ConocoPhillips 76 Broadway Sacramento, California 95818

RECEIVED

By lopprojectop at 10:15 am, Nov 07, 2005

October 28, 2005

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal
Quarterly Report
Third Quarter – 2005
76 Service Station #0752
800 Harrison Street
Oakland, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818 Phone: 916-558-7609

Fax: 916-558-7639

Sincerely,

Thomas Kosel

Risk Management & Remediation

Attachment

By lopprojectop at 10:15 am, Nov 07, 2005

October 28, 2005

TRC Project No. 42016203

Mr. Don Hwang Alameda County Health Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Quarterly Status Report - Third Quarter 2005

76 Service Station #0752, 800 Harrison Street, Oakland, California

Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Third Quarter 2005 Status Report for the subject site. The subject site is a 76 service station located northeast and across 8th Street from a Shell service station that is located adjacent to and northeast of a currently closed Arco service station. In addition, a gasoline and diesel service station referred to as "Mandarin Auto Service" is located east-southeast of the site.

PREVIOUS ASSESSMENTS

November 1990: Kaprealian Engineering, Inc's. (KEI) initial fieldwork was conducted when two underground gasoline storage tanks (USTs) and a waste oil tank were removed from the site. The tanks were made of steel, and no apparent holes or cracks were observed in the fuel tanks; however, a 1/8 inch square hole was observed in the waste oil tank. KEI collected an additional soil sample from the fuel tank pit at a depth of approximately 19 feet below ground surface (bgs).

December 1990: KEI returned to the site to collect soil samples from beneath the pump islands. KEI returned to the site in order to collect a sample from the pump island excavation.

January 1991: At the request of the Alameda County Health Care Services (ACHCS), KEI returned to the site in order to collect one additional soil sample from the waste oil tank pit. After sampling, the waste oil tank pit was excavated to the sample depth of 9.5 feet bgs.

May 1991: Three monitoring wells and two exploratory borings were installed at the site. The monitoring wells were drilled and completed to total depths ranging from 33 to 35 feet bgs. The exploratory borings were each drilled to total depths of 23 feet bgs. Groundwater was encountered at depths ranging from about 22.5 to 24 feet bgs during drilling. Based on the analytical results, a monthly groundwater monitoring and quarterly groundwater-sampling program was implemented.

QSR – Third Quarter 2005 76 Service Station #0752, Oakland, California October 28, 2005 Page 2

September-October1992: Three additional monitoring wells were installed to further delineate the extent of groundwater contamination. These wells were drilled to total depths ranging from 32 to 33 feet bgs. Groundwater was encountered at depths ranging from 21.5 to 23 feet bgs.

April 1993: Two additional monitoring wells were installed in the vicinity of the site. These monitoring wells were drilled to a total depth of 31 to 33 feet bgs. Groundwater was encountered at depths of 21 to 21.5 feet bgs. Based on the analytical results of all of the soil samples collected, KEI concluded that the horizontal extent of the soil contamination at the site had been defined, and that the contamination was limited to the areas beneath the fuel tanks and the southernmost pump island. Based on the groundwater monitoring data collected and evaluated through April of 1993, the groundwater flow direction had been consistently to the southwest or south-southwest. In addition, no free product or sheen had been detected in any well through April of 1993. KEI recommended quarterly monitoring frequency.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

SENSITIVE RECEPTORS

Lake Merritt and the Oakland Estuary are located approximately 0.5 miles from the site.

MONITORING AND SAMPLING

Currently, eight wells are monitored semi-annually. All wells were gauged and sampled this quarter. The groundwater flow is toward the south at a calculated hydraulic gradient of 0.02 feet per foot.

CHARACTERIZATION STATUS

Total purgeable petroleum hydrocarbons (TPPH) were detected in six of the eight wells sampled at a maximum concentration of 12,000 micrograms per liter (μg/l) in MW-3.

Benzene was detected in three of the eight wells sampled at a maximum concentration of 360 μ g/l in MW-3.

Methyl tertiary butyl ether (MTBE) was detected in seven of the eight wells sampled at a maximum concentration of 20,000 μg/l in MW-3.

REMEDIATION STATUS

Remediation is not currently being conducted at the site.

QSR - Third Quarter 2005 76 Service Station #0752, Oakland, California October 28, 2005 Page 3

RECENT CORRESPONDENCE

October 19, 2005: TRC and ConocoPhillips attended a meeting at the ACHCS to discuss site prioritization. TRC discussed the findings of a recent file review on the former Shell station located immediately south of the site and determined a path forward regarding additional assessment and site characterization.

CURRENT QUARTER ACTIVITIES

September 30, 2005: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

CONCLUSIONS AND RECOMMENDATIONS

TRC recently prepared a work plan for additional offsite assessment. However, based on information obtained regarding the former Shell station to the south during a recent file review, and on recent discussions with the ACHCS on October 19, 2005, TRC will prepare a Site Conceptual Model, per ACHCS guidelines, and revise the current work plan accordingly.

TRC recommends continuing semi-annual monitoring and sampling to assess plume stability and concentration trends at key wells.

If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely, TRC

Keith Woodburne, P.G.

Senior Project Geologist

Attachments:

Ouarterly Monitoring Report, July through September 2005 (TRC, October 26, 2005)

Ms. Shelby Lathrop, ConocoPhillips (electronic upload only) cc:

October 26, 2005

ConocoPhillips Company 76 Broadway Sacramento, California 95818

ATTN:

MR. THOMAS H. KOSEL

SITE:

76 STATION 0752

800 HARRISON STREET OAKLAND, CALIFORNIA

RE:

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2005

Dear Mr. Kosel:

Please find enclosed our Semi-Annual Monitoring Report for 76 Station 0752, located at 800 Harrison Street, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan

QMS Operations Manager

CC: Mr. Keith Woodburne, TRC (2 copies)

Enclosures 20-0400/0752R06.QMS

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2005

76 Station 0752 800 Harrison Street Oakland, California

Prepared For:

Mr. Thomas H. Kosel CONOCOPHILLIPS 76 Broadway Sacramento, California 95818

By:

ennis Efen

Senior Project Geologist, Irvine Operations October 26, 2005

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 3: Additional Analytical Results
	Table 3b: Additional Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPPH Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
A	Benzene Concentrations vs. Time
Field Activities	General Field Procedures
	Groundwater Sampling Field Notes
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statement	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities April 2005 through September 2005 76 Station 0752 800 Harrison Street Oakland, CA

Project Coordinator: Shelby Lathrop Telephone: 916-558-7609	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 09/30/05	
Sample Points	
Groundwater wells: 4 onsite, 4 offsite Purging method: Diaphragm pump Purge water disposal: Onyx/Rodeo Unit 100 Other Sample Points: 0 Type: n/a	Wells gauged: 8 Wells sampled: 8
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: 1 Average groundwater elevation (relative to available Average change in groundwater elevation since prev Interpreted groundwater gradient and flow direction: Current event: 0.02 ft/ft, south Previous event: 0.006 ft/ft, southwest (03/3)	local datum): 16.58 feet ious event: -2.04 feet
Selected Laboratory Results	
	/ells above MCL (1.0 μg/l): 3 μ g/l (MW-3)
	aximum: 12,000 μg/l (MW-3) aximum: 20,000 μg/l (MW-3)
Notes:	

TABLES

TABLE KEY

STANDARD ABREVIATIONS

-- e not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND < = not detected at or above laboratory detection limit
TOC = top of casing (surveyed reference elevation)

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction
TPH-D = total petroleum hydrocarbons with diesel distinction

TPPH = total purgeable petroleum hydrocarbons
TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: Surface Elevation Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 0752 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Page 1 of 1

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS September 30, 2005 76 Station 0752

Comments

MTBE 8260B	(hg/l)	160	9.1	20000	3800	38	2800	ND<0.50	0069
MTBE 8021B	(hg/l)	;	I	ı	I	ŀ	f	ı	1
Total Xylenes	(hg/l)	ND<1.0	ND<1.0	50	ND<1.0	9.2	41	ND<1.0	ND<1.0
Ethyl- benzene	$(\mu g/1)$	ND<0.50	ND<0.50	ND<25	ND<0.50	2.4	28	ND<0.50	ND<0.50
Toluene	(μg/l)	ND<0.50 ND<0.50 ND<0.50	ND<0.50 ND<0.50 ND<0.50	40	ND<0.50 ND<0.50 ND<0.50	5.8	37	ND<0.50 ND<0.50	0.50
Benzene	$(\mu g/l)$	ND<0.50	ND<0.50	360	ND<0.50	26	140	ND<0.50	ND<0.50
TPPH 8260B	(µg/l)	190	ND<50	12000	006	1200	4300	ND<50	1200
TPH-G	(μg/l)	l	ŀ	ŀ	ŀ	ł	ŀ	ŧ	I
Ground- Change in water Elevation Elevation	(feet)	.5) -1.94	-1.75	-2.02	-2.76	-1.89	-1.78	-1.94	-2.21
Ground- (water Elevation	(feet)	et: 13.5-33	et: 15-33) 17.41	et: 15-33) 16.59	et: 15-33) 15.80	et: 15-32) 16.76	et: 15-32) 16.68	et: 13-33) 16.27	et: 11-29) 16.06
LPH Thickness	(feet)	(Screen Interval in feet: 13.5-33.5) 17.65 0.00 17.04	(Screen Interval in feet: 15-33)	(Screen Interval in feet: 15-33) 16.55 0.00 16.59	terval in fe 0.00	terval in fe 0.00	terval in fe 0.00	terval in fe 0.00	terval in fe 0.00
Depth to Water	(feet)	(Screen In 17.65	(Screen In	(Screen In 16.55	(Screen Interval in feet: 15-33) 16.91 0.00 15.80	(Screen Interval in feet: 15-32) 16.19 0.00 16.76	(Screen Interval in feet: 15-32) 15.48 0.00 16.68	(Screen Interval in feet: 13-33)	(Screen Interval in feet: 11-29) 32.00 15.94 0.00 16.06
TOC Elevation	(feet)	34.69	34.72	33.14	32.71	32.95	32.16	32.20	
Date Sampled E		MW-1 09/30/05	MW-2 09/30/05	MW-3 09/30/05	MW-4 09/30/05	MW-5 09/30/05	MW-6 09/30/05	MW-7 09/30/05	MW-8 09/30/05

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	(l/gµ)		ł	1	ł	ł	!	1	ŀ	ł	ł	ŀ	ŀ	ŀ	ł	ŀ	ı	ł	1	1	ŀ	ł	1	ŀ	ŀ	ľ
MTBE 8021B	(l/gn/)		ł	1	ŀ	ŀ	1	ŀ	ł	ŀ	ŀ	ł	ŀ	. 1	ł	ł	ł	ŀ	1	29	ł	50	150	510	550	4800
Total Xylenes	(µg/l)		ND	ND	ND	N	ND	ND	1.0	7.6	ND	0.72	ND	ND	7.3	11	ON	4.0	1.2	5.6	1.2	7.4	2.5	10	ND	ND
Ethyl- benzene	$(\mu g/l)$		ND	1.2	ND	ND	ND	ND	1.2	99.0	ND	ND	ND	25	0.71	1.5	1.3	5.2	ND	ND						
Toluene	(µg/I)		ND	2.3	99.0	ND	ND	ND	13	ND	ND	8.0	ND	ND	ND	1.7	4.1	0.89	Q N	ND						
Benzene	$(\mu g/I)$		ND	ND	ND	ND	ND	1.0	69.0	3.1	0.5	1.5	ND	ND	4.8	1.4	ND	3.6	2.1	2.0	2.4	6.8	3.0	27	ND	Q
TPPH 8260B	(µg/l)		ł	ł	ł	ì	!	ŀ	1	1	ł	1	ł	ł	ŀ	ŀ	i	ł	ŀ	ŀ	1	1	ŀ	ł	;	ł
TPH-G	(hg/l)		ND	ND	ND	ND	ND	92	95	920	ND	92	ND	ND	250	540	140	580	260	220	190	540	490	092	ND	1800
Change in Elevation	(feet)		1	1	1	1	ł	ł	ł	ł	ŀ	-0.42	-0.22	0.36	0.89	-1.60	1.20	2.06	-0.97	-1.02	-0.09	2.04	-0.87	0.80	-1.70	1.96
Ground- water Elevation	(feet)	: 13.5-33.5	ŀ	ŀ	ŀ	ł	ł	ł	13.77	ŀ	14.81	14.39	14.17	14.53	15.42	13.82	15.02	17.08	16.11	15.09	15.00	17.04	16.17	16.97	15.27	17.23
LPH Thickness	(feet)	(Screen Interval in feet: 13.5-33.5)	ŀ	1	ì	1	ł	ł	0.00	!	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water	(feet)	Screen Inte	ŀ	ł	ł	;	ŀ	ł	21.17	ł	20.13	20.30	20.52	20.16	19.27	20.87	19.67	17.61	18.58	19.60	19.69	17.65	18.52	17.72	19.42	17.46
TOC Elevation	(feet)		34.94	1 34.94	34.94	2 34.94	2 34.94	2 34.94	2 34.94	3 34.94	3 34.94	3 34.69	4 34.69	4 34.69	4 34.69	4 34.69	34.69	34.69	34.69	34.69	5 34.69	34.69	34.69	7 34.69	7 34.69	34.69
Date Sampled		MW-1	06/05/91	09/30/91	12/30/91	04/02/92	06/30/92	09/15/92	12/21/92	04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	04/10/96	96/60/L0	01/24/97	07/23/97	01/26/98

