RECEIVED

9:36 am, Apr 22, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

April 20, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Quarterly Summary Report—First Quarter 2009 76 Service Station # 5325 RO # 0229 3220 Lakeshore Ave. Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

76 Broadway Sacramento, California 95818

April 20, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Quarterly Summary Report—First Quarter 2009 76 Service Station # 5325 RO # 0229 3220 Lakeshore Ave. Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

April 20, 2009

Ms. Barbara Jakub Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Re: Quarterly Summary Report – First Quarter 2009

76 Service Station No. 5325 3220 Lakeshore Avenue Oakland, California RO#0229 AOC 1394

Dear Ms. Jakub,

On behalf of ConocoPhillips Company (ConocoPhillips), Delta Consultants (Delta) is submitting the subject report and forwarding a copy of TRC's *Quarterly Monitoring Report January through March 2009*, dated April 17, 2009 for the above site. TRC has uploaded a copy of their report to the GeoTracker database.

Please contact me at (916) 503-1260 if you have questions.

Sincerely,

Delta Consultants JOHN R. REA NO. 4716 John Reay, P.G. Senior Project Manager Enclosure

cc: Terry Grayson – ConocoPhillips (electronic copy only)

QUARTERLY SUMMARY REPORT First Quarter 2009

76 Service Station No. 5325 RO#0229, AOC 1394 3220 Lakeshore Avenue Oakland, California County: Alameda

SITE DESCRIPTION

The site, an operating 76 Service Station located on the southeast corner of the intersection of Lakeshore Avenue and Lake Park Avenue in Oakland, California. The site is bounded to the north by Lakeshore Avenue, to the west and southwest by Lake Park Avenue, to the southeast by a supermarket parking lot, and to the east by a pharmacy. Current site facilities consist of the service station building with three service bays, three product dispenser islands, and two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs).

SITE BACKGROUND AND ACTIVITY

<u>May 1990</u> Three exploratory soil borings were advanced adjacent to the UST complex to depths ranging from 10 to 12.5 feet below ground surface (bgs). Soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and benzene, toluene, ethylbenzene, and xylenes (BTEX). The samples contained TPH-G concentrations ranging from 2 to 7,500 parts per million (ppm) and benzene concentrations ranging from 0.14 to 13 ppm.

<u>June 1990</u> Two 10,000-gallon gasoline USTs, one 550-gallon waste oil UST, and related product dispensers were replaced. Soil samples from the UST excavation sidewalls and bottom and product line trenches were reported to contain TPH-G and benzene at concentrations ranging from 12 to 2,800 ppm and 0.008 to 11 ppm, respectively. Approximately 250 cubic yards of soil and backfill material were aerated onsite to reduce concentrations to below 100 ppm TPH-G, then transported to an appropriate soil disposal facility. Groundwater was encountered at approximately 7.5 feet bgs.

<u>September 1990</u> Monitoring wells U-1, U-2, and U-3 were installed. TPH-G was detected in soil samples collected from the capillary fringe in well borings U-1 and U-2 at levels of 110 and 480 ppm, respectively. Benzene was detected in the soil sample from well boring U-1 at a level of 4.5 ppm. Petroleum hydrocarbons were not detected in soil or groundwater samples from U-3. Groundwater samples collected from wells U-1 and U-2 were reported to contain 690 and 38 parts per billion (ppb) TPH-G and 780 and 27 ppb benzene, respectively.

<u>June 1990</u> Monitoring wells U-4, U-5, and U-6 were installed. TPH-G and benzene were detected in the capillary fringe soil sample collected from boring U-5 at levels of 400 ppm and 1.9 ppm, respectively. TPH-G and benzene were not detected in soil samples collected from borings U-4 and U-6. Groundwater levels stabilized at depths between 8.8 and 9.2 feet bgs.

Quarterly Summary Report – 1st Q 09 76 Station No. 5325

<u>November 1996</u> One 550-gallon waste oil UST was removed and the product lines and dispensers were replaced. A soil sample collected from the sidewall of the waste oil UST excavation contained 1.5 ppm total petroleum hydrocarbons as diesel (TPH-D) and 78 ppm total oil and grease (TOG). TPH-G, benzene, methyl tertiary butyl ether (MTBE), halogenated volatile organic compounds (HVOCs), and semivolatile organic compounds (SVOCs) were not detected. Product line trench excavation and over excavation samples were reported to contain petroleum hydrocarbon levels ranging from non-detect to 880 ppm TPH-G, non-detect to 3.6 ppm benzene, and non-detect to 23 ppm MTBE. Approximately 276 tons of excavated soil was transported to an appropriate disposal facility.

<u>June 1997</u> Two exploratory borings (U-D and U-E) and one UST observation well were installed. U-D was advanced offsite on Lakeshore Avenue. TPH-G, BTEX, and MTBE were detected in one or all of the soil samples collected at the capillary fringe from the soil borings. TPH-G and MTBE were detected at a maximum of 450 ppm and 1.1 ppm, respectively, in U-D.

October 2003 Site environmental consulting responsibilities were transferred to TRC.

<u>April 2006</u> Three ozone sparge wells (C-1 through C-3) were installed by TRC in the vicinity of U-2 for the purpose of an ozone pilot study. Total purgeable petroleum hydrocarbons (TPPH) were detected at a maximum of 4,600 milligrams per kilograms (mg/kg) in the five feet below grade (fbg) soil sample collected from C-1.

<u>October 2007</u> Site environmental consulting responsibilities were transferred to Delta Consultants.

SENSITIVE RECEPTORS

Lake Merritt is located approximately 0.3 miles downgradient. No domestic wells are located within a one mile distance of the site.

GROUNDWATER MONITORING AND SAMPLING

The groundwater monitoring well network, consisting of five onsite and one offsite monitoring wells, has been monitored and sampled on a quarterly basis since August 1990. During the most recent groundwater sampling event conducted on March 26, 2009, reported depth to groundwater ranged from 5.17 feet (U-2) to 10.70 feet (U-3) below top of casing (TOC).

The groundwater flow direction was reported at a gradient of 0.03 feet per foot (ft/ft) east and west. This is inconsistent with a gradient of 0.05 ft/ft west and northeast during the previous sampling event (December 22, 208). Reported historical groundwater flow direction has been primarily to the northwest.

Groundwater concentrations are reported as follows.

TPH-G was detected in three of the six sampled wells with a maximum concentration of 5,700 μ g/L in well U-1. This is a decrease from a maximum concentration of 6,400 μ g/L in this well during the previous sampling event. U-2 and U-5 showed

concentrations of 5,200 $\mu\text{g/L}$ and 310 $\mu\text{g/L}$ respectively during the current sampling event.

Benzene was detected in one of the six sampled wells with a maximum concentration of 8.9 μ g/L in well U-2. This is a decrease from a maximum concentration of 24 μ g/L in this well during the previous sampling event.

MTBE Detected in three of the six sampled wells with a maximum concentration of 150 μ g/l in well U-2. This is a decrease from a maximum concentration of 160 μ g/l in this well during the previous sampling event. U-1 and U-5 showed concentrations of 10 μ g/L and 9.4 μ g/L respectively during the current sampling period.

Ethylbenzene was detected in two of the six wells at a maximum concentration of 72 μ g/L in U-1 during the current sampling event. This is a decrease from a maximum concentration of 160 μ g/L in U-2 during the previous sampling event. U-2 showed a concentration of 47 μ g/L respectively during the current sampling event.

Total Xylenes was detected in two of the six wells at a maximum concentration of 22 μ g/L in U-2 during the current sampling event. This is a deacrease from a maximum concentration of 31 μ g/L in this well during the previous sampling event. U-1 showed a concentration of 6.5 μ g/L respectively during the current sampling event.

Additionally, toluene was not detected above laboratory reporting limits in any of the wells sampled during the current sampling event.

REMEDIATION STATUS

A 3-month ozone sparge event was completed from June through August 2006. TRC completed two quarters of post-remedial groundwater monitoring. Ozone sparging is being considered as a remediation method at the site.

CHARACTERIZATION STATUS

As noted, TPH-G, benzene, and MTBE were detected during the most recent groundwater sampling event at 5,700 μ g/L (U-1), 8.9 μ g/L (U-2), and 150 μ g/L (U-2), respectively. Ozone injection appears to be a viable option for remediation at the site and is being considered as the most applicable method.

RECENT CORRESPONDENCE

No regulatory correspondence were received or sent during the first quarter 2009.

THIS QUARTER ACTIVITIES (First Quarter 2009)

- Monitoring and sampling of the groundwater monitoring well network was conducted by TRC on March 26, 2009.
- TRC prepared the *Quarterly Monitoring Report, January through March 2009*, dated April 17, 2009.

• Delta prepared the *Quarterly Status Report* - *First Quarter 2009*, dated April 20, 2009.

NEXT QUARTER ACTIVITIES (Second Quarter 2009)

• TRC will perform the second quarter 2009 groundwater monitoring and sampling event and will prepare a quarterly monitoring report. Note: As of May 1, 2009, Delta will be handling this site in its entirety, in accordance with the Environmental Liability Transfer agreed upon between Delta and ConocoPhillips.

CONSULTANT: Delta Consultants

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

- DATE: April 17, 2009
- TO: Delta Consultants 11050 White Rock Road, Suite 110 Rancho Cordova, CA 95670

ATTN: MR. JOHN REAY

- SITE: 76 STATION 5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

This Quarterly Monitoring Report for 76 Station 5325 is being sent to you for your review and comment. If no comments are received **April 24, 2009** copies of this report will be sent to you for distribution.

Please send all comments to me at <u>cherrera@trcsolutions.com</u>. If you have any questions regarding this report, please call me at (949) 727-7345.

Sincerely,

Christina Carrillo Technical Writer

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station 5325, located at 3220 Lakeshore Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Midk

- for: Anju Farfan Groundwater Program Operations Manager
 - CC: Mr. John Reay, Delta Consultants (2 copies)

Enclosures 20-0400/5325R23 QMS

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

76 STATION 5325 3220 Lakeshore Avenue Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

SEBSIONAL GEOL ភ JENSEN No 3531 Ú) OFCALIF

Senior Project Geologist, Irvine Operations

16/29 Date: <u>4</u>

LIST OF ATTACHMENTS										
Summary Sheet	Summary of Gauging and Sampling Activities									
Tables	Table Key									
	Contents of Tables									
	Table 1: Current Fluid Levels and Selected Analytical Results									
	Table 1a: Additional Current Analytical Results									
	Table 2: Historic Fluid Levels and Selected Analytical Results									
	Table 2a: Additional Historic Analytical Results									
	Table 2b: Additional Historic Analytical Results									
Figures	Figure 1: Vicinity Map									
	Figure 2: Groundwater Elevation Contour Map									
2	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map									
	Figure 4: Dissolved-Phase Benzene Concentration Map									
	Figure 5: Dissolved-Phase MTBE Concentration Map									
Graphs	Groundwater Elevations vs. Time									
	TPH-G Concentrations vs. Time									
	Benzene Concentrations vs. Time									
	MTBE Concentrations vs. Time									
Field Activities	General Field Procedures									
	Field Monitoring Data Sheet – 03/26/09									
	Groundwater Sampling Field Notes – 03/26/09									
Laboratory	Official Laboratory Reports									
Reports	Quality Control Reports									
	Chain of Custody Records									
Statements	Purge Water Disposal									
	Limitations									

Summary of Gauging and Sampling Activities January 2009 through March 2009 76 Station 5325 3220 Lakeshore Avenue Oakland, CA

Project Coordinator: 1 Telephone: 9	Ferry Grayson 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo	
Date(s) of Gauging/Sa	mpling Event:	03/26/0	
Sample Points			
Groundwater wells: Purging method: Sub Purge water disposal: Other Sample Points:	mersible pum Veolia/Rodeo	o Unit 10	
Liquid Phase Hydrod	carbons (LPH))	
Sample Points with LPH LPH removal frequency Treatment or disposal	/:	num thickr	ness (feet): Method:
Hydrogeologic Para	meters		
Average change in grou Interpreted groundwat Current event: 0.	elevation (relati undwater eleva er gradient and .03 ft/ft, east	ve to avai tion since I flow dire and wes	ilable local datum): 1.57 feet e previous event: 0.42 feet ection:
Selected Laboratory	Results		
Sample Points with det Maximum reported			Sample Points above MCL (1.0 μg/l): 1 8.9 μg/l (U-2)
Sample Points with TI Sample Points with M		4S 3 3	Maximum: 5,700 µg/l (U-1) Maximum: 150 µg/l (U-2)

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

STANDARD	AB	BREVIATIONS
	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
Trace	-	less than 0 01 foot of LPH in well
μg/l		micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l	-	milligrams per liter (approx. equivalent to parts per million, ppm)
ND<	-	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)
D	=	duplicate
Р	=	no-purge sample
ANALYTES		
BTEX		= benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		= di-isopropyl ether
ETBE		= ethyl tertiary butyl ether
MTBE		= methyl tertiary butyl ether
PCB		= polychlorinated biphenyls
PCE		= tetrachloroethene
IBA		= tertiary butyl alcohol
ICA		= trichloroethane
ICE		= trichloroethene
IPH-G		= total petroleum hydrocarbons with gasoline distinction
IPH-G (GC/I	MS)	= total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
IPH-D		= total petroleum hydrocarbons with diesel distinction
IRPH		= total recoverable petroleum hydrocarbons
TAME		= tertiary amyl methyl ether
1,1 -D CA		= 1,1-dichloroethane
1,2-DCA		= 1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		= 1,1-dichloroethene
1,2-DCE		= 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: Surface Elevation - Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known A value of 0 83 is used for diesel
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags
- Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second 7 Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 5325 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 5325

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	Ethanol (8260B)	lron Ferrous	Nitrate	Phosphate (ortho)	Pre-purge Dissolved Oxygen	Pre-purge ORP						
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Acenaph- thylene	Iron Ferrous	Nitrate	Phosphate (ortho)	Phosphate (total)
Table 2b	Well/ Date	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP							

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 26, 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Totuene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
U-1			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 8.46	7.55	0.00	0.91	0.15		5700	ND<2.5	ND<2.5	72	6.5		10	
U-2			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 7.62	5.17	0.00	2.45	-0.19		5200	8.9	ND<2.5	47	22		150	
U-3			(Scree	n Interva	l in feet: 5.0-	20.0)								
03/26/0	9 10.98	10.70	0.00	0.28	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-4			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 11.15	7.21	0.00	3.94	1.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-5			(Scree	n Interva	l in feet: 5.0-	20.0)								
03/26/0	9 6.98	6.20	0.00	0.78	0.63		310	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
U-6			•	n Interval	l in feet: 5.0-	24.0)								
03/26/0	9 7.14	6.10	0.00	1.04	0.38		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		ND<2.5	

5325

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Ethanol (8260B) (μg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
U-1 03/26/09	ND<1200	2400	ND<0.10	0.11		
U-2 03/26/09	ND<1200	2600	ND<0.10	ND<0.050	1.56	-73
U-3 03/26/09	ND<250	ND<100	4.8	0.66	1.98	59
U-4 03/26/09	ND<250	ND<100	4.4	0.37	2.96	17
U-5 03/26/09	ND<250	990	ND<0.10	ND<0.050	0.39	-88
U-6 03/26/09	ND<1200	540000	ND<0.10	0.28	1.67	39

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-1	_		(Scre	en Interva	l in feet: 5.0									
08/10/9						690		38	75	8.6	130			
01/07/9						250		22	16	4.2	17			
04/01/9	91					160		13	8.6	1.0	15			
07/03/9	11					140		21	4.3	0.36	17			
10/09/9	91					ND		ND	ND	ND	ND			
02/12/9	2					250		ND	ND	ND	ND			
05/05/9	2					230		1.2	ND	ND	ND			
06/11/9	2					1000		80	i.4	6.7	41			
08/20/9	2					400		1.0	ND	ND	0.6			
02/22/9	3					34000		1400	5500	910	7300			
05/07/9	3					8700		600	240	650	3300			
08/08/9	3					4900		79	ND	832	270			
11/16/9	3 5.32	8.61	0.00	-3.29		690		ND	ND	ND	ND			
02/16/9	4 5.32	8.54	0.00	-3.22	0.07	6800		ND	ND	ND	ND			
06/22/9	4 8.46	8.39	0.00	0.07	3.29	200		ND	ND	5.9	21			
09/22/9	4 8.46	8.66	0.00	-0.20	-0.27	6100		ND	ND	ND	ND			
12/24/9	4 8.46	8.04	0.00	0.42	0.62	50000		2500	9700	2400	17000			
03/25/9	5 8.46	7.72	0.37	1.02	0.60									Not sampled due to LPH in well
06/21/9		9.30	0.20	-0.69	-1.71									Not sampled due to LPH in well
09/19/9	5 8.46	9.29	0.40	-0.53	0.16									Not sampled due to LPH in well

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-1 c 12/19/9	ontinued 95 8.46	8.98	0.03	-0.50	0.03									Not sampled due to LPH in well
03/18/9	8.46	8.25	0.00	0.21	0.71	27000		ND	2300	1400	11000	4900		
06/27/9	96 8.46	7.92	0.00	0.54	0.33	120000		540	4300	2600	26000	ND		
09/26/9	96 8.46	9.10	0.02	-0.63	-1.17									Not sampled due to LPH in well
12/09/9	96 8.46	6.88	0.03	1.60	2.23									Not sampled due to LPH in well
03/14/9	97 8.46	9.02	0.55	-0.15	-1.75									Not sampled due to LPH in well
06/30/9	97 8.46	8.41	0.02	0.07	0.21									Not sampled due to LPH in well
09/19/9	97 8.46	8.56	0.02	-0.09	-0.15									Not sampled due to LPH in well
12/12/9	97 8.46	8.58	0.01	-0.11	-0.03			-						Not sampled due to LPH in well
03/03/9	8 8.46	8.23	0.04	0.26	0.37		70							Not sampled due to LPH in well
06/15/9	8 8.46	8.37	0.00	0.09	-0.17	52000		ND	900	1800	13000	ND		Sheen
09/30/9	8 8.46	8.94	0.00	-0.48	-0.57	1000000		ND	2600	13000	83000	4800		Sheen
12/28/9	8 8.46	8.57	0.00	-0.11	0.37	1100000	· •••	ND	1600	8600	71000	5700		
03/22/9	9 8.46	8.18	0.00	0.28	0.39	130000		470	1100	2000	28000	5700		Sheen
06/09/9	9 8.46	9.37	0.00	-0.91	-1.19	40000		230	640	590	13000	3500	2100	
09/08/9	9 8.46	9.53	0.00	-1.07	-0.16	55000		217	202	745	14300	6890	6690	
12/07/9	9 8.46	9.67	0.00	-1.21	-0.14	41200		89.3	ND	385	6930	15800	14700	

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-1 c	ontinued													
03/13/0	0 8.46	8.44	0.00	0.02	i.23	48000		490	610	2400	10000	22000	23000	
06/21/0	8.46	9.45	0.00	-0.99	-1.01	37000		200	ND	1200	7200	15000	20000	
09/27/0	0 8.46	9.29	0.00	-0.83	0.16	15000		92	ND	540	2800	74000	83000	
12/12/0	.8.46	9.37	0.00	-0.91	-0.08	50000		ND	ND	250	1900	12000	15000	
03/07/0	01 8.46	8.45	0.00	0.01	0.92	6220		29.8	10.4	96.3	638	11200	11800	
06/06/0	8.46	9.29	0.00	-0.83	-0.84	5200		17	ND	69	420	6500	8700	
09/24/0)1 8.46	9.39	0.00	-0.93	-0.10	4300		36	ND<25	65	590	4400	4400	
12/10/0	8.46	9.17	0.00	-0.71	0.22	11000		220	ND<100	380	1500	5100	5100	
03/11/0	8.46	9.44	0.00	-0.98	-0.27	5500		28	ND<20	360	690	6400	6300	
06/04/0	8.46	8.32	0.00	0.14	1.12	4600		31	ND<10	240	180	6500		
09/03/0	8.46	9.36	0.00	-0.90	-1.04	2300		ND<12	ND<12	ND<12	68	3500	4700	
12/03/0	8.46	8.18	0.00	0.28	1.18		ND<5000	ND<50	ND<50	ND<50	<100		4700	
03/04/0	3 8.46	8.29	0.00	0.17	-0.11		8900	26	ND<25	400	130		5500	
06/18/0	8.46	7.58	0.00	0.88	0.71		8300	ND<25	ND<25	ND<25	ND<50		10000	
09/24/0	3 8.46	8.18	0.00	0.28	-0.60		ND<10000	ND<100	ND<100	ND<100	ND<200		11000	
12/02/0	3 8.46	8.90	0.00	-0.44	-0.72		ND<10000	ND<100	ND<100	ND<100	ND<200		11000	
03/30/0	94 8.46	8.38	0.00	0.08	0.52		12000	ND<100	ND<100	190	ND<200		13000	
06/07/0)4 8.46	10.35	0.00	-1.89	-1.97		13000	ND<100	ND<100	ND<100	ND<200		12000	
09/09/0	.46 8.46													Dry well
12/20/0	8.46	9.00	0.00	-0.54			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.2	
03/28/0	8.46	8.10	0.00	0.36	0.90		37000	ND<10	ND<10	1500	5300		460	
06/14/0	8.46	8.91	0.00	-0.45	-0.81		3900	ND<0.50	ND<0.50	48	68		60	
09/28/0	8.46	11.35	0.00	-2.89	-2.44		560	ND<0.50	0.60	3.0	26		18	
5005								Dogo 2	of 10					

5325

Page 3 of 19

CTRC

.

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
12/29/0		8.58	0.00	-0.12	2.77		510	0.77	ND<0.50	27	63		62	
03/27/0		7.20	0.00	1.26	1.38		29000	ND<25	ND<25	1500	4900		300	
06/12/0	6 8.46	7.81	0.00	0.65	-0.61		3200	ND<0.50	ND<0.50	42	15		56	
09/21/0	6 8.46	8.04	0.00	0.42	-0.23		2600	ND<12	ND<12	ND<12	ND<12		30	
12/21/0	6 8.46	8.32	0.00	0.14	-0.28		2000	ND<0.50	ND<0.50	13	2.2		53	
03/28/0	97 8.46	6.17	0.00	2.29	2.15		12000	ND<2.5	ND<2.5	690	1900		110	
06/27/0	97 8.46	5.39	0.00	3.07	0.78		13000	2.8	ND<2.5	960	1300		79	
09/26/0	97 8.46	5.32	0.00	3.14	0.07		6900	2.6	ND<2.5	310	680		44	
12/27/0	97 8.46	8.12	0.00	0.34	-2.80		5900	ND<2.5	ND<2.5	290	130		42	
03/26/0	8.46	7.84	0.00	0.62	0.28		3500	ND<2.5	ND<2.5	100	18		30	
06/18/0	8.46	7.04	0.00	1.42	0.80		8400	ND<5.0	ND<5.0	230	86		26	
09/24/0)8 8.46	6.90	0.00	1.56	0.14		6000	3.3	ND<2.5	170	86		78	
12/22/0	8.46	7.70	0.00	0.76	-0.80		6400	0.64	ND<0.50	95	7.0		12	
03/26/0	9 8.46	7.55	0.00	0.91	0.15		5700	ND<2.5	ND<2.5	72	6.5		10	
U-2			(Scree	en Interval	l in feet: 5.0	-20.0)								
08/10/9	90					780		27	46	15	130			
01/07/9						1900		67	5.8	58	69			
04/01/9	91					1700		250	89	34	190			
07/03/9	91					2100		150	25	3.1	290			
10/09/9	91					230		7.1	ND	ND	11			
02/12/9	92					410		1.9	ND	0.36	0.4			
05/05/9)2					1600		120	52	6.2	290			
06/11/9)2					620		17	2.1	ND	37			
5325								Page 4	of 19					ÔTOC

©TRC

76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 c	ontinued					-								74-744-44
08/20/9)2					700		28	6.5	1.3	4.6			
02/22/9	93					3400		2400	2100	1200	5800			
05/07/9	93					17000		1800	660	1700	4000			
08/08/9	93					5600		420	ND	410	670			
11/16/9	4.53	8.17	0.00	-3.64		510		ND	ND	ND	ND			
02/16/9	4.53	7.73	0.00	-3.20	0.44	980		49	13	2.7	40			
06/22/9	04 7.62	7.60	0.00	0.02	3.22	31000		2200	62	1500	3500			
09/22/9	94 7.62	7.93	0.00	-0.31	-0.33	8500		29	ND	ND	ND			
12/24/9	94 7.62	7.27	0.00	0.35	0.66	32000		1500	890	1300	5000			
03/25/9	95 7.62	7.01	0.00	0.61	0.26	170000		1900	21000	4800	33000			
06/21/9	7.62	6.98	0.00	0.64	0.03	16000		2100	ND	1800	1700			
09/19/9	7.62	7.70	0.00	-0.08	-0.72	3000		610	ND	78	240			
12/19/9	95 7.62	7.30	0.00	0.32	0.40	1600		140	55	52	270			
03/18/9	6 7.62	6.45	0.00	1.17	0.85	12000		2200	ND	1200	2200	22000		
06/27/9	6 7.62	7.41	0.00	0.21	-0.96	28000		3400	ND	2800	3100	3000		
09/26/9	6 7.62	7.90	0.00	-0.28	-0.49	5900		750	ND	ND	ND	18000		
12/09/9	6 7.62	6.76	0.00	0.86	1.14	13000		5100	290	980	370	2700		
03/14/9	7.62	7.12	0.03	0.52	-0.34									Not sampled due to LPH in well
06/30/9	97 7.62	6.19	0.00	1.43	0.91									Not sampled due to LPH in well
09/19/9	97 7.62	7.31	0.00	0.31	-1.12		'							Not sampled due to LPH in well

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 c	ontinued													
12/12/9	7.62	6.75	0.00	0.87	0.56									Not sampled due to LPH in well
03/03/9	98 7.62	6.36	0.00	1.26	0.39	80000		3000	1100	820	16000	16000		Sheen
06/15/9	98 7.62	6.51	0.00	1.11	-0.15	48000		1800	330	470	7900	20000		Sheen
09/30/9	7.62	7.17	0.00	0.45	-0.66	60000		1300	ND	500	9700	19000		Sheen
12/28/9	98 7.62	7.06	0.00	0.56	0.11	63000		590	160	320	5600	16000		
03/22/9	99 7.62	6.82	0.00	0.80	0.24	28000		1100	ND	360	2900	25000		
06/09/9	99 7.62	7.51	0.00	0.11	-0.69	21000		110	190	310	2600	7900	7800	
09/08/9	9 7.62	8.16	0.00	-0.54	-0.65	23300		477	138	286	4110	16400	15300	
12/07/9	99 7.62	8.31	0.00	-0.69	-0.15	4840		17.2	ND	ND	157	14900	15600	
03/13/0	00 7.62	6.69	0.00	0.93	1.62	11000		380	160	ND	2100	22000	26000	
06/21/0	00 7.62	7.67	0.00	-0.05	-0.98	9100		22	ND	ND	800	16000	22000	
09/27/0	00 7.62	7.44	0.00	0.18	0.23	2900		43	ND	ND	39	20000	26000	
12/12/0	0 7.62	7.51	0.00	0.11	-0.07	3600		17	ND	ND	87	8000	7800	
03/07/0	01 7.62	7.15	0.00	0.47	0.36	1670		51.0	ND	7.20	19.5	5930	7900	
06/06/0	01 7.62	7.57	0.00	0.05	-0.42	1100		14	ND	9.3	35	9200	10000	
09/24/0	01 7.62	7.63	0.00	-0.01	-0.06	1000		25	ND<2.5	12	100	9800	11000	
12/10/0	01 7.62	6.78	0.00	0.84	0.85	83		14	0.55	3.4	6.8	2500	2500	
03/11/0	7.62	7.12	0.00	0.50	-0.34	ND<1000		28	ND<10	40	31	11000	11000	
06/04/0	02 7.62	7.18	0.00	0.44	-0.06	7700		32	ND<25	33	48	14000		
09/03/0	02 7.62	7.58	0.00	0.04	-0.40	5200		ND<25	ND<25	ND<25	ND<25	11000	15000	
12/03/0	7.62	7.68	0.00	-0.06	-0.10		ND<5000	ND<50	ND<50	ND<50	ND<100		3200	
03/04/0	7.62	7.77	0.00	-0.15	-0.09		8100	ND<50	ND<50	ND<50	ND<100		7800	

CTRC

1-7

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 co	ontinued								· · ·					
06/18/0	7.62	6.87	0.00	0.75	0.90		11000	ND<50	ND<50	ND<50	ND<100		16000	
09/24/0	7.62	7.49	0.00	0.13	-0.62		ND<10000	ND<100	ND<100	ND<100	ND<200		10000	
12/02/0	7.62	7.95	0.00	-0.33	-0.46		ND<10000	ND<100	ND<100	ND<100	ND<200		10000	
03/30/0	7.62	7.07	0.00	0.55	0.88		12000	ND<100	ND<100	ND<100	ND<200		11000	
06/07/0	04 7.62	7.75	0.00	-0.13	-0.68		14000	ND<100	ND<100	ND<100	ND<200		13000	
09/09/0	04 7.62	8.65	0.00	-1.03	-0.90		ND<10000	ND<100	ND<100	ND<100	ND<200		9500	
12/20/0	94 7.62	7.73	0.00	-0.11	0.92		ND<5000	ND<50	ND<50	ND<50	ND<100		11000	
03/28/0	5 7.62	6.24	0.00	1.38	1.49		12000	ND<50	ND<50	160	120		7000	
06/14/0	5 7.62	7.05	0.00	0.57	-0.81		2000	0.75	ND<0.50	3.7	1.1		2400	
09/28/0	5 7.62	8.00	0.00	-0.38	-0.95		320	ND<0.50	ND<0.50	ND<0.50	ND<1.0		80	
12/29/0	5 7.62	7.23	0.00	0.39	0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		35	
03/27/0	6 7.62	5.31	0.00	2.31	1.92		2400	31	0.73	120	15		1400	
06/12/0	6 7.62	6.25	0.00	1.37	-0.94		ND<1200	ND<12	ND<12	17	ND<25		490	
09/21/0	6 7.62	6.00	0.00	1.62	0.25		440	6.1	ND<0.50	1.7	ND<0.50		1100	
12/21/0	6 7.62	6.08	0.00	1.54	-0.08		670	10	ND<0.50	52	1.2		730	
03/28/0	7.62	5.05	0.00	2.57	1.03		3300	36	ND<5.0	200	6.8		1200	
06/27/0	7.62	4.80	0.00	2.82	0.25		5100	94	ND<5.0	640	7.1		1100	
09/26/0	7.62	4.73	0.00	2.89	0.07		3900	54	ND<5.0	240	240		670	
12/27/0	7.62	5.80	0.00	1.82	-1.07		2200	21	ND<5.0	77	16		470	
03/26/0	98 7.62	5,62	0.00	2.00	0.18		4300	45	ND<2.5	210	77		580	
06/18/0	08 7.62	5.30	0.00	2.32	0.32		5400	31	ND<5.0	270	38		250	
09/24/0	08 7.62	5.10	0.00	2.52	0.20		4400	24	ND<0.50	190	24		300	
12/22/0	7.62	4.98	0.00	2.64	0.12		6200	24	ND<0.50	160	31		160	

5325

Page 7 of 19

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
u	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 c 03/26/0	ontinued)9 7.62	5,17	0.00	2.45	-0.19		5200	8.9	ND<2.5	47	22		150	
U-3			(Scre	en Interva	l in feet: 5.0	-20.0)								
08/10/9	00				<u>u</u> lu	ND		ND	ND	ND	ND			
01/07/9)1		·			ND		ND	ND	ND	1.8			
04/01/9	91					ND		1.0	2.9	0.53	5.4			
07/03/9						ND		ND	ND	ND	ND			
10/09/9	91					ND		ND	ND	ND	ND			
02/12/9	2					ND		ND	ND	ND	ND			
05/05/9	22					ND		ND	ND	ND	ND			
06/11/9	20					ND		ND	ND	ND	ND			
08/20/9	2					ND		ND	ND	ND	ND			
02/22/9	3					ND		ND	ND	ND	ND			
05/07/9	93					ND		ND	ND	ND	ND			
08/08/9						210		5.0	9.7	0.7	4. i			
11/16/9	3 7.86	11.82	0.00	-3.96		ND		ND	ND	ND	ND			
02/16/9	4 7.86	11.62	0.00	-3.76	0.20	ND		ND	ND	ND	ND			
06/22/9	4 10.98	11.64	0.00	-0.66	3.10	ND		ND	ND	ND	ND			
09/22/9	4 10.98	11.76	0.00	-0.78	-0.12	ND		ND	ND	ND	ND			
12/24/9	4 10.98	11.28	0.00	-0.30	0.48	ND		ND	ND	ND	ND			
03/25/9	10.98	10.96	0.00	0.02	0.32	ND		ND	ND	ND	ND			
06/21/9	5 10.98	11.37	0.00	-0.39	-0.41	ND		ND	ND	ND	ND			
09/19/9	5 10.98	11.55	0.00	-0.57	-0.18	ND		ND	ND	ND	ND			
12/19/9	5 10.98	11.45	0.00	-0.47	0.10	ND		ND	ND	ND	ND			
5005								Daga 9	-£10					

Page 8 of 19

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
August 1990 Through March 2009
76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
03/18/9		11.10		-0.12	0.35	ND		ND	ND	ND	ND			
06/27/9		11.16	0.00	-0.18	-0.06	440		49	50	51	140	50		
09/26/9	06 10.98	11.55	0.00	-0.57	-0.39	ND		ND	ND	ND	ND	ND		
12/09/9	6 10.98	10.12	0.00	0.86	1.43	ND		ND	ND	ND	ND	29		
03/14/9	07 10.98	10.87	0.00	0.11	-0.75	ND		ND	ND	ND	ND	ND		
06/30/9	10.98	11.08	0.00	-0.10	-0.21	ND		ND	ND	ND	ND	ND		
09/19/9	10.98	11.05	0.00	-0.07	0.03	ND		ND	ND	ND	ND	ND		
12/12/9	07 10.98	10.58	0.00	0.40	0.47	ND		ND	ND	ND	ND	ND		
03/03/9	10.98	9.84	0.00	1.14	0.74	ND		ND	ND	ND	ND	ND		
06/15/9	98 10.98	10.56	0.00	0.42	-0.72	ND		ND	ND	ND	ND	ND		
09/30/9	8 10.98	11.12	0.00	-0.14	-0.56	ND		ND	ND	ND	ND	ND		
12/28/9	8 10.98	10.96	0.00	0.02	0.16	ND		ND	ND	ND	ND	ND		
03/22/9	9 10.98	9.46	0.00	1.52	i.50	ND		ND	ND	ND	ND	ND		
06/09/9	9 10.98	11.01	0.00	-0.03	-1.55	ND		ND	ND	ND	ND	ND		
09/08/9	9 10.98	11.31	0.00	-0.33	-0.30	ND		ND	ND	ND	ND	ND		
12/07/9	9 10.98	11.26	0.00	-0.28	0.05	ND		ND	ND	ND	ND	ND		
03/13/0	0 10.98	8.28	0.00	2.70	2.98	ND		ND	ND	ND	ND	ND		
06/21/0	0 10.98	11.12	0.00	-0.14	-2.84	ND		ND	ND	ND	ND	ND		
09/27/0	0 10.98	11.07	0.00	-0.09	0.05	ND		ND	ND	ND	ND	ND		
12/12/0	0 10.98	10.94	0.00	0.04	0.13	ND		ND	ND	ND	ND	ND		
03/07/0	1 10.98	8.32	0.00	2.66	2.62	ND		ND	ND	ND	ND	ND		
06/06/0	1 10.98	10.94	0.00	0.04	-2.62	ND		ND	ND	ND	ND	ND		
09/24/0	10.98	11.03	0.00	-0.05	-0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		

5325

Page 9 of 19

CTRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xyienes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-3 co	ontinued						r							
12/10/0	1 10.98	8.16	0.00	2.82	2.87	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
03/11/0	10.98	7.82	0.00	3.16	0.34	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/04/0	2 10.98	10.58	0.00	0.40	-2.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	10.98	10.94	0.00	0.04	-0.36	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/03/0	10.98	10.66	0.00	0.32	0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/04/0	3 10.98	10.76	0.00	0.22	-0.10		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/18/0	3 10.98	10.26	0.00	0.72	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/24/0	3 10.98	10.88	0.00	0.10	-0.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/02/0	3 10.98	11.00	0.00	-0.02	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/30/0	4 10.98	10.64	0.00	0.34	0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/07/0	4 10.98	11.00	0.00	-0.02	-0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/09/0	4 10.98	11.31	0.00	-0.33	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	4 10.98	10.79	0.00	0.19	0.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/28/0	5 10.98	9.80	0.00	1.18	0.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/0	5 10.98	10.75	0.00	0.23	-0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	1.2		ND<0.50	
09/28/0	5 10.98	11.16	0.00	-0.18	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	5 10.98	10.41	0.00	0.57	0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/27/0	6 10.98	10.16	0.00	0.82	0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	6 10.98	9.94	0.00	1.04	0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/21/0	6 10.98	11.01	0.00	-0.03	-i.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/21/0	6 10.98	10.92	0.00	0.06	0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/28/0	7 10.98	10.84	0.00	0.14	0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0	7 10.98	10.93	0.00	0.05	-0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
E00E								Page 14	1 of 19					

