REMEDIAL ALTERNATIVE EVALUATION AND PROPOSED SITE SPECIFIC CLEANUP OBJECTIVES REPORT

RECEIVED

1:48 pm, Aug 24, 2009

Alameda County Environmental Health

FOR

FORMER USA GASOLINE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for

MOLLER INVESTMENT GROUP, INC

AUGUST 12, 2009

Prepared by

STRATUS ENVIRONMENTAL, INC.

3330 Cameron Park Drive, Suite 550 Cameron Park, California 95682

Project No. 2007-0057-01

August 12, 2009 Proiect No. 2007-0057-01

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Remedial Alternatives Evaluation and Proposed Site Specific Cleanup

Objectives Report, Former USA Station No. 57, 10700 MacArthur Boulevard,

Oakland, California

Dear Mr. Wickham:

On behalf of Moller Investment Group, Inc. (MIGI), Stratus Environmental, Inc. (Stratus) is attaching a report entitled *Remedial Alternatives Evaluation and Proposed Site Specific Cleanup Objectives*, for Former USA Station No. 57, located at 10700 MacArthur Boulevard, Oakland, California. This report was prepared pursuant to a request by Alameda County Health Care Services Agency (ACHCSA) personnel, in a letter dated February 13, 2009. The report summarizes historical environmental activities at the site implemented to characterize and remediate previously documented petroleum hydrocarbon impact to the subsurface, responds to questions posed in the ACHCSA February 2009 correspondence, and discusses a proposed plan to re-develop the property at the location of the former service station as a grocery store. The document also includes a health risk assessment report prepared by a toxicology consultant retained on behalf of MIGI. The risk assessment report was used to develop site specific cleanup goals for the property, as requested by ACHCSA in the February 2009 letter.

Following your initial review of the attached document, Stratus and MIGI, and likely several other parties (including the property owner and their environmental consultant), would like to meet with ACHCSA to discuss issues pertinent to the site's environmental case. We feel that it would not be prudent to propose a corrective action approach until ACHSA personnel, MIGI, and the property owner agree on the appropriate soil and groundwater cleanup levels for the site. The property owner is generally agreeable to the strategy presented, and we expect to receive a letter supporting the site specific cleanup goals presented in the attached report. We feel that it would be most productive to conduct this meeting prior to ACHCSA's issuance of a formal response letter to the attached report.

Mr. Jerry Wickham, ACHCSA Remedial Alternatives Evaluation and Proposed Site Specific Cleanup Objectives Report Former USA Station No. 57, Oakland, CA Page 2 August 12, 2009

If you have any questions or comments regarding the report, or the site in general, please contact me at (530) 676-2062.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G.

Project Manager

cc: Mr. Charles Miller, Moller Investment Group, Inc.

Mr. John Jay, Jay-Phares Corporation

Mr. Peter McIntyre, AEI Consultants, Inc.

August 12, 2009

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Remedial Alternatives Evaluation and

Proposed Site Specific Cleanup Objectives Report

SSIONAL GEO

Scott G. Bittinger

No. 7477

Former USA Station No. 57 10700 Macarthur Boulevard

Oakland, California

Dear Mr. Wickham:

The data and information presented in this report were prepared under the supervision of the undersigned.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G.

Project Manager

Gowri S. Kowtha, P.E.

Principal Engineer

cc: Mr. Charles Miller, Moller Investment Group, Inc.

Mr. John Jay, Jay-Phares Corporation

Mr. Peter McIntyre, AEI Consultants

CONTENTS

1.0	INTRODUCTION AND EXECUTIVE SUMMARY	6
2.0	SITE DESCRIPTION	9
2.1	Subject Site and Vicinity	9
3.0	SUBSURFACE CONDITIONS	10
3.1 3.2 3.3	GEOLOGIC CONDITIONS	10
4.0	HISTORICAL REMEDIAL ACTIVITIES	15
4.1 4.2 4.3	SOIL OVEREXCAVATIONINTERMITTENT DPE AND DPE/AS REMEDIATION EVENTSISOC TM OXYGEN INJECTION GROUNDWATER REMEDIATION	15
5.0 ASSE	POTENTIAL EXPOSURE PATHWAYS, SENSITIVE RECEPTORS, AND RIS	
5.1 5.2 5.3	POTENTIAL ON-SITE EXPOSURE PATHWAYS	20
6.0	REMEDIAL ALTERNATIVES EVALUATION	22
6.1 6.2 6.3	No Action/Monitored Natural Attenuation	24
WITI 6.4 6.5	OVEREXCAVATION OF SOIL WITH OTTSITE DISTOSAL, BACKFILLING OF EXCAVATION H CLEAN SOIL MIXED WITH GYPSUM OVEREXCAVATION OF SOIL, ONSITE TREATMENT (INCINERATION) OF SOIL, BACKFILL AVATED SOIL MIXED WITH GYPSUM	25 26 L OF
6.6 6.7	ELECTRICAL RESISTANCE HEATING WITH VAPOR RECOVERYENHANCED AEROBIC BIOREMEDIATION OF DISSOLVED CONTAMINANTS USING	28
Inje 6.8 6.9	CTION OF ORC ADVANCED®	30
7.0	LIMITATIONS	33

ATTACHMENTS

TABLE 1 TABLE 2 TABLE 3	Remediation Events Summary Site Specific Target Levels (SSTLs) - RBCA Remedial Alternatives Evaluation Summary
FIGURE 1	Site Location Map
FIGURE 2	Site Vicinity Map
FIGURE 2A	Proposed Site Vicinity Re-Development Map Prepared for Jay-Phares Corporation
FIGURE 3	Site Plan
FIGURE 4	Geologic Cross Section A to A'
FIGURE 5	Groundwater Elevation Contour Map, First Quarter 2009
FIGURE 6	TPHG in Soil Iso-Concentration Contour Map (0'-7' bgs)
FIGURE 7	TPHG in Soil Iso-Concentration Contour Map (7'-12' bgs)
FIGURE 8	TPHG in Soil Iso-Concentration Contour Map (12'-17' bgs)
FIGURE 9	TPHG in Soil Iso-Concentration Contour Map (17'-22' bgs)
FIGURE 10	Annual Average GRO in Groundwater Iso-Concentration Contour Map, 1998
FIGURE 11	Annual Average Benzene in Groundwater Iso-Concentration Contour Map, 1998
FIGURE 12	Annual Average GRO in Groundwater Iso-Concentration Contour Map, 2003
FIGURE 13	Annual Average Benzene in Groundwater Iso-Concentration Contour Map, 2003
FIGURE 14	Annual Average MTBE in Groundwater Iso-Concentration Contour Map, 2003
FIGURE 15	Groundwater Analytical Summary, First Quarter 2009
FIGURE 16	GRO in Groundwater Iso-Concentration Contour Map, First Quarter 2009
FIGURE 17	Benzene in Groundwater Iso-Concentration Contour Map, First Quarter 2009
FIGURE 18	MTBE in Groundwater Iso-Concentration Contour Map, First Quarter 2009
FIGURE 19	Potential Exposure Pathway Model
FIGURE 20	GRO Concentrations in Groundwater, Well S-1, 1995 to 2009
FIGURE 21	Benzene Concentrations in Groundwater, Well S-1, 1995 to 2009
FIGURE 22	MTBE Concentrations in Groundwater, Well S-1, 1995 to 2009
FIGURE 23	GRO Concentrations in Groundwater, Well S-2, 1995 to 2009
FIGURE 24	Benzene Concentrations in Groundwater, Well S-2, 1995 to 2009
FIGURE 25	MTBE Concentrations in Groundwater, Well S-2, 1995 to 2009
FIGURE 26	GRO Concentrations in Groundwater, Well MW-3, 1995 to 2009
FIGURE 27	Benzene Concentrations in Groundwater, Well MW-3, 1995 to 2009

FIGURE 28	MTBE Concentrations in Groundwater, Well MW-3, 1995 to 2009
FIGURE 29	GRO Concentrations in Groundwater, Well EX-1, 2005 to 2009
FIGURE 30	Benzene Concentrations in Groundwater, Well EX-1, 2005 to 2009
FIGURE 31	MTBE Concentrations in Groundwater, Well EX-1, 2005 to 2009
FIGURE 32	GRO Concentrations in Groundwater, Well EX-2, 2005 to 2009
FIGURE 33	Benzene Concentrations in Groundwater, Well EX-2, 2005 to 2009
FIGURE 34	MTBE Concentrations in Groundwater, Well EX-2, 2005 to 2009
APPENDIX A	Drilling and Well Construction Summary Table, Soil Boring Logs, and Well Details
APPENDIX B	Historical Groundwater Elevation and Analytical Data and Alternate Groundwater Elevation Contour Maps
APPENDIX C	Historical Soil Analytical Data
APPENDIX D	Soil Excavation Mass Removal Calculations
APPENDIX E	DPE and DPE/AS Remediation Data
APPENDIX F	Water Supply Well Survey Data
APPENDIX G	Human Health Risk Assessment and Cleanup Levels Report Prepared
	For The Site by Skinner Associates
APPENDIX H	Maps Depicting Areas of Potential Soil Overexcavation and
	Underground Utility Locations Near Possible Overexcavation
APPENDIX I	Proposal and Nutrient/Surfactant Product Information Provided by
	Texas EnviroChem, Inc.
APPENDIX J	Soil Incineration Proposal and Information Prepared by Nevada
	Thermal Services, L.L.C.
APPENDIX K	Electrical Resistance Heating Proposal and Information Prepared by
1 TOTALO 137 I	Thermal Remediation Services, Inc.
APPENDIX L	ORC Advanced® Product Information Prepared by Regenesis, Inc.,
	Proposed Soil Boring Location Map, and Drilling Contractor Estimates
	For Completing ORC Injection

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

Stratus Environmental, Inc. (Stratus), on behalf of Moller Investment Group, Inc. (MIGI, formerly USA Gasoline Corporation [USA]), has prepared the following *Remedial Alternatives Evaluation and Proposed Site Specific Cleanup Objectives Report* for the property formerly occupied by USA Service Station No. 57, located at 10700 Macarthur Boulevard, Oakland, California (see Figure 1 and Figure 2). This document was prepared pursuant to a request by Alameda County Health Care Services Agency (ACHCSA), in a letter dated February 13, 2009.

The site is located in a vacant portion of the Foothill Square shopping center, near the intersection of 108th Avenue and Foothill Boulevard, in southeast Oakland. The owner of the subject property (Jay-Phares Corporation) intends to redevelop the area formerly occupied by USA Station 57 in the near future. Based on a recent discussion with Jay-Phares Corporation, construction of a grocery store in the area formerly occupied by USA Station 57 is proposed.

Petroleum hydrocarbon impact to the subsurface was discovered during a subsurface investigation completed in 1987. The underground storage tanks (USTs) and associated fuel delivery system were removed from the subject property in 1994, and the service station was closed and demolished at this time. At the time of UST removal, impacted soil surrounding the former UST cavity (estimated at 775 cubic yards) was excavated and removed from the property, resulting in the removal of an estimated 327.2 pounds of total petroleum hydrocarbons as gasoline (TPHG) from the site.

The geology beneath the site predominately consists of fine grained soils (silt/clay mixtures) situated above an undulatory bedrock surface. Clayey sand, silty sand, and clayey gravel soils appear to be interbedded within the fine grained soils. The soil horizon thicknesses above bedrock, encountered during historical subsurface investigations, are variable, ranging from at least 10 feet to more than 44 feet below ground surface (bgs). The soil/bedrock interface appears to generally dip towards the north, at an apparent angle of approximately 25 degrees from horizontal.

A groundwater monitoring program was initiated at the site in 1995. Groundwater levels beneath the site have fluctuated significantly during this time, ranging from approximately 5 to 24.5 feet bgs; the historically low depth to groundwater measurement was recorded during a recent (first quarter 2009) monitoring event. A convergent groundwater flow direction, towards the former fuel dispenser portion of the site, appears to be predominately present, with northnortheast groundwater flow generally present beneath the southern portion of the site and south-southeast groundwater flow largely observed beneath the northern portion of the site.

Historical groundwater analytical data from the site indicate the presence of TPHG/gasoline range organics (GRO), total petroleum hydrocarbons as diesel/diesel range organics (TPHD/DRO), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), methyl tertiary butyl ether (MTBE), tertiary butyl alcohol (TBA), di-isopropyl ether (DIPE), and

1,2-dichloroethane (1,2-DCA). At the time of a recent well sampling event (first quarter 2009), GRO, benzene, and MTBE were detected at maximum concentrations of 11,000 micrograms per liter (μ g/L), 5,400 μ g/L, and 660 μ g/L, respectively. The petroleum hydrocarbon plume appears to be relatively stable and decreasing. There is no known water supply well usage in the immediate site vicinity, and groundwater impact originating from USA Station 57 appears unlikely to threaten potential sensitive receptors based on available site data.

Between July 2004 and November 2007, intermittent dual phase extraction (DPE), and DPE/air sparging (AS) were used at the site as interim remedial action measures. These remediation efforts resulted in removal of an estimated 797 pounds of TPHG from the site in the vapor phase. Combined DPE/AS remediation resulted in higher petroleum hydrocarbon mass extraction rates than DPE alone.

The remedial alternatives evaluation presented in this document discusses the technical viability, anticipated limitations, and estimated costs associated with 7 remedial approaches/technologies that could be used to mitigate petroleum hydrocarbon impact beneath the subject property. Costs associated with implementing a monitored natural attenuation approach for the site, which would involve completing periodic monitoring of groundwater until contaminant concentrations degraded to cleanup goals, or for a fixed period of time, are also presented.

In the February 13, 2009 letter, ACHCSA personnel directed that site specific cleanup goals be developed for the subject property. In order to complete this task, Stratus retained a toxicology consultant to complete a modified Cal/EPA Preliminary Endangerment Assessment (PEA) Health Risk Assessment (HRA) and utilized the Risk Based Corrective Action (RBCA) model to develop site specific target cleanup levels (SSTLs) and clean-up factors (CRFs) for soil and groundwater contaminants identified beneath the site. SSTLs were developed for both commercial and residential receptors. The commercial receptors considered are adult/children shoppers and adult workers; the residential receptors considered are adults/children living above impacted soil and groundwater. For these two types of receptors, three exposure scenarios were evaluated. These include the exposure of the receptors to impacted soil (dermal, inhalation), groundwater (inhalation of vapors emanating from impacted groundwater,) and ingestion of impacted groundwater.

Results of the HRA indicated that Cal/EPA cancer risks for maximum and 95% upper confidence limit (UCL) soil concentrations for the two soil carcinogens on-site (benzene and ethylbenzene) by oral, dermal and inhalation routes for the child/adult shopper and for the adult worker were at or below the 1.0E-06 (one in a million) level of acceptable risk. In addition, hazard indices under the 1.0 threshold were calculated using both the maximum and 95% UCL soil concentrations for soil for both shoppers and workers. Using RBCA software, risks to both commercial and residential receptors to soil were also calculated. Although slightly higher than the Cal/EPA soil risks, all risks and hazards by RBCA modeling were also below their respective acceptable levels. Nearly all of the soil samples collected at the site contained concentrations of contaminants below the residential and commercial SSTLs. However the highest historical concentrations of benzene (9.6 milligrams per kilogram [mg/Kg], 13 feet bgs) and xylenes (440

mg/Kg, 3.5 feet bgs) exceed the residential and commercial SSTLs. DPE remediation could potentially have reduced the maximum benzene and xylene concentrations in soil beneath the site to levels below the SSTLs; however this has not been assessed.

Results of the HRA indicated that RBCA cancer risks for 95% UCL groundwater concentrations for all chemicals by inhalation of vapor emanating from groundwater for both commercial and residential receptors were at or below the 1.0E-06 level of acceptable risk. In addition, hazard indices were under the 1.0 threshold for this scenario. Using first quarter 2009 groundwater analytical data, GRO concentrations in groundwater are currently above the SSTLs of the residential and commercial scenarios, and benzene concentrations in groundwater are currently above the SSTL of the residential scenario, under the inhalation of vapors emanating from impacted groundwater exposure pathway. Trend lines for graphically depicted historical GRO, benzene, and MTBE concentrations indicate that although concentrations at select wells may periodically be above SSTLs, long term average groundwater concentrations meet SSTLs.

In the February 13, 2009 letter, ACHCSA personnel requested that a Draft Corrective Action Plan (CAP) be prepared for the site. Prior to selecting the most appropriate site management approach or remedial alternative, we believe that it is imperative that regulatory approval of site specific cleanup requirements be established, given the importance of this decision. Pending a review of this document by ACHCSA personnel, and an agreement upon site specific cleanup levels for the subject property, the Draft CAP will promptly be prepared and submitted.

2.0 SITE DESCRIPTION

2.1 Subject Site and Vicinity

The subject property is located in a mixed residential and commercial neighborhood in southeast Oakland. The property is bounded to the northeast by Foothill Boulevard, and to the southeast by 108th Avenue, and is situated approximately 500 feet west-southwest of Interstate 580. The site occupies a relatively small portion of the Foothill Square shopping center. This portion of the subject property formerly occupied by USA Station 57 is currently undeveloped. Areas adjacent to the site (to the southwest and northwest) are used as parking for the shopping center. A residential neighborhood is located south of the Foothill Square shopping center.

The site is situated approximately 80 feet above sea level, immediately west of the Oakland/San Leandro Hills and approximately 4 miles northeast of San Francisco Bay. The property is located on the eastern portion of the East Bay Plain. Topography at the site is relatively flat, with the ground surface typically sloping west-southwest towards San Francisco Bay. The Oakland/San Leandro Hills rise sharply out of the East Bay Plain east of the site and Interstate 580.

The former service station configuration included three 12,000-gallon gasoline and one 8,000-gallon diesel USTs and three dispenser islands. The station was closed, and the USTs, dispensers, and associated product piping were removed in July 1994. The approximate location of the USTs and fuel dispensers are included on Figures 2 and 3.

The Jay-Phares Corporation intends to redevelop the Foothill Square shopping center, including the area formerly occupied by USA Station 57, in the near future. The current property redevelopment plan includes construction of a grocery store at the location of former USA Station 57. A map depicting the tentative redevelopment plan for the property, including the location of the grocery store, is attached as Figure 2A.

3.0 SUBSURFACE CONDITIONS

Information pertaining to the subsurface conditions at the site are discussed in the following subsections of this document. Geologic logs prepared during historical subsurface investigations at the property, by Stratus and other consultants representing USA/MIGI, were used to prepare this discussion and are presented in Appendix A. Soil boring and well installation details are summarized on a table included in Appendix A.

3.1 Geologic Conditions

The following description of the site geologic conditions was prepared predominately based on available soil boring logs prepared by Stratus and previous consultants representing USA. A geologic cross section illustrating interpreted geologic relationships is presented as Figure 4. The surface trace of this cross section is included on Figure 3.

The geology beneath the site predominately consists of fine grained soils (silt/clay mixtures) situated above an undulatory bedrock surface. Clayey sand, silty sand, and clayey gravel soils appear to be interbedded within the fine grained soils. The soil horizon thicknesses above bedrock, encountered during historical subsurface investigations, are variable, ranging from at least 10 feet to more than 44 feet bgs. Based on available information, sedimentary bedrock (siltstone/sandstone or similar) appears to be present beneath the soil strata. The upper portion of the bedrock appears to be significantly weathered, allowing penetration by hollow stem auger drilling equipment and California split-spoon sampling equipment. The soil/bedrock interface appears to generally dip towards the north, at an apparent angle of approximately 25 degrees from horizontal.

3.2 Hydrogeologic Conditions

Depth to groundwater has ranged from approximately 5 to 24.5 feet bgs in the site monitoring wells between 1995 and 2009. Recent depth to groundwater measurements in the site monitoring wells are near historically low levels. Historical depth to groundwater measurements, and groundwater elevations, are included on a table presented in Appendix B. A groundwater elevation contour map depicting groundwater flow at the time of the first quarter 2009 monitoring event is presented as Figure 5.

In a letter dated February 13, 2009, ACHCSA commented on their interpretations of the hydrogeologic conditions at the site, which were based on groundwater elevations, and requested that Stratus perform some additional hydrogeologic analyses of site conditions. Specifically, ACHCSA requested an evaluation of, and comments on, 1) the selection of wells to be appropriately used to approximate groundwater flow beneath the site (i.e. long-screen/bedrock penetrating monitoring wells versus shallower-screened/non bedrock penetrating extraction wells) and 2) the presence/nature of a vertical hydraulic gradient beneath the site and an evaluation as to whether select wells at the site, with relatively long screening intervals situated

across both the soil horizons and the uppermost bedrock interface, could potentially function as conduits for vertical contaminant migration at the site.

In order to address ACHCSA's first issue regarding the validity of using data from the longscreen/bedrock penetrating monitoring wells versus using the data from shallower-screened/non bedrock penetrating extraction wells, Stratus evaluated and graphed the historic groundwater elevations in all site wells relative to both the overall length/total depth of the well and to the length of the well screen that penetrates underlying bedrock. A graph was prepared in which wells were grouped (by color) according to their overall well screen intervals (Graph A, included in Appendix B). From this graph, it appears that water levels in some similarly-screened wells may be affected by some variable other than total screen depth (in particular MW-7). A second graph was prepared in which wells were grouped (again by color) according to the length of the well screen that penetrates underlying bedrock (Graph B, also included in Appendix B). From this graph, it is evident that the amount of screen placed within the bedrock appears to be correlative to the height of the water table observed in each well (i.e. the more screen placed within the bedrock, the lower the hydraulic head pressure). Based on this data, it appears most technically appropriate to estimate shallow groundwater flow direction and gradient using those wells not screened into (and affected by) the bedrock beneath the site (EX-1, EX-2, EX-3, EX-4, MW-4, and MW-5).

Stratus has prepared a series of groundwater elevation contour maps for seven of the quarterly events conducted since the extraction wells were installed. For each of these seven quarterly monitoring events, 3 sets of groundwater elevation contour maps have been prepared. The first group (Figures 1A through 7A in Appendix B) illustrate groundwater flow direction using data collected from the extraction wells only (EX-1 through EX-4). The second group (Figures 1B through 7B in Appendix B) include data collected from extraction wells EX-1 through EX-4, and the 2 monitoring wells that were constructed with long screen intervals, but apparently don't extend into the underlying bedrock (MW-4 and MW-5). The third group (Figures 1C through 7C in Appendix B) use data from the monitoring wells with screening intervals extending into the underlying bedrock (S-1, S-2, MW-3, MW-7, and MW-8).

Although groundwater flow direction beneath the site is variable, the groundwater elevation contour maps presented in Appendix B (Figures 2A/B/C through 7A/B/C) predominately illustrate a convergent groundwater flow direction towards the area near the former fuel dispenser islands and well EX-4. It appears that north and northeast groundwater flow is predominately observed in the southern part of the site, and south and southeast groundwater flow is predominately observed in the northern part of the site. The apparent convergent groundwater flow conditions observed much of the time beneath the site may partially explain the limited lateral transport of contaminants away from the former UST/fuel dispenser area (discussed in section 3.3).

Given ACHCSA's concern regarding the interpretation of groundwater flow direction from groundwater elevation measurements collected from the existing well network, it appears

prudent to present several groundwater flow direction maps in future semi-annual monitoring reports prepared for the site (site switched from quarterly to semi-annual monitoring in July 2009). Stratus will implement this change to future reporting of interpreted groundwater flow beneath the site.

To address ACHCSA's second issue regarding the presence/nature of a vertical hydraulic gradient beneath the site and whether select wells at the site, with relatively long screening intervals situated across both the soil horizons and the uppermost bedrock interface, could potentially function as conduits for vertical contaminant migration at the site, Stratus evaluated historic groundwater elevations in wells pairs EX-2/MW-3, EX-1/S-1, and EX-4/MW-7. The current well network was not designed for the purpose of studying vertical hydraulic gradients, however Stratus has selected these well groupings, due to the relative close proximity of these shallow/long screened interval wells to each other, in order to provide the most practically possible comparison using the available historical data to address ACHCSA personnel's concern regarding potential vertical downward hydraulic gradients.

Results of this evaluation indicate that there are significant head differences in those wells screened above bedrock compared to those screened into bedrock (partially or fully). At well pairs EX-2/MW-3 and EX-1/S-1 (where the majority of both deeper wells are set into bedrock), the hydraulic head differences average approximately –4.2 and –5.8 feet, respectively (over 14 quarters between 2005 and 2009). At well pair EX-4/MW-7 (approximately 7 feet of MW-7 well screen is set into bedrock), an average head elevation difference of only –1.3 feet is measured. In the February 13, 2009 letter, ACHCSA states that these differences in groundwater elevations could indicate the presence of a downward vertical hydraulic gradient. Stratus disagrees with this statement and instead contends that the differences in head elevations observed in the wells may be attributed to the averaging of head pressure in the shallow soil horizons with head pressure in the upper portions of the bedrock, and not be reflective of a true vertical component of flow. The presence of long-screened monitoring wells does not enable upward or downward flow in the absence of a mechanism driving that flow; therefore, Stratus contends it is unlikely that the wells are acting as conduits.

Although many of the site monitoring wells extend into the upper portion of the bedrock beneath the property, Stratus does not believe that the wells are functioning as a vertical conduit between shallow groundwater and a separate aquifer within the regional bedrock. Given that the monitoring wells beneath the property were drilled using the hollow stem auger method, which is typically unable to penetrate competent bedrock, the lower portion of the monitoring wells are almost certainly screened within weathered, decomposed bedrock, which is unlikely to have significant hydrologic separation from the shallow groundwater observed beneath the property. Low groundwater recharge rates observed during historical well sampling events, in both the monitoring and extraction wells, suggest similar water bearing properties at all well locations and depths.

Based on the distribution of dissolved petroleum hydrocarbon contaminants in groundwater, discussed in section 3.3, it appears that groundwater flow beneath the property is resulting in

minimal transport of contaminants away from the former UST and fuel dispenser areas. Based on our understanding of the site geology and hydrogeology, there does not appear to be an aquifer, laterally continuous soil interval of substantial permeability, or definitive vertical flow component that would enable significant lateral or vertical movement of petroleum hydrocarbons.

3.3 Extent of Petroleum Hydrocarbon Impact

Extent of Petroleum Hydrocarbon Impact in Soil

Stratus has prepared four soil iso-concentration contour maps depicting the approximate extent of TPHG impact to soil at depths of surface grade to 7 feet bgs (Figure 6), 7 to 12 feet bgs (Figure 7), 12 to 17 feet bgs (Figure 8), and 17 to 22 feet bgs (Figure 9). These figures include soil analytical data collected from compliance sampling during site demolition and excavation, and results of samples collected during subsurface investigation (drilling) activities. Subsequent to collection of the analytical data used to generate these figures, DPE/AS remediation (discussed in section 4.2) has been completed at the site, which would almost certainly have resulted in contaminant concentration reductions and a redistribution of contaminants within the subsurface. Despite these remedial efforts and expectant reduction/redistribution of the contaminant mass concentrations, it is our opinion that these figures are useful for illustrative purposes to describe the extent of the petroleum hydrocarbon impact remaining at the site. TPHD, BTEX, and MTBE have also been reported in soil samples collected at the site. Historical analytical results for soil samples collected at the site are presented in Appendix C.

Petroleum hydrocarbon impact to the shallow subsurface (above 7 feet bgs) appears to primarily be located near the former fuel pump islands, in the northern portion of the site. The highest concentrations of petroleum hydrocarbons in the fuel pump island area appear to be present immediately below surface grade, with concentrations generally decreasing with depth in this area. Maximum TPHG concentrations of 4,500 mg/Kg (beneath product line trench sample location PI-2 at 3.5 feet bgs) were historically reported. Excavation work to the south of the fuel dispenser island area (discussed in section 4.1) should have removed the majority of the shallow petroleum hydrocarbon impact in this portion of the site (the approximate lateral limits of excavation are included on Figures 6 through 9).

The lateral extent of petroleum hydrocarbon impact to soil appears to encompass a larger area from 7 to 12 feet bgs relative to that observed from surface grade to 7 feet bgs (see Figures 6 and 7), possibly due to 'smear zone' influence with the upper portion of the water table at times of high groundwater levels beneath the site. The highest concentration of TPHG and benzene in soil between 7 and 12 feet bgs, following excavation work, was detected at the southern limits of the excavation, at concentrations of 130 mg/Kg and 0.33 mg/Kg, respectively. TPHG was also detected in samples collected near the former diesel UST and southern fuel pump island at concentrations of 80 mg/Kg (boring AS-1) and 100 mg/Kg (sample TC2-5). Benzene and MTBE concentrations at this depth appear to be low.

The extent of petroleum hydrocarbon impact to soil appears to encompass the largest lateral area between approximately 12 and 17 feet bgs (see Figure 8). Three samples collected at this depth, at scattered locations across the site, contained TPHG concentrations between 500 mg/Kg and 540 mg/Kg. Soil samples collected at this depth should be within the 'smear zone' and affected by fluctuations in groundwater levels beneath the site. Re-adsorption of contaminants into backfill soil placed within the excavation may have occurred based on data obtained at boring EX-1; however limited samples within the excavation backfill have been collected.

Select soil samples collected between 17 feet bgs and 25 feet bgs also appear to be within the 'smear zone', with a similar lateral contaminant distribution as soils between 12 and 17 feet bgs (see Figures 8 and 9). Samples collected from portions of the site at this depth interval appear to be situated immediately above the soil/bedrock interface. The highest concentrations of TPHG in this depth interval were reported near the southern and northern corners of the former UST pit (620 mg/Kg and 600 mg/Kg, respectively). Benzene concentrations in soil at this depth also appear to be low (0.67 mg/Kg maximum concentration at boring AS-2 [21 feet bgs]).

Extent of Petroleum Hydrocarbon Impact in Groundwater

GRO, TPHD, BTEX, MTBE, TBA, DIPE, and 1,2-DCA have historically been reported in groundwater samples beneath the site. Historical groundwater analytical results are included in Appendix B. Stratus has prepared annual average GRO and benzene iso-concentration contour maps using analytical data collected from the site monitoring wells in 1998 (see Figures 10 and 11), and GRO, benzene, and MTBE iso-concentration contour maps using 2003 monitoring well analytical results (see Figures 12 through 14). GRO, benzene, and MTBE concentrations reported for samples collected during the first quarter 2009 well sampling event are summarized on Figure 15. Iso-concentration contour maps depicting the interpreted lateral extent of GRO, benzene, and MTBE impact to the subsurface, using first quarter 2009 analytical data, are presented as Figures 16, 17, and 18, respectively.

Figures 10 through 18 illustrate that petroleum hydrocarbon and MTBE impact to groundwater appears to remain in the area immediately surrounding the former USTs and fuel dispenser islands, with minimal lateral transport of contaminants away from these areas. A comparison of the iso-concentration contour maps prepared using annual average 1998, annual average 2003, and first quarter 2009 analytical data suggests that the plume of impacted groundwater beneath the property is relatively stable and decreasing. The plume of impacted groundwater is not known to have migrated offsite and appears adequately characterized at this time. Historicallong term groundwater trends are further discussed in section 6.1, and illustrated for select wells in Figures 20 through 34.

The highest petroleum hydrocarbon concentrations appear situated in the southern portion of the site, near the former UST complex. At the time of the most recent sampling event, the highest concentrations of GRO and benzene were detected in samples collected from well EX-2, at concentrations of 11,000 μ g/L and 5,400 μ g/L, respectively. The highest concentration of MTBE at the time of the first quarter 2009 well sampling event was detected in well MW-3 (650 μ g/L).

4.0 HISTORICAL REMEDIAL ACTIVITIES

4.1 Soil Overexcavation

Approximately 775 cubic yards of soil were reported excavated at the time of UST removal in 1994. Using the arithmetic mean of concentrations reported from samples collected from the soil stockpile generated during the excavation, an estimated 327.2 pounds of TPHG, 41.3 pounds of TPHD, and 0.15 pounds of benzene were removed from the subsurface via excavation. A table summarizing petroleum hydrocarbon mass removal computations is provided in Appendix D.

4.2 Intermittent DPE and DPE/AS Remediation Events

In 2003, USA/MIGI was informed by the Jay-Phares Group that the property was being marketed actively for redevelopment. Potential development plans were provided to Stratus in June-July 2003. These plans included a proposal to lower surface grade by approximately 6 feet. Discussions and meetings were held between USA/MIGI, Jay-Phares, AEI Consultants (who represents Jay-Phares), ACHCSA, and Stratus, during the third and fourth quarter 2003, to identify the most viable remedial technology to mitigate petroleum hydrocarbon impact to the subsurface prior to redevelopment. Based on site geology, hydrogeology, and extent of impact, DPE was identified as an implementablel, and likely viable, remedial alternative (although cost intensive) for the subject site. Therefore, with approval from ACHCSA, Stratus conducted petroleum hydrocarbon mass reduction events using DPE and DPE/AS technology, intermittently between July 2004 and November 2007. The objective of the mass removal events was to reduce concentrations of petroleum hydrocarbons in the subsurface, with an understanding that any remaining petroleum hydrocarbon impacted soil encountered during lowering of surface grade at the subject property would be removed and disposed of offsite during the anticipated property redevelopment activity.

The first three DPE events were completed using wells S-1, S-2, and MW-3 for extraction, with MW-7 also used for extraction during the third DPE event. Subsequent DPE and DPE/AS events were completed using wells EX-1 through EX-4 for extraction. Table 1 presents a summary of the DPE remediation events. Additional data tables summarizing information collected during the DPE and DPE/AS events are presented in Appendix E.

The first DPE event was conducted between July 6 and 25, 2004, using a 400 cubic feet per minute (cfm) DPE system. During the first DPE event, individual well DPE tests using wells S-1, S-2, and MW-3, and a combined DPE test using all three wells, were conducted to evaluate the technical viability of using DPE to mitigate the subsurface petroleum hydrocarbon impact. During the combined DPE test, an average applied vacuum of 22.66 inches mercury ("Hg) (or 308.18 inches water column ["WC]) resulted in an average soil vapor extraction rate of 86 cfm and an average groundwater extraction rate of 0.55 gallons per minute (gpm). Approximately 13.35 pounds of GRO were extracted in vapor and aqueous phases during this DPE event. Based on the findings of this test and analytical results of subsequent quarterly monitoring, Stratus

proposed (letter dated October 15, 2004) to conduct quarterly DPE events as an interim remedial measure to reduce the subsurface petroleum hydrocarbon mass (prior to redevelopment). In a letter dated May 9, 2005, ACHCSA approved the proposal for conducting intermittent DPE events. The results of this DPE event indicated that relatively low hydraulic and air flow permeabilities are present in the subsurface, with low flow rates induced by the DPE system. Draw-down and induced vacuum data were collected from select observation wells to establish radius of influence (ROI) for vapor and groundwater extraction

A second DPE petroleum hydrocarbon mass removal event was conducted at the site between June 6, 2005, and July 1, 2005, using a 400 cfm DPE system. During this DPE event, an applied vacuum in the range of 23 to 25 "Hg produced soil vapor flow rates in the range of 23 to 39.4 cfm, and an average groundwater extraction rate of 1.12 gpm. A total of 34,340 gallons of extracted groundwater were treated using the carbon vessels and discharged to the sanitary sewer. Approximately 6.449 pounds and 0.082 pounds of GRO were extracted in vapor and aqueous phases, respectively, during this DPE event.

A third DPE petroleum hydrocarbon mass removal event was conducted at the site between August 29, 2005, and September 16, 2005, using a 200 cfm DPE system. During this DPE event, an applied vacuum in the range of 16 to 18 "Hg produced soil vapor flow rates in the range of 37.3 to 62.5 cfm, and an average groundwater extraction rate of 2.45 gpm. A total of 54,730 gallons of extracted groundwater were treated using the carbon vessels and discharged to the sanitary sewer. GRO was not reported in any of the influent soil vapor samples collected during this DPE event. Approximately 0.014 pounds of GRO were extracted in aqueous phase during this DPE event.

Based on information collected from the first three mass removal events, Stratus proposed and installed strategically located extraction wells in known areas of petroleum hydrocarbon impact. Wells EX-1 through EX-4 were installed in October 2005, and screened shallower in the subsurface (entire screening interval above bedrock) than the previous monitoring wells used for extraction.

A fourth DPE petroleum hydrocarbon mass removal event was conducted at the site between February 20, 2006, and March 24, 2006, using the newly installed extraction wells EX-1 through EX-4. During this DPE event, an applied vacuum in the range of 18.5 to 23 "Hg produced influent soil vapor flow rates in the range of 22.4 to 50.6 cfm, and an average groundwater extraction rate of 0.40 gpm. A total of 13,340 gallons of extracted groundwater were treated using the carbon vessels and discharged to the sanitary sewer. Approximately 25.83 pounds of GRO were extracted in vapor and aqueous phases during this DPE event.

A fifth DPE petroleum hydrocarbon mass removal event was conducted at the site between May 1, 2006, and May 25, 2006. An applied vacuum in the range of 20 to 24.5 "Hg produced influent soil vapor flow rates in the range of 21.9 to 56.2 cfm, and an average groundwater extraction rate of 0.30 gpm. A total of 7,400 gallons of extracted groundwater were treated using the carbon vessels and discharged to the sanitary sewer. Based on influent soil vapor flow

rates and concentrations, approximately 5.43 pounds of GRO were extracted in vapor phase and 0.027 pounds of GRO were removed from the subsurface in aqueous phase during this DPE event.

A sixth DPE petroleum hydrocarbon mass removal event was conducted at the site between July 17, 2006, and August 10, 2006. An applied vacuum in the range of 16 to 18 "Hg produced influent soil vapor flow rates in the range of 70.7 to 114.8 cfm, and an average groundwater extraction rate of 0.06 gpm. A total of 1,900 gallons of extracted groundwater were treated using the carbon vessels and discharged to the sanitary sewer. Based on influent soil vapor flow rates and concentrations, approximately 47.63 pounds of GRO were extracted in vapor phase and 0.0072 pounds of GRO were removed from the subsurface in aqueous phase during the sixth DPE event.

In order to improve performance of future mass extraction events, Stratus proposed to complete AS in conjunction with DPE (Work Plan dated June 13, 2007); ACHCSA approved the scope of work proposed in this Work Plan (letter dated July 25, 2007). Two air sparge wells (AS-1 and AS-2) were subsequently installed on the property.

The DPE-AS event was conducted between September 4 and November 14, 2007, for 779.50 hours (approximately 32.48 days). The DPE-AS system was unable to operate continuously due to frequent malfunctions of the propane generator used to power the control panel of the DPE system. A 2-hp Quincy blower, rated at 9.6 cfm, was used to inject air into the subsurface through recently installed wells AS-1 and AS-2 at approximately 150 to 200 percent of the static head pressure observed at wells AS-1 and AS-2 at the beginning of the remediation event. An applied vacuum in the range of 8.0 to 15.0 "Hg produced influent soil vapor flow rates in the range of 93.3 to 132.6 cfm and an average groundwater extraction rate of 0.08 gpm. GRO and benzene concentrations in the influent air samples ranged from 540 milligrams per cubic meter (mg/m³) to 1,800 mg/m³ and 0.75 mg/m³ to 3.4 mg/m³, respectively. GRO, benzene, and MTBE concentrations in the influent water samples ranged from 51 μ g/L to 470 μ g/L, 9.2 μ g/L to 140 μ g/L, and 3.8 μ g/L to 230 μ g/L, respectively. An estimated 698.8 pounds of GRO were removed in the vapor phase during the DPE/AS remediation event. Given these findings, combined DPE and AS was significantly more effective than DPE alone in removing petroleum hydrocarbon mass from the subsurface.

Although the total mass removed during the seven mass removal events was low (particularly for groundwater), DPE appears to have reduced concentrations of GRO and benzene in wells S-1, S-2, EX-1, EX-2, and MW-3. It appears that along with DPE events, other factors such as fluctuating groundwater elevations and naturally occurring processes like biodegradation and attenuation may have also contributed to the observed reduction in petroleum hydrocarbon concentrations.

4.3 iSOC[™] Oxygen Injection Groundwater Remediation

An iSOC™ oxygen injection system operated at the site between January 22, 2006 and September 4, 2007, in order to supplement aerobic degradation of petroleum hydrocarbons in groundwater between intermittent DPE events. The iSOC™ oxygen injection system is a bioremediation technology that produces high levels of dissolved oxygen for in-situ biodegradation of petroleum hydrocarbon constituents. The iSOCTM system consists of individual injection units (1.62 inches in diameter and approximately 15 inches in length) made of stainless steel, and an industrial grade oxygen cylinder. The individual injections units contain a micro-flow controller that regulates the flow based on the static head and pressure setting at the oxygen cylinder. The injection units also contain micro-porous hollow fibers. which provide a significant mass transfer area and create an ultra saturation zone when oxygen gas pressure is maintained lower than the static groundwater pressure. Each individual injection unit is placed in a monitoring well and connected to a 250 cubic centimeter (cc) oxygen cylinder using a single run ¼-inch diameter tubing. Between January 11, 2006 and December 18, 2006. the individual injection units were placed in wells S-1, S-2, and MW-3. In December 2006, the iSOC™ units were moved from wells S-1 and MW-3 to wells EX-1 and EX-2. The operation of the oxygen injection system at the site was discontinued on September 4, 2007, prior to initiation of the DPE-AS event.

5.0 POTENTIAL EXPOSURE PATHWAYS, SENSITIVE RECEPTORS, AND RISK ASSESSMENT

An exposure pathway model for the site is presented in Figure 19. The primary source of exposure appears to be spills and leaks related to historical gasoline station operations at the site. Secondary sources for exposure appear to include residual hydrocarbons in subsurface soils and dissolved hydrocarbons in the groundwater. Potential exposure pathways associated with the secondary sources include volatilization to outdoor air, and the potential for dermal contact and ingestion related to subsurface construction activities at the site. Given the depth to groundwater beneath the site, exposure to hydrocarbons dissolved in the groundwater, through volatilization, contact, or ingestion, appears unlikely.

5.1 Potential On-site Exposure Pathways

A primary pathway of exposure to the petroleum hydrocarbons beneath the site has not been identified, given the current property usage. Secondary exposure to the impact also appears limited at this time. Exposure to residual hydrocarbons in the soil might come through inhalation of compounds volatilized to outdoor air. The ground surface of the site is mostly paved with concrete and asphalt. These paving materials are not impervious to soil vapors, but the potential exposure risk associated with volatilization of petroleum hydrocarbon vapors to outdoor air is unlikely to represent an exposure risk. Normal surface air movement (wind, etc.) is likely to dilute and remove impacted soil vapors from the site before concentrations reach risk levels.

Construction workers involved in excavation within the area of impacted soil could be exposed through dermal contact, accidental ingestion, or inhalation of volatilized hydrocarbons during excavation work. It is our understanding, based on conversations with, and information provided by, Jay Phares Corporation, that lowering surface grade up to 5 feet in the site vicinity is likely. Additional excavation into the subsurface might also be necessary in order to implement construction activities. If petroleum hydrocarbon impact to shallow soil remains at the time that any excavation at the site is completed, the work should be performed by personnel trained in handling hazardous materials. These workers should take precautions to properly check, and if necessary, ventilate excavations in the impacted areas. Likewise, these workers should take proper measures to monitor air quality, utilize breathing respirators where appropriate, wear the proper clothing while working at the site, and wash prior to eating or drinking. If properly trained workers are utilized, and proper care and attention are given to safety precautions and hygiene, the risk of exposure to construction workers should be reduced.

Dissolved petroleum hydrocarbons are present in groundwater beneath the site. Given the current depth to groundwater (up to 24.5 feet bgs), there appears to be little risk of on-site exposure to the dissolved petroleum hydrocarbons beneath the site.

5.2 Potential Off-site Receptors-Water Supply Wells

A water supply well survey was completed on behalf of USA/MIGI in 1998. A table summarizing information obtained during this well survey, and a map depicting well locations obtained from this survey, are presented in Appendix F. The nearest water supply well identified in the well survey was installed approximately 1,000-feet southwest of the site, at 2455 109th Avenue. Given the distance of the water supply wells identified in the well survey for the site, and that hydrocarbon-related contaminants originating from USA Station 57 are not known to have migrated offsite, there appears to be little risk of the groundwater plume affecting groundwater sensitive receptors in the site vicinity.

5.3 Human Health Risk Assessment and Cleanup Goals

At the request of ACHCSA personnel, in the February 13, 2009 letter, site specific cleanup goals have been developed for the subject site. In order to complete this task, Stratus retained a toxicology consultant (Skinner Associates [Skinner] of Creston, California) to complete this work. Using available analytical data collected during historical site environmental activities, Skinner conducted a modified PEA-HRA and utilized the RBCA model (version 2.51) to develop SSTLs and CRFs for soil and groundwater contaminants identified beneath the site. A copy of the Skinner report is presented in Appendix G.

SSTLs were developed by Skinner for both commercial and residential receptors. The commercial receptors considered are adult/children shoppers and adult workers; the residential receptors considered are adults/children living above impacted soil and groundwater. For these two types of receptors, three exposure scenarios were evaluated. These include the exposure of the receptors to impacted soil (dermal, inhalation), groundwater (inhalation of vapors emanating from impacted groundwater), and ingestion of impacted groundwater. SSTLs are summarized in Table 2. All soil and groundwater analytical data collected at the site was used to develop mean, standard deviation, and 95% UCL values (see tables 1a through 1g of the Skinner Document). Both maximum contaminant concentration values and 95% UCL values were used to calculate risk and hazard levels.

Following collection of a majority of the soil samples used to evaluate contaminant concentrations in soil during historical site investigations, DPE and DPE/AS remediation was completed. Therefore, the soil analytical data used by Skinner to complete the HRA almost certainly overestimates current contaminant concentrations. In addition, although groundwater beneath the site may be considered by a regulatory agency as a potential drinking water source (and for this reason was considered herein), the property and surrounding neighborhood receive municipal water from an alternate source and it would be very unlikely to utilize groundwater beneath the site as a future water supply. Further, the City of Oakland does not have "any plans

to develop local ground-water resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity".

Results of the HRA indicated that Cal/EPA cancer risks for maximum and 95% UCL soil concentrations for the two soil carcinogens on-site (benzene and ethylbenzene) by oral, dermal, and inhalation routes for the child/adult shopper and for the adult worker were at or below the 1.0E-06 (one in a million) level of acceptable risk. In addition, hazard indices under the 1.0 threshold were calculated using both the maximum and 95% UCL soil concentrations for soil for both shoppers and workers. Using RBCA software, risks to both commercial and residential receptors to soil were also calculated. Although slightly higher than the Cal/EPA soil risks, all risks and hazards by RBCA modeling were also below their respective acceptable levels.

Results of the HRA indicated that RBCA cancer risks for 95% UCL groundwater concentrations for all chemicals by inhalation of vapor emanating from groundwater for the both commercial and residential receptors were at or below the 1.0E-06 level of acceptable risk. In addition, hazard indices were under the 1.0 threshold for this scenario. Risks for residential ingestion of groundwater generated a combined risk of 4.87E-04 and a hazard index of 5.27. Risks for commercial groundwater ingestion generated a combined risk of 1.2E-04 and a hazard index of 1.94. Risk and hazard indices for ingestion of groundwater under commercial and residential scenarios are above the acceptable thresholds.

Nearly all of the soil samples collected at the site contained concentrations of contaminants below the residential and commercial SSTLs presented in Table 2. However, the maximum historical concentrations of benzene (9.6 mg/Kg) and total xylenes (440 mg/Kg) reported for soil samples at the site exceed the SSTLs for soil under the residential and commercial scenario.

With the assumption that the only groundwater exposure risk comes from inhalation of vapors originating from the contaminanted groundwater, GRO and benzene concentrations in select areas of the site remain above select SSTLs, based on first quarter 2009 groundwater analytical data. Concentrations of GRO currently exceed the residential and commercial SSTLs at wells EX-2 and S-2, and concentrations of benzene exceed the residential SSTL at well EX-2. Under the groundwater ingestion scenario, and also using first quarter 2009 groundwater analytical data, concentrations of dissolved ethylbenzene, toluene, and xylenes are below the residential and commercial SSTLs, and concentrations of MTBE are below the commercial SSTL.

K:\USA Gasoline\0057\Reports\Remdial Alternative Eval 08-2009\USA 57-remediation alternative.doc

¹ East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (San Francisco Bay-RWQCB, June 1999),

6.0 REMEDIAL ALTERNATIVES EVALUATION

Based on our understanding of the site geology and hydrogeology, the extent of petroleum hydrocarbons and fuel oxygenate/additive impact to the subsurface, identified potential sensitive receptors to the fuel contamination, the current property use, and expected redevelopment of the site, Stratus has selected the following project management strategies/remedial approaches for discussion, analysis, and comparison. Table 3 presents a summary of the costs associated with each potential alternative/management approach, and assumptions used in considering each potential remedial technology.

- No Action/Monitored Natural Attenuation.
- Combined DPE and AS Remediation.
- Excavation of impacted soil, transport of excavated soil offsite to a Class 2 landfill, backfill of excavation cavity with mixture of gypsum into clean backfilled soil.
- Excavation of impacted soil, onsite nutrient/surfactant treatment (land farming) of soil, and subsequent backfill of treated soil.
- Excavation of impacted soil, onsite incineration of soil, and subsequent backfill of treated soil, with mixture of gypsum into backfilled soil.
- Electrical resistance heating (ERH) with vapor recovery.
- Enhanced aerobic bioremediation of groundwater by injection of ORC Advanced[®] Oxygen Release Compound using the direct push method and offsite disposal of impacted soil encountered during anticipated future re-grading of the property.
- In-situ chemical oxidation (ISCO) using ozone injection.

The following assumptions were used in evaluating potential remedial approaches for the subject site:

- The site is currently a vacant portion of a shopping center, though redevelopment of the entire property, including construction of a grocery store over the area formerly occupied by USA Station 57, is anticipated in the near future.
- The property owner would allow each of the possible remedial approaches to be implemented, despite any reasonable inconveniences associated with the work.
- Underground utility lines located near the site (electric, natural gas, water, sewer) could be removed and re-routed to meet current property uses, if necessary.

- Adequate electrical power could be obtained for operation of DPE, soil incineration, and ERH remediation equipment.
- Onsite treatment of soil (via land farming or incineration) is possible, given the relatively large size of the subject property.
- An air discharge permit for a DPE system, or an onsite soil incinerator, could be obtained from the Bay Area Air Quality Management District (BAAQMD).
- East Bay Municipal Utility District (EBMUD) would approve a sewer discharge permit application for the property, which would be needed to allow for disposal of treated wastewater generated during DPE.

6.1 No Action/Monitored Natural Attenuation

This management technique does not involve any active remedial action other than periodic groundwater monitoring. Natural attenuation is a process in which the indigenous microorganisms, under natural physical and chemical conditions, reduce/degrade the petroleum hydrocarbon concentrations. The natural attenuation rates for any given site are greatly influenced by the amount/type of naturally occurring microorganisms and dissolved oxygen (for aerobic conditions), or manganese, sulfate, iron, etc. (for anaerobic conditions), and temperature. In addition, the natural attenuation rates can also be limited by the subsurface petroleum hydrocarbon concentrations (electron donor).

Under the current property use scenario, completing no additional remedial efforts might be a reasonable site management strategy, pending regulatory approval, given the historical soil and groundwater concentrations, SSTLs, and that no known beneficial groundwater use is foreseen in the near future. Since the site is currently a vacant lot primarily covered with soil and concrete, no vapor exposure or groundwater sensitive receptors to the dissolved petroleum hydrocarbons have been identified, and the plume appears stable, decreasing, and situated within primarily fine grained (i.e. low permeability) soil, in-place management of the impacted soil and groundwater would potentially be acceptable.

Stratus has prepared graphs depicting GRO, benzene, and MTBE concentrations at five wells (S-1, S-2, MW-3, EX-1, and EX-2) using historical groundwater analytical data for samples collected from these wells (see Figures 20 through 34). These figures include first order decay equation contaminant concentration trend lines. In 14 of the 15 graphs, contaminant concentrations at the respective well are shown to decrease with time. In each of the graphs, the contaminant concentration trend line depicts GRO, benzene, and MTBE concentrations at levels currently below residential and commercial SSTLs for these contaminants. This appears generally consistent with the results of recent well sampling events, although GRO and benzene concentrations at select wells are intermittently above the SSTLs during individual well sampling events.

If no action/monitored natural attenuation was to be implemented, Stratus anticipates that the site would qualify for placement under a semi-annual groundwater monitoring program, based on our understanding of the site conditions and recently adopted State Water Resources Control Board (SWRCB) Resolution No. 2009-0042. Although long term average groundwater concentration trends indicate that groundwater conditions at the site generally meet SSTLs, for the purposes of this estimate, we anticipate that 10 years of semi-annual groundwater monitoring would be necessary under the no action/monitored natural attenuation scenario. Stratus anticipates that approximately \$124,000.00 would be necessary to complete 10 years of semi-annual groundwater monitoring and reporting, and complete destruction of the existing site wells following the monitoring period. These costs would need to be adjusted if the current well network was removed to allow for property re-development, and replacement monitoring wells installed at a later date.

6.2 Dual Phase Extraction and Air Sparge System

DPE involves the simultaneous extraction of soil vapors and groundwater from the subsurface. A DPE system will address removal of the adsorbed phase hydrocarbons in the soil above and below the water table, as well as the hydrocarbons dissolved in groundwater. Relatively high vacuums (20 to 23 "Hg) are applied to a stinger (1 to 1 ¼ inch diameter) placed in the extraction well, using a liquid ring blower to extract soil vapors and groundwater. Once the soil vapor and groundwater are removed from the subsurface, they are separated in the air/water separator of the DPE system. The hydrocarbon-laden vapors and groundwater are then channeled to separate treatment systems. The soil vapors are typically treated with thermal or catalytic oxidizers, and the groundwater is treated using granular activated carbon (GAC) vessels prior to discharge.

Historical remediation efforts at the site indicate that DPE was significantly more effective when completed in conjunction with AS. Sparging of air into the shallow saturated zone appears to have improved air flow rates in the subsurface, and resulted in improved extraction of petroleum hydrocarbon-laden soil vapors versus DPE alone. If a full scale remediation system were installed, additional AS and extraction wells should be installed, in order to expand the area of treatment within the subsurface.

DPE and AS appears to be a technically viable remedial alternative at the site, particularly to meet commercial SSTLs in a localized area, based on data collected during the September to November 2007 intermittent remedial event. During this period of time, an estimated mass of nearly 700 pounds of TPHG were removed from the subsurface in the vapor phase (approximately 32.5 days of operational uptime).

Construction of a DPE and AS system would likely be feasible under the current property use scenario. An adequate power supply appears to be available nearby, although substantial time may be required for PG&E to implement the necessary utility service connections. Discharge of treated groundwater at the site should not be problematic, as EBMUD previously approved a permit for sewer discharge at the site. A BAAQMD permit would also need to be secured for discharge of vapors from the DPE system. If the DPE and AS remedial approach were

implemented, redevelopment of the site could potentially be delayed, as several years would likely be necessary for this technology to reduce contaminant concentrations to closure levels.

Implementation of DPE requires significant capital investment, utility, and operation/maintenance costs. Stratus estimates that construction of a DPE and AS system, operation of the system for approximately 2.5 years, followed by one year of post-remediation groundwater monitoring, would require approximately \$652,000.00 to complete.

6.3 Overexcavation of Soil with Offsite Disposal, Backfilling of Excavation with Clean Soil mixed with Gypsum

Under this alternative, an excavation would be completed in order to physically remove contaminated soil from the subsurface. The impacted soil would then be transported to a Class 2 landfill, available locally in Richmond, Livermore, and Milpitas, for disposal. If the excavation was implemented at times of seasonally low groundwater levels, such as summer or fall, soil could be removed to near the bedrock interface prior to encountering groundwater. Once the excavation was completed, gypsum (calcium sulfate, CaSO₄·2H₂O) would be mixed into the soil, at approximately 5 percent volume, and the soil/gypsum mixture would be backfilled into the excavation cavity. Following backfilling, the gypsum would provide a source of sulfate that should enhance in-situ remediation of remaining hydrocarbons (predominately dissolved phase) within the subsurface.

Excavation of soil is a technically viable alternative, since no structures are located in the immediate vicinity of the site. Unimpacted shallow soil (clean overburden and soil around the perimeter of the excavation) would likely need to be removed in some areas in order to access hydrocarbon impacted areas. Based on the known extent of impact to soil, Stratus estimates that an area of approximately 11,240 square feet (excluding the area of the 1994 excavation) would need to be excavated at the site (see map depicting lateral limits of assumed excavation in Appendix H). If the average depth of the impacted area of excavation was 20 feet, a soil volume of approximately 8,326 cubic yards would need to be removed from the site (soil volume does not include expansion volume after removal from subsurface). In order to access the deeper areas of impact, de-watering of the excavation cavity would possibly be necessary.

In order to complete this excavation, several underground utility lines would likely need to be removed or re-routed prior to beginning work. A map showing the locations of underground utility lines in the site vicinity is included in Appendix H. A majority of the site monitoring and remediation wells would also need to be destroyed prior to beginning work. It is possible that petroleum hydrocarbon laden soil vapors emanating from the soil excavation, or stockpiles of the excavated soil, could become a nuisance to the public.

The majority of the costs associated with implementation of this scope of work would involve transportation and disposal costs for the soil, and transportation and procurement costs for clean soil. Given our understanding of the property owner's intention of lowering grade approximately 4 to 5 feet in the area surrounding the site, it might be possible to backfill the

excavation cavity with clean soil generated by property re-grading, which would significantly lower backfilling costs. However, in order to do this, the excavation cavity would likely need to be left open for a significant period of time until regrading could proceed; if this were the case, a fencing enclosure would need to be erected around the perimeter of the excavation cavity as a public safety measure until backfilling could occur.

Once the excavation backfilling was completed, a replacement groundwater monitoring well network would likely need to be installed, and a post remediation groundwater monitoring program implemented. Stratus estimates that destroying the current well network, removal of select underground utility lines, implementation of the excavation, backfilling the excavation cavity, well replacement, and one year of post-remediation groundwater monitoring would require approximately \$895,000.00 to complete.

6.4 Overexcavation of Soil, Onsite Treatment (Land Farming) of Soil

Under this remedial alternative, an excavation surrounding the area of petroleum hydrocarbon impact would initially be completed in order to allow for access of heavy equipment to the impacted soil. Impacted soil would be excavated from within the larger excavation perimeter, from surface grade to the deepest accessible area of impact, or the soil/bedrock interface, in order to expose the contaminant mass within the subsurface. Treatment of soil using a bioremediation technique (placement of a nutrient/surfactant mixture) would be used to mitigate the soil impact within the boundaries of the larger excavation. Once all of the accessed soil had been treated; verification soil sampling would be implemented in order to evaluate the effectiveness of the bioremediation. The excavation cavity would be leveled off once treatment of soil was completed.

Implementation of this remedial alternative would result in removal of a relatively large quantity of soil. Unimpacted shallow soil (clean overburden and soil around the perimeter of the excavation) would need to be removed in some areas in order to access hydrocarbon impacted areas. Based on the known extent of impact to soil, Stratus estimates that an area of approximately 11,240 square feet (excluding the area of the 1994 excavation) would need to be excavated at the site (see map depicting lateral limits of assumed excavation in Appendix H); this area does not include the soil that would need to be excavated around the perimeter of the impact. Based on our estimate that the average depth of the impacted area of excavation is 20 feet, a soil volume of approximately 8,326 cubic yards would need to be bioremediated (soil volume does not include expansion volume after removal from subsurface). In order to access the deeper areas of impact, de-watering of the excavation cavity would possibly be necessary.

In order to complete this excavation, several underground utility lines would likely need to be removed or re-routed prior to beginning work. A map showing the locations of underground utility lines in the site vicinity is included in Appendix H. A majority of the site monitoring and remediation wells would also need to be destroyed prior to beginning work. Excavation at the property for bioremediation appears possible given the large size of the subject property, however the work would likely result in a significant inconvenience to the facility given the

large area of excavation. It is possible that petroleum hydrocarbon laden soil vapors emanating from the soil excavation, or soil stockpiles, could become a nuisance to the public.

An advantage of this remedial approach is that remediation of most of the site impact should occur in a relatively rapid period of time. Stratus would retain a subcontractor (possibly Texas EnviroChem, Inc. of Houston, Texas) to complete the excavation and apply the nutrient/surfactant mixture. A proposal prepared by Texas EnviroChem, Inc. to complete the work activities, and information regarding the nutrient/surfactant material (TX Chem HE-1000TM), is presented in Appendix I. Once confirmation soil sampling verifies successful completion of bioremediation, the excavation cavity would be closed. Re-installation of groundwater monitoring wells would probably be necessary to complete post-remediation groundwater monitoring and sampling.

Stratus estimates that destroying the current well network, removal of select underground utility lines, implementation of the excavation, soil treatment, backfilling of the excavation cavity, well replacement, and one year of post-remediation groundwater monitoring would require approximately \$826,000.00 to complete.

6.5 Overexcavation of Soil, Onsite Treatment (Incineration) of Soil, Backfill of Excavated Soil Mixed with Gypsum

Under this remedial alternative, soil would be excavated from surface grade to the deepest accessible area of impact, or the soil/bedrock interface, in order to physically remove most of the contaminant mass from the subsurface. The excavated soil would be temporarily stockpiled, and subsequently incinerated to remove petroleum hydrocarbons from the soil. Once incineration was complete, gypsum would be mixed into the soil, at approximately 5 percent volume, and the soil/gypsum mixture would be backfilled into the excavation cavity. Following backfilling, the gypsum would provide a source of sulfate that should enhance in-situ remediation of remaining hydrocarbons (predominately dissolved phase) within the subsurface.

Implementation of this remedial alternative would result in removal of a relatively large quantity of soil. Unimpacted shallow soil (clean overburden) would likely need to be removed in some areas in order to access areas where hydrocarbons are situated deeper within the subsurface. Based on the known extent of impact to soil, Stratus estimates that an area of approximately 11,240 square feet (excluding the area of the 1994 excavation) would need to be excavated at the site (see map in Appendix H). Based on our estimate that the average depth of the excavation is 20 feet, a soil volume of approximately 8,326 cubic yards would need to be removed and incinerated (soil volume does not include expansion volume after removal from subsurface). In order to access the deeper areas of impact, de-watering of the excavation cavity would probably be necessary.

In order to complete this excavation, several underground utility lines would likely need to be removed or re-routed prior to beginning of work (see Appendix H for location). A majority of

the site monitoring and remediation wells would also need to be destroyed prior to beginning work. Implementation of this remedial alternative would require the property owner to provide a relatively large staging area for placement and remediation of soil. However, we anticipate that less area would be needed for stockpiling of soil and placement of the incineration equipment under this scenario than under the bioremediation (land farming) alternative discussed above. It is possible that petroleum hydrocarbon laden soil vapors emanating from the soil excavation, or soil stockpiles, could become a nuisance to the public. Noise associated with operation of the incineration equipment could also be a nuisance. A permit to operate the soil incineration equipment would need to be secured from the BAAQMD.

Excavation, incineration, and backfilling of soil appears to be a technically viable remedial alternative, that in our opinion would be likely to result in a reduction in contaminant concentrations to near closure levels. If this work were implemented, Stratus would retain the services of a subcontractor (possibly Nevada Thermal Services, LLC [NTS] of Sparks, Nevada) in order to complete the incineration work. An advantage of this remedial approach is that remediation would be completed in a very short period of time. Once incineration of the soil was completed, gypsum would be mixed into the soil and the excavation cavity would be backfilled to surface grade. Re-installation of groundwater monitoring wells would probably be necessary to complete post-remediation groundwater monitoring and sampling.

A cost estimate provided by NTS to complete thermal remediation of soil is provided in Appendix J. NTS estimates that the excavation would generate 12,500 tons of soil (at a density of approximately 111 pounds per cubic foot, based on an excavation volume of 8,326 cubic yards). NTS indicated that their thermal remediation equipment is capable of incinerating 10 tons of soil per hour, or 240 tons of soil per day, if operated on a continuous basis. Based on this soil treatment capacity, a minimum of 52 days would be necessary for NTS to incinerate soil excavated from the site. The NTS estimate included in Appendix J estimates that soil can be incinerated onsite for a cost of approximately \$85.24 per ton; although this price appears to be underestimated (see comments in Appendix J), incineration of soil at a cost of approximately \$90.00 to \$95.00 per ton appears realistic.

Stratus estimates that destroying the current well network, removal of select underground utility lines, implementation of the excavation, incineration of the soil, backfilling the excavation cavity, well replacement, and one year of post-remediation groundwater monitoring would require approximately \$1,320,000.00 to complete. Given this estimated cost, this remedial approach is not likely to be the most cost effective technology for the site.

6.6 Electrical Resistance Heating with Vapor Recovery

ERH is an in-situ remedial technology that remediates soil and groundwater by heating the subsurface across the area of remediation. During heating (using alternating current electricity), residual and dissolved phase hydrocarbons are volatilized into steam and vapors, with subsequent recovery and abatement. Information regarding ERH, and a proposal developed by a

potential subcontractor (Thermal Remediation Services, Inc. [TRS]) to complete ERH at the site, are attached in Appendix K.

ERH would likely be a very effective remedial approach at the site. Contaminants could be recovered from soil, groundwater, and the soil bedrock interface by heating of the subsurface, followed by contaminant volatilization. Remediation would be completed in a relatively short period of time (likely within a year). Under the current property use scenario, sufficient room is available for placement of the ERH equipment at the site.

In order to implement ERH at the site, TRS recommends installation of 68 electrode/vapor recovery wells, in a grid pattern with spacings of 17 feet between the wells. The wells would heat the subsurface to a depth of 30 feet bgs in order to complete recovery (using soil vapor extraction [SVE]) of contaminants under this scenario. Prior to beginning work, a power supply would need to be obtained from PG&E and an air discharge permit (for the vapor recovery system) would need to be secured from BAAQMD. Groundwater condensate generated during vapor recovery would need to be recovered, treated onsite using granular activated carbon, and discharged to the sewer under the EBMUD permit for the site, or hauled offsite for disposal.

Prior to beginning ERH, all of the current site wells would need to be destroyed in order to avoid damage during thermal heating. Once remediation work was completed, monitoring wells would need to be replaced to allow for post-remediation groundwater sampling.

Although ERH would very likely be an effective remedial approach for the site, this technology does not appear to be cost effective. In order to destroy the current well network, complete ERH, re-install a replacement monitoring well network, and complete one year of post-remediation groundwater monitoring, Stratus estimates that \$2,321,000.00 would be required to manage the site to closure using ERH technology.

6.7 Enhanced Aerobic Bioremediation of Dissolved Contaminants Using Injection of ORC Advanced®

Using this remedial approach, ORC Advanced® would be injected into the subsurface, across the area of the site with documented groundwater impact, in order to reduce contaminant concentrations in the groundwater. The purpose of injecting this product into the subsurface would be to stimulate aerobic bioremediation of the petroleum hydrocarbon contaminants in-situ by raising dissolved oxygen concentrations in groundwater. Information regarding ORC Advanced®, provided by the manufacturer (Regenesis, Inc.), is provided in Appendix L. Remediation of contaminants would occur over a period of up to 12 months, based on product information provided by Regenesis, Inc.

Stratus has prepared a figure which includes the approximate extent of GRO, benzene, and MTBE impact to groundwater, using analytical results for samples collected during the first quarter 2009. Proposed injection soil boring locations, situated at 10-foot spaced intervals, are shown to overlay the areas with petroleum hydrocarbon impact. Given the known extent of

petroleum hydrocarbon impact to groundwater, Stratus estimates that approximately 138 injection borings, situated about 10-feet from one another, would be needed in order to treat the subsurface with ORC Advanced® (see figure in Appendix L). Stratus estimates that ORC Advanced® would be injected between depths of approximately 10 and approximately 25 to 28 feet bgs.

A disadvantage of this remedial approach would be that the remedial technology has not been evaluated for effectiveness at the site. Several post-remediation groundwater sampling events would be needed to evaluate performance of the technology, given the length of time (up to 12 months) that dissolved oxygen concentrations in the subsurface would be expected to be elevated. The construction schedule for the property might necessitate destruction of the existing well network prior to completion of the 12-month enhanced bio-remediation schedule, which would inhibit our understanding regarding the effectiveness of the remediation efforts.

A potential disadvantage of using injection of ORC Advanced® could involve delivery of the product to all areas of impact within the saturated zone, given the soil types (predominately fine grained soil of low permeability) encountered within the subsurface. It appears possible that remediation of contaminants would be more effective in the immediate proximity of the injection points, with less effective contaminant concentration reduction in areas located away from the injection points. However, the relatively close spacing of the borings (10-feet on-center) should reduce this effect. Also, the relatively long period of time that enhanced bioremediation would occur (time release up to one year) would likely allow sufficient time for oxygen levels across the injection area to become more uniform.

Another disadvantage of this alternative would be that since soil beneath the property would not be remediated, groundwater would be exposed to residual petroleum hydrocarbons situated fixed within the soil. These petroleum hydrocarbons would be expected to continue de-sorbing over time, providing an ongoing source of impact to groundwater, and potentially necessitating reapplication of ORC Advanced® at a later date.

In order to complete remediation of groundwater using enhanced in-situ bioremediation by injection of ORC Advanced[®] during a single product application event, and completion of post-remediation groundwater monitoring, would require an estimated \$224,000.00.

6.8 In-Situ Chemical Oxidation using Ozone Injection

ISCO involves injection of oxidants such as ozone, hydrogen peroxide, potassium permanganate, dissolved oxygen, etc., into the subsurface using specially designed wells or regular groundwater monitoring wells. These oxidants break down the petroleum hydrocarbons to carbon dioxide and water. Some of the unreacted or residual oxidant breaks down to oxygen, resulting in dissolved oxygen, which aids in bioremediation of petroleum hydrocarbons. The performance of these chemical oxidation technologies varies from site to site depending on site geology, hydrogeology, and the nature and concentration of contaminants of concern. Of the abovementioned oxidants, based on our experience and published literature, ozone injection appears to

be the most effective in-situ remedial measure in mitigating the petroleum hydrocarbon impact to groundwater. The effectiveness of ISCO is dependent on the delivery of oxidants to impacted areas, which in turn is dependent on the subsurface lithology.

A disadvantage of this remedial approach would be that the remedial technology has not been evaluated for effectiveness at the site. A bench scale test and pilot test would need to be completed before designing a full-scale system. Completion of the bench scale test and pilot test would involve significant expenditure and several months (approximately 4 months for all tasks) to complete.

If bench scale and pilot testing confirmed that ISCO using ozone injection was a viable alternative for the site, Stratus anticipates that a relatively large number of ozone injection wells would need to be installed in order to enable delivery of the oxidant to all areas of impact within the saturated zone, given the soil types (predominately fine grained soil of low permeability) encountered within the subsurface. It appears possible that remediation of contaminants would be more effective in the immediate proximity of the injection wells, with less effective contaminant concentration reduction in areas located away from the injection wells. Depending on the number of wells needed to cover the area of impact, more than one ozone injection machine might be necessary in order to complete remediation at the site (we anticipate that two would be needed).

An advantage of using ozone injection would be that the injection equipment electrical requirement is single phase and 30 amps, which would be cost effective to operate, require minimal installation costs, and is relatively easy to obtain (relative to the power requirement for a DPE/AS system or soil incineration equipment). Although the electrical costs for the system would be low, analytical costs for collecting samples to evaluate the performance of the ozone injection system, and potentially maintain compliance with a Waste Discharge Permit (if required by the RWQCB), would likely be high. Costs for implementing ozone injection would be substantially reduced if tubing and piping connecting the ozone generating machine to the injection wells could be placed above ground; in order to do this, a secured fence enclosure would need to be erected around the injection well network.

A disadvantage of using the ozone injection remedial approach would be that at times of relatively low groundwater levels, the saturated interval situated within the soil stratum and above the site bedrock would be very thin, and potentially non-existent in areas of the property. The effectiveness of ozone injection would be expected to be significantly reduced at times of low groundwater levels, as the absence of groundwater would inhibit propagation of ozone/dissolved oxygen away from the injection well.

Ozone injection would likely require several years in order to mitigate groundwater at the site. Once ozone injection was completed, a period of post-remediation groundwater monitoring would be appropriate at the site. In order to complete remediation of groundwater using ISCO for a period of two years, and completion of post-remediation groundwater monitoring, Stratus estimates that approximately \$538,000.00 would be necessary.

6.9 Discussion

Selection of the appropriate remedial approach or management strategy for the subject site is dependent upon ACHCSA's acceptance of the site specific cleanup goals presented in this report. We believe that it would not be prudent to select a preferred remedial alternative for the property at this time given that ACHCSA personnel have not reviewed the content of this document. It is our opinion that a proper evaluation of the necessary remedial approach can only be completed once the cleanup goals for the property have been firmly established and accepted by the agency(ies) who will oversee cleanup activities and eventually allow the environmental case at the property to move to closure once the accepted levels have been reached. In addition, a thorough and confirmed understanding of the proposed development plans for the site is necessarby to establish acceptable alternatives and time available to complete remediation. Pending a review of this document, and an agreement regarding site specific cleanup goals for the property, Stratus intends to prepare and submit the Draft CAP requested by ACHCSA on behalf of MIGI.

7.0 LIMITATIONS

This report was prepared in general accordance with accepted standards of care which existed at the time this work was performed. No other warranty, expressed or implied, is made. Conclusions and recommendations are based on field observations and data obtained from this work and previous investigations. It should be recognized that definition and evaluation of geologic conditions is a difficult and somewhat inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present. More extensive studies may be performed to reduce uncertainties, such as additional subsurface assessment, risk-based corrective action analysis, or fate and transport modeling. This report is solely for the use and information of our client unless otherwise noted.

Table 1 Remediation Events Summary Former USA Service Station No. 57 10700 MacArthur Boulevard Oakland, California

Remed. Event No.	Event Dates	No. of Days	Event Type	Wells Used ¹	Soil Vapor			Groundwater					Highest			
					Avg, Ext	Total Extracted, cu.ft	GRO Concn. Range, mg/m³	Avg. Ext Rate, gpm	Total Extracted, gallons	GRO Conon. Range, µg/L	GRO Mass Removed, Ibs				DTW Range, feet	
					Rate, ofm						Vapor	G.Water	Induced Vac², "WC	Draw-down ² , feet bgs	bgs	Comments
1	07/06/04 to 07/25/04	19	DPE - individual wells & combined	S-1, S-2, & MW-3	87.28	2,396,726	<12 to 660	0.41	35,600	<50 to 2,200	13.34	0.015	1.3 @ S-1 (50' from nearest test well)	1.97 @ MW-8 (50' from nearest test well)	~ 11.5 to 21.5	Pilot test and mass removal event
2	06/06/05 to 07/01/05	25	DPE-combined	S-1, S-2, & MW-3	30,90	958,333	<15 to 160	1.12	34,340	<50 to 590	6.45	0,082	0.02 @ MW-6 (110' from nearest test well)	2.27 @ MW-8 (50' from nearest test well)	~ 6 to 16	Mass removal event
3	08/29/05 to 09/16/05	19	DPE-combined	S-1, S-2, MW-3, & MW-7	46.80	1,012,338	<15	2.45	54,730	<50 to 67	<05	0.014	0.00	2.33 @ MW-8 (50' from nearest test well)	~8.5 to 19	Mass removal event
4	02/20/06 to 03/24/06	32	DPE-combined	EX-1, EX-2, EX-3, & EX-4	33 04	1,321,116	98 to 690	0.40	13,340	130 to 3,800	25.68	0.157	3.15 @ MW-8 (60' from nearest test well)	1.88 @MW-6 (75' from nearest test well)	~2 to 11 (EX wells) 8 ~11 to 16.5 (obs wells)	Mass removal event. EX-1 to EX-4 are test wells. S-1,S-2,MW-3,MW-4,MW-6,MW-7,8MW-8 are obseration (Obs) wells
5	05/01/06 to 05/25/06	25	DPE-combined	EX-1, EX-2, EX-3, & EX-4	36.79	956,010	37 to 180	0.30	7,400	110 to 990	5.43	0.027	0.01 @ MW-8 (60' from nearest test well)	2.11 @ MW-3	~2 to 8 (EX-wells) & ~8 to 12 (Obs wells)	
6	07/17/06 to 08/10/06	24	DPE-combined	EX-1, EX-2, EX-3, & EX-4	96.05	3,326,861	80 to 370	0.06	1,990	150 to 900	47.63	0.007	0.00	1,85 @ MW-3 (15' from nearest test well)		Mass removal event. EX-1 to EX-4 are test wells. S-1,S-2,MW-3,MW-4,MW-6,MW-7,&MW-8 are obseration (Obs) wells
7	09/04/07 to 11/14/07	70	DPE-combined with Air Sparging	EX-1, EX-2, EX-3, EX-4, AS-1 & AS-2	111.31	5,205,946	77 to 1,800	0.03	1,570	51 to 470	693.83	0.002	***	4.14 @ MW-8 (60' from nearest lest well)	~10 to 13 (EX-wells) & ~15 to 24 (Obs wells)	Mass removal event. EX-1 to EX-4 are test wells. S-1,S-2,MW-3,MW-4,MW-6,MW-7,&MW-8 are obseration (Obs) wells. Air sparging at AS-1 & AS-2
				Total	NA	15,177,330	NA	NA	148,970	NA	792.35	0.305	NA	NA	NA NA	

Notes:

Remed. - Remediation

Ext - Extraction

mg/m3 - milligrams per cubic meter

lbs - Pounds

EX-wells - Extraction wells

No. - Number

cfin - cubic feet per minute

gpm - gallons per minute

G.Water - Groundwater water

Obs wells - Observation wells

DPE- Dual phase extraction

cu. Ft - cubic feet

μg/L - micrograms per litre

"wc - Inches water column

NA - Not applicable

Avg - Average

Concn. - Concentration

GRO - Gasoline range organics

bgs - Below ground surface

NA - Not applical

Wells S-1 & S-2 are screened from 20 to 40 feet bgs, well MW-3 is screened from 24 to 44 feet bgs, well MW-7 is screened from 10 to 40 feet bgs, wells EX-1 to EX-4 are screened from 6 to 25 feet bgs, and wells AS-1 & AS-2 are screened from 17.5 to 20 feet bgs.

Highest induced vacuum and drawdown measurements are at observation wells (non-extracting wells)

TABLE 2

SITE SPECIFIC TARGET LEVELS (SSTLs) - RBCA
Former USA Station No. 57

10700 MacArthur Boulevard, Oakland, California

Chemical	Commercial		Residential		Groundwater Ingestion	
	Soil (mg/Kg)	Groundwater ¹ (mg/L)	Soil (mg/Kg)	Groundwater ¹ (mg/L)	Residential (mg/L)	Commercial (mg/L)
Benzene	9.5E+00	1.40E+01	2.3E+00	3.40E+00	1.20E-02	5.20E-02
Ethyl benzene	>3.7E+02	>1.7E+02	>3.7E+02	>1.7E+02	3.70E+00	1.02E+01
Xylenes (mixed isomers)	2.3E+02	1.0E+02	6.5E+01	3.00E+01	7.30E+00	2.00E+01
Toluene	>8E+02	>5.3E+02	>8E+02	>5.3E+02	2.90E+00	8.20E+00
TPH - Aliph >C06-C08	>2E+02	>5.4E+00	>2.6E+02	>5.4E+00	2.20E+00	>5.4E+00
TPH - Aliph >C16-C21	NT	NC	NT	NT	>2.5E-06	>2.5E-06
DCA 1,2	ND	4.0E+00	ND	9.80E-01	7.40E-03	3.10E-02
MTBE	ND	1.1E+03	ND	2.70E+02	3.70E-01	1.00E+00

NOTES:

ND = Not Detected

NA = Not Available

NT = No Toxicity Data

NC = Not Carginogenic

¹ Assumes groundwater is not used for drinking but vapors emanating from groundwater will be inhaled.

Table 3 Remedial Alternatives Evaluation Summary

Former USA Service Station No. 57 10700 MacArthur Boulevard, Oakland, California

Remedial Alternative	Assumptions	Cost	
No Action/Natural Attenuation (Monitoring Only)	Concentration of petroleum hydrocarbons and MTBE will attenuate over time (in the next 10 years). No additional wells need to be installed/replaced. Subsequent to reaching the cleanup goals, all the monitoring/remediation wells will be abandoned.	1. Monitoring Cost (10 years, semi-annual sampling & reporting) 2. Well destruction Costs Total	\$100,000.00 \$24,000.00 \$124,000.00
Dual Phase Extraction (DPE) and Air Sparging (AS) Using 200 cfm thermal oxidizer w/ 15-hp liquid ring blower and two 1,000 lb carbon vessels. Discharge groundwater to sewer. Air sparging will be conducted using a 5-hp oilless compressor	of utilities is based on 200 cfm thermal oxidizer with 15-hp liquid ring pump. Air discharge permit can be obtained. Additional 3 extraction wells and 6 air sparge wells will have to be installed. Life cycle operation and maintenance costs are for 2.5 years wherein two visits will be conducted every month to check system operation, optimize system performance, and collect compliance verification air	4. Life Cycle (O & M - 2.5 years) 5. O&M Laboratory Cost (2.5-years) 6. Utility Cost (2.5 years) 7. Monitoring Cost (3.5 years)	\$25,000.00 \$30,000.00 \$195,000.00 \$65,000.00 \$38,000.00 \$234,000.00 \$35,000.00 \$30,000.00
Excavation of soil, transport of soil for offsite disposal, backfill cavity with clean soil / gypsum mixture	20 feet. All of the extraction and air sparge wells, and several of the monitoring wells, would be destroyed to facilitate excavation. Alameda County Health Department/RWQCB would allow backfilling of soil/gysum mixture. Addition of gypsum (calcium sulfate) would be effective in mitigating remaining groundwater contaminant concentrations. A local landfill (likely Richmond, but possibly Milpitas or Livermore) would accept the waste soil. Disposal of soil will cost approximately \$15 per ton, with 12,500 tons of soil generated. Six wells will be re-installed upon completion of excavation to allow for post-remediation monitoring. Groundwater monitoring is conducted on a	1. Design & Permitting 2. Destruction of current wells 3. Soil Excavation 4. Transport & Disposal of Soil 5. Soil/Gypsum Backfill and Compaction 6. Monitoring well re-installation 7. Monitoring cost (1-year quarterly) 8. Well Destruction Cost Total	\$8,000.00 \$20,000.00 \$60,000.00 \$525,000.00 \$225,000.00 \$20,000.00 \$17,000.00 \$895,000.00

Table 3 Remedial Alternatives Evaluation Summary

Former USA Service Station No. 57 10700 MacArthur Boulevard, Oakland, California

Remedial Alternative	Assumptions	Cost	
Excavation of soil, onsite soil treatment (land farming), backfill of treated soil	Alameda County Health Department/CRWQCB would allow for placement of nutrient/surfactant mixture (likely TX Chem HE-1000), and backfilling of soil into the subsurface after treatment. Excavation area is approximately 11,240 square feet and the average depth of the excavation is 20 feet. All of the site remediation and monitoring wells located in the area of will be abandoned and 6 wells will be re-installed upon completion of excavation. Groundwater monitoring is conducted on a quarterly basis for only one year subsequent to the excavation/backfilling remediation efforts.	1. Design and permitting 2. Destruction of current wells 3. Excavation, treatment, and backfilling of soil with de-watering 4. Monitoring well re-installation 5. Monitoring cost (1-year quarterly) 6. Well Destruction Cost	\$20,000.00 \$24,000.00 \$725,000.00 \$20,000.00 \$20,000.00 \$17,000.00
Excavation of soil, onsite soil treatment (incineration), backfill of soil mixed with gypsum	An air discharge permit could be obtained for incineration equipment. Alarneda County Health Department/RWQCB would allow backfilling of soil/gysum mixture after treatment. Addition of gypsum (calcium sulfate) would be effective in mitigating remaining groundwater contaminant concentrations. Adequate temporary power could be obtained to operate the incineration equipment. A municipal water supply with a capacity of approximately 20 to 30 gallons per minute could be obtained for operation of the incineration equipment. Electricity and water costs included in thermal treatment proposal costs provided by subcontractor. All of the extraction and air sparge wells, and several of the monitoring wells, would be destroyed to facilitate excavation. The excavation area is approximately 11,240 square feet and the average depth of the excavation is 20 feet (12,500 tons of soil estimated for treatment). Six wells will be re-installed upon completion of excavation to allow for post-remediation monitoring. Groundwater monitoring is conducted on a quarterly basis for only one year subsequent to the excavation/backfilling remediation efforts.	1. Design and permitting 2. Destruction of current wells 3. Excavation of soil with de-watering 4. Thermal treatment of soil 5. Backfill of soil/gypsum mixture 6. Monitoring well re-installation 7. Monitoring cost (1-year quarterly) 8. Well Destruction Cost	\$9,000.00 \$24,000.00 \$40,000.00 \$1,150,000.00 \$40,000.00 \$20,000.00 \$17,000.00 \$1,320,000.00
Electrical Resistance Heating (ERH) with vapor recovery	Adequate electrical power could be obtained. A transformer upgrade is not required. Air discharge permit could be obtained. EBMUD will re-issue permit to allow discharge of treated water (condensate) to sewer system (alternatively, groundwater could be hauled offsite). ERH costs include design, installation, SVE system with an abatement device, and removal of electrodes.	1. Destruction of current wells 2. ERH (including all tasks) 3. Monitoring well re-installation 4. Monitoring cost (1-year quarterly) 5. Well Destruction Cost Total	\$24,000.00 \$2,240,000.00 \$20,000.00 \$20,000.00 \$17,000.00 \$2,321,000.00

Table 3 Remedial Alternatives Evaluation Summary

Former USA Service Station No. 57 10700 MacArthur Boulevard, Oakland, California

Remedial Alternative	Assumptions	Cost	
Enhanced Bioremediation of groundwater using injection of ORC Advanced		1. Procurement and injection of ORC Advanced 2. Monitoring cost (1-year quarterly) 3. Destruction of current wells Total	\$180,000.00 \$20,000.00 \$24,000.00 \$224,000.00
In-Situ Chemical Oxidation (ISCO) using ozone injection	to the ozone injection wells. Monitoring cost is for 3 years with semi-annual sampling and reporting.	1. Work Plan and bench scale test 2. Ozone well installation & pilot test 3. Installation/procurement of full scale system and wells 4. Life Cycle (O & M - 2 years) 5. O&M Laboratory Cost (2-years) 6. Utility Costs (2-years) 7. Monitoring cost (3-year semi-annual) 8. Well Destruction Cost Total	\$12,000.00 \$60,000.00 \$250,000.00 \$38,000.00 \$64,000.00 \$4,000.00 \$30,000.00 \$80,000.00

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
OAKLAND, CA
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1980

STRATUS ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA SITE LOCATION MAP FIGURE

1
PROJECT NO. 2007-0057-01

August 13, 2007 USA 57 Site

MP

♠ MW-3 MONITORING WELLLOCATION

● EX-1 EXTRACTION WELL LOCATION

MV4-6 ABANDONED MONITORING WELL LOCATION

(57.47) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

——60— WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 2/10/09 * NOT USED FOR CONTOURING (NM) = NOT MEASURED

SCALE

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR MAP 1st QUARTER 2009

FIGURE

♠ MW-3 MONITORING WELL LOCATION

● EX-1 EXTRACTION WELL LOCATION

MANAGE ABANDONED MONITORING WELL LOCATION

[<50] GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN ,ug/L

-500 - GRO ISO-CONCENTRATION CONTOUR LINE

GRO ANALYZED BY EPA METHOD 6015B [NA] = WELL NOT YET INSTALLED

ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

ANNUAL AVERAGE GRO IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP, 1998 FIGURE 10

♠ MW-3 MONITORING WELL LOCATION

■ EX-1 EXTRACTION WELL LOCATION

MAGE ABANDONED MONITORING WELL LOCATION

⊗ AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<0.50] BENZENE CONCENTRATION IN µg/L

- 50 - BENZENE ISO-CONCENTRATION CONTOUR LINE

BENZENE ANALYZED BY EPA METHOD 8260B

[NA] = WELL NOT YET INSTALLED

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

ANNUAL AVERAGE BENZENE IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP, 1998

FIGURE

11

PROJECT NO. 2007-0057-01

ENVIRONMENTAL, INC.