Page 1 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	$(\mu g/l)$	1	ŀ	ł	ł	1	1	ŀ	;	1	1	I	2100	29000	9300	8500	1500	4900	160		ł	ł	ŀ	ŀ	ŀ
MTBE 8021B	$(\mu g/1)$	1800	230	290	260	648	119	092	350	160	4100	10000	ì	ł	ŀ	ł	ł	ł	1		ŀ	ŀ	1	ŀ	1
Total Xylenes	(µg/l)	CN	QN	1.0	ND	ND	ND	ND	ND<0.50	ND<0.50	3.3	ND<10	ND<20	ND<500	ND<50	ND<100	ND<20	2.2	ND<1.0		ND	9.6	1.9	7.2	6.9
Ethyl- benzene	(hg/l)	QN	ND	ND	ND	ND	ND	ND	ND<0.50	ND<0.50	ND<2.5	ND<10	ND<10	ND<250	ND<25	ND<50	ND<10	0.54	ND<0.50		ND	14	11	6.3	4.8
Toluene	(hg/l)	QN	ND	ND	ND	ND	ND	ND	ND<0.50	ND<0.50	ND<2.5	ND<10	ND<10	ND<250	ND<25	ND<50	ND<10	ND<0.50	ND<0.50		ND	0.53	0.89	0.32	0.76
Benzene	(µg/l)	ND	ND	ND	ND	ND	ND	ND	ND<0.50	ND<0.50	ND<2.5	ND<10	ND<10	ND<250	ND<25	ND<50	ND<10	ND<0.50	ND<0.50		ND	18	16	12	9.3
TPPH 8260B	(l/gr/l)	I	ŀ	ł	ŀ	1	;	;	1	ļ	ŀ	ł	ł	ŧ	1	8000	1100	ND<2000	190		1	1	ŀ	ŀ	ŀ
TPH-G	(l/gn/)	N	83	110	ND	ND	ND	84	ND<50	96	450	ND<1000	2100	ND<25000	4000	ļ	1	ł	ŀ		46	130	91	88	9/
Change in Elevation	(feet)	-1.15	-0.31	1.08	-1.29	-1.14	0.23	1.77	-0.29	-0.16	1.94	-0.57	-0.28	0.59	-0.87	-0.07	0.14	2.13	-1.94		ŀ	1	1	ł	ŀ
Ground- water Elevation	(feet)	16.08	15.77	16.85	15.56	14.42	14.65	16.42	16.13	15.97	17.91	17.34	17.06	17.65	16.78	16.71	16.85	18.98	17.04	: 15-33)	1	1	1	1	ł
LPH Thickness	(feet)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(Screen Interval in feet: 15-33)	1	ŀ	1	1	1
_	(feet)	18.61	18.92	17.84	19.13	20.27	20.04	18.27	18.56	18.72	16.78	17.35	17.63	17.04	17.91	17.98	17.84	15.71	17.65	creen Inte	ł	ŀ	ŀ	ŀ	1
ű	(feet)	continued 8 34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	34.69	S	34.97	34.97	34.97	34.97	34.97
Date Sampled E		MW-1 c 07/03/98	01/14/99	07/15/99	01/02/00	04/19/00	01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	MW-2	06/05/91	09/30/91	12/30/91	04/02/92	06/30/92

Page 2 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	(µg/1)		ì	ŀ	ł	;	;	1	1	ı	ł	ţ	ł	ŀ	1	ŀ	ŀ	ţ	ŀ	i	1	ŀ	ł	1	ŀ	i
MTBE 8021B	(hg/l)		ł	ŀ	ł	ł	ŀ	l	!	ı	ŀ	ŀ	ŀ	1	200	ŀ	620	1500	1300	99	13	330	350	39	24	117
Total Xylenes	(µg/l)		110	96	87	2.0	12	26	0.99	10	111	11	63	13	ND	ND	6	2.4	720	ND	0.58	5.0	ND	ND	ND	ND
Ethyl- benzene	(µg/l)		80	74	130	2.5	2.1	5.5	ND	0.73	1.4	0.95	19	ND	ND	ND	2.4	1.3	190	ND	ND	0.95	ND	ND	ND	ND
Toluene	(µg/l)		5.7	3.2	1.9	ND	9.9	ND	NO	ND	ND	ND	350	ND	ND	ND	NO	N	ND	ND						
Benzene	(hg/l)		91	26	92	1.8	12	25	0.65	16	15	27	65	270	1.6	ND	42	230	400	ND ND	ND	26	0.54	0.88	ND	1.45
TPPH 8260B	(hg/l)		ŀ	ŀ		1	ł	ı	ł	ŀ	ł	ŀ	ŀ	1	;	1		ŀ	1	ł	ŀ	1	1	ł	ŀ	ł
TPH-G	(µg/l)		1300	096	1300	99	120	260	ND	160	170	190	2400	750	50	ND	300	092	2900	ND	ND	140	ND	ND	N	ND
Change in Elevation	(feet)		1	ŀ	ŀ	i	-0.39	-0.26	0.33	0.81	-1.48	1.30	1.76	-0.81	-0.95	-0.15	2.05	-0.87	0.63	-1.54	2.01	-1.08	-0.36	1.17	-1.39	-0.90
Ground- water Elevation	(feet)		ŧ	14.12	ŀ	15.16	14.77	14.51	14.84	15.65	14.17	15.47	17.23	16.42	15.47	15.32	17.37	16.50	17.13	15.59	17.60	16.52	16.16	17.33	15.94	15.04
LPH Thickness	(feet)		:	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water	(feet)		1	20.85	ł	19.81	19.95	20.21	19.88	19.07	20.55	19.25	17.49	18.30	19.25	19.40	17.35	18.22	17.59	19.13	17.12	18.20	18.56	17.39	18.78	19.68
TOC	(feet))OII)	34.97	34.97	34.97	34.97	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72
Date Sampled E		MW-2 0	09/15/92	12/21/92	04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	04/10/96	96/60/L0	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	04/19/00

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	(l/g/l)	1	!	1	ŀ	1	1	73	22	68	22	94	14	9.1		ı	ŀ	1	1	i	ı	ŀ	1	ŀ	i
MTBE 8021B	(l/gn/)	4	33	29	31	11	110	ł	ł	1	ł	l	;	ŀ		ŀ	ŀ	ŀ	1	ł	ł	ŀ	ŀ	ŀ	;
Total Xylenes	$(\mu g/l)$	S	QN	ND<0.50	ND<0.50	0.56	ND<0.50	4.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		26	240	550	310	550	580	330	27	82	140
Ethyl- benzene	(hg/l)	QN	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	3.8	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		140	290	410	300	430	400	310	41	160	140
Toluene	(\gmu)	Q	ND	ND<0.50	09.0	ND<0.50	ND<0.50		40	130	069	200	210	330	150	7.6	26	88							
Benzene	(l/gn/)	QN	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	21	ND<0.50	3.0	2.9	ND<0.50	ND<0.50	ND<0.50		1200	1400	2100	1400	1900	1900	1500	220	099	720
TPPH 8260B	(µg/l)	1	ł	ł	ł	ŀ	ł	;	ŀ	ŀ	61	140	ND<50	ND<50		;	ţ	1	ŀ	1	ł	;	1	ł	I
TPH-G	$(\mu g/l)$	ND	2	ND<50	ND<50	ND<50	ND<50	270	ND<50	130	ŀ	ŀ	ŀ	1		5800	0089	7200	8000	8900	10000	8500	2600	4400	9200
Change in Elevation	(feet)	-0.05	1.57	-0.18	-0.18	1.80	-0.54	-0.20	0.53	-0.75	0.32	-0.25	2.05	-1.75		ŀ	ł	ŀ	ł	ŀ	1	ł	ł	ŀ	-0.45
Ground- water Elevation	(feet)	14.99	16.56	16.38	16.20	18.00	17.46	17.26	17.79	17.04	17.36	17.11	19.16	17.41	: 15-33)	ŀ	ł	ŀ	ł	;	ł	13.37	ļ	14.39	13.94
LPH Thickness	(feet)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	val in feet	l	1	;	ì	i	ŀ	0.00	l	0.00	0.00
Depth to Water	(feet)	19.73	18.16	18.34	18.52	16.72	17.26	17.46	16.93	17.68	17.36	17.61	15.56	17.31	(Screen Interval in feet: 15-33)	ŀ	1	ł	ł	l	ŀ	20.02	1	19.00	19.20
TOC I Elevation	(feet)	continued 34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	34.72	Š)	33.39	33.39	33.39	33.39	33.39	33.39	33.39	33.39	33.39	33.14
Date Sampled E		MW-2 c 01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	MW-3	06/05/91	09/30/91	12/30/91	04/02/92	06/30/92	09/15/92	12/21/92	04/28/93	07/23/93	10/05/93

Page 4 of 14

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS June 1991 Through September 2005 Table 2

Comments		THE PROPERTY OF THE PROPERTY O																					
MTBE 8260B	(hg/l)		;	1	ł	ı	;	;	;	;	ł	ŀ	1	ŀ	ŀ	ŀ	;	ŀ	ł	1	ł	ŀ	ţ
MTBE 8021B	$(\mu g/I)$		ŀ	ŀ	ł	1	;	ŀ	ŀ	190000	1	140000	45	45000	4.0	6.3	140	13	20000	13.7	21.1	1900	23
Total Xylenes	(hg/l)		150	110	ND	300	ND	QN	ND	53	140	160	6.6	340	1.9	3.4	5.9	2.5	480	ND	ND	5.1	3.4
Ethyl- benzene	(µg/l)		170	140	ND	280	1.4	ND	ND	50	150	150	11	140	0.87	1.5	0.90	1.7	100	0.646	3.91	3.0	ND<0.50
Toluene	(l/gn/)		100	30	ND	200	ND	ND	ND	36	110	ND	ND	180	1.9	2.5	2.7	3.6	91	2.61	3.69	3.1	4.1
Benzene	$(\mu g/I)$		830	800	QN	1300	1.6	65	1300	1400	2300	2000	8.0	1900	2.2	1.8	8.2	3.3	890	3.87	ND	9.7	4.6
ТРРН 8260В	(µg/I)		:	ŀ	ł	ŀ	ł	1	1	ł	ŀ	I	ł	i	;	ŀ	;	ŀ	ŀ	ł	ŀ	ł	ł
TPH-G	$(\mu g/I)$		4900	0009	25000	49000	480	8100	ND	3100	ND	ND	540	7400	250	230	400	290	ND	354	464	420	290
Change in Elevation	(feet)		-0.20	0.39	0.87	-1.59	1.37	1.98	-1.11	-1.01	-0.04	1.11	98.0	-1.81	2.16	-1.24	-0.27	1.15	-1.26	-1.08	-0.15	1.95	-0.26
Ground- Change water in Elevation Elevation	(feet)	:	13.74	14.13	15.00	13.41	14.78	16.76	15.65	14.64	14.60	15.71	16.57	14.76	16.92	15.68	15.41	16.56	15.30	14.22	14.07	16.02	15.76
LPH Thickness	(feet)	(0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ŀ	ŀ	1	;	1	1	ł	ŀ
Depth to Water	(feet)	6	19.40	19.01	18.14	19.73	18.36	16.38	17.49	18.50	18.54	17.43	16.57	18.38	16.22	17.46	17.73	16.58	17.84	18.92	19.07	17.12	17.38
	(feet)	OD OD	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14	33.14
Date TOC Sampled Elevation		MW-3 c	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	96/60/20	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	07/19/00	01/02/01	05/23/01	07/30/01

Page 5 of 14

ł 1 1

ND<0.50 ND<0.50

ND<0.50 ND<0.50

;

400 130 280

-0.23

15.53 17.61 17.02

1 1

1 1

15.53 16.12

33.14 33.14

17.61

33.14

10/15/01 01/14/02 04/15/02

ND<0.50

1.1 3.3

0.61 1.6

0.50

: :

-0.59 2.08

1400 6.6 13 23

8.9

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	(µg/l)		ŀ	ŀ	31	63	20000	78000	20000		ŀ	ŀ	ŀ	ł	1	ŀ	I	ŀ	ŀ	ł	ł	I	ŀ	ŀ	1	l
MTBE 8021B	$(\mu g/l)$		33	130	ŀ	ŀ	ł	ļ	1		ł	ł	ŀ	ł	ŀ	ŀ	ŀ	ŀ	I	ł	1	1	120	I	240	480
Total Xylenes	$(\mu g/1)$		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<400	ND<400	50		8.9	0.74	ND	N	ND	1.6	ND	ND	0.74	ND						
Ethyl- benzene	$(\mu g/I)$		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<200	ND<200	ND<25		2.8	0.97	ND	ND	ND	92.0	ND									
Toluene	(μg/I)		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<200	ND<200	40		2.1	ND														
Benzene	(hg/l)		ND<0.50	0.54	2.3	7.9	ND<200	330	360		0.51	ND	0.85	QN	ND	ND	ND	ND	ND	<u>N</u>						
TPPH 8260B	(µg/l)		1	ł	300	130	ND<20000	ND<20000	12000		ŀ	I	ŧ	1	I	ł	ŀ	ŀ	;	1	ŀ	1	ŀ	1	1	ł
TPH-G	$(\mu g/l)$		64	420	ł	1	ï	I	I		480	220	ND	85	130	210	68	190	170	ND	86	N Q	ND	ND	ND	ND
Change in Elevation	(feet)		-0.36	0.67	-0.93	0.59	-0.49	2.11	-2.02		1	ł	ł	ŀ	-0.43	-0.19	0.40	98.0	-1.58	1.50	1.88	-1.14	-1.02	-0.02	2.05	-0.96
Ground- water Elevation	(feet)		16.66	17.33	16.40	16.99	16.50	18.61	16.59	: 15-33)		13.39	ŀ	14.40	13.97	13.78	14.18	15.04	13.46	14.96	16.84	15.70	14.68	14.66	16.71	15.75
LPH Thickness	(feet)		ł	1	I	0.00	0.00	0.00	0.00	val in feet:	ŀ	ŀ	1	ł	ł	ł	ł	1	1	ł	ŀ	I	!	ł	1	ł
Depth to Water	(feet)		16.48	15.81	16.74	16.15	16.64	14.53	16.55	(Screen Interval in feet: 15-33)	ł	19.73	I	18.72	18.74	18.93	18.53	17.67	19.25	17.75	15.87	17.01	18.03	18.05	16.00	16.96
TOC	(feet)	continued	33.14	33.14	33.14	33.14	33.14	33.14	33.14	S)	ł	33.12	33.12	33.12	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71
Date TOC Sampled Elevation		MW-3	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	06/30/02	MW-4	10/19/92	12/21/92	04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	04/10/96	96/60/L0

