-6" L.L.= 55 P.I.= 37	olivə gray	STIFF	CH	- 6 - - 7 - - 8 -		15*	15	108	
CLAY, sandy, mottled, increasing number of clasts with depth, transition zone	Dark yellowis brown			- 9 - - 10 -					
CONGLOMERATE, 20-30% of matrix is very coarse grain, subangular to rounded fragments of quartzite, chert and greenstone. < 5% of sample is comprised of $\frac{1}{2}$ -1 $\frac{1}{2}$ " dia. angular quartzite.		VERY STIFF		- 12 -		19*	12 ATOL	108	
· · · · · · · · · · · · · · · · · · ·		1							
CLAY, silty, fine sand with occasional clast, homogeneous.	Hodorato yellowin brown	FIRM		- 16		5*	27	104	
				- 18					
strong gasoline odor		STIFF		20.	Σ	<u> 8*</u>	23	100	
		EX : 18 & 1 : 18 - 0	PL(. 9 p=0 alif.	ATOR Leand	IY E	30RIN Stree	ig L t	OG	
POGERS/PACIFIC		BOJECT NO		 0/	ATE	····· ·	0.001		

ORILLAIG Continuous Flight Auger	SURFACE E	LEVATION		LOGGED BY KS						
DEPTH TO GROUNDWATER 14 feet ATOD	BORING DI	AMETER 6	inch	es	DATE DRILLED 2/10/88					
DESCRIPTION AND CLASSIFIC		r	¥	DEPTH	57	KATIOK STANEL VS/TT1	UER INT ("-)	RY SITY CF		
DESCRIPTION AND REMARKS	COLOR	ÇONSIST,	SOIL TYPE	(FEET)	3	N NCI SISJu SISJu	CON11	A H H H		
CLAY, sandy, silty, occasionally	Moderate yellowist brown			- 21 -	X	8*	23	100 -		
Bottom of borring 21.5 feet				- 22 -			·			
				- 23 -						
				- 24 -						
			2	- 25 -						
,					-					
				- 28 -						
· · · · · · · · · · · · · · · · · · ·	· ·			- 29 -						
				- 30						
				- 31 -	-					
				- 32 -		. '		•		
,				- 33 -			•			
•				~ 34 -						
					Ì					
	· .							ļ		
		· ·								
				- 17 -						
				- 38 -				•		
,				- 39 -						
······································				- 40						
	·	EXPL	ORA	TORY	BQ	RINC	G LO	G .	÷,,,,,	
	Lots	18 & 19	San	Leandro	> St	reet				
ROGERS/PACIFIC	Parti		<u> </u>			<u> </u>				

· .

DRILL RIGCONTINUOUS flight Auger	SURFACE E	LEVATION 3	30 f	eet hes			HEY A	2/10	7
DEPTH TO GROUNDWATER 14 Feet ATOD	BORING DI	METER O				2-1	7		ŕ
DESCRIPTION AND CLASSIFIC	ATION			DEPTH	LCR.	ANIO TANE TS/TT	JER SKI IS	SHT SHT	
DESCRIPTION AND REMARKS	COLOR	CONSIST.	SOIL TYPE	(FEET)	SAN S	PINCT NESIS (BLOY	CONT		
<pre>SAND, angular gravels, increases clay content with depth, fill material sieve data:</pre>	Dark yellowis brown		SC				9		
CLAY, silty, occasional angular clasts, 20-30% of sample is comprised of subangular to rounded pebble size clasts composed of guartzite sandstone and weathered feldspars	Dark yellowis brown	STIFF		- 12		107	21	109	
transition into conglomerat population of clasts, clast size, consistency, and roundness increases with depth	.e	VERY STIFF		- 18 - - 17 - - 18 - - 19 -		20,	* 15	110	
· ·	ł			20 -		·			
very strong gasoline odor	<u>+</u>					<u> </u>		<u>-</u>	-
	Lo	EX t 18_&	PLOF	ATOR San Le	Y E an	dro	Stre	et	
		kland,	Cal	if.			·	~~	

w.

•

•

DAILL RIGContinuous Flight Auger	SURFACE E	LEVATION				LOGGE	8Y	KS	
DEPTH TO GROUNDWATER 14 feet ATOD	BORING DI	AMETER 6	inch	es		DATE DI	AILLED	2/10/8	38
DESCRIPTION AND CLASSIFIC	ATION			DEPTH	113	MI IDH	11.51	Y LTY F	Γ
DESCRIPTION AND REMARKS	COLOA	GONSIST,	SOIL TYPE	IFECTI	ŚANY	PENCTS RESIST	CONTE	DENS	*
								1	
CONGLOMERATE, approximately 85% of sample is comprised of greater than 1/8" rounded clasts,				- 23 -			•		
composed of chert, guartzite, and greenstone	Moderate yellowis)								
		VERY		- 25 -					
				- 26 -	X	20*	13	114	
Bottom of borring 26.5 feet				- 27 -					
•				- 28 -					
· ·	. .			- 29 -					
				- 30 -					
				- 32 -					
				- 33 -					
					}				
				- 35 -					
				- 36 -					
				- 37 -					
				- 38 -					
	-			- 39 -					
				- 40 -].				
		EXF	-LOR	ATORY	۱ ۲ E		G LO	-} ጋG	
	Lot	s 18 & 1	19 Sa	n Lean	iro	Stree	et		
	Oal	cland, Cé	alif.	······································					