5325

Page 10 of 19

©TRC

Date Sampled	TOC Elevation (feet)	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
		(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued	11.01	0.00	0.02	0.00									
09/26/				-0.03	-0.08		770			ND<0.50			18	
12/27/				0.05	0.08		ND<50		ND<0.50				0.63	
03/26/				0.14	0.09		ND<50		ND<0.50		ND<1.0		ND<0.50	
06/18/				0.09	-0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/24/0				0.08	-0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.87	
12/22/0		10.93	0.00	0.05	-0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	09 10.98	10.70	0.00	0.28	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-4			(Scre	en Interval	l in feet: 5.0	-20.0)								
06/22/9	94 11.15	10.16	0.00	0.99		ND		ND	ND	ND	ND			
09/22/9	94 11.15	10.79	0.00	0.36	-0.63	ND		0.78	1.3	ND	1.4			
12/24/9	94 11.15	9.81	0.00	1.34	0.98	ND		ND	ND	ND	ND			
03/25/9	95 11.15	9.51	0.00	1.64	0.30	ND		ND	ND	ND	ND			
06/21/9	95 11.15	9.54	0.00	1.61	-0.03	ND		ND	ND	ND	ND			
09/19/9	95 11.15	10.17	0.00	0.98	-0.63	ND		ND	ND	ND	ND			
12/19/9	95 11.15	9.98	0.00	i.17	0.19	ND		ND	ND	ND	ND			
03/18/9	96 11.15	9.66	0.00	1.49	0.32	ND		ND	ND	ND	ND			
06/27/9	96 11.15	9.74	0.00	1.41	-0.08	ND	·	ND	ND	ND	ND	ND		
09/26/9	96 11.15	10.14	0.00	1.01	-0.40	ND		ND	ND	ND	ND	ND		
12/09/9	96 11.15	8.67	0.00	2.48	1.47	ND		ND	ND	ND	ND	33		
03/14/9	97 11.15	9.35	0.00	i.80	-0.68	ND		ND	ND	ND	ND	ND		
06/30/9		9.89	0.00	1.26	-0.54	ND		ND	ND	ND	ND	ND		
09/19/9		9.96	0.00	i.19	-0.07	ND		ND	ND	ND	ND ·			
12/12/9		8.56	0.00	2.59	-0.07 1.40	ND		ND				ND	'	
1441443	×, 11.1J	0,00	0.00	2.39	1.40	ND		ND	ND	ND	ND	ND		

5325

Page 11 of 19

©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-4 c	ontinued													
03/03/9	08 11.15	7.85	0.00	3.30	0.71	ND		ND	ND	ND	ND	ND		
06/15/9	98 11.15	9.08	0.00	2.07	-1.23	ND		ND	ND	ND	ND	ND		
09/30/9	98 11.15	9.75	0.00	1.40	-0.67	ND		ND	ND	ND	ND	ND		
12/28/9	11.15	9.59	0.00	1.56	0.16	ND		ND	ND	ND	ND	ND		
03/22/9	9 11.15	8.34	0.00	2.81	1.25	ND		ND	ND	ND	ND	ND		
06/09/9	9 11.15	9,39	0.00	1.76	-1.05	ND		ND	ND	ND	ND	ND		
09/08/9	9 11.15	9.90	0.00	1.25	-0.51	ND		ND	ND	ND	ND	ND		
12/07/9	9 11.15	10.05	0.00	1.10	-0.15	ND		ND	ND	ND	ND	ND		
03/13/0	0 11.15	7.24	0.00	3.91	2.81	ND		ND	ND	ND	ND	ND		
06/21/0	0 11.15	9.48	0.00	1.67	-2.24	ND		ND	ND	ND	ND	ND		
09/27/0	0 11.15	9.42	0.00	1.73	0.06	ND		ND	ND	ND	ND	ND		
12/12/0	0 11.15	9.50	0.00	1.65	-0.08	ND		ND	ND	ND	ND	ND		
03/07/0)1 11.15	6.88	0.00	4.27	2.62	ND		ND	ND	ND	ND	ND	'	
06/06/0	11.15	9.18	0.00	1.97	-2.30	ND		ND	ND	ND	ND	ND		
09/24/0	11.15	9.21	0.00	1.94	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/10/0	11.15	7.32	0.00	3.83	1.89	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
03/11/0	2 11.15	6.92	0.00	4.23	0.40	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/04/0	11.15	7.58	0.00	3.57	-0.66	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	11.15	9.17	0.00	1.98	-1.59	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/03/0	11.15	9.20	0.00	1.95	-0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/04/0	3 11.15	9.32	0.00	1.83	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/18/0	3 11.15	7.65	0.00	3.50	1.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/24/0	11.15	8.26	0.00	2.89	-0.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	

Page 12 of 19

76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(Lult) (µg/l)	(UC/MIS) (μg/l)	(µg/l)	(µg/l)	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	(µg/l)	(8021B) (µg/l)	(8200B) (µg/l)	
U-4 co	ontinued													
12/02/0		9.16	0.00	1.99	-0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/30/0	4 11.15	7.47	0.00	3.68	i.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/07/0	11.15	8.93	0.00	2.22	-1.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/09/0	4 11.15	9.83	0.00	1.32	-0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	11.15	8.28	0.00	2.87	1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/28/0	11.15	6.35	0.00	4.80	1.93		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/0	11.15	8.10	0.00	3.05	-1.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	11.15	9,59	0.00	1.56	-1.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	11.15	7.13	0.00	4.02	2.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/27/0	6 11.15	6.27	0.00	4.88	0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	6 11.15	8.45	0.00	2.70	-2.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/21/0	6 11.15	9.63	0.00	1.52	-1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/21/0	6 11.15	8.50	0.00	2.65	1.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/28/0	11.15	8.00	0.00	3.15	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0	11.15	8.78	0.00	2.37	-0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	·	ND<0.50	
09/26/0	11.15	9.08	0.00	2.07	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	11.15	8.63	0.00	2.52	0.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	11.15	7.86	0.00	3.29	0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/18/0	11.15	8.83	0.00	2.32	-0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/24/0	11.15	9.50	0.00	1.65	-0.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	11.15	8.55	0.00	2.60	0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 11.15	7.21	0.00	3.94	1.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

(Screen Interval in feet: 5.0-20.0)

Page 13 of 19

©TRC

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
06/22/94 6.98 6.83 0.00 0.15 - 210 7.1 13 4.5 26 09/22/94 6.98 6.43 0.00 0.08 -0.07 170 8.4 10 8.5 18 12/24/94 6.98 6.43 0.00 0.55 0.47 8700 560 7.0 670 430 03/25/95 6.98 6.35 0.00 0.63 0.08 4400 390 960 150 7.0 06/21/95 6.98 7.17 0.00 -0.13 0.76 400 2.3 ND ND ND ND ND 09/19/95 6.98 7.17 0.00 -0.19 -0.18 ND ND ND ND ND <		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
09/22/94 6.98 6.90 0.00 0.08 -0.07 170 $$ 184 10 8.5 118 $$ $$ $12/24/94$ 6.98 6.43 0.00 0.55 0.47 8700 $$ 560 70 670 430 $$ $$ $03/25/95$ 6.98 6.35 0.00 0.63 0.08 44000 $$ 390 960 1500 7600 $$ $$ $06/21/95$ 6.98 6.37 1.00 -0.13 -0.76 400 $$ 2.3 ND $9,1$ 3.5 $$ $$ $06/21/95$ 6.98 6.99 0.00 -0.13 -0.76 400 $$ 2.3 ND $9,1$ 3.5 $$ $$ $09/19/95$ 6.98 6.99 0.00 -0.13 0.76 400 $$ 2.3 ND ND ND $$ $$ $12/19/95$ 6.98 6.717 0.00 -0.18 ND $$ ND ND ND ND $$ $$ $03/18/96$ 6.98 0.00 0.49 0.16 16000 $$ 280 150 1400 4600 530 $$ $09/26/96$ 6.98 7.13 0.00 -1.18 ND $$ ND ND ND ND 14 $$ $12/209/6$ 6.98 5.90 0.00 -1.09 ND $$ ND ND ND ND 140 <	Ŭ-5 ci	ontinued														
12/24/94 6.98 6.43 0.00 0.55 0.47 8700 $$ 560 70 670 430 $$ $$ $03/25/95$ 6.98 6.35 0.00 0.63 0.08 44000 $$ 390 960 1500 7600 $$ $$ $06/21/95$ 6.98 7.11 0.00 -0.13 -0.76 400 $$ 2.3 ND 9.11 3.5 $$ $$ $09/19/95$ 6.98 6.99 0.00 -0.11 0.12 850 $$ 14 7.1 13 666 $$ $$ $12/19/95$ 6.98 6.49 0.00 0.01 0.12 850 $$ 14 7.1 13 666 $$ $$ $03/18/96$ 6.98 6.49 0.00 0.33 0.52 100 $$ 280 150 1400 4600 530 $$ $06/27/96$ 6.98 6.49 0.00 0.49 0.16 16000 $$ 280 150 1400 460 530 $$ $12/09/96$ 6.98 7.13 0.00 -0.15 -0.64 ND $$ ND ND ND ND 14 $$ $12/09/96$ 6.98 7.08 0.00 -0.10 -0.99 4200 $$ 74 51 1800 980 270 $$ $09/19/97$ 6.98 6.78 0.00 0.20 0.30 6300 $-$	06/22/9	6.98	6.83	0.00	0.15		210		7.1	13	4.5	26			•	
03/25/95 6.98 6.35 0.00 0.63 0.08 44000 390 960 1500 7600 06/21/95 6.98 7.11 0.00 -0.13 -0.76 400 2.3 ND 9.1 3.5 09/19/95 6.98 6.99 0.00 -0.01 0.12 850 14 7.1 13 66 03/18/96 6.98 6.65 0.00 0.33 0.52 100 0.67 0.5 0.51 5.4 03/18/96 6.98 6.65 0.00 0.49 0.16 16000 280 150 1400 4600 530 09/26/96 6.98 5.00 0.00 1.08 1.23 1300 ND ND ND ND ND ND ND 140 97 03/14/97 6.98 6.99 0.00 -0.11 -1.09 ND ND	09/22/9	6.98	6.90	0.00	0.08	-0.07	170		8.4	10	8.5	18				
06/21/95 6.98 7.11 0.00 -0.13 -0.76 400 2.3 ND 9.1 3.5 09/19/95 6.98 6.99 0.00 -0.01 0.12 850 14 7.1 13 66 12/19/95 6.98 7.17 0.00 -0.19 -0.18 ND ND ND ND ND 03/18/96 6.98 6.65 0.00 0.33 0.52 100 280 150 1400 4600 530 06/27/96 6.98 6.49 0.00 0.49 0.16 16000 280 150 1400 4600 530 02/26/96 6.98 7.13 0.00 -0.15 -0.64 ND ND ND ND ND 14 03/14/97 6.98 6.99 0.00 -0.01 -1.09 ND ND ND ND 14	12/24/9	6.98	6.43	0.00	0.55	0.47	8700		560	70	670	430				
09/19/95 6.98 6.99 0.00 -0.01 0.12 850 $$ 14 7.1 13 166 $$ $$ $12/19/95$ 6.98 7.17 0.00 -0.19 -0.18 ND $$ ND ND ND ND $$ $$ $03/18/96$ 6.98 6.65 0.00 0.33 0.52 100 $$ 0.67 0.5 0.51 5.4 $$ $$ $06/27/96$ 6.98 6.49 0.00 0.49 0.16 16000 $$ 280 150 1400 4600 530 $$ $09/26/96$ 6.98 7.13 0.00 -0.15 -0.64 ND $$ ND 0.96 ND $$ $12/09/96$ 6.98 5.90 0.00 1.08 1.23 1300 $$ 29 46 ND 140 97 $$ $03/14/97$ 6.98 6.99 0.00 -0.01 -1.09 ND $$ ND ND ND ND 141 $$ $06/30/97$ 6.98 7.08 0.00 -0.10 -0.09 4200 $$ 74 51 180 980 270 $$ $09/19/97$ 6.98 6.78 0.00 0.20 0.30 6300 $$ 133 ND 1.6 2.1 47 $$ $03/03/98$ 6.98 6.85 0.00 0.13 -0.35 1500 $$ 32 ND <t< td=""><td>03/25/9</td><td>6.98</td><td>6.35</td><td>0.00</td><td>0.63</td><td>0.08</td><td>44000</td><td></td><td>390</td><td>960</td><td>1500</td><td>7600</td><td></td><td></td><td></td><td></td></t<>	03/25/9	6.98	6.35	0.00	0.63	0.08	44000		390	960	1500	7600				
12/19/95 6.98 7.17 0.00 -0.19 -0.18 ND ND <th< td=""><td>06/21/9</td><td>95 6.98</td><td>7.11</td><td>0.00</td><td>-0.13</td><td>-0.76</td><td>400</td><td></td><td>2.3</td><td>ND</td><td>9.1</td><td>3.5</td><td></td><td></td><td></td><td></td></th<>	06/21/9	95 6.98	7.11	0.00	-0.13	-0.76	400		2.3	ND	9.1	3.5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/19/9	95 6.98	6.99	0.00	-0.01	0.12	850		14	7.1	13	66				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12/19/9	95 6.98	7.17	0.00	-0.19	-0.18	ND		ND	ND	ND	ND				
09/26/96 6.98 7.13 0.00 -0.15 -0.64 ND $$ ND ND ND 0.96 ND $$ $12/09/96$ 6.98 5.90 0.00 1.08 1.23 1300 $$ 29 46 ND 140 97 $$ $03/14/97$ 6.98 6.99 0.00 -0.01 -1.09 ND $$ NDNDNDND 14 $$ $06/30/97$ 6.98 7.08 0.00 -0.01 -1.09 ND $$ 74 51 180 980 270 $$ $09/19/97$ 6.98 6.78 0.00 0.20 0.30 6300 $$ 160 13 370 1000 480 $$ $12/12/97$ 6.98 6.94 0.00 0.04 -0.16 60 $$ 1.3 ND 1.6 2.1 47 $$ $03/03/98$ 6.98 6.50 0.00 0.44 1700 $$ 29 ND 150 190 330 $$ $06/15/98$ 6.98 0.65 0.00 0.13 -0.35 1500 $$ 32 ND 91 83 330 $$ $09/30/98$ 6.98 7.25 0.00 -0.27 0.06 1400 $$ 59 ND 13 277 150 $$ $12/28/98$ 6.98 7.25 0.00 0.12 0.39 780 $$ 8.9 ND 0.76 4.5 <td>03/18/9</td> <td>6.98</td> <td>6.65</td> <td>0.00</td> <td>0.33</td> <td>0.52</td> <td>100</td> <td></td> <td>0.67</td> <td>0.5</td> <td>0.51</td> <td>5.4</td> <td></td> <td></td> <td></td> <td></td>	03/18/9	6.98	6.65	0.00	0.33	0.52	100		0.67	0.5	0.51	5.4				
12/09/96 6.98 5.90 0.00 1.08 1.23 1300 $$ 29 46 ND 140 97 $$ $03/14/97$ 6.98 6.99 0.00 -0.01 -1.09 ND $$ ND ND ND ND 14 $$ $06/30/97$ 6.98 7.08 0.00 -0.10 -0.09 4200 $$ 74 51 180 980 270 $$ $09/19/97$ 6.98 6.78 0.00 0.20 0.30 6300 $$ 160 13 370 1000 480 $$ $12/12/97$ 6.98 6.94 0.00 0.04 -0.16 60 $$ 1.3 ND 1.6 2.1 47 $$ $03/03/98$ 6.98 6.50 0.00 0.48 0.44 1700 $$ 29 ND 150 190 330 $$ $06/15/98$ 6.98 7.31 0.00 0.48 0.44 1700 $$ 29 ND 91 83 330 $$ $09/30/98$ 6.98 7.31 0.00 -0.33 -0.46 1700 $$ 44 ND 39 150 60 $$ $12/28/98$ 6.98 7.25 0.00 -0.27 0.66 1400 $$ 59 ND 13 27 150 $$ $03/22/99$ 6.98 7.28 0.00 -0.42 1000 $$ 8.9 ND	06/27/9	6.98	6.49	0.00	0.49	0.16	16000		280	150	1400	4600	530			
03/14/97 6.98 6.99 0.00 -0.01 -1.09 ND ND ND ND ND 14 06/30/97 6.98 7.08 0.00 -0.10 -0.09 4200 74 51 180 980 270 09/19/97 6.98 6.78 0.00 0.20 0.30 6300 160 13 370 1000 480 12/12/97 6.98 6.50 0.00 0.04 -0.16 60 1.3 ND 1.6 2.1 47 03/03/98 6.98 6.50 0.00 0.48 0.44 1700 29 ND 150 190 330 06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60	09/26/9	6.98	7.13	0.00	-0.15	-0.64	ND		ND	0.57	ND	0.96	ND			
06/30/97 6.98 7.08 0.00 -0.10 -0.09 4200 74 51 180 980 270 09/19/97 6.98 6.78 0.00 0.20 0.30 6300 160 13 370 1000 480 12/12/97 6.98 6.94 0.00 0.04 -0.16 60 1.3 ND 1.6 2.1 47 03/03/98 6.98 6.50 0.00 0.48 0.44 1700 29 ND 150 190 330 06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150	12/09/9	6.98	5.90	0.00	i.08	1.23	1300		29	46	ND	140	97			
09/19/97 6.98 6.78 0.00 0.20 0.30 6300 160 13 370 1000 480 12/12/97 6.98 6.94 0.00 0.04 -0.16 60 1.3 ND 1.6 2.1 47 03/03/98 6.98 6.50 0.00 0.48 0.44 1700 29 ND 150 190 330 06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 6.86 0.00 0.12 0.39 780 ND ND 10 35 280 350	03/14/9	97 6.98	6.99	0.00	-0.01	-1.09	ND		ND	ND	ND	ND	14			
12/12/97 6.98 6.94 0.00 0.04 -0.16 60 1.3 ND 1.6 2.1 47 03/03/98 6.98 6.50 0.00 0.48 0.44 1700 29 ND 150 190 330 06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 32.2 157 280 239 <td>06/30/9</td> <td>6.98</td> <td>7.08</td> <td>0.00</td> <td>-0.10</td> <td>-0.09</td> <td>4200</td> <td></td> <td>74</td> <td>51</td> <td>180</td> <td>980</td> <td>270</td> <td></td> <td></td> <td></td>	06/30/9	6.98	7.08	0.00	-0.10	-0.09	4200		74	51	180	980	270			
03/03/98 6.98 6.50 0.00 0.48 0.44 1700 29 ND 150 190 330 06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 6.86 0.00 0.12 0.39 780 8.9 ND 0.76 4.5 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.24 2620 26.2 ND 32.2 157 280 239 <td>09/19/9</td> <td>97 6.98</td> <td>6.78</td> <td>0.00</td> <td>0.20</td> <td>0.30</td> <td>6300</td> <td></td> <td>160</td> <td>13</td> <td>370</td> <td>1000</td> <td>480</td> <td></td> <td></td> <td></td>	09/19/9	97 6.98	6.78	0.00	0.20	0.30	6300		160	13	370	1000	480			
06/15/98 6.98 6.85 0.00 0.13 -0.35 1500 32 ND 91 83 330 09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 6.86 0.00 0.12 0.39 780 8.9 ND 0.76 4.5 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.24 2620 26.2 ND 32.2 157 280 239	12/12/9	97 6.98	6.94	0.00	0.04	-0.16	60		1.3	ND	1.6	2.1	47			
09/30/98 6.98 7.31 0.00 -0.33 -0.46 1700 44 ND 39 150 60 12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 6.86 0.00 0.12 0.39 780 8.9 ND 0.76 4.5 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	03/03/9	6.98	6.50	0.00	0.48	0.44	1700		29	ND	150	190	330			
12/28/98 6.98 7.25 0.00 -0.27 0.06 1400 59 ND 13 27 150 03/22/99 6.98 6.86 0.00 0.12 0.39 780 8.9 ND 0.76 4.5 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	06/15/9	98 6.98	6.85	0.00	0.13	-0.35	1500		32	ND	91	83	330			
03/22/99 6.98 6.86 0.00 0.12 0.39 780 8.9 ND 0.76 4.5 350 06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	09/30/9	98 6.98	7.31	0.00	-0.33	-0.46	1700		44	ND	39	150	60			
06/09/99 6.98 7.28 0.00 -0.30 -0.42 1000 ND ND 10 35 280 350 09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	12/28/9	98 6.98	7.25	0.00	-0.27	0.06	1400		59	ND	13	27	150			
09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	03/22/9	6.98	6.86	0.00	0.12	0.39	780		8.9	ND	0.76	4.5	350			
	06/09/9	99 6.98	7.28	0.00	-0.30	-0.42	1000		ND	ND	10	35	280	350		
12/07/99 6.98 7.67 0.00 -0.69 -0.15 949 9.26 ND 11.2 22.7 235 301	09/08/9	6.98	7.52	0.00	-0.54	-0.24	2620		26.2	ND	32.2	157	280	239		
	12/07/9	9 6.98	7.67	0.00	-0.69	-0.15	949		9.26	ND	11.2	22.7	235	301		

Page 14 of 19

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-5 co	ontinued													
03/13/0	0 6.98	6.73	0.00	0.25	0.94	880		12	1.0	5.6	8.7	46	37	
06/21/0	0 6.98	7.39	0.00	-0.41	-0.66	700		4.0	ND	0.99	4.0	120	140	
09/27/0	0 6.98	7.45	0.00	-0.47	-0.06	400		i.9	ND	ND	1.5	160	250	
12/12/0	0 6.98	7.68	0.00	-0.70	-0.23	770		3.2	ND	ND	ND	27	13	
03/07/0	1 6.98	6.83	0.00	0.15	0.85	623		5.15	ND	ND	0.669	35.7	43.4	
06/06/0	1 6.98	7,42	0.00	-0.44	-0.59	110		ND	ND	ND	ND	ND		
09/24/0	1 6.98	7.50	0.00	-0.52	-0.08	270		ND<0.50	ND<0.50	ND<0.50	ND<0.50	40	42	
12/10/0	1 6.98	6.65	0.00	0.33	0.85	420		13	0.60	0.66	ND<0.50	ND<2.5		
03/11/0	2 6.98	7.00	0.00	-0.02	-0.35	260		ND<0.50	ND<0.50	ND<0.50	ND<0.50	42	47	
06/04/0	2 6.98	6.71	0.00	0.27	0.29	170		ND<0.50	0.77	0.87	0.69	29		
09/03/0	2 6.98	7.47	0.00	-0.49	-0.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	37	53	
12/03/0	2 6.98	6.64	0.00	0.34	0.83		320	ND<0.50	ND<0.50	5.7	ND<1.0		11	
03/04/0	3 6.98	6.75	0.00	0.23	-0,11		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		44	
06/18/0	3 6.98	6.25	0.00	0.73	0.50		51	ND<0.50	ND<0.50	ND<0.50	ND<1.0		36	
09/24/0	3 6.98	6.86	0.00	0.12	-0.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/02/0	3 6.98	7.12	0.00	-0.14	-0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	
03/30/0	4 6.98	6.88	0.00	0.10	0.24		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		130	
06/07/0	4 6.98	8.53	0.00	-1.55	-1.65		250	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
09/09/0	4 6.98	12.28	0.00	-5.30	-3.75		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		260	
12/20/0	4 6.98	7.51	0.00	-0.53	4.77		130	ND<0.50	ND<0.50	1.9	2.0		120	
03/28/0	5 6.98	7.22	0.00	-0.24	0.29		670	ND<2.0	ND<2.0	ND<2.0	ND<4.0		230	
06/14/0	5 6.98	7.46	0.00	-0.48	-0.24		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
09/28/0	5 6.98	9.59	0.00	-2.61	-2.13		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		370	
5325								Page 1:	5 of 19					ATOC

CTRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change 1n	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
					Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
u	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
12/29/0	05 6.98	7.53	0.00	-0.55	2.06		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		190	
03/27/0		6.29	0.00	0.69	1.24		450	ND<0.50	ND<0.50	8.3	ND<1.0		70	
06/12/0	6.98	6.45	0.00	0.53	-0.16		370	ND<0.50	ND<0.50	ND<0.50	ND<1.0		61	
09/21/0	6.98	6.60	0.00	0.38	-0.15		130	ND<0.50	ND<0.50	ND<0.50	ND<0.50		35	
12/21/(6.98	6.92	0.00	0.06	-0.32		230	ND<0.50	ND<0.50	0.58	ND<0.50		11	
03/28/0	07 6.98	5.12	0.00	1.86	1.80		400	ND<0.50	ND<0.50	5.4	ND<0.50		13	
06/27/0	07 6.98	4.41	0.00	2.57	0.71		210	ND<0.50	ND<0.50	2.4	ND<0.50		18	
09/26/0	07 6.98	4.71	0.00	2.27	-0.30		740	ND<0.50	ND<0.50	ND<0.50	ND<0.50		18	
12/27/0	07 6.98	6.77	0.00	0.21	-2.06		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
03/26/(6.98	6.41	0.00	0.57	0.36		310	ND<0.50	0.64	1.3	1.0		27	
06/18/0	08 6.98	5.71	0.00	1.27	0.70		790	ND<0.50	ND<0.50	2.4	ND<1.0		22	
09/24/0	08 6.98	5.45	0.00	1.53	0.26		860	1.2	ND<0.50	3.2	3.7		16	
12/22/(6.98	6.83	0.00	0.15	-1.38		620	ND<0.50	ND<0.50	0.54	1.3		13	
03/26/0	6.98	6.20	0.00	0.78	0.63		310	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
U-6			(Scre	en Interva	l in feet: 5.0	-24.0)								
06/22/9	94 7.14	7.14	0.00	0.00		ND		ND	ND	ND	ND			
09/22/9	94 7.14	7.34	0.00	-0.20	-0.20	130		1.3	0.8	ND	0.73			
12/24/9	94 7.14	6.67	0.00	0.47	0.67	6900		500	59	600	380			
03/25/9	95 7.14	6.29	0.00	0.85	0.38	47000		450	1300	1700	8200			
06/21/9	95 7.14	7.60	0.00	-0.46	-1.31	ND		ND	ND	ND	ND			
09/19/9	95 7.14	7.70	0.00	-0.56	-0.10	ND		ND	ND	ND	ND			
12/19/9	95 7.14	7.75	0.00	-0.61	-0.05	210		2.5	1.0	2.9	17			
03/18/9	96 7.14	6.86	0.00	0.28	0.89	ND		ND	ND	ND	ND			
								D 1						6

Page 16 of 19

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-6 ca	ontinued													
06/27/9	96 7.14	6.52	0.00	0.62	0.34	ND		ND	ND	ND	ND	510		
09/26/9	96 7.14	7.62	0.00	-0.48	-1.10	ND		ND	ND	ND	ND	1400	~~	
12/09/9	96 7.14	5.88	0.00	1.26	1.74	1200		29	48	6.4	140	58		
03/14/9	97 7.14	7.30	0.00	-0.16	-1.42	ND		ND	ND	ND	ND	1500		
06/30/9	7.14	7.35	0.00	-0.21	-0.05	ND		ND	ND	ND	ND	990		
09/19/9	97 7.14	7.25	0.00	-0.11	0.10	ND		ND	ND	ND	ND	1400		
12/12/9	7.14	7.29	0.00	-0.15	-0.04	ND		ND	ND	ND	ND	680		
03/03/9	98 7.14	7.00	0.00	0.14	0.29	ND		ND	ND	ND	ND	1600		
06/15/9	98 7.14	7.18	0.00	-0.04	-0.18	ND		ND	ND	ND	ND	1000		
09/30/9	98 7.14	7.90	0.00	-0.76	-0.72	ND		ND	ND	ND	ND	1200		
12/28/9	98 7.14	7.79	0.00	-0.65	0.11	ND		ND	ND	ND	ND	730		
03/22/9	9 7.14	7.47	0.00	-0.33	0.32	ND		ND	ND	ND	ND	1800		
06/09/9	9 7.14	7.73	0.00	-0.59	-0.26	ND		ND	ND	ND	ND	1000	850	
09/08/9	9 7.14	7.95	0.00	-0.81	-0.22	ND		ND	ND	ND	ND	851	1040	
12/07/9	9 7.14	8.10	0.00	-0.96	-0.15	ND		ND	ND	ND	ND	1140	1150	
03/13/0	0 7.14	6.95	0.00	0.19	1.15	ND		ND	ND	ND	ND	560	670	
06/21/0	00 7.14	7.84	0.00	-0.70	-0.89	ND		ND	ND	ND	ND	400	590	
09/27/0	0 7.14	7.68	0.00	-0.54	0.16	ND		ND	ND	ND	ND	2500	2800	
12/12/0	0 7.14	7.74	0.00	-0.60	-0.06	ND		ND	ND	ND	ND	590	580	
03/07/0)1 7.14	7.27	0.00	-0.13	0.47	ND		ND	ND	ND	ND	310	321	
06/06/0)1 7.14	7.80	0.00	-0.66	-0.53	ND		ND	ND	ND	ND	250	330	
09/24/0	01 7.14	7.82	0.00	-0.68	-0.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	530	660	
12/10/0)1 7.14	7.15	0.00	-0.01	0.67	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	220	220	

5325

Page 17 of 19

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-6 c	ontinued													
03/11/0	02 7.14	7.32	0.00	-0.18	-0.17	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	720	760	
06/04/0)2 7.14	7.18	0.00	-0.04	0.14	250		ND<1.0	ND<1.0	ND<1.0	ND<1.0	470		
09/03/0	02 7.14	7.72	0.00	-0.58	-0.54	420		ND<2.5	ND<2.5	ND<2.5	4.7	860	1200	
12/03/0	02 7.14	6.92	0.00	0.22	0.80		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		870	
03/04/0	03 7.14	7.01	0.00	0.13	-0.09		2300	ND<10	ND<10	ND<10	ND<20		2700	
06/18/0	03 7.14	6.60	0.00	0.54	0.41		1300	ND<10	ND<10	ND<10	ND<20		1700	
09/24/0	03 7.14	7.24	0.00	-0.10	-0.64		ND<10000	ND<100	ND<100	ND<100	ND<200		1500	
12/02/0	03 7.14	7.80	0.00	-0.66	-0.56		1300	ND<10	ND<10	ND<10	ND<20		1800	
03/30/0	04 7.14	7.32	0.00	-0.18	0.48		1200	ND<10	ND<10	ND<10	ND<20		1700	
06/07/0)4 7.14	9.35	0.00	-2.21	-2.03		1700	ND<10	ND<10	ND<10	ND<20		1800	
09/09/0)4 7.14	12.81	0.00	-5.67	-3.46		ND<1000	ND<10	ND<10	ND<10	ND<20		1400	
12/20/0)4 7.14	7.96	0.00	-0.82	4.85		320	ND<2.5	ND<2.5	ND<2.5	ND<5.0		65	
03/28/0)5 7.14	7.07	0.00	0.07	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
06/14/0	5 7.14	7.88	0.00	-0.74	-0.81		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		20	
09/28/0)5 7.14	10.44	0.00	-3.30	-2.56		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.6	
12/29/0)5 7.14	7.63	0.00	-0.49	2.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	
03/27/0	6 7.14	6.16	0.00	0.98	1.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.1	
06/12/0)6 7.14	6.59	0.00	0.55	-0.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.9	
09/21/0	6 7.14	6.90	0.00	0.24	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.1	
12/21/0	6 7.14	7.36	0.00	-0.22	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.2	
03/28/0	7.14	3.48	0.00	3.66	3.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0)7 7.14													Inaccessible - dumpster ove

Inaccessible - dumpster over well

Page 18 of 19

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)		Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (μg/l)	MTBE (8260B) (µg/l)	Comments
U-6 c	ontinued													
09/26/0	7.14	2.71	0.00	4.43			54	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	7.14	6.96	0.00	0.18	-4.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.4	
03/26/0	08 7.14	6.56	0.00	0.58	0.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.3	
06/18/0	8 7.14	6.71	0.00	0.43	-0.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.59	
09/24/0	8 7.14	5.50	0.00	1.64	1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	08 7.14	6.48	0.00	0.66	-0.98		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 7.14	6.10	0.00	1.04	0.38		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		ND<2.5	

Date			Ethylene-									
Sampled		Ethanol	dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
<u></u>	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-1							· · · · · ·				·····	
06/15/98									39000	ND		ND
09/30/98									17000	ND		ND
12/28/98									4300	6.30		28
03/22/99									4900	ND		3.5
06/09/99									1200	ND		ND
09/08/99									1800	ND		ND
12/07/99									5700	ND		17.0
03/13/00									8000	0.18		ND
06/21/00									9300	ND	~~	ND
09/27/00	ND		ND		ND	ND	ND		2800	ND		18.4
12/12/00									490	ND		16.0
03/07/01	ND		ND		ND	ND	ND		483	2.64		6.89
06/06/01	ND		ND		ND	ND	ND		1000	ND		2,7
09/24/01	ND<20000	ND<400000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<100	0.45		<i>2.,)</i>
12/10/01	ND<4000	ND<8000	ND<100	ND<100	ND<100	ND<100	ND<100		14000	ND<0.50		2.2
03/11/02	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		15000	ND<0.50		0.11
06/04/02									ND<500	ND<0.50		ND<0.10
09/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		ND<500	ND<0.50		ND<0.10
12/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		9600	ND<1.0		ND<1.0
03/04/03	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		36000	ND<1.0		ND<1.0
06/18/03	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		16000	ND<1.0		ND<1.0
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		15	ND<1.0		ND<1.0
12/02/03		ND<100000							4000			
03/30/04	3100	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		12000	 ND<1.0	 ND<1.0	
06/07/04	3300	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		660	ND<1.0	6.8	
						1.2 100	112 100		000	1.2 -0.20	0.0	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 1 of 12

Date Sampled	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethytene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (μg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-1 conti	nued											
12/20/04	11	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		0.015	ND<1.0	ND<1.0	
03/28/05		ND<1000							16	ND<1.0	ND<1.0	
06/14/05	4400	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10		7100	ND<1.0	12	
09/28/05	5500	ND<250	ND<10	ND<10	ND<10	ND<10	ND<10		7300	ND<0.10	39	
12/29/05	3900	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		9500	ND<0.10	21	
03/27/06		ND<12000							8500	ND<0.10	ND<0.050	
06/12/06		ND<250							25000	ND<0.10	0.64	
09/21/06		ND<6200							16000	ND<0.10	1.5	
12/21/06		ND<250							22000	ND<0.10	1.0	
03/28/07	1600	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		20000	ND<0.10	ND<0.050	
06/27/07	1500	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		35000	ND<0.10	0.065	
09/26/07		ND<1200							27000	ND<0.10	0.11	
12/27/07		ND<1200							25000	ND<0.10	ND<0.050	
03/26/08		ND<1200							23000	ND<0.10	0.12	
06/18/08		ND<2500							30000	ND<0.10	0.059	
09/24/08		ND<1200							5000	ND<0.10	0.061	
12/22/08		ND<250							23000	ND<0.10	ND<0.050	
03/26/09		ND<1200	'						2400	ND<0.10	0.11	
U-2												
03/03/98									25000	ND		ND
06/15/98									42000	ND		ND
09/30/98	~~								25000	ND		ND
12/28/98									28000	ND		ND
03/22/99									680	ND		2.3
06/09/99									500	ND		ND