Page 6 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

MTBE 8260B	$(\mu g/I)$		ŀ	ł	ł	ì	ł	;	1	ŀ	ł	ŀ	ł	ŀ	ì	1	ł	ŀ	52	1700	6400	1600	3800		ŀ	ŀ
MTBE 8021B	$(\mu g/I)$		270	460	17	3.8	4600	QN	450	ND	ND	ND	4.9	ND<5.0	30	180	50	ND<2.0	ł	ł	ł	1	1		1	ŀ
Total Xylenes	(µg/l)		QN	ND	ND	ND	N ON	ND	ND	ND	N	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<20	ND<100	ND<1.0	ND<1.0		61	34
Ethyl- benzene	$(\mu g/I)$		ND	ND<0.50	ND<10	ND<50	ND<0.50	ND<0.50		100	83															
Toluene	$(\mu g/1)$		ND	ND	N	ND	N	ND	ND	ND	ND	ND	ND<0.50	ND<10	ND<50	ND<0.50	ND<0.50		5.0	4.7						
Benzene	(µg/l)		ND	N	ND	ND	ND<0.50	ND<10	ND<50	ND<0.50	ND<0.50		61	51												
ТРРН 8260В	(µg/l)		1	1	1	1	l	ł	ł	ŀ	1	1	1	1	1	!	1	ł	200	1300	ND<5000	ND<1300	006		1	!
TPH-G	(µg/l)		ND	ND	ND	ND	N Q	ND	ND	ND	ND	ND	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ł	ł	ŀ	ŀ	ł		2700	1700
Change in Elevation	(feet)		0.92	-1.83	1.82	-0.90	-0.39	0.98	-1.45	-1.13	0.00	2.03	-0.06	-0.20	2.11	-0.51	-0.42	0.51	-0.78	0.05	-0.04	2.01	-2.76		ł	1
Ground- water Elevation	(feet)		16.67	14.84	16.66	15.76	15.37	16.35	14.90	13.77	13.86	15.89	15.83	15.63	17.74	17.23	16.81	17.32	16.54	16.59	16.55	18.56	15.80	: 15-32)	1	13.50
LPH Thickness	(feet)		0.00	0.00	1	1	ł	1	1	ı	I	ı	1	1	1	1	I	:	1	0.00	0.00	0.00	0.00	rval in feet	ł	ŀ
Depth to Water	(feet)		16.04	17.87	16.05	16.95	17.34	16.36	17.81	18.94	18.85	16.82	16.88	17.08	14.97	15.48	15.90	15.39	16.17	16.12	16.16	14.15	16.91	(Screen Interval in feet: 15-32)	1	19.75
TOC Elevation	(feet)	continued	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	32.71	S	1	33.25
Date Sampled El		MW-4 c	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	07/19/00	01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	MW-5	10/19/92	12/21/92

Page 7 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

76 Station 0752	

Comments

MTBE 8260B	(µg/l)		1	ŀ	I	ŀ	1	1	1	;	1	1	;	;	1	ì	ì	1	1	ı	ŀ	ı	1	ŧ	ŀ
MTBE 8021B	$(\mu g/l)$!	ŀ	ł	ł	ŀ	Į	1	ŀ	ł	ł	1100	ŀ	640	150	009	2500	ND	ND	260	099	430	926	368	130
Total Xylenes	(µg/l)	430	47	40	46	35	36	22	28	420	190	39	13	20	34	430	45	N	ND	2.9	27	14	43.4	9.32	7.1
Ethyl- benzene	(µg/l)	250	89	54	42	38	37	28	30	170	130	15	8.3	7.0	10	160	18	ND	ND	2.2	QN	ND	65.3	7.97	13
Toluene	(µg/l)	190	8.0	6.2	ND	5.1	8.4	5.7	8.6	240	100	14	4.4	18	20	400	23	N	ND	4.1	ND	6.3	57.3	17.8	10
Benzene	$(\mu g/l)$	200	122	70	44	46	26	62	50	190	210	92	53	25	4	190	200	ND	ND	61	170	180	289	87.2	45
ТРРН 8260В	(l/gη)	ŀ	ŀ	ł	;	ŀ	1	;	ŀ	ŀ	ł	;	ŀ	l	ļ	ŀ	ţ	;	ł	ŀ	ł	;	!	1	;
TPH-G	(l/grl)	0029	2000	1700	1500	1800	2200	1600	1700	5400	3800	1300	630	200	1000	4000	1700	ND	ND	330	1100	1000	2980	1150	840
Change in Elevation	(feet)	ļ	1	-0.39	-0.22	0.37	0.78	-1.47	1.45	1.77	-1.03	-0.97	-0.05	2.15	-1.06	0.75	-1.72	1.81	-1.00	-0.28	1.14	-1.44	-1.02	0.40	1.09
Ground- water Elevation	(feet)	I	14.51	14.12	13.90	14.27	15.05	13.58	15.03	16.80	15.77	14.80	14.75	16.90	15.84	16.59	14.87	16.68	15.68	15.40	16.54	15.10	14.08	14.48	15.57
LPH Thickness	(feet)	ŀ	ł	ł	ł	ŀ	1	1	ŀ	ŀ	ł	1	ŀ	ł	1	0.00	0.00	ŀ	1	ł	1	F	I	ŀ	ł
Depth to Water	(feet)	ł	18.74	18.83	19.05	18.68	17.90	19.37	17.92	16.15	17.18	18.15	18.20	16.05	17.11	16.36	18.08	16.27	17.27	17.55	16.41	17.85	18.87	18.47	17.38
TOC Elevation	(feet)	continued 3 33.25	33.25	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95
Date Sampled E		MW-5 c 04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	04/10/96	96/60/20	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	04/19/00	01/02/01	05/23/01

Page 8 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments

		The state of the s																								
MTBE 8260B	$(\mu g/l)$		ŀ	ł	ł	ŀ	ŀ	ŀ	3.6	16	120	140	38		ŀ	ŀ	ł	ļ	ł	ł	ŀ	ŀ	ŀ	ŀ	1	ł
MTBE 8021B	(µg/l)	Ç,	3/0	ND<500	ND<2.5	77	170	81	ł	ł	ŀ	ŀ	ł		ŀ	ł	ł	ł	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	1
Total Xylenes	(µg/l)	ç	13	1300	ND<0.50	7.7	28	ND<1.0	ND<1.0	ND<1.0	11	72	9.2		28	15	5.3	2.7	7.3	111	ND	ND	ND	1.8	ND	ND
Ethyl- benzene	$(\mu g/l)$	(6.9	28	ND<0.50	111	09	ND<0.50	ND<0.50	9.65	2.8	65	2.4		09	39	111	3.4	5.3	8.5	ND	ND	ND	2.0	ND	ND
Toluene	(l/gn/)	č	5 7	230	ND<0.50	6.7	22	ND<0.50	ND<0.50	1.6	14	84	5.8		12	11	1.5	0.99	ND	ND	ND	ND	ND	0.92	ND	ND
Benzene	(l/gµ)	C	78	390	ND<0.50	20	40	0.75	ND<0.50	16	81	160	26		420	370	54	19	34	57	ND	ND	ND	18	ND	ND
TPPH 8260B	(l/gn)		l	1	ł	;	ł	1	ND<50	82	006	2000	1200		!	ł	;	ŀ	;	1	ł	1	ŀ	I	ł	ı
TPH-G	(hg/l)	1000	1900	26000	ND<50	310	1500	ND<50	ł	ŀ	. !	ł	1		3900	2300	1200	580	1400	1400	5300	ND	11000	550	0099	N
Change in Elevation	(feet)	<i>3</i> C 0	0.20	-0.21	2.00	-0.56	-0.32	0.53	-0.61	0.21	-0.30	2.08	-1.89		I	ţ	1	1	-0.44	-0.19	0.39	0.90	-1.60	1.34	2.03	-1.15
Ground- water Elevation	(feet)	15 02	13.03	15.62	17.62	17.06	16.74	17.27	16.66	16.87	16.57	18.65	16.76	: 15-32)	ŀ	13.25	l	14.25	13.81	13.62	14.01	14.91	13.31	14.65	16.68	15.53
LPH Thickness	(feet)		i	+	1	1	;	1	ŀ	0.00	0.00	0.00	0.00	rval in feet	ŀ	2 19.17 13.25	I	1	1	1	ł	ŀ	ŀ	ł	ł	i
Depth to Water	(feet)	17 13	17.12	17.33	15.33	15.89	16.21	15.68	16.29	16.08	16.38	14.30	16.19	creen Inte	1	19.17	ł	18.17	18.35	18.54	18.15	17.25	18.85	17.51	15.48	16.63
TOC Elevation	(feet)	continued	34.33	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	32.95	S	ŀ	32.42	32.42	32.42	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16
Date Sampled E		MW-5 c	10/05/10	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	9-MW	10/19/92	12/21/92	04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95

Page 9 of 14

Table 2

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS June 1991 Through September 2005

76 Station 0752

Comments

MTBE 8260B	(µg/l)		!	ì	ı	ŀ	ł	1	1	i	ł	ł	ŀ	ŀ	1	ł	1	ł	ì	ŀ	ŀ	:	ND<2.0	2.4	9100	7600
MTBE 8021B	$(\mu g/1)$		75000	ŀ	53000	20097	390	16000	ND	ND	14	2.8	280	ND	ND	ND	ND<2.5	ND<5.0	ND<2.5	ND<5.0	ND<0.50	ND<2.0	ŀ	ł	ŀ	I
Total Xylenes	$(\mu g/I)$,	ON.	0.81	2.7	ND	ON	700	ND	N	ND	ND	17	0.974	ND	ND	ND<0.50	ND<0.50	ND<0.50	0.73	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<100	ND<1.0
Ethyl- benzene	$(\mu g/l)$	į	N	ND	0.94	12	ND	240	ND	N Q	ND	ND	99.0	ND	ND	ND	ND<0.50	ND<50	ND<0.50							
Toluene	$(\mu g/l)$	Į,	2	0.58	4.7	ND	ND	240	ND	ND	ND	N	ND	1.32	ND	ND	ND<0.50	0.62	ND<0.50		ND<0.50			ND<0.50	ND<50	ND<0.50
Benzene	(µg/l)	ō	8	6.6	258	410	0.80	1100	ND	ND	ND	ND	24	ND	ND	ND	ND<0.50	2.6	95	2.5						
TPPH 8260B	(l/gn)		ı	1	ł	1	ŀ	1	;	ł	ł	;	1	ł	t i	ŀ	ŀ	I	ł	I	1	ł	ND<50	ND<50	2006	ND<5000
TPH-G	(µg/l)	į	N N	70	300	1800	ND	5700	ND	ND	ND	N	78	ND	ND	ND	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ì	ł	ŀ	1
Change in Elevation	(feet)		-1.05	0.02	2.10	-1.03	06.0	-1.84	2.09	-1.14	-0.44	1.07	-1.01	-1.08	-0.06	1.68	-0.07	-0.18	2.07	-0.47	-0.49	-0.24	90.0	0.25	-0.32	2.11
Ground- water Elevation	(teet)	2.4	14.48	14.50	16.60	15.57	16.47	14.63	16.72	15.58	15.14	16.21	15.20	14.12	14.06	15.74	15.67	15.49	17.56	17.09	16.60	16.36	16.42	16.67	16.35	18.46
LPH Thickness	(feet)		!	1	!	ı	0.00	0.00	ł	i	ŀ	1	1	ł	;	!	:	ł	ł	ŀ	I	ŀ	ł	0.00	0.00	0.00
Depth to Water	(feet)	7	1 /.08	17.66	15.56	16.59	15.69	17.53	15.44	16.58	17.02	15.95	16.96	18.04	18.10	16.42	16.49	16.67	14.60	15.07	15.56	15.80	15.74	15.49	15.81	13.70
TOC Elevation	(feet)	Con	32.10	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16	32.16
Date Sampled F		MW-6	10/10/93	01/03/96	04/10/96	96/60/20	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	07/19/00	01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05

Page 10 of 14

0752

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 1991 Through September 2005

Comments																							inaccessible-parked car		
MTBE 8260B	(l/gn/)	5800		ł	ŀ	ł	ŀ	1	ŀ	;	;	ŀ	ŀ	ŀ	ł	ŀ	ı	ł	ŀ	ł	1	ŀ	ŀ	ł	1
MTBE 8021B	$(\mu g/I)$	ŀ		1	ŀ	I	1	ŀ	ŀ	1	1	1	1	1	13000	ł	3200	3400	0099	10000	ND	ND	ţ	290	86
Total Xylenes	$(\mu g/I)$	41		:	1.7	5.4	0.99	1.9	8.0	ND	1.2	ND	5.8	N	QN	1.4	0.88	NO	Q	0.62	0.56	ND	ł	ND	4.4
Ethyl- benzene	$(\mu g/I)$	28		ŀ	1.4	28	0.91	0.75	ND	ND	ND	ND	3.4	ND	ND	2.7	ND	ND	ND	ND	ND	ND	1	ND	ND
Toluene	$(\mu g/I)$	37		ł	1.3	3.3	1.2	ND	ND	ND	0.85	ND	ND	ND	ND	1.3	1.5	ND	ND	N N	ND	S	ŀ	ND	ND
Benzene	(µg/l)	140		:	2.8	23	10	0.93	2.0	QN	5.6	ND	24	14	170	16	4.1	ND	16	16	N	QN	1	ND	7.7
TPPH 8260B	(µg/l)	4300		ł	ł	1	i	ł	ŀ	1	1	ŀ	ł	ł	;	1	1	1	1	1	ł	I	ŀ	1	ı
TPH-G	$(\mu g/l)$	ł		ł	110	790	360	ND	360	ND	340	ND	570	ND	740	360	120	ND	ND	ND	ND	ND	ŀ	ND	ND
Ground- Change water in Elevation Elevation	(feet)	-1.78		ł	1	ŀ	-0.45	-0.15	0.41	0.98	-1.73	1.58	1.86	-1.24	-1.03	90.0	2.21	-1.18	0.91	-1.91	2.43	-1.48	ł	ł	-1.08
Ground- water Elevation	(feet)	16.68	: 13-33)	ŀ	1	13.89	13.44	13.29	13.70	14.68	12.95	14.53	16.39	15.15	14.12	14.18	16.39	15.21	16.12	14.21	16.64	15.16	ł	16.48	15.40
LPH Thickness	(feet)	0.00	rval in feet	ŀ	I	ł	ļ	1	1	1	1	1	1	ł	ŀ	ł	ı	!	0.00	0.00	ł	ł	1	;	I
Depth to Water	(feet)	15.48	(Screen Interval in feet: 13-33)	ł	1	18.60	18.76	18.91	18.50	17.52	19.25	17.67	15.81	17.05	18.08	18.02	15.81	16.99	16.08	17.99	15.56	17.04	ı	15.72	16.80
TOC Elevation	(feet)	continued 32.16	92	1	32.49	32.49	32.20	32.20	. 32.20	. 32.20	. 32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20
Date Sampled I		MW-6 c 09/30/05	MW-7	10/19/92	04/28/93	07/23/93	10/05/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95	07/14/95	10/10/95	01/03/96	04/10/96	96/60/20	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00

