

February 1, 2016

Ms. Dilan Roe

Nicole Arceneaux
Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6912 Nicole.Arceneaux@chevron.com

RECEIVED

By Alameda County Environmental Health 2:07 pm, Feb 04, 2016

Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

RE: Well Installation Report

800, 726, and 706 Harrison Street, Oakland, California 94607 Fuel Leak Case No.: RO0000231, RO0000321, and RO0000484 Comingled Plume Claim No. 6678

Dear Ms. Roe,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at 925.790.6912.

Sincerely,

Nicole Arceneaux

Chevron Environmental Management Company – Project Manager

Attachment

Well Installation Report

min my

Chevron Environmental Management Company

WELL INSTALLATION REPORT

Chevron Facility #351646 706/726/800 Harrison Street Oakland, California Case No. RO0000484

Fabruary 1, 2016

Jani.

Tamera Rogers

Project Manager

Kasherine Brondt

Katherine Brandt, P.G.

Senior Geologist

WELL INSTALLATION REPORT

Chevron Facility #351646

706/726/800 Harrison Street

Oakland, California

Prepared for:

Chevron Environmental Management Company

Prepared by:

Arcadis U.S., Inc.

2999 Oak Road

Suite 300

Walnut Creek

California 94597

Tel 408 797 2013

Fax 925 274 1103

Our Ref.:

B0047339.2015

Date:

February 1, 2016

CONTENTS

Acı	onyms	and Abbreviations	٠ ٧
1	INTR	ODUCTION	. 1
	1.1	Purpose/Remedial Action Objective	. 1
	1.2	Report Organization	. 1
2	SITE	DESCRIPTION	. 1
	2.1	Geology and Hydrogeology	. 2
3	FIELD	ACTIVITIES	. 2
	3.1	Health and Safety	. 3
	3.2	Utility Locate	.3
	3.3	Well Permits	.3
	3.4	Well Installation	.3
		3.4.1 Boring Advancement and Well Construction	. 3
		3.4.2 Soil Sampling and Screening	. 4
	3.5	Management of Investigation-Derived Waste	. 4
4	ANAL	YTICAL RESULTS	.5
5	CON	CLUSIONS	. 5
6	REFE	RENCES	6

TABLES

Table 1. Well Construction Details

Table 2. Soil Analytical Results

FIGURES

Figure 1. Site Location Map

Figure 2. Site Plan Showing Well Locations

Figure 3. Third Quarter 2015 Groundwater Elevation Contour Map

WELL INSTALLATION REPORT

APPENDICES

Appendix A. ACPWA Permits

Appendix B. Boring Logs

Appendix C. CDWR Well Completion Reports

Appendix D. Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

ACEH Alameda County Environmental Health

ACPWA Alameda County Public Works Agency

Arcadis U.S., Inc.

AS air sparge

ASE Aqua Science Engineers, Inc.

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and total xylenes

Cambria Environmental Technology, Inc.

CDWR California Department of Water Resources

CPT cone penetrometer test

DIPE di-isopropyl ether

EDB 1,2-dibromoethane

EDC 1,2-dichloroethane

ESL environmental screening level

ETBE ethyl tert-butyl ether

HASP Health and Safety Plan

IDW investigation-derived waste

mg/kg milligrams per kilogram

MTBE methyl tert-butyl ether

PID photo ionization detector

PQL practical quantitation limit

PVC polyvinyl chloride

report Well Installation Report

RPEMP Remedial Performance Evaluation and Monitoring Plan

site Chevron Facility #351646, located at 706/726/800 Harrison Street in Oakland, California

SV soil vapor

SVE soil vapor extraction

WELL INSTALLATION REPORT

TAME tert-amyl methyl ether

TBA tert-butyl alcohol

TPPH total purgeable petroleum hydrocarbons

USEPA United States Environmental Protection Agency

UST underground storage tank

VE vapor extraction

1 INTRODUCTION

On behalf of Chevron Environmental Management Company's affiliate, Union Oil Company of California, Arcadis U.S., Inc. (Arcadis) prepared this Well Installation Report (report) for Chevron Facility #351646, located at 706/726/800 Harrison Street in Oakland, California (site; Figures 1 and 2). The scope of work for this project included the installation of 13 air sparge (AS) wells (AS-2 through AS-14), two vapor extraction (VE) wells (VE-4 and VE-5), and three soil vapor (SV) probes (SV-1, SV-2, and SV-3). The wells and SV probes were installed as part of the Remedial Performance Evaluation and Monitoring Plan (RPEMP; Arcadis 2015), which was conditionally approved by Alameda County Environmental Health (ACEH) on March 11, 2015 to address the petroleum hydrocarbon impacted groundwater at the site. The new wells were appropriately screened to meet California Department of Water Resources (CDWR) and Alameda County Public Works Agency (ACPWA) guidelines for monitoring/remediation wells (CDWR 2003).

1.1 Purpose/Remedial Action Objective

This report discusses the well construction of AS-2 through AS-14, VE-4, VE-5, SV-1, SV-2, and SV-3; and provides the analytical results for soil and groundwater samples collected from the newly installed wells.

1.2 Report Organization

The remaining sections of this report are listed below:

- Section 2 describes the site geology and hydrogeology.
- Section 3 discusses the field activities associated with the well and SV probe installations, including health and safety, utility locate, well permits, well installation, and management of investigationderived waste (IDW).
- Section 4 summarized the soil analytical results.
- Sections 5 and 6 presents Arcadis' conclusions and recommendations, respectively.
- Section 7 lists the references cited throughout this report.

2 SITE DESCRIPTION

The site consists of three properties located in a mixed commercial and residential area at 706, 726, and 800 Harrison Street in Oakland, California (Figure 1). The property locations and boundaries are shown on Figure 2.

The 706 Harrison Street Property is a former ARCO service station owned by Mr. Bo Gin. This property currently contains an asphalt parking lot. Former facilities at the 706 Harrison Street Property included four 1,000-gallon and two 6,000-gallon fuel underground storage tanks (USTs), one steel waste oil UST, product line piping and pump islands, and a station building. The USTs and associated piping were removed in January 1991 (Cambria Environmental Technology, Inc. [Cambria] 1995).

The property located at 726 Harrison Street is a former Shell service station owned by Mr. Peter Yee. This property currently contains an asphalt parking lot and building. Former facilities at the 726 Harrison Street Property included three 4,000-gallon fuel USTs, one 8,000-gallon fuel UST, one steel 1,000-gallon waste oil UST, product line piping and pump islands, and a station building. The USTs and associated piping were removed in October 1995 (Aqua Science Engineers, Inc. [ASE] 2001).

The property located at 800 Harrison Street is an active 76 Station (Unocal) owned by Mr. Muhammad Usman. Current station facilities include a single-story convenience store, three product dispenser islands under two canopies, and two 12,000-gallon double-wall poly-steel gasoline USTs.

2.1 Geology and Hydrogeology

Property-specific well boring logs and cone penetrometer test (CPT) investigation results indicate that the site lithology is consistent with regional lithology. The general site lithology comprises primarily silty sands and fine-grained sands extending to approximately 30 to 38 feet below ground surface (bgs). Deeper CPTs were conducted in the area of 800 Harrison Street and indicate the presence of silt and clay between approximately 30 and 42 feet bgs. Below the clay, fine-grained sand and silty sand are present (Stantec 2009). It is assumed that Merritt Sand lies under the site, based on visual inspections of soil during the investigations (Stantec 2009).

The nearest surface waters to the site are the Oakland Inner Harbor to the south and west and Lake Merritt to the east and northeast. Each body of water is approximately ½ mile from the site (Stantec 2009).

Depth to water beneath the three properties has historically ranged from 10.93 to 20.01 feet bgs. During the second semiannual groundwater monitoring and sampling event in August 2015, average depth-to-water measurements were approximately 18.20 (706 Harrison Street), 20.49 (726 Harrison Street), and 19.59 (800 Harrison Street) feet below top of well casing. A deeper water-bearing zone was encountered at depths of 42 to 50 feet bgs during advancement of the cone penetrometers. Prior to the June 2011 site assessment, no wells were installed in the deeper water-bearing zone. In June 2011, ASE oversaw the installation of monitoring well MW-6 on the 726 Harrison Street Property within the deeper water-bearing zone. MW-6 is screened from 44 to 49 feet bgs (Table 1).

The predominant groundwater gradient observed across all three properties is south-southwest, with a horizontal hydraulic gradient ranging from 0.007 to 0.008 foot per foot (Arcadis 2015). This gradient direction indicates that groundwater flows from 800 Harrison Street toward 726 Harrison Street and from 726 Harrison Street toward 706 Harrison Street.

A groundwater potentiometric surface map from the second semiannual 2015 monitoring event is presented on Figure 3.

3 FIELD ACTIVITIES

The AS and soil vapor extraction (SVE) wells and SV probes were installed during two separate field events. AS-2 through AS-12 and VE-4 and VE-5 were installed between September 30 and October 13, 2014. AS-13, AS-14, SV-1, SV-2, and SV-3 were installed between December 7 and 9, 2015.

3.1 Health and Safety

As required by the Occupational Safety and Health Administration 29, Code of Federal Regulations 1910.120 (Hazardous Waste Operations and Emergency Responses), Arcadis prepared a Health and Safety Plan (HASP) to address the proposed well installation and remedial implementation activities at the site. The HASP is intended to identify and prevent potential safety hazards associated with the project.

3.2 Utility Locate

Underground Services Alert was notified a minimum of 72 hours prior to initiating field activities. For AS-2 through AS-12, VE-4, and VE-5, Cruz Brothers Locators, Inc. of Scotts Valley, California was contracted to conduct an independent utility locate for subsurface features and utilities near the proposed well locations on September 25, 2014. For AS-13, AS-14, SV-1, SV-2, and SV-3, Safe2core of San Jose, California was contracted to conduct an independent utility locate for subsurface features and utilities near the proposed well locations on November 30, 2015.

3.3 Well Permits

Necessary well construction permits were acquired from the ACPWA prior to scheduling the well installation activities. Well permits are included in Appendix A.

3.4 Well Installation

3.4.1 Boring Advancement and Well Construction

Drilling and installation activities were conducted by Cascade Drilling, LP of Richmond, California, a C-57 licensed driller, under the supervision of an Arcadis geologist. Soil borings were advanced using hollow-stem auger drilling methods for all well AS and VE well locations and a hand auger was used to advance the SV boring locations. The soil borings were pre-cleared using an air knife or hand auger to a depth of 8 feet 1 inch bgs.

The AS wells were completed with a 2-inch-diameter Schedule 80 polyvinyl chloride (PVC) riser and a 0.010-inch slot screen. The base of the well screen, which is 2 feet in length, was set at the top of the clay lens. Screen depths ranged from approximately 28 to 35.5 feet bgs, depending on the observed depth of the clay lens. Three feet of blank casing sump was installed below the screen. The annular space was backfilled with sand from the total depth to 1 foot above the screen, followed by 3 feet of hydrated bentonite chips. The wells were sealed with neat cement grout to 1 foot bgs and covered at the surface using sand and asphalt patch pending installation of the AS/SVE system. A 12-inch-diameter traffic-rated well box will be installed following system installation.

The VE wells were completed with a 2-inch-diameter Schedule 80 PVC riser and a 0.010-inch slot screen, which was set from 5 to 15 feet bgs. The annular space was backfilled with sand from the total depth to 1 foot above the screen, followed by 1 foot of hydrated bentonite chips. The wells were sealed with neat cement grout to 1 foot bgs and covered at the surface with sand and asphalt patch. A 12-inch-diameter traffic-rated well box will be installed following installation of the AS/SVE system.

SV-1, SV-2, and SV-3 were completed using a 1-inch-long stainless steel soil vapor screen set in a 1-foot interval of sand pack, allowing approximately 5.5 inches of sand above and below the screen. Teflon tubing was connected to the soil vapor screen and capped at the surface to allow for equilibration of soil vapor concentrations with in-situ conditions. A 1-foot interval of dry, granular bentonite was placed above the sand pack followed by hydrated granular bentonite to the surface. The probes were completed to grade with a 4-inch-diameter traffic-rated well box. Additional details regarding the construction of the AS and VE wells and the SV probes are presented in Table 1 and the boring logs provided in Appendix B. Additionally, Arcadis prepared CDWR Well Completion Reports, which are included in Appendix C.

3.4.2 Soil Sampling and Screening

The soil from the borehole was continuously logged by a geologist in accordance with the Unified Soil Classification System and screened with a photo ionization detector (PID) during well installation activities. The PID field screening results were recorded on the field boring logs in units of parts per million. The field determination for soil sampling was predominantly based on the highest PID readings greater than the background concentration.

Soil samples were collected for laboratory analysis based on the highest probable degree of petroleum hydrocarbon concentration. Therefore, soil samples were collected from each boring location at a frequency of 5 feet if PID readings were not detected above background concentrations and if other indicators of potential hydrocarbon impacts (e.g., staining, odor) were absent. If elevated PID readings or other indicators of potential hydrocarbon impacts were observed during well installation, additional soil samples were collected.

Soil samples were submitted to BC Laboratories (a state-certified laboratory) for the following analyses:

- Total purgeable petroleum hydrocarbons (TPPH) by United States Environmental Protection Agency (USEPA) Method 8260B
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by USEPA Method 8260B
- Naphthalene by USEPA Method 8260B
- Fuel oxygenates: tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and ethanol by USEPA Method 8260B
- 1,2-Dibromoethane (EDB) and 1,2-dichloroethane (EDC) by USEPA Method 8260B

3.5 Management of Investigation-Derived Waste

Soil cuttings from the well installation activities are being temporarily stored on site in seven properly labeled Department of Transportation-approved 55-gallon steel drums, pending disposal facility coordination. Following waste characterization, the IDW will be transported to an appropriately licensed disposal or treatment facility.

4 ANALYTICAL RESULTS

This section presents the soil analytical results for samples collected from AS-2 through AS-14, VE-4, VE-5, SV-1, SV-2, and SV-3 during the well installation activities.

Soil analytical results were compared to commercial/industrial soil environmental screening levels (ESLs for potable water areas based on the site location and California Regional Water Quality Control Board preference. Multiple volatile organic compounds were reported in the soil samples collected during drilling activities. Soil analytical results are summarized in Table 2. Laboratory reports are provided in Appendix D. The soil analytical results are summarized below:

- TPPH was detected in samples above the ESL of 500 milligrams per kilogram (mg/kg), with maximum concentrations in AS-9 (7,000 mg/kg at 20 feet bgs).
- Benzene was detected in samples above the ESL of 0.044 mg/kg, with a maximum concentration in AS-3 (5.9 mg/kg at 17.5 feet bgs).
- Toluene was detected in samples above the ESL of 2.9 mg/kg, with a maximum concentration in AS-2 (200 mg/kg at 18.5 feet bgs).
- Ethylbenzene was detected in samples above the ESL of 3.3 mg/kg, with a maximum concentration in AS-9 (170 mg/kg at 20 feet bgs).
- Total xylenes were detected in samples above the ESL of 2.3 mg/kg, with a maximum concentration in AS-2 (880 mg/kg at 18.5 feet bgs).
- MTBE was detected in samples above the ESL of 0.023 mg/kg, with a maximum concentration in AS-3 (7.5 mg/kg at 17.5 feet bgs).
- TBA was detected in samples above the ESL of 0.075 mg/kg, with a maximum concentration in AS-2 (1.7 mg/kg at 24 feet bgs).

The remaining constituents (ETBE, ethanol, DIPE, TAME, EDB, EDC) were not reported above the practical quantitation limits (PQLs). Soil samples collected from SV-1, SV-2, and SV-3 were not reported above PQLs for all constituents. The PQLs for a soil sample collected from AS-9 at approximately 20 feet bgs exceeded the ESL for benzene, MTBE, and TBA.

5 CONCLUSIONS

Concentrations of TPPH and BTEX did not exceed the ESLs in samples collected between 0 and 15 feet bgs for all sample locations, with the exception of a slightly elevated benzene concentration (0.079 mg/kg) in a sample collected from AS-3 at 15 feet bgs. This is consistent with soil analytical results from samples collected at the 706 and 726 Harrison properties during the 2011 site assessment (Arcadis 2011). Overall, the highest soil concentrations were generally observed in samples collected at 726 Harrison Street at depths between approximately 18 to 22 feet bgs, which are typically representative of smear zone impacts based on average depth-to-water.

6 REFERENCES

Arcadis. 2011. Site Assessment Report, 800, 726, and 706 Harrison Street, Oakland, California, Fuel Leak Case No.: RO0000231, RO0000321, and RO0000484. August 30.

Arcadis. 2015. Remediation Performance Evaluation and Monitoring Plan, 706/726/800 Harrison Street, Oakland, California, ACEH Case #RO0000231/321/484. February 10.

ASE. 2001. Soil and Groundwater Assessment and Corrective Action Plan. December 21.

Cambria. 1995. Subsurface Investigation Report for 706 Harrison Street, Oakland, California. March 10.

CDWR. 2003. Bulletin 118 Updated 2003, California's Groundwater. October.

Stantec. 2009. Site Conceptual Model 800, 726, and 706 Harrison Street Commingled Plume Oakland, California. September 30.

TABLES

Table 1
Well Construction Details
Chevron Facility #351646
706/726/800 Harrison Street
Oakland, California

Well ID	Completion Date	Total Depth (feet bgs)	Screen Interval (feet bgs)	Borehole Diameter (inches)	Casing Diameter (inches)
726 Harrison	Street				
AS-2	10/7/2014	33	28-30	8.5	2
AS-3	10/13/2014	33	28-30	8.5	2
AS-4	10/6/2014	35	30-32	8.5	2
AS-5	10/3/2014	35	30-32	8.5	2
AS-6	10/2/2014	35	30-32	8.5	2
SV-1	12/9/2015	5	4.4 - 4.5	2.0	0.25
SV-2	12/9/2015	5	4.4 - 4.5	2.0	0.25
SV-3	12/9/2015	5	4.4 - 4.5	2.0	0.25
VE-4	10/2/2014	15	5-15	8.5	2
706 Harrison	Street				
AS-7	10/9/2014	33	28-30	8.5	2
AS-8	10/9/2014	33	28-30	8.5	2
AS-9	10/13/2014	33	28-30	8.5	2
AS-10	10/10/2014	33	28-30	8.5	2
AS-12	10/10/2014	33	28-30	8.5	2
AS-13	12/9/2015	38.5	33.5 - 35.5	8.0	2
AS-14	12/8/2015	40.5	35.5 - 37.5	8.0	2
VE-5	10/9/2014	15	5-15	8.5	2

Notes:

AS = air sparge

SV = soil vapor

VE = vapor extraction

bgs = below ground surface

Table 2 Soil Analytical Results Chevron Facility #351646 706/726 Harrison Street Oakland, California