5325

Page 2 of 12

Date Sampled		Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-2 cont	inued											
09/08/99									1900	ND		ND
12/07/99									250	ND		ND
03/13/00									4300	0.31		ND
06/21/00									260	ND		ND
09/27/00									640	ND		10.5
12/12/00									2700	ND		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND		677	2.24		3.02
06/06/01	ND	ND	ND	ND	ND	ND	ND		800	ND		2.8
09/24/01	ND<20000	ND<400000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<100	0.49		
12/10/01	ND<2000	ND<4000	ND<50	ND<50	ND<50	ND<50	ND<50		ND<100	ND<0.50		0.20
03/11/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		ND<100	ND<0.50		0.65
06/04/02									ND<100	ND<0.50		ND<0.10
09/03/02	ND<50000	ND<250000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<250	ND<0.50		0.26
12/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		9900	ND<1.0		ND<1.0
03/04/03	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		8600	ND<1.0		ND<1.0
06/18/03	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		5500	ND<1.0		3.1
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		14	ND<1.0		ND<1.0
12/02/03		ND<100000							2700			
03/30/04	2400	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		ND<200	ND<1.0	2.9	
06/07/04	2600	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		210	ND<0.50	2.4	
09/09/04	2700	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		930	ND<1.0	5.9	
12/20/04	3500	ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50		0.87	ND<1.0	ND<1.0	
03/28/05	830	ND<5000	ND<50	ND<50	ND<50	ND<50	ND<0.50		4.0	ND<1.0	ND<1.0	
06/14/05	10000	ND<2000	ND<20	ND<20	ND<20	ND<20	ND<20		3400	ND<1.0	ND<1.0	
09/28/05	13000	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4000	ND<0.20	7.5	

5325

Date Sampled	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-2 cont											(
12/29/05	1000000000	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2200	ND<0.20	4.6	
03/27/06		ND<250							1100	ND<0.10	ND<0.050	
06/12/06		ND<6200							1500	ND<0.10	ND<0.050	
09/21/06		ND<250	·						100	33	0.36	
12/21/06		ND<250	·						770	ND<0.20	0.21	
03/28/07	4000	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		8600	ND<0.10	ND<0.050	
06/27/07	3000	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		9000	ND<0.10	ND<0.050	
09/26/07		ND<2500							22000	ND<0.10	0.10	
12/27/07		ND<2500							7600	ND<0.10	ND<0.050	
03/26/08		ND<1200							11000	ND<0.10	ND<0.050	
06/18/08		ND<2500							16000	ND<0.10	ND<0.050	
09/24/08		ND<250							4600	ND<0.20	ND<0.050	
12/22/08		ND<250							13000	ND<0.10	ND<0.050	
03/26/09		ND<1200							2600	ND<0.10	ND<0.050	
U-3												
06/30/97									1400	21		0.86
09/19/97									570	19		ND
12/12/97									1900	23		0.85
03/03/98									13	36		ND
06/15/98									160	33		ND
09/30/98									40	31		ND
12/28/98									ND	29		ND
03/22/99									15	30		0.14
06/09/99									ND	26		1.2
09/08/99									ND	32.90		ND

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 4 of 12

Date Sampled	TBA (µg/l)	Ethanot (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	i,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-3 cont		(10)	(1-8-7	(1-0)	(1-8-1)	(198-1)	(1,84)	(#6/1)	(#6/1)	(iiig/1)	(ing/1)	(ing/1)
12/07/99									52	27.90		ND
03/13/00									150	33		ND
06/21/00									200	32		ND
09/27/00								307	ND	34		15.7
12/12/00									ND	31		ND
03/07/01									ND	36.5		0.443
06/06/01							<u></u>		ND	8.0		0.18
09/24/01									ND<100	23.0		ND
12/10/01									ND<100	21		0.11
03/11/02									ND<100	30		0.14
06/04/02									ND<100	18		ND<0.10
09/03/02									ND<100	28		ND<0.10
12/03/02							20 TB		ND<200	20		ND<1.0
03/04/03									ND<200	18		ND<1.0
06/18/03									ND<200	17		ND<1.0
09/24/03		ND<500							ND<0.20	18		1.4
12/02/03		ND<500							ND<200			
03/30/04		ND<50							ND<200	16	ND<1.0	
06/07/04		ND<50				-			ND<200	17	ND<0.20	
09/09/04		ND<50							ND<10	16	1.2	
12/20/04		ND<50							ND<0.010	17	ND<1.0	
03/28/05		ND<50							ND<0.050	17	ND<1.0	
06/14/05	-	ND<50							ND<50	18	ND<1.0	
09/28/05		ND<250							ND<100	4.3	0.66	
12/29/05		ND<250							ND<100	4.3	0.65	

5325

Date Sampled		Ethanol	Ethylene- dibromide	i,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA (µg/l)	(8260B) (µg/l)	(EDB) (µg/l)	(EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	thylene (μg/l)	Ferrous (µg/l)	Nitrate (mg/l)	(ortho) (mg/l)	(total) (mg/l)
		(μg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(#6/1)	(#6/1)	(µµ,1)	(116/1)	((1115/1)
U-3 conti 03/27/06	inued	ND<250							ND<100	4.5	0.66	
06/12/06		ND<250							ND<100	4.4	0.64	
09/21/06		ND<250							170	4.4	0.69	
12/21/06		ND<250							ND<100	4.5	0.68	
03/28/07		ND<250						-	ND<100	4.7	0.67	
06/27/07		ND<250							ND<100	4.5	0.64	
09/26/07		ND<250							9900	ND<0.10	ND<0.050	
12/27/07		ND<250							130	4.6	0.75	
03/26/08		ND<250							190	5.1	0.64	
06/18/08		ND<250							ND<100	4.9	0.64	
09/24/08		ND<250							150	4.7	0.73	
12/22/08		ND<250							ND<100	4.8	0.73	
03/26/09		ND<250							ND<100	4.8	0.66	
U-4												
06/30/97									130	35		0.52
09/19/97									350	30		ND
12/12/97									680	31		0.73
03/03/98									18	3.2		ND
06/15/98									140	33		ND
09/30/98									49	31		ND
12/28/98			 .						360	31		ND
03/22/99									ND	30		0.14
06/09/99									ND	35		0.91
09/08/99									ND	24		ND
12/07/99									ND	27.7		ND

5325

Page 6 of 12

Date Sampled	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ЕТВЕ (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
		(µg/1)	(µg/1)	(µg/1)	(µg/1)	(μg/1)	(µg/i)	(µg/1)	(µg/1)	(1118/1)	(ing/i)	(IIIg/1)
U-4 cont 03/13/00	inued								ND	33		ND
06/21/00									34	32		ND
09/27/00			·						ND	28		ND
12/12/00									ND	30		ND
03/07/01									ND	33.9		0.226
06/06/01									ND	7.4		0.21
09/24/01									ND<100	24		70 F
12/10/01									ND<100	19		0.10
03/11/02									ND<100	31		0.14
06/04/02									ND<100	27		ND<0.10
09/03/02									ND<100	28		0.27
12/03/02									ND<200	20		ND<1.0
03/04/03									ND<200	26		ND<1.0
06/18/03									ND<200	31		ND<1.0
09/24/03	·	ND<500							ND<0.20	17		1.5
12/02/03		ND<500							ND<200			
03/30/04		ND<50							ND<200	25	ND<1.0	
06/07/04		ND<50							ND<200	24	ND<0.20	
09/09/04		ND<50							ND<10	22	ND<1.0	
12/20/04		ND<50							ND<0.010	20	ND<1.0	
03/28/05		ND<50							0.060	31	ND<1.0	
06/14/05		ND<50							ND<50	32	ND<1.0	
09/28/05		ND<250							190	6.8	0.45	
12/29/05		ND<250							ND<100	5.3	0.37	
03/27/06		ND<250							ND<100	6.4	0.41	

5325

Page 7 of 12

Date Sampled	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-4 cont	inued											
06/12/06		ND<250							2200	6.8	0.39	
09/21/06		ND<250							360	5.7	0.43	
12/21/06		ND<250							ND<100	5.6	0.41	
03/28/07		ND<250							ND<100	5.5	0.49	
06/27/07		ND<250							ND<100	5.3	0.34	
09/26/07		ND<250							ND<100	5.4	0.40	
12/27/07		ND<250							ND<100	5.3	0.43	
03/26/08		ND<250							160	5.6	0.38	
06/18/08		ND<250				-			ND<100	5.6	0.39	
09/24/08		ND<250							250	5.1	0.34	
12/22/08		ND<250			-				140	4.8	0.39	
03/26/09		ND<250							ND<100	4.4	0.37	
U-5												
06/30/97									16000	ND		ND
09/19/97									220	ND		ND
12/12/97									6700	ND		ND
03/03/98									18000	3.1		ND
06/15/98						·			17000	ND		ND
09/30/98									17000	ND		ND
12/28/98									17000	6.6		ND
03/22/99									120	ND		2.4
06/09/99									230	ND		ND
09/08/99									2100	ND		ND
12/07/99									310	ND		ND
03/13/00	77 52								330	0.16		ND

Table 2
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 8 of 12

©TRC

Date Sampled		Ethanol	Ethytene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-5 cont	inued											
06/21/00									150	ND		ND
09/27/00									330	ND		ND
12/12/00				 .					86	ND		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND		1070	3.02		4.00
06/06/01									ND	ND		1.2
09/24/01	ND<200	ND<4000	ND<10	ND<10	ND<10	ND<10	ND<10		ND<100	0.77		
12/10/01									3700	ND<0.50		2.6
03/11/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		100	ND<0.50		0.52
06/04/02									ND<250	ND<0.50		ND<0.10
09/03/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<250	ND<0.50		ND<0.10
12/03/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		22000	ND<1.0		ND<1.0
03/04/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		19000	ND<1.0		ND<1.0
06/18/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		11000	ND<1.0		ND<1.0
09/24/03		ND<500	~~						ND<0.20	18		1.8
12/02/03		ND<500							9400			
03/30/04	52	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		5900	ND<1.0	ND<1.0	
06/07/04	69	ND<50	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5		3800	ND<0.50	ND<0.20	
09/09/04	130	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		4100	ND<1.0	ND<1.0	
12/20/04		ND<50							5.0	ND<1.0	ND<1.0	
03/28/05	150	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		6.5	ND<1.0	ND<1.0	
06/14/05	160	ND<100	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7400	3.6	ND<1.0	
09/28/05	220	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7300	ND<0.50	0.10	
12/29/05	280	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7300	ND<0,50	ND<0.050	
03/27/06		ND<250							6300	ND<0.50	ND<0.050	
06/12/06		ND<250							8700	ND<0.20	ND<0.050	

5325

المحاف بتمصيصا ال

Date Sampled	TBA (µg/l)	Ethanoi (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-5 cont	inued											
09/21/06		ND<250							6800	ND<0.50	ND<0.050	
12/21/06		ND<250					 .		15000	ND<0.50	ND<0.050	
03/28/07	870	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	-07 FB	10000	ND<0.20	ND<0.050	
06/27/07	220	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		10000	ND<0.10	ND<0.050	<u> </u>
09/26/07		ND<250							9200	ND<0.10	ND<0.050	
12/27/07		ND<250							5900	ND<0.10	ND<0.050	
03/26/08		ND<250							10000	ND<0.20	ND<0.050	
06/18/08		ND<250							6700	0.12	ND<0.050	
09/24/08		ND<250							7900	ND<0.10	ND<0.050	
12/22/08		ND<250							9200	ND<0.10	ND<0.050	
03/26/09		ND<250							990	ND<0.10	ND<0.050	
U-6												
06/30/97									88000	0.80		ND
09/19/97									2900	1.80		ND
12/12/97									51000	ND		ND
03/03/98									60000	3.5		ND
06/15/98									590000	4.8		ND
09/30/98									33000	ND		ND
12/28/98									83000	7.2		ND
03/22/99									2100	ND		0.98
06/09/99									470	0.20		ND
09/08/99									140	5.59		ND
12/07/99							~~		260	ND		ND
03/13/00									790	0.26		ND
06/21/00									1900	ND		ND

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 10 of 12

Date Sampled		Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-6 conti	inued											
09/27/00	**								2600	ND		ND
12/12/00									ND	2.7		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND					
06/06/01	ND	ND	ND	ND	ND	ND	ND		470	0.15		0.70
09/24/01	ND<2000	ND<40000	ND<100	ND<100	ND<100	ND<100	ND<100		ND<100	0.58		
12/10/01	ND<200	ND<400	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		990	0.50		2.0
03/11/02	ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0		1200	ND<0.50		0.089
06/04/02									ND<100	ND<0.50		ND<1.0
09/03/02	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		ND<100	0.58		i.i
12/03/02	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20		1200	ND<1.0		2.6
03/04/03	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		20000	ND<1.0		ND<1.0
06/18/03	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		3200	ND<1.0		2.0
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		1.4	ND<1.0		4.6
12/02/03		ND<10000							1400			
03/30/04	770	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		2600	ND<1.0	ND<1.0	
06/07/04	110	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		2100	0.8	ND<0.20	
09/09/04	1900	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		870	ND<1.0	3.8	
12/20/04	5000	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5		2.5	ND<1.0	ND<1.0	
03/28/05	990		ND<2.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.4	ND<1.0	ND<1.0	
06/14/05	ND<5.0	ND<100	ND<0.5	ND<0.5	ND<0.50	ND<0.50	ND<0.50		4100	3.8	ND<1.0	
09/28/05	3800	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		21000	ND<0.20	3.4	
12/29/05	1100	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		8300	0.48	ND<0.050	
03/27/06		ND<250			·				8800	0.37	0.19	
06/12/06		ND<250							8500	0.23	ND<0.050	
09/21/06		ND<250							2900	0.19	0.31	

5325

Date Sampled	TBA (µg/l)	Ethanoi (8260В) (µg/l)	Ethytene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-6 conti		(703)	(1.9.3)	(r.g.)	(1-8)	(1-8-7	(8.9.7)	(P0-7)	(1877)	(((1118,1)
12/21/06		ND<250							11000	0.36	0.41	
03/28/07		ND<250							ND<100	0.55	0.31	
09/26/07		ND<250					·		ND<100	0.41	0.34	
12/27/07		ND<250							7700	ND<0.10	1.0	
03/26/08		ND<250							19000	ND<0.10	1.2	
06/18/08		ND<250							2100000	ND<0.10	0.076	
09/24/08		ND<250							220000	ND<0.10	0.28	
12/22/08		ND<250							290000	ND<0.10	0.39	
03/26/09		ND<1200							540000	ND<0.10	0.28	

					70 8	tation 5525	
Date Sampled	Redox Potential (ORP-Lab) (mV)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)		
U-1							
06/15/98	382						
09/30/98	366				, 		
12/28/98	298						
03/22/99	320						
06/09/99	260						
09/08/99	85						
12/07/99	404		1.36				
03/13/00	262						
06/21/00	148		1.53				
09/27/00	119		1.63				
12/12/00	131		1.48				
03/07/01	125		1.91				
06/06/01	141		i.77				
09/24/01	125		1.64				
12/10/01	141		1.82				
03/11/02	132		2.21				
06/04/02	117		1.88				
09/03/02	94		1.62				
12/03/02	72		1,71				
03/04/03	-125		0.30				
06/18/03	-48	i.7				· · ·	
09/24/03	-36		0.40				
12/02/03		6.46	2.05	-72	-73		
03/30/04		1.08	3.05	-40	-54		
06/07/04		1.62	2.30	-32	-48		

5325

Page 1 of 12

Sampled	Redox Potentiai (ORP-Lab) (mV)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)
U-1 cont	tinued				
12/20/04		1.35	5.55		32
03/28/05		4.32	3.26	124	138
06/14/05		3.95	4.52	-145	-177
09/28/05		7.13	2.59	-065	-160
12/29/05		3.74	2.81	-310	-508
03/27/06			1.95	-667	
06/12/06			1.20	-229	
09/21/06			1.28	-110	
12/21/06				-102	
03/28/07	-		6.75	-93	
06/27/07	-		3.87	-106	
09/26/07			2.39	-60	
12/27/07			2.36	-60	
03/26/08			3.41	-63	
06/18/08			2.67	-20	
09/24/08	-		0.80	-38	
12/22/08			2.47	-99	
11.2					
U-2 03/03/98	369				
06/15/98	341				
09/30/98	354				
12/28/98	276				
03/22/99	320				
06/09/99	290				
09/08/99	235				

5325

Page 2 of 12

Date Sampled	Redox Potential	Post-purge Dissolved	Pre-purge Dissolved	Pre-purge	Post-purge
,	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-2 con	tinued				
12/07/99	389		2.28		
03/13/00	184				
06/21/00	136		1.96		
09/27/00	142		2.12		
12/12/00	155		2.35		
03/07/01	148		2.21		
06/06/01	163		2.67		
09/24/01	151		2.10		
12/10/01	171		2.81		
03/11/02	156		2.77		
06/04/02	144		3.14		
09/03/02	151		2.85		
12/03/02	94		1.97		
03/04/03	-147		0.40		
06/18/03	-8	3.2			
09/24/03	-10		0.20		
12/02/03		1.81	1.70	-29	-67
03/30/04			2.40	-6	
06/07/04		3.29	3.10	-8	7
09/09/04		3.10	3.12	-74	-79
12/20/04		6.54	.41	-84	-72
03/28/05		4.30	3.76	118	140
06/14/05		3.99	3.28	-155	-206
09/28/05		6.62	2.87	-100	-179
12/29/05		5.71	1.76	-578	-484

Page 3 of 12

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP	
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)	_
U-2 con	tinued					
03/27/06			0.95	-1334		
06/12/06			19.82	-130		
09/21/06			3.15	-18		
12/21/06				-92		
03/28/07			8.80	-97		
06/27/07			4.72	-105		
09/26/07			1.84	-25		
12/27/07			2.81	-64		
03/26/08			3.41	-65		
06/18/08			2.46	-49		
09/24/08			0.47	-56		
12/22/08			1.38	-97		
03/26/09			i.56	-73		
11.2						
U-3 06/30/97	190		4.10			
09/19/97	75		4.20			
12/12/97	390		2.97			
03/03/98	358		2.63			
06/15/98	318		2.93			
09/30/98	295		3.11			
12/28/98	281		3.59			
03/22/99	310		4.02			
06/09/99	350		3.70			
09/08/99	417		3.76			
12/07/99	437		3.90 4.21			
5325			1.21			

5325

Page 4 of 12

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date	Redox	Post-purge	Pre-purge		
Sampled	Potential	Dissolved	Dissolved	Pre-purge	Post-purge
	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-3 con	tinued				
03/13/00	307				
06/21/00	225		4.27		
09/27/00	211		4.67		~=
12/12/00	246		4.79		
03/07/01	251		5.16		
06/06/01	214		4.79		
09/24/01	198		4.27		
12/10/01	188		4.66		
03/11/02	166		5.06		
06/04/02	151		5.79		
09/03/02	143		6.04		
12/03/02	154		5.58		
03/04/03	-136		0.20		
06/18/03	333	3.5			
09/24/03	-50		0.60		
12/02/03	-50	4.28	4.30	 97	105
03/30/04		4.28 7.75	2.80	-38	103
06/07/04		4.19	2.80 4.70	-38	
09/09/04		4.19	4.70		42
12/20/04				14	21
03/28/05		6.70	3.28	45	32
		4.21	3.32	145	137
06/14/05		2.97	2.82	90	86
09/28/05		6.99	4.96	-068	-060
12/29/05		4.57	3.35	-802	-1132
03/27/06			2.67	-1588	

5325

Page 5 of 12

.

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-3 com			2.07		
06/12/06			3.97	77	
09/21/06			2.64	-33	
12/21/06				85	
03/28/07			8.10	-10	
06/27/07			8.72	111	
09/26/07			3.49	72	
12/27/07			i.78	-72	
03/26/08			1.32	97	
06/18/08			1.73	113	
09/24/08			1.95	90	
12/22/08			1.81	42	
03/26/09			i.98	59	
U-4 06/30/97	200		5 40		
09/19/97			5.40		
	45		5.10		
12/12/97	380		3.11		
03/03/98	284		2.94		
06/15/98	256		3.08		
09/30/98	276		4.05		
12/28/98	280		4.57		
03/22/99	320		4.26		
06/09/99	340		3.61		
09/08/99	391		3.75		
12/07/99	478		4.03		
03/13/00	244				

Page 6 of 12

Redox	Post-purge	Pre-purge		
Potential	Dissolved	Dissolved	Pre-purge	Post-purge
(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
(mV)	(mg/l)	(mg/l)	(mV)	(mV)
248		4.89		
198	. -	5.09		
210		4.86		
233		4.97		
248		5.12		
262	·	4.86		
242		5.05		
195		4.83		
169		5.58	,	
126		5.94		
133		5.82		
-148		0.30		
250	3.6			
-24		0.20		
	3.45	3.57	107	102
	3.84	4.29	19	42
	4.02	4.56	27	15
	4.09	4.20	-26	-8
	6.19	5.11	84	77
	4.66	4.54	163	130
	3.09	3.02	78	88
				082
				-632
	(ORP-Lab) (mV) ntinued 248 198 210 233 248 262 242 195 169 126 133 -148 250 -24 	Potential (ORP-Lab) (mV) Dissolved Oxygen (mg/l) ntinued	Potential (ORP-Lab) (mV)Dissolved Oxygen (mg/l)Dissolved Oxygen (mg/l)ntinued 248 4.89 1982484.89 1981985.09 2102104.86 2332334.97 2482485.12 2622624.86 2422425.05 1951954.83 1691265.94 1331335.82 -148-1480.30 2502503.6240.20 3.45 3.573.57 4.02 4.024.56 4.09 4.204.20 6.19 5.11 5.02 5.025.09 5.03 5.03 5.09 5.03 5.51	Potential (ORP-Lab)Dissolved OxygenDissolved OxygenPre-purge ORP (mg/l)ntinued (mg/l) (mg/l) (mV) 2484.891985.092104.862334.972485.122624.862425.051954.831695.941335.821480.302503.6240.203.453.571073.844.29194.094.20-266.195.11844.664.541633.093.02785.095.03-6285.51-1000

5325

Page 7 of 12

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-4 cont	tinued				
09/21/06			3.51	152	
12/21/06				90	
03/28/07			12.16	144	
06/27/07			10.42	115	
09/26/07			4.27	98	
12/27/07			3.74	33	
03/26/08			2.87	97	
06/18/08			3.43	101	
09/24/08			3.15	71	
12/22/08	79 8		3.45	0	
03/26/09			2.96	17	
U-5					
06/30/97	160		3.40		
09/19/97	63		0.60		
12/12/97	400		1.75		
03/03/98	345		2.36		
06/15/98	333		2.55		
09/30/98	318		1.93		
12/28/98	305		1.93		
03/22/99	340		1.04 1.99		
06/09/99					
09/08/99	320		2.10		
09/08/99 12/07/99	335		2.21		
	408		2.66		
03/13/00	264				
06/21/00	159		3.42		

Page 8 of 12

Date	Redox	Post-purge	Pre-purge		
Sampled	Potential	Dissolved	Dissolved	Pre-purge	Post-purge
	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-5 con	tinued				
09/27/00	136		3.85		
12/12/00	122		3.53		
03/07/01	141		2.98	· 	
06/06/01	112		2.67		
09/24/01	146		3.15		
12/10/01	96		2.85		
03/11/02	108		3.15		
06/04/02	118		3.46		
09/03/02	87		2.85		
12/03/02	104		2.71		
03/04/03	-166		0.20		
06/18/03	-10	2.4			
09/24/03	-28		0.30		
12/02/03		2.22	2.15	-39	-39
03/30/04		1.89	1.88	-19	-37
06/07/04		1.88	1.92	-15	-31
09/09/04		2.38	2.58	-41	-67
12/20/04		.71	2.01	-65	-72
03/28/05	<u> </u>	2.02	1.06	132	133
06/14/05		2.38	2.02	-163	-168
09/28/05		6.94	4.58	-126	-103
12/29/05		2.17	4.58 1.99	-416	-125 -411
03/27/06			2.69	-585	
06/12/06					
09/21/06			2.32	-236	
02/21/00			1.37	-125	

5325

Page 9 of 12

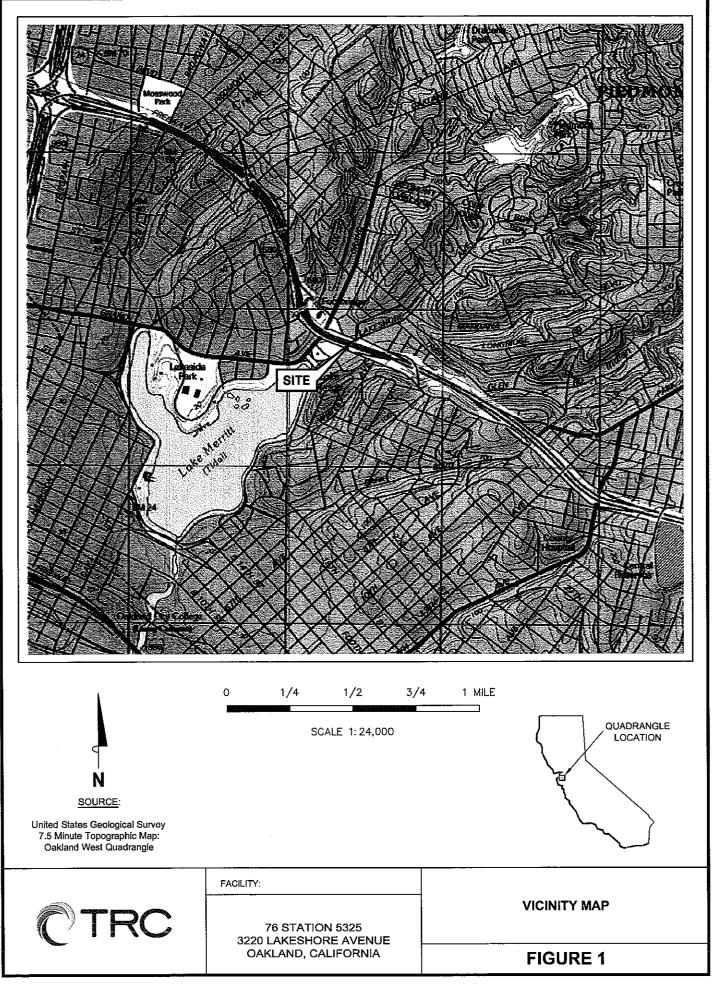
Date Sampled	Redox Potentiai	Post-purge Dissolved	Pre-purge Dissolved	Pre-purge	Post-purge
	(ORP-Lab) (mV)	Oxygen (mg/l)	Oxygen (mg/l)	ORP (mV)	ORP (mV)
U-5 cont			<u> </u>	,	
12/21/06				-109	
03/28/07			9.09	-97	
06/27/07			3.52	-101	
09/26/07			2.66	-80	
12/27/07			1.63	-83	
03/26/08			2.32	-9	
06/18/08			3.29	-14	
09/24/08			2.97	-8	
12/22/08			0.69	-78	
03/26/09			0.39	-88	
U-6					
06/30/97	190		0.30		
09/19/97	ND		0.60		
12/12/97	380		2.70		
03/03/98	327	<u>-</u>	2.18		
06/15/98	315		2.48		
09/30/98	345		3.06		
12/28/98	297		3.42		
03/22/99	330		3.88		
06/09/99	320		3.29		
09/08/99	305		3.12		
12/07/99	443		3.44		
03/13/00	222				
06/21/00	159		3.27		
09/27/00	170		3.49		

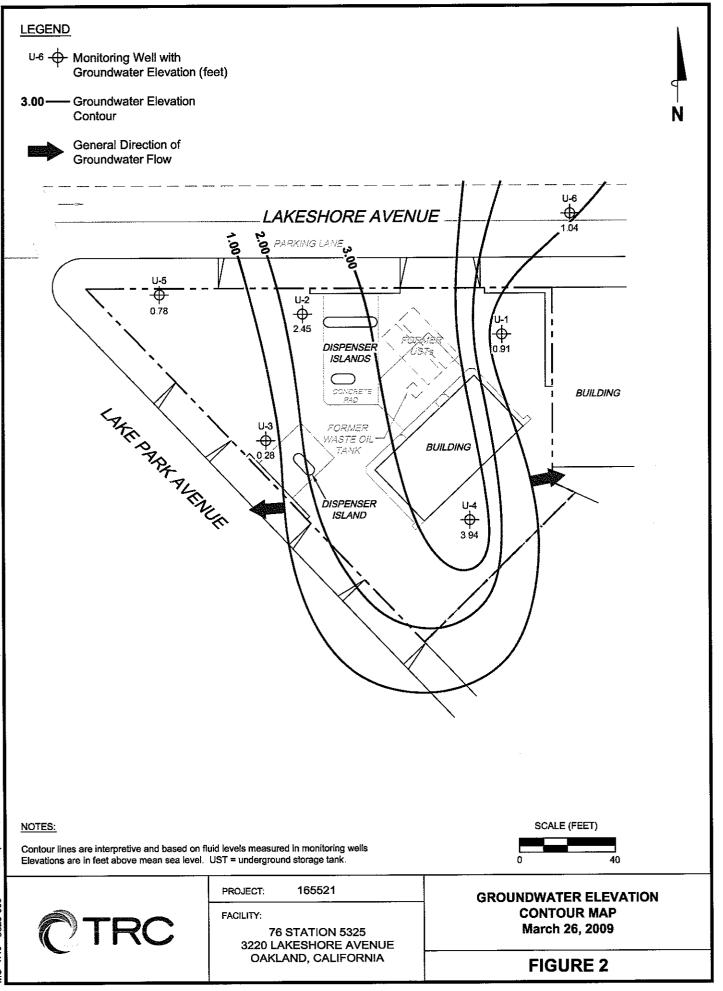
5325

Page 10 of 12

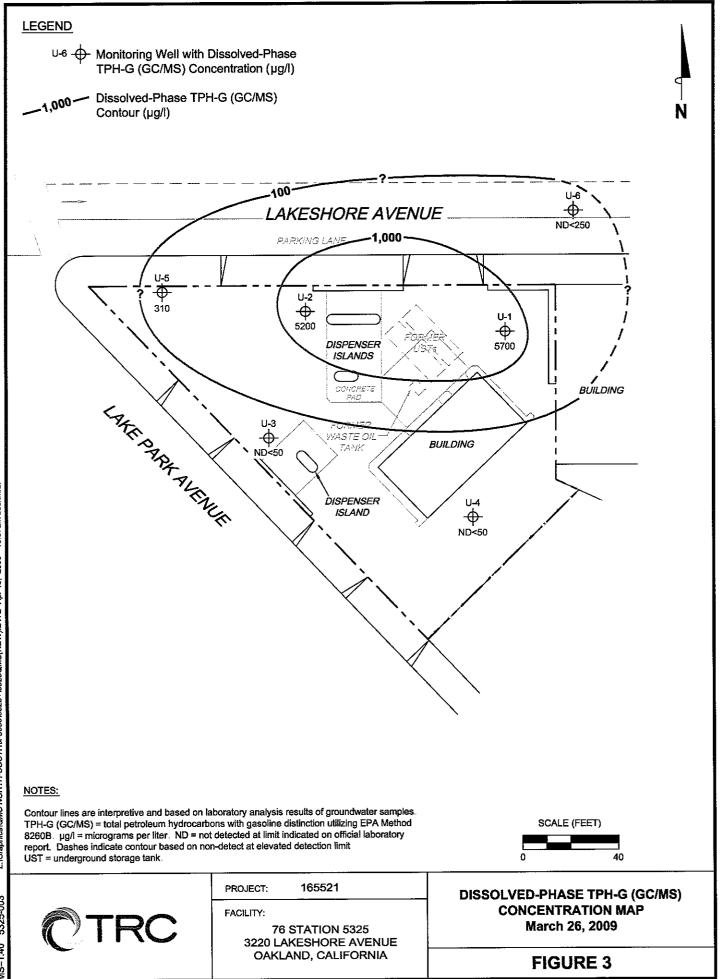
Date Sampled	Redox	Post-purge	Pre-purge	~	_
Jampied	Potential (ORP-Lab)	Dissolved Oxygen	Dissolved	Pre-purge ORP	Post-purge ORP
	(OKF-Lab) (mV)	(mg/l)	Oxygen (mg/l)	(mV)	(mV)
		(ing/i)	(mg/I)	(1117)	(11 v)
U-6 con 12/12/00	tinued 128		2.06		
06/06/01	97		3.06		
09/24/01			2.46		
	123		3.10		
12/10/01	112		2.57		
03/11/02	128		3.03		
06/04/02	97		2.84		
09/03/02	110		3.12		
12/03/02	95		2.96		
03/04/03	-112		0.30		
06/18/03	-15	3.2	·		
09/24/03	-12		0.30		
12/02/03		3.10	2.53	-99	-74
03/30/04		3.61	1.88	-28	-33
06/07/04		2.43	2.90	-32	-62
09/09/04		2.84	2.96	-89	
03/28/05		3.18	2.57	84	96
06/14/05		4.02	4.20	-158	-175
09/28/05		7.93	6.82	-028	-141
12/29/05		1.49	3.56	-480	-548
03/27/06			1.33	-953	
06/12/06	-		1.32	-234	
09/21/06			2.07	-2.54	
12/21/06				-113	
03/28/07			7.37		
09/26/07				-36	
09/20/07			3.92	64	

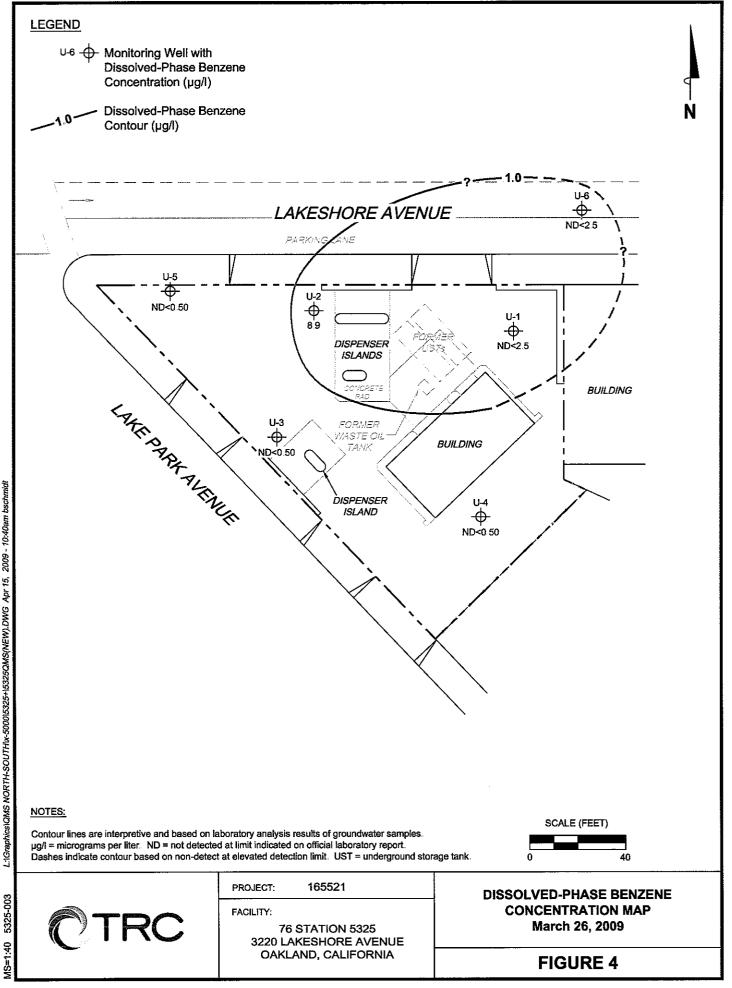
5325

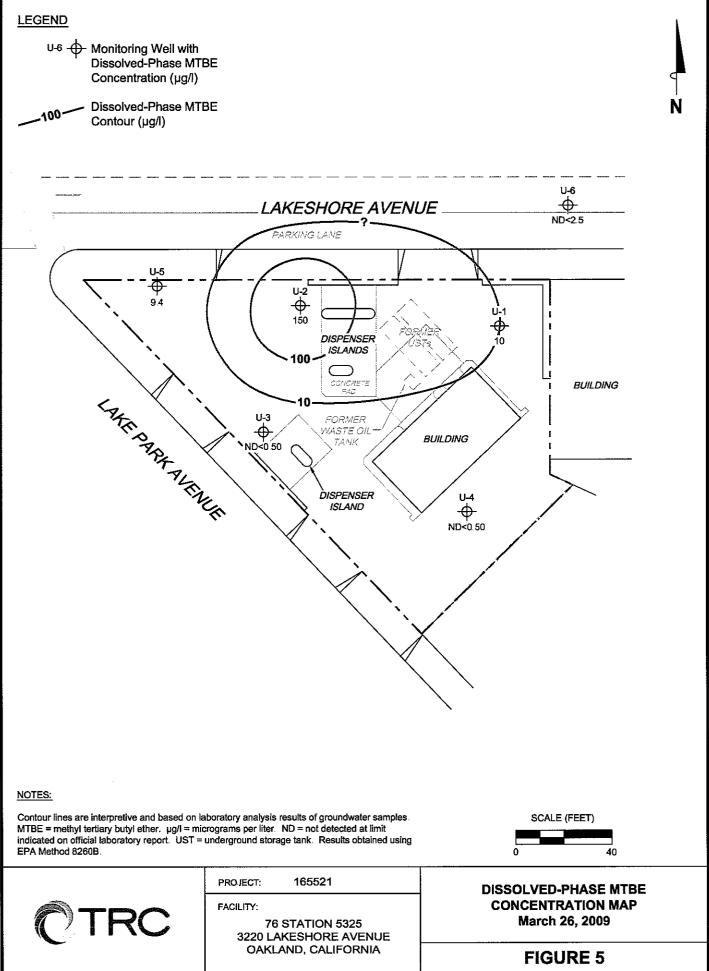

Page 11 of 12



Potential	Diana I and			
	Dissolved	Dissolved	Pre-purge	Post-purge
(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
(mV)	(mg/l)	(mg/l)	(mV)	(mV)
ntinued				
		2.55	-5	
		2.74	115	'
		1.11	167	
		3.85	59	
		1.57	60	
		1.67	39	
	(mV) tinued 	(mV) (mg/l) tinued 	(mV) (mg/l) (mg/l) tinued 2.55 2.74 2.74 1.11 3.85 1.57	(mV) (mg/l) (mg/l) (mV) tinued 2.55 -5 2.74 115 1.11 167 3.85 59 1.57 60