·· [DRILL AIG Continuous Flight Auger	SURFA	CE E	LEVATION 3	0 Fe	et .		LOGGED BY KS					
[DEPTH TO GROUNDWATER 9 feet	BORIN	6 01/	METER 6	inch	es	DATE DRILLED 2/10/88						
ſ	DESCRIPTION AND CLASSIFICA	ATION	1			DEPTH	1 E A	MTION IANCC S/FT)	і є в. И ј°.,	нΥ SIJY :F ⁻	-W-		
	DESCRIPTION AND REMARKS	COL	٥ħ	CONSIST.	SOIL, IFEETI TYPE		SAUP	AC NC TE AC SISS BUOW	CONTE	DEN: DEN: PC			
	CLAY, very plastic, minor abundance of roots	Brown blac)	nish ¢	STIFF	CH.	 - 1 -							
				STIFF	СН	- 2 -	X	12*	23	101	84		
			······	VERY	 		X	18*	12	109			
	CLAI, SIITY, Sandy	Hode: yall brow	rate owis n	91155		- 6 - - 7 -							
						- 8 - - 9,- 			¥				
	CLAY, sandy, abundant course grain size, rounded clasts of quartzite and greenstone. $\frac{1}{2}-2"$ dia. clasts of angular greenstone, comprise 20% of a given sample	Mode Syell brow	rato owis n	STIFF			X	12*	17	. 113			
	CLAY, silty, slightly mottled, occasional charred fragments,	код	arate			- 14 -							
	homogeneous	pro	AU TOATI	STIFF		- 16' - - 17 -		≤ 10 [,]	* 22	104			
						- 19 - 19			31				
			~			- 20 -			· ·				
				EXI	PLOP	RATOR	Y [BORIN	IG∵L	OG	~~		
			Lot 18 & 19 San Leandro Street Oakland, Calif.										
	ROGERS/PACIFIC			ROJECT NO		0	TE		BQAI	ר, פו ΩN			

DEPTH TO GROUNDWATER 9 1	eet ATOD	BORING DI	Ажетея б	incl	ies	╶┼╸	DATE D	RILLED	2/10
DESCRIPTION	AND CLASSIFIC					! 		,	
DESCRIPTION AND REMA	RKS	COLOR	CONSIST,	SOIL	DEPTH	HANYS	PENCEAA RESISIA (BLOWS/	WATE	DENSI
CLAY, silty, sandy, sub gravels, strong gasol	angular ine odor	Koderate yellowis brown	VERY STIFF		 - 21 -	X	24*	17	112
BOITTOM OF BORRING 21.5	FERN			T	- 22 -				
	,				- 23 -				
					- 24 -				
		•			- 25				
					- 26 -			•	
	• •				- 27 -				
					- 28 -				
		•			- 29 -				.
					- 30				
					- 31 -				
					- 32 -				
					- 23 -				
					- 35 -				
					- 36 -				
					- 37 -				
					- 38 -				
• • .					- 39 -	1.			
					- 40 -				
	₩	· .	EXP	LOR	ATOR	.ι Υ Ε	ORIN	G L(G G
	·	Lot Oak	s 18 & 19 land, Ca	9 Sar lif.	Leand	ro	Stree	t	
ROGERS/P.	ACIFIC	PI	ON TOJECT		ĐA.	ſE		BOAIN	G.