Surel But LUFT GC/MS USEPA 8260B															
Sample Location	Sample Date	Sample Depth (feet bgs)	TPPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	DIPE	Ethanol	ETBE	EDB	EDC
700 !!! 0/		(g-,	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
726 Harrison Street AS-2	10/01/14	5.0	<0.15	<0.0038	<0.0038	<0.0038	<0.0075	0.067	<0.0038	<0.038	<0.0038	<0.75	<0.0038	<0.0038	<0.0038
70-2	10/07/14	10.0	0.55	<0.0050	<0.0050	<0.0050	<0.010	0.44	<0.0050	0.31	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
	10/07/14	15.0	1.6	0.038	< 0.0045	<0.0045	< 0.0090	2.9 A01	< 0.0045	0.16	< 0.0045	< 0.90	< 0.0045	< 0.0045	<0.0045
	10/07/14	18.5	5,400 A01	2.4 A01	200 A01	50 A01	880 A01	0.98 A01	<0.17 A01	<1.7 A01	<0.17 A01	<34 A01	<0.17 A01	<0.17 A01	<0.17 A01
	10/07/14	24.0	81 A01	0.072	0.0087	0.0093	0.054	0.0063	<0.0050	1.7 A01	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
	10/07/14 10/07/14	28.0 30.0	<0.20 <0.17	<0.0050	<0.0050 <0.0043	<0.0050 <0.0043	<0.010 <0.0086	<0.0050 <0.0043	<0.0050 <0.0043	<0.050 <0.043	<0.0050 <0.0043	<1.0 <0.86	<0.0050 <0.0043	<0.0050 <0.0043	<0.0050 <0.0043
AS-3	10/07/14	5.5	<0.17 0.19	<0.0043	<0.0043	<0.0043	<0.0085	<0.0043 0.16	<0.0043	<0.043 0.044	<0.0043	<0.85	<0.0043	<0.0043	<0.0043
A3-3	10/13/14	10.0	0.19	<0.0043	<0.0043	<0.0043	<0.0089	0.31	<0.0043	0.10	<0.0043	<0.89	<0.0043	<0.0043	<0.0044
	10/13/14	15.0	2.1	0.079	<0.0050	<0.0050	<0.010	1.9 A01	<0.0050	0.38	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
	10/13/14	17.5	3,800 A01	5.9 A01	26 A01	60 A01	260 A01	7.5 A01	<5.0 A01	<50 A01	<5.0 A01	<1000 A01	<5.0 A01	<5.0 A01	<5.0 A01
	10/13/14	25.0	0.63	0.30	0.0077	< 0.0050	0.020	0.041	< 0.0050	0.70	< 0.0050	<1.0	< 0.0050	< 0.0050	<0.0050
	10/13/14	30.0	<0.18	<0.044	<0.044	<0.044	<0.0088	<0.044	< 0.044	<0.044	<0.044	<0.88	<0.044	<0.044	<0.044
10.1	10/13/14	33.5	<0.20	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	0.16	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
AS-4	10/1/14 10/06/14	5.0 10.0	<0.17 0.19	<0.0043 <0.0036	<0.0043 <0.0036	<0.0043 <0.0036	<0.0086 <0.0072	<0.0043 <0.0036	<0.0043 <0.0036	0.073 <0.036	<0.0043 <0.0036	<0.86 <0.72	<0.0043 <0.0036	<0.0043 <0.0036	<0.0043 <0.0036
	10/06/14	15.0	0.64	0.010	<0.0030	<0.0030	<0.0072	0.041	<0.0030	<0.030	<0.0030	<0.72	<0.0030	<0.0030	<0.0040
	10/06/14	22.0	6,200 A01	1.0 A01	2.5 A01	4.6 A01	19 A01	0.88 A01	<0.26 A01	<2.6 A01	<0.26 A01	<52 A01	<0.26 A01	<0.26 A01	<0.26 A01
	10/06/14	31.0	66 A01	<0.24 A01	0.29 A01	0.38 A01	1.6 A01	<0.24 A01	<0.24 A01	<2.4 A01	<0.24 A01	<49 A01	<0.24 A01	<0.24 A01	<0.24 A01
	10/06/14	33.5	100 A01	<0.24 A01	0.33 A01	0.47 A01	1.8 A01	<0.24 A01	<0.24 A01	<2.4 A01	<0.24 A01	<47 A01	<0.24 A01	<0.24 A01	<0.24 A01
AS-5	10/01/14	5.0	<0.15	<0.0039	< 0.0039	<0.0039	<0.0077	<0.0039	< 0.0039	<0.039	< 0.0039	<0.77	< 0.0039	<0.0039	<0.0039
	10/03/14	10.0	<0.15	<0.0036	<0.0036	<0.0036	<0.0073	<0.0036	<0.0036	<0.036	< 0.0036	< 0.73	<0.0036	<0.0036	<0.0036
	10/03/14	15.0	<0.14	<0.0035	<0.0035	<0.0035	<0.0070	<0.0035	<0.0035	<0.035	<0.0035	<0.70	<0.0035	<0.0035	<0.0035
	10/03/14 10/03/14	17.5 25.0	0.39 330 A01	0.014 1.2 A01	<0.0037 1.0 A01	<0.0037 1.3 A01	<0.0074 5.5 A01	0.026 1.1 A01	<0.0037 <0.17 A01	<0.037 <1.7 A01	<0.0037 <0.17 A01	<0.74 <35 A01	<0.0037 <0.17 A01	<0.0037 <0.17 A01	<0.0037 <0.17 A01
	10/03/14	27.0	2.5 S01,Z1	0.39	0.022	0.052	0.08	0.056	<0.17 A01 <0.0042	0.12	<0.17 A01 <0.0042	<0.85	<0.17 A01 <0.0042	<0.17 A01 <0.0042	<0.17 A01 <0.0042
	10/03/14	34.0	<0.23	<0.0056	<0.0056	<0.0056	<0.011	<0.0056	<0.0056	<0.056	<0.0056	<1.1	<0.0056	<0.0056	<0.0056
AS-6	09/30/14	5.0	<0.14	< 0.0034	< 0.0034	< 0.0034	< 0.0068	< 0.0034	< 0.0034	0.091	< 0.0034	<0.68	< 0.0034	< 0.0034	< 0.0034
	10/02/14	10.0	<0.16	< 0.0040	< 0.0040	< 0.0040	<0.0081	<0.0040	<0.0040	< 0.040	< 0.0040	<0.81	< 0.0040	< 0.0040	< 0.0040
	10/02/14	15.0	<0.17	< 0.0042	< 0.0042	<0.0042	<0.0084	< 0.0042	< 0.0042	0.13	< 0.0042	<0.84	< 0.0042	< 0.0042	< 0.0042
	10/02/14	20.0	0.16	<0.0038	<0.0038	<0.0038	<0.0075	<0.0038	<0.0038	<0.038	<0.0038	<0.75	<0.0038	<0.0038	<0.0038
	10/02/14	22.0	2,100 A01	1.2 A01	0.67 A01	5.0 A01	11 A01	1.5 A01	<0.15 A01	<1.5 A01	<0.15 A01	<30 A01	<0.15 A01	<0.15 A01	<0.15 A01
	10/02/14 10/02/14	25.0 36.0	730 A01 0.16	0.7 A01 <0.0040	0.26 A01 <0.0040	1.3 A01 <0.0040	2.9 A01 <0.0080	1.6 A01 0.018	<0.18 A01 <0.0040	<1.8 A01 <0.040	<0.18 A01 <0.0040	<35 A01 <0.80	<0.18 A01 <0.0040	<0.18 A01 <0.0040	<0.18 A01 <0.0040
SV-1	12/09/15	2.0	<0.20 S08, Z1	<0.0050 S08,Z1	<0.0050 S08,Z1	<0.0050 S08,Z1	<0.010 S01,Z1	<0.0050 S08,Z1	<0.0050 S08,Z1	<0.050	<0.0050 S08,Z1	<1.0 S08,Z1	<0.0050 S08,Z1	<0.0050 S08,Z1	<0.0050 S08,Z1
	12/09/15	5.0	<0.20	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.050	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
SV2	12/09/15	2.0	<0.20	< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/09/15	5.0	<0.17	< 0.0042	< 0.0042	< 0.0042	< 0.0083	< 0.0042	< 0.0042	< 0.042	< 0.0042	< 0.83	< 0.0042	< 0.0042	< 0.0042
SV-3	12/09/15	2.0	<0.17	<0.0042	<0.0042	<0.0042	<0.0085	<0.0042	<0.0042	<0.042	<0.0042	<0.85	<0.0042	<0.0042	<0.0042
VE 4	12/09/15	5.0	<0.17	<0.0042	<0.0042	<0.0042	<0.0084	<0.0042	<0.0042	<0.042	<0.0042	<0.84	<0.0042	<0.0042	<0.0042
VE-4	10/02/14 10/02/14	5.0 10.0	<0.14 <0.20	<0.0034 <0.0050	<0.0034 <0.0050	<0.0034 <0.0050	<0.0068 <0.010	<0.0034 <0.0050	<0.0034 <0.0050	<0.034 0.22	<0.0034 <0.0050	<0.68 <1.0	<0.0034 <0.0050	<0.0034 <0.0050	<0.0034 <0.0050
	10/02/14	15.0	<0.17	<0.0041	<0.0030	<0.0030	<0.0083	<0.0030	<0.0041	0.20	<0.0030	<0.83	<0.0041	<0.0030	<0.0030
706 Harrison Street															
AS-7	10/08/14	5.0	<0.14	< 0.0036	<0.0036	<0.0036	< 0.0072	<0.0036	< 0.0036	< 0.036	< 0.0036	<0.72	<0.0036	< 0.0036	<0.0036
	10/09/14	10.0	<0.14	<0.0034	<0.0034	<0.0034	<0.0068	<0.0034	<0.0034	<0.034	< 0.0034	<0.68	<0.0034	< 0.0034	<0.0034
	10/09/14	15.0	<0.15	<0.0037	<0.0037	<0.0037	<0.0075	<0.0037	<0.0037	<0.037	<0.0037	<0.75	<0.0037	<0.0037	<0.0037
	10/09/14 10/09/14	21.0 27.0	26 A01	0.20	0.0092 <0.0038	0.053	0.034	0.62 A01	<0.0038 <0.0038	0.59	<0.0038	<0.77	<0.0038	<0.0038	<0.0038
	10/09/14	32.0	<0.15 0.15	<0.0038 0.0045	<0.0038	<0.0038 <0.0039	<0.0076 <0.0077	0.0056 0.13	<0.0038	0.25 0.16	<0.0038 <0.0039	<0.76 <0.77	<0.0038 <0.0039	<0.0038 <0.0039	<0.0038 <0.0039
AS-8	10/08/14	5.0	<0.15	<0.0045	<0.0039	<0.0039	<0.0077	<0.0037	<0.0039	<0.037	<0.0039	<0.75	<0.0039	<0.0039	<0.0039
7.00	10/09/14	10.0	<0.15	<0.0037	<0.0037	<0.0037	<0.0073	<0.0037	< 0.0037	<0.037	<0.0037	<0.74	<0.0037	<0.0037	<0.0037
	10/09/14	15.0	<0.14	< 0.0034	< 0.0034	< 0.0034	< 0.0069	< 0.0034	< 0.0034	0.10	< 0.0034	< 0.69	< 0.0034	< 0.0034	< 0.0034
	10/09/14	20.0	<0.15	<0.0038	<0.0038	<0.0038	< 0.0075	0.005	<0.0038	0.051	<0.0038	<0.75	<0.0038	<0.0038	<0.0038
	10/09/14	26.0	<0.16	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0041	0.054	<0.0041	<0.82	<0.0041	<0.0041	<0.0041
	10/09/14	30.0	<0.20	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.050	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
AS-9	10/08/14	5.0	<0.13	<0.0032	<0.0032	<0.0032	<0.0064	<0.0032	<0.0032	0.056	<0.0032	<0.64	<0.0032	<0.0032	<0.0032
	10/13/14 10/13/14	10.0 15.0	<0.20 <0.18	<0.0050 <0.044	<0.0050 <0.044	<0.0050 <0.044	<0.010 <0.0088	<0.0050 <0.044	<0.0050 <0.044	<0.050 <0.044	<0.0050 <0.044	<1.0 <0.88	<0.0050 <0.044	<0.0050 <0.044	<0.0050 <0.044
	10/13/14	20.0	7,000 A01	<0.044 <25 A01	130 A01	<0.044 170 A01	<0.0088 820 A01	<0.044 <25 A01	<0.044 <25 A01	<0.044 <250 A01	<0.044 <25 A01	<0.88 <5000 A01	<0.044 <25 A01	<0.044 <25 A01	<0.044 <25 A01
	10/13/14	25.0	<0.20	<0.0050	0.015	<0.0050	0.012	<0.0050	<0.0050	0.71	<0.0050	<1.0	<0.0050	<0.0050	<0.0050
	10/13/14	30.0	<0.18	<0.0044	<0.0044	<0.0044	<0.0088	<0.0044	<0.0044	0.18	<0.0044	<0.88	<0.0044	<0.0044	<0.0044
	10/13/14	33.5	<0.17	<0.0042	<0.0042	<0.0042	<0.0084	<0.0042	<0.0042	0.13	<0.0042	<0.84	<0.0042	<0.0042	<0.0042

Table 2 Soil Analytical Results Chevron Facility #351646 706/726 Harrison Street Oakland, California

		Committee Books	LUFT GC/MS						USEP	A 8260B					
Sample Location	Sample Date	Sample Depth (feet bgs)	TPPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	DIPE	Ethanol	ETBE	EDB	EDC
		(leet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AS-10	10/08/14	5.0	<0.15	< 0.0036	< 0.0036	< 0.0036	< 0.0073	< 0.0036	< 0.0036	< 0.036	< 0.0036	< 0.73	< 0.0036	< 0.0036	< 0.0036
	10/10/14	10.0	<0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	0.13	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	10/10/14	15.0	<0.15	< 0.0036	< 0.0036	< 0.0036	< 0.0073	< 0.0036	< 0.0036	0.044	< 0.0036	< 0.73	< 0.0036	< 0.0036	< 0.0036
	10/10/14	20.0	850 A01	<0.17 A01	0.27 A01	0.42 A01	2.3 A01	<0.17 A01	<0.17 A01	<1.7 A01	<0.17 A01	<33 A01	<0.17 A01	<0.17 A01	<0.17 A01
	10/10/14	26.5	<0.20	< 0.0050	0.0077	< 0.0050	0.011	< 0.0050	< 0.0050	0.50	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	10/10/14	30.0	0.35	< 0.0036	0.032	0.011	0.055	< 0.0036	< 0.0036	0.069	< 0.0036	< 0.72	< 0.0036	< 0.0036	< 0.0036
AS-11	10/01/14	5.0	<0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	10/06/14	10.0	<0.10	< 0.0025	< 0.0025	< 0.0025	< 0.0050	< 0.0025	< 0.0025	< 0.025	< 0.0025	< 0.50	< 0.0025	< 0.0025	< 0.0025
	10/06/14	15.0	< 0.17	< 0.0042	< 0.0042	< 0.0042	< 0.0084	< 0.0042	< 0.0042	0.14	< 0.0042	< 0.84	< 0.0042	< 0.0042	< 0.0042
	10/06/14	17.0	1.1	< 0.0034	< 0.0034	0.0036	< 0.0067	< 0.0034	< 0.0034	< 0.034	< 0.0034	< 0.67	< 0.0034	< 0.0034	< 0.0034
	10/06/14	26.0	12 A01	0.40	0.22 A01	0.33	1.1	0.41	< 0.0044	0.85	< 0.0044	< 0.87	< 0.0044	< 0.0044	< 0.0044
	10/06/14	30.0	1.1	0.051	0.17	0.043	0.23	0.057	< 0.0039	0.48	< 0.0039	< 0.79	< 0.0039	< 0.0039	< 0.0039
AS-12	10/08/14	5.0	<0.17	< 0.0042	< 0.0042	< 0.0042	< 0.0084	< 0.0042	< 0.0042	< 0.042	< 0.0042	< 0.84	< 0.0042	< 0.0042	< 0.0042
	10/10/14	10.0	< 0.13	< 0.0032	< 0.0032	< 0.0032	< 0.0065	< 0.0032	< 0.0032	< 0.032	< 0.0032	< 0.65	< 0.0032	< 0.0032	< 0.0032
	10/10/14	15.0	<0.16	< 0.0041	< 0.0041	< 0.0041	<0.0081	< 0.0041	< 0.0041	0.12	< 0.0041	<0.81	< 0.0041	< 0.0041	< 0.0041
	10/10/14	20.0	0.31	0.028	< 0.0036	< 0.0036	< 0.0072	< 0.0036	< 0.0036	< 0.036	< 0.0036	< 0.72	< 0.0036	< 0.0036	< 0.0036
	10/10/14	25.0	3.9 A01	0.59 A01	0.061	0.17	0.28	0.09	< 0.0038	0.45	< 0.0038	< 0.75	< 0.0038	< 0.0038	< 0.0038
	10/10/14	29.0	<0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	0.12	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
AS-13	12/07/15	5.0	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	10.0	< 0.13	< 0.0033	< 0.0033	< 0.0033	< 0.0066	< 0.0033	< 0.0033	< 0.033	< 0.0033	< 0.66	< 0.0033	< 0.0033	< 0.0033
	12/08/15	15.0	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	17.5	1.8	< 0.0039	< 0.0039	< 0.0039	< 0.0079	< 0.0039	< 0.0039	< 0.039	< 0.0039	< 0.79	< 0.0039	< 0.0039	< 0.0039
	12/09/15	20.0	980 A01	0.006	< 0.0037	0.091	< 0.0074	< 0.0037	< 0.0037	< 0.037	< 0.0037	< 0.74	< 0.0037	< 0.0037	< 0.0037
	12/09/15	25.0	< 0.17	< 0.0043	< 0.0043	< 0.0043	< 0.0087	< 0.0043	< 0.0043	< 0.043	< 0.0043	<0.87	< 0.0043	< 0.0043	< 0.0043
	12/09/15	30.0	< 0.15	< 0.0037	< 0.0037	< 0.0037	< 0.0074	< 0.0037	< 0.0037	< 0.037	< 0.0037	< 0.74	< 0.0037	< 0.0037	< 0.0037
	12/09/15	35.0	< 0.15	< 0.0037	< 0.0037	< 0.0037	< 0.0075	0.014	< 0.0037	< 0.037	< 0.0037	< 0.75	< 0.0037	< 0.0037	< 0.0037
	12/09/15	35.5	<0.14	< 0.0034	< 0.0034	< 0.0034	< 0.0069	0.17	< 0.0034	< 0.034	< 0.0034	< 0.69	< 0.0034	< 0.0034	< 0.0034
AS-14	12/07/15	5.0	<0.18	< 0.0044	< 0.0044	< 0.0044	< 0.0089	< 0.0044	< 0.0044	< 0.044	< 0.0044	<0.89	< 0.0044	< 0.0044	< 0.0044
	12/08/15	10.0	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	15.0	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	20.0	23 A01	0.4	0.45	0.3	1.0	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	25.0	5.2 A01	0.33	0.15	0.12	0.40	0.10	< 0.0045	0.88	< 0.0045	< 0.90	< 0.0045	< 0.0045	< 0.0045
	12/08/15	30.0	1.6	0.13	0.1	0.06	0.23	0.024	< 0.0050	0.31	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	12/08/15	35.0	6.8 A01	0.11	0.1	0.085	0.31	0.026	< 0.0050	0.17	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
VE-5	10/02/14	5.0	<0.20	< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.0050	< 0.050	< 0.0050	<1.0	< 0.0050	< 0.0050	< 0.0050
	10/09/14	10.0	<0.16	< 0.0041	< 0.0041	< 0.0041	<0.0082	< 0.0041	< 0.0041	0.22	< 0.0041	< 0.82	< 0.0041	< 0.0041	< 0.0041
	10/09/14	15.0	<0.15	< 0.0038	<0.0038	<0.0038	< 0.0076	<0.0038	<0.0038	0.11	< 0.0038	<0.76	<0.0038	<0.0038	< 0.0038
		ESL (potable)	770	0.044	2.9	3.3	2.3	0.023		0.075					
	ES	SL (nonpotable)	1.000	1.2	9.3	4.7	11	8.4		110					

Notes: bgs = below ground surface

BOLD = Indicates analytical result is above reporting limits.

DIPE = di-isopropyl ether

EDB = 1,2-dibromoethane

EDC = 1,2-dichloroethane

ESL (potable) = Table C. Environmental Screening Levels, Deep Soils (>3 meters bgs), groundwater is a current or potential source of drinking water.

ESL (nonpotable) = Table D. Environmental Screening Levels, Deep Soils (>3 meters bgs), groundwater is not a current or potential source of drinking water.

ETBE = ethyl tert-butyl ether

LUFT GC/MS = Leaking Underground Fuel Tanks Gas chromatography-mass spectrometry

mg/kg = milligrams per kilogram

MTBE = methyl tert-butyl ether

TAME = tert-amyl methyl ether

TBA = tert-butyl alcohol

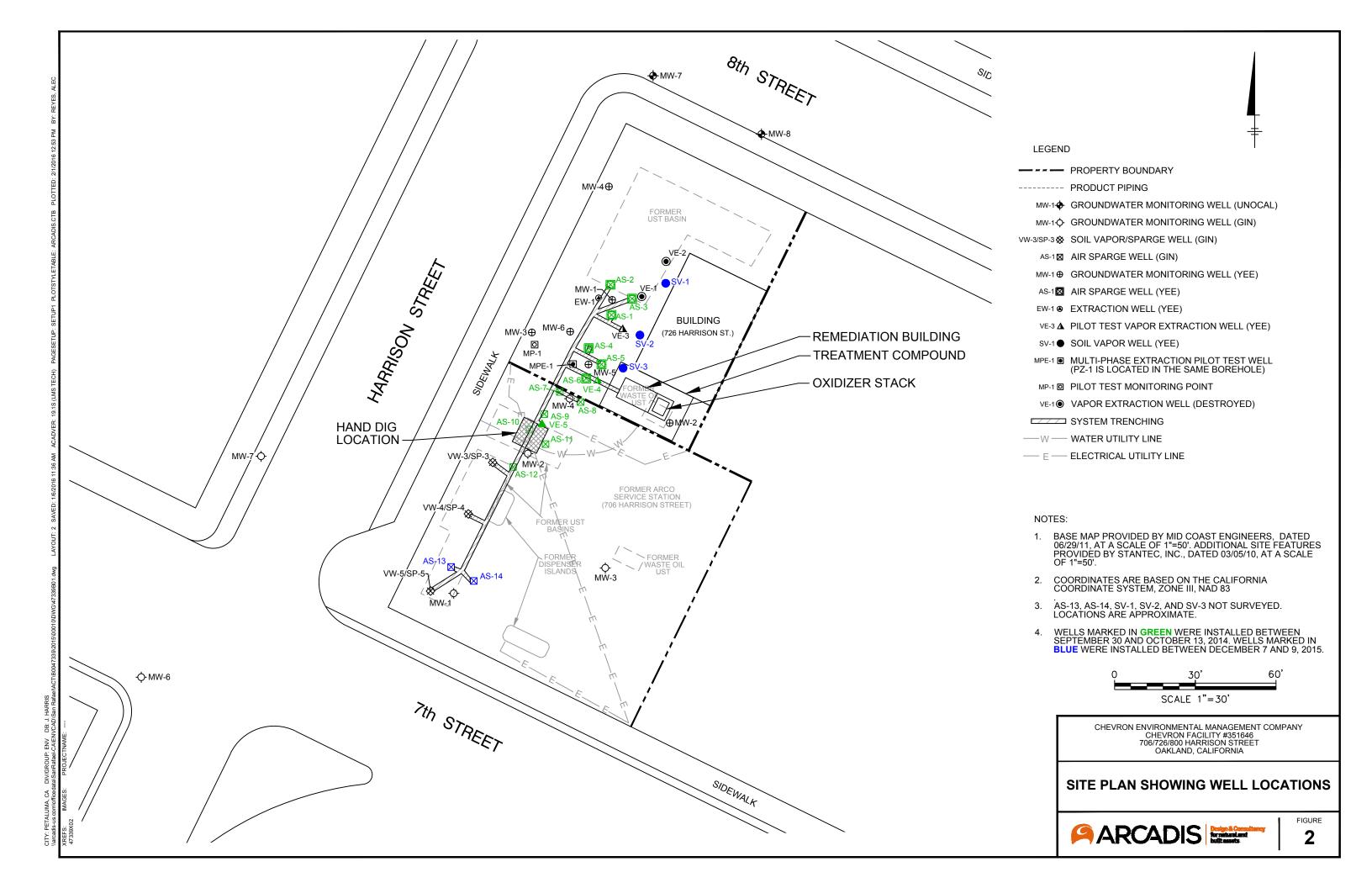
TPPH = total purgeable petroleum hydrocarbons
USEPA = United States Environmental Protection Agency

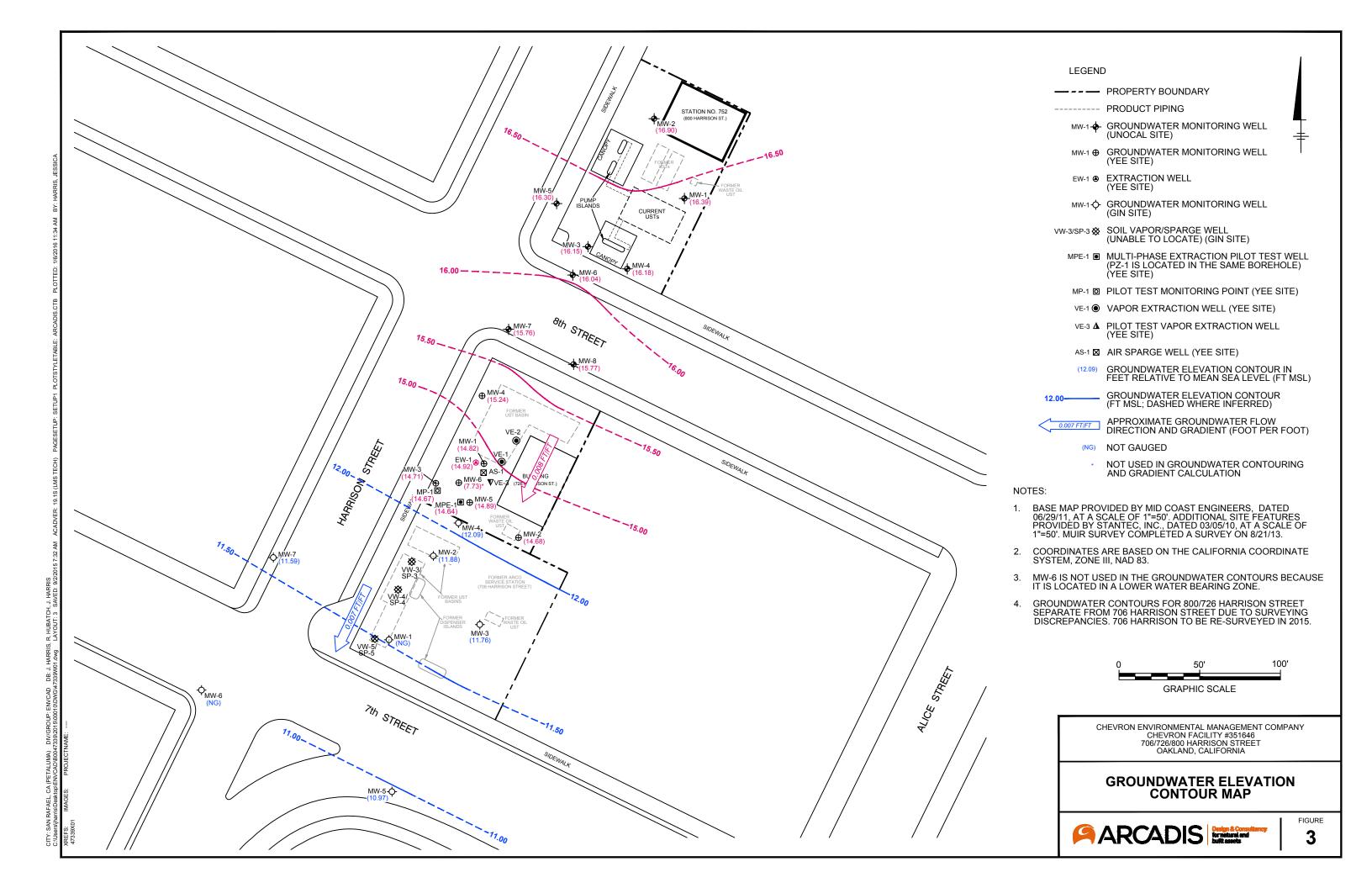
<25 = Not detected above practical quantitation limit (PQL).

830 = above PQL

Above the Commercial/Industrial Soils ESL (potable). **9.3** <25 Above the Commercial/Industrial Soils ESL (no potable). PQL exceeds the ESL.

A01 = Detection and quantitation limits are raised due to sample dilution.


S01 = Sample result is not within the quantitation range of the method.


S08 = The internal standard on the sample was not within the control limits.

Z1 = Sample was analyzed three times and internal standards were low all three times.

