RECEIVED

By dehloptoxic at 8:56 am, Feb 05, 2007

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

January 31, 2007 Project No. 2007-0057-01

Mr. Barney Chan Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Quarterly Groundwater Monitoring Report, Fourth Quarter 2006, for former USA Service Station No. 57, located at 10700 MacArthur Boulevard, Oakland, CA (LOP No. RO0000232)

Dear Mr. Chan:

Stratus Environmental, Inc. (Stratus), on behalf of USA Gasoline Corporation (USA), is submitting the attached report, which presents the results of fourth quarter 2006 quarterly monitoring, and sampling program and an update on remediation efforts at the former USA Service Station No. 57, located at 10700 MacArthur Boulevard, Oakland, California (Figure 1). This report is in compliance with Alameda County Department of Environmental Health (ACDEH) requirements for underground storage tank (UST) investigations.

If you have any questions regarding this report, please contact Gowri Kowtha at (530) 676-6001.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Sarah O. Salcedo, P.G.

Senior Geologist

Attachment: Quarterly Groundwater Monitoring Report, Fourth Quarter 2006

cc: Mr. Charles Miller, USA Gasoline Corporation Mr. Ken Phares, Jay-Phares Corporation

Mr. Ken Phares, Jay-Phares Corporation

Mr. Peter McIntyre, AEI Consultants

Date	January	31,	2007

USA GASOLINE QUARTERLY GROUNDWATER MONITORING REPORT

Facility No: <u>57</u> Address:	10700 MacArthur Blvd., Oakland, California
USA Gasoline Project Supervisor:	Charles Miller
•	Stratus Environmental, Inc./ Gowri S. Kowtha, P.E.
Consultant Project No:	
Primary Agency/Regulatory ID No:	Barney Chan, Alameda County Department of Environmental Health / RO0000232

WORK PERFORMED THIS QUARTER (Fourth 2006):

- 1. Stratus measured groundwater elevations and collected groundwater samples from wells S-1, S-2, MW-3, MW-6 through MW-8, EX-1, and EX-2 on October 17, 2006. Due to onsite construction activities, wells MW-4, MW-5, and EX-3 were covered by soil and these wells could not be monitored or sampled. In addition, well EX-4 could not be located.
- 2. Stratus conducted six site visits to collect field and laboratory parameters to evaluate and optimize the performance of the oxygen injection (iSOC™) system.
- 3. Stratus prepared and submitted the Sixth Dual Phase Extraction Event Report on December 12, 2006.
- 4. Stratus compiled and evaluated groundwater monitoring data.
- 5. Stratus moved the iSOC™ units from wells S-1 and MW-3 to EX-1 and EX-2.

WORK PROPOSED FOR NEXT QUARTER (First 2007):

- 1. The next sampling event is tentatively scheduled for January 2007. Groundwater samples will be collected for laboratory analysis from wells S-1, S-2, MW-3 through MW-8, and EX-1 through EX-4.
- 2. Groundwater samples will be analyzed for gasoline range organics (GRO) using U.S. Environmental Protection Agency Method (EPA) Method SW8015B/DHS Luft Manual, and for benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tertiary butyl ether (MTBE), tertiary butyl alcohol (TBA), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), and 1,2-dibromoethane (EDB) using EPA Method SW8260B.

Current Phase of Project:	Monitoring / Interim Remediation
Frequency of Groundwater Sampling:	All Wells = Quarterly
Frequency of Groundwater Monitoring:	Quarterly
Groundwater Sampling Date:	October 17, 2006
Is Free Product (FP) Present on Site:	No
FP Recovered This Quarter:	NA
Cumulative FP Recovered to Date:	NA
Approximate Depth to Groundwater:	9.22 to 16.59 feet below top of well casing
Groundwater Flow Direction:	South-southwest

Groundwater Gradient: 0.016 ft/ft

INTERIM REMEDIATION SYSTEM OPERATION AND PERFORMANCE

Equipment Inventory:

Oxygen Injection System (iSOC™-Manufactured by inVentures Technologies, Inc.)

Operational

Reporting Period:

October 12 through December 18, 2006

Historical Highest GRO Concentration:

160,000 μg/L (S-2, 1998)

Historical Highest Benzene Concentration:

13,000 μg/L (EX-2, 2005)

Historical Highest MTBE Concentration:

Highest GRO Concentration this Period: 31,000 μg/L (EX-2)

Highest Benzene Concentration this Period: 10,000 μg/L (EX-2)

ignest benzene doncentration that and a 10,000 µg/2 (2/2)

Highest MTBE Concentration this Period: 230 μg/L (EX-2)

DISCUSSION:

At the time of the fourth quarter 2006 monitoring event, groundwater elevations had decreased between 1.90 and 3.61 feet in wells S-1, S-1, MW-3, MW-6 through MW-8, EX-1, and EX-2 since the previous monitoring event (July 12, 2006). Depth-to-water measurements were converted to feet above mean sea level (MSL) and used to construct a groundwater elevation contour map (Figure 2). The groundwater elevations measured in wells EX-1 and EX-2 were not used in contour construction (as these wells are screened to only 25 feet below ground surface). The groundwater flow direction was generally to the south-southwest at an average gradient of approximately 0.016 ft/ft. South and radial groundwater flow patterns have been observed during previous monitoring events.

GRO, benzene, and MTBE were reported in wells S-2, MW-3, EX-1, and EX-2. MTBE was also reported in well S-1. The highest concentrations of GRO (31,000 μ g/L), benzene (10,000 μ g/L), and MTBE (230 μ g/L) were reported in well EX-2. TBA (50 μ g/L) was reported in well MW-3. 1,2-DCA was reported in wells MW-3 (21 μ g/L), EX-1 (30 μ g/L), and EX-2 (400 μ g/L). DIPE, ETBE, TAME, EDB, methanol, or ethanol were not reported in any of the wells. These results are generally consistent with historical analytical data. The laboratory noted that the pH in the preserved samples from wells S-1, EX-1, and EX-2 were above the EPA recommended limit of 2. As the reported results for these wells appear to be generally consistent with historical data, it appears that the elevated pH has not affected data quality. Analytical results of GRO, benzene, and MTBE for groundwater samples collected on October 17, 2006, are presented in Figure 3.

REMEDIATION SYSTEM STATUS

System Description

The iSOC™ oxygen injection system is a bioremediation technology that produces high levels of dissolved oxygen for in-situ biodegradation of petroleum hydrocarbon constituents. The iSOC™ system consists of individual injection units (1.62 inches in diameter and approximately 15 inches in length) made of stainless steel, and an industrial grade oxygen cylinder. The individual injections units contain a micro-flow controller that regulates the flow based on the static head and pressure setting at the oxygen cylinder. The injection units also contain micro-porous hollow fibers, which provide a significant mass transfer area and create an ultra saturation zone when oxygen gas pressure is maintained lower than the static groundwater pressure.

The individual injection units were placed in wells S-1, S-2, and MW-3 and each were connected to a 250 cubic centimeter (cc) oxygen cylinder using a single run $\frac{1}{4}$ -inch diameter tubing. On December 18, 2006 iSOCTM units were moved from wells S-1 and S-3 to wells EX-1 and EX-2.

Monitoring Plan

The iSOC™ oxygen injection system startup was initiated on January 18, 2006. Monitoring wells EX-1 through EX-3 are used as observation wells to monitor the performance of the oxygen injection system. Monitoring wells MW-7 and MW-8 are used as background wells to evaluate and monitor for natural geochemical changes in groundwater. The following field and laboratory parameters are monitored periodically to evaluate and optimize the performance of the oxygen injection system.

Field Parameters:

Depth to water, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP),

specific conductivity, and temperature.

Laboratory Parameters: GRO, BTEX, BOD, total and ferrous iron, heterotrophic plate counts, total organic carbon, total dissolved solids, nitrates, nitrites, ammonia, sulfates, sulfides, total

phosphorus and orthophosphate.

Since system start-up, field parameters are collected on a bi-monthly basis, and laboratory parameters are collected on a quarterly basis. Table 3 presents the sampling frequency, field and laboratory parameters analyzed, and potential significance of both laboratory and field parameters.

Results

The field and analytical parameters collected to date to evaluate and optimize the performance of the oxygen injection system are presented in Tables 4 and 5.

The average DO levels in the injection wells S-1, S-2, and MW-3 (Figure 4) during the fourth quarter 2006 were at 11.83 mg/L, 6.61 mg/L, and 4.40 mg/L, respectively. The average DO levels in the observation wells (EX-1 and EX-2) and the background monitoring wells (MW-7 and MW-8) were in the ranges of 1.64 mg/L to 2.83 mg/L, and 3.88 mg/L to 5.20 mg/L, respectively (Figure 5). Based on the bio-parameter data available, the heterotrophic plate counts reported for observation wells (EX-1 and EX-2) generally appear to be greater than the plate counts reported for background monitoring wells (MW-7 and MW-8). However, a consistent pattern or correlation of heterotrophic plate counts either with the variation in DO levels or the petroleum hydrocarbon concentrations could not be identified in the data available to date.

The GRO and benzene concentrations appear to have declined at wells S-1, S-2, and MW-3 (these wells were being used as oxygen injection wells at the time of sampling), since the start-up of the oxygen injection system. MTBE concentrations in injection well S-1 also appears to have decreased since the startup of the iSOC™ system; however, MTBE concentrations at injection wells S-2 and MW-3 have remained relatively stable since startup. In observation wells EX-1 and EX-2, increasing trends in GRO, benzene, and MTBE are noted since iSOC™ began. Limited data from observation well EX-3 indicates apparent decreasing trends in GRO and benzene concentrations. The GRO, benzene, MTBE, and depth to water variation with time at wells S-1, S-2, MW-3, EX-1, and EX-2 are shown graphically in Figures 6 through 10.

During the December 18, 2006 site visit, Stratus switched oxygen injection from wells S-1 and MW-3 to wells EX-1 and EX-2. Stratus will continue to operate the oxygen injection system using wells S-2, EX-1, and EX-2 during the first quarter 2007 and to collect field parameters as identified in the monitoring plan to further evaluate and optimize the performance of the oxygen injection system.

ATTACHMENTS:

 Table 1 	Groundwater Elevation and Analytical Summary
 Table 2 	Groundwater Analytical Results for Oxygenates and Additional Compounds
 Table 3 	Monitoring Plan Summary
 Table 4 	Physical Parameter Summary
 Table 5 	Analytical Parameter Summary
 Figure 1 	Site Location Map
 Figure 2 	Groundwater Elevation Contour Map (Fourth Quarter 2006)
 Figure 3 	Groundwater Analytical Summary (Fourth Quarter 2006)
 Figure 4 	DO Variation with Time at Injection Wells
 Figure 5 	DO Variation with Time at Observation and Background Wells
 Figure 6 	GRO, Benzene, MTBE, and Depth to Water Variation with Time at S-1
 Figure 7 	GRO, Benzene, MTBE, and Depth to Water Variation with Time at S-2
 Figure 8 	GRO, Benzene, MTBE, and Depth to Water Variation with Time at MW-3
 Figure 9 	GRO, Benzene, MTBE, and Depth to Water Variation with Time at EX-1
 Figure 10 	GRO, Benzene, MTBE, and Depth to Water Variation with Time at EX-2
 Appendix A 	Field Data Sheets
 Appendix B 	Sampling and Analysis Procedures
 Appendix C 	Certified Analytical Reports and Chain-of-Custody Documentation

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
S-1	02/12/87						(20		2.5		
5 1	03/03/95	13.10	74.74	61.64	910	5.000	630	4.4	3.5	37	NA
	07/24/95	12.35	74.74	62.39	NA	5,900	260	7.6	16	14	NA
	11/22/95	19.30	78.68	59.38		NA	NA	NA	NA	NA	NA
	12/06/95	19.59	70.00	59.38 59.09	460	6,100	13	0.69	0.99	1.1	460*
	01/04/96				NA	NA	NA	NA	NA	NA	NA
		19.52		59.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	15.07		63.61	1,100	200	11	6	3	6	200*
	10/10/97	18.90		59.78	530	2,000	< 0.5	2.1	< 0.5	<2	230*
	01/20/98	16.79		61.89	1,800	200	< 0.5	< 0.5	1.5	10	87*
	04/28/98	8.37		70.31	130	7,300	1.9	3.2	< 0.5	< 0.5	310*
	07/31/98	11.61		67.07	310	2,000	0.54	4.6	3.8	0.82	280*
	06/10/99	14.35		64.33	660	150	0.99	< 0.5	< 0.5	2.4	80*[1]
	10/18/00	17.56		61.12	< 50	330	< 0.5	0.93	< 0.5	< 0.5	44
	03/12/02	16.29		62.39	500	< 50	2.8	4.8	0.79	4.4	63
	11/19/02	19.53		59.15	190	NA	< 0.50	< 0.50	< 0.50	< 0.50	190
	01/09/03	18.14		60.54	510	NA	1.1	< 0.50	0.52	< 0.50	11
	04/14/03	18.04		60.64	300	NA	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]	27
	07/21/03	20.31		58.37	300	NA	< 0.50	< 0.50	< 0.50	< 0.50	11
	10/09/03	19.46		59.22	390	NA	< 0.50	< 0.50	< 0.50	< 0.50	8.8
	01/15/04	18.21	79.66	61.45	200	NA	< 0.50	< 0.50	< 0.50	< 0.50	6.0
	04/08/04	19.29		60.37	140	NA	< 0.50	< 0.50	< 0.50	< 0.50	12
	08/10/04	18.86		60.80	110	NA	4.6	< 0.50	< 0.50	0.51	73
	11/11/04	19.81		59.85	160	NA	< 0.50	< 0.50	< 0.50	< 0.50	150
	01/19/05	18.12		61.54	440	NA	< 0.50	< 0.50	1.4	< 0.50	140
	04/14/05	13.94		65.72	320	NA	< 0.50	< 0.50	< 0.50	<0.50	
	07/19/05	14.11		65.55	240	NA	6.1	< 0.50	0.60	<0.50	120 60
	10/24/05	16.53		63.13	320	NA	5.0	<0.50	1.1	< 0.50	37
	02/02/06	15.27		64.39	<50	NA	< 0.50	< 0.50	< 0.50	<0.50	37 45
	04/27/06	9.59		70.07	<50	NA NA	<0.50	<0.50	< 0.50	<0.50	
	07/12/06	11.00		68.66	<50	NA NA	< 0.50	< 0.50	< 0.50		7.7
	10/17/06	14.54		65.12	<50	NA NA	< 0.50	< 0.50	< 0.50	<0.50	12
	,,,,,,			00.12	-50	14/1	~0.30	~0.30	\0.30	< 0.50	1.6

Page 1 of 10

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	μg/L)	(μg/L)
S-2	02/12/87		Sheen				2.400	2.000			
	03/03/95	15.39	76.86	61.47	24.000	C 000	3,400	3,800	1,300	11,000	NA
	03/03/95	14.47	70.80		24,000	6,000	1,900	440	600	2,500	NA
Sheen	11/22/95	21.52	90.02	62.39	NA	NA	NA	NA	NA	NA	NA
Sheen	12/06/95		80.93	59.41	NA	NA	NA	NA	NA	NA	NA
		21.78		59.15	NA	NA	NA	NA	NA	NA	NA
	01/04/96	21.75		59.18	NA	NA	NA	NA	NA	NA	NA
CI	01/31/97	17.25		63.68	NA	NA	NA	NA	NA	NA	NA
Sheen	10/10/97	21.21		59.72	13,000	< 50	260	38	190	280	600*
Sheen	01/20/98	19.07		61.86	1,900	2,300	4.6	6.3	< 0.5	4.6	190*
	04/28/98	10.47		70.46	22,000	<100	980	160	320	680	570*
	07/31/98	13.71		67.22	160,000	< 50	950	290	550	1,700	550*
	11/02/98	17.31		63.62	14,000	< 500	170	70	170	230	490*
	06/10/99	16.48		64.45	17,000	< 50	650	230	<25	750	490*[1
	10/18/00	19.70		61.23	4,400	< 50	2	64	5.1	12	270
	03/12/02	18.56		62.37	5,100	660	62	44	52	78	430
	11/19/02	21.70		59.23	26,000	NA	1,400	180	520	340	750
	01/09/03	20.37		60.56	16,000	NA	120	32	76	214	270
	04/14/03	19.93		61.00	16,000	NA	160	76	210	290	400
	07/21/03	22.00		58.93	9,700	NA	270	90	200	277	410
	10/09/03	21.58		59.35	10,000	NA	39	9.2	52	26.5	180
	01/15/04	20.44	81.90	61.46	6,300	NA	21	<2.0 [3]	20	3.1	130
	04/08/04	17.15		64.75	13,000	NA	160	76	170	231	430
	08/10/04	20.98		60.92	10,000	NA	76	13	<5.0[3]	500	92
	11/11/04	21.95		59.95	20,000	NA	530	240	370	1,730	420
	01/19/05	20.33		61.57	17,000	NA	590	150	250	990	
	04/14/05	16.17		65.73	20,000	NA	830	230	570		580
	07/19/05	16.25		65.65	970	NÁ	48	13	16	1,980 57	510
	10/24/05	18.07		63.83	1,200	NA NA	100	13	52		72
	02/02/06	17.26		64.64	2,000	NA NA	17			41	69
	04/27/06	11.55		70.35	130	NA NA	5.1	12	26	108	340
	07/12/06	12.98		68.92	140			1.1	2.8	8.8	81
	10/17/06	16.59		65.31	-	NA	< 0.50	< 0.50	<0.50	0.77	180
	10/1//00	10.57		05.51	130	NA	0.98	< 0.50	1.1	2.20	160

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well	Date	Depth to Water	Well Elevation	Groundwater Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Linyindenzene (μg/L)	Ayrenes (μg/L)	MTBE (μg/L)
						<u> </u>	<u> </u>	(1-8)	(FS')	(86,2)	(µg/12)
MW-3	03/03/95	13.99	76.30	62.31	2,500	1,600	540	92	36	200	NA
	07/24/95	13.33		62.97	NA	NA	NA	NA	NA	NA	NA
	11/22/95	20.94	80.32	59.38	14,000	5,400	5,700	230	430	650	820*
	12/06/95	17.48		62.84	NA	NA	NA	NA	NA	NA	NA
	01/04/96	20.01		60.31	NA	NA	NA	NA	NA	NA	NA
	01/31/97	16.63		63.69	1,100	< 50	130	8	5	5	NA
	10/10/97	20.62		59.70	3,400	1,100	830	4	100	<10	160*
	01/20/98	15.40		64.92	3,900	550	7.9	4.1	< 0.5	3.7	<5.0*
	04/28/98	10.51		69.81	800	1,000	82	5.2	5.7	5.4	240*
	07/31/98	13.46		66.86	2,200	610	510	7.6	16	5.27	310*
	11/02/98	17.11		63.21	4,900	1,600	220	16	13	13.7	180*
	06/10/99	15.24		65.08	1,000	120	< 0.5	< 0.5	< 0.5	1.1	120*[1]
	10/18/00	15.41		64.91	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	12
	04/08/04	13.70		66.62	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	19
	08/10/04	16.96		63.36	580	NA	19	<1.0[3]	<1.0[3]	3.3	300
	11/11/04	17.40		62.92	3,000	NA	810	<5.0[3]	43	<5.0[3]	690
	01/19/05	13.28		67.04	92	NA	18	< 0.50	0.77	< 0.50	17
	04/14/05	8.73		71.59	< 50	NA	0.52	< 0.50	< 0.50	< 0.50	11
	07/19/05	11.94		68.38	390	NA	82	2.3	1.8	9.2	200
	10/24/05	14.70	77.27	62.57	2,100	NA	460	6.9	7.7	11.9	300
	02/02/06	16.48		60.79	530	NA	11	< 0.50	1.2	1.1	560
	04/27/06	7.85		69.42	<300[3]	NA	<1.5[3]	<1.5[3]	<1.5[3]	<1.5[3]	180
	07/12/06	10.08		67.19	250	NA	5.5	<1.0[3]	<1.0[3]	<1.0[3]	190
	10/17/06	12.80		64.47	93	NA	8.8	< 0.50	< 0.50	< 0.50	100