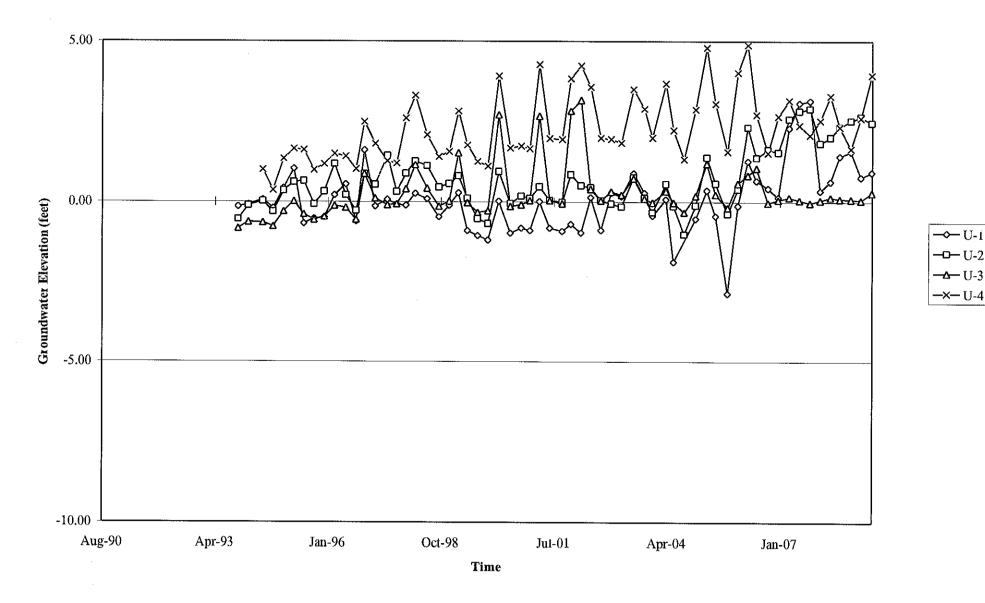

FIGURES


L:IGraphicsIQMS NORTH-SOUTHIx-500015325+15325QMS(NEW),DWG Apr 15, 2009 - 10:17am bschmidt

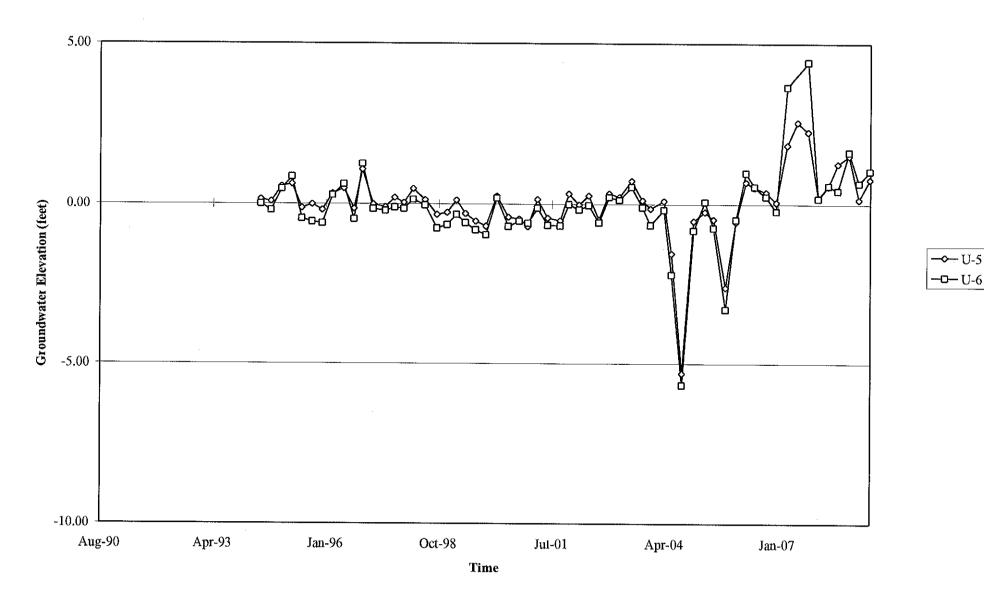

MS=1:40 5325-003

L:IGraphicsIQMS NORTH-SOUTHIX-500015325+15325QMS(NEW).DWG Apr 15, 2009 - 10:37am bschmidt

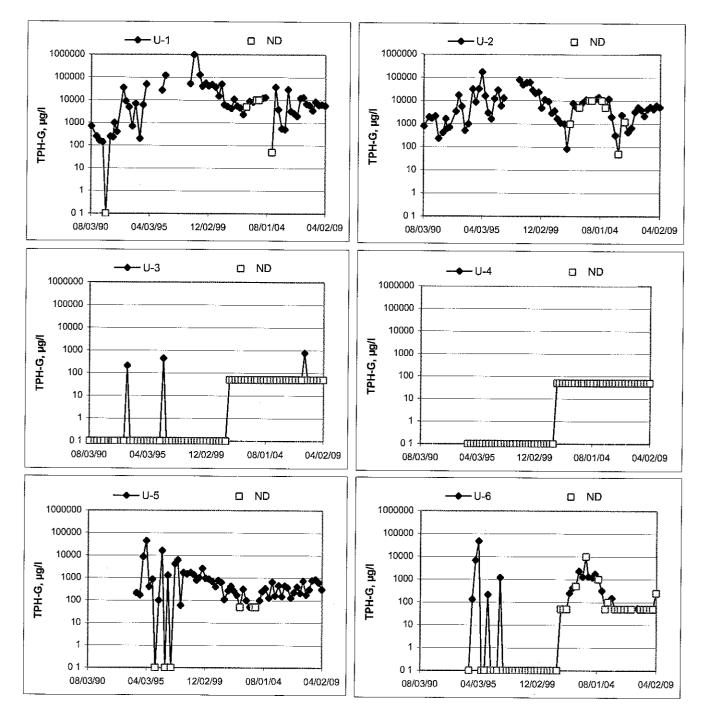
5325-003 MS=1:40



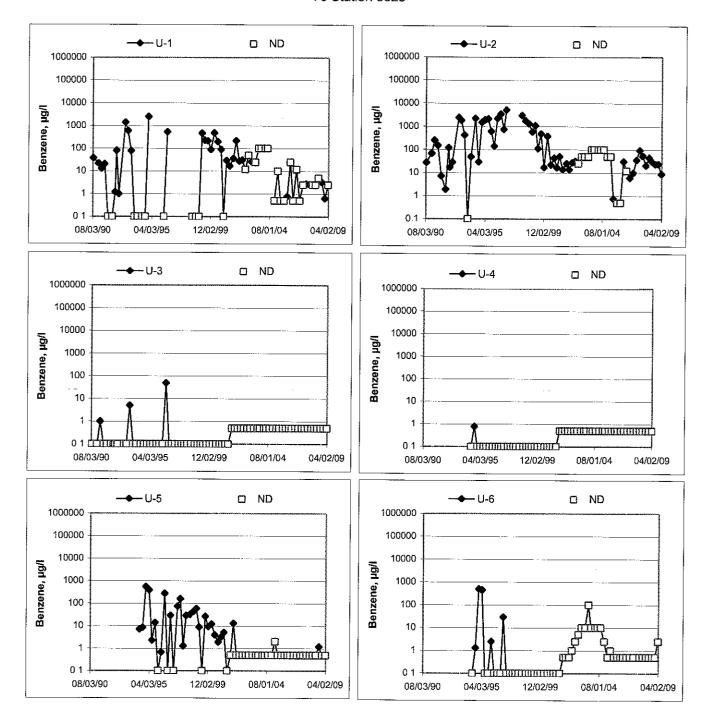
MS=1:40 5325-003


GRAPHS

Groundwater Elevations vs. Time 76 Station 5325

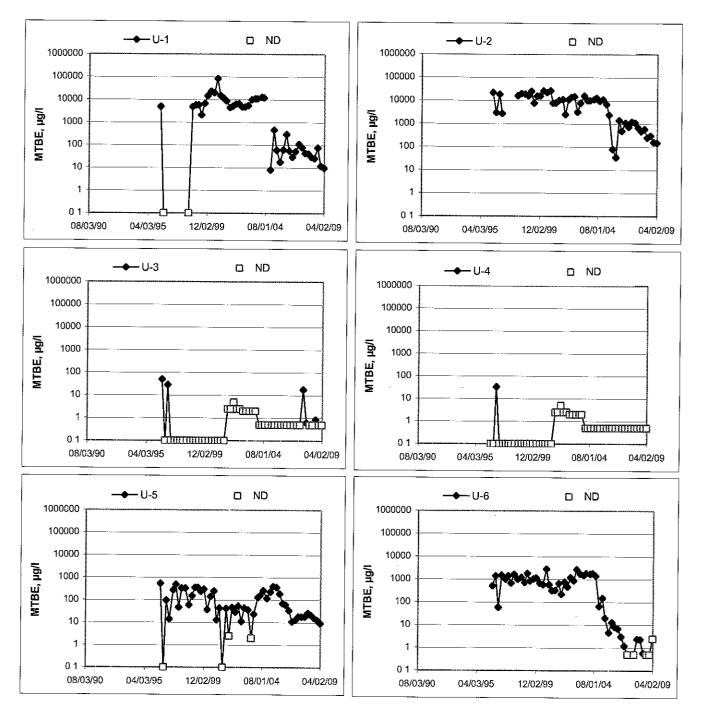

Elevations may have been corrected for apparent changes due to resurvey

Groundwater Elevations vs. Time 76 Station 5325



Elevations may have been corrected for apparent changes due to resurvey

TPH-G Concentrations vs Time 76 Station 5325



Benzene Concentrations vs Time 76 Station 5325

MTBE Concentrations vs Time

76 Station 5325

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, IRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. IRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rat e. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, s ampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ¹/₂-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the ISR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

Technician: RICH H Job #/Task #: 165521/FH20 Date: 03/26/09 Site # 5325 Project Manager A. Collins Page _ of _ _

				Depth	Depth	Product		
Well #	тос	Time Gauged	Total Dopth	to Water	to Product	Thickness (feet)	Time	
				6. O	Froduct	(Teet)	Sampled	Misc. Well Notes
V-6	X	0541	23.21			r	6647	2
0.7	χ	0546	19.27	7.21	~	ĺ	0907	Ч ^ч
N.2	X	0553	1938	10.70	4	(0845	3''
U-S	\times	0559	२००९	6.20			0915	с(["]
0.1	\times	0603	13.46	7.55	a second designed to be a second d		0938	3,
V.2	Х	0608					LOIS	3 ¹ .
							· · · · · · · · · · · · · · · · · · ·	
·								
							<u> </u>	
					. <u>.</u>			
				M R				
		1						
FIELD DATA	COMPLI	ETE	QA/QC		200	W	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR	ŕ	TRAFFIC (CONTROL		·
		DRUM INVENTORY TRAFFIC CONTROL						

GROUNDWATER SAMPLING FIELD NOTES

Techniciar	1: Rickey H
	163521 Date:03/26/09
Well No	Purge Method: Sub
Depth to Water (feet): 6.20	Depth to Product (feet):
Total Depth (feet) 23.21	LPH & Water Recovered (gallons):
Water Column (feet):	Casing Diameter (Inches): 2"
80% Recharge Depth(feet): 9.60	1 Well Volume (gallons): <u>3</u>
Time Time Depth to Volu Water Purg Start Stop (feet) (gallo	ied (US/cm) (F.C.) pH (mo/L) ORP Turbidity

9.60 Comments:			9			0647			
Static at Time Sampled		Total Gallons Purged			Sample Time				
-									
	0641		4	237.8	14.7	7.51	1~74	~~(
			6	323.1	14.5	7.62	1.81	-3	
0636			3	239.6	14.3	8.29	1.67	.34	
Pre-F	Purge								
Start	Stop	vvater (feet)	(gallons)	(µS/cm)	(F, C)	рп	(mg/L)	URP	TUDUU

Well No. U-U

80% Recharge Depth(feet):

Purge Method:_____

Depth to Water (feet):7.2.1Depth to PrinceTotal Depth (feet)19.2.7LPH & WaterWater Column (feet):12.03Casing Dia

Depth to Product (feet):

LPH & Water Recovered (gallons):

Sub

Casing Diameter (Inches): <u>4</u>

1 Well Volume (gallons): 9

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge								
0658	060706		q	1019	17.2	7.09	296	17	
			18						
			24						
			•						
Sta	tic at Time Sa	impled	Tot	 al Gallons Pur	qed		Sample	 • Time	1
12.51		15			0107				
Comment	s: well	went	dr	at 15 g	allons.	did r	of re	COVE	1
12 4	Smag1	did not	recove	5 . ~ 2	allons.		•		

		GROU	NDWATE	R SAMPLIN	IG FIELD NO	DTES				
		Tec	hnician: <u>[</u>	$2 \times F$	1 /-1.	_				
Site: 53	52	Proje	ect No :	62251			Date:_	03/	25/09	
Well No	(<u>). 3</u>		Purge Metho	d:	5 yr b				
Depth to W	Vater (feet):	0.70		Depth to Pro	duct (feet):					
Total Depth (feet) 19.38				LPH & Water Recovered (gallons):						
Water Column (feet): 8.68			Casing Diameter (Inches): 3							
80% Rech	arge Depth(fe	et): 12.44	1	1 Well Volum	ne (gallons): <u> </u>	1				
						•				
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)		Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity	
	Purge						1			
0715	0719		<u> </u>	913.2	16.0	752	1.98	59		
			12							

Well No	U-5
Depth to Water (feet):_	6.20
Total Depth (feet)	20.05
Water Column (feet):	
80% Recharge Depth(i	

Static at Time Sampled

well

went

11.15

Comments:

Purge Method:	SW
	•

Total Gallons Purged

4

Depth to Product (feet):

dry at 4gallens. d. el not recover in

LPH & Water Recovered (gallons):_____

Sample Time © ଟ୍ୟୁର୍

6

Casing Diameter (Inches):<u>4''</u>

1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, 6)	рН	D O (mg/L)	ORP	Turbidity
Pre-l	Purge								
0724			10	836.7	16.5	6.63	0.39	-88	
· · · · · ·			20	1321	17.9	6.66	0.61	99	
	0733		30	1247	17.1	6.79	0.53	·-74	
Stat	ic at Time Sa	ampled	Tot	al Gallons Pur	ged		Sample	Time	
8.47		30			8715				
Comments					······································				

45. 2005

Well No. U · 1 Purge Method: Sub Depth to Water (feet): 7 · 5 5 Depth to Product (feet):	Technicia	an: Rickey H.
Depth to Water (feet): 7.55 Depth to Product (feet):	Site: 5325 Project No	Date:03/26/09
Water Column (feet): J. ? ! S0% Recharge Depth(feet): 8.7.3	Depth to Water (feet): 7.55 Total Depth (feet) 13.46 Water Column (feet): .5.91	Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): <u>3</u> ``

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre-I	Purge								
0744	0744		3	1					
		6							
			9						
. <u>.</u>			•						
Static at Time Sampled		Tota	al Gallons Pur	ged		Sample	Time		
8.01		2			0930				
Comments	: છતા	went o	In at	ંટ નુવ	lons, die			over	1 m 45 km

Well No	2
Depth to Water (feet):_	5.17
Total Depth (feet)	20.04
Water Column (feet):	14.87
80% Recharge Depth(feet): 8.14

Purge Method:	Jul
Depth to Product (feet):	
LPH & Water Recovered (g	
Casing Diameter (Inches):	<u>8"</u>
1 Well Volume (gallons):	7

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	DO (mg/L)	ORP	Turbidity
Pre-	Purge								
0754	0759		6	1205	16.8	6.40	1.56	~73	
			12				•••		
			18						
Stat	ic at Time Sa	ampled	Tot	L al Gallons Pur	ged		Sample	Time	
	10.87			8.		16	215		
Comments	: Wall	went	dry a	1- 8	Jallons	diel	ant re	cov-er	· .n
450	1-5,10	ell did	not	recover	1 12 21	* S		- • • • •	

Date of Report: 04/08/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE:	5325
BC Work Order:	0904017
Invoice ID:	B060031

Enclosed are the results of analyses for samples received by the laboratory on 3/26/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

21 Technology Drive Irvine, CA 92618

TRC

Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informatio)n			
0904017-01	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 06:47	Global ID: T0600101463
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-6
	Sampling Point:	U-6	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-02	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 09:07	Global ID: T0600101463
	Sampling Location:		Sample Depth:	_	Location ID (FieldPoint): U-4
	Sampling Point:	U-4	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-03	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 08:45	Global ID: T0600101463
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-3
	Sampling Point:	U-3	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-04	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 09:15	Global ID: T0600101463
	Sampling Location:		Sample Depth:	.	Location ID (FieldPoint): U-5
	Sampling Point:	U-5	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI	-		Sample QC Type (SACode): CS
					Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 2 of 22

Laboratories, Inc.	
Environmental Testing Laboratory Since 1949	

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informatio	20			
0904017-05	COC Number: Project Number: Sampling Location: Sampling Poınt:	 5325 U-1	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/26/2009 22:15 03/26/2009 09:30 Water	Delivery Work Order: Global ID: T0600101463 Location ID (FieldPoint): U-1 Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS Cooler ID:
0904017-06	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 10:15	Global ID: T0600101463
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-2
	Sampling Point:	U-2	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 3 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-01	Client Sampl	e Name:	5325, U-6, 3/26	/2009 6:47:00AN	1							
Constituent	Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KËA	MS-V12	5	BSD0259	ND	A10,Z1
Ethylbenzene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Methyl t-butyl ether	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Toluene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Total Xylenes	ND	ug/L.	5.0	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Ethanol	ND	ug/L	1200	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Total Purgeable Petroleum Hvdrocarbons	ND	ug/L	250	Luft-GC/MS	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		•

TRC 21 Technology Drive

Irvine, CA 92618

Project: 5325

Reported: 04/08/2009 15:27

Project Number: 4511030514 Project Manager: Aniu Farfan

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-01	Client Sampl	e Name:	5325, U-6	, 3/26/200	9 6:47:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL.	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 12:57	VH1	IC2	1	B\$C1955	ND	
Iron (II) Species		540000	ug/L	50000		SM-3500-FeE	03/28/09	03/28/09 09:00	MSA	SPEC05	500	BSC1963	ND	A01
ortho-Phosphate		0.28	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-02	Client Samp	le Name:	5325, U-4, 3/26/	2009 9:07:00A	M							
Constituent	Result	Units	PQL MI	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Toluene	ND	ug/L	0,50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	i	BSC1987	ND	
Total Xylenes	ND	ug/L	1,0	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	A40
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.8	%	76 - 114 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	i	BSC1987		

Page 6 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514 Reported: 04/08/2009 15:27

Project Manager: Anju Farfan

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-02	Client Sampl	e Name:	5325, U-4, 3/26/2009 9:07:00AM										
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N	u.	4.4	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:11	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-FeL	03/28/09	03/28/09 09:00	MSA	SPEC05	i	BSC1963	ND	
ortho-Phosphate		0.37	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

Page 7 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017	7-03	Client Sample	e Name:	5325, U-3, 3/26	/2009 8:45:00AM	Λ							
Constituent		Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	· · · ·
Ethvibenzene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Methyl t-butyl ether		ND	ug/L	0,50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Toluene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	
Total Xvienes		NÐ	ug/L	1.0	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Ethanol		ND	ug/L	250	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	A40
Total Purgeable Petroleum Hvdrocarbons		ND	ug/L	50	Luft-GC/MS	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)		103	%	76 - 114 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987		
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)		103	%	86 - 115 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	1	BSC1987		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 8 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325

Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-03	Client Sampl	le Name:	5325, U-3	, 3/26/200	9 8:45:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		4.8	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:25	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-Fei	03/28/09	03/28/09 09:00	MSA	SPEC05	i	BSC1963	ND	
ortho-Phosphate		0.66	mg/L	0.050	-	EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 9 of 22

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-04	Client Sample	e Name:	5325, U-5, 3/	26/2009	9:15:00AM								
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Methyl t-butyl ether	9.4	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Toluene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Ethanol	ND	ug/L	250		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	í	BSC1987	ND	A40
Total Purgeable Petroleum Hydrocarbons	310	ug/L	50		Luft-GC/MS	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - l	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - L	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)	99.1	%	86 - 115 (LCL - L	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	0904017-04	Client Sampl	e Name:	5325, U-5	5, 3/26/2009	9 9:15:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:38	VH1	IC2	i	BSC1955	ND	
Iron (II) Species		990	ug/L	100		SM-3500-FeC	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		ND	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-i	i	BSC1895	ND	

Page 11 of 22

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-05	Client Sampl	e Name:	5325, U-1; 3/26/2	2009 9:30:00AN	1							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL ME	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Ethylbenzene	72	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Methyl t-butyl ether	10	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Toluene	NÐ	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Total Xylenes	6.5	ug/L	5.0	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Ethanol	ND	ug/L	1200	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01,A40
Total Purgeable Petroleum Hydrocarbons	5700	ug/L	250	Luft-GC/MS	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	90.4	%	76 - 114 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	·	
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987		
4-Bromofluorobenzene (Surrogate)	96.2	%	86 - 115 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987		

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	CL Sample ID: 0904017-05		e Name:	5325, U-1	, 3/26/200	9 9:30:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0,10		EPA-300.0	03/27/09	03/27/09 14:19	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		2400	ug/L	100		SM-3500-FeE	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		0.11	mg/L	0.050		EPA-365,1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

Page 13 of 22

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

0904017-06	Client Sampl	e Name:	5325, U-2, 3/2	6/2009 10:15:0	0AM							
	Result	Units	PQL N	/IDL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
	8.9	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	47	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	150	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	ND	ug/L	2,5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	22	ug/L	5.0	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	B\$C1987	ND	A01
	ND	ug/L	1200	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01,A40
um	5200	ug/L	250	Luft-GC/	MS 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
iurrogate)	92.3	%	76 - 114 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	•	
	103	%	88 - 110 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987		
Surrogate)	96.2	%	86 - 115 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987		
	urrogate)	Result 8.9 47 150 ND 22 ND 22 ND 300 surrogate) 92.3 103 103	Result Units 8.9 ug/L 47 ug/L 150 ug/L ND ug/L 22 ug/L ND ug/L 150 ug/L 22 ug/L ND ug/L um 5200 ug/L surrogate) 92.3 % 103 %	Result Units PQL N 8.9 ug/L 2.5 47 ug/L 2.5 150 ug/L 2.5 ND ug/L 2.5 22 ug/L 5.0 ND ug/L 1200 um 5200 ug/L 250 surrogate) 92.3 % 76 - 114 (LCL - UC 103 % 88 - 110 (LCL - UC	Result Units PQL MDL Method 8.9 ug/L 2.5 EPA-826 47 ug/L 2.5 EPA-826 150 ug/L 2.5 EPA-826 ND ug/L 2.5 EPA-826 22 ug/L 5.0 EPA-826 ND ug/L 5.0 EPA-826 ug/L 5.0 EPA-826 22 ug/L 1200 EPA-826 23 um 5200 ug/L 250 Luft-GC/ uurrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-826 103 % 88 - 110 (LCL - UCL) EPA-826	Result Units PQL MDL Method Date 8.9 ug/L 2.5 EPA-8260 03/31/09 47 ug/L 2.5 EPA-8260 03/31/09 150 ug/L 2.5 EPA-8260 03/31/09 ND ug/L 2.5 EPA-8260 03/31/09 22 ug/L 5.0 EPA-8260 03/31/09 ND ug/L 1200 EPA-8260 03/31/09 ND ug/L 1200 EPA-8260 03/31/09 um 5200 ug/L 250 Luft-GC/MS 03/31/09 uurrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-8260 03/31/09 103 % 88 - 110 (LCL - UCL) EPA-8260 03/31/09	Result Units PQL MDL Method Date Date/Time 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 22 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 MD ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 um 5200 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 umrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-8260 03/31/09 04/01/09 00:53 103 % 88 - 110 (LCL - UCL) EPA-8260 03/31/09	Result Units PQL MDL Method Date Date/Time Analyst 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA Im 5200 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA iurrogate) 92.3 % 76 - 114 LCL - UCL) EPA-8260 03/31/09<	Result Units PQL MDL Method Date Date/Time Analyst ment ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 um 5200 ug/L 250 Luft-GC/MS 03/31/09 04/01/09 00:53 KEA </td <td>Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 um ug/L</td> <td>Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 1200 EPA-8260 03/31/09<td>Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<></td></td>	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 um ug/L	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 1200 EPA-8260 03/31/09 <td>Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<></td>	Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<>

Page 14 of 22

TRC 21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	0904017-06	Client Sampl	e Name:	5325, U-2	, 3/26/200	9 10:15:00AM	1							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 14:33	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		2600	ug/L	100		SM-3500-FeC	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		ND	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:58	TDC	KONE-i	i	BSC1895	ND	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratores, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 15 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Fartan

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSC1987	Matrix Spike	0903406-50	O	21.260	25.000	ug/L		85.0		70 - 130
		Matrix Spike Duplicate	0903406-50	0	20.140	25.000	ug/L	5.3	80.6	20	70 - 130
Toluene	BSC1987	Matrix Spike	0903406-50	0	25.460	25,000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0903406-50	0	22.670	25.000	ug/L	11.7	90.7	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	9.7400	10.000	ug/L		97.4		76 - 114
		Matrix Spike Duplicate	0903406-50	ND	9.8300	10.000	ug/L		98.3		76 - 114
Toluene-d8 (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	10.020	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0903406-50	ND	10.010	10.000	ug/L		100		88 - 110
-Bromofluorobenzene (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	10.010	10.000	ug/L		100		86 - 115
		Matrix Spike Duplicate	0903406-50	ND	9.7600	10.000	ug/L		97.6		86 - 115
Benzene	B\$D0259	Matrix Spike	0903406-60	0	25.500	25.000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0903406-60	0	25,090	25.000	ug/L	2.0	100	20	70 - 130
Toluene	BSD0259	Matrix Spike	0903406-60	0	25.470	25.000	ug/L		102		70 - 130
	_	Matrix Spike Duplicate	0903406-60	0	23.780	25.000	ug/L	7.0	95.1	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	9.4800	10.000	ug/L		94.8		76 - 114
		Matrix Spike Duplicate	0903406-60	ND	9.2300	10.000	ug/L		92.3		76 - 114
Toluene-d8 (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	10.000	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0903406-60	ND	9,8900	10.000	ug/L		98.9		88 - 110
4-Bromofluorobenzene (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	9.7600	10.000	ug/L		97.6		86 - 115
		Matrix Spike Duplicate	0903406-60	ND	9.6600	10.000	ug/L		96.6		86 - 115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
ortho-Phosphate	BSC1895	Duplicate	0904017-01	0.27860	0.27603		mg/L	0.9	ī	10	
		Matrix Spike	0904017-01	0.27860	0.95022	0.64547	mg/L		104		90 - 110
		Matrix Spike Duplicate	0904017-01	0.27860	0.95056	0.64547	mg/L	0	104	10	90 - 110
Nitrate as N	BSC1955	Duplicate	0904016-02	0.056000	ND		mg/L			10	
		Matrix Spike	0904016-02	0.056000	5.0687	5.0505	mg/L		99.3		80 - 120
		Matrix Spike Duplicate	0904016-02	0.056000	5,0576	5.0505	mg/L	0.3	99.0	10	80 - 120
Iron (II) Species	BSC1963	Duplicate	0904017-02	21.429	ND		ug/L			10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 17 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSC1987	BSC1987-BS1	LCS	20.060	25.000	0.50	ug/Ľ	80.2		70 - 130		
Toluene	BSC1987	BSC1987-BS1	LCS	21.500	25.000	0.50	ug/L	86.0		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	BSC1987-BS1	LCS	10.090	10.000		ug/L	101		76 - 114		
Toluene-d8 (Surrogate)	BSC1987	BSC1987-BS1	LCS	10.070	10.000		ug/L	101		88 - 110	••••	
4-Bromofluorobenzene (Surrogate)	BSC1987	BSC1987-BS1	LCS	9.9000	10.000		ug/L	99.0		86 - 115		
Benzene	BSD0259	BSD0259-BS1	LCS	24.640	25.000	0,50	ug/L	98.6		70 - 130	· · · · · ·	
Toluene	BSD0259	BSD0259-8S1	LCS	23.470	25.000	0.50	ug/L	93,9		70 - 130		···· · ······
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	BSD0259-BS1	LCS	10.030	10.000		ug/L	100		76 - 114		
Toluene-d8 (Surrogate)	BSD0259	BSD0259-BS1	LCS	10.010	10.000		ug/L	100		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSD0259	BSD0259-8S1	LCS	9,7900	10.000		ug/L	97.9		86 - 115		

Page 18 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Fartan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recoverv	RPD	Percent Recovery	RPD	Lab Quals
ortho-Phosphate	BSC1895	BSC1895-BS1	LCS	0.62574	0.61320	0.050	mg/L.	102		90 - 110		Luo quuio
Nitrate as N	BSC1955	BSC1955-BS1	LCS	4,8700	5,0000	0.10	mg/L	97.4		90 - 110		
ron (II) Species	BSC1963	BSC1963-BS1	LCS	2003.9	2000.0	100	ug/L	100		90 - 110		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 19 of 22

Project: 5325

Project Number: 4511030514 Project Manager: Anju Farfan Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

	-						
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSC1987	BSC1987-BLK1	ND	ug/L	0,50		
Ethylbenzene	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Methvl t-butyl ether	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Toluene	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Total Xvlenes	BSC1987	BSC1987-BLK1	ND	ug/L	1.0		
Ethanol	BSC1987	BSC1987-BLK1	ND	ug/L	250		
Total Purgeable Petroleum Hydrocarbons	BSC1987	BSC1987-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	BSC1987-BLK1	93.8	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSC1987	BSC1987-BLK1	102	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSC1987	BSC1987-BLK1	97.3	%	86 - 115	(LCL - UCL)	
Benzene	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSD0259	BSD0259-BLK1	ND	ug/L.	0.50		
Methyl t-butyl ether	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Toluene	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Total Xvlenes	BSD0259	BSD0259-BLK1	ND	ug/L	1.0		
Ethanol	BSD0259	BSD0259-BLK1	ND	ug/L	250		
Total Purgeable Petroleum Hvdrocarbons	B\$D0259	BSD0259-BLK1	ND	ug/l.	50		
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	BSD0259-BLK1	88.4	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSD0259	BSD0259-BLK1	99,4	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSD0259	BSD0259-BLK1	97.1	%	86 - 115	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 20 of 22

Project: 5325

Project Number: 4511030514

Project Manager: Anju Fartan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
ortho-Phosphate	BSC1895	BSC1895-BLK1	ND	mg/L	0.050	*******	
Nitrate as N	BSC1955	BSC1955-BLK1	ND	mg/L	0.10	······	
Iron (II) Species	BSC1963	BSC1963-BLK1	ND	ug/L	100		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 21 of 22

TRC 21 Technology Drive Irvine, CA 92618		Project: Project Number: Project Manager:	4511030514	Reported: 04/08/2009 15:27
Notes A	and Definitions	······································	······································	
MDL	Method Detection Limit			
ND	Analyte Not Detected at or above the reporting limit			
PQL	Practical Quantitation Limit			· · · · · · · · · · · · · · · · · · ·
RPD	Relative Percent Difference			
A01	PQL's and MDL's are raised due to sample dilution.			
A10	PQL's and MDL's were raised due to matrix interference.			
A40	Initial calibration linearity criteria not met,			
Z1	Sample was a foamer.			