♠ MW-3 MONITORING WELL LOCATION

● EX-1 EXTRACTION WELL LOCATION

MW-6 ABANDONED MONITORING WELL LOCATION

8 AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<50] GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN µg/L

-500- GRO ISO-CONCENTRATION CONTOUR LINE

GRO ANALYZED BY EPA METHOD 8015B

[NA] = WELL NOT YET INSTALLED

[NS] = NOT SAMPLED

FORMER USA SERVICE STATION NO. 57
10700 MACARTHUR BOULEVARD
OAKLAND, CALIFORNIA

ANNUAL AVERAGE GRO IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP, 2003

FIGURE

12

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

♠ MW-3 MONITORING WELL LOCATION

MAV-6 ABANDONED MONITORING WELL LOCATION

⊗ AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<0.50] BENZENE CONCENTRATION IN µg/L

- 50 - BENZENE ISO-CONCENTRATION CONTOUR LINE

BENZENE ANALYZED BY EPA METHOD 8260B

[NA] = WELL NOT YET INSTALLED

[NS] = NOT SAMPLED

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

ANNUAL AVERAGE BENZENE IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP, 2003

FIGURE

13

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

SCALE

LEGEND

♠ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MW48 ABANDONED MONITORING WELL LOCATION AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<0.50] METHYL TERTIARY BUTYL ETHER (MTBE) CONCENTRATION IN µg/L

- 50 - MTBE ISO-CONCENTRATION CONTOUR LINE

MTBE ANALYZED BY EPA METHOD 8280B

[NA] = WELL NOT YET INSTALLED [NS] = NOT SAMPLED

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

ANNUAL AVERAGE MTBE IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP, 2003

FIGURE

14

MW-3 MONITORING WELL LOCATION

● EX-1 EXTRACTION WELL LOCATION

1/1/1/6 ABANDONED MONITORING WELL LOCATION

⊗ AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<50] GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN µg/L

| <0.50 | BENZENE CONCENTRATION IN µg/L | METHYL TERTIARY BUTYL ETHER (MTBE) CONCENTRATION IN µg/L

SAMPLES COLLECTED ON 2/10/09 GRO ANALYZED BY EPA METHOD 8015B BENZENE & MTBE ANALYZED BY EPA METHOD 8260B

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY
1st QUARTER 2009

FIGURE 15

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

9 40 FT

♠ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MAY-6 ABANDONED MONITORING WELL LOCATION

AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<50] GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN µg/L

SAMPLES COLLECTED ON 2/10/09 GRO ANALYZED BY EPA METHOD 8015B

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GRO IN GROUNDWATER
ISO-CONCENTRATION CONTOUR MAP
1st QUARTER 2009

figure 16

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

♠ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MINAS ABANDONED MONITORING WELL LOCATION

AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<0.50] BENZENE CONCENTRATION IN µg/L

SAMPLES COLLECTED ON 2/10/09 BENZENE ANALYZED BY EPA METHOD 8260B

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

BENZENE IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP 1st QUARTER 2009

FIGURE

17

PROJECT NO. 2007-0057-01

ENVIRONMENTAL, INC.

40 FT SCALE

♠ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MAKE ABANDONED MONITORING WELL LOCATION

⊗ AS-1 APPROXIMATE AIR SPARGE WELL LOCATION

[<0.50] METHYL TERTIARY BUTYL ETHER (MTBE) CONCENTRATION IN µg/L

SAMPLES COLLECTED ON 2/10/09 MTBE ANALYZED BY EPA METHOD 8260B

SCALE

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA MTRE IN GROUNDWATER

MTBE IN GROUNDWATER
ISO-CONCENTRATION CONTOUR MAP
1st QUARTER 2009

FIGURE 18

Figure 20
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
GRO Concentrations in Groundwater, Well S-1, 1995 to 2009

Figure 21
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
Benzene Concentrations in Groundwater, Well S-1, 1995 to 2009

Figure 22
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
MTBE Concentrations in Groundwater, Well S-1, 1995 to 2009

Figure 23
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
GRO Concentrations in Groundwater, Well S-2, 1995 to 2009

Figure 24
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
Benzene Concentrations in Groundwater, Well S-2, 1995 to 2009

Figure 25 Former USA Service Station No. 57 10700 McArthur Boulevard Oakland, California

Figure 26
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
GRO Concentrations in Groundwater, Well MW-3, 1995 to 2009

Figure 27
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
Benzene Concentrations in Groundwater, Well MW-3, 1995 to 2009

Figure 28
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
MTBE Concentrations in Groundwater, Well MW-3, 1995 to 2009

Figure 29
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
GRO Concentrations in Groundwater, Well EX-1, 2005 to 2009

Figure 30
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
Benzene Concentrations in Groundwater, Well EX-1, 2005 to 2009

Figure 31
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
MTBE Concentrations in Groundwater, Well EX-1, 2005 to 2009

Figure 32
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
GRO Concentrations in Groundwater, Well EX-2, 2005 to 2009

Figure 33

Former USA Service Station No. 57

10700 McArthur Boulevard

Oakland, California

Benzene Concentrations in Groundwater, Well EX-2, 2005 to 2009

Figure 34
Former USA Service Station No. 57
10700 McArthur Boulevard
Oakland, California
MTBE Concentrations in Groundwater, Well EX-2, 2005 to 2009

APPENDIX A

SOIL BORING LOGS, WELL DETAILS, AND DRILLING AND WELL CONSTRUCTION SUMMARY TABLE

TABLE 1 DRILLING AND WELL CONSTRUCTION SUMMARY

Former USA Station #57 10700 MacArthur Boulevard Oakland, California

ID	Date	Boring Dia. (inches)	Boring Depth (feet bgs)	Casing Diameter (inches)	Casing Depth (feet bgs)	Slot Size (inches)	Screen Interval (feet bgs)
Monitoring	Wells		<u> </u>			(IIICIS)	(reet bgs)
S-1	2/12/87	8	40	3	40	0.02	20 40
S-2	2/12/87	8	40	3	40	0.02	20 to 40
MW-3	2/28/95	10	44	4	44	0.02	20 to 40
MW-4	11/20/95	10	40.5	4	40.5	0.02	24 to 44
MW-5	11/20/95	10	41	4	40.5	0.02	10 to 40.5
MW-6	11/20/95	10	40.5	4	40.5	0.02	10 to 40
MW-7	11/21/95	10	41	4	40.5		10 to 40.5
MW-8	11/21/95	10	35.5	4		0.02	10 to 40
141 44 0	11/21/95	10	55.5	4	35	0.02	10 to 35
Extraction	Wells						
EX-I	10/6/05	10	25	4	25	0.02	5 to 25
EX-2	10/7/05	10	25	4	25	0.02	5 to 25
EX-3	10/6/05	10	25	4	25	0.02	5 to 25
EX-4	10/6/05	01	25	4	25	0.02	5 to 25
Air Sparge	Wells						
AS-1	8/23/07	8	20	1	20	0.02	17.5 to 20
AS-2	8/23/07	8	25	1	20	0.02	17.5 to 20
Soil Borings	ì						
A	2/12/87	8	20				
В	2/12/87	6	20				
C	2/12/87	6	20				
D	2/12/87	6	20				
B-1	2/28/95	8	46				
B-2	3/1/95	8	31				
B-3	3/1/95	8	21				
B-4	3/2/95	8	12				
B-5	3/2/95	8	12				
B-6	3/2/95	8	12				
B-7	3/2/95	8	12				
B-8	3/2/95	8	12				

			VIRON	(ENT	IL CR	OUP,	INC.			-						OB NO	<u> 100-2</u>	22.01
	Kiös	k _	\ \	ζ.		81vd.				L C	OMPANY	7 _	- WEI		00		_OF	
	√ .	$\gamma($)'.	. \			WEL NUM		S-1			LOCATIO	n 🕨	Oakland			
	<u>.</u> ∳ ∖\ S–1	$i \bigcup_{i} i$	<u> </u>	Is]	Pump Lands	Arthur	".	TAG		2/12	2/87		WEATHE	R 🕨	Cool, 1	rain		<u> </u>
			•			Mac		LOG(BY		DM	. 1		DRILLED BY	>	Bayland	i: Ed	, Curt	<u>, , , , , , , , , , , , , , , , , , , </u>
ľ	Tank	s			1			DRIL MET		HSA	\$.	1		,	SAMPLING METHOD	▶ Ca	l, Mod	•
		108tł	ı Ave		/ p	<u>/</u>		GRA' PACI	VEL >	CA.	-				SEAL		ntonit	
	CASING	•	TYPE	Scl	nedu	le 40) P(/C	i. ai		DIAMET	ER	3''		LENGTH	1	HOLE	8"
<u> </u>	SCREE	N 🏲	TYPE	Sel	iedu.	le 40) P(CsLOT	• •0 2 0) 1 1	DIAMET	ER	3"		LENGTH	201	TOTAL	40'
HOISTIRE	COMPAN	MOMETTY	PLASTICITY	SWELC NO.	(mud)	DEFTH	ZVA	PENETRATION PENETRATION PESISTANCE	i nasi	٤	LITHOLOG	Υ / :	REMARK	ය	» į		WE COMPL	
6			1		1	0-			Conci		:	•	73					
100						1	_			-	ve-brown	ı ci	ilty ol	200		+	\neg	
						2-	_			011,	ve brown	. 51	LILY CI	. <u>≃</u> y				
8						3-	_							·	,			
ĎĮ	.		М		ND	4	- - ₁	• P.		(mir	nor sand	·'n	o odor			4		
						5-	_	1. 1. 1.		in the	velly a			<i>!</i> :		1		
						8				νφ			· / .		•	4		
2						7-	_						•			10000		
						8	_			•		,				Teret		
Ďp	MS	VD	ŝ .	-,		D.		8	(SC)	dark sand	yellowi : trace	ish fir	-brown	clay	/ey no odor	⊣ ™		
					ND	10-	-	25 45			, 12400		id Stav	,c_,	TIO OCOL	-		
\$500 M			1			1	_									=		
		,				2-	_									4		
.5						3	-									=		
						4	? •	15	-				1 .			4		
Dр	MS	VD			38	5	- 1	·30 50	• (very	silty,	sl	ight o	dor)				
						6	-							Вел	ntonite	<u></u>		
						7	-									1	_	
						В										Sand		
DE	MS	VD		1	102	9		6 15	(very stro	fine gr ng odor)	rait)	ned; mo	odera	ate to	Pack		

LOCATION MAP	SHELL OIL COMPANY WELL	100	<u> </u>
	WINT T	LUU PAGE 2	_OF2
	NUMBER S-1 LOCATION	Oakland	
See page 1 for details.	DATE WEATHER)	
	LOGGED DRILLED		-
	DRILLING METHOD	SAMPLING L	
***************************************	GRAVEL .	METHOD	
ELEVATION >	PACK	SEAL	
CASING Y TYPE	DIAMETER	LENGTH	HOLE
SCREEN TYPE	SLOT DIAMETER	LENGTH	DIA TOTAL DEPIH
STORTENT STORTENT PLASTICATY SWOLL FOR THEST TANTA TANTA TANTA TANTA TANTA	LITHOLOGY / REMARKS	-	WELL COMPLETION
20-	15 (SC) continued		
	25		
	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
2	(harder drilling)	_	
3+		-	
Dr- Dp PS VD ND 4		+	
DP 13 VII	yellowish-brown silty deeply weathered; fra	sandstone;	
	clay; no odor]	
6-			
7-		7,	י ו
8—		Sand	Scre
		nne: no odor	eens
Dp Hd 1	30 yellowish-brown claysto	one; no odor	-
30-		-	
1 1 1		-	
2		-	
DP Hd ND +	30 (very closely fractured 50 weathered: no odor to v	; deeply	
5 110 140 5	weathered; no odor to v	ery slight	
6—			
7		-	
	├─ │ ~		
8 + 4	dark grayish-brown silt	y	
9-	sandstone; fractured 50	7	
Pt PS VD	Total Depth = 40'	4	

	P/	CIFIC	ENV	TKON	LENTA	L GRO	ur, i	NU,	·							IÓB N	o. <u> </u>	<i>1</i> 0−22	
1	Κi \	osk.			· · · · · · · · · · · · · · · · · · ·	RIVG.	_)MPANY	WE	LLL	OG PAG	E 1	OF	2	
	X		$\langle \langle \rangle \rangle$		/'.				WELL		S-2		LOCATIO	n 🕨	0aklar	ıd			_
		//	//	ر (ر	ノゾ Isl	ump \. ands\	krth.		DATE	; >	2/12,	/87	WEATHE	ır 🕨	cool,	rain	У	_	
		· .	¥ S-	-2		,	Nac		BY)	DM		DRALED BY	· •	Baylan	.d:)	Ed,	Curt	
	T	anks			,	1,			DRII.	LING >	HSA				SAMPLING METHOD	▶ C	al.	Mod.	
	_	1	ا 08th	Ave		/\ ^V	/ :::		GRAV PACE		CA	i i i			SEAL			nite crete	
	CA	SING) .	TYPE	Sch	edule	≥ 40	PV	3			DIANET	ER 3"		LENGTH	rbr		orre _	B''
	sc	REEN	2	TYPE	Sch	edule	e 40	PVC	SLOT	.020	0,,	DIAMET	ER 3"		LENGTH	201		TAL EPTH	40 '
	CONTEN	SORTING	MEDALITY.	PLASTICITY	Ą) (E	ным	SWELE	WENT TANK	-		I TENANT OC	y / Remar	פעים	1			WELL.	
į		žĢ.	Š	PAST	SFFIC	mrad)	Œ	3 5	PENETRATION PENETRATION		٠	HINODO	I / REMAN	.m			CO	MPLET	пон
	:						0-	<u>.</u>		conci							1		
	4						1-	_		(CL)	gray	silty o	clay; no	odor		_			
	1						2-			1			*			_			
		·					3-	_		 		-	•			_	<u> </u>		
							4-		P	(SM)	dark	yellow.	ish-brown	ı sil	ty sand:	. –			
Ι	þ	WS				ND	5-	_	14G 175		very	fine-gr	rained; n	bo-oi	or				
	:						6		25.7%		•	•	i. L			\exists			
	-						7-	_								_	Conc	S	
							8	-						. 4.		\exists	cret	Pilos	
							9	- - ₁	11	(CL)			.sh-brown				(D)		·
	P	;	Hd	L		4.4	10-		22 30		very	silty;	moderate	odoı	•	\exists			
	£0 :		ŗ				1-	च्याः स्था —	771							\exists	. !		
	\$ \$				-		2	_			_			٠		7		[·
		٧					3	- 		'						-			
							4	- - 1	P	(CL-M	L) dan	rk grayi	.sh-brown	silt	ty clay	to			
D	Р		VSt	L		127	5	-]			claye	ey silt;	no odor		-	-			· !
	-						6	Y.						Ве	entonite		-	-	
		:					7	- 								7			
							8	<u>-</u>		(SC)	dark	yellowi	sh-brown	clay	ey sand	; =	Sand		
D _.	p.	PS					9			!	some	gravel; ned; no	silty; v	very	fine-	4	Pac		
								-				<u>, </u>					``		ノ

	CATIO					OUP, I	- L	. ·	•	II. COMPANY	WELL	LOG PAGE 2	0. 100-22.0
				- ·	÷	빏.	*	WEL		S-2	LOCATION	Oakland	
,			1 fo	-لم سي	.+-::		-	DAT			WEATHER		
-	ee L	age	1 10	0 06	tali	5.		LOG BY	GED L		DRILLED	<u> </u>	
					- 5 - 2 - 1		F		LING HOD) <u> </u>	SAMPLING METHOD	
101	EVAT	ION D		· <u>£</u>			ł	GRA PAC	VEL		ente di se ente di se ente di se	SEAL	
	LSING		TYPE	· · · · · · · · · · · · · · · · · · ·				1	1: ± .	DIANETE	R	LENGTH	HOLE
80	REEN	*	TYPE					sro.		DIAMETE		LENGTH	DIA TOTAL
CESTENCE	sperfixe	DEDICATION	PLASTICITY	SWELL NO.	(III)	БСРТН	J. J	PENETRATION			/ REMARKS	7	DEPTH WELL COMPLETION
						20 —	_			continued			
						1-						<u>-</u> -	
٠,		1				2-]	. —			
		,				3							
						4-		P	7	dark yellowi	sh brown t	o dark	
Dр	P				152	5-	``			grayish-brow weathered; n	n sändstor	ne; fractured;	
			,			6				,			
						7-	<u>-</u>				•		
						8-			-				Scre
,		,				9-	,' -\' 						reens d Pack
Dp	P	VD				3 o -		P	-	(very closely	y fracture	d; very	
			٠.			1-			-	strong odor)			
٠.			± .			2-	-		-			_	
						3-	-		-				
Wt		VD	,			4-	_ =	P	<u> </u>	(fractured; n	noderate o	dor)	
						5					: :	<u>-</u>	
						8	-						
						7+							
						8+							
Wt		ŲD	: •		77,000	9-		Р		(fractured; w total depth =	eathered; 40'	no odor)	

	Kios		, 1920 P		u		···	וווון די יר	VII.	00310 131				B NO.	100-22.01
		A	5	<u> </u>		Blvd	DI.			COMPANY	H		OG PAGE	1	_OF1
	`\(\int_{1}^{1}	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<i>ب</i> ٰٰٰٰٰ	Pi imr	1	NU	CBER P	Bor A		TOCY.	אסוד	Oakland		
		$\sqrt{\mathcal{I}}$	<u> </u>	Is.	land	Arthur	DAT			2/87	WEAT		cool, ra	iny	
	(T)) ABC	BY	<u> </u>	DM	.9	BY BY	ED •	Bayland:	Ed	l, Curt
	Tank	s			1)		עסט י	HSA		3	<u>:</u>	SAMPLING METHOD	Ca	1. Mod.
-		108t	h Ave	2 •			GRA PAC	K P	n/a	· ·	*		SEAL	CO	ncrete
-	CASINO	· · ·	TYPE		n/					DIAMET	ER n/	a	LENGTH		HOLE 8"
	SCREE	N ▶ :	TYPE	} <u>`</u> ;	Π	/a 	sro:	n/a	L .	DIAMET	sr n/	'a	LENGTH		TOTAL 20'
MOTSTURE	SDRTING	BOMITY	FLASTICITY	SWELL ID.	Ī	fundah Maran	RCCOVERT PONETRATION			LITHOLOG	Y / REMA	URKS .			WEIL COMPLETION
						0		conc		<u> </u>	4.	:			
						1				ive silty	clay;	brown	mottling	1	
						2		1		No.					
Dр	PS				ND	3	P	(SC)	 01:	ive-gray	o lavovi	aand.	73447		
						+			gr	avel; no	odor	Sandj	TICTE		
						5+									
						8-								-	
					İ	7十					• ,			-	C C
						8—	8	(CL)	- -						concrete
Dр		Hd	L		ND	9+	18 20	(CL)	som	k yellowi me silt; t	sn-brov race fi	vn san Ine gr	dy clay; avel;	-	ete.
V Š			4			10-			110	odor		ż			
						1+							•		
						2-							-		
*						3—	12		<i>(</i>		_		-		
Dρ		Hd	L	8	3.3	4	20 30		slig	reasing sht odor)	sand and	i fine	gravel; _		
						5	30	•					-		
	ļ					8—							-		
						7-							-		
						8		(SC)	dark	yellowis	h-browr	ı clav	ey sand:		
Dp					.6	9			some	gravel;	no odor	•	_		
-						<u> </u>		COLUIT	ashr	h = 20';	no wate	er enc	ountered ⁻	1.	」 ノ

	VCTL IC	, 6.7(1	TYOUR	TV 1 VT	, GRO	UP, IN						gya sa		אס. <u>ו</u> טא	<u>0-22.0</u> 1
K:	iosk	e L	B	· .	1	D1010		SHI	ELL O	IL CO)MPANY	WELL	LOG PAGE_	1or_	1
\		- T		\', .				WELL NUM		Bori B	ng	LOCATION	Oakland		
	- 1/		7	ノハ _{Pt} Isla	ump ands	Ar thur		DATE)	2/12	2/87	WEATHER	cool, cl	oudy	
1 -	``			•		Mac		BY LOGG)	DM	á.	DRILLED BY	Bayland:	Ed, (Curt
Ţ	anks				1			DRIL METI	LING D	CFA	r I		SAMPLING METHOD	Cal. N	10d.
	1	08tb	Ave		<u>//</u>)		GRAV PACE	EL •	n/a	<i>/-</i>		SEAL	concre	ete .
CA			TYPE		/a		-1-	· · · ·	18 17 M		DIAMETE	R n/a	LENGTH	HO	<u></u>
sc	REEN	•	TYPE	n,	/a .	,		SLOT	n/	a	DIAMETE	R n/a	LENGTH		TH 20
HOISTURE	STORTING	DOM:	PLASTICITY	צאבונ אני	(maa)	ист.н	RECOVERY	PENETRÀTION			птногосу	/ REMARKS	**************************************		WELL IPLETION
1						0				rete:	odor in	base rock			
Dp-						1	•		(CL)		in the second		clay; trace	4	
Mst						2-	-1			fine	e sand; n	o odor		1	
9. 9.						3—	_		-		1			-	
Dр	MS				ND	. 4		P	(SM)		yellowi to medi	sh-brown : um graine	silty sand; d; no odor	_	
						5				(gra	evelly at	5')			
						6	•				•		e e e e e e e e e e e e e e e e e e e	7	- 66
						7	•		· · ·					-	concrete
						8-	•	-	(CL)	dark	yellowi:	sh-brown s	sandy clay;	7	te -
Dp	Ē	Hd	L		ND	9		8 20,		some	silt; n	o odor		7	
• Control of						10		20					r r	-	
Surface of the Control of the Contro						1	•					. .		-	
* *						2	•							1	
					1	3—	•							\exists	
Dр		Hd	L]	ND	4		10 20		(ver	y silty;	no odor)		_	
						5		25						-	
						6									
			-			7					_		,		
						8			(SC)	dark some	yellowis grave: s	sh-brown c silty; no	layey sand; odor		
P	חכ	, T			/1	9		10 25						-	
Dp	PS	VD		(<1	_		30	total	deptl	n = 20;	no water	encountered		

(dark grayish-brown; slight odor) total depth = 20; no water encountered

Hd

14.

	-	-	AUKON	ALC: 11	AL GR	wur, .	INC.							JOB N	o. <u>100-</u> 2	<u> 22.01</u>
	Kio:	sk S	· · · · · · · · · · · · · · · · · · ·	~~.		Blvd.				OIL CO	MPANY	WELI	LOG P	AGE 1	or1	
	\checkmark	1	()	/ /;				WELL NUM		Bori D	ng	LOCATION				
	. '	[],'	Ų	ر Is	Pump Slanc	Arthur		DATE	;)	2/12	/87	WEATHER	▶ cold,	rainy	· · · · · · · · · · · · · · · · · · ·	
				• ~ [Mac A	ľ	LOGO	ED	DM	· · · · · · · · · · · · · · · · · · ·	DRILLED	▶ Bayla		⊡. Ed, Cur	
	Tani	ks	,		1	E		DRIL	ING D	CFA	in.		SAMPLIN		`al. Mox	
_		108	h Av		N		ľ	GRAV		n/a	£.	-	SEAL		oncrete	
CA	RING		TYP		π/a		!_				DIAMETE	R	LENGT		HOLE	6"
SC	REE	N 🏲	TYPE	:				SLOT		· · · · · · · · · · · · · · · · · · ·	DIAMETEI		LENGT		DIA TOTAL	
¥ 5	Ι,	1 2	E	덜				· -	·				TEMC I	<u> </u>	TOTAL DEPTH	20'
MOISTURE COMMENT	STATE	POGITY	PLASTICITY	SWELL NO.	1	BEPTH	Dans.	PENETRATION		i. 11.	LITHOLOGY	/ REMARKS			COMBIT	
2						0-	_		cond	crete	7.,			-		
Dp- Mst						1-	<u>-</u> 		(CL)	yell sand	owish-br	own silty	clay; tr	ace		
						2-	·			bana	* 1					
						3 	-		?-					-		
é						4		Р	(SW)	dark	grayish	-brown san	nd	- 7		I
						+	-									
						T								_	•	
:						*	_									I
						7+	-				٠.			4		
Wt.	PS		,		18.2	8—	-				*			7		
Dp		Stf	L		10.2	9		<u>P</u>		_ (no o	dor)			_	 	
10 × 10			i i		-	10-	. 🖣		(GC=5	_		sh-brown c			concrete	I
						1	-		(to sa	nd; very	silty; n	o odor	NeT	conc	I
						2	.							-		l
						3	.			_						
						+	_		. ~ ~					7		
)P		Stf	L		ND	<u></u> +		P ((CL)	yellov siltv:	ish-bro	wn silty o ery fine s	clay; ver	y –		
						1				,	Doine V	cry irme :	Salid	1		
						6								\exists		
						7+	F							7		
						8-										
	7	/St				9 +		_		, -				4		
4								_ t	otal	depth	= 20'; r	o water e	ncountere	h b		

PROJECT NO.: 41-0034	DATE DRILLED: 2/28/95	
LOCATION: USA Gas #57	LOGGED BY: A. Le May	
10700 MacArthur Bouleva	d APPROVED BY: M. Katen, RG	
Oakland, California	DRILLING CO.: Bayland Drillin	g
SAMPLE TYPE: CGI (ppm) TPH-G (ppm) SAMPLE TOTAL DEBTH: 44.0 GGI (ppm) SAMPLE TOTAL DEBTH: 44.0	feet DEPTH TO WATER: O CONS	WELL TRUCTION ETAIL
5,7,8 20 1.9 GRAVELLY SAND: yellowish 13,24,50 2% LEL 110 SANDSTONE: brownish yello 5 for 5' 500 SANDSTONE: dark yellowish b 11,22,50 100 3.0 Soft, interbedded with fractured 50 for 6' 10 ND Soft, interbedded with fractured 50 for 6' 25 Dry. 15,17,19 50 ND Damp.	25	Utility box with locking cap 4-inch- diameter PVC casing Coment Bentonite Seal 4-inch- diameter PVC casing 0.020-ench stotting Water level after 20 hours No. 3 Saind
ALTON GEOSCIENCE Livermore, California LOG OF EXP	LORATORY BORING MW-3 PAGE 1 OF	

·		CT N ATIO		USA	Gas #57	DATE DI	BY:		2/28 A. Le	/95 3 May	
			7			APPROV DRILLING				aten, RG and Drilling	
BLOWS PER 6 INCHES	CGI (ppm)	TPHG (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 10-inch diameter Hollow SAMPLER TYPE: California Modified Split-TOTAL DEPTH: 44.0 feet: DEPTH TO WATER DESCRIPTION	/-Stem A -Spoon		USCS	LITHOLOGY	WE CONSTR DET	LL UCTION
ACTION OF THE PROPERTY OF THE				45						1 1 1 1 1 1 1 1 1 1	End cap
GI نن	EOS amo	CIEN ra, Cal	CE forni	a	LOG OF EXPLORATORY E	BORIN	١G		F	MW-3 PAGE 2 OF 2	2

LOCATION: USA Gas #87 10700 MacArthur Boulevard Oakland, California DBILLING METHOD: B-incht diameter Hollow-Stem Auger SAMPLER TYPE: California Modified Spilt-Spoon TOTAL DEPTH: 46,0 feet DEPTH TO WATER: 44,0 feet DESCRIPTION WELL CONSTRUCTION DESCRIPTION WELL CONSTRUCTION DESCRIPTION CLAYEY SILT: dark yellowish brown, soft, damp, few small Million CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, few small CLAYEY SILT: dark yellowish brown, soft, damp, soft damp, with calcium candidation. SANDSTONE: light clive brown, very fractured and friable with calcium candidation. SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, wery fractured and friable with calcium CLAYEY SANDSTONE: light clive brown, soft, dark grayes brown, soft, well with grawn. CLAYEY SANDSTONE: light clive brown, soft, dark grayes brown, soft, well	PF	ROJE	CT N	0.:	41-	0034	DATE DRILLE	 D: :	2/28/9	5	
TOTOD MacAnthur Boulevard Cakland, California Cakland, California Delituing METHOD: 8-inch diameter Hollow-Stem Auger SAM-LER TYPE: California Modified Spiri-Spoon TOTAL DEPTH: 48,0 feet DEPTH TO WATER: 44.0 feet DESCRIPTION WELL CONSTRUCTION Pland-suggrad to 4 feet tiches of Concrete. 7.11.6 0 ND		LOC	CATIC	DN:	ŲŠ.	A Gas #57	LOGGED BY:		A. Le N	Mav	
Cakland, California DRILLING CO: Bayland Drilling DRILLING METHOD: 8-inch diameter Hollow-Stem Auger SAMPLER TYPE: California Modified SpiR-Spoon TOTAL DEPTH: 46.0 feet DEPTH TO WATER: 44.0 feet DETAIL DESCRIPTION DESCRIPTION CLAYEY SILTY CLAY: dark gray brown, son, damp. CLAYEY SILTY CLAY: dark yellowish brown, soft, damp, few article publics. CLAYEY SILTY CLAY: dark yellowish brown, soft, damp, few article publics. CLAYEY SILTY CLAY: dark yellowish brown, soft, damp, few article publics. GRAVELLY SAND: motified dark yellow brown and green, loose, damp, with OC AND DESCRIPTION CLAYEY SILTY CLAY: dark yellowish brown, very fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): dark gray/sh brown, soft, damp at 10 feet. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock): light clive brown, wary fractured and friable with celcium carbonate infill in fractures. SILTY CLAY (weathered bedrock					107	00 MacArthur Boulevard	APPROVED BY				
SAMPLER TYPE: California Modified Spilit-Spoon TOTAL DEPTH: 45.0 feet DEPTH TO WATER: 44.0 feet DESCRIPTION O ND					Oal	dand, California					
Hand-aupprod to 4 feet. Hand-aupprod to 4 feet. Hand-aupprod to 4	OWS PER VOHES	(mdd)	HG (ppm)	MPLE	PTH Polesii grodel	SAMPLER TYPE: California Modified Co	lit-Spoon	S	OLOGY	CONSTR	RUCTION
7.11.8 0 ND		8	Ē	SA.	DEI	DESCRIPTION		SS		, DC	MIL
ALTON GEOSCIENCE Livermore, California LOG OF EXPLORATORY BORING B-1	7,11,8 6,7,11 6,11,15 21,37,42 47 for 12*	75 70% LEL 5% LEL	44 540 ND 3.9		10 - 15 - 25 - 30 30	Hand-augered to 4 feet. 6 inches of Concrete. SILTY CLAY: dark gray brown, soft, damp. CLAYEY SILT: dark yellowish brown, soft, damp, few sm pebbles. GRAVELLY SAND: mottled dark yellow brown and green, clay. From approximately 17 feet to bottom of hole: interbedded siltstone. SANDSTONE: light olive brown, very fractured and friable carbonate infill in fractures. SILTY CLAY (weathered bedrock): dark grayish brown, so SANDSTONE: light olive brown, very fractured and friable carbonate infill in fractures. SILTY CLAY (weathered bedrock): light olive brown, soft, weathered bedrock): light olive brown, soft, weathered bedrock): light olive brown, soft, weathered bedrock): dark yellowish brown, soft, weathered bedrock): dark yellowish brown.	d sandstone and with calcium ft, damp at 10 feet.	CL ML	10		Cement
GEOSCIENCE LOG OF EXPLORATORY BORING B-1				Ė	40			: 	: 40-		
		GE09	CIEN		a	LOG OF EXPLORATORY	BORING		РА		2

		TNC			034 (*) (*)	DATE DRILLED);	2/28/	95
L	.00/	ATIOI	V :		Gas #57	LOGGED BY:	. 4	4. Le	May
					00 MacArthur Boulevard	APPROVED BY	<u>'; </u>	И. Ka	aten, RG
		:		Oakl	and, California	DRILLING CO.:		Bayla	and Drilling
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch diameter Hollow SAMPLER TYPE: California Modified Spi TOTAL DEPTH: 46.0 feet DEPTH: TO WATE DESCRIPTION	it-Spoon	USCS	LITHOLOGY	WELL CONSTRUCTION DETAIL
ш ф				40	DESCRIPTION		-		40-
27,30 41.for 4	. 40	. 4		-	GRAVELLY CLAY (weathered bedrock): dark yellowish t well graded, with sand and pebbles to 1/4 inch.	xówn, saturated,			±
							ML.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(1) 《《诗诗》() · · · · · · · · · · · · · · · · · · ·							•	55
	1000年の一番の一番の一番の一番の一番の一番の一番の一番の一番の一番の一番の一番の一番の		Company of the compan	-65 -65	AND THE STATE OF T	ones escultado tal esta orden carrier o roma escultado		A Comment of the Comm	65
				-70 -75				(70
	**			- - -80		<u>.</u>		. 8	χ. — — — — — — — — — — — — — — — — — — —
		N SCIEM			LOG OF EXPLORATORY	BORING			B-1 PAGE 2 OF 2

	41-0034	DATE DRILLED: 3/1/95
	USA Gas #57	LOGGED BY: A. Le May
	10700 MacArthur Boulevard	
	Oakland, California	
11,15,21; 80 ND CGI (bbm) 11,15,21; 5% 16 21,27,31; 5% 16 8,10,16; 325; 110	DRILLING METHOD: 8-inch diameter Hollo SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 31.0 feet DEPTH TO WAT DESCRIPTION Hand-augered to 5 feet. 4 inches of Asphalt. CLAYEY SILT: dark yellowish brown, soft, damp, fine-grained. SANDY CLAY: dark yellowish brown, damp, fine-grained. SANDSTONE: brownish-yellow, fractured, damp, fine-grained. SANDSTONE: brownish yellow, fractured, fine-grained, w staining. Interbedded with sandy clay. SANDY CLAY (weathered bedrock) to 25 feet, then fractured.	APPROVED BY: M. Katen, RG DRILLING CO.: Bayland Drilling. DW-Stem Auger Dilt-Spoon ER: 29.0 feet SS DOWN TRUCTION DETAIL To a serious direct with clay. The description of the dearth of the description of the dearth of the
- 35 - 35 40		35—
ALTON GEOSCIENCE Livermore, California	LOG OF EXPLORATORY	BORING B-2 PAGE 1 OF 1

PROJECT NO.: 4		DATE DRILLED: 3/1/95
	SA Gas #57	LOGGED BY: A. Le May
	0700 MacArthur Boulevard	APPROVED BY: M. Katen, RG
	akland, California	DRILLING CO.: Bayland Drilling
BLOWS PER 6 INCHES CGI (ppm) TPH-Q (ppm) SAMPLE	DRILLING METHOD: 8-inch diameter Hollo SAMPLER TYPE: California Modified S TOTAL DEPTH: 21.0 feet DEPTH TO WAT	nlii Cnoon
BLOWS P 6 INCHES CGI (ppm) TPH-G (pp	TOTAL DEPTH: 21.0 feet DEPTH TO WAT	
		명 및 우 DETAIL
5.7,10 0	Hand-augered to 5 feet. 4 Inches Asphalt. CLAYEY SILT: brown, soft, damp, fine-grained, with sa pebbles.	and and occasional ML 5
8,10,8 5 ND	SANDY CLAY: very dark grayish brown, soft, damp, wit a moderate amount of slit	th small pebbles and SC
28,39,43 15 10	SANDSTONE: light yellowish brown, friable, very fractur thick layer of sandy day at 15 feet.	Ped, contains 3-inch
27,46,23 30 15 2	Interbedded with gravelly clay. GRAVELLY CLAY (weathered bedrock): dark olive brow with large pebbles to 0.5-Inch diameter.	m, moderately soft,
- 24 - 24	en e	25
- 3c		30-1
35	5.	35
ALTON GEOSCIENCE Livermore, California	LOG OF EXPLORATORY	/ BORING B-3 PAGE 1 OF 1

		A 1-6		_		And the second s			·
н			OT NO			0034	DATE DRILLED): 3/2/95	
		LOC	ATIO	N:		Gas #57	LOGGED BY:		Mav.
i	l			<i>i</i> .		00 MacArthur Boulevard	APPROVED BY		
					Oak	and, California	DRILLING CO.:		d Drilling
	<u> </u>		T	7=	T =	DRILLING METHOD OF	T	- Juyrani	+ rum+18
	n-				grade)	DRILLING METHOD: 8-Inch diameter Hollov SAMPLER TYPE: California Modified Sp.			
	PE	E	l d	J.,,	1 8	SAMPLER TYPE: California Modified Sp	lit-Spoon	<u>}</u>	WELL
	S E	CGI (ppm)	TPH-G (ppm)	臣	王호	TOTAL DEPTH: 12.0 feet DEPTH TO WATE	R:	90	CONSTRUCTION
	BLOWS PER 6 INCHES	SG	臣	SAMPLE	DEPTH (feet below	DESCRIPTION		USCS LITHOLOGY	DETAIL
ľ	. 6.2	1			o				<u> </u>
			suit =		_	Hand-augered to 4 feet. 6 Inches Concrete)—
1			ž ·	-	-	•			
	5,7,13	. 5	ND		-	SANDY CLAY: offive brown, soft, saturated from surface, of pebbles.		CL	
	7,7,8	As c	J. 5.1		<u> </u>	juga salah kecampatan Albah B			
		15	ND		- 5	SAND: dark yellowish brown, loose, saturated, medium-tsand, poorty graded.	to coarse-grained	5	Neat Cement
			1	E	- 1			SP	Grort Celimin
		\$ · · ·	- '	E	: L				
	Nac Nac	-	- 1	;	_				
					- 10	SANDY CLAY: olive brown, medium soft, molst, with sma pebbles.	Il amount of	CL	
6	,15,15	15	ND	1 E	-	· ·		10-	770
	jer			+	- -				
	ì			F	- [*	<u> </u>
		.]		E		•			-
			'	E	- 15		•	15-	3
		,		E				·	
				F	.			, -	
				F	. ,			-	
				F	20	•		20-	
	.]		7	F			. [
		,	1	F	i l				
	.			E				-	
		, to-	3	上	25		<u>.</u>		
	- ;	3		F	11			25_	
		ka ka	2	上					
				F				$ \cdot $ $ \cdot $	
				广	30			30-	
				E					
				L	1			-	
		į		F			1	1 1 =	
				 - 3	5				
				E	1			35	
		1		F				3	
				F			Ĭ		
				- 4	,			4	
_	. <u> </u>	<u> </u>		_ 41	-			40-	
	🌇 GE	TON OSC	IENC	Έ		I OG OF EVDI ODATODA	200015		B-4
	Live	ermore	, Celifo	ornia		LOG OF EXPLORATORY	BUHING	1	E1 OF 1
								1 1/4/4	1 1 OF 1

PRO)JE(OT NO	 D.:	41-0	0034 10 13	DATE DRILLE	D.	2/0/0		
		ATIO				LOGGED BY:		3/2/9 A. Le		
1 40 1 2 40				1070		APPROVED B			iten, RG	
				Oak	and, California	DRILLING CO.			nd Drilling]
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grads)	DRILLING METHOD: 8-inch diameter Hollow-SAMPLER TYPE: California Modified Split-TOTAL DEPTH: 12.0 feet DEPTH TO WATER DESCRIPTION	-Spoon	USCS	LITHOLOGY	CONS	VELL FRUCTION
5,7;14	710	ND ND		10 - 25 - 30 - 35	Hand-augered to 4 feet, 6 inchas Concrete. SANDY CLAY: olive brown, very soft, damp, with small pet Moist, with silt.		C			Weat Cernent Grout
C		N SCIEN Sre, Ca			LOG OF EXPLORATORY	BORING			B-5 PAGE 1 C	F t

LOCATION: USA Gas #57 10700 MacArthur Boullevard Oakland, California DRILLING MacTop Boullevard Oakland, California Modified Spile Spoon TOTAL DEPTH: 12.0 feet DEPTH TO WATER: So 33 I			e in second	
LOCATION: USA Ge #57 10700 MacArthur Boulevard Oakland, California Bayland Drilling California Modified Split-Spoon TOTAL DEPTH: 12.0 feet DePTH TO WATER:		41-0034	DATE DRILLED	: 3/2/95
Ockland, California DRILLING CO: Bayland Driffing SAMPLER TYPE: California Modified Split-Spoon TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION APPRIOVED BY: M. Katen, RG DRILLING CO: Bayland Driffing WELL CONSTRUCT DETAIL ON TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION DESCRIPTION ON DESCRIPTION SILTY CLAY: dark brown, soft, with accessional larger pebbles. ALTON				····
DAILLING CO.: Bayland Drilling DRILLING CO.: Bayland Drilling WELL CONSTRUCT DETAIL DESCRIPTION DESCRIPTION DESCRIPTION 2.13.21 10 ND DRILLING CO.: Bayland Drilling DRILLING CO.: Bayland Drilling WELL CONSTRUCT DETAIL DESCRIPTION CONSTRUCT DETAIL DESCRIPTION DESCRIPTION O DRILLING CO.: Bayland Drilling WELL CONSTRUCT DETAIL CONSTRUCT DETAIL DESCRIPTION O DRILLING CO.: Bayland Drilling WELL CONSTRUCT DETAIL O DETAIL CONSTRUCT DETAIL O DRILLING CO.: Bayland Drilling WELL CONSTRUCT DETAIL O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL CONSTRUCT DETAIL O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL CONSTRUCT DETAIL O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL CONSTRUCT DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL CONSTRUCT DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL CONSTRUCT DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DETAIL CONSTRUCT DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O DETAIL TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION O			APPROVED BY:	
ALTON Description	Oakland, California			
ALTON 40-	(wdd) EDO (sp. 130 (sp. 144) (bb.4) (bb.4) (co. 150 (bb.4) (co	Dakland, California DRILLING METHOD: 8-inch diameter Hollor SAMPLER TYPE: California Modified Spannia TOTAL DEPTH: 12.0 feet DEPTH TO WAT DESCRIPTION Hand-augered to 4 feet 5 inches of Concrete. SANDY CLAY: green olive gray, very soft, damp, with sipebbles. Olive gray. SILTY CLAY: dark brown, soft, with occasional larger per per per per per per per per per p	DRILLING CO.: w-Stem Auger blit-Spoon ER:	Bayland Driffing WELL CONSTRUCT DETAIL Neat Camer Groun 10 1 1 1 1 1 1 1 1 1
PAGE 1 OF 1	ALTON	LOG OF EXPLORATORY	BORING	B-6

PE	ROJEC	T NO) A1	-0034			-
	LOC			A Gas #57	DATE DRILLED: LOGGED BY:	····	
-				700 MacArthur Boulevard	APPROVED BY:	A. Le M	
				kland, California	DRILLING CO.:		
<u> </u>	T	T .	T. T			Bayland	Dulling
				DRILLING METHOD: 8-inch diameter Hollo			
- E S	Ê	E E		SAMPLER TYPE: California Modified Sp		\ <u>\</u>	WELL
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE DEPTH	TOTAL DEPTH: 12.0 feet DEPTH TO WAT	ER:	S	CONSTRUCTION DETAIL
91.0	8	F.	SA	DESCRIPTION		USCS LITHOLOGY	DETAIL
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			E	Hand-augered to 5 feet.	:		
\$ 750			 	6 Inches Concrete.			
2,2,5	130	ND	 	SANDY CLAY: dark office gray, very soft, damp, with silt pebbles.	and occasional		
2,7,11		ND	II E 5	At 4.5 feet depth, dark brown, harder, increased silt con	tent.	Cr .	
			 [·		- Neat Cement
			-				Grout
			E				
2,13,21	10		10	Dark olive gray, medium hard, damp, with slit.		10-	
	, ,	ND		At 11.5 feet depth, dark brown, hard.		-	
		2.5	ŢĒ			- -	
			Ė.]
			F 15			15-	1
Ì			E	•		-	
	160		_			-	1
			F				
			-20		·-	20-	
			E			-	
			Ł				
		1	F				
	300 200		25	•		25	
1) : :	E			-	
	- 1		E			$ \cdot $ $ \cdot $ $=$	
				·		-	
			30			30-	
			E				
			<u> </u>				
			E				
			35			35-	
			E				
			上丨				To the same of the
	ľ		El				
			- 40			40-	:.
	ALTO! GEOS:	u Cien	CE	LOG OF EXPLORATORY	PODINO	la sa	B-7
41	ivermor			EOG OF EARLONATORY	DUMING	PAC	3E 1 OF 1
							74.P.7 07.2105

DC		CT N		41-0	0034			0.40.40		
1		ATIO				DATE DRILLED LOGGED BY:		3/2/9	5 May	
-						APPROVED BY			aten, RG	
						DRILLING CO.:			and Drilling	
	7	\overline{T}		7				1	T Dinning	
				Grada	DRILLING METHOD: 8-Inch diameter Hollow-					
E S	SAMPLER TYPE: California Modified Split-Spoon							ξģ	1	ELL
S S S	SAMPLER TYPE: California Modified Split-Spoon TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION					l ss	гіт н огоду		RUCTION TAIL	
BLC	g	트	SAJ	E 6	DESCRIPTION		USCS	馬		-
				-0	Hand-augered to 4 feet			0325	0-	
				E	6 inches Concrete.		CL			
4,4,7	90	17			SANDY CLAY: dark olive gray, very soft, damp. CLAYEY SAND: dark olive gray, very soft, damp, with sort	e small gravel			3	
ļ]	H		pebbles. GRAVELLY CLAY: dark olive gray, very soft, saturated.		sc	127		
2,3,5	95	ND	W	- 5	gray, very sort contained				5—	< Neat
				-		·	CL		7	Cement Grout
				_					3	
			1 6	-						
17,23,22	25	2.0	$ \uparrow \uparrow \downarrow $	— 10 -					10	
		2.0	Ш	_	SILTY CLAY: dark yellowish brown, hard, damp, with rare with sand.	smali pebbles,				
			╽┟	_ [3 ****	
				-	,					:
l				15					15	
			E	-					7 1	
				_					3 1	
			E	-					4	
			E	- 20		İ] :	∞-]	İ
			E	_ [7 1	
			E	_	·	į			3	}
			F	-					3	
İ			E	- 25				2	25 -	
			F	-						
			E	-	,				7	
			上	-					3	
	·		E	- 30	•			з	o-1	-
			F	-						İ
			E						1	
			E	.		į			3	
	l		E	- 35				3	5 -	
			F	.						
			E						7	
			E	.					3	
			上	40			_	44	<u>,</u>	
	ALTO		10-		LOGOREVE				B-8	
		SCIEI xxxx, Ca			LOG OF EXPLORATORY	BORING			PAGE 1 O	E 1
L				!					ALONGE I O	

		TNC		41-0	DATE DRILLED:	11/	/20/95	
!	LOC	ATIO	<u>ν:</u>		Gas #57	LOGGED BY:		Le May
					00 MacArthur Boulevard	APPROVED BY:		Katen, RG
				Oakl	DRILLING CO.:	V 8	k W Drilling	
BLOWS PER 6 INCHES	DRILLING METHOD: 10-inch diameter Hollow-Stem Auge SAMPLER TYPE: California Modified Split-Spoon TOTAL DEPTH: 40.5 feet DEPTH TO WATER: 15.0 feet DESCRIPTION							WELL CONSTRUCTION DETAIL
BLO 6 IN	PID(TPH T	SAN	DEP (feet	DESCRIPTION		USCS	
				0	Hand-augered to 5 feet.		SM	Monument box with focking cap Neat Cement
9,14,15					SILTY SAND: dark yellowish brown, medium dense, da	mp, poorly graded.		4-Inch- diameter PVC casing
					SANDY SILT: dark yellowish brown, stiff, damp, with cl			Bentonite Seal
8,11,14	0	ND		10 	SAND 1 SILT: dark yellowish brown, sull, camp, with ca	ay.	ML	10
18,21,34	5			- - - 15	SILTY SAND: dark yellowish brown, medium dense, mo contains carbonate pebbles up to 0.13-inch diameter.	ist, with clay,	SM	15 — []
18,31,34	0			20	SILTY SAND and GRAVEL Mixture: dark yellowish browdense, wet, with clay.	vn, medium		20
14,24,36	0			- 25	SILTY CLAYEY SAND and GRAVEL Mixture: strong brodamp, with pebbles to 0.5-inch diameter.		GC XX	25
12,18,23	0			- - - 30 -				PVC casing 0.020-inch slotting
9,22,31	0			- 35 	Aedium dense.			35
30,50	0		TE	- 40 l	ncreased silt content.			40 = End cap
ALTON GEOSCIENCE Livermore, California LOG OF EXPLORATORY BORING						Y BORING		MW-4 PAGE 1 OF 1 41-0034/MW-4 01/05/96

Γ

		OT NO		1/20/9						
-	LOC	ATIO	N:		Gas #57	LOGGED BY:		A. Le Ma	· · · · · · · · · · · · · · · · · · ·	_
	············			· · · · · · · · · · · · · · · · · · · 	00 MacArthur Boulevard and, California	APPROVED BY: DRILLING CO.:		л. Katei		_
		/ & W C	Ziming	_						
BLOWS PER 6 INCHES	m)	TPH-G (ppm)	щ	DEPTH (feet below grade)	DRILLING METHOD: 10-inch diameter Hollo SAMPLER TYPE: California Modified Spl TOTAL DEPTH: 41.0 feet DEPTH TO WATE	lit-Spoon		-0GV	- WELL CONSTRUCTIO	. N
BLOW 6 INC!	PID(ppm)	TPH-G	SAMPLE	DEPT!	DESCRIPTION		nscs	ПТНОСОВУ	DETAIL	
					Hand-augered to 5 feet. 4 inches Asphalt.			o	Monument box with locking cal	1
7,18,21	0		 	5	SILTY SAND: yellowish brown, medium dense, damp, fir graded.	ne-grained, poorly	SM	5	- Neat Cement - 4-Inch-dlameter PVC cas	Ing
10,14,19	0	ND	X	- - - 10	CLAYEY SAND: dark yellowish brown, medium dense, d graded, with occasional pebbles to 0.5-inch diameter.	amp, poorly	sc	10	Bentonite	2
16,23,24	0	ND		- - - - 15 -	SILTY SAND: dark yellowish brown, medium dense, dam gravel and some clay.	p, with	SM	15		
12,18,24	0			20				20-	No. 3	
6,9,16			X	-25	No recovery, sampler saturated, gravel lense?		 GМ,	25-	4-inch-	
			-	-	SILTY CLAYEY SANDY GRAVEL: dark yellowish brown,	botenides eand			dlameter PVC casin 0,020-Inch	ng h
10,15,24	a	£		-30 -	poorly graded. SILTY SAND: dark yellowish brown, medium dense, damp gravel and some clay.	o, with		30-		
5,12,21	0			- 25	Vith lenses up to 4 inches of more gravel-rich, saturated.		SM	35 - 3		
10,21,32			<u> </u>	-40		•		40-	End cap	
		ON SCIE: nore, C			LOG OF EXPLORATORY	BORING		P	MW-5 AGE 1 OF 1	

PROJECT	NO.: 41-	DRILLED:	11/20/95	
LOCAT			ED BY:	A. Le May
				M. Katen, RG
	<u>Oak</u>	ING CO.:	V & W Drilling	
BLOWS PER 6 INCHES PID(ppm)	SAMPLE DEPTH '	n Auger n D feet	WELL CONSTRUCTION DETAIL	
		DESCRIPTION		Monument
10,16,21	5 ND ND 10	Hand-augered to 5 feet. SILTY SAND for 2 inches: brown, dry, then SILTY SAND: dark yellowish brown, medium dense, damp w some clay. With gravel.	ith	Neat Cement 5 - 4-inch-diameter PVC casing Bentonite Seal
9,18,28 0	15	SILTY SAND and GRAVEL Mixture: moist, with clay.		15— E H No. 3
18,21,24 0	20	Wet.		20-
9,14,19 0	25	Crowd risk language was to defend think	GC	7 25 = E
		Gravel-rich lenses up to 4-inch thick.		4-Inch-diameter PYC casing 0.020-inch slotting
6,11,16	30	Saturated, poor recovery.		30 -
12,50 for 4*	35 [As above for 6 inches, damp. SILTY SANDSTONE BEDROCK: dark yellowish brown, dry, fractured and friable.		35 -
12,17,17 0		CLAYEY GRAVEL BEDROCK Interbedded: brown, loose, saturated	<u>i,</u>	40 End cap
		LOG OF EXPLORATORY BO	RING	MW-6 PAGE 1 OF 1

<u>P</u>	ROJE					DATE DRILLED	: 1	11/21	/95	
_	LOC	ATIO	N:		Gas #57	LOGGED BY:		A. Le	Мау	
_					0 MacArthur Boulevard	APPROVED BY			aten, RG	
· [Oaki	and, California	DRILLING CO.:	\	/ & V	V Drilling	
BLOWS PER	6 INCHES PID(ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 10-inch diameter Hollo SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 41.0 feet DEPTH TO WATE DESCRIPTION	lit-Spoon	USCS	LITHOLOGY	WELL CONSTRUCTION DETAIL	1
6,11,	19 0		H-W	0 5	Hand-augered to 5 feet. SILTY SAND: dark yellowish brown, medium dense, dar poorly graded.	πρ, fine-grained,			Monument box with locking cap Neat Cement 4-inch-diameter	
9,15,	22 0	ND		10	With clay and carbonate pebbles to 0.5-inch diameter.		SM		diameter PVC casin Bentonite Seal	5
8,15,2 10,13,	23 0	ND 25		15	Blight greenish color.				20 No. 3	
14,19, 17,31,3	22 >2,500 32 0				CLAYEY SANDY and GRAVEL Mixture: yellowish brown damp, pebbles to 0.13-inch diameter. SILTY SAND: dark yellowish brown, dense, damp, with g	gravel and clay.	GC SM		25 4-inch-diameter PVC casing 0.020-inch slotting	
23,50				- f	ILTY SANDSTONE BEDROCK; light olive brown, very friable, with clay.	ractured, moist, very				
13,223	2 0 ALT	ומר	JF	-40 V	nar daysione interpeds, salurated.			4	10 End cap	-
	GED 🖟	SCIEI Iora, C			LOG OF EXPLORATORY	BORING			MW-7 PAGE 1 OF 1	
									41-0034/MW/-7 01/05/96	

]		TNO		41-0	DATE DRILLED:	11/21	1/95			
<u> </u>	_OC/	ATION	<u> </u>		Gas #57	LOGGED BY:	A. Le			
					0 MacArthur Boulevard	APPROVED BY:	M. Katen, RG			
<u> </u>		4.		Oakla	and, California	DRILLING CO.:	V & V	V Drilling		
BLOWS PER 6 INCHES	(E	TPH-G (ppm)	щ	DEPTH (leet below grade)	DRILLING METHOD: 10-inch diameter Holl SAMPLER TYPE: California Modified Spantal DEPTH: 35.5 feet DEPTH TO WAT	olit-Spoon	USCS LITHOLOGY	WELL CONSTRUCTION		
LOW	PID(ppm)	PH-G	SAMPLE	EPTH eet be		USCS	DETAIL			
10,14,24	1,1			-0	DESCRIPTION Hand-augered to 5 feet. SILTY SAND: dark yellowish brown, medium dense, da gravel and clay.		6M	Monument box with locking cap Neat Cement 4-inch-		
					SILTY SANDSTONE BEDROCK: yellowish brown, friet	ale freehred dry yeards	ned .	4-inch-diameter PVC casing Bentonite Seal		
50 for 3°	0.	ND.	X	10 	SIETT SANOSTONE BEDNOON, yeilowish blown, men	no, national, dry, vory ge	1130	10		
50 for 5°		ND	X	15				15————————————————————————————————————		
50 for 5*	-	ND	X	20				20—		
50 for 6°			X	25				25		
د با د			ŀ	, K				PVC casing 0.020-inch		
25,32,50	0			30 30 	As above including 6 inches of strong brown claystone	and sand.		30 — E H slotting		
28,50 for 6*	۵			- 35				35 End cap		
ALTON GEOSCIENCE Livermore, California LOG OF EXPLORATORY BORING								MW-8 PAGE 1 OF 1		

Boring No. <u>EX-1</u>

Sheet <u>1</u> of <u>2</u>

Client	Former USA 57	_ Date	10/6/2005	
Address	10700 MacArthur Blvd	_ Drilling Company	Woodward Drilling Co.	rig type: Mobil B-61
	Oakland, CA	_ Drilling Foreman	Amador	
Project No.	2007-0057-01	Method	HSA	hole diam.: 10"
Logged By:	Justin Crose			
Well Pack	sand: 4.5 ft. to 25 ft.	Well Construction	casing: PVC	screen: 5 to 25 ft.
	bent.: 3.5 ft. to 4.5 ft.		casing diam.: 4"	screen slot: 0.02"
	grout: 0.5 ft. to 3.5 ft.			

	Sample	Blow	Sar	nple	Well	Depth		Parallelian of Material	1
Туре	No.	Count		Recov.	Constru ct,	Scale	LITHO	Descriptions of Materials	PID
TAPE	140.	Count	Tane	Recov.	Ct.	Scale	COLUMN	and Conditions Concrete	(PPM)
				ļ		_ 1			
						 	CL	CLAY, olive brown 2.5Y 4/3, 10-15% fine sand, moist	0
ļ					ĺ	2			
						3			
							مممه		
						4	and the same of th		-
						_ ₅			
		3					SC	CLAYEY SAND (5'-5.2'), brown 10YR 4/3, 75% fine sand, 25% clayey fines,	
s	EX-1-6	3	16:13	60		6	CL	moist	0
		10				<u> </u>	CL	CLAY, dark grayish brown 2.5Y 4/3, 5-10% fine to medium sand, trace black MnO2, moist, stiff	
								John Miles, most, sun	·}
						8			
	~~~~					9			-}
						9 0			
_		7					0.		
s	EX-1-11	7 10	16:28	70		1 1	CL	CLAY, olive brown 2.5Y to dark grayish brown 2.5Y, moist	39
		10	İ			1 2			
					i			***************************************	f
						1 3 1 4 1 5			
		1			ļ	<u> </u>			1
					ĺ				<del> </del>
						1 5	İ	***************************************	
s	EX-1-16	4 5	16:38	60		<u></u>	CL	CLAY dock armigh brown 2 EV 4/2 with again of an arigh army OLEV 4.5	
-3-		20	10.50			- "		CLAY, dark grayish brown 2.5Y 4/2 with spots of greenish gray GLEY 1 & dark yellowish brown 10YR 4/6, 5% fine to coarse sand, moist, very stiff	>1000
					1	17			
						1			
							}		
						1 9			
						1			
	]					2 0			
								Comments: Drilled to 25 feet bgs	
								2	
								STRATUS	
								ENVIRONMENTAL INC.	
								The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	

Boring No. <u>EX-1</u> Sheet <u>2</u> of <u>2</u>

Client	Former USA 57	Date 10/6/2005	
Address	10700 MacArthur Blvd	Drilling Company Woodward Drilling Co. rig type: Mobil B-61	
	Oakland, CA	Drilling Foreman Amador	
Project No.	2007-0057-01	Method HSA hole diam.: 10"	
Logged By:	Justin Crose	TOTAL TOTAL	

	Sample	Blow	Sai	mple	Well Construc	Depth	LITHO	Descriptions of Materials	PID
Тура	No.	Count	Time	Recov.	t.	Scale	COLUMN	and Conditions	(PPM
	EV 1 31	7	40.50	0.0		<u> </u>		CLAY, light olive brown 2.5Y 5/6 to olive yellow 2.5Y, 10-15% fine to	
S	EX-1-21	19 22	16:56	90	Ì	2 1	CL	CLAY, dark grayish brown to very dark grayish brown 2.5Y with spots of greenish gray GLEY 1 & orange FeO2 stains, trace gravel, moist, hard	>100
					İ	2 2		graver, moist, naro	
					]				
						3			
						4			
		50(4)	17:18	25		_2 5	CL	CLAY to Mudstone, clay - dark yellowish brown 10YR to brownish yellow	
		30(4)	17.50	20		2 6	OL	10YR, mudstone - brown 10YR, 5-15% fine sand to fine gravel 4/3	527
						_		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	<del></del>
						_2 7		***************************************	
						8			
						2 5 2 6 2 7 2 8 2 9			
						_2 9			
ļ						<u></u>			
					İ				
					1	3 1			
ĺ			ļ	ĺ		3 2			
						3 3			
						3 4			
	·				į				<u> </u>
						3 5			
]	į	ļ			İ				
					}	3 6			<b> </b>
					1	3 7			
						3 8			İ
					j	_3 8	ļ		ļ
l					ļ	3 9			
					Ī				
	L					4 0			

## WELL DETAILS

PROJECT NUMBER: 2007-0057-01	BORING/WELL NO.: EX-1
PROJECT NAME: USA 57	TOP OF CASING ELEV.: 77.72'
	GROUND SURFACE ELEV.: 78.04'
LOCATION: 10700 MacArthur Blvd, Oakland, California	DATUM: NAD 83
VVLLL FERMITING <u>VVZUU5-U944</u>	INSTALLATION DATE: October 6, 2005
WELL PERMIT NO.:  W2005-0944  d  -TOC(TOP OF CASING) G-5 VAULT BOX(STD.)  h  e  f  f  f  f  f  f  f  f  f  f  f  f	
	i. SEAL 3.5 to 4.5 ft.
	SEAL MATERIAL Bentonite
	j. FILTER PACK 4.5 to 25 ft.
BENTONITE CONCRETE  CEMENT SAND  PERFORATION  NOT TO SCALE	FILTER PACK MATERIAL <u>#3 Sand</u> k. BOTTOM SEAL  SEAL MATERIAL <u>N/A</u>
PREPARED BY	DATE
REVIEWED BY	DATE

### Boring No. EX-2

#### Sheet <u>1</u> of <u>2</u>

Client	Former USA 57	Date	10/7/2005	
Address	10700 MacArthur Blvd	Drilling Company	Woodward Drilling Co.	rig type: Mobil B-61
	Oakland, CA	Drilling Foreman	Amador	
Project No.	2007-0057-01	Method	HSA	hole diam.: 10"
Logged By:	Justin Crose			
Well Pack	sand: 4.5 ft. to 25 ft.	Well Construction	casing: PVC	screen: 5 to 25 ft.
	bent.: 3.5 ft. to 4.5 ft.		casing diam.: 4"	screen slot: 0.02"
	grout: 1 ft. to 3.5 ft.			

	Sample	Blow	Sar	nple	Well Constru	Depth	LITHO	Descriptions of Materials	PID
Туре	No.	Count	Time	Racov.	ct.	Scale	COLUMN	and Conditions	(PPM
						1 2	CL	Concrete  CLAY, yellowish brown 10YR 5/4 to brown 10YR 4/3, trace black MnO2, moist	7
						3 4 5			
S	EX-2-6	4 8 22	8:38	70		6 7 7	CL	CLAY, yellowish brown 10YR 5/4 to brown 10YR 4/3, trace black MnO2, trace caliche, moist, hard	0
						8 9 1 0			
s	EX-2-11	10 12 28	8:45	80		1 1 1 2 1 3	CL	CLAY, very dark brown 7.5YR to olive gray 5Y 5/2 with orange FeO2 stains, trace gravel, molst, hard	0
		50(3)	8:57	20		1 4 1 5 1 6		CLAY, light olive brown 2.5Y 5/6, trace caliche, 5-10% fine to coarse sand, trace gravel, dry, hard	466
					and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	1 7 1 8 1 9			
		ļ	-			2 0		Comments: Drilled to 25 feet bgs	
								STRATUS Environmental, Inc.	

Boring No. <u>EX-2</u>

Sheet 2 of 2

Client	Former USA 57	Date 10/7/2005
Address	10700 MacArthur Bivd	Drilling Company Woodward Drilling Co. rig type: Mobil B-61
	Oakland, CA	Drilling Foreman Amador
Project No.	2007-0057-01	Method HSA hole diam.: 10"
Logged By:	Justin Crose	With the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

	Sample	Blow	Sar	nple	Well Construc	Depth	LITHO	Descriptions of Materials	PID
Type	No.	Count	Time	Recov.	t.	Scale	COLUMN	and Conditions	(PPA
		50(5)	9:20	25		CL	CL	CLAY, light olive brown 2.5Y 5/6 to ofive yellow 2.5Y, 10-15% fine to	66
		<u> </u>		İ		1		medium sand, trace coarse sand and fine gravel, intermittent cementation,	
								dry, hard	1
						2 2			
		İ				3			1
			ļ		ļ	_2 3			
						4			
İ			ĺ						
		60(6)	0.40			2 5			ļ
		50(6)	9:40	30			CL	CLAY to Mudstone, mudstone - white CaCO3 cementing, clay - olive gray	45
			<del>-</del>			_2 6		5Y 5/2 & very dark brown 7.5YR, dry to moist	
		ļ	ĺ						
1						<del>_</del> _ ,			ĺ
						<u> </u>			ļ
-					]				
						2 5 2 6 2 7 2 8 2 9 3 0			
						3 0			
						_		**************************************	
					-	3 1			
					ĺ	_		**************************************	
						2			
				]	-			***************************************	
						<u>3</u> 3			
		Ì							**********
						3 4			
ı						3 5			
		• • • • • • • • • • • • • • • • • • • •			1	3 5	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1									
					-	3 6			
	İ			l	ĺ	3 7			
						_3 7		***************************************	
	ĺ			ĺ	ĺ				
						3 8		***************************************	
	ļ			ļ		3 9			
						-3 4	-		
-						4 0			
			1		1.	4 01			
							Ì		
								6TD1T16	
								STRATUS	
								ENVIRONMENTAL, INC.	
							İ		
								<ul> <li>Control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se</li></ul>	

## WELL DETAILS

DDO IFOT MUNDED. 2007 0057 04	BORING/WELL NO.: EX-2
PROJECT NUMBER: 2007-0057-01	TOP OF CASING ELEV.: 76.96'
PROJECT NAME: USA 57	GROUND SURFACE ELEV.: 77.24'
LOCATION: 10700 MacArthur Blvd, Oakland, California	DATUM: NAD 83
WELL PERMIT NO.: W2005-0945	INSTALLATION DATE: October 7, 2005
BENTONITE  CONCRETE  SAND  PERFORATION  DO TOC(TOP OF CASING)  G-5 VAULT BOX(STD.)  A C C C C C C C C C C C C C C C C C C	EXPLORATORY BORING  a. TOTAL DEPTH
PREPARED BY	DATE
REVIEWED BY	DATE

### Boring No. <u>EX-3</u>

Sheet <u>1</u> of <u>2</u>

Client	Former USA 57	Date <u>1</u>	Date 10/6/2005						
Address	10700 MacArthur Bivd	Drilling Company V	Voodward Drilling Co	o. rig type: Mobil B-61					
	Oakland, CA	Drilling Foreman A	mador						
Project No.	2007-0057-01	Method <u>H</u>	SA	hole diam.: 10"					
Logged By:	Justin Crose								
Well Pack	sand: 4.5 ft. to 25 ft.	Well Construction	casing: PVC	screen: 5 to 25 ft.					
	bent.: 3.5 ft. to 4.5 ft.		casing diam.: 4"	screen slot: 0.02"					
	grout: 0.5 ft. to 3.5 ft.								

	Sample	Blow	Sar	nple	Well Constru	Depth	LITHO	Descriptions of Materials	PID
Туре	No.	Count	Time	Recov.	ct.	Scale	COLUMN	and Conditions	(PPM)
						1 2	CL	Asphalt  CLAY, dark yellowish brown 10YR, trace black MnO2, 5% fine sand, moist	0
						3 4 5			
s	EX-3-6	4 4 12	12:46	80		6 7	CL	CLAY, dark yellowish brown 10YR 4/4, trace black MnO2 & caliche, trace fine to coarse sand, moist, very stiff	0
						8 9 1 0			-
S	EX-3-11	8 12 17	12:59	70		1 1 2	CL	CLAY, olive gray 5Y 4/2 to dark grayish brown 2.5Y 4/2 with orange FeO2 stains, trace fine to coarse sand, very stiff	0
S	EX-3-15.5	12 50(6)	13:27	40		1 3 1 4 1 5 1 6	CL	CLAY, greenish gray to dark yellowish brown 10YR to dark grayish brown 2.5Y with orange FeO2 stains, trace fine sand, dry to moist, hard	45
		30(3)				1 7 1 8	į	2.57 with drange FeO2 stains, trace line saild, dry to moist, hard	
			-			2 0		Comments: Drilled to 25 feet bgs	
								STRATUS environmental, inc.	İ

SO	ᄔ	BO	КII	٧G	LOG

#### ORING LOG Boring No. EX-3 Sheet 2 of 2

Client	Former USA 57	Date 10/6/2005	
Address	10700 MacArthur Blvd	Drilling Company Woodward Drilling Co. rig type: Mobil B-61	
	Oakland, CA	Drilling Foreman Amador	
Project No.	2007-0057-01	Method HSA hole diam.: 10"	
Logged By:	Justin Crose		

	Sample	Blow	Sai	nple	Well	Depth	LITTLE C	Descriptions of Materials	PID
Туре	No.	Count	Time	Recov.	Construc t.	Scale	LITHO COLUMN	and Conditions	(PPM)
S	EX-3-20.5	50(6)	13:51	40		1	CL	CLAY, brown 10YR 4/3, 5-15% fine to coarse sand, weakly cemented, dry, hard	(PPM)
						2 2			
	**************					2 2 2 3 2 4			
s	EX-3-25.5	50(6)	14:32	35		2 5	CL	CLAY to Mudstone, clay - dark yellowish brown 10YR 4/6 to brownish	
						2 6		yellow 10YR 6/8, mudstone - brown 4/3, dry, hard	
	3,000,000,000					2 9			
						3 0			
						2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3			
			· · · · · · · · · · · · · · · · · · ·			3 3			
~~~~						3 4 3 5			
						3 6			
						3 7			
						3 8		***************************************	
						3 9 4 0			
							10,000	STRATUS ENVIRONMENTAL, INC.	

WELL DETAILS

BORING/WELL NO.: EX-3

PROJECT NAME: 2007-0057-01 PROJECT NAME: USA 57	TOP OF CASING ELEV.: 78.87'				
LOCATION: 10700 MacArthur Blvd, Oakland, California	GROUND SURFACE ELEV.: 79.52'				
WELL PERMIT NO.: W2005-0946	DATUM: NAD 83				
	INSTALLATION DATE: October 6, 2005				
d	EXPLORATORY BORING a. TOTAL DEPTH				
TOC(TOP OF CASING)	b. DIAMETERin.				
G-5 VAULT BOX(STD.)	DRILLING METHOD Hollow stem auger				
	WELL CONSTRUCTION c. TOTAL CASING LENGTH 25 ft. MATERIAL Schedule 40 PVC d. DIAMETER 4 in. e. DEPTH TO TOP PERFORATIONS 5 ft. ft. f. PERFORATED INTERVAL FROM 5 TO 25 ft. PERFORATION TYPE Slotted Screen PERFORATION SIZE 0.02 in. g. SURFACE SEAL 0 to 1.0 ft. SEAL MATERIAL Concrete h. BACKFILL 1.0 to 3.5 ft. BACKFILL MATERIAL Neat Cement i. SEAL 3.5 to 4.5 ft. SEAL MATERIAL Bentonite j. FILTER PACK 4.5 to 25 ft.				
BENTONITE CONCRETE	k. BOTTOM SEAL				
CEMENT SAND	SEAL MATERIAL N/A				
PERFORATION					
IOT TO SCALE					
PREPARED BY	DATE				
REVIEWED BY	DATE				

Boring No. <u>EX-4</u>

Sheet <u>1</u> of <u>2</u>

Client	Former USA 57	Date	10/6/2005			
Address 10700 MacArthur Blvd		Drilling Company	Woodward Drilling Co.	rig type: Mobil B-61		
	Oakland, CA	Drilling Foreman	Amador			
Project No.	2007-0057-01	Method	HSA	hole diam.: 10"		
Logged By:	Justin Crose					
Well Pack	sand: 4.5 ft. to 25 ft.	Well Constructioπ	casing: PVC	screen: 5 to 25 ft.		
	bent.: 3,5 ft. to 4.5 ft.	_	casing diam.; 4"	screen slot: 0.02"		
	grout: 0.5 ft. to 3.5 ft.					

	Sample	Blow	Sar	npie	Well Constru	Depth	LITHO	Descriptions of Materials	PID
Type	No.	Count	Time	Recov.		Scale	COLUMN	and Conditions	(PPM)
						1		Drill on dirt	
								Top Soil, dry	
			ļ		1	2			
						_ 3	SM		ļ
						— ₄		SILTY SAND, 80-85% fine sand, 15-20% slit, moist	231
							sw	SAND (3.7' to 5'), 95% fine to coarse sand, trace fine gravel, 5% fines, moist	237
		9				5			ļ
s	EX-4-6	12	9:06	80		6		CLAY, dark yellowish brown 10YR 4/4, trace black MnO2, trace fine sand to	231
		18				— ₇		fine gravel, moist, very stiff	
						"			
						8			·
						8 9 1	;		
s	EX-4-11	8 8	9:18	80			CL	CLAY, dark grayish brown 2.5Y 4/2, moist, very stiff	>1000
	レハーサートト	8 10	9.10			1 1	٠ <u>٠</u>	OLD 1, dain grayion brown 2.01 4/2, molet, very Stiff	>1000
						1 2			ļ
						1 3	İ		
						1 4			
		5				<u></u>	}		
		15				1 6	CL	CLAY, dark grayish brown 2.5Y 4/2, moist, hard	>1000
S	EX-4-16.5	20	9:48	100					
						J			}
					İ	1 8	ŀ		
						1 9			
						<u> </u>			
								Comments: Drilled to 25 feet bgs	
								Commenta. Dillieu to 20 leet uga	
							l		
							- The second sec		
								STRATUS	
								ENVIRONMENTAL, INC.	-

	BO		

Boring No. EX-4

Sheet <u>2</u> of <u>2</u>

Client	Former USA 57	Date 10/6/2005
Address	10700 MacArthur Bivd	Drilling Company Woodward Drilling Co. rig type: Mobil B-61
	Oakland, CA	Drilling Foreman Amador
Project No.	2007-0057-01	Method HSA hole diam.; 10"
Logged By:	Justin Crose	

	Sample	Blow	Sai	nple	Well Construc	Depth	LITHO	Descriptions of Materials	PID
Туре	No.	Count	Time	Recov.	t.	Scale	COLUMN	and Conditions	(PPM
S	EX-4-21	19 50(6)	10:06	70		1	CL	CLAY WITH GRAVEL, dark yellowish brown 10YR 4/4 to olive gray 5Y 4/2, 5-25% gravet (lower % towards top of sample), orange FeO2 stains, damp to moist	450
						2 2 2 3	2000		
						4	procesor.		-
ŝ	EX-4-25.5	50(6)	10:25	40		2 3 2 4 2 5 2 6 2 7 2 8	ML	SILT, light olive brown 2.5Y 5/4 to dark yellowish brown 10YR, weakly cemented, dry, hard	91
		J		*********		2 7			
						9			-
					,	2 9 3 0 3 1			
				**********	Approximate	3 2			
	- 54					3 3			
		·				3 5			
						$\begin{array}{c} 3 & 6 \\ \hline 3 & 7 \end{array}$			
		***************************************				3 8			
						3 9	e e e e e e e e e e e e e e e e e e e		
						3 9			-
								STRATUS ENVIRONMENTAL, INC.	

WELL DETAILS

PROJECT NUMBER: 2007-0057-01 PROJECT NAME: USA 57 LOCATION: 10700 MacArthur Blvd, Oakland, California WELL PERMIT NO.: W2005-0947	BORING/WELL NO.: EX-4 TOP OF CASING ELEV.: 77.96' GROUND SURFACE ELEV.: 78.27' DATUM: NAD 83 INSTALLATION DATE: October 6, 2005
BENTONITE CONCRETE SAND PERFORATION O TOC(TOP OF CASING) G-5 VAULT BOX(STD.) A CONCRETE SAND PERFORATION	EXPLORATORY BORING a. TOTAL DEPTH
PREPARED BY	DATE
REVIEWED BY	DATE

1 of 1

Client	Former USA Station No. 57	Date	August 23, 2007	
Address	10700 MacArthur Boulevard	_ Drilling Co.	Mitchell Drilling, Environmental	rig type: CME-75
	Oakland, CA	Driller	Edward Mitchell, Jr.	
Project No.	2007-0057-01	Method	Hollow Stem Auger	Hole Diameter: 8 inches
Logged By:	Allan Dudding	Sampler:	2 in. split spoon	
Well Pack	sand: 15.5 ft. to 20 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 17.5 to 20 ft.
	bent.: 13.5 ft. to 15.5 ft.	_	Casing Diameter: 1 in.	Screen Stot Size: 0.020 -in.
	grout: 0 ft. to 13.5 ft.	Depth to GW;	V first encountered = NA	Static =

WELL DETAILS

(x,y) = (x,y) + (x,y

PROJECT NUMBER: 2007-0057-01 PROJECT NAME: Former USA Service Station No. 57 LOCATION: 10700 MacArthur Blvd, Oakland, California WELL PERMIT NO.: W2007-0903	BORINGWELL NO.:AS-1 TOP OF CASING ELEV.: GROUND SURFACE ELEV.: DATUM: INSTALLATION DATE:August 23, 2007 EXPLORATORY BORING
BENTONITE CONCRETE CEMENT SAND PERFORATION O TOC(TOP OF CASING) G-5 VAULT BOX(STD.) A D D D D D D D D D D D D D D D D D D	a. TOTAL DEPTH
PREPARED BY	DATE
REVIEWED BY	DATE

Client	Former USA Station No. 57	Date	August 23, 2007	
Address	10700 MacArlhur Boulevard	Drilling Co.	Mitchell Drilling, Environmental	rig type: CME-75
	Oakland, CA	Driller	Edward Mitchell, Jr.	
Project No.	2007-0057-01	Method	Hollow Stem Auger	Hole Diameter: 8 inches
Logged By:	Allan Dudding	Sampler:	2 in. split spoon	
Well Pack	sand: 15,5 ft. to 20 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 17.5 to 20 ft.
	bent.: 13.5 ft. to 15.5 ft.		Casing Diameter; 1 in.	Screen Slot Size: 0.020 -in.
	grout: 0 ft. to 13.5 ft.	Depth to GW:	first encountered = NA	V _{Static} =

	Sample	Biow	Sai	mple	J	***	Depth	Lithologic		
Туре	No.	Count	Time	Recov.	Well	Details		Column	Descriptions of Materials and Conditions	PID (PPM)
							1		Well installed on broken asphalt pavement. Borehole cleared using hand auger to 5 feet bgs.	
						**	_² ³ 			
S	AS-2-5.5'	8 10	1112	50%	1, 19	X.	5	CL	Silty Clay, CL, dark greenish gray (GLEY1 4/10Y), low plasticity, moist, very stiff, no odor, no staining. 70% clay, 30% silt.	0
, and the second										
S	AS-2-11'	9 14 19	1118	100%	7.		11 12 13	CL	Clay, CL, very dark grayish brown (2.5Y 3/2), medium plasticity, moist, hard, hydrocarbon odor, no staining.	9.8
S	AS-2-16'	14 20 25	1124	100%			14 15 16 17	CL	Silty Clay, CL, dark yellowish brown (10YR 4/4) with green mottling, low plasticity, moist, hard, no odor. 70% clay, 30% silt.	59.6
							18 19 20			
				Reco Sar	very ⁻ nple_				Comments:	7971.00.0
								Pyron and an instrumental pyron	STRATUS ENVIRONMENTAL, INC.	

SOIL BORING LOG

Former USA Station No. 57

10700 MacArthur Boulevard

Oakland, CA

2007-0057-01

Allan Dudding

Client

Address

Project No.

Logged By:

Boring No. AS-2

Date

Driller

Method

Sampler:

Drilling Co.

August 23, 2007

Mitchell Drilling, Environmental rig type: CME-75

Edward Mitchell, Jr.

Hollow Stem Auger Hole Diameter: 8 inches

Sheet:

2 of 2

	Sample	Blow	Sar	nple		Depth	1.715-1		
Туре	No.	Count	Time	Recov.	Well Details		Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
s	AS-2-21'	14 17 36	1132	100%		21 22	CL	Clay, trace sand, CL, dark yellowish brown (10YR 4/4), medium plasticity, medium grained sand, moist, hard, hydrocarbon odor, no staining. ~95% clay, trace sand.	125.4
						23 			
						24 25			7-70-04
		17							1
s	AS-2-26'	28 50/5"	1151	100%		26 27	CL	Clay, trace sand, CL, dark yellowish brown (10YR 4/4), medium plasticity, medium to coarse grained sand, moist, hard, hydrocarbon odor, no staining. ~95% clay, trace sand.	412
	***********					28			
						29			
						30 31			
						₃₂			
						33 			
						34 35			
						36			
						37 			
						38 39			
						40			
				Reco Sar	very nple		1	Comments: Boring drilled to 25 feet bgs, sampled to 26.5 feet bgs. Well installed 20 feet bgs above five feet of bentonite fill.	at
								STRATUS ENVIRONMENTAL, INC.	