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well	Date	Depth to Water	Well Elevation	Groundwater Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbongs	Total	MATERIA		
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	benzene (μg/L)		Ethylbenzene	Xylenes	MTBE		
		(1000)	(It mai)	(11 11131)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)		
MW-4	11/22/95	14.99	76.42	61.43	< 50	200	< 0.5	1.5	< 0.5	1.7	6.4*		
	12/06/95	11.21		65.21	NA	NA	NA	NA	NA	NA			
	01/04/96	14.62		61.80	NA	NA	NA	NA NA	NA NA	NA NA	NA		
	01/31/97	8.18		68.24	<50	<50	<0.5	2	<0.5		NA		
	10/10/97	14.14		62.28	<50	<50	<0.5	< 0.5		2	11*		
	01/20/98	7.05		69.37	<50	<50 <50	<0.5	<0.5	<0.5	<2	<5.0*		
	04/28/98	5.88		70.54	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0*		
	07/31/98	8.40		68.02	<50	<50	<0.5		<0.5	< 0.5	<5.0*		
	11/02/98	16.08		60.34	NA			< 0.5	<0.5	< 0.5	<5.0*		
	06/10/99	14.81		61.61		NA	NA	NA	NA	NA	NA		
	10/18/00	12.71			NA	NA	NA	NA	NA	NA	NA		
	03/12/02	8.92		63.71	<50	<50	< 0.5	0.59	0.82	0.53	<5.0*		
					67.50	<50	< 50	< 0.5	0.61	0.72	2.5	1.8	
	11/19/02	13.24		-13.24	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	01/09/03	11.00		-11.00	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	04/14/03	11.03		-11.03	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	07/21/03	13.10		-13.10	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	10/09/03	13.33				-13.33	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	12.14				-12.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	10.76		65.66	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	08/10/04	12.62		63.80	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	11/11/04	11.93		64.49	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	01/19/05	10.34		66.08	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	04/14/05	5.66	[4]	NM	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	07/19/05	7.55	[4]	NM	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	10/24/05	10.12	76.26	66.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
	02/02/06	6.99		69.27	<50	NA	< 0.50	< 0.50	< 0.50	<0.50	< 0.50		
	04/27/06	NM		NM					Sampled - Covere		~0.30		
	07/12/06	6.05		70.21	< 50	NA '	< 0.50	< 0.50	< 0.50	<0.50	< 0.50		
	10/17/06	NM		NM	20		Well Not Monitored or Sampled - Covered						

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)
) (III 5	11/00/07	40.44									
MW-5	11/22/95	19.56	80.52	60.96	< 50	280	< 0.5	1.8	< 0.5	3	2.2*
	12/06/95	15.84		64.68	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.36		61.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	13.31		67.21	80	< 50	< 0.5	0.6	< 0.5	2	6*
	10/10/97	17.80		62.72	< 50	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	12.58		67.94	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	9.45		71.07	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	7.38		73.14	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	15.98		64.54	< 50	< 500	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	06/10/99	14.60		65.92	NA	NA	NA	NA	NA	NA	NA
	10/18/00	17.77		62.75	< 50	< 50	< 0.5	0.75	< 0.5	0.79	28
	03/12/02	15.72		64.80	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/19/02 NM		NM				Well Dam		0.5	5.0	
	01/09/03	NM		NM				Well Dam	~		
	04/14/03	NM		NM				Well Dam	_		
	07/21/03	NM		NM				Well Dam	-		
	10/09/03	NM		NM				Well Dam	-		
	01/15/04	NM		NM				Well Dam	•		
	04/08/04	16.80		63.72	<100	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	18.58		61.94	89	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	NM		NM	0,	1 12 1	40.50	Well Dam		~0.30	\0.30
	01/19/05	NM		NM				Well Dam			
	04/14/05	10.57	[4]	NM	< 50	NA	< 0.50	<0.50	<0.50	< 0.50	<0.50
	07/19/05	11.77	[4]	NM	<100[2]	NA NA	< 0.50	< 0.50	< 0.50	<0.50 <0.50	<0.50
	10/24/05	14.29	80.78	66.49	<50	NA NA	< 0.50				< 0.50
	02/02/06	NM	00.70	NM	\ 30			<0.50	<0.50	<0.50	< 0.50
	04/27/06	7.42		73.36	<100[2]				pled - Under Soi		.0 #*
	07/12/06	NM		73.36 NM	100[2]	NA	<0.50	< 0.50	<0.50	< 0.50	< 0.50
	10/17/06	NM NM		NM NM					Sampled - Covere Sampled - Covere		

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
vamber	Conceicu	(icci)	(11 11131)	(It msi)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-6	11/22/95	21.73	81.64	59.91	< 50	140	< 0.5	1.2	< 0.5	1.5	5.3*
	12/06/95	18.03		63.61	NA	NA	NA	NA	NA	NA	NA
	01/04/96	21.67		59.97	NA	NA	NA	NA	NA	NA	NA
	01/31/97	16.01		65.63	70	<50	< 0.5	2	< 0.5	<1	5*
	10/10/97	20.55		61.09	80	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	15.74		65.90	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	10.78		70.86	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	13.97		67.67	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	17.97		63.67	NA	NA	NA	NA	NA	NA	NA
	06/10/99	16.92		64.72	NA	NA	NA	NA	NA	NA	NA
	10/18/00	NM		NM				Unable to L			
	03/12/02	NM		NM				Unable to L			
	11/19/02	NM		NM				Unable to L	ocate		
	01/09/03	NM		NM				Unable to L	ocate		
	04/14/03	NM		NM				Unable to L	ocate		
	07/21/03	NM		NM				Unable to L			
	10/19/03	NM		NM				Unable to L	ocate		
	01/15/04	NM		NM				Unable to L	ocate		
	04/08/04	NM		NM			Well O	bstructed -	Not Sampled		
	08/10/04	NM		NM					Not Sampled		
	11/11/04	NM		NM					Not Sampled		
	01/19/05	NM		NM					Not Sampled		
	04/14/05	15.78		65.86	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/19/05	NM		NM			Well O	bstructed -	Not Sampled		****
	10/24/05	NM	82.32	NM					Not Sampled		
	02/02/06	15.93		66.39	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/27/06	11.00		71.32	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/12/06	12.75		69.57	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/17/06	15.95		66.37	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total																										
Well	Date	Water	Elevation	Elevation	GRO [5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE																									
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)																									
MW-7	11/22/95	19.38	78.86	59.48	< 50	180	< 0.5	0.57	< 0.5	0.62	0.73*																									
	12/06/95	19.72		59.14	NA	NA	NA	NA	NA	NA	NA																									
	01/04/96	19.76		59.10	NA	NA	NA	NA	NA	NA	NA																									
	01/31/97	15.25		63.61	70	< 50	0.7	1	< 0.5	<1	8*																									
	10/10/97	19.03		59.83	< 50	< 50	< 0.5	< 0.5	< 0.5	<2	15*																									
	01/20/98	17.11		61.75	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*																									
	04/28/98	8.22		70.64	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	9.3*																									
	07/31/98	11.53		67.33	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*																									
	11/02/98	15.15		63.71	NA	NA	NA	NA	NA	NA	NA																									
	06/10/99	14.23		64.63	NA	NA	NA	NA	NA	NA	NA																									
	10/18/00	17.59		61.27	NA	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*																									
	03/12/02	16.54		62.32	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.9																									
	11/19/02	19.59		-19.59	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	3.8																									
	01/09/03	18.38		-18.38	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.7																									
	04/14/03	18.17																											-18.17	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	20.29		-20.29	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.8																									
	10/09/03	19.48		-19.48	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.9																									
	01/15/04	18.45	79.81	61.36	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.6																									
	04/08/04	17.28		62.53	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.81																									
	08/10/04	18.85		60.96	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.1																									
	11/11/04	19.85		59.96	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.0																									
	01/19/05	19.59		60.22	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.5																									
	04/14/05	14.17		65.64	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50																									
	07/19/05	14.16		65.65	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.9																									
	10/24/05	16.65		63.16	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50																									
	02/02/06	15.39		64.42	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.3																									
	04/27/06	8.51		71.30	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50																									
	07/12/06	9.94		69.87	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50																									
	10/17/06	13.46		66.35	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50																									

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(μg/L)	μg/L)	(µg/L)
											<u> </u>
MW-8	11/22/95	33.33	79.55	46.22	< 50	360	< 0.5	1.3	< 0.5	2.1	2.1*
	12/06/95	17.57		61.98	NA	NA	NA	NA	NA	NA	NA
	01/04/96	20.08		59.47	NA	NA	NA	NA	NA	NA	NA
	01/31/97	18.72		60.83	80	< 50	0.6	1	< 0.5	1	8*
	10/10/97	20.26		59.29	50	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	15.91		63.64	< 50	< 50	< 0.5	< 0.5	<0.5	< 0.5	<5.0*
	04/28/98	10.39		69.16	< 50	< 50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	07/31/98	12.93		66.62	<50	< 50	< 0.5	< 0.5	<0.5	<0.5	<5.0*
	11/02/98	16.90		62.65	< 50	< 500	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	06/10/99	14.98		64.57	NA	NA	NA	NA	NA	NA	NA
	10/18/00	16.27		63.28	< 50	< 50	< 0.5	< 0.5	1.1	6.3	8.6*
	03/12/02	14.56		64.99	< 50	< 50	< 0.5	0.63	0.55	1.7	0.94
	11/19/02	21.14		-21.14	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/09/03	17.90		-17.90	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/03	17.84		-17.84	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	19.79		-19.79	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/09/03	21.02		-21.02	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	18.10	80.50	62.40	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	17.51		62.99	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	20.76		59.74	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	21.38		59.12	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/19/05	17.20		63.30	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/05	12.68		67.82	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/19/05	15.78		64.72	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/24/05	18.68		61.82	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	02/02/06	14.57		65.93	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/27/06	10.48		70.02	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/12/06	13.08		67.42	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/17/06	15.96		64.54	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	$(\mu g/L)$
EX-1	10/24/05	14.37	77.72	63.35	5,000	NA	140	8.4	20	195	360
	02/02/06	1.68		76.04	3,000	NA	3.6	< 0.50	14	55.5	0.63
	04/27/06	1.76		75.96	130	NA	0.98	< 0.50	< 0.50	2.42	< 0.50
	07/12/06	6.88		70.84	2,600	NA	760	15	34	104	200
	10/17/06	9.79		67.93	3,300	NA	810	<5.0[3]	32	68	170
EX-2	10/24/05	16.00	76.96	60.96	42,000	NA	13,000	1,300	1,300	2,580	410
	02/02/06	8.18		68.78	28,000	NA	9,000	1,300	1,100	3,340	200
	04/27/06	5.22		71.74	24,000	NA	4,000	1,800	650	3,900	86
	07/12/06	7.32		69.64	22,000	NA	6,000	1,300	810	3,280	190
	10/17/06	9.22		67.74	31,000	NA	10,000	1,800	1,200	3,400	230
EX-3	10/24/05	14.85	78.87	63.02	20,000	NA	220	21	660	3,110	<10[3]
	02/02/06	NM		NM		Wel	l Not Monite	ored or Sam	pled - Under So	il Pile	
	04/27/06	NM		NM		,	Well Not Mo	nitored or S	Sampled - Cover	ed	
	07/12/06	9.01		68.86	5,700	NA	79	19	120	657	<2.5[3]
	10/17/06	NM		NM		7	Well Not Mo	nitored or	Sampled - Cover	ed	
EX-4	10/24/05	14.93	77.96	63.03	1,900	NA	390	69	8.8	90	11
	02/02/06	NM		NM	*	Wel	l Not Monite		pled - Under So	il Pile	
	04/27/06	NM		NM					Sampled - Cover		
	07/12/06	7.37		70.59	6,400	NA	1,400	400	120	1,220	35
	10/17/06	NM		NM	,		,		r Sampled - Gone		30

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	GRO[5]	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
NT. 4											
Note:											
* = MTBE a	nalyzed using E	PA Method 80	20/8021B						msl = Mean sea leve	el	
$MTBE = M\epsilon$	thyl tert-butyl e	ther							μg/L = micrograms	per liter	
TPHD = Tot	al petroleum hy	drocarbons as	diesel								
GRO = Gaso	oline Range Org	anics C4-C13							NA = Not analyzed		
GRO analyz	ed using EPA M	lethod 8015B a	and the remaini	ing analytes using El	PA Method 82	60B			NM = Not measured	i	
[1] Laborato	ry indicates the	chromatogram	does not mate	h the diesel hydroca	rbon range pat	tern.					
1	g limits were in				<i>U</i> 1						
l .			-	tions of target analy	tes.						
1				on April 12, 2005.							
t .				(TPHG C3-C14+) p	rior to second	quarter 2006.					
Monitoring	wells surveyed b	y Morrow Sur	veying on Febr	uary 10, 2004, and a	igain on Nover	mber 29, 2005					
Data prior to	November 19,	2002 provided	by GHH Engi	neering.							

TABLE 2

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
S-1	11/19/02	190	<10	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	11	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	27	<20[2]	<2.0[2]	<2.0[2]	<2.0[2]	NA	NA	NA	NA
	07/21/03	11	<10[2]	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	8.8	6.4	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	6.0	10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	12	8.5	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	08/10/04	73	28	<1.0	<1.0	<1.0	16	< 2.0	<5,000	<5,000
	11/11/04	150	14	<1.0	<1.0	<1.0	7.3	< 2.0	<5,000	<5,000
	01/19/05	140	14	<1.0	<1.0	<1.0	3.8	< 2.0	<5,000	<5,000
	04/14/05	120	10	<1.0	<1.0	<1.0	1.4	< 2.0	<5,000	<5,000
	07/19/05	60	11	<1.0	<1.0	<1.0	9.6	< 2.0	<5,000	<5,000
	10/24/05	37	<10	<1.0	<1.0	<1.0	2.2	< 2.0	<5,000	<5,000
	02/02/06	45	<10	<1.0	<1.0	<1.0	1.2	< 2.0	<5,000	<5,000
	04/27/06	7.7	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/12/06	12	<10	<1.0	<1.0	<1.0	7.9	< 2.0	<5,000	<5,000
	10/17/06	1.6	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

Well	Date	MTBE	TBA	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Methanol	Ethanol
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$
S-2	11/19/02	750	<200[1]	<20[1]	<20[1]	<20[1]	NA	NA	NA	NA
	01/09/03	270	<100[1]	<10[1]	<10[1]	<10[1]	NA	NA	NA	NA
	04/14/03	400	95	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	07/21/03	410	110	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	10/09/03	180	57	< 5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA
	01/15/04	130	48	<4.0[1]	<4.0[1]	<4.0[1]	<4.0[1]	<16[1]	NA	NA
	04/08/04	430	130	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	08/10/04	92	<100[1]	<10[1]	<10[1]	<10[1]	74	<40[1]	<5,000	<5,000
	11/11/04	420	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	<5,000	<5,000
	01/19/05	580	200	<5.0[1]	<5.0[1]	<5.0[1]	8.2	<20[1]	<5,000	<5,000
	04/14/05	510	150	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	07/19/05	72	37	<1.0	<1.0	<1.0	38	< 2.0	<5,000	<5,000
	10/24/05	69	33	<1.0	<1.0	<1.0	35	<4.0[1]	<5,000	<5,000
	02/02/06	340	150	<1.0	<1.0	<1.0	3.2	<4.0[1]	<5,000	<5,000
	04/27/06	81	<10	<1.0	<1.0	<1.0	1.3	< 2.0	<5,000	<5,000
	07/12/06	180	42	<1.0	<1.0	<1.0	5.8	< 2.0	<5,000	<5,000
	10/17/06	160	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
Number	Collected	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$
MW-3	04/08/04	19	7.6	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	300	2,000	2.2	<2.0[1]	<2.0[1]	270	<8.0[1]	<5,000	<5,000
	11/11/04	690	1,400	<10[1]	<10[1]	<10[1]	140	<40[1]	<5,000	<5,000
	01/19/05	17	19	<1.0	<1.0	<1.0	1.4	<2.0	<5,000	<5,000
	04/14/05	11	25	<1.0	<1.0	<1.0	6.2	< 2.0	<5,000	<5,000
	07/19/05	200	1,000	<2.0[1]	<2.0[1]	<2.0[1]	240	<8.0[1]	<5,000	<5,000
	10/24/05	300	750	<5.0[1]	<5.0[1]	<5.0[1]	210	<20[1]	<5,000	<5,000
	02/02/06	560	1,300	2.7	<1.0	<1.0	98	<4.0[1]	<5,000	<5,000
	04/27/06	180	330	<3.0[1]	<3.0[1]	<3.0[1]	220	<12[1]	<5,000	<5,000
	07/12/06	190	24	<2.0[1]	<2.0[1]	<2.0[1]	210	<8.0[1]	<5,000	<5,000
	10/17/06	100	50	<1.0	<1.0	<1.0	21	<2.0	<5,000	<5,000

TABLE 2

Well Number	Date Callested	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-4	11/19/02	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	01/15/04	< 0.50	7.8	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	11/11/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	02/02/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	04/27/06				Well Not Mor		pled - Covered		-,000	2,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/17/06				1		pled - Covered	2.0	2,000	5,000

TABLE 2

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (µg/L)
MW-5	11/19/02			<u> </u>	(10)	Well Damaged	(46.2)	(μg/L)	(µg/L)	(μg/L)
	01/09/03					Well Damaged				
	04/14/03					Well Damaged				
	07/21/03					Well Damaged				
	10/09/03					Well Damaged				
	01/15/04					Well Damaged				
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04				-7-	Well Damaged	11.0	12.0	<5,000	<5,000
	01/19/05					Well Damaged				
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	02/02/06					ored or Sampled -			\3,000	\5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	07/12/06					onitored or Sampl		\ - 7.0[2]	\3,000	\5,000
	10/17/06					onitored or Sample				

TABLE 2

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Methanol	Ethanol
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/ L)	(μ g/L)	(μg/L)	(µg/L)
MW-6	11/19/02				J	Jnable to Loca	ate			
	01/09/03				J	Unable to Loca	ate			
	04/14/03				J	Unable to Loca	ate			
	07/21/03				J	Unable to Loca	ate			
	10/19/03				Ţ	Unable to Loca	ate			
	01/15/04				Ţ	Jnable to Loca	ate			
	04/08/04					ostructed - Not				
	08/10/04					ostructed - Not	*			
	11/11/04					ostructed - Not	•			
	01/19/05					ostructed - Not				
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05				Well Ob	ostructed - Not	Sampled		2,000	2,000
	10/24/05					ostructed - Not	-			
	02/02/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/17/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
MW-7	11/19/02	3.8	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	2.7	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
-	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	1.8	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	2.9	< 5.0	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	01/15/04	2.6	7.9	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	04/08/04	0.81	9.0	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	08/10/04	2.1	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	11/11/04	1.0	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/19/05	1.5	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05	1.9	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	02/02/06	1.3	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/17/06	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

Well Number	Date Collected	MTBE	TBA	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Methanol	Ethanol
H		(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-8	11/19/02	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	<10[2]	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	01/15/04	< 0.50	9.9	<1.0	<1.0	<1.0	<1.0	< 2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	11/11/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	01/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/14/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	07/19/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	10/24/05	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	02/02/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	< 2.0	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	07/12/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	10/17/06	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Methanol (μg/L)	Ethanol (µg/L)
EX-1	10/24/05	360	120	<1.0	<1.0	<1.0	<1.0	<4.0[1]	<5,000	<5,000
	02/02/06	0.63	<10	<1.0	<1.0	<1.0	<1.0	<4.0[1]	<5,000	<5,000
	04/27/06	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	07/12/06	200	110	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	10/17/06	170	<100[1]	<10[1]	<10[1]	<10[1]	30	<40[1]	<5,000	<5,000
EX-2	10/24/05	410	<2,000[1]	<200[1]	<200[1]	<200[1]	<200[1]	<800[1]	<5,000	<5,000
	02/02/06	200	<1,000[1]	<100[1]	<100[1]	<100[1]	<100[1]	<400[1]	<5,000	<5,000
	04/27/06	86	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	<5,000	<5,000
	07/12/06	190	<500[1]	<50[1]	<50[1]	<50[1]	<50[1]	<200[1]	<5,000	<5,000
	10/17/06	230	<1,000[1]	<100[1]	<100[1]	<100[1]	400	<400[1]	<5,000	<5,000
EX-3	10/24/05	<10[1]	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	<5,000	<5,000
	02/02/06						l - Under Soil P		-,	-,
	04/27/06						pled - Covered			
	07/12/06	<2.5[1]	<50[1]	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	10/17/06				Well Not Mon	itored or Samp	pled - Covered		,	-,
EX-4	10/24/05	11	51	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	02/02/06						l - Under Soil P		2,000	2,000
	04/27/06						pled - Covered			
	07/12/06	35	<200[1]	<10[1]	<10[1]	<10[1]	<10[1]	<40[1]	<5,000	<5,000
	10/17/06					onitored or Sar		.10[1]	13,000	~5,000