BC LABORATORIES INC.		SAMPLE	RECEIP	T FORM	Rev	v. No. 12	06/24/05	Page _	_ Of					
Submission #: ()90407	- 1		····											
					<u></u>									
SHIPPING INFORMATION Federal Express					SHIPPING CONTAINER									
	- (-1							··· = (- <u>;</u>						
Refrigerant: Ice Blue Ice	None	Oth	ner 🗆 🛛	Comment	is:									
		SENIA	None 🗆	Comma	nter		·			······				
Interviewe Mote	Intact??Yes		NONC 1	oomme	111.3.		_							
All samples received? Yes- No D	Ali samples	containers	intact? Ye	es er Not]	Descript	ion(s) mate	ch COC? Y	es Ø No C					
	·-					· · · · · · · · · · · · · · · · · · ·		2220						
COC Received Er	nissivity:	<u>.98</u> c	ontainer: _	1 <u>47</u>	hermomet	er ID: <u>7//f</u>	163	Date/Tim	e <u>03-26</u>	-09				
YES INO	mperature	A <u>2</u> ,	9.	c / c	2.7	۰C		Analyst I	nik <u>Mlh</u>					
	L				SAMPLE 1	UMBERS		T	1 · · · · · · · · · · · · · · · · · · ·					
SAMPLE CONTAINERS	1	2	. 3	4	5	6	7	8.	9	10				
QT GENERAL MINERALI GENERAL PHYSICAL		ALTEC				pu 3/26			 					
PT PE UNPRESERVED	<u> </u>	ABC				AB			<u> </u>					
OT INORGANIC CHEMICAL METALS						<u> </u>	ļ	<u> </u>	i					
PT INORGANIC CHEMICAL METALS	·						<u> </u>	 	 	·				
PT CYANIDE	<u> </u>					ļ	· · · ·							
PT. NITROGEN FORMS									ļ	—·				
PT TOTAL SULFIDE							*							
200 NITRATE / NITRETE														
PETOTAL-ORGANIC CARBON	<u> </u>					<u></u>	<u> </u>							
PT TOX	*					electrony -								
PT CHEMICAL OXYGEN DEMAND			<u></u>			<u> </u>				[
PLA PHENOLICS		· · · ·			·	्र, तर्फकृष्		<u> </u>						
40mi VOA VIAL TRAVEL BLANK 40mi VOA VIAL	1 2 3	A.3	ורית	17.3	S 3	A-13		1						
AUMI VOA VIAL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ //											
PE ODOB							L	1						
OT EPA 413.1, 413.1; 418.1 PF ODOR RADIOLOGICAL														
BACTERIOLOGICAE						- <u>1</u>								
40 ml VOA VIAL- 504				·										
OT EPA 508/608/8080														
OT EPA 515.1/8150		СН	K BY		BUTION									
OT EPA 525				ALC T										
OT EPA 525 TRAVEL BLANK			P/\/_"	/#~~~~ ¥	# <u>]</u>	E								
100ml EPA 547				301	OUT E									
100m) EPA 531.1					· · ·	ļ								
OT EPA 548														
OT EPA 549]						
OT EPA 632									1					
QI EPA 8015M														
QT AMBER			SHORT	LICETWA	GIME		<u> _</u>							
8 OZ. JAR				7-5	7									
32 OZ. JAR		<u></u>	140		()	33								
SOIL SLEEVE		D	$O Cl_2$	BOD N	BAS C	pt j								
PCB VIAL														
PLASTIC BAG			1						·					
FERROUS IRON #							ļ	<u> </u>	 					
ENCORE		<u> </u>]	<u></u>	<u> </u>					

Comments:_______Sample Numbering Completed By:_____ A = Actual / C = Corrected

[H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD]

BC LABORATORIES INC.		SAMPLE	RECEIP		Pa	. No. 12	06/24/08	Page	Of						
	2					1.110.12	0012400								
Submission #: 07.090	1	<u> </u>													
SHIPPING INFO				i.			NG CON								
Federal Express D UPS D BC ab Field Service & Other	Hand Deliv r □ (Specify)			i.	ce Chest Box		Non Othe		ify)						
BC Lab Field Service D Other D (Specify) Box D Other D (Specify)															
Refrigerant: Ice-D Blue Ice	□ None		ner 🗆 🛛 🖸	Comment	s:										
	Containe														
Custody Seals Jice Chest Li	Intact? Yes		None	Comme	nis:										
[HI][BELEFTESALERADOLE2]	Surge Strategy	EN PACING AND		·	· ·										
All samples received? Yes 🖉 No 🗆	All samples	containers	s intact? Ye	S NO L	<u> </u>	Descript	ion(s) mate	h COC? Y	es D No []					
COC Received	Emissivity:	.98 0	ontainer:	r: $\underline{ptp_e}$ Thermometer ID: $\underline{714/63}$ Date/Time $\underline{0326}$ -09											
				-				§		01					
	Temperature:	A(16 "	c / C	1.6	°C	°C Analyst Init <u>Alk</u>								
	[SAMPLE N	······································									
SAMPLE CONTAINERS	1	2	. 3	4		6	7	8.	9	10					
QT GENERAL MINERAL GENERAL PHYSIC								<u>í </u>							
PT PE UNPRESERVED	B		BC	BC	BC	·									
OT INORGANIC CHEMICAL METALS					.	· · ·									
PT INORGANIC CHEMICAL METALS						•									
PT CYANIDE															
PI.NITROGEN FORMS						27.5.1									
PT TOTAL SULFIDE							a ang si sa		99 8 97 (
202 NITRAGE / NITRATE	the second				-or	مريدة ومراجعة والم	- 20 - 24								
PETOTAL ORGANIC CARBON			· · ·		1	-24-417		and a start	1. S. S. S.						
PTTOX						untern ^{i te}	an a	and a second							
PT_CHEMICAL OFTGEN DEMAND	New Street			· ·				n Nyangan San Ba							
PLA PHENOLICS						_ 12, 13 ¹⁷		an a							
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL															
40mi VOA VIAL		1 1	(_)	<u>_</u>		<u></u>		1° 1		{ 1					
OT EPA 413.1, 413.2:418.1 PT ODOR RADIOLO SICAL BACTERIOLOGICAE	eta 1 esta 1					and the states		2011 - 101 - 201 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 2011 - 201 2011 - 201							
PTODOR			1		r. <u>1</u> .				<u></u>						
RADIOLOGICAL			<u> </u>		<u></u>	<u> </u>									
		·····						<u>4.1 1.25</u> *							
40 ml VOA-VIAL- 504					·	a the state of the			<u> </u>						
OT EPA 503/608/8080							·								
OT EPA 515.1/8150 OT EPA 525									_						
OT EPA 525 TRAVEL BLANK 100ml EPA 547															
100mi EPA 531.1										· ·					
OT EPA 548		·			·····		ļ	[
OT EPA 549															
OT EPA 632									,						
QT EPA 8015M															
QT AMBER	_						1								
8 OZ. JAR															
<u>J1 OZ. JAR</u>			·				<u> </u>		· · ·						
SOIL SLEEVE								•							
PCB VIAL					-	-									
PLASTIC BAG									,						
FERROUS IRON								L							
ENCORE						L			·						

Comments: Sample Numbering Completed By: <u>ALM</u> A = Actual / C = Corrected

[H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD]

BC LABORATORIES, INC.	4100 Atlas Court (661) 327-4911	Bakersfield, CA 933 FAX (661) 327-1918	08 3	,	CHAI		F CL	JST	יסס	Y			
		1017-			Anal	ysi s	Re	que	esti	ed			
Bill to: Conoco Phillips/ TRC	Consultant Firm: TR	, , ,	MATRIX	2		224CLORE FOR SHARE	n son Bulo suit suit suit			THE PLACE AND A PLACE	sanitalisa sa anga anga anga a	<u>Politik (1996), Bandol v Charles (1996)</u>	
Address:	21 Technology Drive	9	(GW) Ground-	8015									
3220 Lateshove AFE	Irvine, CA 92618-230	water	s by		S	BOB					eq		
	Attn: Anju Farfan	· · · · · · · · · · · · · · · · · · ·	(S) Soil	, Gas		nate	8260B				0	uest	
City:	4-digit site#:5325	(WW)	8021B,	15M 8015	ygel	BY	8			H-m	Req		
Oakland	Workorder # 01394	-4511030514	Waste- water	y 80	8015M by 801	Xo /		826(SWS	1041	102	ime	
State: CA Zip:	Project #: 16557	21	(SL)	BE	p A E L	ist v	BE/@	by	00/2	4 -	he	T pu	
Conoco Phillips Mgr: Terry Grayso	Sampler Name: Ric	Ky H.	Sludge	UMT	GAS by	full]	ZMTI	NOL	َفَ P	rous	5	Inou	
Lab# Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by	HqT HqT	8260 full list w/ oxygenates	BTEX/MTBE/	ETHANOL by 8260B	TPH –G by GC/MS	Mitrets 1	ortho- phosphatc	Turnaround Time Requested	
- ; U	. 6	03/26/09 0647	GW				X	X	X	X	×	STD	
	1.4	0907			İ	-		Í		í	T I	1	
· · · · · · · · · · · · · · · · · · ·	1-3	0845											
)-5	0915											
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/- 1	0930											
-6 L	1-2	V 10/5	$\vee$				$\forall$	₩	J		$V \perp$		
		4											
Comments	Relinquished by: (Si	gnitture)	· · · · · · · · · · · · · · · · · · ·		Receive	 d by:			Dat	e & Tin			
Comments: Fun 80XYS 8260 on att MTBE hits (Please		ang be		-1	e-In	Refr	sera	tor	1	1 .		30	
GLOBALID: Please	GLOBAL ID: Please For Relinquished by: (Signah				Receive	d by:	, b_	~	Dat	e & Tin 6 · 09	Fime		
T0600101463 ( Ferrous 7		· · ·	2215		Received by Date & Time								
V				111	. / ì					111			

.....

کی کار

TO REORDER CALL PROFORMA SOLUTIONS FOR PRINTING • (661) 633-1117 781489

· . .

----

#### STATEMENTS

#### Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

#### Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.



21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

- DATE: April 17, 2009
- TO: Delta Consultants 11050 White Rock Road, Suite 110 Rancho Cordova, CA 95670

ATTN: MR. JOHN REAY

- SITE: 76 STATION 5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

This Quarterly Monitoring Report for 76 Station 5325 is being sent to you for your review and comment. If no comments are received **April 24, 2009** copies of this report will be sent to you for distribution.

Please send all comments to me at <u>cherrera@trcsolutions.com</u>. If you have any questions regarding this report, please call me at (949) 727-7345.

Sincerely,

Christina Carrillo Technical Writer



Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station 5325, located at 3220 Lakeshore Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Midk

- for: Anju Farfan Groundwater Program Operations Manager
  - CC: Mr. John Reay, Delta Consultants (2 copies)

Enclosures 20-0400/5325R23 QMS

### QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

76 STATION 5325 3220 Lakeshore Avenue Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

SEBSIONAL GEOL ភ JENSEN No 3531 Ú) OFCALIF

Senior Project Geologist, Irvine Operations

16/29 Date: <u>4</u>



	LIST OF ATTACHMENTS							
Summary Sheet	Summary Sheet Summary of Gauging and Sampling Activities							
Tables	Table Key							
	Contents of Tables							
	Table 1: Current Fluid Levels and Selected Analytical Results							
	Table 1a: Additional Current Analytical Results							
	Table 2: Historic Fluid Levels and Selected Analytical Results							
	Table 2a: Additional Historic Analytical Results							
	Table 2b: Additional Historic Analytical Results							
Figures	Figure 1: Vicinity Map							
	Figure 2: Groundwater Elevation Contour Map							
2	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map							
	Figure 4: Dissolved-Phase Benzene Concentration Map							
	Figure 5: Dissolved-Phase MTBE Concentration Map							
Graphs	Groundwater Elevations vs. Time							
	TPH-G Concentrations vs. Time							
	Benzene Concentrations vs. Time							
	MTBE Concentrations vs. Time							
Field Activities	General Field Procedures							
	Field Monitoring Data Sheet – 03/26/09							
	Groundwater Sampling Field Notes – 03/26/09							
Laboratory	Official Laboratory Reports							
Reports	Quality Control Reports							
	Chain of Custody Records							
Statements	Purge Water Disposal							
	Limitations							

### Summary of Gauging and Sampling Activities January 2009 through March 2009 76 Station 5325 3220 Lakeshore Avenue Oakland, CA

Project Coordinator: 1 Telephone: 9	Ferry Grayson 916-558-7666		Water Sampling Contractor: <i>TRC</i> Compiled by: <b>Christina Carrillo</b>
Date(s) of Gauging/Sa	mpling Event:	03/26/0	
Sample Points			
Groundwater wells: Purging method: <b>Sub</b> Purge water disposal: Other Sample Points:	mersible pum Veolia/Rodeo	o Unit 10	
Liquid Phase Hydrod	carbons (LPH)	)	
Sample Points with LPH LPH removal frequency Treatment or disposal	/:	num thickr	ness (feet): Method:
Hydrogeologic Para	meters		
Average change in grou Interpreted groundwat Current event: <b>0.</b>	elevation (relati undwater eleva er gradient and .03 ft/ft, east	ve to avai tion since I flow dire <b>and wes</b>	ilable local datum): <b>1.57 feet</b> e previous event: <b>0.42 feet</b> ection:
Selected Laboratory	Results		
Sample Points with det Maximum reported			Sample Points above MCL (1.0 μg/l): 1 8.9 μg/l (U-2)
Sample Points with TI Sample Points with M		4S 3 3	Maximum: <b>5,700 µg/l (U-1)</b> Maximum: <b>150 µg/l (U-2)</b>

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

### TABLES

#### **TABLE KEY**

STANDARD	AB	BREVIATIONS
	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
Trace	-	less than 0 01 foot of LPH in well
μg/l		micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l	-	milligrams per liter (approx. equivalent to parts per million, ppm)
ND<	-	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)
D	=	duplicate
Р	=	no-purge sample
ANALYTES		
BTEX		= benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		= di-isopropyl ether
ETBE		= ethyl tertiary butyl ether
MTBE		= methyl tertiary butyl ether
PCB		= polychlorinated biphenyls
PCE		= tetrachloroethene
IBA		= tertiary butyl alcohol
ICA		= trichloroethane
ICE		= trichloroethene
IPH-G		= total petroleum hydrocarbons with gasoline distinction
IPH-G (GC/I	MS)	= total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
IPH-D		= total petroleum hydrocarbons with diesel distinction
IRPH		= total recoverable petroleum hydrocarbons
TAME		= tertiary amyl methyl ether
1,1 <b>-D</b> CA		= 1,1-dichloroethane
1, <b>2-</b> DCA		= 1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		= 1,1-dichloroethene
1,2-DCE		= 1,2-dichloroethene (cis- and trans-)

#### NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: Surface Elevation - Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known A value of 0 83 is used for diesel
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags
- Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second 7 Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

#### REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 5325 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

### Contents of Tables 1 and 2 Site: 76 Station 5325

### Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	Ethanol (8260B)	lron Ferrous	Nitrate	Phosphate (ortho)	Pre-purge Dissolved Oxygen	Pre-purge ORP						
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Acenaph- thylene	Iron Ferrous	Nitrate	Phosphate (ortho)	Phosphate (total)
Table 2b	Well/ Date	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP							

## Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 26, 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Totuene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
U-1			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 8.46	7.55	0.00	0.91	0.15		5700	ND<2.5	ND<2.5	72	6.5		10	
U-2			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 7.62	5.17	0.00	2.45	-0.19		5200	8.9	ND<2.5	47	22		150	
U-3			(Scree	n Interva	l in feet: 5.0-	20.0)								
03/26/0	9 10.98	10.70	0.00	0.28	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-4			(Scree	n Interva	l in feet: 5.0-	-20.0)								
03/26/0	9 11.15	7.21	0.00	3.94	1.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-5			(Scree	n Interva	l in feet: 5.0-	20.0)								
03/26/0	9 6.98	6.20	0.00	0.78	0.63		310	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
U-6			•	n Interval	l in feet: 5.0-	24.0)								
03/26/0	9 7.14	6.10	0.00	1.04	0.38		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		ND<2.5	

5325

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Ethanol (8260B) (μg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
<b>U-1</b> 03/26/09	ND<1200	2400	ND<0.10	0.11		
U-2 03/26/09	ND<1200	2600	ND<0.10	ND<0.050	1.56	-73
U-3 03/26/09	ND<250	ND<100	4.8	0.66	1.98	59
U-4 03/26/09	ND<250	ND<100	4.4	0.37	2.96	17
U-5 03/26/09	ND<250	990	ND<0.10	ND<0.050	0.39	-88
<b>U-6</b> 03/26/09	ND<1200	540000	ND<0.10	0.28	1.67	39



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-1	_		(Scre	en Interva	l in feet: 5.0									
08/10/9						690		38	75	8.6	130			
01/07/9						250		22	16	4.2	17			
04/01/9	91					160		13	8.6	1.0	15			
07/03/9	11					140		21	4.3	0.36	17			
10/09/9	91					ND		ND	ND	ND	ND			
02/12/9	2					250		ND	ND	ND	ND			
05/05/9	2					230		1.2	ND	ND	ND			
06/11/9	2					1000		80	i.4	6.7	41			
08/20/9	2					400		1.0	ND	ND	0.6			
02/22/9	3					34000		1400	5500	910	7300			
05/07/9	3					8700		600	240	650	3300			
08/08/9	3					4900		79	ND	832	270			
11/16/9	3 5.32	8.61	0.00	-3.29		690		ND	ND	ND	ND			
02/16/9	4 5.32	8.54	0.00	-3.22	0.07	6800		ND	ND	ND	ND			
06/22/9	4 8.46	8.39	0.00	0.07	3.29	200		ND	ND	5.9	21			
09/22/9	4 8.46	8.66	0.00	-0.20	-0.27	6100		ND	ND	ND	ND			
12/24/9	4 8.46	8.04	0.00	0.42	0.62	50000		2500	9700	2400	17000			
03/25/9	5 8.46	7.72	0.37	1.02	0.60									Not sampled due to LPH in well
06/21/9		9.30	0.20	-0.69	-1.71									Not sampled due to LPH in well
09/19/9	5 8.46	9.29	0.40	-0.53	0.16									Not sampled due to LPH in well



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
<b>U-1 c</b> 12/19/9	ontinued 95 8.46	8.98	0.03	-0.50	0.03									Not sampled due to LPH in well
03/18/9	8.46	8.25	0.00	0.21	0.71	27000		ND	2300	1400	11000	4900		
06/27/9	96 8.46	7.92	0.00	0.54	0.33	120000		540	4300	2600	26000	ND		
09/26/9	96 8.46	9.10	0.02	-0.63	-1.17									Not sampled due to LPH in well
12/09/9	96 8.46	6.88	0.03	1.60	2.23									Not sampled due to LPH in well
03/14/9	97 8.46	9.02	0.55	-0.15	-1.75									Not sampled due to LPH in well
06/30/9	97 8.46	8.41	0.02	0.07	0.21									Not sampled due to LPH in well
09/19/9	97 8.46	8.56	0.02	-0.09	-0.15									Not sampled due to LPH in well
12/12/9	97 8.46	8.58	0.01	-0.11	-0.03			-						Not sampled due to LPH in well
03/03/9	8 8.46	8.23	0.04	0.26	0.37		70							Not sampled due to LPH in well
06/15/9	8 8.46	8.37	0.00	0.09	-0.17	52000		ND	900	1800	13000	ND		Sheen
09/30/9	8 8.46	8.94	0.00	-0.48	-0.57	1000000		ND	2600	13000	83000	4800		Sheen
12/28/9	8 8.46	8.57	0.00	-0.11	0.37	1100000	· •••	ND	1600	8600	71000	5700		
03/22/9	9 8.46	8.18	0.00	0.28	0.39	130000		470	1100	2000	28000	5700		Sheen
06/09/9	9 8.46	9.37	0.00	-0.91	-1.19	40000		230	640	590	13000	3500	2100	
09/08/9	9 8.46	9.53	0.00	-1.07	-0.16	55000		217	202	745	14300	6890	6690	
12/07/9	9 8.46	9.67	0.00	-1.21	-0.14	41200		89.3	ND	385	6930	15800	14700	



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-1 c	ontinued													
03/13/0	0 8.46	8.44	0.00	0.02	i.23	48000		490	610	2400	10000	22000	23000	
06/21/0	8.46	9.45	0.00	-0.99	-1.01	37000		200	ND	1200	7200	15000	20000	
09/27/0	0 8.46	9.29	0.00	-0.83	0.16	15000		92	ND	540	2800	74000	83000	
12/12/0	.8.46	9.37	0.00	-0.91	-0.08	50000		ND	ND	250	1900	12000	15000	
03/07/0	01 8.46	8.45	0.00	0.01	0.92	6220		29.8	10.4	96.3	638	11200	11800	
06/06/0	8.46	9.29	0.00	-0.83	-0.84	5200		17	ND	69	420	6500	8700	
09/24/0	)1 8.46	9.39	0.00	-0.93	-0.10	4300		36	ND<25	65	590	4400	4400	
12/10/0	8.46	9.17	0.00	-0.71	0.22	11000		220	ND<100	380	1500	5100	5100	
03/11/0	8.46	9.44	0.00	-0.98	-0.27	5500		28	ND<20	360	690	6400	6300	
06/04/0	8.46	8.32	0.00	0.14	1.12	4600		31	ND<10	240	180	6500		
09/03/0	02 8.46	9.36	0.00	-0.90	-1.04	2300		ND<12	ND<12	ND<12	68	3500	4700	
12/03/0	8.46	8.18	0.00	0.28	1.18		ND<5000	ND<50	ND<50	ND<50	<100		4700	
03/04/0	3 8.46	8.29	0.00	0.17	-0.11		8900	26	ND<25	400	130		5500	
06/18/0	8.46	7.58	0.00	0.88	0.71		8300	ND<25	ND<25	ND<25	ND<50		10000	
09/24/0	8.46	8.18	0.00	0.28	-0.60		ND<10000	ND<100	ND<100	ND<100	ND<200		11000	
12/02/0	3 8.46	8.90	0.00	-0.44	-0.72		ND<10000	ND<100	ND<100	ND<100	ND<200		11000	
03/30/0	94 8.46	8.38	0.00	0.08	0.52		12000	ND<100	ND<100	190	ND<200		13000	
06/07/0	)4 8.46	10.35	0.00	-1.89	-1.97		13000	ND<100	ND<100	ND<100	ND<200		12000	
09/09/0	.46 8.46													Dry well
12/20/0	8.46	9.00	0.00	-0.54			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.2	
03/28/0	8.46	8.10	0.00	0.36	0.90		37000	ND<10	ND<10	1500	5300		460	
06/14/0	8.46	8.91	0.00	-0.45	-0.81		3900	ND<0.50	ND<0.50	48	68		60	
09/28/0	8.46	11.35	0.00	-2.89	-2.44		560	ND<0.50	0.60	3.0	26		18	
5005								Dogo 2	of 10					

5325

Page 3 of 19

**CTRC** 

.

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
12/29/0		8.58	0.00	-0.12	2.77		510	0.77	ND<0.50	27	63		62	
03/27/0		7.20	0.00	1.26	1.38		29000	ND<25	ND<25	1500	4900		300	
06/12/0	6 8.46	7.81	0.00	0.65	-0.61		3200	ND<0.50	ND<0.50	42	15		56	
09/21/0	6 8.46	8.04	0.00	0.42	-0.23		2600	ND<12	ND<12	ND<12	ND<12		30	
12/21/0	6 8.46	8.32	0.00	0.14	-0.28		2000	ND<0.50	ND<0.50	13	2.2		53	
03/28/0	97 8.46	6.17	0.00	2.29	2.15		12000	ND<2.5	ND<2.5	690	1900		110	
06/27/0	97 8.46	5.39	0.00	3.07	0.78		13000	2.8	ND<2.5	960	1300		79	
09/26/0	97 8.46	5.32	0.00	3.14	0.07		6900	2.6	ND<2.5	310	680		44	
12/27/0	97 8.46	8.12	0.00	0.34	-2.80		5900	ND<2.5	ND<2.5	290	130		42	
03/26/0	8.46	7.84	0.00	0.62	0.28		3500	ND<2.5	ND<2.5	100	18		30	
06/18/0	8.46	7.04	0.00	1.42	0.80		8400	ND<5.0	ND<5.0	230	86		26	
09/24/0	)8 8.46	6.90	0.00	1.56	0.14		6000	3.3	ND<2.5	170	86		78	
12/22/0	8.46	7.70	0.00	0.76	-0.80		6400	0.64	ND<0.50	95	7.0		12	
03/26/0	9 8.46	7.55	0.00	0.91	0.15		5700	ND<2.5	ND<2.5	72	6.5		10	
U-2			(Scree	en Interval	l in feet: 5.0	-20.0)								
08/10/9	90					780		27	46	15	130			
01/07/9						1900		67	5.8	58	69			
04/01/9	91					1700		250	89	34	190			
07/03/9	91					2100		150	25	3.1	290			
10/09/9	91					230		7.1	ND	ND	11			
02/12/9	92					410		1.9	ND	0.36	0.4			
05/05/9	)2					1600		120	52	6.2	290			
06/11/9	)2					620		17	2.1	ND	37			
5325								Page 4	of 19					ÔTOC

76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 c	ontinued					-								
08/20/9	)2					700		28	6.5	1.3	4.6			
02/22/9	93					3400		2400	2100	1200	5800			
05/07/9	93					17000		1800	660	1700	4000			
08/08/9	93					5600		420	ND	410	670			
11/16/9	4.53	8.17	0.00	-3.64		510		ND	ND	ND	ND			
02/16/9	4.53	7.73	0.00	-3.20	0.44	980		49	13	2.7	40			
06/22/9	04 7.62	7.60	0.00	0.02	3.22	31000		2200	62	1500	3500			
09/22/9	94 7.62	7.93	0.00	-0.31	-0.33	8500		29	ND	ND	ND			
12/24/9	94 7.62	7.27	0.00	0.35	0.66	32000		1500	890	1300	5000			
03/25/9	95 7.62	7.01	0.00	0.61	0.26	170000		1900	21000	4800	33000			
06/21/9	7.62	6.98	0.00	0.64	0.03	16000		2100	ND	1800	1700			
09/19/9	7.62	7.70	0.00	-0.08	-0.72	3000		610	ND	78	240			
12/19/9	95 7.62	7.30	0.00	0.32	0.40	1600		140	55	52	270			
03/18/9	6 7.62	6.45	0.00	1.17	0.85	12000		2200	ND	1200	2200	22000		
06/27/9	6 7.62	7.41	0.00	0.21	-0.96	28000		3400	ND	2800	3100	3000		
09/26/9	6 7.62	7.90	0.00	-0.28	-0.49	5900		750	ND	ND	ND	18000		
12/09/9	6 7.62	6.76	0.00	0.86	1.14	13000		5100	290	980	370	2700		
03/14/9	7.62	7.12	0.03	0.52	-0.34									Not sampled due to LPH in well
06/30/9	97 7.62	6.19	0.00	1.43	0.91									Not sampled due to LPH in well
09/19/9	97 7.62	7.31	0.00	0.31	-1.12		'							Not sampled due to LPH in well



## Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 c	ontinued													
12/12/9	7.62	6.75	0.00	0.87	0.56									Not sampled due to LPH in well
03/03/9	98 7.62	6.36	0.00	1.26	0.39	80000		3000	1100	820	16000	16000		Sheen
06/15/9	98 7.62	6.51	0.00	1.11	-0.15	48000		1800	330	470	7900	20000		Sheen
09/30/9	7.62	7.17	0.00	0.45	-0.66	60000		1300	ND	500	9700	19000		Sheen
12/28/9	98 7.62	7.06	0.00	0.56	0.11	63000		590	160	320	5600	16000		
03/22/9	99 7.62	6.82	0.00	0.80	0.24	28000		1100	ND	360	2900	25000		
06/09/9	99 7.62	7.51	0.00	0.11	-0.69	21000		110	190	310	2600	7900	7800	
09/08/9	9 7.62	8.16	0.00	-0.54	-0.65	23300		477	138	286	4110	16400	15300	
12/07/9	99 7.62	8.31	0.00	-0.69	-0.15	4840		17.2	ND	ND	157	14900	15600	
03/13/0	00 7.62	6.69	0.00	0.93	1.62	11000		380	160	ND	2100	22000	26000	
06/21/0	00 7.62	7.67	0.00	-0.05	-0.98	9100		22	ND	ND	800	16000	22000	
09/27/0	00 7.62	7.44	0.00	0.18	0.23	2900		43	ND	ND	39	20000	26000	
12/12/0	0 7.62	7.51	0.00	0.11	-0.07	3600		17	ND	ND	87	8000	7800	
03/07/0	01 7.62	7.15	0.00	0.47	0.36	1670		51.0	ND	7.20	19.5	5930	7900	
06/06/0	01 7.62	7.57	0.00	0.05	-0.42	1100		14	ND	9.3	35	9200	10000	
09/24/0	01 7.62	7.63	0.00	-0.01	-0.06	1000		25	ND<2.5	12	100	9800	11000	
12/10/0	01 7.62	6.78	0.00	0.84	0.85	83		14	0.55	3.4	6.8	2500	2500	
03/11/0	7.62	7.12	0.00	0.50	-0.34	ND<1000		28	ND<10	40	31	11000	11000	
06/04/0	02 7.62	7.18	0.00	0.44	-0.06	7700		32	ND<25	33	48	14000		
09/03/0	02 7.62	7.58	0.00	0.04	-0.40	5200		ND<25	ND<25	ND<25	ND<25	11000	15000	
12/03/0	7.62	7.68	0.00	-0.06	-0.10		ND<5000	ND<50	ND<50	ND<50	ND<100		3200	
03/04/0	7.62	7.77	0.00	-0.15	-0.09		8100	ND<50	ND<50	ND<50	ND<100		7800	

**CTRC** 



1-7

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-2 co	ontinued								· ·					
06/18/0	03 7.62	6.87	0.00	0.75	0.90		11000	ND<50	ND<50	ND<50	ND<100		16000	
09/24/0	03 7.62	7.49	0.00	0.13	-0.62		ND<10000	ND<100	ND<100	ND<100	ND<200		10000	
12/02/0	7.62	7.95	0.00	-0.33	-0.46		ND<10000	ND<100	ND<100	ND<100	ND<200		10000	
03/30/0	7.62	7.07	0.00	0.55	0.88		12000	ND<100	ND<100	ND<100	ND<200		11000	
06/07/0	7.62	7.75	0.00	-0.13	-0.68		14000	ND<100	ND<100	ND<100	ND<200		13000	
09/09/0	04 7.62	8.65	0.00	-1.03	-0.90		ND<10000	ND<100	ND<100	ND<100	ND<200		9500	
12/20/0	94 7.62	7.73	0.00	-0.11	0.92		ND<5000	ND<50	ND<50	ND<50	ND<100		11000	
03/28/0	5 7.62	6.24	0.00	1.38	1.49		12000	ND<50	ND<50	160	120		7000	
06/14/0	5 7.62	7.05	0.00	0.57	-0.81		2000	0.75	ND<0.50	3.7	1.1		2400	
09/28/0	5 7.62	8.00	0.00	-0.38	-0.95		320	ND<0.50	ND<0.50	ND<0.50	ND<1.0		80	
12/29/0	5 7.62	7.23	0.00	0.39	0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		35	
03/27/0	6 7.62	5.31	0.00	2.31	1.92		2400	31	0.73	120	15		1400	
06/12/0	6 7.62	6.25	0.00	1.37	-0.94		ND<1200	ND<12	ND<12	17	ND<25		490	
09/21/0	6 7.62	6.00	0.00	1.62	0.25		440	6.1	ND<0.50	1.7	ND<0.50		1100	
12/21/0	6 7.62	6.08	0.00	1.54	-0.08		670	10	ND<0.50	52	1.2		730	
03/28/0	7.62	5.05	0.00	2.57	1.03		3300	36	ND<5.0	200	6.8		1200	
06/27/0	7.62	4.80	0.00	2.82	0.25		5100	94	ND<5.0	640	7.1		1100	
09/26/0	7.62	4.73	0.00	2.89	0.07		3900	54	ND<5.0	240	240		670	
12/27/0	7.62	5.80	0.00	1.82	-1.07		2200	21	ND<5.0	77	16		470	
03/26/0	98 7.62	5,62	0.00	2.00	0.18		4300	45	ND<2.5	210	77		580	
06/18/0	08 7.62	5.30	0.00	2.32	0.32		5400	31	ND<5.0	270	38		250	
09/24/0	08 7.62	5.10	0.00	2.52	0.20		4400	24	ND<0.50	190	24		300	
12/22/0	7.62	4.98	0.00	2.64	0.12		6200	24	ND<0.50	160	31		160	

5325

Page 7 of 19



## Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
u	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
<b>U-2 c</b> 03/26/0	ontinued )9 7.62	5,17	0.00	2.45	-0.19		5200	8.9	ND<2.5	47	22		150	
U-3			(Scre	en Interva	l in feet: 5.0	-20.0)								
08/10/9	00				<u>u</u> lu	ND		ND	ND	ND	ND			
01/07/9	)1		·			ND		ND	ND	ND	1.8			
04/01/9	91					ND		1.0	2.9	0.53	5.4			
07/03/9						ND		ND	ND	ND	ND			
10/09/9	91					ND		ND	ND	ND	ND			
02/12/9	2					ND		ND	ND	ND	ND			
05/05/9	2					ND		ND	ND	ND	ND			
06/11/9	20					ND		ND	ND	ND	ND			
08/20/9	2					ND		ND	ND	ND	ND			
02/22/9	3					ND		ND	ND	ND	ND			
05/07/9	03					ND		ND	ND	ND	ND			
08/08/9						210		5.0	9.7	0.7	4. i			
11/16/9	3 7.86	11.82	0.00	-3.96		ND		ND	ND	ND	ND			
02/16/9	4 7.86	11.62	0.00	-3.76	0.20	ND		ND	ND	ND	ND			
06/22/9	4 10.98	11.64	0.00	-0.66	3.10	ND		ND	ND	ND	ND			
09/22/9	4 10.98	11.76	0.00	-0.78	-0.12	ND		ND	ND	ND	ND			
12/24/9	4 10.98	11.28	0.00	-0.30	0.48	ND		ND	ND	ND	ND			
03/25/9	10.98	10.96	0.00	0.02	0.32	ND		ND	ND	ND	ND			
06/21/9	5 10.98	11.37	0.00	-0.39	-0.41	ND		ND	ND	ND	ND			
09/19/9	5 10.98	11.55	0.00	-0.57	-0.18	ND		ND	ND	ND	ND			
12/19/9	5 10.98	11.45	0.00	-0.47	0.10	ND		ND	ND	ND	ND			
5005								Daga 9	-£10					

Page 8 of 19

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
August 1990 Through March 2009
76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
03/18/9		11.10		-0.12	0.35	ND		ND	ND	ND	ND			
06/27/9		11.16	0.00	-0.18	-0.06	440		49	50	51	140	50		
09/26/9	06 10.98	11.55	0.00	-0.57	-0.39	ND		ND	ND	ND	ND	ND		
12/09/9	6 10.98	10.12	0.00	0.86	1.43	ND		ND	ND	ND	ND	29		
03/14/9	07 10.98	10.87	0.00	0.11	-0.75	ND		ND	ND	ND	ND	ND		
06/30/9	10.98	11.08	0.00	-0.10	-0.21	ND		ND	ND	ND	ND	ND		
09/19/9	10.98	11.05	0.00	-0.07	0.03	ND		ND	ND	ND	ND	ND		
12/12/9	07 10.98	10.58	0.00	0.40	0.47	ND		ND	ND	ND	ND	ND		
03/03/9	10.98	9.84	0.00	1.14	0.74	ND		ND	ND	ND	ND	ND		
06/15/9	98 10.98	10.56	0.00	0.42	-0.72	ND		ND	ND	ND	ND	ND		
09/30/9	8 10.98	11.12	0.00	-0.14	-0.56	ND		ND	ND	ND	ND	ND		
12/28/9	8 10.98	10.96	0.00	0.02	0.16	ND		ND	ND	ND	ND	ND		
03/22/9	9 10.98	9.46	0.00	1.52	i.50	ND		ND	ND	ND	ND	ND		
06/09/9	9 10.98	11.01	0.00	-0.03	-1.55	ND		ND	ND	ND	ND	ND		
09/08/9	9 10.98	11.31	0.00	-0.33	-0.30	ND		ND	ND	ND	ND	ND		
12/07/9	9 10.98	11.26	0.00	-0.28	0.05	ND		ND	ND	ND	ND	ND		
03/13/0	0 10.98	8.28	0.00	2.70	2.98	ND		ND	ND	ND	ND	ND		
06/21/0	0 10.98	11.12	0.00	-0.14	-2.84	ND		ND	ND	ND	ND	ND		
09/27/0	0 10.98	11.07	0.00	-0.09	0.05	ND		ND	ND	ND	ND	ND		
12/12/0	0 10.98	10.94	0.00	0.04	0.13	ND		ND	ND	ND	ND	ND		
03/07/0	1 10.98	8.32	0.00	2.66	2.62	ND		ND	ND	ND	ND	ND		
06/06/0	1 10.98	10.94	0.00	0.04	-2.62	ND		ND	ND	ND	ND	ND		
09/24/0	10.98	11.03	0.00	-0.05	-0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		

5325

Page 9 of 19

**CTRC** 

## Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xyienes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-3 co	ontinued						r							
12/10/0	1 10.98	8.16	0.00	2.82	2.87	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
03/11/0	10.98	7.82	0.00	3.16	0.34	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/04/0	2 10.98	10.58	0.00	0.40	-2.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	10.98	10.94	0.00	0.04	-0.36	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/03/0	10.98	10.66	0.00	0.32	0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/04/0	3 10.98	10.76	0.00	0.22	-0.10		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/18/0	3 10.98	10.26	0.00	0.72	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/24/0	3 10.98	10.88	0.00	0.10	-0.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/02/0	3 10.98	11.00	0.00	-0.02	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/30/0	4 10.98	10.64	0.00	0.34	0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/07/0	4 10.98	11.00	0.00	-0.02	-0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/09/0	4 10.98	11.31	0.00	-0.33	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	4 10.98	10.79	0.00	0.19	0.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/28/0	5 10.98	9.80	0.00	1.18	0.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/0	5 10.98	10.75	0.00	0.23	-0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	1.2		ND<0.50	
09/28/0	5 10.98	11.16	0.00	-0.18	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	5 10.98	10.41	0.00	0.57	0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/27/0	6 10.98	10.16	0.00	0.82	0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	6 10.98	9.94	0.00	1.04	0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/21/0	6 10.98	11.01	0.00	-0.03	-i.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/21/0	6 10.98	10.92	0.00	0.06	0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/28/0	7 10.98	10.84	0.00	0.14	0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0	7 10.98	10.93	0.00	0.05	-0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
E00E								Page 14	1 of 19					

5325

Page 10 of 19

Date Sampled	TOC Elevation (feet)	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
		(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued	11.01	0.00	0.02	0.00									
09/26/				-0.03	-0.08		770			ND<0.50			18	
12/27/				0.05	0.08		ND<50		ND<0.50				0.63	
03/26/				0.14	0.09		ND<50		ND<0.50		ND<1.0		ND<0.50	
06/18/				0.09	-0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/24/0				0.08	-0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.87	
12/22/0		10.93	0.00	0.05	-0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	09 10.98	10.70	0.00	0.28	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
U-4			(Scre	en Interval	l in feet: 5.0	-20.0)								
06/22/9	94 11.15	10.16	0.00	0.99		ND		ND	ND	ND	ND			
09/22/9	94 11.15	10.79	0.00	0.36	-0.63	ND		0.78	1.3	ND	1.4			
12/24/9	94 11.15	9.81	0.00	1.34	0.98	ND		ND	ND	ND	ND			
03/25/9	95 11.15	9.51	0.00	1.64	0.30	ND		ND	ND	ND	ND			
06/21/9	95 11.15	9.54	0.00	1.61	-0.03	ND		ND	ND	ND	ND			
09/19/9	95 11.15	10.17	0.00	0.98	-0.63	ND		ND	ND	ND	ND			
12/19/9	95 11.15	9.98	0.00	i.17	0.19	ND		ND	ND	ND	ND			
03/18/9	96 11.15	9.66	0.00	1.49	0.32	ND		ND	ND	ND	ND			
06/27/9	96 11.15	9.74	0.00	1.41	-0.08	ND	·	ND	ND	ND	ND	ND		
09/26/9	96 11.15	10.14	0.00	1.01	-0.40	ND		ND	ND	ND	ND	ND		
12/09/9	96 11.15	8.67	0.00	2.48	1.47	ND		ND	ND	ND	ND	33		
03/14/9	97 11.15	9.35	0.00	i.80	-0.68	ND		ND	ND	ND	ND	ND		
06/30/9		9.89	0.00	1.26	-0.54	ND		ND	ND	ND	ND	ND		
09/19/9		9.96	0.00	i.19	-0.07	ND		ND	ND	ND	ND ·			
12/12/9		8.56	0.00	2.59	-0.07 1.40	ND		ND				ND	'	
1441443	×, 11.1J	0,00	0.00	2.39	1.40	ND		ND	ND	ND	ND	ND		