2 in. split spoon

WELL DETAILS BORING/WELL NO.: AS-2 PROJECT NUMBER: 2007-0057-01 TOP OF CASING ELEV.: PROJECT NAME: Former USA Service Station No. 57 GROUND SURFACE ELEV.; LOCATION: 10700 MacArthur Bivd, Oakland, California WELL PERMIT NO.: W2007-0904 INSTALLATION DATE: ___August 23, 2007 **EXPLORATORY BORING** a. TOTAL DEPTH _____25 ft. b. DIAMETER _TOC(TOP OF CASING) DRILLING METHOD Hollow Stem Auger G-5 VAULT BOX(STD.) WELL CONSTRUCTION

c. TOTAL CASING LENGTH ______ 20 ___ft. MATERIAL Schedule 40 PVC d. DIAMETER e. DEPTH TO TOP PERFORATIONS __17.5__ft. f. PERFORATED NTERVAL FROM 17.5 TO 20 ft. PERFORATION TYPE Slotted Screen 0.02 PERFORATION SIZE 0 to 1.0 g. SURFACE SEAL ___ SEAL MATERIAL Concrete h. BACKFILL ______ 1.0 to 13.5 Neat Cement BACKFILL MATERIAL i. SEAL 13.5 to 15.5 ft. SEAL MATERIAL Bentonite j. FILTER PACK _______ 15.5 to 20 _____ft. FILTER PACK MATERIAL #3 Sand k. BOTTOM SEAL 20 to 25 ft. SEAL MATERIAL Bentonite

PREPARED BY ______ DATE _____

APPENDIX B

HISTORICAL GROUNDWATER ELEVATION AND ANALYTICAL DATA AND ALTERNATE GROUNDWATER ELEVATION CONTOUR MAPS

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Linyibenzene (μg/L)	Aylenes (μg/L)	
					(1-6, -)	(1-5, -)	(Mg/ L)	(µg/L/)	(μg/L)	(μg/L)	(μg/L)
S-1	02/12/87						630	4.4	3.5	37	NA
	03/03/95	13.10	74.74	61.64	910	5,900	260	7.6	16	14	NA
	07/24/95	12.35		62.39	NA	ΝA	NA	NA	NA	NA	NA
	11/22/95	19.30	78.68	59.38	460	6,100	13	0.69	0.99	1.1	460*
	12/06/95	19.59		59.09	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.52		59.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	15.07		63.61	1,100	200	11	6	3	6	200*
	10/10/97	18.90		59.78	530	2,000	< 0.5	2.1	<0.5	<2	230*
	01/20/98	16.79		61.89	1,800	200	< 0.5	< 0.5	1.5	10	87*
	04/28/98	8.37		70.31	130	7,300	1.9	3.2	<0.5	< 0.5	310*
	07/31/98	11.61		67.07	310	2,000	0.54	4.6	3.8	0.82	280*
	06/10/99	14.35		64.33	660	150	0.99	< 0.5	< 0.5	2.4	80*[1]
	10/18/00	17.56		61.12	< 50	330	< 0.5	0.93	< 0.5	< 0.5	44
	03/12/02	16.29		62.39	500	<50	2.8	4.8	0.79	4.4	63
	11/19/02	19.53		59.15	190	NA	< 0.50	< 0.50	< 0.50	< 0.50	190
	01/09/03	18.14		60.54	510	NA	1.1	< 0.50	0.52	< 0.50	11
	04/14/03	18.04		60.64	300	NA	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]	27
	07/21/03	20.31		58.37	300	NA	< 0.50	< 0.50	< 0.50	< 0.50	11
	10/09/03	19.46		59.22	390	NA	< 0.50	< 0.50	< 0.50	< 0.50	8.8
	01/15/04	18.21	79.66	61.45	200	NA	< 0.50	< 0.50	< 0.50	< 0.50	6.0
	04/08/04	19.29		60.37	140	NA	< 0.50	< 0.50	< 0.50	< 0.50	12
	08/10/04	18.86		60.80	110	NA	4.6	< 0.50	< 0.50	0.51	73
	11/11/04	19.81		59.85	160	NA	< 0.50	< 0.50	< 0.50	< 0.50	150
	01/19/05	18.12		61.54	440	NA	< 0.50	< 0.50	1.4	< 0.50	140
	04/14/05	13.94		65.72	320	NA	< 0.50	< 0.50	< 0.50	< 0.50	120
	07/19/05	14.11		65.55	240	NA	6.1	< 0.50	0.60	< 0.50	60
	10/24/05	16.53		63.13	320	NA	5.0	< 0.50	1.1	< 0.50	37

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
S-1	02/02/06	15.27		64.39	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	45
Cont.	04/27/06	9.59		70.07	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	7.7
	07/12/06	11.00		68.66	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	12
	10/17/06	14.54		65.12	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.6
	01/08/07	15.87		63.79	260	NA	4.6	< 0.50	< 0.50	< 0.50	15
	04/09/07	16.06		63.60	300	NA	< 0.50	< 0.50	< 0.50	< 0.50	22
	04/23/07	16.31		63.35	NA	NA	NA	NA	NA	NA	NA
	07/23/07	17.86		61.80	110	NA	< 0.50	< 0.50	< 0.50	< 0.50	52
	10/15/07	19.22		60.44	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	50
	03/24/08	17.58		62.08	180	NA	< 0.50	< 0.50	< 0.50	< 0.50	29
	05/30/08	19.66		60.00	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	43
	07/10/08	19.32		60.34	130	NA	< 0.50	< 0.50	< 0.50	< 0.50	4.1
	10/01/08	20.67		58.99	64	NA	< 0.50	< 0.50	< 0.50	< 0.50	70
	02/10/09	22.31		57.35	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	53

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
S-2	02/12/87		Sheen				2.400	2.000	1 200		
	03/03/95	15.39	76.86	61.47	24,000	6,000	3,400	3,800	1,300	11,000	NA
	07/24/95	14.47	70.00	62.39	24,000 NA	0,000 NA	1,900	440	600	2,500	NA
Sheen	11/22/95	21.52	80.93	59.41			NA	NA	NA	NA	NA
Gilceil	12/06/95	21.78	00.93		NA	NA	NA	NA	NA	NA	NA
	01/04/96			59.15	NA	NA	NA	NA	NA	NA	NA
		21.75		59.18	NA	NA	NA	NA	NA	NA	NA
C1	01/31/97	17.25		63.68	NA	NA	NA	NA	NA	NA	NA
Sheen	10/10/97	21.21		59.72	13,000	<50	260	38	190	280	600*
Sheen	01/20/98	19.07		61.86	1,900	2,300	4.6	6.3	< 0.5	4.6	190*
	04/28/98	10.47		70.46	22,000	<100	980	160	320	680	570*
	07/31/98	13.71		67.22	160,000	< 50	950	290	550	1,700	550*
	11/02/98	17.31		63.62	14,000	< 500	170	70	170	230	490*
	06/10/99	16.48		64.45	17,000	< 50	650	230	<25	750	490*[1]
	10/18/00	19.70		61.23	4,400	<50	2	64	5.1	12	270
	03/12/02	18.56		62.37	5,100	660	62	44	52	78	430
	11/19/02	21.70		59.23	26,000	NA	1,400	180	520	340	750
	01/09/03	20.37		60.56	16,000	NA	120	32	76	214	270
	04/14/03	19.93		61.00	16,000	NA	160	76	210	290	400
	07/21/03	22.00		58.93	9,700	NA	270	90	200	277	410
	10/09/03	21.58		59.35	10,000	NA	39	9.2	52	26.5	180
	01/15/04	20.44	81.90	61.46	6,300	NA	21	<2.0 [3]	20	3.1	130
	04/08/04	17.15		64.75	13,000	NA	160	76	170	231	430
	08/10/04	20.98		60.92	10,000	NA	76	13	<5.0[3]	500	92
	11/11/04	21.95		59.95	20,000	NA	530	240	3.0[3] 370	1,730	
	01/19/05	20.33		61.57	17,000	NA	590	150	250	990	420
	04/14/05	16.17		65.73	20,000	NA	830	230	230 570		580
	07/19/05	16.25		65.65	970	NA NA	48	13	370 16	1,980	510
	10/24/05	18.07		63.83	1,200	NA NA	100	13	52	57 41	72 69

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
S-2	02/02/06	17.26		64.64	2,000	NA	17	12	26	108	340
Cont.	04/27/06	11.55		70.35	130	NA	5.1	1.1	2.8	8.8	81
	07/12/06	12.98		68.92	140	NA	< 0.50	< 0.50	< 0.50	0.77	180
	10/17/06	16.59		65.31	130	NA	0.98	< 0.50	1.1	2.20	160
	01/08/07	18.21		63.69	69	NA	< 0.50	< 0.50	< 0.50	< 0.50	64
	04/09/07	18.29		63.61	360	NA	1.4	1.5	2.2	9.8	270
	07/23/07	20.00		61.90	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	7.7
	10/15/07	21.32		60.58	260	NA	53	0.92	< 0.50	1,0	86
	03/24/08	19.78		62.12	5,500	NA	540	20	120	70	600
	05/30/08	20.78		61.12	8,700	NA	270	50	200	386	340
	07/10/08	21.45		60.45	8,000	NA	310	36	150	246	420
	10/01/08	22.71		59.19	4,100	NA	170	3.8	57	8	720
	02/10/09	24.43		57.47	9,700	NA	390	31.0	340	107.5	480

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Ayrenes (μg/L)	MTBE (μg/L)
					<u> </u>	<u>(r 8 - 7 </u>	(Fig. 2)	(PGIL)	(Mg/L)	(μg/L/)	(µg/L)
MW-3	03/03/95	13.99	76.30	62.31	2,500	1,600	540	92	36	200	NA
	07/24/95	13.33		62.97	NA	NA	NA	NA	NA	NA	NA
	11/22/95	20.94	80.32	59.38	14,000	5,400	5,700	230	430	650	820*
	12/06/95	17.48		62.84	NA	NA	ΝA	NA	NA	NA	NA
	01/04/96	20.01		60.31	NA	NA	NA	NA	NA	NA	NA
	01/31/97	16.63		63.69	1,100	<50	130	8	5	5	NA
	10/10/97	20.62		59.70	3,400	1,100	830	4	100	<10	160*
	01/20/98	15.40		64.92	3,900	550	7.9	4.1	<0.5	3.7	<5.0*
	04/28/98	10.51		69.81	800	1,000	82	5.2	5.7	5.4	240*
	07/31/98	13.46		66.86	2,200	610	510	7.6	16	5.27	310*
	11/02/98	17.11		63.21	4,900	1,600	220	16	13	13.7	180*
	06/10/99	15.24		65.08	1,000	120	< 0.5	< 0.5	< 0.5	1.1	120*[1]
	10/18/00	15.41		64.91	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	12
	04/08/04	13.70		66.62	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	19
	08/10/04	16.96		63.36	580	NA	19	<1.0[3]	<1.0[3]	3.3	300
	11/11/04	17.40		62.92	3,000	NA	018	<5.0[3]	43	<5.0[3]	690
	01/19/05	13.28		67.04	92	NA	18	< 0.50	0.77	< 0.50	17
	04/14/05	8.73		71.59	< 50	NA	0.52	< 0.50	< 0.50	< 0.50	11
	07/19/05	11.94		68.38	390	NA	82	2.3	1.8	9.2	200
	10/24/05	14.70	77.27	62.57	2,100	NA	460	6.9	7.7	11.9	300
	02/02/06	16.48		60.79	530	NA	11	< 0.50	1.2	1.1	560
	04/27/06	7.85		69.42	<300[3]	NA	<1.5[3]	<1.5[3]	<1.5[3]	<1.5[3]	180
	07/12/06	10.08		67.19	250	NA	5.5	<1.0[3]	<1.0[3]	<1.0[3]	190
	10/17/06	12.80		64.47	93	NA	8.8	< 0.50	< 0.50	< 0.50	100

	_	Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO [5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	01/08/07	21.68		55.59	200	NA	14	< 0.50	0.89	0.95	85
Cont.	04/09/07	12.24		65.03	1,400	NA	380	6.6	22	12.5	600
	04/23/07	12.53		64.74	NA	NA	NA	NA	NA	NA	NA
	07/23/07	14.44		62.83	1,600	NA	420	<2.5[3]	27	<2.5[3]	630
	10/15/07	16.45		60.82	2,000	NA	470	2.7	23	<2.5[3]	610
	03/24/08	13.80		63.47	1,200	NA	230	1.9	9.9	1.2	820
	05/30/08	15.54		61.73	1,100	NA	250	<2.5[3]	14	<2.5[3]	610
	07/10/08	16.10		61.17	1,400	NA	170	<1.0	10	2.6	560
	10/01/08	17.60		59.67	800	NA	95	<1.0[3]	1.8	<1.0[3]	620
	02/10/09	18.46		58.81	1,200	NA	50	<1.0[3]	1.8	<1.0[3]	660

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	•	•	
			((10.11)	(PS/ D)	(<u>µg/ u)</u>	(µg/L)	(Hg/L)	(μg/L)	(μg/L)	(μg/L)
MW-4	11/22/95	14.99	76.42	61.43	<50	200	<0.5	1.5	<0.5	1.7	6.4*
	12/06/95	11.21		65.21	NA	NA	NA	NA	NA	NA	NA
	01/04/96	14.62		61.80	NA	NA	NA	NA	NA	NA	NA
	01/31/97	8.18		68.24	<50	<50	< 0.5	2	< 0.5	2	11*
	10/10/97	14.14		62.28	< 50	<50	< 0.5	< 0.5	<0.5	<2	<5.0*
	01/20/98	7.05		69.37	< 50	< 50	< 0.5	< 0.5	< 0.5	<0.5	<5.0*
	04/28/98	5.88		70.54	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	8.40		68.02	< 50	< 50	< 0.5	< 0.5	<0.5	< 0.5	<5.0*
	11/02/98	16.08		60.34	NA	NA	NA	NA	NA	NA	NA
	06/10/99	14.81		61.61	NA	NA	NA	NA	NA	NA	NA
	10/18/00	12.71		63.71	<50	< 50	< 0.5	0.59	0.82	0.53	<5.0*
	03/12/02	8.92		67.50	<50	< 50	< 0.5	0.61	0.72	2.5	1.8
	11/19/02	13.24		-13.24	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/09/03	11.00		-11.00	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/03	11.03		-11.03	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	13.10		-13.10	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/09/03	13.33		-13.33	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	12.14		-12.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	10.76		65.66	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	12.62		63.80	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	11.93		64.49	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/19/05	10.34		66.08	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/05	5.66	[4]	NM	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/19/05	7.55	[4]	NM	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/24/05	10.12	76.26	66.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Well	Doto	Depth to	Well	Groundwater	CDOIM)	mp				Total	
	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	$(\mu g/L)$
MW-4	02/02/06	6.99		69.27	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cont.	04/27/06	NM		NM			Well Not Mo	nitored or S	Sampled - Covere		.0.50
	07/12/06	6.05		70.21	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/17/06	NM		NM			Well Not Mo	nitored or S	Sampled - Covere		0.20
	01/08/07	8.82		67.44	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/09/07	8.52		67.74	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/23/07	10.10		66.16	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/15/07	10.90		65.36	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/24/08	9.32		66.94	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	05/30/08	10.60		65.66	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/10/08	11.31		64.95	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/01/08	12.37		63.89	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/10/09	13.38		62.88	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

		Depth to	Well	Groundwater						Total	*****
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW-5	11/22/95	19.56	80.52	60.96	<50	280	< 0.5	1.8	< 0.5	3	2.2*
	12/06/95	15.84		64.68	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.36		61.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	13.31		67.21	80	<50	< 0.5	0.6	< 0.5	2	6*
	10/10/97	17.80		62.72	< 50	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	12.58		67.94	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	9.45		71.07	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	7.38		73.14	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	15.98		64.54	< 50	< 500	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	06/10/99	14.60		65.92	NA	NA	NA	NA	NA	NA	NA
	10/18/00	17.77		62.75	<50	< 50	< 0.5	0.75	< 0.5	0.79	28
	03/12/02	15.72		64.80	<50	< 50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	11/19/02	NM		NM				Well Dam		0.0	5.0
	01/09/03	NM		NM				Well Dam	_		
	04/14/03	NM		NM				Well Dam	_		
	07/21/03	NM		NM				Well Dam	•		
	10/09/03	NM		NM				Well Dam	_		
	01/15/04	NM		NM				Well Dam			
	04/08/04	16.80		63.72	<100	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	18.58		61.94	89	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	NM		NM				Well Dama		-0.50	40.50
	01/19/05	NM		NM				Well Dam	_		
	04/14/05	10.57	[4]	NM	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/19/05	11.77	[4]	NM	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	10/24/05	14.29	80.78	66.49	<50	NA	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
	02/02/06	NM		NM	- -				pled - Under Soi		VC.0/
	04/27/06	7.42		73.36	<100[2]	NA	< 0.50	< 0.50	<0.50	<0.50	< 0.50

Well	Date	Depth to Water	Well Elevation	Groundwater Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylhouzono	Total	MEDIC
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	μg/L)	(μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE
MW-5	07/12/06	NM		NM	(1 8 /				Sampled - Cover		(μg/L)
Cont.	10/17/06	NM		NM					Sampled - Cover		
	01/08/07	NM		NM					Sampled - Cover		
	04/09/07	NM		NM					Sampled - Cover		
	04/23/07	11.90		68.88	< 50	NA	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
	07/23/07	13.98		66.80	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/15/07	14.97		65.81	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/24/08	12. 7 7		68.01	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	05/30/08	14.76		66.02	<200[2]	NA	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]
	07/10/08	15.74		65.04	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/01/08	16.90		63.88	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/10/09	18.12		62.66	<200[2]	NA	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]
MW-6	10/15/07	NM		NM				Well Destr	oved		
	10/01/08	NM		NM				Well Destr	•		

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
N4337 7	11/00/05	10.20	70.0 6						•		
MW-7	11/22/95	19.38	78.86	59.48	<50	180	< 0.5	0.57	< 0.5	0.62	0.73*
	12/06/95	19.72		59.14	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.76		59.10	NA	NA	NA	NA	NA	NA	NA
	01/31/97	15.25		63.61	70	<50	0.7	1	< 0.5	<1	8*
	10/10/97	19.03		59.83	<50	< 50	< 0.5	< 0.5	< 0.5	<2	15*
	01/20/98	17.11		61.75	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	8.22		70.64	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	9.3*
	07/31/98	11.53		67.33	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	15.15		63.71	NA	NA	NA	NA	NA	NA	NA
	06/10/99	14.23		64.63	NA	NA	NA	NA	NA	NA	NA
	10/18/00	17.59		61.27	NA	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	03/12/02	16.54		62.32	< 50	< 50	< 0.5	< 0.5	< 0.5	<0.5	2.9
	11/19/02	19.59		-19.59	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	3.8
	01/09/03	18.38		-18.38	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.7
	04/14/03	18.17		-18.17	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	20.29		-20.29	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.8
	10/09/03	19.48		-19.48	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.9
	01/15/04	18.45	79.81	61.36	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.6
	04/08/04	17.28		62.53	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.81
	08/10/04	18.85		60.96	<50	NA	< 0.50	< 0.50	< 0.50	<0.50	2.1
	11/11/04	19.85		59.96	<50	NA	< 0.50	< 0.50	<0.50	<0.50	
	01/19/05	19.59		60.22	<50	NA NA	< 0.50	< 0.50	<0.50	<0.50	1.0
	04/14/05	14.17		65.64	<50	NA	< 0.50	<0.50	<0.50 <0.50		1.5
	07/19/05	14.16		65.65	<50	NA NA	< 0.50	<0.50 <0.50		< 0.50	<0.50
	10/24/05	16.65		63.16	<50	NA NA	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	1.9 <0.50

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-7	02/02/06	15.39		64.42	<50	NA	< 0.50	< 0.50	<0.50	< 0.50	1.3
Cont.	04/27/06	8.51		71.30	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/12/06	9.94		69.87	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/17/06	13.46		66.35	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/07	15.03		64.78	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.99
	04/09/07	15.27		64.54	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.54
	07/23/07	16.96		62.85	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.7
	10/15/07	18.29		61.52	750	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.81
	03/24/08	16.72		63.09	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.85
	05/30/08	17.81		62.00	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.56
	07/10/08	18.48		61.33	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/01/08	19.71		60.10	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.66
	02/10/09	21.41		58.40	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.67
				······································							

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well	Date	Depth to Water	Well Elevation	Groundwater Elevation	GRO[5]	TPHD	Benzene	Tol	EAL	Total	
Number	Collected	(feet)	(ft msl)	(ft msl)	GRO[3] (μg/L)	μg/L)	benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
MW-8	11/22/95	33.33	79.55	46.22	<50	360	<0.5	1.3	<0.5	2.1	2.1*
	12/06/95	17.57		61.98	NA	NA	NA	NA	NA	NA	NA
	01/04/96	20.08		59.47	NA	NA	NA	NA	NA	NA	NA
	01/31/97	18.72		60.83	80	<50	0.6	1	<0.5	1	8*
	10/10/97	20,26		59.29	50	<50	<0.5	< 0.5	<0.5	<2	<5*
	01/20/98	15.91		63.64	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0*
	04/28/98	10.39		69.16	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	07/31/98	12.93		66.62	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	11/02/98	16.90		62.65	< 50	<500	<0.5	< 0.5	< 0.5	<0.5	<5.0*
	06/10/99	14.98		64.57	NA	NA	NA	NA	NA	NA	NA
	10/18/00	16.27		63.28	<50	< 50	< 0.5	< 0.5	1.1	6.3	8.6*
	03/12/02	14.56		64.99	< 50	< 50	< 0.5	0.63	0.55	1.7	0.94
	11/19/02	21.14		-21.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/09/03	17.90		-17.90	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/03	17.84		-17.84	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	19.79		-19.79	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/09/03	21.02		-21.02	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	18.10	80.50	62.40	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	17.51		62.99	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	20.76		59.74	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	21.38		59.12	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/19/05	17.20		63.30	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/05	12.68		67.82	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/19/05	15.78		64.72	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/24/05	18.68		61.82	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-8	02/02/06	14.57		65.93	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
Cont.	04/27/06	10.48		70.02	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/12/06	13.08		67.42	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/17/06	15.96		64.54	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/07	16.70		63.80	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/09/07	16.25		64.25	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/23/07	18.66		61.84	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/15/07	20.36		60.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/24/08	17.81		62.69	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	05/30/08	19.78		60.72	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/10/08	20.32		60.18	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/01/08	21.81		58.69	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/10/09	22.26		58.24	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

		Depth to	Well	Groundwater		· · · · · · · · · · · · · · · · · · ·				Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)
EX-1	10/24/05	14.37	77. 7 2	63.35	5,000	NA	140	8.4	20	195	360
	02/02/06	1.68		76.04	3,000	NA	3.6	< 0.50	14	55.5	0.63
	04/27/06	1.76		75.96	130	NA	0.98	< 0.50	< 0.50	2.42	< 0.50
	07/12/06	6.88		70.84	2,600	NA	760	15	34	104	200
	10/17/06	9.79		67.93	3,300	NA	810	<5.0[3]	32	68	170
	01/08/07	5.47		72.25	910	NA	9.1	< 0.50	2.7	5.9	1.6
	04/09/07	4.88		72.84	140	NA	1.3	< 0.50	1.2	0.93	< 0.50
	07/23/07	12.17		65.55	220	NA	7.4	< 0.50	1.7	< 0.50	0.55
	10/15/07	NM		NM				Not Samp		5 T = 5	0.22
	03/24/08	5.17		72.55	120	NA	9.1	< 0.50	1.6	0.96	< 0.50
	05/30/08	11.18		66.54	230	NA	11	< 0.50	2.2	0.54	< 0.50
	07/10/08	12.27		65.45	1,100	NA	16	< 0.50	4.9	13.5	< 0.50
	10/01/08	14.46		63.26	780	NA	15	< 0.50	4.3	2.3	0.83
	02/10/09	15.90		61.82	1,500	NA	40	<1.0[3]	11	9.1	2.0
EX-2	10/24/05	16.00	76.96	60.96	42,000	NA	13,000	1,300	1,300	2,580	410
	02/02/06	8.18		68.78	28,000	NA	9,000	1,300	1,100	3,340	200
	04/27/06	5.22		71.74	24,000	NA	4,000	1,800	650	3,900	86
	07/12/06	7.32		69.64	22,000	NA	6,000	1,300	810	3,280	190
	10/17/06	9.22		67.74	31,000	NA	10,000	1,800	1,200	3,400	230
	01/08/07	10.35		66.61	14,000	NA	4,100	440	440	1,140	90
	04/09/07	9.67		67.29	620	NA	160	17	24	58	6.0
	07/23/07	11.46		65.50	610	NA	150	7.5	29	38	5.2
	10/15/07	NM		NM				Not Samp			5.2
	03/24/08	9.98		66.98	4,900	NA	2,500	210	130	390	29
	05/30/08	11.36		65.60	11,000	NA	3,300	330	380	1,100	<25[3]
	07/10/08	11.85		65.11	17,000	NA	4,200	550	490	1,780	<25[3]
	10/01/08	13.57		63.39	22,000	NA	5,900	510	960	3,400	<50[3]
	02/10/09	14.50		62.46	11,000	NA	5,400	93	310	421	41

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
EX-3	10/24/05	14.85	78.87	63.02	20,000	NA	220	21	660	3,110	<10[3]
	02/02/06	NM		NM		Wel	ll Not Monite	ored or Sam	pled - Under Soi		[-]
	04/27/06	NM		NM					Sampled - Covere		
	07/12/06	9.01		68.86	5,700	NA	79	19	120	657	<2.5[3]
	10/17/06	NM		NM		•	Well Not Mo	nitored or S	Sampled - Covere		[-]
	01/08/07	12.31		66.56	970	NA	8.3	0.81	19	19.8	< 0.50
	04/09/07	10.78		68.09	700	NA	8.9	< 0.50	11	6.5	< 0.50
	07/23/07	12.82		66.05	1,500	NA	14	< 0.50	21	8.9	< 0.50
	10/15/07	NM		NM				Not Samp		-1,7	0.50
	03/24/08	NM		NM		•	Well Not Mo		Sampled - Covere	ed	
	05/30/08	14.10		64.77	280	NA	0.99	< 0.50	0.97	1.35	< 0.50
	07/10/08	14.86		64.01	340	NA	1.5	< 0.50	1.6	< 0.50	< 0.50
	10/01/08	16.38		62.49	330	NA	1.1	< 0.50	< 0.50	< 0.50	< 0.50
	02/10/09	NM		NM		1	Well Not Mo	nitored or S	Sampled - Covere		
EX-4	10/24/05	14.93	77.96	63.03	1,900	NA	390	69	8.8	90	11
	02/02/06	NM		NM		Wel	l Not Monito	ored or Sam	pled - Under Soi		
	04/27/06	NM		NM					Sampled - Covere		
	07/12/06	7.37		70.59	6,400	NA	1,400	400	120	1,220	35
	10/17/06	NM		NM		1	Well Not Mo	nitored or S	Sampled - Covere		
	01/08/07	12.92		65.04	3,500	NA	840	51	22	162	25
	04/09/07	12.43		65.53	4,600	NA	730	78	83	410	6.5
	07/23/07	14.20		63.76	7,200	NA	2,600	180	100	560	29
	10/15/07	NM		NM				Not Samp			
	03/24/08	12.14		65.82	230	NA	29	< 0.50	1.8	5.1	0.61
	05/30/08	14.10		63.86	360	NA	110	<1.0[3]	5.0	2.8	3.2
	07/10/08	15.16		62.80	500	NA	150	<1.0[3]	2.6	6.3	3.0
	10/01/08	16.41		61.55	260	NA	96	<1.0[3]	1.5	<1.0[3]	5.2
	02/10/09	18.40		59.56	330	NA	130	< 0.50	2.5	1.2	11

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	GRO[5] (μg/L)	TPHD (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)
Note:											
* = MTBE a	nalyzed using E	PA Method 8(020/8021B						msl = Mean sea leve	j	
	thyl tert-butyl e								μg/L = micrograms		
	al petroleum hy		diesel						her micrograms	per mer	
	line Range Org								NA = Not analyzed		
GRO analyze	ed using EPA M	ethod 8015B	and the remain	ing analytes using E	PA Method 82	.60B			NM = Not measured	I	
[1] Laborato	y indicates the	chromatogram	i does not mate	h the diesel hydroca	rbon range pat	tern.					
[2] Reporting	g limits were inc	reased due to	sample foamin	g.							
[3] Reporting	g limits were inc	reased due to	high concentra	tions of target analys	tes.						
[4] Casing el	evation invalid	- well casing n	nodified (eut) (on April 12, 2005.							
				(TPHG C3-C14+) p	rior to second	quarter 2006.					
Monitoring v	vells surveyed b	y Morrow Sur	veying on Febr	uary 10, 2004, and a	ngain on Nover	nber 29, 200:	j .				
Data prior to	November 19, 2	2002 provided	by GHH Engi	nearing							

Well Number	Date Collected	MTBE (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
S-1	11/19/02	190	<10	<1.0	<1.0	<1.0	NA	NIA	2.1.4	2.7.4
	01/09/03	11	< 5.0	<1.0	<1.0	<1.0	NA NA	NA	NA	NA
	04/14/03	27	<20[2]	<2.0[2]	<2.0[2]	<2.0[2]	NA NA	NA NA	NA	NA
	07/21/03	11	<10[2]	<1.0	<1.0	<1.0 <1.0	NA NA	NA NA	NA	NA
	10/09/03	8.8	6.4	<1.0	<1.0	<1.0	NA <1.0	NA <2.0	NA	NA
	01/15/04	6.0	10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	12	8.5	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	08/10/04	73	28	<1.0	<1.0	<1.0	16	<2.0	<5,000	<5,000
	11/11/04	150	14	<1.0	<1.0	<1.0		<2.0	<5,000	<5,000
	01/19/05	140	14	<1.0	<1.0	<1.0	7.3 3.8	<2.0	<5,000	<5,000
	04/14/05	120	10	<1.0	<1.0	<1.0	3.8 1.4	<2.0	<5,000	<5,000
	07/19/05	60	11	<1.0	<1.0	<1.0	9.6	<2.0	<5,000	<5,000
	10/24/05	37	<10	<1.0	<1.0	<1.0	2.2	<2.0	<5,000	<5,000
	02/02/06	45	<10	<1.0	<1.0	<1.0	1.2	<2.0	<5,000	<5,000
	04/27/06	7.7	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/12/06	12	<10	<1.0	<1.0	<1.0	7.9	<2.0	<5,000	<5,000
	10/17/06	1.6	<10	<1.0	<1.0	<1.0		<2.0	<5,000	<5,000
	01/08/07	15	<10	0.1>	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/09/07	22	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/23/07	52	<10	<1.0	<1.0		<1.0	<2.0	<5,000	<5,000
	10/15/07	50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	03/24/08	29	<10	<1.0	<1.0	<1.0	1.8	<2.0	NA	NA
	05/30/08	43	13	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	07/10/08	4.1	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	NA	NA
	10/01/08	70	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/10/09	53	<10	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	NA NA	NA NA

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (µg/L)	Ethanol (µg/L)
S-2	11/19/02	750	<200[1]	<20[1]	<20[1]	<20[1]	NA	NA	NA	NA
	01/09/03	270	<100[1]	<10[1]	<10[1]	<10[1]	NA	NA	NA	NA
	04/14/03	400	95	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	07/21/03	410	110	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	10/09/03	180	57	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA
	01/15/04	130	48	<4.0[1]	<4.0[1]	<4.0[1]	<4.0[1]	<16[1]	NA	NA
	04/08/04	430	130	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	08/10/04	92	<100[1]	<10[1]	<10[1]	<10[1]	74	<40[1]	<5,000	<5,000
	11/11/04	420	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	<5,000	<5,000
	01/19/05	580	200	<5.0[1]	<5.0[1]	<5.0[1]	8.2	<20[1]	<5,000	<5,000
	04/14/05	510	150	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	07/19/05	72	37	<1.0	<1.0	<1.0	38	<2.0	<5,000	<5,000
	10/24/05	69	33	<1.0	<1.0	<1.0	35	<4.0[1]	<5,000	<5,000
	02/02/06	340	150	<1.0	<1.0	<1.0	3.2	<4.0[1]	<5,000	<5,000
	04/27/06	81	<10	<1.0	<1.0	<1.0	1.3	<2.0	<5,000	<5,000
	07/12/06	180	42	<1.0	<1.0	<1.0	5.8	< 2.0	<5,000	<5,000
	10/17/06	160	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/08/07	64	<10	<1.0	<1.0	<1.0	2.6	< 2.0	<5,000	<5,000
	04/09/07	270	32	<1.0	<1.0	<1.0	1.3	<2.0	<5,000	<5,000
	07/23/07	7.7	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	10/15/07	86	22	0.1>	<1.0	<1.0	3.5	<2.0	NA	NA
	03/24/08	600	180	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA
	05/30/08	340	220	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	NA	NA
	07/10/08	420	150	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	NA	NA
	10/01/08	720	300	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA
	02/10/09	480	140	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Methanol (μg/L)	Ethanol
MW-3	04/08/04	19	7.6	<1.0	<1.0	<1.0	<1.0	<2.0	(μg/L) <5,000	(μg/L) <5,000
	08/10/04	300	2,000	2.2	<2.0[1]	<2.0[1]	270	<8.0[1]	<5,000	<5,000
	11/11/04	690	1,400	<10[1]	<10[1]	<10[1]	140	<40[1]	<5,000	<5,000
	01/19/05	17	19	<1.0	<1.0	<1.0	1.4	<2.0	<5,000	<5,000
	04/14/05	11	25	<1.0	<1.0	<1.0	6.2	<2.0	<5,000	<5,000
	07/19/05	200	1,000	<2.0[1]	<2.0[1]	<2.0[1]	240	<8.0[1]	<5,000	<5,000
	10/24/05	300	750	<5.0[1]	<5.0[1]	<5.0[1]	210	<20[1]	<5,000	<5,000
	02/02/06	560	1,300	2.7	<1.0	<1.0	98	<4.0[1]	<5,000	<5,000
	04/27/06	180	330	<3.0[1]	<3.0[1]	<3.0[1]	220	<12[1]	<5,000	<5,000
	07/12/06	190	24	<2.0[1]	<2.0[1]	<2.0[1]	210	<8.0[1]	<5,000	<5,000
	10/17/06	100	50	<1.0	<1.0	<1.0	21	<2.0	<5,000	<5,000
	01/08/07	85	30	<1.0	<1.0	<1.0	22	< 2.0	<5,000	<5,000
	04/09/07	600	510	<5.0[1]	<5.0[1]	<5.0[1]	67	<20[1]	<5,000	<5,000
	07/23/07	630	920	<5.0[1]	<5.0[1]	<5.0[1]	99	<20[1]	ŃA	NA
	10/15/07	610	840	<5.0[1]	<5.0[1]	<5.0[1]	110	<20[1]	NA	NA
	03/24/08	820	840	3.2	<2.0[1]	<2.0[1]	63	<8.0[1]	NA	NA
	05/30/08	610	880	<5.0[1]	<5.0[1]	<5.0[1]	68	<20[1]	NA	NA
	07/10/08	560	570	3.2	<2.0[1]	<2.0[1]	30	<8.0[1]	NA	NA
	10/01/08	620	1,100	3.5	<2.0[1]	<2.0[1]	94	<8.0[1]	NA	NA
	02/10/09	660	820	4.0	<2.0[1]	<2.0[1]	38	<8.0[1]	NA	NA

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
Number	Collected	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-4	11/19/02	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	01/15/04	< 0.50	7.8	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	01/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	02/02/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06				Well Not Mon	itored or Sam	pled - Covered		-,	2,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/17/06				Well Not Mon	itored or Sam	pled - Covered		2,000	2,000
	01/08/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/09/07	< 0.50	<10	<1.0	<1.0	< 1.0	<1.0	<2.0	<5,000	<5,000
	07/23/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	10/15/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	03/24/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	05/30/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	07/10/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	10/01/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/10/09	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethano				
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/ L)	(μg/ i _)	(μg/L)				
MW-5	11/19/02					Well Damageo	d			<u> </u>				
	01/09/03		Well Damaged											
	04/14/03	Well Damaged												
	07/21/03					Well Damageo	d							
	10/09/03					Well Damageo	d							
	01/15/04	Wen Damaged												
	04/08/04	< 0.50	<10	0.1>	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000				
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000				
	11/11/04	Well Damaged												
	01/19/05	Well Damaged												
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000				
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000				
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000				
	02/02/06	Well Not Monitored or Sampled - Under Soil Pile												
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5.00¢				
	07/12/06	<0.50 <10 <1.0 <1.0 <1.0 <1.0 <4.0[2] <5,000 <5,000 Well Not Monitored or Sampled - Covered												
	10/17/06	Well Not Monitored or Sampled - Covered												
	01/08/07	Well Not Monitored or Sampled - Covered												
	04/09/07		Well Not Monitored or Sampled - Covered											
	04/23/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA				
	07/23/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA				
	10/15/07	< 0.50	<10	<1.0	<0.1>	<1.0	<1.0	<2.0	NA NA	NA NA				
	03/24/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	NA NA	NA NA				
	05/30/08	<1.0[2]	<20[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<8.0[2]	NA NA	NA NA				
	07/10/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	NA NA	NA NA				
	10/01/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA				
	02/10/09	<1.0[2]	<20[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<8.0[2]	NA NA	na Na				
MW-6	10/15/07	Well Destroyed												
	10/01/08	Wen besitoyed												

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	D1PE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (µg/L)
MW-7	11/19/02	3.8	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	2.7	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	1.8	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	2.9	< 5.0	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	2.6	7.9	0.1>	<1.0	<1.0	<1.0	< 2.0	NA	NA
	04/08/04	0.81	9.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	2.1	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04	1.0	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/19/05	1.5	<10	<1.0	<1.0	<1.0	< 1.0	<2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05	1.9	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	02/02/06	1.3	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	< 5,000	<5,000
	10/17/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/08/07	0.99	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/09/07	0.54	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	< 5,000	<5,000
	07/23/07	1.7	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	10/15/07	18.0	<10	<1.0	<1.0	<1.0	0.1>	< 2.0	NA	NA
	03/24/08	0.85	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	05/30/08	0.56	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	07/10/08	< 0.50	<10	<1.0	0.1>	<1.0	<1.0	< 2.0	NA	NA
	10/01/08	0.66	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/10/09	0.67	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA _(μg/L)	EDB (µg/L)	Methanol (μg/L)	Ethanol (μg/L)
MW-8	11/19/02	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	<10[2]	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	01/15/04	< 0.50	9.9	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	11/11/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	01/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	02/02/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/17/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	01/08/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/09/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/23/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	ŃΑ	NA
	10/15/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	03/24/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	05/30/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	07/10/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	10/01/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/10/09	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/ L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
EX-I	10/24/05	360	120	<1.0	<1.0	<1.0	<1.0	<4.0[1]	<5,000	<5,000
	02/02/06	0.63	<10	<1.0	<1.0	<1.0	<1.0	<4.0[1]	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/12/06	200	110	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	10/17/06	170	<100[1]	<10[1]	<10[1]	<10[1]	30	<40[1]	<5,000	<5,000
	01/08/07	1.6	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/09/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/23/07	0.55	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	10/15/07					Not Sampled				1171
	03/24/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	05/30/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	07/10/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	10/01/08	0.83	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/16/09	2.0	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	<2.0[1]	<8.0[1]	NA	NA
EX-2	10/24/05	410	<2,000[1]	<200[1]	<200[1]	<200[1]	<200[1]	<800[1]	<5,000	<5,000
	02/02/06	200	<1,000[1]	<100[1]	<100[1]	<100[1]	<100[1]	<400[1]	<5,000	<5,000
	04/27/06	86	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	<5,000	<5,000
	07/12/06	190	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	<5,000	<5,000
	10/17/06	230	<1,000[1]	<100[1]	<100[1]	<100[1]	400	<400[1]	<5,000	<5,000
	01/08/07	90	<400[1]	<40[1]	<40[1]	<40[1]	<40[1]	<160[1]	<5,000	<5,000
	04/09/07	6.0	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	<2.0[1]	<8.0[1]	<5,000	<5,000
	07/23/07	5.2	<10	<1.0	<1.0	<1.0	<0.1>	<4.0[1]	NA	\3,000 NA
	10/15/07					Not Sampled		11.0[1]	11/1	MA
	03/24/08	29	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	NA	NA
	05/30/08	<25[1]	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	NA NA	NA NA
	07/10/08	<25[1]	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	NA	NA NA
	10/01/08	<50[1]	<1,000[1]	<100[1]	<100[1]	<100[1]	<100[1]	<400[1]	NA	NA NA
	02/10/09	41	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	NA	NA NA

TABLE 2 GROUNDWATER ANALYTICAL RESULTS FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Former USA Service Station No. 57 10700 MacArthur Blvd., Oakland, California

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethano
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EX-3	10/24/05	<10[1]	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	<5,000	<5,000
	02/02/06			W	ell Not Monito	red or Sample	d - Under Soil P		,	-,
	04/27/06				Well Not Moi	nitored or Sam	pled - Covered			
	07/12/06	<2.5[1]	<50[1]	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	10/17/06				Well Not Mor	nitored or Sam	pled - Covered		,	2,000
	01/08/07	< 0.50	12	<1.0	<1.0	0.1>	1.1	< 2.0	<5,000	<5,000
	04/09/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/23/07	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	10/15/07					Not Sampled				. 17.
	03/24/08				Well Not Mor	nitored or Sam	pled - Covered			
	05/30/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	NA	NA
	07/10/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	NA	NA
	10/01/08	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	02/10/09				Well Not Mor	nitored or Sam	pled - Covered			1111
EX-4	10/24/05	11	51	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	02/02/06						d - Under Soil P	ile	2,000	3,000
	04/27/06						pled - Covered			
	07/12/06	35	<200[1]	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	10/17/06						pled - Covered	[*]	5,000	٠,٥٥٠
	01/08/07	25	<100[1]	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	04/09/07	6.5	<100[1]	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	07/23/07	29	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	NA	\\\\\\\\\\\\\\\\\\\\\\\\\\
	10/15/07		•			Not Sampled	[.]	.00[1]	1471	NA
	03/24/08	0.61	<10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	05/30/08	3.2	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	<2.0[1]	<8.0[1]	NA NA	NA NA
	07/10/08	3.0	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	<2.0[1]	<8.0[1]	NA NA	NA NA
	10/01/08	5.2	25	<2.0[1]	<2.0[1]	<2.0[1]	<2.0[1]	<8.0[1]	NA NA	NA NA
	02/10/09	11	27	<1.0	<1.0	<1.0	2.0	<4.0[1]	NA NA	NA NA

TABLE 2 GROUNDWATER ANALYTICAL RESULTS FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Former USA Service Station No. 57 10700 MacArthur Blvd., Oakland, California

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (µg/L)	Ethanol (μg/L)
μg/L = microgram NA = Not analyze [1] Reporting lim	ed	due to hìgh concer		analytes		TBA = Tertiary b DIPE = Di-isopro ETBE = Ethyl ter	pyl ether			
[2] Reporting fan	its were increased of	due to sample foar	ming			1,2-DCA = 1,2-D EDB = 1,2-Dibro				

GRAPH A
Groundwater Elevations Over Time (Wells Grouped by Screen Intervals)

Former USA Station No. 57, 10700 March 1981 Control of the Cont

GRAPH B

Groundwater Elevations Over Time (Wells Grouped by Length of Screen Penetrating Bedrock)

Former USA Station No. 57, 10700 M. at a Physical Research Control of Screen Penetrating Bedrock)

TOO KON OL

INFERRED DIRECTION OF GROUND WATER FLOW

FORMER USA SERVICE STATION NO. 57

OAKLAND, CALIFORNIA

EXTRACTION WELL WITH MW-4 & MW-5 GROUNDWATER ELEVATION CONTOUR MAP 3rd QUARTER 2006

1B

FIGURE

PROJECT NO. 2007-0057-01

2007-0057-01

3rd QUARTER 2006

EXTRACTION WELL GROUNDWATER ELEVATION CONTOUR MAP, 3rd QUARTER 2007

PROJECT NO. 2007-0057-01

MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MANAS ABANDONED MONITORING WELL LOCATION

(85.55) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

-64.0 - WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 7/23/07

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

EXTRACTION WELL WITH MW-4 & MW-5 GROUNDWATER ELEVATION CONTOUR MAP 3rd QUARTER 2007

FIGURE

2B

PROJECT NO. 2007-0057-01

USASTASCM

SCALE

FIGURE

3C

PROJECT NO. 2007-0057-01

GROUNDWATER ELEVATION CONTOUR MAP

1st QUARTER 2008

LEGEND

♠ MW-3 MONITORING WELL LOCATION

● EX-1 EXTRACTION WELL LOCATION

MW-6 ABANDONED MONITORING WELL LOCATION

GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

--- 64.0--- WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 5/30/08

SCALE

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

EXTRACTION WELL WITH MW-4 & MW-5 GROUNDWATER ELEVATION CONTOUR MAP, 2nd QUARTER 2008

FIGURE

4B

PROJECT NO. 2007-0057-01

ENVIRONMENTAL, INC.

LEGEND

♠ MW-3 MONITORING WELLLOCATION

EX-1 EXTRACTION WELL LOCATION

MINES ABANDONED MONITORING WELL LOCATION

(80.00) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

-61.0 WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 5/30/08

40 FT SCALE

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA MONITORING WELL (WITHOUT MW-4 & MW-5) GROUNDWATER ELEVATION CONTOUR MAP 2nd QUARTER 2008

FIGURE 4C PROJECT NO.

2007-0057-01

STRATUS ENVIRONMENTAL, INC.

CONTOUR MAP, 3rd QUARTER 2008

2007-0057-01

SAISTASCM

LEGEND

♠ MW-3 MONITORING WELL LOCATION

● EX-1 EXTRACTION WELL LOCATION MAY-6 ABANDONED MONITORING WELL LOCATION

(65.45) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

—84.0— WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL.

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 7/10/08

ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

EXTRACTION WELL WITH MW-4 & MW-5 GROUNDWATER ELEVATION CONTOUR MAP 3rd QUARTER 2008

FIGURE

5B

PROJECT NO. 2007-0057-01

LEGEND

♠ MW-3 MONITORING WELL LOCATION

■ EX-1 EXTRACTION WELL LOCATION

MANUE ABANDONED MONITORING WELL LOCATION

GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

-63.0 - WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

WELLS MEASURED: 10/01/08

NOTE: LOCATIONS OF ALL CURRENT AND FORMER SITE FEATURES IS APPROXIMATE

ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA EXTRACTION WELL WITH MW-4 & MW-5 GROUNDWATER ELEVATION CONTOUR MAP 4th QUARTER 2008

FIGURE

6B

PROJECT NO. 2007-0057-01

....

USAISTACIM

PROJECT NO. 2007-0057-01

1st QUARTER 2009

APPENDIX C HISTORICAL SOIL ANALYTICAL DATA

TABLE OF RESULTS

ND = None Detected

Parts per Million (dry soil basis)

Laboratory Number	Sample Identi	e ification	Date Received	â	Total Hydrocarbons
	Projec Oaklan	t 100-22.01			
57-02-076-01	A	13.5-15	2/17/87		16.
S7-02-076-02	В	18.5-20'	2/17/87		4.
S7-02-076-03	Ċ	18.5-20'	2/17/87		ND.
S7-02-076-04	D	9-10.5	2/17/87		2.
\$7-02-076-05	: 5 S-1 29	19-20.5	2/17/87		42.
S7-02-076-06	S-1	19-20.5	2/17/87		16.
S7-02-076-07	S-2	24-25.5	2/17/87		600:
S7-02-076-09	Fill Bo	x	2/17/87		410.
			etection Limit		2.

TABLE 4

SOIL ANALYTICAL DATA FORMER USA STATION #57 10700 MacARTHUR BOULEVARD OAKLAND, CALIFORNIA

Well ID	Date	Depth (feet)	TPH G (ppm)	TPH D (ppm)	Веплепе (прт)	Toluene (ppm)	Ethyl- benzeue (ppm)	Total Xylene (ppm)
S-1	02/12/87	20.5 20.5	42 16	-	-		-	-
S-2	02/12/87	24.5	600	_	-	-	-	-
B-1	02/28/95	5.5 9.5 13.0 20.0 25.0 31.0 35.0 40.5	ND 44 540 ND 3.9 ND ND ND	- 55 - - - - ND	ND 0.12 2.6 0.012 0.048 ND 0.014 ND	ND ND 10 0.016 0.14 0.011 0.018 ND	ND 0.14 7.5 ND 0.062 0.0057 0.012 ND	ND 0.4 48 0.029 0.37 0.045 0.079 ND
B-2	03/01/95	5.0 10.5 16.0 21.0 26.0	ND ND 16 110 240	- - - - 22	ND ND 0.057 0.96 0.76	ND ND 0.028 0.41 1.4	ND ND 0.029 0.33 0.85	ND ND 1.2 1.5 1.9
B-3	03/01/95	11.0 15.5 20.5	ND 10 15	- - 1.3	ND 0.044 0.041	ND 0.11 0.37	ND 0.079 0.15	ND 0.63 1.1
B-4	03/02/95	3.0 6.0 12.0	ND ND ND	- ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
B-5	03/02/95	5.5 12.0	ND ND	- ND	ND ND	ND ND	ND ND	ND ND
B-6	03/02/95	4.0 5.5 12.0	33 2.6 ND	5.3	0.093 0.062 ND	0.065 ND ND	0.33 0.030 ND	2.0 0.047 0.022

TABLE 4 (Continued)

SOIL ANALYTICAL DATA FORMER USA STATION #57 10700 MacARTHUR BOULEVARD OAKLAND, CALIFORNIA

Well ID	Date	Depth (feet)	TPH G (ppm)	TPH D (ppm)	Benzene (ppm)	Toluene (ppm)	Ethyl- benzene (ppm)	Total Xylene (ppni)
В-7	03/02/95	3.5 5.0 12.0	ND ND ND	ND - -	ND ND ND	MD MD MD	ND ND ND	ND ND ND
B-8	03/02/95	3.0 5.5 12.0	17 ND 2.0	- ND -	0.012 0.019 0.042	0.021 ND ND	0.12 0.050 ND	0.16 ND 0.016
MW-3	02/28/95	5.5 11.5 13.5 15.5 21.5 24.5 29.5 39.5	ND 1.9 240 110 3.0 ND ND ND	- 12 - - - -	ND 0.026 0.41 0.37 0.26 0.030 ND ND	ND 0.011 0.64 3.8 0.24 0.0069 0.0054 ND	ND 0.0061 2.0 1.5 0.059 0.0056 ND ND	ND 0.019 5.4 10 0.50 0.016 0.0092 ND
MW-4	11/21/95	10.0	ND	5.0	ND	ND	ND	ND
MW-5	11/21/95	10.0 15.0	ND ND	5.2 4.2	ND ND	ND ND	ND ND	ND ND
MW-6	11/21/95	10.0	ND	4.4	ND	ND	ND	ND
MW-7	11/21/95	10.0 15.0 20.0	ND ND 25	4.7 4.3 8.7	ND ND 0.071	ND ND 0.11	ND ND 0.043	ND , ND ,0.1
MW-8	11/21/95	10.0 15.0 20.0	ND ND ND	5.5 5.1 4.5	ND ND ND	ND ND ND	ND ND ND	ND ND ND

TPH G

Total petroleum hydrocarbons in the gasoline range

TPH D

Total petroleum hydrocarbons in the diesel range

ppm

Parts per million

ND

Not detected at the method detection limit

Not measured/not analyzed

Boring locations are presented in Alton Geo Sciences' "Supplementary Site Assessment Report"

which are included in Appendix C.

TABLE 5

SOIL ANALYTICAL DATA - TANK REMOVAL FORMER USA STATION #57 10700 MacARTHUR BOULEVARD OAKLAND, CALIFORNIA

	建筑型域		Depth	TPH G	TPH D	Веплепе	Tolueñe	Ethyl-	Total	TTLC
Sample	Sample ID	Date	Dehm		A WAS		建洲东 沙克	benzene	Xylene	Lead
Location	유명하였다.		(feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
										_
Product	PI-E-3.5	07/19/94	3.5	ND(0.2)	ND(1.0)	ND(0.005)	ND(0.005)			7 4
Trench	PI-2	07/19/94	3.5	4,500	ND(50)	ND(1.0)	6	60	440	5
	P1-3	07/19/94	3.5	ND(0.2)	ND(1.0)	ND(0.005)	ND(0.005) ND(0.005)	VD(0.002)	MD(0.003)	6
	PI-4	07/19/94	4	ND(0.2)	ND(1.0)	ND(0.005)	ND(0.005)			7
	PI-5	07/19/94	3.5	ND(1.0)	ND(1.0)	ND(0.005) 0.02	0.04	0.07	0.19	
	PI2-0	09/19/94	9	15	-	0.02	0.04	. 0.07	- U.17	
		07/10/04	12.5	_	60	ND(0.005)	0.015	0.007	0.008	-
Tank Field	TP1	07/19/94 07/19/94	12.5		230	ND(1.0)	0.79	2.2	0.7	-
	TP2	07/19/94	13	94		0.18	0.25	1	5.9	.3
İ	TP3 TP4	07/19/94	13	1400	_	1.9	3.5	12	150	4
1	TP5	07/19/94	13	300	<u> -</u>	ND(0.5)	0:74	4.8	20	3
	TP6	07/19/94	13	0.7	-	ND(0.005)	ND(0.005)	0,006	ND(0.005)	3
	TP7	07/19/94	13	ND(0.2)		ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	3
Tank Cavity	TC-1	08/19/94	16	ND(0.2)	1 -	ND(0.005)	ND(0.005)			•
	TC-2	08/19/94	16	93	-	ND(1.0)	0.28	0.63	3.1	-
·	TC-3	08/19/94	17.5	2.4	I	0.008	0.02	0.02	0.11	•
	TC-4	08/19/94	15.5	0.7	2	ND(0.005)	ND(0.005)		7.9	~
	TC-5	08/19/94	17	190	-	0.17	0.38 ND(0.005)	0.99		•
•	TC-6	08/19/94	18	ND(0.2)	-	ND(0.005)	ND(0.005)			•
	SM-1	08/19/94	19.5	0.4		ND(0.005)	ND(0.003)			
İ	TC2-1	09/27/94	417 (7	ND(0.2)	-	ND(0.005) 0.06	0.019		ND(0.005)	
1	TC2-2	09/27/94	13	13	-	ND(0.005)	ND(0.005)			_
	TC2-3	09/27/94	16	ND(0.2)		ND(0.005)	ND(0.005)			
ĺ	TC2-4	09/27/94	13	ND(0.2) 100	200	0.13	0.12	1.0	0.26	_ [
	TC2-5	09/27/94	12 13	6.3	37	ND(0.005)	ND(0.005)		1	
	TC2-7	09/27/94	13	ND(1.0)	16	ND(0.005)			ND(0.005)	_
	TC2-8 TC2-9	09/27/94 09/27/94	19	0.4	-	ND(0.005)			ND(0.005)	-
	TC2-11	09/27/94	13	2200	_	9,6	21	40	260	_
	TC2-12	09/27/94	12	130	-	0.33	0.29	0.66	7.9	-
ļ	TC2-13	09/27/94	20	620	-	1.1	4.9	6.4	66	-
1	TC2-14	09/27/94	11	92		0.096	0.1	0.17	1.7	-
	TC2-15	09/27/94	17	ND(0.2)	-	ND(0.005)			ND(0.005)	-
	TC2-16	09/27/94	14	ND(1.0)	-	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	-
(Alton)		10/94	12-13	300	330	-	-	-	-	-
(Alton)	TC3-4	10/94	12-13	510	ND	-	-	-	-	-
(Alton)	TCE-5	10/94	12-13	2400	ND	-	-	-	-	-
(Alton)	TC3-6_	10/94	12-13	940	ND	-	-	-	-	-
			_			0.10		_	**	
Dispenser	DI-1	09/27/94	3.5	720	•	0.19	2	9	53 33	-
Island	DI-2	09/27/94	3.5	280	-	0.12 ND(0.005)	0.8	4.6	33 ND(0.005)	_
-	D1-3	09/27/94	3	ND(0.2)	-	0.7	2.5	13	(500.0) 81	
	DI-4	09/27/94	3	590 570	-	0.7	1.5	2.7	17	
	DI-5	09/27/94	3.5	1800		0.72	5.2	31	180	_
	DI-6	09/27/94	3.5	1 1000	<u> </u>	1 0.12	<u> </u>	1, 2,	1 100	<u> </u>

SOIL SAMPLES BY WESTERN GEO-ENGINEERS UNLESS OTHERWISE NOTED

TPH G Total petroleum hydrocarbons in the gasoline range
TPH D Total petroleum hydrocarbons in the diesel range

ppm Parts per million

ND Not detected at the method detection limit

Not measured/not analyzed

WEGE: TABLE 1

USA PETROLEUM CORPORATION . 10700 HACARTHUR BLVD., CAKLAND, CALIFORNIA

SOIL SAMPLE LABORATORY RESULTS

SAMPLE LOCATION	SAMP:	LE DATE SAMPLED				TPH,G	ТРН, С	ppm BENZEN	PPm	BENZENI PPM	XYLENZ E ppm	LEAD	STLC LEAD		VOL.ORGA
****		**********	******	*		======		*****				ppm	PPM	mqq	** ppm
D								•							*****
		5 07/19/94	3.5	WEGE	AEN	<0.2	<1.0	<.005	<.005	<.005	<.005	7			
P_L TRNCH		57/19/94	3.5	WEGE	AEN	4500	<50	<1.0	6	60	440 .	4			•
P_L TRNCK		07/19/94	3.5	WEGE	AEN	<0.2	<1.0	<.005	<.005	<.005	<.005	5			
P_L TRNCH		07/19/94	4	HEGE	AEN	<0.2	<1.0	<.005	<.005	<.005	<.005	6			
P_L TRNCH	P1-5	C7/19/94	3.5	WEGE	AEN	<1.0	<1.0	<.005	<.005	<.005	<.005	7			
TNK FIELD															
TNK FIELD	TP1	07/19/94	12.5	WEGE	AEN		60	< .005	0.015	0.007	0.009			<0.2	
SK LIETO	TP2	07/19/94	12.5	WEGE	AEN		230	<1.0	0.79	2.2	0.7			• 0.77	ND
THE FIELD	TP3 TP4	07/19/94	13	HEGZ	AEN	94		0.18	0.25	1	5.9	3			
TNK FIELD	TPS	07/19/94	13	HEGE	AEN	1400		1.9	3.5	12	150	4			
TNK FIELD	TPS	07/19/94	23	HEGE	AEN	300		₹.5	0.74	4.8	25	3			NTD .
DIK FIELD		07/19/94	13	WEGE	AEN	0.7		< .005	₹.005	0.006	<.005	3		•	
11020	TP7	07/19/94	13	WEGE	AEN	<0.2		<.005	<.005	<.005	< , 005	3			
ONK CAVTY	TC- 1	05/19/94													
TIK CAVTY		28/19/94	7.6	WEGE	AEN	<0.2		< .005	<.005	<.005	<.005				
MK CWALA .			16	WEGE	AEN	93		<0.01	0.28	0.63	3.1			•	
אא כאיזן			17.5	HEGS	AEH	2.4	1	0.006	0.02	0.02	0.11				
NK CAVITY 1			15.5	WEGE	AEN	0.7	2	<.005	<.005	<.005	<.005				
NE CAVTY T		26/19/94	17	WEGE	AEN	190		0.17	0.38	0.99	7.9				
NK CAVITY S		05/19/94	18	WEGE	AEN	<0.2		<.005	<.005	<.005	<.005				
or cyall 2	27-1	CS/18/94	19.5	HEGE	AEN .	0.4	,	<.005	<.005	<.005	<.005				
											, .				
IK CYALA I			17	WEGE	AEN	<0.2		<.005	<.005	<.005	<.005	,			
AK CYALA I				WEGE	AEN	13		0.06	0.019	0.026	<.005				
K CAVTY T			16	WEGE	AEN	€0.2		<.005	<.005	<.005	<.005				
K CAVTY TO				WEGE	AEN	<0.2		<.005	<.005	<.005	<.005				
K CAVTY TO				WEGE	AEN	100	200	0.13	0.12	0.1	0.25			,	
K CAVTY TO				WEGE	AEN	6.3	37	<.005	<.005	<.005	<.005				
K CAVTY TO			13	WEGE	AEN	<1.0	16	<.005	<.005	<.005	<.005				
K CAVIY TO			19 1	WEGE	AEN	0.4		<.005	<.005	<.005	<.005				
X CAVTY TCZ			13 1	HEGE	AEH	2200		9.6	21	40	260				
CAVITY TC2				HEGE	AEN	130		0.33	0.29	0.66	7.9				
CAVITY TCZ			20 F	HEGE	AEN	620		1.1	4.9	6.4	66				
CAVTY TC2					AEN	92		0.096	0.1	0.17	1.7				
CAVITY TC2					AEN	<0.2		<.005	<.005		<.005				
CAVTY TC2	-16 09	1/27/94 1	L4 N	iege j	AEN	<1.0		<.005	.005		.005				
t Ter															
P ISL DI.				EGE ;	LEN	720		0.19	2	9	5 3				
PISL DI-			. 5 H	EGE 2	ŒN.	280		0.12	0.8		33				
P ISL DI-	3 08	/19/94	3 W	EGE A	EN .	0.2					.005				

TABLE 2
SOIL ANALYTICAL RESULTS
FORMER USA GASOLINE STATION 57
10700 MACARTHUR BOULEVARD, OAKLAND, CA

Sample ID	Sample Depth (feet bgs)	Date Collected	TPHG (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	TBA (mg/Kg)	DIPE (mg/Kg)	ETBE (mg/Kg)	TAME (mg/Kg)	1,2-DCA (mg/Kg)
Boring EX-1													
EX-1-11	11	10/6/05	23	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.50	<0.020	<0.020	<0.020	<0.020
EX-1-16	16	10/6/05	100	<0.020*	<0.020*	<0.020*	0.034	<0.020*	<2.0*	<0.040*	<0.040*	<0.040*	<0.020
EX-1-21	21	10/6/05	120	0.018	<0.010*	0.34	0.79	0.033	<1.0*	< 0.020	<0.020	<0.020	<0.040
Boring EX-2													
EX-2-11	11	10/7/05	6	< 0.005	<0.005	<0.005	0.0113	<0.005	<0.50	<0.020	<0.020	<0.020	<0.020
Boring EX-3													
EX-3-11	11	10/6/05	<1.0	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.50	<0.020	<0.020	<0.020	<0.020
EX-3-15.5	15.5	10/6/05	<1.0	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.50	<0.020	<0.020	<0.020	<0.020
EX-3-20.5	20.5	10/6/05	<1.0	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.50	<0.020	<0.020	< 0.020	<0.020
Boring EX-4													
EX-4-6	6	10/6/05	1.4	0.020	<0.005	0.013	<0.005	<0.005	<0.50	<0.020	<0.020	<0.020	<0.020
EX-4-11	11	10/6/05	26	0.064	0.015	0.067	0.56	< 0.005	<0.50	<0.020	<0.020	<0.020	<0.020
EX-4-16.5	16.5	10/6/05	510	1.1	3.6	2.2	43	<0.20*	<20*	<0.40*	<0.40*	<0.020	<0.020
EX-4-21	21	10/6/05	<1.0	0.068	< 0.005	0.013	0.029	< 0.005	< 0.50	<0.020	<0.020	<0.020	<0.020
EX-4-25.5	25.5	10/6/05	18	<0.005	<0.005	0.008	0.178	<0.005	<0.50	< 0.020	< 0.020	<0.020	<0.020

TABLE 2 SOIL ANALYTICAL RESULTS FORMER USA GASOLINE STATION 57 10700 MACARTHUR BOULEVARD, OAKLAND, CA

	Sample	-		_		Ethvl-	Total						
Sample ID	Depth	Date	TPHG	Benzene	Toluene	benzene	Xvlenes	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA
•	(feet bgs)	Collected	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)

Explanation

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl tertiary butyl ether

TBA=Tertiary butyl alcohol

DIPE =Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA=1,2-Dichloroethane

bgs = below ground surface

mg/Kg = milligrams per kilogram

* = Reporting limits increased due to high concentrations of target analytes

Analytical Methods

TPHG analyzed using EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, TAME, and 1,2-DCA analyzed using EPA Method SW8260B

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

TABLE 2
SOIL ANALYTICAL RESULTS
FORMER USA GASOLINE STATION 57
10700 MACARTHUR BOULEVARD, OAKLAND, CA

Sample ID	Sample Depth (feet bgs)	Date Collected	GRO (mg/Kg)	Benzene (mg/Kg)	Tolucne (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	TBA (mg/Kg)	DIPE (mg/Kg)	ETBE (mg/Kg)	TAME (mg/Kg)
Boring AS-1												
AS-1-11 Ft.	11	8/23/07	80	<0.02*	<0.02*	0.057	0.041	<0.02*	<2.0*	<0.04*	<0.04*	<0.04*
AS-1-16 Ft.	16	8/23/07	500	<0.2*	<0.2*	8.8	1.72	<0.2*	<20*	<0.4*	<0.4*	<0.4*
Boring AS-2												
AS-2-16 Ft.	16	8/23/07	1.6	0.0058	< 0.005	< 0.005	< 0.005	< 0.005	< 0.50	<0.020	<0.020	<0.020
AS-2-21 Ft.	21	8/23/07	19	0.67	0.018	0.43	1.31	<0.01*	<1.0*	<0.02*	<0.02*	<0.02*
AS-2-26 Ft.	26	8/23/07	1.3	0.16	<0.005	0.029	0.031	< 0.005	< 0.50	< 0.020	<0.020	< 0.020

Explanation

GRO = Gasoline range organics

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl tertiary butyl ether

TBA=Tertiary butyl alcohol

DIPE =Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

bgs = below ground surface

mg/Kg = milligrams per kilogram

* = Reporting limits increased due to high concentrations of target analytes

Analytical Methods

GRO analyzed using EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, and TAME analyzed using EPA Method SW8260B

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

APPENDIX D SOIL EXCAVATION MASS REMOVAL CALCULATIONS

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Mass of TPHG, Benzene, and TPHD in Stockpiled Soil

Basis	Avg Conc mg/kg	Soil Volume cu.ft	Soil Density Kg/cu.ft	Soil Mass Kg	Mass Kg
TPHG	192,46	20,925.00	36,85	771,086.25	148.40
Benzene	0,09	20,925.00	36,85	771,086.25	0.07
TPHD	376.40	1,350.00	36,85	49,747.50	18.72

Notes:

- 1. Average concentrations based on data from Western Geo-Sciences (1994).
- 2. Stockpile for TPHG and benzene assumed to be 775 cubic yards.
- 3. Stockpile for TPHD assumed to be 50 cubic yards.

APPENDIX E

DUAL PHASE EXTRACTION AND DUAL PHASE EXTRACTION/AIR SPARGE REMEDIATION DATA

TABLE 1 DPE TEST USING WELL S-2

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	TE	Appl	Air	Totalizer	GW	Inf	Oper			in	duced	Vacuun	n ("WC)	&/or DT	W (feet	bgs) Dat	a in Obs	ervatio	n Welle			
Date & Time		Vac	Flow	Reading	Ext Rate	PID	Temp		S-1			MW-3		MW		MW		citatio	MW-7		MV	
7/0/0004 7 00	hh:mm	"Hg	cfm	gallons	gpm	ppmv	deg F	Vac	DTW	DD	Vac	DTW	QQ	DTW	DD	DTW	ממ	Vac	DTW	מם	DTW	1
7/6/2004 7:00				42,120					18.13		"	15.70		12.26		18.07			18.19	UU		DD
7/6/2004 8:30						Start I	Jp Test u	ısing we	□ S-2, DT	W =20.	26 feet				meter r	eading =	R30 6	··	10.19		19,55	<u> </u>
7/6/2004 9:00	00:30	25.50	87	42,120		2.9	1,450	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NINA			Г 	T :
7/6/2004 10:00	01:30	NM	NM	42,120		23.0	NM	0.35	NM	NM	NM	NM	NM	NM	NM	NM		NM	NM	NM	NM	NM
7/6/2004 11:00	02:30	26.25	88	42,130	0.07	29,0	1,466	1.30	18.38			15.70		12.27			NM	NM	NM	NM	NM	NM
7/6/2004 12:00	03:30	26.50	87	42,200	0.33	24.0	1,444	0.50	18.58						0.01	18.08	0.01	0.0	18.30		19.58	0.03
7/7/2004 6:30	22:00	23.50	86	42,820	0,47		<u> </u>					15.69		12.25	-0.01	18.05	-0.02	0.0	18.35	0.16	19,51	-0.04
7/7/2004 6:50	22:20	20.00	00	42,020	0,47	7.1	1,456	0.20	18.65	0.52	0.0	15.70	0.00	12.26	0.00	18.04	-0.03	0.0	18.38	0.19	19,55	0.00
7772004 0.50	22.20						·			Disco	ntinue	Test on	S-2					*****	<u> </u>			
Distance to Extrac	tion Well	S-2							50		***	60		13	5	17	0		70		10	\/\
Screening Interval	ening Interval 20 - 40 (S-2)								20 - 40			24 - 44		10 - 4	10.5	10 -	40		10 - 40.5		10 -	

Notes:

TE - Time Elapsed, hours: minutes

Appl - Applied

Oper - Operating

Vac - Vacuum

DTW - depth to groundwater " WC - Inches water column

ppmv - parts per million by volume

Temp - Temperature deg F - degree Farenheit

Ext. - Extraction

cfm - cubic feet per minute

Inf - Influent

DD - Drawdown

GW Ext - Groundwater Extraction

PID - Photo Ionization Detector

All induced vacuum measured in observation wells were in "WC

gpm - gallons per minute

"Hg - Inches Mercury

bgs - below ground surface

NM - Not measured

TABLE 2 **DPE TEST USING WELL S-1**

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

5 . 5	TE	Appl	Air	Totalizer	GW	Inf	Oper			lr	nduced	Vacuun	n ("WC)	&Jor D1	⊤W (feet	bgs) Da	ıta in Ob	servat	ion Well	s		
Date & Time		Vac	Flow	Reading	Ext Rate	PID	Temp.		S-2			MW-3			V-4	MW	1		MW-7		MV	 V-8
7.7/0004.7.05	hh:mm	"Hg	cfm	gallons	gpm	ppmv	deg F	Vac	DTW	DD	Vac	DTW	DD	DTW	DD	DTW	DD	Vac	DTW	DD	DTW	
7/7/2004 7:05			····						Star	t Up Te	st usin	g Well S	 i-1		L			100	DIN	ענט	חואא	DD
7/7/2004 7:05		NM	NM	42,820	NM	NM	NM	NM	NM		NM	15.70		12.26		18.07			18.38		19.55	
7/7/2004 7:30	00:25	24.00	86	42,890	2.80	1.5	1,459	+7.4	30.08		NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	19.55 NM	
7/7/2004 8:00	00:55	24.00	87	42,890		0.6	1,456	+4,4	25.35	-4.73	0.0	15.70	0,00	12.25		18.06		0.0	18.38		19.55	
7/7/2004 9:00	01:55	24.00	87	42,960	0.61	0.0	1,457	+0.2	22.16								- 1		18.38			
7/7/2004 9:05	02:00				······	****						Test or		[0.01	10.07	0.00	0.0	10.30	0.00	19.55	0.00
Distance to Extra	ction Wel	l S-1						•	50			60		11	10	17	0				10	
Screening Interve	al	20 - 40	(S-1)						2 0 - 40			24 - 44	****	10 -	40.5	10 -	40		10 - 40.5		10 -	

Notes:

TE - Time Elapsed, hours: minutes

cfm - cubic feet per minute

Appl - Applied

Inf - Influent

Oper - Operating

DD - Drawdown

Vac - Vacuum

GW Ext - Groundwater Extraction

DTW - depth to groundwater

PID - Photo Ionization Detector

" WC - Inches water column

All induced vacuum measured in observation wells were in "WC

ppmv - parts per million by volume

gpm - gallons per minute

Temp - Temperature

"Hg - Inches Mercury

deg F - degree Farenheit

bgs - below ground surface

Ext. - Extraction

NM - Not measured

TABLE 3 DPE TEST USING WELL MW-3

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	TE	Appl	Air	Totalizer	GW	Inf	Oper				Indu	ced Vacı	W") mut	/C) &/or [TW (fe	et bas) D	ata in ∩	hearvat	ion Mali			
Date & Time		Vac	Flow	Reading	Ext Rate	PID	Temp		S-1			S-2		MW		MW		D3CI VAL	MW-7		MU	N-8
7/1/2004 0 05	hh:mm	"Hg	cfm	gallons	gpm	ppmv	deg F	Vac	DTW	DD	Vac	DTW	DD	DTW	DD	DTW	DD	Vac	DTW	DD	DTW	DD
7/7/2004 9:25									,	Start Up	Test us	ing Well	MW-3	·		1		144	10111	טט	DIAA	T DD
7/7/2004 9:25	0.00	NM	NM	42,960		NM	NM	NM	NM		NM	22.16		12.26		18.07		NM	18.38		40.55	Γ
7/7/2004 10:00	00:35	24.50	87	42,960		0.0	1,450	0.0	NM		NM	NM		NM		NM			 		19.55	
7/7/2004 10:30	01:05	25.50	87	42,960		0.0	1,447		19.38			21.00				<u> </u>		NM	NM	:	NM	NM
7/7/2004 11:30	02:05	26.00	87	42,960		0.0	1,456	ļ				 			0.00		-0.01	0,0	18.36	-0.02	19.53	-0.02
7 <i>[7]</i> 2004 11:35	~·		<u> </u>	12,000	<u></u>		<u></u>	<u> </u>	<u> </u>	-0.27	+0.2	20.91	-1.25	12.25	0.00	18.06	-0.01	0.0	18.35	-0.03	19.53	-0.02
17772004 11.50	02.10			·		Discont	inue test	t on M\	N-3													
Distance to Extrac	tion Well	MW-3		-					60			60		17	 0	22	<u> </u>		120			<u>L</u>
Screening Interval		24-44 (20 - 40			20 - 40		10 - 4		10 -			10 - 40.5			50 - 35			

Notes:

TE - Time Elapsed, hours: minutes

cfm - cubic feet per minute

Appl - Applied

Inf - Influent

Oper - Operating

DD - Drawdown

Vac - Vacuum

GW Ext - Groundwater Extraction

DTW - depth to groundwater " WC - Inches water column

PID - Photo Ionization Detector

ppmv - parts per million by volume

All induced vacuum measured in observation wells were in "WC

Temp - Temperature

gpm - gallons per minute

deg F - degree Farenheit

"Hg - Inches Mercury bgs - below ground surface

Ext. - Extraction

ngs - nelow ground su NM - Not measured

TABLE 4 COMBINED DPE TEST USING WELLS S-1, S-2, AND MW-3

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	TE	Appl	Air	Totalizer	GW	Inf	Oper				***************************************								
Date & Time		Vac	Flow	Reading	Ext Rate	PID	Temp	MV	V-4	MV	V-5	MV	V-6		MW-7			NANA/ O	
7.77.000 (hh:mm	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	Vac	DTW	Vac	DTW	DD	Vac	MW-8 DTW	DD
7/7/2004 11:35							S	tart Test	on S-1,	S-2 and	MW-3		I		10111	_ 50	Yac	DIV	_ טט
7/7/2004 11:35	0.00	NM	NM	42,960	NM	NM	NM	12.25	**	18.06		NM	DRY	NM	18.35		NM	19,53	
7/8/2004 6:15	18:40	22.25	87	44,610	1.47	4.0	1,460	12.25	0.00	18.11	0.05	0.0	DRY	0.0	18.63			 	
7/9/2004 6:00	42:25	23.00	86	46,960	0.92	2.3	1,440	 	ļ				··········		 	0.28	0.0	19.70	0.17
7/10/2004 6:00				 			1,440	12.33	0.08	18.18	0.12	0.0	DRY	0.0	18.72	0.37	0.0	20.02	0.49
		23.00	86	48,690	0.43	3,5	1,460	12.41	0.16	18.26	0.2	0.0	DRY	0.0	18.78	0.43	0.0	20.32	0.79
7/11/2004 6:00	90:25	21.00	86	50,760	0.38	3.2	1,456	12.41	0.16	18.27	0.21	0.0	DRY	0,0	18.81	0.46	0.0	20.58	1.05
7/12/2004 6:30	114:55	22.50	86	52,780	0.29	3.0	1,453	12.42	0.17	18.32	0.26	0.0	DRY	0.0	18.84	0,49	0.0		
7/15/2004 6:00	186:25	22.50	86	58,760	0,53	4.0	1,446	12.27	0.02	18.36		0.0	DRY	0.0				20.75	1.22
7/19/2004 5:45	282:10	23.25	86	66,320	0.45	3.2	1,459								18.90	0.55	0,0	21.17	1.64
7/22/2004 5:45			·				ļ	11.67	-0.58	18.23	0.17	0.0	DRY	0,0	18.98	0.63	0.0	21.50	1.97
		23.25	86	71,870	0.26	3.0	1,458	12.05	-0.20	18,33	0.27	0.0	DRY	0.0	19.03	0.68	0.0	21.65	2.12
7/25/2004 10:36				77,720	0.23			Dis	continu	ie DPE	Test. [PE uni	t hour	meter	reading	= 1.29	7.7		
Distance to Nearest	Extraction	Well			T	10		70	T	10		70			50				
Screening Interval	·							10 -	40.5	10	- 40		40.5		10 - 40.5				
Votes:										L								10 - 35	

Notes:

TE - Time Elapsed, hours: minutes

Appl - Applied Oper - Operating

Vac - Vacuum

DTW - depth to groundwater

WC - Inches water column

ppmv - parts per million by volume

Temp - Temperature deg F - degree Farenheit

Ext. - Extraction

cfm - cubic feet per minute

Inf - Influent

DD - Drawdown

GW Ext - Groundwater Extraction

PID - Photo Ionization Detector

All induced vacuum measured in observation wells were in "WC

gpm - gallons per minute

"Hg - Inches Mercury

bgs - below ground surface

NM - Not measured

TABLE 5 SOIL VAPOR ANALYTICAL RESULTS

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	Sample Type	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
07/06/04	1030	Eff Air	Air	<12	<0.12	<0.12	<0.12	<0.12	ZO 12
07/06/04	1032	Inf Cat Air	Air	660	2,1	0.38	1.2	1.1	<0.12
07/07/04	0904	Inf Cat Air S-1	Air	<12	<0.12	<0.12	<0.12	<0.12	1.0
07/07/04	1126	Inf Cat Air MW-3	Air	<12	<0.12	<0.12	<0.12	<0.12	0.29
07/19/04	0641	Eff Air	Air	<12	<0.12	<0.12	<0.12		0.13
07/19/04	0644	Inf Cat Air	Air	88	0.26	<0.12	<0.12	<0.12 0.19	<0.12
							-0.12	U.13	0.25

All air sample values reported in milligrams per cubic meter (mg/m³)

Analytical Laboratory

TPHG = Total petroleum hydrocarbons as gasoline

Alpha Analytical, Inc. (ELAP #2019)

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

Analytical Methods

MTBE = Methyl tertiary butyl ether

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX and MTBE analyzed by EPA Method SW8260B

TABLE 6 GROUNDWATER ANALYTICAL RESULTS

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	Sample Type	TPHG	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА	DIPE	ЕТВЕ	ТАМЕ	Methanol	Ethanol
07/06/04	1050	S-2	Water	2200	13	1.8	10	26.9	66	170	<1.0	c1.0	-4.0		
07/08/04	0854	Influent	Water	<100[1]	<0.50	<0.50	0,66	4.4	16	NA		<1.0	<1.0	<5,000	<5,000
07/08/04	0905	GAC Influent	Water	110	<0.50	<0.50	<0.50	1.89	17		NA NA	NA	NA NA	NA NA	NA
07/08/04	1030	Effluent	Water	<50	<0.50	<0.50				NA	NA	NA	NA	NA	NA
07/19/04	0000					<0.50	<0.50	<0.50	<0.50	NA	NA	NA	NA	NA NA	NA
07719704	0623	Effluent	Water	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	NA.	NA
07/19/04	0630	Influent	Water	<50	<0.50	<0,50	<0.50	0.52	3.7	56	<1.0	<1.0	<1.0	NA NA	
07/27/04	1118	Effluent	Water	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0	NA NA	NA NA
	<u> </u>											.,,,	-1,0	INA	NA

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

NA = Not analyzed

[1] Reporting limits were increased due to sample foaming

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by EPA Method SW8260B

Methanol & Ethanol analyzed by EPA Method SW8260B-DI

TABLE 7 PETROLEUM HYDROCARBON MASS EXTRACTION RATES SUMMARY

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Date	Test Well	Flowrate	Influ	ent Conce (mg/m	_		Soil Vapo action Rat ells (lbs/d	e from	,	ative Mass) Removed Total
		(cfm)	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	Ibs	llıs
									ļ	
07/06/04	S-2	87.0	660	2.1	1.0	5.16	0.01	0.01	5.16	5.16
07/07/04	S-1	87.0	<12	<0.12	0.29	<0.09	<0.001	0.002	0.01	5,17
07/07/04	MW-3	87.0	<12	<0.12	0.13	<0.09	<0.001	0.001	0.01	5.18
07/19/04	S-1, S-2, MW-3	86.0	88	0.26	0.25	0.68	0.002	0.002	8.16	13.34
	Test Well	Volume of	Todil	nt Concen	.tuation	n.r	17 - 4 4 1			tive Mass
Date	ID ID	groundwater extracted ² ,	HIHITE		шанып		Extracted			Removed
Date	עג	extracted ,	TPHG	(μg/L) Benzene	MTBE	TPHG	ndwater (Benzene	MTBE	Period lbs	Total
		5	IFRG	Denzene	WIIDE	irnG	Delizelle	WIIDE	IDS	lbs
07/06/04	S-2	80	2,200	13	66	100.0	0.00001	0.00004	0.001	0.001
07/08/04	S-1, S-2, MW-3	2,490	<100	<0.50	16	<0.002	<0.00001	0.0003	0.012	0.014
07/19/04	S-1, S-2, MW-3	21,710	<50	< 0.50	4	< 0.01	<0.0001	0.001	0.008	0.015
					ĺ					
Sample Calc	culations					·				
Ext. Rate fro			3,400 mg		x 1,440 mi	<u>n</u>	x cu meter			
Wells (vapo:	r)	min	cu meter 1	53593 mį	day		35.314 cu	ft		
	= ;	30.21 <u>lbs/day</u>								
Mass remov from ground		ntration (µg/L)	x gallons	extracted x	(2.2046)	x 10- ⁹)(lb/i	ng) / 0.264	418 (gal/L)	ı	
between t	estimates between he sampling even timated based on	ts were used						(operation:	al uptime)	
Based on ave s calculated	rage groundwater	extraction rate	of 0.63 g	om and the	average c	oncentratio	ons, the ma	iss extracti	on rate for	
dass remove	ed from	= concentration			lowrate (g	pm) x (2,2	046 x 10-	')(lb/mg)/	0.26418 (g	gal/L)
roundwater r	(lbs/day) FPHG =	* 60 (mins/ 0.017	hr)*24 (hr. lbs/day	(day)						
	Benzene =	0.0017	lbs/day							
	ATBE =	0.0002	lbs/day							

TABLE 2 DPE EVENT FIELD OBSERVATION SUMMARY

2nd DPE Event - June/July 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	Hour	TE	Appl	Air	Totalizer	GW	Inf	Oper				***************************************								***************************************	
Date	Meter		Vac	Flow	Reading	Ext Rate	PID	Temp	MV	V-4	M۱	N-5		MW-6			MW-7			MW-8	
	Reading	days	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	Vac	DTW	DD	Vac	DTW	DD	Vac	DTW	DD
06/06/05			Begin	ı June/July	2005 DP	E Event,	Using W	ells S-1,	S-2, an	d MW-	3 for Ex	traction	ı; Hour	Meter 1	Reading	Prior t	o Test S	tart un	= 3361	<u> </u>	
06/06/05	3361.20		24.00	26.6	23,710		125.0	1,471	6.65		10.91		0.00	15.67		0.00	14.79		0.00	14.08	Γ
06/07/05	3383.60	0.93	24.00	NM	25,480	1.32	NM	1,443	NM	NM	NM	NM	0.02	NM	NM	0.00	NM	NM	0.00	NM	NM
06/09/05	3416.60	2.31	23.00	27.7	27,160	0.85	6.0	1,473	6.10	-0.55	10.62	-0.29	0.00	14.58	-1.09	0.00	13.58	-1.21	0.00	14.90	0.82
06/14/05	3468.10	4.45	24.00	28.4	31,000	1.24	6.0	1,450	6.35	-0.30	10.80	-0.11	0.00	15.60	-0.07	0.00	13.56	-1.23	0.00	14.81	0.82
06/16/05	3515.00	6.41	25.00	23.0	34,450	1.23	5.0	1,472	6.33	-0.32	10.98	0.07	0.00	15.85	0.18	0.00	13.97	-0.82	0.00	14.98	0.73
06/21/05	3638.20	11.54	25.00	39.4	43,130	1.17	0.0	1,470	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
06/28/05	3804.80	18.48	24.00	39.3	53,540	1.04	NM	1,456	NM	NM	NM	ΝM	NM	NM	NM	NM	NM	NM	NM	NM	NM
07/01/05	3877.30	21.50	24.00	31.9	57,950	1.01	5.0	1,473	6.46	-0.19	11.09	0.18	0.00	15.65	-0.02	0.00	14.18	-0.61	0.00	<u> </u>	
07/01/05	3878.10	21.54	Event End	Hr. Meter	58,050				l		<u>L</u>	<u> </u>		l	E Event		10	-0.01	0.00	16.35	2.27
Distance to	o Nearest l	Extractio			1	10	1	70		10			70			50					
Screening Notes:	Interval		10 -	40.5	10	- 40	10 -	40.5			10 - 40.5	5		10 - 35							

Notes:

TE - Time Elapsed, days

Appl - Applied

Oper - Operating

Vac - Vacuum

DTW - depth to groundwater

" WC - Inches water column

* = time elapsed based on hour meter readings

ppmv - parts per million by volume

Temp - Temperature

deg F - degree Farenheit

Ext. - Extraction

cfm - cubic feet per minute

Inf - Influent

DD - Drawdown

GW Ext - Groundwater Extraction

PID - Photo Ionization Detector

All induced vacuum measured in observation wells were in "WC

gpm - gallons per minute

"Hg - Inches Mercury

bgs - below ground surface

NM - Not measured

TABLE 3 SOIL VAPOR ANALYTICAL RESULTS

2nd DPE Event - June/July 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ТВА
06/06/05	11:18	SYS INF Air	160	4.4	0.72	0.55	1.35	3.6	<7.5
06/06/05	11:15	Eff Air	<15	<0.30	<0.30	<0.30	<0.30	<0.30	<7.5
06/28/05	06:16	Inf Air	<15	<0.15	<0.15	<0.15	<0.15	<0.15	NA
07/01/05	05:41	SYS INF AIR*	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<5.0
07/01/05	05:39	EFF AIR*	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<5.0
							-		0.0

Notes

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

* = Analyzed by Severn Trent Laboratories (STL [ELAP #2496])

All air sample values reported in milligrams per cubic meter (mg/m³)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

Analytical Methods

ETBE = Ethyl tertiary butyl ether

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual (Alpha) & by 8260B (STL)

TAME = Tertiary amyl methyl ether

BTEX, MTBE, TBA, DIPE, TAME, and ETBE analyzed by EPA Method SW8260B

DIPE = Di-isopropyl ether

DIPE, ETBE, and TAME were reported below laboratory reporting limits in all samples.

NA = Not Analyzed

TABLE 4 GROUNDWATER ANALYTICAL RESULTS

2nd DPE Event - June/July 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА	DIPE	ЕТВЕ	TAME
06/06/05	11:34	Influent	590	11	3.8	6.1	33	62	140	<1.0	<1.0	<1.0
06/07/05	09:41	MID (Fluent)	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
06/07/05	09:39	EFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
06/28/05	06:08	Influent	<50	<0.50	<0.50	<0.50	<0.50	2.6	52	<1.0	<1.0	<1.0
06/28/05	06:04	Mid GAC	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
06/28/05	06:00	Effluent	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
07/01/05	05.40	(ME										
07/01/05	05:46	<u>INF</u>	<50	<0.50	<0.50	<0.50	<0.50	2.2	64	<1.0	<1.0	<1.0
07/01/05	05:54	GAC-1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
07/01/05	05:58	EFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by

EPA Method SW8260B

TABLE 5 PETROLEUM HYDROCARBON MASS EXTRACTION SUMMARY 2nd DPE Event June/July 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

			Influe	ent Conceut	ration	Ext	Soil Vapor		1	tive Mass Removed
Date	Time Elapsed	Flowrate		(mg/m ³)		,	Wells (lbs/da	ıy)	Period ¹	Total
	(days)	(cfm)	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum hydro	carbon mass remo	oved during first	DPE even	conducted of	during July	2004			13.34	13.34
06/06/05	-	26.6	160	4.4	3.6	0.378	0.010	0.009	0.378	13.718
06/28/05	18.48	39.3	<15	<0.15	<0.15	<0.052	<0.001	100.0>	3.980	17.698
07/01/05	21.54	31.9	<50	<0.50	<0.50	<0.142	<0.001	<0.001	<2.091	19.789
		Volume of groundwater	Influe	nt Concenti	ation	Mas	s Extracted	from	Cumulat Rem	
Date		extracted ² ,		(μg/L)		gre	oundwater (l	bs)	TPHG	MTBE
		gallons	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum hydro	carbon mass remo	ved during first	DPE event	conducted c	luring July	2004	.		0.015	0.00149
06/06/05	-	56 ³	590	11	62	0.00028	0.00001	0.00003	0.01528	0.00152
06/28/05	18.48	29,830	<50.0	<0.50	2.6	0.07966	0.00143	0.00804	0.09493	0.00956
07/01/05	21.54	4,510	<50.0	<0.50	2.2	<0.00188	<0.00002	0.00009	0.09682	0.00965

Sample Calculations

Ext. Rate from Wells (vapor)

40 eu ft x min

8,400 mg lb x 1,440 min cu meter 453,593 mg

x cu meter 35.314 cu ft

30.21 lbs/day

Mass removed from groundwater = concentration (μ g/L) x gallons extracted x (2.2046 x 10-9)(lb/mg) / 0.26418 (gal/L)

For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime) between the sampling events were used

The mass extraction rate is calculated by multiplying the mass extracted per day by the operational uptime for the period.

Volume estimated based on flow totalizer measurements taken on the sampling days

Volume estimated based on average groundwater extraction rate and the time elapsed between the sample collection and start-up

TABLE 1

DPE EVENT FIELD OBSERVATION SUMMARY

3rd DPE Event - August/September 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	Hour	TE	Appl	Air	Totalizer	GW	Inf	Oper		Dept	h to Wa	ater, fe	et bas	and Ind	luced \	/acuum	ı "WC	
Date	Meter		Vac	Flow	Reading	Ext Rate	PID	Temp	M۷	N-4	MV			MW-6		abaan	MW-8	
	Reading	days	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	Vac	DTW	DD	Vac	DTW	DD
8/29/05 5:30					or to start o				8.71		12.90		0.00	DRY		0.00	16.75	
8/29/05 7:00	Вс	gin Thir	d DPE E	vent, Us	sing Wells	S-1, S-2,	MW-3,	and MW Fotalizer	7-7 for E reading	Extraction = 22,58	on; Hou 80	r Meter	Readin	ıg Prior	to Test	Start u	p = 435.0	5.
8/29/05 8:30	437.00	0.06	18.00	48.8	22,740	1.90	5.5	1,458	NM	NM	NM	NM	NM	NM		NM	NM	
8/31/05 5:00	480.70	1.88	18.00	37.3	29,840	2.71	5.5	1,456	8.73	0.02	13.18	0.28	0.00	DRY		0.00	17.21	0.46
9/6/05 6:00	619.10	System observed non-junctional due to low propage														L		
9/6/05 9:15	System re-started after propane delivery. Based on hour meter readings for 8/31/5 at 0500 hrs & 9/6/5 at 0600 hrs, the DPE system was likely shutdown or 9/5/05 at 23:14 hrs																	
9/6/05 10:15	620.10	7.69	18.00	62.5	51,850	2.67	16.1	1,447	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
9/9/05 5:00	685.70	10.42	16.00	45.0	61,390	2.42	8.1	1,450	8.99	0.28	13.61	0.71	0.00	DRY		0.00	18.68	1.93
9/13/05 5:30	780.20	14.36	16.00	40.4	75,020	2.40	2.0	1,457	9.14	0.43	13.78	0.88	0.00	18.67	-0.33	0.00	19.08	2.33
9/16/05 5:00	796.10	15.02	NM	NM	77,310	2.40	readings	observed s betweer hrs. Sind	19/13/05	5 5:30 aı	nd 9/16/0)5 5:00,	the DPI	E system	was lik	elv shuta	down on	ur mete
Distance to Ne	arest Ext	raction V	Vell						8	6	9	9		70			48	
Screening Into	rval, feet	bgs : S-1	=20-40,	S-2=20-	40, MW-3	=24-44, 8	& MW-7	=10-40	10 -	40.5	10 -	40]	10 - 40.5	5		10 - 35	
Notes:												·		******	·	 -	-0 00	

TE - Time Elapsed calculated as difference of hour meter readings, days

Appl - Applied

Oper - Operating

Vac - Vacuum

DTW - depth to groundwater

" WC - Inches water column

Ext. - Extraction

GW Ext - Groundwater Extraction

GW Ext Rate = Difference of Totalizer Readings, gallons

cfm - cubic feet per minute

Temp - Temperature

Inf - Influent

deg F - degree Farenheit

DD - Drawdown

PID - Photo Ionization Detector

bgs - below ground surface

ppmv - parts per million by volume

gpm - gallons per minute

NM - Not measured

"Hg - Inches Mercury

-- = Not applicable

Flow rate measured using a digital anemometer at 3" diameter steel pipe;

flow rate = velocity X area of pipe (e.g.: flow rate = 994 feet per minute X 0.05 sq.ft)

TABLE 2 SOIL VAPOR ANALYTICAL RESULTS 3rd DPE Event - August/September 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

ample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА
08/29/05	09:01	USA57ASYSINF	<15	0.59	<0.15	0.23	0.44	0,41	<1.5
08/29/05	09:05	USA57ASYSEFF	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<1.5
09/06/05	10:30	Sys Inf Air	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<7.5
09/13/05	05:45	USA57ASYSINF	<15	0.19	<0.15	<0.15	<0.15	<0.15	<7.5

Page 1 of 1

Notes

All air sample values reported in milligrams per cubic meter (mg/m³)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

DIPE = Di-isopropyl ether

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual BTEX, MTBE, TBA, DIPE, TAME, and ETBE analyzed by EPA Method SW8260B

DIPE, ETBE, and TAME were reported below laboratory reporting limits in all samples (<0.30 mg/m³).