Page 11 of 14

0752

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

June 1991 Through September 2005

76 Station 0752

Comments

MTBE 8260B	(µg/I)		1	:	ŀ	f	1	ţ	ŀ	ı	1	19	3.2	5100	8400	ND<0.50		ŀ	ļ	ı	ł	ł	ł	1	I	1
MTBE 8021B	$(\mu g/I)$		2	ND	ND	ND<2.5	ND<5.0	ND<2.5	ND<5.0	ND<0.50	ND<2.0	ł	ŀ	ł	ł	1		ł	ł	I	51	1	1	ŀ	{	ł
Total Xylenes	$(\mu g/l)$		0.979	NO	ND	ND<0.50	ND<0.50	ND<0.50	0.70	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<100	ND<100	ND<1.0		1.4	ND	ND	ND	ND	ND	ND	1.8	N Q
Ethyl- benzene	(µg/l)	,	ND ND	ND	ND	ND<0.50	ND<50	ND<50	ND<0.50		1.8	9.0	ND	ND	ND	1.6	ND	2.0	ND							
Toluene	(l/gn)		1.27	ND	N	ND<0.50	0.58	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<50	ND<50	ND<0.50		1.8	ND	ND	ND	ND	ND	ND	0.72	ND
Benzene	(hg/l)	į	ND	ND	ND	ND<0.50	3.6	120	190	ND<0.50		18	5.1	1.7	S	1.2	17	ND	18	11						
ТРРН 8260В	$(\mu g/l)$		ł	ł	ł	ŀ	ł	1	ł	1	ŀ	ND<50	ND<50	ND<5000	ND<5000	ND<50		1	ł	ł	ł	1	ŀ	ł	1	ł
TPH-G	(hg/l)	ļ	S	N	ND	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ŀ	ŀ	ł	ŀ	ŀ		450	260	120	ND	150	730	140	440	096
Ground- Change water in Elevation Elevation	(feet)	•	-1.08	-0.09	1.16	0.02	-0.19	2.13	-0.44	-0.63	0.81	-0.78	-0.01	-0.22	2.13	-1.94		ł	i	-0.45	-0.16	0.43	0.89	-1.57	1.40	2.04
Ground- water Elevation	(feet)		14.32	14.23	15.39	15.41	15.22	17.35	16.91	16.28	17.09	16.31	16.30	16.08	18.21	16.27	: 11-29)	ŀ	13.88	13.43	13.27	13.70	14.59	13.02	14.42	16.46
LPH Thickness	(feet)		l	ł	1	1	1	ı	ì	l	ŀ	ŀ	0.00	0.00	0.00	0.00	rval in feet		ŀ	ŀ	1	1	!	1	l	I
Depth to Water	(feet)	ţ	17.88	17.97	16.81	16.79	16.98	14.85	15.29	15.92	15.11	15.89	15.90	16.12	13.99	15.93	creen Inte	ŀ	18.45	18.57	18.73	18.30	17.41	18.98	17.58	15.54
TOC Elevation	(feet)	on O	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	32.20	S)	32.33	32.33	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Date Sampled E		MW-7 c	0//19/00	01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	MW-8	04/28/93	07/23/93	10/02/93	01/03/94	04/02/94	07/05/94	10/06/94	01/02/95	04/03/95

Page 12 of 14

Table 2

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS June 1991 Through September 2005

76 Station 0752

Comments

		7.7.7.7.7.4.7.4.7.4.7.4.7.4.7.4.7.4.7.4																								
MTBE 8260B	$(\mu g/I)$		ŀ	ŀ	ŀ	ŀ	ł	ŀ	ŀ	ŀ	ł	ŀ	ł	ł	ŀ	ŀ	1	}	ŀ	ŀ	ì	I	ŀ	2.4	310	2100
MTBE 8021B	$(I/g\mu)$		ł	170	ł	09	140	92	270	2.9	ND	11	ND	11	ND	ND	ND	2.7	ND<5.0	ND<2.5	ND<5.0	11	ND<2.0	ŀ	I	ŀ
Total Xylenes	(µg/l)		3.3	ND	1.8	ND	ND	ND	ND	92.0	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<1.0						
Ethyl- benzene	$(\mu g/I)$		1.1	0.67	QN	ND	0.521	ND	ND	ND<0.50	ND<2.5	ND<0.50														
Toluene	$(\mu g/I)$		2.6	0.62	0.51	0.61	ND	N Q	ND	ND	ND	ND	ND	NO	2.99	ND	ND	ND<0.50	0.65	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<0.50
Benzene	$(\mu g/l)$		4.2	1.3	ND	1.1	1.0	ND	ND	ND	ND	ND	QN	ND	ND	ND	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.3	ND<2.5	ND<2000 ND<0.50
ТРРН 8260В	(µg/l)		ŀ	ŀ	;	;	ł	ŀ	ì	;	:	ł	;	ŀ	1	ł	ł	ŀ	ŀ	1	ŀ	i	ł	52	350	ND<2000
TPH-G	(µg/l)		280	110	63	ND	72	ND	QN	ND	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ł	ł	ŀ							
Change in Elevation	(feet)		-1.27	-1.04	0.03	2.12	-1.08	0.99	-1.90	2.19	-1.30	-0.33	1.28	-1.09	-1.12	-0.06	1.16	0.44	-0.20	2.19	-0.43	-0.64	0.82	-0.87	-0.21	2.13
Ground- Change water in Elevation Elevation	(feet)		15.19	14.15	14.18	16.30	15.22	16.21	14.31	16.50	15.20	14.87	16.15	15.06	13.94	13.88	15.04	15.48	15.28	17.47	17.04	16.40	17.22	16.35	16.14	18.27
LPH Thickness	(feet)		I	ŀ	i	1	ł	0.00	0.00	i	ı	ł	ŀ	ł	ŀ	I	ŀ	ŀ	ŀ	1	i	l	ŀ	0.00	0.00	0.00
Depth to Water	(feet)		16.81	17.85	17.82	15.70	16.78	15.79	17.69	15.50	16.80	17.13	15.85	16.94	18.06	18.12	16.96	16.52	16.72	14.53	14.96	15.60	14.78	15.65	15.86	13.73
TOC Elevation	(feet)	continued	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Date Sampled E		MW-8 c	07/14/95	10/10/95	01/03/96	04/10/96	96/60/L0	01/24/97	07/23/97	01/26/98	07/03/98	01/14/99	07/15/99	01/02/00	04/19/00	01/02/01	05/23/01	07/30/01	10/15/01	01/14/02	04/15/02	07/15/02	01/18/03	02/04/04	08/11/04	03/31/05

Page 13 of 14

Page 14 of 14

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS June 1991 Through September 2005

76 Station 0752

Comments		
MTBE 8260B	(µg/l)	0069
MTBE 8021B	$(\mu g/I)$	I
Total Xylenes	(hg/l)	ND<1.0
Ethyl- benzene	$(\mu g/l)$	ND<0.50
Toluene	$(\mu g/I)$	0.50
Benzene	(hg/l)	ND<0.50
ТРРН 8260В	(µg/l)	1200
TPH-G	(µg/l)	;
Change in Elevation	(feet)	-2.21
Ground- water Elevation	(feet)	16.06
LPH Thickness	(feet)	0.00
Depth to Water	(teet)	15.94
TOC Elevation	(feet)	AW-8 continued 09/30/05 32.00
Date Sampled		MW-8 c 09/30/05

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 0752

Date Sampled	TPH-D	EDC	PCE	Chloro- form	TCE	EDB	Lead (Total)	Pre-Purge Post Purge	Post Purge DO	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8760B	Calcium
•	(a/)	(//٥/۱)	(1/0/1)	——————————————————————————————————————	([/6/1])	(110/1)		(1)	(L)	(11)		()2.1)		() - ()	(1)
	(4841)	(48/1)	(µ8/1)	(1/8H)	(hg/1)	(1/84)	(µ8/1)	(11/B111)	(1/gill)	(mg/1)	(µg/1)	(µg/ı)	(µg/1)	(µg/1)	(mg/1)
MW-1	7		C	0	-										
09/30/91) QX) 	o: 1			! !			1	:	ł	1	1	ŀ
12/30/91	2	ł	2.1	6.4	6.0	1	0.0057	¦ ;			!	!	!	ŀ	ŀ
04/02/92	94	ŀ	2.6	7.1		ı	0.016	;	ŀ	ł	ŀ	i 1	l .	l 1	: ;
06/30/92	120	1	2.2	9.5		ł	0.009	ł	ł	ŀ	ţ	ł	ł	;	;
09/15/92	ND	ŀ	2.2	12		ŀ	ł	ţ	;	ŀ	ì	ŀ	ł	ł	ŀ
12/21/92	ND	ŀ	1.4	12		1	ŀ	ł	;	ł	ŀ	ł	ł	ł	ŀ
04/28/93	470	1.1	0.89	12		ŀ	ŀ	1	;	ŀ	1	1	ŀ	ŀ	ł
07/23/93	ND	I	1.3	16		ł	ł	ŀ	ł	1	ŀ	ŀ	ł	ł	ł
10/05/93	57	ı	1.3	13		1	ŀ	ŀ	ŀ	ł	;	ı	ł	ŀ	
01/03/94	ND	ŀ	1.4	18		;	ł	ì	ł	ŀ	ł	ŀ	ŀ	ł	ł
04/02/94	ND	ı	1.1	15	89.0	ŀ	ŀ	ŀ	ł	ł	;	;	1	ŀ	;
04/10/96	ŀ	ł	;	ł		!	ŀ	ł	3.04	;	ŀ	;	1	ŀ	21
96/60/20	ŀ	ŀ	;	ŀ	1	ŀ	ŀ	ł	3.13	ł	ı	ŀ	ŀ	1	ŀ
01/24/97	!	ł	1	ì	ŀ	ŀ	1	ł	2.56	ŀ	ļ	i	ŀ	ł	1
07/23/97	ł	;	ł	ŀ	ŀ	1	ì	2.26	2.81	ŀ	ŀ	ł	;	ł	1
01/26/98	1	ł	ŀ	1	1	1	ł	3.97	:	ŀ	ı	ł	i	1	;
07/03/98	ł	ŀ	ł	ŀ	:	1	1	3.58	ł	ŀ	ł	ŀ	ţ	:	!
07/15/02	ŀ	ND<0.5	ŀ	ł	ì	ND<0.5	;		ŀ	ŀ	ND<0.5	ND<5.0	ND<1.0	ND<0.5	1
02/04/04	ŀ	ľ	!	1	1	ł	ł	ŀ	ŀ	ł	ł	ND<10000	1	1	ł
MW-2									•	į					
06/50/10	!	!	!	ł	ŀ	ŀ	1	1	1.80	7.6	1	!	:	1	27
04/10/96	;	ŧ	ł	ŀ	ŀ	ı	ŀ	ł	5.88	ł	ł	ł	;	ì	58
96/60/20	ł	1	1	1	1	ł	ł	ł	0.71	;	1	;	ł	ł	į
01/24/97	ł	1	1	ł	ł	ŀ	ł	;	2.37	;	;	1	1	ŀ	1
07/23/97	1	ł	į.	;	ł	ŀ	ł	1.40	0.97	1	ł	ŀ	ŀ	ŀ	ł

Page 1 of 2

0752

age 2 of 2

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 0752

Page 1 of 2

Table 3 b
ADDITIONAL ANALYTICAL RESULTS
76 Station 0752

Bicarbonat e	Alkalinity (mg/l)	ŀ	1	1	160	ł	ł	ŀ	ŀ	1	ł	ł		130	460	i	ł	ŀ	ł	I		1	;	ŀ	ŀ
TOG Iron (Fotal) Bicarbonat e	(mg/l)	I	ı	:	15	ł	1	ŀ	1	:	ŀ	1		77	09	ł	ŀ	ŀ	ŀ	ŀ		1	ł	ŀ	1
TOG	(mg/l)	Ŋ	ND	QN	ŀ	ı	1	ł	ł	ł	ł	ŀ		ŀ	ŀ	ŀ	ł	ŀ	ł	1		ì	ł	ŀ	ŀ
Nitrate	(mg/l)	I	ì	;	ŀ	;	ł	ł	ł	ŀ	ł	ł		0.22	1	ŀ	ŀ	ł	ļ	ŀ		i	ŀ	ŀ	ŀ
ВОД	(mg/l)	ſ	ł	ŀ	ł	;	ł	ŀ	ł	ł	ŀ	ŀ		2.2	1	ł	ŀ	ŀ	ŀ	ł		ł	ŀ	ļ	ł
Nickel Cadmium Chromium	(mg/l)	0.0078	0.015	0.079	ŀ	1	ŀ	ŀ	ŀ	ŀ	ŀ	1		ŀ	1	ŀ	ł	1	ł	ŀ		ŀ	ł	;	1
Cadmium	(mg/l)	NO	ND	ND	ł	ŀ	ŀ	ı	ŀ	ŀ	ŀ	ŀ		1	1	1	;	1	1	ŀ		!	ŀ	1	I
Nickel	(mg/l)	ND	ND	0.1	1	ł	ł	ł	ł	ŀ	ł	ł		1	1	1	:	ŀ	ŀ	ł		ł	ŀ	ł	ŀ
Ethanol 8260B	(µg/l)	1	ļ	ŀ	ł	ND<25		ND<25000	ND<50000	ND<1000	ND<2000	ND<250		ŀ	1	ND<500	ND<500	ND<50	ND<50	ND<250		ND<500	ND<20000	ND<20000	ND<12000
Zinc	(mg/l)	0.046	0.02	0.087	ŀ	ł	ŀ	ŀ	1	ŀ	1	1		ŀ	ı	ł	ł	1	ł	1		ì	i	ŀ	ł
Mang	(mg/l)		ł	ŀ	2.6	1	ì	ŀ	ŀ	ŀ	ŀ	1			7.0	ŀ		ŀ		ŀ		ł	ł	ŀ	ŀ
Date Sampled		MW-1 12/30/91	04/02/92	06/30/92	04/10/96	07/15/02	01/18/03	07/11/03	02/04/04	08/11/04	03/31/05	90/30/02	MW-2	01/03/96	04/10/96	07/11/03	02/04/04	08/11/04	03/31/05	09/30/02	MW-3	02/04/04	08/11/04	03/31/05	09/30/02