04/12/1993 lithtog-jan83

04/12/1893 lithlog-jan93

	3					Drilling Log
	G	ROUN ECHN		ATER DGY	{	Soil Boring SB-1
Project J	<u>Chevro</u> 3616 :	n - Oaki San Lea	land ndro	Sireel,	Oak	Owner <u>Chevron USA Products Company</u> Iand, CA Proj. No. <u>02020 4530</u> For Boring Location
Surface	Elev		_ To พล	ital Hole	e Dej	oth <u>21.5 ft.</u> Diameter <u>8 in.</u> Status 15 ft. Status 18.35 ft.
Screen: I	Dia			ngth _	-Gr II	Type/Size "GRAB" groundwater samples collected.
Casing: D Fill Mater)ia 1a) <u>.Ne</u>	al Ceme	_ Le <u>nt</u>	ngth		Rig/Core <u>CME-55/Modified Split-Spoon</u>
Drill Co. J Driller M	<u>SES, Ir</u> orris Pe	nc. eterson		Me a By .8	thod Irian	Hollow Stem Auger/PID McAloon Date_08/15/95 Permit #_95503
Checked	Ву <u>Е</u> с	t Simonis				License No. RG#4422 EL
Depth (ft.)	(udd) OId	Sample ID Blow Count/	X Recovery	Graphic ·Ļog	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
2-						
				\square		Top soil and weeds.
- 2 -					CL	Sandy CLAT (20,00). Orown.
]				Pebbiy sandy CLAY (5,20,75): brown, dry, no hydrocarbon odor.
- 4 -		5	8 17			
- 6 -	0	58-1 -6 5'	8 12		CL	
		0.5				
						Clayey silty pebbly SAND (10,10,20,60): brown, damp, no hydrocarbon odor,
- 10 -			8 [SM	dry to damp, no hydrocarbon odor.
	0	58-1 -11.5	11 14			
- 12 -				7	ML	
- 14 -						
			3 [Encountered water (driller's call), 08/15/95
- 16 -		SB-1	4		sc	Pebbly clayey SAND (10,30,60): brown with 5% gray staining along rootlet casts, damp to moist, no hydrocarbon odor.
	2					Statio water 08/15/05 0053 brs
						Static water, 00/10/90, 0000 ///s. Sandy silty CLAY (10,30,60): light brown with 5% light gray mottling, moist to
- 20 -			2		CL	wet, slight hydrocarbon odor.
	3.75	SB-1	4 5			End of boring. Backfilled with grout 08/15/95.
- 22 -		21.0				
- 24 -						
L H	1	1		1	1	

.

JOB NUMBER: DG94612C.4C02

Gettler-Ryan, Inc.							Log of Boring GP-2						
280.JF	CT:	Former C	hevi	ron S	ervice	Station No. 9-4612	LOCATION: 3616 San Leandro Street, Oak	land, California					
GR PF			769,	46120	4002		SURFACE ELEVATION:						
	CT AL		7/03			····	WL (ft. bgs): DATE: TIME:						
DATE STATED: 07/03/01 WL (ft. bgs): DATE: TIME:													
UAIE	THE		270.			(direct nusb)	TOTAL DEPTH: 15 feet						
URIE	LING	AE (FIUD:	2 //	1. Gec	Dellion	loneer pasin	GEOLOGIST: Geoff Risse						
DRIL			67	egg .	Druing								
EPTH (feel)	(mqq) OI	SAMPLE NUMBE	SAMPLE INT.	SRAPHIC LOG	SOIL CLASS	(EOLOGIC DESCRIPTION	REMARKS					
<u> </u>	<u> </u>					Topsoil and coarse gr	avel – 8 inches thick,	Hand augered to 5					
- - -					CL. SP	CLAY (CL) - dark bro POORLY GRADED SAN fine to medium sand, 5	wn (7.5YR 3/3), molst; 100% clay. D (SP) - dark brown (7.5YR 3/3), molst; 90% % clay, 5% gravel.	Boring backfilled - with neat cement from the bottom to the ground					
- -		GP2-6											
9	0	GP28.5 GP28.5G			CL	CLAY (CL) - dark bri	own (7.5YR 3/3), moist: 05% clay, 5% sand.						
- - 12	20	GF2-12.5 GP2-12.50				Becomes saturated;	90% clay, 5% sand, 5% gravel.						
15-		GP2-14.5				Refusal at 15 feet. Bottom of boring at	15 feet bgs.						
18-	-												
21-	_			_				Page 1 of					
	G	Settle r	·-F	łya	n, I	nc.	Log of Boring GP	-3					
-----------------	----------	-----------------------	-------------	--------------	------------	--	--	--					
PROJ	ECT:	Former C	hev	ron S	Service	Station No. 9-4612	LOCATION: 3616 San Leandro Street, Oal	kland, California					
GR PI	ROJEC	T NO.: 1	DG9	46120	C.4C02		SURFACE ELEVATION:						
DATE	STAF	RTED: 0	7/03	3/01			WL (ft. bgs): DATE: TIME:						
DATE	FINI	SHED: 0	7/0.	3/01			WL (ft. bgs): DATE: TIME:						
DRTU		ETHOD:	2 il	ı. Ge	oprobe	(direct push)	TOTAL DEPTH: 15 feet						
	LING	COMPANY:	G	rega	Drilling		GEOLOGIST: Geoff Risse						
		<u><u><u></u></u></u>		-00									
JEPTH (feet)	(wdd) OI	SAMPLE NUMB	SAMPLE INT.	SRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESCRIPTION	REMARKS					
	<u> </u>			0	- **	Topsoil and coarse gr	avel — 8 inches thick.	Hand augered to 5					
3-		•			SP	POORLY GRADED SANG) (SP) – dark brown (7.5YR 3/3), moist; 95% % silt.	feet. Boring backfilled - with neat cement from the bottom to the ground - surface.					
-6 -	11	GP3-5.5	2 -			:		-					
9-	Ū	GP3→8.5 GP3-8.56					• •	-					
12-	0	6P3-12,5			CL	CLAY (CL) – dark re clay, 5% send.	ddish brown (2.5YR 3/4), saturated; 95%						
·		6P3-14 6		\mathbb{V}	1			ļ					
15-	-	010-14.0		-	4	Refusal at 16 feet. Bottom of boring at	15 feet bgs.						
18-	-		-				· · ·						
21-								Page 1 of					