TABLE 3 GROUNDWATER ANALYTICAL RESULTS 3rd DPE Event - August/September 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	TPHG	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА	DIPE	ЕТВЕ	ТАМЕ
08/29/05	09:30	USA57WINF	55	3,3	<0.50	0.68	3.3	17	160	<1.0	<1.0	<1.0
08/29/05	09:35	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
09/06/05	10:36	Inf Water	<50	<0.50	<0.50	<0.50	<0.50	4.7	61	<1.0	<1.0	<1.0
09/13/05	06:20	USA57WINF	<50	<0.50	<0.50	<0.50	<0.50	2.6	29	<1.0	<1.0	<1.0
09/13/05	06:22	USA57WGAC1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
09/13/05	06:25	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
09/16/05	5:32	USA57WINF	67	<0.50	<0.50	<0.50	3.8	2.3	25	<1.0	<1.0	<1.0

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petrolcum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by

EPA Method SW8260B

TABLE 4 PETROLEUM HYDROCARBON MASS EXTRACTION SUMMARY 3rd DPE Event August/September 2005

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

			Influ	ent Concent	ration	Soil Va	ipor Extract	tion Rate	1	tive Mass Removed
Date	Time Elapsed	Flowrate		(mg/m ³)			(lbs/day)		Period ¹	Total
	(days)	(cfm)	TPHG	Benzene	МТВЕ	TPHG	Benzene	МТВЕ	lbs	lbs
Petroleum hydro	carbon mass remo	oved during the p	revious D	PE events					19.789	19.789
08/29/05	-	48.8	<15	0.59	0.41	<0.065	0.003	0.002		
09/06/05	7.69	62.5	<15	<0.15	<0.15	<0.083	<0.001	<0.001	<0.570	19.789
09/13/05	6.67	40.4	<15	0.19	<0.15	<0.054	0.001	<0.001	<0.458	19.789
		Volume of groundwater	Influe	nt Concenti	ation	Mas	s Extracted	from	Cumulat Rem	
Date	Time Elapsed	extracted ² ,		(µg/L)		gro	oundwater (lbs)	TPHG	MTBE
	(days)	gallons	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum hydro	carbon mass remo	ved during the p	revious DI	PE events					0.09682	0.00965
08/29/05	-	160	55	3.3	17	0.00007	0.000004	0.00002	0.09689	0.00967
09/06/05	7.69	29,110	<50	< 0.50	4.7	0.01275	0.00046	0.00264	0.10965	0.01231
09/13/05	6.67	23,170	<50	<0.50	2.6	<0.00967	<0.00010	0.00071	0.10965	0.01231
09/16/05	0.66	2,290	67	<0.50	2.3	0.00112	<0.00001	0.00005	0.11076	0.01231

Sample Calculations

Ext. Rate from Wells (vapor)

40 cu ft x min

8,400 mg lb cu meter 453,593 mg day

x 1,440 min

x cu meter 35.314 cu ft

30.21 lbs/day

Mass removed from groundwater = concentration (μ g/L) x gallons extracted x (2.2046 x 10⁻⁹)(lb/mg) / 0.26418 (gal/L)

The mass extraction rate is calculated by multiplying the mass extracted per day by the operational uptime for the period.

For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime) between the sampling events were used

Volume estimated based on flow totalizer measurements taken on the sampling days

TABLE 1

DPE EVENT FIELD OBSERVATION SUMMARY

4th DPE Event - February/March 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

										inu, Cai	mornia												
	Hour	TE	Appl	Air	Totalizer	GW	Inf	Oper				Dep	th to W	ater, f	eet bo	s and	Induc	ed Vac	uum. '	'WC			
Date	Meter		Vac	Flow	Reading	Ext Rate	PID	Temp	S	i-1	S		MV			MW-6			MW-7			MW-8	
	Reading	days	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	DTW	DD	Vac	DTW	DD	Vac	DTW	DD	Vac	DTW	DD
2/20/06 5:30			Begi	n fourth	DPE ever	at using v	velis EX	K-1, EX-2	2, EX-3	, and E	X-4. H	our Me	ter Read	ding =	3,086.	3. Total	izer re	ading =	94,450	gallor	1 1		
2/20/06 5:30	3,086.30	0.00	20.00	40.3	94,450		360	1,460			16.61		10.79		NM	15.70		NM	13.74		NM	13.82	
2/24/06 5:15	3,161.30	3.13	System	observe	d non-fun	ctional an	d re-star	ted by re	setting	power s	supply.	Based 6	on hour	meter r	eading	s, the Di	PE syst	em was	likely :	shutdov	vn on 2	2/23/06	around
2/24/06 5:15	3,161.30	3.13	18.50	50.6	98,740	0.95	150	1,462	14.45	-0.02	16.53	-0.08		1.03	0.00	15.64	-0.06	0.00	13.65	-0.00	0.00	14.29	0.47
3/3/06 7:00	3,262.40	7.34	23.00	29.0	100,540	0.30	212	1,451	14.20	-0.27	16.30	-0.31	 		0.00	15.10		0.10	13.26		 	14.29	0.47
3/9/06 6:30	3,403.10	13.20	23.00	22.4	103,490	0.35	150	1,470	13.97	-0.50	16.00	-0.61	<u> </u>	0.68	0.00	14.49		3.03	13.11			13.69	-0.13
3/16/06 5:30	3,566.70	20.02	23.00	25.5	105,780	0.23	68	1,457	13.61	-0.86	15.60	-1.01	11.15	0.36	0.00	14.15		0.00	12.55			13.03	-0.13
3/24/06 5:00	3,752.80	27.77	23.00	30.5	107,790	0.18	35	1,459	13.10	-1.37	14.68	-1.93	<u> </u>	-0.06		13.82			11.99			12.83	-0.99
3/24/06 5:30						·			Di	scontinu	ue fourt	n DPE e	event.				1100	0.03	11.77	1.75	0.00	12.05	-0.99
Average			21.75	33.04		0.40	162.5	1,460	13.97	-0.60	15.95	-0.79	11.25	0.55	0.01	14.82	-1.06	0.64	13.05	-0.83	1.24	13.67	-0.18
Distance to Ne	arest Ext	raction	Well, fe	et				***************************************	2	20	2	7	1:	5	<u>-</u>	75			33			62	
Screening Inte	rval : EX			20	- 40	20 -	40	24 -	44		10 - 40.5	5	· · · · · · · · · · · · · · · · · · ·	10 - 40			10 - 35						
Notes:	A-10							<u> </u>						10 10			10-33						
TE - Time Elap	tes: - Time Elapsed calculated as difference of hour meter readings, days									per min	ıute		Temp -	Temne	rature								
Appl - Applied													deg F -	-		eit							
Oper - Operatir	ol - Applied									n			PID - PI	_			tor						
Vac - Vacuum										und surf	face		ppmv -										ĺ
DTW - depth to	groundw	ater						gpm - ga	_				NM - N			on of v	oranic						
" WC - Inches	water colu	mn						"Hg - Inc	_				= No										
Ext Extractio	n									•				1 1:									
GW Ext - Grou								¹ Flow ra	ite meas	sured us	ing a di	gital an	emomet	er at 3"	diame	ter steel	pipe:					÷	
GW Ext Rate =	Differenc	e of To	talizer R	eadings,	gallons			flow rate	= velo	city X a	rea of p	ipe (e.ş	g.: flow i	rate =	994 fee	t per mi	inute X	0.05 sc	ı.ft)				

TABLE 2 SOIL VAPOR ANALYTICAL RESULTS 4th DPE Event - February/March 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ТВА
02/20/06	07:18	USA57ASysEff	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<7.5
02/20/06	07:20	USA57ASysInf	690	8.3	20	17	107	<0.60	<30
03/03/06	07:25	USA57ASYSINF	480	8.6	7.0	8.8	19.9	0.29	<7.5
03/09/06	06:46	USA57ASysInf	320	2.0	10	11	40.5	<0.30	<15
03/24/06	05:30	USA57ASYSINF	98	0.39	0.50	1.6	7.2	<0.15	<7.5

Notes

All air sample values reported in milligrams per cubic meter (mg/m³)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

DIPE = Di-isopropyl ether

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual BTEX, MTBE, TBA, DIPE, TAME, and ETBE analyzed by EPA Method SW8260B

DIPE, ETBE, and TAME were below laboratory reporting limits in all samples.

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

4th DPE Event - February/March 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА	DIPE	ЕТВЕ	ТАМЕ
02/20/06	0 7 :28	USA57WINF	3,800	65	300	71	740	2.7	160	<5.0[1]	<5.0[1]	<5.0[1]
02/20/06	0 7 :42	USA57WGAC1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
02/20/06	07:39	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
03/03/06	07:25	USA57WSYSINF	1,100	96	20	30	120	10	47	<1.0	<1.0	<1.0
03/09/06	07:24	USA57WINF	510	3.1	3.3	10	65	1.1	23	<1.0	<1.0	<1.0
03/09/06	07:26	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
03/09/06	07:28	USA57GAC1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
03/24/06	05:15	USA57WINF	130	2.7	1.9	2.8	27	<0.50	28	<1.0	<1.0	<1.0
03/24/06	05:20	USA5 7 WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1,0
and the same of th	**										171.4	

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl etber

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

[1] = Reporting limits were increased due to high concentrations of target analytes

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by

EPA Method SW8260B

TABLE 4 PETROLEUM HYDROCARBON MASS EXTRACTION SUMMARY 4th DPE Event February/March 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

			Influ	ent Concent	ration	Soil V	apor Extrac	tion Rate		tive Mass Removed
Date	Time Elapsed	Flowrate		(mg/m ³)			(lbs/day)		Period ¹	Total
	(days)	(cfm)	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum <mark>hyd</mark> ro	ocarbon mass remo	oved during the p	revious D	PE events	_				19.789	19.789
02/20/06		40.3	690	8.3	<0.60	2.47	0.03	<0.002		
03/03/06	7.34	29.0	480	8.6	0.29	1.24	0.02	0.001	13.608	33.397
03/09/06	5.86	22.4	320	2.0	<0.30	0.64	0.004	<0.001	5,495	38.892
03/24/06	14.57	30.5	98	0.39	<0.15	0.27	0.001	<0.0004	6.578	45.469
		Volume of	_						Cumulat	ive Mass
		groundwater	Influe	nt Concentr	ation	Mas	s Extracted	from	Rem	oved
Date	Time Etapsed	extracted ² ,		(µg/L)		gre	oundwater (lbs)	TPHG	MTBE
	(days)	gallons	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum hydro	carbon mass remo	ved during the p	revious D	E events					0.11076	0.01231
02/20/06	- [48	3,800	65	2.7	0.00152	0.000026	0.000001	0.11228	0.01231
03/03/06	7.34	6,090	1,100	96	10.0	0.12451	0.00409	0.00032	0.23679	0.01263
03/09/06	5.86	2,950	510	3.1	1.1	0.01982	0.00122	0.00014	0.25661	0.01277
03/24/06	14.57	4,300	130	2.7	<0.50	0.01148	0.00010	0.00003	0.26809	0.01280
ample Calculati		40.2 au ft. v	600	11.			171			

690 mg lb Ext. Rate from 40.3 cu ft x x 1,440 min x cu meter min cu meter 453,593 mg 35.314 cu ft day Wells (vapor) 2.47 lbs/day

= concentration (μ g/L) x gallons extracted x (2.2046 x 10⁻⁹)(lb/mg) / 0.26418 (gal/L) Mass removed from groundwater

For mass estimates between the sampling dates, average mass extraction rate and time clapsed (operational uptime) between the sampling events were used

Volume estimated based on flow totalizer measurements taken on the sampling days. For February 20, 2006, the volume of groundwater extracted was estimated based on the average groundwater extraction rate (0.40 gpm) and time clapsed between the start-up and sample collection

TABLE 1 DPE EVENT FIELD OBSERVATION SUMMARY

5th DPE Event - May 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

_	Hour	TE	Appl	Air	Totalizer	GW	Inf	Oper				Dep	th to V	Vater, 1	feet bo	s and	Induc	ed Vac	:	"WC			
Date	Meter		Vac	Flow 1	Reading	Ext Rate	PID	Temp	S	-1	S	-2	1	N-3		MW-6			MW-7			MW-8	
	Reading	days	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	DTW	DD	Vac	DTW	DD	Vac	DTW	DD	Vac	DTW	DD
5/1/06 9:30			Beg	gin fifth	DPE even	ıt using v	vells EX	-1, EX-2	, EX-3,	and E	Х-4. Но	ur Met	ter Rea	ding = .	3,758.	Totalize	r read	ing = 1		gallon	s		
5/1/06 9:30	3,758.00	0.00	24.50	29.5	107,790	~-	12	1,451	9.43		11.37		7.84		0.00	11.00		0.00	8.41		0.00	11.16	<u> </u>
5/3/06 5:30	3,826.80	2.87	24.00	21.9	110,790	0.73	15	1,479	9.55	0.12	11.04	-0.33	8,85	1.01	0.00	11.05	0.05	0.00	8.37	-0.04	0.00		0.10
5/8/06 6:00	3,923.20	6.88	22.00	26.1	112,920	0.37	17	1,450	9.58	0.15	11.42	0.05	9.51	1.67	0.00			0.00				11.04	-0.12
5/16/06 5:30	4,006.80	10.37	Upo	n arriva shutdo	the DPE :	system wa 6 hrs on 5	as obser /11/06.	ved to be	non-op E systen	erating	due to	enerato	r malfu	nction	Based	on the	hour m	eter rec	8.35 dings, t	-0.06 he DPI		11.46 n was li	0.30 kely
5/16/06 5:30	4,006.80	10.37	21.00	56.2	113,780	0.17	50	1,460	9.63	0.20	11.47	0.10	9.95	2.11	0.00	11.28	0.28	0.00	g the ge		r malfu 0.00	7	0.50
5/22/06 5:30	4,150.40	16.35	21.00	38.8	114,830	0.12	43	1,460	9.54	0.11	11.39	0.02	9.85	2.01				0.00	8.39			11.86	0.70
5/25/06 5:30	4,190.20	18.01	Upo	n arrival shutdov	the DPE s	system wa 8 hrs on 5	ns observ /23/06.	ved to be The DPI	non-op E systen	erating	due to g	enerato	or malfu	nction	Raced	on the	70UE PO	Oton noo	<u></u>	l- DDI	0.00 E syster	11.88 n was lil	0.72 kely
5/25/06 5:30	4,190.20	18.01	20.00	48.4	115,090	0.11	20	1,452	NM		NM		NM		NM	NM]	NM	NM NM		NM	NM	
5/25/06 6:40	4,191.10	18.05	1				I	Dis	continu	e fifth I	DPE eve	ent. Tota	alizer re	ading =	115.19			11171	14(91		INIVI	NM	
Average			22.08	36.79		0.30	26.2	1459	9.55	0.15	11.34	-0.04	9.20	1.70	0.00	11.10		0.00	8.39	-0.03	0.00	11.40	0.40
Distance to N	earest Ex	traction	n Well, i	leet	<u></u>	I			2	0	2	7	1		1	75		0.50	33	-0.03	0.00	11.48	0.40
Screening Int	terval : E	⟨-1=EX	-2=EX-	6=EX-4	= 5 to 25 fe	eet bgs			20 -	40	20 -	40	24 -		1	10 - 40.5		 -				62	
Notes:					777									• •		10 - 40.2	<u>'</u>		10 - 40			10 - 35	

TE - Time Elapsed calculated as difference of hour meter readings, days

Appl - Applied

Oper - Operating

Vac - Vacuum

DTW - depth to groundwater

" WC - Inches water column

Ext. - Extraction

GW Ext - Groundwater Extraction

GW Ext Rate = Difference of Totalizer Readings, gallons

cfm - cubic feet per minute

Temp - Temperature

Inf - Influent

deg F - degree Farenheit

DD - Drawdown

bgs - below ground surface

PID - Photo Ionization Detector ppmv - parts per million by volume

gpm - gallons per minute

NM - Not measured

"Hg - Inches Mercury

-- = Not applicable

flow rate = velocity X area of pipe (e.g.: flow rate = 600 feet per minute \times 0.05 sq.ft)

¹ Flow rate measured using a digital anemometer at 3" diameter steel pipe;

TABLE 2 SOIL VAPOR ANALYTICAL RESULTS

5th DPE Event - May 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	<u> </u>			Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA
05/01/06	10:40	USA57ASysEff	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<7.5
05/01/06	10:45	USA57ASysInf	37	5.4	2.3	0.58	2.25	<0.15	<7.5
05/08/06	06:10	USA57ASYSINF	37	0.31	0.25	0.49	2.73	<0.15	
05/25/06	06:20	USA57ASysInf	180	1.1	0.22	0.32	0.58	<0.15	<7.5

Notes

All air sample values reported in milligrams per cubic meter (mg/m³)

TPHG = Total petroleum hydrocarbons as gasoline (Gasoline Range Organics [GRO] C4-C13)

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

DIPE = Di-isopropyl ether

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, TAME, and ETBE analyzed by EPA Method SW8260B

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

5th DPE Event - May 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	трнс	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА	DIPE	ЕТВЕ	TAME
05/01/06	10:28	USA57WINF	990	170	96	15	205	12	66	<2.0[1]	<2.0[1]	<2.0[1]
05/04/06	06:28	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
05/04/06	06:32	USA57WGAC1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
05/08/06	06:45	USA57WINF	110	0.61	<0.50	0.66	11.1	0.61	29	<1.0	<1.0	<1.0
05/25/06	06:35	USA57WInf	290	19	2.7	3.5	22.3	20	42	<1.0	<1.0	<1.0
05/25/06	06:39	USA57WMid	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1,0	<1.0	<1.0
						7000					70	

Notes:

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petroleum hydrocarbons as gasoline (Gasoline Range Organics [GRO] C4-C13)

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by

EPA Method SW8260B

[1] = Reporting limits were increased due to high concentrations of target analytes

TABLE 4 PETROLEUM HYDROCARBON MASS EXTRACTION SUMMARY 5th DPE Event - May 2006 Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

<u> </u>									Cumulat	Cumulative Mass
			Influ	Influent Concentration	ation	Soil V	Soil Vapor Extraction Rate	ion Rate	(TPHG)	(TPHG) Removed
Date	Time Elapsed	Flowrate		(mg/m³)			(lbs/day)		Period	Total
	(days)	(cfm)	ТРНС	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
Petroleum hydrocarbon mass removed during the previous DPE events	carbon mass rem	oved during the	previous I	DPE events					45.469	45,469
05/01/06	ı	29.5	37	5.4	<0.15	0.10	0.01	<0.0004	;	1
05/08/06	6,88	26.1	37	0.31	<0.15	0.09	0.00	<0.0003	0.629	46.098
05/25/06	11.16	48.4	180	Ξ	<0.15	0.77	0.005	<0.001	4.801	50.900
		Volume of							Cumulativa Mass	va Macc
		groundwater	Influe	Influent Concentration	ation	Mas	Mass Extracted from	from	Removed	oved
Date	Time Elapsed	extracted ² ,		(L/g/L)		gre	groundwater (lbs)	bs)	TPHG	MTBE
	(days)	gallons	трнс	Benzene	MTBE	TPHG	Benzene	мтве	lbs	lbs
Petroleum hydrocarbon mass removed during the previous DPE events	arbon mass remo	ed during the J	previous [PE events	-				0.26809	0.01280
05/01/06	E		990	170	12	0.00015	0.000026	0.000002	0.26824	0.01280
05/08/06	6.88	5,130	110	0.61	19.0	0.02355	0.00365	0.00027	0.29178	0.01307
05/25/06	11.16	2,270	290	19	20	0.00379	0.00019	0.00020	0.29557	0.01327
Sample Calculations Ext. Rate from =	"	40.3 cu ft x	690 mg		x 1,440 min		x cu meter			
Wells (vapor)	11	min 2.47 <u>lbs/day</u>	cu meter	cu meter 453,593 mg	day		35.314 cu ft			
Mass removed from groundwater	II	concentration (μ g/L) x gallons extracted x (2.2046 x 10-9)(lb/mg) / 0.26418 (gal/L)	lons extrac	ted x (2.2046	5 × 10 ⁻⁹)(1	ə/mg) / 0.26	5418 (gal/L)			
For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime between the sampling events were used Volume estimated based on flow totalizer measurements taken on the sampling days. For May 1, 2006, the volum groundwater extraction rate (0.30 gpm) and time clapsed between the start-in and sample collection	For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime) between the sampling events were used Volume estimated based on flow totalizer measurements taken on the sampling days. For May 1, 2006, the volume oundwater extracted was estimated based on the average groundwater extraction rate (0.30 gpm) and time clapsed tween the start-in and sample collection	ampling dates, ampling dates, are used totalizer measued based on the allection	average ma rements ta average gr	ass extraction ken on the sa oundwater ex	rate and ti mpling day traction ra	me elapsed /s. For May te (0.30 gpr	(operational 1, 2006, the m) and time c	uptime) volume of slapsed		

TABLE 1 DPE EVENT FIELD OBSERVATION SUMMARY

6th DPE Event - July/August 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	Hour	TE	Appl	Air	Totalizer	GW	inf	Oper				Dep	th to V	/ater. f	eet bo	s and	Induce	ed Vac	Hum '	'WC			
Date	Meter		Vac	Flow ¹	Reading	Ext Rate	PID	Temp	S	-1	S	-2	My			MW-6		ou vue	MW-7	110	<u> </u>	MW-8	
	Reading	days	"Hg	cfm	gallons	gpm	ppmv	deg F	DTW	DD	DTW	DD	DTW	DD	Vac	DTW	DD	Vac	DTW	DD	Vac	DTW	
7/17/06 7:00			Begi	n sixth	DPE event	using w	ells EX-	-1, EX-2,	EX-3,	and EX	K-4. Ho	ır Met	er Read	L	1							DIV	DD
7/17/06 7:00	4,410.70	0.00	18.00	_			106	1,479	11.00		12.98		10.08		0.00			0.00	9.94		0.00	13.08	
7/17/06 8:30	4,412.10	0.06	18.00	113.4	121,690	1.31	105	1,470	NM		NM		NM	*-	NM	NM		NM	NM		NM	NM	
7/21/06 5:00	4,505.10	3.93	18.00	111.5	122,200	0.09	100	1,450	NM		NM		NM		NM	NM		NM	NM		NM	NM	
7/25/06 9:45	4,605.60	8.12	16.50	70.7	122,518	0.05	98	1,450	11.53	0.53	13.47	0.49	11.05	0.97	NM	13.13	0.38	NM	10.35	0.41	NM	13.51	0.42
7/27/06 6:00	4,651.40	10.03	17.00	59.9	122,633	0.04	77	1,457	NM		NM		NM		NM	NM		NM	NM		NM	NM	0.43
8/3/06 5:00	4,818.10	16.98	16.50	114.8	123,070	0.04	23	1,450	11.95	0.95	13.90	0.92	11.66	1.58	0.00	13.56	0.81	0.00	10.83	0.89	0.00	14.10	1.02
8/10/06 6:45	4,988.00	24.05	17.50	88.9	123,570	0.05	20	1,460	12.25	1.25	14.22	1.24	11.93	1.85	0.00		1.10	0.00	11.15		0.00	14.10	1.02
8/10/06 7:00									<u></u>			**							10115		0.00	14.55	1.27
Average			17.36	96.05		0.06	75.6	1,459										1144			•		
Distance to N	earest Ex	traction	n Well,	feet	<u></u>	i		<u> </u>	2	0	2	7	1	5		75			33			62	***
Screening Int	terval : EX	X-1=EX	-2=EX-	3=EX-4	= 5 to 25 fe	eet bgs			20 -	40	20 -	40	24 -	44]	10 - 40.5	5		10 - 40	*		10 - 35	
Notes:		******										- Time						 	-			10 - 33	·
TE - Time Ela	psed calcu	ılated as	s differe	nce of h	our meter r	eadings,	days	cfm - cu	bic feet	per mii	nute		Temp -	Temne	rature								
Appl - Applie								Inf - Infl					deg F -	•		eit							
Oper - Operati	ing							DD - Dra	awdowi)			PID - P	•			OT.						
Vac - Vacuum	1							bgs - bel	ow grou	ınd sur	face		ppmv -										
DTW - depth t	to groundy	vater						gpm - ga					NM - N			on by vo	nune						
" WC - Inches	water col	umn						"Hg - Inc	-				= No										
Ext Extractio	on												140	r aphiic	Jaule								
GW Ext - Gro	undwater :	Extracti	on					¹ Flow ra	ite meas	ured us	ino a di	oital an	emamet	erat 2"	diama	tor etc-1	_:						
GW Ext Rate	= Differen	ce of To	otalizer	Reading	s, gallons			flow rate	= velo	city X a	rea of n	ine (e i	a · flow	roto ····	ename	ter steel	pipe;	0.05	0.				

TABLE 2 SOIL VAPOR ANALYTICAL RESULTS

6th DPE Event - July/August 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Time	Sample ID	TPHG	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	ТВА
8:25	USA57ASysEff	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<7.5
8:28	USA57ASysInf	370	3.8	0.96	***			<15
5:42	USA57ASysInf	80	<0.15	<0.15			*	<7.5
07:00	USA57ASysInf	220	2.6	17				<7.5
	8:25 8:28 5:42	Time Sample ID 8:25 USA57ASysEff 8:28 USA57ASysInf 5:42 USA57ASysInf	Time Sample ID TPHG 8:25 USA57ASysEff <15	Time Sample ID TPHG Benzene 8:25 USA57ASysEff <15	Time Sample ID TPHG Benzene Toluene 8:25 USA57ASysEff <15	Time Sample ID TPHG Benzene Toluene Ethylbenzene 8:25 USA57ASysEff <15	Time Sample ID TPHG Benzene Toluene Ethylbenzene Total Xylenes 8:25 USA57ASysEff <15	Time Sample ID TPHG Benzene Toluene Ethylbenzene Total Xylenes MTBE 8:25 USA57ASysEff <15

Notes

All air sample values reported in milligrams per cubic meter (mg/m³)

TPHG = Total petroleum hydrocarbons as gasoline (Gasoline Range Organics [GRO] C4-C13)

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

DIPE = Di-isopropyl ether

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, TBA, DIPE, TAME, and ETBE analyzed by EPA Method SW8260B

TABLE 3

GROUNDWATER ANALYTICAL RESULTS

6th DPE Event - July/August 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	ТРНС	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве	ТВА	DIPE	ЕТВЕ	ТАМЕ
07/17/06	8:10	USA57WINF	900	170	56	13	130	34	130	<5.0[1]	<5.0[1]	<5.0[1]
08/03/06	5:55	USA57WEFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
08/03/06	5:57	USA57WGAC1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
08/03/06	5:59	USA57WINF	150	<0.50	<0.50	<0,50	17.9	0.79	18	<1.0	<1.0	<1.0
									, ,			1.7 1

Notes:

All water sample values reported in micrograms per liter (µg/L)

TPHG = Total petroleum hydrocarbons as gasoline (Gasoline Range Organics [GRO] C4-C13)

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

TPHG analyzed by EPA Method SW8015B/DHS LUFT Manual BTEX, MTBE, TBA, DIPE, ETBE, & TAME analyzed by

EPA Method SW8260B

[1] = Reporting limits were increased due to high concentrations of target analytes

TABLE 4

PETROLEUM HYDROCARBON AND GROUNDWATER MASS EXTRACTION SUMMARY

6th DPE Event - July/August 2006

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

			Influ	ent Concent	ration	Soil Vapor Extraction Rate			ļ	tive Mass Removed
Date	Time Elapsed	Flowrate		(mg/m ³)			(lbs/day)		Period ¹	Total
	(days)	(cfm)	TPHG	Benzene	MTBE	TPHG	Benzene	МТВЕ	lbs	lbs
Petroleum hydro	ocarbon mass rem	oved during the	previous [OPE events					50.900	50.900
07/17/06		113.4	370	3.8	<0.30	3.73	0.04	<0.0030	*-	
08/03/06	16.98	114.8	80	<0.15	<0.15	0.82	<0.002	<0.0015	38.596	89.496
08/10/06	7.07	88.9	220	2.6	<0.15	1.74	0.021	<0.0012	9.032	98.527
		Volume of groundwater	Influe	nt Concentr	ation	Mas	s Extracted	from	Cumulative Mas Removed	
Date	Time Elapsed	extracted ² ,		(μg/L)		gro	oundwater (lbs)	TPHG	MTBE
	(days)	gallons	TPHG	Benzene	MTBE	TPHG	Benzene	MTBE	lbs	lbs
etroleum hydro	carbon mass rem	oved during the	previous [PE events					0.29557	0.01327
07/17/06	-	91.7	900	170	34	0.00069	0.000130	0.000026	0.29626	0.01330
08/03/06	16.98	1,490	150	<0.50	0.79	0.00653	<0.00106	0.00022	0.30279	0.01351
]	, ,								

Croundwater extracted to date	186 800	gallone

Sample Calculations

Ext. Rate from = 40.3 cu ft x 690 mg lb x 1,440 min

Wells (vapor) min cu meter 453,593 mg day

x cu meter 35.314 cu ft

= 2.47 <u>lbs/day</u>

Mass removed from groundwater

= concentration (μ g/L) x gallons extracted x (2.2046 x 10^{-9})(lb/mg) / 0.26418 (gal/L)

For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime) between the sampling events were used.

Volume estimated based on flow totalizer measurements taken on the sampling days. For July 17, 2006, the volume of groundwater extracted was estimated based on the groundwater extraction rate (1.31 gpm) and time elapsed between the start-up and sample collection.

TABLE 2 DPE-AS EVENT FIELD OBSERVATION SUMMARY

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

	Hour		Appl	Air	Totalizer	GW	Inf	Oper		Depth	to Wate	er, feet	bgs ar	ıd Indu	iced V	acuun	ı. "WC	
Date	Meter	TE	Vac	Flow 1	Reading	Ext Rate	PID	Temp	S-		S-			N-3	r	V-7	T	W-8
	Reading	(days)	("Hg)	(cfm)	(gallons)	(gpm)	(ppmv)	(deg F)	(DTW)	(DD)	(DTW)	(DD)	(DTW)	(DD)	(DTW)	(DD)	(DTW)	(DD)
9/4/07 5:45	NM	NM	МИ	NM	NM	MM	NM	NM	18.57		20.69		15.43		17.60		19.55	
9/4/07 9:40	Begin DPE	-AS evo	nt using	g wells EX	-1 through	EX-4 and	d AS-1 thr	ough AS-	2. Hour	Meter	Reading	= 11,48		otalizer		ng = 19		
9/4/07 9:40	11,489.50	0.00	15.00	93.3	199,307		NM	NM	NM		NM		NM		NM		NM	
9/4/07 10:15	11,490.50	0.04	15.00	98.2	199,320	0.22	230	1,490	NM		NM		NM		NM		NM	
9/4/06 11:15	11,491.40	0.08	14.00	103.1	199,340	0.37	140	1,450	NM		NM		NM		NM		NM	
9/11/07 10:15	11,524.00	1.44	12.00	122.8	199,410	0.04	160	1,450	NM		NM		NM		NM		NM	
9/17/07 5:45	11,592.60	4.30	10.00	122.8	199,550	0.03	139	1,483	NM		NM		NM		NM		NM	
9/18/07 4:15	11,616.70	5.30	NM .	NM	199,550	0.00	NM	NM	18.80	0.23	20.94	0.25	16.10	0.67	17.78	0.18	23.69	4.14
9/20/07 5:00	11,640.00	6.27	NM	98.2	199,550	0.00	418	1,538	NM		NM		NM		NM		NM	
9/25/07 9:00	11,668.10	7.44	14.00	103.1	199,630	0.05	400	1,527	NM		NM		NM		NM		NM	
10/2/07 5:00	11,730.00	10.02	NM	NM	NM		NM	NM	19.12	0.55	21.33	0.64	16.40	0.97	18.11	0.51	20.24	0.69
10/3/07 5:30	11,762.20	11.36	8.00	132.6	199,690	0.01	1,060	1,480	NM		NM		NM		NM		NM	0.0
10/5/07 5:00	11,808.80	13.30	NM	NM	199,690		NM	NM	NM		NM		NM		NM		NM	~-
10/11/07 7:00	11,862.00	15.52	11.00	122.8	199,770	0.03	90	1,460	NM	**	NM		NM		NM		NM	
10/15/07 4:50	11,960.30	19.62	NM	NM	199,830	0.01	NM	NM	19.22	0.65	21.32	0.63	16.45	1.02	18.29	0.69	20.36	0.81
10/17/07 8:00	11,972.00	20.10	11,00	103.1	199,830		300	1,497	NM		NM		NM		NM		NM	
10/30/07 8:50	12,101.00	25.48	14.50	117.9	199,920	0.01	69	1,450	NM		NM	~~	NM		NM		NM	
11/6/07 7:00	12,108.00	25.77	12.00	117.9	199,990	0.17	347	1,485	NM		NM		NM		NM		NM	
11/14/07 6:00	12,269.00	32.48	NM	NM	NM		NM	NM	NM		NM		NM		NM		NM	
11/14/07 20:00																		
Average			12.41	111.31		0.08	304.82	1,483										
Distance to Near	est Extractio	n Well,	fect						20 2			27 15		5	33		62	
Screening Interv	ening Interval : EX-1=EX-2=EX-3=EX-4= 5 to 25 feet bgs								20 -	40	20 -	40	24 -	44	10 -		10 - 35	

TABLE 2 DPE-AS EVENT FIELD OBSERVATION SUMMARY

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Data	Hour		Appl	Air	Totalizer	GW	Inf	Oper		Depth	to Wate	r, feet	bgs and	Indu	ıced Vacuun	1, "WC
Date	Meter	TE	Vac	Flow¹	Reading	Ext Rate	PID	Temp	S-1	1	S-2	2	MW-3		MW-7	MW-8
	Reading	(days)	("Hg)	(cfm)	(gallons)	(gpm)	(ppmv)	(deg F)	(DTW)	(DD)	(DTW)	(DD)	(DTW) (DD)		(DTW) (DD)

Notes:

Appl - Applied

cfm - Cubic feet per minute

DD - Drawdown

deg F - Degree Fahrenheit

DTW - Depth to groundwater

gpm - Gallons per minute

GW Ext Rate = Difference of Totalizer Readings, gailons

"Hg - Inches mercury

Inf - Influent

NM - Not measured

Oper - Operating

PID - Photo ionization detector

ppmv - Parts per million by volume

TE - Time elapsed calculated as difference of hour meter readings, days

Temp - Temperature

Vac - Vacuum

flow rate = velocity x area of pipe (e.g. flow rate = 600 feet per minute x 0.05 square feet)

¹ Flow rate measured using a digital anemometer at 3" diameter steel pipe;

TABLE 3 SOIL VAPOR ANALYTICAL RESULTS

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	GRO (mg/m³)	Benzene (mg/m³)	Toluene (mg/m³)	Ethyl- benzene (mg/m³)	Total Xylenes (mg/m³)	MTBE (mg/m³)	TBA (mg/m³)
09/04/07	11:15	Sys Inf Air 57	540	0.75	<0. 7 5	0.97	<0.75	<0.75	<38
09/04/07	11:20	EFF Air	<15	<0.15	<0.15	<0.15	<0.15	<0.15	<7.5
10/03/07	05:30	0057ASYSINF	1,800	3.4	0.96	1.2	7.5	<0.75	NA
10/11/0 7	07:11	USA57 A SYSINF	730	1.2	0.45	<0.30	1.1	<0.30	NA NA
10/11/07	07:00	USA57 A EFF	<15	<0.15	<0.15	<0.15	<0.15	<0.15	NA NA
11/06/07	07:22	0057 A SYS INF	1,600	2.6	1.2	0.81	2.3	<0.75	NA NA
11/06/07	07:20	0057 A SYS EFF	73	<0.15	<0.15	<0.15	<0.15	<0.15	NA NA
11/15/2007 1	09:10	0057 A INF	77	<0.15	0.15	<0.15	1.16	<0.15	NA NA
11/15/2007 1	09:05	0057 A EFF	<15	<0.15	<0.15	<0.15	<0.15	<0.15	NA NA

Notes

Samples analyzed per Bay Area Air Quality Management District (BAAQMD) permit limits

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

GRO = Gasoline Range Organics C4-C13

MTBE = Methyl tertiary butyl ether

NA = Not analyzed

TBA = Tertiary butyl alcohol

Analytical Laboratory

Alpha Analytical, Inc. (Alpha [ELAP #2019])

Analytical Methods

GRO analyzed by EPA Method SW8015B/DHS LUFT Manual

BTEX, MTBE, and TBAanalyzed by EPA Method SW8260B

TABLE 4 GROUNDWATER ANALYTICAL RESULTS

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

Sample Date	Sample Time	Sample ID	GRO (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	ΤΒΑ (μg/L)	DIPE (μg/L)	ΕΤΒΕ (μg/L)	ΤΑΜΕ (μg/L)
09/04/07	10:15	INF	470	25	2.9	10	19	230	120	<1.0	<1.0	<1.0
10/03/07	5:30	0057WINF	51	9.2	0.63	<0.50	1.82	5.4	19	<1.0	<1.0	<1.0
10/11/07	6:35	USA57 W INF	120	25	1.6	3.3	8.7	3.8	18	<1.0	<1.0	<1.0
10/11/07	6:30	USA57 W EFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0
11/06/0 7	7:35	00057 W INF	430	140	33	9.6	61	9.0	41	<2.0[1]	<2.0[1]	<2.0[1]
11/06/07	7:30	00057 W EFF	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<1.0	<1.0	<1.0

Notes:

μg/L - Micrograms per liter

BTEX - Benzene, toluene, ethylbenzene, and total xylenes

DIPE - Di-isopropyl ether

ETBE - Ethyl tertiary butyl ether

GRO - Gasoline range organics C4-C13

MTBE - Methyl tertiary butyl ether

TBA - Tertiary butyl alcohol

TAME - Tertiary amyl methyl ether

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

Analytical Methods

GRO analyzed by EPA Method SW8015B/DHS LUFT Manual BTEX, MTBE, TBA, DIPE, ETBE, and TAME analyzed by

EPA Method SW8260B

[1] = Reporting limits were increased due to high concentrations of target analytes

TABLE 5 PETROLEUM HYDROCARBON AND GROUNDWATER MASS EXTRACTION SUMMARY

Former USA Station No. 57 10700 MacArthur Boulevard Oakland, California

			Influent Concentration Soil Vapor Extraction Rate				apor Extrac	tion Rate	[tive Mass Removed	
Date	Time Elapsed	Flowrate		(mg/m ³)	,		(lbs/day)			Total	
	(days)	(cfm)	GRO .	Benzene	MTBE	GRO	Benzene	MTBE	lbs	lbs	
Petroleum hydr	ocarbon mass rem	oved during the	previous I	DPE events					98.527	98,527	
09/04/07	0.08	103.1	540	0.75	<0.75	4.95 0.01 <0.0069			4.950	103.477	
10/03/07	11.36	132.6	1,800	3.40	<0.75	21.22	0.04	<0.0088	148.618	252.095	
10/11/07	15.52	122.8	730	1.2	< 0.30	7.97	0.013	<0.0033	226,474	478.569	
11/06/07	25.77	117.9	1,600	2.6	<0.75	16.77	0.027	<0.0079	318.733	797.302	
11/15/07	NA	NM	77	<0.15	<0.15						
		Volume of Groundwater	Influe	nt Concentr	ation	Mas	ss Extracted	from	Cumulative Mass Removed		
Date	Time Elapsed	Extracted ²		(μg/L)		Gr	oundwater (lbs)	GRO	MTBE	
	(days)	(gallons)	GRO	Benzenc	МТВЕ	GRO	Benzene	MTBE	lbs	lbs	
etroleum hydro	carbon mass rem	oved during the	previous [OPE events					0.30279	0.01351	
09/04/07	0.04	20.0	470	25	230	0.00008	0.000004	0.000038	0.30287	0.01355	
10/03/07	11.36	390.0	51	9.2	5,4	0.00017	0.00003	0.000018	0.30303	0.01357	
10/11/07	15.52	470	120	25	3.8	0.00034	0.0001	0.00002	0.30337	0.01358	
11/06/07	25.77	690	430	140	9	0.00158	0.0005	0.00004	0.30495	0.01362	

Groundwater extracted to date 187,490 gallons

Sample Calculations

Ext. Rate from = Wells (vapor)

40.3 cu ft x

690 mg lb x 1,440 min

x cu meter

==

min 2 47 Iba/da

ou mete, r

cu meter 453,593 mg day

35.314 cu ft

2.47 <u>Ibs/day</u>

Mass removed from groundwater = concentration (μg/L) x gallons extracted x (2.2046 x 10⁻⁹)(lb/mg) / 0.26418 (gal/L)

Notes:

For mass estimates between the sampling dates, average mass extraction rate and time elapsed (operational uptime) between the sampling events were used.

Volume estimated based on flow totalizer measurements taken on the sampling days.

μg/L - Micrograms per liter

lbs - Pounds

TPHG - Total petroleum hydrocarbons

cfm - Cubic feet per meter

mg/m³ - Milligrams per cubic

DPE - Dual phase extraction

MTBE - Methuyl tertiary butyl ether

gal - Gallons

GRO - Gasoline range organics

NA - Not analyzed NM - Not monitored

APPENDIX F WATER SUPPLY WELL SURVEY DATA

TABLE 1

WELLS WITHIN 1/2-MILE RADIUS USA STATION #57 OAKLAND, CALIFORNIA

Ma	n Wel	Owner	Well Address	DWR		
m			WCH Address	DWK	Year	
		8 M			3 .	(feet)
1	MW	Southland	taller to a state of the first of the con-	0.0000000000000		
2	MW	Arco	10000344-4	2 S 3 W 24 E (3-5)	F	•
3	MW	Sam Kai Kee		2.S3W24E11	1992	1
- 13	1		100th	2 S 3 W 24 G 1	1951	28-85'
. 4	MW	Shell		2 S 3 W 24 M	1	
) 3	IW		2544 109th	2 S 3 W 24 M 1		38-55'
6	MW	Unocal	96 MacArthur			Unknown
7	IW		377 Hollister	2 S 3 W 24 N 1	1971	35-75'
8	CPW	1	Sunnyside 75; SW of 104th	2 S 3 W 23 K 1	:1974.	120'
9	CPW.	PG&E	Shaw & Stanley	2 S 3 W 24 E 2	1	120'
10	DW	Mr. Freitas	Stella & Malcolm	2 S 3 W 24 B 5		55-123'
11	DW	G. Hower	10700 Stella	2,S 3 W 24 B.2	1951	1
12	DW	Johnson	10731 Mark	2 S 3 W 24 B 1	1951	102
13	DW	Sam Kai Kee	Mark	2 S 3 W 24 B 3	11751	100'
14	DW	I	10544 Stella	2 S 3 W 24 C 3		42-92'
15	DW		Mark & Hood	2 S 3 W 24 B	1050	56-107'
16			Malcolm & Stella	2 S W W 24	1900	I II
17	1 '	J. Prentiss		S 2 3 W 24 C	1051	100'
18			10520 Stella			Unknown
19		C. Armtront		2 S 3 W 24 C	1951	li li
20	1		10600 Stella	2 S 3 W 24 C		Unknown
21	CDW			2 S 3 W 24 B 4	1951	11
<u>L-41</u>	ICEW !	TUKE	Voltaire & 108th	2 S S W 23 J 1		105'

Monitoring well
Domestic well MW DW

Cathodic protection well Irrigation well CW

IW

G:\data\5090\Search.wb1

APPENDIX G

HUMAN HEALTH RISK ASSESSMENT AND CLEANUP LEVELS REPORT PREPARED FOR THE SITE BY SKINNER ASSOCIATES

Human Health Risk Assessment and Site Specific Target Levels- Former USA Station # 57 - Oakland, CA.

By:

Clint Skinner, Ph.D., DABT Skinner Associates 3985 Shooting Star Rd.

Creston, CA. 93432____

For:

Scott Bittinger Stratus Environmental, Inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, California 95682

July 17, 2009

TABLE OF CONTENTS	
Section	
	Page
Table of Contents	a
Summary	b
1.0 Introduction and Background	1
2.0 Exposure Assessment Defaults	1
3.0 Hazard and Risk Assessment Methods	3
5.0 Hazard and Risk Assessment Results	6
6.0 Conclusion	7
7.0 References	8
TABLES	,
1a Soil Analytical Data – Station # 57 (87-95)	10
1b Soil Analytical Data – Station # 57 (94)	11
1c Soil Analytical Data – Station # 57 (WEGE)	12
ld Soil Analytical Data – Station # 57 (Borings)	13
le Soil Analytical Data – Combination of all tables	14
1 f Groundwater Analytical Summary - BTEX	15
lg Groundwater Analytical Summary – Oxygenates	20
2 Exposure Assessment Defaults	23
Exposure Point and Media Values	24
4 Cal/EPA and EPA Risk and Hazard Values	25
5a Cal/EPA Risk and Hazard Results- Maximum Values	26
Cal/EPA Risk and Hazard Results- UCL Values	27
RBCA Commercial and Residential Risk/Hazard Results	28
RBCA Commercial Soil/GW Vapor SSTL and CRF Values	29
RBCA Residential Soil/GW Vapor SSTL and CRF Values	30
RBCA Res/Com GW Ingest. SSTL and CRF Values	31
APPENDICES	
Appendix A: Conceptual Site Model	32
Appendix B: EPA ALM Results	34
Appendix C: RBCA Report Commercial Soil all Routes all Chemicals	36
Appendix D: RBCA Report Commercial GW Vapor all Chemicals	60
Appendix E: RBCA Report Residential Soil all Routes all Chemicals	85
Appendix F: RBCA Report Residential GW Vapor all Chemicals	110
Appendix G: RBCA Report Residential GW All Routes all Chemicals	135
Appendix H: RBCA Report Commercial GW All Routes all Chemicals	160

Executive Summary

<u>Introduction</u>: The following evaluation includes a modified Cal/EPA Preliminary Endangerment Assessment (PEA) Health Risk Assessment (HRA) with proposed Site Specific Target Levels (SSTL) using RBCA software for the Former USA Station # 57 in Oakland, CA. Receptors included shoppers and workers.

<u>Cal/EPA Soil Cancer Risks</u> using Cal/EPA methods and maximum soil concentrations for the child/adult shopper were 3.54E-07. For the worker the risks were 1.2E-06 or at the E-6 threshold. Using 95% UCL soil levels the combined risk for the child/adult shopper was 3.9E-08 or below the risk threshold of E-6. For the worker risks were 1.34E-07 also below the threshold.

<u>Cal/EPA</u> <u>Soil non-cancer hazards</u> using Cal/EPA methods for <u>maximum soil</u> concentrations predicted hazard values of 0.4 for the child/adult and 0.014 for the industrial receptor, both under the 1.0 threshold. **95%** UCL soil concentrations predicted hazards of 0.064 for the child and 0.0023 for the worker.

RBCA Risks and Hazards - Risks from soil using RBCA and the 95% UCL media values were 1E-6 for commercial and 4.2E-6 for full residential exposure. Soil hazard was 0.28 for commercial and 0.5 for residential exposure. Groundwater risks for vapor intrusion were 4.63E-7 for commercial and 1.9E-6 for residential exposure and hazard was 0.033 for commercial and 0.11 for residential exposure. Risks for commercial groundwater ingestion and vapor generated a combined risk of 1.2E-4 and a hazard of 1.94. Risks for residential groundwater ingestion and vapor intrusion for groundwater generated a combined risk of 4.87E-4 and a hazard of 5.27.

RBCA SSTL Clean-up levels demonstrate that SSTLs for commercial soil and groundwater vapor exposure to all chemicals were not exceeded by present 95% UCL media concentrations and the clean-up levels or CRF were <1.0. The results of residential exposure to soil and groundwater vapor are that SSTLs were not exceeded and the CRF was <1.0. For residential to groundwater by all routes benzene, TPHG and 1,2-DCA exceeded the SSTLs. For commercial groundwater exposure by all routes only benzene exceeded the SSTLs.

Blood-lead values (PbB) were predicted using the EPA ALM spreadsheet. For exposure to the **maximum** soil concentration (7 mg/kg), the 95% blood lead for the worker was predicted at 4.3 ug/dL and the probability of the workers' fetus exceeding 10 ug/dL was 0.3%.

Human Health Risk Assessment and Site Specific Target Levels-Former USA Station # 57 - Oakland, CA.

1.0 Introduction and Background

Risks and Clean-up levels were requested by Scott Bittinger of Stratus Environmental, Inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, California 95682 for the former USA Station #57 at 10700 MacArthur Blvd., Oakland CA which is slated to become a grocery store. A Cal/EPA Health Risk Assessment (HRA) was used to define risks and hazards for future workers and patrons with soil exposure. Water risks and hazards and Site Specific Target Levels (SSTL) were calculated using the Risk Based Corrective Action model or RBCA for soil and groundwater modeling.

2.0 PEA Exposure Assessment Methods

2.1 Exposure Assessment

This HRA used the Cal/EPA PEA Guidance (June, 1999) formulas with exposure defaults from Cal/EPA HERD (Human and Ecological Risk Division) Note 1 – (Oct 27 2005). Cal/EPA TCDD cancer slope factors and USEPA Integrated Risk Information System (IRIS) hazard reference doses (RfD) were used to calculate risk and hazard. Target clean-up concentrations as SSTLs and clean-up factors as CRFs [present concentration]/[target concentration] were calculated using the RBCA model 2.51 (2009). Due to the large number of samples and the prominent "hot spots" both maximum and 95% upper confidence level of the mean (UCL) media values were evaluated. Receptors included the DTSC child/adult receptor modified for shopping using activity-specific exposure factors (USEPA 1997) and the default adult full-time worker.

2.2 Areas of Exposure

Exposures were evaluated for exposure to all areas of the site as a whole.

2.3 Chemicals of Potential Concern (COPC)

Soil: TPHg, TPHd, benzene, toluene, ethyl benzene, xylenes, lead

H20: Gro, TPHd, benzene, toluene, ethyl benzene, xylenes, MTBE, TBA, 1,2-DCA

2.4 Source Term

Due to the statistical power of the analytical data sets (N=70-80 for soil; N=200 for groundwater), as discussed in PEA manual Jan. 1994 part 2.5.1.4 the 95% upper confidence level of the mean (UCL) may be used "where there is adequate characterization." Also the USEPA (May 1992) Supplemental Guidance to RAGS: Calculating the Concentration Term, states "the 95% upper confidence limit (UCL) of the mean should be used where sufficient test samples are present." The mean concentration best describes exposure to contaminants.

S/A Stratus Oakland HRA/Cleanup 7-17-09

To calculate the mean concentrations for each contaminant, the individual concentrations were added to detection limits for each contaminant that is found on-site.

Distribution of Contaminants

Soil: As seen in the statistics for Table 1A (sampled 1987-1995), the max values are roughly 3-6 times the mean and the standard deviations are roughly twice the mean. BTEX especially demonstrated a ten-fold increase in mean versus max in the B-1 well @ 13 feet. This is normal for soils with "hot spots." For Table 1B (Sampled 1994), the max to mean ratio was similar at 4-5 fold. The standard deviation were slightly tighter but still around twice the mean. The "hot spot" was the tank cavity. Table 1C (Wege Samples 1994) demonstrated up to 10-fold higher max than mean and highs in trench, tank field and tank cavity. Table 1D has 2007 samples of borings overall levels were low and most samples were non-detect but GRO (gas related organics) reached a max of 500 mg/kg in horing AS-1 @ 16 feet.

Groundwater: As seen in the statistics for Table 1f (Sampled 87-09) EX2@16' had 3/6 of the highs (Gro, benzene, et. benzene). The values for these 3 highs were 25X mean for ethyl benzene to 32x for benzene and 230x for Gro. The next 3 highs were found in S-1 and S-2 reaching a value of 58x mean for toluene. For Table 1g (sampled 2002-2009) 3 analytes were over detection limits: MTBE, TBA and 1,2-DCA. The first two analytes had maxima in MW-3 and 1,2-DCA had it in EX-2. MTBE had a high 10x the mean. TBA's high was 30x mean and 1,2-DCA's was 22x mean.

2.5 Analytics Quality Control:

All analytical data was provided by Stratus in Excel spreadsheets or .pdf files by email. These tables were cut/pasted directly into S/A Tables. The only alteration that was made to the analytics spreadsheets in this assessment was to convert "<detection limit" notations to the detection limit values for use in statistical analysis to re-label the tables and add statistics.

2.6 Media, Pathways and Routes:

Conceptual Site Model - Sec Appendix A

2.7 Media, Pathways and Routes:

Conceptual Site Model

Source Term	Routes	Receptors
Soil	oral, dermal, inhalation	child/adult shopper/worker
Groundwater	Inhalation vapor intrusion	full-time store worker

Exposure Assessment Assumptions:

The following scenarios are used in the risk/hazard assessment for soil exposure based on guidance in the Cal/EPA PEA, (June, 1999) as updated by DTSC HERD Note 1 (Oct 27 2005). These defaults are seen in Table 2 and are used in all scenarios except where noted. Groundwater was not evaluated for ingestion or dermal exposure because it is not expected to be potable in the future (Personal Communication with Scott Bittinger of Stratus Env.). Instead, the RBCA model used the Johnson and Ettinger model to evaluate vapor intrusion to buildings which generated risks and hazards and clean-up levels.

Exposure Defaults (Cal/EPA)-Soil:

Child Shopper Portion (PEA B-11-14): Age: 6, body weight: 15 kg, soil ingestion: 200 mg/day, water ingestion: 1L per day, dermal surface area: 2900 cm2, dermal soil adherence factor: 0.2 mg/cm2, inhalation rate: 10 m3/day, exposure frequency: 29 d/yr.*, exposure duration: 6 years, cancer average time: 25550 days: non-cancer average time: EF x ED. Media exposure: soil and water ingestion, dermal exposure and inhalation of vapor and dusts.

Adult Shopper Portion (PEA B-11-14): Age > 6, body weight: 70 kg, soil ingestion: 100 mg/day, water ingestion: 2L/day, dermal surface area: 5700 cm2, dermal soil adherence factor: 0.07 mg/cm2, dermal absorption factors (PEA page A-6), inhalation rate: 20 m3/day, exposure frequency: 35 d/yr.*, exposure duration: 24 years, cancer average time: 25550 days: non-cancer average time: EF x ED. Media exposure: soil and water ingestion, dermal exposure and inhalation of vapor and dusts.

* Maximum shopping time is from USEPA Exposure Factors Handbook (Aug 1997) Tables 15-2 (child) and 15-8 (adult) specific activity factors.

<u>Child/Adult Shopper</u>: Combination of child and adult receptor as performed by PEA reduced equations.

Adult Worker (PEA B-11-14): Age > 6, body weight: 70 kg, soil ingestion: 100 mg/day, water ingestion: 2L/day, dermal surface area: 5700 cm2, dermal adherence factor: 0.2 mg/cm2, dermal absorption factors: PEA page A-6, inhalation rate: 14 m3/day, exposure frequency: 250 d/yr, exposure duration: 25 years, cancer average time: 25550 days, non-cancer average time: EF x ED. Media exposure: soil and water ingestion, dermal exposure and inhalation of vapor and dusts.

3.0 Hazard and Risk Assessment Methods

Risk Assessment Principles: Human exposure to chemicals in the soil and air is estimated using exposure estimates compared to standard measures of health hazard and risk at known levels of exposure. Assessments are dependant on factors which vary according to choice of media values, exposure defaults and risk and hazard values.

3.1 Non-Carcinogenic Effects Methods

Non-cancer hazard was calculated using the equations from PEA Guidance pages B-7-14 in Tables 5a,b. Table 5a presents the Cal/EPA health hazard and risk data based on the maximum concentrations detected at the site. Table 5b presents the health hazard and risk based on the 95% upper confidence levels. The hazard calculations used USEPA Reference Doses (RfD) from Table 4.0 and exposure defaults from Table 2. Hazard values for TPH were provided by

Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). (1997). Volume 4. In Tables 5a,b hazards for each contaminant are expressed as hazard quotients for exposure by oral, dermal and dust inhalation routes. The summation of hazard quotients for all contaminants generated a combined Hazard Index. **Allowable Hazard:** Any hazard quotient or index greater than 1.0 is considered excessive.

Lead Hazard:

Evaluation of non-cancer hazard for soil-lead used the USEPA ALM spreadsheet from their Lead Website @, http://www.epa.gov/superfund/health/contaminants/lead/products.htm

3.2 Carcinogenic Effects Methods

To evaluate <u>cancer risk</u>, the Cal/EPA Cancer Slope Factors were retrieved from the Cal/EPA Office of Environmental Health Hazard Assessment (OEHHA) Toxicity Criteria Data Base (TCDB) at: http://www.oehha.ca.gov/risk/ChemicalDB/cancerpotency.asp

These risk factors were tabulated in Table 4 and were used with PEA formulas (pages B-7-14) in Tables 5a,b for the alternate assessment to calculate risks for the child/adult shopper and with USEPA formulas and defaults for the industrial and construction worker scenarios (Table 2). A combined cancer risk value was tabulated at the bottom of Tables 5a,b for the receptor for all routes, media and all carcinogens.

Allowable Risk – One in a million (10^{-6}) is the point of departure for risk management decisions with some agencies accepting 10 in a million (10^{-5}) .

3.3 Risk Based Clean-up Levels - Soil and Groundwater

Site Specific Target Levels (SSTL) and clean-up factors (CRFs) for all soil and groundwater contaminants were calculated using the Risk Based Corrective Action model (RBCA) 2.51 issued in 2009 from GSI Environmental Inc. These soil and groundwater SSTL and CRFs are seen in Table 6. The RBCA assessments used 95% UCL values of all contaminants including for 1) soil TPH, benzene, toluene, et. benzene and xylenes by oral, dermal and inhalation routes including vapor intrusion and 2) groundwater TPH, benzene, et benzene, xylenes, MTBE and 1,2-DCA by inhalation of vapors. The only complete pathway for groundwater exposure is by inhalation of vapors since future workers will not be directly exposed by ingestion or dermal routes. The RBCA model uses standard EPA defaults for exposure assessment and the EPA Johnson & Ettinger model for vapor intrusion modeling. Reports of all exposure and modeling defaults, pathways, soil and groundwater parameters, exposure and risk/hazard calculations, SSTLs and clean-up factors (CRFs) are included in Appendix C-H. The CRF is a ratio of the [present concentration] / [target concentration].

4.0 Uncertainty Assessment

All risk assessments involve the use of assumptions, judgments and imperfect data to varying degrees. Lack of human data often results in use of large uncertainty factors in the final estimates of risk and hazard. There are several categories of uncertainty associated with exposure and risk assessments. Below are some of the factors which contribute to uncertainty in the present risk assessment.

4.1 Uncertainty in Source terms:

1) Use of <u>maximum concentrations</u> is recommended by some agencies to avoid underestimating risk. This practice is likely to overestimate risk/hazard since maximum concentrations are often outliers while receptors are actually exposed to average concentrations, not maxima, as discussed in Cal/EPA PEA manual Jan. 1994 part 2.5.1.4 which states the 95% UCL may be used "where there is adequate characterization." Also the US EPA (May 1992) Supplemental Guidance to RAGS:

S/A Stratus Oakland HRA/Cleanup 7-17-09

Calculating the Concentration Term, states "the 95% upper confidence limit (UCL) of the mean should be used where sufficient test samples are present."

4.2 Uncertainty in Exposure Assessment:

1) Assumption that exposure will continue at initial levels for a <u>30-year lifetime</u> for residents often overestimates exposure duration and ignores natural decay of the contaminants with time, as discussed by Borgert et al. (1995).

4.3 Uncertainty in Risk Assessment:

- 1) Limitations in human exposure studies used to derive <u>risk factors</u> can overstate risk and hazard.
- 2) Use of <u>animal models</u> to generate cancer slope factors requires extrapolation from known high dose in lab studies to unknown human low dose. Low dose risk extrapolation methods (ex. linearized multistage model) usually assume linear dose-response slopes unless another mechanism is known. Actual biological mechanisms, however, often demonstrate log-linear or sigmoidal rate curves. To this overestimation is often added a 95% upper confidence limit on the risk estimate. Use of the most sensitive animal data sets as a policy should be weighed against models with more significance for human exposure.
- 3) The use of <u>uncertainty factors</u> to extrapolate from animals to humans and normal to sensitive humans and from short-term to chronic exposures and for studies without no effect levels is a key part of the Reference Dose and hazard assessment methodology and can increase risk estimates by 100 to 3000 times.
- 4) Uncertainty exists in the assumption of additivity of toxic effects such as adding Hazard Quotients or cancer risks with multiple substance exposure. Additivity ignores possible synergisms or antagonisms among chemicals with different mechanisms, which would increase or decrease toxicity beyond additivity.

5.0 Risk and Hazard Assessment Results

<u>Cal/EPA Soil Cancer Risks</u> in Table 5a,b using Cal/EPA methods and maximum soil concentrations for the child/adult shopper were 3.54E-07. For the worker the risks were 1.2E-06 or at the E-6 threshold. Using 95% UCL soil levels the combined risk for the child/adult shopper was 3.9E-08 or below the risk threshold of E-6. For the worker risks were 1.34E-07 also below the threshold.

<u>Cal/EPA Soil non-cancer hazards</u> in Table 5a,b using Cal/EPA methods for maximum soil concentrations Table 5a) predicted hazard values of 0.4 for the child/adult and 0.014 for the industrial receptor, both under the 1.0 threshold. 95% UCL soil concentrations predicted hazards of 0.064 for the child and 0.0023 for the worker.

RBCA Risks and Hazards in Table 5c generated risks from soil using RBCA and the 95% UCL media values were 1E-6 for commercial and 4.2E-6 for full residential exposure. Soil hazard was 0.28 for commercial and 0.5 for residential exposure. Groundwater risks for vapor intrusion were 4.63E-7 for commercial and 1.9E-6 for residential exposure and hazard was 0.033 for commercial and 0.11 for residential exposure. Risks for commercial groundwater ingestion and vapor generated a combined risk of 1.2E-4 and a hazard of 1.94. Risks for residential groundwater ingestion and vapor intrusion for groundwater generated a combined risk of 4.87E-4 and a hazard of 5.27.

RBCA SSTL Clean-up levels in Table 6a demonstrate that SSTLs for commercial soil and groundwater vapor exposure to all chemicals were not exceeded by present 95% UCL media concentrations and the clean-up levels or CRF were <1.0 Table 6b shows the results of residential exposure to soil and groundwater vapor where SSTLs were not exceeded and the CRF was <1.0. Table 6c shows residential and commercial exposure to groundwater by all routes. For residential exposure, benzene, TPHG and 1,2-DCA exceeded the SSTLs. For commercial groundwater exposure by all routes only benzene exceeded the SSTLs.

Blood-lead values (PbB) were predicted using the EPA ALM spreadsheet. For exposure to the **maximum** soil concentration (7 mg/kg), the 95% blood lead for the worker was predicted at 4.3 ug/dL and the probability of the workers' fetus exceeding 10 ug/dL was 0.3%.

6.0 Conclusion

Cal/EPA Cancer Risks for maximum soil concentrations for the two soil carcinogens on-site; benzene and ethyl benzene by oral, dermal and inhalation routes was 3.54E-07 for the child/adult shopper and 1.2E-06 for the industrial receptor. The 95% UCL soil combined risk was 3.9E-08 for the child and 1.34E-07 for the worker. The child/adult receptor was under the E-6 risk threshold with both maximum and 95% UCL media values. The industrial receptor was at the E-6 threshold with maximum values and under the threshold with 95% UCL values.

Cal/EPA Hazard values using maximum soil concentrations for all compounds predicted a hazard index of 0.4 for the child and 0.014 for the industrial worker. Using the 95% UCL soil concentrations predicted a hazard index of 0.064 for the child/adult and 0.0023 for the worker. All receptors/media combinations generated hazard indices under the 1.0 threshold.

Soil lead was evaluated with the EPA ALM spreadsheet for exposure to the maximum soil concentration of 7 mg/kg. The 95% confidence limit on the predicted blood lead level for the industrial worker was predicted at 4.3 ug/dL and the probability of the industrial workers' fetus exceeding 10 ug/dL was 0.3%. These predicted blood lead values are below the 10 ug/dL present level of concern.

RBCA Risks and Hazards. The risk for the commercial receptor was 1E-6 and slightly higher than the Cal/EPA industrial receptor (1.34E-07). RBCA residential soil risk was 4.2E-6. RBCA soil hazard was 0.28 for commercial and 0.5 for residential exposure. Groundwater risks for vapor intrusion were 4.63E-7 for commercial and 1.86E-6 for residential exposure and hazard was 0.033 for commercial and 0.11 for residential exposure. Risks for residential ingestion and vapor intrusion for groundwater generated a combined risk of 4.87E-4 and a hazard of 5.27. Risks for commercial groundwater ingestion and vapor generated a combined risk of 1.2E-4 and a hazard of 1.94. Use of groundwater for potable uses is not expected in this area.

RBCA soil and groundwater SSTLs were not exceeded by present 95% UCL soil and groundwater concentrations using all routes for soil and groundwater vapor intrusion. The clean-up factor or CRF was also <1.0 for all chemicals in both media. With ingestion of water the residential receptor exceeded the SSTLs for benzene, TPHG and DCA. For commercial groundwater ingestion and vapor; only benzene exceeded the SSTLs.

Limitations of S/A Risk Assessment: The methods and information used in this assessment are believed to provide accurate and current guidance for risk management decisions without specific warranty. Decisions involving remediation and liability should be made with the aid of the appropriate regulatory authorities together with legal council.

7.0 References

Cal Regional Water Quality Control Board-SF Bay. (May 2008) Background document for the development of Tier 1 Environmental Screening Levels http://www.swrcb.ca.gov/rwqcb2/water issues/available documents/ESL May 2008.pdf

Cal/EPA CHHSL http://www.calepa.ca.gov/brownfields/documents/2005/CHHSLsGuide.pdf

Cal/EPA OEHHA TCDB Cancer Potency site. http://www.oehha.ca.gov/risk/ChemicalDB/cancerpotency.asp

Cal/EPA DTSC Science and Technology Johnson Ettinger Models http://165.235.111.242/AssessingRisk/JE_Models.cfm

Cal/EPA HERD (September 26, 2003) Evaluating Metals as Chemicals of Potential Concern.

Cal/EPA DTSC (June 1999) Preliminary Endangerment Assessment (PEA) Guidance Manual.

Cal/EPA HERD (February 1997) Selecting Inorganic Constituents as Chemicals of Potential Concern.

Cal/EPA HERD (Oct 27 2005) HERD HHRA Note 1 – Recommended DTSC Default Exposure Factors.

IRIS. Integrated Risk Information Service. USEPA On-line Data Base.

USEPA ALM Spreadsheet (online); USEPA Adult Lead Methodology Users Manual (online) http://www.epa.gov/superfund/health/contaminants/lead/products.htm

USEPA PRGS (2009 online) http://epa.gov/region09/superfund/prg/

USEPA (2000) Dermal Assessment . EPA 540/R-99/005

Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). (1997). Volume 4. Development of Fraction Specific References Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH). Amherst Scientific Publishers.

RBCA (2009) Risk Based Corrective Action model version 2.51 from GSI Env. Inc Houston TX 77098

USEPA (Aug, 1997) Exposure Factors Handbook. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment. Washington DC 20460

USEPA (May 1992). Supplemental Guidance to RAGS: Calculating the Concentration Term.Office of Solid Waste.

USEPA (Dec. 1991). Risk Assessment Guidance for Superfund Vol. I. Human Health Evaluation Manual. Part B. Development of Risk-Based Preliminary Remediation Goals.

TABLES

	Soil Anal	<u> </u>					Ethyl	i Otai
100 10 15	Dota -	Depth	TPH G	TPH D	Benzene	Toluene	Benzene	Zyľene
Well ID	Date	(Feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
S-1	2/12/1987	20.5 20.5	42 16					
S-2	2/12/1987	24.5	600					
B-1	02!28/95	5.5	ND		ND	ND	ND	ND 0.4
		9.5	44		0.12	ND 10	0.14 7.5	48
		13	540	55	2.6 0,012	0.016	ND	0.029
		20 25	ND 3.9		0,012	0.14	0.062	0.37
		31	ND ND		ND	0.01 1	0.0057	0.045
	 	35	ND		0,014	0.018	0.012	0.079
	 	40.5	ND	ND	ND	ND	ND	ND ND
B-2	3/1/1995	5	ND		ND	DN DN	ND ND	ND ND
		10.5	ND 10		ND 0.057	0.028	0.029	1.2
		16	16 110		0.96	0,41	0.33	1.5
	ļ	21 26	240	22	0.76	1.4	0.85	1.9
B-3	3/1/1995	11	ND		ND	ND	ND	ND
D-3	3/1/1500	15.5	10		0.044	0,11	0.079	0.63
		20,5	IS	1,3	0.041	0.37	0.15 ND	1.1 ND
B-4	3/2/1995	3	ND		ND ND	ND ND	ND ND	ND
		6	ND ND	ND	ND ND	ND ND	ND	ND
		12	ND ND	140	ND ND	ND	ND	ND
B-5	3/2/1995	5.5 12	ND ND	ND	ND	ND	ND	ND
D.E.	03!02/95	<u> </u>	33	5.3	0.093	0.065	0.33	2
8-6	03:02/33		2.6		0.062	ND	0.03	0.047
	1		ND		ND	ND	ND ND	0.022 ND
B-7	3/2/1995	3,5	ND	ND	ND	ND ND	11)7 ND	ND ND
		5	ND ND		ND ND	ND ND	ND	ND
		12	ND 17		0,012	0.021	0.12	0.16
B-8	3/2/1995	3 5.5	ND ND	ND	0.019	ND	0.05	ND
		12	2	-	0.042	ND	ND	0.016
MW-3	02128/95	5.5	ND		ND	ND	ND	ND 0.040
(1)114-0	-	11.5	1,9	-	0.026	0.011	0.0061	0.019 5.4
		13.5	240	12	0.41	0.64 3.8	1.5	10
		15,5	110		0,37 0.26	0,24	0,059	0.5
		21.5 24.5	3 ND	-	0.03	0.0069	0.0056	0,016
	<u> </u>	29.5	ND	-	ND	0,0054	ND	0.0092
	 	39.5	ND		ND	ND	ND	ND
MW-4	11/21/1995	10	ND	5	ND	ND	ND	ND ND
MW-5	11/21/1995	10	ND	5.2	ND	ND	ND ND	ND ND
		15	ND	4.2	ND ND	ND ND	ND	ND
MW-6	11!21/95	10	ND ND	4.4	ND ND	ND	ND ND	ND
MW-7	11/21/1995	10	ND ND	4.7	ND ND	ND _	ND	ND
		15 20	25	8.7	0.071	0.11	0.043	0.1
MW-8	11/21/1995	10	ND	5.5	ND	ND	ND	ND
1919 4 70		15	ND	5.1	ND	ND	ND	ND ND
		20	ND	4,5	ND	ND	ND FALL	ND Total
listics - Test Sa	mples						Ethyl	
		Depth	TPH G	TPH D	Benzene	Toluene	Benzene	Xylen
		(Feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) 0,7	(ppm 3.2
ın		15.4	108.2	9.8	0.3	1.0 2.4	1.7	10.0
		9.4	178.7	13.4	0,6 2,6	10.0	7.5	48.0
ζ		40.5	600.0	55.0	20.0	18.0	20.0	23.0
		47.0	19.0 1.6	15.0 1.6	1.6	1.6	1.6	1,6
-87) 4 UCL		1.6 17.6	173,8	15.4	0.5	1.9	1.3	6.5
TES: G TPH D ppm ND	<u>_</u>		÷				1	
1 netroleum hydroca	arbons in the gasoline ran	ige	4	T			4	1
i petroleum hydroci	arbons in the diesel range		j	+-			†	-
s per million	hod detection limit	<u> </u>						
detected at the mel	non detection limit		1	1	4	. A		

ble 1b Sc		icai Dali	a USA C	ration t	101 (198	4) Vakia	IIIU CA-			-
Sample	Sample		1	L			L	Ethyl	Total	TT
Location	םו	Date	Depth	TPHG	TPH D	Benzene	Toluene	Benzene	Zylene	Lea
			(Feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pp
				1	(1-1)	- M-17	VIII I	1 (FF)	1 (CF::/	1 VEE
Product	PI-E-3.5	7/19/1994	3.5	ND(0.2)	ND(1.0)	ND(0.005)	ND(0.005)	ND(0.005)	ND(O.005)	7
Trench	PI-2	7/19/1994	3.5	4.5	ND(50)	ND(1.0)	5	60	4=40	4
	PI-3	7/19/1994	3.5	ND(0?)	ND(LO)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	5
	PI-4	7/19/1994	4	ND(02)	ND(1.0)	ND(0,005)	ND(0.005)	ND(O.005)	ND(0.005)	6
	PI-5	7/19/1994	3,5	ND(1.0)	ND(1.0)	ND(O.005)	ND(0.005)	ND(O.005)	ND(0,005)	7
Y	P12-0	9/19/1994	9	15	<u>.</u>	0.02	0.04	0.07	0.19	
Tank Field	TPI TP2	7/19/1994 7/19/1994	12.5	<u> </u>	60	ND(0.005)	0.015	0.007	0.008	<u> </u>
	TP3	7/19/1994	12S 13	94	230	ND(1,0) 0,18	0.79 0.25	2.2	0,7 5.9	3
	TP4	7/19/1994	13	1400	-	1.9	3.5	12	150	4
	TP5	7/19/1994	13	300		ND(0.5)	0.74	4.8	20	3
	TP6	7/19/1994	13	0.7	-	ND(0.005)	ND(0.005)	0.006	ND(0.005)	3
	TP7	7/19/1994	13	ND(0,2)	-	ND(0,005)	ND(0.005)	ND(0.005)	ND(0,005)	3
Tank Cavity	TC-1	8/19/1994	16	ND(0.2)	-	ND(0.005)	ND(0.005)	ND(0.005)	ND(O.005)	
	TC-2	8/19/1994	16	93	-	ND(1.0)	0.28	0.63	3.1	
	TC-3	8/19/1994	17,5	2.4	1	800,0	0.02	0.02	0.11	
T-111-	TC-4	8/19/1994	15.5	0.7	2	ND(0.005)	ND(0.005)	ND(0,005)	ND(0,005)	<u> </u>
	TC-5 TC-6	8/19/1994 8/19/1994	17 18	190 ND(0.2)	-	0,17 ND(0.005)	0.38 ND(0.005)	0.99 ND(0.005)	7.9 ND(0,005)	<u> </u>
	SM-I	8/19/1994	19,5	11D(U.Z)	0.4	MD(0.009)	ND(0.005) ND(0.005)	ND(0.005) ND(0.005)	ND(0,005) ND(0.005)	ND(0.0
	TC2-1	9/27/1994	.0.0	417ND(02)		ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	1415(0.0
	TC2-2	9/27/1994	13	13	•	0.06	0.019	0.026	ND(0.005)	-
	TC2-3	9/27/1994	16	ND(0.2)	-	ND(0.005)	ND(0.005)	ND(0 005)	ND(0.005)	·
	TC2-4	9/27/1994	13	ND(0.2)		ND(0.005)	ND(0.005)	ND(0.005)	ND(0,005)	
	TC2-5	9/27/1994	12	100	200	0.13	0.12	0.1	0.26	
	TC2-7 TC2-8	9/27/1994 9/27/1994	13 13	6.3 ND(1.0)	37 16	ND(0,005) ND(0,005)	ND(O.005)	ND(0,005) ND(0,005)	ND(0.005)	<u> </u>
	TC2-9	9/27/1994	19	0.4		ND(0,005)	ND(0.005) ND(0.005)	ND(0.005)	ND(0:005) ND(0.005)	 :
	TC2-11	9/27/1994	13	2200	•	9.6	21	40	260	
	TC2-12	9/27/1994	12	130		0,33	0.29	0,66	7.9	 -
	TC2-13	9/27/1994	20	620	-	1.1	4,9	6.4	66	İ
	TC2-14	9/27/1994	11	92		0.096	0.1	0.17	1.7	-
· · · · · · · · · · · · · · · · · · ·	TC2-15	9/27/1994	17	ND(0.2)	*	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	
	TC2-16	9/27/1994	14	ND(1.0)		ND(0.005)	ND(O.005)	ND(0.005)	ND(0.005)	<u> </u>
	TC3-3	Oct-94	13	300	330	•	<u> </u>	-		
	TC3-4	Oct-94	13	510	ND	-		- 1	-	
	TCE-5	Oct-94	13	2400	ND ND		-	:		-
Di	TC3-6	Oct-94	13	940	ND	-	-			
Dispenser	DI-1	9/27/1994	3.5	720	•	0.19	2	9	53	-
Island	DI-2 DI-3	9/27/1994 9/27/1994	3.5	280	-	0.12	8.0	4.6	33	
	DI-3	9/27/1994	3	ND(0.2) 590		ND(0.005) 0.7	ND(0.005) 2.5	ND(0.005) 13	ND(0.005) 81	
	DI-5	9/27/1994	3.5	570	•	0.1	1,5	2.7	17	
	D1-6	9/27/1994	3,5	1800	-	0,72	5.2	31	180	
stics - Test Sar	nples							Ethyl	Total	TTL
		Date	Depth	TPH G	TPH D	Benzene	Toluene	Benzene	Xylene	Lea
			(Feet)							
				(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppr
1	+		11.5	495.3	97.4	1.0	2.4	8.6	46.7	4.5
			5.3	686.3	123.3	2.4	4.7	15.5	73.3	1.6
, , , , , , , , , , , , , , , , , , , ,	 		20.0	2400.0	330.0	9.6	21.0	60.0	260.0	7.0
771	ļ -		42.0	27.0	9,0	16.0	21.0	22.0	19.0	10.0
37)	ļ		1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
UCL	1		12.8	706.6	163.2	1.9	4.0	13.9	73.6	5.3
	ļ. ·	- ·						ļ		
	TERM CEO ENCE	WEERS LINE ES	SOTHERWISE	NOTED				ļ · · · · ·		-
SAMPLES DV WES										
SAMPLES BY WES	TERN GEO-ENGI	WELING DIVELOR	OTHERMISE	MOILO				l	i	
SAMPLES BY WES TPH D VD Setroleum hydrocart									The state of the s	

Table 1c Sc	il Analyt	tical Dat	a USA S	Station #	[‡] 57 (199	4) Oakla	nd CA-	Wege Sa	amples	:
Sample Location	Sample ID	Date	Depth		1	Τ΄		Ethyl	Total	TTLC
	1	Sampled	Sampled	TPHG	TPH D	Benzene	Toluene	Benzene	Xylene	Lead
	1 -			(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
		 		(ppiii)	(66111/	(bbin)	(ppiii)	1 (bbiii)	(ppin)	(hhui)
Trench	PI-E	7/19/1994	3.5	0.2	1	0.005	0.005	0.005	0,005	7
	PI-2	171071004	3.5	500	50	1	6	60	440	4
	Pi-3	 	3.5	0.2	1	0.005	0.005	0.005	0.005	5
	PI-4	 	4	0.2	1	0.005	0.005	0.005	0.005	
	PI-5	 	3.5	1	1,0	0.005	0.005	0.005	0.005	6
	FI-3	 	3.5	 	1,0	0.005	0.005	0.005	0.005	1
TANK FIELD	TP-1	7/19/1994	12.5	1	60	0.005	0.015	0.007	0.009	
TANTILLD	·	1713/1334	 			0.003	0.013	0.007	0.005	
	TP-2		12.5		230	1	0.79	2.2	0.7	
	TP-3		13	94		0.18	0.25	1	5.9	3
	TP-4	ļ	13	1400		1.9	3.5	12	190	4
	TP-5		13	300		0.5	0.74	4.8	20	3
	TP-6		13	0.7		0.005	,005	0.006	0.005	3
	TP-7		13	0.2		0.005	,005	0.005	0.005	3
	T	1					,	1		<u>-</u>
TANK CAVITY	TC-1	8/19/1994	16	0.2	<u> </u>	0.005	0.005	0.005	0.005	
	TC-2		16	93		0.01	0.28	0.63	3.1	ļ
	TC-3		17.5	2.4	1	0.008	0.02	0.005	0.11	
	TC-4		15.5	0.7	2	. 005	0.005	0.005	0.005	1
	TC-5		17	190		0.17	0.38	0.99	7.9	
	TC-6	 	18	0.2		c.005	0.005	0.005	0.005	
	SM-1	 	19.5	0.4		0.005	0.005	0.009	0.005	
	OW 1		10.0	0.4		0.000	0.000	0.005	0.003	
TANK CAVITY	TC2-1	9/27/1994	17	0.2		0.005	0.005	0.005	0.005	
TANK OAVIII	TC2-2	372171334	13	13		0.06	0.019	0.026	0.005	
	TC2-3	 	16	0.2		c.005	0.005	c.005	0.005	
	TC2-4		13	0.2		0.005	0.003	0.005	0.005	
	TC2-5	1	12	100	200	0.003	0.009	0.003	0.005	
	TC2-7		13	6.3	37					
	TC2-8		13	1	16	,005 0.005	,005	0.005	0.005	
	TC2-8	 	19	0.4	16		0.005	0.005	0.005	
						0.005	0.005	0.005	0.005	
	TC2-11	 	13	2200		9.6	21	40	260	
	TC2-12		12	130		0.33	0.29	0.66	7.9	
	TC2-14		20	620		1.1	4,9	6.4	66	
	TC2-15		11	92		0.096	0.1	0.17	1,7	
	TC2-16		17	0.2		,005	0.005	0.005	0.005	
	<u> </u>		14	1		0.005	,005	0.005	0.005	
CLAND	- D1 4	0/40/4004	2.5	700		2.40				
SLAND	DI-1	8/19/1994	3.5	720		0.19	2	9	53	
	DI-2		3.5	280		0.12	0.8	1.6	33	
· -	DI-3		3	0.2		0.005	0.005	0.005	0.005	
Statistics - Test San	nples							Ethyl	Total	TTLC
		Date	Depth	TPH G	TPH D	Benzene	Toluene	Benzene	Xylene	Lead
			(Feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Mean			12.2	198.5	54.5	0.5	1.3	4.1	30.3	4.5
S.D.		1	5.2	456.3	82.5	1.7	3.9	12.2	88.3	1.6
Vlax			20.0	2200.0	230.0	9.6	21.0	60.0	440.0	7.0
V		[36.0	34.0	11.0	31.0	32.0	34.0	36.0	10.0
•	4	.								
Γ(G-87)			1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6

Table 1d	Soil Ana	alytical	Data	USA S	tation	#57 (20	007) Oa	akland	CA-Bo	oring S	Sample	es
Sample ID	Sample	Date	GRO	Benzene	Toluene	Ethyl	Total	MTBE	TBA	DIPE	ETBE	TAME
Tair to a	Depth	Collected		"		benzene	Xylenes					
	(feet bgs)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Boring AS-1												
AS-1-11 Ft.	11	8/23/2007	80	0.02*	0.02*	0.057	0.041	0.02*	2.0*	0.04*	0.04*	0.04*
AS-1-16 Ft.	16	8/23/2007	500	0.2*	0.2*	8.8	1.72	0.2*	20*	0.4*	0.4*	0.4*
Boring AS-2												
AS-2-16 Ft.	16	8/23/2007	1.6	0.0058	0.005	0.005	0.005	0.005	0.5	0.02	0.02	0.02
AS-2-21 Ft.	21	8/23/2007	19	0.67	0.018	0.43	1.31	0.01*	1.0*	0.02*	0.02*	0.02*
AS-2-26 Ft.	26	8/23/2007	1.3	0.16	0.005	0.029	0.031	0.005	0.5	0.02	0.02	0.02
Statistics			GRO	Benzene	Toluene	Ethyl	Total	MTBE	ТВА	DIPE	ETBE	TAME
	Depth	Date				benzene	Xylenes					
	(Feet)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Mean	18.0		120.38	0.28	0.01	1.86	0.62	0.01	0.50	0.02	0.02	0.02
S.D.	5.7	<u> </u>	214.66	0.35	0.01	3.88	0.83	0.00	0.00	0.00	0.00	0.00
Max	26.0	1	500.00	0.67	0.02	8.80	1.72	0.01	0.50	0.02	0.02	0.02
N	5.0		5.00	3.00	3.00	5.00	5.00	2.00	2.00	2.00	2.00	2.00
T(G-87)	1.6		1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
95% UCL	22.1		273.98	0.60	0.02	4.64	1.21	0.01	0.50	0.02	0.02	0.02

TABLE 1e SOIL	TABLE 1e SOIL ANALYTICAL DATA - COMBINATION OF ALL SOIL TABLES													
Statistics - Test Samples	GRO				Ethyl	Total	TTLC	DIPE	ETBE	TAME				
	TPH G	TPH D	Benzene	Toluene	Benzene	Zylene	Lead							
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/Kg)	(mg/Kg)	(mg/Kg)				
Mean	268.0	40.9	0.6	1.5	4.3	15.6	4.5	#DIV/0!	#DIV/0!	#DIV/0!				
S.D.	512.1	79.0	1.6	3.8	11.6	59.7	1.6	#DIV/0!	#DIV/0!	#DIV/0!				
Max	2400.0	330.0	9.6	21.0	60.0	440.0	7.0	0.0	0.0	0.0				
N	85.0	48.0	70.0	74.0	81.0	83.0	20.0	0.0	0.0	0.0				
T(G-87)	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6				
95% UCL	356.9	59.2	0.9	2.2	6.4	26.1	5.1	#DIV/0!	#DIV/0!	#DIV/0!				