FIGURES

DIV/GROUP: ENV DB: J. HARRIS NENVCAD\B0047339\2012\00002\1Q12\DWG\47339N01.dwg PETALUMA, CA ers\iharris\Desktor

APPENDIX A

ACPWA Permits

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/19/2015 By jamesy

Permit Numbers: W2015-1029
Permits Valid from 12/07/2015 to 12/11/2015

Phone: 925-296-7830

City of Project Site:Oakland

Application Id: 1447713561414

Site Location: 706 Harrison St, Oakland, CA

Project Start Date: 12/07/2015 Completion Date:12/11/2015
Assigned Inspector: Contact Lindsay Furuyama at (925) 956-2311 or Lfuruyama@groundzonees.com

Applicant: Arcadis - Christine Meyer

2999 Oak Rd #300, Walnut Creek, CA 94597

Property Owner: Bo Gin

342 Lester Ave, Oakland, CA 94606

Client: CEMC Nicole Arceneaux Phone: 925-790-6912

6101 Bollinger Canyon Rd #5119, San Ramon, CA 94583

Total Due: \$265.00

Phone: --

Receipt Number: WR2015-0560 Total Amount Paid: \$265.00
Payer Name: Christine Meyer Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Remediation Well Construction-Injection - 2 Wells

Driller: Cascade - Lic #: 938110 - Method: other Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2015- 1029	11/19/2015	03/06/2016	AS13	8.00 in.	2.00 in.	28.00 ft	40.00 ft
W2015- 1029	11/19/2015	03/06/2016	AS14	8.00 in.	2.00 in.	28.00 ft	40.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting,

once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 7. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 10. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.
- 11. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/19/2015 By jamesy

Permits Valid from 12/07/2015 to 12/11/2015

1 0111110 1 4114 11 0111 12/01/2010 10 12/1

Application Id: 1447714672906 City of Project Site:Oakland

Site Location: 726 Harrison St, Oakland, CA

Project Start Date: 12/07/2015 **Completion Date:**12/11/2015 **Assigned Inspector:** Contact Lindsay Furuyama at (925) 956-2311 or Lfuruyama@groundzonees.com

Applicant: Arcadis - Christine Meyer Phone: 925-296-7830

2999 Oak Rd #300, Walnut Creek, CA 94597

Property Owner: Kin Chan Peter Yee Phone: --

1000 San Antonio Ave, Alameda, CA 94501

Client: CEMC Nicole Arceneaux Phone: 925-790-6912

Client: CEMC Nicole Arceneaux
6101 Bollinger Canyon Rd #5119, San Ramon, CA 94583

Total Due: \$265.00

Receipt Number: WR2015-0561 Total Amount Paid: \$265.00

Payer Name : Arcadis Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Well Construction-Vapor monitoring well-Vapor monitoring well - 3 Wells

Driller: Cascade - Lic #: 938110 - Method: Hand Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2015- 1030	11/19/2015	03/06/2016	SV1	3.25 in.	0.25 in.	4.00 ft	5.00 ft
W2015- 1030	11/19/2015	03/06/2016	SV2	3.25 in.	0.25 in.	4.00 ft	5.00 ft
W2015- 1030	11/19/2015	03/06/2016	SV3	3.25 in.	0.25 in.	4.00 ft	5.00 ft

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 8. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.
- 12. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

Boring Logs

Date Start/Finish: 10/07/2014 Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5 inch

Rig Type: Marl DP 2.5
Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 feet bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-2

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
- - - - - -	5	AS-2-5.0	Air knife	9.0		Fine to medium sand with some silt, chunks of gravel average ~1" in diameter, some larger rocks, moist, no odor, no staining, dark yellowish brown (10YR4/4) Fine to medium sand with some silt, well sorted, moist, strong petroleum like odor, staining present, very dark greenish gray (GLEY1 3/1), some mottling with black colored areas (GLEY1 2.5/) Fine to medium sand with some silt, well sorted, moist, no odor, no staining, yellowish brown (10YR5/6)	
- -10	- - -10 -	AS-2-10.0	4/4	10.3		Becomes rocky, difficult to air knife Medium sand with little silt, moist, odor present, dark greenish gray (GLEY1 4/2)	
- - - 15	- - -15 -	AS-2-15.0	4/4	18.6 34 27.6 45.7 45.6 33.4		Medium sand with silt, slightly plastic, moist, odor present, some staining, very dark greenish gray (GLEY1 3/1)	A^A/ Grout A^A/ AAA Grout A^A/ AAA Grout A^A/ AAA AAAA AAAAAAAAAAAAAAAAAAAAAAAAA
-	-	AS-2-18.5	1.5/2	115.0 33.9		Medium sand with little silt, loose, low cohesiveness, moist, odor present, greenish gray (GLEY1 5/1)	

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 1 of 2

Date Start/Finish: 10/07/2014 **Drilling Company:** Gregg Drilling Driller's Name: Brandon Moses **Drilling Method:** Hollow Stem Auger **Auger Size:** 8.5 inch

Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing: NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 feet bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-2

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_	AS-2-24.0	2/2	2000 3000.0 366.5 71.8 5.7		Wet, color change to darker greenish gray (GLEY 1 3/1) Grades to very moist at 25.5 to 26 ft bgs. Becomes wet again at 26.5 ft bgs.	
- 30	-	AS-2-28.0	2/2	3.7 4.0 2.5 1.9		Dries to moist at 27 ft bgs. Begins to mottle with unstained sand, moist, no odor, dark yellowish brown	- O.010 Sch 80 PVC screen #3 sand Sch 80 PVC, sump PVC Endcap

Remarks: Lots of slough in top 2 feet of most (?); difficult to (?) with DP (sand is very hard) starting around 10 feet bgs. At 28 feet, having difficulty w/ slough. At 30 feet, too difficult to proceed through slough.

Date Start/Finish: 10/01/2014 & 10/13/2014

Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 35 feet bgs Surface Elevation: NA

Descriptions By: Adam Kinnard & Rob Moniz

Well/Boring ID: AS-3

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
Ü	Ü					Asphalt	— Cold Patch
	-		Air			Fine to Medium sand with some silt, large rocks and chunks of gravel (1"-9" in diameter), mostly no odor, no staining Large (8" diameter) rock encountered at 3 ft bgs.	Native Sand
—5 -	-5 -	AS-3-5.5	knife	9.0		Fine to Medium sand with some silt, well sorted, moist, strong petroleum like odor and staining (from 5-6 ft bgs), XXX (GLEY 1 3/1) with some black mottling.	
- 10	-10 -	AS-3-10.0	1/2	10.3		Trace red brick fragments, strong odor at 8.5 ft bgs.	
-	-	A3-3-10.0		25.2		No more brick fragments at 11 ft bgs.	
-	-		4/5	18.6 34 27.6	14444444 4444444	Color change to GLEY 1 4/1 at 12.5 ft bgs.	^^^ ^^ ^^ ^^ ^^
-	-			45.7	宝宝:		Sch 80 PVC riser
1.5				45.6			
- 15 -	-	AS-3-15.0	4.5.45	53.4 53.0 115.0			
-	-	AS-3-17.5		33.9		Slight increase in fines, color change to dark olive brown at 18.5 ft bgs.	
	20		1	•	···	Remarks:	
	Infra	A A I A Structure	RCA e, enviro	DIS	facilitie		

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 1 of 2

Date Start/Finish: 10/01/2014 & 10/13/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 35 feet bgs Surface Elevation: NA

Descriptions By: Adam Kinnard & Rob Moniz

Well/Boring ID: AS-3

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-		4/5	2000 3000.0 366.5		Becomes wet at 21 ft bgs. Trace clay with little silt, moist at 21.4 ft bgs Color change to GLEY 1 4/1 at 23 ft bgs.	^^^ ^^^ ^^^ ^^^ ^^^ ^^ ^^ ^^ ^^ ^^ ^^ ^
- 25 - -	-25 -	AS-3-25.0	4/5	71.8 5.7 3.7		Becomes wet, trace fines, color change to GLEY 1 4/1 at 25 ft bgs. Little fines, weak odor, mottled GLEY and light reddish brown at 26 ft bgs. Color change to dark reddish brown with orange and red staining at 27.5 ft bgs.	Bentonite chips
_ 30 _	-30 -	AS-3-30.0		2.5 1.9		Loose, wet, trace fines, no odor at 30 ft bgs.	#3 sand Sch 80 PVC, sump
- - - 35	- - -35 -	AS-3-33.5	4.5/5			Clayey sand with trace silt, very fine to medium sand, moist, medium density, low plasticity, yellowish brown	PVC Endcap Slough Backfill

Remarks:

Project Number:B0047339 Data File:

Template: Date:12/12/2014

Page: 2 of 2

Date Start/Finish: 10/01/2014 & 10/06/2014

Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP2.5
Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 35 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-4

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DЕРТН	ELEVATION Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction						
- - - - -	- - - - -5 - AS-4-5.0	Air knife	0.1		Asphalt Fill material, coarse sand size with chunks of concrete (up to 2" in diameter), dry, 7.5YR7/6 Fine to medium sand with little silt, well sorted, moist, no odor, mostly strong brown (7.5YR 4/0) with dark gray areas (7.5YR 4/1) Fine to medium sand with little silt, well sorted, loose, moist, no odor, strong brown (7.5YR 5/8) slight color variation (small grayish and orange streaks)							
-10 -1	AS-4-10.0	4/4	2.8 3.0 1.3									
- - - - 15 -1	- - - AS-4-15.0	4/4	1.0 6.6 6.8 18.5		Fine to medium sand with little silt, well sorted, loose, moist, odor, dark greenish gray (GLEY1 4/1) some mottling with strong brown Fine to medium sand with little silt, well sorted, loose, moist, strong odor, intense blue/gray (GLEY1 4/2)	Grout AAA AAA AAA AAA AAA AAA AAA						
-	-	3/3	36.4 45.1 300.4 3407.0		Medium sand with some fine sand, well sorted, moist, strong odor, intense blue/gray (GLEY1 4/2)							
	Remarks:											

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Date Start/Finish: 10/01/2014 & 10/06/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP2.5

Sampling Method: Continuous core

Northing: NA Easting: NA Casing Elevation: NA

Borehole Depth: 35 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-4

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
_	_		3/3	609.2 3097.0			^^/ ^^/ ^^/ ^^/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	-	AS-4-22.0	2.5/3	3133.0 2994.0				
_	1			3231.0		Some color mottling present, bluish gray, black, and dark brown	^^^; ^^^;	
- 25 -	-25 -	-		5958.0		Free water encountered at 25 ft bgs.	^^^/ ^^^/	^^^^ ^^^
		AS-4-27.0	2/3	457.2 1247.0		Dries to moist only at 27 ft bgs.	<u> </u>	=======================================
_	-			360.0		Free water encountered at 28 ft bgs.	 	Bentonite Chips
	-		2/3	135.1		Dries to moist soil only at 29 ft bgs.		
- 30 -	-30 —					Medium sand with some fine sand, very slight odor, dark grayish brown (10YR4/2)		
		\S-4-31.0		15.3 677.4		Medium sand with some fine sand, very moist, strong odor, mottled color, primarily bluish gray with some darkish gray brown (10YR4/2)		0.010 Sch 80 PVC screen #2/16 Sand
_	-		1.5/3	264.3				
-	4	AS-4-33.5		114.7		Medium sand with some fine sand, very moist, little odor, mottled color, primarily dark brown (7.5YR3/4)		Sch 80 PVC, sump
- 35 -	-35 -							PVC endcap

Remarks:

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 2 of 2

Date Start/Finish: 10/01/2014-10/03/2014 Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 35 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-5

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEPTH ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	AS-5-5.0	Air knife	0		Asphalt Fill material, coarse sand size with chunks of concrete (up to 2" in diameter), dry, strong brown (7.5YR7/6) Fine to medium sand with little silt, well sorted, moist, no odor, strong brown (7.5YR 4/6) with dark gray areas (7.5YR 4/1) Fine to medium sand with little silt, well sorted, loose, very moist, no odor, slightly mottled color: mostly strong brown (7.5YR 5/8) with some gray and orange veins	
-10 -10	AS-5-10.0	4/4	0.7		Fine to medium sand with little silt, well sorted, loose, slightly moist, no odor, slightly mottled color: mostly strong brown (7.5YR 5/8) with some gray and orange veins	
- - -15 -15	 AS-5-15.0	4/4	5.5 0.9 260 3.1		Medium sand, well sorted, slightly moist, slight odor, dark grayish brown (7.5YR4/2) Medium sand, well sorted, slightly moist, slight odor, greenish gray (GLEY2 5/2)	Grout
	AS-5-17.5	3/3	53.1 35.1		Fine sand with little silt, well sorted, moist, no odor, light gray to strong brown (7.5YR4/6) Medium sand, well sorted, slightly moist, very strong odor, black staining on surface of soil, greenish gray (GLEY2 5/2)	
		e, enviro	nment,	facilitie	Remarks:	Page: 1 of 2

Data File:

Date:12/12/2014

Date Start/Finish: 10/01/2014-10/03/2014 Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 35 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-5

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	_		3/3	12.5 2957 3508		Medium sand, well sorted, slightly moist, very strong odor, black staining, greenish gray (GLEY2 5/2) mottled with strong brown soil and black streaks in impacted soil Medium sand, well sorted, slightly moist, very strong odor, black staining on surface of soil, greenish gray (GLEY2 5/2)	
- - 25	- -25 -	AS-5-25.0	3/3	2907 115.5 1164 1209		Fine sand with some silt, with chunks of 1" diameter rock, dry to slightly moist, very strong odor, dark brown Medium sand, well sorted, slightly moist, very strong odor, black staining on surface of soil, greenish gray (GLEY2 5/2)	
- 30	-30 -	AS-5-27.0	1/3	72.4 34.2 3281.5		At 26.5 ft bgs, free water for about 5" then grades back to slightly moist At 28.5 ft bgs, medium sand, very well sorted, free water until 31' then grades back to moist,	Bentonite Chips
-	-		3/3	192.7 222.4 8.9		At 31.5 ft bgs, free water until 32.5' then grades to moist, color begins to become mottled: strong brown with some dark gray/black greens, with little to no bluish/greenish gray	2", 0.010 Sch 80 PVC screen #2/16 Sand Sch 80 PVC, sump
35	- 35 - -	AS-5-34.0		18.6		Clayey silt with fine sand, slightly moist, medium plasticity, medium stiffness, no odor, brown (10YR5/3) some black streaking on surface but not interior	PVC endcap

Remarks:

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 2 of 2

Date Start/Finish: 09/30/2014-10/02/2014 Drilling Company: Gregg Drilling Driller's Name: Brandon Moses

Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 36 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-6

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEРТН	ELEVATION Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Stratigraphic Description	Well/Boring Construction
-	-5 - AS-6-5.0	Air knife	0.0	Asphalt Fill material, coarse sand size with chunks of concrete (1" in diamete Fine sand with silt, loose, dry, mottled dark brown with light brown (1) Pulled glass bottle out of fill Layer of red brick 4 " thick in fill at 4 ft bgs. Fine sand with silt, loose, moist, slight mottled dark brown with light b 10YR3/1), no debris.	0YR5/6, 10YR3/1) AAA AAA AAA AAA AAA AAA AAA
- 10 -	- - - AS-6-10.0	4/4	0.5	Fine to medium sand with silt, very loose, no odor, mottled orange ar and 10YR4/2)	and gray colors (7.5YR5/8
- 15 -	- - - AS-6-15.0	4/4	1.1	Some black streaking, no odor Medium sand with little fines, very well sorted, moist, no odor, no moi	ttling, dark grayish brown
	_	3/3	0.6	Fine to medium sand with silt, very loose, no odor, mottled orange ar and 10YR4/2) Medium sand with small pieces (2cm) of asphalt looking material, slig with black Medium to fine sand, very well sorted, moist, slight odor, no mottling, (GLEY1 4/2)	ght odor, strong brown

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 1 of 2

Date Start/Finish: 09/30/2014-10/02/2014 Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses

Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 36 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-6

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
- 20	-20 -	AS-6-20.0	3/3	9.2 8.8		Fine to medium sand with some silt, very well sorted, moist, no odor, mottled strong brown and gray Medium sand, very well sorted, loose, moist, strong hydrocarbon like odor, no mottling, very dark greenish gray	
	-	AS-6-22.0	3/3	500 1893		At 22 ft bgs becomes very moist. At 23 ft bgs becomes wet. At 24 ft bgs becomes moist again	
25	-25 -	AS-6-25.0	3/3	520.7		At 25.5 ft bgs free water encountered At 27 ft bgs becomes moist again	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
30	-30 -		1/2	136.1		At 28 ft bgs free water encountered, mostly in the liners; little recovery in this area	
	-		2/2	3.2 44.9		At 31 ft bgs becomes very moist. Sand is very dense (inferred due to difficulty to proceed with direct push, can only collect 2-3 ft. in liners) Medium sand, moist, less odor, mottled greenish gray and strong brown color, mostly	0.010 Sch 80 PVC screen #2/16 Sand
	-		2/2	68.6		greenish gray At 33 ft bgs, becomes softer (easier to push through)	Sch 80 PVC, sump
35	-35 —		2/2	2.4		Clayey silt with little fine sand, no odor, gray (5YR 5/7); from the shoe of the liner. At 36 ft bgs (from the shoe) silty clay with some fine sand, no odor, dry, low to no plasticity,	PVC endcap
	-	AS-6-36.0		1.9		stiff, gray (5Y5/2)	
		AF astructure,				Remarks: Due to slough falling down into hole, boring logs m formation materials at the depths indicated. The sl silt, but the rest of the liner was the same sand as	hoe at 34' indicated we had a clayey

Project Number:B0047339 Data File:

Template:

Date:12/12/2014

Page: 2 of 2

Date Start/Finish: 10/08/2014-10/09/2014 Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-7

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEPTH FI EVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-	Air knife			Asphalt Fine sand with some silt, no odor, dark yellowish brown color (10YR4/6) Asphalt No recovery from 0.5" to 5'	
5 <i>-5</i>	5 - AS-7-5.0		0.0		Fine sand with silt, moist, gray (7.5YR0/1) strong brown mottling Fine sand with silt, moist, strong brown	
10 -10	7 AS-7-10.0	3/3	0.7		Fine sand with little silt, moist, no odor, mottled color, strong brown (7.5YR 5/8) and light olive gray (5YR 5/2)	
	-	4/4	0.3 0.5 0.7		Fine sand with little silt, moist, no odor, light olive gray (5YR 5/2) with some strong brown (7.5YR 5/8) mottling	AAA Grout AAA AAA AAA AAA AAA AAA AAA AAA AAA A
15 <i>-15</i>	5 AS-7-15.0	2/2	2.6		Fine sand with more silt (slightly plastic), moist, no odor, light olive gray (5YR 5/2) with some strong brown (7.5YR 5/8) mottling About 2" of asphalt w/ styrofoam Fine sand with little silt, moist, odor, dark greenish gray (GLEY1 4/2) Remarks: By about 30' mostly slough in the sample lines so	

Project Number:B0047339 Data File:

Template: Date:12/12/2014

Page: 1 of 2

Date Start/Finish: 10/08/2014-10/09/2014
Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses
Drilling Method: Hollow Stem Auger

Auger Size: 8.5" Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing: NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs **Surface Elevation:** NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-7

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

рертн	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	-		2/2	5.4 12.9	12.9					
- 20	-20 -	3/3		11.1 4.2		Fine sand with little silt, moist, odor, greenish gray (GLEY1 5/1)				
-	-	AS-7-21.0		175.4 85.4		Fine sand with little silt, very moist, strong odor, dark greenish gray (GLEY1 4/2) Fine sand with little silt, very moist, strong odor, dark greenish gray (GLEY1 4/2) mottled with strong brown soil (7.5YR)				
-	-		3/3	25.1		Fine sand with little silt, very moist, odor, greenish gray (GLEY1 5/1)				
— 25	-25 —		7.1	72.0 7.1		Fine sand with little silt, very moist, odor, dark greenish gray (GLEY1 4/2) At 25 to 26 ft bgs, free water encountered in liners	Bentonite Chips			
-	-	AS-7-27.0		71.9		At 26 ft bgs, dries to moist soil				
-	-		1/3	1/3					2", 0.010 Sch 80 PVC screen	
- 30	-30 -		2/2	4.6		Fine sand with little silt, moist, little to no odor, staining goes away, olive color (5YR 5/3)	#2/16 Sand			
-	-	AS-7-32.0		5.1			2', Sch 80 PVC riser, sump			

Remarks: By about 30' mostly slough in the sample lines so it becomes difficult to differentiate native soil from slough.

Date Start/Finish: 10/08/2014 & 10/09/2014

Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-8

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	_		Air knife	0.6		Asphalt Fine sand with some silt, dry to moist, no odor, dark yellowish brown color (10YR4/6) Asphalt No recovery	
5	-5 - -	AS-8-5.0		0.0		Very fine to fine sand with silt, low plasticity, no odor, strong brown fine sand (7.5YR5/8), sand with silt (gray 7.5YR6/1) Fine to medium sand with silt, low plasticity, no odor, color mottling continues	
10 -	-10 -	AS-8-10.0	3/3	0.1		Fine sand with little silt, moist, no odor, yellowish brown (10YR5/6) Fine sand with little silt, moist, no odor, color begins to mottle: yellowish brown (10YR5/6) and olive gray (5YR5/2)	
	-		4/4	0.2 1.5 0.2			^^
15 -	-15 -	AS-8-15.0		0.2		Fine sand, some medium sand, moist, no odor, olive gray (5YR5/2) Fine sand with little silt and trace clay, no odor, olive brown (7.5YR4/4) Fine sand with no clay, slightly moist, no odor, olive (5YR4/3)	- \^\^\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		2 AF	2/2	0.3		Remarks: Abundant slough in borehole, which resulted in at being slough at the top (usually very wet/saturated liner.	least half of the sample in the liner the half of the sample in the liner the hase of the

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 1 of 2

Date Start/Finish: 10/08/2014 & 10/09/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-8

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-		2/2	0.5		Fine sand with no clay, slightly moist, odor, olive (5YR4/3) with greenish gray staining (GLEY1 5/1)	
20 	-20 -	AS-8-20.0	3/3	0.5 0.6 30.2		Fine sand with no clay, very moist, odor, staining, dark greenish gray (GLEY1 4/1)	
_	-		2/2	7.0 16.9			
- - 25	-25 -		2/2	43.0 33.6		Fine sand with no clay, very moist, odor, staining, greenish gray (GLEY1 5/1) At 24 ft bgs wet soil Fine sand with no clay, very moist, odor, staining, dark greenish gray (GLEY1 4/1)	\(\lambda \) \(
-	-	AS-8-26.0	2/2	19.5		Soil grades to moist by 26 ft bgs. Fine sand with no clay, very moist, odor, staining, greenish gray (GLEY1 5/1)	
-	-		1/1	0.7		Fine sand with no clay, moist, odor, no staining, stained sand begins mixing with olive gray sand (5YR4/5). By 29 ft bgs, no stained soils.	2", 0.010 Sch 80 PVC screen
30	-30 -	AS-8-30.0	2/2	0.4			#2/16 Sand #2/16 Sand 2", Sch 80 PVC riser, sump
-	-			0.6			PVC endcap

Project Number:B0047339 Data File:

Infrastructure, environment, facilities

Template:

Date:12/15/2014

Page: 2 of 2

Date Start/Finish: 10/08/2014 & 10/13/2014
Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses
Drilling Method: Hollow Stem Auger
Auger Size: 8.5"

Rig Type: Marl DP 2.5
Sampling Method: Continuous core

Northing: NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Rob Moniz

Well/Boring ID: AS-9

Client: Chevron Environmental Management Company

Location: 706 Harrison Street

DEPTH	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	AS-9-5.5	Air knife	0.1		Asphalt Fine sand with some silt, moist, no odor, mottling, mostly brown (10YR4/3) with some strong brown (7.5YR5/8)	Cold Patch Native Sand
- 10 -10 -	AS-9-10.0	2/2	0 0		Occasional chunks and laminations of asphalt, trace plastic	
 		2/5	1.0	######################################	Encountered ~2" of asphalt Fine sand with trace fines, faint weathered hydrocarbon like odor, trace fines, olive brown No Recovery	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
- 15 -15 -	-	3.5/5	1.0 47 1450		Fine sand with some silt, moist. Fine sand with trace fines, strong odor, GLEY1 4/1	
					Remarks:	
	Al A	e, enviro	nment,	facilitie		Page: 1 of 2

Number:B0047339 Data File:

Date:12/15/2014

Date Start/Finish: 10/08/2014 & 10/13/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Rob Moniz

Well/Boring ID: AS-9

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

=				_	-				
DЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
				2670	:::::				
_ 20 -	-20 -	AS-9-20.0		2020 2100 1450		No Recovery Fine sand with trace fines, strong odor, GLEY1 4/1			
Ī	_			895					
-	_		5/5	790					
				611		No clay, trace silt, olive brown			
2.5	25					No day, trace sit, dive brown			
- 25	-25 -	AS-9-25.0		90		Moist/wet, loose	Bentonite chips		
-	_			31			Bentonite chips		
			E /E	14					
-	_		5/5	9					
- 30	-30 -	AS-9-30.0		7			2", 0.010 Sch 80 PVC screen #3 sand		
	_			31		Wet at 30 ft bgs			
-	-		5/5	14			2", Sch 80 PVC, sump		
+	-			9	·····	Clayey fine sand, little silt, dense, moist, low plasticity, yellowish brown	PVC endcap		
		AS-9-33.5				ciayoy iino sariu, iittie siit, uerise, moist, iow piasticity, yellowish diown	/\/\/\/\/ /\/\/\/\/		
+	-			2	-7-	Fine sandy clay, hard, moist, medium plasticity	Slough Backfill		
					-\-		· / / / / / / / / / / / / / / / / / / /		
35	-35 -			3		Clayey fine sand, little silt, dense, moist, low plasticity, yellowish brown	/`/`/`/`/		

Remarks:

Project Number:B0047339 Data File:

Template: Date:12/15/2014

Page: 2 of 2

Date Start/Finish: 10/08/2014-10/10/2014 Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses **Drilling Method:** Hollow Stem Auger **Auger Size:** 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs. Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-10