JOB NUMBER: DG94612C.4C02

	Get	tle	er—l	Rya	n, Inc.	Log of Boring HA	-1
PROJE	ECT' EQ	(mp)	Chei	ron Se	ervice Station No. 9-4612	LOCATION: 3616 San Leandro Street, Oak	land, California
68 00		0.	חהי	46126	4C01	SURFACE ELEVATION:	
DATE	STARTE	<u></u>	03/0	5/02		HL (ft. bgs): DATE: TIME:	
DATE		<u>יי</u> חי	03//	15/02		WL (fl. bgs): DATE: TIME:	•
DATE			0070 N 7	in Hen	d Auger	TOTAL DEPTH: 10 feet	
DRILL			· · · ·		Pyan	GEOLOGIST: Geoff Risse	
					Tryon		
JEPTH (feet)	SAMPLE NUMBE	SAMPLE INT.	SRAPHIC LOG	SOIL CLASS	GEO	LOGIC DESCRIPTION	REMARKS
<u>-</u>			∧ `À `À		Concrete over baserock – 11	inches thick.	
-		-		CL	CLAY (CL) - dark brown (7. sand,	5YR 3/2), moist; 90% clay, 10% fine to medium	
2-		-					Boring backfilled with neat cement from the botton to ground surface.
4							-
							-
6-	HA1-5						-
-					CLAY WITH SAND (CL) - da	rk brown (7.5YR 3/2), saturated; 85% clay,	- - -
8- -							
10-	HA1				Bottom of boring at 10 feet	bgs.	- Grab groundwaler - sample HAI.
12-		-	_				
14-							
	NUMBER)-)	ncal	6126	4001		Page I of

.

•

	Get	tle	er-	Ryai	n, Inc.	Log of Boring HA	-2
PROJ	ECT: For	mei	Che	vron Se	ervice Station No. 9-4612	LOCATION: 3616 San Leandro Street, Oal	dand, California
GB P	ROJECT NO).:	DGS	94612G.	.4C01	SURFACE ELEVATION:	
ΠΑΤΕ	STARTE):	03/0	5/02		WL (ft. bgs): DATE: TIME:	
ΠΔΤΕ	FINISHE	D:	03/0	5/02		WL (ft. bgs); DATE: TIME:	
	I ING METH		: 3	in. Han	d Auger	TOTAL DEPTH: 9.5 feet	
	LING COM	200 201	Y: 6	Settler-	-Rvan	GEOLOGIST: Geoff Risse	
	E U						
DEPTH (feet)	SAMPLE NUMB	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GEO	LOGIC DESCRIPTION	REMARKS
			****		Concrete over baserock - 11	inches thick.	
2		-		CL	CLAY (CL) – dark brown (7. 10% fine sand.	5YR 3/2), saturated, low plasticity; 90% clay,	Boring backfilled with neat cement from the botton to ground surface.
4	HA2-5						
6	-	_		SC	CLAYEY SAND (SC) - dark medium sand, 15% clay.	brown (7.5YR 3/2), saturated; 85% fine to	
8-		_					. Grab groundwater
10-	HA2				Bottom of boring at 9.5 fee	t bgs.	
	_						
2-		-					
14-							
JOF		: 1	 DG94	1612G.4	4C01		Page I of

	Get	tle	er—l	Ryar	n, Inc.	Log of Boring HA-	-3
PROJE		mei	Chev	ron Se	rvice Station No. 9-4612	LOCATION: 3616 San Leandro Street, Oak	land, California
GR PR	OJECT NO	D. :	DG9	46126.	4C01	SURFACE ELEVATION:	
DATE	STARTE):	03/0	5/02	······································	WL (ft. bgs): DATE: TIME:	<u>.</u>
DATE	FINISHE	D:	03/0	5/02		WL (ft. bgs): DATE: TIME:	
DRILL	ING MET	HOD	; 31	in. Hand	d Auger	TOTAL DEPTH: 10 feet	
DRILL	ING COM	AN	Y: G	ettler-	Ryan	GEOLOGIST: Geoff Risse	
	ü		1				
EPTH fee()	AMPLE NUME	AMPLE INT.	RAPHIC LOG	SOIL CLASS	GEO	LOGIC DESCRIPTION	REMARKS
		0)	A A A 4 A A A A		Concrete over base rock - 1	1 Inches thick.	-
2-		-		CL	CLAY (CL) – light brown (7. 10% fine to medium sand.	5YR 6/3), saturated, low plasticity; 90% clay,	Boring backfilled
4						· .	
6	HA3-5				SAND WITH CLAY (SP-SC)	- light brown (7.5YR 6/3), saturated; 90%	
8-					fine to medium sand, 10% cla	зу.	
10-	НАЗ				Bottom of boring at 10 fee	t bgs.	Grab groundwater — sample HA3
12-	-						-
14- 10P		3:	 DG94	4612G.	4C01		Page 1 of