TABLE 2

GROUNDWATER ANALYTICAL RESULTS FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
μg/L = microgra NA = Not analyz [1] Reporting lim	ed	due to high conce	_	analytes		TBA = Tertiary b DIPE = Di-isopro ETBE = Ethyl ter TAME = Tertiary	opyl ether rtiary butyl ether y amyl methyl ether			
[2] Reporting lim	its were increased	due to sample foar	ming			1,2-DCA = 1,2-D EDB = 1,2-Dibro				

Table 3

Former USA Service Station No. 57 10700 MacArthur Boulevard Oakland, California Monitoring Plan Summary

	Sampling	D	Sampling
Parameter Parameter	Frequency	Parameter Significance	Locations
Field Parameters			
рН	Monthly	Optimum pH range for microbial activity is 6. 5 to 7.5.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Dissolved Oxygen (DO)	Monthly	Oxygen serves as electron acceptor during biodegradation and the microbial activity is directly related to the availability of electron acceptors.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Laboratory Parameters			
Heterotrophic plate counts	Quarterly	Typical bacterial counts for groundwater range from 10 ³ to 10 ⁸ counts per liter and in counts below 10 ³ for contaminated groundwater.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Biochemical Oxygen Demand (BOD)	Quarterly	BOD determines the amount of oxygen required due to biochemical oxidation of organic matter. Increase in BOD is an indication of high oxygen demand (lack of oxygen). A decrease in BOD, accompanied by an increase in DO levels, can be a good indicator of microbial activitity in the subsurface.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Total Iron & Ferrous iron	Quarterly	Oxygen, a by-product of ozone degradation can react with dissolved iron in groundwater to form ferric oxide, a soluble precipitate.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Petroleum Hydrocarbons & Oxygenates	Quarterly	Chemicals of concern. Baseline and operational concentration levels will be compared in evaluating performance of ozone injection system.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Total Organic Carbon (TOC)	Quarterly	TOC is a measure of total concentration of organic carbon that may be available for biodegradation. Carbon from the petroleum hydrocarbons is the primary energy source for microbes.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Bioparameters (Nitrates, sulfates, & phosphates)	Quarterly	Nitrates, sulfates and phosphates are nutrients required for microbial growth and reproduction.	EX-1 through EX-3, MW-7 MW-8, and all injection wells
Total dissolved solids (TDS)	Quarterly	TDS is a measure of dissolved inorganic constituents and small amounts of organic matter. Precipitation of inorganic constituents in groundwater due to oxygen injection can result in scaling.	EX-1 through EX-3, MW-7 MW-8, and all injection wells

USA 57 Monitoring Plan STRATUS

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	рН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
S-1	3-1 07/19/05 Injection v		14.11	0.44	6.89	NM	681
(injection	on 10/24/05 Injection wel		16.53	0.95	7.05	NM	503
well)	01/11/06	Injection well	16.32	NM	NM	NM	NM
	01/20/06	Injection well	15.85	61.1	7.04	155.0	919
	02/02/06 Injection we		15.27	3.02	7.06	151.0	1,069
	02/15/06	Injection well	14.47	26.5	7.08	87.0	887
	03/03/06	Injection well	14.20	18	6.69	96.0	1,004
	03/24/06	Injection well	13.10	8.8[1]	7.50	322.0	924
	04/17/06	Injection well	10.40	18.2	7.10	533.0	916
	04/27/06	Injection well	9.59	15.15	7.27	NM	822
	05/04/06	Injection well	9.55	10.8	7.50	230.0	808
	05/16/06	Injection well	9.63	15.1	7.60	133.0	950
	06/09/06	Injection well	9.86	34.5	8.09	315.0	1,100
	06/30/06	Injection well	10.61	20.8	7.91	183.0	1,070
	07/10/06	Injection well	10.82	29.6	8.03	173.0	949
	07/12/06	Injection well	11.00	NM	7.48	NM	799
	08/03/06	Injection well	11.95	18.3	8.60	144.0	857
	08/25/06	Injection well	12.73	55	7.79	143.0	766
	09/13/06	Injection well	13.44	OR	7.11	NM	NM
	09/27/06	Injection well	14.03	OR	7.73	184.0	683
	10/12/06	Injection well	14.43	OR	7.22	239.0	1,198
	10/17/06	Injection well	14.54	11[2]	7.28	NM	1,241
	11/03/06	Injection well	15.19	14.71[2]	6.43	113.0	1,225
	11/20/06	Injection well	15.49	6.5	8.60	381.0	706
[5]	12/18/06	Observation well	15.89	15.12[2]	6.66	148.0	1,132

TABLE 4
Physical Parameter Summary

T I		Distance to	Depth to				Specific		
Well		nearest	water	DO	pН	ORP	Conductivity		
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen		
S-2	07/19/05	Injection well	16.25	0.74	7.24	NM	669		
(injection	10/24/05	Injection well	18.07	NM	6.88	NM	490		
well)	01/11/06	Injection well	18.52	NM	NM	NM	NM		
	01/20/06	Injection well	18.05	18.05	18.05	30.1	6.55	166.0	917
	02/02/06	Injection well	17.26	16.66	6.97	120.0	2.97		
	02/15/06	Injection well	16.61	32.6	7.45	93.0	850		
	03/03/06	Injection well	16.30	23.0	6.79	120.0	875		
	03/24/06	Injection well	14.68	2.8[1]	7.75	283.0	1,050		
	04/17/06	Injection well	12.38	19.0	7.11	521.0	790		
	04/27/06	Injection well	11.55	4.17	7.17	NM	794		
	05/04/06	Injection well	11.04	11.2	7.65	192.0	901		
	05/16/06	Injection well	11.47	14.4	7.61	119.0	933		
	06/09/06	Injection well	11.76	33.6	8.10	379.0	757		
	06/30/06	Injection well	12.53	18.5	8.17	168.0	760		
	07/10/06	Injection well	12.77	32.6	8.34	158.0	727		
	07/12/06	Injection well	12.98	NM	7.57	NM	648		
	08/03/06	Injection well	13.90	10.3	8.70	126.0	814		
	08/25/06	Injection well	14.73	47.8	7.73	149.0	679		
	09/13/06	Injection well	15.45	OR	6.87	NM	NM		
	09/27/06	Injection well	16.03	OR	7.20	193.0	549		
	10/12/06	Injection well	16.45	OR	6.67	241.0	1,176		
	10/17/06	Injection well	16.59	2.71[2]	7.10	NM	1,154		
	11/03/06	Injection well	17.21	OR	6.55	120.0	1,221		
	11/20/06	Injection well	17.55	7.1	8.46	428.0	682		
	12/18/06	Injection well	17.97	10.01[2]	6.43	149.0	1,111		
		1 "	17.97	10.01[2]	6.43	149.0	1,111		

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	рН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
MW-3	07/19/05	Injection well	11.94	0.53	7.20	NM	784
(injection	10/24/05	Injection well	14.70	1.33	6.66	NM	561
well)	01/11/06	Injection well	12.57	NM	NM	NM	NM
	01/20/06	Injection well	12.37	30.5	6.14	179.0	1,855
	02/02/06	Injection well	16.48	11.34	6.91	125.0	1,898
	02/15/06	Injection well	10.79	34.6	6.67	96.0	1,760
	03/03/06	Injection well	11.55	31.0	6.47	147.0	1,712
	03/24/06	Injection well	10.73	9.8[1]	7.20	314.0	1,540
	04/17/06	Injection well	7.91	17.5	6.83	567.0	1,442
	04/27/06	Injection well	7.85	19.35	7.10	NM	1,230
	05/04/06	Injection well	8.85	10.2	7.15	259.0	1,357
	05/16/06	Injection well	9.45	15.6	7.28	147.0	1,611
	06/09/06	Injection well	9.09	25.1	6.91	325.0	1,329
	06/30/06	Injection well	9.92	18.8	7.53	152.0	1,596
	07/10/06	Injection well	9.88	29.5	7.79	155.0	NM
	07/12/06	Injection well	10.08	NM	7.28	NM	880
	08/03/06	Injection well	11.66	16.1	8.50	159.0	1,104
	08/25/06	Injection well	11.53	33	7.22	143.0	941
	09/13/06	Injection well	11.46	OR	4.04	NM	NM
	09/27/06	Injection well	12.47	OR	7.75	181.0	3,421
	10/12/06	Injection well	12.10	OR	7.19	242.0	3,457
	10/17/06	Injection well	12.80	0.0	7.34	NM	3.23
[3]	11/03/06	Injection well	NM	NM	NM	NM	NM
	11/20/06	Injection well	13.72	4.4	8.28	380.0	851
[5]	12/18/06	Observation well	13.47	OR	6.79	84.0	2,122

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	рН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
MW-7	07/19/05	70.0	14.16	NM	7.46	NM	651
	10/24/05	70.0	16.65	NM	7.41	NM	493
	01/11/06	70.0	17.05	NM	NM	NM	NM
	01/20/06	70.0	16.20	2.0	6.49	105.0	841
	02/02/06	70.0	15.39	2.04	7.30	38.0	763
	02/15/06	70.0	13.74	2.9	6.91	8.0	828
	03/03/06	70.0	13.26	8.2	7.19	97.0	853
	03/24/06	70.0	11.99	2.6[1]	8.20	202.0	844
	04/17/06	70.0	9.40	7.2	7.68	429.0	876
	04/27/06	70.0	8.51	2.01	8.02	NM	878
	05/04/06	70.0	8.37	5.4	8.29	88.0	855
	05/16/06	70.0	8.43	9.8	7.51	72.0	856
	06/09/06	70.0	8.74	4.6	7.68	376.0	777
	06/30/06	70.0	9.50	4.6 4.7	8.26 8.56	162.0	787
	07/10/06	70.0	9.77			135.0	796
	07/12/06	70.0	9.94	1.82	7.92	12.0	759
	08/03/06	70.0	10.83	3.5	8.70	34.0	760
	08/25/06	70.0	11.71	6.6	7.50	130.0	728
	09/13/06	70.0	12.44	4.34	6.90	NM	NM
	09/27/06	70.0	13.01	3.95	7.79	137.0	1,261
	10/12/06	70.0	13.46	2.96	7.01	244.0	1,194
	10/17/06	70.0	13.46	1.69[2]	7.33	NM	1,179
	11/03/06	70.0	14.21	5.11[2]	6.86	210.0	1,185
	11/20/06	70.0	14.54	6.7	9.10	170.0	740
	12/18/06	70.0	14.95	2.94[2]	6.93	142.0	656

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	pН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
MW-8	07/19/05	47.0	15.78	7.55	7.14	NM	798
	10/24/05	47.0	18.68	5.35	6.88	NM	480
	01/11/06	47.0	15.49	NM	NM	NM	NM
	01/20/06	47.0	15.36	8.20	5.97	124.0	541
	02/02/06	47.0	14.57	8.7	6.83	105.0	6.34
	02/15/06	47.0	13.82	6.6	6.28	10.0	459
	03/03/06	47.0	14.38	8.2	6.35	116.0	1,953
	03/24/06	47.0	12.83	2.7[1]	7.30	256.0	1,695
	04/17/06	47.0	10.72	8.1	6.66	510.0	1,464
	04/27/06	47.0	10.48	6.61	7.01	NM	1,400
	05/04/06	47.0	11.04	6.1	7.65	156.0	1,507
	05/16/06	47.0	11.86	8.3	6.97	101.0	1,733
	06/09/06	47.0	12.32	6.6	7.09	406.0	1,336
	06/30/06	47.0	12.79	7.7	7.15	156.0	1,729
	07/10/06	47.0	13.00	7.2	7.37	163.0	1,435
	07/12/06	47.0	13.08	0.63	6.94	69.0	1,018
	08/03/06	47.0	14.10	4.5	8.50	121.0	1,065
	08/25/06	47.0	14.55	7.4	6.82	172.0	815
	09/13/06	47.0	15.02	6.22	6.42	NM	NM
	09/27/06	47.0	15.51	6.28	6.58	122.0	3,999
	10/12/06	47.0	15.85	5.67	6.39	77.0	3,999
	10/17/06	47.0	15.96	6.13[2]	6.97	NM	6.70
[4]	11/03/06	47.0	NM	NM	NM	NM	NM 890
	11/20/06	47.0	16.87	3.8	7.67	7.67 394.0	
	12/18/06	47.0	NM	NM	NM	NM	NM
							1

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	рН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
EX-1	10/24/05	20.0	14.37	1.15	6.56	NM	585
	01/11/06	20.0	3.11	NM	NM	NM	NM
	01/20/06	20.0	2.13	2.50	6.79	116.0	631
	02/02/06	20.0	1.68	5.84	7.65	128.0	463
	02/15/06	20.0	2.27	2.00	7.10	4.0	646
	03/03/06	20.0	NM	NM	NM	NM	NM
	03/24/06	20.0	NM	NM	NM	NM	NM
	04/17/06	20.0	1.15	7.1	7.40	542.0	542
	04/27/06	20.0	1.76	2.4	7.39	NM	609
	05/04/06	20.0	NM	NM	NM	NM	NM
	05/16/06	20.0	NM	NM	NM	NM	NM
	06/09/06	20.0	6.77	2.2	7.62	326.0	807
	06/30/06	20.0	6.64	5.2	7.95 8.02 7.48 NM	183.0 163.0 -10.0	817
	07/10/06	20.0	6.71	2.5			767
	07/12/06	20.0	6.88	0.80			944
	08/03/06	20.0	NM	NM		NM	NM
	08/25/06	20.0	9.14	5.4	7.34	121.0	690
	09/13/06	20.0	8.82	3.09	7.01	NM	NM
	09/27/06	20.0	9.25	3.73	7.23	205.0	1,104
	10/12/06	20.0	9.67	2.84	6.93	238.0	1,145
	10/17/06	20.0	9.79	1.97[2]	6.90	NM	1,624
	11/03/06	20.0	10.91	2.19[2]	6.50	170.0	1,198
	11/20/06	20.0	10.58	4.4	8.61	398.0	654
	12/18/06	Injection well	5.63	2.74[2]	6.81	149.0	741

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	рН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
EX-2	10/24/05	15.0	16.00	2.83	6.85	NM	588
	01/11/06	15.0	10.22	NM	NM	NM	NM
	01/20/06	15.0	8.98	2.90	5.93	157.0	1,570
	02/02/06	15.0	8.18	15.60	6.87	138.0	18.99
	02/15/06	15.0	7.74	2.20	6.49	58.0	1,472
	03/03/06	15.0	NM	NM	NM	NM	NM
	03/24/06	15.0	NM	NM	NM	NM	NM
	04/17/06	15.0	5.74	5.6	6.86	555.0	1,223
	04/27/06	15.0	5.22	2.48	7.17	NM	1,184
	05/04/06	15.0	NM	NM	NM	NM	NM
	05/16/06	15.0	NM	NM	NM	NM	NM
	06/09/06	15.0	8.00	4.6	7.51	374.0	1,190
	06/30/06	15.0	7.37	2.0 1.8 1.0	7.52 7.69 7.43 NM	9.0 44.0	1,286
	07/10/06	15.0	7.16				1,210
	07/12/06	15.0	7.32			-4.0	1,169
	08/03/06	15.0	NM	NM		NM	NM
	08/25/06	15.0	8.69	1.4	7.08	127.0	937
	09/13/06	15.0	8.51	1.25	6.58	NM	NM
	09/27/06	15.0	8.96	1.41	6.78	11.0	2,114
	10/12/06	15.0	9.10	0.63	6.64	38.0	2,062
	10/17/06	15.0	9.22	1.97[2]	6.97	NM	1,896
	11/03/06	15.0	9.78	0.72[2]	6.45	84.0	1,903
	11/20/06	15.0	9.87	3.6	8.10	388.0	887
	12/18/06	Injection well	9.70	1.28[2]	6.60	93.0	1,875

TABLE 4
Physical Parameter Summary

		Distance to	Depth to				Specific
Well		nearest	water	DO	pН	ORP	Conductivity
Number	Date	injection well	feet bgs	mg/L		mV	millisiemen
EX-3	10/24/05	45	14.93	NM	7.06	NM	676
	01/11/06	45	NM	NM	NM	NM	NM
	01/20/06	45	NM	NM	NM	NM	NM
	02/02/06	45	NM	NM	NM	NM	NM
	02/15/06	45	NM	NM	NM	NM	NM
	03/03/06	45	NM	NM	NM	NM	NM
	03/24/06	45	NM	NM	NM	NM	NM
	04/17/06	45	NM	NM	NM	NM	NM
	04/27/06	45	NM	NM	NM	NM	NM
	05/04/06	45	NM	NM	NM	NM	NM
	05/16/06	45	NM	NM [,]	NM	NM	NM
	06/09/06	45	NM	NM	NM	NM	NM
	06/30/06	45	NM	NM	NM	NM	NM
	07/10/06	45	NM	NM	NM	NM	NM
	07/12/06	45	9.01	0.5	7.40	0.0	894
	08/03/06	45	NM	NM	NM	NM	NM
	08/25/06	45	NM	NM	NM	NM	NM
	09/13/06	45	NM	NM	NM	NM	NM
	09/27/06	45	NM	NM	NM	NM	NM
	10/12/06	45	NM	NM	NM	NM	NM
	10/17/06	45	NM	NM	NM	NM	NM
	11/03/06	45	NM	NM	NM	NM	NM
!	11/20/06	45	NM	NM	NM	NM	NM
	12/18/06	45	NM	NM	NM	NM	NM

NOTES:

pH, specific conductivity, ORP and DO were measured on site using field instruments

- OR = Over the range of the field instrument
- [1] DO instrument appears to have malfunctioned
- [2] DO was originally measured in % and then converted to mg/L [DO in mg/L = 0.10* DO in %]
- [3] Not measured since well was hidden under dirt pile
- [4] Not measured due to well blocked off by spools
- [5] Removed iSOC unit from well

TABLE 5

Analytical Parameter Summary

		Distance to		Heterotrophic	TOC ³	Ferrous	Total	Nitrite	Nitrate	Ammonia	Sulfate	Sulfide ⁷	Total Ortho-		Total
Well		nearest	BOD^{-1}	plate count ²		iron ⁴	iron ⁴	as NO ₂ 5	as NO ₃ 5	Nitrogen ⁶	as SO ₄ 5		phosphates 8	TDS ⁹	Phosphorus ⁸
Number	Date	injection well	μg/L	CFU/ml	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
									<u> </u>	1 10-	<u> </u>		T FB T	нь Б	I AB/L
S-1	01/11/06	Injection well	<3,000	3,000	7,800	<50	690	<250	<250	<100	32,000	<100	190	NA	120
S-2	01/11/06	Injection well	19,000	18,000	6,600	<50	<300	<250	<250	<100	2,500	<100	120	NA	<100
MW-3	01/11/06	Injection well	<3,000	23,000	3,400	<50	420	<250	<250	<100	15,000	<100	130	NA	120
MW-7	01/11/06	70.0	<3,000	19,000	3,900	<50	<300	<250	600	<100	21,000	<100	180	NA	180
	04/27/06	70.0	<3,000	24	2,300	<50	< 300	<250	2,400	<100	50,000	<100	210	660,000	150
	07/12/06	70.0	<3,000	33	2,500	<50	< 300	<250	2,600	<100	56,000	<100	130	670,000	<100
	10/17/06	70.0	<3,000	8	3,400	<50	1,300	<250	2,200	<100	55,000	<100	<100	650,000	<100
MW-8	01/11/06	47.0	<3,000	380	1,500	<50	1,500	<250	4,100	<100	62,000	<100	190	NA	170
	04/27/06	47.0	<3,000	660	1,000	<50	3,200	<250	4,200	<100	66,000	120	230	5,900,000	140
	07/12/06	47.0	<3,000	S[1]	2,100	<50	5,300	<250	4,800	<100	79,000	<100	180	2,400,000	170
	10/17/06	47.0	<3,000	3,500	1,900	<50	3,600	<250	4,500	<100	79,000	<100	<100	5,400,000	130
EX-1	01/11/06	20.0	<3,000	4,500	9.500	<50	540	<250	1,400	<100	69,000	<100	220	NA	200
	04/27/06	20.0	<3,000	9,800	6,800	<50	6,000	<250	260	<100	69,000	<100	160	400,000	200
	07/12/06	20.0	25,000	19,000	26,000	230	7,400	<250	<250	1,200	8,600	<100	300	1,100,000	290
	10/17/06	20.0	32,000	11,000	30,000	60	53,000	<250	<250	1,800	4,700	<100	<100	1,000,000	220 330
EV 2	01/11/06	1.7.0	40.000							:					
EX-2	01/11/06	15.0	48,000	85,000	17,000	<50	1,200	<250	<250	120	21,000	<100	230	NA	140
	04/27/06	15.0	22,000	82,000	17,000	<50	770	<250	<250	<100	22,000	<100	140	1,200,000	240
	07/12/06	15.0	23,000	41,000	17,000	<50	2,000	<250	<250	<100	6,700	<100	220	1,200,000	150
	10/17/06	15.0	38,000	3,600	18,000	<50	37,000	<250	<250	<100	<500	<100	<100	1,200,000	<100
EX-3	07/12/06	45.0	9,400	15,000	14,000	<50	14,000	<250	<250	<100	32,000	220	320	930,000	250
	10/17/06	45.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS

TABLE 5

Analytical Parameter Summary

Former USA Service Station No. 57 10700 McArthur Boulevard, Oakland, California

		Distance to		Heterotrophic	TOC ³	Ferrous	Total	Nitrite	Nitrate	Ammonia	Sulfate	Sulfide ⁷	Total Ortho-		Total
Well	_	nearest	BOD 1	plate count 2		iron ⁴	iron 4	as NO ₂ ⁵	as NO ₃ ⁵	Nitrogen ⁶	as SO ₄ ⁵		phosphates 8	TDS 9	Phosphorus ⁸
Number	Date	injection well	μg/L	CFU/ml	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L

NOTES:

Biochemcial oxygen demand (BOD) was analyzed using EPA Method 405.1

² Heterotrophic plate count (HPC) was conducted using SM 9215

³ Total organic carbon (TOC) was analyzed using EPA Method 415.1

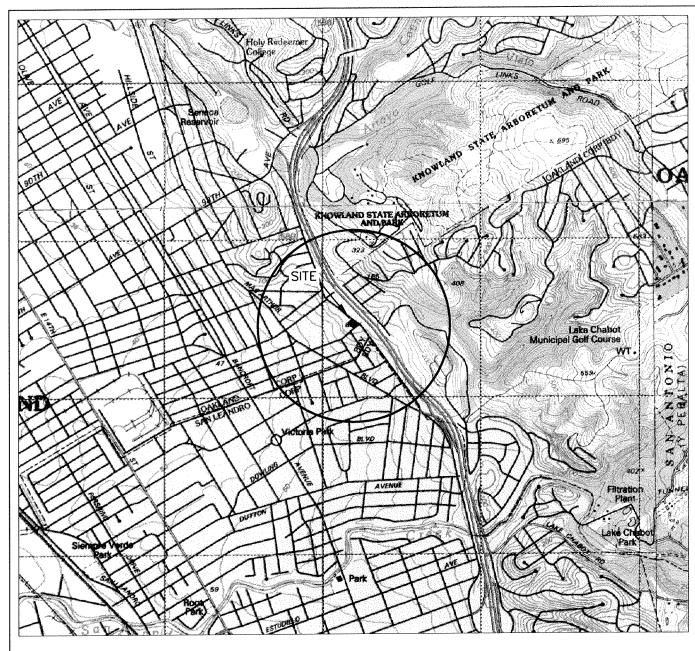
Ferrous iron & Total iron was analyzed using SM3500-Fe D

Nitrite, nitrate and sulfates were analyzed using EPA Method 300.0

Ammonia nitrogen was analyzed using EPA Method 350.3

Sulfide was analyzed using EPA Method 376.2

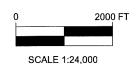
Total orthophosphate and total phosphorus were analyzed by EPA Method 365.2


Total dissolved solids (TDS) analyzed using EPA Method 160.1

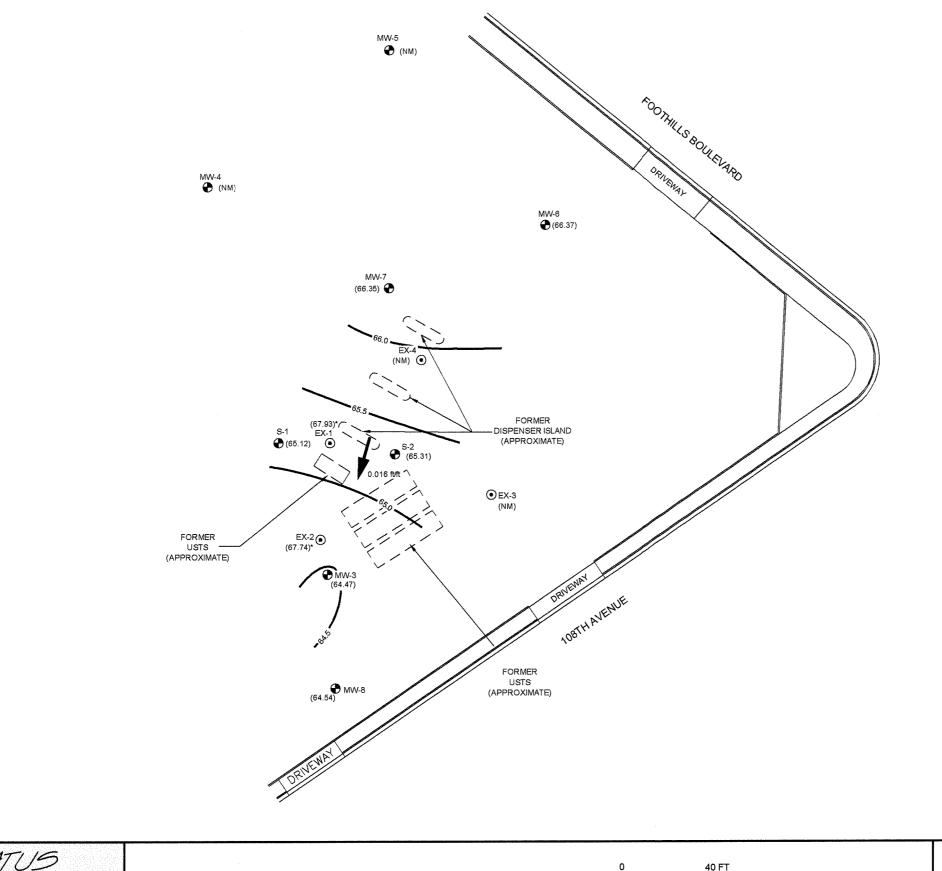
μg/L = micrograms per liter

NA = Not analyzed

NS = Not sampled


S[1] = Spreaders frequently cover more than half the plate and interfere with obtaining a reliable plate count.

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
OAKLAND, CA
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1980



STRATUS ENVIRONMENTAL, INC. FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA SITE LOCATION MAP FIGURE

PROJECT NO. 2007-0057-01

LEGEND

→ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

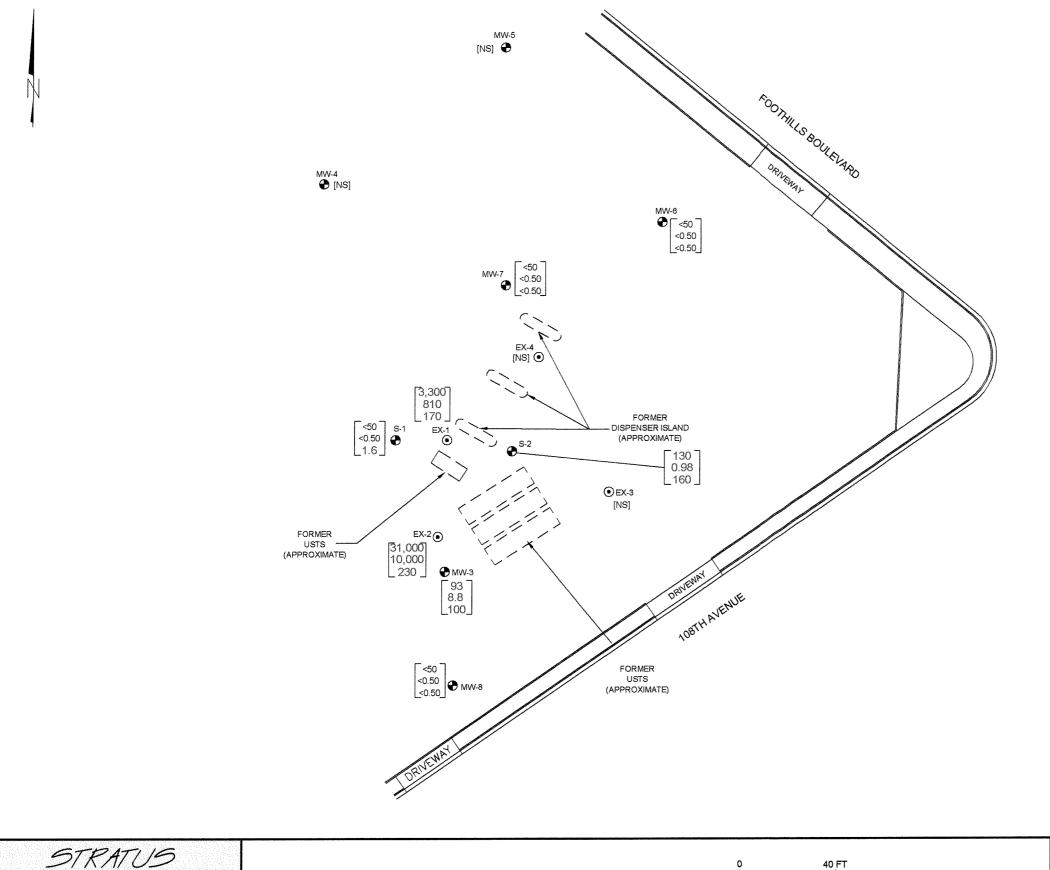
(65.12) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

-65.0 - WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

(NM) NOT MEASURED

WELLS MEASURED: 10/17/06
* NOT USED FOR CONTOURING


FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR MAP 4th QUARTER 2006 FIGURE

PROJECT NO. 2007-0057-01

STRATUS ENVIRONMENTAL, INC.

→ MW-3 MONITORING WELL LOCATION

EX-1 EXTRACTION WELL LOCATION

-<50 GASOLINE RANGE ORGANICS (GRO) IN μg/L

BENZENE CONCENTRATION IN µg/L
METHYL TERTIARY BUTYL ETHER (MTBE) IN µg/L

[NS] NOT SAMPLED

SAMPLES COLLECTED ON 10/17/06

GRO ANALYZED BY EPA METHOD 8015B

BENZENE & MTBE ANALYZED BY EPA METHOD 8260B

FORMER USA SERVICE STATION NO. 57 10700 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY 4th QUARTER 2006

FIGURE

3 PROJECT NO.

2007-0057-01

STRATUS ENVIRONMENTAL, INC.

Figure 4

DO Variation with Time at Injection Wells
Former USA Service Station No. 57

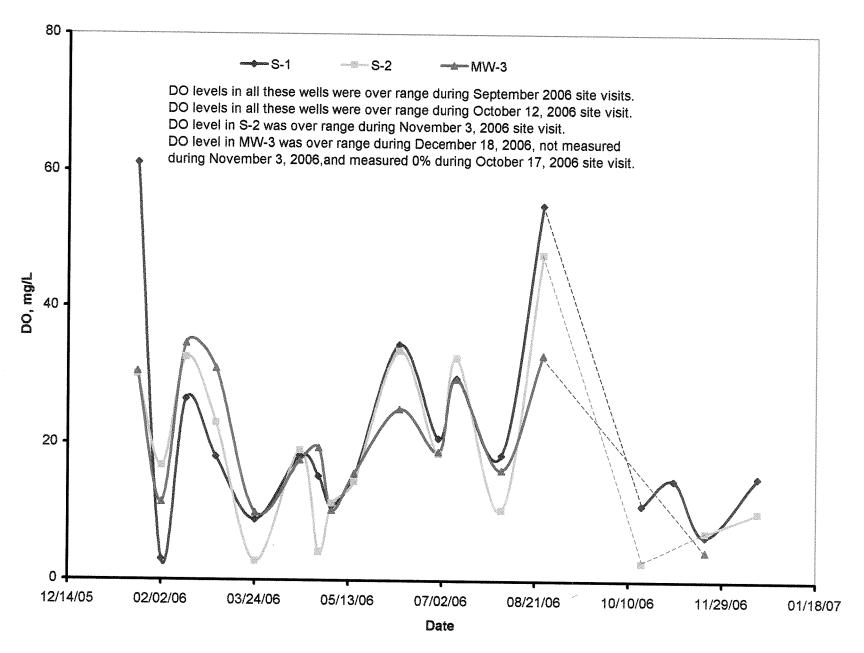


Figure 5

DO Variation with Time at Observation and Background Wells

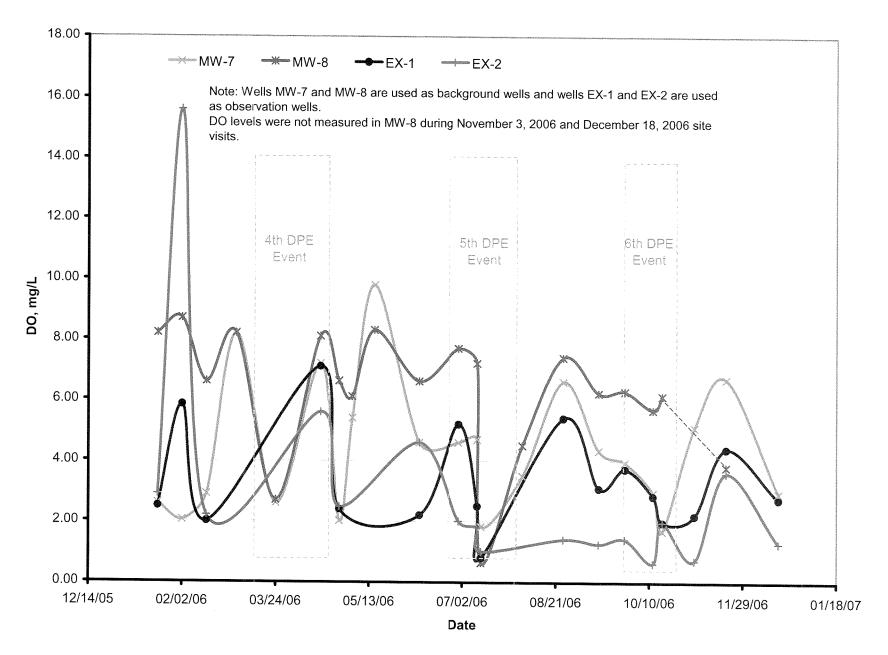


Figure 6
GRO, Benzene, MTBE, and Depth to Water Variation with Time at S-1

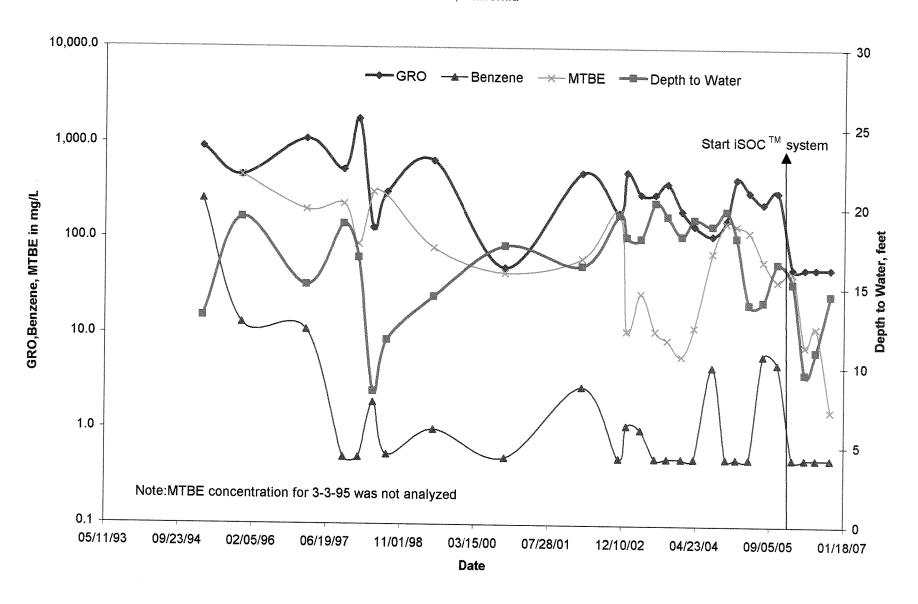


Figure 7
GRO, Benzene, MTBE, and Depth to Water Variation with Time at S-2

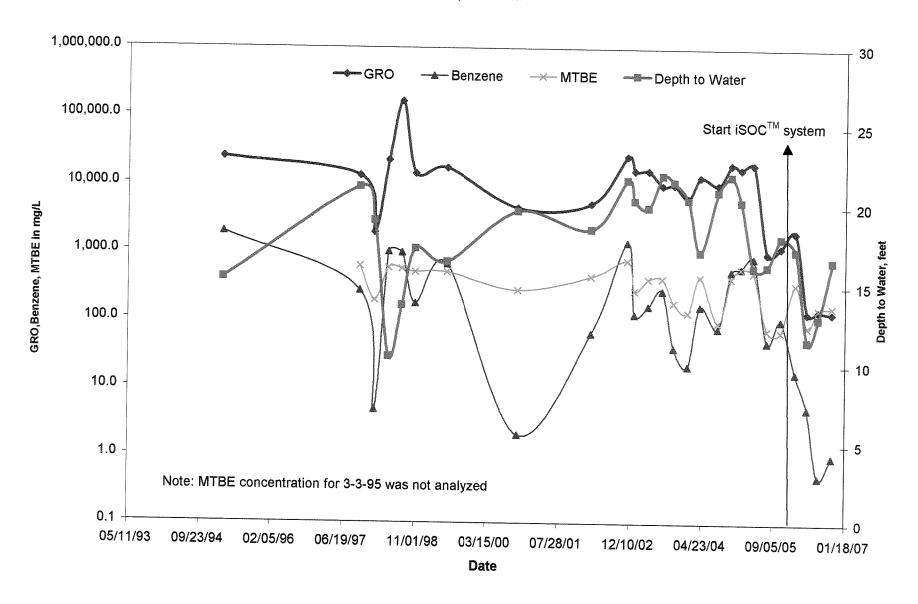


Figure 8
GRO, Benzene, MTBE, and Depth to Water Variation with Time at MW-3

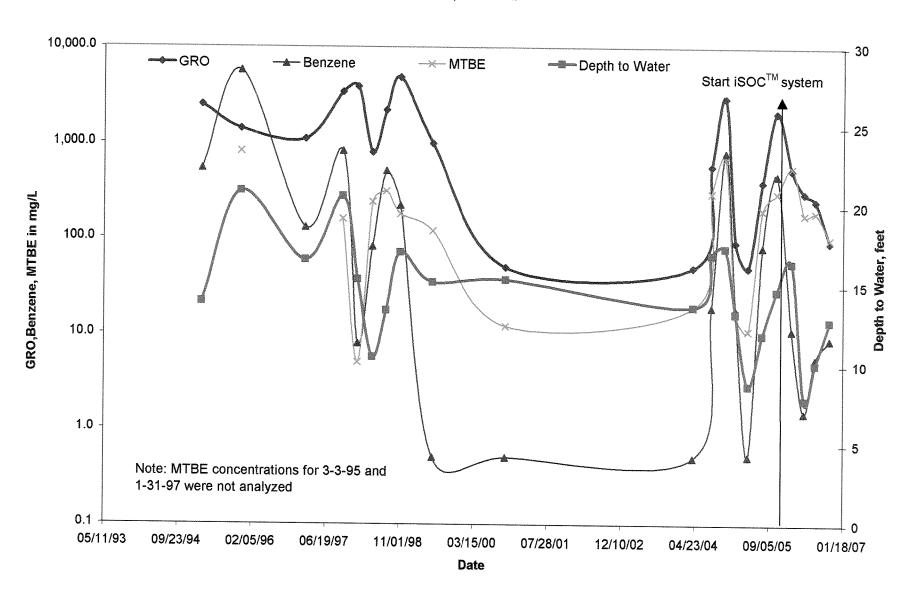


Figure 9
GRO, Benzene, MTBE, and Depth to Water Variation with Time at EX-1

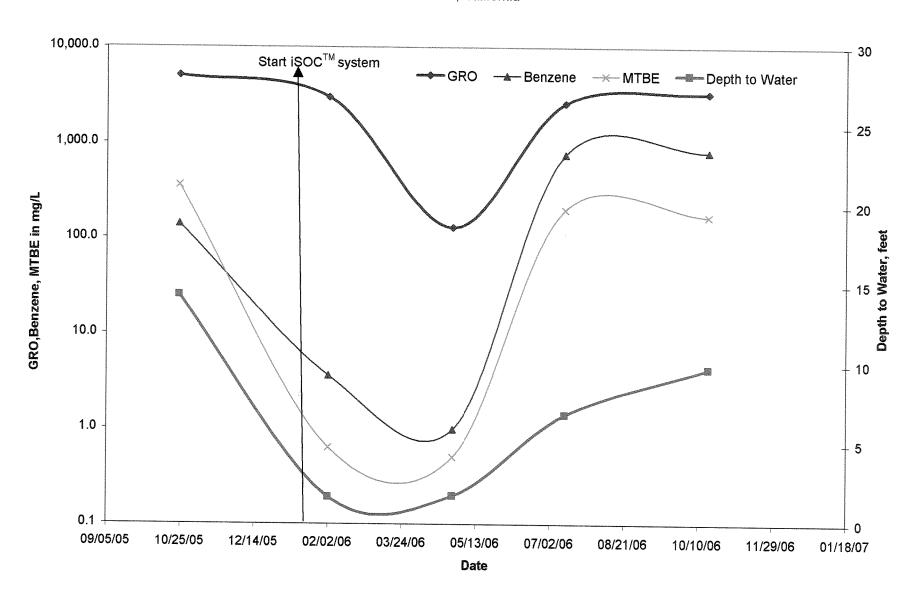
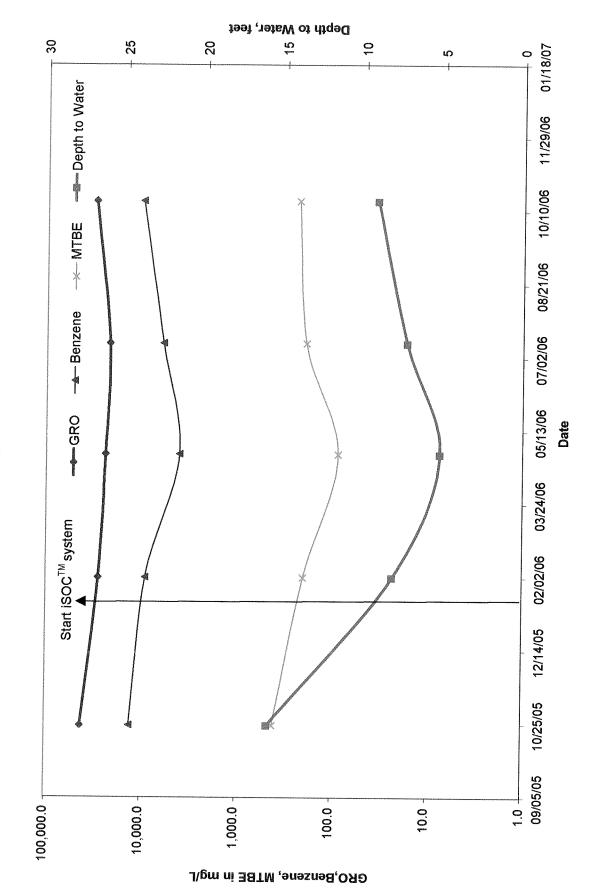