5325

Page 11 of 19

## Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-4 c	ontinued													
03/03/9	08 11.15	7.85	0.00	3.30	0.71	ND		ND	ND	ND	ND	ND		
06/15/9	98 11.15	9.08	0.00	2.07	-1.23	ND		ND	ND	ND	ND	ND		
09/30/9	98 11.15	9.75	0.00	1.40	-0.67	ND		ND	ND	ND	ND	ND		
12/28/9	11.15	9.59	0.00	1.56	0.16	ND		ND	ND	ND	ND	ND		
03/22/9	9 11.15	8.34	0.00	2.81	1.25	ND		ND	ND	ND	ND	ND		
06/09/9	9 11.15	9,39	0.00	1.76	-1.05	ND		ND	ND	ND	ND	ND		
09/08/9	9 11.15	9.90	0.00	1.25	-0.51	ND		ND	ND	ND	ND	ND		
12/07/9	9 11.15	10.05	0.00	1.10	-0.15	ND		ND	ND	ND	ND	ND		
03/13/0	0 11.15	7.24	0.00	3.91	2.81	ND		ND	ND	ND	ND	ND		
06/21/0	0 11.15	9.48	0.00	1.67	-2.24	ND		ND	ND	ND	ND	ND		
09/27/0	0 11.15	9.42	0.00	1.73	0.06	ND		ND	ND	ND	ND	ND		
12/12/0	0 11.15	9.50	0.00	1.65	-0.08	ND		ND	ND	ND	ND	ND		
03/07/0	)1 11.15	6.88	0.00	4.27	2.62	ND		ND	ND	ND	ND	ND	'	
06/06/0	11.15	9.18	0.00	1.97	-2.30	ND		ND	ND	ND	ND	ND		
09/24/0	11.15	9.21	0.00	1.94	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/10/0	11.15	7.32	0.00	3.83	1.89	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
03/11/0	2 11.15	6.92	0.00	4.23	0.40	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/04/0	11.15	7.58	0.00	3.57	-0.66	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	11.15	9.17	0.00	1.98	-1.59	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/03/0	11.15	9.20	0.00	1.95	-0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/04/0	3 11.15	9.32	0.00	1.83	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/18/0	3 11.15	7.65	0.00	3.50	1.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/24/0	11.15	8.26	0.00	2.89	-0.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	

Page 12 of 19



#### 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(Lult) (µg/l)	(UC/MIS) (μg/l)	(µg/l)	(µg/l)	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	(µg/l)	(8021B) (µg/l)	(8200B) (µg/l)	
U-4 co	ontinued													
12/02/0		9.16	0.00	1.99	-0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/30/0	4 11.15	7.47	0.00	3.68	i.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/07/0	11.15	8.93	0.00	2.22	-1.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/09/0	4 11.15	9.83	0.00	1.32	-0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	11.15	8.28	0.00	2.87	1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/28/0	11.15	6.35	0.00	4.80	1.93		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/0	11.15	8.10	0.00	3.05	-1.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	11.15	9,59	0.00	1.56	-1.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	11.15	7.13	0.00	4.02	2.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/27/0	6 11.15	6.27	0.00	4.88	0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	6 11.15	8.45	0.00	2.70	-2.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/21/0	6 11.15	9.63	0.00	1.52	-1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/21/0	11.15	8.50	0.00	2.65	1.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/28/0	11.15	8.00	0.00	3.15	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0	11.15	8.78	0.00	2.37	-0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	·	ND<0.50	
09/26/0	11.15	9.08	0.00	2.07	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	11.15	8.63	0.00	2.52	0.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	11.15	7.86	0.00	3.29	0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/18/0	11.15	8.83	0.00	2.32	-0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/24/0	11.15	9.50	0.00	1.65	-0.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	11.15	8.55	0.00	2.60	0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 11.15	7.21	0.00	3.94	1.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

(Screen Interval in feet: 5.0-20.0)

Page 13 of 19



$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
06/22/94       6.98       6.83       0.00       0.15       -       210        7.1       13       4.5       26           09/22/94       6.98       6.43       0.00       0.08       -0.07       170        8.4       10       8.5       18           12/24/94       6.98       6.43       0.00       0.55       0.47       8700        560       7.0       670       430           03/25/95       6.98       6.35       0.00       0.63       0.08       4400        390       960       150       7.0            06/21/95       6.98       7.17       0.00       -0.13       0.76       400        2.3       ND       ND       ND       ND       ND              09/19/95       6.98       7.17       0.00       -0.19       -0.18       ND        ND       ND       ND       ND                  <		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
09/22/94 $6.98$ $6.90$ $0.00$ $0.08$ $-0.07$ $170$ $$ $184$ $10$ $8.5$ $118$ $$ $$ $12/24/94$ $6.98$ $6.43$ $0.00$ $0.55$ $0.47$ $8700$ $$ $560$ $70$ $670$ $430$ $$ $$ $03/25/95$ $6.98$ $6.35$ $0.00$ $0.63$ $0.08$ $44000$ $$ $390$ $960$ $1500$ $7600$ $$ $$ $06/21/95$ $6.98$ $6.37$ $1.00$ $-0.13$ $-0.76$ $400$ $$ $2.3$ $ND$ $9,1$ $3.5$ $$ $$ $06/21/95$ $6.98$ $6.99$ $0.00$ $-0.13$ $-0.76$ $400$ $$ $2.3$ $ND$ $9,1$ $3.5$ $$ $$ $09/19/95$ $6.98$ $6.99$ $0.00$ $-0.13$ $0.76$ $400$ $$ $2.3$ $ND$ $ND$ $ND$ $$ $$ $12/19/95$ $6.98$ $6.717$ $0.00$ $-0.18$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $$ $$ $03/18/96$ $6.98$ $0.00$ $0.49$ $0.16$ $16000$ $$ $280$ $150$ $1400$ $4600$ $530$ $$ $09/26/96$ $6.98$ $7.13$ $0.00$ $-1.18$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $14$ $$ $12/209/6$ $6.98$ $5.90$ $0.00$ $-1.09$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $140$ <	Ŭ-5 ci	ontinued														
12/24/94 $6.98$ $6.43$ $0.00$ $0.55$ $0.47$ $8700$ $$ $560$ $70$ $670$ $430$ $$ $$ $03/25/95$ $6.98$ $6.35$ $0.00$ $0.63$ $0.08$ $44000$ $$ $390$ $960$ $1500$ $7600$ $$ $$ $06/21/95$ $6.98$ $7.11$ $0.00$ $-0.13$ $-0.76$ $400$ $$ $2.3$ $ND$ $9.11$ $3.5$ $$ $$ $09/19/95$ $6.98$ $6.99$ $0.00$ $-0.11$ $0.12$ $850$ $$ $14$ $7.1$ $13$ $666$ $$ $$ $12/19/95$ $6.98$ $6.49$ $0.00$ $0.01$ $0.12$ $850$ $$ $14$ $7.1$ $13$ $666$ $$ $$ $03/18/96$ $6.98$ $6.49$ $0.00$ $0.33$ $0.52$ $100$ $$ $280$ $150$ $1400$ $4600$ $530$ $$ $06/27/96$ $6.98$ $6.49$ $0.00$ $0.49$ $0.16$ $16000$ $$ $280$ $150$ $1400$ $460$ $530$ $$ $12/09/96$ $6.98$ $7.13$ $0.00$ $-0.15$ $-0.64$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $14$ $$ $12/09/96$ $6.98$ $7.08$ $0.00$ $-0.10$ $-0.99$ $4200$ $$ $74$ $51$ $1800$ $980$ $270$ $$ $09/19/97$ $6.98$ $6.78$ $0.00$ $0.20$ $0.30$ $6300$ $-$	06/22/9	6.98	6.83	0.00	0.15		210		7.1	13	4.5	26			•	
03/25/95       6.98       6.35       0.00       0.63       0.08       44000        390       960       1500       7600           06/21/95       6.98       7.11       0.00       -0.13       -0.76       400        2.3       ND       9.1       3.5           09/19/95       6.98       6.99       0.00       -0.01       0.12       850        14       7.1       13       66           03/18/96       6.98       6.65       0.00       0.33       0.52       100        0.67       0.5       0.51       5.4           03/18/96       6.98       6.65       0.00       0.49       0.16       16000        280       150       1400       4600       530          09/26/96       6.98       5.00       0.00       1.08       1.23       1300        ND       ND       ND       ND       ND       ND       ND       140       97          03/14/97       6.98       6.99       0.00       -0.11       -1.09       ND        ND	09/22/9	6.98	6.90	0.00	0.08	-0.07	170		8.4	10	8.5	18				
06/21/95       6.98       7.11       0.00       -0.13       -0.76       400        2.3       ND       9.1       3.5           09/19/95       6.98       6.99       0.00       -0.01       0.12       850        14       7.1       13       66           12/19/95       6.98       7.17       0.00       -0.19       -0.18       ND        ND       ND       ND       ND           03/18/96       6.98       6.65       0.00       0.33       0.52       100        280       150       1400       4600       530          06/27/96       6.98       6.49       0.00       0.49       0.16       16000        280       150       1400       4600       530          02/26/96       6.98       7.13       0.00       -0.15       -0.64       ND        ND       ND       ND       ND       14          03/14/97       6.98       6.99       0.00       -0.01       -1.09       ND        ND       ND       ND       14	12/24/9	6.98	6.43	0.00	0.55	0.47	8700		560	70	670	430				
09/19/95 $6.98$ $6.99$ $0.00$ $-0.01$ $0.12$ $850$ $$ $14$ $7.1$ $13$ $166$ $$ $$ $12/19/95$ $6.98$ $7.17$ $0.00$ $-0.19$ $-0.18$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $$ $$ $03/18/96$ $6.98$ $6.65$ $0.00$ $0.33$ $0.52$ $100$ $$ $0.67$ $0.5$ $0.51$ $5.4$ $$ $$ $06/27/96$ $6.98$ $6.49$ $0.00$ $0.49$ $0.16$ $16000$ $$ $280$ $150$ $1400$ $4600$ $530$ $$ $09/26/96$ $6.98$ $7.13$ $0.00$ $-0.15$ $-0.64$ $ND$ $$ $ND$ $0.96$ $ND$ $$ $12/09/96$ $6.98$ $5.90$ $0.00$ $1.08$ $1.23$ $1300$ $$ $29$ $46$ $ND$ $140$ $97$ $$ $03/14/97$ $6.98$ $6.99$ $0.00$ $-0.01$ $-1.09$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $141$ $$ $06/30/97$ $6.98$ $7.08$ $0.00$ $-0.10$ $-0.09$ $4200$ $$ $74$ $51$ $180$ $980$ $270$ $$ $09/19/97$ $6.98$ $6.78$ $0.00$ $0.20$ $0.30$ $6300$ $$ $133$ $ND$ $1.6$ $2.1$ $47$ $$ $03/03/98$ $6.98$ $6.85$ $0.00$ $0.13$ $-0.35$ $1500$ $$ $32$ $ND$ <t< td=""><td>03/25/9</td><td>6.98</td><td>6.35</td><td>0.00</td><td>0.63</td><td>0.08</td><td>44000</td><td></td><td>390</td><td>960</td><td>1500</td><td>7600</td><td></td><td></td><td></td><td></td></t<>	03/25/9	6.98	6.35	0.00	0.63	0.08	44000		390	960	1500	7600				
12/19/95       6.98       7.17       0.00       -0.19       -0.18       ND        ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND       ND <th< td=""><td>06/21/9</td><td>95 6.98</td><td>7.11</td><td>0.00</td><td>-0.13</td><td>-0.76</td><td>400</td><td></td><td>2.3</td><td>ND</td><td>9.1</td><td>3.5</td><td></td><td></td><td></td><td></td></th<>	06/21/9	95 6.98	7.11	0.00	-0.13	-0.76	400		2.3	ND	9.1	3.5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/19/9	95 6.98	6.99	0.00	-0.01	0.12	850		14	7.1	13	66				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12/19/9	95 6.98	7.17	0.00	-0.19	-0.18	ND		ND	ND	ND	ND				
09/26/96 $6.98$ $7.13$ $0.00$ $-0.15$ $-0.64$ ND $$ ND $ND$ $ND$ $0.96$ ND $$ $12/09/96$ $6.98$ $5.90$ $0.00$ $1.08$ $1.23$ $1300$ $$ $29$ $46$ ND $140$ $97$ $$ $03/14/97$ $6.98$ $6.99$ $0.00$ $-0.01$ $-1.09$ ND $$ NDNDNDND $14$ $$ $06/30/97$ $6.98$ $7.08$ $0.00$ $-0.01$ $-1.09$ ND $$ $74$ $51$ $180$ $980$ $270$ $$ $09/19/97$ $6.98$ $6.78$ $0.00$ $0.20$ $0.30$ $6300$ $$ $160$ $13$ $370$ $1000$ $480$ $$ $12/12/97$ $6.98$ $6.94$ $0.00$ $0.04$ $-0.16$ $60$ $$ $1.3$ ND $1.6$ $2.1$ $47$ $$ $03/03/98$ $6.98$ $6.50$ $0.00$ $0.44$ $1700$ $$ $29$ ND $150$ $190$ $330$ $$ $06/15/98$ $6.98$ $0.65$ $0.00$ $0.13$ $-0.35$ $1500$ $$ $32$ ND $91$ $83$ $330$ $$ $09/30/98$ $6.98$ $7.25$ $0.00$ $-0.27$ $0.06$ $1400$ $$ $59$ ND $13$ $277$ $150$ $$ $12/28/98$ $6.98$ $7.25$ $0.00$ $0.12$ $0.39$ $780$ $$ $8.9$ ND $0.76$ $4.5$ <td>03/18/9</td> <td>6.98</td> <td>6.65</td> <td>0.00</td> <td>0.33</td> <td>0.52</td> <td>100</td> <td></td> <td>0.67</td> <td>0.5</td> <td>0.51</td> <td>5.4</td> <td></td> <td></td> <td></td> <td></td>	03/18/9	6.98	6.65	0.00	0.33	0.52	100		0.67	0.5	0.51	5.4				
12/09/96 $6.98$ $5.90$ $0.00$ $1.08$ $1.23$ $1300$ $$ $29$ $46$ $ND$ $140$ $97$ $$ $03/14/97$ $6.98$ $6.99$ $0.00$ $-0.01$ $-1.09$ $ND$ $$ $ND$ $ND$ $ND$ $ND$ $14$ $$ $06/30/97$ $6.98$ $7.08$ $0.00$ $-0.10$ $-0.09$ $4200$ $$ $74$ $51$ $180$ $980$ $270$ $$ $09/19/97$ $6.98$ $6.78$ $0.00$ $0.20$ $0.30$ $6300$ $$ $160$ $13$ $370$ $1000$ $480$ $$ $12/12/97$ $6.98$ $6.94$ $0.00$ $0.04$ $-0.16$ $60$ $$ $1.3$ $ND$ $1.6$ $2.1$ $47$ $$ $03/03/98$ $6.98$ $6.50$ $0.00$ $0.48$ $0.44$ $1700$ $$ $29$ $ND$ $150$ $190$ $330$ $$ $06/15/98$ $6.98$ $7.31$ $0.00$ $0.48$ $0.44$ $1700$ $$ $29$ $ND$ $91$ $83$ $330$ $$ $09/30/98$ $6.98$ $7.31$ $0.00$ $-0.33$ $-0.46$ $1700$ $$ $44$ $ND$ $39$ $150$ $60$ $$ $12/28/98$ $6.98$ $7.25$ $0.00$ $-0.27$ $0.66$ $1400$ $$ $59$ $ND$ $13$ $27$ $150$ $$ $03/22/99$ $6.98$ $7.28$ $0.00$ $-0.42$ $1000$ $$ $8.9$ $ND$	06/27/9	6.98	6.49	0.00	0.49	0.16	16000		280	150	1400	4600	530			
03/14/97       6.98       6.99       0.00       -0.01       -1.09       ND        ND       ND       ND       ND       14          06/30/97       6.98       7.08       0.00       -0.10       -0.09       4200        74       51       180       980       270          09/19/97       6.98       6.78       0.00       0.20       0.30       6300        160       13       370       1000       480          12/12/97       6.98       6.50       0.00       0.04       -0.16       60        1.3       ND       1.6       2.1       47          03/03/98       6.98       6.50       0.00       0.48       0.44       1700        29       ND       150       190       330          06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60	09/26/9	6.98	7.13	0.00	-0.15	-0.64	ND		ND	0.57	ND	0.96	ND			
06/30/97       6.98       7.08       0.00       -0.10       -0.09       4200        74       51       180       980       270          09/19/97       6.98       6.78       0.00       0.20       0.30       6300        160       13       370       1000       480          12/12/97       6.98       6.94       0.00       0.04       -0.16       60        1.3       ND       1.6       2.1       47          03/03/98       6.98       6.50       0.00       0.48       0.44       1700        29       ND       150       190       330          06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150	12/09/9	6.98	5.90	0.00	i.08	1.23	1300		29	46	ND	140	97			
09/19/97       6.98       6.78       0.00       0.20       0.30       6300        160       13       370       1000       480          12/12/97       6.98       6.94       0.00       0.04       -0.16       60        1.3       ND       1.6       2.1       47          03/03/98       6.98       6.50       0.00       0.48       0.44       1700        29       ND       150       190       330          06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       6.86       0.00       0.12       0.39       780        ND       ND       10       35       280       350	03/14/9	97 6.98	6.99	0.00	-0.01	-1.09	ND		ND	ND	ND	ND	14			
12/12/97       6.98       6.94       0.00       0.04       -0.16       60        1.3       ND       1.6       2.1       47          03/03/98       6.98       6.50       0.00       0.48       0.44       1700        29       ND       150       190       330          06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       32.2       157       280       239 <td>06/30/9</td> <td>6.98</td> <td>7.08</td> <td>0.00</td> <td>-0.10</td> <td>-0.09</td> <td>4200</td> <td></td> <td>74</td> <td>51</td> <td>180</td> <td>980</td> <td>270</td> <td></td> <td></td> <td></td>	06/30/9	6.98	7.08	0.00	-0.10	-0.09	4200		74	51	180	980	270			
03/03/98       6.98       6.50       0.00       0.48       0.44       1700        29       ND       150       190       330          06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       6.86       0.00       0.12       0.39       780        8.9       ND       0.76       4.5       350          06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.24       2620        26.2       ND       32.2       157       280       239 <td>09/19/9</td> <td>97 6.98</td> <td>6.78</td> <td>0.00</td> <td>0.20</td> <td>0.30</td> <td>6300</td> <td></td> <td>160</td> <td>13</td> <td>370</td> <td>1000</td> <td>480</td> <td></td> <td></td> <td></td>	09/19/9	97 6.98	6.78	0.00	0.20	0.30	6300		160	13	370	1000	480			
06/15/98       6.98       6.85       0.00       0.13       -0.35       1500        32       ND       91       83       330          09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       6.86       0.00       0.12       0.39       780        8.9       ND       0.76       4.5       350          06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.24       2620        26.2       ND       32.2       157       280       239	12/12/9	97 6.98	6.94	0.00	0.04	-0.16	60		1.3	ND	1.6	2.1	47			
09/30/98       6.98       7.31       0.00       -0.33       -0.46       1700        44       ND       39       150       60          12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       6.86       0.00       0.12       0.39       780        8.9       ND       0.76       4.5       350          06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.54       -0.24       2620        26.2       ND       32.2       157       280       239	03/03/9	6.98	6.50	0.00	0.48	0.44	1700		29	ND	150	190	330			
12/28/98       6.98       7.25       0.00       -0.27       0.06       1400        59       ND       13       27       150          03/22/99       6.98       6.86       0.00       0.12       0.39       780        8.9       ND       0.76       4.5       350          06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.54       -0.24       2620        26.2       ND       32.2       157       280       239	06/15/9	98 6.98	6.85	0.00	0.13	-0.35	1500		32	ND	91	83	330			
03/22/99       6.98       6.86       0.00       0.12       0.39       780        8.9       ND       0.76       4.5       350          06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.54       -0.24       2620        26.2       ND       32.2       157       280       239	09/30/9	98 6.98	7.31	0.00	-0.33	-0.46	1700		44	ND	39	150	60			
06/09/99       6.98       7.28       0.00       -0.30       -0.42       1000        ND       ND       10       35       280       350         09/08/99       6.98       7.52       0.00       -0.54       -0.24       2620        26.2       ND       32.2       157       280       239	12/28/9	98 6.98	7.25	0.00	-0.27	0.06	1400		59	ND	13	27	150			
09/08/99 6.98 7.52 0.00 -0.54 -0.24 2620 26.2 ND 32.2 157 280 239	03/22/9	6.98	6.86	0.00	0.12	0.39	780		8.9	ND	0.76	4.5	350			
	06/09/9	99 6.98	7.28	0.00	-0.30	-0.42	1000		ND	ND	10	35	280	350		
12/07/99 6.98 7.67 0.00 -0.69 -0.15 949 9.26 ND 11.2 22.7 235 301	09/08/9	6.98	7.52	0.00	-0.54	-0.24	2620		26.2	ND	32.2	157	280	239		
	12/07/9	9 6.98	7.67	0.00	-0.69	-0.15	949		9.26	ND	11.2	22.7	235	301		

Page 14 of 19



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-5 co	ontinued													
03/13/0	0 6.98	6.73	0.00	0.25	0.94	880		12	1.0	5.6	8.7	46	37	
06/21/0	0 6.98	7.39	0.00	-0.41	-0.66	700		4.0	ND	0.99	4.0	120	140	
09/27/0	0 6.98	7.45	0.00	-0.47	-0.06	400		i.9	ND	ND	1.5	160	250	
12/12/0	0 6.98	7.68	0.00	-0.70	-0.23	770		3.2	ND	ND	ND	27	13	
03/07/0	1 6.98	6.83	0.00	0.15	0.85	623		5.15	ND	ND	0.669	35.7	43.4	
06/06/0	1 6.98	7,42	0.00	-0.44	-0.59	110		ND	ND	ND	ND	ND		
09/24/0	1 6.98	7.50	0.00	-0.52	-0.08	270		ND<0.50	ND<0.50	ND<0.50	ND<0.50	40	42	
12/10/0	1 6.98	6.65	0.00	0.33	0.85	420		13	0.60	0.66	ND<0.50	ND<2.5		
03/11/0	2 6.98	7.00	0.00	-0.02	-0.35	260		ND<0.50	ND<0.50	ND<0.50	ND<0.50	42	47	
06/04/0	2 6.98	6.71	0.00	0.27	0.29	170		ND<0.50	0.77	0.87	0.69	29		
09/03/0	2 6.98	7.47	0.00	-0.49	-0.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	37	53	
12/03/0	2 6.98	6.64	0.00	0.34	0.83		320	ND<0.50	ND<0.50	5.7	ND<1.0		11	
03/04/0	3 6.98	6.75	0.00	0.23	-0,11		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		44	
06/18/0	3 6.98	6.25	0.00	0.73	0.50		51	ND<0.50	ND<0.50	ND<0.50	ND<1.0		36	
09/24/0	3 6.98	6.86	0.00	0.12	-0.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/02/0	3 6.98	7.12	0.00	-0.14	-0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	
03/30/0	4 6.98	6.88	0.00	0.10	0.24		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		130	
06/07/0	4 6.98	8.53	0.00	-1.55	-1.65		250	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
09/09/0	4 6.98	12.28	0.00	-5.30	-3.75		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		260	
12/20/0	4 6.98	7.51	0.00	-0.53	4.77		130	ND<0.50	ND<0.50	1.9	2.0		120	
03/28/0	5 6.98	7.22	0.00	-0.24	0.29		670	ND<2.0	ND<2.0	ND<2.0	ND<4.0		230	
06/14/0	5 6.98	7.46	0.00	-0.48	-0.24		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
09/28/0	5 6.98	9.59	0.00	-2.61	-2.13		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		370	
5325								Page 1:	5 of 19					ATOC

**CTRC** 

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change 1n	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
					Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
u	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued													
12/29/0	05 6.98	7.53	0.00	-0.55	2.06		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		190	
03/27/0		6.29	0.00	0.69	1.24		450	ND<0.50	ND<0.50	8.3	ND<1.0		70	
06/12/0	6.98	6.45	0.00	0.53	-0.16		370	ND<0.50	ND<0.50	ND<0.50	ND<1.0		61	
09/21/0	6.98	6.60	0.00	0.38	-0.15		130	ND<0.50	ND<0.50	ND<0.50	ND<0.50		35	
12/21/(	6.98	6.92	0.00	0.06	-0.32		230	ND<0.50	ND<0.50	0.58	ND<0.50		11	
03/28/0	07 6.98	5.12	0.00	1.86	1.80		400	ND<0.50	ND<0.50	5.4	ND<0.50		13	
06/27/0	07 6.98	4.41	0.00	2.57	0.71		210	ND<0.50	ND<0.50	2.4	ND<0.50		18	
09/26/0	07 6.98	4.71	0.00	2.27	-0.30		740	ND<0.50	ND<0.50	ND<0.50	ND<0.50		18	
12/27/0	07 6.98	6.77	0.00	0.21	-2.06		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
03/26/(	6.98	6.41	0.00	0.57	0.36		310	ND<0.50	0.64	1.3	1.0		27	
06/18/0	08 6.98	5.71	0.00	1.27	0.70		790	ND<0.50	ND<0.50	2.4	ND<1.0		22	
09/24/0	08 6.98	5.45	0.00	1.53	0.26		860	1.2	ND<0.50	3.2	3.7		16	
12/22/(	6.98	6.83	0.00	0.15	-1.38		620	ND<0.50	ND<0.50	0.54	1.3		13	
03/26/0	6.98	6.20	0.00	0.78	0.63		310	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
U-6			(Scre	en Interva	l in feet: 5.0	-24.0)								
06/22/9	94 7.14	7.14	0.00	0.00		ND		ND	ND	ND	ND			
09/22/9	94 7.14	7.34	0.00	-0.20	-0.20	130		1.3	0.8	ND	0.73			
12/24/9	94 7.14	6.67	0.00	0.47	0.67	6900		500	59	600	380			
03/25/9	95 7.14	6.29	0.00	0.85	0.38	47000		450	1300	1700	8200			
06/21/9	95 7.14	7.60	0.00	-0.46	-1.31	ND		ND	ND	ND	ND			
09/19/9	95 7.14	7.70	0.00	-0.56	-0.10	ND		ND	ND	ND	ND			
12/19/9	95 7.14	7.75	0.00	-0.61	-0.05	210		2.5	1.0	2.9	17			
03/18/9	96 7.14	6.86	0.00	0.28	0.89	ND		ND	ND	ND	ND			
								<b>D</b> 1						6

Page 16 of 19

**©TRC** 

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-6 ca	ontinued													
06/27/9	96 7.14	6.52	0.00	0.62	0.34	ND		ND	ND	ND	ND	510		
09/26/9	96 7.14	7.62	0.00	-0.48	-1.10	ND		ND	ND	ND	ND	1400		
12/09/9	96 7.14	5.88	0.00	1.26	1.74	1200		29	48	6.4	140	58		
03/14/9	97 7.14	7.30	0.00	-0.16	-1.42	ND		ND	ND	ND	ND	1500		
06/30/9	7.14	7.35	0.00	-0.21	-0.05	ND		ND	ND	ND	ND	990		
09/19/9	97 7.14	7.25	0.00	-0.11	0.10	ND		ND	ND	ND	ND	1400		
12/12/9	97 7.14	7.29	0.00	-0.15	-0.04	ND		ND	ND	ND	ND	680		
03/03/9	98 7.14	7.00	0.00	0.14	0.29	ND		ND	ND	ND	ND	1600		
06/15/9	98 7.14	7.18	0.00	-0.04	-0.18	ND		ND	ND	ND	ND	1000		
09/30/9	98 7.14	7.90	0.00	-0.76	-0.72	ND		ND	ND	ND	ND	1200		
12/28/9	98 7.14	7.79	0.00	-0.65	0.11	ND		ND	ND	ND	ND	730		
03/22/9	99 7.14	7.47	0.00	-0.33	0.32	ND		ND	ND	ND	ND	1800		
06/09/9	9 7.14	7.73	0.00	-0.59	-0.26	ND		ND	ND	ND	ND	1000	850	
09/08/9	9 7.14	7.95	0.00	-0.81	-0.22	ND		ND	ND	ND	ND	851	1040	
12/07/9	9 7.14	8.10	0.00	-0.96	-0.15	ND		ND	ND	ND	ND	1140	1150	
03/13/0	0 7.14	6.95	0.00	0.19	1.15	ND		ND	ND	ND	ND	560	670	
06/21/0	0 7.14	7.84	0.00	-0.70	-0.89	ND		ND	ND	ND	ND	400	590	
09/27/0	00 7.14	7.68	0.00	-0.54	0.16	ND		ND	ND	ND	ND	2500	2800	
12/12/0	0 7.14	7.74	0.00	-0.60	-0.06	ND		ND	ND	ND	ND	590	580	
03/07/0	)1 7.14	7.27	0.00	-0.13	0.47	ND		ND	ND	ND	ND	310	321	
06/06/0	)1 7.14	7.80	0.00	-0.66	-0.53	ND		ND	ND	ND	ND	250	330	
09/24/0	01 7.14	7.82	0.00	-0.68	-0.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	530	660	
12/10/0	01 7.14	7.15	0.00	-0.01	0.67	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	220	220	

5325

Page 17 of 19

## Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through March 2009 76 Station 5325

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
U-6 c	ontinued													
03/11/0	02 7.14	7.32	0.00	-0.18	-0.17	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	720	760	
06/04/0	)2 7.14	7.18	0.00	-0.04	0.14	250		ND<1.0	ND<1.0	ND<1.0	ND<1.0	470		
09/03/0	02 7.14	7.72	0.00	-0.58	-0.54	420		ND<2.5	ND<2.5	ND<2.5	4.7	860	1200	
12/03/0	02 7.14	6.92	0.00	0.22	0.80		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		870	
03/04/0	03 7.14	7.01	0.00	0.13	-0.09		2300	ND<10	ND<10	ND<10	ND<20		2700	
06/18/0	03 7.14	6.60	0.00	0.54	0.41		1300	ND<10	ND<10	ND<10	ND<20		1700	
09/24/0	03 7.14	7.24	0.00	-0.10	-0.64		ND<10000	ND<100	ND<100	ND<100	ND<200		1500	
12/02/0	03 7.14	7.80	0.00	-0.66	-0.56		1300	ND<10	ND<10	ND<10	ND<20		1800	
03/30/0	04 7.14	7.32	0.00	-0.18	0.48		1200	ND<10	ND<10	ND<10	ND<20		1700	
06/07/0	)4 7.14	9.35	0.00	-2.21	-2.03		1700	ND<10	ND<10	ND<10	ND<20		1800	
09/09/0	)4 7.14	12.81	0.00	-5.67	-3.46		ND<1000	ND<10	ND<10	ND<10	ND<20		1400	
12/20/0	)4 7.14	7.96	0.00	-0.82	4.85		320	ND<2.5	ND<2.5	ND<2.5	ND<5.0		65	
03/28/0	)5 7.14	7.07	0.00	0.07	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
06/14/0	5 7.14	7.88	0.00	-0.74	-0.81		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		20	
09/28/0	)5 7.14	10.44	0.00	-3.30	-2.56		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.6	
12/29/0	)5 7.14	7.63	0.00	-0.49	2.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	
03/27/0	6 7.14	6.16	0.00	0.98	1.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.1	
06/12/0	)6 7.14	6.59	0.00	0.55	-0.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.9	
09/21/0	6 7.14	6.90	0.00	0.24	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.1	
12/21/0	6 7.14	7.36	0.00	-0.22	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.2	
03/28/0	7.14	3.48	0.00	3.66	3.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/27/0	)7 7.14													Inaccessible - dumpster ove

Inaccessible - dumpster over well



Page 18 of 19

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)		Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (μg/l)	MTBE (8260B) (µg/l)	Comments
U-6 c	ontinued													
09/26/0	7.14	2.71	0.00	4.43			54	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	7.14	6.96	0.00	0.18	-4.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.4	
03/26/0	08 7.14	6.56	0.00	0.58	0.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.3	
06/18/0	8 7.14	6.71	0.00	0.43	-0.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.59	
09/24/0	7.14	5.50	0.00	1.64	1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/22/0	08 7.14	6.48	0.00	0.66	-0.98		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 7.14	6.10	0.00	1.04	0.38		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		ND<2.5	

Date			Ethylene-									
Sampled		Ethanol	dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
<u></u>	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-1							· · · · · ·				·····	
06/15/98									39000	ND		ND
09/30/98									17000	ND		ND
12/28/98									4300	6.30		28
03/22/99									4900	ND		3.5
06/09/99									1200	ND		ND
09/08/99									1800	ND		ND
12/07/99									5700	ND		17.0
03/13/00									8000	0.18		ND
06/21/00									9300	ND	~~	ND
09/27/00	ND		ND		ND	ND	ND		2800	ND		18.4
12/12/00									490	ND		16.0
03/07/01	ND		ND		ND	ND	ND		483	2.64		6.89
06/06/01	ND		ND		ND	ND	ND		1000	ND		2,7
09/24/01	ND<20000	ND<400000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<100	0.45		<i>2., )</i>
12/10/01	ND<4000	ND<8000	ND<100	ND<100	ND<100	ND<100	ND<100		14000	ND<0.50		2.2
03/11/02	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		15000	ND<0.50		0.11
06/04/02									ND<500	ND<0.50		ND<0.10
09/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		ND<500	ND<0.50		ND<0.10
12/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		9600	ND<1.0		ND<1.0
03/04/03	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		36000	ND<1.0		ND<1.0
06/18/03	ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100		16000	ND<1.0		ND<1.0
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		15	ND<1.0		ND<1.0
12/02/03		ND<100000							4000			
03/30/04	3100	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		12000	 ND<1.0	 ND<1.0	
06/07/04	3300	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		660	ND<1.0	6.8	
						1.2 100	112 100		000	1.2 -0.20	0.0	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 1 of 12

Date Sampled	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethytene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (μg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-1 conti	nued											
12/20/04	11	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		0.015	ND<1.0	ND<1.0	
03/28/05		ND<1000							16	ND<1.0	ND<1.0	
06/14/05	4400	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10		7100	ND<1.0	12	
09/28/05	5500	ND<250	ND<10	ND<10	ND<10	ND<10	ND<10		7300	ND<0.10	39	
12/29/05	3900	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		9500	ND<0.10	21	
03/27/06		ND<12000							8500	ND<0.10	ND<0.050	
06/12/06		ND<250							25000	ND<0.10	0.64	
09/21/06		ND<6200							16000	ND<0.10	1.5	
12/21/06		ND<250							22000	ND<0.10	1.0	
03/28/07	1600	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		20000	ND<0.10	ND<0.050	
06/27/07	1500	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		35000	ND<0.10	0.065	
09/26/07		ND<1200							27000	ND<0.10	0.11	
12/27/07		ND<1200							25000	ND<0.10	ND<0.050	
03/26/08		ND<1200							23000	ND<0.10	0.12	
06/18/08		ND<2500							30000	ND<0.10	0.059	
09/24/08		ND<1200							5000	ND<0.10	0.061	
12/22/08		ND<250		<b></b>					23000	ND<0.10	ND<0.050	
03/26/09		ND<1200	'						2400	ND<0.10	0.11	
U-2												
03/03/98									25000	ND		ND
06/15/98									42000	ND		ND
09/30/98	~~								25000	ND		ND
12/28/98									28000	ND		ND
03/22/99									680	ND		2.3
06/09/99									500	ND		ND