÷

1

	CLIENT I JOB/SIT JOCATIC PROJEC DRILLEF DRILLIN BORING LOGGEL REVIEW REMARI	NAME E NAME DN T NUMB G METHO DIAMET D BY ED BY (S	Fax: (\$	hev 461 516 119 iregi and incl . Ca) 677-3 ron Env 2 San Le 96 g Drillin -auger h medict arey, PC	3687 vironmo andro g & Te g & Te	Street sting, 1	anagement Co.	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D/ GROUND SURFACE ELEY TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Statio	VP-1 28-May-08 28-May-08 ATE (YIELD) VATION TONNot Sur 5.25 to Encountered) c)	NA Not S Veyed 5.75 fb NA LUX	g	
	id) Old	COUN	AMPL	EXTE	DEPT (fbg	U.S.C	GRAP	LITHC	LOGIC DESCRIPTION		CONT	WEL	DIAGRAM
Well Log (PID) \\SAC-S1\SHARED\ROCKLI-1.CHE\9.4612-1\G\NTBO-1\9-4612.GPJ DEFAULT.GDT &11108	0		<i>V</i> P-1-4			GC		Concrete Clayey GRAVEL wit 30% sand, 15% clay estimated permeabil CLAY with sand: Da 20% silt; medium play permeability. Sandy CLAY: Brown silt; medium plasticit	h sand: Brown; moist; 45% , 10% sill; low plasticity; hig ity; 3/4 inch diameter angul rk grey; moist; 60% clay, 21 asticity; moderate esimated a; moist; 40% sand, 30% cla y; moderate estimated perr	gravel, h ar <u>gravel.</u> 5% sand, ay, 30% neability.	1.0		 Concrete Portland Type I/II 1/4"-inner diam. Nylaflow® tubing Bentonite Seal Monterey Sand #2/12 1"-diam., 0.010" Slotted Schedule 40 PVC Bottom of Boring @ 6 fbg

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407

BORING/WELL LOG

•

PAGE 1 OF :

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME VP-2		· · · · · · · · · · · · · · · · · · ·
JOB/SITE NAME	9-4612	DRILLING STARTED 28-M	ay-08	······
LOCATION	3616 San Leandro Street	DRILLING COMPLETED	ay-08	·
PROJECT NUMBER	611996	WELL DEVELOPMENT DATE (YI	ELD) <u>NA</u>	
DRILLER	Gregg Drilling & Testing, Inc.	GROUND SURFACE ELEVATION	Not Surveyed	
DRILLING METHOD	Hand-auger	TOP OF CASING ELEVATION	lot Surveyed	
BORING DIAMETER	3-inch	SCREENED INTERVAL	.25 to 5.75 fbg	
LOGGED BY	C. Benedict	DEPTH TO WATER (First Encour	ntered) NA	<u> </u>
REVIEWED BY	B. Carey, PG# 7820	DEPTH TO WATER (Static)	NA	<u>¥</u>

REMARKS

	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
-								Clavey GRAVEL with sand: Brown: moist: 40% gravel.	1.0	
						GC		30% sand, 15% clay, 15% silt; low plasticity; high estimated permeability; 3/4 inch diameter angular gravel <u>CLAY :</u> Dark grey; moist; 60% clay, 25% silt, 15% sand; medium plasticity; moderate estimated permeability.	1.5	Portiand Type
								Sandy CLAY: Brown; moist; 45% clay, 30% sand, 25% silt; medium plasticity; moderate estimated permeability.	3.0	 ✓ 1/4"-inner diam. Nylaflow® tubing
FAULT.GDT 8/11/08	0		VP-2- 4				•			
VTBO~1/9-4612.GPJ DE	-				5				6.0	 Monterey Sand #2/12 1"-diam., 0.010" Slotted Schedule 40 PVC Bottom of Boring @ 6 fbg
(LI~1.CHE\9-4612~1\Gli)				-						
AC-S1\SHARED\ROCH									ą	
WELL LOG (PID) NS.	•		-					· · ·		PAGE 1 OF 1