MW-4

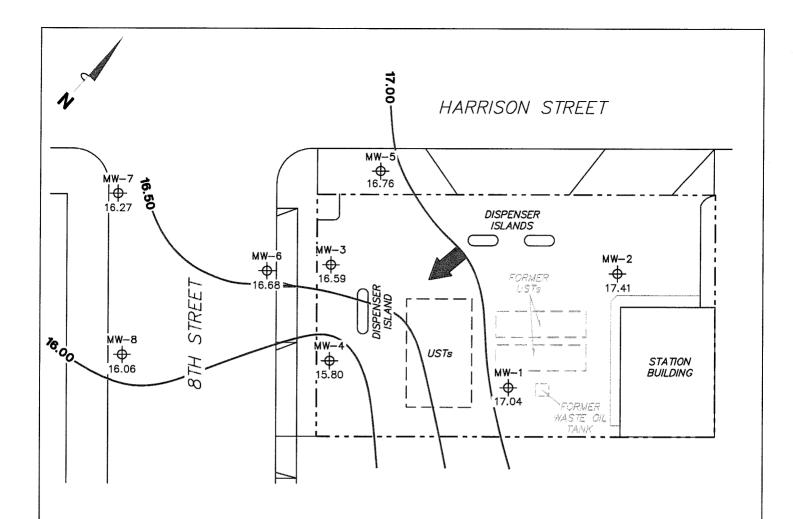
Table 3 b
ADDITIONAL ANALYTICAL RESULTS
76 Station 0752

								70.10				
Date Sampled	Date Mang Sampled	Zinc	Ethanol 8260B	Nickel	Nickel Cadmium Chromium	Chromium	ВОД	Nitrate	TOG	TOG Iron (Total) Bicarbonat	Bicarbonat e Alkalinity	
	(mg/l)	(mg/l)	(l/gn)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	
MW-4 02/04/04	MW-4 continued 02/04/04	I	ND<10000	!	ł	;	ŀ	I	1	;	ŀ	
08/11/04	ł	I	ND<5000	ŀ	1	:	ł	1	ŀ	;	1	
03/31/05	ŀ	}	ND<1300	ł	1	;	ŀ	ł	1	;	ŀ	
09/30/02	1	ı	ND<250	ł	ŀ	ŀ	ł	ŀ	1	1	ı	
MW-5												
02/04/04	ł	ŀ	ND<500	ł	i	1	;	ı	ł	ł	ł	
08/11/04	ŀ	1	ND<50	ŀ	1	ŀ	1	ļ	1	ŀ	ŀ	
03/31/05	1	ł	ND<50	ł	1	ŀ	ŀ	ł	1	ł	1	
90/30/02	1	1	ND<250	ł	:	ŀ	ı	ł	ŀ	1	ł	
MW-6 02/04/04	ł	ŀ	ND<500	;	;	1	1	ŀ	ı	I	I	
08/11/04	i	ŀ	ND<5000	;	ŀ	1	ł	ł	ŀ	;	ŀ	
03/31/05	ŀ	ı	ND<5000	ŀ	:	ŀ	;	ł	ŀ	ŀ	1	
90/30/02	ŀ	I	ND<250	ł	ł	1	1	ŀ	ł	I	1	
MW-7 02/04/04	I	;	ND<500	I	ŀ	ŀ	1	1	ı	1	ı	
08/11/04	ł	ł	ND<5000	I	ı	;	;	1	ŀ	ł	ŀ	
03/31/05	;	I	ND<5000	ŀ	ł	1	ŀ	;	ŀ	ŀ	ŀ	
90/30/02	1	ŀ	ND<250	ı	ł	ŀ	ł	ł	ŀ	1	ŀ	
MW-8 02/04/04	ŀ	I	ND<500	ŀ	ŀ	ŀ	!	ļ	;	;	1	
08/11/04	ł	ł	ND<250	1	ŀ	1	!	ŀ	ł	ŀ	· .	
03/31/05	ŀ	ŀ	ND<2000	ł	1	;	ŀ	i	ŀ	ł	1	
09/30/02	. 1	ł	ND<250	ł	ı	ļ	ł	ŀ	;	ł	;	

0 1/4 1/2 3/4 1 MILE

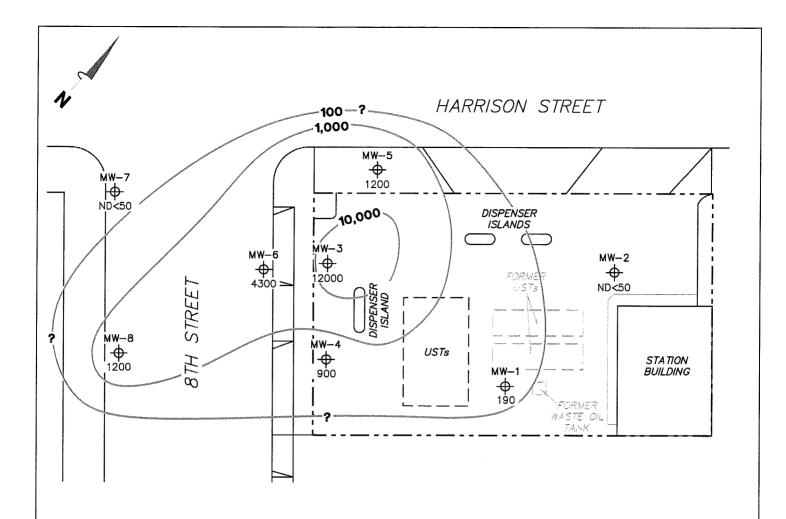
SCALE 1:24,000

SOURCE:


United States Geological Survey 7.5 Minute Topographic Map: Oakland East & Oakland West Quadrangles

VICINITY MAP

76 Station 0752 800 Harrison Street Oakland, California


0752-003

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank.

LEGEND MW-8 Monitoring Well with Groundwater Elevation (feet) 17.00 Groundwater Elevation Contour General Direction of Groundwater Flow

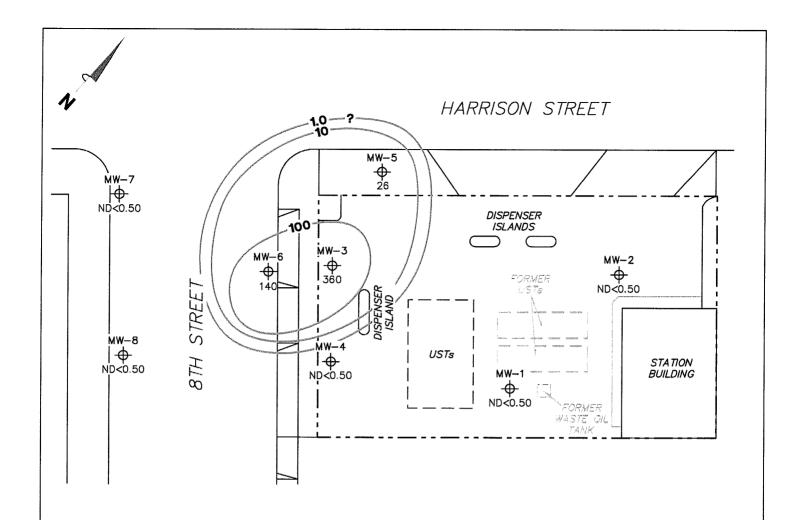
GROUNDWATER ELEVATION
CONTOUR MAP
September 30, 2005

76 Station 0752 800 Harrison Street Oakland, California

0752-003

PS=1:1


Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPPH = total purgeable petroleum hydrocarbons. $\mu g/l =$ micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Results obtained using EPA Method 8260B.


LEGEND MW-8 Monitoring Well with Dissolved—Phase TPPH Concentration (µg/l) Dissolved—Phase TPPH Contour (µg/l)

DISSOLVED-PHASE TPPH CONCENTRATION MAP September 30, 2005

> 76 Station 0752 800 Harrison Street Oakland, California

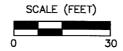
0752-003

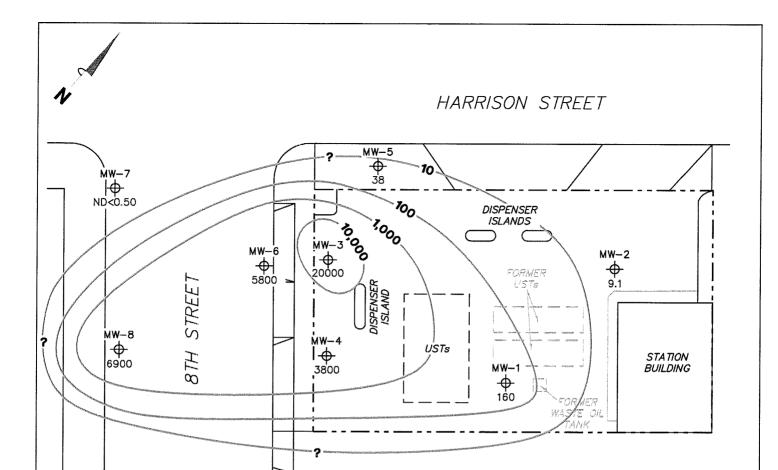
PS=1:1

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. $\mu g/l = micrograms$ per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank.

LEGEND

MW-8


Monitoring Well with
Dissolved—Phase Benzene
Concentration (μg/l)


Dissolved—Phase Benzene Contour (µg/I)

CONCENTRATION MAP September 30, 2005

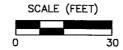
> 76 Station 0752 800 Harrison Street Oakland, California

0752-003

PS=1:1

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. $\mu g/l$ = micrograms per liter. UST = underground storage tank. Results obtained using EPA Method 8260B.

LEGEND


MW-8 + Monitoring Well with Dissolved-Phase MTBE Concentration (µg/l)

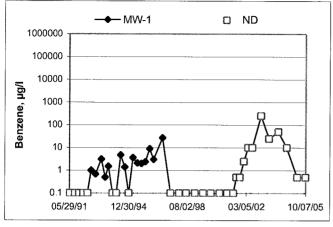
Dissolved—Phase MTBE Contour (µg/I)

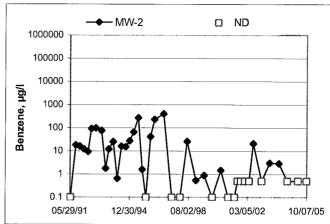
DISSOLVED-PHASE MTBE CONCENTRATION MAP September 30, 2005

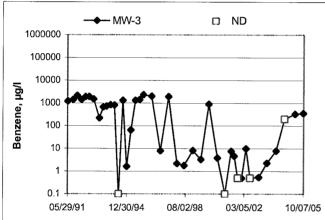
> 76 Station 0752 800 Harrison Street Oakland, California

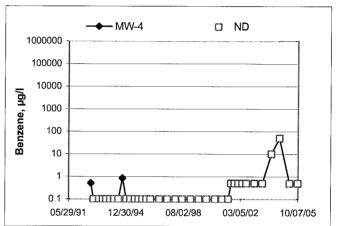
TRE

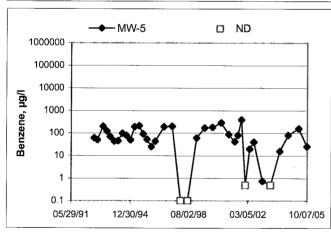
GRAPHS

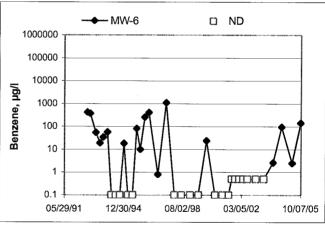

→ MW-1 -0- MW-2 -x- MW-4 **-**\$− MW-3 Feb-05 May-02 Aug-99 96-voN Feb-94 May-91 10.00 20.00 19.00 18.00 17.00 16.00 15.00 14.00 13.00 12.00 11.00 Groundwater Elevation (feet)

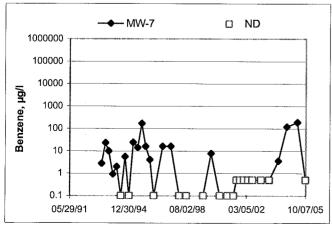

Groundwater Elevations vs. Time 76 Station 0752

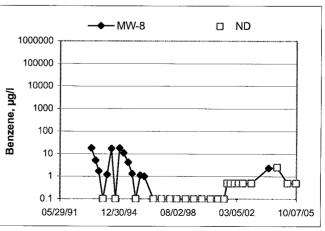

→ MW-5 -0- MW-6 -2- MW-7 -x- MW-8 Feb-05 May-02 Aug-99 96-voN Feb-94 May-91 10.00 17.00 20.00 18.00 19.00 16.00 15.00 14.00 13.00 12.00 11.00 Groundwater Elevation (feet)


Groundwater Elevations vs. Time 76 Station 0752


Benzene Concentrations vs Time 76 Station 0752







GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician: Malissa Job #/Task #: 41050001/EA20

Date: # 09-30-05

Site # 6752 Project Manager A. Collins

Page _ *j* _ of _ _ |

	Ī			Depth	Depth	Product		
Well#	Time Gauged	тос	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
Mw-2			30.43)		0704	2 ⁴
mw-4	0437	<u></u>	32.26)	***	0718	2"
Mw-8	0442	V		15,94			6537	2 4
mw-i	0450			17.65	,	_	0636	
mw-6	0454	<u></u>	30.96				0619	Z''
mw-5	0458	V	31.76	16.19	٠		0652	2"
mw-7	०८०३	سز	3164	(5,93			<u> </u>	24
MW-3	_ව ණට?	<u>.</u>	30.58	1655			0729	2"
						·		