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEPTH	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction												
-5 - <u>-</u> 5	5 AS-10-5.0	Air knife	0.0		Asphalt Fine sand with little silt, brown (10YR4/3) Fine sand with little silt, dark yellowish brown (10YR5/6) Fine sand with little silt, yellowish brown (10YR5/8) mottled with strong brown (7.5YR5/8)													
10 -10	AS-10-10.0	0/2	33.4 0.9 1.5		No Recovery Fine sand with little silt, moist, no odor, yellowish brown (10YR5/6)													
	-	4/5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	0.9	0.9	0.9	1.5	1.5	0.9		Fine sand with little silt, moist, slight odor, yellowish brown (10YR5/6) mottled with gray (10YR5/1) Fine sand with more silt, moist, slight odor, yellowish brown (10YR5/6) mottled with gray (10YR5/1)
15 -15	AS-10-15.C	4/5	4.2 5.1 25.7 2.7		Fine sand with more silt, moist, slight odor, mostly gray (10YR5/1) mottled with yellowish brown (10YR5/6) Fine sand with more silt, moist, slight odor, dark greenish gray (GLEY1 4/1)													
	Al Al				Remarks:													

Project Number:B0047339 Data File:

Date:12/15/2014

Date Start/Finish: 10/08/2014-10/10/2014 Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs. Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-10

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEPTH	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
- - 20 -20	_ AS-10-20.0		68.3 31.3 617.0		Fine sand with trace silt, moist, odor, dark greenish gray				
		5/5	1880 1800 1918		Fine sand with trace silt, moist, odor, very dark greenish gray (GLEY1 3/1) Fine sand with trace silt, moist, odor, dark greenish gray (GLEY 1 5/1)				
- 25 -25	AS-10-26.5	2.5/2.5	100.7 21.5 10.4 7.4		Fine sand with trace silt, moist, odor, very dark greenish gray (GLEY1 3/1) Fine sand with trace silt, very moist, odor, dark greenish gray (GLEY1 3/1)	A A			
-	- - -	2.5/2.5	5.9 9.8		Fine sand with trace silt, very moist, little/no odor, olive gray (5YR4/2) Fine sand with trace silt, free water in liner, strong odor, dark olive gray Fine sand with trace silt, free water in liner, little/no odor, brown (10YR4/3)	2", 0.010 Sch 80 PVC screen			
- 30 <i>-30</i>	AS-10-30.0	0/3	19.2		Fine sand with trace silt (most likely all slough), very moist, little/no odor, brown (10YR4/3)	#2/16 Sand #2/16 Sand 2*, Sch 80 PVC riser, sump			
						PVC endcap			

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 2 of 2

Date Start/Finish: 10/01/2014 & 10/08/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger

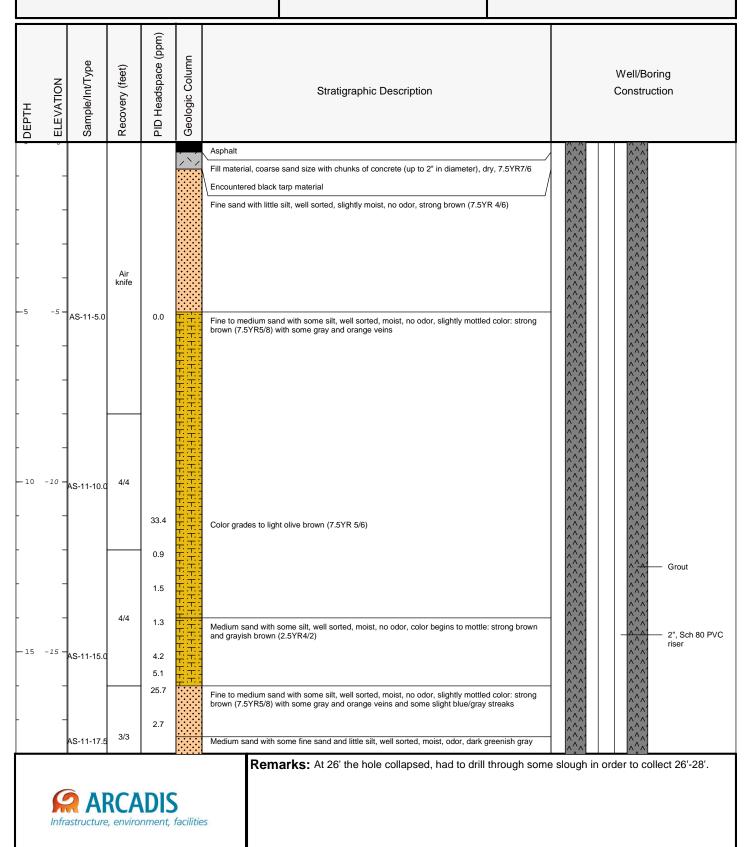
Auger Size: 8.5" Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 34 ft bgs Surface Elevation: NA


Descriptions By: Adam Kinnard

Well/Boring ID: AS-10

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 1 of 2

Date Start/Finish: 10/01/2014 & 10/08/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger

Auger Size: 8.5" Rig Type: Marl DP 2.5

Sampling Method: Continuous core

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 34 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-10

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-20 -		0	68.3 31.3 617.0 1880		(GLEY1 4/1) No recovery	
- - 25		AS-11-26.0	2.5/3	1918 100.7 21.5 10.4 7.4		Medium sand with some fine sand and no silt, very well sorted, moist, strong odor, greenish gray (GLEY1 5/1) Becomes wet at 24 ft bgs Grades to moist at 25.5 ft bgs Free water in sleeve at 26 ft bgs	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
- 30	-30 -	AS-11-30.0	2/2	9.8		Grades to moist at 27.5 ft bgs Wet from 28 to 29.5 ft bgs. Moist from 29.5 to 30 ft bgs.	2", 0.010 Sch 80 PVC screen #2/16 Sand
-							2", Sch 80 PVC riser, sump PVC endcap

Remarks: At 26' the hole collapsed, had to drill through some slough in order to collect 26'-28'.

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 2 of 2

Date Start/Finish: 10/08/2014 & 10/10/2014

Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-12

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DЕРТН	ELEVATION Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- - - - AS-10-5	Air knife	0.0		Fill material of fine sand with little silt, brown (10YR4/3) Fine sand with little silt, moist, brown (10YR4/3) Small layer of asphalt encountered Fine sand with clay and trace silt, lenses of clayey material within sand, moist, no odor	
- - -10	- - - AS-10-10	3/3	33.4		Fine sand with little silt, moist, no odor, dark yellowish brown with slight gray mottling	
- - - 15	_ _ _ AS-10-15	4/4	1.5 1.3		Fine sand with little silt, moist, odor, yellowish brown with trace mottling of greenish gray and red (2.5YR) Fine sand with little silt, moist, odor, greenish gray	A A A A A A A A A A A A A A A A A A A
-	-	2/2	5.1 25.7 2.7		Fine sand with little silt, moist, odor, olive gray with slight greenish gray hue At 17 ft bgs, about 2" of yellowish brown soil with no staining Remarks:	

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 1 of 2

Date Start/Finish: 10/08/2014 & 10/10/2014

Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing: NA Easting: NA Casing Elevation: NA

Borehole Depth: 33 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: AS-12

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
				68.3			^^^	^^^		
-	-			31.3			^^^	^^/		
- 20	-20 -	AS-10-20.0	3/3	617.0		Fine to medium sand with little silt, very moist/wet, odor		^^^		
-	-			1880			^^^	^^, ^^,		
-	_			1800						
-	-		2/2	1918			^^^, ^^^,			
-	-			100.7				^^1 		
- 25	-25 -		2/2	21.5			 	Bentonite Chips		
}	-			10.4			 			
-	_	AS-10-26.5	2/2	7.4 5.9				1000		
			1/1	9.8		Fine to medium sand with little silt, very moist, very slight odor, grades to an olive gray				
	Ī		1/1			Fine to medium sand with no silt, wet, very slight odor, dark yellowish brown with some olive gray (interval could be slough).		2", 0.010 Sch 80 PVC screen		
- 30	-30 -	AS-10-30.0		19.2	• • • • •			#2/16 Sand		
-	-							2" Sch 80 PVC		
-	-							2", Sch 80 PVC		
-	-							PVC endcap		

Remarks:

Project Number:B0047339 Data File:

Template:

Date:12/15/2014

Page: 2 of 2

Date Start/Finish: 09/30/14 - 10/02/14 Drilling Company: Gregg Drilling Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger

Auger Size: 8.5" Rig Type: Marl DP 2.5

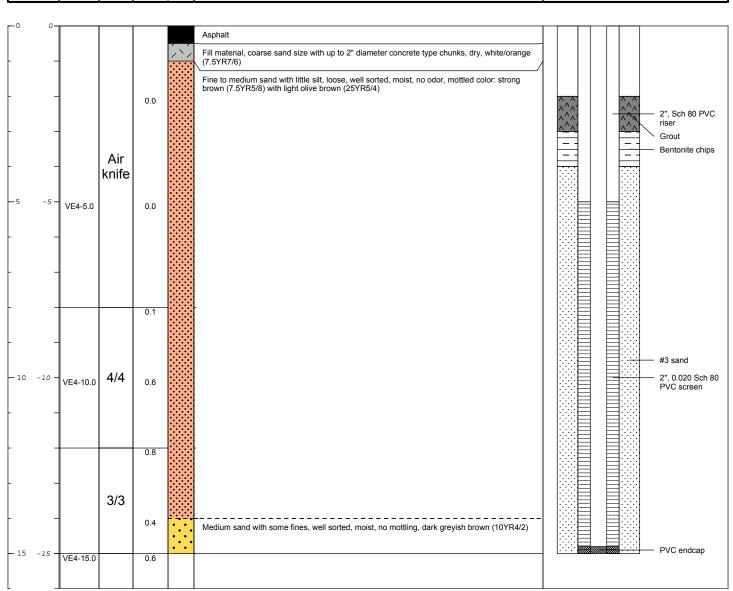
Sampling Method: Continuous core

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 15 ft bgs **Surface Elevation:** NA

Descriptions By: Adam Kinnard


Well/Boring ID: VE-4

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

EPTH EVATIC ample/Ini	Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic Description	Well/Boring Construction
-----------------------------	---	---------------------------	-----------------------------

Remarks:

Project Number:B0047339
Data File:

Template:

Date:12/31/2015 Emily Kuhr

Page: 1 of 1

Date Start/Finish: 10/02/2014 & 10/09/2014

Drilling Company: Gregg Drilling
Driller's Name: Brandon Moses Drilling Method: Hollow Stem Auger Auger Size: 8.5"

Rig Type: Marl DP 2.5 Sampling Method: Continuous core

Northing:NA Easting: NA Casing Elevation: NA

Borehole Depth: 15 ft bgs Surface Elevation: NA

Descriptions By: Adam Kinnard

Well/Boring ID: VE-5

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

DEPTH ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
 -5 -5 -	VE5-5.0	Hand Auger to 8'	0 0 0	HHH	Asphalt Fine sand, well sorted, dry to slightly moist, no odor, dark brown (7.5YR3/3) Silty sand, very fine to fine sand, slightly plastic, no odor, strong brown (7.5YR5/8)					
	VE5-10.0		0 0 1.0 0.6 0.6		Sand with little silt, moist, no odor, mottled color:strong brown and olive (5YR5/4) Sand with little silt, moist, no odor, gray (5YR5/2) Sand with little silt, moist, no odor, strong brown with gray mottling	#3 Sand — #3 Sand — 2", 0.020 Sch 80 PVC Screen				
 - 15 <i>-15</i> -	VE5-15.0		1.2		Remarks:	PVC endcap				

Project Number:B0047339 Data File:

Date:12/15/2014

Date Start/Finish: 12/8-12/9/2015 **Drilling Company:** Cascade Drilling Driller's Name: Joseph Koons Drilling Method: Hollow Stem Auger

Auger Size: 8" Rig Type: CME 75

Sampling Method: Split Spoon (18")

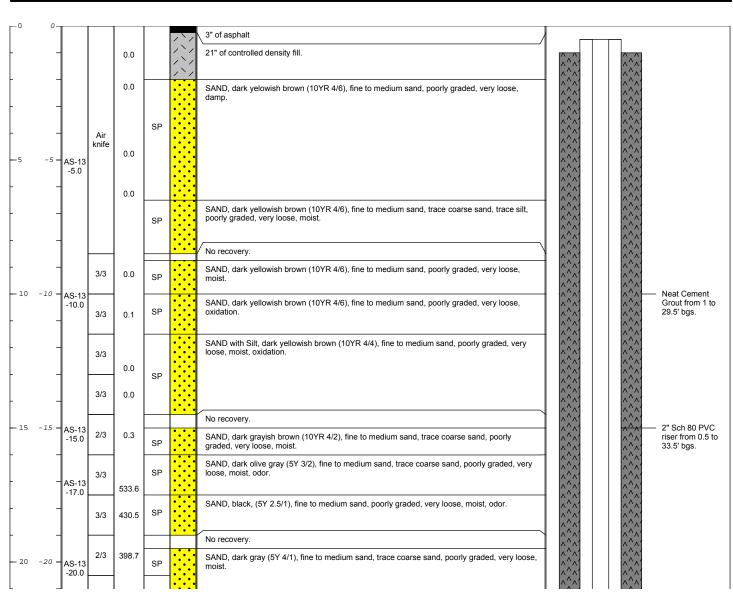
Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 38.5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: AS-13


Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Reviewed By: Katherine Brandt

Well/Boring Sample/Int/Type Sample/Int/Type Sample/Int/Type Construction Stratigraphic Description Construction	EPTH LEVATION	ample/Int/Type ecovery (feet) D Headspace (pp) Stratigraphic Description Stratigraphic Description	
---	------------------	--	--

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

Created by: Carl Edwards

Project Number:B0047339 Data File:

Template:

Date:12/15/2015

Page: 1 of 2

Date Start/Finish: 12/8-12/9/2015 **Drilling Company:** Cascade Drilling Driller's Name: Joseph Koons Drilling Method: Hollow Stem Auger Auger Size: 8"

Rig Type: CME 75

Sampling Method: Split Spoon (18")

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 38.5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: AS-13

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Reviewed By: Katherine Brandt

DEPTH	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	nscs	Geologic Column	Stratigraphic Description	Well/Boring Construction			
]		3/3	3.5	SP		As above, color change to black (5Y 2.5/1) at 22' bgs, wet.				
-		3/3	3.4								
-			8.6	SP	••••	SAND, dark yellowish brown (10YR 4/6), fine to medium sand, trace silt, very loose, moist.					
- 25	-25	AC 12	3/3				SAND, dark olive gray, (5Y 3/2), fine to medium sand, trace coarse sand, poorly graded, very loose, moist.				
-	-25 - -	-25	3/3	0.6	SP		Color change to olive brown (2.5Y 4/4) at 25.5' bgs.				
-	4		1/3				No recovery.				
	-		3/3	0.5	SP		SAND, olive (5Y 4/3), fine to medium sand, trace silt, very loose, moist.				
+	1		3/3				SAND, dark yellowish brown (10YR 4/4), fine to medium sand, trace coarse sand, poorly				
- 30	-30 -	AS-13 -30.0	3/3	1.0			graded, very loose, moist. Color change to dark grayish brown (2.5Y 4/2) at 29.5' bgs.				
	-		3/3	0.4	SP			Hydrated bentonite chips from 29.5 to 32.5' bgs			
				0.3				200			
			3/3	0.2							
ŀ	1							2" 0.010 Sch 80			
- 35	-35 -	AS-13 AS-13	3/3	0.2	SP	/ /	CLAYEY SAND with Silt, pale olive (5Y 6/3), fine sand, loose, poorly graded.	PVC screen from 33.5 to 35.5' bgs			
-	+	-35.5					Bottom of boring at 38.5' bgs. Sample soil continously to 35.5' bgs and overdrill to 38.5' to set 3' sump.	#2/12 Sand from 32.5 to 38.5' bgs			
								2" Sch 80 PVC sump from 35.5 to 38.5' bgs			
								PVC endcap			

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

Date Start/Finish: 12/7-12/8/2015 **Drilling Company:** Cascade Drilling Driller's Name: Joseph Koons Drilling Method: Hollow Stem Auger

Auger Size: 8" Rig Type: CME 75

Sampling Method: Split Spoon (18")

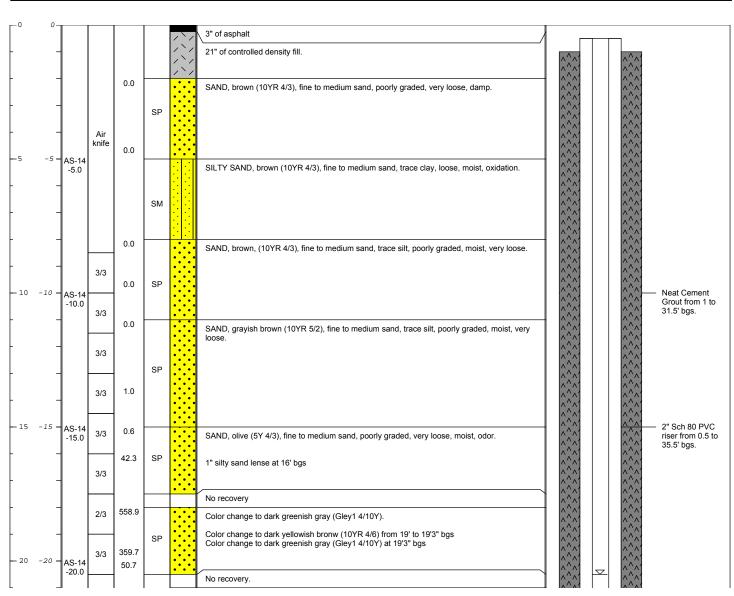
Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 40.5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: AS-14


Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Reviewed By: Katherine Brandt

EPTH LEVATION	Sample/Int/ I ype Recovery (feet) PID Headspace (ppm)	USCS Geologic Column	Stratigraphic Description	Well/Boring Construction
------------------	---	-------------------------	---------------------------	-----------------------------

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

Created by: Carl Edwards

Project Number:B0047339 Data File:

Template:

Date:12/15/2015

Page: 1 of 2

Date Start/Finish: 12/7-12/8/2015 **Drilling Company:** Cascade Drilling **Driller's Name:** Joseph Koons Drilling Method: Hollow Stem Auger Auger Size: 8"

Rig Type: CME 75

Sampling Method: Split Spoon (18")

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 40.5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: AS-14

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Reviewed By: Katherine Brandt

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	nscs	Geologic Column	Stratigraphic Description	Well/Boring Construction		
Г	7	l i	I 0/0	1	İ	• • •		1 [737] [737]		
			2/3	86.5	SP		SAND, very dark greenish gray (Gley1 3/5GY), fine to medium sand, poorly graded, very loose, wet.			
			0.10	9.8		• • •	No recovery.			
-	1		2/3	9.0	SP	 :	SAND, dark greenish gray (GLEY1 4/10Y), fine to medium sand, trace coarse sand, poorly graded, very loose, wet.			
+	4		2/3					•.•.•	No recovery.	
- 25	25		2/3	1.4	SP		As above.			
_ 25	-25 AS-14 -25		4.4			No recovery.				
+	\dashv		2/3	4.4	SP		As above.			
]					No recovery.				
			2/3	0.1	SP		Color change to dark olive gray (5Y 3/2).			
1	1						No recovery.			
-	+		3/4	1.8			SAND, olive brown (2.5Y 4/3), fine to medium sand, trace coarse sand, poorly graded, very loose, wet.			
- 30	-30 -	AS-14		2.4						
	30	-30.0	3/3							
+	1		3/3	18.4						
-	4		0/0		SP	SP				
			3/3	2.0						
	1							Hydrated bentonite chips		
-	4		3/3	1.5				from 31.5 to 34.5' bgs		
35	-35 -	AC 11		5.6		• • • •	SAND, olive gray (5Y 4/2), fine to medium sand, trace coarse sand, poorly graded, very			
	33	-35.0	3/3	13.3			loose, wet.			
-	1				SP			211 0 040 Sab 90		
-	4		3/3 4.1					2" 0.010 Sch 80 PVC screen from 35.5 to 37.5' bgs		
				8.4	SM		SILTY SAND with Clay, loight yellowish brown (2.5Y 6/3), fine to medium sand, very loose,	#2/12 Sand from 34.5 to 40.5' bgs		
			3/3		CL	<mark>. </mark>	wet. SANDY CLAY with Silt, pale olive (5Y 6/3), fine sand, medium plasticity, soft, wet.			
-	1			1.3	- JL		Bottom of boring at 40.5' bgs. Sample soil continously to 39' bgs and overdrill to 40.5' to set 3'	2" Sch 80 PVC sump from 37.5		
- 40	-40 -						sump.	to 40.5' bgs		
					<u> </u>			PVC endcap		

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

Date Start/Finish: 12/09/2015 **Drilling Company:** Cascade Drilling **Driller's Name:** Joseph Koons Drilling Method: Hand Auger Auger Size: 2"

Rig Type: NA

Sampling Method: Continuous using hand auger

Northing:NA Easting: NA

Bottom of boring at 5' bgs.

Casing Elevation: NA

Borehole Depth: 5 feet Surface Elevation: NA

Descriptions By: Sean Maurel

Well/Boring ID: SV-1

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

Reviewed By: Katherine Brandt

DEРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	nscs	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	0		Hand Auger	0.1	SP		4" of asphalt 4" of gravel fill material SAND, dark brown (7.5YR 3/2), fine to medium sand, trace silt, poorly graded, very loose, damp. Color change to dark brown (7.5YR 3/3) at 1.5' bgs. Color change to dark yellowish brown (10YR 3/6) at 3' bgs. SAND, dark yellowish brown (10YR 3/6), fine to medium sand, trace coarse, trace silt, poorly graded, very loose, damp.	4" Flush mount well box Dry benothite granules from 0.5 to 3' bgs 1/4" Teflon tubing Hydrated bentonite granules from 3 to 4' bgs
	s	SV-1		0.1	SP		Color change to dark yellowish brown (10YR 4/6) at 4' bgs.	#2/12 Sand from 4 to 5' bgs

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

1" screen

Date Start/Finish: 12/09/2015 **Drilling Company:** Cascade Drilling Driller's Name: Joseph Koons Drilling Method: Hand Auger

> Hand Auger

> > 0.1

SP

Bottom of boring at 5' bgs.

Auger Size: 2" Rig Type: NA

Sampling Method: Continuous using hand auger

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: SV-2

Client: Chevron Environmental Management

Company

Location: 726 Harrison Street

Reviewed By: Katherine Brandt

DEРТН	ELEVATION Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	nscs	Geologic Column	Stratigraphic Description	Well/Boring Construction
0	0 - SV-2		0.1		/ \ /	4" of asphalt 4" of gravel fill material SAND with Silt, very dark grayish brown (10YR 3/2), fine sand, trace silt, poorly graded, very loose, damp, brick fragments.	4" Flush mount well box Dry benotnite granules from 0.5 to

As above; no brick fragments, color change to dark brown (10YR 3/3) at 3' bgs.