•

Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687 VP-3 BORING/WELL NAME Chevron Environmental Management Co. **CLIENT NAME** DRILLING STARTED 29-May-08 JOB/SITE NAME 9-4612 DRILLING COMPLETED _____ 29-May-08 3616 San Leandro Street LOCATION WELL DEVELOPMENT DATE (YIELD) NA 611996 PROJECT NUMBER Not Surveyed Gregg Drilling & Testing, Inc. **GROUND SURFACE ELEVATION** DRILLER TOP OF CASING ELEVATION Not Surveyed Hand-auger DRILLING METHOD SCREENED INTERVAL 5.25 to 5.75 fbg BORING DIAMETER 3-inch DEPTH TO WATER (First Encountered) 10.5 fbg (29-May-08) C, Benedict LOGGED BY NA B. Carey, PG# 7820 **DEPTH TO WATER (Static)** REVIEWED BY REMARKS CONTACT DEPTH (fbg) GRAPHIC LOG ₽ (mqq) BLOW DEPTH (fbg) U.S.C.S. EXTENT SAMPLE WELL: DIAGRAM LITHOLOGIC DESCRIPTION Concrete Concrete 1.0 Clayey GRAVEL with sand: Brown; moist; 40% gravel, GC 30% sand, 15% clay, 15% silt; low plasticity; high estimated permeability; 3/4 inch diameter angular gravel. <u>CLAY with sand:</u> Dark grey; moist; 70% clay, 20% sand, 10% silt; medium plasticity; moderate estimated 1.5 Portland Type 1/II permeability. 1/4"-inner diam. CL Nylaflow® tubing Bentonite Seal VP-3-4 0 4.0 CLAY with sand: Brown; moist; 60% clay, 25% sand, 15% silt; medium plasticity; moderate estimated permeability. 5 Monterey Sand #2/12 1"-diam., 0.010" Slotted Schedule 40 PVC CL 0 VP-3-8 Bentonite Seal ____10.5 Clayey GRAVEL with sand: Brown; wet; 40% gravel, 20% sand, 25% clay, 15% silt; low plasticity; high estimated permeability; 1/4 Inch diameter angular gravel. GC VP-3-12 0 12.0 Bottom of Boring @ 12

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110

(PID) NSAC-S11SHAREDIROCKLI-1.CHE19-4612-11GINTBO-119-4612.GPJ DEFAULT.GDT

ŝ

VELL

8/11/08

PAGE 1 OF

ſbg

BORING/WELL LOG

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME VP-4
JOB/SITE NAME	9-4612	DRILLING STARTED 29-May-08
LOCATION	3616 San Leandro Street	DRILLING COMPLETED 29-May-08
PROJECT NUMBER	611996	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, Inc.	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hand-auger	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	-3-inch	SCREENED INTERVAL 5.25 to 5.75 fbg
LOGGED BY	C. Benedict	DEPTH TO WATER (First Encountered) 10.5 fbg (29-May-08)
REVIEWED BY	B. Carey, PG# 7820	DEPTH TO WATER (Static) NA

.

REMARKS

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687 BORING/WELL NAME SB-2 Chevron Environmental Management Co. **CLIENT NAME** 28-May-08 9-4612 DRILLING STARTED JOB/SITE NAME DRILLING COMPLETED ____28-May-08 LOCATION 3616 San Leandro Street NA WELL DEVELOPMENT DATE (YIELD) ٠ PROJECT NUMBER 611996 GROUND SURFACE ELEVATION Not Surveyed Gregg Drilling & Testing, Inc. DRILLER TOP OF CASING ELEVATION Not Surveyed DRILLING METHOD Hand-auger

SCREENED INTERVAL

DEPTH TO WATER (Static)

.

DEPTH TO WATER (First Encountered)