	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	iary tien	Groundwater	, , , , , , , , , , , , , , , , , , ,	7 1 1771	Forme	UDA	Castiii	Cotati	711 37
Vell Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Elevation (ft msl)	GRO[5] (µg/L)	TPHD (ug/L)	Benzene (µg/L)	Toluene (ug/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/l.)	MTBE (
S-1	02/12/87	 					630	4.4	3.5	37	NA NA
	03/03/95	13.10	74 74	61.64	910	5,900	260	7.6	16	14	N/
	07/24/95	12.35		62.39	NA	NΛ	NA	NA	NA.	NA .	N/
	11/22/95	19.30	78 68	59.38	460	6,100	13	0 69	0.99	1.1	460
	12/06/95	19.59		59.09	NA	NA	NA	NA	NΑ	NΛ	N/
	01/04/96	19 52		59.16	NA	NA .	NA NA	NA NA	NA NA	NΛ	N/
	01/31/97	15.07		63.61	1,100	200	11	6	3	6	200
	10/10/97	18.90		59.78	530	2,000	0.5	2.1	0.5	-2	230
	01/20/98	16.79		61.89	1,800	200	0.5	0.5	1.5	10	87
	04/28/98	8 37 11.61		70 31 67.07	130 310	7300 2,000	1.9 0.54	3.2 4.6	0.5 3.8	0.5 0.82	310 280
	07/31/98	15.28		63.40	1,000	1,200	0.5	9.5	16	91	10
	06/10/99	14.35		64.33	660	150	0.99	0.5	0.5	2.4	80.1
	10/18/00	17.56		61.12	50	330	0.5	0.93	0.5	0.5	44
	03/12/02	16.29		62.39	500	50	2.8	48	0.79	4.4	6.1
	11/19/02	19.53		59.15	190	NΛ	0.5	0.5	0.5	0.5	19
	01/09/03	18.14		60.54	510	NA	1 1	0.5	0.52	0.5	11
	04/14/03	18.04		60 64	300	NA	1.0[2]	10[2]	1.0[2]	1.0[2]	27
	07/21/03	20.31		58 37	300	NA	0.5	0.5	0.5	0.5	11
	10/09/03	19.46		59.22	390	NA	0.5	0.5	0.5	0.5	8.8
	01/15/04	18.21	79.66	61.45	200	NA	0.5	0.5	0.5	0.5	6
	04/08/04	19.29		60,37	140	NA	0.5	0.5	0.5	0.5	13
	08/10/04	18 86		60.80	110	NA	4.6	0.5	0.5	0.51	72
	11/11/04	19.81		59.85	160	NA	0.5	0.5	0.5	0.5	15
	01/19/05	18.12		61.54	440	NA	0.5	0.5	14	0.5	14
	04/14/05	13.94		65.72	320	NA	0.5	0.5	0.5	0.5	12
	07/19/05	14.11		65.55	240	NA.	6.1	0.5	0.60	0.5	60
6.	10/24/05	16.53 15.27		63.13 64.39	320 50	NA NA	5 0 0.5	0.5 0.5	0.5	0.5 0.5	37 45
S-1 Cont.	04/27/06	9.59		70.07	50	NA NA	0.5	0.5	0.5	0.5	7 7
Cont.	07/12/06	11.00		68 66	50	NA NA	0.5	0.5	0.5	0.5	12
	10/17/06	14.54		65.12	50	NA NA	0.5	0.5	0.5	0.5	1.0
	01/08/07	15 87		63.79	260	NA	4.6	a.5	0.5	0.5	15
	04/09/07	16.06	T T	63 60	300	NA	0.5	0.5	0.5	0.5	22
	04/23/07	1631		63.35	NA	ΝA	NA	NA	NA .	NA NA	N/
	07/23/07	17 86		61.80	110	NA	0.5	0.5	0.5	0.5	52
	10/15/07	19 22		60.44	50	NA	0.5	0.5	0.5	0.5	50
	03/24/08	17 58		62.08	180	NA	0.5	0.5	0.5	0,5	29
	05/30/08	19.66		60.00	100[2]	NA .	0.5	0.5	0.5	0.5	43
	07/10/08	19 32		60 34	130	NA	0.5	0.5	0.5	0.5	4
	80/10/01	20 67		58.99	64	NA	0,5	0.5	0.5	0.5	70
	02/10/09	22.31		57.35	50	NA	0.5	0.5	0.5	0.5	53
S-2	02/12/87		Sheen			· · · · · · · · · · · · · · · · · · ·	3400	3800	1300	11000	N/
	03/03/95	15.39	76 86		24,000	6,000	1,900	440	600	2,500	N/
	07/24/95	14.47	60.07	(1.45	NA NA	NA	NA	NA.	NA	NA NA	N/
Sheen	11/22/95	21.52	80 93	61.47	NA NA	NA NA	NA .	NA NA	NA.	NA NA	N/
	12/06/95 01/04/96	21.78 21.75		62 39 59.41	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	01/31/97	17.25		59.41	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	N/
Sheen	10/10/97	21.21		59 1B	13,000	50	260	38	190	280	600
Sheen	01/20/98	19.07		63 68	1,900	2,300	4 6	6.3	0.5	4 6	190
	04/28/98	10 47		59 72	22,000	100	980	160	320	680	570
	07/31/98	13.71		61.86	160,000	50	950	290	550	1,700	550
	11/02/98	17.31		70 46	14,000	500	170	70	170	230	490
	06/10/99	16.48	T	67 22	17,000	50	650	230	25	750	490*
	10/18/00	19.70		63 62	4,400	50	2	64	5 1	12	270
	03/12/02	18.56		64.45	5,100	660	62	44	52	78	43
	11/19/02	21.70		61 23	26,000	NA	1,400	180	520	340	750
	01/09/03	20.37		62.37	16,000	NA NA	120	32	76	214	270
	04/14/03	19.93		59.23	16,000	NA	160	76	210	290	400
	07/21/03	22.00		60 56	9,700	NA	270	90	200	277	410
	10/09/03	21.58	51.55	61.00	10,000	NA	39	9.2	52	26.5	180
	01/15/04	20.44	81.90	58.93	6,300	NA NA	21	2.0 [3]	20	31	130
	04/08/04	17.15		59.35	13,000	NA NA	160	76	170	231	431
	08/10/04	20.98		61.46	10,000	NA NA	76	. 13	5.0[3]	500	92
	11/11/04	21.95		64.75	20,000	NA NA	530 500	240	370	1,730	420
	01/19/05	20 33		60.92 59.95	17,000 20,000	NA NA	590	150 230	250	990	580
	04/14/05	16 17 16 25		61.57	20,000 970	NA NA	830 48	13	570 16	1,980	510 72
	10/24/05	18 07		65 73	1,200	NA NA	100	13	52	41	69
5-2	02/02/06	17.26		65.65	2,000	NA NA	17	12	26	108	340

Table 1f G	roundw	ater Ai	alytica	I Sum	mary -	BIEX-	Forme	USA	Gasolin	e Stati	on 57
Well Number	Date Collected	Depth to Water (feet)	Well Elevation (fl msl)	Groundwater Elevation (f) msl)	GRO[5] (μg/L	TPHD (µg/t)	Benzene (µg/L)	Toluene (ne/l.	Ethylhenzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L
Cont.	04/27/06	11.55		63.83	130	NA.	5.1	I.I	2.8	88	81
	07/12/06	12.98		64 64	140	NA NA	0.3	0.5	0.5	0 77	180
	10/17/06	16 59	i ————	70.35	130	NA	0.98	0.5	11	2.20	160
	01/08/07	18.21	i	68 92	69	NA	0.50	0.5	0.5	0.50	64
	04/09/07	18.29		65.31	360	NA NA	14	1.5	2 2	9.8	270
	07/23/07	20,00		63.69	50	NA	0.50	0.5	0.5	0.50	7.7
	10/15/07	21 32		63 61	260	NA	53	0.92	0.5	1.0	86
	03/24/08	19.78		61.90	5,500	NA NA	540	20	120	70	600
	05/30/08	20.78		60.58	8,700	NA NA	270	50	200	386	340
	07/10/08	21.45		62.12	8,000	NA NA	310	36	150	246	420
	10/01/08	22.71		61.12	4,100	NA NA	170	3 8	57		
	02/10/09	24.43		60.45	9,700	NA NA	390	31.0	340	8 107.5	720
	02710703	24.49		59.19	9,700	. IVA	390	31.0	340	1073	480
- V X A V Z	44.00		26.70	57.47							
MW-3	03/03/95	13.99	76.30		2,500	1,600	540	92	36	200	NA.
	07/24/95	13.33			NA	NA	NA	NΛ	NA	NA	NA
	11/22/95	20 94	80.32	62.31	14000	5400	5700	230	430	650	820
	12/06/95	17 48		62.97	NA	NA	NA	NA	NA	NA	NA
	01/04/96	20 01		59.38	NA	NA	NA	NA	NA	NA	NA
	01/31/97	16 63		62 84	1,100	50	130	8	5	5	NA
	10/10/97	20 62		60.31	3,400	1,100	830	4	100	10	160*
	01/20/98	15.40		63.69	3,900	550	79	4.1	0.5	3.7	5.0*
	04/28/98	10 51		59 70	800	1,000	82	5 2	5.7	5.4	240*
	07/31/98	13 46		64.92	2,200	610	510	7.6	16	5.27	310*
	11/02/98	17.11		69.81	4,900	1,600	220	16	13	13.7	180*
	06/10/99	15.24		66 86	1,000	120	0.5	0.5	0.5	1.1	120*[1]
	10/18/00	15.41		63 21	50	,50	0.5	0.5	0.5	0.5	12
	04/08/04	13.70		65.08	50	NA	0.5	0.5	0.5	0.5	19
	08/10/04	16.96		64.91	580	NA	19	1 0[3]	1.0[3]	3.3	300
	11/11/04	17.40		66 62	3,000	NΛ	810	5 0[3]	43	5.0[3]	690
	01/19/05	13.28		63 36	92	NA	18	0.5	0.77	0.5	17
	04/14/05	8 73		62 92	50	NA	0.52	0.5	0.5		
	07/19/05	11,94		67,04	390	NA NA	82	2.3		0.5	11
	10/24/05	14 70	77.27	71 59	2,100	NA NA	460		18	9.2	200
	02/02/06	16.48	17.27	68 38	530	NA NA		6.9	7.7	11.9	300
	04/27/06	7.85			300/37		11	0.5	1.2	1.1	560
	07/12/06	10.08		62 57		NA	1.5/3)	1.5[3]	1.5[3]	1.5[3]	180
	10/17/06	12.80		60.79	250	NA NA	5.5	1.0[3]	7.0[3]	1.0[3]	190
MW-3				69.42	93	NΛ	8 8	0.5	0.5	0.5	100
	01/08/07	21.68		67.19	200	NA	14	0.5	0.89	0.95	85
Cont	04/09/07	12.24		64.47	1,400	NA.	380	66	22	12.5	600
	04/23/07	12.53		55.59	NA	NΑ	NA NA	NA	NA NA	NA	. NA
	07/23/07	14.44		65.03	1,600	NA	420	2.5[3]	27	2.5[3]	630
	10/15/07	16.45		64 74	2,000	NA	470	2.7	23	2.5[3]	610
	03/24/08	13.80		62.83	1,200	NA	230	19	9.9	1 2	820
	05/30/08	15.54		60.B2	1,100	NA NA	250	2.5[3]	14	2.5[3]	610
	07/10/08	16.10		63 47	1,400	NA	170	1	10	26	560
	10/01/08	17.60		61.73	800	NA	95	1.0/3/	1.8	1.0[3]	620
	02/10/09	18 46		61 17	1,200	NA	50	1.0[3]	1.8	1.0[3]	660
				59.67							
				58.81						i	
MW-4	11/22/95	14.99	76 42		50	200	0.5	1.5	0.5	1.7	6.4*
	12/06/95	11.21			NA	NA NA	NA	NA	NA	NA	NA
	01/04/96	14.62		61 43	NA NA	NA	NA	NA	NA	NA	NA
	01/31/97	8.18		65.21	50	50	0.5	2	0.5	2	11*
	10/10/97	14 14		61.80	50	50	0.5	0.5	0.5	2	5.0*
	01/20/98	7.05		68 24	50	50	0.5	0.5	0.5	0.5	5.0*
	04/28/98	5.88		62.28	50	50	0.5	0.5	0.5	0.5	5.0*
	07/31/98	8 40		69.37	50	50	0.5	0,5	0.5	0.5	5.0*
	11/02/98	16.08		70 54	NA	NA	NA	NA NA	NA NA	NA	NA
	06/10/99	14.81	i-	68.02	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	10/18/00	12.71		60 34	50	50	0.5	0.59	0.23	5.53	5.0*
	03/12/02	8.92		61.61	50	50	0.5	0.61	0.82	2.5	18
	11/19/02	13.24		63.71	50	NA NA	0.5	0.5	0.5		
	01/09/03	11.00		67.50	50	NA NA	0.5			0.5	0.5
	04/14/03	11 03		-13.24	50	NA NA		0.5	0.5	0.5	0.5
	07/21/03	13.10	<u>_</u>	-13.24			0.5	0.5	0.5	0.5	0.5
					50	NA NA	0.5	0.5	0.5	0.5	9,5
	10/09/03	13.33		-11 03	50	NA NA	0.5	0.5	0.5	0.5	0.5
	01/15/04	12.14		-13.10	50	NA	0.5	0.5	0.5	0.5	0.5
	04/08/04	10.76		-13.33	50	NA NA	0.5	0.5	0.5	0.5	0.5
	08/10/04	12 62		-12.14	50	NA	0.5	0.5	0.5	0.5	0.5
	J I/11/04	11.93		65.66	50	NA	0.5	0.5	0.5	0.5	0.5
	01/19/05	10 34	1	63 80	50	NΑ	D . 5	0.5	0.5	0.5	0.5
	04/14/05	5.66	[4]	64.49	50	NA	0.5	0.5	0.5	0.5	0.5
	04/14/02		[4]	66 08	50	NA	0.5	0.5	0.5	0.5	0.5
	07/19/05	7,55			50	NA NA	0.5	0.5	0.5		
	07/19/05			NM T							
MW-4		10.12	76 26	NM NM						0.5	0.5
	07/19/05 10/24/05 02/02/06	10.12 6.99		NM	50	NA	0.5	0.5	0.5	0.5	0.5
MW-4 Cont	07/19/05 10/24/05 02/02/06 04/27/06	10.12 6.99 NM		NM 66.14	50	NA	0,5 Well Not Monit	0.5 ored or Samp	0,5 led - Covered	0.5	0.5
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06	10.12 6.99 NM 6.05		NM 66.14 69.27		NA NA	0.5 Well Not Monit 0.5	0.5 ored or Samp 0.5	0.5 led - Covered 0.5		
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06	10.12 6.99 NM 6.05 NM		NM 66.14 69.27 NM	50	NA NA	0,5 Well Not Monit	0.5 ored or Samp 0.5	0.5 led - Covered 0.5	0.5	0.5
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07	10.12 6.99 NM 6.05 NM 8.82		NM 66.14 69.27	50 50 50	NA NA	0.5 Well Not Monit 0.5	0.5 ored or Samp 0.5	0.5 led - Covered 0.5	0.5	0.5
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07	10.12 6.99 NM 6.05 NM 8.82 8.52		NM 66.14 69.27 NM	50	NA NA	0.5 Well Not Monit 0.5 Well Not Monit	0.5 ored or Samp 0.5 ored or Samp	0.5 led - Covered 0.5 led - Covered	0.5	0.5
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07	10.12 6.99 NM 6.05 NM 8.82		NM 66.14 69.27 NM 70.21	50 50 50	NA NA NA	0.5 Well Not Monit 0.5 Well Not Monit 0.5	0.5 ored or Samp 0.5 ored or Samp 0.5	0.5 led - Covered 0.5 led - Covered 0.5	0.5	0.5 0.5

Die 11 G	roundw	ater An	arytica.	Groundwater	naiy - 1	. I 13/1	× 0. 11101	· · · · ·			T
		Depth to Water	Well Elevation	Elevation					Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTHE (µg/L
ell Number	Date Collected	(feet)	(ft ms1)	(ft msl)	GRO[5] [µg/L)			0.5	0.5	0.5	0.5
	03/24/08	9 32		66 16	50 50	NA NA	0.5	0.5	0.5	0.5	0.5
	05/30/08	10.60		65 36 66 94	50	NA NA	0.5	0.5	0.5	0.5	0.5
	07/10/08	11 31		65.66	50	NA NA	0.5	0.5	0.5	0.5	0.5
	02/10/09	13.38		64.95	50	NA	0.5	0.5	0.5	0.5	0.5
	02/10/09			63.89							ļ
	 			62.88				1.8	0.5	3	2.2*
MW-5	11/22/95	19.56	80.52		50	280	0.5 NA	NA	NA NA	NA	NA
	12/06/95	15.84			NA NA	NA NA	NA NA	NA NA	NA	NA	NA
	01/04/96	19 36		60.96 64,68	NA 80	50	0.5	0.6	0.5	2	6.
	01/31/97	13.31	 	61.16	50	50	0.5	0.5	0.5	2	5*
	10/10/97	17 80 12 58		67.21	50	50	0.5	0.5	0.5	0.5	50*
	01/20/98	9.45		62 72	50	50	0.	0,5	0.5	0.5	5.0* 5.0*
	07/31/98	7 38		67.94	50	50	0.5	0.5	0.5	0.5	5.0*
	11/02/98	15.98		71 07	50	500	0.5	0.5 NA	NA NA	NA NA	NA NA
	06/10/99	14.60		73.14	NA .	NA CO	0.5	0.75	0.5	0.79	28
	10/18/00	17.77		64.54	50	50 50	0.5	0.5	0.5	0.5	5.0*
	03/12/02	15.72		65.92	50	70	1 5.5	Well Damage			
	11/19/02	NM		62.75	ļ			Well Damage			
	01/09/03	NM.		64.80 NM	 			Well Damage			
	04/14/03	NM	 	NM				Well Damage	d		
	07/21/03 10/09/03	NM NM	 	NM	T			Well Damage			
	01/15/04	NM NM		NM				Well Damage		1 77	0.5
	04/08/04	16.80	1	NM	100	NA	0.5	0.5	0.5	0.5	0.5
	08/10/04	18.58		NM	89	NA NA	0.5	0.5 Well Damage		- د د	4
	11/11/04	NM		63.72	Ļ			Well Damage			
	01/19/05	NM		61.94		NA.	0.5	0.5	0.5	0.5	0.5
	04/14/05	10.57	[4]	NM	100[2]	NA NA	0.5	0.5	0.5	0.5	0.5
	07/19/05	11 77	80.78	NM NM	50	NΔ	0.5	0.5	0.5	0.5	0.5
	10/24/05	14.29	80.78	NM	- 75		Vell Not Monit	ored or Sample	ed - Under Soil	Pile	
	02/02/06	NM 7.43	_	66.49	100[2]	NA	0.5	0.5	0.5	0.5	0.5
	04/27/06	7.42 NM		NM	1,4=1=7	1	Well Not Mo	mitored or Sar	npled - Covered	<u>d</u>	
MW-5	07/12/06 10/17/06	NM NM	+	73 36			Well Not Me	mitored or Sar	mpled - Cavere	<u>d</u>	
Cont	01/08/07	NM	 	NM			Well Not Me	onitored or Sar	npled - Covere	d	
	04/09/07	NM		NM					mpled - Covere	0.5	0.5
	04/23/07	11.90		NM	50	NA_	0.5	0.5	0.5	0.5	0.5
	07/23/07	13.98		NM	50	NA NA	0.5	0.5	0.5	0.5	0.5
	10/15/07	14.97		68 88	50	NA NA	0.5	0.5	0.5	0.5	0.5
	03/24/08	12.77		66.80	200[2]	NA NA	1.0/2/	1.0/27	1.0(2)	1.0[2]	1.0[2]
	05/30/08	14.76		65.81	100[2]	NA NA	0.5	0.5	0.5	0.5	0.5
	07/10/08	15.74		66.02	50	NA	0.5	0.5	0.5	0.5	9.5
	10/01/08	16.90 18.12	_	65.04	200[2]	NA	1.0[2]	1.0[2]	1.0[2]	1.0[2]	1.0[2]
	02110109	10.12	 	63 88					_ 	15	5.3*
MW-6	11/22/95	21.73	81.64	62.66	50	140	0.5	NA	0.5 NA	NA.	NA.
11211	12/06/95	18.03			NA_	NA NA	NA NA	NA NA	NA NA	NA.	NA
	01/04/96	21.67		59 91	70	50	0.5	2	0.5	1	5*
	01/31/97	16.01	_	63.61 59.97	80	50	0.5	0.5	0.5	2	5*
	10/10/97	20.55		65.63	50	50	0.5	0.5	0,5	0.5	5.0*
	01/20/98 04/28/98	15.74		61.09	50	50	0.5	0.5	0.5	0.5	50.
	07/31/98	13.97		65.90	50	50	0.5	0.5	0.5	0.5	5.0* NA
	11/02/98	17.97	+	70.86	NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA
	06/10/99	16 92		67.67	NA	NA_	NA.	NA	NA	INA	
	10/18/00	NM		63 67				Unable to Lo			
	03/12/02	NM		64.72	ļ			Unable to Lo			
,	11/19/02	NM		NM.				Unable to Lo			
	01/09/03			NM_				Unable to Lo			
	04/14/03	NM	 	NM NM				Unable to Lo			
	07/21/03		 	NM				Unable to Lo			
	10/19/03			NM				Unable to Lo			
	04/08/04			NM				Obstructed - N			
	08/10/04			NM			Well	Obstructed - N Obstructed - N	lot Sampled		
	11/11/04	NM		NM			Well	Obstructed - N	Not Sampled		
,	01/19/05	NM		NM		NT A	0.5	0.5	0.5	0.5	0.5
	04/14/05	15.78		NM	50	NA NA		Obstructed - N			
	07/19/05			NM				Obstructed - N			
	10/24/05		82.32	65 86 NM	50	[NA	0.5	0.5	0.5	0.5	0.5
	02/02/06			NM NM	50	NA NA	0.5	0.5	0.5	0.5	0.5
	04/27/00			66.39	50	NA NA	0.5	0.5	0.5	0.5	0.5
	07/12/06			71.32	50	B) A	0.5	0.5	0.5	0.5	0.5
	01/08/0			69 57		Likely ob		t bgs; containe	d insufficient v	vater for samp	gning
	04/09/0			66 37	50	I NA	0.5	0.5	0.5	0.5	0.5
	07/23/0		_	64 92		Likely of	structed at 18 i	t bgs: containe	d insufficient v	valer for samp	nus
MW-6	10/15/0			66 12				Well Destro	oyed		
INT AN - O	10/01/0			64.82				Well Destro	oyea		
				NM		_		+			+
				NM				0.57	0.5	0 62	0.7
MW-7	11/22/9		78.86		50	180	0.5 NA	NA NA	NA NA	NA NA	N/
	12/06/9	5 19.72			NA NA	NA NA	NA NA	NA NA	NA NA	NA.	N/
	01/04/9			59.48		NA 50	0.7	1	0.5	i	8
	01/31/9			59.14 59.10		50	05	0.5	0.5	2	15
	10/10/9			63 61		50	0.5	0.5	0.5	0.5	5.0
	01/20/9			59.83		50	0.5	0.5	0.5	0.5	93
	04/28/9	8 8.22	.1	61.75		50	0.5	0.5	0.5	0.5	5.0

	JOHNIGH	ater Ar			V						<u> </u>
		Depth to Water		Groundwater Elevation (ft mal)	GRO[5] (μg/L)				Ethylhenzene (µg/L)	Total Xyienes (µg/L)	MTBE (μg/L
Well Number	Date Collected	(feet)	((((((((((((((((((((((70.64	NA NA	NA NA	NA NA	NA.	NA	NΛ	NA
	06/10/99	15 15		67.33	NA NA	NA.	NA	NA	NA	NA	NA
	10/18/00	17.59		63.71	NA	50	0.5	0.5	0.5	0.5	5.0*
	03/12/02	16.54		64.63	50	50	0.5	0.5	0.5	0.5	2.9
	11/19/02	19 59		61.27	50	NA	0.5	0.5	0.5	0.5	3 8
	01/09/03	18.38		62.32	50	NA _	0.5	0.5	0.5	0.5	2.7 0.5
	04/14/03	18.17		-19 59	50	NA.	0.5	0.5	0.5	0.5	1.8
	07/21/03	20.29		-18.38	50	NA NA	0.5	0.5	0.5	0.5	2.9
	10/09/03	19 48	79.81	-18.17 -20.29	50	NA NA	0.5	0.5	0.5	0.5	2.6
	01/15/04	18.45	79.81	-19.48	50	NA NA	0.5	0.5	0,5	0.5	0.81
	08/10/04	18.85		61.36	50	NA NA	0.5	0.5	0.5	0.5	2 1
	11/11/04	19.85		62.53	50	NA	0.5	0.5	0.5	0.5	10
	01/19/05	19 59		60 96	50	NA	0.5	0.5	0.5	0.5	1.5
	04/14/05	14.17		59.96	50	NA	0.5	0.5	0.5	0.5	0.5
.,	07/19/05	14.16		60.22	50	NA	0.5	0.5	0.5	0.5	0.5
	10/24/05	16 65		65 64	50	NA NA	0.5	0.5	0.5	0.5	13
MW-7	02/02/06	15.39		65.65	50	NA .	0.5	0.5	0.5	0.5	0.5
Cont.	04/27/06	8.51		63 16	50	NA NA	0.5	0.5	0.5	0.5	0.5
	07/12/06	9.94		64.42	50	NA NA	0.5	0.5	0.5	0.5	0.5
	10/17/06	13.46	 	71.30 69.87	50	NA NA	0.5	0.5	0.5	0.5	0.99
	01/08/07	15.03		66 35	50	NΛ	0.5	0.5	0.5	0.5	0.54
	07/23/07	16.96	ł	64.78	50	NA	0.5	0.5	0.5	0.5	17
	10/15/07	18.29		64 54	750	NA	0.5	0.5	0.5	0.5	0.81
	03/24/08	16.72		62.85	50	NA	0.5	0.5	0,5	0.5	0.85
	05/30/08	17.81		61.52	50	NA	0.5	0.5	0.5	0.5	0.56
	07/10/08	18.48		63.09	50	NA.	0.5	0.5	0.5	0.5	0.5
	10/01/08	19 71		62.00	50	NA.	0.5	0.5	0.5	0.5	0.67
	02/10/09	21 41		61.33	50	NA	0.3	0.5	0.5	0.7	
		ļ	ļ	60.10	 		1	 	 	 	
	11/00/05	 ,,,,,	79 55	58,40	50	360	0.5	1.3	0.5	2	21*
MW-8	11/22/95	33.33 17.57	19 33		NA.	NA NA	NA NA	NA	NA	NA	NA
	01/04/96	20.08	1	46 22	NA	NA.	NA	NA	NΑ	NA	NΑ
	01/31/97	18.72	 	61.98	80	50	0.6	1	0.5	1	8*
	10/10/97	20 26		59.47	50	50	0.5	0.5	0.5	.2	5*
	01/20/98	15.91		60.83	50	50	0.5	0.5	0.5	0.5	5.0*
	04/28/98	10 39		59 29	50	50	0.5	0.5	0.5	0.5	5.0*
	07/31/98	12.93		63 64	50	50	0.5	0.5	0.5	0.5	5.0
	11/02/98	16.90	ļ	69.16	50	500	0.5	0.5	0.5 NA	NA NA	NA
	06/10/99	14 98		66.62	NA .	NA.	0.5	0.5	11	6.3	86*
	10/18/00	16 27	ļ	62.65	50	50	0.5	0.63	0.55	1.7	0.94
	03/12/02	14 56	 	64 57 63.28	50	NA NA	0.5	0.5	0.5	0.5	0.5
	01/09/03	21.14 17.90		64,99	50	NA NA	0.5	0.5	0.5	0.5	0.5
	04/14/03	17.84	 	-21.14	50	NA.	0.5	0.5	0.5	0.5	0.5
	07/21/03	19.79		-17.90	100/2]	NA	0.5	0.5	0,5	0.5	0.5
	10/09/03	21.02		-17 84	50	NA	0.5	0.5	0.5	0.5	0.5
	01/15/04	18 10	80 50	-19 79	50	NA	0.5	0.5	0.5	0.5	0.5
	04/08/04	17.51		-21.02	50	NA	0.5	0.5	0.5	0.5	0.5
	08/10/04	20.76		62 40	50	NA_	0.5	0.5	0.5	0.5	0.5
	11/11/04	21.38	_	62.99	50	NA NA	0.5	0.5	0.5	0.5	0.5
	01/19/05	17 20		59.74 59.12	50	NA NA	0.5	0.5	0.5	0.5	0.5
	04/14/05	12.68	 	63.30	50	NA NA	0.5	0.5	0.5	0.5	0.5
	07/19/05	15.78	 	67.82	50	NA NA	0.5	0.5	0.5	0.5	0.5
MW-8	02/02/06	14.57	1	64.72	50	NA	0.5	0.5	0.5	0.5	0.5
Cont.	04/27/06	10,48	1	61.82	100[2]	NΛ	0.5	0.5	0.5	0.5	0.5
Cont.	07/12/06	13.08	1	65.93	50	NA	0.5	0.5	0.5	0.5	0.5
	10/17/06	15.96		70,02	50	NA NA	0.5	0.5	0.5	0.5	0.5
	01/08/07	16.70		67.42	50	NA NA	0.5	0.5	0.5	0.5	0.5
	04/09/07	16 25	 	64.54	50	NA.	0.5	0.5	0.5 0.5	0.5	0.5
	07/23/07	18.66	- 	63.80	50	NA NA	0.5	0.5	0.5	0.5	0.5
	10/15/07	20.36		64.25 61.84	50	NA NA	0.5	0.5	0.5	0.5	0.5
	03/24/08	17.81		60.14	50	NA NA	0.5	0.5	0.5	0.5	0.5
	05/30/08	19 78 20 32		62.69	.50	NA NA	0.5	0.5	0.5	0.5	0.5
	07/10/08 10/01/08	21.81	1	60 72	50	NA	0.5	0.5	0.5	0.5	0.5
	02/10/09	22.26	-	60 18	50	NA.	0.5	0,5	0.5	0.5	0.5
	02/10/09	22.20	 	58.69		1	-1	1			
EX-1	10/24/05	14.37	77.72	58.24	5,000	NA	140	8.4	20	195	360
EA-1	02/02/06	1.68	1,7,74	1	3,000	NA _	3.6	0.5	14	55.5	0.63
	04/27/06	1.76		63.35	130	NA	0.98	0.5	0.5	2 42	0.5
	07/12/06	6.88	1	76.04	2,600	NA	760	15	34	104	200
	10/17/06	9.79	1	75.96	3,300	NA.	810	5 0[3]	32	68	170
	01/08/07	5.47		70.84	910	NA	91	0.5	2.7	5.9	1.6
	04/09/07	4.88		67.93	140	NA	1.3	0.5	12	0.93	0.5
	07/23/07	12.17		72.25	220	NA	7.4	0.5	1.7	0.5	0.55
		NM		72.84				Not Sample	di .		

EX-3	Date Collected 03/24/08 03/34/08 05/30/08 07/10/08 10/01/08 02/10/09 10/24/05 02/02/06 04/27/06 01/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	Depth to Water (feet) 5.17 11.18 12.27 14.46 15.90 16.00 8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM	Well Elevation (ft msl)	Groundwater Elevation (ft mst) 65.55 NM 72.55 66.54 63.26 61.82 60.96 68.78 71.74	CRO[5] (µg/L) 120 230 1,100 780 1,500 42000.00 28,000	TPHD (µg/L) NA NA NA NA NA NA	Benzene (μg/L) 9,1 11 16	Toluene (μg/1.) 0.5 0.5 0.5	Ethylbenzene (µg/L) 1.6 2.2	Total Xylenes (µg/L) 0.96 0.54 13.5	MTBE (μ)
	05/30/08 07/10/08 10/01/08 02/10/09 10/24/05 02/02/06 04/27/06 07/12/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	11 18 12.27 14 46 15.90 16.00 8.18 5.22 7.32 9.22 10.35 9.67 11 46 NM	76.96	NM 72 55 66 54 65 45 63 26 61 82 60.96 68.78	230 1,100 780 1,500 42000,00 28,000	NA NA NA	11 16	0.5	2 2	0.54	
	07/10/08 10/01/08 02/10/09 10/24/05 02/10/09 10/24/05 02/02/06 04/27/06 01/12/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08	12.27 14.46 15.90 16.00 8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM	76.96	72 55 66 54 65 45 63 26 61 82 60.96 68.78	1,100 780 1,500 42000,00 28,000	NA NA	16				0.5
	10/01/08 02/10/09 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	14.46 15.90 16.00 8.18 5.22 7.32 9.22 10.35 10.35 11.46 NM	76.96	66 54 65 45 63 26 61 82 60 96 68 78	780 1,500 42000.00 28,000	NA		0.5	1 1 1	1 17 6	
	02/10/09 16/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	15.90 16.00 8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM	76.96	65 45 63.26 61.82 60.96 68.78	1,500 42000,00 28,000		1 15		49		0.5
	10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	16.00 8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM	76.96	63.26 61.82 60.96 68.78	42000.00 28,000	NA NA	15	0.5	4.3	2.3	0.83
	02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM	76.96	61.82 60.96 68.78	28,000	1	40	1.0[3]	11	91	2.0
	02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	8.18 5.22 7.32 9.22 10.35 9.67 11.46 NM		60.96 68.78	28,000	NA	13000.00	1300.00	1300.00	2580.00	410.0
EX-3	04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	5 22 7.32 9.22 10.35 9.67 11 46 NM		68.78		NA NA	9,000		1,100	3,340	200
EX-3	07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	7.32 9.22 10.35 9.67 11.46 NM		68.78	24,000	NA NA	4,000	1,800	650	3,900	86
EX-3	10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	9.22 10.35 9.67 11.46 NM			22,000	NA	6,000	1,300	810	3,280	190
EX-3	01/08/07 04/09/07 07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	10.35 9.67 11.46 NM			31,000	NA	10,000	008,1	1,200	3,400	230
EX-3	07/23/07 10/15/07 03/24/08 05/30/08 07/10/08	11 46 NM		69 64	14,000	NA		440	440	1,140	90
EX-3	10/15/07 03/24/08 05/30/08 07/10/08	NM		67.74	620	NA NA	160	17	24	58	6.0
EX-3	03/24/08 05/30/08 07/10/08			66.61	610	NA	150	7.5	29	38	5.2
EX-3	05/30/08 07/10/08			67,29	1.000		3.500	Not Sampled	F 132	1 100	
EX-3	07/10/08	9.98		65.50	4,900	NA NA	2,500	210	130	390	29
EX-3		11.36		NM 66.08	11,000	NA NA	3,300 4,200	330 550	380 490	1,100 1,780	25/3 25/3
EX-3		11.85		66.98 65.60	17,000 22,000	NA NA	4,200 5,900	510	960	3,400	25[3 50[3
EX-3	02/10/09	13.57 14.50		65.11	11,000	NA NA	5,400	93	310	421	30/3 41
EX-3	V2 10/09	14.30		63.39	11,000		2,400		210		
EAT-J	10/24/05	14.85	78.87	62.46	20,000	NA	220	21	660	3,110	10/3
	02/02/06	NM	70.07	02.40	20,000				d - Under Soil I		10/3
	04/27/06	NM NM		63.02	 				pled - Covered		
	07/12/06	9.01		NM	5,700	NA	79	19	120	657	2.5/3
	10/17/06	NM		NM	-,,				pled - Covered		
	01/08/07	12.31		68 86	970	NA	8.3	0.81	19	198	0.5
	04/09/07	10.78		NM	700	NA	8.9	0.5	11	6.5	0.5
	07/23/07	12 82		66 56	1,500	NA	14	0.5	21	8.9	0.5
	10/15/07	NM		68.09				Not Sampled			
	03/24/08	NM		66.05			Well Not Mon				
	05/30/08	14 10		NM	280	NΛ	0.99	0.5	0 97	1.35	0.5
	07/10/08	14.86		NM	340	NA	1.5	0.5	1.6	0.5	0,5
	10/01/08	16 38		64.77	330	NA	1.1	0.5	0.5	0.5	0.5
	02/10/09	NM		64.01			Well Not Mon	itored or Sam	pled · Covered	· · · · · · · · · · · · · · · · · · ·	
				62.49			300				ļ
EX-4	10/24/05	14.93	77.96	NM	1,900	NA NA	390	69	8.8	90	11
	02/02/06	NM		(1.41	<u> </u>	W			I - Under Soil F	'ile	
	04/27/06	NM 7.27	ļl	63.03	7 400				pled - Covered	1 220	
	07/12/06	7.37		NM	6,400	NA	1,400	400	120	1,220	35
	10/17/06	NM		NM 70.50	3 600	NA	840		pled - Covered 22	162	25
	01/08/07	12.92		70.59 NM	3,500 4,600	NA NA	730	51 78	83	410	6.5
	04/09/07	14 20		65 04	7,200	NA NA	2,600	180	100	560	29
	10/15/07	NM		65.53	7,200	1 14/1	2,000	Not Sampled			
	03/24/08	12 14		63.76	230		29	0.5	1.8	5.1	0.6
	05/30/08	14.10		NM	360	NA	110	1.0/31	5.0	2.8	3 2
	07/10/08	15.16		65.82	500	NA.	150	1.0[3]	2 6	63	3 0
	10/01/08	16.41		63.86	260	NA	96	1.0[3]	1.5	1.0[3]	5.2
· · · · · · · · · · · · · · · · · · ·	02/10/09	18.40		62 80	330	NA	130	0.5	2.5	1 2	11
			i i	61.55					1		
		Depth to Water	Well Elevation	Groundwater Elevation					Eiby!benzene	Total Xylenes	
istics	Date Collected	(feet)	(ft msl)	(ft ousl)	GRO[5] (µg/L)	TPHD (µg/L)	Велгеле (µg/L)	Toluene (µg/L)		(µg/L)	MTBE (
n		15.3	79.0	59.8	1786.3	476.6	383.8	64.6	51.3	196.7	68.
		4.3	2.0	18,3	5599.3	1545.3	1573.1	345.7	199,3	957.8	160.
		33.3	82.3	76.0	42000.0	7300.0	13000.0	3800.0	1300.0	11000.0	820
		315.0	22.0	309.0	187.0	47.0	213.0	207.0	217.0	207.0	136
-87}		1.6	1.6	1.6	1.6	1.6	1.6	1,6	1.6	1.6	1.6
UĆL		15.7	79.7	61.5	2441.5	837.2	556,3	103.0	72.9	303.2	90,
					L			-			
BL analyzed acing FPA Met		٠					8.4		nol = Men we level	,	
Methyl test-hulyl ether	Ĺ								jų, i tauciugimus p		
- Ious petroleum hydrocarb Liesoline Range Organica (*)	ess er ditrel		; I						Lucius es al		
tiespling Range Organics (*)	4-CB		i				1		NA - Not analyzed NM - Not measured		
salyzed using IPA Method 3	sound and the minimum	er aughter gines Fly	Methed \$760H					···	DL. Red habes	1.0	
marretal, surjectives the epinome	ingram dues not match	the diesel kydrocarbo	n range paltern								
porting firms were increased	due to sample forming										
norting limets were increased			+ -						:		
outed we men benegents play and ejecanous outed of well o	sent modified (out) or	дерні 14, 2005. 1194G СЗ-С14 гавлют	lo secned quarter TIK	N6							l
										:	
nag wells surveyed by More	ow Surveying on Fehr	sary 10, 2004, and agai	is on November 29, 2	UKI\$	•		; i		·		
iar to November 19, 2002 pr			! 1	7	ī						

Table 1g GROUND	WATER ANAL'	TICAL RESUL	TS FOR OXYGE	NATES FORM	EK USA SERVIC	E STATION No.	57 1 1,1-DCA	EUS	Melhanol	Ethanol
Well Number	Date Collected	MTBE (cg/L)	TBA #½/L)	(Jug/L)	ETBE #2/L	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)
	11/19/02	190	10	,	- , -	,	NA	NA NA	NA NA	NIA .
8-1	01/09/03	190	5		 ;		NA NA	NA NA	NA NA	NA NA
	04/14/03	27	20[2]	2 0/2/	2 0/2/	2 0(2)	NΛ	NA NA	NA NA	NA NA
	07/21/03	11	10[2]	, , , , , , , , , , , , , , , , , , ,	1	1	NA	NΑ	NΛ	NA
	10/09/03	8.8	64	!	!		1	2	NA NA	NA NA
	01/15/04	60	10 8 5	 ;	1	1	1	2	5,000	NA 5,000
	08/10/04	73	28	 	† ;	1 7	16	2	5,600	5,000
	11/11/04	150	14	,	i		73	<u> </u>	5,600	5,000
	01/19/05	140	14	1		i	38	2	5,000	5,000
	04/14/05	120	10	I	1	1	14		5,000	5,000
	07/19/05 10/24/05	60 37	11	ļ <u>;</u>	1	I	9 6 2.2	2 2	5,000 5,000	5,000 5,000
	02/02/06	45	10	l	† ;	 	12		5,000	5,000
	04/27/06	7.7	<i>[1)</i>	1		1	1	3	3,690	5, ()(31)
	07/12/06	12	10	/	1	1	7.9	2	5,000	\$,000
	10/17/06	16	10	- !	ļ!	 	10		5,000	5,000
	91/98/97 94/99/97	15 22	10	 	 	1	0.1 1.0	2	5,000	5,000 5,000
	07/23/07	52	10		i	 	10	2	NA NA	NA
	10/15/07	50	10	,	I		1.8	2	NA	NΑ
	03/24/08	29	10	/		, , , , , , , , , , , , , , , , , , , ,	I	2	NA NA	NA
	05/30/08 07/10/08	43	13	ļ <u> </u>	ļ	ļ		4.0[2]	NA NA	NA NA
	10/01/08	70	10	! !	1	- '		2 2	NA NA	NA NA
	02/10/09	53	16	i	i i	'	,	2	NA NA	NA NA
8-2	11/19/02	750	200/11	20/1/	20[1]	20[1]	NA NA	NA	NA.	NA
	01/09/03	270	100/11	10[1]	10[1]	10[1]	NA NA	NA NA	NA NA	NA NA
	04/14/03 07/21/03	400 410	95 110	5 0[1] 5 0[1]	5 0[1]	5 0[1] 5.0[1]	NA NA	NA NA	NA NA	NA NA
	10/09/03	180	57	50[1]	5.0[1]	5 0[1]	5 0/1/	20/1/	NA NA	NA.
	01/15/04	130	48	4 0[1]	4.0[1]	4 0[1]	4.0[1]	16[1]	NA NA	NA
	04/08/04	430	130	5 0[1]	5.0[1]	5 0/1/	5 0[1]	20/11	5,000	5,000
	08/10/04	92 420	100[1]	10[1]	10/11	10[1] 20[1]	74 30/1/	40[1] 80[1]	5,000	5,000 5,000
	11/11/04 01/19/05	420 580	200[1] 200	20[1] 5 0[1]	20[1] 5.0[1]	20[1] 5 U[1]	8 2	20[1]	5,000	5,000
	04/14/05	510	150	10[1]	10[1]	10/11	10[1]	40/17	5,000	5,000
	07/19/05	72	37	1	1	7	38	2	\$,000	5,000
	10/24/05	69	33	I	1	1	35	4.0[1]	5,000	5,000
	02/02/06	340	150	1	1	1	3.2	40[1]	5, ()(31)	5,000
	04/27/06 07/12/06	180	10	1	1 1	1	1 3 5 8	2 2	5,000 5,000	5,090 5,090
·	10/17/06	160	10	i	; ; 		10		5,000	5,000
	01/08/07	64	10	I	1	7	26	2	5,000	5,1)00
	04/09/07	270	32	ł	1	1	1.3	2	5,000	5,000
	07/23/07	7.7	22	!.	1 1		7.0 3.5	2 2	NA NA	NA NA
	10/15/07 03/24/08	86 600	180	3.0(1)	5.0[1]	5 0/1/	3 of 11	20/11	NA NA	NA NA
	05/30/08	340	220	10[1]	10[1]	10[1]	10/1)	40/1)	NA NA	NA
	07/10/08	420	150	10[1]	10[1]	[0]]	10[1]	40[1]	NA	NA
	10/01/08	720	300	5.0[1]	5 0/11	5 0/17	3 0[1]	20[1]	NA NA	NA NA
	02/10/09	480	140	5.0[1]	5 0/1/	5 0[1]	5 0[1]	20[1]	NA NA	NA
MW-3	04/08/04	19	7.6	7	 	7	1	2	5,000	5,000
10,0-2	08/10/04	300	2000.0	2 2	2.0/11	2.0[1]	270	8 0[1]	5,000	5,000
	11/11/04	690	1.400	10[1]	19[1]	16[1]	140	40[1]	5,000	5,000
	01/19/05	17	19	1	- !	1	1.4		5,1100	3,000
	04/14/05 07/19/05	200	25 1,000	2.0[1]	2 0[1]	2 0[1]	6.2 240	2 8 0 f f f	5,000 5,000	5,000 5,000
	10/24/05	300	750	5 0[1]	3 0/1/	5 0/1/	210	20/11	3,000	5,000
	02/02/06	560	1,300	2.7	3 9/1)	1	98	40[1]	5,000	5,000
	04/27/06	180	330	3.0[1]	3 0[1]	3,0[1]	220	12[1]	5,000	5,(101)
	07/12/06	190	24	2 0[1]	2.0[1]	2.0[1]	210	8 0[1]	5,000	5,000
	10/17/06 01/08/07	100 85	50 30		 		21	2 2	5,000 5,000	5,000 5,000
	01/08/07	600	510	3 0[1]	50/11	5 al / i	67	20[1]	5,100	5,000
	07/23/07	630	920	\$ 0[1]	5 0/1/	5 0/11	99	20[1]	NA	NA.
	10/15/07	610	840	5 0[1]	5 ()[1]	5 0/1/	110	20/1/	NA.	NA
	03/24/08	820	840	3.2	2.0[1]	2 0[1]	63	8 0[1]	NA NA	NA NA
	05/30/08 07/10/08	610 560	880 570	3 0[1] 3.2	5.0[1] 2.0[1]	3 0[1] 2 0[1]	68 30	30[1] 8 0[1]	NA NA	NA NA
	10/01/08	620	1,100	3.5	2 0[1]	20[1]	94	80[1]	NA NA	NA NA
	02/10/09	660	820	40	2.0/1/	2.0[1]	38	8 0[1]	NA NA	NA
MW-4	11/19/02	0.5	5	1	!		N/A	NA NA	NA NA	NA NA
	01/09/03	0.5 0.5	5	1,	1	1	NA NA	NA NA	NA NA	NA NA
	07/21/03	0.5	3		·····	<u>'</u>	NA NA	NA NA	NA NA	NA NA
	10/09/03	0.5	3	1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1.1	1	2	NA NA	NA
	01/15/04	0.5	7.8	7	i		ı		NA	NA
	04/08/04	0.5	10.0		ļ				5,000	5,000 0
	08/10/04	05	10.0		I I	 		2	5,000 5,000	5,000 0 5,000 0
	11/11/04 01/19/05	05	10.0	,	 	',			5,000	5,000 o 5,000 o
	04/14/05	0.5	10.0	j j	1	j	i		5,000	5,009 0
	07/19/05	0.5	100	7	7	1		3	5,000	5,000 t)
	10/24/05	0.5	10.0		1				5,000	\$,000 a
	02/02/06	03	10.0	1	Well Not 8	/ Monitored or Sample	d - Covered		5,000	5,000.0
	04/27/06 07/12/06	1	10.0	ı	Well Not I	Monitored or Sample	d - Covered	2	5.000	5,000
	10/17/06		2.4(19			donitored or Sample			3.000	2,050
	01/08/07	0.5	10	/	/	<u> </u>	1		5,000	5,00C
	04/09/07	115	10	/			1	3	5,(1110)	5,000
	07/23/07	0.5	10		<u>'</u>		!	2	NA NA	NA
	10/15/07 03/24/08	0 5 U 5	10 10	1	1	1	1	2	NA NA	NA NA
	VJ1271VD	9.2	111		. (. /	2		17/3

ible Ig GROUND	I ·		E		ETBE \$2/L)	(pg/L)	1,2-DCA (jug/L)	(µg/L)	(ug/L)	(µg/L)
Well Number	Date Collected	MTBE (4g/L)	TBA #g/L)	(µg/L)		φ <u>υ</u> ,	1	2	NA NA	NA.
	65/30/08	# 5	10		1	';	1	?	NA .	NA
	07/10/08 16/01/08	0.5	10		1	1	1		NA.	NA NA
	02/10/09	0.5	10	1					NA NA	132
					<u> </u>	Well Damaged			L	L
MW-3	01/09/03					Well Damaged				
	04/14/03					Well Damaged				
	07/21/03					Well Damaged				
	10/09/03					Well Damaged Well Damaged				
	01/15/04				, , , , , , , , , , , , , , , , , , , 	Well Damaged	1	4.0[2]	5,000	\$, G(H)
	04/08/04	1	10.0		l		1	3	5,000	5,600
	08/10/04		10.0		<u> </u>	Well Damaged				
	01/11/04					Well Damaged			T cook	5,800
	04/14/05	1	10		1			4 0/2/	5,000	5,000
	07/19/05	1	100					2	5,000	5,000
	10/24/05	1	10.0	1	Well Not Mor	itored or Sampled -	Inder Soil Pile	· · · · · · · · · · · · · · · · · · ·		
	02/02/06	, , , , , , , , , , , , , , , , , , , ,	100	7	1	7	7	4.0[2]	5 (200)	5,000
	04/27/06	· · · · · · · · · · · · · · · · · · ·				ionitored or Sample				
	10/17/06				Well Not 3	tonitored or Sample	1 - Covered			
	01/08/07				Well Not h	donitored or Sample donitored or Sample	1 - Covered			
	04/09/07				Well Not I	/ Journal of Control of Saniple	J - COVERN	2	NA	NA.
	04/23/07	0.5	10		 	<u>'</u>	i	2	NA	NA_
	07/23/07	0.5	10		1			2	NA.	NA NA
	03/24/08	<i>u.</i> 5	10	1		1	7.0(2)	4 0[2] 8.0[2]	NA NA	NA NA
	05/30/08	1 0/21	20[2]	2.0[2]	2 0[2]	2.0[3]	2.0[2]	4 0/2/	NA NA	NA.
	07/10/08	9.5	10	- <u>f</u>	1	/		3	NA .	NA.
	10/01/08	1.0[2]	20(2)	2 0[2]	2.0[2]	2 0[2]	2 0[2]	8 0[2]	NA	NA NA
	02/16/09	6.9[4]	-4-1							<u> </u>
MW-6	11/19/02	†				Unable to Locate				
311/31	01/09/03					Unable to Locate Unable to Locate				
	04/14/03					Unable to Locate				
	07/21/03	 				Unable to Locate				
	10/19/03	 				Unable to Locate				
	04/08/04	 				Obstructed - Not Sa				
	08/10/04				Well	Obstructed - Not Sa Obstructed - Not Sa	mpled			
	11/11/04				Well	Obstructed - Not Sa	moled			
	01/19/05	ļ	10	I	1 /	1	1	2	5,000	5,000
						Obstructed - Not Sa	mpled			
	04/14/05	 	1							
	07/19/05					Obstructed - Not Sa	mpled	,	1 (164)	S still
			10		Well /	Obstructed - Not Sa	mpled /	2	5,000 5,000	5.400 5.400
	07/19/05 10/24/05 02/02/06 04/27/06	- /	10 10 0		Well 1 1	Obstructed - Not Sa	mpled /	2 2 2 2 2	5,000 5,600	5,900 5,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06		10 10 0 10 0	1	Well	Obstructed - Not Sa	1	2 2 2	5,000	5,900
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06	- /	10 10 0	1	Well	Obstructed - Not Sa	1	2 2 2 2 ampling	5,000 5,600 5 000	5,900 5,000 5,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07		10 10 0 10 0	i i l	Well / / / / kely obstructed at 18	Obstructed - Not Sa // // // // // // // // // // // // /	/ / / / / / / / / / / / / / / / / / /	2 2 2 ampling	5,000 5,600	5,900 5,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06		10 10 0 10 0 10 0 10 0	i i l	Well / / / / / / kely obstructed at 18	Obstructed - Not Sa / / / / / / / / / / / / / / / / / /	/ / / / / / / / / / / / / / / / / / /	2 2 2 ampling	5,000 5,600 5 000	5,900 5,000 5,000
W-6	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07		10 10 0 10 0 10 0 10 0	i i l	Well / / / / kely obstructed at 18	Obstructed - Not Sa f I I I Obgs; contained inst Obgs; contained inst Well Destroyed	/ / / / / / / / / / / / / / / / / / /	2 2 2 ampling	5,000 5,600 5 000	5,900 5,000 5,000
WV-6	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07		10 10 0 10 0 10 0 10 0	i i l	Well / / / / kely obstructed at 18	Obstructed - Not Sa / / / / / / / / / / / / / / / / / /	/ / / / / / / / / / / / / / / / / / /	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,000 5,000 5,000 5,000	5,000 5,000 5,000 5,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/18/07 04/09/07 07/23/07 10/15/07 10/01/08	1	10 10 0 10 0 10 0 10 0	i i l	Well // // // // kely obstructed at 18 kely obstructed at 18	Obstructed - Not Sa f I I I Obss: contained inst I R bgs; contained inst Well Destroyed Well Destroyed I I I I I I I I I I I I I	/ / / / / / / / / / / / / / / / / / /	2 2 2 2 2 ampling 2 2 ampling NA	5,000 5,000 5,000 5,000 5,000	5,000 5,000 5,000 5,000 5,000
MW-6 MW-7	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07		10 10 9 10 0 10 0 10 0	I Li	Well I I I I I I I I I	Obstructed - Not So f I I I Observed institute inst	/ / / / / / / / / / / / / / / / / / /	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,000 5,000 5,000 5,000 5,000	5,900 5,000 5,000 5,000 5,000
	07/19/05 02/02/06 04/27/06 04/27/06 04/27/06 10/17/06 10/17/06 01/08/07 04/09/07 07/23/07 10/15/07 10/16/08 11/19/02 01/09/03 04/14/03	1 1 3,8 2.7 0.5	10 10 0 10 0 10 0 10 0 10 0 10 0 10 0	Li	Well / / / / / / / / / / kely obstructed at 18 / / / / / / / / / / / / / / / / / /	Obstructed - Not Sa f f f I Best contained first I Best contained inst Well Destroyed Well Destroyed F I I I I I I I I I I I I	/ / / / / / / / / / / / / / / / / / /	2 2 ampling 2 ampling 2 ampling NA NA NA	5,000 5,000 5,000 5,000 5,000	5,900 5,900 5,000 5,000 5,000 MA NA NA NA
	07/19/05 10/24-05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 07/23/07 10/18/07 10/18/07 10/18/07 11/19/02 01/69/03 04/14/03 07/21/03	, , , , , , , , , , , , , , , , , , ,	10 10 10 0 10 0 10 0 10 0 10 0 10 0 10	I Li	Well I I I I I I I I I	Obstructed - Not So f I I I Observed institute inst	/ / / / / / / / / / / / / / / / / / /	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,000 5,000 5,000 5,000 5,000 MA NA NA NA NA	\$,000 \$,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 01/08/07 07/23/07 10/15/07 10/15/07 10/19/03 01/09/03 04/14/03 07/21/03	, , , , , , , , , , , , , , , , , , ,	10 10 0 10 0 10 0 10 0 10 0 10 0 10 0	I Li	Well // // // // kely obstructed at 18	Obstructed - Not Sa f f f f f f f f f f f hgs; contained inst well Destroyed well Destroyed f f f f f f f f f f f f f	I i I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,000 5,000 5,000 5,000 5,000 5,000 MA NA NA NA NA NA NA	5,000 5,000 5,000 5,000 5,000 5,000 MA NA NA NA NA NA
	07/19/05 10/24/05 10/24/05 02/02/06 04/27/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/07 10/	, , , , , , , , , , , , , , , , , , ,	10 10 10 0 10 0 10 0 10 0 10 0 10 0 10		Well // // // // kely obstructed at 18	Obstructed - Not Sa f f f f hgs; contained insu H bgs; contained insu Well Destroyed Well Destroyed f f f f f f f f f f f f f		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/17/06 04/09/07 07/23/07 10/15/07 10/15/07 10/15/07 07/23/07 10/15/07 07/23/07 10/15/07 07/23/07 07/23/07 07/23/07 07/23/07 07/23/07 07/23/07 07/23/07 07/23/07 07/23/07 01/15/07 07/23/07 07/	3.8 2.7 0.5 1.8 2.9 2.6 0.81 2.1	\$ 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10		Well // // // // kely obstructed at 18	Obstructed - Not Sa I	I i I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2	5,000 5,000 5,000 5,000 5,000 MA NA NA NA NA NA NA NA 5,000 5,000	5,000 5,000 5,000 5,000 5,000 5,000 MA NA NA NA NA NA
	07/19/05 10/24-05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 07/23/07 10/15/07 10/15/07 11/19/02 01/09/03 04/14/03 04/14/03 10/09/03 10/15/04 04/08/04	3,8 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 10.0 \$ 10.0 \$ 10.0 \$ 10.0 \$ \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5		Well // // // // // // // kely obstructed at 18 // // // // // // // // // // // // /	Obstructed - Not Sa f f f f hgs; contained insu H bgs; contained insu Well Destroyed Well Destroyed f f f f f f f f f f f f f		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000	\$ 000 \$ 500 \$ 500 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000
	07/19/05 10/24/05 10/24/05 10/24/05 02/02/06 04/27/06 10/17/06 10/17/06 01/08/07 07/23/07 10/18/07 10/18/07 11/19/02 11/19/02 11/19/03 04/14/03 10/09/03 04/14/03 10/09/03 01/15/04 04/09/04 08/10/04	3.8 2.7 0.5 1.8 2.9 2.6 0.81 2.1	\$ 10.0 \$		Well // // // // kely obstructed at 18	Obstructed - Not Sa I	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000	\$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/17/06 07/12/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 10/17/07 11/17/04 11/17/04 11/17/04	3,8 2,7 0,5 1.8 2,9 2,6 0,81 2,1 1,0 1,5 0,5	\$ 10.0 \$ 10.0 \$ 10.0 \$ 10.0 \$ \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5		Well	Obstructed - Not Sa I	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2	\$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000	\$ 600 \$ 5000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 7,000 \$ 5,000 \$
	07/19/05 10/24/05 10/24/05 10/24/05 02/02/06 04/27/06 10/17/06 10/17/06 01/08/07 07/23/07 10/18/07 10/18/07 11/19/02 11/19/02 11/19/03 04/14/03 10/09/03 04/14/03 10/09/03 01/15/04 04/09/04 08/10/04	3.8 2.7 0.5 1.8 2.9 2.6 0.81 2.1	\$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{2}{100}\$ \$\frac{2}{100}\$ \$\frac{2}{100}\$ \$\frac{2}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$		Well // // // // kely obstructed at 18 // // // // // // // // // // // // /	Obstructed - Not Sa f f f f f f f h sps; contained inst Well Destroyed Well Destroyed i i i i i i i i i i i i i	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$,000 \$,000 \$ 000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000	\$ 600 \$ 5000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 8,000 \$ 5,000 \$
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 07/23/07 10/15/07 10/15/07 10/15/07 11/19/02 01/09/03 04/14/03 07/21/03 10/09/03 11/19/05 01/09/03 11/19/05 01/09/03 10/15/04 04/08/04 05/10/04 05/10/04 07/19/05 07/19/05 07/19/05 07/19/05	3,8 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well // // // // // // // // // // // //	Obstructed - Not Sa f f f f f f f h sps; contained inst Well Destroyed Well Destroyed i i i i i i i i i i i i i	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2	\$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000 \$,000	\$ 600 \$ 5000 \$ 5,000 \$
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/18/07 07/23/07 07/23/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/07 10/15/04 04/15/05 05/	3.8 2.7 0.5 1.8 2.9 2.6 0.81 2.1 1.5 0.5 1.9 0.50 1.30	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Well // // // // kely obstructed at 18 // // // // // // // // // // // // /	Obstructed - Not Sa f f f f f f f h sps; contained inst Well Destroyed Well Destroyed i i i i i i i i i i i i i	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 11/19/02 11/19/02 11/19/02 11/19/02 11/19/04 11/11/04 11/11/04 11/11/04 11/11/04 11/11/04 01/17/05 02/10/06 02/17/06 02/17/06 02/17/06 02/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well	Obstructed - Not Sa f f f f f f f h sps; contained inst Well Destroyed Well Destroyed i i i i i i i i i i i i i		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$ 600 \$ 5,600 \$ 5,600 \$ 5,660 \$ 5,660 \$ 5,660 \$ 5,000
	07/19/05 10/24-05 10/24-05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 10/17/06 01/08/07 10/17/06 01/08/07 10/17/06 01/08/07 10/17/06 01/08/07 01/18/07	3.8 2.7 0.5 1.8 2.9 2.6 0.81 2.1 1.5 0.5 1.9 0.50 1.30	\$\frac{10}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{5}{5}\$ \$\frac{5}{5}\$ \$\frac{5}{5}\$ \$\frac{5}{5}\$ \$\frac{7}{79}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$ \$\frac{100}{100}\$		Well	Obstructed - Not Sa r r r r r r r r r	I i i i i i i i i i i i i i i i i i i i	2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 11/19/02 11/19/02 11/19/02 11/19/02 11/19/04 11/11/04 11/11/04 11/11/04 11/11/04 11/11/04 01/17/05 02/10/06 02/17/06 02/17/06 02/17/06 02/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r l r r l hgs; contained insu well Destroyed well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$ 600 \$ 5,600 \$ 5,600 \$ 5,660 \$ 5,660 \$ 5,660 \$ 5,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06 10/17/06 10/18/07 07/23/07 07/23/07 10/18/07 10/18/07 10/18/07 10/18/07 10/18/07 10/18/07 10/18/07 11/19/02 01/09/03 01/15/04 04/18/05 05/18/09/03 11/15/04 04/08/04 11/11/04 04/08/04 11/11/04 04/18/05 07/19/05 04/18/05 07/19/05	1 1 3.8 2.7 0.5 1.8 2.9 2.6 0.81 1.5 0.5 1.9 0.50 0.50 0.99 0.54 1.7	\$ 100 100		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 07/12/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 10/17/06 11/11/04 11/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r l r r l hgs; contained insu well Destroyed well Destroyed r r r r r r r r		2 2 2 2 3 3 2 2 2 2	\$,000 \$,000	\$ 600 \$ 600 \$ 5,600 \$ 5,660 \$ 5,660 \$ 5,660 \$ 5,000 \$
	07/19/05 10/24-05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 10/17/06 10/08/07 10/17/06 10/08/07 10/17/06 10/08/07 10/17/06 11/19/02 01/09/03 04/14/03 10/09/03 10/17/06 01/18/07 01/19/05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 3 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r l r r l hgs; contained insu Well Destroyed Well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 07/19/05 02/02/06 04/02/06 04/02/06 10/17/06	1 1 3.8 2.7 0.5 1.8 2.9 2.6 0.81 1.5 0.50 0.99 0.54 1.7 0.85 0.85 0.85 0.56 0.56 0.56 0.56 0.56	\$ 100 100		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 1 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/18/07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r l r r l hgs; contained insu Well Destroyed Well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$ 600 \$ 600 \$ 5,600 \$ 5,600 \$ 5,600 \$ 5,600 \$ 5,000 \$
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 10/13/07 11/13/07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well	Obstructed - Not Sa r r r l r r l hgs; contained insu Well Destroyed Well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/08/07 07/23/07 07/23/07 10/18/07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 100 100		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r n hgs; contained insy well Destroyed well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	77/19/05 77/19/05 02/02/06 04/02/06 04/02/06 04/02/06 10/11/06 10/18/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0 10		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06 11/17/02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r n hgs; contained insy well Destroyed well Destroyed r r r r r r r r			\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/18/07 07/23/07 07/23/07 10/18/07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well // // // // // // // // // // // //	Obstructed - Not Sa r r r n pgs contained insulation n pgs cont		2 2 2 1 1 1 1 1 1 1	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r l r r l hgs; contained insy well Destroyed well Destroyed r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 07/12/06 10/17/06 10/18/07 07/23/07 07/23/07 10/18/07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 1 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/17/06 10/17/17/17/17/17/17/17/17/17/17/17/17/17/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 2 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r		2 2 2 1 2 2 2 2 2 2	\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r			\$,000 \$,000	\$,000 \$,000
MW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06 11/17/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r		NA NA NA NA NA NA NA NA	\$,000 \$,000	\$,000 \$,000
MW-7	77/19/05 77/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not So r r r n pgs; contained inst Well Destroyed well Destroyed well Destroyed r r r r r r r r			\$,000 \$,000	\$,000 \$,000
NW-7	07/19/05 10/24/05 02/02/06 04/27/06 04/27/06 10/17/06 11/17/06 10/17/06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		Well	Obstructed - Not Sa r r r r r r r r r		NA NA NA NA NA NA NA NA	\$,000 \$,000	\$,000 \$,000

t ig GROUND	WAILK ANAL)	TICAL RESULT	S FUR UXTUE!	IIIPE	1	TAME	1,3-UCA	RIIB	Methanol	£thanol
	Date Collected	MTBE (4g/L)	TBA (g/L)	(pg/L)	ETBE pg/L)	(µg/L)	(ug/L)	(µg/L)	(μg/L)	(բլ/ե)
Well Number						/	1	2	MA .	NA
	07/23/07	0.50	10.0	!			1		N/A	NA.
	10/15/07	0.50	100	1	1				N/I	NA.
	03/24/08	0.50	10.0		1					NA NA
	05/30/08	0.50	10.0	! <u>-</u>				- 2 -	NA NA	NA NA
	07/10/08	0.50	10.0	1	1		. !	2 2	NA NA	N/A
	10/01/08	0.50	10.0		J					NA
	02/10/09	0.50	10	. 1				2	N/A	iva
					<u> </u>			44121	5,000	5,000
EX-1	10/24/05	360	120	ı	1		1	4 1// 1	5,000	3.000
	02/02/06	0.63	10	1	1	!		4 0[1]		5,000
	04/27/06	0.50	10.0	1			/		5,000	
	07/12/06	200	110	10[1]	10[1]	10[1]	10[1]	40[1]	5,000	5,000
	10/17/06	170	100/11	10[1]	10[1]	10[1]	30	40[1]	5,000	5,000
	01/08/07	1.6	10	i	1	/	1	2	5,000	5,000
	04/09/07	0.5	16	- I	· i	1	1	2	5,000	5,000
	07/23/07	0.55	10	1	7	1	7	2 1	NA .	NA
	10/15/07			···············		Not Sampled				
	03/24/08	0.50	10	1	1	7	1	2	NA	NA
		0.50	10		1	7	7	2	NA	NA
	05/30/08		10		 				NA	N'A
<u> </u>	07/10/08	0.50				' /	;	,	NA NA	NA
	10/01/08	0.83	10	7.000	1 1///1	2 0/11	2.0(1)	8 0/1)	NA NA	NA.
	02/16/09	2,0	20[1]	2.0[1]	2.0[1]	2.11(1)	2.0[1]	outt	11/7	1774
	l	1			 	10000	100411	Priof I I	5,000	5,600
EX-2	10/24/05	410	2000(1)	209[1]	200[1]	200[1]	200[1]	300[1]		5,000
	02/02/06	200	1,000[DL]	100[1]	100[1]	100[1]	100[1]	400[1]	5,()(H)	
	04/27/06	86	500/DL)	50[1]	50[1]	50[1]	50[1]	200[1]	5,1100	5,000
	07/12/06	190	500[1]	50[1]	50[1]	50[1]	50[1]	200[1]	5,990	5,(10)
	10/17/06	230	1,000(1)	100[1]	100[1]	100[1]	400	400[1]	5 ((00	S _. (#31)
	01/08/07	90	400[1]	40/11	40/11	40[1]	40[1]	160[1]	5,000	5,000
	04/09/07	6.0	20/17	2.0/1/	2.0[1]	2.0[1]	20[1]	8 0[1]	5,000	5,0041
	07/23/07	5.2	10.6	1		7	1	4 (41)	NA	NA
		2.5	116.95	,	J	Not Sampled				
	10/15/07		100717	2/1//	20/17	20///	20[1]	80[1]	RA.	NA
	03/24/08	29	200[1]	26[1]	50/11	50/1/	50[1]	300[1]	N/A	MA
	05/30/08	25[1]	500[1]	50[1]				200[1]	N/A	NA
	07/10/03	25[1]	500[1]	50[1]	50[1]	50[1]	50[1]	200111	NA NA	NA.
	10/01/08	50[1]	1,000[1]	100[1]	100[1]	100[1]	100[1]	400[1]		NA NA
	02/10/09	41	500(1)	50[1]	50[1]	50[1]	50[1]	200[1]	NA	7971
EX-3	10/24/05	10[1]	200[1]	20/1/	20[1]	20[1]	20/1/	80[1]	5,600	5,600
Desire	02/02/06			······································	Well Not Mom	tored or Sampled - 1	Inder Soit Pile			
	04/27/06					antured or Sampled		-		
		2 5/1/	30/1/	5.0[1]	5 0[1]	5.0[1]	5 0[1]	20/1)	5,000	5,000
	07/12/06	2 3/1/	30/1/	3.11/13		antored or Samples			1	
	10/17/06		γ			I sample	11	,	5,000	\$ 900
	01/08/07	0.5	12	!	1				5,000	5,000
	04/09/07	0.5	10		1	<u> </u>	f		NA NA	N/1
	07/23/07	0.5	10		1		······		/8/3	
	10/15/07					Not Sampled				
	03/24/08	1			Well Not A	tonitared or Samples	1 - Covered		- 77:	
	05/30/08	0.5	10	I	. 1		į į	4 0/2/	N/I	NA.
·	07/10/08	0.5	10	7	1	1	1	4 0[2]	NA.	NA.
	10/01/08	0.5	10	1	7	1	1	3	NA	NA.
	02/10/09				Well Not	Monitored or Sample	d - Covered			
	02/10/09	····	· · · · · · · · · · · · · · · · · · ·		T					
	10004006	 ,,	51	5 0[1]	3 Of1	5 0/1/	5 0/1/	20[1]	5,000	5,000
EX-4	10/24/05	11		2911		nitored or Sampled -			• · · · · · · · · · · · · · · · · · · ·	
	02/02/06	ļ			well Not Mo	Monitored or Samples -	d Covered			
	04/27/06	ļ	,					40/1/	5,000	5,000
	07/12/06	35	200[1]	10[1]	10[1]	10[1]	10(1)	**///	2,000	1. 2,550
	10/17/06					Monitored or Sample		40111	5 400	
	01/08/07	25	100[1]	10[1]	10[1]	10[1]	10[1]	40[1]	5,000	5,000
	04/09/07	6.5	100[1]	10[1]	10[1]	10/1/	10[1]	40[1]	5,1900	5 000
	07/23/07	29	200[1]	20[1]	20[1]	20[1]	20[1]	80[1]	NA.	N/A
	10/15/07					Not Sampled				·
		0.61	10	······	1	1	1	2	NA NA	N/A
	03/24/68	1 2,01	20/1/	20/1/	2 0[1]	2.0[1]	2 0[1]	8 0[1]	NA	NA.
	03/24/08	3.7							N/A	KA.
	05/30/08	3.2				2.0111	2.0/11	8 0[1]		NA.
	05/30/08 07/10/08	3.0	20[1]	29[1]	2.0[1]	2.0[1]	2.0[1]	8 0[1] 8 0[1]	N/A	
	05/30/08 07/10/08 10/01/08	3.0 5.2	20[1] 25	20[1] 20[1]	2.0[1]	2.0[1] 2.0[1]	2.0[1]	H 0[1]	NA NA	NA.
	05/30/08 07/10/08	3.0	20[1]	29[1]	2.0[1]		2.0[1]	# 0[1] 4 0[1]	NA .	NA
	05/30/08 07/10/08 10/01/08	3.0 5.2	20[1] 25	20[1] 20[1]	2.0[1]		2.0[1]	4 0[1] 8 0[1]	NA Methanol	NA Elbano
	05/30/08 07/10/08 10/01/08	3.0 5.2 11	20[1] 25 27	2 0[1] 2 0[1] 1	2.0[1]	2 0[1]	2.0[1]	# 0[1] # 0[1] EDB # (pg/L)	NA Methanol (pg/L)	NA Elbano (pg/L)
	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L)	20[1] 25 27 TBA #g/L)	2 0/1/ 2 0/1/ / BIPE (92/L)	2.0[1] 2.0[1] 1	2 0[1] TAME (µg/L)	2.0[1] 2.0	4 0[1] 8 0[1]	NA Methanol	NA Elbano (pg/L) ND
	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L) 84.8	20fii 25 27 TBA #g/L)	2 0 [1] 2 0 [1] 1 1 1 DIPE (9g/L) NO	2.0[1] 2.0[1] 1 ETHE \$2/L:	2 0[1] TAME (pg/L) ND	2.0[1] 2.0 1,3-0CA (µg/L) 17.7	# 0[1] # 0[1] EDB # (pg/L)	NA Methanol (pg/L)	NA Elbano (pg/L)
stics	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L) 84.8 179.2	20(ii 25 27 TBA \$\(\frac{\pi}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}2\)\(\frac{1}\2\)\(\frac{1}\2\)\(\frac{1}\2\)\(\f	2 0[1] 2 0[1] 1 1 1 1 101PE (0±/L) NO NO	2.0[1] 2.0[1] 1 ETBE \$2/L1 ND ND	2 0(1) TAME (pg/L) ND ND	2.0[1] 2.0 1,2-0CA (hg/L) 17.7 54.5	# 0[1] # 0[1] EDB (jig/L) ND ND	NA Niethanot (pg/L) ND ND	NA Elbano (jng/L) ND ND
1	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L) 84.8 179.2 820.0	20/1/ 25 27 TBA #g/L) 94.9 274.8 2000.0	2 %[1] 2 0[1] 1 UIVE. (0-2/L) ND NO NO	2.0[1] 2.0[1] 1 ETBE #g/L) ND ND	2 0(1) TAME {pg/L} ND ND ND ND	2.0[1] 2.0 1,2-UCA (ug/L) 17.7 54.5 400.0	# 0(1) # 0(1) EDB (((gA.)) ND ND ND	NA Methanol (pg/L) ND ND ND	NA Elbaum (jng/L) ND ND ND
1	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L) 84.8 179.2 820.0 186.0	20/1/ 25 27 TBA #g/L) 94.9 274.8 2000.0 181.0	2 0[1] 2 0[1] 1 DIPE (wg/L) ND ND ND	2.0(1) 2.0(1) 3.0(1) 1 ETBE #g/L) ND ND ND ND	2 0[1] 1 AME (pg/L) ND ND ND ND ND	2.9[1] 2.0 1,2-DCA (ug/L) 17.7 54.5 400.0 157.0	# 0(1) # 0(1) EUB (192A.) ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND	NA Elbano (jug/L) ND ND ND ND
1	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (µg/L) 84.8 179.2 820.0	20/1/ 2.5 2.7 TBA #½/L) 94.9 274.8 2000.0 181.0	2 何 [] 2 0 [[]] 1 BIPE (ルタル) ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0[1] 2.0[1] 1 ETHE \$\$\psi^L\] ND ND ND ND ND ND	2 0[1] 1 AME (pg/L) ND ND ND ND ND ND	2.9[1] 2.0 1,2-UCA (µg/L) 17.7 54.5 400.0 157.0 1.6	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaum (pg/L) ND ND ND ND ND ND
87)	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (W/L) 84.8 179.2 820.0 186.0 1.6	20/1/ 2.5 2.7 TBA #½/L) 94.9 274.8 2000.0 181.0	2 0[1] 2 0[1] 1 DIPE (wg/L) ND ND ND	2.0(1) 2.0(1) 3.0(1) 1 ETBE #g/L) ND ND ND ND	2 0[1] 1 AME (pg/L) ND ND ND ND ND	2.9[1] 2.0 1,2-DCA (ug/L) 17.7 54.5 400.0 157.0	# 0(1) # 0(1) EUB (192A.) ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND	NA Elbaur (prg/L ND ND ND
87) UCL	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 84.8 179.2 820.0 186.0 1.6	29/1/ 25 27 TBA #g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 の(1) 2 の(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0(1) 2.0(1) 1 ETBE \$\$\(\text{sg}/L\) ND ND ND ND ND ND	2 0(1) 1 A N E (ug/L) N D N D N D N D N D N D N D N D N D N D	2.0[1] 2.0 1,2-UCA (ug/1-) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
87) UCL	05/30/08 07/10/08 10/01/08	3.0 5.2 11 MTBE (W/L) 84.8 179.2 820.0 186.0 1.6	29/1/ 25 27 TBA ≱g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 0/1/ 2 0/1/ 1 DIVE (99/L) ND ND ND ND ND ND	2.0(1) 2.0(1) 1 1 ETBE \$\(\pi\)2(1) ND ND ND ND ND ND ND ND	2.0(1) 1.AME (pg/L) ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0[1] 2.0 1,2-UCA (ug/1-) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
87) UCL	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 84.8 179.2 820.0 186.0 1.6 105.8	29/1/ 25 27 TBA #g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 の(1) 2 の(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0(1) 2.0(1) 1 1 ETBE \$\(\pi\)2(1) ND ND ND ND ND ND ND ND	2.0[1] TABLE (pg/L) ND ND ND ND ND ND ND ND ND N	2.9[1] 2.0 1,2-UCA (ug/1.) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
87) UCL	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 84.8 179.2 820.0 186.0 1.6	29/1/ 25 27 TBA ≱g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 0 11 2 011 2 011 1 1 1 1 1 1 1 1 1 1 1	2.0(1) 2.0(1) 1 1 ETBE \$\(\pi\)2(1) ND ND ND ND ND ND ND ND	2 0[1] TAME (pg/L) ND ND ND ND ND ND ND ND ND N	2.9(1) 2.0 1,2-UCA (ug/1.) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	NA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
B7) UCL or, wedy red uses \$150 M	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 84.8 179.2 820.0 186.0 1.6 105.8	29/1/ 25 27 TBA ≱g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 0/1/ 2 0/1/ 1 DIVE (99/L) ND ND ND ND ND ND	2.0(1) 2.0(1) 1 1 ETBE \$\(\pi\)2(1) ND ND ND ND ND ND ND ND	2 O(11 IAME (pg/L) ND ND ND ND ND ND ND ND ND IMA Identify request leavy to large statement of the lar	2.9[1] 2.0 1,2-DLA (ug/L) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	MA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
UCL On an above that any pitch M on any perform or perform of majorated	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 84.8 179.2 820.0 186.0 1.6	29/1/ 25 27 TBA ≱g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 0 11 2 011 2 011 1 1 1 1 1 1 1 1 1 1 1	2.0(1) 2.0(1) 1 1 ETBE \$\$\psi_L\$\text{y}_L\$\text{U}_D ND ND ND ND ND ND ND	2 0/11 TAME (pg/L) ND ND ND ND ND ND ND ND ND DTE (Standard pg/decked) TigA - (equive ps/decked) TigA - (equive ps/decked) TigA - (equive ps/decked) TigA - (equive ps/decked) TigA - (equive ps/decked)	2.9(1) 2.0 1,2.0CA (ugf.) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	MA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaur (jrg/L ND ND ND ND ND ND
87) UCL see, in advertigating EPA M seekvergrams per face or simplested	05/30/08 07/10/08 10/01/08 02/10/09	3.0 5.2 11 MTRE (w/L) 84.8 179.2 820.0 186.0 1.6 105.8	29/1/ 25 27 TBA ≱g/L) 94.9 274.8 2000.0 181.0 1.6 127.5	2 0 11 2 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0(1) 2.0(1) 1 1 ETBE \$\$\psi_L\$\text{y}_L\$\text{U}_D ND ND ND ND ND ND ND	2 O(11 IAME (pg/L) ND ND ND ND ND ND ND ND ND IMA Identify request leavy to large statement of the lar	2.9(1) 2.0 1.2-ULA (ug/L) 17.7 54.5 400.0 157.0 1.6 24.7	# 0[1] # 0[1] EUB (1(2/L) ND ND ND ND ND ND ND ND	MA Methanol (pg/L) ND ND ND ND ND ND ND	NA Elbaum (pg/L) ND ND ND ND ND ND

		EXPOSURE	TOOPPOINT	ENT DEL	AULIS a)		
RECEPTOR	BW	Soil I					
		Injestion	Exposure	Exposure	Water	Cancer	Non. Cancer
t		njeston	Frequency	Duration	Consumption	A. Time	A. Time
ORAL	(kg)	(mg/day)		·····		(LIFE)a	(EF*ED)
	(1.97	(ing/day)	(day/yr)	(yrs)	(L/day)	(days)	(days)
Child shopper	15	200	29				1337
Adult shopper	70	100	35	6	1	25550	174
Commercial	70	100	250	24	2	25550	840
Construction	70	330	250	25	2	25550	6250
		330	250	1	2	25550	250
)=514A1		Surface Area			Adherence Factor		
DERMAL		(cm2)	(day/yr)	(yrs)	(mg/cm2)	(days)	/
Child shopper	15	0000				(days)	(days)
Adult shopper	70	2900	29	6	0.2	25550	174
Commercial	70	5700	35	24	0.07	25550	840
Construction	70	5700	250	25	0.2	25550	6250
	70	5700	250	1	0.8	25550	250
		Inhalation Rate					
NHALATION		(m3/d)	(day/yr)	(yrs)		/day-1	
hild shopper	15					(days)	(days)
dult shopper	70	10	29	6		25550	174
ommercial	70	20	35	24		25550	840
onstruction	70	14	250	25		25550	6250
	//	20	250	1		25550	250

a) Defaults from Cal/EPA Human Health Risk Assessment (HHRA) Note 1 (Oct 27 2005) except EFH (1997) for child/adult exposure frequency

	MAX				MAX	95% UCL				1
``	Spil	UCL	Skin	Air	Dust	Dust	MAX	95% UCL	MAX	95%
· · · · · · · · · · · · · · · · · · ·	Conc e)	Soit	Absorb.	Dust	Chem	Chem	Soil	Sail	Water	Water
	(mg/kg)	Cont. a)	Factor b)	Conc. c)	Conc. dj	Conc. d)	Vepor	Vapor	Chem	Chem
	(mg/kg)	[mg/kg]	[Preportion]	(mg/m3)	(mg/m3)	(mg/m3)	Cana, e)	Conc. e)	Cone, g)	Conc. g)
Gas C6-10	2.40E+03	4 37E+02				(,	[Lg/m3]	(ug/m3)	[mg/l]	(mg/l)
	2.402.703	4 37 6+02	0.1	0.05	1 20E-04	1 20E-04	NA NA			
Diesel C1D-22	3.30E+02	7 05E+01				772	1471	NA NA	4.20E+01	2 44E+00
	0.000,102	7 USE+U1	9.1	0.05	1.65E-05	1.65€-05	NA.	<u> </u>		
tene	9.60E+00						IVM	NA NA	7.30E+00	8.37E-01
	9.00E+00	9.76E-01	0,1	0.05	4.80E-07	4.88E-08				
						4.00E-00	NA.	NA NA	1 30E+01	5.56E-01
ene	2.10E+01	2.53E+00	0.1	0.05	1 05E-06			1		
				. 0 03	1.00E-06	1.27E-07	NA NA	NA NA	3.80E+00	1 03E-01
Benzene	6.00E+01	7.14E+00	0.1			L			2.002.00	1035-01
		7.14C100	0,1	0.05	3.00E-06	3.57E-07	NA NA	NA NA	4 00 = 12	<u> </u>
ne	2 60E+02						100	IVA	1.30E+GS	7 29E-02
10	2 605+02	3 25E+01	0.1	0.05	1.30E-05	1 62E-06				l''''
					1.00E-05	1025-00	NA NA	NA	1 10E+01	3.03E-01
(Pb)	7.00E+00	5.07E+00	0.01	0.05						0.002.07
			001	0.05	3.50E-07	2.54E-07	NA	NA NA	NA NA	·
E	ND	ND								NA NA
		190	0.1	0 05	ND	ND	NA	NA NA		
							100	NA NA	8 20E-01	9 80E-02
	ND	ND	0 1	0.05	ND	מא			L	
					140	UND	ND	ND	2.00E+00	1.285-01
CA	ND	ND	0.1	0.05					-	1.202.01
			L	0.02	ND	ND	ND	ND	4 00E-01	A +75 A +
	***								4005-01	2 47E-02
ES:										
				1					AND THE PARTY OF T	
OSUCE POINT CORPORATE	ons are from Tables 1a-e								:	
EDA DEA domest phan	ons are from Tables 1a-e						—·· -— -—	- www.marker . walliage.		
EDA DEA LANDOR	rption and Kp fraction pg A- tion 2-30 default respirable	6 and Table 1 July 1999								
tert concentration	Aun 2-30 detault respirable	dust.						***		
Management and a = 500	concentration x air dust co	ncentration				- <u> </u>	— · -—- · · — · ·	· ALLES		
Ashor urmaturu couca	entration from Table 10	e in feet used in HERD SG N						The state of the s		

	CAL Slope Factor		EPA IUR	RfD VALUES b)	
	(mg/kg-	day)-1	ug/m3	mg/kg-day	
	Oral	Inhal.	ไกhal,	Oral	Inhat.
H Gas C5-8 c)	NA NA	NA NA	NA NA		mat,
H Diesel C9-18 c)			NA NA	5	18.4
1) Die3di C3-10 C1	NA NA	NA NA	NA NA	0.1	
enzene	1.00E-01	1.00E-01	7.80E-06	4.00E-03	9.005.04
Juane	NC NC	NC NC			2.00E-02
			NC NC	8.00E-02	3.33E+00
hyl Benzene	1.10E-02	8.70E-03	8.70E-03	1.00E-01	6.67E-01
lene	NC NC	NC NC	NC NC	2.00E+00	
BE	1.80E-03	9.10E-04		2.005,700	NA NA
		9.102-04	9.10E-04	NA NA	2.00E+00
Α	NA	NA NA	NA NA	NA NA	NA.
-DCA	7.40E-02	7,20E-02	7,20E-02		
			7.202-02	2.00E-02	1,60E+00

	Soil		Soil	ISK AND HAZAI	[Soil
	Oral/Dermal	Soil Inhal	Total	Oral/Derma)	Soil Dust	Total
	RISK b)	RISK b)	Risk	Hazard b)	Hazard b)	Hazard
TPH Gas C6-10						
Child/Adult Shopper	NC	NC				
Commercial	NC NC	NC NC	NC	2.82E-02	4.30E-06	2.82E-02
	NO	NC NC	NC NC	9.50E-04	1.30E-06	9.52E-04
TPH Diesel C10-22						
Child/Adult Shopper	NC	NC	NC NC	1.83E-01	1.09E-05	1005.1
Commercial	NC	NC	NC	6.53E-03	3.30E-06	1.83E-01 6.54E-03
Benzene						
Child/Adult Shopper	2.09E-07	2.40E-10	2.10E-07	1.33E-01	4 505 05	
Commercial	7.10E-07	2.35E-09	7.13E-07	4.75E-03	1.58E-05	1.33E-01
			7.100-07	4.79E-03	4.80E-06	4.76E-03
loluene						
Child/Adult Shopper	NC	NC	NC	1.45E-02	2.08E-07	1.45E-02
Commercial	NC	NC	NC	5.20E-04	6.31E-08	5.20E-04
thyl Benzene						
Child/Adult Shopper	1,44E-07	1,31E-10				
Ommercial	4.88E-07	1.28E-09	1.44E-07	3.32E-02	2.97E-06	3.32E-02
	4.032-07	1.20E-09	4.90E-07	1.19E-03	9.00E-07	1.19E-03
ylene						
hild/Adult Shopper	NC	NC	NC	7.20E-03	NA NA	7,20E-93
Commercial	NC	NC	NC	2.57E-04	NA NA	2.57E-04
ombination	0.110.10					
hild/Adult Shopper	Soil Or/De	Soil Inh	Sum Risk	Soil Or/De	Sail Inh	Sum Haz
ommercial	3.53E-07 1.20E-06	3.71E-10	3.54E-07	3.99E-01	3.42E-05	3.99E-01
Olimitetelat	1.200-06	3.62E-09	1.20E-06	1.42E-02	1.04E-05	1.42E-02
OTES				· - · ·		
	1 0 1 toma //			····		
C = Not Carcinogen, NA	= Not Available, ND =	Not Detricted				
Maximum values from T Cal/EPA Methods B7-B	Cable 1			the second second second		

1	Soil		Soil	Soil		Soil
· · · · · · · · · · · · · · · · · · ·	Oral/Dermal	Soil Inhal	Total	Oral/Dermal	Soil Dust	Total
	RISK b)	RISK b)	Risk	Hazard b)	Hazard b)	Hazard
TPH Gas C6-10						
Child/Adult Shopper	NC	NC	NC	5,13E-03	4.30E-06	5.14E-03
Commercial	NC NC	NC NC	NC NC	1.73E-04	1.30E-06	1.74E-04
COMMICICIAL			110	1,702-04	1.552-50	1.742-04
TPH Diesel C10-22						
Child/Adult Shopper	NC	NC	NC	3.90E-02	1.09E-05	3,91E-02
Commercial	NC	NC	NC	1.40E-03	3.30E-06	1,40E-03
Benzene						
Child/Adult Shopper	2.13E-0B	2.40E-10	2.15E-08	1.35E-02	1.61E-06	1.35E-02
Commercial	7.22E-08	2,35E-09	7.46E-08	4.83E-04	6.59E-07	4.84E-04
Toluene						
Child/Adult Shopper	NC	NC	NC	1.75E-03	2,51E-08	1.75E-03
Commercial	NC	NC	NC	3.16E-05	7.60E-09	3.16E-05
thyl Benzene		_				
hild/Adult Shopper	1.71E-08	1.31E-10	1.73E-08	3.95E-03	3.53E-07	3.95E-03
Commercial	5.81E-08	1.28E-09	5.94E-08	1.41E-04	1.07E-07	1,41E-04
(ylene						
hild/Adult Shopper	NC	NC	NC	8.99E-04	NA	8.99E-04
Commercial	NC	NC	NC	3.22E-05	NA NA	3.22E-05
Combination	Soil Or/De	Soil Inh	Sum Risk	Soil Or/De	Soil Inh	Sum Haz
hild/Adult Shopper	3.84E-08	3.71E-10	3.88E-08	6.43E-02	1.72E-05	6.43E-02
Commercial	1.30E-07	3.62E-09	1.34E-07	2.26E-03	5.38E-06	2.26E-03
IOTES		1		1 · · · · · · · · · · ·	1	
10.120					Ī	
IC = Not Carcinogen, NA				· · · · · · · · · · · · · · · ·		

PH Gas C6-10 Residental Commercial PH Diesel C10-22 Residental Commercial	All Routes Risk b) NC NC	All Routes Hazard b) 4.50E-01 1.30E-01	Vapor Risk b) NC	Vapor Hazard b)	Ingest.& Vapor Risk b)	Ingest.& Vapor Hazard b)
Residental Commercial PH Diesel C10-22 Residental	Risk b) NC NC	4.50E-01	NC		Risk b)	Hazard b)
Residental Commercial PH Diesel C10-22 Residental	NC NC					
Residental Commercial PH Diesel C10-22 Residental	NC				l	
PH Diesel C10-22 Residental	***	1.30E-01	NC	9.50E-02	NC	1,10E+00
Residental			1 110	2,80E-02	NC	4.00E-01
Residental	.,					
			NT	NT	NT NT	1,20E-02
lommercial l	NT	NT		NT NT	NT NT	4,10E-03
	NT	NA	NT	NI	į į	4,100,-00
Renzene						
Residental	4.20E-06	1.60E-02	1.60E-06	6.20E-03	4.50E-04	3,80€+00
Commercial	1.00E-06	4.70E-03	4.00E-07	1.80E-03	1.10E-04	1,40E+00
oluene	NC	1.40E-03	NC	7.70E-05	NC	3.50E-02
Residental	NC NC	4.10E-04	NC NC	2.20E-05	NC NC	1,30E-02
Commercial	NG	4.106-04	140	2.202-00	113	
thyl Benzene						
Residental	NC	1.40E-02	NC	2.80E-04	NC NC	2.00E-02
Commercial	NC	4.20E-03	NC	8.00E-05	NC	7.10E-03
(ylene Residental	NC	5.00E-03	NC NC	1.00E-02	NC	4.20E-02
Commercial	NC NC	1.40E-01	NC NC	3.00E-03	NC	1.50E-02
Jommerciai	NG	1,402-01	.,,			
DCA 1,2						NIX
Residental	NC	ND	2.60E-07	9,50E-06	3.40E-05	NT NT
Commercial	NC	ND	6,20E-08	2.70E-06	8.00E-06	NT
ATBE TEN						
Residental	NC	ND	3.70E-09	1.10E-05	2,60E-06	2.70E-01
Commercial	NC	ND	8.90E-10	3.20E-06	6.20E-07	9.60E-02
3	C D' 1-	Sum Haz	Sum Risk	Sum Haz	Sum Risk	Sum Haz
Combination	Sum Risk 4,20E-06	4.86E-01	1,86E-06	1.12E-01	4.87E-04	5.27E+00
Residental Commercial	4.20E-06	2,79E-01	4.63E-07	3,29E-02	1.19E-04	1.94E+00
201111110101111	11.00					
NOTES					1	
	ang ikang kanang	*	Not Detected			
NC = Not Carcinogen, NT	= No lox values NA	= Not Available, ND =	Not Defected	t		ŀ
a) 95% UCL values from b) All caclulations made to	riane DBCA version?	51 GSI Env. (2009) in	default mode. Printout	s see Appendix.C-H	, .	