							,	
FIELD DATA		TE			coc	\ <u>\</u>	ELL BOX C	ONDITION SHEETS
I ILLU DATA	S OCIVII LL		Gryso		<u> </u>	V V		ONDITION OFFICE TO
WTT CERTI	FICATE		MANIFES	ST	DRUM IN	ENTORY	TRAF	FIC CONTROL

Time Start	Time Stop	Depth To Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	pН	Turbidity	D.O.	
0659			2	784	19.0	658			
<u> </u>			4	773	20.0	6.57			
	0701		6	737	20.1	659			
Stat	ic at Time San	noled	T	otal Gallons Pu	ırged	Time Sampled			
	17.53			6			070) \	
Comments:									

Well No: MW-4	Purge Method
Depth to Water (feet): 16.91	Depth to Product (feet):
Total Depth (feet): 32.36	LPH & Water Recovered (gallons):
Water Column (feet): 15.35	Casing Diameter (Inches): 2"
80% Recharge Depth (feet): 19.	t Well Volume (gallons): 3

Time	Time	-Depth	Volume	Conduc-	Temperature	·		
Start	Stop	To Water	Purged	tivity		рН	Turbidity	D.O.
		(feet)	(gallons)	(uS/cm)	(F,O)			
0712			3	536	19.8	633		
			6	5 35	203	635		
	0714		9	524	20.2	6.36		i .
Sta	tic at Time Sam	npled	. Т	olal Gallons Pu	ırged		Time Samp	led
	17.52			9		nika sembangan Sauten mili Se ⁿ (Semban)	0718	
Comments:								
Ostanients.					THE REPORT OF STREET AND THE PROPERTY OF STREET			

Technician: Melissa

Site:C	0752		Project No.:	41050	1001	D	ate: <u>07-</u>	<u>30-07</u>
Well No.:	mw-8		F	Purge Method	D, c			
Dooth to Mater	r (feet): 15	.94		Depth to Produc				
Depui lo Walei	et): 28	<u> </u>		LPH & Water R	ecovered (gallo	ons):_ -©	<u>-</u>	
	(feet): 12		(- Casing Diamete	er (Inches): 2	·		
	Depth (feet):_			1 Well Volume	(gallons): 2		مانيسة بالمنبعة بإنسان	
80% Hecharge	Departreet)							
Time	Time	Depth	Volume	Conduc-	Temperature		70 7.174 .	D.O.
Start	Stop	To Water	Purged	tivity	(F/G)	рН	Turbidity	U.O.
		(feet)	(gallons)	(uS/cm)				
0531			2	551	18.7_	6.64		
and the state of t			4	421	19.4	8.73		
	0532		6	460	19.5	6.69		
C4-6	ic at Time Sam	olod	To	ital Gallons Pur	raed	1	Time Sample	ed
5(3()	16.24		1	1	3	J	05	
Depth to Wate	MW- er (feet): <u>1</u> 7	.65		Depth to Prod	uct (feet):	e-		
	eet): <u>33</u>		-		Recovered (ga			
	n (feet):/		-		ter (Inches): 2		inner programming statement programming grant programming statement statemen	
80% Recharg	e Depth (feet):	20.84		1 Well Volume	e (gallons): 3		and the same transfer from the	, e
Time Start	Time Stop	- Depth To Water	Volume Purged	Conduc- tivity	Temperature	Hq	Turbidity	D.O.
		(feet)	(gallons)	(uS/cm)	(F, ©)			
0630	<u> </u>		3	270	59.2	6-95	}	<u> </u>
			6	277	19.4	6.78	<	<u> </u>
	0632	-	9	262	19.5	6.76		-
	160-							
1							<u> </u>	
		1			1		J. Com	
Sta	atic at Time Sar	moled	. 7	iotal Gallons P	urged	a a	Time Sam	oled
Sta	atic at Time Sar	mpled .	- 1	Total Gallons P	urged			
.Sta	12.81	npled	. 1	Total Gallons P	urged			36

			echnician: <u>V</u>				A 64. 7	
ite:	152		Project No.:	410500	> <u>01</u>	Ð	late: <u> </u>	<u>∞~63</u>
ell No -	MW-6		Į	Purge Method.	Dog			
	(feet): <u>15</u>		1	Depth to Produ	ıct (feel):	Q -		
		Ì6	1	LPH & Water F	Recovered (galle	ons):		
	(feet): 15.			- Casing Diame	ter (Inches): 2	ત 		
					(gallons): 3			
% Hecharge	Depth (feet):				(5 /			
Time	Time	Depth	Volume	Conduc-	Temperature		- L. F.	n o
Start	Stop	To Water	Purged	tivity	150	pН	Turbidity	D.O.
		(feet)	(gallons)	(uS/cm)	(F©)			
0613			3	279	19.8	609		
			6	287	20.3	6.87		ساوه هر دستان واز جدود کا به کر سسان ر کار وی وی
	0615		9	298	203	6.84		
	0013							
		l	To	ital Gallons Pu	l		Time Sample	ed
		npieu	1		3			
Comments:		T		9			0619	
Comments:	15.81 MW-5				d: 🔊 🕏 š	a_		
Comments:	15.81 MW-5			Purge Metho				
comments: Vell No.:	15.81 MW-5 er (feet): 16-			Purge Method Depth to Prod	d: 🔌 🥫	<u>-0</u>		
omments: Vell No.: Depth to Wate	15.81 MW-5 er (feet): 16-	19		Purge Methor Depth to Prod LPH & Water	d: 🍆 s	illons):C		
Vell No.: Depth to Wate Total Depth (f	MW-5 er (feet): 16-	19 6		Purge Methor Depth to Prod LPH & Water Casing Diam	d: ្រី៖ duct (feet): : Recovered (ga	illons): C		
vell No.: Depth to Wate otal Depth (f	MW-5 er (feet): 16- eet): 31.7 n (feet): 15	19 6		Purge Methor Depth to Prod LPH & Water Casing Diam	d: Ds duct (feet): Recovered (ga eter (Inches):	illons): _C		
omments: Vell No.: Pepth to Wate Total Depth (found) Vater Column 0% Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet): 15 ne Depth (feet)	19 6 .5.7 :19.30 Depth To Water	Volume Purged	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity	d: Ds duct (feet): Recovered (ga eter (Inches): Co e (gallons): S Temperature	illons): _C		D.O.
Vell No.: Depth to Water Otal Depth (f Vater Column 10% Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ee Depth (feet)	19 6 .5.7 :19.30	Volume	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm)	d: Ds duct (feet): Recovered (galeter (Inches): Z de (gallons): Z Temperature (F, C)	illons):		
Vell No.: Depth to Water Column OW Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ne Depth (feet) Time Stop	19 6 .5.7 :19.30 Depth To Water	Volume Purged	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity	d: Ds duct (feet): Recovered (ga eter (Inches): Co e (gallons): S Temperature	pH	Turbidity	
Vell No.: Depth to Water Column O% Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ne Depth (feet) Time Stop	19 6 .5.7 :19.30 Depth To Water	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 406 406	d: Ds duct (feet): Recovered (galeter (Inches): Z de (gallons): Z Temperature (F, C)	fillons): _C	Turbidity	D.O.
Vell No.: Depth to Water Column O% Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ne Depth (feet) Time Stop	19 6 .5.7 :19.30 Depth To Water	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 406	d: District discrete	pH	Turbidity	
Vell No.: Depth to Water Column OW Recharg	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ee Depth (feet) Time Stop	19 6 .5.7 :19.30 Depth To Water	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 406 406	d: Ds duct (feet): Recovered (galeter (Inches): S re (gallons): S Temperature (F.O) 19.8 20.3	pH	Turbidity	D.O.
Vell No.: Pepth to Water Column O% Recharg Time Start	MW-5 er (feet): 16- eet): 31.7 n (feet): 15 ne Depth (feet) Time Stop	19 6 -57 :19.30 Depth To Water (feet)	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 406 402 399	d: District duct (feet): Recovered (galleter (Inches): State (gallons): State (F.O) 19.8 20.3 20.5	pH	Turbidity	D.O.
Vell No.: Depth to Water Column OW Recharg Time Start	MW-5 er (feet): 16- eet): 31.7 n (feet) 15 ee Depth (feet) Time Stop	19 6 57 19.30 Depth To Water (feet)	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 406 406	d: District duct (feet): Recovered (galleter (Inches): State (gallons): State (F.O) 19.8 20.3 20.5	pH	Turbidity Time Sam	D.O.

Time Stop	Depth To Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm) -	Temperature	рН	Turbidity	D.O.
		3	531	19.8	6.61		
		6	512	201	6.60		
D555		9	458	200	6.63		
c at Time Sam	noled	To	otal Gallons Pu			Time Samp	led
16-14		<u> </u>	9			00	93
	Stop OSSS c at Time Sam	Stop To Water (feet) OSSS c at Time Sampled	Stop To Water Purged (gattons) 3 6 0555 9 c at Time Sampled To Water Purged (gattons) 7	Stop To Water (feet) Purged (us/cm) 3 531 6 512 0555 9 458 c at Time Sampled Total Gallons Purged (significance)	Stop To Water (feet) Purged (gallons) tivity (us/cm) (F.C) 3 531 19.8 6 512 20.1 9 458 20.0 c at Time Sampled Total Gallons Purged	Stop To Water (feet) Purged (gations) tivity (uS/cm) (F.C) pH 3 531 19.8 6.61 6 512 20.1 6.60 9 458 20.0 6.63 c at Time Sampled Total Gallons Purged	To Water (feet) Purged (us/cm) (F.C) PH Turbidity (gallons) (us/cm) (F.C) Turbidity

Well No: MW-3	Purge Method
Depth to Water (feet): / しょう	Depth to Product (feet):
Total Depth (feet): 30.58	LPH & Water Recovered (gallons):
Water Column (feet) 14.03	Casing Diameter (Inches): 2 "
80% Recharge Depth (feet): 19.35	1 Well Volume (gallons): 2

Time	-Depth	Volume	Conduc-	Temperature			5.0
Stop		_		156	рН	Lumbidity	D.O.
	(ieei)	(gallons)	(us/cm)	(-, -	ļ		
		2	739	19.9	6.69		
		Ч	760	20.6	6.60		
0725		6	750	20.7	6.63		:
711							
ic at Time San	npled	- T	otal Gallons Pe	riged		Time Samp	led
	T		6		and the second s	٥٦	29
	V						
		<u> </u>				and public temporaries seems C.C.Commiller, princeport Plandalistics Security Provinces	

	Stop 0725 ic at Time San	Stop To Water (feet)	Stop To Water Purged (gallons) 2 0725 6 c at Time Sampled	Stop To Water Purged tivity (gallons) (uS/cm) 2 739 4 760 6 750 ic at Time Sampled Total Gallons Processing Control of the	Stop To Water (feet) Purged (gallons) tivity (uS/cm) (F.Ö) 2 739 19.9 4 760 20.6 6 750 20.7 ic at Time Sampled Total Gallons Purged	Stop To Water (feet) Purged (gallons) tivity (uS/cm) PH 2 739 19.9 669 4 760 206 660 6 750 20-7 6-63 6 750 20-7 6-63	Stop To Water (feet) Purged (gallons) tivity (uS/cm) (F.Ö) pH Turbidity 2 739 19.9 6.69 4 760 20.6 6.60 6 750 20.7 6.63 Total Gallons Purged Time Samp

Date of Report: 10/18/2005

Anju Farfan

TRC Alton Geoscience

21 Technology Drive Irvine, CA 92618-2302

RE: 0752

BC Lab Number: 0509758

Enclosed are the results of analyses for samples received by the laboratory on 09/30/05 20:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Surratt

Client Service Rep

Authorized Signature

Project: 0752
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/18/05 09:54

Laboratory / Client Sample Cross Reference

		T		*	
Laboratory	Client Sample Information	tion			
0509758-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-2 Melissa of TRCI	Receive Date: 09/30// Sampling Date: 09/30// Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 07:04 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-4 MW-4 Melissa of TRCI	Receive Date: 09/30/ Sampling Date: 09/30/ Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 07:18 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-8 MW-8 Melissa of TRCI	Receive Date: 09/30/ Sampling Date: 09/30/ Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 05:37 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-1 MW-1 Melissa of TRCI	Receive Date: 09/30/ Sampling Date: 09/30/ Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 06:36 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-6 MW-6 Melissa of TRCI	Receive Date: 09/30/ Sampling Date: 09/30/ Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 06:19 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Project: 0752
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/18/05 09:54

Laboratory / Client Sample Cross Reference

Laboratory	Laboratory Client Sample Information	tion			
0509758-06	0509758-06 COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-5 MW-5 Melissa of TRCI	Receive Date: 09/30/05 20:30 Sampling Date: 09/30/05 06:52 Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 06:52 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-07	0509758-07 COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-7 Melissa of TRCI	Receive Date: 09/30/05 20:30 Sampling Date: 09/30/05 06:03 Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 06:03 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509758-08	0509758-08 COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0752 MW-3 MW-3 Melissa of TRCI	Receive Date: 09/30/05 20:30 Sampling Date: 09/30/05 07:29 Sample Depth: Sample Matrix: Water	09/30/05 20:30 09/30/05 07:29 Water	Delivery Work Order (LabW: Global ID: T0600101486 Matrix: W Samle QC Type (SACode): CS Cooler ID:

21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project: 0752

Reported: 10/18/05 09:54

Project Number: [none] Project Manager: Anju Farfan

BCL Sample ID: 0509758-01 Client Sample Name: 0752,	3-01 Client	Sample Nam	ie: 0752,		IW-2, 9/30/	2005 7:0	MW-2, MW-2, 9/30/2005 7:04:00AM, Melissa	ssa					
						Prep	Run		Instru-		သွ	MB	Lab
Constituent	Result	ult Units	PaL	MDL	MDL Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene	QN	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	QN	
Ethylbenzene	QN	ng/L	0.50		EPA-8260	10/11/05	10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	Q.	
Methyl t-butyl ether	9.1	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	Q.	
Toluene	QN	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	Q	Commence of the commence of th
Total Xylenes	ΩN	ng/L	1.0		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	QN	
Ethanol	QN	ng/L	250		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389	Q	
Total Purgeable Petroleum Hydrocarbons	QN	ng/L	20		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	_	BOJ0389	QN	
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (CCL - UCL)	EPA-8260	10/11/05	76 - 114 (LCL - UCL) EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389		
Toluene-d8 (Surrogate)	102	%	88 - 110 (88 - 110 (LCL - UCL)		10/11/05	EPA-8260 10/11/05 10/11/05 22:02	SDU	MS-V12	-	BOJ0389		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (CCL - UCL)	EPA-8260	10/11/05	86 - 115 (LCL - UCL) EPA-8260 10/11/05 10/11/05 22:02	nas	MS-V12	-	BOJ0389		Property of the second