Figure 10
GRO, Benzene, MTBE, and Depth to Water Variation with Time at EX-2
Former USA Service Station No. 57
10700 MacArthur Boulevard
Oakland, California

APPENDIX A FIELD DATA SHEETS

60 Original

Global ID:	T0600101808
Site Address	10700 MCARTHU

City Oakland, CA
Sampled By: VinceZ

Site Number	USA 57
Project No	u57
Project PM	Steve

1			Notor Lovel F)oto	·····			5 1/	,	-			<i></i>						
į		ν 	Vater Level D)ala				ourge vo	olume Ca	lculations	ı	W	ell Pur	ge Meti	hod	Sa	mple Rec	ord	Field Data
	Well ID	Time	Depth to water feet \	Top of Screen feet	Total Depth of well feet	Qtr. Meas. Depth of Well feet	Casing Water Column (A)	Well Diameter (Inches)	Multiplier Value (B)	Three Casing Volumes (Gallons)	Actual Water Purged (Gallons)	l No			Other	DTW At Sample Time	Sample I.D.	Sample time	Dissolved Oxygen Oxyk
	MW-3	0538	12.80		43		30.2	4	2	60	31-Dry			×		34.85	MW-3	0641	Ø
covered	MW-4	N/5			42			4							V	NIA	MW-4	N/S	N/A
covered	MW-5	N/5			37			4							X	NIA	MW-5	N/5	NIA
	MW-6	0546	15.95		17		1.05	4	2_	2	X	X				15.95	MW-6	0551	23.0
	MW-7	0459	13.46		42		28.54	4	2	57	57			V		19.28	MW-7	1111	16.9
	MW-8	0505	15.96		37.5		21.54	4	2	43	Dry-21			X		32.44	MW-8	1134	41.3
	S-1	0517	14.54		41		26.46	2 3	1	26	13- Dry			X		23.17	S-1	0711	110.0
	S-2	0533	16.59		43		26.41	3	ij	26	26			X		28.60	S-2	0751	27.1
	EX-1	0525	9.19		24		14.21	4	2_	28	14-Dry					20.59	EX-1	0915	19.7
	EX-2	0541	9.22		25		15.78	4	ک	31	16.Dry					21.12	EX-2	0943	19.7
Covered	. EX-3	N/5			25			4		45.4	/				X	N/A	EX-3	W/S	NA
Gone	EX-4	\sim		206	25		$\overline{}$	_4_											_~
													14.76	<u>.</u>	-14				
															g ^r				
							*!'												
																			į
	*****										der.				W-	ý	Nage		
											200								

Site Address 10700 MCARTHUR

City Oakland, CA

Sampled By: VinceZ

Site Number USA 57

Project No u57

Project PM Steve

Date 10/17/06

13 10/11/06 ORIGINAL

Well ID		MV	V-3		Well ID		M\	N-4	
purge start time	0614	4	No	0 do 1	purge start time	9			
	Temp C			gallons		Temp C	рН	cond	gallons
time	17.4	7.76	3.15 m	Q	time				
time	1.8,3	7.74	3.22 m	30	time				
time	Dry	1 @	3/ 90	il	time				
time	17.9	7,34	3.23m	(31)	time				
purge stop time	:				purge stop time)			
Well ID		M۷	V-5		Well ID		M۱	N-6 C	551
purge start time)				purge start time	Ba	iler	0	601
	Temp C	рН	cond	gallons		Temp C	ł	cond	gallons
time					time	16.5	6.99	2.56 _m	82
time					time				~
time					time				
time					time	,			
purge stop time					purge stop time	<u>}</u>		ALCONOMIC CONTRACTOR OF THE CO	
Well ID		MV	V-7 /	111	Well ID		MV	V- 8	
Purge start time	102	7	No	Obor	Purge start time	100	7 /	NOOP	R
	Temp C	рН	cond	gallons	***************************************	Temp C			gallons
time	19.0	7.62	1157	8	time	18.3	7.07	6.36m	Ø
time	19.1	7.61	1126	28	time		6.99		
time	18.2	7.33	1179	57	time	D	ry @	21 9	el
time					time	18.4	6.97	6.70 m	21)
purge stop time	1059		, 1000 A 000 2021		purge stop time				
Well ID		S	-1		Well ID		S	-2	
purge start time	0700		No 0	dor	purge start time	0738	>	No	0000
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons
time	18,3	7.75	1170	&	time	16.5	7.35	1/36	8
time	Dr	y Co	13 ga	l	time	17.4	7.4/	1131	/3
time	18.0	7.28	1241/	13)	time	17.1	7.10	1154	26
time					time				
					purge stop time	0744	L		

Site Address 10700 MCARTHUR

City Oakland, CA

Sampled By: VinceZ

 $\|\hat{f}_{i} - \hat{h}_{i}\|_{L^{2}(\mathbb{R}^{2})}^{2,2} = s(\hat{h}_{i} - \hat{h}_{i}) + \frac{s(\hat{h}_{i} - \hat{h}_{i})}{s(\hat{h}_{i} - \hat{h}_{i})} + \frac{s(\hat{h}_{i} - \hat{h}_{i})}{s(\hat{h}_{i} - \hat{h}_{i}$

Site Number USA 57

Project No u57
Project PM Steve

Date 10/17/06

v3 - 10/11/06

Temp C pH cond gallons Temp C pH cond time 17.9 6.89 1647 © time 17.8 6.98 1831	Odor gallons
purge start time 0 8 2 8 F 0 6 0 7 purge start time 0 8 4 7 Mode Temp C pH cond gallons Temp C pH cond time 11,9 6.89 1647 time 17.8 6.98 1831	Odor
Temp C pH cond gallons Temp C pH cond time 17.9 6.89 1647 © time 17.8 6.98 1834	gallons
time 17.9 6.89 1667 & time 17.8 6.98 1831	
	88
time 18.5 6.88 1583 13 time 19.4 (.99 1801	12
time Dry (w) 14 gal time Dry @ 16 ga	e
time 17.5 6.90 1624 14 time 18.5 6.97 1896 ((16)
purge stop time purge stop time	Page 100 Pag
Well ID EX-4	
purge start time purge start time	
Temp C pH cond gallons Temp C pH cond	gallons
time time	
purge stop time purge stop time	
Well ID 0 Well ID 0	
Purge start time Purge start time	
Temp C pH cond gallons Temp C pH cond	gallons
time time	
purge stop time purge stop time	
Well ID 0 Well ID 0	
purge start time purge start time	
Temp C pH cond gallons Temp C pH cond	gallons
time time	
une une	
time time	
time time	

10700 McArthur Boulevard Oakland, CA

Oxygen Injection System Using iSOC

	· 1		
Date:	10/12/06	Technician:	MWMorgan
Onsite Time:	0830	Project Engineer:	G. Kowtha
Offsite Time:		Weather Conditions:	Clear
		Ambient Temperature:	60

iSOC [™] Panel:	The second secon
No. of iSOC Panels:	Three 3-Injection Well Panels
No. of Oxygen Cylinders On Site:	0
No. of Cylinders Connected to Panels:	3
No. of Empty Cylinders:	1

		Fi	eld Measu	rments (M	onthly)			
Well ID	Time	DTW	pН	DO	DRP	cond	Temp	
S-1		14.43	7.22	OVER	239	1198	17.3	
S-2		16.45	6.67	OVER	241	1176	16.8	
MW-3		12.10	7.19	OVER	242	3451	16.8	
EX-1		9.67	6.93	2.34	238	1145	18.0	
EX-2		9.10	6.69	.63	38	2062	-	ODOR
EX-3	NM						,	****
MW-7		1346	7.01	194l	244	1194	17.7	2.96 00
MW-8		15,85	6.39	5.67	77	3999	17.4	

Connected	Cylinders
O ₂ Cylinder	Pressure
1	60/2400
2	
3	60/600
4	
5	-
6	

Changedout Oz Cylinder #1, was Opsi upon arrival

Lab Parameters	Sampling Frequency	Sample Locations	Analytical Method
Bio-chemcal oxygen demand	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 405.1
Total Iron & Ferrous Iron	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	SM3500
Heterotrophic Plate Counts	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	SM 9215B
Total Organic Carbon	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 415.1
Total Dissolved Solids	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 160.1
Nitrates, nitrites and ammonia	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 350.3
Sulfide and Sulfates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 376.2 & EPA 300.0
Total Phosphorus & orthophosphates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 365.2

11/3/06 Ookland USA 57

0700 MWM on Site; Eys operating

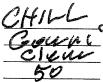
WELL #	DTW	TEMP	PH	cond	DO	ORP	
EX-1	10.91	17.4	6.50	1198	21.9	170	
Ex- 2	9.78	17.6	4.45	1903	7.2	84	
MW-3	unde	rdirt.	pile				
5-1	15.19	17.6	6.43	1225	147.1	113	
S-Z	17.21	16.9	6.55	1221	OVER	120	
MW-7	14.21	167	6.86	1185	51.1	210	ı
MW-8	Blocked	off by	Spools			•	

cannister # 1: 6 changed out ...

2: 800

3: 620

(2) Empty (1) Full (3) In use


10700 McArthur Boulevard

Oakland, CA Oxygen Injection System Using iSOC

Onsite Time:

Technician: Project Engineer: Weather Conditions: Ambient Temperature:

iSOC [™] Panel:	
No. of iSOC Panels:	Three 3-Injection Well Panels
No. of Oxygen Cylinders On Site:	6
No. of Cylinders Connected to Panels:	3
No. of Empty Cylinders:	3

		Fie	eld Measu	ments (N	ionthly)		- Carrier Carr
Well ID	Time	DTW	рН	DO	Colel	OKI	TEMP
S-1		15.49	8.60	6.5	706	381	20.7
S-2		17,55	8.46	7.1	682	428	20.9
MW-3		13.72	8,28	4.4	851	380	21.0
EX-1		10.58	8.61	404	654	398	Z/4(
EX-2		9.87	8.10	3.6	887	388	21.0
EX-3		NM					
MW-7		14,54	9110	6.7	740	170	19.6
MW-8		16.87	7.67	3.8	890	394	20.3
						-	

Connected	Cylinders
O ₂ Cylinder	Pressure
1	2400
2	700
3	500
4	ø
5	Q
6	B

Lab Parameters	Sampling Frequency	Sample Locations	Analytical Method
Bio-chemcal oxygen demand	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	EPA 405.1
Total Iron & Ferrous Iron	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	SM3500
Heterotrophic Plate Counts	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	SM 9215B
Total Organic Carbon	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	EPA 415.1
Total Dissolved Solids	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 160.1
Nitrates, nitrites and ammonia	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 350.3
Sulfide and Sulfates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW- 8	EPA 376.2 & EPA 300.0
Total Phosphorus & orthophosphates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW- 8	EPA 365.2

10700 McArthur Boulevard Oakland, CA

Oxygen Injection System Using iSOC

Weather Conditions: Ambient Temperature:

Technician: Onsite Time: Project Engineer:

Offsite Time:

OF GROWING

iSOC [™] Panel:		
No. of iSOC Panels:	Three 3-Injection Well Panels	
No. of Oxygen Cylinders On Site;		
No. of Cylinders Connected to Panels:	3	
No. of Empty Cylinders:	3	

	Field Measurments (Monthly)							
Well ID	Time	DTW	pН	DO				
S-1								
S-2								
MW-3								
EX-1					1			
EX-2								
EX-3								
MW-7								
MW-8								
							<u> </u>	
								, , , , , , , , , , , , , , , , , , ,

	-
Connected	Cylinders
O ₂ Cylinder	Pressure
1	2200
2	2200
3	2200
4	82
5	82
6	8

Lab Parameters	Sampling Frequency	Sample Locations	Analytical Method
Bio-chemcal oxygen demand	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	EPA 405.1
Total Iron & Ferrous Iron	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	SM3500
Heterotrophic Plate Counts	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW 8	SM 9215B
Total Organic Carbon	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 415.1
Total Dissolved Solids	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 160.1
Nitrates, nitrites and ammonia	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 350.3
Sulfide and Sulfates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 376.2 & EPA 300.0
Total Phosphorus & orthophosphates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 365.2

10700 McArthur Boulevard Oakland, CA

Oxygen Injection System Using iSOC

Date: 12/18(06

Onsite Time: 0530

Offsite Time: 0300

Technician:
Project Engineer:
Weather Conditions:
Ambient Temperature:

iSOC [™] Panel:	
No. of iSOC Panels:	Three 3-Injection Well Panels
No. of Oxygen Cylinders On Site:	6
No. of Cylinders Connected to Panels:	3
No. of Empty Cylinders:	P

Field Measurments (Monthly)								
Well ID	Time	DTW	рН	DO 1/.	ORP	Tempe	Cond	
S-1		15.54	6.66	151.2	148	15.6	1132	
S-2		17.77	6.43	106.1	149	15.7	IIII	
MW-3		13.47	6.79	DUEP	84	15.1	2122	
EX-1		5.63	18.0	27.4	149	14.8	741	
EX-2		470	4.60	12.8	93	15.2	1575	
EX-3		NW-	~~>					
MW-7		14.05	693	29.4	142	15.3	656	
MW-8		NM-	→					
				:				

Connected	Cylinders
O ₂ Cylinder	Pressure
1	2100
2	2200
3	2200
4	FUIT
5	Full
6	Full

Lab Parameters	Sampling Frequency	Sample Locations	Analytical Method
Bio-chemcal oxygen demand	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 405.1
Total Iron & Ferrous Iron	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	SM3500
Heterotrophic Plate Counts	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	SM 9215B
Total Organic Carbon	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 415.1
Total Dissolved Solids	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 160.1
Nitrates, nitrites and ammonia	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 350.3
Sulfide and Sulfates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 376.2 & EPA 300.0
Total Phosphorus & orthophosphates	Quarterly	EX-1, EX-2, EX-3, MW-7, & MW-8	EPA 365.2

Moved Ex-1 150c for

SI and Ex-2 from

MW-3: set both a

2' off bothom

Set pressure to Se

psi. Cleaned MW
up. Tryed to locate

MW-5, 4 and Ex-3

mw-5 is buried

under soil pile

MW-4 is buried und

mud of drivening re6

thick all over

EX-3 is under mud/

Equipment.

APPENDIX B SAMPLING AND ANALYSIS PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time, the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

• Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to assess the reproducibility of the analytical data. One replicate groundwater sample per twenty samples collected will be analyzed per sampling event, unless otherwise specified. Triplicate samples will be collected only when specific conditions warrant and generally are sent to an alternate laboratory to confirm the accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported and stored with the samples and analyzed to assess the impact of sample transport and storage for data quality. In the event that any analyte is detected in the field blank, a trip blank will be included in the subsequent groundwater sampling event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

FILE COPY

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Gowri Kowtha Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

NOV 2 2 2006

Job#:

2007-0057-01/USA 57

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

	Parameter	Concentration	Reporting	Date	Date
			Limit	Sampled	Analyzed
Client ID:	TPH-P (GRO)	ND	50 μg/L	10/17/06	10/20/06
MW-7	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	10/17/06	10/20/06
STR06101740-01A	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	10/17/06	10/20/06
	1,2-Dichloroethane	ND	1.0 μg/L	10/17/06	10/20/06
	Benzene	ND	0.50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	10/17/06	10/20/06
	Toluene	ND	0.50 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND	2.0 μg/L	10/17/06	10/20/06
	Ethylbenzene	ND	0.50 μg/L	10/17/06	10/20/06
	m,p-Xylene	ND	0.50 μg/L	10/17/06	10/20/06
	o-Xylene	ND	0.50 μg/L	10/17/06	10/20/06
Client ID:	TPH-P (GRO)	ND	50 μg/L	10/17/06	10/20/06
MW-8	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	10/17/06	10/20/06
STR06101740-02A	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L	10/17/06	10/20/06
	1,2-Dichloroethane	ND	1.0 µg/L	10/17/06	10/20/06
	Benzene	ND	0.50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	10/17/06	10/20/06
	Toluene	ND	0.50 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND	2.0 μg/L	10/17/06	10/20/06
	Ethylbenzene	ND	0.50 μg/L	10/17/06	10/20/06
	m,p-Xylene	ND	0.50 μg/L	10/17/06	10/20/06
	o-Xylene	ND	0.50 μg/L	10/17/06	10/20/06
Client ID:	TPH-P (GRO)	3,300	1,000 μg/L	10/17/06	10/20/06
EX-1	Tertiary Butyl Alcohol (TBA)	ND V	100 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	170	5.0 μg/L	10/17/06	10/20/06
STR06101740-03A	Di-isopropyl Ether (DIPE)	ND V	10 μg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND V	10 μg/L	10/17/06	10/20/06
	1,2-Dichloroethane	30	10 μg/L	10/17/06	10/20/06
	Benzene	810	5.0 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND V	10 μg/L	10/17/06	10/20/06
	Toluene	ND V	5.0 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND V	40 μg/L	10/17/06	10/20/06
	Ethylbenzene	32	5.0 μg/L	10/17/06	10/20/06
	m,p-Xylene	68	5.0 μg/L	10/17/06	10/20/06
	o-Xylene	ND V	5.0 μg/L	10/17/06	10/20/06