	95% UCL b)	SSTL c)	CRF d)	95% UCL b)	SSTL c)	CRF d)
Chemical / Endpoint	Concent.			Concent.		
	(mg/kg)	[mg/kg] b)		(mg/L)	(mg/L)	
	SOIL	SOIL (e)	SOIL (e)	GW - Vapor f)	GW - Vapor f)	GW - Vapor f)
Benzene	9.76E-01	9.5E+0	<1	5.56E-01	1.4E+1	<1
Ethyl benzene	7.14E+00	>3.7E+2	<1	7.29E-02	>1.7E+2	NA
Xylenes (mixed isomers)	3.25E+01	2.3E+2	<1	3.03E-01	1.0E+2	<1
Toluene	2.53E+00	>8E+2	<1	1.03E-01	>5.3E+2	NA
TPH - Aliph >C06-C08	4.37E+02	>2E+2	<1	2.44E+00	>5.4E+0	NA
TPH - Aliph >C16-C21	7.05E+01	NT	NT	8.37E-01	NC	<1
Dichloroethane, 1,2-	ND	ND	ND	2.50E-02	4.0E+0	NA
MTBE	ND	ND	ND	9.80E-02	1.1E+3	<1
NOTES:		A CONTRACTOR OF THE CONTRACTOR				
NA = Not Applicable . NT =						
a) Soil exposure by oral, de		(Appendix. C) . Grou	ındwater exposure	by vapor intrusion (Ap	p. <u>D).</u>	· - · · · · · · · · · · · · · · · · · ·
) 95% Concentration Value			0.54			-
) SSTL (Site-Specific-Targ					your	
 CRF =portion of target co 	oncentration used = opendix C for RBCA		on)/(target concent	ration or SSTL)	<u> </u>	

	95% UCL b)	SSTL c)	CRF d)	95% UCL b)	SSTL c)	CRF d)
Chemical / Endpoint	Concent.			Concent.		ORI U)
	(mg/kg)	[mg/kg] b)		(mg/L)	(mg/L)	
	SOIL e)	SOIL e)	SOIL e)	GW - Vapor f)	GW - Vapor f)	GW - Vapor f)
Benzene	9.76E-01	2.3E+0	<1	5.56E-01	3.40E+00	<1
Ethyl benzene	7.14E+00	>3.7e+2	<1	7.29E-02	>1.7e+2	<1
Xylenes (mixed isomers)	3.25E+01	6.5E+1	<1	3.03E-01	3.00E+01	<1
Toluene	2.53E+00	>8E+2	<1	1.03E-01	>5.3E+2	<1
TPH - Aliph >C06-C08	4.37E+02	>2.6e+2	<1	2.44E+00	>5.4E+0	<1
TPH - Aliph >C16-C21	7.05E+01	NT	NT	8.37E-01	NT	NT
DCA 1,2	ND	ND	ND	2.50E-02	9.80E-01	<1
MTBE	ND	ND	ND	9.80E-02	2.70E+02	<1
NOTES:			Na chalain and the chalain and			- /111-
NA = Not Available. NT = N	o Tox Data ND = No	ot Detected	S 80.000			
a) Soil exposure by oral, de	rmal and inhalation	(App. E). Groundwate	er exposure by va	oor intrusion (App. F).		
b) 95% Concentration Value						×
c) SSTL (Site-Specific-Targ d) CRF =portion of target co	et-Levels) or clean-ι	p level from RBCA 2	1.51			The second secon
JI UKE EDOMON OF Jardet Co	oncentration used =	(present concentratio	n)/(target.concent	ration or SSTL)		

	95% UCL b)	SSTL c)	CRF d)	SSTL c)	CRF d)
Chemical / Endpoint	GW Concentration	GW - Resident e)	GW - Resident e)	GW - Commercial f)	
	(mg/L)	(mg/L)		(mg/L)	
Benzene	5.56E-01	1.20E-02	45.00	5.20E-02	1.1E+1
Ethyl benzene	7.29E-02	3.70E+00	<1	1.02E+01	<1
Xylenes (mixed isomers)	3.03E-01	7.30E+00	<1	2.00E+01	<1
Toluene	1.03E-01	2.90E+00	<1	8.20E+00	<1
TPH - Aliph >C06-C08	2.44E+00	2,2	1.10	>5.4E+0	NA NA
TPH - Aliph >C16-C21	8.37E-01	>2.5e-6	NT	>2.5E-6	NA NA
DCA 1,2	2.50E-02	7.40E-03	3.40	3.10E-02	<1
MTBE	9.80E-02	3.70E-01	<1	1.00E+00	<1
NOTES:	- summer recorded to the control of				
NA = Not Available, NT = Na) GW exposure by ingestion 95% Concentration Value) SSTL (Site-Specific-Tand) CRF =portion of target as Pesidential GW All Rours) Commercial GW All Rours	on and vapor intrusions on and vapor intrusions on the secondary of the se	on. Residential - App up level from RBCA ent concentration)/(S for RBCA Printout	2.51	рр. Н.	

Appendix A: Conceptual Site Model

Appendix B: USEPA ALM Results

Calculations of Preliminary Remediation Goals (PRGs)

Calculations of Blood Lead Concentrations (PbBs)

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee Version date 05/19/05 EDIT RED CELLS

			Region OR Ethnic GSDi and PbBo Data from NHANES III Analysis							
Exposure Variable	Description of Exposure Variable	Units	All/All	All/White	All/Black	All/Mexican	Northeast/All	Midwest/All	South/All	West/All
PbS	Soil lead concentration	ug/g or ppm	7	7	7	7	7	7	7	7
R _{fetal-maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
BKSF	Biokinetic Stope Factor	ug/dL per ug/day	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
GSD,	Geometric standard deviation PbB		2.1	2.1	2.2	2.3	2.0	2.2	2.1	2.1
PbB ₀	Baseline PbB	ug/d(,	1.5	1.5	1.8	1.7	2.0	1.5	1,4	1.4
IR ₃	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
[R _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day		^-					**	
Ws	Weighting factor, fraction of IR _{S-D} ingested as outdoor soil								*-	
K _{SD}	Mass fraction of soil in dust									
AF _{S. D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
EF _{S. D}	Exposure frequency (same for soil and dust)	days/yr	219	219	219	219	219	219	219	219
AT _{S. D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365	365	365	365	365
PbB aduk	PbB of adult worker, geometric mean	ug/df.	1.5	1.5	1.8	1.7	2.0	1.5	1.4	1.4
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dl.	4,7	4.4	5.7	6.0	5.6	5.0	4.2	4.3
PbB_t	Target PbB level of concern (e g , 10 ug/dl.)	ug/dL	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB ,. assuming lognormal distribution	%	0.4%	0.3%	0.9%	1.2%	0.7%	0.6%	0.2%	0.3%

Appendix C: RBCA COMMERCIAL SOIL PRINTOUT

Exposure Pathway Identification 1. Groundwater Exposure	Site Name: Stratus Oakland USA 57 Location: Oakland
Groundwater Ingestion/ Surface Water Impact Receptor: None None	Compl. By: Clint Skinner Job ID: Soil Or, Der, Inh 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None None None None On-site Off-site1 Off-site2 O O O O (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air
GW Discharge to Surface Water Exposure Swimming Fish Consumption Specified Water Quality Criteria	Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Com. None None On-site Off-site1 Off-site2 Source Media: Distance: 0 0 0 0 (m) Affected SoilsVolatilization to Enclosed Space Affected Soils Leaching to GWVolatilization to Enclosed Space
2. Surface Soil Exposure Source Media: Receptor: Com. ▼ ☑ Direct Ingestion On-site ☑ Dermal Contact Construction Worker □ ☑ Inhalation (vol+part) Option: □ Vegetable Ingestion □ Apply UK (CLEA) SGV as soil concentration limit	Affected GroundwaterVolatilization to Enclosed Space 4. Commands and Options Main Screen Print Sheet Set Units Help Exposure Factors & Target Risks Exposure Flowchart

1. Exposure Parameters	Resi	dential Recep	otors	Commerica	al Receptors	User	Compl. By: Clint Ski
-	Child	Adolescent	Adult	Adult	Construc,	Defined	Job ID: Soil Or, Der
Averaging time, cardinogens (yr)			70			-	2. Age Adjust
Averaging time, non-carcinogens (yr)	6	12	30	25	1	-	(residential receptor
Body weight (kg)	15	35	70	70	70	- 1	Seasonal skin su
Exposure duration (yr)	6	12	30	25	1	-	☑ Water ingestion
Averaging Time for Vapor Flux (yr)		30		30	30	-	☐ Soil ingestion
Exposure frequency (d/yr)		350		250	180	- 1	Swimming water
Dermal exposure freq. (d/yr)		350		250	180	-	Skin surface area
Seasonal-avg skin surface area (cm²/d)	2023	2023	3160	3160	3160	-	☐ Fish consumption
Soil dermal adherence factor (mg/cm²)	0.5	0.5	0.5	0.5	0.5	-	☐ Below-ground ve
Water ingestion rate (L/d)	1	1	2	1	1	-	☐ Above-ground ve
Soil ingestion rate (mg/d)	200	200	100	50	100	-	3. Non-Carcin
Swimming exposure time (hr/event)	1	3	3			1	(residential receptor
Swimming event frequency (events/yr)	12	12	12				4. Target Hea
Swimming water ingestion rate (L/hr)	0.5	0.5	0.05				Target Cancer Risk (C
Skin surface area, swimming (cm²)	3500	8100	23000				Target Hazard Quotie
Fish consumption rate (kg/d)	0.025	0.025	0.025	1 /		5 \	5. Commands
Vegetable ingestion rate (kg/d)				* (z	\Box	nii yii en eji	
Above-ground vegetables	0.002	0.002	0.006] \		1	Re
Below-ground vegetables	0.001	0.001	0.002	1 `			Use/Set
Contaminated fish fraction (-)		1	1	1			Valu

Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner Job ID: Soil Or, Der, Inh	Date: 11-Jul-09
2. Age Adjustment for Carcino	gens
(residential receptor only)	Adjustment Factor
Seasonal skin surface area, soil contact	1022.26 (cm ² -yr/kg)
✓ Water ingestion	1.08571 (mg-yr/L-day)
☐ Soil ingestion	165.714 (mg-yr/kg-day)
Swimming water ingestion	4.56 (L/kg)
Skin surface area, swimming	80640 (cm ² -yr/kg)
☐ Fish consumption	0.02286 (kg-yr/kg-day)
Below-ground vegetable ingestion	0.38 (kg-yr/kg-day)
☐ Above-ground vegetable ingestion	0.88 (kg-yr/kg-day)
3. Non-Carcinogenic Receptor (residential receptor only)	Adult 🔻
4. Target Health Risk Limits	Individual Cumulative ,
Target Cancer Risk (Carcinogens)	1.0E-5 1.0E-5
Target Hazard Quotient/Index (non-Carc.)	1.0E+0 1.0E+0
5. Commands and Options	
Return to Exposure	Pathways
Use/Set Default	Print Sheet
Values	Help
	iicip

RBCA Tool Kit for Chemical Releases, Version 2.51

Site Name: Stratus Oakland USA 57 cocation: Oakland			Commands and Options		
Compl. By: Clint Skinner		Date: 11-Jul-0	Main Screen	Print Sheet	Help
Source Media	Constituents	of Concern (C	COCs)	h	☐ Apply ☐ Raoult's
Selected COCs ?			COC Concentration	?	Law
COC Select: Sort List:	Groundwate	r Source Zone	· Soil	Source Zone	Mole Fraction
Add/insert Top MoveUp Delete Bottom MoveDown	Enter Directly		Enter Directly ▼	Eletin Transpara	in Source Material
Dottotti MoveDowij	(mg/L)	note	(mg/kg)	note	(-)
Benzene	5.56E-1	95% UCL	9.8E-1	95% UCL	•
Ethyl benzene			7.1E+0	95% UCL	
Xylenes (mixed isomers)			3.3E+1	95% UCL	
Toluene			2.5E+0	95% UCL	
TPH - Aliph >C05-C06			4.4E+2	95% UCL	
TPH - Aliph >C16-C21			√ ● 7.1E±1	95% UCL	· ·

Transport Modeling Options

r		
1. Vertical Transport, Surface So	oil Column	(7)
Outdoor Air Volatilization Factors	Av julia	~ .
 Surface soil volatilization model only 	A STAN WAS	
 Combination surface soil/Johnson & Ettir 	nger models	and.
Thickness of surface soil zone	1.00 (m)	
O User-specified VF from other model	A war war war war war war war war war war	
Indoor Air Volatilization Factors		·
 Johnson & Ettinger model for soil and gro 	oundwater volatilization	
 Johnson & Ettinger for soil, Mass Flux me 	odel for groundwater	
 User-specified VF from other model 	Enter National Control	
Soil-to-Groundwater Leaching Fac ASTM Model	etor -	?
☐ Apply Soil Attenuation Model (SAM)	¢	
Allow first-order biodecay		
 User-specified LF from other model 		
Modeling Options	· · · ·	- : ?
Disable Mass Balance Limit		
 Apply Dual Equilibrium Desorption Mode 	el .	
2. Lateral Air Dispersion Factor		?
 3-D Gaussian dispersion model 	Off-site 1 Off-Site 2	
O User-Specified ADF	1.00E+0 1.00E+0 (-)	
		-

Site	Name: Stratus Oakland USA	57	Job ID:	Soil Or, D	er, Inh
	ation: Oakland			Date: 11-	Jul-09
	pl. By: Clint Skinner	<u> </u>			
3	. Groundwater Dilutior	n Attenuation	ı Factor		
i		Ing a starting tent.	I HERDRICH		
	The Mark Committee of the American	ent tee consultation	4 4 2 L LL		
	Calculate L	DAF using Don	nenico Mode	1	1.5
0	Domenico equation with disp	ersion only (no bi	odegradation)		_
0	Domenico equation first-orde		t est to est	t: : , g	The contract of the contract o
0	Modified Domenico equation	using		· · · · ·	1
	electron acceptor superpositi	on',	Andrews of the Control of the Contro	1	
	Biod	egradation Capac	city NC	(mg/L)	
	V-1000000	_ or		····3· L)	
	User-Specified DAF Values				ì
0	DAF values from other model	or site data	La CMA	136 175	
		- According	The state of the s	**************************************	
4.	. Chemical Decay and	Source Depl	etion		<u>?</u>
	en en en en en en en en en en en en en e	•	a havea.		
			The state of the s	-i	
	**************************************	:	***************************************	Shad	
5.	Commands and Opti	ons			
eriyen San er	Main Screen	Print She	ot .	Help	
	- min	, i inti one	GL	rieip	erem.
	and the second second				

Site-Specific Soil Parameters 1. Soil Source Zone Characteristics (? Hydrogeology Depth to water-bearing unit 3 (m) Capillary zone thickness 0.05 (m)Soil column thickness 2.95 (m)Affected Soil Zone Depth to top of affected soils 0 (m) Depth to base of affected soils 3 (m)Length of affected soil parallel to 45 (m)assumed GW flow direction Res/Com Construction Affected soil area 2025 (m^2) Length of affected soil parallel to 45 45 (m) assumed wind direction Soil Water-Bearing Unit

Site-Specific Air Parameters

1. Outdoor Air Pathway

Dispersion in Air

Distance to offsite air receptor

Horizontal dispersivity Vertical dispersivity

Air Source Zone

Air mixing zone height
Ambient air velocity in mixing zone

Inverse mean conc. [Q/C term]

Particulate Emissions

Particulate Emission Factor

Areal particulate emission flux

Fraction vegetative cover

Mean annual air velocity @ 7 m

Equivalent 7m air vel. threshold

Windspeed function (F(x) term)

User Defined V	olatilization Factor Used
User Defined A	ir Dispersion Factor Used
Off-site 1	Off-site 2

0 .	. 0	(m)
4.5	5.	
0	0	(m)
0	0	(m)

 2	 (m)
2.25	 (m/s)
79.25	

6 OF 12

Model:	A CTAA	Madal

0.8E-12	(Kg/m^3)
- 1	
6.9E-14	(g/cm^2/s)
0.5	(-)
4.8	1
11.32	(m/s)

(-)

Site Name: Stratus Oakland USA 57

Building volume/area ratio

Building air exchange rate

Foundation crack fraction

Foundation thickness

Building Volume

Vertical Dispersivity

Depth to bottom of foundation slab

Convective air flow through cracks

Volumetric water content of cracks

Indoor/Outdoor differential pressure

Building Length Parallel to GW flow

Building Width Perpendicular to GW flow

Volumetric air content of cracks

Location: Oakland

Compl. By: Clint Skinner

Foundation area Foundation perimeter

2. Indoor Air Pathway

User Defined Volatilization Factor Used

Job ID: Soil Or, Der, Inh

Date: 11-Jul-09

Residential	Commercia	?
2	3	(m) -
70	70	(m^2)
49	34	(m)
1.4E-4	2.3E-4	(1/s)
0.15	0.15	(m)
0.0E+0	0.0E+0	(m^3/s)
0.1		(m)
0.00)1	(-)
0.1	2	(-)
0.2	6	(-)
0		(g/cm/s^2)
451	451	(m^3)
9.61	9.61	(m)
9.61	9.61	(m)
0.3	8	(-)
0.00)6	(m)

1.8E+01

indoor air

0.223841466

Commands and Options

Groundwater Seepage Velocity

Saturated Soil Zone Porosity

Main Screen

Set Units

Use/Set Default Values Print Sheet

(cm/d)

Help

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

	*****	Representat	ive COC Concentration	
CONSTITUENT	Gr	oundwater	So	ls (0 - 3 m)
	value (mg/L)	note	value (mg/kg)	note
Benzene	5.6E-1	95% UCL	9.8E-1	95% UCL
Ethyl benzene			7.1E+0	95% UCL
Xylenes (mixed isomers)		A COMMISSION OF THE PARTY OF TH	3.3F+1	95% UCL
Toluene	153.5.00	THE PERSON OF TH	2.5E+0	95% UCL
TPH - Aliph >C05-C06			4.4E+2	95% UCL
TPH - Aliph >C16-C21			7.1E+1	95% UCL

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

CONSTITUTION		Representativ	/e COC Concentration	
CONSTITUENT		oundwater		ls (0 - 3 m)
5	value (mg/L)	n ote	value (mg/kg)	note
Benzene	5.6E-1	95% UCL	9.8E-1	95% UCL
Ethyl benzene		** /ALMANAN, %** .	7.1E+0	95% UCL
Xylenes (mixed isomers)	1		3.3F+1	95% UCL
Toluene	-	The second section of the second section is	2.5E+0	95% UCL
TPH - Aliph >C05-C06			4.4E+2	
TPH - Aliph >C16-C21		. The second sec		95% UCL
			7.1E+1	95% UCL

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOILS (0 - 3 m): VAPOR INTRUSION INTO BUILDINGS 1) Source Medium 2) NAF Value (Ukg) 3) Exposure Medium 4) Exposure Multiplier 5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4) Receptor Indoor Air POE Conc (mg/m^3) (1) / (2) (EFxEDY(ATx365) (unitless) On-site On-site On-site On-site (0 m) (0 m) (0 m) (0 m) Sail Canc. (mg/kg) Commercial Commercial Constituents of Concern Commercial Commercial Вепхепе 9.8E-1 5.1E+2 1.9E-3 2.4E-1 4.7E-4 Ethyl benzene 7.1E+0 1.2E+3 6.1E-3 6.8E-1 4.2E-3

2.1E-2

3.0E-3

3.4E+0

4.1E-4

6.8E-1

6.8E-1

6.8E-1

6.8E-1

1.7E+5 NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

1.5E+3

8.4E+2

1.3E+2

3.3E+1

2.5E+0

4.4E+2

7.1E+1

Site Name: Stratus Oakland USA 57

* = Chemical with user-specified data

Site Location: Oakland Completed By: Clint Skinner

Xylenes (mixed isomers)

TPH - Aliph >C05-C06

TPH - Aliph >C16-C21

Toluene

Date Completed: 11-Jul-09 Job ID: Com Soil all its chem

1.4E-2

2.1E-3

2.3E+0

2.8E-4

1 OF 8

	IER 2 EXPOSURE COI									
INDOOR AIR EXPOSURE PATHWAYS			(Checked if Par	thway is Comple	ete)					
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration									
NTO BUILDINGS	1) Source Medium	2) NAF Value (m^3 Receptor	VL)		3) Exposure Medium Indoor Air POE Conc. (mg/m²3) (1)/(2				
Constituents of Concern	Groundwater Conc.	On-site (0 m) None	Off-site 1 (0 m) None	Off-site 2 (0 m) None	On-site (0 m) None	Off-site 1 (0 m) None	Off-site ((0 m) None			
Benzene	(mg/L) 5.6E-1			7,0110	110110	Hone	Nune			
thyl benzene		,								
(ylenes (mixed isomers)	. V . V . W . W		-	*******						
oluene				·						
PH - Aliph >C05-C06							************			
PH - Aliph >C16-C21						1				

3 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS GROUNDWATER: VAPOR INTRUSION INTO BUILDINGS 4) Exposure Multiplier 5) Average Inhalation Exposure Concentration (mg/m³) (3) X (4) (EFxEDV(ATx365) (unitless) On-site Off-site 1 Off-sile 2 On-site Off-site 1 Off-site 2 (0 m)(0 m)(0 m) (m 0)(0 m) (0 m)Constituents of Concern None None None None None None Benzene Ethyl benzene Xylenes (mixed isomers) Toluene TPH - Aliph >C05-C06 TPH - Aliph >C16-C21 * = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

RBCA SITE ASSESSMENT 4 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOIL LEACHING TO GW- VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (m²3/L) 3) Exposure Medium Receptor Indoor Air: POE Conc. (mg/m²3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m)(0 m) $\{0 \text{ m}\}$ (0 m)(0 m) Constituents of Concern Sail Conc. (mg/kg) None None None None None None Benzene 9.8E-1 Ethyl benzene 7.1E+0 Xylenes (mixed isomers) 3.3E+1 Toluene 2.5E+0 TPH - Aliph >C05-C06 4.4E+2 TPH - Aliph >C16-C21 7.1E+1 NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Date Completed: 11-Jul-09
Job ID: Com Soil all rts chem

Site Name: Stratus Oakland USA 57

Site Location: Oakland

Completed By: Clint Skinner

5 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS SOIL LEACHING TO GW- VAPOR INTRUSION INTO BUILDINGS 5) Average Inhalation Exposure Concentration (mg/m³3) (3) X (4) 4) Exposure Multiplier (EFxEDV(ATx365) (unitless) On-sile Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m) (0 m) (m 0) $\{0,m\}$ (0 m)Constituents of Concern None None None None None None Benzene Ethyl benzene Xylenes (mixed isomers) Toluene TPH - Aliph >C05-C06 TPH - Aliph >C16-C21 * = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

6 OF 8

INDOOR AIR EXPOSURE PATHWAYS	3		
	MAXIMUM PATHWAY EXPOSUR	tE (mg/m^3)	
	(Maximum average exposure co from soil and groundwater i		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	Commercial	None	None
Вепzепе	4.7E-4		
Ethyl benzene	4.2E-3		
Xylenes (mixed isomers)	1.4E-2	**************************************	
Toluene	2.1E-3		
TPH - Aliph >C05-C06	2.3E+0		
TPH - Aliph >C16-C21	2.8E-4		

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION INDDOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) CARCINOGENIC RISK (1) Carcinogenic Classification (2) Maximum Carcinogenic (3) Inhalation (4) Individual COC Exposure (mg/m²3) Unit Risk Factor Risk (2) x (3) x 1000 On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(m 0) (0 m)(0 m) (0 m)(0 m) (µg/m^3)^-1 Commercial Constituents of Concern None None Commercial None None Benzene TRUE 4.7E-4 2.2E-6 1.0E-6 Ethyl benzene FALSE Xylenes (mixed isomers) FALSE Toluene FALSE TPH - Aliph >C05-C06 FALSE TPH - Aliph >C16-C21 FALSE Total Pathway Carcinogenic Risk = 1.0E-6 Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Jab ID: Com Sail all rts chem Completed By: Clint Skinner

8 OF 8

INDOOR AIR EXPOSURE PATHWAYS	<u> </u>	(Checked if Pa	thway is Comp	lete)			
	TOXIC EFFECTS	3		***		71.12	
) Maximum Toxic: Exposure (mg/m^3		(6) Inhalation Reference Concentration		7) Individual CO ard Quotient (5)	
Constituents of Concern	On-site (0 m) Commercial	Off-site 1 (0 m) None	Off-site 2 (0 m) None	(mg/m^3)	On-site (0 m) Commercial	Off-sile 1 (0 m) None	Off-site 2 (0 m) None
Benzene Ethyl benzene	1.3E-3 4.2E-3	NC NC	NC NC	2.8E-1 1.0E+0	4.7E-3 4.2E-3		
Xylenes (mixed isomers) Toluene	1.4E-2 2.1E-3	NC NC	NC NC	1.0E-1 5.0E+0	1.4E-1		
TPH - Aliph >C05-C06	2.3E+0	NC NC	NC	1.8E+1	4.1E-4 1.3E-1	-	
TPH - Aliph >C16-C21	2.8E-4	NC_	NC	-	Γ		

Total Pathway Hazard Index =

2.8E-1

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

	TIER 2 EXPOSURE CONCENTR	ATION AND INT	AKE CALCULATION			
SOIL EXPOSURE PATHWAY SURFACE SOILS: ON SITE INGESTION, DERMAL		(Checked if Pathwa	ay is Complete)		**************************************	
EXPOSURE						
	Source/Exposure Medium	2) Expos	sure Multiplier		Daily Intake Rate day) (11 x (2)	
Constituents of Concern	Surface Soil Conc. (mg/kg)	Commercial	Construction Worker	Commercial	Construction Work	
Benzene	9.8E-1	1.7E-7		1.7E-7		
Ethyl benzene	7.1E+0	4.9E-7		3.5E-6		
Xylenes (mixed isomers)	3.3E+1	4,9E-7		1.6E-5		
Toluene	2.5E+0	4.9E-7		1.2E-6		
TPH - Aliph >C05-C06	4.4E+2	4.9E-7	- \ \	2.1E-4 -		
TPH - Aliph >C16-C21	7.1E+1	3.6E-6		2.5E-4		

NOTE: RAF = Relative absorption factor (-)	AT = Averaging time (days)	ED = Exposure duration (vrs)	IR = Soil ingestion rate (mg/day)
M = Adherence factor (mg/cm^2)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	` ` ` ` <u>* * *</u>
Site Name: Stratus Oakland USA 57			SA = Skin exposure area (cm^2/day)

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

		TI	ER 2 PATHWAY	RISK CALCU	LATION				2 0
SOIL EXPOSURE PATHWAY					Checked if Pathwa	y is Complete	*)		
				CAR	CINOGENIC RISK				
	(1) is Carcinogenic	(a) via Ingestion	(2) Total Carcinogeni (b) via Dermai Contact		day) (d) via Dermal Contact	(mg/kg	e Factor /day)^-1	(4) Individu: (2a)x(3a) + (2b)x(3b)	al COC Risk (2c)x(3a) + (2d)x(3b
Constituents of Concern		Com	mercial	Construc	ation Worker	(a) Oral	(b) Dermal	Commercial	Construction Worker
Benzene	TRUE	1.7E-7	0.0E+0				5.5E-2	9.4E-9	
Ethyl benzene	FALSE					*		1	
Xylenes (mixed isomers)	FALSE							1	
Toluene	FALSE		1				 		
TPH - Aliph >C05-C06	FALSE			+			-		
TPH - Aliph >C16-C21	FALSE			+			 		-

^{*} No dermal slope factor available—oral slope factor used

Total Pathway Carcinogenic Risk =

9.4E-9

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

TIER 2 PATHWAY RISK CALCULATION 3 OF 3 SOIL EXPOSURE PATHWAY (Checked if Pathway is Complete) TOXIC EFFECTS (5) Total Toxicant Intake Rate (mg/kg/day) (6) Reference Dose (7) Individual COC Hazard Quotient (a) via Ingestion (b) via Dermal Contact (c) via Ingestion (d) via Dermal Contact (mg/kg-day) (5a)/(6a) + (5b)/(6b) (5c)/(6a) + (5d)/(6b) (a) Oral (b) Dermal Construction Commercial Construction Worker Constituents of Concern Commercial Worker Benzene 4.8E-7 0.0E+0 4.0E-3 4.0E-3 1.2E-4 Ethyl benzene 3.5E-6 0.0E+0 1.0E-1 1.0E-1 3.5E-5 Xylenes (mixed isomers) 1.6E-5 0.0E+0 2.0E-1 2.0E-1 8.0E-5 Toluene 1.2E-6 0.0E+0 8.0E-2 8.0E-2 1.5E-5 TPH - Aliph >C05-C06 2.1E-4 0.0E+0 6.0E-2 6.0E-2 3.6E-3 TPH - Aliph >C16-C21 3.4E-5 2.2E-4 2.0E+0 2.0E+0 1.3E-4

Total Pathway Hazard Index =

3.9E-3

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner

No dermal reference dose available—oral reference dose used

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of

	I .		CARCINO	ENIC RISK			BASELI	NE TOXIC I	FFECTS	
EVECULE	Individual		Cumulativ	e COC Risk	Risk	Hazard	Quotient	Haza	rd Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s)
OUTDOOR AIR	EXPOSURE F	PATHWAYS						- 4.00		LXCEEGE
	NA	NA	NA	NA		NA	NA	NA	NA	
INDOOR AIR E	XPOSURE PA	THWAYS		I			1			
a	1.0E-6	1.0E-5	1.0E-6	1.0E-5		1.4E-1	1.0E+0	2.8E-1	1.0E+0	
SOIL EXPOSUI	RE PATHWAYS	3			· · · · · · · · · · · · · · · · · · ·	·				
3	9.4E-9	1.0E-5	9.4E-9	1.0E-5		3.6E-3	1.0E+0	3.9E-3	1.0E+0	
GROUNDWATE	R EXPOSURE	PATHWAYS	·····		-k		·			
	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WAT	ER EXPOSUR	E PATHWAY.	S		ł					
	NA	NA	NA	NA		NA	NA	NA	NA I	
CRITICAL EXPO	SURE PATHY	VAY (Maxim	um Values Fro	om Complete	Pathways)				-	
	1.0E-6	1.0E-5	1.0E-6	1.0E-5		1.4E-1	1.0E+0	2.8E-1	1.0E+0	
	Indoor Air Indoor Air						r Air	Indo	or Air	

Ske Lecation Oa	us Cakland USA S7 Mand		Completed By: Date Completes						Job ID Sol C	or, Der, Inh								
SURFACE S SSTL VALU	SOIL (0 - 1 m) ES		1	t Risk (Class A & B) get Hazard Cuolent										Grou	ndvater DAF Option			1 (
							SSTL Resu	ts For Complete	Exposure Pathways (C	hecked If Pathw	ray la Complete)							
CONSTITUENTS OF CONCERN Cons		Representative		il Leaching to Gro on / Decharge to : Offisite t	Surface Water	Groun	Milleaching to Gro dwater Velaticatio	n to Indoor Ar	Soi Vol to Indeer Air		Soi Velatita Soi Partesi	zation and Surfac ales to Duldoor	e 4i	Desert Contact	Pathways Ingestion	Applicable	SSTL	Recured
CAS No. Name		Concentration (mg/kg)	(D m) None	(0 m)	Off-ste 2 (0 m)	On-ute (0 m)	Offisite 1 (f) mi	Tri-site 2 On-site (0 m) Off-site 1 Off-site 2 On-site (0 m) SST	SSTL	Escended 7	Grey if *:							
71-43-2	Benzene	9 8E-1	NONE	None	None	None	None	None	Commercial	None	Construction	None	None	Commercial	Construction	(mg/kg)	*#17 vas	left.
00-41-4	Ethyl benzene	7.1E+0			1	1	!		9.5E+0			}		2.6E+2		9 5E+0		<1
330-20-7	Xylenes (mixed isomers)	3 3E+1			Í			ŀ	>3.7E+2					2 0€+5		2 QE+5		<1
08-88-3	Toluene	2.5E+0						Ī	2.3E+2					4.1E+5		2 3E+2		<1
-al0506	TPH - Aliph > C05-C06	4 4E+2							>8.0E+2					1.6E+5		1.6E+5		<1
-ai1621	TPH - Aligh >C16-C21	7 1E+1	•						>4.7E+2				!	1 2E+5		1.2E+5		<1
					L	.1	L	I	Tox?		·	L	<u> </u>	(Inh)Tox?		NC		N/
NA.	Total TPH mixture	5 1E+2	NA	NA	NA.	NΑ	NA NA	NA	NC	NA NA	NA	NA.	NA.	1 2E+5				

Site Location, Op	akland		Completed By: 0 Date Completed							Job ID: So	il Or, Der, Inh				
SUBSURFA SSTL VALU	ACE SOIL (1 - 3 m) JES		1 -	t Risk (Class A & B jet Hazard Quotiens	,						Grouns	dwater DAF Option	ť.	-	1 0
			- So	Il Leaching to Gro	55		nplete Exposure	Pathways (Checke	d if Pathway is Comp	olete)		-			
		Representative	Ingestic	n / Discharge to !	Surface Water	Ground	if Leaching to Gro water Volatilization	oundwater/ on to Indoor Air	Spii Vol. to	□ Soit	Volatilization to	Outdoor Air	Applicable	SSTL	Required C
ONSTITUENTS	S OF CONCERN Name	Concentration (mg/kg)	On-site (0 m) None	Off-site 1 (0 m) None	Off-site 2 (0 m) None	Оп-site (0 лл)	Off-site 1	Off-site 2	On-site (0 m)	On-site (0 m)	0#-site 1 (0 m)	Off-site 2 (0 m)	SSTL	Exceeded ?	1
1-43-2	Benzene	9 8E-1	140 Re	MONE	None	None	None	None	Commercial	None	Мале	Nane	(mg/kg)	"B" if yes	left
100-41-4	Elhyl benzene	7.1E+0	ŀ		1	1	1		9.5E+0			l	9.5E+0		<1
1330-20-7	Xylenes (mixed (somers)	3.3E+1			i	1		-	>3.7E+2				>3.7E+2		
108-88-3	Toluene	2.5E+0			}			9	2.3E+2				2.3E+2		<1
r-al0506	TPH - Akph >C05-C06	4.4E+2	1			1			>8.0E+2	1 1			>8.0E+2		1
-al1621	TPH - Aliph >C16-C21	7.1E+1]			-	1		>4.7E+2				>4.7E+2		
			L	1	1		1.	1	Tox?	<u> </u>			NC		
IA.	Total TPH mixture	5.1E+2	NA	NA	NA	NA NA	NA NA	NA.	NC NC	NA T	NA	NA.	NC	r	

		SITE ASSESSMEI	N			Cumulative Risk Wo	orkshoet
Site Name: S	itratus Cakland LISA 57		Completed By: Clin		Job ID: Soil Or, Der, Inn		
Site Location:	Cakland		Date Completed 1		1 OF		
CUMU	JLATIVE RISK WORKSHEET	77 A. A. A. A. A. A. A. A. A. A. A. A. A.					
		·······					
CONSTITUENTS OF CONCERN				Proposed CRF		Resultant Target Concentration	
CONSTITUEN	TS OF CONCERN		e Concentration	Propos	ed CRF	Resultant Targ	et Concentration
		Soil	Groundwater			Soil	Groundwater
CAS No.	TS OF CONCERN Name Benzene	Soil (mg/kg)		Soil	GW	Soil (mg/kg)	
A5 No. 71-43-2	Name Benzene	Soil (mg/kg) 9,8E-1	Groundwater	Soit NA	GW NA	5oil (mg/kg) 9.8E-1	Groundwater
A5 No. 11-43-2 100-41-4	Name	Soil (mg/kg) 9.8E-1 7.1E+0	Groundwater	Soit NA NA	GW NA NA	5oil (mg/kg) 9.8E-1 7.1E+0	Groundwater
CAS No. 71-43-2 100-41-4 1330-20-7	Name Benzene Ethyl benzene	Soil (mg/kg) 9,8E-1	Groundwater	Soil NA NA NA	GW NA NA NA	Soil (mg/kg) 9.8E-1 7.1E+0 3.3E+1	Groundwater
CAS No. 71-43-2 100-41-4 1330-20-7 108-88-3	Name Benzene Ethyl benzene Xylenes (mixed isomers)	Soil (mg/kg) 9.8E-1 7.1E+0 3.3E+1	Groundwater	Soil NA NA NA NA	GW NA NA NA	Soil (mg/kg) 9.8E-1 7.1E+0 3.3E+1 2.5E+0	Groundwater
CONSTITUEN CAS No. 71-43-2 100-41-4 1330-20-7 108-68-3 T-al0506 T-al1621	Name Benzene Ethyl benzene Xylenes (mixed isomers) Toluene	Soit (mg/kg) 9.8E-1 7.1E+0 3.3E+1 2.5E+0	Groundwater	Soil NA NA NA	GW NA NA NA	Soil (mg/kg) 9.8E-1 7.1E+0 3.3E+1	Groundwater

<u>a di kanangan dise</u> Nganggan	A CONTRACTOR OF THE PROPERTY O	ASSESSMEN	ar Galdan (san	e (and a many like)	early have.		Cu	mulative Risk Wor	ksheet
Site Name. S	itratus Oakland USA 57 Cakland		~	Completed By Cli Date Completed:		Job ID: Sail Or, Der, Inh 2 O			
CUMI	JLATIVE RISK WORKSHEET			Comulative	Target Risk: 1,05-5	Target Hazard Ir	ndex 1 0=+0		
					ON-SITE RE	CEPTORS		***************************************	
			r Exposure:	Indoor Air	Exposure:	Soil Ex	posure:	Groundwate	r Exposum
CONSTITUENTS OF CONCERN		None Target Hisk: Target HQ- 1 0E-5 1 0E+0		Commercial Target Risk: Target HQ- 1.0E-5 1.0E+0		Commercial Targel Risk: Target HQ. 1 0E-5 1.0E+0		Groundwater Exposure. None Farget Risk Target HG 1 0E-5 1 0E+8	
AS No.	Name	Carcinogerac Risk	Hazard Quotient	Carcínogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Guotiest	Carcinogenic Risk	Hazard Quotient
1-43-2	Benzene			1.0E-6	4.7E-3	9.4E-9	1.2E-4	1100	GUOTES
10-41-4	Ethyl benzene				4.2E-3	,	3.5E-5		
330-20-7	Xylenes (mixed isomers)	1			1.4E-1		8.0E-5		
DB-88-3	Toluene				4.1E-4		1.5E-5		
-al0506 -al1621	TPH - Aliph > C05-C06	1			1.3E-1		3,6E-3		
-d11021	TPH - Aliph >C16-C21		<u> </u>	<u> </u>			1.3E-4		
	Cumulative Values:	0.0E+0	0.0E+0	1.0E-6	2.8E-1	9.4E-9			

indicates risk level exceeding target risk

Site Name: : Site Location:	Stratus Ookland USA 57 Qakland				Completed By C		e see tire ee tire ee				3011	Job ID: Spil Or, 0	
	JLATIVE RISK WORKSHEET				Date Completed		Target Risk 1,0E-5	Target Hazard Ir	ndex:10€+0				30
								RECEPTORS					
		No	ne Uutabor A	ir Exposure:	one	ļ		r Exposure:			Groundwat	er Exposure;	
CONSTITUENTS OF CONCERN		Target Risk: 1.0E-5	Target HQ. 1.0E+6	Target Risk, 1.05-5	Target MQ 1 0E+0	Target Risk 1 0E-5	Target HQ. 1.0E+0	Target Risk: 1.0E-5	ranget HQ: 1 0E+0	No Parget Hisk. 1 0E-5	ne 1arget HD: 1.0E+0	Varget Risk, 1.0E-5	ne Target HO 1.05.+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quolient	Carcinogenis Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard	Carcinogenic	Hazard
71-43-2	Benzene					1		1450	Quotest	HISK	Ouotient	Rask	Quatient
100-41-4 1330-20-7	Ethyl benzene					İ							
108-88-3	Xylenes (mixed isomers) Toluene												
T-al0506	TPH - Aliph >C05-C06												
T-al1621	TPH - Aliph >C16-C21												
	Cumulative Values:	0.05+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0		

indicates risk level exceeding target risk

indicates risk level exceeding target risk

APPENDIX D: RBCA COMMERCIAL GROUNDWATER PRINTOUT

Exposure Pathway Identification 1. Groundwater Exposure	Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner
Groundwater Ingestion/ Surface Water Impact Receptor: None ▼ None ▼ None ▼ On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Affected Groundwater Affected Soils Leaching to Groundwater Option: Apply MCL value as ingestion RBEL (backward mode only)	3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None None None On-site Off-site1 Off-site2 Distance: 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air
GW Discharge to Surface Water Exposure Swimming Fish Consumption Specified Water Quality Criteria	Volatilization to Indoor Air Inhalation Receptor: Com. ▼ None ▼ None ▼ On-site Off-site1 Off-site2 Source Media: Distance: 0 0 0 0 (m) Affected SoilsVolatilization to Enclosed Space Affected Soils Leaching to GWVolatilization to Enclosed Space
2. Surface Soil Exposure Source Media: Receptor: None □ Direct Ingestion On-site □ Dermal Contact Construction Worker □ Inhalation (vol+part) Option: □ Vegetable Ingestion	Affected GroundwaterVolatilization to Enclosed Space 4. Commands and Options Main Screen Print Sheet Set Units Help Exposure Factors & Target Risks Exposure Flowchart

Averaging time, carcinogens (yr)	Child		eptors	COMMITTERS	imits Commerical Receptors		Location: Oakland
	Child	Adolescent	Adult	Adult	Construc	User Defined	Compl. By: Clint Skinner Job ID: GW to Air Com
		_	70				
Averaging time, non-carcinogens (yr)	6	12	30	25		<u> </u>	2. Age Adjustment for Carcinogens
Body weight (kg)	15	35	70	70	70	<u> </u>	(residential receptor only) Adjustment Factor
Exposure duration (yr)	6	12	30		70	*	Seasonal skin surface area, soil contact 1022.26 (cm²-yr/kg)
Averaging Time for Vapor Flux (yr)		30	1 30	25			Water ingestion 1.08571 (mg-yr/L-da)
xposure frequency (d/yr)		350		30	30	*	Soil ingestion 165.714 (mg. ml da)
Permal exposure freq. (d/yr)				250	180		Swimming water ingestion 165.714 (mg-yr/kg-da
easonal-avg skin surface area (cm²/d)	2002	350	T	250	180		Cirky)
ioil dermal adherence factor (mg/cm²)	2023	2023	3160	3160	3160	-	!! [
Vater ingestion rate (L/d)	0.5	0.5	0.5	0.5	0.5		Below ground versions as
oil ingestion rate (mg/d)	_1	1	2	1	1	-	Above assessed the state of the
•	200	200	100	50	100		Above-ground vegetable ingestion 0.88 (kg-yr/kg-day
wimming exposure time (hr/event)		3	3	~ ~~			3. Non-Carcinogenic Receptor (residential receptor only) Adult
wimming event frequency (events/yr)	12	12	12				1 Mars 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
wimming water ingestion rate (L/hr)	0.5	0.5	0.05				4. Target Health Risk Limits Individual Cumulative
kin surface area, swimming (cm²)	3500	8100	23000				Target Cancer Risk (Carcinogens) 1.0E-5 1.0E-5
sh consumption rate (kg/d)	0.025	0.025	0.025				Target Hazard Quotient/Index (non-Carc.) 1 0F+0 1 0F+0
egetable ingestion rate (kg/d)	····		0.023	- A			5. Commands and Options
Above-ground vegetables	0.002	0.002	0.000			- 1	
Below ground upgeters	0.001		0.006	1			Return to Exposure Pathways
entaminated fish fraction (-)	0.001	0.001	0.002	`		,	Use/Set Default Print Sheet
		1					Values Help

RBCA Tool Kit for Chemical Releases, Version 2.51

npl. By: Clint Skinner		Date: 11-Ju	Main Screen	Print Sheet	Help
Source Medi	a Constituent	s of Concern (COCs)	- Control Control	☐ Apply
Selected COCs 2	···	Representativ	re COC Concentration	?	Raoult's Law
COC Select: Sort List: Add/Insert Top MoveUp		ater Source Zone		Source Zone	Mole Fraci
Delete Bottom MoveDown	Enter Directly		Enter Directly	Arrive Lawrence	in Source Materia
enzene hyl benzene lenes (mixed isomers) PH - Aliph >C06-C08 PH - Aliph >C16-C21 ethyl t-Butyl ether (MTBE) luene chloroethane, 1,2-	(mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1 9.8E-2 1.0E-1 2.5E-2	95% UCL 95% UCL 95% UCL 95% UCL 95% UCL 95% UCL 95% UCL 95% UCL	(mg/kg) 8.70E-1	note	(-)

Outdoor Air Volatilization Factors Surface soil voletilization model only Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone User-specified VF from other model Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first parts bridge binders. 3. Groundwater Dilution Attenuation Factor Calculate DAF using Domenico Model Outdoor Air Volatilization Factor Actulate DAF using Domenico Model Outdoor Air Volatilization Factor Nomenico equation with dispersion only (no biodegradation) Domenico equation first-order decay Modified Domenico equation using electron acceotor superoosition Soil-to-Groundwater Leaching Factor Outdoor Air Volatilization Factor Outdoor Air Volatilization Factors Outdoor Air Volatilization Factor	eling Options Site Name: Stratus Oakland USA 57 Location: Oakland Compil By: Clint Skinner	Job ID: GW to Ai Date: 11-
Surface soil voletilization model only Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone User-specified VF from other model Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Apply Dual Equilibrium Desorption Model 2. Lateral Air Dispersion Factor 3.0 Groundwater Dilution Attenuation Factor Calculate DAF using Domenico Model Domenico equation with dispersion only (no biodegradation) Domenico equation first-order decay Modified Domenico equation using electron acceotor superosition User-specified VF from other model Vser-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion Supply Dual Equilibrium Desorption Model Calculate DAF using Domenico Model User-specified VF from other model or site data 4. Chemical Decay and Source Depletion Supply Dual Equilibrium Desorption Model Calculate DAF using Domenico Model And Dotions Solution Aitenuation Model Calculate DAF using Domenico Model And Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (n	ization English Statement	
Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone User-specified VF from other model Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Apply Dual Equilibrium Desorption Model 2. Lateral Air Dispersion Factor 3-D Gaussian disposition Agents and Options 5-Commands and Options 5-Commands and Options 5-Commands and Options 5-Commands and Options 5-Commands and Options		enuation Factor
Thickness of surface soil zone User-specified VF from other model Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Domenico equation with dispersion only (no biodegradation) Domenico equation first-order decay Modified Domenico equation using electron acceotor superoosition Vser-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion Apply Dual Equilibrium Desorption Model Calculate DAF using Domenico Model Domenico equation with dispersion only (no biodegradation) Domenico equation in vist decay Modified Domenico equation using electron acceotor superoosition Vser-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion Apply Dual Equilibrium Desorption Model Calculate DAF using Domenico Model Domenico equation with dispersion only (no biodegradation) Domenico equation using electron acceotor superoosition Apply Soil Attenuation Model (SAM) Apply Dual Equilibrium Desorption Model Calculate DAF using Domenico equation using Domenico equation vist decay Modified Domenico equation using electron acceotor superoosition Apply Soil Attenuation Model (SAM) Apply Dala Equilibrium Desorption Model Calculate DAF using Domenico equation vist decay	oil/Johnson & Ettinger models	
User-specified VF from other model Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion and groundwater volatilization Domenico equation with dispersion only (no biodegradation) Domenico equation instroder decay Modified Domenico equation using electron acceotor superosition Wodified Domenico equation using electron acceotor superosition Modified Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion enly (no biodegradation) Domenico equation with dispersion enly (no biodegradation) Domenico equation with dispersion equation using electron acceotor superosition Visual Picture (Picture Picture	e soil zone 3.00 (m)	
Indoor Air Volatilization Factors Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Domenico equation with dispersion only (no biodegradation) Modified Domenico equation with dispersion only (no biodegradation) Modified Domenico equation with dispersion only (no biodegradation) Modified Domenico equation with dispersion only (no biodegradation) Modified Domenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion entry of pomenico equation with dispersion pomenico equation with dispersion pomenico equation with dispersion pomenico equation with dispersion pomenico equation with dispersion pomenico equation with dispersion pomenico and pomenico equation with dispersion pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico pomenico po	other model Calculate DAF u	sing Domenico Model
Johnson & Ettinger model for soil and groundwater volatilization Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion and groundwater volatilization Modeling Options 5. Commands and Options 5. Commands and Options		
Johnson & Ettinger for soil, Mass Flux model for groundwater User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor Modified Domenico equation using electron acceotor superoosition Modeling Options Options Chemical Decay and Source Depletion Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor A Commands and Options Commands and Options		
User-specified VF from other model Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor Biodegradation Capacity NC User-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion 7 8. Commands and Options 7 5. Commands and Options	- strict son and groundwater volanilization	And the second s
Soil-to-Groundwater Leaching Factor ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor Biodegradation Capacity NC User-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion 7 4. Chemical Decay and Source Depletion 7 8. Commands and Options	electron acceptor supermodifies	Carlo Sylve Service
ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model ? User-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion ? 5. Commands and Options	Other model	
ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian disposation model Company Soil Attenuation Model (SAM) User-Specified DAF Values DAF values from other model or site data 4. Chemical Decay and Source Depletion 7 5. Commands and Options	— i J▼ Bindegrads	
Allow first-order biodecay User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model Commands and Options DAF values from other model or site data 4. Chemical Decay and Source Depletion 7. Commands and Options	r Leaching Factor	tion Capacity NC (mg/L)
User-specified LF from other model Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model	2 Continuity of action	· —— · · · · · · · · · · · · · · · · ·
Modeling Options ☐ Disable Mass Balance Limit ☐ Apply Dual Equilibrium Desorption Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model 7 Commands and Options	Model (SAM) User-Specified DAF Values	or —
□ Disable Mass Balance Limit □ Apply Dual Equilibrium Description Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model 7. Commands and Options	n Model (SAM) ODAF values from other model or site	or —
□ Disable Mass Balance Limit □ Apply Dual Equilibrium Description Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model 7. Commands and Options	n Model (SAM) User-Specified DAF Values DAF values from other model or site other model	data
Apply Dual Equilibrium Description Model Lateral Air Dispersion Factor 3-D Gaussian dispersion model 7. Commands and Options	n Model (SAM) User-Specified DAF Values DAF values from other model or site other model	data
Lateral Air Dispersion Factor 3-D Gaussian dispersion Factor -? 5. Commands and Options	User-Specified DAF Values DAF values from other model or site other model 4. Chemical Decay and Source	data
3-D Gaussian disposition model ? 5. Commands and Options	User-Specified DAF Values DAF values from other model or site other model 4. Chemical Decay and Source Page 1	data
UII-Sile 1 Off-sile 2	User-Specified DAF Values DAF values from other model or site other model Limit Description Model TSION Factor	data
User-Specified ADF 1.00E+0 1.00E+0 (-) Main Screen Print Sheet	User-Specified DAF Values DAF values from other model or site the Limit Description Model Tsion Factor User-Specified DAF Values A. Chemical Decay and Source 7 5. Commands and Options	data

Site-Specific Soil Parameters Site Name: Stratus Oakland USA 57 Job ID: GW to Air Com Location: Oakland 1. Soil Source Zone Characteristics Date: 11-Jul-09 Compl. By: Clint Skinner Hydrogeology 2. Surface Soil Column Depth to water-bearing unit (m) Predominant USCS Soil Type Capillary zone thickness ASTM Default 0.05 ? (m) Calculate Soil column thickness Vadose Zone Capillary Fringe 2.95 (m) Volumetric water content Affected Soil Zone 0.12 0.342 Volumetric air content Depth to top of affected soils 0.26 0.038 0 (m) Total porosity Depth to base of affected soils 0.38 0 (-)(m)Dry bulk density Length of affected soil parallel to 1.7 (kg/L)45 |(m)|Vertical hydraulic conductivity assumed GW flow direction 864 (cm/d) Vapor permeability 1.00E-12 (m^2) Res/Com Construction Capillary zone thickness Affected soil area 0.05 2025 (m) (m^2) Net Rainfall Infiltration Length of affected soil parallel to 45 (m) Net infiltration estimate assumed wind direction 30,00 (cm/yr) Enter Directly or OF Average annual precipitation 0 (cm/yr) Partitioning Parameters Fraction organic carbon - entire soit column 0.01 Fraction organic carbon - root zone Sail Column 0.01 (-)Soil/water pH 6.8 3. Commands and Options Main Screen **Print Sheet** Use/Set Default Values Set Units Help

Site-Specific Groundwater Parameters 1. Water-Bearing Unit Hydrogeology Groundwater Darcy velocity 6.8500 (cm/d) Groundwater seepage velocity 18.0263 (cm/d) Calculate Hydraulic conductivity 685.0000 (cm/d) Hydraulic gradient 0.01 (4) Effective porosity 0.38 (-) Sorption Fraction organic carbon-saturated zone 0.001 Groundwater pH 6.2 2. Groundwater Source Zone Groundwater plume width at source (m)Plume (mixing zone) thickness at source 2 · (m) Saturated thickness 2 (m) Length of source zone 45 . (m)

ompl. By: Clint Skinner	and the first of the second		Girlia Chainn	Date: 11-Jul
3. Groundwater Disp	ersion	-		
Model: ASTM Default	▼ GW Inge	estion	GW to Indoo	ne Δie
	Off-site 1	Off-site 2	5.4	Off-site 2
Distance to GW receptors	0	0	0	0 (m
Longitudinal dispersivity				····· — (
Transverse dispersivity		'	; i	$$ $-\frac{m}{1}$
Vertical dispersivity	ļ			(m
4. Groundwater Disc	harge to Surfac	e Water		(m
				C.
Distance to GW/SW disharge	point		Off-site 2 (m)	
Plume width at GW/SW disc	charne			
Plume thickness at GW/SW	discharge		$-\frac{0}{2}$	
			- 0 $ 1$ (m)	
Surface water flowrate at GW	'SW discharge		0.000.0	.04.1
Commands and Option			0.0E+0 (<u>m</u> ^	3/S)
ulu Optic	/113			
- management		사람들이 가지 않는데		
American Company of the Company of t				
Main Screen	Use/Set De	efault	Print She	et

Site-Specific Air Parameters

1. Outdoor Air Pathway User Defined Volatilization Factor Used User Defined Air Dispersion Factor Used Dispersion in Air Off-site 1 Off-site 2 Distance to offsite air receptor 0 Horizontal dispersivity :(m) Vertical dispersivity (m)Air Source Zone Air mixing zone height (m) Ambient air velocity in mixing zone 2.25 (m/s) Inverse mean conc. [O/C term] 79.25 Particulate Emissions Model: ASTM Model Particulate Emission Factor 0 (kg/m^3) Areal particulate emission flux 6.9E-14 (g/cm^2/s) Fraction vegetative cover 0.5 (-) Mean annual air velocity @ 7 m 4.8 Equivalent 7m air vel. threshold 11.32 (m/s)Windspeed function [F(x) term] 0.223841466 1(-)

ite Name: Stratus Oakland USA 57 ocation: Oakland	JOD	ID: GW to Air (
ompl. By: Clint Skinner		Date: 11-Ju
2. Indoor Air Pathway	Lipos DoGood Matalia	
•	User Defined Volatiliza Residential Com	
Building volume/area ratio		mercial
Foundation area		3 (m)
Foundation perimeter		70 (m^2)
Building air exchange rate		3 4 (m)
Depth to bottom of foundation slab		3E-4 (1/s)
Convective air flow through cracks		.15 (m)
Foundation thickness		E+0 (m^3/s)
Foundation crack fraction	0.15	(m)
	0.001	(-)
Volumetric water content of cracks	0.12	(-)
Volumetric air content of cracks	0.26	(-)
Indoor/Outdoor differential pressure	0	(g/cm/s^2
Building Volume	451 4	51 (m^3)
Building Width Perpendicular to GW flow	9.61 9.	
Building Length Parallel to GW flow	9.61 9.6	
Saturated Soil Zone Porosity	0.38	(-)
Vertical Dispersivity	0.006	
Groundwater Seepage Velocity	1.8E+01	(m)
,	1,00,00	(cm/d)
. Commands and Options		
Main Screen		
Use/Set D	efault 📜 📜	Print Sheet

RBCA SITE ASSESSMENT 1 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOILS: VAPOR INTRUSION INTO BUILDINGS 1) Source Medium 2) NAF Value (L/kg) 3) Exposure Medium 5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4) 4) Exposure Multiplier Receptor Indoor Air. POE Conc. (mg/m^3) (1)/(2) (EFxED)(ATx365) (unitless) On-site On-site On-site On-site (m 0) (0 m)(0 m)(0 m)Constituents of Concern Soil Conc. (mg/kg) None None None None Benzene 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-* = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Site Location: Oakland Dale Completed: 11-Jul-09 Completed By: Clint Skinner Job ID: GW to Air Com

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

INOOOR AIR EXPOSURE PATHWAYS GROUNDWATER: VAPOR INTRUSION			(Checked if Pa	ithway is Compl	ete)				
		Exposure Concentration							
INTO BUILDINGS	1) Source Medium		NAF Value (m²: Receptor	3/L)	3)	3) Exposure Medium			
•	Groundwater C	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	POE Conc. (mg/m² Off-site 1	Off-site 2		
Constituents of Concern Benzene	Groundwater Conc.	Commercial	None	None	None	(0 m) None	(0 m) None		
thyl benzene Kylenes (mixed isomers)	5.6E-1 7.3E-2 3.0E-1	7.5E+2 6.2E+2			7.4E-4 1.2E-4				
PH - Aliph >C06-C08 PH - Aliph >C16-C21	2.4E+0	7.0E+2 3.4E+0			4.3E-4 7.3E-1		 		
ethyl t-Butyl ether (MTBE)	8.4E-1 9.8E-2	3.3E-2 7.0E+3	- 1900 -		2.5E+1				
oluene ichloroethane, 1,2-	1.0E-1 2.5E-2	6.4E+2 2.6E+3		<u> </u>	1.4E-5 1.6E-4				

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW to Air Com

2 OF 8

INDOOR AIR EXPOSURE PATHWAYS		·				
GROUNDWATER: VAPOR INTRUSION						
INTO BUILDINGS	(EFx	Exposure Multip ED)(ATx365) (unit	ress)	5) Avei Conce	rage Inhalation E entration (mg/m²3)	xposure (3) X (4)
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1	Off-site 2
Constituents of Concern	None	None	None	None	(0 m) None	(0 m) None
Benzene Ethyl benzene Xylenes (mixed isomers)	<u>2.4E-1</u> 			1.8E-4 8.0E-5		Notis
PH - Aliph >C06-C08 PH - Aliph >C16-C21	6.8E-1 6.8E-1			3.0E-4 5.0E-1		
Methyl t-Butyl ether (MTBE)	6.8E-1 2.4E-1			1.7E+1 3.4E-6		***************************************
Dichloroethane, 1,2- = Chemical with user-specified data	6.8 <u>E-1</u> 2.4 <u>E-1</u>			1.1E-4 2.4E-6		

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW to Air Com

RBCA SITE ASSESSMENT TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION 4 OF 8 INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOIL LEACHING TO GW- VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (m^3/L) 3) Exposure Medium Receptor Indoor Air POE Conc (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m)(0 m)(m 0)(0 m)Constituents of Concern (0 m) Soil Canc. (mg/kg) None None Benzene None None None 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Site Location: Oakland Date Completed: 11-Jul-09 Completed By: Clint Skinner Job ID: GW to Air Com

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION 5 OF 8 INDOOR AIR EXPOSURE PATHWAYS SOIL LEACHING TO GW- VAPOR INTRUSION INTO BUILDINGS 4) Exposure Multiplier 5) Average Inhalation Exposure Concentration (mg/m³3) (3) X (4) (EFxEDV(ATx365) (unifless) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m) (0 m)(0 m) (0 m)Constituents of Concern None None None None None Benzene Ethyl benzeпе Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-* = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW to Air Com

INDOOR AIR EXPOSURE PATHWAYS			
M.	AXIMUM PATHWAY EXPOSUI	RE (mg/m^3)	
	laximum average exposure co Irom soil and groundwater	ncentration	
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2
Constituents of Concern	Commercial	None	None
Benzene	1.8E-4		
thyl benzene	8.0E-5		
(ylenes (mixed isomers)	3.0E-4		<u></u>
PH - Aliph >C06-C08	5.0E-1		
PH - Aliph >C16-C21			
Methyl t-Butyl ether (MTBE)	3.4E-6		
oluene	1.1E-4		
Dichloroethane, 1,2-	2.4E-6		

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed, 11-Jul-09 Job ID: GW to Air Com

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION (Checked if Pathway is Complete) INDOOR AIR EXPOSURE PATHWAYS CARCINOGENIC RISK (4) Individual COC (3) Inhalation (1) Carcinogenic Classification (2) Maximum Carcinogenic Risk (2) x (3) x 1000 Exposure (mg/m^3) Unit Risk Factor Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 On-site (0 m) (0 m)(0 m)(0 m) $\{0,m\}$ (0 m) (µg/m^3)^-1 Commercial None None Commercial None None Constituents of Concern 4.0E-7 TRUE 1.8E-4 2,2E-6 Benzene FALSE Ethyl benzene FALSE Xylenes (mixed isomers) FALSE TPH - Aliph >C06-C08 FALSE TPH - Aliph >C16-C21 2.6E-7 8.9E-10 TRUE 3.4E-6 Methyl t-Butyl ether (MTBE) FALSE Toluene 2.6E-5 6.2E-8 TRUE 2.4E-6 Dichloroethane, 1,2-Total Pathway Carcinogenic Risk = 4.6E-7 Date Completed: 11-Jul-09 Site Name: Stratus Oakland USA 57 Job ID: GW to Air Com Site Location: Oakland

Completed By: Clint Skinner

8 OF 8

INDOOR AIR EXPOSURE PATHWAYS	W	(Checked if Pa	thway is Comp	lete)			
	TOXIC EFFECTS						
	1 ''	Maximum Toxica Exposure (mg/m²3		(6) Inhalation Reference Concentration		r) Individual CO ard Quotient (5)	
	On-site (0 m)	Off-sile 1 (0 m)	Off-site 2 (0 m)		On-site (0 m)	Off-sile 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	Commercial	None	None	(mg/m^3)	Commercial	None	None
Benzene	5.1E-4			2.8E-1	1.8E-3		
Ethyl benzene	8.0E-5			1.0E+0	8.0E-5	F 14-64	
Xylenes (mixed isomers)	3.0E-4			1,0E-1	3.0E-3		
TPH - Aliph >C06-C08	5.0E-1			1.8E+1	2.8E-2	1 1000 00. 00	viiivaa.iaaa
TPH - Aliph >C16-C21	1.7E+1			-			
Methyl t-Butyl ether (MTBE)	9.6E-6			3.0€+0	3.2E-6		
Toluene	1.1E-4			5.0E+0	2.2E-5	····	
Dichloroethane, 1,2-	6.7E-6			2.4E+0	2.7E-6		ĺ

Total Pathway Hazard Index =

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By, Clint Skinner Date Completed: 11-Jul-09 Job ID: GW to Air Com

3.2E-2

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of 1

,		BASELINE	CARCINOG	ENIC RISK			BASELI	NE TOXIC E	FFECTS	
	Individual	COC Risk	Cumulative	e COC Risk	Risk	Hazard (Quotient	Hazar	d Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE P	ATHWAYS								
	NA	NA	NA	NA		NA	NA	NA	NA	
INDOOR AIR E	XPOSURE PAT	THWAYS								l
■	4.0E-7	1.0E-5	4.6E-7	1.0E-5		2.8E-2	1.0E+0	3.2E-2	1.0E+0	
SOIL EXPOSU	RE PATHWAY	3			1					
	NA	NA .	NA	NA		NA	NA	NA	NA	
GROUNDWATE	R EXPOSURE	PATHWAYS					***************************************			I
	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WAT	TER EXPOSUR	E PATHWAY	S							
	NA	NA	NA	NA		NA	NA	NA	NA	
CRITICAL EXP	OSURE PATHV	VAY (Maxim	um Values Er	om Complete	Pathways)					
	4.0E-7	1.0E-5	4.6E-7	1.0E-5		2.8E-2	1.0E+0	3.2E-2	1.0E+0	П
	Indoo	r Air	Indo	or Air		Indo	or Air		or Air	

Site Name Str	atus Oakland USA 57		Completed By: C	lint Skinner					Job ID. G	W to Air Com				
Site Location: (Dakland		Date Completed	11-Jul-09										1 Of
GROUND	Target Rick (Class A & B) 1 05-5 IDWATER SSTL VALUES Target Hazard Quotient 1 08+3										Ground	water DAF Option		
							osura Pathways (C					·		
				Groundwater Ing Discharge to Surfa			Groundwaler Volat to Indoor Ai			Groundwaler Volati to Outdoor A		Applicable	SSTL	Required CF
CONSTITUEN	TS OF CONCERN	Representative Concentration	On-site (0 m)	Oif-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1	Off-site 2	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	\$5TL	Exceeded ?	Only if "ye:
CAS No.	Name	(mg/L)	Nona	None	None	Commercial	None	None	None	None	None	(mg/L)	"■" if yes	!eft
71-43-2	Benzene	5 6E-1				1.4E+1		İ				1,4E+1		<1
100-41-4	Ethyl benzene	7.3E-2	1			>1.7E+2]			>1.7E+2		NA NA
1330-20-7	Xylenes (mixed isomers)	3.0E-1				1.0E+2				,		1.0E+2		<1
T-ai0608	TPH - Aliph >C06-C08	2.4E+0		1		>5.4E+0						>5,4E+0		NA.
T-al1621	TPH - Aliph >C16-C21	8.4E-1		1	Ì	Tox?		1	[NC		NA.
1634-04-4	Methyl t-Butyl ether (MTBE)	9.8E-2	1			1.1E+3		ļ				1.1E+3		<1
108-88-3	Toluene	1.0E-1	1			>5.3E+2			1			>5.3E+2		NA
107-06-2	Dichloroethane, 1,2-	2.5E-2	<u> </u>		<u> </u>	4.0E+0	<u> </u>		<u> </u>			4.0E+0		<1
NA .	Total TPH mixture	3.3E+0	l NA	NA.	NA.	NC NC	NA	NA	NA NA	NA	NA	NC		NA

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value NA = Not applicable. NC = Not calculated

Site Name S	tratus Oakland USA 57		Completed By. Clini	Skinner		Job ID: GW to A	ir Com
Site Location	Cakland		Date Completed, 11	-Jul-09	Name 11	-	1 OF
CUMU	LATIVE RISK WORKSHEET						
CONSTITUEN	TS OF CONCERN	Representativ	re Concentration	Propos	sed CRF	Resultant Taro	et Concentration
		Soil (mg/kg)	Groundwater (mg/L)	Soil	GW	Soil	Groundwater
CAS No.							
CAS No.	Name Beozene	(criging)		NIA		(mg/kg)	(mg/L)
71-43-2	Benzene	(enging)	5.6E-1	NA NA	NA	T (mg/ra)	5.6E-1
71-43-2 100-41-4		(criging)	5.6E-1 7.3E-2	NA	NA NA	, ingred	5.6E-1 7.3E-2
CAS No. 71-43-2 100-41-4 1330-20-7 T-al0608	Benzene Ethyl benzene	(crigany)	5.6E-1		NA		5.6E-1 7.3E-2 3.0E-1
71-43-2 100-41-4 1330-20-7	Benzene Ethyl benzene Xylenes (mxed isomers)	(criging)	5.6E-1 7.3E-2 3.0E-1	NA NA	NA NA NA	, and the second	5.6E-1 7.3E-2
71-43-2 100-41-4 1330-20-7 F-a10608 F-a11621	Benzene Ethyl benzene Xylenes (mxed isomers) TPH - Aliph >C06-C08	(rigray)	5.6E-1 7.3E-2 3.0E-1 2.4E+0	NA NA NA	NA NA NA	(mg/kg)	5.6E-1 7.3E-2 3.0E-1 2.4E+0
71-43-2 100-41-4 1330-20-7 F-a10608	Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21	(Hg ng)	5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1	NA NA NA NA	NA NA NA NA		5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1

Site Name. S	Iratus Oakland USA 57				Completed By Cli	nt Skinner		Job ID: GW to Air	C
Site Location	Cakland				Date Completed, 1			JODID, GW (SAIF	2 OF
CUMU	JLATIVE RISK WORKSHEET				arget Risk. 1 05-5	Target Hazard In	dex: 1.0E+0		
					ON-SITE RE	CEPTORS			
			r Exposure:		Exposure:	Soil Ex	osure;	Groundwate	r Exposure:
CONSTITUEN	TS OF CONCERN	Ne ∓arget Hisk. 1 Œ-5	Target HQ 1.0€+0	Comm Target Risk 1 0E-5	nercial Target MQ: 1 05+0	No Target Risk: 1.0E-5	Re Farget HQ 1.0E+0	No Target Risk 1.0E-5	Pe Target HQ 1.0E+0
CAS No.	Name	Carcinogenic Risk	Hazard Quollent	Carcinogenic Risk	Hazard Cuotem	Carcinogenio Rísk	Hazard Quotient	Carcinogenic Risk	Hagard Quotient
71-43-2	Benzene			4 0E-7	1.8E-3				- LEATH-CO.
100-41-4	Ethyl benzene				B.DE-5				
1330-20-7	Xylenes (mixed isomers)				3,0E-3				
T-a!0608	TPH - Aliph >C06-C08			İ	2.8E-2				
T-al1621 1634-04-4	TPH - Aliph >C16-C21								
108-88-3	Methyl t-Butyl ether (MT8E) Toluene			8.9E-10	3.2E-6				
107-06-2	Dichloroethane, 1,2-			675.0	2.2E-5				
10, 50 4.	Totalio occiono, 1,2-			6.2E-8	2.7E-6			<u> </u>	
	Cumulative Values:	0.0E+0	0.0E+0	4.6E-7	3.2E-2	0.0E+0	0.0E+0	0.0E+0	0.0E+0

[■] indicates risk level exceeding target risk

et gen un diament		ASSESSMENT	Properting a discount of the				But to a second	eko ette 1924 gan 193			Carr	nulative Risk Work	SIRUL
Site Name. S	tratus Oakland LISA 57				Completed By C	lint Skinner						Job ID GW to Air	t Com
Site Location	Cakland				Date Completed	11-Jul-09		-					3 0/
CUMU	Cumulative Target Risk, 1 0E-5 Target Hazard Index 1.0E+0												
							OFF-SITE F	RECEPTORS					
	i			ir Exposure:				Exposure:				er Exposure:	
		No Target Risk:	ine Target HQ	No Target Risk	one Target HQ:	Target Risk:	one Target HQ	Targel Risk.	ne Target HQ	Target Kisk:	one Target HQ:	No Target Risk	one Target HQ
CONSTITUEN	ITS OF CONCERN	1.0E-5	1 0£+0	1.0E-5	1.0E+0	1.0E-5	105+0	1 CE-5	1 0É+0	1 0E-5	1.05+0	1 0E-5	1,0E+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Cardinogenic Risk	Hazard Quotient	Carenogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotent
71-43-2	Benzene			1,000			deodera	71001	4.000	1		7555	Cookin
100-41-4	Ethyl benzene				1			,		i			
1330-20-7	Xylenes (mixed isomers)			i				ļ					i
T-al0608	TPH - Aliph >C06-C08	:					1					1	1
T-al1621	TPH - Aliph >C15-C21				1	1							ŀ
1634-04-4	Methyl t-Butyl ether (MTBE)											1	1
108-88-3	Toluene			1		!				Į		1	ĺ
107-06-2	Dichloroethane, 1,2-	***************************************				<u></u>	<u> </u>			<u> </u>			l
	Cumulative Values:	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0

indicates risk level exceeding target risk

indicates risk level exceeding target risk

Appendix E: RBCA RESIDENTIAL COMMERCIAL SOIL PRINTOUT

Exposure Pathway Identification 1. Groundwater Exposure Groundwater Ingestion/ Surface Water Impact Receptor: None None None None None None Affected Groundwater On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Affected Groundwater Affected Soils Leaching to Groundwater Option: Apply MCL value as ingestion RBEL (backward mode only)	Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner Job ID: Res Soil all rts (E) 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None V None
GW Discharge to Surface Water Exposure Swimming Fish Consumption Specified Water Quality Criteria 2. Surface Soil Exposure Source Media:	Volatilization to Indoor Air Inhalation Receptor: Res. ▼ None ▼ None ▼ On-site Off-site1 Off-site2 Source Media: Distance: 0 0 0 0 (m) ✓ Affected SoilsVolatilization to Enclosed Space ☐ Affected Soils Leaching to GWVolatilization to Enclosed Space ☐ Affected GroundwaterVolatilization to Enclosed Space
Receptor: Res. Direct Ingestion On-site Dermal Contact Construction Worker Inhalation (vol+part) Option: Vegetable Ingestion Apply UK (CLEA) SGV as soil concentration limit	4. Commands and Options Main Screen Print Sheet Set Units Help Exposure Factors & Target Risks Exposure Flowchart

Exposure Factors and Target Risk Limits

1. Exposure Parameters	Res	Residential Receptors			Commerical Receptors		
	Child	Adolescent	Adult	Adult	Construc.	Define	
Averaging time, carcinogens (yr)			70	***************************************		-	
Averaging time, non-carcinogens (yr)	6	12	30	25	1		
Body weight (kg)	15	3 5	70	70	70	-	
Exposure duration (yr)	6	12	30	25	1	-	
Averaging Time for Vapor Flux (yr)		30		30	30	-	
Exposure frequency (d/yr)		350		250	180		
Dermal exposure freq. (d/yr)		350		250	180	-	
Seasonal-avg skin surface area (cm²/d)	2023	2023	3160	3160	3160	-	
Soil dermal adherence factor (mg/cm²)	0.5	0.5	0.5	0.5	0.5	-	
Water ingestion rate (L/d)	1	1	2	1	1		
Soil ingestion rate (mg/d)	200	200	100	50	100	-	
Swimming exposure time (hr/event)	1	3	3				
Swimming event frequency (events/yr)	12	12	12	1			
Swimming water ingestion rate (L/hr)	0.5	0.5	0.05	1			
Skin surface area, swimming (cm²)	3500	8100	23000	1		``	
Fish consumption rate (kg/d)	0.025	0.025	0.025	1 /			
Vegetable ingestion rate (kg/d)			<u> </u>	' (j	Θ	(1)	
Above-ground vegetables	0.002	0.002	0.006	1 \	9	1	
Below-ground vegetables	0.001	0.001	0.002	1 `			
Contaminated fish fraction (-)		1	· · · · · · · · · · · · · · · · · · ·	1			

Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner Job ID: Res Soil all rts (E)	Date: 11-Jul-09
2. Age Adjustment for Carcino	gens
(residential receptor only)	Adjustment Factor
Seasonal skin surface area, soil contact	1022.26 (cm ² -yr/kg)
✓ Water ingestion	1.08571 (mg-yr/L-day)
Soil ingestion	165.714 (mg-yr/kg-day)
Swimming water ingestion	4,56 (L/kg)
☐ Skin surface area, swimming	80640 (cm ² -yr/kg)
☐ Fish consumption	0.02286 (kg-yr/kg-day)
☐ Below-ground vegetable ingestion	0.38 (kg-yr/kg-day)
Above-ground vegetable ingestion	0.88 (kg-yr/kg-day)
3. Non-Carcinogenic Receptor (residential receptor only)	Adult
4. Target Health Risk Limits	Individual Cumulative
Target Cancer Risk (Carcinogens)	1.0E-5 1.0E-5
Target Hazard Quotient/Index (non-Carc)	1.0E+0 1.0E+0
5. Commands and Options	
Return to Exposure	Pathways
Use/Set Default	Print Sheet
Values	Help

RBCA Tool Kit for Chemical Releases, Version 2.51

te Name: Stratus Oakland USA 57 cation: Oakland ompl. By: Clint Skinner		Job ID: Res Soil atlirts Date: 11-Jul		Options Print Sheet	Help
Source Media	Constituents	•	<u>-</u>	. 7	☐ Apply Raoult's
COC Select: Sort List: Add/insert Top MoveUp	Groundwa	Representativ	e COC Concentration So	I Source Zone	Law Mole Fractio
Delete Bottom MoveDown	Enter Directly (mg/L)	note	Enter Directly ▼ (mg/kg)	Electronic des	in Source Material
Benzene Ethyl benzene	5.56E-1	95% UCL	9.7E-1	note 95% UCL	(-)
lylenes (mixed isomers) oluene			7.1E+0 3.3E-1	95% UCL 95% UCL	
PH - Aliph >C05-C06			2.5E+0 4.4E+2	95% UCL 95% UCL	
TPH - Aliph >C16-C21			7.1E+2	95% UCL	······································

*** Transport Modeling Options	Site Name: Stratus Oakland USA 57 Job ID: Res Soil all rts (E)
1 Vertical Transport Surface Call Calling	Location: Oakland Date: 11-Jul-09
Outdoor Air Volatilization Factors	Compl. By: Clint Skinner
Surface soil volatilization model only	3. Groundwater Dilution Attenuation Factor
O Combination surface soil/Johnson & Ettinger models	A service of the serv
Thickness of surface soil zone 1.00 (m)	Calculate DAF using Domenico Model
O User-specified VF from other model	
Indoor Air Volatilization Factors	O Domenico equation with dispersion only (no biodegradation)
 Johnson & Ettinger model for soil and groundwater volatilization 	25 metrico equation first-order decay
O Johnson & Ettinger for soil, Mass Flux model for groundwater	O Modified Domenico equation using
O 11	electron acceptor superposition
	■ Biodegradation Capacity NC (mo/L)
Soil-to-Groundwater Leaching Factor	— or —
O ASTM Model	User-Specified DAF Values
Apply Soil Attenuation Model (SAM)	O DAE values from other model or site data
☐ Allow first-order biodecay	The state of the odd of site odd
O User-specified LF from other model	
Modeling Options	4. Chemical Decay and Source Depletion
Disable Mass Balance Limit	
	and designation—fragman interval in a consequent of contract and the contr
Apply Dual Equilibrium Descrption Model 2. Lateral Air Dispersion Factor	The second secon
	5. Commands and Options
O 3-D Gaussian dispersion model Off-site 1 Off-site 2	
O User-Specified ADF 1.00E+0 1.00E+0 (-)	Main Screen Print Sheet Help
	

Site-Specific Soil Parameters 1. Soil Source Zone Characteristics ? Hydrogeology Depth to water-bearing unit 3 (m) Capillary zone thickness 0.05 (m)Soil column thickness 2.95 (m)Affected Soil Zone Depth to top of affected soils 0 (m) 3 Depth to base of affected soils (m) 45 Length of affected soil parallel to (m) assumed GW flow direction Construction Res/Com Affected soil area 2025 (m^2) Length of affected soil parallel to 45 45 (m) assumed wind direction Soil Column Water-Bearing Unit

Site-Specific Air Parameters

1. Outdoor Air Pathway	User Defined V User Defined A		
Dispersion in Air	Off-site 1	Off-site 2	
Distance to offsite air receptor	0	0	(m)
Horizontal dispersivity	0	0	(m)
Vertical dispersivity	Ô	0	(m)
Air Source Zone			
Air mixing zone height)	(m)
Ambient air velocity in mixing zone	2.2	25	(m/s)
inverse mean conc. [Q/C term]	79.	25	
Particulate Emissions	Model: ASTM N	fodel	3
Particulate Emission Factor	6.9E	-12	(kg/m^3)
Of			
Areal particulate emission flux	6.9E	-14	(g/cm^2/s
Fraction vegetative cover	0.	5	(-)
Mean annual air velocity @ 7 m	4.	8	