SAND, dark yellowish brown (10YR 4/6), fine sand, trace silt , poorly graded, very loose,

ARCADIS Design & Consult for natural and built assets

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

1/4" Teflon tubing

Hydrated bentonite granules from 3 to 4' bgs #2/12 Sand from 4 to 5' bgs

1" screen

Date Start/Finish: 12/09/2015 **Drilling Company:** Cascade Drilling **Driller's Name:** Joseph Koons Drilling Method: Hand Auger Auger Size: 2"

Rig Type: NA

Sampling Method: Continuous using hand auger

Northing:NA Easting: NA

Casing Elevation: NA

Borehole Depth: 5 feet Surface Elevation: NA

Descriptions By: Carl Edwards

Well/Boring ID: SV-3

Client: Chevron Environmental Management

Company

Location: 706 Harrison Street

Reviewed By: Katherine Brandt

ו דמומ	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	nscs	Geologic Column	Stratigraphic Description	Well/Boring Construction			
Γ	0 —						4" of asphalt	4* Flush mount well			
-	_			0.1		····	4" of gravel fill material	box			
		SV-3		0.0						SAND with Silt, dark brown (10YR 3/3), fine sand, poorly graded, very loose, damp.	Hydrated bentonite
t	_	-2.0	Hand		SP			Calas shaare to ded usllevide brown (40VD 4/4) at 21 has	granules from 3 to 4' bgs		
-	-		Auger	0.1			Color change to dark yellowish brown (10YR 4/4) at 3' bgs.	1/4" Teflon tubing			
								Dry benotnite granules from 0.5 to			
	_	61/ 2		0.1	SP		SAND, dark yellowish brown (10YR 4/6), fine sand, trace silt, poorly graded, very loose, damp.	3' bgs #2/12 Sand from 4 to 5' bgs			
Ļ	5 -5 -	SV-3 -5.0		0.1			<u> </u>	1" screen			
							Bottom of boring at 5' bgs.				
-	_										

Remarks: " = inches ' = feet

bgs = below ground surface NA = not available/applicable

APPENDIX C CDWR Well Completion Reports

*The free	Adobe Re	ader ma	ay be	used to view	and complete	this form.	However,	software m	ust be purcha	sed to compl	ete, save,	and reuse	e a saved f	orm.			
File Origi	nal with [OWR						fornia	, [DWR Use Only – Do Not Fill In						
Page 1		of _	1			W	ell Co	mpleti to Instruction	on Repo	ort		State Well Number/Site Number					
Owner's	Well Nun	nber <u>Ā</u>	\S-1	3			No.	e02939	14			Sta			ite Number		
Date Wo	rk Began	12/07	7/20	15	_ Date		ded <u>12/9</u>	/2015				Latitude			Longitude		
				da County 29			9/15			— L			APN/T	RS/Otl	her		
Cimilary	umber <u></u>				gic Log	ate <u>-1.7.14</u>						Well	Owner				
Orie	entation	⊙ Ve	rtica		izontal	OAngle	Specif	fy	Name Chevron Environmental Management Company (CEMC)								
Drilling	Method H	ollow St	em A	Auger		Drilling Fl	luid		Mailing Address 6101 Bollinger Canyon Rd #5119								
Depth Feet	from Su	rface eet		Desc	Des cribe material.	cription arain size.	color, etc								<u>Zip 94583</u>		
				E ATTACI								Well I	Location		·		
									Address	_s 706 Ha	rison St	reet					
										akland							
	_								Latitude	·			N Longitu	de _	Deq. Min. Sec.		
									Datum	Deg.	Min. Dec Lat	Sec.		Dec	Deg. Min. Sec. Long.		
	+														el <u>26</u>		
															ion		
											ion Ske				Activity		
									(Sketch	must be drawn	by hand af North	ter form is	printed.)	⊙ N	lew Well		
										/ //		///	, 7		Nodification/Repair Deepen		
										///	STAEL	MW EW-			Other		
										HARISON	. //*	Destroy Describe procedures and materials under "GEOLOGIC LOG"					
										HAM	30 Eur	Planned Uses					
										HAND DIG LOCATION -	1	S-10 AS-9 AS VE-5 AS-11			Vater Supply		
									st	/,	/W-3/SP-3	MW-2 AS-12	ıst		Domestic □Public Irrigation □Industrial		
									West		VW4/SP4	FORMER UST BASINS	ш		Cathodic Protection		
										vw-s/s	AS ₇ 13 AS-14	FORMER DISPENSER ISLANDS		_	Dewatering		
						×°.	\rightarrow	\rightarrow	-	(MW-J	1	\		leat Exchange		
	-						-	\smile	-				,		njection Nonitoring		
					_	~		7							Remediation		
						7	-				7th STREET			© s	Sparging		
											South Vapor Extra				est Well		
							\forall	_ \	rivers, etc. and attach a map. Use additional paper if necessary.								
							-			ter Level and Yield of Completed Well							
					_			\							et below surface)		
	-				-		·	<i>-</i>	Depth to	epth to first water (Feet below surface) epth to Static //ater Level (Feet) Date Measured							
Total D	epth of B	oring		38	_		Feet		vvater L	.evei ed Yield *		— (Fee (GPI	m) Date	weasi Evne	urea		
	epth of C		الممال		/ .										down(Feet)		
Total D	epth of C	ompiei	iea v	Well 30		10	_ Feet		*May no	ot be repres	entative	of a wel	l's long te	rm yie	ld.		
		D			Cas	ings	NAV-11	0 (:::		01:10:	D. H		Annula	ar Ma	terial		
Sur	n from face	Boreho Diame	ter	Туре	Mate	rial -		Outside Diameter	Screen Type	Slot Size if Any	Sur	h from face	Fill	Í	Description		
0	5 Feet	(Inche	(Inches)				(Inches)	(Inches)		(Inches)	Peet 0	to Feet 29	Cement		Portland Type II-V		
33	35	8		Screen	PVC Sch. 80			2	Milled Slots	0.010	29	32	Bentonite		Cetco Med. Chips		
35	38	8		Blank	PVC Sch. 80)		2			32	38	Filter Pac	k	#2/12 Sand		
			-	,_													
Attachments										Certificat	on Stat	ement			1		
☐ Geologic Log I, the undersigned, certify that													o the best	of my	knowledge and belief		
✓ Well Construction Diagram Name Person Firm or Corp.										•					-		
	Geophys	_		l Angler							2"		<u>C</u>		7:		
☐ Soil/Water Chemical Analyses ☐ Other S								Address			City		Sta	ite	Zip		
	itional inform						C-57 Lice	ensed Water V	Vater Well Contractor Date Signed C-57 License Number					cense Number			

EXPLORATORY BORING LOG B0047339.2015.00008 12- 7 -15 project no: date: boring number: Chevron - 351646 client: 706/726 Harrison Street, Oakland, CA A5-13 ation: CAE /5M ogged by: driller/helper: page 1 of # Z field location of boring drilling method: HOLLEN STEM AUBER hole diameter: casing diameter: well completion data: datum: ground elevation: headspace: gastech/PID/ blows per foot or pressure ir psi FID ppm soil group symbol (USCS) water level sample number sample depth boring/well construction time of concrete 0.0 2 SP 0.0 3 A5-13-5 20 955 6 0.0 5P/SM 5md, dark rellowish brown (104R 4/67) fine to medium and trace course send, trace 5:1+1 poorly graded, maist, very losse. 7 8 SAND, DARK YELLOWISH BROWN (107R 4/6) 26 0,0 FINE TO MEDEUM SAND POURLY GRADED, USEN LOUSE 45-13-10 35 10 NO RECOVERY (3") (1525) 14 SAND, DARK YELLOWESH BROWN (1047 /416) FRUE TO 10 Oil MEDIUM SAND, DOORLY GRADED, VERY LOSSE, MOTTLED 10 OXTDATTON 10 12 SAND WISELT, DAME YELLOWSH BROWN (10 YR 4/4) 0.0 11 15 13 PENE TO MEDITUM SAND, PORLY GRADED, VERY LOSSE 8 AS ABOVE : MOTTLED OXTDATTON 14 0.0 14 42 15-15-15 15 WWW SAND, DARK GRAYISH BROWN (1647 4/Z) FOVE TO 30 0.3 (5") MEDERM , TRATE LOARSE SAND , POURLY GRADED , MUDST, VERY LOSSE 56 NO RECOVERY 17") SAND, DARK OLEVE GRAT (54 3/2), FOUE TO MEDIUM 15 15-13-17-5 24 17 4/11 TRACE COARSE SAND POORLY GRAPED MUTST VERY LOOSE 533.6 35 wion / o Don 30 SAND, BLACK (54 2.5/1), FEVE TO MEDENM 18 430.5 40 POURLY GRADED, MURST, VERY LOUSE (6") 50 COLOR/ OACR 19 NO RECOURSE (6") 398,7 25-13-20 40 20 ///// SAND, DARK GRAY (54 4/1), FONE TO MEDITURN

USCS lithology; Munsell color; sorting; grain size; lith. %s; modifiers; consistency; moisture.

(0730)

EXPLORATORY BORING LOG

	project no: client: :ation:	Chevr		1646	5		akla	nd. CA	date: 12- 9 -15	boring number: A5 - 13
	ogged by: driller/helper:	SEAM	MA	*REC	. (sm)		,		ZZ page ≴ of \$
	field location		A VOTBE	Unit					drilling method: hole diameter: casing diameter: well completion data:	
	ground elevat					dat	um:			
	boring/wel	llam/bip/		blows per	pressure in	depth	sample	soil group symbol (USCS)	time date	
POPIZANO	7 1/ /	/	(6"	50	XD	×.			TRACE COARSE SAND, POURLY GORDED, M	SFST, VERY LOOPE
TOE I		3.5		6 27 40	X	2 2			AS ABOVE WATER COUTACTED C ZZ FT 365	
		3.4		Z7 40	M				AS ABOVE, GRADES TO BLACK (51 2	2.5/1)
		8.6		40 4 16	$\langle $	\rightarrow \tau \cdot	4	59/5M	(23.5"- Z4") SAND DARN YELLOWSH BRU FONE TO MEDIUM SAND TOME SOUT, M	NN (161R 416)
		0.6	45-13-25	35	$\frac{\lambda}{\lambda}$) 2	5 1000		(24-25') SAUD, DARK GLOVE GRAF (54) MEDITUM SAUD MALE GARSE, DURL	3(2) FINE TO
/				46 50	X	7	6		(15-25.5°) AS ABOUT, GLOR CHANGE Y	
		6.5	(6')570			8		MEDRAM SAND TRACE SELT MEDST ,	1 413) FRUE TO UENT LOSE
				37	\bigvee	1	9	SP/SM SP	(Z8-Z9') AS ABOVE (Z8-Z8-5') SAND, DARK YELLOWSH BROA	M (1044 414) FOUE
ETCO NEDERIM CHEPS		1.0	45-8-30 (1815)	54 10 15	M) 3	o William		AS ABOUTE COMES CHANGE TO DASK G (2,57 412)	
	The second secon			23 7		<u> </u>			AS ABOUT	
		0.4		9	X	X 3			A= A0. K	
#2/12 5ANS		6.3 0.Z		7 12	X	3			AS ABOVE	
A SAUS)		. 0.2	15-13-35 (2840)	3		7		50/5M	(34-35') AS ABOVE (35-35.5') LLAYET SAND W/ SOLT, O	
			A5-13-35.1 (US-15)	45	1		6		BETTOM OF BUSING AT 35.5%	
						3	7		38.5' TO SET 3' SHIME FROM	
	*					3				
										·

USCS lithology; Munsell color; sorting; grain size; lith. %s; modifiers; consistency; moisture.

ARCADIS

Well Construction Log (Unconsolidated)

		*	351646	
	П	↑ ft ↓ LAND SURFACE	Project B0047334.2015 Well A5-1	3
-	$\neg l$	1 LAND SURFACE	Town/City Dakland	_
	A Y		County Alameda State CA	
		drilled hole inch diameter	Permit No. W2015 - 1029	-
	Y Y	drilled fible	Land-Surface Elevation and Datum:	
			feet Surveyed	
	Y Y	Well casing,	Estimated	
	- Y] Y	inch diameter,	Installation Date(s) 12/4/15	-
		Sch 40 PV	Drilling Method Hollow Stem Ange Drilling Contractor Cascade Scilliv	1
	/ / 0	Grout New Lemmat	D. 11	_
	ИИ	-	Drilling Contractor Lascade Drilliv	19
	Иν	Type I-I	Drilling Fluid	12
	4	29 ft _ cetco	*	88
		Medium Chips	Development Technique(s) and Date(s)	
		Bentonite slurry		
		32 ft* pellets		
		, and the second		
		33 ft*	Fluid Loss During Drillinggallons	
			Water Removed During Development gallons	
			Static Depth to Waterfeet below M.P.	
		Well Screen. inch diameter	Pumping Depth to Waterfeet below M.P.	
		PYL , O.DIOslot	Pumping Duration hours	
			Yieldgpm Date	
		✓ Gravel Pack		
		1/ —	Specific Capacitygpm/ft	
		Sand Pack \$2/12 5 and		
		Formation Collaspse	Well Purpose Air Sparge Well	
			1 7	
		35 ft*		
21	#1	3% ft*	Remarks	
Sump		1 30 "		
- 1	1118	Measuring Point is		
	YM.	Top of Well Casing Unless Otherwise Noted.		
		* Depth Below Land Surface		
		•	Prepared by (a) Edwards	

*The free	Adobe Re	ader may	ıy be ι	used to view	and complete	this form.	However,	software m	ust be purchas	sed to compl	ete, save,	and reuse	e a saved fo	orm.	
File Original with DWR State of Calif															
Page 1 of 1 Well Completion Refer to Instruction							on Repo	On Report Pamphlet State Well Number/Site Number							
Owner's Well Number AS-14 No. e02939								17				te Well Nun		ite Number	
Date Wo	rk Began	12/07	⁷ /201	15	_ Date		ded <u>12/8</u>	/2015				Latitude			Longitude
					Public Wo		9/15						APN/T		ner
Cimilary	umber <u></u>				gic Log	<u> </u>						Well	Owner		
Orie	entation	⊙ Ver	rtical		izontal	OAngle	Specif	·y	Name (Chevron E	nvironn			ent C	Company (CEMC)
Drilling	Method H	ollow Ste	em Au	uger		Drilling Fl	luid			Address 6					
Depth Feet	from Su	rface et		Desc	Des cribe material	cription grain size.	color, etc								Zip <u>94583</u>
					HED GEOI							Well I	ocation		·
									Address	706 Hai	rison St	reet			
									City Oa	<u>akland</u>			Cou	nty A	lameda
									Latitude	·			N Longitue	de _	Deq. Min. Sec.
															Deg. Min. Sec. Long.
	+														el <u>26</u>
															ion
											ion Ske				Activity
									(Sketch	must be drawr	by hand af North	ter form is	printed.)	⊙ N	ew Well
										//	4 /	//-	4	ON	lodification/Repair Deepen
										1/ 5		EV			Other
										HAPPISON ST.	A A	W-3⊕ MW-5⊕ MP-1 MP-1			Destroy Describe procedures and materials under "GEOLOGIC LOG"
										HAPI	SORT	AS-7			Planned Uses
	+									HAND DIG LOCATION	AS-1	0 VE-5 VE-5 AS-11			/ater Supply
							-	$\overline{}$	- I to		VW-3/SP-3	MW-2 AS-12	st		Domestic Public
									West		VW-4/SP-4	FORMER UST BASINS	Еа		Irrigation Industrial athodic Protection
										\\\\.5\\\.5\\\.5\\\.5\\\.5\\\.5\\\.5\\	AS ₇ 13	FORMER DISPENSER ISLANDS			ewatering
						, Ø.,	_			Z	MW-3	4		Он	eat Exchange
	_							$\overline{}$			1				njection
	-					\smile						E			lonitoring emediation
						-	-	-		7	th STREET			o s	parging
						$\overline{}$		-	1	\	South			ОТ	est Well
							~	_ `	Illustrate or d	escribe distance nd attach a map. ccurate and com	of well from ro Use additiona	ads, buildings I paper if nec	s, fences, essary.		apor Extraction other
							-	-		_evel and		f Com	oleted W	'ell	
	+								Depth to	first water					et below surface)
					7		V.	<i>)</i>	Depth to			(Foo	t) Date I	Maası	ured
Total D	epth of B	oring		40.5			Feet		Estimate	ed Yield *		— (FCC (GPI	d) Date 1d) Test T	ype	
			od W	/ell 40.5	-		— Feet								down(Feet)
Total B		ompieu	.ca vv	1010	_ \		_ 1 001		*May no	t be repres	entative	of a wel			
Donti	n from	Boreho	olo		Cas	ings	Wall	Outside	Screen	Slot Size	Dont	n from	Annula	ır Ma	terial
Sur	face to Feet	Diamet (Inches	ter	Type	Mate	rial 1		Diameter (Inches)	Туре	if Any (Inches)	Sur	face to Feet	Fill		Description
0	36	8	В	Blank	PVC Sch. 80)	,	2			0	32	Cement		Portland Type II-V
36	38	8	_	Screen	PVC Sch. 80			2	Milled Slots	0.010	32	35	Bentonite	ı	Cetco Med. Chips
38	41	8	Е	Blank	PVC Sch. 80	,		2	-		35	41	Filter Pack	K	#2/12 Sand
		-													
		Attacl	hme	ents					(Certificati	on Stat	ement			
	Geologic	Log						l, certify th					the best	of my	knowledge and belief
	Well Con			agram		Name _		irm or Corpo	ration						
	Geophys Soil/Wate	_		Analyses		l ——		Address	City State Zip						
	Other					Signed _			or Well Contractor						
Attach add	Attach additional information, if it exists. C-57 Licensed Water We							Vell Contractor Date Signed C-57 License Number							

EXPLORATORY BORING LOG project no: B0047339.2015.00008 12- 7 -15 boring number: client: Chevron - 351646 ation: 706/726 Harrison Street, Oakland, CA A5-14 ogged by: driller/helper: page 1 of 1 Hollow Stem Anger field location of boring: drilling method: hole diameter: casing diameter: well completion data: See Well Const. Log ground elevation: datum: headspace: gastech/PID/ FID ppm blows per foot or pressure in psi soil group symbol (USCS) sample number water level boring/well sample depth construction time date 3" concrete 21" CDF 0.0 Sand, bown (10 YR 4/5), fine to medium Sond, poorly graded, dumpyren loose. SP AS-14-5 0.0 Silty sond, brown (10 YR43), fine to Medrum and, trace day, moist, loose, oxidation. SM 0,0 Sond, brown (10 kr 43) fine to medium sond, trace silt, footly graded, moist, very loose. 42 AS-14-10 43 0.0 23 Sand, graysh brown (10 YR 52), fine to medium soud, trace coarse sind, poorly graded, moist, veg loose 0:0 13 14 5P 1.0 30 AS-14-15-36 40 0.6 Sand, poorly graded, very loose, most, ador.
I'm sity sand lense at 16 bgs. (6') 50 42.3 22 32 17 18 558.9 As above; durk greenish gray (Gley 1/104).
18'2" -19' 3" Sond, durk Jellowish brown (1042 46) 23 (21) 50 uscs lithology; Munsell color; sorting; grain size; lith. %s; modifiers; consistency; moisture.

	1	ring/well struction	headspace: gastech/PID/FI	sample number	blows per foot or pressure in psi	depth	sample soil group symbol (USCS)	project number: B0047339.2015.00008 boring number: A5-I4 page 2 of
2 Ship	\times		50.7 86.5 9.8 1.4	(6') \$ (6') \$ (6') \$ A 14-) 53 (5'') \$ 100'F 928	50)	21 22 23 24 25 26 27		No recovery Sund, very looky reenish give (bley 1 3/50x), fine to medium sould, prorty graded, wet, very 100se No recovery Sand, Jark greenish gray (bley 1 1/104), fine to med sund, true course sound, poorty graded, wet; very 100se. No recovery As above; color drunge to durk olivegray (54 3/2)
They stand			18.4	(6") 5 2 (1) 5 A5-14-30 42-6 1005 (3") 5 (3") 5 (3") 5 (3") 5 (3") 5 (3") 5	5000	28 29 30 31 32 33 34 35 36	58	As above.
×			8,4	(1.1)5		38 39 40	SM CL	Silly sand with clay light yellowish brown (2546/3), fine to medium sand wet very loose Sandy clay with 5:1+, pale olide (546/3), time sand, medium plasticity, soft, wet.
						41 42 43 44 45		Bottom of boring at 39'. overdrill to 40.5' to set 3' sump from 37.5'-40.5'bgs.

ARCADIS

Well Construction Log (Unconsolidated)

(2		351646	
	Γ	↑ ft ↓ LAND SURFACE	Project B0047339,2015	Nell A5-14
	\overline{V}	V LAND SURPACE	Town/City Daklo	
	Ŋ		County Alameda 5	State <u>LA</u>
		drilled hole inch diameter	Permit No. <u>W2015 - 10</u>	29
		//	Land-Surface Elevation and Datum:	
			feet	Surveyed
		Well casing,	, , [Estimated
		inch diameter,	Installation Date(s) 12/8/15	
		/ _	Drilling Method Hallow 5	tem Auger
	И.	Backfill	Drilling Method Hallow S	A
		Grout Neat Cement	Drilling Contractor	Dilling
		Type II-I	Drilling Fluid	<u> </u>
		31.5 ft*		
		Type II-V 31.5 # Getro Med chips	Development Technique(s) and Date(s)	
		Bentonite slurry	Development reclinique(s) and Date(s)	
		34.5 ft* pellets		
				1. 1999

		25.5 ft*	Fluid Loss During Drilling	gallons
		3 <u>5.5</u> ft*	Water Removed During Development _	gallons
			Static Depth to Water	feet below M.P.
		Well Screen. inch diameter		
		PVL , o oloslot	Pumping Depth to Water	_ leet below IVI.P.
			Pumping Durationhours	
			Yieldgpm	Date
		✓ Gravel Pack	Specific Capacitygpm/ft	
		Sand Pack 12/12 Sand		
		Formation Collaspse	Well Purpose Air Sprap	1.1011
			Well Purpose Air Spurge	WEII
1		37,5 ft*	Remarks	100 100 100 100 100 100 100 100 100 100
Sump	1	40.5ft*	Remarks	
grance	111			
	4-1-1	Measuring Point is Top of Well Casing		
		Unless Otherwise Noted.		
		* Depth Below Land Surface	/ 1 F A	A
			Prepared by Carl Elli	ards

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

EXPLORATORY BORING LOG

	project no:	B0047 Chevre		15.00008				date: 12- 15 boring number:
1	client: ation:			5V-1				
IÚ	waded by:	38.0	M M					
	driller/helper:	CASCHOE DAPLLENG						page 1 of 1
L.	field location of l		DC/ NOC					drilling method: HAND ANGER
								hole diameter:
								casing diameter: SU PRUSE
							well completion data:	
	ground elevatior				datu	ım:	***	
		headspace: gastech/PID/ FID ppm	0 5	blows per foot or pressure in psi		o)	d = (c	water level
	boring/well	spa ch/l	sample number	vs p ot o sure	depth	sample	soil group symbol (USCS)	
	construction	ead ste	sar	for for ress	å	saı	soil Syr	time
Ĺ		g a		T 0			0)	date (7.5 // 3/z)
-							5P/SM	SAND DARK BROWN, FITTHE TO MEDITUM SAND,
		0.1			1			TRALE STLT, POORLY GRADED, MOTST, WERT LOUSE
			6 . 2			1101		AS ABOVE, LOLDR CHANGE TO DARK BROWN (7578/3/3)
7	The second secon		(1055)		2	Mu		
		0.1	(1050)				5P/5M	AC ACTUAL TO THE PARTY OF THE P
r		Ot 1			3			45 ABOVE, COLOR CHANGE TO DARKING HELLOWISH BROWN
4					1		10	(LOTR 314) (10TR 316) BAND, DARK NELLOWISH BROWN, FINE TO MEDITUM
7					4	-	59	SAND, TRAVE COARSE SAND, DOZIT GRADER, MOIST
4		0.1	SV-1-5		5	11/11	1	VERY LOSE
		0.1	(ites)		3		SP	& AS ABOVE, COLOR CHANGE TO DARK YELLOWISH
	W. OFF N				6			BROWN (1048 4/6)
	"SCREEN							10 m
)				7			1
1	2							
					8			
					9			
			17		10			*
					-			
					11			
					12			
					12			
					13			
					14			
					15			· · · · ·
					16			
					17			
					18			
					19			
- 1	1 1							
	. 11				20			

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

ARCADIS

EXPLORATORY BORING LOG B0047339.2015.00008 project no: 12- 09 -15 date: boring number: client: Chevron - 351646 location: 706/726 Harrison Street, Oakland, CA SV-2 logged by: driller/helper: Cascade Drilling (Joe, Ryan, Carlos) field location of boring: drilling method: page 1 of 1 Hand Auger hole diameter: 1/4" tubing /2" screen langely casing diameter: well completion data: ground elevation: datum: headspace: gastech/PID/ blows per foot or pressure ir psi FID ppm soil group symbol (USCS) sample water level sample depth grandles construction time date Gate
4" of asphast
4" of gravel fill material
5 and with silt, very lark granish brown (104A 3/2),
fine 5 and, poorly graded, very loose, damp, brick 5v-2-2 1125 As above; no brick fragments Color change to dark brown (10 YR 3/2) SP Sand, dark yellowish brown (10 YR 4/6), fine sand, trace 6:1t, peoply graded, very loose, damp 54-2-5 1130 Bottom of boring at 5' bgs. 6 8 9 10 11 12 13 14 15 16 17 18 19 20

USCS lithology; Munsell color; sorting; grain size; lith. %s; modifiers; consistency; moisture.

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

EXPLORATORY BORING LOG B0047339,2015,00008 project no: 12-09 -15 boring number: client: Chevron - 351646 location: 706/726 Harrison Street, Oakland, CA SV-3 logged by: driller/helper: Cascade Drilling (Joe, Ryun, Carlos) field location of boring: page 1 of 1 Hand Auger hole diameter: casing diameter: 14" tubing /2"sureen length well completion data: ground elevation: datum: headspace: gastech/PID/ FID ppm blows per foot or pressure ir psi soil group symbol (USCS) water level sample depth boring/well construction time date 4" of asphast 4" of gravel fill montarial Soud with silt, dark brown (104R 3/3), fine soud, poorly graded, damp, very loase. 0,0 54-3-2 SP 0,1 As above, dark yellowich brown (1049 4/1) fine sand, frace silt, poorly graded, dump, very loose 54-3-5 1030 8 9 10 11 12 13 14 15 16 17

18

19

20

USCS lithology; Munsell color; sorting; grain size; lith. %s; modifiers; consistency; moisture.