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TPH-P (GRO)	31,000		10,000 μg/L	10/17/06	10/20/06
EX-2	Tertiary Butyl Alcohol (TBA)	ND	V	1,000 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	230		50 μg/L	10/17/06	10/20/06
STR06101740-04A	Di-isopropyl Ether (DIPE)	ND	V	100 μg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND	V	100 μg/L	10/17/06	10/20/06
	1,2-Dichloroethane	400		100 μg/L	10/17/06	10/20/06
	Benzene	10,000		50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND	V	100 µg/L	10/17/06	10/20/06
	Toluene	1,800		50 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND	V	400 μg/L	10/17/06	10/20/06
	Ethylbenzene	1,200		50 μg/L	10/17/06	10/20/06
	m,p-Xylene	2,400		50 μg/L	10/17/06	10/20/06
	o-Xylene	1,000		50 μg/L	10/17/06	10/20/06
Client ID:	TPH-P (GRO)	ND		50 μg/L	10/17/06	10/24/06
S-1	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	10/17/06	10/24/06
Lab ID :	Methyl tert-butyl ether (MTBE)	1.6		0.50 μg/L	10/17/06	10/24/06
STR06101740-05A	Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	10/17/06	10/24/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	10/17/06	10/24/06
	1,2-Dichloroethane	ND		1.0 μg/L	10/17/06	10/24/06
	Benzene	ND		0.50 μg/L	10/17/06	10/24/06
	Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	10/17/06	10/24/06
	Toluene	ND		0.50 μg/L	10/17/06	10/24/06
	1,2-Dibromoethane (EDB)	ND		2.0 μg/L	10/17/06	10/24/06
	Ethylbenzene	ND		0.50 μg/L	10/17/06	10/24/06
	m,p-Xylene	ND		0.50 μg/L	10/17/06	10/24/06
	o-Xylene	ND		0.50 μg/L	10/17/06	10/24/06
Client ID:	TPH-P (GRO)	130		50 μg/L	10/17/06	10/20/06
S-2	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	160		$0.50~\mu g/L$	10/17/06	10/20/06
STR06101740-06A	Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	10/17/06	10/20/06
	1,2-Dichloroethane	ND		1.0 µg/L	10/17/06	10/20/06
	Benzene	0.98		0.50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND		1.0 µg/L	10/17/06	10/20/06
	Toluene	ND		$0.50~\mu g/L$	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND		$2.0~\mu g/L$	10/17/06	10/20/06
	Ethylbenzene	1.1		$0.50~\mu g/L$	10/17/06	10/20/06
	m,p-Xylene	1.7		0.50 μg/L	10/17/06	10/20/06
	o-Xylene	0.50		0.50 μg/L	10/17/06	10/20/06
Client ID:	TPH-P (GRO)	93		50 μg/L	10/17/06	10/20/06
MW-3	Tertiary Butyl Alcohol (TBA)	50		10 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	100		0.50 μg/L	10/17/06	10/20/06
STR06101740-07A	Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 µg/L	10/17/06	10/20/06
	1,2-Dichloroethane	21		1.0 μg/L	10/17/06	10/20/06
	Benzene	8.8		0.50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	10/17/06	10/20/06
	Toluene	ND		0.50 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND		$2.0~\mu g/L$	10/17/06	10/20/06
	Ethylbenzene	ND		0.50 μg/L	10/17/06	10/20/06
	m,p-Xylene	ND		0.50 μg/L	10/17/06	10/20/06
	o-Xylene	ND		0.50 μg/L	10/17/06	10/20/06

2007-0057-01/USA 57 Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TPH-P (GRO)	ND	·50 μg/L	10/17/06	10/20/06
MW-6	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	10/17/06	10/20/06
Lab ID :	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	10/17/06	10/20/06
STR06101740-08A	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	10/17/06	10/20/06
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L	10/17/06	10/20/06
	1,2-Dichloroethane	ND	1.0 µg/L	10/17/06	10/20/06
	Benzene	ND	0.50 μg/L	10/17/06	10/20/06
	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	10/17/06	10/20/06
	Toluene	ND	0.50 μg/L	10/17/06	10/20/06
	1,2-Dibromoethane (EDB)	ND	2.0 μg/L	10/17/06	10/20/06
	Ethylbenzene	ND	0.50 μg/L	10/17/06	10/20/06
	m,p-Xylene	ND	0.50 μg/L	10/17/06	10/20/06
	o-Xylene	ND	0.50 μg/L	10/17/06	10/20/06

Gasoline Range Organics (GRO) C4-C13

Reported in micrograms per liter, per client request.

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Saulner Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Gowri Kowtha Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

GC/MSD by Direct Injection EPA Method SW8260B-DI

		Parameter	Concentration	Reporting	Date I	Date
				Limit	Sampled An	
Client ID:	MW-7					
Lab ID:	STR06101740-01A	Methanol	ND	5,000 μg/L	10/17/06 10/1	8/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/13	8/06
Client ID:	MW-8					
Lab ID :	STR06101740-02A	Methanol	ND	5,000 μg/L	10/17/06 10/18	8/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/18	3/06
Client ID :	EX-1					
Lab ID :	STR06101740-03A	Methanol	ND	5,000 μg/L	10/17/06 10/19	9/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/19	9/06
Client ID:	EX-2					
Lab ID :	STR06101740-04A	Methanol	ND	5,000 μg/L	10/17/06 10/18	3/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/18	3/06
Client ID:	S-1					
Lab ID :	STR06101740-05A	Methanol	ND	5,000 μg/L	10/17/06 10/18	3/06
		Ethanol	ND	5,000 µg/L	10/17/06 10/18	/06
Client ID:	S-2					
Lab ID :	STR06101740-06A	Methanol	· ND	5,000 μg/L	10/17/06 10/18	/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/18	/06
Client ID:	MW-3					
Lab ID :	STR06101740-07A	Methanol	ND	5,000 μg/L	10/17/06 10/18	/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/18	/06
Client ID :	MW-6					
Lab ID :	STR06101740-08A	Methanol	ND	5,000 μg/L	10/17/06 10/18/	/06
		Ethanol	ND	5,000 μg/L	10/17/06 10/18/	/06

Reported in micrograms per liter, per client request.

ND = Not Detected

Roger Scholl Kandy Sadner Walter Hiridan

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Gowri Kowtha Attn: Phone: (530) 676-6001

Fax: (530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

Ammonia as Nitrogen EPA Method 350.3 / SM4500-NH3F

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-7 STR06101740-01A	Nitrogen, Ammonia (As N)	ND	100 μg/L	10/17/06	10/26/06
Client ID: Lab ID:	MW-8 STR06101740-02A	Nitrogen, Ammonia (As N)	ND	100 μg/L	10/17/06	10/26/06
Client ID: Lab ID:	EX-1 STR06101740-03A	Nitrogen, Ammonia (As N)	1,800	100 μg/L	10/17/06	10/26/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Nitrogen, Ammonia (As N)	ND	100 μg/L	10/17/06	10/26/06

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/26/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Gowri Kowtha Attn: Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

Job#: 2007-0057-01/USA 57

Phosphorus

EPA Method 365.2 / SM4500PE

		Parameter	Concentration	Reporting Limit	Date Date Sampled Analyzed
Client ID: Lab ID:	MW-7 STR06101740-01A	Phosphorus, Total (As P)	ND	100 μg/L	10/17/06 10/20/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Phosphorus, Total (As P)	130	100 μg/L	10/17/06 10/20/06
Client ID : Lab ID :	EX-1 STR06101740-03A	Phosphorus, Total (As P)	330	100 μg/L	10/17/06 10/20/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Phosphorus, Total (As P)	ND	100 μg/L	10/17/06 10/20/06

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Gowri Kowtha Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

Orthophosphate in Water EPA Method 365.2 / SM4500PE

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-7 STR06101740-01A	Total Orthophosphate	ND	100 μg/L	10/17/06	10/18/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Total Orthophosphate	ND	100 μg/L	10/17/06	10/18/06
Client ID : Lab ID :	EX-1 STR06101740-03A	Total Orthophosphate	ND	100 μg/L	10/17/06	10/18/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Total Orthophosphate	ND	100 μg/L	10/17/06	10/18/06

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulun

Walter Hirehrun

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Gowri Kowtha Phone: (530) 676-6001

Fax: (530) 676-6005

Date Received: 10/18/06

2007-0057-01/USA 57 Job#:

> Total Organic Carbon as NonPurgeable Organic Carbon EPA Method SW9060/415.1/SM-5310C

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-7 STR06101740-01A	Total Organic Carbon	3,400	1,000 μg/L	10/17/06	10/19/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Total Organic Carbon	1,900	1,000 μg/L	10/17/06	10/19/06
Client ID : Lab ID :	EX-1 STR06101740-03A	Total Organic Carbon	30,000	4,000 μg/L	10/17/06	10/19/06
Client ID : Lab ID :	EX-2 STR06101740-04A	Total Organic Carbon	18,000	4,000 μg/L	10/17/06	10/19/06

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulman Walter Arrihner

Roger L. Scholl, Ph.D., Laboratory Director · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

b 10/25/06 Report Date

2007-0057-01/USA 57 Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Gowri Kowtha Phone: (530) 676-6001

Fax:

(530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

Total Dissolved Solids (TDS) EPA Method 160.1 / SM 2540 C

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID: Lab ID:	MW-7 STR06101740-01A	Solids, Total Dissolved (TDS)	650,000	10,000 μg/L	10/17/06	10/24/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Solids, Total Dissolved (TDS)	5,400,000	25,000 μg/L	10/17/06	10/25/06
Client ID: Lab ID:	EX-1 STR06101740-03A	Solids, Total Dissolved (TDS)	1,000,000	10,000 μg/L	10/17/06	10/24/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Solids, Total Dissolved (TDS)	1,200,000	10,000 μg/L	10/17/06	10/24/06

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulow

Walter Hiriham

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Gowri Kowtha Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

Job#: 2007-0057-01/USA 57

Anions by IC EPA Method 300.0 / 9056

	Parameter	Concentration	Reporting Limit	Date / Time Sampled	Date / Time Analyzed
Client ID: MW-7	Nitrite (NO2) - N	ND	250 μg/L	10/17/06 11:11	10/19/06 08:55
Lab ID: STR06101740-01A	Nitrate (NO3) - N	2,200	250 μg/L	10/17/06 11:11	10/19/06 08:55
Lao ID. STROOTOT/40-01A	Sulfate (SO4)	55,000	500 μg/L	10/17/06 11:11	10/19/06 08:55
Client ID: MW-8	Nitrite (NO2) - N	ND	250 μg/L	10/17/06 11:34	10/19/06 09:13
Lab ID: STR06101740-02A	Nitrate (NO3) - N	4,500	250 μg/L	10/17/06 11:34	10/19/06 09:13
Lab 15 : 51100101740-02A	Sulfate (SO4)	79,000	500 μg/L	10/17/06 11:34	10/19/06 09:13
Client ID: EX-1	Nitrite (NO2) - N	ND	250 μg/L	10/17/06 09:15	10/19/06 08:18
Lab ID: STR06101740-03A	Nitrate (NO3) - N	ND	250 μg/L	10/17/06 09:15	10/19/06 08:18
Edo 15 . STROOTOT/40-05/K	Sulfate (SO4)	4,700	500 μg/L	10/17/06 09:15	10/19/06 08:18
Client ID: EX-2	Nitrite (NO2) - N	ND	250 μg/L	10/17/06 09:43	10/19/06 08:36
Lab ID: STR06101740-04A	Nitrate (NO3) - N	ND	250 μg/L	10/17/06 09:43	10/19/06 08:36
LIB ID . SIROUTOI /40-04/A	Sulfate (SO4)	ND	500 μg/L	10/17/06 09:43	10/19/06 08:36

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Sadmen Wal

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Gowri Kowtha Phone: (530) 676-6001 Fax: (530) 676-6005

Date Received: 10/18/06

Job#: 2007-0057-01/USA 57

Sulfide

EPA Method 376.2 / SM4500-S D

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID: Lab ID:	MW-7 STR06101740-01A	Sulfide	ND	100 μg/L	10/17/06	10/27/06
Client ID:	MW-8 STR06101740-02A	Sulfide	ND	100 μg/L	10/17/06	10/27/06
Ölient ID : Lab ID :	EX-1 STR06101740-03A	Sulfide	ND	100 μg/L	10/17/06	10/27/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Sulfide	ND	100 μg/L	10/17/06	10/27/06

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulner

Walter Hirihun

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/27/06

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Gowri Kowtha

Phone:

(530) 676-6001

Fax:

(530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

Iron by Spectrophotometer

SM3500-Fe D

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-7 STR06101740-01A	Iron, Ferrous (+2)	ND	50 μ g /L	10/17/06	10/18/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Iron, Ferrous (+2)	ND	50 μg/L	10/17/06	10/18/06
Client ID: Lab ID:	EX-1 STR06101740-03A	Iron, Ferrous (+2)	60	50 μg/L	10/17/06	10/18/06
Client ID: Lab ID:	EX-2 STR06101740-04A	Iron, Ferrous (+2)	ND	50 μg/L	10/17/06	10/18/06

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Kandy Saulner

Walter Hirkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Gowri Kowtha

Phone: (530) 676-6001

Fax:

(530) 676-6005

Date Received: 10/18/06

Job#:

2007-0057-01/USA 57

Iron by Spectrophotometer

SM3500-Fe D

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-7 STR06101740-01A	Iron, Total	1,300	300 μg/L	10/17/06	10/25/06
Client ID : Lab ID :	MW-8 STR06101740-02A	Iron, Total	3,600	300 μg/L	10/17/06	10/25/06
Client ID: Lab ID:	EX-1 STR06101740-03A	Iron, Total	53,000	3,000 µg/L	10/17/06	10/25/06
Client ID : Lab ID :	EX-2 STR06101740-04A	Iron, Total	37,000	3,000 µg/L	10/17/06	10/25/06

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Sanbun Walter Hinchman, Quality Assurance Officer

Roger L. Scholl, Ph.D., Laboratory Director · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

10/25/06

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR06101740

Project: 2007-0057-01/USA 57

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
06101740-01A	MW-7	Aqueous	2	
06101740-02A	MW-8	Aqueous	2	
06101740-03A	EX-1	Aqueous	6	
06101740-04A	EX-2	Aqueous	6	
06101740-05A	S-1	Aqueous	6	
06101740-06A	S-2	Aqueous	2	
06101740-07A	MW-3	Aqueous	2	
06101740-08A	MW-6	Aqueous	2	