Location: Oakland Compl. By: Clint Skinner 2. Indoor Air Pathway Building volume/area ratio Foundation area Foundation perimeter Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation crack fraction Volumetric water content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Saturated Soil Zone Porosity User Defined Volatilization Factor Used Residential Commercial 2 3 (m) 70 70 (m^22) 3 (m) 2 3 (m) 70 70 (m^22) 49 34 (m) 0.05 0.15 (m) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.001 (-)	Site Name: Stratus Oakland USA 57	J	ob ID: Res	Soil all rts (E)
Building volume/area ratio Foundation area Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation crack fraction Volumetric water content of cracks Volumetric water content of cracks Indoor/Outdoor differential pressure Building Volume Building Volume Building Volume Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Volume Residential Commercial 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 3 (m) 2 0.05 0.05 0.015 (m) 0.001 (-) 0.001 (-) (-) (g/cm/s^2) 451 (m^3) 9.61 (m) 9.61 (m)	Location: Oakland			
Building volume/area ratio Foundation area Foundation perimeter Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation crack fraction Volumetric water content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Volume Residential Commercial 2 3 (m) 1.4E-4 2.3E-4 (1/s) 0.15 (m) 0.0E+0	Compl. By: Clint Skinner			
Building volume/area ratio 2 3 (m) Foundation area 70 70 (m^2) (m^2) Foundation perimeter 49 34 (m)	2. Indoor Air Pathway	User Defined Vo	olatilization Fa	ctor Used
Foundation area Foundation perimeter Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation thickness Foundation crack fraction Volumetric water content of cracks Indoor/Outdoor differential pressure Building Volume Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Foundation race 70 70 (m^2) (m^2) (0) 2.3E-4 (1/s) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 (0) (0) (-) (1/c) (2/cm/s^2) 451 451 (m^3) Building Length Parallel to GW flow 9.61 9.61 9.61 (m)		Residential	Commercia	ıl 😙
Foundation perimeter Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation thickness Foundation crack fraction Volumetric water content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow 1.4E-4 2.3E-4 (1/s) 0.0E+0 0.0E+0 (m^3/s) (m) 0.001 (-) (m/3/s)	Building volume/area ratio	2	3] <i>(m)</i>
Building air exchange rate 1.4E-4 2.3E-4 (1/s) (m)	Foundation area	70	70	(m^2)
Depth to bottom of foundation slab Convective air flow through cracks Foundation thickness Foundation crack fraction Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow School Parallel to GW flow D.15 O.0E+0	Foundation perimeter	49	34	(m)
Convective air flow through cracks Foundation thickness Foundation crack fraction Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow School Parallel to GW flow O.0E+0 0.0E+0 (m^3/s) (m) (-) (-) (-) (g/cm/s^2) 451 9.61 9.61 9.61 (m) 9.61 9.61 (m)	Building air exchange rate	1.4E-4	2.3E-4	(1/s)
Foundation thickness Foundation crack fraction Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow School 10.15 (m) (-) (-) (g/cm/s^2) 451 451 (m^3) Building Length Parallel to GW flow 9.61 9.61 9.61 (m)	Depth to bottom of foundation slab	0.15	0.15	(m)
Foundation crack fraction Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow School Parallel to GW flow 9.61 9.61 (m) (m)	Convective air flow through cracks	0.0E+0	0.0E+0	(m^3/s)
Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow School Building Length Parallel to GW flow Output	Foundation thickness	0.1	5	(m)
Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow 9.61 9.61 9.61 (-) (g/cm/s^2) (m^3) (m)	Foundation crack fraction	0.0	01	(-)
Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow School 100 (g/cm/s^2) 451 (m^3) 9.61 (m) 9.61 (m)	Volumetric water content of cracks	0.1	12	(-)
Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow Building Length Parallel to GW flow		0.2	26	┥ .
Building Width Perpendicular to GW flow 9.61 9.61 (m) Building Length Parallel to GW flow 9.61 9.61 (m)		0		
Building Length Parallel to GW flow 9.61 9.61 (m)				(m^3)
				(m)
Saturated Soil Zone Porosity 0.38 /-1	•	9.61	9.61	(m)
9.00	Saturated Soil Zone Porosity	0.3	38	(-)
Vertical Dispersivity 0.006 (m)	Vertical Dispersivity	0.0	06	(m)
Groundwater Seepage Velocity 1.8E+01 (cm/d)	Groundwater Seepage Velocity	1.8E	+01	(cm/d)

Equivalent 7m air vel. threshold

Windspeed function [F(x) term]

(m/s)

(-)

11.32

0.223841466

3. Commands and Options

Main Screen	2000	na dia kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di	医鼠蜂		
Iviaili ocreeii	1	Use/Set Default		Print She	eet
		Values	and the second		
Set Units				Help	

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

CONCERTION		Representati	ve COC Concentration	
CONSTITUENT		Groundwater	Soi	ls (0 - 3 m)
	value (mg/L)	note	value (mg/kg)	note
Benzene	5.6E-1	95% UCL	9.7E-1	95% UCL
Ethyl benzene			7.1E+0	95% UCL
Xylenes (mixed isomers)			3.3E-1	95% UCL
Toluene			2.5F+0	95% UCL
TPH - Aliph >C05-C06		TO SEE MALE CONTROL OF THE CONTROL O	4.4F+2	95% UCL
TPH - Aliph >C16-C21			7.1E+2	95% UCL
				90% UCL

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: Res Soil all rts (E)

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

		Representat	ive COC Concentration	
CONSTITUENT	Gr	oundwater	Soi	ls (0 - 3 m)
	value (mg/L)	note	value (mg/kg)	note
Benzene	5.6E-1	95% UCL	9.7E-1	95% UCL
Ethyl benzene	!	***************************************	7.1E+0	95% UCL
Xylenes (mixed isomers)			3.3E-1	95% UCL
Toluene			2.5E+0	95% UCL
TPH - Aliph >C05-C06	T		4.4E+2	95% UCL
TPH - Aliph >C16-C21			7.1E+2	95% UCL

Site Name: Stratus Oakland USA 57

Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09

Job ID: Res Soil all rts (E)

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOILS (0 - 3 m): VAPOR INTRUSION INTO BUILDINGS 1) Source Medium 2) NAF Value (Ukg) 3) Exposure Medium 4) Exposure Multiplier 5) Average Inhalation Exposure Receptor Indoor Air: POE Conc. (mg/m^3) (1) / (2) (EFxED)(ATx365) (unitless) Concentration (mg/m³) (3) × (4) On-site On-site On-site On-site (0 m) (0 m) (0 m) (0 m)Soil Conc. (mg/kg) Residential Residential Constituents of Concern Residential Residential Benzene 9.7E-1 2.1E+2 4.7E-3 4.1E-1 1.9E-3 Ethyl benzene 7.1E+0 4.7E+2 1.5E-2 9.6E-1 1.4E-2 Xylenes (mixed isomers) 3.3E-1 6.3E+2 5.2E-4 9.6E-1 5.0E-4 Toluene 2.5E+0 3.4E+2 7.4E-3 9.6E-1 7.1E-3 TPH - Aliph >C05-C06 4.4E+2 5.2E+1 8.4E+0 9.6E-1 8.1E+0 TPH - Aliph >C16-C21 7.1E+2 6.9E+4 1.0E-2 9.6E-1 9.7E-3

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57

= Chemical with user-specified data

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: Res Soil all rts (E)

1 OF 8

RBCA SITE ASSESSMENT 2 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS ☐ (Checked if Pathway is Complete) GROUNDWATER: VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (m^3/L) 3) Exposure Medium Receptor Indoor Air: POE Cond (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m) (0 m) (0 m) (0 m) Groundwater Conc. Constituents of Concern None None None None None None Benzene 5.6E-1 Ethyl benzene Xylenes (mixed isomers) Toluene TPH - Aliph >C05-C06 TPH - Aliph >C16-C21 NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: Res Soil all rts (E) Completed By: Clint Skinner

INDOOR AIR EXPOSURE PATHWAYS				*******	······································	
GROUNDWATER: VAPOR INTRUSION			*******	····		
INTO BUILDINGS		Exposure Multip xED)/(ATx365) (unr		5) Avei Conce	rage Inhalation E entration (mg/m^3)	xposure
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (O m)	Off-site 1 (0 m)	Off-site 2
Constituents of Concern	None	None	None	None	None	None
Benzene						11010
Ethyl benzene						Ī
Xylenes (mixed isomers)		 			 	
Toluene						
TPH - Aliph >C05-C06						
TPH - Aliph >C16-C21						
= Chemical with user-specified data	···	I				<u> </u>

Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: Res Soil all rts (E)

RBCA SITE ASSESSMENT 4 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOIL LEACHING TO GW- VAPOR INTRUSION **Exposure Concentration** INTO BUILDINGS 1) Source Medium 2) NAF Value (m*3/L) 3) Exposure Medium Receptor Indoor Arc. POE Conc. (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m) (m 0) (0 m)(0 m) (0 m)Soil Conc. (mg/kg) None Constituents of Concern None None None None None Benzene 9.7E-1 Ethyl benzene 7.1E+0 Xylenes (mixed isomers) 3.3E-1 Toluene 2.5E+0 TPH - Aliph >C05-C06 4.4E+2 TPH - Aliph >C16-C21 7.1E+2 NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: Res Soil all rts (E)

Completed By: Clint Skinner

5 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS SOIL LEACHING TO GW- VAPOR INTRUSION INTO BUILDINGS 4) Exposure Multiplier 5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4) (EFxED)/(ATx365) (unitless) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (Q m) (0 m) (0 m)(0 m) (0 m) Constituents of Concern None None None None None None Benzene Ethyl benzene Xylenes (mixed isomers) Toluene TPH - Aliph >C05-C06 TPH - Aliph >C16-C21 * = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: Res Soil all rts (E)

5 OF 8

INCOOR AIR EXPOSURE PATHWAYS	3			
	MAXIMUM PATHWAY EXPOSUR (Maximum average exposure co from soil and groundwater	ncentration		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	
Constituents of Concern	Residential	None	None	
Benzene	1.9E-3	· · · · · · · · · · · · · · · · · · ·		
Ethyl benzene	1.4E-2			
Xylenes (mixed isomers)	5.0E-4			
Toluene	7.1E-3			
TPH - Aliph >C05-C06	8.1E+0			
TPH - Aliph >C16-C21	9.7E-3			

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: Res Soil all rts (E)

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) CARCINOGENIC RISK (1) Carcinogenic (2) Maximum Carcinogenic (3) Inhalation (4) Individual COC Classification Exposure (mg/m²3) Unit Risk Factor Risk (2) x (3) x 1000 On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m) (0 m) (0 m) (0 m) (0 m) Constituents of Concern (µg/m^3)^-1 Residential None None Residential None None Benzene TRUE 1.9E-3 2.2E-6 4.2E-6 Ethyl benzene FALSE Xylenes (mixed isomers) FALSE Toluene FALSE TPH - Aliph >C05-C06 FALSE TPH - Aliph >C16-C21 FALSE Total Pathway Carcinogenic Risk = 4.2E-6 Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: Res Soil all rts (E) Completed By: Clint Skinner

8 OF 8

		TIER 2 PATH	WAY RISK	CALCULATION			
INDOOR AIR EXPOSURE PATHWAYS	<u> </u>	(Checked if Pa	thway is Comp	lete)			
	TOXIC EFFECTS	3			7.7.4.	***************************************	
) Maximum Toxica Exposure (mg/m^3		(6) Inhalation Reference Concentration		7) Individual CC zard Quotient (5	
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)		On-site (0 m)	Off-site 1 (0 m)	Off-site 2
Constituents of Concern	Residential	None	None	(mg/m*3)	Residential	None	None
Benzene	4.5E-3	NC	NC	2.8E-1	1.6E-2		
Ethyl benzene	1.4E-2	NC	NC	1.0E+0	1.4E-2	~~~~	***************************************
Xylenes (mixed isomers)	5.0E-4	NC	NC	1.0E-1	5.0E-3		
Toluene	7.1E-3	NC	NC	5.0E+0	1,4E-3		
TPH - Aliph >C05-C06	8.1E+0	NC	NC	1.8E+1	4.5E-1		
TPH - Aliph >C16-C21	9.7E-3	NC	NC	-	7,01_7		

Total Pathway Hazard Index = [

4.9E-1

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

	TIER 2 EXPOSURE CONCENTR	ATION AND INT	AKE CALCULATION		10
SOIL EXPOSURE PATHWAY SURFACE SOILS: ON SITE INGESTION, DERMAL	<u></u>	(Checked if Pathw	ay is Complete)		
EXPOSURE	1) Source/Exposure Medium	2) Expo	sure Multiplier		Daily Intake Rate (day) (1) x (2)
Constituents of Concern	Surface Soil Conc. (mg/kg)	Residential	Construction Worker	Residential	Construction Worke
Benzene	9.7E-1	5.9E-7		5.7E-7	
Ethyl benzene	7.1E+0	1.4E-6	/	9.8E-6	
(ylenes (mixed isomers)	3.3E-1	1.4E-6		4.5E-7	· · · · · · · · · · · ·
Coluene	2.5E+0	1.4E-6	l.	3.4E-6	
ГРН - Aliph >C05-C06	4.4E+2	1.4E-6		6.0E-4	-
TPH - Aliph >C16-C21	7.1E+2	5.7E-6		4.0E-3	

MOTE DIE DOLLA A A A A A A			
NOTE: RAF = Relative absorption factor (-)	AT = Averaging time (days)	ED = Exposure duration (yrs)	10 . 6 21 0 1
		CD - Exposore duration (yrs)	IR = Soil ingestion rate (mg/day)
M = Adherence factor (mg/cm^2)	BW = Body weight (kg)	EE - Evpocuse from the transfer (decided)	
Site Name: Stratus Oakland USA 57	Dir Dody Holghi (kg)	EF = Exposure frequencey (days/yr)	SA = Skin exposure area (cm^2/day)
Site Name: Strains Cakland USA 57			

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

	······	TI	ER 2 PATHWAY	RISK CALCU	LATION				2 0				
SOIL EXPOSURE PATHWAY	☐ (Checked if Pathway is Complete)												
				CAR	CINOGENIC RISK								
	(1) is Carcinogenic	(a) via Ingestion	(2) Total Carcinogenic (b) via Dermal Contact	(3) Slope Factor (mg/kg/day)^-1		(4) Individua (2a)x(3a) + (2b)x(3b)	al COC Risk (2c)x(3a) + (2d)x(3b)						
Constituents of Concern		Res	idential	Construc	ction Worker	(a) Oral	(b) Dermal	Residential	Construction Worker				
Benzene	TRUE	5.7E-7	0.0E+0			5.5E-2	5.5E-2	3.1E-8	-				
Ethyl benzene	FALSE					**	-		-				
Xylenes (mixed isomers)	FALSE					-	-	1					
Toluene	FALSE			· · · · · · · · · · · · · · · · · · ·		-	T -		-				
TPH - Aliph >C05-C06	FALSE					<u>-</u>	*						
TPH - Aliph >C16-C21	FALSE								-				

* No dermal slope factor available--oral slope factor used.

Total Pathway Carcinogenic Risk =

3.1E-8

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

		TIER 2 PAT	THWAY RISK	CALCULATION				3 :
SOIL EXPOSURE PATHWAY			•	(Checked if Pathwa	y is Complet	2)		
				TOXIC EFFEC	TS			
	(a) via Ingestion	(5) Total Toxicant Intal (b) via Dermal Contact	ke Rate (mg/kg/da (c) via Ingestion	y) (d) via Oermal Contact		ence Dose g-day)	(7) Individual CO (5a)(6a) + (5b)(6b)	C Hazard Quotier (5c)/(6a) + (5d)/(6
Constituents of Concern	Resi	idential	Construc	tion Warker	(a) Oral	(b) Dermai	Residential	Construction
Benzene	1.3E-6	0.0E÷0		I	4.0E-3	4.0E-3	3.3E-4	Worker
Ethyl benzene	9.8E-6	0.0E+0			1.0E-1	1.0E-1	9.8E-5	
Xylenes (mixed isomers)	4.5E-7	0.0E+0			2.0E-1	2.0E-1	2.2E-6	
Toluene	3.4E-6	0.0E+0			8.0E-2	8.0E-2	4.3E-5	* **
TPH - Aliph >C05-C06 TPH - Aliph >C16-C21	6.0E-4	0.0E+0			6.0E-2	6.0E-2	1.0E-2	
TTTT Allph >C (0-C2)	9.7E-4	1 3.1E-3	***************************************	<u> </u>	2.0E+0	2.0E+0	2.0E-3	-
	" No demial reference	dose availableoral referen	ce dose used					<u> </u>
				Total Pat	hway Haza	rd Index =	1.2E-2	

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of 1

			BA	SELINE R	ISK SUMM	ARY TABL	E			
		BASELINE	CARCINOG	ENIC RISK			BASELII	NE TOXIC	FFECTS	
	Individual	COC Risk	Cumulative	COC Risk	Risk	Hazard	Quotient	Haza	rd Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded?
OUTDOOR AIR	EXPOSURE P	PATHWAYS								1
	NA	NA	NA	NA		NA	NA	NA	NA	
NDOOR AIR E	XPOSURE PA	THWAYS			1					L
兹	4.2E-6	1.0E-5	4.2E-6	1.0E-5		4,5E-1	1.0E+0	4.9E-1	1.0E+0	
SOIL EXPOSU	RE PATHWAY	S								
8	3.1E-8	1.0E-5	3.1E-8	1.0E-5		1.0E-2	1.0E+0	1.2E-2	1.0E+0	
GROUNDWAT	R EXPOSURI	PATHWAYS			-/					I
	NA	NA	NA	NA		NA	NA	NA	NA	ت
SURFACE WA	TER EXPOSU	RE PATHWAY	S						<u> </u>	·
	NA	NA	NA	NA		NA	NA	NA	NA	
CRITICAL EXP	OSURE PATH	WAY (Maxim	um Values Fr	om Complete	Pathways)					
	4.2E-6	1.0E-5	4.2E-6	1.0E-5		4.5E-1	1.0E+0	4.9E-1	1.0E+0	
	Indo	or Air	Indo	or Air		Indo	or Air	Indo	oor Air	

Site Location C	us Oakland USA 57 akland		Completed By Date Completed						Job D Res 5						···· • · · · · · · · · · · · · · · · ·			
SURFACE SSTL VALI	SO(L (0 - 1 m) JES		1	tRisk (Class A. & B getHazard Quoten			,							Grou	ndwater QAF Option			10
			so	il Leaching to Gro	nundumter.				Esposure Pathways (C									
		Representative	Ingesta On-safe	on / Discharge to	Surface Water	Groun	oi Leaching to Gre dwater Voiatizati	in to Indoor Ar	Soi Vel to indeer Ar	0	Soil Volabig Soil Particul	ration and Surface ates to Outdoor A	.v	Direct Contact Ourmal C	Patrenys Imposion antact Interlation	Apokcabia	35TL	Required C
CONSTITUENT	S OF CONCERN Name	Concentration (mg/kg)	(Q m) None	(0 m)	Off-site 2 (0 m) None	On-site (0 m)	Off-site 1	Off-site 2 (f) m)	On-site (0 m)	On-sit	ur (0 m)	Olf-site 1 (Om)	Off-side 2 (0 m)	On-st	le (0 m)	SSTL	Exceeded 7	Chiyif Ye
71-43-2	Benzene	9.7E-1	11016	Tegrae	Norse	None	erol1	None	Residential	None.	Construction	None	None	Residential	Construction	(mg/kg)	"A" fives	
00-41-4	Ethyl bonzene	7.1E+0			1	I			2.3E+0	1				1 2E+2		2.3E+0	0	<1
330-20-7	Xylenes (mixed isomers)	3.3E-1					1	i	>3.7년+2					7 3E+4		7.3E+4		<1
08-88-3	Toluene	2.5E+0						1	6.5E+1	1				1.5E+5		6.5E+1		<1
-at0506	TPH - Aliph >C05-C06	4 4E+2					1	1	>8 CE+2	ŀ				5.8E+4		5 BE+4		<1
-al1621	TPH - Aliph > C16-C21	7 1E+2							>4 7E+2 Tox?					4.4E+4		4.4E+4		<1
							···	1	1 104	I		L		(inb)Tox?		NC		NA.
IA.	Total TPH mixture	1.1E+3	NA.	NA	NA.	NA	NA.	NA	NC	NA	NA	NA.	NA					

RBCA Tool Kit for Chemical Releases, Version 2 51

			Name: Stratus Galdand USA 57 Location: Oakland Date Completed: 11-3ul-09 Tamet Risk (Class & & B. B.): 05-5							555 1 5 . 112	s Soil all ris (E)				1 OF
	BSURFACE SOIL (1 - 3 m) Target Risk (Class A 8 8) 1 0E-5 Target Hazard Quotient 1 0E+0 TL VALUES										Gratino	twater DAF Option:			100
					SS.	TL Results For Co	omplete Exposure I	Pathways (Checke	d if Pathway is Comp	lete)			······	· · · · · · · · · · · · · · · · · · ·	
			Ingestio	il Leaching to Gro in / Discharge to	Surface Water		oil Leaching to Gro dwater Volatilizatio		Soil Val. to	□ Soul	Volatilization to	Dutdoor Air	Applicable	SSTL	Required C
CONSTITUENTS	OF CONCERN	Representative Concentration	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1	Off-site 2	On-site (0 m)	On-site (0 m)	Off-site 1	Off-site 2	SSTL	Exceeded 7	
CAS Na.	Name	(mg/kg)	None	None	None	None	i∩ m\ None	(O m) None	(u m) Residential	None	(0 m) None	(0 m) None	(mg/kg)	n== :/	Only of 'ye
71-43-2	Велгеле	9.7E-1				1			2.3E+0	140.0	140:10	TYCHE	2,3E+0	"∎" if yes	REIL
100-41-4	Ethyl benzene	7.1E+0		}		1	1		>3.7E+2				>3.7E+2		~ 1
1330-20-7	Xylenes (mixed isomers)	3.3E-1	1	1		Į.	1		6 5E+1]			1		1 .
108-8B-3	Toluene	2.5E+0							>8.0E+2			İ	6.5E+1		<1
f-ai0506	TPH - Aliph >C05-C06	4,4E+2	1	1					>4.7E+2				>8.0E+2		
f-al1621	TPH - Aliph >C16-C21	7.1E+2					1		Tox?				>4.7E+2		
· · · · · · · · · · · · · · · · · · ·				1,	1			1	1041	<u>L</u>		I	NC		<u> </u>
Aν	Total TPH mixture	1.1E+3	NA	NA	NA	T NA	T NA	l NA	NC NC	NA I	NA	NA	NC		NA

RBCA Tool Kit for Chemical Releases, Version 2.51

Site Name. S Site Location.	tratus Oakland USA 57 Cekland		Completed By Clin	-		Job ID Res Soil	
CUML	JLATIVE RISK WORKSHEET	Date Completed, 11-Jul-09					1 OF
CONSTITUEN	TS OF CONCERN		re Concerniration	Propos	sed CRF		et Concentratio
CONSTITUEN	TS OF CONCERN	Representativ Soil (mg/kg)	Groundwater	***************************************		Soil	Groundwater
CAS No. 71-43-2	Name Benzene	Soil		Sail	GW	Soil (mg/kg)	
CAS No. 71-43-2 100-41-4	Name Benzene Ethyl benzene	Soil (mg/kg)	Groundwater	***************************************	GW NA	Soil (mg/kg) 9.7E-1	Groundwater
CAS No. 71-43-2 100-41-4 1330-20-7	Name Benzene Ethyl benzene Xylenes (mixed isomers)	Soil (mg/kg) 9,7E-1	Groundwater	Soil NA	GW	Soil (mg/kg) 9.7E-1 7.1E+0	Groundwater
CAS No. 71-43-2 100-41-4 1330-20-7 108-88-3	Name Benzene Ethyl benzene Xylenes (mixed isomers) Toluene	Soil (mg/kg) 9,7E-1 7.1E+0	Groundwater	Soil NA NA	GW NA NA NA	Soil (mg/kg) 9.7E-1 7.1E+0 3,3E-1	Groundwater
CAS No. 71-43-2 100-41-4 1330-20-7	Name Benzene Ethyl benzene Xylenes (mixed isomers)	Soil (mg/kg) 9.7E-1 7.1E+0 3.3E-1	Groundwater	Soil NA NA NA	GW NA NA	Soil (mg/kg) 9.7E-1 7.1E+0	Groundwater

Site Name. S	tratus Oakland USA 57				Completed By: Cli	int Skinner		Job ID: Res Soil a	ail rts (E)
Site Location.	Cakland				Date Completed	11-Jul-09			2 OF
CUMU	ILATIVE RISK WORKSHEET		Cumulative 1	Target Risk: 1 0E-5	Target Hazard In	dex. 1 0E+0			
				· · · · · · · · · · · · · · · · · · ·	ON-SITE RE	CEPTORS			
			r Exposure:		Exposure:	Soil Exposure:		Groundwater Expos	
		No Target Risk:	one Target HQ	Resid	lential	Resid		No	пе
CONSTITUEN	TS OF CONCERN	1.0E-5	1.0E+0	1 OE-5	Target HQ 1 0E+0	Target Risk: 1.0E-5	Target HQ 1,0E+0	Target Rusk: 1.0E-5	Target HQ. 1,0E+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient
71-43-2	Benzene			4.2E-6	1.6E-2	3.1E-8	3.3E-4		
100-41-4	Ethyl benzene				1.4E-2		9.8E-5		i
1330-20-7	Xylenes (mixed isomers)	1			5.0E-3		2.2E-6		ĺ
108-88-3	Toluene		1		1.4E-3		4.3E-5		
I'-al0506	TPH - Aliph >C05-C06			1	4.5E-1		1.0E-2	1	į
T-a 1621	TPH - Aliph >C16-C21			1			2.0E-3		i
	Committee 1/- b	0.0E+0	0.0E+0	1 405.0	105				
	Cumulative Values	:i u.ur.≠u	(D.UE-11)	4.2E-6	4.9E-1	3.1E-8	1.2E-2	0.0E+0	0.0E+0

indicates risk level exceeding target risk

Site Name: 5	Stratus Oakland USA 57				Completed By: C	lint Skinner						Job ID Res Soil :	na ne (E)
Site Location:	Cakland				Date Completed	11-Jul-09						TOO ID THESE SIGNS	3 OF
CUM	JLATIVE RISK WORKSHEET					Cumulative	Target Risk: 1 0E-5	Target Hazard In	idex 1 DE+0				
· · · · · · · · · · · · · · · · · · ·							OFF-SITE I	RECEPTORS					
				ir Exposure;				Ехрозиле;				er Exposure:	
		No Target Risk:	ne Farget HQ:	Yarget Risk:	one Target HQ:	Target Risk	Target HQ	Target Rusk	rne Target HQ;	Rarget Risk;	mė		опе
CONSTITUEN	ITS OF CONCERN	1 0E-5	1 0E+0	1.0E-5	1.0E-0	1.BE-5	1.CE+0	1.0E-5	1 0E+0	1.DE-5	Target HQ: 1.0E+0	Target Risk	Yarget HQ: 1 0E+0
CAS No.	Name	Carcínogenic Risk	Hazard Quotient	Carcínogenio Risk	Hazard Quotient	Carcinogenic Risk	Hazərd Osotlerit	Carcinogenic Risk	Hazard Outtern	Garcinopenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient
71-43-2	Benzene											- 100	GOODER
100-41-4	Ethyl benzene									1			1
1330-20-7	Xyienes (mixed isomers)								1			1	l l
108-88-3	Taluene												1
T-al0506	TPH - Aliph >C05-C06					1		1					1
T-al1621	TPH - Aliph >C16-C21			<u> </u>	<u> </u>]							i
	Cumulative Values:	0.0E+0	0.0E+0	1 0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.9E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0

indicates risk level exceeding target risk

indicates risk level exceeding target risk

APPENDIX F: RBCA RESIDENTIAL GROUNDWATER INHALATION PRINTOUT

Exposure Pa	thway Identifica	ation	Site Name: Stratus Oakland U. Location: Oakland
Source Media: Affected Grou Affected Soils Option:	Receptor: None On-site Distance: 0	dwater Ingestion/ ce Water Impact None	Compl. By: Clint Skinner Job ID: GW to Air Res 3. Air Exposure Source Media: Construc Affected SoilsVolatiliz: Affected Groundwater- Affected Surface Soils-
GW /	Share and the state of the stat		Source Media: Affected SoilsVolatilize Affected Soils Leaching Affected Groundwater
Option: Apply UK (CLI	Receptor: None On-site Construction Worker	☐ Direct Ingestion ☐ Dermal Contact ☐ Inhalation (vol+part) ☐ Vegetable Ingestion	4. Commands and O Main Screen Pri Exposure Factors & Targe

Location: Oakland Compl. By. Clint Skinner Job ID: GW to Air Res 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None None None None None On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air On-site Off-site1 Off-site2 Source Media: Distance: 0 0 0 0 (m)
Job ID: GW to Air Res 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None None None None None None Affected SoilsVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air None None None None None On-sile Off-site1 Off-site2 Volatilization to Indoor Air Inhalation Receptor: Res. None None None None None On-sile Off-site1 Off-site2
3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. None None On-site Off-site1 Off-site2
3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None ▼ None ▼ None ▼ None ▼ On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Construction worker □ Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. ▼ None ▼ None ▼ None ▼ On-site Off-site1 Off-site2
to Outdoor Air Inhalation Receptor: None ▼
Receptor: None None None None None None None None
On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. None None On-site Off-site1 Off-site2
Distance: 0 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. None None On-site Off-site1 Off-site2
Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. None None On-site Off-site1 Off-site2
□ Affected SoilsVolatilization to Ambient Outdoor Air □ Affected GroundwaterVolatilization to Ambient Outdoor Air □ Affected Surface SoilsParticulates to Ambient Outdoor Air □ Volatilization to Indoor Air Inhalation Receptor: Res. ▼ None ▼ None ▼ □ On-sile Off-site1 Off-site2
Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. ▼ None ▼ None ▼ On-site Off-site1 Off-site2
Affected Surface SoilsParticulates to Ambient Outdoor Air Volatilization to Indoor Air Inhalation Receptor: Res. None None On-site Off-site1 Off-site2
Volatilization to Indoor Air Inhalation Receptor: Res. ▼ None ▼ None ▼ On-site Off-site1 Off-site2
Receptor: Res. None None On-site Off-site1 Off-site2
On-site Off-site1 Off-site2
Source Medici
Source Media: Distance: 0 0 ()
Source Media. Distance: $0 0 (m)$
☐ Affected SoilsVolatilization to Enclosed Space
Affected Soils Leaching to GWVolatilization to Enclosed Space
☐ Affected GroundwaterVolatilization to Enclosed Space Page (2)
The state of the s
4. Commands and Options
Main Screen Print Sheet Set Units Help
Exposure Factors & Target Risks Exposure Flowchart

Exposure Factors and Target Risk Limits

0.002

0.001

0.002

0.001

Exposure ractors ar
1. Exposure Parameters
Averaging time, carcinogens (yr)
Averaging time, non-carcinogens (yr)
Body weight (kg)
Exposure duration (yr)
Averaging Time for Vapor Flux (yr)
Exposure frequency (d/yr)
Dermal exposure freq. (d/yr)
Seasonal-avg skin surface area (cm²/d)
Soil dermal adherence factor (mg/cm²)
Water ingestion rate (L/d)
Soil ingestion rate (mg/d)
Swimming exposure time (hr/event)
Swimming event frequency (events/yr)
Swimming water ingestion rate (L/hr)
Skin surface area, swimming (cm²)
Fish consumption rate (kg/d)
Vegetable ingestion rate (kg/d)
Above-ground vegetables
Below-ground vegetables
Contaminated fish fraction (-)

Residential Receptors		Commerica	al Receptor	
Child	Adolescent	Adult	Adult	Construc.
		70	***	
6	12	30	25	1
15	35	70	70	70
6	12	30	25	1
	30			30
	350		250	180
	350		250	180
2023	2023	3160	3160	3160
0.5	0.5	0.5	0.5	0.5
1	1	2	1	1
200	200	100	50	100
1	3	3		
12	12	12		
0.5	0.5	0.05		
3500	8100	23000		
0.025	0.025	0.025		/" /
				(Z

0.006

0.002

npl. By: Clint Skinner	and attentions for the later of	o je zaddovina silik Garania Jakovi	Main Scr		Print Sheet		Help
Source Media	Constituents	of Concern ((COCs)] Apply Raoult's
Selected COCs ?		Representativ	e COC Concentra	ation	?		Law
COC Select: Sort List:	Groundwa	ter Source Zone			ource Zone		Mole Fraction
Add/Insert Top MoveUp Delete Bottom MoveDown	Enter Directly		Enter Directly	▼	**************************************		in Source Material
Dottom MoveDown	(mg/L)	note	(mg/kg)		note		(-)
lenzene	5.6E-1	95% UCL	8.70E-1				
thyl benzene	7.3E-2	95% UCL	,		WIN E WW IS ANN		
ylenes (mixed isomers)	3.0E-1	95% UCL					
PH - Aliph >C06-C08	2.4E+0	95% UCL				·····	
PH - Aliph >C16-C21	8.4E-1	95% UCL			· · · · · · · · · · · · · · · · · · ·	waar	
ethyl t-Butyl ether (MTBE)	9.8E-2	95% UCL					
oluene	1.0E-1	95% UCL				·····	
pichloroethane, 1,2-	2.5E-2	95% UCL					

Site Name: Stratus Oakland USA 57 Job ID: GW to Air Res **Transport Modeling Options** Location: Oakland Date: 11-Jul-09 1. Vertical Transport, Surface Soil Column Compl. By: Clint Skinner **Outdoor Air Volatilization Factors** 3. Groundwater Dilution Attenuation Factor Surface soil volatilization model only Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone 3.00 Calculate DAF using Domenico Model O User-specified VF from other model Domenico equation with dispersion only (no biodegradation) Indoor Air Volatilization Factors Domenico equation first-order decay Fried Library Rain • Johnson & Ettinger model for soil and groundwater volatilization Modified Domenico equation using 1. 李军等医手电压 Johnson & Ettinger for soil. Mass Flux model for groundwater electron acceptor superposition User-specified VF from other model NC Biodegradation Capacity - or --Soil-to-Groundwater Leaching Factor ASTM Model User-Specified DAF Values ☐ Apply Soil Attenuation Model (SAM) DAF values from other model or site data Allow first-order biodecay User-specified LF from other model 4. Chemical Decay and Source Depletion **Modeling Options** Disable Mass Balance Limit Apply Dual Equilibrium Description Model 2. Lateral Air Dispersion Factor 5. Commands and Options O 3-D Gaussian dispersion model Off-site 1 Off-site 2 Main Screen **Print Sheet**

1.00E+0 (-)

1.00E+0

User-Specified ADF

Help

Site-Specific Soil Parameters 1. Soil Source Zone Characteristics ? Hydrogeology Depth to water-bearing unit 3 (m) Capillary zone thickness 0.05 (m) Soil column thickness 2.95 (m)Affected Soil Zone Depth to top of affected soits 0 (m) Depth to base of affected soils 0 (m) Length of affected soil parallel to 45 (m) assumed GW flow direction Res/Com Construction Affected soil area 2025 (m^2) Length of affected soil parallel to 45 (m) assumed wind direction Soil Column Water-Bearing Unit

Location: Oakland

Compl. By: Clint Skinner

Model: ASTM Default

Site Name: Stratus Oakland USA 57

3. Groundwater Dispersion

#

Site-Specific Groundwater Parameters

Hydrogeology Graundurler Persy velecity	COFOO	"i
Groundwater Darcy velocity	6.8500	(cm/d)
Groundwater seepage velocity	18.0263	(cm/d)
<i>Or</i> Calculate ▼	or	
Hydraulic conductivity	685.0000	. (cm/d)
Hydraulic gradient	0.01	(-)
Effective porosity	0.38	(-)
Sorption		
Fraction organic carbonsaturated zone	0.001	l <i>(-</i>)
Groundwater pH	6.2	(-)
2. Groundwater Source Zone		?
Groundwater plume width at source	45](m)
Plume (mixing zone) thickness at source	2](m)
Calculate 🔻	or	
Saturated thickness	2	:(m)
Length of source zone	45	'(m)

	Off-site 1	Off-site 2	Off-site 1	Off-site 2	2
Distance to GW receptors	0	0	0	0	(m)
Calculate	.]	4			
Longitudinal dispersivity				il.	(m)
Transverse dispersivity			VIV		(m)
Vertical dispersivity	1				(m)
4. Groundwater Discha	rge to Surf	ace Water	···	1 4.	?
					·-
			Off-site 2		
Distance to GW/SW disharge po	int		NA	(m)	
Plume width at GW/SW discha	rge		0	(m)	
Plume thickness at GW/SW dis	-		0	(m)	
Surface water flowrate at GW/SV	V discharge		0.0E+0	(m^3/s)	
5. Commands and Option		WW Visionan		1(11/ 0/0)	
			d'Origination	Vitario Carro	-47.33 3.3
Main Screen	Lleo/Sot	Default	Print	Sheet	
	Val			National Actions	
Set Units		and the second	H	elp	n origi

GW Ingestion

Job ID: GW to Air Res

GW to Indoor Air

Date: 11-Jul-09

Site-Specific Air Parameters

1. Outdoor Air Pathway

Dispersion in Air

Distance to offsite air receptor

Horizontal dispersivity Vertical dispersivity

Air Source Zone

Air mixing zone height
Ambient air velocity in mixing zone
Inverse mean conc. [Q/C term]

Particulate Emissions

Particulate Emission Factor

0

Areal particulate emission flux Fraction vegetative cover Mean annual air velocity @ 7 m

Equivalent 7m air vel. threshold Windspeed function [F(x) term]

User Defined Volatilization Factor Used User Defined Air Dispersion Factor Used Off-site 1 Off-site 2

Ω

(m)

		•
0	0 (m))
0	0 (m)	

0

 2	(m)
2.25	(m/s)
79.25	

Mod	el: AS i M Modei	
	0	(kg/m^3)
	-:	

6.9E-14	(g/cm^2/s)
0.5	(-)
4.8	
11.32	(m/s)
0.223841466	(-)

Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner

Job ID: GW to Air Res Date: 11-Jul-09

2. Indoor Air Pathway

Building volume/area ratio Foundation area Foundation perimeter Building air exchange rate Depth to bottom of foundation slab Convective air flow through cracks Foundation thickness Foundation crack fraction Volumetric water content of cracks Volumetric air content of cracks Indoor/Outdoor differential pressure Building Volume Building Width Perpendicular to GW flow Building Length Parallel to GW flow Saturated Soil Zone Porosity Vertical Dispersivity Groundwater Seepage Velocity

User Defined Volatilization Factor Used				
Commercia	al 5			
] 3	(m) ^{.2}			
70	(m^2)			
34	(m)			
2.3E-4	(1/s)			
0.15	(m)			
0.0E+0	(m^3/s)			
0.15				
0.001				
0.12				
0.26				
0 451 451				
451	(m^3)			
9.61	(m)			
9.61	(m)			
0.38				
0.006				
1.8E+01				
	Commercia 3 70 34 2.3E-4 0.15 0.0E+0 0.15 0.01 0.12 0.26 0 451 9.61 9.61 0.38			

3. Commands and Options

Main Screen

Set Units

Use/Set Default Values Print Sheet Help

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

	Representative COC Concentration				
CONSTITUENT	Gr	oundwater	Soils	s (0 - 0 m)	
	value (mg/L)	note	value (mg/kg)	note	
Benzene	5.6E-1	95% UCL	8.7E-1		
Ethyl benzene	7.3E-2	95% UCL			
Xylenes (mixed isomers)	3.0E-1	95% UCL			
TPH - Aliph >C06-C08	2.4E+0	95% UCL		**************************************	
TPH - Aliph >C16-C21	8.4E-1	95% UCL			
Methyl t-Butyl ether (MTBE)	9.8E-2	95% UCL			
Toluene	1.0E-1	95% UCL		28 1 278b04	
Dichloroethane, 1,2-	2.5E-2	95% UCL			

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

		Representati	ive COC Concentration	
CONSTITUENT	Gi	oundwater		s (0 - 0 m)
	value (mg/L)	note	value (mg/kg)	note
Benzene	5.6E-1	95% UCL	87F-1	11000
Ethyl benzene	7.3E-2	95% UCL		A A STATE OF THE S
Xylenes (mixed isomers)	3.0E-1	95% UCL		
TPH - Aliph >C06-C08	2.4E+0	95% UCL		WWW.AAA.
TPH - Aliph >C16-C21	8.4E-1	95% UCL		- 144 444 444
Methyl t-Butyl ether (MTBE)	9.8E-2	95% UCL		
Toluene	1.0E-1	95% UCL		WWW. 241
Dichloroethane, 1,2-	2.5E-2	95% UCL		**************************************

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner

		RBC	A SITE ASSESSMENT		
	TIER 2	EXPOSURE CON	CENTRATION AND INTAKE CA	I CULATION	1 OF
INDOOR AIR EXPOSURE PATHWAYS				LUCIATION	
SOILS : VAPOR			(Checked if Pathway is Complete)		
INTRUSION INTO BUILDINGS	1) Source Medium	2) NAF Value (L/kg) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1) / (2)	Exposure Multiplier (EFxED)/(ATx365) (unitless)	5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)
		On-site (0 m)	On-site (0 m)	On-site (0 m)	On-site (0 m)
Constituents of Concern	Soil Conc. (mg/kg)	None	None	None	None
Benzene	8.7E-1				
Ethyl benzene					
Xylenes (mixed isomers)					
TPH - Aliph >C06-C08					
TPH - Aliph >C16-C21	,,,		V-VVVIIIAA. VVIVIIIAA. VVIVIIIAA. V		· · · · · · · · · · · · · · · · · · ·
Methyl t-Butyl ether (MTBE)					
Toluene					
Dichloroethane, 1,2-			• "		
* = Chemical with user-specified data		<u> </u>			-L
NOTE: AT = Averaging time (days) EF = Ex	posure frequency (days	s/yr) ED = Exposure du	ration (vr) NAF = Natural attenuation factor	POF = Print of exposure	
			1777	TOE - TORR OF EXPOSURE	
Site Name: Stratus Oakland USA 57		***************************************			D-1- O-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Site Location: Oakland					Date Completed: 11-Jul-09 Job ID: GW to Air Res
Completed By: Clint Skinner					JUDIE, GWID AIFRES

2 OF 8

T	IER 2 EXPOSURE CO	NCENTRATI	ON AND INT	AKE CALCU	LATION	·	
INDOOR AIR EXPOSURE PATHWAYS		73	(Checked if Pa	thway is Compl	ete)		
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration						
INTO BUILDINGS	1) Source Medium	2)	NAF Value (m^3 Receptor	VL)		Exposure Medic POE Conc. (mg/m	
		On-site (0 m)	Off-sile 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2
Constituents of Concern	Groundwater Conc.	Residential	None	None	None	None	None
Benzene	5.6E-1	3.1E+2			1.8E-3		
Ethyl benzene	7.3E-2	2.5E+2		· viiinas.	2.9E-4		
Xylenes (mixed isomers)	3.0E-1	2.8E+2		arus.	1.1E-3		
TPH - Aliph >C06-C08	2.4E+0	1.4E+0			1.8E+0		
TPH - Aliph >C16-C21	8.4E-1	1.3E-2			6.3E+1		
Methyl t-Butyl ether (MTBE)	9.8E-2	2.8E+3			3.5E-5		·····
Taluene	1.0E-1	2.6E+2			4.0E-4		
Dichloroethane, 1.2-	2.5E-2	1.0E+3			2.4E-5	~~~~	

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name. Stratus Oakland USA 57 Site Location. Oakland

Completed By: Clint Skinner

3 OF 8

INDOOR AIR EXPOSURE PATHWAYS						w
GROUNDWATER: VAPOR INTRUSION						
INTO BUILDINGS		Exposure Multip xED)/(ATx365) (uni	age Inhalation E ntration (mg/m²3)	xposure (3) X (4)		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	None	None	None	None	None	None
Benzene	4.1E-1			7.5E-4		
Ethyl benzene	9.6E-1			2.8E-4		
Xylenes (mixed isomers)	9.6E-1			1.0E-3		
TPH - Aliph >C06-C08	9.6E-1			1.7E+0		
TPH - Aliph >C16-C21	9.6E-1			6.0E+1		
Methyl t-Butyl ether (MTBE)	4.1E-1			1.4E-5		
Toluene	9.6E-1			3.8E-4		
Dichloroethane, 1,2-	4,1E-1		^	9.8E-6		

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner

4 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION ☐ (Checked if Pathway is Complete) INDOOR AIR EXPOSURE PATHWAYS SOIL LEACHING TO GW- VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (m^3/L) 3) Exposure Medium Receptor Indoor Air PCE Cond (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) $\{0,m\}$ (0 m)(0 m) (0 m) (0 m)Soil Conc. (mg/kg) None None None Constituents of Concern None None None Benzene 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1.2-NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed, 11-Jul-09 Site Location: Oakland Job ID: GW to Air Res

Completed By. Clint Skinner

5 OF 8

INDOOR AIR EXPOSURE PATHWAYS							
SOIL LEACHING TO GW- VAPOR INTRUSION							
INTO BUILDINGS	1 '	Exposure Multip xED/(ATx365) (uni		age Inhalation E Intration (mg/m^3)			
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-sile 1 (0 m)		
Constituents of Concern	None	Noпe	None	None	Мопе	None	
Benzene							
Ethyl benzene							
Xylenes (mixed isomers)							
TPH - Aliph > C 06-C08					- 101 101000 ALLEAN FORM	1	
TPH - Aliph >C16-C21		T				Ţ	
Methyl t-Butyl ether (MTBE)							
Toluene				I			
Dichloroethane, 1,2-						T	

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner

6 OF 8

NDOOR AIR EXPOSURE PATHWAYS			······
MA	XIMUM PATHWAY EXPOSUR	RE (mg/m^3)	
(M	aximum average exposure co from soil and groundwater		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	Residential	None	None
Benzene	7.5E-4		-
Ethyl benzene	2.8E-4		<u> </u>
Xylenes (mixed isomers)	1.0E-3	PF-11166	
TPH - Aliph >C06-C08	1.7E+0	***	
TPH - Aliph >C16-C21	6.0E+1		
Methyl t-Butyl ether (MTBE)	1.4E-5		
Toluene	3.8E-4		
Dichloroethane, 1,2-	9.8E-6		

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) CARCINOGENIC RISK (1) Carcinogenic Classification (2) Maximum Carcinogenic (3) Inhalation (4) Individual COC Exposure (mg/m^3) Unit Risk Factor Risk (2) x (3) x 1000 On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m)(0 m) (0 m) (0 m)(µg/m^3)^-1 Constituents of Concern Residential None None Residential None None Benzene TRUE 7.5E-4 2.2E-6 1.6E-6 Ethyl benzene FALSE Xylenes (mixed isomers) FALSE TPH - Aliph >C06-C08 FALSE TPH - Aliph >C16-C21 FALSE Methyl t-Butyl ether (MTBE) TRUE 1.4E-5 2.6E-7 3.7E-9 Toluene FALSE Dichloroethane, 1,2-TRUE 9.8E-6 2.6E-5 2.6E-7 Total Pathway Carcinogenic Risk = 1.9E-6 Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: GW to Air Res Completed By: Clint Skinner

8 OF 8

INDOOR AIR EXPOSURE PATHWAYS	/S											
	TOXIC EFFECTS	5										
		Maximum Toxica Exposure (mg/m^3		(6) Inhalation Reference Concentration	7) Individual CO zard Quotient (5)							
	On-site Off-site 1 (0 m) (0 m)		Off-site 2 (0 m)		On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)					
Constituents of Concern	Residential	Nane	None	(mg/m^3)	Residential	None	None					
Benzene	1.7E-3			2.8E-1	6.2E-3							
Ethyl benzene	2.8E-4	· · · · · · · · · · · · · · · · · · ·		1.0E+0	2.8E-4							
Xylenes (mixed isomers)	1.0E-3			1.0E-1	1.0E-2							
TPH - Aliph >C06-C08	1.7E+0			1.8E+1	9.5E-2							
TPH - Aliph >C16-C21	6.0E+1			-	3:3	*****						
Methyl t-Butyl ether (MTBE)	3.3E-5			3.0E+0	1.1E-5							
Toluene	3.8E-4			5.0E+0	7.7E-5							
Dichloroethane, 1,2-	2.3E-5		* ***	2.4E+0	9.5E-6	. Alek - www.						

Total Pathway Hazard Index = 1.1E-1

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of 1

I		BASELINE	CARCINOG	ENIC RISK			BASELII	NE TOXIC E	FFECTS	
	Individual			COC Risk	Risk	Hazard	Quotient	Hazar	d Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE F	ATHWAYS							,	L
	NA	NA	NA	NA		NA	NA	NA	NA	
NDOOR AIR E	XPOSURE PA	THWAYS			- L					
Ø	1.6E-6	1.0E-5	1.9E-6	1.0E-5		9.5E-2	1.0E+0	1.1E-1	1.0E+0	
OIL EXPOSU	RE PATHWAYS	3					I.		I	
	NA	NA	NA	NA		NA	NA	NA	NA	
ROUNDWATE	R EXPOSURE	PATHWAYS			*				<u> </u>	
	NA	NA	NA	NA		NA	NA	NA	NA	
URFACE WAT	ER EXPOSUR	E PATHWAY	S		<u> </u>		t			
	NA	NA	NA	NA		NA	NA	NA	NA	
RITICAL EXPO	OSURE PATHV	VAY (Maxim	um Values Fra	om Complete	Pathways)					
	1.6E-6	1.0E-5	1.9E-6	1.0E-5		9.5E-2	1.0E+0	1.1E-1	1.0E+0	
	Indoo	r Air	Indo	r Air		Indoo	or Air		or Air	

ide Location (atus Oakland USA 57 Dakland WATER SSTL VALUES	Date Completed: 11-Jul-09 Target Risk (Class A & B)							Job ID.	GW to Air Res				1 0/
	772020	·····	12	iget Hazard Outber		For Complete F	cposure Pathways (Charled it Bathan	u i- Comut-4-)	#*· · · · · · · · · · · · · · · · · · ·	Ground	fwater DAF Option		
		Represen ⁱ t(ive	On-site	Groundwaler In Discharge to Surf	gestion / ace Water		Groundwater Vol. to Indoor A	atilization Vir		Groundwater Volat to Outdoor A		Appäcable	SSTL	Required CR
CONSTITUENTS OF CONCERN CAS No. Name	Concentration	(0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1	Off-site 2	On-site (0 m)	Off-site †	Off-site 2 (0 m)	SSTL	Exceeded ?		
		(mg/L)	None	None	None	Residential	None	None	Nane	None	None	(mg/L)	"∎" if yes	Only if "yes" left
1-43-2	Benzene	5.6E-1	ł			3.4E+0						3.4E+0	7 77,63	<1
00-41-4	Ethyl benzene	7.3E-2			1	>1.7E+2	1	ļ				>1.7E+2		NA.
330-20-7	Xylenes (mixed isomers)	3.0E-1			1	3.0E+1		ľ				3.0E+1		NA <1
-al0608	TPH - Aliph >C05-C08	2.4E+0			•	>5.4E+0	E	İ				>5.4E+0		
-al1621	TPH - Aliph >C16-C21	B.4E√1			İ	Tox?						NC		NA
634-04-4	Methyl t-Butyl ether (MTBE)	9.8€-%			į.	2.7E+2	1					1	_	NA
08-88-3	Toluene	1 0E-1			1	>5.3E+2						2.7E+2		<1
07-06-2	Dichloroethane, 1,2-	2.5E-2	l	1		9 BE 1						>5.3E+2 9.8E-1		NA NA

[&]quot;>" Indicates risk-based target concentration greater than constituent solubility value. NA = Not applicable. NC = Not calculated

Site Name: S	tratus Oakland USA 57		Completed By Clin	t Skinner		Job ID: GW to A	or Doc
Site Location	Ceidand	. <u>1</u>	Date Completed, 11				1 OF
CUMU	JLATIVE RISK WORKSHEET						
COMPTITUES	ITS OF CONCERN	Representation	ve Concentration				
CONSTITUEN	13 OF CONCERN			Ргодо	sed CRF	Resultant larg	et Concentration
CAS No.	Name	Spil	Groundwater	*****	T	Soil	Groundwater
CAS No.			Groundwater (mg/L)	Soil	GW		Groundwate (mg/L)
CAS No. 71-43-2 100-41-4	Name	Spil	Groundwater	*****	GW NA	Soil	Groundwate (mg/L) 5.6E-1
CAS No. 71-43-2 100-41-4 1330-20-7	Name Benzene	Spil	Groundwater (mg/L) 5.6E-1	Soil NA	GW NA NA	Soil	Groundwate (mg/L) 5.6E-1 7,3E-2
CAS No. 71-43-2 100-41-4 1330-20-7 T-al0608	Name Benzene Ethyl benzene Xylenes (mxed isomers) TPH - Aliph >C06-C08	Spil	Groundwater (mg/L) 5.6E-1 7.3E-2	Soil NA NA	GW NA	Soil	Groundwate (mg/L) 5.6E-1 7,3E-2 3.0E-1
CAS No. 71-43-2 100-41-4 1330-20-7 T-ai0608 T-ai1621	Name Benzene Ethyl benzene Xylenes (mxed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21	Spil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1	Soil NA NA NA	GW NA NA NA	Soil	Groundwate (mg/L) 5.5E-1 7.3E-2 3.0E-1 2.4E+D
CAS No. 71-43-2 100-41-4 1330-20-7 T-ai0608 T-ai1621 1534-04-4	Name Benzene Ethyl benzene Xylenes (mxed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl I-Butyl ether (MTBE)	Spil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0	Soil NA NA NA NA	GW NA NA NA NA	Soil	Groundwater (mg/L) 5.5E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1
	Name Benzene Ethyl benzene Xylenes (mxed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21	Spil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1	Soil NA NA NA NA NA	GW NA NA NA NA	Soil	Groundwater (mg/L) 5.5E-1 7.3E-2 3.0E-1 2.4E+0

2

Site Name. S	tratus Oakland USA 57				Completed By Cli	nt Skinner		Job ID: GW to Air	Res
Site Location.	Caldand				Date Completed 1	11-Jul-09			2 OF
CUMI	ILATIVE RISK WORKSHEET			Cumulative	Target Risk: 1 0E-5	Target Hazard In	dex: 1.05+0		
					ON-SITE RE	CEPTORS			
			r Exposure:		Exposure:	Soil Ex	posure;	Groundwate	r Exposure:
CONSTITUEN	TS OF CONCERN	Target Risk: 1 0E-5	rne Target HQ. 1 0E+0	Resid Target Risk: 1 0E-5	Jenlial Target HQ: 1 0E+0	No Target Risk 1.0E-5	Target HQ: 1.0E+0	Yarget Risk 1,0E-5	
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Ouotient	Carcinogenic Risk	Hazard Outters	Carcinegenic Risk	Hazard Quotient
71-43-2	Benzene			1.6E-6	6.2E-3		5400015	N456	Conten
100-41-4	Ethyl benzene				2.8E-4				
1330-20-7	Xylenes (mixed isomers)				1.0E-2				
T-al0608	TPH - Aliph >C06-C08				9.5E-2				
T-al1621	TPH - Aliph >C16-C21			İ					
1634-04-4	Methyl t-Butyl elher (MTBE)			3.7E-9	1.1E-5				
108-88-3 107-06-2	Toluene				7.7E-5				
101-00-2	Dichloroethane, 1,2-			2.6E-7	9.5E-6			1	
	Cumulative Values:	0.0E+0	0.0E+0	1.9E-6	1.1E-1	0.0E+0	0.0E+0	0.0E+0	0.0E+0

Indicates risk level exceeding target risk

Site Name: S	Stratus Oakland USA 57	ASSESSMEN	Yerdan Alega Baran 1992	The state of the s	Completed By (Сп	nulative Risk Work	(sheet
Site Location	Cakland				Date Completed	-						Job ID: GW to Ai	
сими	JLATIVE RISK WORKSHEET						Tanget Risk 1 CE-5	Target Hazard in	dex: 1.0E+0				30
							OFF-SITE F	RECEPTORS					
	1		Outdoor A	ir Exposure:				Exposure;			Groundwat	er Exposure:	
CONSTITUEN	ITS OF CONCERN	Target Risk. 1 0E-5	Yarget H□: 1,0E+0	Target Risk	one Target HO 1.0E+0	Target Risk: 1 0E-5	Target HQ* 1 0E+0	Target Risk	Farget HD: 1.0E+0	No Target Risk: 1:05-5	nne Targel HQ 1 0E+0		one Target HQ 1 DE+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Cartinogenic Risk	Hazard Ouotient	Caromogenic Risk	Hazard Ountent	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard	Carcinogenic	Həzard
71-43-2	Benzene			1		1130	QUOILIN	12154	Couleix	RISK	Quotient	Rrsk	Quotien
100-41-4	Ethyl benzene				-								
1330-20-7	Xylenes (mixed isomers)							}					
T-al0608	TPH - Aliph >C06-C08												
Г-al1621 I634-04-4	TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE)												
108-88-3	Toluene									•			
07-06-2	Dichloroethane, 1,2-							THE PARTY OF THE P					
	Cumulative Values:	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	l	<u> </u>

[■] indicates risk level exceeding target risk

APPENDIX G: RBCA RESIDENTIAL GROUNDWATER ALL ROUTES PRINTOUT

Exposure Pathway Identification 1. Groundwater Exposure	Site Name: Stratus Oakland USA 57 Location: Oakland
Groundwater Ingestion/ Surface Water Impact Receptor: Res. ▼ None ▼ None ▼ On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m)	Compl. By: Clint Skinner Job ID: GW to Air Res 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None None None Off-site2 Distance: 0 0 0 0 (m)
☐ Affected Groundwater ☐ Affected Soils Leaching to Groundwater Option: ☐ Apply MCL value as ingestion RBEL (backward mode only)	Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air
GW Discharge to Surface Water Exposure Swimming Fish Consumption Specified Water Quality Criteria 2. Surface Soil Exposure Source Medica:	Volatilization to Indoor Air Inhalation Receptor: Res. None None None None Air Inhalation Receptor: Res. None None None None None None None None
Source Media: Receptor: None ▼ □ Direct Ingestion On-site □ Dermal Contact Construction Worker □ □ Inhalation (vol+part) Option: □ Vegetable Ingestion □ Apply UK (CLEA) SGV as soil concentration limit	Affected GroundwaterVolatilization to Enclosed Space 4. Commands and Options Main Screen Print Sheet Set Units Help Exposure Factors & Target Risks Exposure Flowchart

Site Name: Stratus Oakland USA 57

Exposure Factors and Target Risk Limits

Exposure Parameters	,	dential Recep	otors	Commeric	al Receptors	User	Compl. By: Clint Skinner	
	Child	Adolescent	Adult	Adult	Construc.	Defined	Job ID: GW to Air Res	Date: 11-Jul-
Averaging time, carcinogens (yr)		···	70			_	2. Age Adjustment for Carcin	ogens
Averaging time, non-carcinogens (yr)	6	12	30	25	1	-	(residential receptor only)	Adjustment Factor
Body weight (kg)	15	35	70	70	70	-	Seasonal skin surface area, soil contact	1022,26 (cm ² -yr/kg)
exposure duration (yr)	6	12	3 0	25	1	+	☑ Water ingestion	1.08571 (mg-yr/L-day)
Averaging Time for Vapor Flux (yr)		30		30	30	-	☐ Soil ingestion	165.714 (mg-yr/kg-day
xposure frequency (d/yr)		350		250	180	-	Swimming water ingestion	4.56 (L/kg)
Permal exposure freq. (d/yr)		350		250	180	_	Skin surface area, swimming	80640 (cm ² -yr/kg)
easonal-avg skin surface area (cm²/d)	2023	2023	3160	3160	3160	-	Fish consumption	0.02286 (kg-yr/kg-day
oil dermal adherence factor (mg/cm²)	0.5	0.5	0.5	0.5	0.5		Below-ground vegetable ingestion	0.38 (kg-yr/kg-day
Vater ingestion rate (L/d)	1	1	2	1	1	100	Above-ground vegetable ingestion	0.88 (kg-yr/kg-day
Soil ingestion rate (mg/d)	200	200	100	50	100	-	3. Non-Carcinogenic Recepto	
Swimming exposure time (hr/event)	1	3	3				(residential receptor only)	ALUR : V
Swimming event frequency (events/yr)	12	12	12				4. Target Health Risk Limits	Individual Cumulative
Swimming water ingestion rate (L/hr)	0.5	0.5	0.05				Target Cancer Risk (Carcinogens)	1.0E-5 1.0E-5
kin surface area, swimming (cm²)	3500	8100	23000			•	Target Hazard Quotient/Index (non-Carc)	1.0E+0 1.0E+0
ish consumption rate (kg/d)	0.025	0.025	0.025] /		7:/	5. Commands and Options	
egetable ingestion rate (kg/d)				- (·	\Box		Dodon de Essay	D-AL.
Above-ground vegetables	0.002	0.002	0.006] \		1	Return to Exposur	
Below-ground vegetables	0.001	0.001	0.002				Use/Set Default	Print Sheet
contaminated fish fraction (-)		1					Values	Help

Site Name: Stratus Oakla	and USA 57	i na menerala ya gipuan kan una san T	Job ID: GW to A		ommands an	d Options	
Location: Oakland Compl. By: Clint Skinner	e Let Caronter avol a liv	and the standard co	Date: 11-	Jul-09	Main Screen	Print Sheet) (Help
Sc	ource Media	Constituents	s of Concern	(CO	Cs)		☐ Apply ? Raoult's
Selected	COCs ?		Representa	tive CO	C Concentration	?	Law
COC Select: So	ort List:	Groundwa	iter Source Zone	- ;	Sc	oil Source Zone	Mole Fraction
Add/Insert Top Delete Botton	MoveUp n MoveDown	Enter Directly			Enter Directly		in Source Material
Detete	ii i MoveDowii	(mg/L)	note		(mg/kg)	note	(-)
Benzene		5.6E-1	95% UCL		8.70E-1		
Ethyl benzene		7.3E-2	95% UCL			TANGON HAM A STREET	
Xylenes (mixed isomer	s)	3.0E-1	95% UCL				
TPH - Aliph >C06-C08		2.4E+0	95% UCL		. ,		
TPH - Aliph >C16-C21		8.4E-1	95% UCL			THE PARTY OF THE P	
Methyl t-Butyl ether (M	ITBE)	9.8E-2	95% UCL			- WINNESS - WINN	
Toluene	4 (P. 12) (E. E. 12)	1.0E-1	95% UCL				
Dichloroethane, 1,2-		2.5E-2	95% UCL		-	- WASAN	
•							
· · · · · · · · · · · · · · · · · · ·			**************************************				View Ottemical Parameters

Transport Modeling Options Site Name: Stratus Oakland USA 57 Job ID: GW to Air Res Location: Oakland 1. Vertical Transport, Surface Soil Column Date: 11-Jul-09 ? Compl. By: Clint Skinner Outdoor Air Volatilization Factors 3. Groundwater Dilution Attenuation Factor Surface soil volatilization model only Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone 3.00 Calculate DAF using Domenico Model O User-specified VF from other model Domenico equation with dispersion only (no biodegradation) Indoor Air Volatilization Factors Domenico equation first-order decay Johnson & Ettinger model for soil and groundwater volatilization Modified Domenico equation using Johnson & Ettinger for soil, Mass Flux model for groundwater electron acceptor superposition User-specified VF from other model Biodegradation Capacity NC Soil-to-Groundwater Leaching Factor -- or --O ASTM Model User-Specified DAF Values Apply Soil Attenuation Model (SAM) DAF values from other model or site data Allow first-order biodecay O User-specified LF from other model 4. Chemical Decay and Source Depletion Modeling Options Disable Mass Balance Limit ☐ Apply Dual Equilibrium Descrption Model 2. Lateral Air Dispersion Factor 5. Commands and Options O 3-D Gaussian dispersion model Off-site 1 Off-site 2 User-Specified ADF Main Screen 1.00E+0 **Print Sheet** 1.00E+0 (-) Help

Site-Specific Soil Parameters 1. Soil Source Zone Characteristics Hydrogeology Depth to water-bearing unit 3 (m) Capillary zone thickness 0.05 (m) Soil column thickness 2.95 (m) Affected Soil Zone Depth to top of affected soils 0 (m)Depth to base of affected soils 0 (m)Length of affected soil parallel to 45 (m) assumed GW flow direction Res/Com Construction Affected soil area 2025 (m^2) Length of affected soil parallel to 45 45 (m) assumed wind direction Soil Column Water-Bearing Unit

Site-Specific Groundwater Parameters 1. Water-Bearing Unit Hydrogeology Groundwater Darcy velocity 6.8500 (cm/d) Groundwater seepage velocity 18.0263 (cm/d) or Calculate or Hydraulic conductivity 685.0000 (cm/d) Hydraulic gradient 0.01 (-) Effective porosity 0.38 (-)Sorption Fraction organic carbon--saturated zone 0.001 (-) Groundwater pH 6.2 (-) 2. Groundwater Source Zone ? Groundwater plume width at source 45 (m) Plume (mixing zone) thickness at source (m) Calculate or Saturated thickness 2 (m) Length of source zone 45 (m)

Site Name: Stratus Oakland USA Location: Oakland Compl. By: Clint Skinner	\ 57		D: GW to Date: 1	
3. Groundwater Disper	sion	<u> 1860 a. – Safa Parpar, Educa ja Was S</u>		?
Model: ASTM Default 🔻	GW Ingestion	GW to In	door Air	
	Off-site 1 Off-site 2	Off-site 1	Off-site 2	
Distance to GW receptors	0 : 0	0	0	(m)
Calculate				
Longitudinal dispersivity		: !	-	(m)
Transverse dispersivity			··	(m)
Vertical dispersivity				(m)
4. Groundwater Discha	rge to Surface Water	19700M ale an 1970 1970 1970 1970 1970 1970 1970 1970		₹?:
		Off-site 2		
Distance to GW/SW disharge po	pint	NA (n)	
Plume width at GW/SW discha	arge	0 0	m)	
Plume thickness at GW/SW di	scharge		n)	
Surface water flowrate at GW/SI	W discharge	0.0E+0	(m^3/s)	
5. Commands and Option		, , 0.00=10	(111 3/5)	
	and the second s		177 (177)	e e a jaki
Main Screen	Use/Set Default	Print S	heet	
	Values			
Set Units	Values	He/	n	Yaraken j
	기본는 그 사람들이 하지 않아왔다.		I-	Karata da

Site-Specific Air Parameters

1. Outdoor Air Pathway

Dispersion in Air

Distance to offsite air receptor

Horizontal dispersivity Vertical dispersivity

Air Source Zone

Air mixing zone height
Ambient air velocity in mixing zone
Inverse mean conc. [Q/C term]

Particulate Emissions

Particulate Emission Factor or

Areal particulate emission flux Fraction vegetative cover

Mean annual air velocity @ 7 m Equivalent 7m air vel. threshold

Windspeed function [F(x) term]

Us	er Defined	Volatiliz	ation F	actor Used
Us	er Defined	Air Disp	ersion	Factor Used
	Off-site 1	Off	-site 2	2 2
	0]	0	(m)

Ĺ	0		0	(m)
-	0	_	0	(m)
		2		(m)
i 	2	.25		(m/s)
	79	9.25		
Ма	del: ASTM	Model		
		0		(kg/m^3)
<u> </u>				
	6.9	E-14		(g/cm^2/s)
		0.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(-)
·		4.8		

(m/s)

(-)

11.32

0.223841466

ite Name: Stratus Oakland USA 57 ocation: Oakland Compl. By: Clint Skinner			GW to Air Resate: 11-Jul-09
2. Indoor Air Pathway	User Defined Residential	Volatilization Fa Commercia	al
Building volume/area ratio	2	3	(m) -?
Foundation area	70	70	(m^2)
Foundation perimeter	49	34	(m)
Building air exchange rate	1,4E-4	2.3E-4	(1/s)
Depth to bottom of foundation slab	0.15	0.15	(m)
Convective air flow through cracks	0.0E+0	0.0E+0	(m^3/s)
Foundation thickness	0	.15	(m)
Foundation crack fraction	0.	001	(-)
Volumetric water content of cracks	0	.12	(-)
Volumetric air content of cracks	0	.26	[~)
Indoor/Outdoor differential pressure		0	(g/cm/s^2)
Building Volume	451	451	(m^3)
Building Width Perpendicular to GW flow	9.61	9.61	(m) ¹

9.61

0.38

0.006

1.8E+01

3. Commands and Options

Groundwater Seepage Velocity

Saturated Soil Zone Porosity

Vertical Dispersivity

Main Screen	
maiii Screen	Use/Set Default
Set Units	Values
Set Utills	The second of th

Building Length Parallel to GW flow

Print Sheet

(m)

(-)

(m)

(cm/d)

9.61

Help

	HER 2 E	EXPOSURE CON	CENTRATION AND INTAKE CA	LCULATION	1 C
IDOOR AIR EXPOSURE PATHWAYS			(Checked if Pathway is Complete)		
OILS: VAPOR			(all the state of	***************************************	
TRUSION INTO BUILDINGS	1) Source Medium	2) NAF Value (L/kg) Receptor	3) Exposure Medium Indoor Air POE Conc. (mg/m²3) (1) / (2)	Exposure Multiplier (EFxED)(ATx365) (unitless)	5) Average Inhalation Exposur Concentration (mg/m^3) (3) X (4)
		On-site (0 m)	On-sile (0 m)	On-site (0 m)	On-site (0 m)
onstituents of Concern	Soil Conc. (mg/kg)	Noле	None	None	None
enzene	8.7E-1	****			Total
thyl benzene			·		
ylenes (mixed isomers)					
PH - Aliph >C06-C08		*.·/			
PH - Aliph >C16-C21		· · · · · · · · · · · · · · · · · · ·			
ethyl t-Butyl ether (MTBE)				7.4.	
oluene					
ichloroethane, 1,2-	······································			- VIIIIA	
Chemical with user-specified data	······································	<u></u>			
OTE: AT = Averaging time (days)	osure frequency (days	(vr) FD = Evnosure du	ration (us) NAT - Natural III		
	7,200,0	77) LO - Exposure un	ation (yr) NAF = Natural attenuation factor	POE = Point of exposure	

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

2 OF 8

INDOOR AIR EXPOSURE PATHWAYS		*	(Checked if Pa	thway is Comple	ete)		
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration						
INTO BUILDINGS	1) Source Medium	2) NAF Value (m³3L) Receptor			3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1)7(2)		
	Groundwater Conc.	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-sile 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	(mg/L)	Residential	None	None	None	None	None
Benzene	5.6E-1	3.1E+2			1.8E-3		

Ethyl benzene 7.3E-2 2.5E+2 2.9E-4 Xylenes (mixed isomers) 3.0E-1 2.8E+2 1.1E-3 TPH - Aliph >C06-C08 2.4E+0 1.4E+0 1.8E+0 TPH - Aliph >C16-C21 8.4E-1 1.3E-2 6.3E+1 Methyl I-Butyl ether (MTBE) 9.8E-2 2.8E+3 3.<u>5E-5</u> Toluene 1.0E-1 2.6E+2 4.0E-4 Dichloroethane, 1,2-2.5E-2 1.0E+3 2.4E-5

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57

Site Location: Oakland

Completed By: Clint Skinner

Date Completed, 11-Jul-09 Job ID: GW to Air Res

INDOOR AIR EXPOSURE PATHWAYS			···				
GROUNDWATER: VAPOR INTRUSION					***************************************		
INTO BUILDINGS		4) Exposure Multiplier (EFxED)(ATx365) (unitless)			5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	
Constituents of Concern	None	None	None	None	None	None	
Benzene	4.1E-1			7.5E-4			
Ethyl benzene	9.6E-1			2.8E-4			
Xylenes (mixed isomers)	9.6E-1			1.0E-3			
TPH - Aliph >C06-C08	9.6E-1			1.7E+0			
TPH - Aliph >C16-C21	9.6E-1			6.0E+1			
Methyl t-Butyl ether (MTBE)	4.1E-1	* *	,,,,,	1.4E-5			
Toluene	9.6E-1			3.8E-4			
Dichloroethane, 1.2-	4.1E-1		*	9.8E-6			

Site Name Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW to Air Res

RBCA SITE ASSESSMENT 4 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) SOIL LEACHING TO GW- VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (mr3/L) 3) Exposure Medium Receptor Indoor Air: POE Conc. (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m) (0 m) (0 m)(0 m) Soil Conc. (mg/kg) Constituents of Concern None None None None None Benzene 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1.2-NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: GW to Air Res Completed By Clint Skinner

5 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS SOIL LEACHING TO GW- VAPOR INTRUSION INTO BUILDINGS 4) Exposure Multiplier 5) Average Inhalation Exposure (EFxEDV(ATx365) (unitless) Concentration (mg/m²3) (3) X (4) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m) (0 m) (0 m)(0 m) $\{0 m\}$ Constituents of Concern None None None None None Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-* = Chemical with user-specified data NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57

Site Location: Oakland

Completed By: Clint Skinner

Date Completed 11-Jul-09 Job ID: GW to Air Res

6 OF 8

INDOOR AIR EXPOSURE PATHWAYS			
MA	XIMUM PATHWAY EXPOSUR	RE (mg/m^3)	
(М.	aximum average exposure co from soil and groundwater		
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	Residential	None	None
Benzene	7.5E-4		
Ethyl benzene	2.8E-4		
Xylenes (mixed isomers)	1.0E-3		
TPH - Aliph >C06-C08	1.7E+0		
TPH - Aliph >C16-C21	6.0E+1	/ ALLE	
Methyl t-Butyl ether (MTBE)	1.4E-5		
Toluene	3.8E-4		n name
Dichloroethane, 1,2-	9.8E-6		

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW to Air Res

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) CARCINOGENIC RISK (1) Carcinogenic Classification (2) Maximum Carcinogenic (3) Inhalation (4) Individual COC Exposure (mg/m^3) Unit Risk Factor Risk (2) x (3) x 1000 On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m)(0 m) (0 m)(m 0)(m 0) (µg/m²3)^-1 Constituents of Concern Residential None None Residential None None Benzene TRUE 7.5E-4 2.2E-6 1.6E-6 Ethyl benzene FALSE Xylenes (mixed isomers) FALSE TPH - Aliph >C06-C08 FALSE TPH - Aliph >C16-C21 FALSE Methyl t-Butyl ether (MTBE) TRUE 1.4E-5 2.6E-7 3.7E-9 Toluene FALSE Dichloroethane, 1,2-TRUE 9.8E-6 2.6E-5 2.6E-7 Total Pathway Carcinogenic Risk = 1.9E-6 Site Name: Stratus Oakland USA 57 Site Location: Oakland Date Completed: 11-Jul-09 Completed By: Clint Skinner Job ID: GW to Air Res

TIER 2 PATHWAY RISK CALCULATION

8 OF 8

INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete)

TOXIC EFFECTS

) Maximum Toxica Exposure (mg/m^3	}	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (5) / (6)		
	On-site (0 m)	Off-site 1 (0 m)	Off-sile 2 (0 m)		On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	Residential	None	None	(mg/m/3)	Residential	None	None
Benzene	1.7E-3			2.8E-1	6.2E-3		
Ethyl benzene	2.8E-4			1.0E+0	2.8F-4		
Xylenes (mixed isomers)	1.0E-3			1.0E-1	1.0E-2		
TPH - Aliph >C06-C08	1.7E+0			1.8E+1	9.5E-2		
TPH - Aliph >C16-C21	6.0E+1			-	0.00		· · · · · · · · · · · · · · · · · ·
Methyl t-Butyl ether (MTBE)	3.3E-5			3.0E+0	1.1E-5		
Toluene	3.8E-4			5.0E+0	7.7E-5		
Dichloroethane, 1,2-	2.3E-5		W. 42	2.4E+0	9.5E-6		TOTAL LANGUAGE , and many many

Total Pathway Hazard Index =

1.1E-1

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW to Air Res

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of 1

		DASELINE	CARCINOG	ENIC KISK			BASELI	VE TOXIC E	FFECTS	
	Individual COC Risk		Cumulative COC Risk		Risk	Hazard Quotient		Hazar	d Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE P	ATHWAYS								1
	NA	NA	NA	NA		NA	NA	NA	NA	
NDOOR AIR E.	XPOSURE PAT	HWAYS								I
8	1.6E-6	1.0E-5	1.9E-6	1.0E-5		9.5E-2	1.0E+0	1.1E-1	1.0E+0	
OIL EXPOSUI	RE PATHWAYS	3					<u>.</u>		<u> </u>	I
	NA	NA	NA	NA		NA	NA	NA	NA	
ROUNDWATE	R EXPOSURE	PATHWAYS							1	<u> </u>
ā	4.5E-4	1.0E-5	4.9E-4	1.0E-5	a	3.8E+0	1.0E+0	5.3E+0	1.0E+0	▼
SURFACE WAT	TER EXPOSUR	E PATHWAY	S						[
	NA	NA	NA	NA		NA	NA	NA	NA	
RITICAL EXP	OSURE PATHV	VAY (Maxim	um Values Er	om Complete	Pathwaye					
	4.5E-4	1.0E-5	4.9E-4	1.0E-5	E E	3.8E+0	1.0E+0	5.3E+0	1.0E+0	3
	Ground	lwater	Groun	dwater			dwater		dwater	

					Job ID GW to Air Res		
	C	Date Completed 11-Jul-09			1 OF		
ITS OF CONCERN			Propos	od CRF	Resultant Targ	et Concentration	
	Soil	Groundwater			Soil	Groundwater	
	RECAS Strotus Cakland LSA 57 Cakland JLATIVE RISK WORKSHEET	Stratus Oakland LSA 57 Cakland CULATIVE RISK WORKSHEET ITS OF CONCERN Representative (Campleted By Clin Cakland LSA 57 Cakland Date Completed 11 JLATIVE RISK WORKSHEET ITS OF CONCERN Representative Concentration	Stratus Oakland LSA 57 Cakland Date Completed By Clint Skinner Date Completed 11-Jul-09 JLATIVE RISK WORKSHEET ITS OF CONCERN Representative Concentration Proper	Stratus Oakland LSA 57 Cakland Date Completed By Clint Skinner Date Completed 11-Jul-09 JLATIVE RISK WORKSHEET ITS OF CONCERN Representative Concentration Proposed CRF	Cakland LSA 57 Completed By Clint Skinner Job ID GW to A Cakland Date Completed 11-Jul-09 JLATIVE RISK WORKSHEET ITS OF CONCERN Representative Concentration Proposed CRF Resultant Target	

Site Name 5	Stratus Oakland USA 57				Completed By Cl	ist Skipper		Int ID. Cities to	
Site Location:	Cakland				Date Completed.			Job ID: GW to Ar	r Heş 2 OF
CUMI	JLATIVE RISK WORKSHEET	Cumulative Target Risk 1 0E-5 Target Hazard Index. 1.0E+0							
***					ON-SITE RI	ECEPTORS		. ,	
CONSTITUENTS OF CONCERN		Outdoor Air Exposure: None			Indoor Air Exposure		Soil Exposure:		r Exposure:
		Target Risk: 1.0E-5	Target HQ: 1 0E+0	larget Risk: 1 0E-5	lential Target HQ: 1 0E+0	No Target Risk 1,08-5	rarget HQ. 1.0E+0	Resid Targel Risk 1.08-5	ential Target HO 1.0E+0
CAS No.	Name	Carcmogenic Risk	Hazard Quetient	Carcinogenic Risk	Hazard Quotient	Carcinogenia Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient
71-43-2 100-41-4 1330-20-7 T-ai0608 T-ai1621	Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Akoh >C05-C08 TPH - Akoh >C16-C21			1 6E-6	6.2E-3 2.8E-4 1.DE-2 9 5E-2			4.5E-4	3.8E+0 2.0E-2 4.2E-2 1.1E+0 1.2E-2
1634-04-4 108-88-3 107-06-2	Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-			3.7E-9	1.1E-5 7.7E-5			2.6E-6	2.7E-1 3.5E-2
101-00-2	rotesiorocalane, 1.2-			2 6E-7	9.5E-6			3.4E-5	
	Cumulative Values:	0.0E+0	0.0E+0	1.9E-6	1.1E-1	0.0E+0	0.0E+0	4.9E-4 ■	5.3E+0

Site Location.	Stratus Oakland USA 67 . Oakland	,			Completed By: Clint Skanner Date Completed: 11-Jul-09					Cumulative Risk Works Job ID: GW to Air F			
CUMULATIVE RISK WORKSHEET						Cumulative	Target Risk. 1.02-5	*	ndex 13E+0				31
		Groundwater DAF Option: FALSE Ground							ndwater DAF Option FALSE				
							OFF-SITE I	RECEPTORS	<u></u>				——
		Ne	Outdoor A	ur Exposure:			Indoor Al	Exposure:	···	T	Gravadous	er Exposure:	
CONSTITUENTS OF CONCERN		Target Risk, 1.0E+5	farget HQ: 1 0E+0	Target Risk 1.0E-5	One Target HQ 1 0E+0	Target Risk: 1 0E-5	One Target HQ; 1.0E+0		one Target HO: 1.CE+0	Target Risk 1 0E-5	one Target HQ	Ne Farget Risk:	one Target H
CAS No.	Name	Carcinogenie Risk	Hazard	Carcinogenic	Hazard	Carcinogenic	Hazard	Carcinogenic	Hazard		1 0E+0	1.0E-5	1 0E+
71-43-2	Benzene	757	Quotient	Risk	Quotient	Risk	Quotent	Risk	Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazara
00-41-4	Ethyl benzene				1	1						7105	Quotie
330-20-7	Xylenes (mixed isomers)								ĺ	1	!	1	1
-al0608	TPH - Aliph >C06-C08								1		,	[
-al1621	TPH - Aliph >C16-C21					1	İ]	-	
534-04-4	Methyl t-Butyl ether (MTBE)						1	1		1	(·	ĺ	i
108-88-3	Toluene				1	1			j ·		[1	
07-06-2	Dichlorgethane, 1,2-				£						1		
	Cumulative Values:	0.0E+0	0.0E+0	0.0E+0	0.00	T 5 52 -		I	L	L	لـــــــــــــــــــــــــــــــــــــ	L	<u> </u>
			2,02.0	0,0€±0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0

axticates risk level exceeding target risk

indicates risk level exceeding target risk

Site Name: Stratus Oakland USA 57 Site Location Oakland GROUNDWATER SSTL VALUES				Completed By: Clint Skinner Date Completed: 11-Jus-09					Job ID: (Job ID: GW to Air Res				1 OF 1
				Target Risk (Class A & B) 1 8E-5 Target Hazard Quotient 1 0E+0 Groundwaker DAF Option										
					SSTL Results		iosure Pathways (C		y is Complete)			· · · · · · · · · · · · · · · · · · ·		
			P	Groundwater In	gestion	8	Groundwater Votat to Indoor Air			Groundwater Votat		T		Required CR
CONSTITUENTS OF CONCERN		Representative Concentration	On-site (0 m)	Off-site 1 (0 m)	Off-site 2	On-site	Off-site 1	Off-site 2	On-sice	to Outdoor A Off-site 1	Off-site 2	Applicable SSTL	SSTL Exceeded?	Required GH
CAS No.	Name	(mg/L)	Residential	(Um) None	(0 m) None	(0 m) Residential	(ft m) None	(0 m)	(0 m)	(0 m)	(m 0)	""	Linetoca	Only if "yes"
71-43-2	Benzene	5.6E-1	1.2E-2		11056	3 4E+0	NORE	None	Моле	None	None	(mg/L)	"■" if yes	left
100-41-4	Ethyl benzene	7.3E-2	3.7E+0			>1.7E+2					•	1.2E-2		4.5E+1
1330-20-7	Xylenes (mixed isomers)	3,0E-1	7.3E+0	1		3.0E+1	İ				ļ	3.7E+0		<1
T-al0608	TPH - Aliph >C06-C08	2.46+0	2 2E+0			>5.4E+0					İ	7.3E+0		<1
T-al1621	TPH - Aliph >C16-C21	8.4E-1	>2.5E-6		1	75,4E+0						2.2E+0	ø	1.1E+0
1634-04-4	Methyl t-Butyl ether (MTBE)	9 8E-2	3.7E-1		ĺ	2.7E+2	İ		ĺ			>2.5E-6		NA
108-88-3	Toluene	1.0E-1	2.9E+0		İ	>5.3E+2						3.7E-1		<1
107-06-2	Dichloroethane, 1.2-	2.5E~2	7.4E-3			9.8E-1	1					2.9E+0		<1
		· · · · · · · · · · · · · · · · · · ·		J	1	3.00-1		L	i	1	l .	7.4E-3		3.4E+0

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value NA = Not applicable NC = Not calculated

APPENDIX H: RBCA COMMERCIAL GROUNDWATER ALL ROUTES PRINTOUT

# Exposure Pathway Identification 1. Groundwater Exposure Groundwater Ingestion/ Surface Water Impact Receptor: Com. None None None Consider Off-site Off-	Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner Job ID: GW all rts chems Com 3. Air Exposure Volatilization and Particulates to Outdoor Air Inhalation Receptor: None On-site Off-site1 Off-site2 Distance: 0 0 0 0 (m) Source Media: Construction worker Affected SoilsVolatilization to Ambient Outdoor Air Affected GroundwaterVolatilization to Ambient Outdoor Air Affected Surface SoilsParticulates to Ambient Outdoor Air
GW Discharge to Surface Water Exposure Swimming Fish Consumption Specified Water Quality Criteria 2. Surface Soil Exposure Source Media: Receptor: None ▼ □ Direct Ingestion On-site □ Dermal Contact Construction Worker □ □ Inhalation (vol+part) Option: □ Vegetable Ingestion □ Apply UK (CLEA) SGV as soil concentration limit	Volatilization to Indoor Air Inhalation Receptor: Com. ▼ None ▼

Exposure Factors and Target Risk Limits

1. Exposure Parameters	Res	idential Rece _l	otors	Commerica	al Receptors	User	Loca Com
	Child	Adolescent	Adult	Adult	Construc.	Defined	Job I
Averaging time, carcinogens (yr)			70			-	2.
Averaging time, non-carcinogens (yr)	6	12	30	25	1	-	(n
Body weight (kg)	15	35	70	70	70	-	
Exposure duration (yr)	6	12	30	25	1		
Averaging Time for Vapor Flux (yr)		30		30	30	-	
Exposure frequency (d/yr)		350		250	180	-	
Dermal exposure freq. (d/yr)		350		250	180	-	
Seasonal-avg skin surface area (cm²/d)	2023	2023	3160	3160	3160	-	
Soil dermal adherence factor (mg/cm²)	0.5	0.5	0.5	0.5	0.5	~	. 🗆
Water ingestion rate (L/d)	1	1	2	1	1	_	
Soil ingestion rate (mg/d)	200	200	100	50	100	-	3.
Swimming exposure time (hr/event)	1	3	3	<u> </u>		L1	(n
Swimming event frequency (events/yr)	12	12	12				4.
Swimming water ingestion rate (U/hr)	0.5	0.5	0.05	Ī			Tar
Skin surface area, swimming (cm²)	3500	8100	23000	1			Tar
Fish consumption rate (kg/d)	0.025	0.025	0.025	1 /		,	5.
Vegetable ingestion rate (kg/d)				- [:	\bigoplus	``\	
Above-ground vegetables	0.002	0.002	0.006	1 \	9	: 1	100
Below-ground vegetables	0.001	0.001	0.002				1:5.
Contaminated fish fraction (-)		1		1			