APPENDIX D Laboratory Analytical Reports

Date of Report: 12/11/2015

Tamera Rogers

Arcadis

Invoice ID:

2000 Powell Street 7th Floor

Emeryville, CA 94608

Client Project: 351646 0752 **BCL Project:** 1531228 **BCL Work Order:** B221218

Enclosed are the results of analyses for samples received by the laboratory on 12/7/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1531228-01 - AS-13-5-151207	
Volatile Organic Analysis (EPA Method 8260B/5035)	6
1531228-02 - AS-14-5-151207	
Volatile Organic Analysis (EPA Method 8260B/5035)	7
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B/5035)	
Method Blank Analysis	8
Laboratory Control Sample	
Precision and Accuracy	10
Notes	
Notes and Definitions	11

Page 2 of 11 Report ID: 1000427364

Report ID: 1000427364 Page 3 of 11

Chain of Custody and Cooler Receipt Form for 1531228 Page 2 of 2

BC LABORATORIES INC. Submission #: 15-317	AD	T		COOLEF	RECEI	T FORN	1			Page	Of
SHIPPING IN		Hand I	èliver	у 🗆	Ice C	SHIPPIN hest 🂢 her 🗆 (S	G CONT None	AINER Box [LIQUID
Refrigerant: Ice 🕱 Blue	Ice 🗆 🖯	None [Other 🗆	Con	ments:				~	
Custody Seals lce Chest ⊡ ⊒ntact7 Yes □ No 1		ntainers ? Yes □		None	e⊠ Cor	nments:		ji			
All samples received? Yes 🛭 No 🗆	All sa	nples con	tainers	intact?	Yes 🗆 N	0 🛘	Desc	ription(s) ma	atch COC	2? Yes,□	No D
COC Received ☑ YES □ NO	ı	y: <u>0.9</u> rature: (Container:	.√001 .c /		ometer ID:	<i>20</i> 8	Date	/Time 1217	
							LE NUMBER		Allai	yat niit 17.	
SAMPLE CONTAINERS		1	2	3	4	5	6	7	T 8	9	T
)T.PE.UNPRES					<u> </u>	<u> </u>	1 -		†		10
oz/8oz/16oz PE UNPRES											
oz Cr*6	<u> </u>					<u> </u>					
T INORGANIC CHEMICAL METALS		_				<u> </u>					
NORGANIC CHEMICAL METALS 40z / 80z	/16oz					 	 		 		
T CYANIDE						ļ	 		 		
F NITROGEN FORMS F TOTAL SULFIDE						ļ	 		 		
z. NITRATE/NITRITE					*******	 	 		<u> </u>		
TOTAL ORGANIC CARBON			$\neg \uparrow$				 	-		-	
CHEMICAL OXYGEN DEMAND							 		 		
A PHENOLICS											
mi VOA VIAL TRAVEL BLANK								1			
ml VOA VIAL											
EPA 1664											
ODOR											
DIOLOGICAL.											
CTERIOLOGICAL										-	
ml VOA VIAL-504										 	
EPA 508/608/8080										-	
EPA 515.1/8150 EPA 525									·	 	
EPA 525 TRAVEL BLANK			\dashv							 	+
I EPA 547			\dashv							 	1
I EPA 531.1			-							1	1
EPA 548	7										$+\parallel$
EPA 549											
SPA 8015M											
EPA 8270											
16oz/32oz AMBER											1.
160z / 320z JAR											
SLEEVE .											
VIAL			\dashv							 	
STIC BAG										 	\parallel
CAR BAG ROUS IRON			+		+					 	-
ORE	-}	+	_							 	
RT KIT ()919	1	1								 	
	A-71	2/4-7	ע –							 	
AA CANISTER					1					L	1 1.

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/11/2015 14:49

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Client Sample Information Laboratory

1531228-01 **COC Number:**

> **Project Number:** 0752 Sampling Location:

Sampling Point: AS-13-5-151207

Sampled By:

AREC

12/07/2015 22:00 Receive Date: Sampling Date: 12/07/2015 09:55

Sample Depth:

Lab Matrix: Solids Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531228-02 **COC Number:**

> **Project Number:** 0752 Sampling Location:

AS-14-5-151207 Sampling Point:

AREC Sampled By:

Receive Date: 12/07/2015 22:00 12/07/2015 12:00 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1000427364 Page 5 of 11

2000 Powell Street 7th Floor Emeryville, CA 94608

12/11/2015 14:49 Reported:

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531228-01	Client Sampl	e Name:	0752, AS-13-5-1	0752, AS-13-5-151207, 12/7/2015 9:55:00AM						
Constituent		Result	Units	PQL MD	L Method	MB Bias	Lab Quals	Run #			
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1			
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1			
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1			
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1			
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Total Purgeable Petrole Hydrocarbons	um	ND	mg/kg	0.20	Luft-GC/MS	ND		1			
1,2-Dichloroethane-d4 ((Surrogate)	93.2	%	70 - 121 (LCL - UCL) EPA-8260B			1			
Toluene-d8 (Surrogate)		97.3	%	81 - 117 (LCL - UCL) EPA-8260B			1			
4-Bromofluorobenzene	(Surrogate)	96.4	%	74 - 121 (LCL - UCL) EPA-8260B			1			

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/08/15	12/10/15 10:49	ADC	MS-V2	0.960	BYL0786	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 6 of 11 Report ID: 1000427364

2000 Powell Street 7th Floor Emeryville, CA 94608

12/11/2015 14:49 Reported:

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531228-02	Client Sampl	e Name:	0752, AS-14-5-1	51207, 12/7/2015 1	12:00:00PM		
Constituent		Result	Units	PQL MI	DL Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0044	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0044	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0044	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0044	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0044	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0089	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.044	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.89	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Total Purgeable Petroleu Hydrocarbons	m	ND	mg/kg	0.18	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	88.0	%	70 - 121 (LCL - UCI	_) EPA-8260B			1
Toluene-d8 (Surrogate)		96.0	%	81 - 117 (LCL - UCI	_) EPA-8260B			1
4-Bromofluorobenzene (\$	Surrogate)	94.7	%	74 - 121 (LCL - UCI	_) EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/08/15	12/09/15 17:52	ADC	MS-V2	0.888	BYL0786	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 7 of 11 Report ID: 1000427364

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/11/2015 14:49

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYL0786						
Benzene	BYL0786-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BYL0786-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BYL0786-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BYL0786-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Toluene	BYL0786-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BYL0786-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BYL0786-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Ethanol	BYL0786-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BYL0786-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BYL0786-BLK1	89.2	%	70 - 121	I (LCL - UCL)	
Toluene-d8 (Surrogate)	BYL0786-BLK1	94.6	%	81 - 117	7 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYL0786-BLK1	94.1	%	74 - 121	(LCL - UCL)	

Report ID: 1000427364 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 11

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/11/2015 14:49

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Laboratory Control Sample

								Control I	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BYL0786										
Benzene	BYL0786-BS1	LCS	0.11287	0.12500	mg/kg	90.3		70 - 130		
Toluene	BYL0786-BS1	LCS	0.11851	0.12500	mg/kg	94.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYL0786-BS1	LCS	0.045120	0.050000	mg/kg	90.2		70 - 121		
Toluene-d8 (Surrogate)	BYL0786-BS1	LCS	0.047900	0.050000	mg/kg	95.8		81 - 117		
4-Bromofluorobenzene (Surrogate)	BYL0786-BS1	LCS	0.048060	0.050000	mg/kg	96.1		74 - 121		

Report ID: 1000427364 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 11

Arcadis Reported: 12/11/2015 14:49

2000 Powell Street 7th FloorProject:0752Emeryville, CA 94608Project Number:351646Project Manager:Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
Constituent	Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
QC Batch ID: BYL0786	Use	ed client samp	DIE: N								
Benzene	MS	1528561-63	ND	0.10668	0.12500	mg/kg		85.3		70 - 130	
	MSD	1528561-63	ND	0.10592	0.12500	mg/kg	0.7	84.7	20	70 - 130	
Toluene	MS	1528561-63	ND	0.11309	0.12500	mg/kg		90.5		70 - 130	
	MSD	1528561-63	ND	0.12050	0.12500	mg/kg	6.3	96.4	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1528561-63	ND	0.043140	0.050000	mg/kg		86.3		70 - 121	
	MSD	1528561-63	ND	0.042620	0.050000	mg/kg	1.2	85.2		70 - 121	
Toluene-d8 (Surrogate)	MS	1528561-63	ND	0.046490	0.050000	mg/kg		93.0		81 - 117	
	MSD	1528561-63	ND	0.048730	0.050000	mg/kg	4.7	97.5		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1528561-63	ND	0.046890	0.050000	mg/kg		93.8		74 - 121	
	MSD	1528561-63	ND	0.049470	0.050000	mg/kg	5.4	98.9		74 - 121	

Report ID: 1000427364 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 11

Arcadis 12/11/2015 14:49 Reported:

2000 Powell Street 7th Floor Project: 0752 Emeryville, CA 94608 Project Number: 351646 Project Manager: Tamera Rogers

Notes And Definitions

MDL Method Detection Limit ND Analyte Not Detected PQL Practical Quantitation Limit

Report ID: 1000427364

Page 11 of 11

Date of Report: 12/16/2015

Tamera Rogers

Arcadis

2000 Powell Street 7th Floor

Emeryville, CA 94608

Client Project: 351646 0752 **BCL Project:** 1531397 **BCL Work Order:** B221684 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 12/8/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Report ID: 1000428886

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1531397-01 - TB-151208	
Volatile Organic Analysis (EPA Method 8260B)	8
1531397-02 - AS-14-10-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	9
1531397-03 - AS-14-15-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	10
1531397-04 - AS-14-20-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	11
1531397-05 - AS-14-25-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	12
1531397-06 - AS-14-30-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	13
1531397-07 - AS-14-35-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	14
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	
Volatile Organic Analysis (EPA Method 8260B/5035)	
Method Blank Analysis	18
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	24

Report ID: 1000428886

Chain of Custody and Cooler Receipt Form for 1531397 Page 1 of 2 NL - NAPL/Oil SW - Sample Wipe Other: THERMY THEATER PINK - Retained by ARCADIS 40 ml Vial 1 L Amber 250 ml Plast 500 ml Plast Encore 2 oz Glass 4 oz Glass 8 oz Glass Other: BCWB B SE - Sedimer SL - Sludge A - Air Lab Work Order # REMARKS JARY BERN Dans Bogan Firm/Courier. Date/Time: 8-15 ŏ YELLOWS Lab copy PARAMETER ANALYSIS & METHOD 1 1416 Special QA/QC Instructions(*/): ď. CHAIN OF CUSTODY & LABORATORY $Bo6A\nu$ 57/8/21 **ANALYSIS REQUEST FORM** de SARY (SONZA toa) SAPWADYXU A YEAR TO SHANK OF STUDY WHITE - Laboratory returns withrrosults 1-116 X MCT SWANAG MARE Relinquished By × 487 在のある Preservative Filtered (*) # of Containers 12/8/15 VOAT **SE4**心 Tamera, Bogers @arcadis, coa Matrix Ĵ 20 R R 3 , 26H ξ 9196 Grab 7 Not Intact 7 1 7 18:30 Type (Y) 80047339 Distribution: - 152-Comp Cooler Custody Seal (*) Condition/Cooler Temp: 8/15 \$7,0 080 8180 0834 0410 500 831 Time Sample Receipt Collection 88 8 408 Laboratory Information and Receipt ☐ Intact 12 12/8/15 Date 951A CHEUSON # 351646 (attention), CA 5 を用 # STANDARD A5-14-30-151208 - 151208 AS-14-25-151208 REC, A-14-20-151208 6296 540 Ibandero 45-14-15-151208 A5-14-10-151208 JANAMOEC Sample ID TAMBRA ROLLES **LABS** 20730826 CofC AR Form 01.12.2007 TB-151208 Cooler packed with ice (<) pecial Instructions/Comn A ARCADIS SAN 30SE A5-14-35

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 3 of 21

ú

Chain of Custody and Cooler Receipt Form for 1531397 Page 2 of 2

Submission #: 15-31397										·
SHIPPING INFORI Fed Ex UPS Ontrac BC Lab Field Service	□ Ha	and Deliv	· very □	lce	SHIPPIN Chest 🛱 Other 🗆 (\$	IG CON [*] None Specify)_	□ Box			□ NO □
Refrigerant: Ice 🕱 Blue Ice 🗆	No.	ne 🗆	Other	□ Co	mments:					
	Contai Intact? Ye			ne ÅÖ Co	omments:	:	ji			
All samples received? Yes ⊠ No □ A	Ali sample	s contain	ers intact?	Yes 🔯	No 🗆	Des	cription(s) r	natch CO	C? Yes 💋	No 🗆
COC Received . Emi	issivity: (2.97	Contain	er: <u>V 0</u>		nometer IE	: <i>20</i> 8 °c	_ Date	e/Time 12/ lyst Init <u>K</u>	18/15
SAMPLE CONTAINERS .					SAM	PLE NUMBI	RS			
	1-1-	<u> </u>		. 4	5	6			3 5	9 10
QT PE UNPRES 40z/80z/160z PE UNPRES	1			_						
20z Cr*6	1	_								
	1				- 		_			
OT INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80z / 160z	 			-						
PT CYANIDE	†		:						_	
PT NITROGEN FORMS	i	1								
PT TOTAL SULFIDE	i				1	_		_		
2oz. NITRATE / NITRITE			1							
PT TOTAL ORGANIC CARBON		1					1			
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
40ml VOA VIAL TRAVEL BLANK	A									
40ml VOA VIAL										
QT EPA 1664										
PT ODOR			_							
RADIOLOGICAL.		ļ			 					
BACTERIOLOGICAL		-		-			_			
40 ml VOA VIAL-504		 	-	-						
QT EPA 508/608/8080		 	 	 	 	+	+			
QT EPA 515.1/8150 QT EPA 525		 	 	 	- [
QT EPA 525 TRAVEL BLANK		 	1	 	 	-			_	
40ml EPA 547			1	 	 	-		 		
10ml EPA 531.1						1	1	1		
oz EPA 548						1				1
OT EPA 549			·			l,				
OT EPA 8015M										
OT EPA 8270								<u> </u>		
02/160z/320z AMBER .				ļ				<u> </u>		
0Z/160Z/320ZJAR			ļ	ļ	ļ		ļ			
OIL SLEEVE				ļ		ļ	ļ	ļ	-	
CB VIAL						 	ļ	 		
LASTIC BAG EDLAR BAG							ļ		 	
ERROUS IRON									+	$+\parallel$
VCORE							 		 	
MART KIT		100	ARKO	1DCD	ABCD	ARCI	12-in		 	+
MMA CANISTER		ABCD	ADU	AULU	ADLD	Muc	ALL		 	
mments:		1							<u> </u>	

Report ID: 1000428886

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 13:55

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1531397-01 COC Number:

Project Number: 0752 Sampling Location: ---

Sampling Point: Sampled By: **Receive Date:** 12/08/2015 21:45 **Sampling Date:** 12/08/2015 08:00

Sample Depth: --Lab Matrix: Water
Sample Type: Blank Water

Delivery Work Order:

Global ID:

Location ID (FieldPoint): TB

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1531397-02 COC Number: ---

Project Number: 0752 Sampling Location: ---

Sampling Point: AS-14-10-151208

TB-151208

AREC

Sampled By: AREC

Receive Date: 12/08/2015 21:45 **Sampling Date:** 12/08/2015 08:18

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531397-03 COC Number: --

Project Number: 0752 Sampling Location: ---

Sampling Point: AS-14-15-151208

Sampled By: AREC

Receive Date: 12/08/2015 21:45 **Sampling Date:** 12/08/2015 08:39

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000428886

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 13:55

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531397-04 COC Number:

> **Project Number:** 0752 Sampling Location:

Sampling Point: AS-14-20-151208

Sampled By:

AREC

12/08/2015 21:45 Receive Date: Sampling Date: 12/08/2015 09:10

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531397-05 **COC Number:**

> **Project Number:** 0752

Sampling Location:

AS-14-25-151208 Sampling Point:

AREC Sampled By:

12/08/2015 21:45 Receive Date: 12/08/2015 09:28 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531397-06 COC Number:

0752 **Project Number:** Sampling Location:

AS-14-30-151208 Sampling Point:

AREC Sampled By:

Receive Date:

12/08/2015 21:45

12/08/2015 10:05 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000428886

Page 6 of 21

Arcadis Reported: 12/16/2015 13:55

2000 Powell Street 7th Floor Project: 0752 Emeryville, CA 94608 Project Number: 351646 Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531397-07 **COC Number:**

> **Project Number:** 0752 **Sampling Location:**

Sampling Point: AS-14-35-151208

Sampled By: **AREC**

12/08/2015 21:45 Receive Date: Sampling Date: 12/08/2015 11:08

Sample Depth: Lab Matrix: Solids Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-14

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Page 7 of 21 Report ID: 1000428886

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 13:55 Reported:

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1531397-01	Client Sampl	e Name:	0752, TB-15120	8, 12/8/2015 8:00:0	0AM		
Constituent		Result	Units	PQL MI	DL Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	94.4	%	75 - 125 (LCL - UCL	.) EPA-8260B			1
Toluene-d8 (Surrogate)		98.0	%	80 - 120 (LCL - UCL	.) EPA-8260B			1
4-Bromofluorobenzene (Su	ırrogate)	95.3	%	80 - 120 (LCL - UCL	.) EPA-8260B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/09/15	12/09/15 12:52	JMS	MS-V14	1	BYL0692	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 8 of 21 Report ID: 1000428886

 Arcadis
 Reported:
 12/16/2015
 13:55

 2000 Powell Street 7th Floor
 Project:
 0752

Emeryville, CA 94608 Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

531397-02	Client Sampl	e Name:	0752, AS-14-1	0-151	-151208, 12/8/2015 8:18:00AM					
	Result	Units	PQL N	/IDL	Method	MB Bias	Lab Quals	Run #		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.010		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	1.0		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.20		Luft-GC/MS	ND		1		
rogate)	97.2	%	70 - 121 (LCL - UC	CL)	EPA-8260B			1		
	93.3	%	81 - 117 (LCL - UC	CL)	EPA-8260B			1		
rrogate)	96.8	%	74 - 121 (LCL - UC	CL)	EPA-8260B			1		
	rogate)	Result ND	Result Units ND mg/kg ND mg/kg	Result Units PQL M ND mg/kg 0.0050 ND mg/kg 0.20 rogate) 97.2 % 70 - 121 (LCL - Urital CLCL - Urital	Result Units PQL MDL ND mg/kg 0.0050 ND mg/kg 0.20	Result Units PQL MDL Method ND mg/kg 0.0050 EPA-8260B ND mg/kg 0.050 EPA-8260B ND mg/kg 0.050 EPA-8260B ND mg/kg 0.050 EPA-8260B ND mg/kg 0.0050 EPA-8260B	Result Units PQL MDL Method Bias ND mg/kg 0.0050 EPA-8260B ND ND	Result Units PQL MDL Method Bias Dquals ND mg/kg 0.0050 EPA-8260B ND ND mg/kg 0.050 EPA-8260B ND ND mg/kg 0.050 EPA-8260B ND ND mg/kg 0.0050 EPA-8260B ND ND mg/kg 0.0050 EPA-8260B ND ND mg/kg 0.0050 EPA-8260B ND ND		

			Run		QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/09/15	12/10/15 18:23	ADC	MS-V2	0.929	BYL0786	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000428886

12/16/2015 13:55 Reported:

Project: 0752 Project Number: 351646

2000 Powell Street 7th Floor Emeryville, CA 94608 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

1531397-03	Client Sampl	e Name:	0752, AS-14-15	5-1512	08, 12/8/2015	8:39:00AM				
	Result	Units	PQL M	//DL	Method	MB Bias	Lab Quals	Run#		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.010		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.050		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	1.0		EPA-8260B	ND		1		
	ND	mg/kg	0.0050		EPA-8260B	ND		1		
	ND	mg/kg	0.20		Luft-GC/MS	ND		1		
rogate)	91.6	%	70 - 121 (LCL - UC	CL)	EPA-8260B			1		
	96.5	%	81 - 117 (LCL - UC	CL)	EPA-8260B			1		
rrogate)	99.0	%	74 - 121 (LCL - UC	CL)	EPA-8260B			1		
	rogate)	Result	Result Units ND mg/kg ND mg/kg	Result Units PQL N ND mg/kg 0.0050 ND mg/kg 0.20	Result Units PQL MDL ND mg/kg 0.0050 ND mg/kg 0.20 rogate) 91.6 % 70 - 121 (LCL - UCL) 96.5 % 81 - 117 (LCL - UCL)	Result Units PQL MDL Method ND mg/kg 0.0050 EPA-8260B ND mg/kg 0.050 EPA-8260B ND mg/kg 0.050 EPA-8260B ND mg/kg 0.0050 EPA-8260B	Result Units PQL MDL Method Bias ND mg/kg 0.0050 EPA-8260B ND ND mg/kg 0.010 EPA-8260B ND ND mg/kg 0.0050 EPA-8260B ND ND	Result Units PQL MDL Method MB Bias Quals ND mg/kg 0.0050 EPA-8260B ND ND mg/kg 0.0050 EPA-8260B ND <t< td=""></t<>		

		Run					QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/09/15	12/10/15 11:35	ADC	MS-V2	0.935	BYL0786	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000428886

Arcadis 12/16/2015 13:55 Reported: Project: 0752 2000 Powell Street 7th Floor

Emeryville, CA 94608 Project Number: 351646 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531397-04	Client Sampl	e Name:	0752, AS-14-20-	151208, 12/8/2015	9:10:00AM		
Constituent		Result	Units	PQL ME)L Method	MB Bias	Lab Quals	Run#
Benzene		0.40	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		0.30	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		0.45	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		1.0	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petrol Hydrocarbons	eum	23	mg/kg	10	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 ((Surrogate)	85.7	%	70 - 121 (LCL - UCL	.) EPA-8260B			1
1,2-Dichloroethane-d4 ((Surrogate)	84.4	%	70 - 121 (LCL - UCL	.) EPA-8260B			2
Toluene-d8 (Surrogate)	1	94.8	%	81 - 117 (LCL - UCL	.) EPA-8260B			1
Toluene-d8 (Surrogate)		99.2	%	81 - 117 (LCL - UCL	.) EPA-8260B			2
4-Bromofluorobenzene	(Surrogate)	103	%	74 - 121 (LCL - UCL	.) EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	97.9	%	74 - 121 (LCL - UCL	.) EPA-8260B			2

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/09/15	12/09/15 19:00	ADC	MS-V2	0.967	BYL0786	
2	EPA-8260B	12/09/15	12/10/15 12:43	ADC	MS-V2	48.356	BYL0786	

Page 11 of 21 Report ID: 1000428886

Reported: 12/16/2015 13:55

2000 Powell Street 7th Floor Project: 0752
Emeryville, CA 94608 Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531397-05	Client Sampl	e Name:	0752, AS-14-25-1	51208, 12/8/2015	9:28:00AM		
Constituent		Result	Units	PQL MDL	- Method	MB Bias	Lab Quals	Run #
Benzene		0.33	mg/kg	0.0045	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0045	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0045	EPA-8260B	ND		1
Ethylbenzene		0.12	mg/kg	0.0045	EPA-8260B	ND		1
Methyl t-butyl ether		0.10	mg/kg	0.0045	EPA-8260B	ND		1
Toluene		0.15	mg/kg	0.0045	EPA-8260B	ND		1
Total Xylenes		0.40	mg/kg	0.0090	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
t-Butyl alcohol		0.88	mg/kg	0.045	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.90	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
Total Purgeable Petrolo	eum	5.2	mg/kg	4.5	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 ((Surrogate)	88.0	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 ((Surrogate)	76.1	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		96.7	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene	(Surrogate)	100	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	91.0	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	12/09/15	12/09/15 19:22	ADC	MS-V2	0.898	BYL0786
2	EPA-8260B	12/09/15	12/12/15 16:47	ADC	MS-V2	22.442	BYL0786

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 21

12/16/2015 13:55 Reported:

Project: 0752 Project Number: 351646

2000 Powell Street 7th Floor Emeryville, CA 94608 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531397-06	Client Sampl	e Name:	0752, AS-14-30	-151208, 12/8/2015	51208, 12/8/2015 10:05:00AM				
Constituent		Result	Units	PQL MI	DL Method	MB Bias	Lab Quals	Run#		
Benzene		0.13	mg/kg	0.0050	EPA-8260B	ND		1		
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1		
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1		
Ethylbenzene		0.060	mg/kg	0.0050	EPA-8260B	ND		1		
Methyl t-butyl ether		0.024	mg/kg	0.0050	EPA-8260B	ND		1		
Toluene		0.10	mg/kg	0.0050	EPA-8260B	ND		1		
Total Xylenes		0.23	mg/kg	0.010	EPA-8260B	ND		1		
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1		
t-Butyl alcohol		0.31	mg/kg	0.050	EPA-8260B	ND		1		
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1		
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1		
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1		
Total Purgeable Petrole	eum	1.6	mg/kg	0.20	Luft-GC/MS	ND		1		
1,2-Dichloroethane-d4 (Surrogate)	90.0	%	70 - 121 (LCL - UC	L) EPA-8260B			1		
Toluene-d8 (Surrogate)		93.4	%	81 - 117 (LCL - UC	L) EPA-8260B			1		
4-Bromofluorobenzene ((Surrogate)	103	%	74 - 121 (LCL - UC	L) EPA-8260B			1		

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/09/15	12/09/15 19:48	ADC	MS-V2	0.994	BYL0786	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000428886

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 13:55 Reported:

Project: 0752 Project Number: 351646 Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531397-07	Client Sampl	e Name:	0752, AS-14-35-15				
Constituent		Result	Units	PQL MDL	Method	MB Bias	Lab Quals	Run #
Benzene		0.11	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		0.085	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		0.026	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		0.10	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		0.31	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		0.17	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petro	oleum	6.8	mg/kg	5.0	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4	(Surrogate)	87.9	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4	(Surrogate)	77.3	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate	9)	95.1	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate	9)	92.9	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzen	e (Surrogate)	107	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzen	e (Surrogate)	96.5	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	12/09/15	12/09/15 22:26	ADC	MS-V2	1.018	BYL0786
2	EPA-8260B	12/09/15	12/15/15 17:45	ADC	MS-V2	25.458	BYL0786

Page 14 of 21 Report ID: 1000428886

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 13:55

Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYL0692						
Benzene	BYL0692-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BYL0692-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BYL0692-BLK1	ND	ug/L	0.50		
Ethylbenzene	BYL0692-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BYL0692-BLK1	ND	ug/L	0.50		
Toluene	BYL0692-BLK1	ND	ug/L	0.50		
Total Xylenes	BYL0692-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BYL0692-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BYL0692-BLK1	ND	ug/L	10		
Diisopropyl ether	BYL0692-BLK1	ND	ug/L	0.50		
Ethanol	BYL0692-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BYL0692-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BYL0692-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BYL0692-BLK1	96.7	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYL0692-BLK1	97.5	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYL0692-BLK1	94.1	%	80 - 12	0 (LCL - UCL)	

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 15 of 21

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 13:55

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

							Control Limits			
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BYL0692										
Benzene	BYL0692-BS1	LCS	24.355	25.000	ug/L	97.4		70 - 130		
Toluene	BYL0692-BS1	LCS	25.936	25.000	ug/L	104		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYL0692-BS1	LCS	9.4800	10.000	ug/L	94.8		75 - 125		
Toluene-d8 (Surrogate)	BYL0692-BS1	LCS	9.7800	10.000	ug/L	97.8		80 - 120		
4-Bromofluorobenzene (Surrogate)	BYL0692-BS1	LCS	9.7200	10.000	ug/L	97.2		80 - 120		

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 16 of 21

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/16/2015 13:55

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

								Control Limits		
Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
Use	d client samp	le: N								
MS	1531217-10	ND	26.194	25.000	ug/L		105		70 - 130	
MSD	1531217-10	ND	24.982	25.000	ug/L	4.7	99.9	20	70 - 130	
MS	1531217-10	ND	24.901	25.000	ug/L		99.6		70 - 130	
MSD	1531217-10	ND	26.956	25.000	ug/L	7.9	108	20	70 - 130	
MS	1531217-10	ND	9.8000	10.000	ug/L		98.0		75 - 125	
MSD	1531217-10	ND	9.2000	10.000	ug/L	6.3	92.0		75 - 125	
MS	1531217-10	ND	9.6300	10.000	ug/L		96.3		80 - 120	
MSD	1531217-10	ND	9.8300	10.000	ug/L	2.1	98.3		80 - 120	
MS	1531217-10	ND	9.6400	10.000	ug/L		96.4		80 - 120	
MSD	1531217-10	ND	9.3900	10.000	ug/L	2.6	93.9		80 - 120	
	MS MSD MS MSD MS MSD MS MSD MS	Type Sample ID Used client samp MS 1531217-10 MSD 1531217-10 MSD 1531217-10 MS 1531217-10	Type Sample ID Result Used client sample: N MS 1531217-10 ND MSD 1531217-10 ND MSD 1531217-10 ND MSD 1531217-10 ND MS 1531217-10 ND MSD 1531217-10 ND MS 1531217-10 ND MSD 1531217-10 ND MSD 1531217-10 ND MS 1531217-10 ND	Type Sample ID Result Result Used client sample: N MS 1531217-10 ND 26.194 MSD 1531217-10 ND 24.982 MS 1531217-10 ND 24.901 MSD 1531217-10 ND 9.8000 MSD 1531217-10 ND 9.8000 MSD 1531217-10 ND 9.6300 MSD 1531217-10 ND 9.8300 MSD 1531217-10 ND 9.8300 MS 1531217-10 ND 9.6400	Type Sample ID Result Added Used client sample: N MS 1531217-10 ND 26.194 25.000 MSD 1531217-10 ND 24.982 25.000 MS 1531217-10 ND 24.901 25.000 MSD 1531217-10 ND 26.956 25.000 MS 1531217-10 ND 9.8000 10.000 MSD 1531217-10 ND 9.6300 10.000 MS 1531217-10 ND 9.8300 10.000 MS 1531217-10 ND 9.8300 10.000 MS 1531217-10 ND 9.6400 10.000	Type Sample ID Result Added Units Used client sample: N MS 1531217-10 ND 26.194 25.000 ug/L MSD 1531217-10 ND 24.982 25.000 ug/L MS 1531217-10 ND 24.901 25.000 ug/L MSD 1531217-10 ND 26.956 25.000 ug/L MS 1531217-10 ND 9.8000 10.000 ug/L MS 1531217-10 ND 9.6300 10.000 ug/L MSD 1531217-10 ND 9.8300 10.000 ug/L MS 1531217-10 ND 9.8300 10.000 ug/L MS 1531217-10 ND 9.6400 10.000 ug/L	Type Sample ID Result Added Units RPD Use∪ client sample: N MS 1531217-10 ND 26.194 25.000 ug/L 4.7 MSD 1531217-10 ND 24.982 25.000 ug/L 4.7 MS 1531217-10 ND 24.901 25.000 ug/L 7.9 MSD 1531217-10 ND 9.8000 10.000 ug/L 7.9 MS 1531217-10 ND 9.8000 10.000 ug/L 6.3 MS 1531217-10 ND 9.6300 10.000 ug/L 2.1 MS 1531217-10 ND 9.8300 10.000 ug/L 2.1 MS 1531217-10 ND 9.6400 10.000 ug/L 2.1	Type Sample ID Result Result Added Units RPD Recovery Used client sample: N MS 1531217-10 ND 26.194 25.000 ug/L 105 MSD 1531217-10 ND 24.982 25.000 ug/L 4.7 99.9 MS 1531217-10 ND 24.901 25.000 ug/L 99.6 MSD 1531217-10 ND 26.956 25.000 ug/L 7.9 108 MS 1531217-10 ND 9.8000 10.000 ug/L 98.0 MSD 1531217-10 ND 9.6300 10.000 ug/L 6.3 92.0 MS 1531217-10 ND 9.8300 10.000 ug/L 2.1 98.3 MSD 1531217-10 ND 9.8300 10.000 ug/L 2.1 98.3 MS 1531217-10 ND 9.6400 10.000 ug/L 2.1 98.3	Type Sample ID Result Added Units RPD Recovery RPD Use	Type Sample ID Result Added Units RPD Recovery RPD Recovery Use-Client sample: N MS 1531217-10 ND 26.194 25.000 ug/L 105 70 - 130 MSD 1531217-10 ND 24.982 25.000 ug/L 4.7 99.9 20 70 - 130 MS 1531217-10 ND 24.901 25.000 ug/L 99.6 70 - 130 MSD 1531217-10 ND 26.956 25.000 ug/L 7.9 108 20 70 - 130 MS 1531217-10 ND 9.8000 10.000 ug/L 98.0 75 - 125 MS 1531217-10 ND 9.6300 10.000 ug/L 6.3 92.0 75 - 125 MS 1531217-10 ND 9.6300 10.000 ug/L 96.3 80 - 120 MS 1531217-10 ND 9.8300 10.000 ug/L 2.1 98.3 <

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 17 of 21

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/16/2015 13:55

Project: 0752
Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYL0786					·	
Benzene	BYL0786-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BYL0786-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BYL0786-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BYL0786-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Toluene	BYL0786-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BYL0786-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BYL0786-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Ethanol	BYL0786-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BYL0786-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BYL0786-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BYL0786-BLK1	89.2	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BYL0786-BLK1	94.6	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYL0786-BLK1	94.1	%	74 - 121	(LCL - UCL)	

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 18 of 21

Reported: 12/16/2015 13:55

Project: U/52
Project Number: 351646
Project Manager: Tamera Rogers

2000 Powell Street 7th Floor Project: 0752
Emeryville, CA 94608 Project Number: 35164

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Laboratory Control Sample

							Control Limits			
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BYL0786										
Benzene	BYL0786-BS1	LCS	0.11287	0.12500	mg/kg	90.3		70 - 130		
Toluene	BYL0786-BS1	LCS	0.11851	0.12500	mg/kg	94.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYL0786-BS1	LCS	0.045120	0.050000	mg/kg	90.2		70 - 121		
Toluene-d8 (Surrogate)	BYL0786-BS1	LCS	0.047900	0.050000	mg/kg	95.8		81 - 117		
4-Bromofluorobenzene (Surrogate)	BYL0786-BS1	LCS	0.048060	0.050000	mg/kg	96.1		74 - 121		

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 19 of 21

Arcadis Reported: 12/16/2015 13:55

2000 Powell Street 7th Floor Project: 0752
Emeryville, CA 94608 Project Number: 351646
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
QC Batch ID: BYL0786	Use	ed client samp	ole: N								
Benzene	MS	1528561-63	ND	0.10668	0.12500	mg/kg		85.3		70 - 130	
	MSD	1528561-63	ND	0.10592	0.12500	mg/kg	0.7	84.7	20	70 - 130	
Toluene	MS	1528561-63	ND	0.11309	0.12500	mg/kg		90.5		70 - 130	
	MSD	1528561-63	ND	0.12050	0.12500	mg/kg	6.3	96.4	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1528561-63	ND	0.043140	0.050000	mg/kg		86.3		70 - 121	
	MSD	1528561-63	ND	0.042620	0.050000	mg/kg	1.2	85.2		70 - 121	
Toluene-d8 (Surrogate)	MS	1528561-63	ND	0.046490	0.050000	mg/kg		93.0		81 - 117	
	MSD	1528561-63	ND	0.048730	0.050000	mg/kg	4.7	97.5		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1528561-63	ND	0.046890	0.050000	mg/kg		93.8		74 - 121	
	MSD	1528561-63	ND	0.049470	0.050000	mg/kg	5.4	98.9		74 - 121	

Report ID: 1000428886 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 20 of 21

Arcadis Reported: 12/16/2015 13:55

2000 Powell Street 7th Floor Project: 0752 Emeryville, CA 94608 Project Number: 351646 Project Manager: Tamera Rogers

Notes And Definitions

MDL Method Detection Limit ND Analyte Not Detected

Practical Quantitation Limit PQL

A01 Detection and quantitation limits are raised due to sample dilution.

Page 21 of 21 Report ID: 1000428886

Date of Report: 12/16/2015

Kathy Brandt

Arcadis

2000 Powell Street 7th Floor

Emeryville, CA 94608

Client Project: 351646 0752 **BCL Project:** 1531607 **BCL Work Order:** B221697 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 12/9/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1531607-01 - TB-151209	
Volatile Organic Analysis (EPA Method 8260B)	11
1531607-02 - AS-13-20-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	12
1531607-03 - AS-13-25-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	13
1531607-04 - AS-13-30-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	14
1531607-05 - AS-13-35-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	15
1531607-06 - AS-13-35.5-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	16
1531607-07 - AS-13-10-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	17
1531607-08 - AS-13-15-151208	
Volatile Organic Analysis (EPA Method 8260B/5035)	18
1531607-09 - AS-13-17.5-151208	40
Volatile Organic Analysis (EPA Method 8260B/5035)	19
1531607-10 - SV-1-2-151209	20
Volatile Organic Analysis (EPA Method 8260B/5035)	20
Volatile Organic Analysis (EPA Method 8260B/5035)	21
1531607-12 - SV-3-2-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	22
1531607-13 - SV-3-5-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	23
1531607-14 - SV-2-2-151209	20
Volatile Organic Analysis (EPA Method 8260B/5035)	24
1531607-15 - SV-2-5-151209	
Volatile Organic Analysis (EPA Method 8260B/5035)	25
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	26
Laboratory Control Sample	
Precision and Accuracy	
Volatile Organic Analysis (EPA Method 8260B/5035)	20
Method Blank Analysis	29
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	32

Infrastructure, environment, buildings	19261	```	ANAL	YSIS R	EQUE	ANALYSIS REQUEST FORM		Page		15-31607
Contact & Company Name:	Telephone:	76-626	3170	Preservative						Key: Co
TAMBLE SOUTH S	90	1	90000	Filtered (<)					A. H.SO.	1.
GZGG SAN TOWALED ANE,	8	,	*	# of Containers Container					C. HNO.	એ 4 , 10
SAN SUSE CA GS119	E-mail Address: Tomera, Rogers @	@arcadis.com			PARAME	PARAMETER ANALYSIS	IS & METHOD		F. Other:	97.8
nocation (City, State): N a Z=16.46 (CACAN), CA)		9. Zoit		(So	1050 to	534	<u></u>	\	H. Other	
Sampler's Printed Name:		1			(A) C	38 60	\	_	SO - Soil W - Water	ey: SE - Sediment NL - NAPL/Oil SL - Sludge SW - Sample Wipe
Sample ID	Collection Date Time C	e (<)	Matrix	toa)	YO TANK Zerkeri	到		_	T-Tissue REMARKS	A-Air
18-15/209	2380	1	3	×	×				eligenselmine kontroller miljerie (s. 1.) is sen merce (s. 16 m. 16 m. 16 m.). Poles	And the second s
	1 0430 1	7	56	×	×		GAIK BY	200	NOLLOGIE	
-13-25-151209	0.420	7	Se.	×	×			114		
P02131-08-81-	7- 5160	7	5e	×	×	<u> </u>	2	V/	55-81	The state of the s
1		7	50	×	×					
-13-35.5-151209	12/9/K- 0845 -	7	0 0	×	×				ON HOLD	
-13-10-151208	+ 5251 5/8/21	7	<u>\$</u> د	×	×					
802151-51-51-	- 15451 J	~	Ş0	×	×					
-13-17.5-151208	1 218/15 1600 -9	7	90	×	×				ON HOUSE	
50-1-2-151209	1240/15 1055 +(6	7	S	×	×					
802151-2-1-19	lioc	>	S,	×	×					
50-3-2-151209	5201	7	50	K	×					
50-3-5-151209		7	06	×						nemande deservice de service de la constante d
1,02151-5-2-15	12/9/15 1150	14 17	200	(K	(X	Special QA/QC Instructions(*/):	Instructions(*):			
nstructions/Comments:	ninka waka kata kata kata kata kata kata ka									
Laboratory Information and Receipt Cooler Custo	tion and Receipt Cooler Custody Seal (*)	0	Printed Name:	Relinquished By we:	ad By EL	Printed Name:	Received By	Printed Nar	Relinquished By	Printed Name: SACEND
1 2	☐ Intact ☐	□ Not Intact	Signature		M	Signature:		1 -	1 3	alure:
Specify Turnaround Requirements:	Sample Receipt:		Firm:	ARCADIES		Firm/Courier:	AP	Firm/Courie		Firm: BCLDB
Shipping Tracking #:	Condition/Cooler Temp:		Date/Time:	ime:	1238	Date/Time:	8551 ×	Date/Time:	1830	Date/Time: 2/9/15 (9:00

Report ID: 1000428962 Page 3 of 32

Chain of Custody and Cooler Receipt Form for 1531607 Page 2 of 3

BC LABORATORIES INC.			COO	LER REC	EIPT FOR	M :			Page /	012
Submission #: 15 - 3160	7									
SHIPPING INFO		ONI			CLUDD	INO OON				
H		ואט Hand Del			SHIPP	ING CON	TAINER		FREE	riguid
BC Lab Field Service	er □ (Sn	nanu bei ecify)	ivery 🗀	lce	Other D	None (Specify)	□ Box		YES [□ NO □
					Other L	(Specify)_		II		•
Refrigerant: Ice ♥ Blue Ice	:	lone □	Othe	-П С	omments				~	
Custody Seals Ice Chest	Tries transfer									`
intact? Yes 1 No.11		ainers 🗆		one 💢 C	comments	s:				
	E-Intact?	Yes □ No	2(3)		/		_{!			
All samples received? Yes 🖸 No 🗅	All sam	oles contai	iners intac	t? Yes 🗸	No 🗆	Des	cription(s)	match CO	C? Yes 🗀	-No []
COC Received	missivity	097	Contai	nor: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cl Ther	mometer II	DNS			
X YES □ NO								Dat	e/Time 12.	
X YES □ NO	Tempera	ture: (A)	22	°C	/ (C)	1.8	°C	Ana	lyst Init <u>K</u>)	B DOZZ
						VIPLE NUMBI				
SAMPLE CONTAINERS .	 									
OT PE UNPRES		_ 2	3	4	5				3 9	10
4oz/8oz/16oz PE UNPRES										
20z Cr*6										
OT INORGANIC CHEMICAL METALS										
	_			_						
INORGANIC CHEMICAL METALS 40z / 80z / 16	oz									
PT CYANIDE PT NUTPOCEN FORMS		_			_					
PT NITROGEN FORMS	-			_						
PT TOTAL SULFIDE										
20z. NITRATE / NITRITE	<u> </u>									
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS		_								
40ml VOA VIAL TRAVEL BLANK OGU	A									
40ml VOA VIAL										
QT EPA 1664	-}									
PT ODOR			_							
RADIOLOGICAL.	-									
BACTERIOLOGICAL	-									
10 ml VOA VIAL- 504					<u> </u>			<u> </u>		
OT EPA 508/608/8080										
OT EPA 515.1/8150	<u> </u>				<u> </u>	ļ				
OT EPA 525	 							<u> </u>		
T EPA 525 TRAVEL BLANK	<u> </u>									
Oml EPA 547	<u> </u>				<u> </u>		<u>.</u>			
Oml EPA 531.1										
vz EPA 548	<u> </u>		ļ							
T EPA 549	<u> </u>		ļ	ļ		ļ				
F EPA 8015M	ļ		<u> </u>							
Γ EPA 8270	 	_	<u> </u>		 	_		ļ		
z/16oz/32oz AMBER	<u> </u>	 	<u> </u>	<u> </u>	ļ		<u> </u>	<u> </u>		1. 1
z/16oz/32oz JAR	<u> </u>	_	<u> </u>				<u> </u>	<u> </u>		
IL SLEEVE .	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>					
B VIAL			ļ			<u> </u>				
ASTICBAG	 	 								
DLAR BAG		<u> </u>			<u> </u>					
RROUS IRON		<u> </u>								
CORE										
ART KIT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ADD	A-DD	A-DD	ADD	4>D	A->D	A->D	A-> D	
IMA CANISTER	•	1: 3/	11/1/	1-1-717	770	77 21		77)	700	1771
ments:						<u>!</u>			<u> </u>	
	4						· ·		_	

Chain of Custody and Cooler Receipt Form for 1531607 Page 3 of 3

BC LABORATORIES INC. Submission #: 5-3	71120	7]		COOL	ER RECE	PT FOR	Л			Pag	ge (5	101
												121015
	ntrac 🗆	На	N and Deliv cify)	· /ery □	lce (SHIPPII Chest 沟 Other □ (None	e 🗆 B			FREE L YES []	NO 🗆
Refrigerant: Ice ☑ Blue	lce □	No	ne 🗆	Other	□ Co	mments:						
Custody Seals lice Chest ⊡	2 100000		iners □ es □ No		one 🂢 C	omments	:	Ĵi		-	· · · ·	-
All samples received? Yes E No	All:	sample	es contair	ers intact	? Yes D	No 🗆	De	scription	(s) mat	ch COC?	Yes O-N	00
COC Received ¤ YES □ NO					ner: <u>VO (</u>			:0 <u>}}\</u> 2°		Date/Tir Analyst	_{ne} 12/10 Init KIR	15 0022
SAMPLE CONTAINERS							PLE NUM	BERS				
		1	2	1 3	14	5		5 <u> </u>	7	8	9	10
QT PE UNPRES 40z / 80z / 160z PE UNPRES										<u> </u>	 	
										ļ	ļ	
20z Cr ¹⁶										ļ	ļ	
QT INORGANIC CHEMICAL METALS												
INORGANIC CHEMICAL METALS 40z / 80z	:/160z											
PT CYANIDE					_						ļ	
PT NITROGEN FORMS											ļ	
PT TOTAL SULFIDE												
20z. NITRATE / NITRITE			_	_								
PT TOTAL ORGANIC CARBON					_							
PT CHEMICAL OXYGEN DEMAND PLA PHENOLICS					_							-
			+				_					+
fomi voa vial travel blank fomi voa vial			- 									
OT EPA 1664			 				+					
T ODOR			 	-	_							
SADIOLOGICAL.					_							+
SACTERIOLOGICAL				+		╅						+
0 ml VOA VIAL-504			-	 	_		 		-+			+
T EPA 508/608/8080			 	 								+
PT EPA 515.1/8150	-		 		 	┪.	+	_	-+			
T EPA 525			1	1	+		+	_	+		***************************************	
T EPA 525 TRAVEL BLANK				1	 		 				···	
oml EPA 547			1	1	1	 	 					
ml EPA 531.1												
z EPA 548				1	1	1		_				
Г ЕРА 549			1	1	1	1	1.		-			
CEPA 8015M		***************************************		1		1	1	_				
CEPA 8270						1			$\neg \uparrow$			
z/16oz/32oz AMBER							1		$\neg \uparrow$			
z / 16oz / 32oz JAR								1				
IL SLEEVE												
B VIAL								•				
ASTIC BAG												
DLAR BAG .												
RROUS IRON												
CORE									T			
art kit 699	A=	20	A-21)	A-2D	A-DD	ADI						
AMA CANISTER			· · · · · ·	9								
ments:		1776					-10-					

1531607-02

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 15:29

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531607-01 **COC Number:**

> **Project Number:** 0752 Sampling Location:

Sampling Point: TB-151209

Sampled By: ARCF

COC Number:

Project Number: 0752

Sampling Location: Sampling Point:

Sampled By:

AS-13-20-151209

ARCF

Cooler ID: Receive Date:

Receive Date: Sampling Date:

Sample Depth:

Sample Type: Delivery Work Order:

Lab Matrix:

Global ID:

Matrix: W

12/09/2015 23:59

12/09/2015 23:59

12/09/2015 08:00

Water

Trip Blank

12/09/2015 07:30 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Location ID (FieldPoint): TB

Sample QC Type (SACode): CS

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-03 COC Number:

> 0752 **Project Number:** Sampling Location:

Sampling Point: AS-13-25-151209

ARCF Sampled By:

Receive Date:

12/09/2015 23:59

Sampling Date:

12/09/2015 07:50

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 15:29

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531607-04 **COC Number:**

> **Project Number:** 0752 Sampling Location:

Sampling Point: AS-13-30-151209

Sampled By:

ARCF

12/09/2015 23:59 Receive Date: Sampling Date: 12/09/2015 08:15

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-05 **COC Number:**

> **Project Number:** 0752 Sampling Location:

AS-13-35-151209 Sampling Point:

ARCF Sampled By:

12/09/2015 23:59 Receive Date: 12/09/2015 08:40 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-06 COC Number:

> 0752 **Project Number:** Sampling Location:

AS-13-35.5-151209 Sampling Point:

ARCF Sampled By:

Receive Date: 12/09/2015 23:59

12/09/2015 08:45 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000428962

Page 7 of 32

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 15:29

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531607-07 COC Number:

> **Project Number:** 0752 Sampling Location:

Sampling Point: AS-13-10-151208

Sampled By:

ARCF

12/09/2015 23:59 Receive Date: Sampling Date: 12/08/2015 15:25

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-08 **COC Number:**

> **Project Number:** 0752 Sampling Location:

Sampling Point: AS-13-15-151208

ARCF Sampled By:

12/09/2015 23:59 Receive Date: 12/08/2015 15:45 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-09 COC Number:

0752 **Project Number:** Sampling Location:

AS-13-17.5-151208 Sampling Point:

ARCF Sampled By:

Receive Date: 12/09/2015 23:59

12/08/2015 16:00 Sampling Date: Sample Depth:

Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): AS-13

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1531607-10 COC Number: --

Project Number: 0752 Sampling Location: ---

Sampling Point: SV-1-2-151209

ARCF

Sampled By:

Sampling Date: 12/09/2015 10:55 **Sample Depth:** ---

12/09/2015 23:59

Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Receive Date:

Global ID:

Location ID (FieldPoint): SV-1

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-11 COC Number: ---

Project Number: 0752 Sampling Location: ---

Sampling Point: SV-1-5-151209

Sampled By: ARCF

Receive Date: 12/09/2015 23:59

Sampling Date: 12/09/2015 11:00 **Sample Depth:** ---

Lab Matrix:SolidsSample Type:SoilDelivery Work Order:

Global ID:

Location ID (FieldPoint): SV-1

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-12 COC Number: --

Project Number: 0752 Sampling Location: ---

Camping Location.