10/25/06

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	OC Summary Report							Work Order: 06101740
Method Blank File ID: Sample ID: MBLK-W061018FER Analyte	Units : µg/L Result	,,	Bun ID: W	est Code: SM atch ID: W06 /ETLAB_0610 SpkRefVal %	1018FI 018D	ER	Prep Date:	tte: 10/18/2006 00:00 10/18/2006 RefVal %RPD(Limit) Qual
Iron, Ferrous (+2)	ND	5	0					
Laboratory Control Spike File ID: Sample ID: LCS-W061018FER Analyte	Units : µg/L Result	Type I	B Run ID: W	est Code: SM atch ID: W061 /ETLAB_0610 SpkRefVal %	1018FE	ER	Prep Date:	te: 10/18/2006 00:00 10/18/2006 RefVal %RPD(Limit) Qual
Iron, Ferrous (+2)	1490	50	1500		99	85	115	
Sample Matrix Spike File ID: Sample ID: 06101740-01AMS Analyte	Units : μ g/L Result	Type M	Bun ID: W	est Code: SM: atch ID: W061 ETLAB_0610	1018FE 18D	R	Prep Date:	te: 10/18/2006 00:00 10/18/2006 tefVal %RPD(Limit) Qual
Iron, Ferrous (+2)	1430	50			96	70	130	leivai /6HFD(Liiiii) Quai
Sample Matrix Spike Duplicate File ID:		Type N	ISD T	est Code: SM: atch ID: W061	3500-F	e D		te: 10/18/2006 00:00
Sample ID: 06101740-01AMSD Analyte	Units : μ g/L Result	PQL		ETLAB_0610 [.] SpkRefVal %		LowLimit	Prep Date:	10/18/2006 efVal %RPD(Limit) Qual
Iron, Ferrous (+2)	1480	50	1500	0	99	70	130 14	134 3.2(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06		(ummaı				Work Order: 06101740			
Method Bla File ID: Sample ID: Analyte	nk MBLK-W061025FET	Units : µg/L Result	Type I	Run ID: W	est Code: SI latch ID: W06 /ETLAB_061 SpkRefVal	025B	FET	Prep I		
Iron, Total		ND	300		· · · · · · · · · · · · · · · · · · ·					(=1,7,7,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Laboratory File ID: Sample ID: Analyte	Control Spike LCS-W061025FET	Units : µg/L Result	Type L	B Run ID: W	est Code: SM atch ID: W06 ETLAB_061 SpkRefVal	1025F 025B	ET	Prep [Date:	10/25/2006 00:00 10/25/2006 Val %RPD(Limit) Qual
Iron, Total		9010	300			90	85	115		_ (
Sample Mater File ID: Sample ID: Analyte	rix Spike 06102025-08AMS	Units : µg/L Result	Type N	B. Run ID: W	est Code: SN atch ID: W06 ETLAB_0610 SpkRefVal	1025F 025B	ET	Prep D	Date:	10/25/2006 00:00 10/25/2006 Val %RPD(Limit) Qual
Iron, Total		8310	300		0	83	70	130		
File ID: Sample ID: Analyte	rix Spike Duplicate 06102025-08AMSD	Units : µg/L Result	Type M	Ba Run ID: W	est Code: SN atch ID: W06 ETLAB_061(SpkRefVal ^s	1025F)25B	ET	Prep D	ate:	10/25/2006 00:00 10/25/2006 /al %RPD(Limit) Qual
Iron, Total		8780	300	10000	0	88	70	130	8305	5.5(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06			QC St	ımmar	y Repo	rt			Work Order: 06101740
Method Bla	ınk		Type M	BLK T	est Code: E	PA Me	thod SW8	260B-DI	
File ID: C:\HF	PCHEM\MS11\DATA\061018\0	6101808.D		В	atch ID: 158	70		Analysis Da	ate: 10/18/2006 13:51
Sample ID:	MBLK-15870	Units : µg/L		Run ID: M	ISD_11_061	018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	t HighLimit RPDF	RefVal %RPD(Limit) Qual
Methanol		ND	5000						
Ethanol		ND	5000						
Surr: Hexafluo	oro-2-propanol	480		500	******	96	63	137	
**	Control Spike		Type Lo		est Code: E		thod SW8	260B-DI	
	CHEM\MS11\DATA\061018\06	5101804.D		В	atch ID: 158	70		Analysis Da	te: 10/18/2006 12:29
Sample ID:	LCS-15870	Units : µg/L		Run ID: M	SD_11_061	018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDF	RefVal %RPD(Limit) Qual
Methanol		990	50	1000		99	45	155	
Ethanol		1210	5	1000		120	51	144	
Surr: Hexafluo	oro-2-propanoi	532		500	···	106	63	137	
Sample Mat	•		Type M		est Code: E		hod SW8		
	CHEM\MS11\DATA\061018\06	3101806.D		В	atch ID: 158	70		Analysis Da	te: 10/18/2006 13:10
Sample ID:	06101756-02AMS	Units : μg/L			SD_11_061			Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	RefVal %RPD(Limit) Qual
Methanol		908	50	1000	0	91	45	163	
Ethanol		1100	5	1000	66.34	104	50	149	
Surr: Hexafluo	ro-2-propanoi	507		500		101	63	137	
•	rix Spike Duplicate		Type M		est Code: El		hod SW82	260B-DI	
	CHEM\MS11\DATA\061018\06				atch ID: 158	-		,	te: 10/18/2006 13:30
Sample ID:	06101756-02AMSD	Units : µg/L	ſ		SD_11_0610			Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	efVal %RPD(Limit) Qual
Methanol		975	50	1000	0	98	45		98.1 7.1(22)
Ethanol	O nyononol	1230	5	1000	66.34	116	50		102 11.0(15)
Surr: Hexafluo	ro-z-propanoi	555		500		111	63	137	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	OC Summary Report								Work Order: 06101740
Method Blank File ID: 68 Sample ID: MB-15881 Analyte	Units : µg/L Result	Type M	B Run ID: IC	est Code: E latch ID: 158 C_ 2_061019 SpkRefVal	881A A		Analys Prep D	ate:	10/19/2006 04:54 10/18/2006 Val %RPD(Limit) Qual
Nitrite (NO2) - N Nitrate (NO3) - N	ND ND	250 250							
Laboratory Fortified Blank File ID: 69 Sample ID: LFB-15881	Units : µq/L	Type Li	В	est Code: E	81A	thod 300.0	Analysi		10/19/2006 05:13
Analyte	Result	PQL		_2_061019 . SpkRefVal		CLowLimit	Prep D HighLimit F		10/18/2006 /al %RPD(Limit) Qual
Nitrite (NO2) - N Nitrate (NO3) - N	521 538	250 250	500 500		104 108	90 90	110 110		
Sample Matrix Spike File ID: 72		Type LF		est Code: E		thod 300.0		- D-4-	10/10/0000
Sample ID: 06101854-01ALFM Analyte	Units : µg/L Result	PQL	Run ID: IC	_2_061019/	4	: LowLimit	Prep Da	ate:	10/19/2006 06:08 10/18/2006 /al %RPD(Limit) Qual
Nitrite (NO2) - N Nitrate (NO3) - N	10500 24900	250 250	10000 10000	0 13170	105	80 80	120 120		
Sample Matrix Spike Duplicate File ID: 73		Type LF		est Code: El		hod 300.0			
Sample ID: 06101854-01ALFMD Analyte	Units : μ g/L Result	F PQL	Run ID: IC	atch ID: 158 6 _ 2_061019 SpkRefVal	\	LowLimit	Prep Da	ate:	10/19/2006 06:27 10/18/2006 al %RPD(Limit) Qual
Nitrite (NO2) - N Nitrate (NO3) - N	10500 24700	250 250	10000 10000	0 13170	105 115	80 80	120 120	10480 24850	0.1(2)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	OC Summary Report									Work Order: 06101740
Method Blan	nk		Type N		est Code: El		thod 300.0		D - 1	
File ID: 68	BED 45004			_	atch ID: 158			•		10/19/2006 04:54
Sample ID:	MB-15881	Units : µg/L			_2_0610194			Prep Date		10/18/2006
Analyte	TO THE STATE OF TH	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RP	DRefV	al %RPD(Limit) Qual
Sulfate (SO4)		ND	500							
Laboratory	Fortified Blank		Type L	FB T	est Code: EF	A Met	hod 300.0	/ 9056		
File ID: 69				Ва	atch ID: 1588	31B		Analysis I	Date:	10/19/2006 05:13
Sample ID:	LFB-15881	Units : µg/L		Run ID: IC	_2_061019 <i>A</i>	١		Prep Date	э: -	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPI	DRefV	al %RPD(Limit) Qual
Sulfate (SO4)		1060	500	1000		106	90	110		
Sample Mat	rix Spike		Type L	FM Te	est Code: EF	A Met	hod 300.0	/ 9056		
File ID: 72				Ba	atch ID: 1588	31B		Analysis I	Date:	10/19/2006 06:08
Sample ID:	06101854-01ALFM	Units : µg/L		Run ID: IC	_2_061019A	١		Prep Date	e: 1	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPI	DRefV	al %RPD(Limit) Qual
Sulfate (SO4)		172000	500	20000	148600	116	80	120		
Sample Mati	rix Spike Duplicate		Type Li	FMD Te	est Code: EF	A Met	hod 300.0	/ 9056		
File ID: 73				Ba	atch ID: 1588	31B		Analysis [Date:	10/19/2006 06:27
Sample ID:	06101854-01ALFMD	Units : µg/L		Run ID: IC	_2_061019A	١		Prep Date) : 1	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPI	⊃RefVa	al %RPD(Limit) Qual
Sulfate (SO4)		170000	500	20000	148600	106	80	120 1	171800	1.2(2)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	IN SIMMARY RANORE								
Method Blan	nk		Type N	IBLK T	est Code: E	PA Met	hod 365.	2 / SM4500PE	
File ID:				В	atch ID: Wo	610180	PHOS	Analysis Date	: 10/18/2006 00:00
Sample ID:	MBLK-W061018OPHOS	Units : µg/L		Run ID: W	ETLAB_061	1018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimi	t HighLimit RPDRe	fVal %RPD(Limit) Qual
Total Orthopho	sphate	ND	100)					
Laboratory Control Spike Type LCS Test					est Code: El	PA Met	hod 365.2	2 / SM4500PE	
File ID:	·			В	atch ID: W06	310180	PHOS	Analysis Date	: 10/18/2006 00:00
Sample ID:	LCS-W061018OPHOS	Units : µg/L		Run ID: W	ETLAB_061	018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimi	t HighLimit RPDRe	fVal %RPD(Limit) Qual
Total Orthopho	sphate	1030	100	1000		103	80	116	
Sample Matr	rix Spike		Type N	IS T	est Code: El	PA Met	hod 365.2	2 / SM4500PE	
File ID:	•			Ва	atch ID: W06	310180	PHOS	Analysis Date	: 10/18/2006 00:00
Sample ID:	06101740-01AMS	Units : µg/L		Run ID: W	ETLAB_061	018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	: HighLimit RPDRe	fVal %RPD(Limit) Qual
Total Orthopho	sphate	1080	100	1000	0	108	80	116	
Sample Matr	rix Spike Duplicate		Туре М	ISD To	est Code: EF	PA Meti	hod 365.2	2 / SM4500PE	
File ID:	•			Ba	atch ID: W06	10180	PHOS	Analysis Date	10/18/2006 00:00
Sample ID:	06101740-01AMSD	Units : µg/L		Run ID: W	ETLAB_061	018A		Prep Date:	10/18/2006
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDRef	Val %RPD(Limit) Qual
Total Orthophos	sphate	1080	100	1000	0	108	80	116 108	3 0.1(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06			Work Order: 06101740										
Method Bla	nk		Type N	MBLK T	est Code: E	PA Met	hod 376.2	2 / SM4500-S E)				
File ID:				В	atch ID: Wo	61 0 27S	ULF	Analysis I	Date:	10/27/2006 00:00			
Sample ID:	MBLK-W061027SULF	Units : µg/L		Run ID: W	ETLAB_061	027B		Prep Date	э:	10/27/2006			
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimi	t HighLimit RPI	DRefV	al %RPD(Limit) Qual			
Sulfide		ND	100)									
Laboratory	Control Spike		Type L	.cs T	est Code: El	PA Met	hod 376.2	2 / SM4500-S D	SM4500-S D				
File ID:								Date:	10/27/2006 00:00				
Sample ID:	LCS-W061027SULF	Units : µg/L		Run ID: W	ETLAB_061	027B		Prep Date	∋ : '	10/27/2006			
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	t HighLimit RPI	DRefV	al %RPD(Limit) Qual			
Sulfide		1020	100	1000		102	85	115					
Sample Mat	rix Spike	Type MS Test Code: EPA Method 376.2 / SM4500-S D											
File ID:				Ва	atch ID: W06	1027S	ULF	Analysis D	Date:	10/27/2006 00:00			
Sample ID:	06101740-01AMS	Units : μ g/L		Run ID: W	ETLAB_061	027B		Prep Date	e: -	10/27/2006			
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPD	ORefV:	al %RPD(Limit) Qual			
Sulfide		1130	100	1000	0	113	65	150					
Sample Mat	rix Spike Duplicate		Type M	ISD T	est Code: EF	A Meti	hod 376.2	/ SM4500-S D)				
File ID:	•			Ва	atch ID: W06	10275	ULF	Analysis D	Date:	10/27/2006 00:00			
Sample ID:	06101740-01AMSD	Units : μ g/L		Run ID: W	ETLAB_061	027B		Prep Date	: 1	10/27/2006			
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPE	DRefVa	al %RPD(Limit) Qual			
Sulfide		1190	100	1000	0	119	65	150	1130	5.2(15)			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	OC Summary Report										
Method Blank File ID:		Туре М	В	est Code: EPA Me atch ID: W061020		Analysis Date:					
Sample ID: MBLK-W061020TDS Analyte	Units : µg/L Result	PQL		ETLAB_061020K/ SpkRefVal %RE0	C LowLimit	Prep Date: t HighLimit RPDRef\	10/20/2006 /al %RPD(Limit) Qual				
Solids, Total Dissolved (TDS)	ND	10000				от в той в 44 го със съв свой объект в на въс в на при на при					
Laboratory Control Spike File ID:		Type LO		est Code: EPA Me atch ID: W061020 7		/ SM 2540 C Analysis Date:	10/20/2006 00:00				
Sample ID: LCS-W061020TDS Analyte	Units : µg/L Result	PQL		ETLAB_061020K SpkRefVal %RE0	C LowLimit	•	10/20/2006 /al %RPD(Limit) Qual				
Solids, Total Dissolved (TDS)	190000	10000	200000	95	84	116					

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06		OC S	ummar	y Repor	t			Work Order: 06101740
Method Blank		Type N	IBLK T	est Code: E	PA Met	hod SW9	060/415.1/SM-5	310C
File ID:			В	atch ID: TO	C10190	6	Analysis Da	ate: 10/19/2006 12:47
Sample ID: MBLK-101906TOC	Units : µg/L		Run ID: To	OC_061019/	Ą		Prep Date:	10/19/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	t HighLimit RPDI	RefVal %RPD(Limit) Qual
Total Organic Carbon	ND	1000)					
Laboratory Control Spike		Type L	.cs T	est Code: El	PA Met	hod SW9	060/415.1/SM-53	310C
File ID:			В	atch ID: TOC	10190	6	Analysis Da	ate: 10/19/2006 12:24
Sample ID: LCS-101906TOC	Units : µg/L		Run ID: TO	OC_061019A	4		Prep Date:	10/19/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDI	RefVal %RPD(Limit) Qual
Total Organic Carbon	5910	1000	5000		118	74	125	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Sample Matrix Spike		Type N	is Te	est Code: E f	PA Met	hod SW9	060/415.1/SM-53	310C
File ID:			Ва	atch ID: TOC	10190	6	Analysis Da	ite: 10/19/2006 15:47
Sample ID: 06101242-01AMS	Units : µg/L		Run ID: TO	OC_061019A	١		Prep Date:	10/19/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDF	RefVal %RPD(Limit) Qual
Total Organic Carbon	6110	1000	5000	1405	94	56	137	
Sample Matrix Spike Duplicate		Type M	ISD Te	est Code: EF	A Met	hod SW90	060/415.1/SM-53	10C
File ID:			Ba	atch ID: TOC	10190	3	Analysis Da	te: 10/19/2006 16:14
Sample ID: 06101242-01AMSD	Units : µg/L		Run ID: TC	C_061019A	1		Prep Date:	10/19/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDF	RefVal %RPD(Limit) Qual
Total Organic Carbon	6060	1000	5000	1405	93	56	137 6	105 0.8(15)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06	OC S	ummar	y Report		•		Work Order: 06101740
Method Blank File ID: D:\HPCHEM\MS09\DATA\061020\06102005.D Sample ID: MBLK MS09W1020B Units: μ Analyte Result	-	B Run ID: M	est Code: EPA atch ID: MS09\ SD_09_06102 SpkRefVal %	W1020B 0A	Analysis Prep Da	te:	10/20/2006 12:12 10/20/2006 /al %RPD(Limit) Qual
TPH-P (GRO) ND Surr: 1,2-Dichloroethane-d4 11.8 Surr: Toluene-d8 9.66 Surr: 4-Bromofluorobenzene 10.4	50	10 10 10 10			6 127 4 113 9 119		
Laboratory Control Spike File ID: D:\HPCHEM\MS09\DATA\061020\06102003.D Sample ID: GLCS MS09W1020B Units: μe Analyte Result	Type Lg/L PQL	Ba Run ID: M	est Code: EPA atch ID: MS09V SD_09_061020 SpkBefVal %I	W1020B DA	Analysis Prep Dat	te:	10/20/2006 11:26 10/20/2006 (al %RPD(Limit) Qual
TPH-P (GRO) 401 Surr: 1,2-Dichloroethane-d4 11.4 Surr: Toluene-d8 9.75 Surr: 4-Bromofluorobenzene 10.3	50		1 1	00 78 14 76 98 84 03 78	8 127 6 127 4 113	Diterv	ar /orir b(Lillill) Quar
Sample Matrix Spike File ID: D:\HPCHEM\MS09\DATA\061020\06102010.D Sample ID: 06101740-01AGS Units: \mu_6 Analyte Result	Type N y/L PQL	Ba Run ID: MS	est Code: EPA atch ID: MS09V SD_09_061020 SpkBefVal %F	V1020B A	Analysis Prep Dat	e: '	10/20/2006 14:07 10/20/2006 al %RPD(Limit) Qual
TPH-P (GRO) 1800 Surr: 1,2-Dichloroethane-d4 59.2 Surr: Toluene-d8 47.8 Surr: 4-Bromofluorobenzene 52.2	250		0 9 1 9	90 70 18 76 96 84 04 79	139 3 127 4 113	Briory	ar 7011 B(Ennit) Quar
Sample Matrix Spike Duplicate File ID: D:\HPCHEM\MS09\DATA\061020\06102011.D Sample ID: 06101740-01AGSD Units: \mu_G Analyte Result	Type M /L PQL	Ba Run ID: MS	est Code: EPA I tch ID: MS09W SD_09_061020 SpkBefVal %F	/1020B A	Analysis Prep Date	e: 1	10/20/2006 14:30 10/20/2006 al %RPD(Limit) Qual
TPH-P (GRO) 1850 Surr: 1,2-Dichloroethane-d4 58.3 Surr: Toluene-d8 47.6 Surr: 4-Bromofluorobenzene 52	250		0 9 1 9	93 70 17 76 95 84 04 79	139 127 113	1803	2.6(12)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06		QC S	ummai	ry Repo	rt				Work Order: 06101740
Method Blank		Type N	IBLK T	Fest Code: I	PA Me	thod SW8	260B		
File ID: D:\HPCHEM\MS09\DATA\061020\0	6102005.D		E	Batch ID: MS	09W10	20A	Analy	sis Date:	10/20/2006 12:12
Sample ID: MBLK MS09W1020A	Units : μg/L		Run ID: N	ISD_09_06	1020A			Date:	10/20/2006
Analyte	Result	PQL	SpkVa	SpkRefVa	I %REC	C LowLimi	t HighLimit	RPDRef\	Val %RPD(Limit) Qual
Tertiary Butyl Alcohol (TBA)	ND	10							All Martin Control of the Control of
Methyl tert-butyl ether (MTBE)	ND	0.5							
Di-isopropyl Ether (DIPE)	ND	1							
Ethyl Tertiary Butyl Ether (ETBE) 1,2-Dichloroethane	ND ND	1							
Benzene	ND	0.5							
Tertiary Amyl Methyl Ether (TAME)	ND	1							
Toluene	ND	0.5							
1,2-Dibromoethane (EDB)	ND	2							
Ethylbenzene	ND	0.5							
m,p-Xylene o-Xylene	ND ND	0.5 0.5							
Surr: 1,2-Dichloroethane-d4	11.8	0.5	10		118	76	127		
Surr: Toluene-d8	9.66		10		97	84	113		
Surr: 4-Bromofluorobenzene	10.4		10		104	79	119		
Laboratory Control Spike		Type L	CS T	est Code: E	PA Met	hod SW8	260B		
File ID: D:\HPCHEM\MS09\DATA\061020\0	6102004.D	.,,,, -		atch ID: MS				sis Date:	10/20/2006 11:49
Sample ID: LCS MS09W1020A	Units : µg/L			SD_09_061			Prep i		10/20/2006
Analyte	Result	PQL				Lowl imit	•		'al %RPD(Limit) Qual
	·			Opki ici va				THE DITE: V	ai /orii D(Liiiit) Quai
Benzene Toluene	9.24 9.08	0.5 0.5	10 10		92 91	81 80	122 120		
Ethylbenzene	9.52	0.5			95	80	120		
m,p-Xylene	9.32	0.5	10		93	80	129		
o-Xylene	9.65	0.5	10		97	80	129		
Surr: 1,2-Dichloroethane-d4	12.2		10		122	76	127		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	9.71 10		10 10		97 100	84 79	113 119		
		T 3.5		OI E				· · · · · · · · · · · · · · · · · · ·	
Sample Matrix Spike		Type M		est Code: E				D	10/00/0000 10 01
File ID: D:\HPCHEM\MS09\DATA\061020\06				atch ID: MS		20A	-		10/20/2006 13:21
Sample ID: 06101740-01AMS	Units : µg/L			SD_09_061			Prep [10/20/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC		HighLimit	RPDRefV	al %RPD(Limit) Qual
Benzene	50.3	1.3	50	0		74	125		
Toluene	48.1	1.3	50	0		76	120		
Ethylbenzene m,p-Xylene	50.6 48.7	1.3 1.3	50 50	0	101 97	77 73	124 130		
o-Xylene	51.1	1.3	50	0		73 74	131		
Surr: 1,2-Dichloroethane-d4	62.2	1.0	50	ŭ	124	76	127		
Surr: Toluene-d8	48.6		50		97	84	113		
Surr: 4-Bromofluorobenzene	50.3		50		101	79	119		
Sample Matrix Spike Duplicate		Туре М	SD To	est Code: E	PA Meti	hod SW82	260B		
File ID: D:\HPCHEM\MS09\DATA\061020\06	3102009.D		Ва	atch ID: MS	09W102	20A	Analys	is Date:	10/20/2006 13:44
Sample ID: 06101740-01AMSD	Units : µg/L		Run ID: M	SD_09_061	020A		Prep D	Date: 1	10/20/2006
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	-		al %RPD(Limit) Qual
Benzene	50.7	1.3	50	0		74	125	50.31	0.8(13)
Toluene	49	1.3	50	0	98	7 - 76	120	48.07	
Ethylbenzene	51.4	1.3	50	0	103	77	124	50.61	1.5(13)
m,p-Xylene	49.1	1.3	50	0	98	73	130	48.69	
o-Xylene	52.5	1.3	50	0	105	74 70	131	51.13	2.7(13)
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	62.9 48.5		50 50		126 97	76 84	127 113		
Surr: 4-Bromofluorobenzene	50.4		50		101	79	119		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 03-Nov-06

OC Summary Report

Work Order: 06101740

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 25, 2006

CLS Work Order #: CPJ0701

COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV x120

Project Name: STR06101740

Enclosed are the results of analyses for samples received by the laboratory on 10/17/06 15:15. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

10/25/06 11:43

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, x120

Project: STR06101740

Project Number: STR06101740 Project Manager: Reyna Vallejo

CLS Work Order #: CPJ0701

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR06101740-01A (MW-7) (CPJ0701-01)	Water Sam	pled: 10/17/	06 11:11	Received	l: 10/17/06	15:15			
Biochemical Oxygen Demand	ND	3.0	mg/L	I	CP08087	10/18/06	10/23/06	EPA 405.1	
STR06101740-02A (MW-8) (CPJ0701-02)	Water Sam	pled: 10/17/0	06 11:34	Received	: 10/17/06	15:15			
Biochemical Oxygen Demand	ND	3.0	mg/L]	CP08087	10/18/06	10/23/06	EPA 405.1	
STR06101740-03A (EX-1) (CPJ0701-03) W	ater Samp	led: 10/17/0 <i>6</i>	6 09:15	Received:	10/17/06 1	5:15		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Biochemical Oxygen Demand	32	3.0	mg/L	1	CP08087	10/18/06	10/23/06	EPA 405.1	
STR06101740-04A (EX-2) (CPJ0701-04) W	ater Sampl	led: 10/17/06	09:43	Received:	10/17/06 1	5:15			
Biochemical Oxygen Demand	38	3.0	mg/L	1	CP08087	10/18/06	10/23/06	EPA 405.1	

10/25/06 11:43

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: STR06101740

CLS Work Order #: CPJ0701

Sparks NV, x120

Project Number: STR06101740 Project Manager: Reyna Vallejo

COC#:

Microbiological Parameters by APHA Standard Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR06101740-01A (MW-7) (CPJ070	1-01) Water Sam	pled: 10/17/	/06 11:11	Received	l: 10/17/06	15:15	*****		
Plate Count STR06101740-02A (MW-8) (CPJ070	8 1-02) Water Sam	l pled: 10/17/	CFU/mL '06 11:34	Received	CP08139 l: 10/17/06	10/17/06	10/19/06	SM 9215	
Plate Count STR06101740-03A (EX-1) (CPJ0701-	3500 -03) Water Sampl	1 ed: 10/17/0	CFU/mL 6 09:15	l Received:	CP08139 10/17/06 1	10/17/06 15:15	10/19/06	SM 9215	
Plate Count STR06101740-04A (EX-2) (CPJ0701-	11000 04) Water Sampl	l ed: 10/17/0	CFU/mL 6 09:43	l Received:	CP08139 10/17/06 1	10/17/06 5:15	10/19/06	SM 9215	····
Plate Count	3600	1	CFU/mL	1	CP08139	10/17/06	10/19/06	SM 9215	

10/25/06 11:43

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: STR06101740 Project Number: STR06101740

CLS Work Order #: CPJ0701

Sparks NV, x120

Project Manager: Reyna Vallejo

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP08087 - General									*****	
Blank (CP08087-BLK1)				Prepared:	10/18/06	Analyzed	: 10/23/06			
Biochemical Oxygen Demand	ND	3.0	mg/L			· · · · · · · · · · · · · · · · · · ·				
LCS (CP08087-BS1)				Prepared:	10/18/06	Analyzed	: 10/23/06			
Biochemical Oxygen Demand	186	3.0	mg/L	200		93.0	55-125		24	
LCS Dup (CP08087-BSD1)				Prepared:	10/18/06	Analyzed	: 10/23/06			
Biochemical Oxygen Demand	183	3.0	mg/L	200	*****	91.5	55-125	1.63	24	

10/25/06 11:43

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks NV, x120

Project: STR06101740

Project Number: STR06101740

Project Manager: Reyna Vallejo

CLS Work Order #: CPJ0701

COC#:

Notes and Definitions

DET A

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

Alpha Analytical, Inc.Phone: (775) 355-1044 FAX: (775) 355-0406

Sample Receipt Checklist

Date Report is due to Client: 10/26/2006

Date of Notice: 10/18/2006 11:15:50

Please take note of any NO check marks. If we receive no response concerning these items within 24 hours of the date of this notice, all of the samples will be analyzed as requested.