5325

Page 2 of 12

Date Sampled		Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-2 cont	inued											
09/08/99									1900	ND		ND
12/07/99									250	ND		ND
03/13/00									4300	0.31		ND
06/21/00									260	ND		ND
09/27/00									640	ND		10.5
12/12/00									2700	ND		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND		677	2.24		3.02
06/06/01	ND	ND	ND	ND	ND	ND	ND		800	ND		2.8
09/24/01	ND<20000	ND<400000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<100	0.49		
12/10/01	ND<2000	ND<4000	ND<50	ND<50	ND<50	ND<50	ND<50		ND<100	ND<0.50		0.20
03/11/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		ND<100	ND<0.50		0.65
06/04/02									ND<100	ND<0.50		ND<0.10
09/03/02	ND<50000	ND<250000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000		ND<250	ND<0.50		0.26
12/03/02	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		9900	ND<1.0		ND<1.0
03/04/03	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		8600	ND<1.0		ND<1.0
06/18/03	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		5500	ND<1.0		3.1
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		14	ND<1.0		ND<1.0
12/02/03		ND<100000							2700			
03/30/04	2400	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		ND<200	ND<1.0	2.9	
06/07/04	2600	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		210	ND<0.50	2.4	
09/09/04	2700	ND<10000	ND<100	ND<100	ND<200	ND<100	ND<100		930	ND<1.0	5.9	
12/20/04	3500	ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50		0.87	ND<1.0	ND<1.0	
03/28/05	830	ND<5000	ND<50	ND<50	ND<50	ND<50	ND<0.50		4.0	ND<1.0	ND<1.0	
06/14/05	10000	ND<2000	ND<20	ND<20	ND<20	ND<20	ND<20		3400	ND<1.0	ND<1.0	
09/28/05	13000	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4000	ND<0.20	7.5	

5325



Date Sampled	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-2 cont											(	
12/29/05	1000000000	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2200	ND<0.20	4.6	
03/27/06		ND<250							1100	ND<0.10	ND<0.050	
06/12/06		ND<6200							1500	ND<0.10	ND<0.050	
09/21/06		ND<250							100	33	0.36	
12/21/06		ND<250	·						770	ND<0.20	0.21	
03/28/07	4000	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		8600	ND<0.10	ND<0.050	
06/27/07	3000	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		9000	ND<0.10	ND<0.050	
09/26/07		ND<2500							22000	ND<0.10	0.10	
12/27/07		ND<2500							7600	ND<0.10	ND<0.050	
03/26/08		ND<1200							11000	ND<0.10	ND<0.050	
06/18/08		ND<2500							16000	ND<0.10	ND<0.050	
09/24/08		ND<250							4600	ND<0.20	ND<0.050	
12/22/08		ND<250							13000	ND<0.10	ND<0.050	
03/26/09		ND<1200							2600	ND<0.10	ND<0.050	
U-3												
06/30/97									1400	21		0.86
09/19/97									570	19		ND
12/12/97									1900	23		0.85
03/03/98									13	36		ND
06/15/98									160	33		ND
09/30/98									40	31		ND
12/28/98									ND	29		ND
03/22/99									15	30		0.14
06/09/99									ND	26		1.2
09/08/99									ND	32.90		ND

Table 2   a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 4 of 12

Date Sampled	TBA (µg/l)	Ethanot (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	i,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-3 cont		(10)	(1-8-7	(1-0)	(1-8-1)	(198-1)	(1,84)	(#6/1)	(#6/1)	(119/1)	(mg/l)	(ing/1)
12/07/99									52	27.90		ND
03/13/00									150	33		ND
06/21/00									200	32		ND
09/27/00								307	ND	34		15.7
12/12/00									ND	31		ND
03/07/01									ND	36.5		0.443
06/06/01							<u></u>		ND	8.0		0.18
09/24/01									ND<100	23.0		ND
12/10/01									ND<100	21		0.11
03/11/02									ND<100	30		0.14
06/04/02									ND<100	18		ND<0.10
09/03/02									ND<100	28		ND<0.10
12/03/02						<b></b>	20 TB		ND<200	20		ND<1.0
03/04/03									ND<200	18		ND<1.0
06/18/03									ND<200	17		ND<1.0
09/24/03		ND<500							ND<0.20	18		1.4
12/02/03		ND<500							ND<200			
03/30/04		ND<50							ND<200	16	ND<1.0	
06/07/04		ND<50				-			ND<200	17	ND<0.20	
09/09/04		ND<50							ND<10	16	1.2	
12/20/04		ND<50							ND<0.010	17	ND<1.0	
03/28/05		ND<50							ND<0.050	17	ND<1.0	
06/14/05	-	ND<50							ND<50	18	ND<1.0	
09/28/05		ND<250							ND<100	4.3	0.66	
12/29/05		ND<250							ND<100	4.3	0.65	



Date Sampled		Ethanol	Ethylene- dibromide	i,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA (µg/l)	(8260B) (µg/l)	(EDB) (µg/l)	(EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	thylene (μg/l)	Ferrous (µg/l)	Nitrate (mg/l)	(ortho) (mg/l)	(total) (mg/l)
		(μg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(#6/1)	(#6/1)	(µµ,1)	(116/1)	(	(1115/1)
<b>U-3 conti</b> 03/27/06	inued	ND<250							ND<100	4.5	0.66	
06/12/06		ND<250							ND<100	4.4	0.64	
09/21/06		ND<250							170	4.4	0.69	
12/21/06		ND<250							ND<100	4.5	0.68	
03/28/07		ND<250						-	ND<100	4.7	0.67	
06/27/07		ND<250							ND<100	4.5	0.64	
09/26/07		ND<250							9900	ND<0.10	ND<0.050	
12/27/07		ND<250							130	4.6	0.75	
03/26/08		ND<250							190	5.1	0.64	
06/18/08		ND<250							ND<100	4.9	0.64	
09/24/08		ND<250							150	4.7	0.73	
12/22/08		ND<250							ND<100	4.8	0.73	
03/26/09		ND<250							ND<100	4.8	0.66	
U-4												
06/30/97									130	35		0.52
09/19/97									350	30		ND
12/12/97									680	31		0.73
03/03/98									18	3.2		ND
06/15/98									140	33		ND
09/30/98									49	31		ND
12/28/98			<b></b> .						360	31		ND
03/22/99									ND	30		0.14
06/09/99									ND	35		0.91
09/08/99									ND	24		ND
12/07/99									ND	27.7		ND

5325

Page 6 of 12

Date Sampled	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ЕТВЕ (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
		(µg/1)	(µg/1)	(µg/1)	(µg/1)	(μg/1)	(µg/i)	(µg/1)	(µg/1)	(1118/1)	(ing/i)	(IIIg/1)
<b>U-4 cont</b> 03/13/00	inued								ND	33		ND
06/21/00									34	32		ND
09/27/00			·						ND	28		ND
12/12/00									ND	30		ND
03/07/01									ND	33.9		0.226
06/06/01									ND	7.4		0.21
09/24/01									ND<100	24		<b>70 F</b>
12/10/01									ND<100	19		0.10
03/11/02									ND<100	31		0.14
06/04/02									ND<100	27		ND<0.10
09/03/02									ND<100	28		0.27
12/03/02									ND<200	20		ND<1.0
03/04/03									ND<200	26		ND<1.0
06/18/03									ND<200	31		ND<1.0
09/24/03	·	ND<500							ND<0.20	17		1.5
12/02/03		ND<500							ND<200			
03/30/04		ND<50							ND<200	25	ND<1.0	
06/07/04		ND<50							ND<200	24	ND<0.20	
09/09/04		ND<50							ND<10	22	ND<1.0	
12/20/04		ND<50							ND<0.010	20	ND<1.0	
03/28/05		ND<50							0.060	31	ND<1.0	
06/14/05		ND<50							ND<50	32	ND<1.0	
09/28/05		ND<250							190	6.8	0.45	
12/29/05		ND<250							ND<100	5.3	0.37	
03/27/06		ND<250							ND<100	6.4	0.41	

5325

Page 7 of 12

Date Sampled	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-4 cont	inued											
06/12/06		ND<250							2200	6.8	0.39	
09/21/06		ND<250							360	5.7	0.43	
12/21/06		ND<250							ND<100	5.6	0.41	
03/28/07		ND<250							ND<100	5.5	0.49	
06/27/07		ND<250							ND<100	5.3	0.34	
09/26/07		ND<250							ND<100	5.4	0.40	
12/27/07		ND<250							ND<100	5.3	0.43	
03/26/08		ND<250							160	5.6	0.38	
06/18/08		ND<250				-			ND<100	5.6	0.39	
09/24/08		ND<250							250	5.1	0.34	
12/22/08		ND<250			-				140	4.8	0.39	
03/26/09		ND<250							ND<100	4.4	0.37	
U-5												
06/30/97									16000	ND		ND
09/19/97									220	ND		ND
12/12/97									6700	ND		ND
03/03/98									18000	3.1		ND
06/15/98						·			17000	ND		ND
09/30/98									17000	ND		ND
12/28/98									17000	6.6		ND
03/22/99									120	ND		2.4
06/09/99									230	ND		ND
09/08/99									2100	ND		ND
12/07/99									310	ND		ND
03/13/00	77 52								330	0.16		ND

Table 2
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 8 of 12

**©TRC** 

Date Sampled		Ethanol	Ethytene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)
U-5 cont	inued											
06/21/00									150	ND		ND
09/27/00									330	ND		ND
12/12/00				<b></b> .					86	ND		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND		1070	3.02		4.00
06/06/01									ND	ND		1.2
09/24/01	ND<200	ND<4000	ND<10	ND<10	ND<10	ND<10	ND<10		ND<100	0.77		
12/10/01									3700	ND<0.50		2.6
03/11/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		100	ND<0.50		0.52
06/04/02									ND<250	ND<0.50		ND<0.10
09/03/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<250	ND<0.50		ND<0.10
12/03/02	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		22000	ND<1.0		ND<1.0
03/04/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		19000	ND<1.0		ND<1.0
06/18/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		11000	ND<1.0		ND<1.0
09/24/03		ND<500							ND<0.20	18		1.8
12/02/03		ND<500							9400			
03/30/04	52	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		5900	ND<1.0	ND<1.0	
06/07/04	69	ND<50	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5		3800	ND<0.50	ND<0.20	
09/09/04	130	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		4100	ND<1.0	ND<1.0	
12/20/04		ND<50							5.0	ND<1.0	ND<1.0	
03/28/05	150	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		6.5	ND<1.0	ND<1.0	
06/14/05	160	ND<100	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7400	3.6	ND<1.0	
09/28/05	220	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7300	ND<0.50	0.10	
12/29/05	280	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7300	ND<0,50	ND<0.050	
03/27/06		ND<250							6300	ND<0.50	ND<0.050	
06/12/06		ND<250							8700	ND<0.20	ND<0.050	

5325

المحاف بتمصيصا والم



Date Sampled	TBA (µg/l)	Ethanoi (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Iron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-5 cont	inued											
09/21/06		ND<250							6800	ND<0.50	ND<0.050	
12/21/06		ND<250					<b></b> .		15000	ND<0.50	ND<0.050	
03/28/07	870	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	-00 FB	10000	ND<0.20	ND<0.050	
06/27/07	220	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		10000	ND<0.10	ND<0.050	<u> </u>
09/26/07		ND<250							9200	ND<0.10	ND<0.050	
12/27/07		ND<250							5900	ND<0.10	ND<0.050	
03/26/08		ND<250							10000	ND<0.20	ND<0.050	
06/18/08		ND<250							6700	0.12	ND<0.050	
09/24/08		ND<250							7900	ND<0.10	ND<0.050	
12/22/08		ND<250							9200	ND<0.10	ND<0.050	
03/26/09		ND<250							990	ND<0.10	ND<0.050	
U-6												
06/30/97									88000	0.80		ND
09/19/97									2900	1.80		ND
12/12/97									51000	ND		ND
03/03/98									60000	3.5		ND
06/15/98									590000	4.8		ND
09/30/98									33000	ND		ND
12/28/98									83000	7.2		ND
03/22/99									2100	ND		0.98
06/09/99									470	0.20		ND
09/08/99									140	5.59		ND
12/07/99							~~		260	ND		ND
03/13/00									790	0.26		ND
06/21/00									1900	ND		ND

Table 2   a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

5325

Page 10 of 12

Date Sampled		Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Iron		Phosphate	Phosphate
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	Ferrous	Nitrate	(ortho)	(total)
	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(total) (mg/l)
U-6 conti	inued											
09/27/00	**								2600	ND		ND
12/12/00									ND	2.7		ND
03/07/01	ND	ND	ND	ND	ND	ND	ND					
06/06/01	ND	ND	ND	ND	ND	ND	ND		470	0.15		0.70
09/24/01	ND<2000	ND<40000	ND<100	ND<100	ND<100	ND<100	ND<100		ND<100	0.58		
12/10/01	ND<200	ND<400	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		990	0.50		2.0
03/11/02	ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0		1200	ND<0.50		0.089
06/04/02									ND<100	ND<0.50		ND<1.0
09/03/02	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		ND<100	0.58		i.i
12/03/02	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20		1200	ND<1.0		2.6
03/04/03	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		20000	ND<1.0		ND<1.0
06/18/03	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40		3200	ND<1.0		2.0
09/24/03	ND<20000	ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400		1.4	ND<1.0		4.6
12/02/03		ND<10000							1400			
03/30/04	770	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		2600	ND<1.0	ND<1.0	
06/07/04	110	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		2100	0.8	ND<0.20	
09/09/04	1900	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10		870	ND<1.0	3.8	
12/20/04	5000	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5		2.5	ND<1.0	ND<1.0	
03/28/05	990		ND<2.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.4	ND<1.0	ND<1.0	
06/14/05	ND<5.0	ND<100	ND<0.5	ND<0.5	ND<0.50	ND<0.50	ND<0.50		4100	3.8	ND<1.0	
09/28/05	3800	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		21000	ND<0.20	3.4	
12/29/05	1100	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		8300	0.48	ND<0.050	
03/27/06		ND<250			·				8800	0.37	0.19	
06/12/06		ND<250							8500	0.23	ND<0.050	
09/21/06		ND<250							2900	0.19	0.31	

5325

Date Sampled	TBA (µg/l)	Ethanoi (8260В) (µg/l)	Ethytene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	lron Ferrous (µg/l)	Nitrate (mg/l)	Phosphate (ortho) (mg/l)	Phosphate (total) (mg/l)
U-6 conti		(703)	(1.9.3)	(r.g. )	(1-8)	(1-8-7	(8.9.7)	(P0-7)	(1877)	(	(	(1118,1)
12/21/06		ND<250							11000	0.36	0.41	
03/28/07		ND<250							ND<100	0.55	0.31	
09/26/07		ND<250					·		ND<100	0.41	0.34	
12/27/07		ND<250							7700	ND<0.10	1.0	
03/26/08		ND<250							19000	ND<0.10	1.2	
06/18/08		ND<250							2100000	ND<0.10	0.076	
09/24/08		ND<250							220000	ND<0.10	0.28	
12/22/08		ND<250							290000	ND<0.10	0.39	
03/26/09		ND<1200							540000	ND<0.10	0.28	



					70 8	tation 5325	
Date Sampled	Redox Potential (ORP-Lab) (mV)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)		
U-1							
06/15/98	382						
09/30/98	366						
12/28/98	298						
03/22/99	320						
06/09/99	260						
09/08/99	85						
12/07/99	404		1.36				
03/13/00	262						
06/21/00	148		1.53				
09/27/00	119		1.63				
12/12/00	131		1.48				
03/07/01	125		1.91				
06/06/01	141		i.77				
09/24/01	125		1.64				
12/10/01	141		1.82				
03/11/02	132		2.21				
06/04/02	117		1.88				
09/03/02	94		1.62				
12/03/02	72		1,71				
03/04/03	-125		0.30				
06/18/03	-48	i.7					
09/24/03	-36		0.40				
12/02/03		6.46	2.05	-72	-73		
03/30/04		1.08	3.05	-40	-54		
06/07/04		1.62	2.30	-32	-48		

5325

Page 1 of 12

**©TRC** 

Sampled	Redox Potentiai (ORP-Lab) (mV)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)
U-1 cont	tinued				
12/20/04		1.35	5.55		32
03/28/05		4.32	3.26	124	138
06/14/05		3.95	4.52	-145	-177
09/28/05		7.13	2.59	-065	-160
12/29/05		3.74	2.81	-310	-508
03/27/06			1.95	-667	
06/12/06			1.20	-229	
09/21/06			1.28	-110	
12/21/06				-102	
03/28/07	-		6.75	-93	
06/27/07	-		3.87	-106	
09/26/07			2.39	-60	
12/27/07			2.36	-60	
03/26/08			3.41	-63	
06/18/08			2.67	-20	
09/24/08	-		0.80	-38	
12/22/08			2.47	-99	
11.2					
U-2 03/03/98	369				
06/15/98	341				
09/30/98	354				
12/28/98	276				
03/22/99	320				
06/09/99	290				
09/08/99	235				

5325

Page 2 of 12



Date Sampled	Redox Potential	Post-purge Dissolved	Pre-purge Dissolved	Pre-purge	Post-purge
,	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-2 con	tinued				
12/07/99	389		2.28		
03/13/00	184				
06/21/00	136		1.96		
09/27/00	142		2.12		
12/12/00	155		2.35		
03/07/01	148		2.21		
06/06/01	163		2.67		
09/24/01	151		2.10		
12/10/01	171		2.81		
03/11/02	156		2.77		
06/04/02	144		3.14		
09/03/02	151		2.85		
12/03/02	94		1.97		
03/04/03	-147		0.40		
06/18/03	-8	3.2			
09/24/03	-10		0.20		
12/02/03		1.81	1.70	-29	-67
03/30/04			2.40	-6	
06/07/04		3.29	3.10	-8	7
09/09/04		3.10	3.12	-74	-79
12/20/04		6.54	.41	-84	-72
03/28/05		4.30	3.76	118	140
06/14/05		3.99	3.28	-155	-206
09/28/05		6.62	2.87	-100	-179
12/29/05		5.71	1.76	-578	-484

Page 3 of 12



Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP	
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)	_
U-2 con	tinued					
03/27/06			0.95	-1334		
06/12/06			19.82	-130		
09/21/06			3.15	-18		
12/21/06				-92		
03/28/07			8.80	-97		
06/27/07			4.72	-105		
09/26/07			1.84	-25		
12/27/07			2.81	-64		
03/26/08			3.41	-65		
06/18/08			2.46	-49		
09/24/08			0.47	-56		
12/22/08			1.38	-97		
03/26/09			i.56	-73		
11.2						
<b>U-3</b> 06/30/97	190		4.10			
09/19/97	75		4.20			
12/12/97	390		2.97			
03/03/98	358		2.63			
06/15/98	318		2.93			
09/30/98	295		3.11			
12/28/98	281		3.59			
03/22/99	310		4.02			
06/09/99	350		3.70			
09/08/99	417		3.76			
12/07/99	437		3.90 4.21			
5325			1.21			

5325

Page 4 of 12



Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date	Redox	Post-purge	Pre-purge		
Sampled	Potential	Dissolved	Dissolved	Pre-purge	Post-purge
	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-3 con	tinued				
03/13/00	307				
06/21/00	225		4.27		
09/27/00	211		4.67		~=
12/12/00	246		4.79		
03/07/01	251		5.16		
06/06/01	214		4.79		
09/24/01	198		4.27		
12/10/01	188		4.66		
03/11/02	166		5.06		
06/04/02	151		5.79		
09/03/02	143		6.04		
12/03/02	154		5.58		
03/04/03	-136		0.20		
06/18/03	333	3.5			
09/24/03	-50		0.60		
12/02/03	-50	4.28	4.30	 97	105
03/30/04		4.28 7.75	2.80	-38	103
06/07/04		4.19	2.80 4.70	-38	
09/09/04		4.19	4.70		42
12/20/04				14	21
03/28/05		6.70	3.28	45	32
		4.21	3.32	145	137
06/14/05		2.97	2.82	90	86
09/28/05		6.99	4.96	-068	-060
12/29/05		4.57	3.35	-802	-1132
03/27/06			2.67	-1588	

5325

Page 5 of 12



.

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-3 com			2.07		
06/12/06			3.97	77	
09/21/06			2.64	-33	
12/21/06				85	
03/28/07			8.10	-10	
06/27/07			8.72	111	
09/26/07			3.49	72	
12/27/07			i.78	-72	
03/26/08			1.32	97	
06/18/08			1.73	113	
09/24/08			1.95	90	
12/22/08			1.81	42	
03/26/09			i.98	59	
U-4 06/30/97	200		5 40		
09/19/97			5.40		
	45		5.10		
12/12/97	380		3.11		
03/03/98	284		2.94		
06/15/98	256		3.08		
09/30/98	276		4.05		
12/28/98	280		4.57		
03/22/99	320		4.26		
06/09/99	340		3.61		
09/08/99	391		3.75		
12/07/99	478		4.03		
03/13/00	244				

Page 6 of 12



Redox	Post-purge	Pre-purge		
Potential	Dissolved	Dissolved	Pre-purge	Post-purge
(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
(mV)	(mg/l)	(mg/l)	(mV)	(mV)
tinued				
248		4.89		
198	<del></del>	5.09		
210		4.86		
233		4.97		
248		5.12		
262	·	4.86		
242		5.05		
195		4.83		
169		5.58		
126		5.94		
133		5.82		
-148		0.30		
250	3.6			
-24		0.20		
	3.45	3.57	107	102
	3.84	4.29	19	42
	4.02	4.56	27	15
	4.09	4.20	-26	-8
	6.19	5.11	84	77
	4.66	4.54	163	130
	3.09	3.02	78	88
	6.59	5.02	099	082
	5.09	5.03	-628	-632
		5,51	-1000	
		4.33	102	
	Potential (ORP-Lab) (mV) tinued 248 198 210 233 248 262 242 195 169 126 133 -148 250 -24          	Potential (ORP-Lab)         Dissolved Oxygen (mV)           tinued	Potential (ORP-Lab) (mV)Dissolved Oxygen (mg/l)Dissolved Oxygen (mg/l)tinued $-$ 4.892484.891985.092104.862334.972485.122624.862425.051954.831695.941335.82-1480.302503.6240.203.453.573.844.294.024.564.094.206.195.114.664.543.093.025.095.035.095.03	Potential (ORP-Lab)Dissolved OxygenDissolved Oxygen OxygenPre-purge ORP (mV)tinued $(mg/l)$ $(mg/l)$ $(mV)$ 2484.891984.862334.972485.122485.122485.052485.052485.052624.862425.051954.831695.581265.941335.821480.302503.6240.203.453.571073.844.29194.094.20-266.195.11844.664.541633.093.02786.595.020995.095.03-6285.51-1000

5325

Page 7 of 12



Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5325

Date Sampled	Redox Potential (ORP-Lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-4 con					
09/21/06			3.51	152	
12/21/06				90	
03/28/07			12.16	144	
06/27/07			10.42	115	
09/26/07			4.27	98	
12/27/07			3.74	33	
03/26/08			2.87	97	
06/18/08			3.43	101	
09/24/08			3.15	71	
12/22/08			3.45	0	
03/26/09			2.96	17	
U-5					
06/30/97	160		3.40		
09/19/97	63		0.60		
12/12/97	400		1.75		
03/03/98	345		2.36		
06/15/98	333		2.55		
09/30/98	318		1.93		
12/28/98	305		1.64		
03/22/99	340		1.99		
06/09/99	320		2.10		
09/08/99	335		2.10		
12/07/99	408		2.21		
03/13/00	408 264				
06/21/00	204 159		 3.42		
500r	1.57		3.42		

Page 8 of 12



Date	Redox	Post-purge	Pre-purge		
Sampled	Potential	Dissolved	Dissolved	Pre-purge	Post-purge
	(ORP-Lab)	Oxygen	Oxygen	ORP	ORP
	(mV)	(mg/l)	(mg/l)	(mV)	(mV)
U-5 con	tinued				
09/27/00	136		3.85		
12/12/00	122		3.53		
03/07/01	141		2.98	·	
06/06/01	112		2.67		
09/24/01	146		3.15		
12/10/01	96		2.85		
03/11/02	108		3.15		
06/04/02	118		3.46		
09/03/02	87		2.85		
12/03/02	104		2.71		
03/04/03	-166		0.20		
06/18/03	-10	2.4			
09/24/03	-28		0.30		
12/02/03		2.22	2.15	-39	-39
03/30/04		i.89	1.88	-19	-37
06/07/04		1.88	1.92	-15	-31
09/09/04		2.38	2.58	-41	-67
12/20/04		.71	2.01	-65	-72
03/28/05	-	2.02	1.06	132	133
06/14/05		2.38	2.02	-163	-168
09/28/05		6.94	4.58	-126	-103
12/29/05		2.17	4.58 1.99	-126	-125 -411
03/27/06			2.69	-585	
06/12/06				+	
09/21/06			2.32	-236	
02/21/00			1.37	-125	

5325

Page 9 of 12



Date Sampled	Redox Potentiai	Post-purge Dissolved	Pre-purge Dissolved	Pre-purge	Post-purge
	(ORP-Lab) (mV)	Oxygen (mg/l)	Oxygen (mg/l)	ORP (mV)	ORP (mV)
U-5 cont		\ U /	( 0 /	( )	(
12/21/06				-109	
03/28/07			9.09	-97	
06/27/07			3.52	-101	
09/26/07			2.66	-80	
12/27/07			1.63	-83	
03/26/08			2.32	-9	
06/18/08			3.29	-14	
09/24/08			2.97	-8	
12/22/08			0.69	-78	
03/26/09			0.39	-88	
U-6					
06/30/97	190		0.30		
09/19/97	ND		0.60		-
12/12/97	380		2.70		
03/03/98	327		2.18		
06/15/98	315		2.48		
09/30/98	345		3.06		
12/28/98	297		3.42		
03/22/99	330		3.88		
06/09/99	320		3.29		
09/08/99	305		3.12		
12/07/99	443		3.44		
03/13/00	222				
06/21/00	159		3.27		
09/27/00	170		3.49		

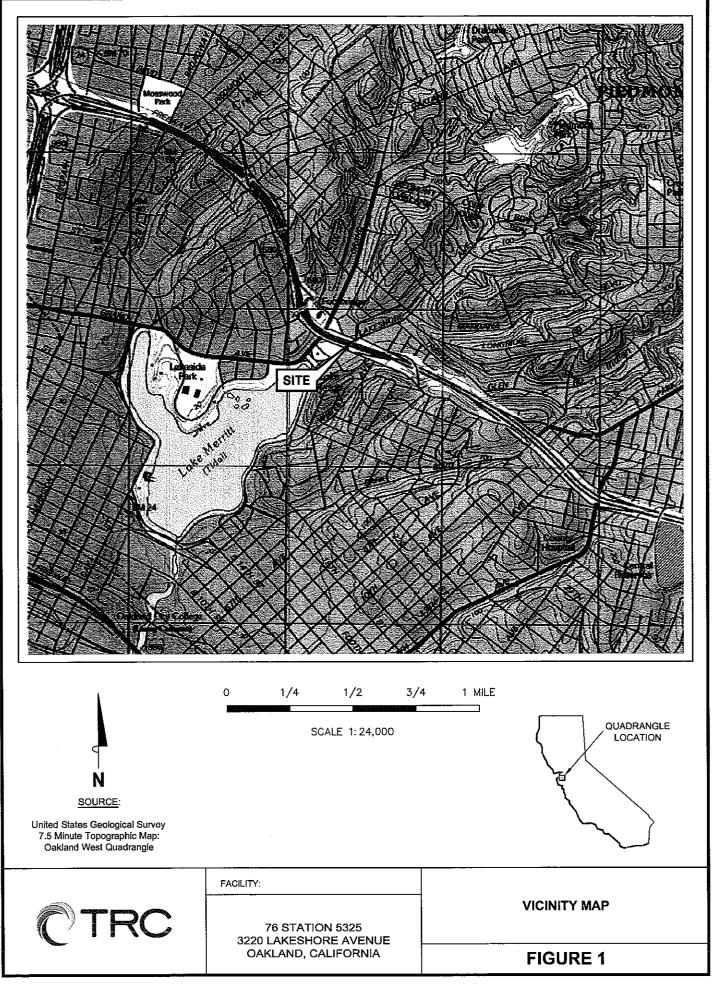
5325

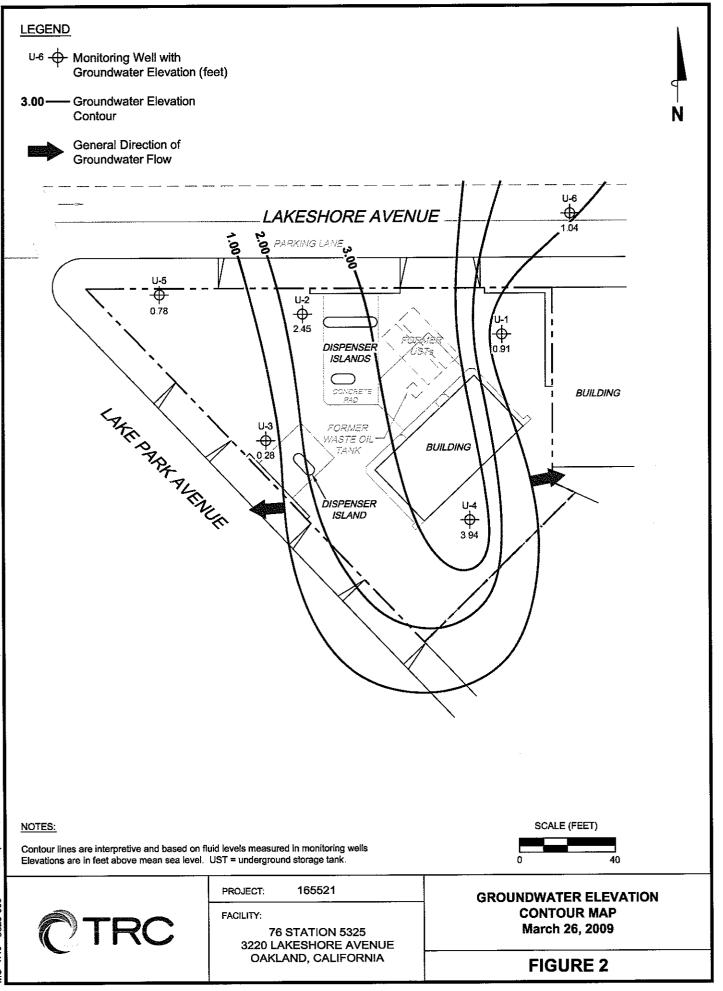
Page 10 of 12



Date Sampled	Redox	Post-purge	Pre-purge	~	_
Jampied	Potential (ORP-Lab)	Dissolved Oxygen	Dissolved	Pre-purge ORP	Post-purge ORP
	(OKF-Lab) (mV)	(mg/l)	Oxygen (mg/l)	(mV)	(mV)
		(ing/i)	(mg/1)	(1117)	(11 v)
<b>U-6 con</b> 12/12/00	tinued 128		2.06		
06/06/01	97		3.06		
09/24/01			2.46		
	123		3.10		
12/10/01	112		2.57		
03/11/02	128		3.03		
06/04/02	97		2.84		
09/03/02	110		3.12		
12/03/02	95		2.96		
03/04/03	-112		0.30		
06/18/03	-15	3.2	·		
09/24/03	-12		0.30		
12/02/03		3.10	2.53	-99	-74
03/30/04	-	3.61	1.88	-28	-33
06/07/04	-	2.43	2.90	-32	-62
09/09/04		2.84	2.96	-89	
03/28/05		3.18	2.57	84	96
06/14/05		4.02	4.20	-158	-175
09/28/05		7.93	6.82	-028	-141
12/29/05		1.49	3.56	-480	-548
03/27/06			1.33	-953	-540
06/12/06			1.33	-234	
09/21/06			2.07	-234	
12/21/06					
03/28/07			 7 27	-132	
03/28/07			7.37	-36	
09/20/07			3.92	64	

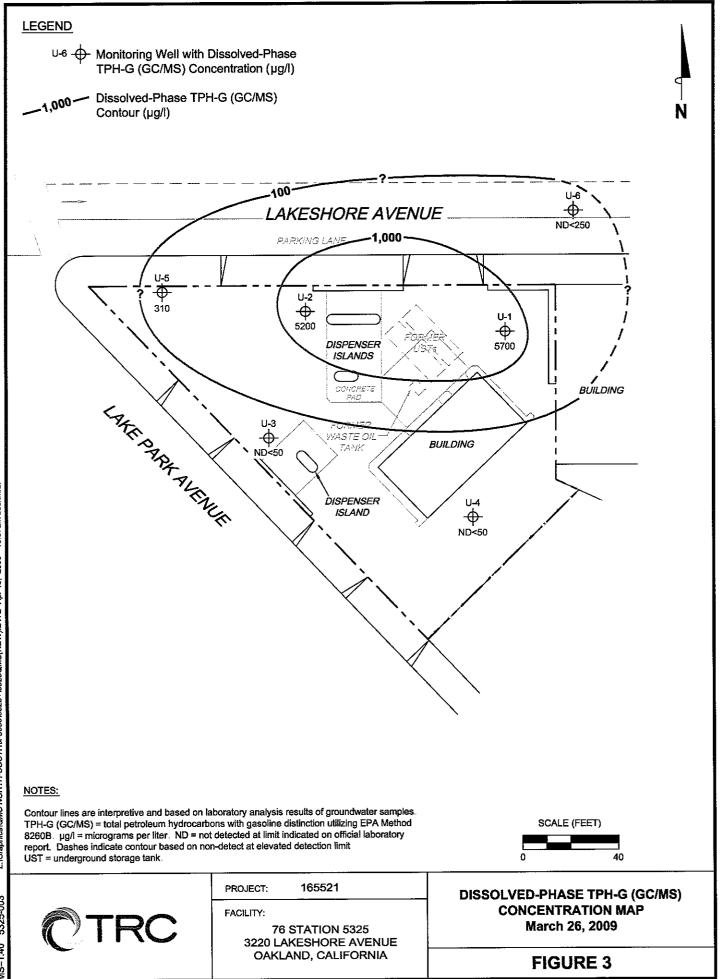
5325


Page 11 of 12



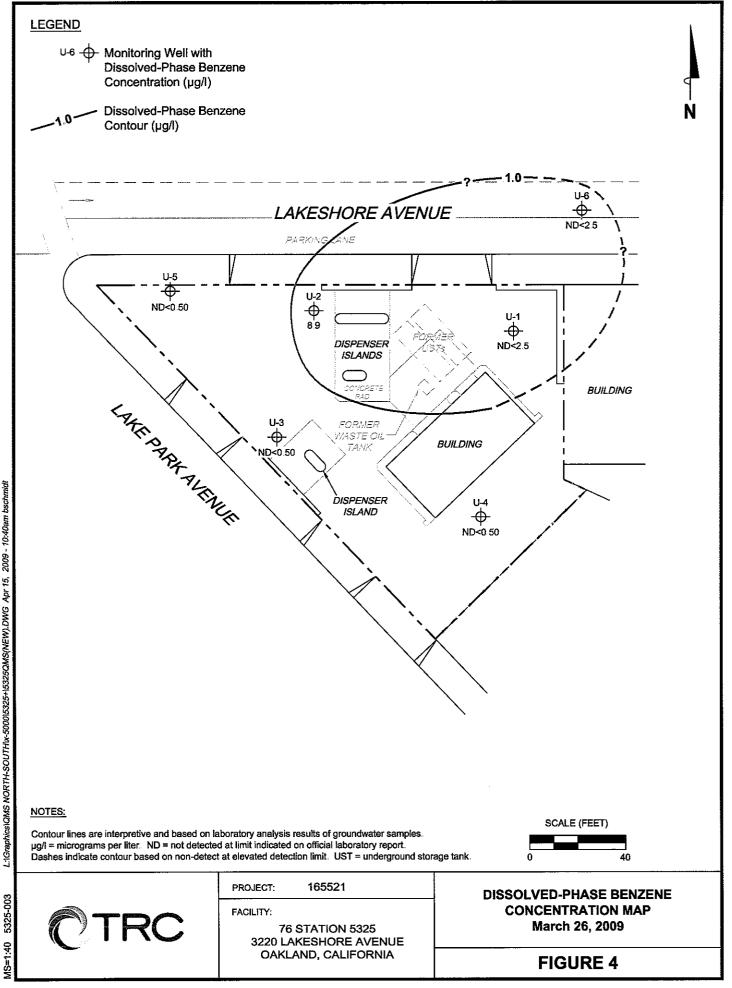

Potential (ORP-Lab) (mV)	Dissolved Oxygen	Dissolved Oxygen	Pre-purge ORP	Post-purge
		Oxygen	OPP	
(mV)	<i>c</i>		UNI	ORP
< · /	(mg/l)	(mg/l)	(mV)	(mV)
tinued				
		2.55	-5	
		2.74	115	<b></b> '
		1.11	167	
		3.85	59	
		1.57	60	
		1.67	39	
	   	•• •• •• ••	2.55 2.74 1.11 3.85 1.57	2.55     -5         2.74     115         1.11     167         3.85     59         1.57     60