Sampling Point: SV-3-2-151209

Sampled By: ARCF

Receive Date: 12/09/2015 23:59

Sampling Date: 12/09/2015 10:25

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SV-3

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/16/2015 15:29

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1531607-13 COC Number:

> **Project Number:** 0752 Sampling Location:

Sampling Point: SV-3-5-151209

Sampled By:

12/09/2015 23:59 Receive Date: Sampling Date: 12/09/2015 10:30

Sample Depth:

Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SV-3

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-14 **COC Number:**

> **Project Number:** 0752 Sampling Location:

SV-2-2-151209 Sampling Point:

Sampled By:

ARCF

ARCF

12/09/2015 23:59 Receive Date: 12/09/2015 11:25 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SV-2

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1531607-15 COC Number:

> 0752 **Project Number:** Sampling Location:

Sampling Point: SV-2-5-151209

ARCF Sampled By:

Receive Date:

12/09/2015 23:59

Sampling Date:

12/09/2015 11:30

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SV-2

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000428962

Page 10 of 32

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B)

1531607-01	Client Sampl	e Name:	0752, TB-1512	209, 12/9	/2015 8:00:0	MA00		
	Result	Units	PQL N	/IDL	Method	MB Bias	Lab Quals	Run#
	ND	ug/L	0.50	E	EPA-8260B	ND	-*	1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	1.0	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	10	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	250	E	EPA-8260B	ND		1
	ND	ug/L	0.50	E	EPA-8260B	ND		1
	ND	ug/L	50	L	_uft-GC/MS	ND		1
rogate)	106	%	75 - 125 (LCL - UC	CL) E	EPA-8260B			1
	97.9	%	80 - 120 (LCL - U	CL) E	EPA-8260B			1
rrogate)	99.5	%	80 - 120 (LCL - U	CL) E	EPA-8260B			1
	rogate)	Result ND	Result Units ND ug/L ND <td>Result Units PQL M ND ug/L 0.50 ND ug/L 1.0 ND ug/L 0.50 ND ug/L 10 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 50 ND ug/L 50 rogate) 106 % 75 - 125 (LCL - U 97.9 % 80 - 120 (LCL - U</td> <td>Result Units PQL MDL ND ug/L 0.50 I ND ug/L 1.0 I ND ug/L 10 I ND ug/L 0.50 I ND ug/L 0.50 I ND ug/L 0.50 I ND ug/L 50 I rogate) 106 % 75 - 125 (LCL - UCL) I 97.9 % 80 - 120 (LCL - UCL) I</td> <td>Result Units PQL MDL Method ND ug/L 0.50 EPA-8260B ND ug/L 1.0 EPA-8260B ND ug/L 0.50 EPA-8260B ND ug/L 50 Luft-GC/MS rogate) 106 % 75 - 125 (LCL - UCL) EPA-8260B 97.9 % 80 - 120 (LCL - UCL) EPA-8260B</td> <td> No</td> <td> Result Units PQL MDL Method Bias Quals ND</td>	Result Units PQL M ND ug/L 0.50 ND ug/L 1.0 ND ug/L 0.50 ND ug/L 10 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 50 ND ug/L 50 rogate) 106 % 75 - 125 (LCL - U 97.9 % 80 - 120 (LCL - U	Result Units PQL MDL ND ug/L 0.50 I ND ug/L 1.0 I ND ug/L 10 I ND ug/L 0.50 I ND ug/L 0.50 I ND ug/L 0.50 I ND ug/L 50 I rogate) 106 % 75 - 125 (LCL - UCL) I 97.9 % 80 - 120 (LCL - UCL) I	Result Units PQL MDL Method ND ug/L 0.50 EPA-8260B ND ug/L 1.0 EPA-8260B ND ug/L 0.50 EPA-8260B ND ug/L 50 Luft-GC/MS rogate) 106 % 75 - 125 (LCL - UCL) EPA-8260B 97.9 % 80 - 120 (LCL - UCL) EPA-8260B	No	Result Units PQL MDL Method Bias Quals ND

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/11/15	12/11/15 11:16	SE1	MS-V10	1	BYL1130	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 11 of 32 Report ID: 1000428962

Reported: 12/16/2015 15:29

2000 Powell Street 7th FloorProject: 0752Emeryville, CA 94608Project Number: 351646Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-02	Client Sampl	e Name:	0752, AS-13-20-	151209, 12/9/2015	7:30:00AM		
Constituent		Result	Units	PQL MD	L Method	MB Bias	Lab Quals	Run#
Benzene		0.0060	mg/kg	0.0037	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0037	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0037	EPA-8260B	ND		1
Ethylbenzene		0.091	mg/kg	0.0037	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0037	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0037	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0074	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0037	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.037	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0037	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.74	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0037	EPA-8260B	ND		1
Total Purgeable Petro Hydrocarbons	oleum	980	mg/kg	150	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4	(Surrogate)	104	%	70 - 121 (LCL - UCL) EPA-8260B			1
1,2-Dichloroethane-d4	(Surrogate)	109	%	70 - 121 (LCL - UCL) EPA-8260B			2
Toluene-d8 (Surrogate	e)	134	%	81 - 117 (LCL - UCL) EPA-8260B		S09	1
Toluene-d8 (Surrogate	e)	97.3	%	81 - 117 (LCL - UCL) EPA-8260B			2
4-Bromofluorobenzen	e (Surrogate)	525	%	74 - 121 (LCL - UCL) EPA-8260B		S09	1
4-Bromofluorobenzen	e (Surrogate)	106	%	74 - 121 (LCL - UCL) EPA-8260B			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 00:28	JML	MS-V3	0.739	BYL1097	
2	EPA-8260B	12/14/15	12/16/15 06:32	JML	MS-V3	738.55	BYL1097	

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 32

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-03	Client Sampl	e Name:	0752, AS-13-25-	151209, 12/9/2015	7:50:00AM		
Constituent		Result	Units	PQL MI	DL Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0043	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0087	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.87	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petrole Hydrocarbons	um	ND	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	86.1	%	70 - 121 (LCL - UCL	_) EPA-8260B			1
Toluene-d8 (Surrogate)		92.0	%	81 - 117 (LCL - UCL	_) EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	102	%	74 - 121 (LCL - UCL	_) EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 17:19	JML	MS-V3	0.865	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 13 of 32 Report ID: 1000428962

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-04	Client Sampl	e Name:	0752, AS-13-30	0-1512	09, 12/9/2015	8:15:00AM		
Constituent		Result	Units	PQL N	/IDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0037		EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0037		EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0037		EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0037		EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0037		EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0074		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.037		EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.74		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.15		Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	118	%	70 - 121 (LCL - UC	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		94.9	%	81 - 117 (LCL - UC	CL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	105	%	74 - 121 (LCL - UC	CL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 16:56	JML	MS-V3	0.737	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 14 of 32 Report ID: 1000428962

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-05	Client Sampl	e Name:	0752, AS-13-35	5-15120	09, 12/9/2015	8:40:00AM		
Constituent		Result	Units	PQL M	/IDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0037		EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0037		EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0037		EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0037		EPA-8260B	ND		1
Methyl t-butyl ether		0.014	mg/kg	0.0037		EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0037		EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0075		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.037		EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.75		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0037		EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.15		Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	119	%	70 - 121 (LCL - UC	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.2	%	81 - 117 (LCL - UC	CL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	103	%	74 - 121 (LCL - UC	CL)	EPA-8260B			1

			QC					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 16:33	JML	MS-V3	0.746	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-06	Client Sampl	e Name:	0752, AS-13-35.5	-151209, 12/9/2015	8:45:00AM		
Constituent		Result	Units	PQL MDI	- Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0034	EPA-8260B	ND	4	1
1,2-Dibromoethane		ND	mg/kg	0.0034	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0034	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0034	EPA-8260B	ND		1
Methyl t-butyl ether		0.17	mg/kg	0.0034	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0034	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0069	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0034	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.034	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0034	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.69	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0034	EPA-8260B	ND		1
Total Purgeable Petroleur Hydrocarbons	m	ND	mg/kg	0.14	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	urrogate)	119	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.4	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (S	Surrogate)	103	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			QC					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 16:10	JML	MS-V3	0.686	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-07	Client Sampl	e Name:	0752, AS-13-10-	151208, 12/8/2015	3:25:00PM		
Constituent		Result	Units	PQL ME)L Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0033	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0033	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0033	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0033	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0033	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0033	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0066	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0033	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.033	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0033	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.66	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0033	EPA-8260B	ND		1
Total Purgeable Petrole Hydrocarbons	um	ND	mg/kg	0.13	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	121	%	70 - 121 (LCL - UCL	.) EPA-8260B			1
Toluene-d8 (Surrogate)		97.0	%	81 - 117 (LCL - UCL	.) EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	105	%	74 - 121 (LCL - UCL	.) EPA-8260B			1

		Run				QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 15:46	JML	MS-V3	0.655	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 17 of 32 Report ID: 1000428962

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-08	Client Sampl	e Name:	0752, AS-13-15-1	51208, 12/8/2015	3:45:00PM		
Constituent		Result	Units	PQL MDI	- Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petroleu Hydrocarbons	ım	ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	121	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.4	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			QC					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 15:23	JML	MS-V3	0.929	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 18 of 32 Report ID: 1000428962

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-09	Client Sampl	e Name:	0752, AS-13-17	.5-151208, 12/8/2	015 4:00:00PM		
Constituent		Result	Units	PQL M	DL Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0039	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0039	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0039	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0039	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0039	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0039	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0079	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0039	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.039	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0039	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.79	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0039	EPA-8260B	ND		1
Total Purgeable Petroleun Hydrocarbons	1	1.8	mg/kg	0.16	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	117	%	70 - 121 (LCL - UC	L) EPA-8260B			1
Toluene-d8 (Surrogate)		97.7	%	81 - 117 (LCL - UC	L) EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	113	%	74 - 121 (LCL - UC	L) EPA-8260B			1

Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 03:11	JML	MS-V3	0.787	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1. 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-10	Client Sampl	e Name:	0752, SV-1-2-1	151209,	, 12/9/2015 10:	55:00AM		
Constituent		Result	Units	PQL M	1DL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
1,2-Dibromoethane		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
1,2-Dichloroethane		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Ethylbenzene		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Methyl t-butyl ether		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Toluene		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Total Xylenes		ND	mg/kg	0.010		EPA-8260B	ND	S08,Z1	1
t-Amyl Methyl ether		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
t-Butyl alcohol		ND	mg/kg	0.050		EPA-8260B	ND	S08,Z1	1
Diisopropyl ether		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Ethanol		ND	mg/kg	1.0		EPA-8260B	ND	S08,Z1	1
Ethyl t-butyl ether		ND	mg/kg	0.0050		EPA-8260B	ND	S08,Z1	1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.20		Luft-GC/MS	ND	S08,Z1	1
1,2-Dichloroethane-d4 (Sur	rogate)	91.7	%	70 - 121 (LCL - UC	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		93.2	%	81 - 117 (LCL - UC	CL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	87.9	%	74 - 121 (LCL - UC	CL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 15:00	JML	MS-V3	0.907	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

2000 Powell Street 7th Floor Emeryville, CA 94608

12/16/2015 15:29 Reported:

Project: 0752 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-11	Client Sampl	e Name:	0752, SV-1-5-15	1209, 12/9/2015 11	:00:00AM		
Constituent		Result	Units	PQL MD	L Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petroleu Hydrocarbons	m	ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	114	%	70 - 121 (LCL - UCL) EPA-8260B			1
Toluene-d8 (Surrogate)		94.8	%	81 - 117 (LCL - UCL) EPA-8260B			1
4-Bromofluorobenzene (S	Surrogate)	99.5	%	74 - 121 (LCL - UCL) EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 14:36	JML	MS-V3	1.006	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 21 of 32 Report ID: 1000428962

MU

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-12	Client Sampl	e Name:	0752, SV-3-2-15	51209, 12/9/2015 1	0:25:00AM		
Constituent		Result	Units	PQL M	DL Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0042	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0042	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0042	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0042	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0042	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0085	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.042	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.85	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	ı	ND	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	112	%	70 - 121 (LCL - UC	L) EPA-8260B			1
Toluene-d8 (Surrogate)		93.2	%	81 - 117 (LCL - UC	L) EPA-8260B			1
4-Bromofluorobenzene (Su	ırrogate)	110	%	74 - 121 (LCL - UC	L) EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 04:21	JML	MS-V3	0.846	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation.

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 22 of 32

12/16/2015 15:29 Reported: Project: 0752 2000 Powell Street 7th Floor Emeryville, CA 94608 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-13	Client Sampl	e Name:	0752, SV-3-5-15	51209, 12/9/2015 10			
Constituent		Result	Units	PQL MI	DL Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0042	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0042	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0042	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0042	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0042	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0084	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.042	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.84	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Total Purgeable Petroleur Hydrocarbons	n	ND	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Si	urrogate)	114	%	70 - 121 (LCL - UCI	L) EPA-8260B			1
Toluene-d8 (Surrogate)		95.6	%	81 - 117 (LCL - UCI	L) EPA-8260B			1
4-Bromofluorobenzene (S	Surrogate)	103	%	74 - 121 (LCL - UCI	L) EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 04:45	JML	MS-V3	0.845	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Arcadis 12/16/2015 15:29 Reported:

Project: 0752 2000 Powell Street 7th Floor Emeryville, CA 94608 Project Number: 351646 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-14	Client Sampl	e Name:	0752, SV-2-2-15	0752, SV-2-2-151209, 12/9/2015 11:25:00AM						
Constituent		Result	Units	PQL M	DL Method	MB Bias	Lab Quals	Run #			
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1			
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1			
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1			
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1			
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1			
Total Purgeable Petroleur Hydrocarbons	n	ND	mg/kg	0.20	Luft-GC/MS	ND		1			
1,2-Dichloroethane-d4 (Su	urrogate)	112	%	70 - 121 (LCL - UC	L) EPA-8260B			1			
Toluene-d8 (Surrogate)		95.0	%	81 - 117 (LCL - UC	L) EPA-8260B			1			
4-Bromofluorobenzene (S	urrogate)	105	%	74 - 121 (LCL - UC	L) EPA-8260B			1			

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 05:08	JML	MS-V3	0.938	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 24 of 32 Report ID: 1000428962

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

BCL Sample ID:	1531607-15	Client Sampl	e Name:	0752, SV-2-5-1	51209, 1	2/9/2015 11	:30:00AM		
Constituent		Result	Units	PQL M	IDL N	/lethod	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0042	Е	PA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0042	Е	PA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0042	Е	PA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0042	E	PA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0042	E	PA-8260B	ND		1
Toluene		ND	mg/kg	0.0042	E	PA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0083	Е	PA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0042	Е	PA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.042	E	PA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0042	E	PA-8260B	ND		1
Ethanol		ND	mg/kg	0.83	Е	PA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0042	Е	PA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	ı	ND	mg/kg	0.17	L	uft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	116	%	70 - 121 (LCL - UC	CL) E	PA-8260B			1
Toluene-d8 (Surrogate)		93.1	%	81 - 117 (LCL - UC	CL) E	PA-8260B			1
4-Bromofluorobenzene (Su	ırrogate)	102	%	74 - 121 (LCL - UC	CL) E	PA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	12/14/15	12/15/15 05:31	JML	MS-V3	0.832	BYL1097	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation.

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 25 of 32

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYL1130						
Benzene	BYL1130-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BYL1130-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BYL1130-BLK1	ND	ug/L	0.50		
Ethylbenzene	BYL1130-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BYL1130-BLK1	ND	ug/L	0.50		
Toluene	BYL1130-BLK1	ND	ug/L	0.50		
Total Xylenes	BYL1130-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BYL1130-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BYL1130-BLK1	ND	ug/L	10		
Diisopropyl ether	BYL1130-BLK1	ND	ug/L	0.50		
Ethanol	BYL1130-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BYL1130-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BYL1130-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BYL1130-BLK1	110	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYL1130-BLK1	100	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYL1130-BLK1	103	%	80 - 12	0 (LCL - UCL)	

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 26 of 32

Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

								Control L	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BYL1130										
Benzene	BYL1130-BS1	LCS	24.170	25.000	ug/L	96.7		70 - 130		
Toluene	BYL1130-BS1	LCS	24.890	25.000	ug/L	99.6		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYL1130-BS1	LCS	10.240	10.000	ug/L	102		75 - 125		
Toluene-d8 (Surrogate)	BYL1130-BS1	LCS	9.8900	10.000	ug/L	98.9		80 - 120		
4-Bromofluorobenzene (Surrogate)	BYL1130-BS1	LCS	9.9900	10.000	ug/L	99.9		80 - 120		

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 27 of 32

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/16/2015 15:29

Project: 0752
Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

		•		•								
									Cont	Control Limits		
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BYL1130	Use	ed client samp	ole: N									
Benzene	MS	1528561-90	ND	25.000	25.000	ug/L		100		70 - 130		
	MSD	1528561-90	ND	23.410	25.000	ug/L	6.6	93.6	20	70 - 130		
Toluene	MS	1528561-90	ND	25.330	25.000	ug/L		101		70 - 130		
	MSD	1528561-90	ND	24.400	25.000	ug/L	3.7	97.6	20	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	MS	1528561-90	ND	10.440	10.000	ug/L		104		75 - 125		
	MSD	1528561-90	ND	10.020	10.000	ug/L	4.1	100		75 - 125		
Toluene-d8 (Surrogate)	MS	1528561-90	ND	9.9100	10.000	ug/L		99.1		80 - 120		
	MSD	1528561-90	ND	9.9400	10.000	ug/L	0.3	99.4		80 - 120		
4-Bromofluorobenzene (Surrogate)	MS	1528561-90	ND	10.000	10.000	ug/L		100		80 - 120		
, ,	MSD	1528561-90	ND	10.030	10.000	ug/L	0.3	100		80 - 120		

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 28 of 32

Arcadis Reported: 12/16/2015 15:29

2000 Powell Street 7th Floor Project: 0752
Emeryville, CA 94608 Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYL1097						
Benzene	BYL1097-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BYL1097-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BYL1097-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BYL1097-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BYL1097-BLK1	ND	mg/kg	0.0050		
Toluene	BYL1097-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BYL1097-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BYL1097-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BYL1097-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BYL1097-BLK1	ND	mg/kg	0.0050		
Ethanol	BYL1097-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BYL1097-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BYL1097-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BYL1097-BLK1	97.9	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BYL1097-BLK1	99.0	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYL1097-BLK1	101	%	74 - 121	(LCL - UCL)	

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 29 of 32

Arcadis Reported: 12/16/2015 15:29

2000 Powell Street 7th FloorProject: 0752Emeryville, CA 94608Project Number: 351646Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Laboratory Control Sample

						Control Limits				
			Spike		Percent		Percent		Lab	
QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
BYL1097-BS1	LCS	0.12265	0.12500	mg/kg	98.1		70 - 130			
BYL1097-BS1	LCS	0.11687	0.12500	mg/kg	93.5		70 - 130			
BYL1097-BS1	LCS	0.049310	0.050000	mg/kg	98.6		70 - 121			
BYL1097-BS1	LCS	0.047890	0.050000	mg/kg	95.8		81 - 117			
BYL1097-BS1	LCS	0.052550	0.050000	mg/kg	105		74 - 121			
	BYL1097-BS1 BYL1097-BS1 BYL1097-BS1 BYL1097-BS1	BYL1097-BS1 LCS BYL1097-BS1 LCS BYL1097-BS1 LCS BYL1097-BS1 LCS	BYL1097-BS1 LCS 0.12265 BYL1097-BS1 LCS 0.11687 BYL1097-BS1 LCS 0.049310 BYL1097-BS1 LCS 0.047890	QC Sample ID Type Result Level BYL1097-BS1 LCS 0.12265 0.12500 BYL1097-BS1 LCS 0.11687 0.12500 BYL1097-BS1 LCS 0.049310 0.050000 BYL1097-BS1 LCS 0.047890 0.050000	QC Sample ID Type Result Level Units BYL1097-BS1 LCS 0.12265 0.12500 mg/kg BYL1097-BS1 LCS 0.11687 0.12500 mg/kg BYL1097-BS1 LCS 0.049310 0.050000 mg/kg BYL1097-BS1 LCS 0.047890 0.050000 mg/kg	QC Sample ID Type Result Level Units Recovery BYL1097-BS1 LCS 0.12265 0.12500 mg/kg 98.1 BYL1097-BS1 LCS 0.11687 0.12500 mg/kg 93.5 BYL1097-BS1 LCS 0.049310 0.050000 mg/kg 98.6 BYL1097-BS1 LCS 0.047890 0.050000 mg/kg 95.8	QC Sample ID Type Result Level Units Recovery RPD BYL1097-BS1 LCS 0.12265 0.12500 mg/kg 98.1 98.1 BYL1097-BS1 LCS 0.11687 0.12500 mg/kg 93.5 93.5 BYL1097-BS1 LCS 0.049310 0.050000 mg/kg 98.6 BYL1097-BS1 LCS 0.047890 0.050000 mg/kg 95.8	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery BYL1097-BS1 LCS 0.12265 0.12500 mg/kg 98.1 70 - 130 BYL1097-BS1 LCS 0.11687 0.12500 mg/kg 93.5 70 - 130 BYL1097-BS1 LCS 0.049310 0.050000 mg/kg 98.6 70 - 121 BYL1097-BS1 LCS 0.047890 0.050000 mg/kg 95.8 81 - 117	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery RPD BYL1097-BS1 LCS 0.12265 0.12500 mg/kg 98.1 70 - 130 70 - 130 BYL1097-BS1 LCS 0.11687 0.12500 mg/kg 93.5 70 - 130 70 - 130 BYL1097-BS1 LCS 0.049310 0.050000 mg/kg 98.6 70 - 121 BYL1097-BS1 LCS 0.047890 0.050000 mg/kg 95.8 81 - 117	

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 30 of 32

. ..

 Arcadis
 Reported:
 12/16/2015
 15:29

 2000 Powell Street 7th Floor
 Project:
 0752

Emeryville, CA 94608 Project Number: 351646
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260B/5035)

Quality Control Report - Precision & Accuracy

								Control Limit			<u></u>	
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BYL1097	Use	d client samp	ole: N									
Benzene	MS MS	1528561-65	ND	0.11532	0.12500	mg/kg		92.3		70 - 130		
	MSD	1528561-65	ND	0.11668	0.12500	mg/kg	1.2	93.3	20	70 - 130		
Toluene	MS	1528561-65	ND	0.11501	0.12500	mg/kg		92.0		70 - 130		
	MSD	1528561-65	ND	0.10976	0.12500	mg/kg	4.7	87.8	20	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	MS	1528561-65	ND	0.047640	0.050000	mg/kg		95.3		70 - 121		
	MSD	1528561-65	ND	0.047290	0.050000	mg/kg	0.7	94.6		70 - 121		
Toluene-d8 (Surrogate)	MS	1528561-65	ND	0.048750	0.050000	mg/kg		97.5		81 - 117		
	MSD	1528561-65	ND	0.048480	0.050000	mg/kg	0.6	97.0		81 - 117		
4-Bromofluorobenzene (Surrogate)	MS	1528561-65	ND	0.052050	0.050000	mg/kg		104		74 - 121		
	MSD	1528561-65	ND	0.052180	0.050000	mg/kg	0.2	104		74 - 121		

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 31 of 32

Arcadis Reported: 12/16/2015 15:29

2000 Powell Street 7th FloorProject:0752Emeryville, CA 94608Project Number:351646Project Manager:Kathy Brandt

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

S08 The internal standard on the sample was not within the control limits.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

Z1 Sample was analysed three times and internal standards were low all three times.

Report ID: 1000428962 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 32 of 32

Arcadis U.S., Inc.

2999 Oak Road

Suite 300

Walnut Creek, California 94597

Tel 925 274 1100

Fax 925 274 1103

www.arcadis.com