Client Name: Stratus Environmental	Project ID: 2007-0	0057-01/USA	57
Project Manager: Gowri Kowtha	Client's EMail: gkowtl Client's Phone: (530)		c.net Client's FAX: (530) 676-6005
Work Order Number: STR06101740	Date Received: 10/18/		Received by: Latricia Edrosa
Cha	ain of Custody (COC) Inf	<u>ormation</u>	
Carrier name FedEx			
Chain of custody present ?	Yes 🗸	☐ No	
Custody seals intact on shippping container/cooler ?	Yes 🗹	☐ No	Not Present
Custody seals intact on sample bottles?	Yes	☐ No	Not Present
Chain of custody signed when relinquished and received?	Yes 🗹	☐ No	
Chain of custody agrees with sample labels?	Yes 🗸	☐ No	
Sample ID noted by Client on COC ?	Yes 🗹	☐ No	
Date and time of collection noted by Client on COC?	Yes 🗸	☐ No	
Samplers's name noted on COC ?	Yes 🗸	☐ No	
Internal Chain of Custody (COC) requested ?	Yes	✓ No	
Sub Contract Lab Used :	None 🗹	SEM	Other (see comments)
	Sample Receipt Informa	<u>tion</u>	
Shipping container/cooler in good condition?	Yes 🗹	☐ No	Not Present
Samples in proper container/bottle?	Yes 🗹	☐ No	
Sample containers intact?	Yes 🗹	☐ No	
Sufficient sample volume for indicated test?	Yes 🔽	☐ No	
Sample Pres	ervation and Hold Time	(HT) Informa	tion
All samples received within holding time?	Yes 🗸	☐ No	Cooler Temperature
Container/Temp Blank temperature in compliance (0-6°C)?	Yes 🗸	☐ No	4 °C
Nater - VOA vials have zero headspace / no bubbles?	Yes 🗹	☐ No	No VOA vials submitted
Sample labels checked for correct preservation?	Yes 🗹	☐ No	
TOC Water - pH acceptable upon receipt (H2SO4 pH<2)?	Yes 🗹	☐ No	N/A
Anal	lytical Requirement Infor	mation	
Are non-Standard or Modified methods requested ?	Yes	✓ No	
Are there client specific Project requirements?	Yes	✓ No	If YES : see the Chain of Custody (COC)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

Client's COC #: none

TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: STR06101740

Report Due By: 5:00 PM On: 26-Oct-06

Client:

Stratus Environmental 3330 Cameron Park Drive

Suite 550

Cameron Park, CA 95682-8861

Report Attention: Gowri Kowtha

2007-0057-01/USA 57

Gowri Kowtha

TEL: (530) 676-6001

FAX: (530) 676-6005

EMail gkowtha@stratusinc.net

PO:

EDD Required: Yes

Sampled by: Client

Cooler Temp

Date Printed

4 °C

Samples Received 18-Oct-06

18-Oct-06

QC Level: S3

CC Report:

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

												ted Tests				
Alpha Sample ID	Client Sample ID	Colle Matrix Da		No. of ORG	Bottles SUB	TAT	PWS#	3500FE_20 S_W	3500FE_TO T_W	ALCOHOL_ W	AMMONIA_ W	ANIONS(A) _W	ANIONS(B) _W	BOD	HETEROTR OPIC	Sample Remarks
STR06101740-01A		11	17/06 1:11	13	2	6		FE+2	FE,Total	MeOH / EtOH	NH3	NO2, NO3, SO4	NO2, NO3, SO4	BOD	SUB	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-02A		11	17/06 1:34	13	2	6		FE+2	FE,Total	MeOH / EtOH	NH3	NO2, NO3, SO4	NO2, NO3, SO4	BOD	SUB	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-03A			17/06 9:15	13	2	6		FE+2	FE,Total	MeOH / EtOH	NH3	NO2, NO3, SO4	NO2, NO3, SO4	BOD	SUB	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-04A			17/06 9:43	13	2	6		FE+2	FE,Total	MeOH / EtOH	NH3	NO2, NO3, SO4	NO2, NO3, SO4	BOD	SUB	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-05A	S-1		17/06 7:11	5	0	6				MeOH / EtOH						The state of the s
STR06101740-06A	S-2		17/06 7:51	5	0	6				MeOH / EtOH						
STR06101740-07A	MW-3		17/06 6:41	5	0	6				MeOH / EtOH						1
STR06101740-08A	MW-6		17/06 5:51	5	0	6				MeOH / EtOH					1	1

Comments:

Security seals intact. Frozen ice. Chain pre-logged in order for SAC office to sub BOD & HPC to CLS. Rest of samples received 10/18/06. Sample numbering unusual as only one page was originally received from SAC office when sub COC was created. : TOC pH=2. Sulfide bottle received but not listed on COC, added it & SO4 per Vince.

Logged in by:

Print Name

Company Alpha Analytical, Inc.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

CA

Page: Jof L

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: STR06101740

Report Due By: 5:00 PM On: 26-Oct-06

Client:

Stratus Environmental 3330 Cameron Park Drive

Suite 550

Cameron Park, CA 95682-8861

Report Attention: Gowri Kowtha

Gowri Kowtha

TEL: (530) 676-6001

FAX: (530) 676-6005 EMail gkowtha@stratusinc.net

PO:

EDD Required: Yes

Sampled by: Client

Job: 2007-0057-01/USA 57

Client's COC #: none

Cooler Temp Samples Received
4 °C 18-Oct-06

Date Printed 18-Oct-06

CC Report :

QC Level : S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

											Reques	ted Tests			
Alpha Sample ID	Client Sample ID	Matrix	Collection	No. of ORG	Bottles SUB	TAT	PWS#	ORTHOPH OS_W	PHOSPHO RUS_W	SULFIDE	TDS	TOC_W	TPH/P_W	voc_w	
	•	muuix	Date	ONG	305	IAI	FVV3#								Sample Remarks
STR06101740-01A		AQ	10/17/06 11:11	13	2	6	The state of the s	Ortho	Total	Sulfide	X	TOC	GAS-C	BTEX/OXY/ EDB/1,2- DCA C	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-02A			10/17/06 11:34	13	2	6		Ortho	Total	Sulfide	Х	TOC	GAS-C	BTEX/OXY/ EDB/1,2- DCA C	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-03A			10/17/06 09:15	13	2	6		Ortho	Total	Sulfide	Х	TOC	GAS-C	BTEX/OXY/ EDB/1,2- DCA C	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-04A		AQ	10/17/06 09:43	13	2	6		Ortho	Total	Sulfide	Х	тос	GAS-C	BTEX/OXY/ EDB/1,2- DCA C	BOD & Heterotrophic Plate Count subbed to CLS.
STR06101740-05A	S-1	AQ	10/17/06 07:11	5	0	6					*****		GAS-C	BTEX/OXY/ EDB/1,2- DCA C	
STR06101740-06A	S-2	AQ	10/17/06 07:51	5	0	6				Total Control of the			GAS-C	BTEX/OXY/ EDB/1,2-	
STR06101740-07A	MW-3	AQ	10/17/06 06:41	5	0	6					***************************************		GAS-C	DCA_C BTEX/OXY/ EDB/1,2-	
STR06101740-08A	MW-6	AQ	10/17/06 05:51	5	0	6							GAS-C	DCA_C BTEX/OXY/ EDB/1,2- DCA_C	

Comments:

Security seals intact. Frozen ice. Chain pre-logged in order for SAC office to sub BOD & HPC to CLS. Rest of samples received 10/18/06. Sample numbering unusual as only one page was originally received from SAC office when sub COC was created.: TOC pH=2. Sulfide bottle received but not listed on COC, added it & SO4 per Vince.

Logged in by:

Signature Oliaso

Latricia Edrosa

Alpha Analytical, Inc.

Company

Date/Time 11:14

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing I	nformation: Address:		Stratus Environmental 3330 Cameron Park Drive		Global ID: T0600101808					An.	aly <i>ti</i>	e-				Alpha Angli		Ina	
City	, State, Zip:				EDF: YES				ă	, a		.a/,				Alpha Analy		inc.	
Fax:	, State, Zip. 530-676		Phone: 530-676-60	04	Project # 2007-0057-01				3			•	بخ			255 Glendale Ave	nue		
Ι αλ.	330-070	5-0003	Phone: 530-676-60	UI	Email:				- ()			Suite 21			
	Client:		USA 57		Report Attention:				3		ment	. 3	Ģ.			Sparks, NV 8943	1		
	Address:				Sampled By:	Vince Zalutka			•	Tron	mont	alV				(775) 355-1044			
City			10700 McArthur Blvd.													(775) 355-0406 F	ax		
City	, State, Zip:		Oakland, CA					Page	#		of 1 /sis R		sted						
Time Sampled 071(015 064 N/4	2006 Date Sampled 1017 1017	Matrix AQ AQ AQ	Lab ID (For Lab Use ONLY) - 05 - 06 - 07	S-2 MW-3	Sample Description	Containers HCL VOA's HCL VOA's HCL VOA's	TAT (Working Days)	X X X	X X BTEX		X X X X X X X X X X X X X X X X X X X	: x	X X Ethanol				emarks.		
		AQ		MW-4		HEL VOA'S		X	×	X	<u>(</u>	- ×	X-		_	- Not ga	mple	2	
N/5	~~	AQ		MW-5		HCL-VOA'S		X	X	X 7	< \-x	X	-X-			. 4	mple	,	
0551	1017	AQ	-08	MW-6		HCL VOA's		х	х	x :	κX	X	X						***************************************
1111	1017	AQ	STR06101740-01	MW-7		HCL VOA's		х	Х	x :	×Χ	X	Х				*		
1134	1017	AQ	-o2	MW-8		HCL VOA's		х	х	x :	ΚX	X	X						
0915	1017	AQ	-03	EX-1		HCL VOA's		x	Х	x :	ΧX	: x	X						
0943	1017	AQ	-04	EX-2		HCL VOA's		X	х	x :	x x	X	X					***************************************	
10/5	~~	AQ		EX-3		HCL-VOA'S		X-	X	×	< ×	- ×				- not so	sup (0_0	
N/5		. AQ~		EX-4		HCL VOA's		X	$\hat{\mathbf{x}}$	X	x x	×	$\frac{1}{x}$		_		anp		
								1		<u> </u>	, 1.0	-1-/		1		<i>pos</i> (3 c	amp	va	
ADDITIO	NAL INST	RUCTIO	NS:																
		/ -	Signature								Co	mpar	y			Date		Time	
Relinquish		Vum	e Jaluthu		, , , , , , , , , , , , , , , , , , , ,	Zalutka				Stre	itus E	nviror	nment	al		10-17-06		1400	
Received I			Dyll		LISA BRY	Ć.				AL	OF	4				10.17-06		433	-
Relinquish		$\sqrt{2}$	· · · · · · · · · · · · · · · · · · ·							_									
Received I Relinquish	7	Tat t	Tiera Coli	040	Latricia	Edms	3		{	} /	PY	Q				10 18 00	0	11:08	
Received I		*****						-											
	····				L.,,			<u></u>											
	***************************************		Key: AQ - Aqueous WA -	Waste OT	- Other L - Liter V -	VOA S-Soil Jar	O - Orb	00	T - 7	edlar	P	- Bras	20	P - P	lactic	C OT - Other			
NOTE	Comple	11.			-														
NOIE	Jample:	o are disca	arded 60 days after sample receipt applicable only to th	uniess other arr ose samples red	angements are made. Hazard seived by the laboratory with th	lous samples will be ret ils COC. The liability of	the labor	client atory	or dis is limi	oosed ted to	of at the ar	client moun	expei t paid	nse. for the	The e	report for the analysis ort.	of the ab	ove samples	is

Billing	Information:		Stratus Environmental		Global ID:	T0600101808			Ι									
	Address:		3330 Cameron Park Drive		EDF:	YES]	~	y Vu:	dy <i>ti</i> c	41			Alpha Analy	tica	I, Inc.
	, State, Zip:		Cameron Park, CA 95667	*	Project#	2007-0057-01				-3a,	-		100			255 Glendale Ave		
Fax:	530-676	5-6005	Phone: 530-676-60	01	Email:]	ì			ì			Suite 21		
	****		****		Report Attent	ion:				1			, <u>,</u>			Sparks, NV 8943	1	
	Client:	***************************************	USA 57		Sampled By:	Vince Zalutka				4			130			(775) 355-1044		
	Address:		10700 McArthur Blvd.							EII	ont	nent	3,			(775) 355-0406 F	ax	
City	, State, Zip:		Oakland, CA						Page	∍#	1 o	f 1				. ,		
							Т	T			Analy	sis Re	quest	ed				
Time Sampled	2006 Date Sampled	Måtrix AQ	Lab ID (For Lab Use ONLY)	MW 7	Sample Desi	cription	Containers	TAT (Working Days)	8			TDS	_	Total P & Ortho-P			emark	
1134		AQ	-02				HCL VOA's		X		X X	<u> </u>	X	_X		Watch sh	ort hol	ding times
0915	2	AQ	-03				HCL VOA's		Х		X X		X	_X		Watch sh	ort hol	ding times
0943	4	AQ	-04				HCL VOA's		X		X X		X	Х		Watch sh	ort hol	ding times
N/5	1017	AQ	<u> </u>	EX-3			HCL VOA's		X	_X	X X	X	X	X				ding times
	·	, , , <u>, , , , , , , , , , , , , , , , </u>		EX-3			HCE VOA'S			*		 	X	$\stackrel{x}{+}$		Watch sh	on hot	ding times
										-	-	-	\vdash		-			
									-									7-11-00-1
	· · · · · · · · · · · · · · · · · · ·								-	-								The same of the sa
												-	-					

							ļ						<u> </u>					
ADDITIO	NAL INST	RUCTIO	NS:															
	1	***************************************	Signature				···											
Relinquish	ed by: //	ine	Zalutina			Vince Zalutk	· · · · · · · · · · · · · · · · · · ·		ļ		04		pany			Date		Time
Received I			he Bala			LISA BRULL				-		us En WA	vironn	nental		10-n-00		1400
Relinquish		$\sqrt{}$,	ZIJ PREIL	-1	****	 		KP	MA				10-17-06		7 400
Received I Relinquish	ру:	ple	ing Edu	asa	La	Divid	Edno	Sa		#	Hq	sho	2_			10/18/00)	11:08
Received I	-								 						miratura .	• •		
	4:	*************		······································	L				<u> </u>									
						L - Liter V - VOA	S-Soil Jar	O - Orb		T - Te			Brass		- Plast			
NOTE	: Samples	are disca	rded 60 days after sample receipt applicable only to th	unless other arra	angements are	made. Hazardous sa aboratory with this COC	mples will be r	eturned to o	client atory	or disp	osed	of at c	lient e	xpens	e. The	report for the analysis	of the	above samples i

Billing	Information:		Stratus Environmental		Global ID:	T0600101808				Γ		ha A	,							
	Address		3330 Cameron Park Drive		EDF;	YES						- S N	1917	ticaz				Alpha Analys	tical. Inc.	
	y, State, Zip:		Cameron Park, CA 95687	W. W	Project#	2007-0057-01]	3	3		•	1/2			255 Glendale Ave		
Fax:	530-67	6-6005	Phone: 530-676-60	J01	Email:						1				() 			Suite 21		
<u> </u>					Report Atter	ntion:				1	j				Ţ			Sparks, NV 8943	1	
l	Client:		USA 57		Sampled By	: Vince Zalutka			* *************************************	1	7	de la			7			(775) 355-1044	•	
	Address:		10700 McArthur Blvd.							1		101	met	1131				(775) 355-0406 Fa	ay.	
Cit	/, Stale, Zip:	-	Oakland, CA				***			Pag		1						() 200 0 100 (•^	
		<u> </u>		T								Ana	lysis	Requ	ested					
Time Sampled	* · · · · · · · · · · · · · · · · · · ·	Malrix	Lab ID (For Lab Use ONLY)		Sample De:	scription		Containers	TAT (Working Days)	вос	Total Iron & Ferrous Eron	нРС	TOC			I & Office P		R	∍marks	
111/	1017	AQ		MW-7				HCL VOA's		Х	х		x	-	()				rt holding times	
1174	5	AQ		8-WM				HCL VOA's		х	х			,	()	_			rt holding times	
0915	-> -	AQ		EX-1				HCL VOA's		х	Х	х	х	x >	()				rt holding times	-
0943	7	AQ		EX-2				HCL VOA's		Х	Х		77	x >					rt holding times	
N/5	1017	ΔQ		EX-3				HCL VOA's		×	×		X		دل				A holding times	
																1		100,907 0110	re-rotang mines	
<u> </u>															1					*****
					WARE TO WATE										T	7				
													T							
L	·															T				
ADDITIO	NAL INST	RUCTIO	NS.	···																
									·											
														+						
											-									
F) = C =			Signature										C	ompa	пу			Date	Tin	ne
Relinquish		ine.	Jaluans,			Vince	Zalutka					Str	atus i	Enviro	nme	niai		10-17-06	1400	
	ed by:					LISA BR	416-					4X X	PM	1				10-17-56	149	D
Relinquish Received t			A				<u> </u>							:						

Relinquish																				
Neceived I	y.									Ĺ				i						
			Key: AQ - Aqueous WA -	Waste O	Γ - Other	L-Liter V-V	VOA	S-Soil Jar	O - Ort	00	T - '	edlar	E	3 - Brá	188	Р-	Plastic	c OT - Other		
NOTE	: Samples	are disca	arded 60 days after sample receipt applicable only to th	unless other an ose samples re	rangements ar ceived by the	e made. Hazardo laboratory with this	ous samp s COC.	ples will be re The liablilly o	turned to of the labor	client atory	or dis	posed ited to	of a	t clien	t exp		~.		f the above sam	ıples is

255 Glendale Avenue

Suite 21

Sparks, Nevada 89431-5778

Phone: (775) 355-1044

k: (775) 355-0406

Subcontractor.

CLS Labs 3249 Fitzgerald Rd.

Suite 21

Rancho Cordova, CA 95742

SUB CHAIN-OF-CUSTODY RECORD

Work Order: STR06101740

*Please reference the Work Order number on all reports and invoices.

*Also please include the dates of analysis and detection limits.

Please send the report to Alpha Analytical (Sparks).

Attention To Reyna Vallejo (reyna@alpha-analytical.com).

TEL:

(916) 638-7301

EDD Required:

FAX: Acct #: (916) 638-4510

Yes

CP50701

Page

17-Oct-06

Report Due By: 5:00 PM

On: 26-Oct-06

Required QC:

Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Requested Tests Collection Type (#) of Bottles SM5210B Alpha's Sample ID Standard Method Client's Sample ID Matrix Date Preserved Other 9215B Sample Comments STR06101740-01A MW-7 10/17/06 Aqueous OTHER (2) Biochemical Oxygen Heterotropic Plate BOD & Heterotrophic Plate Count subbed to CLS. 11:11 Demand Count STR06101740-02A MW-8 10/17/06 Aqueous OTHER (2) Biochemical Oxygen Heterotropic Plate BOD & Heterotrophic Plate Count subbed to CLS. Demand Count STR06101740-03A EX-1 Aqueous 10/17/06 OTHER (2) Biochemical Oxygen Heterotropic Plate BOD & Heterotrophic Plate Count subbed to CLS. 09:15 Demand Count STR06101740-04A EX-2 Aqueous 10/17/06 OTHER (2) Biochemical Oxygen Heterotropic Plate BOD & Heterotrophic Plate Count subbed to CLS. 09:43 Demand Count

Comments:

1011	Date/Time			Date/Time
11/1/0	10-17-06 1515	Received by:		
Relinquished by:		Received by:	AMM ID	04 10-17-6 1515