LOGGED BY REVIEWED BY

REMARKS

BORING DIAMETER

3-inch

C. Benedict

B. Carey, PG# 7820

0 SB-2-4 0.5 Claver GRAVEL with sand: Brown: moist; 45% gravel, 30% sand, 15% clay, 10% slit; tow plasticity, figh estimated permeability. 34 Inch diameter angular gravel. 0.5 C Concrete 0 SB-2-4 CL Claver GRAVEL with sand; Dark gray, moist; 70% clay, 20% sand, 10% 1.5 0 SB-2-4 CL Claver GRAVEL with sand; Dark gray, moist; 70% clay, 20% sand, 10% 1.5 0 SB-2-4 CL Sandy CLAY; Brown: moist; 50% clay, 40% sand, 10% 1.5 0 SB-2-6 CL Sandy CLAY; Brown: moist; 50% clay, 40% sand, 10% 1.5 0 SB-2-6 CL Sandy CLAY; Brown: moist; 50% clay, 40% sand, 10% 10.0 0 SB-2-6 CL Sandy CLAY; Brown: moist; 50% clay, 40% sand, 10% 10.0 0 SB-2-7 CL Sandy CLAY; Ught brown: moist; 50% clay, 40% sand, 10% 10.0 0 SB-2-8 CL Sandy CLAY; Ught brown: moist; 50% clay, 35% sand, 10% 10.0 0 SB-2-8 CL Sandy CLAY; Ught brown: moist; 50% clay, 35% sand, 10% 11.0 0 SB-2-12 CL Sandy CLAY; Ught brown: moist; 50% clay, 35% sand, 10% 11.0 10 SC Sandy CLAY; Ught brown: moist; 50% clay, 35% sand, 10% 11.0 11 SC Sandy CLAY; Ught brown: moist; 50% clay, 35% sand, 10%	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
	0		SB-2- 4 SB-2- 8 SB-2- 12			GC CL CL SC GC		Asphalt Clavey GRAVEL with sand: Brown; moist; 45% gravel, 30% sand, 15% clay, 10% silt; low plasticity; high estimated permeability; 3/4 inch diameter angular gravel. CLAY with sand: Dark grey; moist; 70% clay, 20% sand, 10% silt; high plasticity; low estimated permeability; fine-medium grained sand. Sandy CLAY: Brown; moist; 50% clay, 40% sand, 10% silt; medium plasticity; moderate estimated permeability; firm; coarse grained sand. Sandy CLAY: Light brown; moist; 60% clay, 40% sand, 10% silt; medium plasticity; moderate estimated permeability; firm; coarse grained sand. Sandy CLAY: Light brown; moist; 60% clay, 35% sand, 5% gravel; medium plasticity; moderate estimated permeability; fine grained sand; 1/2-1 inch diameter gravel. Clayey GRAVEL with sand: Brown; wet; 40% gravel, 20% sand, 20% clay, 20% silt; tow plasticity; high estimated permeability; 1/4 inch diameter angular gravel.	0.5 1.5 6.0 10.0 11.0 12.0	Bottom of Boring @ 12 fbg

PAGE 1 OF :

BORING/WELL LOG

10.5 fbg (28-May-08)

NA

立

¥

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 BORING/WELL LOG Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687 CLIENT NAME Chevron Environmental Management Co. BORING/WELL NAME SB-3 29-May-08 JOB/SITE NAME 9-4612 DRILLING STARTED DRILLING COMPLETED 29-May-08 LOCATION 3616 San Leandro Street PROJECT NUMBER 611996 WELL DEVELOPMENT DATE (YIELD) NA Not Surveyed Gregg Drilling & Testing, Inc. GROUND SURFACE ELEVATION DRILLER TOP OF CASING ELEVATION Not Surveyed DRILLING METHOD Hand-auger BORING DIAMETER 3-inch SCREENED INTERVAL NA C. Benedict DEPTH TO WATER (First Encountered) 10.5 fbg (29-May-08) LOGGED BY B. Carey, PG# 7820 **DEPTH TO WATER (Static)** NA REVIEWED BY REMARKS CONTACT DEPTH (lbg) SAMPLE ID GRAPHIC LOG (mqq) BLOW EXTENT DEPTH (fbg) U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM Concrete Concrete 0 1.0 Clayey GRAVEL with sand: Dark grey; moist; 45% gravel, 30% sand, 15% clay, 10% silt; low plasticitiy; high estimated permeability; 3/4 inch diameter angular gravel. CLAY with sand: Dark grey; moist; 70% clay, 20% sand, 10% silt; medium plasticity; low estimated permeability. GC 1.5

8/11/08 DEFAULT.GDT LOG (PID) NSAC-S1ISHAREDIROCKLI-1.CHEI9-4612-11GINTB0-119-4612.GPJ

CL SB-3-4 0 5.0 Sandy CLAY: Brown; moist; 50% clay, 40% sand, 10% silt; medium plasticity; moderate estimated permeability. Portland Type 1/11 CL. SB-3-8 0 9.5 Clayey SAND: Brown; moist; 45% sand, 30% clay, 15% silt, 10% gravel; low plasticity; high estimated permeability. SĊ 10.5 ∇ Clayey GRAVEL with sand: Light brown; wet; 40% gravel, 20% sand, 20% clay, 20% silt; low plasticity; high estimated permeability; 1/4 inch diameter angular gravel. GC SB-3-12 0 12.0 Bottom of Boring @ 12 fbg MELL PAGE 1 OF 1 Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME	SB-4		
JOB/SITE NAME	9-4612	DRILLING STARTED	29-May-08		
LOCATION	3616 San Leandro Street	DRILLING COMPLETED _	29-May-08		<u> </u>
PROJECT NUMBER	611996	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, Inc.	GROUND SURFACE ELEV	ATION _	Not Surveyed	
DRILLING METHOD	Hand-auger	TOP OF CASING ELEVATI	ON Not Sur	veyed	
BORING DIAMETER	3-inch	SCREENED INTERVAL	NA	· · · · · · · · · · · · · · · · · · ·	
LOGGED BY	C. Benedict	DEPTH TO WATER (First	Encountered)	10.5 fbg (29-May-08)	<u> </u>
REVIEWED BY	B. Carey, PG# 7820	DEPTH TO WATER (Static	}	NA	<u> </u>