Site Name: Stratus Oakland USA 57 Location: Oakland Compl. By: Clint Skinner Job ID: GW all rts chems Com		: 11-Jul-09
2. Age Adjustment for Carcino (residential receptor only) Seasonal skin surface area, soil contact Water ingestion Soil ingestion Swimming water ingestion Skin surface area, swimming Fish consumption Below-ground vegetable ingestion Above-ground vegetable ingestion	Adjustment Factor 1022.26 (cm 1.08571 (mg 165.714 (mg 4.56 (L/k 80640 (cm 0.02286 (kg-	or ² -yr/kg) -yr/k-day) -yr/kg-day) ² -yr/kg)
3. Non-Carcinogenic Receptor (residential receptor only)	Adult	[w]
4. Target Health Risk Limits	Individual Cu	mulative .
Target Cancer Risk (Carcinogens)	1.0E-5 1	.0E-5
Target Hazard Quotient/Index (non-Carc.)	1.0E+0 1	.0E+0
5. Commands and Options		
Return to Exposure	Pathways	
Use/Set Default Values	Print Shee	

cation: Oakland mpl. By: Clint Skinner	and a second second	Date: 11-Jul	Main Screen	Print Sheet	Help
Source Med	dia Constituent	s of Concern (COCs)		☐ Apply Raoult's
Selected COCs (?)		Representativ	re COC Concentration	?	Law
COC Select: Sort List:	Groundw	ater Source Zone	Soi	l Source Zone	Mole Fractio
Add/insert Top MoveUp Delete Bottom MoveDown	Enter Directly	Age December	Enter Directly	7 (22 Level 4 A	in Source Material
Delete Bottom MoveDown	(mg/L)	note	(mg/kg)	note	(-)
enze ne	5.6E-1	95% UCL	8.70E-1	= VW.9901A	
thyl benzene	7.3E-2	95% UCL			
ylenes (mixed isomers)	3.0E-1	95% UCL			
PH - Aliph >C06-C08	2.4E+0	95% UCL			**************************************
PH - Aliph >C16-C21	8.4E-1	95% UCL			
ethyl t-Butyl ether (MTBE)	9.8E-2	95% UCL			
oluene	1.0E-1	95% UCL		· · · · · · · · · · · · · · · · · · ·	
Dichloroethane, 1,2-	2.5E-2	95% UCL	1	- n	m

Site Name: Stratus Oakland USA 57 Job ID: GW all rts chems Com **Transport Modeling Options** Location: Oakland Date: 11-Jul-09 1. Vertical Transport, Surface Soil Column Compl. By: Clint Skinner **Outdoor Air Volatilization Factors** 3. Groundwater Dilution Attenuation Factor Surface soil volatilization model only Combination surface soil/Johnson & Ettinger models Thickness of surface soil zone 3.00 (m) Calculate DAF using Domenico Model O User-specified VF from other model Domenico equation with dispersion only (no biodegradation) Indoor Air Volatilization Factors Domenico equation first-order decay Johnson & Ettinger model for soil and groundwater volatilization Modified Domenico equation using Johnson & Ettinger for soil, Mass Flux model for groundwater electron acceptor superposition User-specified VF from other model Biodegradation Capacity NC (mg/L)Soil-to-Groundwater Leaching Factor --- or --O ASTM Model User-Specified DAF Values ☐ Apply Soil Attenuation Model (SAM) DAF values from other model or site data ☐ Allow first-order biodecay O User-specified LF from other model Section & Co. 4. Chemical Decay and Source Depletion Modeling Options Disable Mass Balance Limit Apply Dual Equilibrium Description Model 2. Lateral Air Dispersion Factor 5. Commands and Options O 3-D Gaussian dispersion model Off-site 1 Off-site 2 Main Screen User-Specified ADF Print Sheet 1.00E+0 Help 1.00E+0 (-)

#

Water-Bearing Unit

Site Name: Stratus Oakland USA 57 Job ID: GW all rts chems Com **Site-Specific Groundwater Parameters** Location: Oakland Date: 11-Jul-09 1. Water-Bearing Unit Compl. By: Clint Skinner Hydrogeology 3. Groundwater Dispersion ? Groundwater Darcy velocity Model: ASTM Default 6.9E+0 (cm/d) **GW Ingestion** GW to Indoor Air Groundwater seepage velocity 1.8E+1 (cm/d) Off-site 1 Off-site 2 Off-site 2 Off-site 1 Calculate Distance to GW receptors 1 or 0. 0 Hydraulic conductivity 6.9E+2 (cm/d) Calculate Hydraulic gradient 0.01 (-) Longitudinal dispersivity 0 (m) Effective porosity 0.38 l(-) Transverse dispersivity 0 0 (m)Sorption Vertical dispersivity 0 (m) 4. Groundwater Discharge to Surface Water Fraction organic carbon-saturated zone 0.001 ? Groundwater pH 6.2 (-) 2. Groundwater Source Zone ? Off-site 2 Groundwater plume width at source 45 (m) Distance to GW/SW disharge point NA Plume (mixing zone) thickness at source (m) Plume width at GW/SW discharge or 0 (m)2 Saturated thickness (m) Plume thickness at GW/SW discharge 0 (m)Length of source zone 45 (m) Surface water flowrate at GW/SW discharge (m^3/s) 5. Commands and Options Main Screen **Print Sheet** Use/Set Default Values Set Units Help

Site-Specific Air Parameters

1. Outdoor Air Pathway User Defined Volatilization Factor Used User Defined Air Dispersion Factor Used Dispersion in Air Off-site 2 Off-site 1 Distance to offsite air receptor (m) Horizontal dispersivity 0 $\pm (m)$ Vertical dispersivity (m) Air Source Zone Air mixing zone height 2 (m) 2.25 Ambient air velocity in mixing zone (m/s)79.25 Inverse mean conc. [Q/C term] Particulate Emissions Model: ASTM Model Particulate Emission Factor (kg/m^3) or Areal particulate emission flux 6.9E-14 (g/cm^2/s) Fraction vegetative cover 0.5 (-) 4.8 Mean annual air velocity @ 7 m Equivalent 7m air vel. threshold 11.32 (m/s) 0.223841466 (-) Windspeed function [F(x) term]

. Indoor Air Pathway	User Defined V	olatilization Fa	actor Used
•	Residential	Commerci	al -
Building volume/area ratio	2	3	(m)
Foundation area	70	70	(m^2)
Foundation perimeter	49	34	(m) '
Building air exchange rate	1.4E-4	2.3E-4	(1/s)
Depth to bottom of foundation slab	0.15	0.15	(m)
Convective air flow through cracks	0.0E+0	0.0E+0	(m^3/s)
Foundation thickness	0.	15	(m)
Foundation crack fraction	0.0	01	(-)
Volumetric water content of cracks	0.	12	7(-)
Volumetric air content of cracks	0.:	26	(-)
Indoor/Outdoor differential pressure)	(g/cm/s^2
Building Volume	451	451	(m^3)
Building Width Perpendicular to GW flow	9.61	9.61	(m)
Building Length Parallel to GW flow	9.61	9.61	(m)
Saturated Soil Zone Porosity	.0.	38	i ()
Vertical Dispersivity	0.0	06	(m)
Groundwater Seepage Velocity	1.8E	+01	(cm/d)
. Commands and Options			*****
Main Screen			nt Sheet

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

		Representative COC Concentration							
CONSTITUENT	Gı	oundwater	Soils (0 - 0 m)						
	value (mg/L)	note	value (mg/kg)	note					
Benzene	5.6E-1	95% UCL	8.7E-1						
Ethyl benzene	7.3E-2	95% UCL		···· \www.ax					
Xylenes (mixed isomers)	3.0E-1	95% UCL	The state of the s						
TPH - Aliph >C06-C08	2.4E+0	95% UCL							
TPH - Aliph >C16-C21	8.4E-1	95% UCL							
Methyl t-Butyl ether (MTBE)	9.8E-2	95% UCL		, ,					
Toluene	1.0E-1	95% UCL							
Dichloroethane, 1,2-	2.5E-2	95% UCL							

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

		Representative COC Concentration							
CONSTITUENT	Gr	oundwater	Soils (0 - 0 m)						
	value (mg/L)	note	value (mg/kg)	note					
Benzene	5.6E-1	95% UCL	8.7F-1	,,,,,,,					
Ethyl benzene	7.3E-2	95% UCL	·						
Xylenes (mixed isomers)	3.0E-1	95% UCL		er er er er er er er er er er er er er e					
TPH - Aliph >C06-C08	2.4E+0	95% UCL							
TPH - Aliph >C16-C21	8.4E-1	95% UCL		· · · · · · · · · · · · · · · · · · ·					
Methyl t-Butyl ether (MTBE)	9.8E-2	95% UCL							
Toluene	1.0E-1	95% UCL		A					
Dichloroethane, 1,2-	2.5E-2	95% UCL	WHEN W						

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09

Job ID: GW all rts chems Com

	TIER 2	EXPOSURE CON	CENTRATION AND INTAKE CA	LCULATION	
INDOOR AIR EXPOSURE PATHWAY					
SOILS: VAPOR					
INTRUSION INTO BUILDINGS	1) Source Medium	2) NAF Value (L/kg) Receptor	3) Exposure Medium Indeor Air: POE Conc. (mg/m²3) (1) / (2)	4) Exposure Multiplier (EFxED)(ATx365) (unitless)	5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)
		On-site (0 m)	On-site (0 m)	On-site (0 m)	On-site (0 m)
Constituents of Concern	Soil Conc. (mg/kg)	None	None	None	None
Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1.2- * = Chemical with user-specified data NOTE: AT = Averaging time (days) EF =	8.7E-1 Exposure frequency (days	s/yr) ED = Exposure du	ration (yr) NAF = Natural attenuation factor	POE = Point of exposure	

Completed By: Clint Skinner

2 OF 8

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION											
INDOOR AIR EXPOSURE PATHWAYS		(Checked if Pathway is Complete)									
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration										
INTO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L) Receptor			3) Exposure Medium Indoor Air POE Conc. (mg/m^3) (1) / (2)						
		On-site (0 m)	Off-site 1	Off-site 2 (0 m)	On-site (0 m)	Off-site 1	Off-site 2				
Constituents of Concern	Groundwater Conc.	Commercial	None	None	None	(0 m) None	(0 m) None				
Benzene	5.6E-1	7.5E+2			7,4E-4						
Ethyl benzene	7.3E-2	6.2E+2	F		1.2E-4	<u> </u>	/				
Xylenes (mixed isomers)	3.0E-1	7.0E+2		*******	4.3E-4						
TPH - Aliph >C06-C08	2.4E+0	3.4E+0		FRENCH CONTRACTOR	7.3E-1						
TPH - Aliph >C16-C21	8.4E-1	3.3E-2			2.5E+1	†					
Methyl t-Butyl ether (MTBE)	9.8E-2	7.0E+3		†	1.4E-5						
Toluene	1.0E-1	6.4E+2			1.6E-4						
Dichloroethane, 1,2-	2.5E-2	2.6E+3		,	9.7E-6						

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure

Site Name: Stratus Oakland USA 57

Site Location: Oakland

Completed By. Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

3 OF 8

INDOOR AIR EXPOSURE PATHWAYS						
GROUNDWATER: VAPOR INTRUSION						
INTO BUILDINGS		Exposure Multip EDy(ATx365) (uni	5) Average Inhalation Exposure Concentration (mg/m²3)(3) X (4)			
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	None .	None	None	None	None	None
Benzene	2.4E-1			1.8E-4		
Ethyl benzene	6.8E-1			8.0E-5	**************************************	
Xylenes (mixed isomers)	6.8E-1			3.0E-4		
TPH - Aliph >C06-C08	6.8E-1			5.0E-1		
TPH - Aliph >C16-C21	6.8E-1			1.7E+1		
Methyl t-Butyl ether (MTBE)	2.4E-1			3.4E-6		
Toluene	6.8E-1			1.1E-4		
Dichloroethane, 1,2-	2.4E-1			2.4E-6	- 7	

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

RBCA SITE ASSESSMENT 4 OF 8 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INOOOR AIR EXPOSURE PATHWAYS ☐ (Checked if Pathway is Complete) SOIL LEACHING TO GW- VAPOR INTRUSION Exposure Concentration INTO BUILDINGS 1) Source Medium 2) NAF Value (m^3/L) 3) Exposure Medium Receptor Indoor Air POE Conc (mg/m^3) (1) / (2) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m)(0 m)(0 m) (0 m)(0 m)(0 m)Soil Conc. (mg/kg) None None None Constituents of Concern None None Benzene 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-NOTE. AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: GW all its chems Com

Completed By: Clint Skinner

INDOOR AIR EXPOSURE PATHWAYS						
SOIL LEACHING TO GW- VAPOR INTRUSION						<u> </u>
INTO BUILDINGS		Exposure Multip kEDY(ATx365) (unit	5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)			
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
Constituents of Concern	None	None	None	None	None	None
Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-						

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

6 OF 8

INDOOR AIR EXPOSURE PATHWAY	S		
	MAXIMUM PATHWAY EXPOSUR (Maximum average exposure co from soil and groundwater to	ncentration	
	On-site (0 m)	Off-site 1	Off-site 2 (0 m)
Constituents of Concern	Commercial	None	None
Benzene	1.8E-4	-,	
Ethyl benzene	8.0E-5		
Xylenes (mixed isomers)	3.0E-4		
TPH - Aliph >C06-C08	5.0E-1	** ************************************	
TPH - Aliph >C16-C21	1.7E+1		
Methyl t-Butyl ether (MTBE)	3.4E-6		
Toluene	1.1E-4		
Dichloroethane, 1,2-	2.4E-6		

Site Name: Stratus Oakland USA 57 Site Location: Oakland Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

RBCA SITE ASSESSMENT 7 OF 8 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS (Checked if Pathway is Complete) CARCINOGENIC RISK (1) Carcinogenic Classification (2) Maximum Carcinogenic (3) Inhalation (4) Individual COC Exposure (mg/m^3) Unit Risk Factor Risk (2) x (3) x 1000 On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m)(0 m)(0 m) (0 m) (µg/m^3)^-1 Commercial Constituents of Concern None None Commercial None None Benzene TRUE 1.8E-4 2.2E-6 4.0E-7 Ethyl benzene FALSE Xylenes (mixed isomers) FALSE TPH - Aliph >C06-C08 FALSE TPH - Aliph >C16-C21 FALSE Methyl t-Butyl ether (MTBE) TRUE 3.4E-6 2.6E-7 8.9E-10 Toluene FALSE Dichloroethane, 1,2-TRUE 2.4E-6 2.6E-5 6.2E-8 Total Pathway Carcinogenic Risk = 4.6E-7 Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09 Site Location: Oakland Job ID: GW all rts chems Com

Completed By: Clint Skinner

8 OF 8

INDOOR AIR EXPOSURE PATHWAYS	*	(Checked if Pa	thway is Compl	lete)		***************************************	
	TOXIC EFFECTS	<u>; </u>				***************************************	**********
	1	Maximum Toxica Exposure (mg/m^3		(6) Inhalation Reference Concentration		7) Individual CO ard Quotient (5)	
	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)		On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)
onstituents of Concern Commercial None None		(গাg/m^3)	Commercial	None	None		
Benzene	5.1E-4			2.8E-1	1.8E-3	***************************************	
Ethyl benzene	8.0E-5			1.0E+0	8.0E-5	-	
Kylenes (mixed isomers)	3.0E-4			1.0E-1	3.0E-3		
TPH - Aliph >C06-C08	5.0E-1			1.8E+1	2.8E-2		
TPH - Aliph >C16-C21	1.7E+1			-			
Methyl t-Butyl ether (MT8E)	9.6E-6			3.0E+0	3.2E-6		
Toluene	1.1E-4			5.0E+0	2.2E-5	** ********	,
Dichloroethane, 1,2-	6.7E-6			2.4E+0	2.7E-6		

Total Pathway Hazard Index =

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

3.2E-2

1 OF 7 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION GROUNDWATER EXPOSURE PATHWAYS ☐ (Checked if Pathway is Complete) SOILS: LEACHING TO GROUNDWATER INGESTION 2) NAF Value (L/kg) 1) Source Medium 3) Exposure Medium Receptor Groundwater: POE Conc. (mg/L) (1)/(2) On-site Off-site 1 Off-site 2 Off-site 1 On-site Off-site 2 Soil Conc. (0 m) (0 m) (0 m) (0 m)(0 m) (0 m) Constituents of Concern (mg/kg) Commercial None None Commercial None None Benzene 8.7E-1 Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-* = Chemical with user-specified data

NOTE: NAF = Natural attenuation factor POE = Point of exposure Site Name: Stratus Oakland USA 57 Date Completed: 11-Jul-09

Job ID: GW all rts chems Com

Site Location: Oakland Completed By: Clint Skinner

2 OF 7 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION GROUNDWATER EXPOSURE PATHWAYS SOILS: LEACHING TO GROUNDWATER INGESTION (cont'd) 4) Exposure Multiplier 5) Average Daily Intake Rate (IRxEFxED)/(BWxAT) (L/kg-day) (mg/kg/day) (3) x (4) On-site Off-site 1 Off-site 2 On-site Off-site 1 Off-site 2 (0 m) (0 m) (0 m) (0 m) (0 m) (0 m) Constituents of Concern Commercial None None Commercial None None Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-* = Chemical with user-specified data

NOTE:	AT = Averaging time (days)	ED = Exposure duration (yr)	IR = Ingestion rate (mg/day)	
	BW = Body weight (kg)	EF = Exposure frequency (days/yr)	ii ii ii gaadaii tata (iii giday)	
Site Name: Stratus Oakland USA 57		Completed By: Clint Skinner	Joh ID: GW all de chi	,

Site Location: Oakland

Date Completed: 11-Jul-09

3 OF 7

GROUNDWATER EXPOSURE PATHWAYS	(Checked if Pathway is Complete)											
GROUNDWATER: INGESTION												
	1) Source Medium	2)	NAF Value (unition Receptor	ess)	3) Exposure Medium Groundwater: POE Conc. (mg/L) (1)/(
	Groundwater	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site 1 (0 m)	Off-site 2					
Constituents of Concern	Conc. (mg/L)	Commercial	None	None	Commercial	None	None					
Benzene	5.6E-1	1.0E+0			5.6E-1		<u> </u>					
Ethyl benzene	7.3E-2	1.0E+0			7.3E-2							
Xylenes (mixed isomers)	3.0E-1	1.0E+0			3.0E-1	ŀ						
TPH - Aliph >C06-C08	2.4E+0	1.0E+0			2.4E+0		1					
TPH - Aliph >C16-C21	8.4E~1	1.0E+0			8.4E-1		1					
Methyl t-Butyl ether (MTBE)	9.8E-2	1.0E+0			9.8E-2		ĺ					
Toluene	1.0E-1	1.0E+0			1.0E-1							
Dichloroethane, 1,2-	2.5E-2	1.0E+0			2.5E-2	Ī						

NOTE: Site Name: Stratus Oakland USA 57

NAF = Natural attenuation factor POE = Point of exposure

en Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

4 OF 7

GROUNDWATER EXPOSURE PATH	IWAYS						
GROUNDWATER INGESTION (cont'd)							
		Exposure Multipli FxED)/(BWxAT) (L/kg		5) Average Daily Intake Rate (mg/kg/day) (3) x (4)			
Constituents of Concern	On-site (0 m) Commercial	Off-site 1 (0 m) None	Off-site 2 (0 m) None	On-site (0 m) Commercial	Off-site 1 (0 m)	Off-site 2 (0 m)	
Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Toluene Dichloroethane, 1,2-	3.5E-3 9.8E-3 9.8E-3 9.8E-3 9.8E-3 3.5E-3 9.8E-3 3.5E-3		Kens	1.9E-3 7.1E-4 3.0E-3 2.4E-2 8.2E-3 3.4E-4 1.0E-3 8.7E-5	None	None	

NOTE: AT = Averaging time (days) BW = Body weight (kg) ED = Exposure duration (yr)
EF = Exposure frequency (days/yr)
Completed By: Clint Skinner IR = Ingestion rate (mg/day) Site Name: Stratus Oakland USA 57

Site Location: Oakland

Date Completed: 11-Jul-09

Job ID: GW all rts ch

5 OF 7

GROUNDWATER EXPOSURE PATHW	AYS		
	(Maxim	A PATHWAY INTAKE (m num intake of active pat sching & groundwater re	hways
	On-site	Off-site 1	Off-site 2
Constituents of Concern	(0 m) Commercial	(0 m) None	(0 m) None
Benzene	1.9E-3		Hane
Ethyl benzene	7.1E-4		
Xylenes (mixed isomers)	3.0E-3		
TPH - Aliph >C06-C08	2.4E-2		
TPH - Aliph >C16-C21	8.2E-3		
Methyl t-Butyl ether (MTBE)	3.4E-4		
Toluene	1.0E-3		
Dichloroethane, 1,2- * = Chemical with user-specified data	8.7E-5		

Site Name: Stratus Oakland USA 57 ne Site Location: Oakland Completed By: Clint Skinner

Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

TIER 2 PATHWAY RISK CALCULATION

GROUNDWATER EXPOSURE PATHWAYS

(Checked if Pathway is Complete)

					CARCINOGENIC RI	SK			
	(1) is Carcinogenic	(2) Maximum Carcinogenic Intake Rate (mg/kg/day)			(3) Oral Slope Factor	(4) Individual COC Risk (2) x (3)			
Constituents of Concern		On-site (0 m) Commercial	Off-site 1 (0 m) None	Off-site 2 (0 m) None	(mg/kg-day)^-1	On-site (0 m) Commercial	Off-site 1 (0 m) None	Off-site 2 (0 m)	
Benzene	TRUE	1.9E-3			5.5E-2	1.1E-4	None	None	
Ethyl benzene	FALSE				1 0.02.2	'.''			
Xylenes (mixed isomers)	FALSE]				
TPH - Aliph >C06-C08	FALSE								
TPH - Aliph >C16-C21	FALSE								
Methyl t-Butyl ether (MTBE)	TRUE	3.4E-4		l	1.8E-3	6.2E-7			
Toluene	FALSE				1.00-3	0.25-/			
Dichloroethane, 1,2-	TRUE	8.7E-5			9.1E-2	8.0E-6			

Total Pathway Carcinogenic Risk =

1.2E-4

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW all rts chems Com 6 OF 7

TIER 2 PATHWAY RISK CALCULATION

7 OF 7

GROUNDWATER EXPOSURE PAT	'HWAYS		19	(Checked if Pathy	vay is Complete			
				TOXIC EFFECTS			ALCOHOLO III	
		Maximum Toxicant ake Rate (mg/kg/day)		(6) Oral Reference		(7) Individual COC lazard Quotient (5) / (6)		
Constituents of Concern	On-site (0 m) Commercial	Off-site 1 (0 m) None	Off-site 2 (0 m) None	Dose (mg/kg/day)	On-site (0 m) Commercial	Off-site 1 (0 m)	Off-site 2 (0 m)	
Benzene	5.4E-3		710110	4.0F-3	1.4F+0	None	None	

1.4<u>+</u>U Ethyl benzene 7.1E-4 1.0E-1 7.1E-3 Xylenes (mixed isomers) 3.0E-3 2.0E-1 1.5E-2 TPH - Aliph >C06-C08 2.4E-2 6.0E-2 4.0E-1 TPH - Aliph >C16-C21 8.2E-3 2.0E+0 4.1E-3 Methyl t-Butyl ether (MTBE) 9.6E-4 1.0E-2 9.6E-2 Toluene 1.0E-3 8.0E-2 1.3E-2 Dichloroethane, 1,2-Tox? Tox? Tox?

Total Pathway Hazard Index =

1.9E+0

Site Name: Stratus Oakland USA 57

Site Location: Oakland Completed By: Clint Skinner Date Completed: 11-Jul-09 Job ID: GW all rts chems Com

Baseline Risk Summary-All Pathways

Site Name: Stratus Oakland USA 57 Site Location: Oakland

Completed By: Clint Skinner Date Completed: 11-Jul-09

1 of 1

		BASELINE	CARCINOG	ENIC RISK			BASELII	NE TOXIC E	FFECTS	
EXPOSURE	Individual Maximum			e COC Risk	Risk		Quotient	Hazard Index		Toxicity
PATHWAY	Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE F	PATHWAYS							1	LACCEDE
	NA	NA	NA	NA		NA	NA	NA	NA	
NDOOR AIR E	XPOSURE PA	THWAYS							L	
D	4.0E-7	1.0E-5	4.6E-7	1.0E-5		2.8E-2	1.0E+0	3.2E-2	1.0E+0	
SOIL EXPOSUI	RE PATHWAY	3							<u> </u>	, ,,,,,
	NA	NA	NA	NA		NA	NA	NA	NA	
GROUNDWATE	R EXPOSURE	PATHWAYS								
2	1.1E-4	1.0E-5	1.2E-4	1.0E-5	8	1.4E+0	1.0E+0	1.9E+0	1.0E+0	<u>ra</u>
SURFACE WAT	TER EXPOSUR	E PATHWAY	S							
	NA	NA	NA	NA		NA	NA	NA	NA	
CRITICAL EXP	OSURE PATHY	VAY (Maxim	um Values Erd	om Complete	Pathwaye)		L			
	1.1E-4	1.0E-5	1.2E-4	1.0E-5	a a a a a a a a a a a a a a a a a a a	1.4E+0	1.0E+0	1.9E+0	1.0E+0	
	Ground	lwater	Ground	dwater		Ground	dwater		dwater	

Site Name Str	atus Oakland USA 57		Completed By Cl	int Skinner					Job ID GI	N all rts chems Cor	n.			
Site Location: 6	Oakland		Date Completed:	11- Jul-09										1 OF
GROUNDWATER SSTL VALUES Target Hazard Quotient 1 08+														
					SSTL Results	For Complete Expo								
				Groundwater Inc	jeston	G G	lalov relawbruor to Indoor Au		🛮 🗎 '	Groundwaler Volati In Outdoor Ai		Applicable	SSTL	Required CRF
CONSTITUENTS OF CONCERN		Representative Concentration	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	On-site (0 m)	Off-site t	Off-site 2	On-site (0 m)	Off-site 1 (0 m)	Off-site 2 (0 m)	SSTL	Exceeded ?	Only if "yes"
CAS No.	Name	(mg/L)	Commercial	None	None	Commercial	None	None	None	None	None	(mg/L)	"#" if yes	left
71-43-2	Benzene	5 6E-1	5.2E-2			1.4E+1						5.2E-2	0	1,1E+1
100-41-4	Ethyl benzene	7.3E-2	1.0E+1	į		>1.7E+2						1.0E+1		<1
1330-20-7	Xylenes (mixed isomers)	3 0E-1	2.0E+1			1.0E+2						2.0E+1		<1
T-al0608	TPH - Aliph >C06-C08	2.4E+0	>5.4E+0			>5.4E+0			1			>5 4E+0		NA NA
T-al1621	TPH - Aliph >C16-C21	8.4E-1	>2.5E-6			Tox?		<u> </u>	1			>2.5E-6	_	NA NA
1634-D4-4	Methyl t-Butyl ether (MTBE)	9.8E-2	1.0Ё+0			1.1E+3			1			1.0E+0		<1
108-88-3	Toluene	1.0E-1	8.2E+0	1		>5,3E+2						8.2E+0		<1
107-06-2	Dichloroethane, 1,2-	2.5E+2	3.1E-2			4.0E+0			<u> </u>			3.1E-2		<1
	Total TPH mixture	3.3E+0	NC	NA		NC		,	*	NA NA			Гп	

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value. NA = Not applicable NC = Not calculated

eraka bilan B	en en menske programmer i her menske programmer skriver i de skriver i de skriver i de skriver i de skriver i d	ITE ASSESSME				Cumulative Risk Wo	orksneet		
	tratus Cakland USA 57		Completed By: Clint Skinner Date Completed 11-Jul-09				Job ID GW all rts chems Com 1 OF		
Site Location	Cekland								
СПМГ	JLATIVE RISK WORKSHEET								
CONSTITUEN	TS OF CONCERN	Representativ	e Conceptration	0	-4605	Populitani Tara	ot Consomissio		
CONSTITUEN	TS OF CONCERN	Representativ	/e Concentration	Propos	sed CRF				
	TS OF CONCERN		re Concentration Groundwater (mg/L)	Propos	GW	Soil	Groundwate		
CAS No.		Soil	Groundwater				Groundwate (mg/L)		
CAS No. 71-43-2 100-41-4	Name	Soil	Groundwater (mg/L)	Soil	GW	Soil	Groundwate		
CAS No. 71-43-2 100-41-4 1330-20-7	Name Benzene Ethyl benzene Xylenes (mixed isomers)	Soil	Groundwater (mg/L) 5.6E-1	Soil NA	GW NA	Soil	Groundwate (mg/L) 5.6E-1		
CAS No. 71-43-2 100-41-4 1330-20-7 T-al0608	Name Benzene Elhyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08	Soil	Groundwater (mg/L) 5.6E-1 7.3E-2	Soil NA NA	GW NA NA	Soil	Groundwate (mg/L) 5.6E-1 7.3E-2		
CAS No. 71-43-2 100-41-4 1330-20-7 T-al0608 T-al1621	Name Benzene Ethyl benzene Xylenes (mixed isomers)	Soil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1	Soil NA NA NA	GW NA NA NA	Soil	Groundwate (mg/L) 5.6E-1 7.3E-2 3.0E-1		
CAS No. 71-43-2 100-41-4 1330-20-7 T-al0608 T-al1621 1634-04-4	Name Benzene Elhyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08	Soil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0	Soil NA NA NA NA	GW NA NA NA	Soil	Groundwate (mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1		
CONSTITUEN CAS No. 71-43-2 100-41-4 1330-20-7 T-ai0608 T-ai1621 1634-04-4 108-88-3 107-06-2	Name Benzene Elhyl benzene Xyleces (mxed isomers) TPH - Aliph > C06-C08 TPH - Aliph > C16-C21	Soil	Groundwater (mg/L) 5.6E-1 7.3E-2 3.0E-1 2.4E+0 8.4E-1	Soil NA NA NA NA NA	GW NA NA NA NA	Soil	5.6E-1 7.3E-2 3.0E-1 2.4E+0		

	er en en er i 1900 gant de en er en en en en en en en en en en en en en	ASSESSMENT		v2553388000				Cumulative Risk Wor	ksheet	
Site Name: Stratus Oakland USA 57				Completed By: Clint Skinner				Job ID GW all ris chems Com		
Site Location	Celdand			Date Completed: 11-Jul-09				2 OF		
CUML	ILATIVE RISK WORKSHEET	Completive Target Risk: 10E-5 Yarget Hazard index 10E+0								
1.1.0					ON-SITE RE	CEPTORS				
			r Exposure:		Exposure:	Soil Ex	oosure:	Groundwate	er Exposure:	
CONSTITUENTS OF CONCERN		None Target Risk: Target HQ: 1.0E-5 1.0E+0		Commercial Target Hisk: Target HQ; 1 0E-5 1.0E+0		None Target Risk. Target HQ 1,0E-5 1,0E+0		Commercial Target Risk: Target HO 1.0E-5 1.0E+6		
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Qustient	Carcinogenic Risk	Hazard Quotess	Carcinogenic Risk	Hazard Quotient	
71-43-2	Benzene			4.0E-7	1.8E-3			1.1E-4	1.4E+0	
100-41-4	Ethyl benzene				8 0E-5				7.1E-3	
1330-20-7 T-al0608	Xylenes (mixed isomers) TPH - Aliph >C06-C08				3.0E-3				1.5E-2	
r-ai0606 F-al1621	TPH - Aliph >C06-C08			1	2.8E-2				4.0E-1	
634-04-4	Methyl t-Butyl eiher (MTBE)			8.9E-10	2.05.6				4 1E-3	
108-88-3	Taluene			0.9=-10	3.2E-6 2.2E-5			6.2E-7	9 6E-2	
107-06-2	Dichloroethane, 1,2-			6 2E-8	2.2E-5 2.7E-6			8.0E-6	1.3E-2	
	Commutative Makes	0.0E+0	0.0E+D	1 4 65 7	2554					
	Cumulative Values:	0.0E+U	0.0E+0	4.6E-7	3,2E-2	0.0E+0	0.0E+0	1.2E-4 =	1.9E+0	

Indicates risk level exceeding target risk

Site Name. S	Stratus Oakland USA 57				Completed By: C	lint Skinner						Job ID GW ail ris	chems Com
Site Location.	Cakland				Date Completed	11-Jul-09							3 OF
	ULATIVE RISK WORKSHEET						Farget Risk - 1 0E-5 ndwater DAF Option.	Target Hazard In	dex. 1 0E+0	Groun	idwater DAF Option	FALSE	
							OFF-SITE F	ECEPTORS		···········			
		Outdoor Air Exposure:					Exposure:		Groundwater Exposure:				
CONSTITUEN	VTS OF CONCERN	No Target Risk. 1 0E-5	ne Target HQ: 1.0E+0	Farget Risk: 1.0E-5	one Target HQ: 1.0E+0	Target Risk; 1.0E-5	one Target HQ: 1.0E+0	No Yarget Risk 1 0E-5	ne Target HQ. 1 0€+0	Farget Risk 1.0E-9	ne Farget HQ 1 0E+0	Target Risk. 1 DE-5	one Target HQ; 1.0E+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenio Risk	Hazard Quotient	Cercinogenic Risk	Hazard Quotient
71-43-2 100-41-4 1330-20-7 T-al0608 T-al1621 1634-04-4 108-88-3 107-06-2	Benzene Ethyl benzene Xylenes (mixed isomers) TPH - Aliph >C06-C08 TPH - Aliph >C16-C21 Methyl t-Butyl ether (MTBE) Tolluene Dichloroethane, 1,2-												
	Cumulative Values:	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0

indicates risk level exceeding target risk

indicates risk level exceeding target risk

APPENDIX H

MAPS DEPICTING AREAS OF POTENTIAL SOIL OVEREXCAVATION AND UNDERGROUND UTILITY LOCATIONS NEAR POSSIBLE OVEREXCAVATION

APPENDIX I

PROPOSAL AND NUTRIENT/SURFACTANT PRODUCT INFORMATION PROVIDED BY TEXAS ENVIROCHEM, INC.

Texas EnviroChem, Inc.

PROPOSAL FOR SOIL REMEDIATION AT OAKLAND, CALIFORNIA PROPERTY

Stratus Environmental

June 11, 2009

Attention: Scott Bittenger

Texas EnviroChem, Inc. (TEC) is ready, willing and able to propose a solution for the remediation project located in Oakland, California. We have a unique and effective proven technology that allows a company to bio-remediate a contaminated site insitu. There by keeping the media in place without removing it and exposing the surrounding site to further contamination and opening the client to unnecessary liabilities.

TEC's premier chemical, TX Chem HE-1000™ is a water based synergistic blend of nutrients and surfactants that stimulate the indigenous microbial colonies that already exist in the contaminated soil. In addition the compounds works on surface tension which in turn breaks up the hydrocarbons minute droplets and creates an immediate food source for the microbes.

TX Chem HE-1000 is a proven technology that in most cases reduces TPH (Total Petroleum Hydrocarbons) by as much as 93% in 8 to 24 hours. There are many different applications for HE-1000 but mainly soil remediation, tank degassing / tank cleaning, road spills (hydrocarbons), just to name a few. HE-1000 has undergone a multitude of environmental tests and have met or exceeded each and everyone. They are as follows:

- 1) USEPA LC-50 Aquatic Toxicity Test
- 2) USEPA Dispersant Test
- 3) USEPA 8260B Volatiles
- 4) USEPA 8270C Semi-Volatiles
- 5) TX 1005 TPH

TEC has made application to be added to the USEPA NCP Products list as a surface washing agent and should be listed within the next 90 days.

PLAN OF ACTION -

1)	Site evaluation –	

- a) pull background samples prior to startup.
- b) estimate quantity of approximate contaminated media.
- c) evaluate safety concerns.
- d) estimate quantity of chemical needed.
- e) estimate what equipment that will needed.
- 2) Order chemical -
- 3) Order equipment
 - a) trackhoe
 - b) dozer
 - c) water truck (60 plus barrels)
 - d) 2 or 3 inch trash pump (applying chemical to soil) (with suction and discharge hoses)
- 4) Personnel
 - a) 1 supervisor
 - b) 1 trackhoe operator
 - e) 1 dozer operator
 - d) 3 laborers
- 5) Job duration
 - a) approximately 10 to 14 days (depending on weather)

COST - 12,500 cu. yds X \$49.50 per cubic yard -

\$618,750.00

PAYMENT TERMS - to be discussed

NOTE: TEC will under certain conditions give a guarantee.

Best regards,

Johnny L. Hunt – President Texas EnviroChem, Inc.

TxChem HE-1000™

In-Situ Bio-Enhancement Technology

Technical Data

Product Description

TxChem HE-1000™ is a concentrated synergistic blend of synthetic biodegradable, non-toxic, non-flammable surfactants and selected nutrients. When diluted on-site with freshwater, TxChem HE-1000™ is capable of breaking down hydrocarbon masses into microscopic spheres or droplets upon contact by spraying or mixing. These droplets become tightly suspended in solution and remain stable in the rinse and treated media. Noticeable evidence of this action is an immediate change in color of oily soils or pit sludge, as well as the elimination of hydrocarbon odors. TxChem HE-1000™ functions in both fresh and salt water environments.

The addition of fresh soils to the treated media is recommended when treating pits to provide stabilization and a fresh source of bacteria, creating a homogenous mixture of hydrocarbon components throughout the media and increasing surface area exposure to indigenous microbes. Because TxChem HE-1000™ is biodegradable and nutrient enriched, it further enhances the biodegradation process by lending other nutrients to the mix. Case histories developed in Ecuador's Amazon basin indicate that indigenous bacteria can rapidly exhaust residual traces of asphaltic type crude after in-situ treatment with TxChem HE-1000™, despite site flooding caused by daily rainfall.

The immediate evidence of mitigation is exhibited in sharp declines in TPH (Total Petroleum Hydrocarbons per EPA Method 418.1) levels in the treated media, regardless of hydrocarbon characteristics or base line TPH levels. Accordingly, one application of TxChem HE-1000™ can achieve results in a fraction of the time and expense normally required for soil excavation, relocation, disposal, incineration, or traditional bioremediation methods. The long term benefit from using TxChem HE-1000™ is that it facilitates biodegradation by *natural means*.

TxChem HE-1000™ is also safe and effective for the use in the removal of petroleum, diesel, or gasoline spills from concrete or asphalt highways. when used by professionals and in accordance with all safety rules. When applied as recommended, TxChem HE-1000™ will encapsulate and tightly suspend microscopic hydrocarbon droplets in the rinse, rendering most volatile materials non-flammable almost instantly and without damage to concrete or asphalt surfaces. While TxChem HE-1000™ is considered environmentally friendly to the most sensitive ecosystems (based on U. S. EPA LC-50 toxicity test on Mysidopsis Bahia shrimp), management of effluent should always comply with federal, state, and local rules and regulations.

Typical Physical & Chemical Characteristics

Physical Appearance	Clear Blue Liquid
Odor	Bland
Specific Gravity	1.02
pH Range	6.0 - 7.0
Boiling Point	212°F
Flash Point	No Flash at Boiling Point
Temperature Limitations	Store in Cool Place
Standard Packaging	55 US Gallon Poly Drums

Suggested Applications for TxChem HE-1000™

Pit Closures

Equipment: Backhoe, trackhoe, or dozer (depending on size of pit) and vacuum truck (skid tanks can be used to mix and contain larger chemical volumes).

Application: Spray or flood contaminated sludge in-situ with chemical solution (1/2 to 2 gallons TxChem He-1000™ neat per cubic yard of contaminated material mixed with 10-20 parts water is recommended), while pulling contaminated berm material into pit and thoroughly mixing to a slurry. Add Fresh soils for stabilization and further reduction in TPH levels.

Surface Hydrocarbon Spills

Equipment: Pressure sprayer (4-5 gpm at 1,200 psi) for smaller spills or vacuum truck (130 bbl capacity with 30 psi discharge pressure) with 2 inch discharge hose and swage or discharge nozzle for larger spills.

Application: Spray chemical solution directly onto hydrocarbon, working from perimeter of spill toward the middle. Mechanically turn soil while spraying to reach contamination at depths below surface. Always prevent run off into ditches, creeks, and waterways. Continue to treat with chemical or rinse with freshwater, until desired results are achieved.

Compressor Stations

Equipment: Pressure Sprayer (4-5gpm at 1,200 psi), garden tiller and hand tools (shovel, rake, etc.).

Application: Starting from the top, spray engine, components, and sump to degrease and clean. Continue to spray contaminated soil or rock around compressor pad, turning or mixing with shovels or tiller if necessary. Repeated treatment may be necessary for desired results.

Pipeline and Flow Line Leaks

Equipment: Backhoe, pressure sprayer (5-7gpm). Application: Soil should be excavated from around leak and spread on level ground to a depth of 6 to 8 inches deep. Spray excavated soil with chemical solution to effectively reduce TPH levels. Spray pipe line or flow line, walls and bottom of excavated hole, turning soil with hand tools if necessary to reduce flammable vapor levels (always test for vapors before welding on pipe). Fill hole with treaded soils and apply remaining chemical solution if necessary.

Well Head and Tank Farm leaks

Equipment: Pressure sprayer (1,200 psi), garden tiller and hand tools (shovel, rake, etc.)

Application: Remove all free standing oil and water around equipment and tanks. Spray equipment with the TxChem HE-1000™ solution, starting at the top. Spray contaminated soils around or adjacent to equipment or tanks and turn soils with hand tools or tiller to depth of contamination. Treat contaminated soils until visible signs of hydrocarbon are eliminated or until desired TPH levels are achieved. Apply fresh water to treated soils with pressure sprayer as a final soil rinse.

Highway Spills (Petroleum Products)

Equipment: Pressure sprayer (1,200 psi) and vacuum or pump truck for effluent.

Application: Only trained professionals, taking all necessary safety precautions, should contain and/or remove hydrocarbons, or spray residual hydrocarbons on roadway to render volatile material non-flammable. In-situ remediation practices may be employed on hydrocarbon soaked soils, only if permitted by federal, state, and local rules and regulations.

All suggestions and recommendations given above concerning the use of TxChem HE-1000™ are based on tests and data believed to be reliable. Because Texas EnviroChem Inc. cannot control the use of the product by others, no guarantee is either expressed or implied by any such suggestion or recommendation by Texas EnviroChem Inc. nor is any information contained in this leaflet to be construed as a recommendation to infringe any trademark or patent currently valid. Purchaser and user, before using, must determine the suitability of the product for its intended use and user assumes all risk and liability whatsoever in connection therewith. Neither seller nor manufacturer shall be liable, either in tort or in contract for any loss or damage direct or consequential arising out of the use of the product. To the extent any portion of this notice is found to be unenforceable, the remainder shall survive and remain in full force and effect.

Suggested Applications for TxChem He-1000™

Drill Cuttings

Equipment: Wash drum (concrete mixer) with conveyor.

Application: Set up wash drum with conveyor to load drill cuttings (approx 6 to 8 cu vards depending on size of mixer) into drum. Introduce TxChem HE-1000™ solution in to wash cycle and rotate on medium speed for 10 minutes. Switch to high speed for 10-15 minutes. Rinse media and repeat. A large percentage of the wash water can be recaptured and reused once. The clean media can be disposed of on-site or used for road base Wash water will bioremediate any material. hydrocarbons that may exist on the project area. Washed cuttings can then be run through a press to eliminate most of the moisture that exists from the wash cycle. Pressing reduces the potential for damage to the disorption unit if one is being used. The drill cuttings are introduced to the disorption unit for a drying process only. The hydrocarbons have been eliminated in the wash cycle.

Tank Cleaning

Equipment: Heated pressure washer and/or 2-inch discharge pump with fire nozzle.

Application: Initial check with a LEL meter to determine combustible gas and oxygen levels is mandatory prior to tank cleaning startup. meter readings will determine the safety levels and give a reading to the background levels for reduction of LEL analysis. A heated pressure washer attached to a holding tank containing TxChem HE-1000™ solution will be used to wash the tank's interior. Combustible vapors will also be eliminated at this time. The TxChem He-1000™ solution will suppress any vapors while breaking down the hydrocarbon residue left in the tank. The contaminated media will then be available for disposal in a designated disposal site as non-haz or deposited on the ground (if so allowed) for bioremediation.

Vapor Suppression/Tank Degassing

Equipment: Pressure washer or discharge pump with fire nozzle

Application: TxChem HE-1000™ will be introduced to contaminated media by way of a pressure washer or discharge pump with fire nozzle (fogging setting). Blanket the media and saturate the air of the surrounding area to suppress the vapors. The effect will be immediate. If deemed necessary, the TxChem HE-1000™ solution can be introduced into the hydrocarbon media for added assurance of vapor suppression.

Soil Remediation

Equipment: Holding tank for TxChem HE-1000™ and water, discharge pump with fire nozzle, trackhoe, backhoe, or dozer.

Application: Analysis will need to be taken to establish background TPH of contaminated soil. The trackhoe/backhoe will begin to work the soil to the designated depth of the contamination and begin a stirring action while the TxChem HE-1000™ solution is being introduced into the soil. The trackhoe/backhoe will turn the soil into slurry and build a retaining wall around the site for protection from cross contamination of surrounding area or bio-cell. An analysis should be taken at 24 and 48 hours after treatment and also again at 7 days after treatment to determine the TPH reduction.

All suggestions and recommendations given above concerning the use of TxChem HE-1000™ are based on tests and data believed to be reliable. Because Texas EnviroChem Inc. cannot control the use of the product by others, no guarantee is either expressed or implied by any such suggestion or recommendation by Texas EnviroChem Inc. nor is any information contained in this leaflet to be construed as a recommendation to infringe any trademark or patent currently valid. Purchaser and user, before using, must determine the suitability of the product for its intended use and user assumes all risk and liability whatsoever in connection therewith. Neither seller nor manufacturer shall be liable, either in tort or in contract for any loss or damage direct or consequential arising out of the use of the product. To the extent any portion of this notice is found to be unenforceable, the remainder shall survive and remain in full force and effect.

TxChem HE-1000™

IN-SITU BIO-ENHANCEMENT PRODUCT

- Creates food source for indigenous microbes in hydrocarbon contamination.
- EPA safe based on U. S. EPA LC-50 for use around sensitive ecosystems.

TxChem HE-1000™ will accelerate the microbial degradation of hydrocarbon waste. TxChem HE-1000™ breaks down hydrocarbons and adds nutrients for microbes. TxChem HE-1000™ will provide an immediate change of color from black to brown and eliminate hydrocarbon odor.

BENEFITS

Reduction of TPH (Total Petroleum Hydrocarbons) in soils, drill cuttings, water, mill scale, and any hydrocarbon contaminated media.

By using TxChem HE-1000™, the hydrocarbon chain is broken down into small, minute particles that becomes a food source for the indigenous microbes.

TxChem HE-1000™ can *reduce* the TPH levels in contaminated media by as much as **95%** within **24-48** hours.

APPLICATIONS

- 1. Pit closures
- 2. Oil Spill
- 3. Surface Spills
- 4. Compressor Stations
- 5. Pipeline and Flow line leaks
- 6. Well head and tank farm leaks
- 7. Highway Spills
- 8. Tank cleaning
- 9. Drill cuttings
- 10. Tank/Vapor Suppression
- 11. Soil remediation

Agitation is key. Greater agitation produces improved results and quicker degradation.

TxChem HE-1000™

Hydrocarbons that TxChem HE-1000™ will bio-degrade:

Crude oil tank bottoms Gasoline

Crude Oil Diesel

Used Oil Jet Fuel

Hydraulic Fluids Bunker Fuels

Benzene

Contaminated Medias:

Soil Metals

Water Wellheads

Tanks Refineries

Pits Barges

Vapors Ships

Equipment Drilling Platforms

Roadways Sumps

Drill cuttings Mill Scale

Water Treatment Plants

All suggestions and recommendations given above concerning the use of TxChem HE-1000™ are based on tests and data believed to be reliable. Because Texas EnviroChem Inc. cannot control the use of the product by others, no guarantee is either expressed or implied by any such suggestion or recommendation by Texas EnviroChem Inc. nor is any information contained in this leaflet to be construed as a recommendation to infringe any trademark or patent currently valid. Purchaser and user, before using, must determine the suitability of the product for its intended use and user assumes all risk and liability whatsoever in connection therewith. Neither seller nor manufacturer shall be liable, either in tort or in contract for any loss or damage direct or consequential arising out of the use of the product. To the extent any portion of this notice is found to be unenforceable, the remainder shall survive and remain in full force and effect.

Material Safety Data Sheet

----- Section 1 • Chemical Product and Company Identification -----

Product Name: TxChem ACL

Company:

Emergency Telephone Numbers:

Texas EnviroChem, Inc.

24 hrs Chem-Trec 800-424-9300 [within continental US]

11659 Jones RD. PMB 348 Houston, TX 77070 USA

Phone 832-247-4984

Revised March 2006

----- Section 2 • Composition, Information on Ingredients -----

Component	CAS No.	OSHA HCS Hazard(s)
Hydrocarbons, terpene processing by-products	6 8 956-56-9	Flammable Liquid. Skin and eye irritant.
EC Classifications: Xi R36 R38 S24 S25	Irritant Irritating to eye. Irritating to skin Avoid contact v Avoid contact v	n. vith skin.
•	Section	3 • Hazards Identification
Emergency Overview:		
Appearance: Odor: Risk Summary:		·
Potential Health Effects:		

Inhalation: Vapors may cause respiratory passage irritation in confined spaces. No known long-

term hazards.

Irritating to eyes. Eves: Skin: Irritating to skin.

Will be irritating to tissues. May be harmful or fatal if swallowed in sufficient quantity. Ingestion:

See Section 11 (Toxicological information) for further information.

Chronic: Not considered a carcinogen by NTP, IARC, or OSHA. No known chronic

indications.

Environmental Hazards:

Similar products are known to have some aquatic toxicity. Also, similar products are known to interfere with water treatment processes. These products are known to readily biodegrade and thus do not pose long-term dangers to the environment.

Section 4	• First Aid	Measures	
-----------	-------------	----------	--

Inhalation: Remove person to a ventilated area. See a physician if breathing difficulty persists. Eyes:

Remove contact lenses. Flush with water for at least 15 minutes. See a physician if

irritation persists.

Remove contaminated clothing. Wash affected areas with soap and water. See a physician Skin:

if irritation persists.

Ingestion: Drink lots of water to dilute substance. See a physician.

----- Section 5 • Fire Fighting Measures -----

Flashpoint 42°C (108°F) TCC. Vapors can combust and liquids can burn when Flammable Properties:

temperatures reach or exceed the flashpoint.

Extinguishing Media: Carbon dioxide, dry chemical, foam,

Fire Fighting Instructions:

Use CO2, foam or dry chemical. Use water as a spray only to lower temperature. This substance floats on

water. Treat as an oil fire.

----- Section 6 • Accidental Release Measures -----

Personal Precautions: See Section 8, Personal Protection.

Environmental Precautions: Do not discharge into surface waters. May be toxic to aquatic organisms.

See Section 3 (Environmental Hazards) and Section 12 (Ecological

Information) for further information.

Containment and Cleanup Techniques:

Exercise caution as hard floors coated with this material may be slippery. Small spills may be absorbed by sand or oil-absorbing materials. Large spills should be collected by pumping into closed containers for recovery or disposal. Spills over water will float and may be collected by oil absorbants or by skimming.

----- Section 7 • Handling and Storage -----

Handling: Wear chemical safety glasses or goggles and chemically resistant gloves. A chemically resistant

apron may be used to protect clothing. A respirator may be worn to prevent breathing spray mists or

heated fumes.

Storage: Store in tightly closed metal or glass containers. Containers should be full or blanketed by inert gas.

Do not store in plastic. Avoid heat, sparks, and open flames.

----- Section 8 • Exposure Controls, Personal Protection -----

Mechanical ventillation may be necessary at elevated temperatures to control odor. Ventilation: Organic vapor cartridge may be used to prevent irritation from mists and vapors and Respiratory Protection:

for odor elimination.

Skin Protection: Wear chemically resistant rubber gloves and apron (viton, nitrile, and or PVC) to

minimize exposure.

Wear chemical safety glasses, goggles, or face shield to prevent eye contact. Eve Protection:

----- Section 9 • Physical and Chemical Properties -----

Colorless to pale yellow liquid. Appearance:

160°C (320°F). Boiling Point: Flashpoint: 42°C (108°F) TCC. Typical terpene Odor:

Oxidizing Properties: This substance combusts in the presence of strong oxidizers.

None (not water soluble). pH: Physical State: Liquid.

Solubility in water: less than 0.1%. Specific Gravity: 0.84 @ 25°C. Vapor Pressure: 2 mmHg at 20°C.

>1 (air = 1.0). Vapor Density:

----- Section 10 • Stability and Reactivity -----

Conditions to Avoid: Excessive temperatures and/or contact with air may cause decomposition or

oxidation.

Materials to Avoid: Avoid contact with strong acids, strong bases, and oxidizing agents. Reacts

explosively with iodine pentafluoroethylene.

Decomposition Products: Incomplete decomposition product may include CO. Ultimate decomposition

products are CO2 and water.

----- Section 11 • Toxicological Information -----

Target Organs:

Eves and skin.

Routes of Entry:

Eye and skin contact.

Acute Toxicity:

LPR-Mus TD_{LO}: 4800mg/kg/8W-I:ETA.

ORL-Mus TDLo: 67g/kg/39W-I:ETA.

Chronic Toxicity:

No known chronic indications.

----- Section 12 • Ecological Information -----

Biodegradability:

Not determined. Related chemicals are known to be biodegradable.

Aquatic Toxicity:

Marine Pollutant. This substance is immiscible with water. This substance is known to evaporate quickly and biodegrade and should not cause long-term

effects.

Bioaccumulation Potential:

Not Determined. Related chemicals are known to be non-accumulating in the

environment.

----- Section 13 • Disposal Considerations -----

RCRA Hazardous Waste:

Classified as a RCRA Hazardous waste (flammability characteristic).

Disposal Methods:

Dispose of this material by incineration or recovery at a government-approved

disposal facility.

----- Section 14 • Transport Information -----

DOT:

Proper Shipping Name:

Terpene hydrocarbons, n.o.s., 3, UN2319, PG III

Exceptions:

Chemicals, n.o.i. (Not Regulated) - allowable for shipment in non-bulk containers.

IMO: IATA: Terpene Hydrocarbons, n.o.s., 3, UN2319, PG III Terpene hydrocarbons, n.o.s., 3, UN2319, PGIII.

----- Section 15 • Regulatory Information -----

OSHA - Hazardous by definition of 29CFR1910.1200 for flammability.

CERCLA - (SARA Title III) Hazard Category - Fire hazard.

----- Section 16 • Other Information -----

Hazard Ratings (0 = minimal, 1 = slight, 2 = moderate, 3 = serious, 4 = severe)

HMIS: Health = 2 Flammability = 2 Reactivity = 0 NFPA: Health = 1 Flammability = 2 Reactivity = 0

The information contained in this document is believed to be current and accurate. It is given in good faith and without warranty, expressed or implied, as to its accuracy. Anyone using this product is solely responsible for determining its suitability in any given application.

MATERIAL SAFELY DATA SHEET

24 HOUR EMERGENCY NUMBER: (800) 424-9300 CHEMTREC REVISED – January 2001

I. PRODUCT IDENTIFICATION: EnviroChem ACLTM

Texas EnviroChem Inc., 9223 Solon Rd. Bldg. D Houston, TX 77064

EnviroChem ACL™

II. PRODUCT INFORMATION:

FORM: Liquid ODOR: Lavender COLOR: Clear Amber Liquid FORMULA: Proprietary

III. PHYSICAL AND CHEMICAL DATA:

BOILING POINT: 350° FREEZING POINT: N/A

SPECIFIC GRAVITY: 0.087 VAPOR PRESSURE (m HG): 4.7 VAPOR DENSITY: 1.0 SOLUBILITY IN H₂O: Negligible

IV. REACTIVITY:

STABILITY: Stable INCOMPATIBILITY: None

DECOMPOSITION PRODUCTS: N/A

V. FIRE AND EXPLOSION HAZARD DATA:

FLASH POINT: 125-135° F pH: N/A

EXTINGUISHING MEDIA: Water, Dry Chemical, Foam CO₂

FIRE FIGHTING PROCEDURES: Self contained breathing apparatus and protective clothing.

UNUSUAL FIRE HAZARDS: Avoid heat, sparks, and open flame.

VI. HEALTH HAZARD DATA:

EYE CONTACT: Wash eye thoroughly for 15 minutes: including upper and lower lids. Seek medical assistance.

SKIN CONTACT: Irritation possible, wash with soap and water for 15 minutes. If irritation persists, call physician.

INHALATION: Move to well ventilated area: if breathing difficulties persist after 15 minutes, seek medical assistance.

INGESTION: If conscious, administer 2 glasses of water. Seed medical assistance. Do not induce vomiting unless directed.

ACUTE: May irritate eyes, respiratory tract, skin.

CHRONIC: Prolonged contact with skin may result in dryness due to removal of skin oil.

VII. SPILL & DISPOSAL DATA;

ACCIDENTAL SPILLPROCEDURES: Absorb in inert material & place in DOT approved containers for disposal in accordance with local, state, and federal regulations. Larger spills may be collected and repackaged.

HANDLING AND STORAGE: Keep tightly closed, store in a cool, dry place.

VIII. PROTECTIVE EQUIPMENT TO BE USED:

GLOVES: Rubber EYE PROTECTION: Goggles recommended

VENTILATION: Recommended EXHAUST: Mechanical/local

RESPIRATORY PROTECTION: Respirator in confined areas.

OTHER PROTECTIVE EQUIPMENT: As required to avoid skin contact.

IX. TRANSPORT INFORMATION:

The following may not apply to all shipping situations. Consult 49 CFR mode specific/quantity -specific shipping data.

DOT PROPER SHIPPING NAME: Not regulated DOT IDENTIFICATION: N/A DOT HAZARD CLASS/DIVISION: Not hazardous DOT PACKAGING GROUP: N/A

TYPE LABEL REQUIRED: None

*For specific Ltd. Qty. requirement, see DOT regulation 49 CFR

ATTENTION: To the best of out knowledge, the information contained herein is accurate. However, TECl does not assume any liability for the accuracy or completeness of this information. Final determination of the suitability of any material is the sole responsibility of the user. All materials may present unknown health hazards and should be used with caution. Any product which is not in conformance with this DATA SHEET or which involves using the product in combination with any other process is the sole responsibility of the user.

Complies with OSHA's Hazard Communication Standard 20 CFR 1010.1200

LAFAYETTE AREA LAB 500 AMBASSADOR CAFPERY PKWA SCOTT, LOUISIANA ZIP 70563-6544 PHONE: (337) 237-4775

Mysidopsis bahia

48-HOUR ACUTE -STATIC RENEWAL- BIOASSAY REPORT STD. DISPERSANT TOXICITY TEST

40 CFR, CHAPTER 1, PART 300, DEC 11, 2001

FOR

Texas EnviroChem, Inc.
Sample ID: HE-1000
Sample Collected on: 12/21/01
Sample Received: 12/21/01
Collected by: Texas EnviroChem, Inc.

SPL Identification No.: L1-0201031-01C Date Reported: January 9, 2002

PREPARED BY: SPL, Incorporated 500 Ambassador Caffery Parkway Scott, Louisiana 70583-8544 (337) 237-4775

FOR:

Texas EnviroChem, Inc. 9223 Solon Bldg., D Houston, TX 77064 Attn: Johnny L. Hunt

TEST SUMMARY:

Test Started:

LC50:

01/02/02@ 14:10

118,300 ppm

Test Terminated: 01/04/02@ 13:05

Method Used: TS-K

Analyzed by: T. Gomez, L. Granados, K. Bui, S. Robert, D.Meaux

Sample passes EPA 30,000 ppm toxicity limits

Eloy Granados

Manager Biomonitoring Services

Della Fontenot

Bioassay Document Control

Johnny L. Hunt – President Texas EnviroChem, Inc.

Corporate Seal

information Toxicology international Inc.____

INFO. LOX. IN LERNATIONAL inc.

3904 Stratum Drive Riverside. CA 92505 USA Ph: (951)352-9959 Fax: (951)785-8539 e-mail: drgutzar@infotox.com web: wwW-infotox.com

Page 1 of2

Hef: Z_111504-1 Date: 11-30-2004

Client:

Texas EnviroChem, Inc.. 9223 Solon Road, Bldg. A

Houston, TX 77064

Toxicologkt: Dr. Gulzar H. Ahmad, Ph.D., DABT., C[H, ERT., CHMM., CSAC.

Diplomate American Board of Toxicology

Diplomate American Board of Industrial Hygiene

EUROTOX Registration in Toxicology

Certification in Safety Assessment of Cosmetics, under the EU Directive

Member; Cosmetic, Toiletry & Fragrance Association (CTFA)

Member: Independent Cosmetic Manufacturers Association (ICMAD)

Member; American Board on Industrial Hygiene (ABIH) Member; National Art Materials Trade Association (NAMTA)

Member; Society of Cosmetic Chemists (SCC)

Reference:

LHAMA Review and Certification for the

"Board Surface Cleaner: Introduction

1 reviewed the formulation of the "Cleaner", submitted to me on November 1 5, 2004. The formulation was reviewed according to the US Consumer Product Safety Commission's guideline at 16 CFR 1500.135, using criteria out lined in ASTM D-4236.

In this review the available data, including the relevant data from the National Toxicology Program, International Agencies for Research on Cancer and other sources in the National Library of Medicine data bank were considered to assess the need for **chronic** health hazard warning. The carcinogenicity, reproductive hazard, neurotoxicity, bioavai lability and potential exposures were also considered and in the absence of specific data, a reasonable judgment was made to assure a realistic assessment of the hazard on the ultimate **art material package.**

My review is based only on the submitted formula (Appendex-1); please advise if there is an alteration to this formula. The validity of this review is dependent upon the validity of

the disclosure by both the manufacturers of the components and that of the finished product. Moreover, I used my best professional capabilities in performing this review and if you wish to use this opinion, Info. Tox. International, Inc., any of its employees and/or owners including myself will not be held liable for any injury or damage resulting from the use of this product.

This review will need to be updated every five years or upon reformation or upon our or your learning of new significant safety information. Moreover, in the event of any additional guidance from the CPSC or any applicable regulatory agencies, we will need to comply with that guidance in all respects.

Conclusion.

The amount of the "Cleaner" per container (2 oz) does not contain any material in quantity which is sufficient enough to cause *chronic toxicity* among users when used as intended. Intended for children over 6 years of age. Adult supervision required. The product can be labeled as "CONFORMS TO ASTM D-4236."

NO'I'K: ASTM D-4236 does not cover acute health effects. The product may cause acute health effects such as eye, skin and respiratory tract irritation and/of damage.

APPENDIX J

SOIL INCINERATION PROPOSAL AND INFORMATION PREPARED BY NEVADA THERMAL SERVICES, L.L.C.

NEVADA THERMAL SERVICES, L.L.C.

2600 E MUSTANG ROAD - SPARKS, NV 89434 - (775) 342-0807 - FAX (775) 342-0009

May 21, 2009

To: Scott Bittenger, Stratus Environmental

From: Phil Theriault, Nevada Thermal Services

Reference: Oakland, CA

Former Gas Station

Onsite Thermal Treatment Services

Scott, Below is the bid breakdown for the thermal option in Oakland. Please contact me at your convenience if you have any questions or if I can provide anything further at this time.

Thanks for the opportunity to be of service.

Phil

	1	
Date:	5/21/09	
Job Name:	Service Station	
Location:	Oakland, CA	
Bid Workup By:	PJT	
Bid Using Plant #	NTS Astec Plant	
Proposal Submitted To:	Stratus ENV	
Quantity Tons:	12500	
Project Schedule Time Frame (months)	2	
	Cost	Per ton
Mobilization	\$139,749.43	\$11.18
Demobilization	\$82,879.43	\$6.63
Administrative	\$47,407.80	\$3.79
Submittals/plant related testing	\$9,075.00	\$0.73
Permitting/Stack Testing	Not Included	Not Included
Thermal Treatment	\$754,637.30	\$60.37
Health & Safety	\$31,702.00	\$2.54
Total	\$1,065,450.96	\$85.24
Qualifiers		, ,
Does not account for prevailing wages		
Does not include pad construction costs if required		
Does not include bringing local utilities to pad area -	-) Substantia Cost	
Does not include permitting or POP Test or CEMs		
Water is included at \$5.00/1000 gallons		
Propane is included at .85/gallon		
Does not include soil testing of any kind		

APPENDIX K

ELECTRICAL RESISTANCE HEATING PROPOSAL AND INFORMATION PREPARED BY THERMAL REMEDIATION SERVICES, INC.

THERMAL REMEDIATION SERVICES INC.

Former USA Station Remediation Parameters

"TRS guarantees excellence and remediation certainty. Our word is who we are."

www.thermalrs.com

Electrical Resistance Heating Treatment Area: 17,000 sq. ft
Average Shallow Extent of ERH: 1 ft
Average Deep Extent of ERH: 30 ft
Typical Depth to Groundwater: 17.5 ft
Treatment Volume: 18,300 cu. yd
Assumed Total Organic Carbon Content of Soil: 2.00%

Number of Electrodes: 68
Electrode Boring Diameter (in.): 12-inch o.d.
Average Distance Between Electrodes: 17 ft
Total Depth of Electrodes: 31 ft
Depth to Top of Electrode Conductive Zone: 3 ft
Number of Co-located Vapor Recovery Wells: 68

Number of Temperature Monitoring Points: 8 (7 sensors each) Is a New Insulating Surface Cap Required? yes, 100% coverage

Controlling Contaminant: gasoline
Average Clean-up Percent: 99%
Assumed VOC Mass: 8,900 lb

Vapor Recovery Air Flow Rate: 440 scfm using a 40-hp vapor recovery blower

Condensate Production Rate: 6 gpm

Vapor Treatment Method:

Assumed Activated Carbon Required: 0,000 lb

Power Control Unit (PCU) Capacity: 2000 kW

Average Electrical Heating Power Input: 1122 kW

Total Heating Treatment Time: 115 - 165 days

Design Remediation Energy (kWh): 3,430,000

Assumed Number of Confirmatory Borings: 8 With 6 soil samples per boring.

The above remediation parameters are estimated +/- 20%. Final parameters will be determined during system design.

oxidizer

Budgetary (+/- 20%) Standard Fixed Price for Former USA Station

Thermal Remediation Services Price	Price	Percent
Design, Work Plans, Permits:	\$85,000	4%
Electrode Materials Mobilization:	\$302,000	14% Payment due before starting field work.
Subsurface Installation:	\$146,000	7%
Surface Installation and Start-up:	\$295,000	14%
Remediation System Operation:	\$500,000	23%
Demobilization and Final Report:	\$96,000	4%
Total TRS Price	\$1,424,000	65% Based on payment terms of net 30 days.

Estimated Costs by Others	Cost	Percent	-
Drilling and Soil Sampling:	\$225,000	10%	assumes \$71 per ft
Drill Cuttings and Waste Disposal:	\$12,000	1%	assumes \$150 per ton
Electrical Utility Connection to PCU:	\$30,000	1%	•
Electrical Energy Usage:	\$465,000	21%	assumes \$0.13 per kWh
Carbon Usage, Transportation & Regeneration:	\$0	0%	•
Water/Condensate Disposal:	\$1,000	0%	
Other Operational Costs:	\$19,000	1%	includes vapor sampling
Total Estimated Costs by Others	\$752,000	35%	
			carbon neutral info
Total Remediation Cost:	\$2,176,000	\$119 per cu. yd	

\$9,700

"Costs by Others" are conservatively high. TRS recommends using site knowledge or getting quotes.

_ Carbonfund.org _

0% Ask us how!

Prepared for Scott Bittinger, (530) 676 2062, sbittinger@stratusinc.net

Go Carbon Neutral (No Net CO2), Add:

Some Included Items for Remediation of Former USA Station

		Shared	Scope	Estimated Cost by Others
Design, Work Plans, Permits:	TRS Scope	Scope	by Others	(included above)
Design or "Kick-off" Meeting		•	_	`
Work Plan		•		
Health and Safety Plan		•		
QA/QC Plan				
Sample Analysis Plan	۵		≘	
Air Permit		•	G	# additional 66sts
Sewer Discharge Permit				I adaltional and
Building Permit	٥		Ξ	
Regulatory Negotiations and Client Interface			h	difficult for TRS to estimate
Subsurface Installation:				
Pre-installation Building Structural Survey				
Electrode Materials and Well Screen	•			
Drilling Subcontractor for Electrodes			=	\$150,080 for 2,108 feet.
Drilling Subcontractor for VR Wells		=	_	co-located with electrodes
Drilling Subcontractor for TMPs	_	_	•	\$8,890 for 256 feet.
Drilling Subcontractor for New MWs	_		_	# - post treatment
Abandonment/Replacement of Existing PVC Wells				difficult for TRS to estimate \$ 24,000,00
Concrete Coring		=	-	\$9,420 for 76 cores.
Utility Locator Survey	0		-	\$1,180
Installation (pre-ERH) Soil Sample Analysis			-	\$7,200 for 48 samples.
Drill Cutting Disposal			-	\$12,450 for 83 tons.
Drill Cutting Disposal Labor			_	\$2,750
Forklift or Skid-Steer for Drilling		<u> </u>	-	\$1,530
Photoionization Detector for Drilling			-	\$2,990
Boring Logs and Report			-	\$2,610
TRS On-Site Electrode Installation Supervision	.	9	<u>-</u> 0	assumes 33 work days of drilling
Traffic-rated Well Vaults and Installation	=			assumes oo work days or drilling
Trenching and Restoration			5	
New Insulating Surface Cap	<u> </u>			
Biological Amendment and Addition	_	0		
Surface Installation and Start up				
Surface Installation and Start-up:				
Surface Remediation Equipment Mobilization	•	а		
Crane to Offload/Position Equipment	•			
Perimeter Fence and Security System	•			
Vapor Recovery Piping Steam Condenser	_			
40 hp VR Blower	_	_		
Granular Activated Carbon and Regeneration	_			
3	_	D		
600 scfm Fuel Oxidizer	-			
Oil-Water Separator		0	=	not required
Equipment Sound Wall		۵	5	000.000
Electrical Utility Connection to PCU		□	•	\$30,000
Telephone Connection to PCU Garden Hase Connection to Condenser			П	2000
Galdell Mose Colliection to Colldensel	ī		•	\$380
Remediation System Operation:				
ERH Control and Temperature Monitoring	•			
Vapor Sampling and Analysis				\$4,344 for 32 samples.
Condensate/Discharge Sampling and Analysis				\$2,022 for 13 samples.
Sampling Labor and Operational Checks				\$12,022 for 113 hours.
Groundwater Sampling and Analysis			•	difficult for TRS to estimate
Electricity Usage			•	\$465,000 for 3,580,000 kWh.
Offset for Carbon Dioxide Emissions			۵	
Water/Condensate Disposal	ū	D D	p	\$1,000 for 39,600 gallons.
Separate Phase Product Disposal			=	none expected
Demobilization and Final Report:				± 17,000,00
Drilling Subcontractor for Confirmatory Borings	<u> </u>	В	. 4	\$8,330 for 240 feet.
Soil Sample Analysis			• `	\$7,2 <u>0</u> 0 for 48 samples.
Well Abandonment		u 0	• -	\$15,600 for 68 wells.
Demobilize Surface Equipment	•	0	• (4.0,000 of 00 Wells.
Final Report	-			too low \$60,000,00
- 	_	_	k.J	MO IOM THOO JOS, DO

HELDOME

Chechical Thurleburca Franking (CTIF) is a functional big outple to the transmit our armadism inchange.

Effectives electively to produce from it to mainsafure. That then charges seems and bead exception and object the continue of

EFFs chang both told and growthoday is all, without governation of program, it can be apart in marked extract play that in a great in marked extract play that is a great in the case of the part of t

Communicated FRA fronts the freedomina area to the noming point of the constructions and generally and relations as The name Department upon communicated type and depart of refrectations, this is approximately 100°C.

Lower termineral of historical of FPM are the burg bound galor. We never acted the effects of hydropole, of unconditional discontinuous formal acted to the condition of the conditions. The expense acted by the box of the provider of the conditions of the conditions of the conditions of the conditions.

This war prostices a generalistic of Einstein by a full sende application.

Begin Tour

USING EXISTING SITE POWER

2711 man I-phasa alachichy bren Bar propos linea comby nalpanni le meli ala Cherical merican si industrial heillian son man'h nelegaño lecuer mondo.

Presidentary, IPAS and arranga for an egypadoni alandrical marance commented Chances to the specially reprediction communical

TPF care decreases area (AC), areales for alectricis professor areasolate with their carried CC). ETH will not be recovering and all their areason and their areasons.

Dier 2004 Premier Control Aufei PC hie eine Verleiben bereiben wer Top verg Hiew Michie Ny de Verr Control in die deptie de Michie Theo, abschiedy current bereiber ding reinlich et Gen 1754 Genorenn wen.

TRS ERH Technical Process Tour

ERH POWER CONTROL UNITS

France from FCL, and age is energined forced for a first and the first and forced for a first and forced from the first forced from FCL to The constant and agreement from FCL to The constant and agreement forced forced from the forced from the forced from the forced from the forced from the forced from the forced from the first from the forced from the first from

TPG counts from typis and most circums from al CRM spaceintly orgalization to the wants. Our PCUs are along at feld, 700, feld, 2 300, and a feld incoming \$40.

The charmin of our equipment fined allows us to apply ETTH at allow semping boars would dry clourants or you challend to an income collegy and magic technique between

Typhindy, wand ATI-1 projects can be geographed is I-3 coordin and began projects Is him Tun-1-pow

SHETY

Subulg to our primary corrector TITS has a primary corrector TITS has a primary sufficient Corp.

Can argapentar in majorectural for autory. Thus had some articles of closer provincing anyther and a particles of particles of the recombination applications of appropriate particles of the par

The typically narroand can remediate as around which places that anearly foreing and parking recibes closectors. I consider the paracetric foreign and paracetric foreign and transfer are first production, and first an emiliar increasing and transfer in and first an emiliar increasing and transfer in a section of the constant and transfer in a section of the consta

REMOTE OPERATIONS AND MONITORING

Our ERH systems can be remotely monitored and operated through the PCU control computer.

The slide to the right shows a typical PCU Main Operations Screen. The screen displays the electrical power being applied to a site in volts (V), amps (A) and kilowatts (kW).

From the Main Operating Screen, the PCU can be turned on and off and power input into the subsurface can be adjusted.

Remote operators can also record subsurface temperature, control drip system operations, and monitor conditions within the condenser and other key remediation system components.

TRS ERH Technical Process Tour

ERH ELECTRODE AND VAPOR RECOVERY WELL FIELD

TITE works with our claims to develop E7811
foreign paisermiers for each also. These
paisermiers housed soil and groundwished
claiming goals, remediation time harms,
heads of also account desired thing for
some finite account desired goals armines.

A long shough component in the ingred of free almostrate and super recovery (VT) well free. The control is the Table free and the property of the control is to the satisfactor of the s

SYSTEM STARTUP

TPPS conducts it sail alartiga volting at unch infidi one. First proper againment aperation is excluded one of aperation is excluded by the sail again and aperation of the sail again and a sail again again are perfectly one of the overally again

THE configuration observations to children observation from the continues depth observation as because depth observation and the configuration and income an artist observation from all and the configuration of the wall condition to the from all conditions of the wall condition to the flow of absorbing that generation areas to be about the first and an area of the condition.

∢previous | next **)**►

CO-LOCATED ELECTRODES AND RECOVERY WELLS

Can mineración are typicadly co-incates and a migra mineración will. Pare mineración contra mand

Din algo irodali molis piques notractica philips ayadomu into con macavany malla for the basiantanacasi masavany of IAMPLa and havay nyobocastana

Bell gyn han litte office en alexicate
geneing Certurrinant gyn, dagde of
geneididen, and the applied recount love
mere affect on the languratures actions
county (TIT) for the cluberes between
about the

VAPOR, NAPLAND STEAM RECOVERY SYSTEM

A nacional liberous in panel in previdu confluence nobles elebe consecut enciend five professed avec Influence no unique conf confundament expert band Incidentica.

T fin messeny molts arn not up ka mailepinasa ostrución. Din vassana som miss ta umal la urinnia 1.14.871.a sa pasanshuntur.

Emile najece accuracy positio communitad to consugance popula find scalam coper and utomas from the achimistace to the consumant.

THE HEATING AND CLEANING PROCESS

Consta paternaminilly and became and action with action with almost and devices for concentration one of the concentration of the concentration of the control of the contr

The first Parts. The coordinate effects of phases
Livenge end aleses in bything Hearnion.
Land which his treet has presented the example
may have a reconsting formalism where they
can be recovered.

Bu konstilly the recessity and ignerific grantly of combininaria, EPP- and unused runtly-gluon animachen [AIPE] can be anned to remove him beharing by from observe and as gamering, flavor, jet bank od compacts and com to:

SUBSURFACE TEMPERATURE MONITORING

Toroporustare memberky podrát [TAPe] and locatori lastvanos din edecentrina Paragina a Die materiam anna Easta Thi^{to} commiss gringa ed Paramasengden kudullasi at absad E-best dagin krimayada

Safourface largementary code is explanded explanation to fine PCLI control control for fined made available for neuronoursemboring and according

<u>. T</u>ina dala providus a finae-diramakuud prilla et udun ikoa lompoonikana Dirangkon I in 2 1931 miradalahan produss.

∢previous | next ▶

SEPARATING CONTAMINANT VAPORS FROM STEAM

The TFT process is a real emission of water from the administrace. Where is respected as parameter aming from arbaneous musikplanta administracion. In directly arbaneous from the administrace.

The CTG consumer augustus
conductional supara boar about not in an
accoductional supara boar about not in an
accoduct working assergie of library's Law
purfficulty, As supera and about plans
through the conductor, the rangerity of the
conturnational para (ADCS), premius in the
vaper abots.

Thin in adjoint again, an fine considerment planter them that but announce a county alternation and the considerands and the guest for burnificial grayscenes.

USES OF CONDENSATE

Hamband the condustrial in an afficient, condustrial many be conditioned from product of the condustrial from a first and of the condustrial from the condustrial from a first condustrial from a fi

hs Two consumment, we refer much in consumed by the consuming bosons and characters we have. I is, the model has chip washes he has selectively be a windown substance combined at the coolhimotopic modulation.

Regional Diff Condensate is so cheer, I may exceed to preciously disput, in III it respectation it is typically disput, gen elicially in the person without Ferture transferated.

TRS ERH Technical Process Tour

UAPOR TREATMENT

Caraminiani angan are maind provis dindrango is tro nimasphero. Tro meni centros auper budmani multari la Caurulas Actionas Curtar (CAC).

Theorem or calaly'h condulate can alea bu wad lor allan effant frant balannan wallosta are approphaie are cent-allaciter.

TRS ERH Technical Process Tour

- The ERH process is rapid and remediation is complete.
- It is equally effective at cleaning soil or groundwater.
- THS has mot, or surpassed, all our contracted remediation goals and offers guaranteed cleanups.
- Soll and groundwater cleanups of >99.9% are achievable, as are HCLs.
- ERH can be applied undernasticocomied buildings without lear of voltage, vapors, or subsidence.
- Systems installed have a made aflow unrestricted public access to the treatment location.
- Our portermance is Equipmed. Our word is who we are, for more information please contact:

David Fleming 425-396-4266 or Homing Wilter mairs.com

∮previous

APPENDIX L

ORC ADVANCED® PRODUCT INFORMATION PREPARED BY REGENESIS, INC., PROPOSED SOIL BORING LOCATION MAP, AND DRILLING CONTRACTOR ESTIMATES FOR COMPLETING ORC INJECTION

PRODUCT BENEFITS

CRI

Highest amount of active oxygen in a controlled-release, oxygen producing compound

ORC Advanced® is the state-of-the-art technology for stimulating aerobic bioremediation. It offers unparalleled, maximum oxygen release for periods up to 12 months on a single injection and is specifically designed to minimize oxygen waste while maximizing contaminated site remediation.

ORC Advanced is a formulation of calcium oxyhydroxide which, upon hydration, releases oxygen and forms simple calcium hydroxide and water.

$$CaO(OH)_2 + H_2O \rightarrow \frac{1}{2}O_2 + Ca(OH)_2 + H_2O$$

PRODUCT BENEFITS

HIGHEST AVAILABLE OXYGEN CONTENT

More active oxygen (17%) plus Regenesis' patented controlled-release technology (CRT™) saves time and money by increasing degradation rates and improving remediation performance by providing more oxygen on a single injection. It is particularly effective at higher demand sites where oxygen may be limited and scavenged by competing carbon sources.

PATENTED CONTROLLED-RELEASE TECHNOLOGY (CRTTM)

Based on the same proven technology employed in the industry standard Oxygen Release Compound (ORC®), CRT allows for an efficient, long-term release of oxygen providing the optimal conditions for sustained aerobic biodegradation. This can save time and money by reducing the potential need for multiple applications. Also, oxygen release "lock-up" is avoided — an unfortunate problem experienced with commodity chemicals.

IN SITU APPLICATION

Remediation with ORC Advanced is typically more cost-effective than *ex situ* treatments. With the use of ORC Advanced there is minimal site disturbance with no above-ground piping or mechanical equipment, no operations and maintenance costs and no hazardous materials handling or disposal.

DEFINING THE SCIENCE BEHIND CONTROLLED-RELEASE TECHNOLOGY (CRT™)

Early on, Regenesis researchers noted that in order to optimally stimulate the natural attenuation of aerobically degradable contaminants, biologically usable oxygen was best supplied in low but constant concentrations. Big bursts of oxygen are wasteful and simply "bubble off", often generating undesirable foaming and producing unwanted preferential flow paths in the subsurface. Regenesis sought to solve this problem by controlling the rate of oxygen release from solid oxygen sources.

The answer was provided by the development of CRT. The CRT process involves intercalating (embedding) phosphates into the crystal structure of solid peroxygen molecules. This patented feature, now available in the ORC Advanced® formulation, slows the reaction that yields oxygen within the crystal, minimizing "bubble off" which can waste the majority of oxygen available in common solid peroxygen chemicals.

CRT provides "balance" — it slows down the rate of oxygen release while at the same time preventing "lock-up". Commodity solid peroxygen chemicals, when in contact with water, will

FIGURE 1: FILLING A PUMP WITH ORC ADVANCED SLURRY

produce an initial rapid and uncontrolled-release of oxygen. Then, as hydroxides form, a significant portion of the oxygen deeper in the crystal is made unavailable or becomes "locked-up." This undesirable effect is inefficient and costly. CRT prevents lock up and controls the rate of oxygen release, representing the state-of-the-art technology in passive oxygen delivery.

WWW.REGENESIS.COM

LEGEND

♠ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

MAV-6 ABANDONED MONITORING WELL LOCATION

PROPSED SOIL BORING LOCATION

EXTENT OF GRO IN GROUNDWATER

AND THE IN GROUNDWATER

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GRO, BENZENE, & MTBE IN GROUNDWATER ISO-CONCENTRATION CONTOUR MAP 1st QUARTER 2009 FIGURE

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

FACSIMILE ESTIMATE sbittinger@stratusinc.net June 29, 2009

Stratus Environmental Inc. 3330 Cameron Park Drive Suite 550 Cameron Park, California 95682

Attention: Scott Bittinger

Cost estimate for your ORC Probing Project at Foothill Blvd & 108th Avenue in Oakland, California.

SCOPE OF PROJECT: As per your fax on 6/24/09. 138 probes to 28 feet bgs. Injecting 12000 pounds ORC approximately 3600 gallon mixed with water, which is on site. Grout & patch as needed. No hand augering required.

ESTIMATE

		A I .	L		
6	10 Hour Days (60 Hours) Probing	ς, Inj	ecting & Groutin	ng	
	(6600 Geoprobe with Two Man C	rew)	_		
	•	@\$	3225.00 per hr.	\$13,500.00	
2	Mob/Demob (two different weeks) .	Approx.	960.00	
6	Days Additional Man Labor, Gro	ut &	Clean etc.	1,100.00	
6	Days Per Diem (3 Man Crew)			1,200.00	
6	Days (GS-20000 High Pressure G	rout	Pump & Trailer) 1,200.00	
4	Days (HRC Hot Tank & Steam C		-	500.00 m	inimum
6	500 Gallon Water Tank & Suppor	rt Tr	uck		
	Over 2 Weeks	(a)	300.00 per day	1,800.00	
120	Expendable HRC Drive Points	\tilde{a}	8.75 ea.	1,050.00	
85	Concrete Core Bit Usage up to 6"	thick	ζ.	·	
	•	(a)	25.00 ea.	If needed	
50	Bags Portland Cement Grout	\widetilde{a}	9.50 per bag	475.00	
2	Bags Bentonite Chips	\bar{a}	10.50 per bag	21.00	
	Bags Kwick Set Concrete Patch	$\widetilde{\boldsymbol{a}}$	9.50 per bag	If needed	
	Sales Tax, Markup & Misc.		Approx.	80.00	
	TOTAL ESTIMATE	;		\$21,886.00	1
				,	

This estimate might be a little on the high side but should be covered if any delays might arise. I still need a calculation from Regeniss to get an exact figure. Please let me know where we stand with our price.

Sincerely,

Dennis Ott EnProb Environmental Probing C-57 License 777007

GREGG DRILLING & TESTING, INC.

SPECIALIZING IN ENVIRONMENTAL, GEOTECHNICAL AND IN-SITU TESTING

June 23, 2009

STRATUS Environmental Inc. Mr. Scott Bittinger 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682 530-676-6004 sbittinger@stratusinc.net

SUBJECT: COST ESTIMATE FOR ORC INJECTION FOR THE PROJECT LOCATED IN OAKLAND, CALIFORNIA

Dear Mr. Bittinger:

Pursuant to your request, you will find the enclosed cost estimate for the project located in **Oakland, California**. A copy of this proposal is being emailed to you with a hard copy to follow in the mail today.

COST ESTIMATE:

Mob//Daily Travel 18 days at \$200.00 per day

\$3,600.00

Direct Push/Injection Services (includes rig and support equipment, not materials) to include:

Probe and inject 20 pounds of ORC Advanced compound at 138 locations to a depth of 28 feet. No soil sampling STRATUS will provide ORC.

18 days at \$3,200.00 per day

\$57,600.00

Materials to grout borings (10 feet per boring)

1,380 feet at \$2.00 per foot

\$2,760.00

TOTAL:

\$63,960.00

Page 2 Mr. Bittinger June 23, 2009

ASSUMPTIONS:

Level D safety protection
Site accessible for equipment
Asphalt or dirt surface
Water is available on site
Daily rate includes up to ten hours per day on-site
Additional time will be billed at rig rate plus \$35.00/per man, per hour
STRATUS will provide ORC compound

TERMS and CONDITIONS:

The preceding costs represent our best estimate for the tasks, as we understand them. The cost estimate does not reflect additional charges which would be incurred for standby time or adverse drilling conditions. The cost estimate does not include any taxes that may be charged. The client will be responsible for obtaining the necessary permits and for the clearance of underground utilities. The client will provide copies of USA notices to Gregg Drilling at least 72 hours prior to start of work so that we can use information contained in those notices to also notify USA, as required by law. Gregg Drilling will not be responsible for any damages to underground utilities. Client will be invoiced following completion of the work; all bills are due and payable within 30 days of the date of the invoice. Invoices not paid within 30 days will be subject to a 1.5% per month finance charge.

ACCEPTANCE of PROPOSAL:

Please sign and fax back a copy of this proposal to indicate acceptance of the proposal and conditions.

Accepted by: Client Nan	ne:		
Signature:		SET-ANNING AND AND AND AND AND AND AND AND AND AND	
Name (prir	nted):		
Title:			
Date:			

Gregg Drilling & Testing, Inc. would like to thank you for the opportunity to submit a bid on this proposed work and look forward to assisting you on this project. We will be pleased to discuss the details of this work and to provide any further information you may require.

Page 3 Mr. Bittinger June 23, 2009

Please feel free to contact me at (925) 313-5800 with any questions you may have.

Sincerely,

GREGG DRILLING & TESTING, INC.

Christopher Pruner/STRATUS SB Oakland 062309

Christopher Prurer

Operations Manger