Irvine CA, 92618-2302

Project: 0752 Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID:	0509758-02	Client Sample Name:	ple Name	0752,	MW-4, M	W-4, 9/30/	2005 7	MW-4, MW-4, 9/30/2005 7:18:00AM, Melissa	Ssa		ı			
							Prep	Run		Instru-		ЭÖ	MB	Lab
Constituent		Result	Units	Pal	MDL	Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Jilution	Batch ID	Bias	Quals
Benzene		QN	ng/L	0.50		EPA-8260	10/11/05	10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389	ΩN	
Ethylbenzene		QN	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389	QN	
Methyl t-butyl ether		3800	ng/L	25		EPA-8260	10/11/05	EPA-8260 10/11/05 10/12/05 16:14	nds	MS-V12	50	BOJ0389	QN	A01
Toluene		S	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389	QN	
Total Xylenes		ON.	ng/L	1.0		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389	Q.	
Ethanol		ON	ng/L	250		EPA-8260		10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389	N N	
Total Purgeable Petroleum Hydrocarbons	enm	006	ng/L	20		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:25	nas	MS-V12	-	BOJ0389	Q.	A53
1,2-Dichloroethane-d4 (Surrogate)	(Surrogate)	99.3	%	76 - 114 (L	(LCL - UCL)	EPA-8260	10/11/05	10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389		
1,2-Dichloroethane-d4 (Surrogate)	(Surrogate)	102	%	76 - 114 (L	CL - UCL)	EPA-8260	10/11/05	(LCL - UCL) EPA-8260 10/11/05 10/12/05 16:14	SDU	MS-V12	50	BOJ0389		Manage and a second sec
Toluene-d8 (Surrogate)	(102	%	88 - 110 (L	(LCL - UCL)	EPA-8260	10/11/05	10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389		
Toluene-d8 (Surrogate)		103	%	88 - 110 (L	(LCL - UCL)	EPA-8260	10/11/05	10/11/05 10/12/05 16:14	nas	MS-V12	50	BOJ0389		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	97.2	%	86 - 115 (L	CL - UCL)	EPA-8260	10/11/05	(LCL - UCL) EPA-8260 10/11/05 10/12/05 16:14	SDU	MS-V12	20	BOJ0389		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	98.5	%	86 - 115 (L	(LCL - UCL)	EPA-8260		10/11/05 10/11/05 22:25	SDU	MS-V12	-	BOJ0389		

Project: 0752
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID: 0509758-03	0509758-03	Client Sample Name: 0752	ole Name		V-8 MV	V-8 9/30/	2005 5.	MW-8 MW-8 9/30/2005 5:37:00AM Melises	693					
					5	40,000	Prep	Run	920	Instru-		ဗွ	MB	Lab
Constituent		Result	Units	Pal	MDL	Method	Date	Date/Time	Analyst	Analyst ment ID	Dilution	Batch ID	Bias	Quals
Benzene	Administration of the state of	Q.	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	1	BOJ0389	Q	
Ethylbenzene		Q.	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389	Q	
Methyl t-butyl ether		0069	ng/L	50		EPA-8260	10/11/05	10/11/05 10/12/05 16:59	SDU	MS-V12	100	BOJ0389	N Q	A01
Toluene		0.50	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	_	BOJ0389	N	
Total Xylenes		QN	ug/L	1.0		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389	Q.	
Ethanol		N	ug/L	250		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12		BOJ0389	ND	
Total Purgeable Petroleum Hydrocarbons	- Wn	1200	ng/L	50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389	Q	
1,2-Dichloroethane-d4 (Surrogate)	Surrogate)	98.1	%	76 - 114 (LCL - UCL)	l	EPA-8260	10/11/05	10/11/05 10/12/05 16:59	SDU	MS-V12	100	BOJ0389		
1,2-Dichloroethane-d4 (Surrogate)	Surrogate)	6.66	%	76 - 114 (LCL	- UCL)	EPA-8260	10/11/05	76 - 114 (LCL - UCL) EPA-8260 10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389		
Toluene-d8 (Surrogate)		102	%	88 - 110 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/12/05 16:59	SDU	MS-V12	100	BOJ0389		The state of the s
Toluene-d8 (Surrogate)		102	3 %	88 - 110 (LCL - UCL)	l	EPA-8260	10/11/05	10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	96.8	%	36 - 115 (LCL.	· UCL)	EPA-8260	10/11/05	86 - 115 (LCL - UCL) EPA-8260 10/11/05 10/12/05 16:59	SDU	MS-V12	100	BOJ0389		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	101	%	86 - 115 (LCL - UCL) EPA-8260	(TON)	EPA-8260	10/11/05	10/11/05 10/11/05 22:47	SDU	MS-V12	-	BOJ0389		

Irvine CA, 92618-2302

Project: 0752 Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID: 0509758-04	Client Sample Name: 0752,	ole Name		1, MW-1, 9/3(0/2005 6:	MW-1, MW-1, 9/30/2005 6:36:00AM, Melissa	ssa					
					Prep	Run		Instru-		သွ	MB	Lab
Constituent	Result	Units	PQL MI	MDL Method	Date	Date/Time	Analyst	ment ID Dilution	ilution	Batch ID	Bias	Quals
Benzene	<u>Q</u>	ng/L	0.50	EPA-8260	10/12/05	10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548	ND	
Ethylbenzene	QV	ng/L	0.50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548	Q	
Methyl t-butyl ether	160	ng/L	5.0	EPA-8260	10/12/05	EPA-8260 10/12/05 10/13/05 14:13	SDU	MS-V12	10	BOJ0548	Q	A01
Toluene	Ð	ng/L	0.50	EPA-8260	10/12/05	10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548	Q.	
Total Xylenes	S	ng/L	1.0	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 11:18	SDU	MS-V12	_	BOJ0548	Q	
Ethanol	2	ng/L	250	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548	N _O	
Total Purgeable Petroleum Hydrocarbons	190	ng/L	50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548	Q	
1,2-Dichloroethane-d4 (Surrogate)	95.3	%	76 - 114 (LCL - UCL) EPA-8260 10/12/05 10/12/05 11:18	CL) EPA-8260	10/12/05	10/12/05 11:18	SDU	MS-V12	-	BOJ0548		
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UCL) EPA-8260 10/12/05 10/13/05 14:13	CL) EPA-8260	10/12/05	10/13/05 14:13	SDU	MS-V12	10	BOJ0548		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	CL) EPA-8260		10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548		
Toluene-d8 (Surrogate)	103	%	88 - 110 (LCL - UCL)	CL) EPA-8260		10/12/05 10/13/05 14:13	SDU	MS-V12	10	BOJ0548		
4-Bromofluorobenzene (Surrogate)	104	%	86-115 (LCL-U	CL) EPA-8260	10/12/05	(LCL - UCL) EPA-8260 10/12/05 10/12/05 11:18	SDU	MS-V12	-	BOJ0548		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL) EPA-8260 10/12/05 10/13/05 14:13	CL) EPA-8260	10/12/05	10/13/05 14:13	SDU	MS-V12	9	BOJ0548		

Irvine CA, 92618-2302

Project: 0752
Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID: 0509758-05	Client Sample Name:	ple Name:	0752. MW	V-6 MV	V-6 9/30/	2005 6	MW-6 MW-6 9/30/2005 6·19·00AM Melissa	688					
	7					Prep	Run	3	Instru-		ဗွ	MB	Lab
Constituent	Result	Units	PQL N	MDL	Method	Date	Date/Time	Analyst	Analyst ment ID	Dilution	Batch ID	Bias	Quals
Benzene	140	ng/L	25		EPA-8260	10/11/05	10/11/05 10/12/05 16:36	SDU	MS-V12	20	BOJ0389	Q	A01
Ethylbenzene	28	ng/L	0.50		EPA-8260	10/11/05	EPA-8260 10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389	Q.	Topic and the second se
Methyl t-butyl ether	5800	ng/L	20		EPA-8260	10/11/05	10/11/05 10/13/05 13:50	SDU	MS-V12	100	BOJ0389	S	A01
Toluene	37	ng/L	0.50		EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389	N	
Total Xylenes	41	ng/L	1.0		EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	_	BOJ0389	Q	
Ethanol	QN	ng/L	250		EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389	N Q	THE THE PARTY OF T
Total Purgeable Petroleum Hydrocarbons	4300	ng/L	2500		EPA-8260	10/11/05	10/11/05 10/12/05 16:36	SDU	MS-V12	20	BOJ0389	QN	A01
1,2-Dichloroethane-d4 (Surrogate)	102	12 %	76 - 114 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/12/05 16:36	SDU	MS-V12	50	BOJ0389		TO THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRES
1,2-Dichloroethane-d4 (Surrogate)	98.7	2 %	76 - 114 (LCL - UCL)	ł	EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389		
1,2-Dichloroethane-d4 (Surrogate)	98.2	% 7	76 - 114 (LCL - UCL)	1	EPA-8260	10/11/05	10/11/05 10/13/05 13:50	SDU	MS-V12	100	BOJ0389		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/13/05 13:50	SDU	MS-V12	100	BOJ0389		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/12/05 16:36	SDU	MS-V12	20	BOJ0389		TO SECULO SE
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389		
4-Bromofluorobenzene (Surrogate)	0.66	%	86 - 115 (LCL - UCL)		EPA-8260	10/11/05	10/11/05 10/12/05 16:36	SDU	MS-V12	50	BOJ0389		
4-Bromofluorobenzene (Surrogate)	100	% 86	86 - 115 (LCL - UCL)	ļ	EPA-8260	10/11/05	10/11/05 10/13/05 13:50	SDU	MS-V12	100	BOJ0389		
4-Bromofluorobenzene (Surrogate)	106	%	86 - 115 (LCL - UCL)	:	EPA-8260	10/11/05	10/11/05 10/11/05 23:33	SDU	MS-V12	-	BOJ0389		

Irvine CA, 92618-2302

Project: 0752
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/18/05 09:54

	г		- 1	1								
BCL Sample ID: 0509758-06	3 Client Sample Name: 0752,	ple Nam		MW-5, 9/30/	,2005 6:	MVV-5, MVV-5, 9/30/2005 6:52:00AM, Melissa	ssa					
					Prep	Run		Instru-		၁ဇ	MB	Lab
Constituent	Result	Units	PQL MDL	MDL Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene	26	ng/L	0:50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	QN	
Ethylbenzene	2.4	ng/L	0.50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	Q	
Methyl t-butyl ether	38	ng/L	0.50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	Q.	
Toluene	5.8	ng/L	0:50	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	8	
Total Xylenes	9.2	ng/L	1.0	EPA-8260	10/12/05	EPA-8260 10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	Q	
Ethanol	QN	ng/L	250	EPA-8260	10/12/05	10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	8	
Total Purgeable Petroleum Hydrocarbons	1200	ng/L	50	EPA-8260	10/12/05	10/12/05 10/12/05 12:04	SDU	MS-V12	-	BOJ0548	9	
1,2-Dichloroethane-d4 (Surrogate)	99.5	%	76 - 114 (LCL - UCL) EPA-8260 10/12/05 10/12/05 12:04) EPA-8260	10/12/05	10/12/05 12:04	SDU	MS-V12	-	BOJ0548		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL) EPA-8260 10/12/05 10/12/05 12:04) EPA-8260	10/12/05	10/12/05 12:04	SDU	MS-V12	-	BOJ0548		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL) EPA-8260 10/12/05 10/12/05 12:04) EPA-8260	10/12/05	10/12/05 12:04	SDU	MS-V12	-	BOJ0548		

Irvine CA, 92618-2302

Project: 0752 Project Number: [none]

Froject Number: [none]
Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID: 0509758-07	0509758-07	Client Sample Name: 0752, N	ole Nam	e: 0752, MW-	7, MW-7, 9/3	0/2005 6	MW-7, MW-7, 9/30/2005 6:03:00AM, Melissa	issa					
						Prep	Run		Instru-		၁ဗ	MB	Lab
Constituent		Result	Units	PQL	MDL Method) Date	Date/Time	Analyst	ment ID	Analyst ment ID Dilution	Batch ID	Bias	Quals
Benzene		Q	ng/L	0.50	EPA-826	0 10/12/05	EPA-8260 10/12/05 10/12/05 11:41	SDU	MS-V12	1	BOJ0548	QN	
Ethylbenzene		Q	ng/L	0.50	EPA-8260	0 10/12/05	10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548	Q	
Methyl t-butyl ether		Q	ng/L	0.50	EPA-8260	0 10/12/05	10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548	QN	
Toluene		Q	ng/L	0.50	EPA-826	0 10/12/05	EPA-8260 10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548	Q	
Total Xylenes		Q	ng/L	1.0	EPA-826	0 10/12/05	EPA-8260 10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548	Q	
Ethanol		Q	ng/L	250	EPA-8260		10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548	<u>Q</u>	
Total Purgeable Petroleum Hydrocarbons	wn	ON	ng/L	20	EPA-8260		10/12/05 10/12/05 11:41	SDU	MS-V12	_	BOJ0548	Q.	
1,2-Dichloroethane-d4 (Surrogate)	Surrogate)	95.2	%	76 - 114 (LCL - UCL) EPA-8260	JCL) EPA-826		10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548		NAME OF TAXABLE PARTY.
Toluene-d8 (Surrogate)		103	%	88 - 110 (LCL - L	ICL) EPA-826	0 10/12/05	88 - 110 (LCL - UCL) EPA-8260 10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	96.3	%	86 - 115 (LCL - L	ICL) EPA-826	0 10/12/05	86 - 115 (LCL - UCL) EPA-8260 10/12/05 10/12/05 11:41	SDU	MS-V12	-	BOJ0548		