REMARKS

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
1/GINTBO~1/9-4512.GPJ DEFAULT.GDT 8/11/08	· ·	S8-4- 4 S8-4- 8		- 5 -	GC CL		Concrete Clayey GRAVEL with sand; Brown; moist; 40% gravel; 30% sand, 15% clay, 15% silt; low plasticity; high estimated permeability; 3/4 inch dlameter angular gravel. CLAY with sand: Dark grey; moist; 70% clay, 20% sand, 10% silt; medium plasticity; moderate estimated permeability. Sandy CLAY: Brown; moist; 45% clay, 30% sand, 25% silt; medium plasticity; moderate estimated permeability.	1.0 1.5 4.0	
WELL LOG (PID) INSAC-S11SHAREDIROCKL-11.CHE19-4612-71C		SB-4- 11.5			GC		∑ <u>Clavey GRAVEL with sand:</u> Brown; wet; 40% gravel, 20% sand, 20% clay, 20% sill; low plasticity; high estimated permeability; 1/4 inch diameter angular gravel.	10.5	Bottom of Boring @ 12 fbg

APPENDIX B Historical Geologic Cross-Sections A-A' and B-B'

611996-400(PRES003)GN-WA001 JAN 29/2009

611996-400(PRES003)GN-WA001 JAN 30/2009

APPENDIX C Hydrographs

VH-1 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California

cht_94612_2q17_hydrographs.xlsx

Stantec Consulting Services Inc.

MW-2 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California

cht_94612_2q17_hydrographs.xlsx

Stantec Consulting Services Inc.

(Ism

Groundwater Elevation (ft abov

MW-3 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California

Stantec Consulting Services Inc.

MW-4 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 94612 3616 San Leandro Street Oakland, California

cht_94612_2q17_hydrographs.xlsx

Stantec Consulting Services Inc.

Groundwater Elevation (ft above msl)

APPENDIX D SWRCB LTCP Checklist

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

General Criteria	
General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	🗷 Yes 🗆 No
Does the unauthorized release consist only of petroleum?	🗷 Yes 🗆 No
Has the unauthorized ("primary") release from the UST system been stopped?	🗷 Yes 🗆 No
Has free product been removed to the maximum extent practicable?	🗆 Yes 🗆 No 🗷 NA
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	🗷 Yes 🗆 No
Has secondary source been removed to the extent practicable?	🗷 Yes 🗆 No
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	🗷 Yes 🗆 No
Does nuisance as defined by Water Code section 13050 exist at the site?	🗆 Yes 🗷 No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum	□Yes ⊠No
constituents?	
Constituents? <u>Media-Specific Criteria</u> Candidate sites must satisfy all three of these media-specific criteria:	
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:	
Constituents? Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites: Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?	⊻ Yes □ No □ NA
Constituents? <u>Media-Specific Criteria</u> Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites: Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent? Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	⊻ Yes □ No □ NA ⊠ Yes □ No □ NA
Constituents? Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites: Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent? Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites? If YES, check applicable class: 1 🛙 2 🗆 3 🗆 4 🗠 5	⊻ Yes □ No □ NA ⊠ Yes □ No □ NA

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

For sites with releases that have not affected groundwater, do mobile constituents (leachate, vapors, or light non-aqueous phase liquids) contain sufficient mobile constituents to cause groundwater to excee the groundwater criteria?	d □ Yes □ No ⊠ NA
2. Petroleum Vapor Intrusion to Indoor Air: The site is considered low-threat for vapor intrusion to indoor air if site-specific conditions satisfy all of the characteristics of one of the three classes of sites (a through c) or if the exception for active commercial fueling facilities applies.	
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapor intrus to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.	ion □ Yes ⊠ No
a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or of the applicable characteristics and criteria of scenario 4?	IXIYes □ No □ NA all
If YES, check applicable scenarios: 🛛 🛛 🗂 🖓 🖬 🖬 4	
b. Has a site-specific risk assessment for the vapor intrusion pathwa been conducted and demonstrates that human health is protected the satisfaction of the regulatory agency?	ito □ Yes ⊠ No □ NA
C. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□ Yes ⊠ No □ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposur site-specific conditions satisfy one of the three classes of sites (a through o	e if :).
a. Are maximum concentrations of petroleum constituents in soil les than or equal to those listed in Table 1 for the specified depth belo ground surface (bgs)?	ss ⊠Yes ⊡No ⊡NA ow
b. Are maximum concentrations of petroleum constituents in soil les than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	ss □Yes □No ⊠NA
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□ Yes □ No 🗷 NA