Irvine CA, 92618-2302

Project: 0752

Project Number: [none] Project Manager: Anju Farfan

Reported: 10/18/05 09:54

BCL Sample ID: 0509758-08	509758-08	Client Sample Name:	ole Name	0752,	1W-3, M	W-3, 9/30/	2005 7:3	MW-3, MW-3, 9/30/2005 7:29:00AM, Melissa	ssa					
							Prep	Run		Instru-		သွ	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene		360	ng/L	25		EPA-8260	10/11/05	EPA-8260 10/11/05 10/12/05 04:27	SDU	MS-V12	20	BOJ0389	QN	A01
Ethylbenzene		Q	ng/L	25		EPA-8260	10/11/05	EPA-8260 10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389	QN	A01
Methyl t-butyl ether	AMARIAN AND AND AND AND AND AND AND AND AND A	20000	ng/L	250		EPA-8260	10/11/05	10/11/05 10/12/05 17:22	SDU	MS-V12	500	BOJ0389	Q.	A01
Toluene		40	ng/L	25		EPA-8260	10/11/05	10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389	N Q	A01
Total Xylenes		20	ng/L	20		EPA-8260	10/11/05	EPA-8260 10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389	Q	A01
Ethanol		Q.	ng/L	12000		EPA-8260	10/11/05	10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389	ΩN	A01
Total Purgeable Petroleum Hydrocarbons	μ	12000	ug/L	2500		EPA-8260	10/11/05	EPA-8260 10/11/05 10/12/05 04:27	SDU	MS-V12	20	BOJ0389	Q.	A01
1,2-Dichloroethane-d4 (Surrogate)	urrogate)	96.5	%	76 - 114 (LCL - UCL) EPA-8260	:r - ncr)	EPA-8260	10/11/05	10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389		
1,2-Dichloroethane-d4 (Surrogate)	urrogate)	99.5	%	76 - 114 (LC	L - UCL)	EPA-8260	10/11/05	76 - 114 (LCL - UCL) EPA-8260 10/11/05 10/12/05 17:22	SDU	MS-V12	500	BOJ0389		
Toluene-d8 (Surrogate)		102	%	88 - 110 (LCL - UCL)	(TON - T	EPA-8260	10/11/05	10/11/05 10/12/05 04:27	SDU	MS-V12	50	BOJ0389		
Toluene-d8 (Surrogate)		102	%	88 - 110 (LCL - UCL)	(TOOT)	EPA-8260	10/11/05	10/11/05 10/12/05 17:22	SDU	MS-V12	200	BOJ0389		
4-Bromofluorobenzene (Surrogate)	urrogate)	100	%	86 - 115 (LC	:r - ncr)	86 - 115 (LCL - UCL) EPA-8260	10/11/05	10/11/05 10/12/05 04:27	SDU	MS-V12	20	BOJ0389		
4-Bromofluorobenzene (Surrogate)	urrogate)	97.4	%	86 - 115 (LCL - UCL) EPA-8260	(TOOT)	EPA-8260	10/11/05	10/11/05 10/12/05 17:22	SDU	MS-V12	200	BOJ0389		

Project: 0752 Project Number: [none]

Project Number: [none] Project Manager: Anju Farfan

Reported: 10/18/05 09:54

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

											7,7
											Control Limits
				Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample ID	Batch ID QC Sample ID QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BOJ0389	BOJ0389-MS1	Matrix Spike	QN	24.160	25.000	ng/L		9.96		70 - 130
T TO THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE		BOJ0389-MSD1	Matrix Spike Duplicate	QN	24.240	25.000	ng/L	0.413	0.76	20	70 - 130
Toluene	BOJ0389	BOJ0389-MS1	Matrix Spike	9	24.860	25.000	ng/L		99.4		70 - 130
		BOJ0389-MSD1	Matrix Spike Duplicate	2	24.410	25.000	ng/L	1.83	97.6	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BOJ0389	BOJ0389-MS1	Matrix Spike	N Q	9.8600	10.000	ng/L		98.6		76 - 114
		BOJ0389-MSD1	Matrix Spike Duplicate	2	10.400	10.000	ng/L		104		76 - 114
Toluene-d8 (Surrogate)	BOJ0389	BOJ0389-MS1	Matrix Spike	2	10.090	10.000	ng/L		101		88 - 110
		BOJ0389-MSD1	Matrix Spike Duplicate	Q	10.120	10.000	ng/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BOJ0389	BOJ0389-MS1	Matrix Spike	9	10.180	10.000	ng/L		102		86 - 115
		BOJ0389-MSD1	Matrix Spike Duplicate	2	10.380	10.000	ng/L		104		86 - 115
Benzene	BOJ0548	BOJ0548-MS1	Matrix Spike	9	24.380	25.000	ng/L		97.5		70 - 130
		BOJ0548-MSD1	Matrix Spike Duplicate	2	24.080	25.000	ng/L	1.24	96.3	50	70 - 130
Toluene	BOJ0548	BOJ0548-MS1	Matrix Spike	Q	24.620	25.000	ng/L		98.5		70 - 130
		BOJ0548-MSD1	Matrix Spike Duplicate	2	24.490	25.000	ng/L	0.509	98.0	50	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BOJ0548	BOJ0548-MS1	Matrix Spike	9	9.8400	10.000	ng/L		98.4		76 - 114
		BOJ0548-MSD1	Matrix Spike Duplicate	2	10.300	10.000	ng/L		103		76 - 114
Toluene-d8 (Surrogate)	BOJ0548	BOJ0548-MS1	Matrix Spike	Q	10.220	10.000	ng/L		102		88 - 110
		BOJ0548-MSD1	Matrix Spike Duplicate	ND	10.240	10.000	ng/L		102		88 - 110
4-Bromofluorobenzene (Surrogate)	BOJ0548	BOJ0548-MS1	Matrix Spike	Q.	10.160	10.000	ng/L		102		86 - 115
		BOJ0548-MSD1	Matrix Spike Duplicate	2	10.170	10.000	ng/L		102		86 - 115

Irvine CA, 92618-2302

Project: 0752
Project Number: [none]

rroject Number: Inonej Project Manager: Anju Farfan

Reported: 10/18/05 09:54

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control Limits	imits	
Constituent	Batch ID	Batch ID QC Sample ID QC Type	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD R	Percent Recovery	RPD	Lab Quals
Benzene	BOJ0389	BOJ0389 BOJ0389-BS1	SOT	25.140	25.000	1.0	ug/L		1	ı		
Toluene	BOJ0389	BOJ0389 BOJ0389-BS1	SOT	26.400	25.000	1.0	ng/L	106		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BOJ0389	BOJ0389 BOJ0389-BS1	SOT	9.6900	10.000		ng/L	6.96		76 - 114		
Toluene-d8 (Surrogate)	BOJ0389	BOJ0389 BOJ0389-BS1	SOT	10.110	10.000		ng/L	101	~	88 - 110		
4-Bromofluorobenzene (Surrogate)	BOJ0389	BOJ0389 BOJ0389-BS1	SOT	10.280	10.000		ng/L	103	~	86 - 115	-	
Benzene	BOJ0548	BOJ0548 BOJ0548-BS1	SOT	23.420	25.000	0.50	ng/L	93.7		70 - 130		
Toluene	BOJ0548	BOJ0548 BOJ0548-BS1	SOT	24.290	25.000	0.50	ng/L	97.2		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BOJ0548	BOJ0548 BOJ0548-BS1	SOT	9.9400	10.000		ng/L	99.4		76 - 114		
Toluene-d8 (Surrogate)	BOJ0548	BOJ0548 BOJ0548-BS1	SOT	10.270	10.000		ng/L	103	.	88 - 110		
4-Bromofluorobenzene (Surrogate)	BOJ0548	BOJ0548 BOJ0548-BS1	SOT	10.050	10.000	The state of the s	ng/L	100	"	86 - 115		

Project: 0752 Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/18/05 09:54

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BOJ0389	BOJ0389-BLK1	QN	ng/L	1.0	0.12	
Ethylbenzene	BOJ0389	BOJ0389-BLK1	QN	ng/L	1.0	0.13	
Methyl t-butyl ether	BOJ0389	BOJ0389-BLK1	QN	ng/L	2.0	0.15	
Toluene	BOJ0389	BOJ0389-BLK1	ND	ng/L	1.0	0.15	
Total Xylenes	BOJ0389	BOJ0389-BLK1	ND	ng/L	1.0	0.40	
Ethanol	BOJ0389	BOJ0389-BLK1	QN	ng/L	1000	110	
Total Purgeable Petroleum Hydrocarbons	BOJ0389	BOJ0389-BLK1	QN	ng/L	50	23	
1,2-Dichloroethane-d4 (Surrogate)	BOJ0389	BOJ0389-BLK1	8.76	%	76 - 114 (LCL - UCL)	ncr)	
Toluene-d8 (Surrogate)	BOJ0389	BOJ0389-BLK1	102	%	88 - 110 (LCL - UCL)	UCL)	
4-Bromofluorobenzene (Surrogate)	BOJ0389	BOJ0389-BLK1	98.5	%	86 - 115 (LCL - UCL)	NCL)	
Benzene	BOJ0548	BOJ0548-BLK1	QN	ng/L	0.50	0.12	Training promote and the state of the state
Ethylbenzene	BOJ0548	BOJ0548-BLK1	ΩN	ng/L	0.50	0.13	
Methyl t-butyl ether	BOJ0548	BOJ0548-BLK1	QN	ng/L	0.50	0.15	
Toluene	BOJ0548	BOJ0548-BLK1	QN	ng/L	0.50	0.15	
Total Xylenes	BOJ0548	BOJ0548-BLK1	QN	ng/L	1.0	0.40	
Ethanol	BOJ0548	BOJ0548-BLK1	QN	ng/L	1000	110	
Total Purgeable Petroleum Hydrocarbons	BOJ0548	BOJ0548-BLK1	Q	ng/L	50	23	
1,2-Dichloroethane-d4 (Surrogate)	BOJ0548	BOJ0548-BLK1	101	%	76 - 114 (LCL - UCL)	NCL)	
Toluene-d8 (Surrogate)	BOJ0548	BOJ0548-BLK1	100	%	88 - 110 (LCL - UCL	NCL)	
4-Bromofluorobenzene (Surrogate)	BOJ0548	BOJ0548-BLK1	96.8	%	86 - 115 (LCL - UCL)	UCL)	

Project Number: [none] Project Manager: Anyu Farfan

Project: 0752

Reported: 10/18/05 09:54

Notes and Definitions

	,
Estimated value	Č
_	0

- A53 Chromatogram not typical of gasoline.
- A01 PQL's and MDL's are raised due to sample dilution.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

TO LANCON TODICO MIC		CAA	401 5 050							
BC LABORATORIES INC			MPLE REC	EIPT FU	HIVI	Rev. No.		21/04	Page	01
Submission #: OS-97	128 1 b	Project C	ode:			TB	Batch #			
SHIPPING INFOR Federal Express UPS BC Lab Field Service Other	Hand De	livery 🖯			Ice Ches Box	10		ne 🛘	pecify)	
Refrigerant: Ice Blue Ice] None	· []	Other 🛘	Comme	nte.					
Custody Seals: Ice Chest □	Containe	rs 🗆	None 2	Comme				**		
All samples received? Yes 🗗 No 🛘	All sample	s containe	rs intact? Y	es (7 No	0	Descrip	tion(s) matc	h COC?	Yes No	0
COC Received ∠YES □ NO			hest ID <u>R</u> erature: <u>2</u> eter ID; 4		Emis Conta	sivity	. 9 7		Time <i>9/30</i> st Init <i>AK</i>	
SAMPLE CONTAINERS					SAMPLE	UMBERS				
OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED	1	7	3	4	5	6	7	8	9	10
OT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS										
PT CYANIDE									<u> </u>	
PT NITROGEN FORMS PT TOTAL SULFIDE										
201_NITRATE / NITRITE 100ml TOTAL ORGANIC CARBON								• • • • • • • • • • • • • • • • • • • •		
QT TOX										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
40mi VOA VIAL TRAVEL BLANK					-					
40ml VOA VIAL	p . 3.	A.3.	A.3.	#13	H-131	A.7:	A.3.	A :3	1	£ 1
<u>QT EPA 413.1, 413.2, 418.1</u> PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
OT EPA 598/608/8080										
QT EPA 515.1/8150										
OT EPA 525								·		
OT EPA 525 TRAVEL BLANK										<u> </u>
00mt EPA 547										
00ml EPA 531.1 DT EPA 548							<u> </u>			
OT EPA 549										
OT EPA 632										
OT EPA 8015M										
OT QA/QC										
)T AMBER										
OZ. JAR]				
2 OZ. JAR										
OILSLEEVE								····	 	
CB VIAI.										
LASTIC BAG										
ERROUS IRON INCORE .										
INCORE.										
ammante.										

Date/Time: 1/30

Sample Numbering Completed By:

Std S.39 02-30-05 40945 passanhay awy punceung 9-30-6-112 Onto & Time X BTEX/MTBE/Ethans 1 by 82605 TO THE PARTY OF TH AD978 VA Heet ELHANOL by 8260B BIEXIMITEE/OXAS EA RYGOB Refrigerator 100 Per 100 DISTRIBUTION satenagyxo & Eatim in izi iin oaks Received by SUB-OUT Service : LEH DIESET PA 8019 THE Merobyd 240 H9T かんし eros ya ese BIEXMALBE DY 8024B, PICKING. **3** CHK BY 3 Sala Sala Nata: 4100 Alias Court 🗆 Bakersfield, CA 영화대원(에 Ö 06 3C 0652 0537 D617 0729 8119 තිනී 10704 Date & Tine (861) 327-4911 [] FAX (681) 327-#05- 938 10867RCSO 04/30 Section Malse HIOSOCOI d by (Signature) 4-digit site# 6752 Trine, Or extra 8-2324 3 voces laster Fills Amel & Getting THE POINT NAME The state of the s THE TOTAL Thomas Address: 800 Horrison St. TOUR / SO WILLIAM TO BOAT 10600101486 andle Description MW 3 MW-5 J-MW Mw-7]-*MW*/ MW 8 MW-4 MW-2 one oakland Q CEE: CA CLOEAL D Comments 2

4/20 2020

2020 JAMES

9-30-05

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating P rocedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R -149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warr anty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.