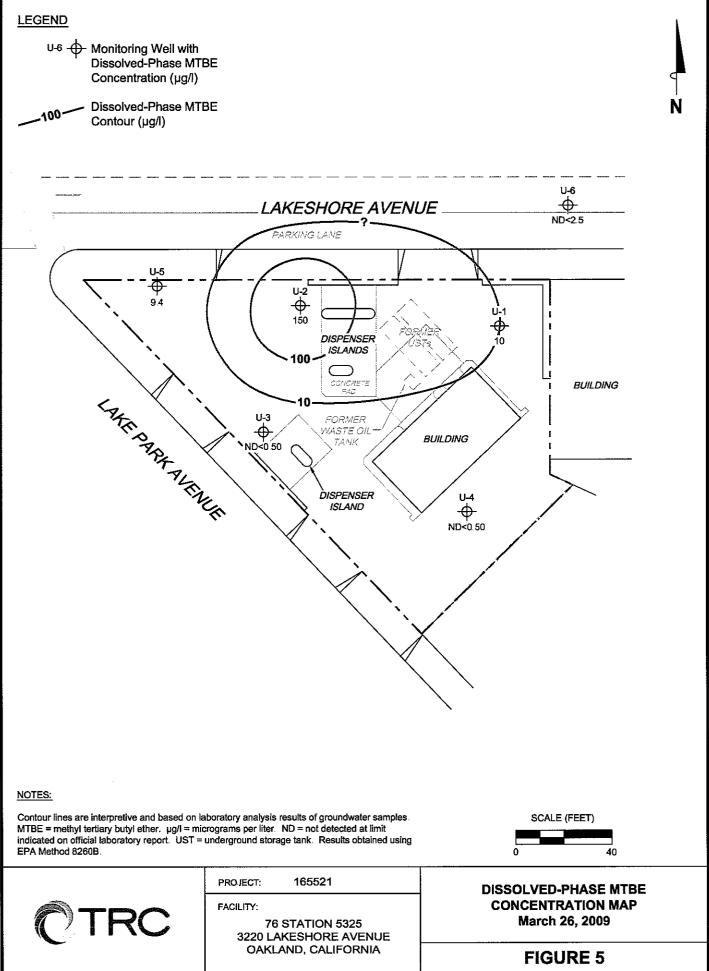



### FIGURES





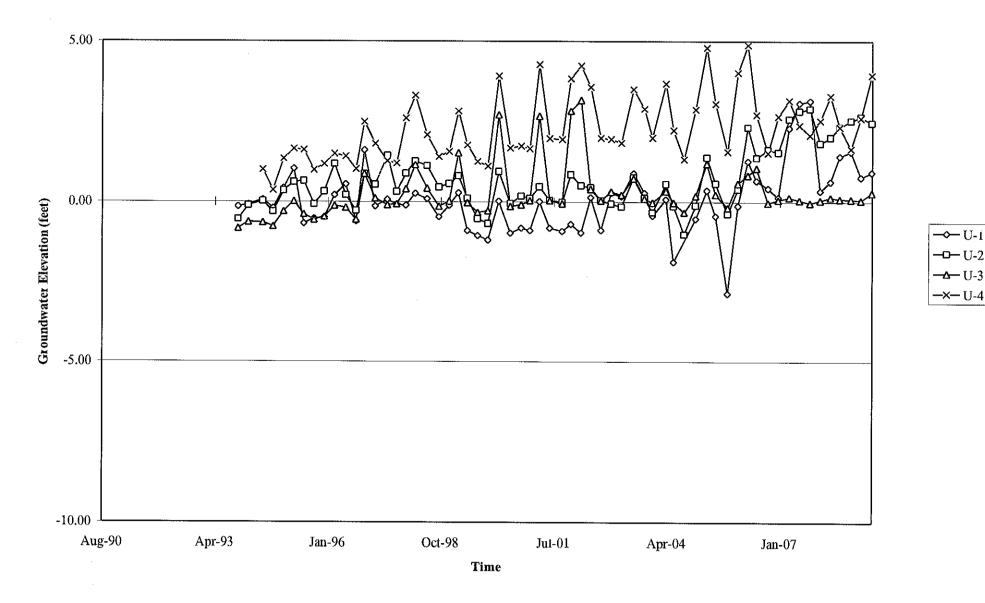

L:IGraphicsIQMS NORTH-SOUTHIx-500015325+15325QMS(NEW),DWG Apr 15, 2009 - 10:17am bschmidt


MS=1:40 5325-003



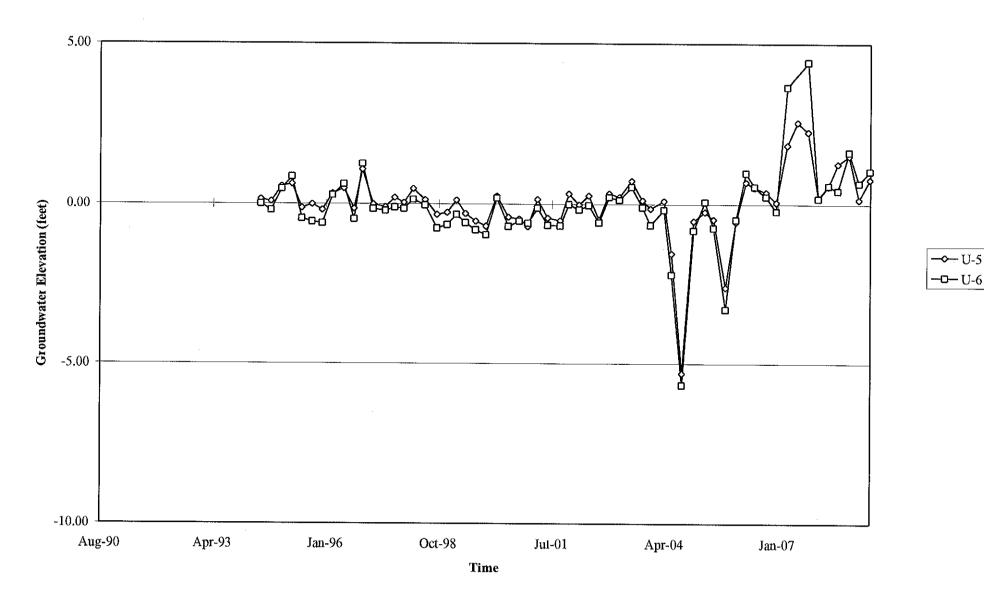
L:IGraphicsIQMS NORTH-SOUTHIX-500015325+15325QMS(NEW).DWG Apr 15, 2009 - 10:37am bschmidt

5325-003 MS=1:40



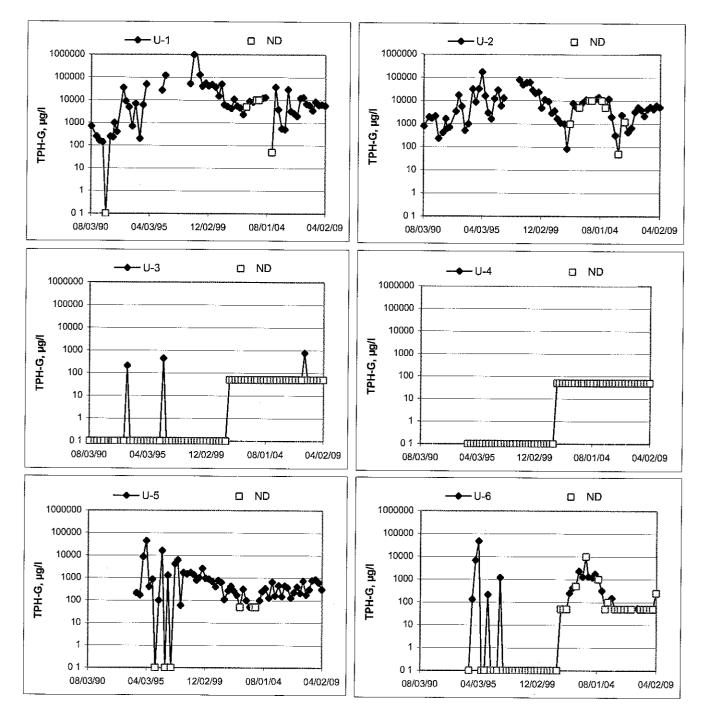



MS=1:40 5325-003

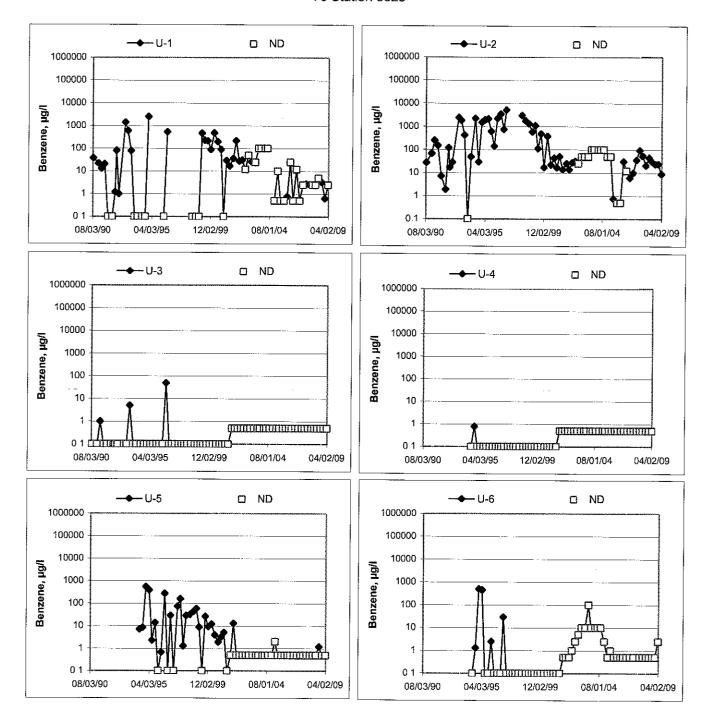

### GRAPHS

#### Groundwater Elevations vs. Time 76 Station 5325



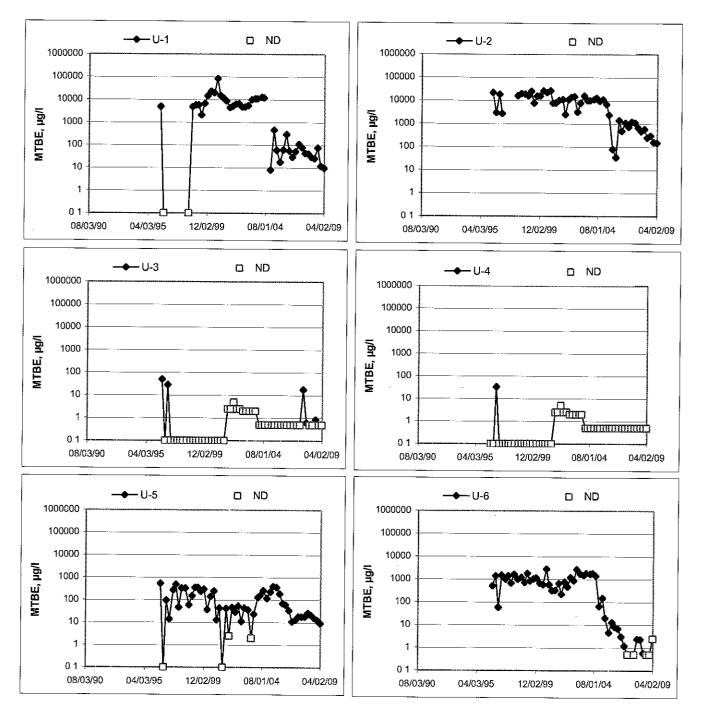

Elevations may have been corrected for apparent changes due to resurvey

#### Groundwater Elevations vs. Time 76 Station 5325




Elevations may have been corrected for apparent changes due to resurvey

#### TPH-G Concentrations vs Time 76 Station 5325




#### Benzene Concentrations vs Time 76 Station 5325



#### MTBE Concentrations vs Time

76 Station 5325



#### GENERAL FIELD PROCEDURES

#### Groundwater Monitoring and Sampling Assignments

For each site, IRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

#### Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

#### Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. IRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rat e. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

#### **Groundwater Sample Collection**

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, s ampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ¹/₂-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells

#### Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the ISR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

#### Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

#### Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

#### FIELD MONITORING DATA SHEET

Technician: RICH H Job #/Task #: 165521/FH20 Date: 03/26/09 Site # 5325 Project Manager A. Collins Page _ of _ _

				Depth	Depth	Product		
Well #	тос	Time Gauged	Total Dopth	to Water	to Product	Thickness (feet)	Time	
				6. O	Froduct	(Teet)	Sampled	Misc. Well Notes
V-6	X	0541	23.21			r	6647	2
0.7	χ	0546	19.27	7.21	~	ĺ	0907	Ч ^ч
N.2	X	0553	1938	10.70	4	(	0845	3''
U-S	$\times$	0559	२००९	6.20			0915	с( ["]
0.1	$\times$	0603	13.46	7.55	a second designed to be a second d		0938	3,
V.2	Х	0608					LOIS	3 ¹ .
							· · · · · · · · · · · · · · · · · · ·	
·								
							<u> </u>	
					. <u>.</u>			
				M <del>R</del>				
		1						
FIELD DATA	COMPLI	ETE	QA/QC		200	W	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR	ŕ	TRAFFIC (	CONTROL		·
							• • • •	

#### **GROUNDWATER SAMPLING FIELD NOTES**

Techniciar	1: Rickey H
	163521 Date:03/26/09
Well No	Purge Method: Sub
Depth to Water (feet): 6.20	Depth to Product (feet):
Total Depth (feet) 23.21	LPH & Water Recovered (gallons):
Water Column (feet):	Casing Diameter (Inches): 2"
80% Recharge Depth(feet): 9.60	1 Well Volume (gallons): <u>3</u>
Time Time Depth to Volu Water Purg Start Stop (feet) (gallo	ied (US/cm) (F.C.) pH (mo/L) ORP Turbidity

9.60 Comments:			9			0647			
Stat	ic at Time S	ampled	Tot	al Gallons Pur	ged		Sample	Time	
-									
	0641		4	237.8	14.7	7.51	1~74	~~(	
			6	323.1	14.5	7.62	1.81	-3	
0636			3	239.6	14.3	8.29	1.67	.34	
Pre-F	Purge								
Start	Stop	vvater (feet)	(gallons)	(µS/cm)	(F, <b>C</b> )	рп	(mg/L)	URP	TUDUU

Well No. U-U

80% Recharge Depth(feet):

Purge Method:_____

Depth to Water (feet):7.2.1Depth to PrinceTotal Depth (feet)19.2.7LPH & WaterWater Column (feet):12.03Casing Dia

Depth to Product (feet):

LPH & Water Recovered (gallons):

Sub

Casing Diameter (Inches): <u>4</u>

1 Well Volume (gallons): 9

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge								
0658	060706		q	1019	17.2	7.09	296	17	
			18						
			24						
			•						
Sta	tic at Time Sa	impled	Tot	 al Gallons Pur	qed		Sample	 • Time	1
12.51				15		0107			
Comment	s: well	went	dr	at 15 g	allons.	did r	of re	COVE	1° 45-
12 4	Smagi	did not	recove	5 . ~ 2	allons.		•		



		GROU	NDWATE	R SAMPLIN	IG FIELD NO	DTES			
		Tec	hnician: <u>[</u>	$2 \times F$	1 /-1.	_			
Site: 53	52	Proje	ect No :	62251	<del></del>		Date:_	03/	25/09
Well No	(	<u>). 3</u>		Purge Metho	d:	5 yr b			
Depth to W	Vater (feet):	0.70		Depth to Pro	duct (feet):		<b></b>		
Total Dept	h (feet) l	9.38		LPH & Water	Recovered (ga	allons):		_	
Water Colu	umn (feet):	8.68		Casing Diam	eter (Inches):	۶ ^{۴۴}			
80% Rech	arge Depth(fe	et): 12.44	1	1 Well Volum	ne (gallons): <u> </u>	1			
						•			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)		Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
	Purge						1		
0715	0719		<u> </u>	913.2	16.0	752	1.98	59	
			12						

Well No	U-5
Depth to Water (feet):_	6.20
Total Depth (feet)	20.05
Water Column (feet):	
80% Recharge Depth(i	

Static at Time Sampled

well

went

11.15

Comments:

Purge Method:	SW
	•

Total Gallons Purged

4

Depth to Product (feet):

dry at 4gallens. d. el not recover in

LPH & Water Recovered (gallons):_____

Sample Time © ଟ୍ୟୁର୍

6

Casing Diameter (Inches):<u>4''</u>

1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, 6)	рН	D O (mg/L)	ORP	Turbidity
Pre-l	Purge								
0724			10	836.7	16.5	6.63	0.39	-88	
· · · · · ·			20	1321	17.9	6.66	0.61	99	
	0733		30	1247	17.1	6.79	0.53	·-74	
Stat	ic at Time Sa	ampled	Tot	al Gallons Pur	ged		Sample	Time	
8.47			3	C		6715			
Comments					······································				



45. 2005

Well No.       U · 1       Purge Method:       Sub         Depth to Water (feet):       7 · 5 5       Depth to Product (feet):	Technicia	an: Rickey H.
Depth to Water (feet): 7.55 Depth to Product (feet):	Site: 5325 Project No	Date:03/26/09
Water Column (feet):       J. ? !         S0% Recharge Depth(feet):       8.7.3	Depth to Water (feet):         7.55           Total Depth (feet)         13.46           Water Column (feet):         .5.91	Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): <u>3</u> ``

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre-I	Purge								
0744	0744		3	<b>1</b>					
			6						
			9						
. <u>.</u>			•						
Stat	c at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.01			2		09	30		
Comments	: છતા	went o	In at	ંટ નુવ	lons, die			over	1 m 45 km

Well No	2
Depth to Water (feet):_	5.17
Total Depth (feet)	20.04
Water Column (feet):	14.87
80% Recharge Depth(feet): 8.14

Purge Method:	Jul
Depth to Product (feet):	
LPH & Water Recovered (g	
Casing Diameter (Inches):	<u>8"</u>
1 Well Volume (gallons):	7

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	DO (mg/L)	ORP	Turbidity
Pre-	Purge								
0754	0759		6	1205	16.8	6.40	1.56	~73	
			12				•••		
			18						
Stat	ic at Time Sa	ampled	Tot	L al Gallons Pur	ged		Sample	Time	
	10.87			8.		16	215		
Comments	: Wall	went	dry a	1- 8	Jallons	diel	ant re	cov-er	· .n
450	1-5,10	ell did	not	recover	1 12 21	* S		- -	

Date of Report: 04/08/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE:	5325
BC Work Order:	0904017
Invoice ID:	B060031

Enclosed are the results of analyses for samples received by the laboratory on 3/26/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

21 Technology Drive Irvine, CA 92618

TRC

Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informatio)n			
0904017-01	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 06:47	Global ID: T0600101463
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-6
	Sampling Point:	U-6	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-02	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 09:07	Global ID: T0600101463
	Sampling Location:		Sample Depth:	_	Location ID (FieldPoint): U-4
	Sampling Point:	U-4	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-03	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 08:45	Global ID: T0600101463
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-3
	Sampling Point:	U-3	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI			Sample QC Type (SACode): CS
					Cooler ID:
0904017-04	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:
	Project Number:	5325	Sampling Date:	03/26/2009 09:15	Global ID: T0600101463
	Sampling Location:		Sample Depth:	.	Location ID (FieldPoint): U-5
	Sampling Point:	U-5	Sample Matrix:	Water	Matrix: W
	Sampled By:	TRCI	-		Sample QC Type (SACode): CS
					Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 2 of 22

Laboratories, Inc.	
Environmental Testing Laboratory Since 1949	

TRC

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informatio	20					
0904017-05	COC Number: Project Number: Sampling Location: Sampling Poınt:	 5325 U-1	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/26/2009 22:15 03/26/2009 09:30 Water	Delivery Work Order: Global ID: T0600101463 Location ID (FieldPoint): U-1 Matrix: W		
	Sampled By:	TRCI			Sample QC Type (SACode): CS Cooler ID:		
0904017-06	COC Number:		Receive Date:	03/26/2009 22:15	Delivery Work Order:		
	Project Number:	5325	Sampling Date:	03/26/2009 10:15	Global ID: T0600101463		
	Sampling Location:		Sample Depth:		Location ID (FieldPoint): U-2		
	Sampling Point:	U-2	Sample Matrix:	Water	Matrix: W		
	Sampled By:	TRCI			Sample QC Type (SACode): CS Cooler ID:		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 3 of 22

TRC

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-01	Client Sampl	e Name:	5325, U-6, 3/26	/2009 6:47:00AN	1							
Constituent	Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KËA	MS-V12	5	BSD0259	ND	A10,Z1
Ethylbenzene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Methyl t-butyl ether	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Toluene	ND	ug/L	2.5	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Total Xylenes	ND	ug/L.	5.0	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Ethanol	ND	ug/L	1200	EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
Total Purgeable Petroleum Hvdrocarbons	ND	ug/L	250	Luft-GC/MS	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259	ND	A10,Z1
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UC	L) EPA-8260	04/03/09	04/04/09 18:52	KEA	MS-V12	5	BSD0259		•

TRC 21 Technology Drive

Irvine, CA 92618

Project: 5325

Reported: 04/08/2009 15:27

Project Number: 4511030514 Project Manager: Aniu Farfan

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-01	Client Sampl	e Name:	5325, U-6	, 3/26/200	9 6:47:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL.	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 12:57	VH1	IC2	1	B\$C1955	ND	
Iron (II) Species		540000	ug/L	50000		SM-3500-FeE	03/28/09	03/28/09 09:00	MSA	SPEC05	500	BSC1963	ND	A01
ortho-Phosphate		0.28	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-02	Client Samp	le Name:	5325, U-4, 3/26/	2009 9:07:00A	M							
Constituent	Result	Units	PQL MI	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Toluene	ND	ug/L	0,50	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	i	BSC1987	ND	
Total Xylenes	ND	ug/L	1,0	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	A40
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.8	%	76 - 114 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL) EPA-8260	03/31/09	03/31/09 17:41	KEA	MS-V12	i	BSC1987		

Page 6 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514 Reported: 04/08/2009 15:27

Project Manager: Anju Farfan

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-02	Client Sampl	e Name:	5325, U-4	, 3/26/200	9 9:07:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N	u.	4.4	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:11	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-FeL	03/28/09	03/28/09 09:00	MSA	SPEC05	i	BSC1963	ND	
ortho-Phosphate		0.37	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

Page 7 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017	7-03	Client Sample	e Name:	5325, U-3, 3/26	/2009 8:45:00AM	Λ							
Constituent		Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	· · · · ·
Ethvibenzene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Methyl t-butyl ether		ND	ug/L	0,50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Toluene		ND	ug/L	0.50	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	
Total Xvienes		NÐ	ug/L	1.0	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	
Ethanol		ND	ug/L	250	EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	í	BSC1987	ND	A40
Total Purgeable Petroleum Hvdrocarbons		ND	ug/L	50	Luft-GC/MS	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)		103	%	76 - 114 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	i	BSC1987		
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)		103	%	86 - 115 (LCL - UC	L) EPA-8260	03/31/09	03/31/09 17:16	KEA	MS-V12	1	BSC1987		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 8 of 22

21 Technology Drive

Irvine, CA 92618

Project: 5325

Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

BCL Sample ID:	0904017-03	Client Sampl	le Name:	5325, U-3	, 3/26/200	9 8:45:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		4.8	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:25	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-Fei	03/28/09	03/28/09 09:00	MSA	SPEC05	i	BSC1963	ND	
ortho-Phosphate		0.66	mg/L	0.050	-	EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 9 of 22

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-04	Client Sample	e Name:	5325, U-5, 3/	26/2009	9:15:00AM								
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Methyl t-butyl ether	9.4	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Toluene	ND	ug/L	0.50		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
Ethanol	ND	ug/L	250		EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	í	BSC1987	ND	A40
Total Purgeable Petroleum Hydrocarbons	310	ug/L	50		Luft-GC/MS	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - l	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - L	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		
4-Bromofluorobenzene (Surrogate)	99.1	%	86 - 115 (LCL - L	JCL)	EPA-8260	03/31/09	03/31/09 16:52	KEA	MS-V12	1	BSC1987		

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	0904017-04	Client Sampl	e Name:	5325, U-5	5, 3/26/2009	9 9:15:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 13:38	VH1	IC2	i	BSC1955	ND	
Iron (II) Species		990	ug/L	100		SM-3500-FeC	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		ND	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:56	TDC	KONE-i	i	BSC1895	ND	

Page 11 of 22

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0904017-05	Client Sampl	e Name:	5325, U-1; 3/26/2	2009 9:30:00AN	1							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL ME	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Ethylbenzene	72	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Methyl t-butyl ether	10	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Toluene	NÐ	ug/L	2.5	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Total Xylenes	6.5	ug/L	5.0	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
Ethanol	ND	ug/L	1200	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01,A40
Total Purgeable Petroleum Hydrocarbons	5700	ug/L	250	Luft-GC/MS	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	90.4	%	76 - 114 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987	· .	
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987		
4-Bromofluorobenzene (Surrogate)	96.2	%	86 - 115 (LCL - UCL	EPA-8260	03/31/09	04/01/09 01:17	KEA	MS-V12	5	BSC1987		

21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	0904017-05	Client Sampl	e Name:	5325, U-1	, 3/26/200	9 9:30:00AM								
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0,10		EPA-300.0	03/27/09	03/27/09 14:19	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		2400	ug/L	100		SM-3500-FeE	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		0.11	mg/L	0.050		EPA-365,1	03/27/09	03/27/09 09:56	TDC	KONE-1	1	BSC1895	ND	

Page 13 of 22

21 Technology Drive Irvine, CA 92618 Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

0904017-06	Client Sampl	e Name:	5325, U-2, 3/2	6/2009 10:15:0	0AM							
	Result	Units	PQL N	/IDL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
	8.9	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	47	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	150	ug/L	2.5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	ND	ug/L	2,5	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
	22	ug/L	5.0	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	B\$C1987	ND	A01
	ND	ug/L	1200	EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01,A40
um	5200	ug/L	250	Luft-GC/	MS 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	ND	A01
iurrogate)	92.3	%	76 - 114 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987	•	
	103	%	88 - 110 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987		
Surrogate)	96.2	%	86 - 115 (LCL - UC	CL) EPA-826	0 03/31/09	04/01/09 00:53	KEA	MS-V12	5	BSC1987		
	urrogate)	Result 8.9 47 150 ND 22 ND 22 ND 300 surrogate) 92.3 103 103	Result Units 8.9 ug/L 47 ug/L 150 ug/L ND ug/L 22 ug/L ND ug/L 150 ug/L 22 ug/L ND ug/L um 5200 ug/L surrogate) 92.3 % 103 %	Result Units PQL N 8.9 ug/L 2.5 47 ug/L 2.5 150 ug/L 2.5 ND ug/L 2.5 22 ug/L 5.0 ND ug/L 1200 um 5200 ug/L 250 surrogate) 92.3 % 76 - 114 (LCL - UC 103 % 88 - 110 (LCL - UC	Result Units PQL MDL Method 8.9 ug/L 2.5 EPA-826 47 ug/L 2.5 EPA-826 150 ug/L 2.5 EPA-826 ND ug/L 2.5 EPA-826 22 ug/L 5.0 EPA-826 ND ug/L 5.0 EPA-826 ug/L 5.0 EPA-826 22 ug/L 1200 EPA-826 23 um 5200 ug/L 250 Luft-GC/ uurrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-826 103 % 88 - 110 (LCL - UCL) EPA-826	Result Units PQL MDL Method Date 8.9 ug/L 2.5 EPA-8260 03/31/09 47 ug/L 2.5 EPA-8260 03/31/09 150 ug/L 2.5 EPA-8260 03/31/09 ND ug/L 2.5 EPA-8260 03/31/09 22 ug/L 5.0 EPA-8260 03/31/09 ND ug/L 1200 EPA-8260 03/31/09 ND ug/L 1200 EPA-8260 03/31/09 um 5200 ug/L 250 Luft-GC/MS 03/31/09 uurrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-8260 03/31/09 103 % 88 - 110 (LCL - UCL) EPA-8260 03/31/09	Result Units PQL MDL Method Date Date/Time 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 22 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 MD ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 um 5200 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 umrogate) 92.3 % 76 - 114 (LCL - UCL) EPA-8260 03/31/09 04/01/09 00:53 103 % 88 - 110 (LCL - UCL) EPA-8260 03/31/09	Result Units PQL MDL Method Date Date/Time Analyst 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA ND ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA Im 5200 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA iurrogate) 92.3 % 76 - 114 LCL - UCL) EPA-8260 03/31/09<	Result Units PQL MDL Method Date Date/Time Analyst ment ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 ND ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 um 5200 ug/L 250 Luft-GC/MS 03/31/09 04/01/09 00:53 KEA </td <td>Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 um ug/L</td> <td>Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 1200 EPA-8260 03/31/09<td>Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<></td></td>	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 100 ug/L 1200 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 um ug/L	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 101 ug/L 1200 EPA-8260 03/31/09 <td>Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<></td>	Prep Run Instru- QC MB 8.9 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 47 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 00:53 KEA MS-V12 5 BSC1987 ND 150 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 100 ug/L 2.5 EPA-8260 03/31/09 04/01/09 0:53 KEA MS-V12 5 BSC1987 ND 101 ug/L 5.0 EPA-8260 03/31/09 04/01/09 <td< td=""></td<>

Page 14 of 22

TRC 21 Technology Drive

Irvine, CA 92618

Project: 5325 Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID:	0904017-06	Client Sampl	e Name:	5325, U-2	, 3/26/200	9 10:15:00AM	1							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	03/27/09	03/27/09 14:33	VH1	IC2	1	BSC1955	ND	
Iron (II) Species		2600	ug/L	100		SM-3500-FeC	03/28/09	03/28/09 09:00	MSA	SPEC05	1	BSC1963	ND	
ortho-Phosphate		ND	mg/L	0.050		EPA-365.1	03/27/09	03/27/09 09:58	TDC	KONE-i	i	BSC1895	ND	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratores, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 15 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Fartan

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSC1987	Matrix Spike	0903406-50	O	21.260	25.000	ug/L		85.0		70 - 130
		Matrix Spike Duplicate	0903406-50	0	20.140	25.000	ug/L	5.3	80.6	20	70 - 130
Toluene	BSC1987	Matrix Spike	0903406-50	0	25.460	25,000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0903406-50	0	22.670	25.000	ug/L	11.7	90.7	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	9.7400	10.000	ug/L		97.4		76 - 114
		Matrix Spike Duplicate	0903406-50	ND	9.8300	10.000	ug/L		98.3		76 - 114
Toluene-d8 (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	10.020	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0903406-50	ND	10.010	10.000	ug/L		100		88 - 110
4-Bromofluorobenzene (Surrogate)	BSC1987	Matrix Spike	0903406-50	ND	10.010	10.000	ug/L		100		86 - 115
		Matrix Spike Duplicate	0903406-50	ND	9.7600	10.000	ug/L		97.6		86 - 115
Benzene	B\$D0259	Matrix Spike	0903406-60	0	25.500	25.000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0903406-60	0	25,090	25.000	ug/L	2.0	100	20	70 - 130
Toluene	BSD0259	Matrix Spike	0903406-60	0	25.470	25.000	ug/L		102		70 - 130
	_	Matrix Spike Duplicate	0903406-60	0	23.780	25.000	ug/L	7.0	95.1	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	9.4800	10.000	ug/L		94.8		76 - 114
		Matrix Spike Duplicate	0903406-60	ND	9.2300	10.000	ug/L		92.3		76 - 114
Toluene-d8 (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	10.000	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0903406-60	ND	9,8900	10.000	ug/L		98.9		88 - 110
4-Bromofluorobenzene (Surrogate)	BSD0259	Matrix Spike	0903406-60	ND	9.7600	10.000	ug/L		97.6		86 - 115
		Matrix Spike Duplicate	0903406-60	ND	9.6600	10.000	ug/L		96.6		86 - 115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
ortho-Phosphate	BSC1895	Duplicate	0904017-01	0.27860	0.27603		mg/L	0.9	ī	10	
		Matrix Spike	0904017-01	0.27860	0.95022	0.64547	mg/L		104		90 - 110
		Matrix Spike Duplicate	0904017-01	0.27860	0.95056	0.64547	mg/L	0	104	10	90 - 110
Nitrate as N	BSC1955	Duplicate	0904016-02	0.056000	ND		mg/L			10	
		Matrix Spike	0904016-02	0.056000	5.0687	5.0505	mg/L		99.3		80 - 120
		Matrix Spike Duplicate	0904016-02	0.056000	5,0576	5.0505	mg/L	0.3	99.0	10	80 - 120
Iron (II) Species	BSC1963	Duplicate	0904017-02	21.429	ND		ug/L			10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 17 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Farfan

Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSC1987	BSC1987-BS1	LCS	20.060	25.000	0.50	ug/Ľ	80.2		70 - 130		
Toluene	BSC1987	BSC1987-BS1	LCS	21.500	25.000	0.50	ug/L	86.0		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	BSC1987-BS1	LCS	10.090	10.000		ug/L	101		76 - 114		
Toluene-d8 (Surrogate)	BSC1987	BSC1987-BS1	LCS	10.070	10.000		ug/L	101		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSC1987	BSC1987-BS1	LCS	9.9000	10.000		ug/L	99.0		86 - 115		
Benzene	BSD0259	BSD0259-BS1	LCS	24.640	25.000	0,50	ug/L	98.6		70 - 130		
Toluene	BSD0259	BSD0259-BS1	LCS	23.470	25.000	0.50	ug/L	93,9		70 - 130		······
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	BSD0259-BS1	LCS	10.030	10.000		ug/L	100		76 - 114		
Toluene-d8 (Surrogate)	BSD0259	BSD0259-BS1	LCS	10.010	10,000		ug/L	100		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSD0259	BSD0259-8S1	LCS	9.7900	10.000		ug/L	97,9	·	86 - 115		

Page 18 of 22

Project: 5325 Project Number: 4511030514

Project Manager: Anju Fartan

Reported: 04/08/2009 15:27

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

										Control Limits				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recoverv	RPD	Percent Recovery	RPD	Lab Quals		
ortho-Phosphate	BSC1895	BSC1895-BS1	LCS	0.62574	0.61320	0.050	mg/L.	102		90 - 110		Lub quuib		
Nitrate as N	BSC1955	BSC1955-BS1	LCS	4,8700	5,0000	0.10	mg/L	97.4		90 - 110				
ron (II) Species	BSC1963	BSC1963-BS1	LCS	2003.9	2000.0	100	ug/L	100		90 - 110				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 19 of 22

Project: 5325

Project Number: 4511030514 Project Manager: Anju Farfan Reported: 04/08/2009 15:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

	-		¥				
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSC1987	BSC1987-BLK1	ND	ug/L	0,50		
Ethylbenzene	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Toluene	BSC1987	BSC1987-BLK1	ND	ug/L	0.50		
Total Xvlenes	BSC1987	BSC1987-BLK1	ND	ug/L	1.0		
Ethanol	BSC1987	BSC1987-BLK1	ND	ug/L	250		
Total Purgeable Petroleum Hydrocarbons	BSC1987	BSC1987-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSC1987	BSC1987-BLK1	93.8	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSC1987	BSC1987-BLK1	102	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSC1987	BSC1987-BLK1	97.3	%	86 - 115	(LCL - UCL)	
Benzene	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSD0259	BSD0259-BLK1	ND	ug/L	0,50		
Methyl t-butyl ether	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Toluene	BSD0259	BSD0259-BLK1	ND	ug/L	0.50		
Total Xvlenes	BSD0259	BSD0259-BLK1	ND	ug/L	1.0		
Ethanol	BSD0259	BSD0259-BLK1	ND	ug/L	250		
Total Purgeable Petroleum Hydrocarbons	B\$D0259	BSD0259-BLK1	ND	ug/L.	50		
1,2-Dichloroethane-d4 (Surrogate)	BSD0259	BSD0259-BLK1	88.4	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSD0259	BSD0259-BLK1	99,4	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSD0259	BSD0259-BLK1	97.1	%	86 - 115	(LCL - UCL)	
					-		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 20 of 22

Project: 5325

Project Number: 4511030514

Reported: 04/08/2009 15:27

Project Manager: Anju Fartan

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
ortho-Phosphate	BSC1895	BSC1895-BLK1	ND	mg/L	0.050		
Nitrate as N	BSC1955	BSC1955-BLK1	ND	mg/L	0.10		
Iron (II) Species	BSC1963	BSC1963-BLK1	ND	ug/L	100		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 21 of 22

	nology Drive A 92618	Project: Project Number: Project Manager:	4511030514	Reported: 04/08/2009 15:27
Notes A	And Definitions	······································		
MDL	Method Detection Limit			
ND	Analyte Not Detected at or above the reporting limit			
PQL	Practical Quantitation Limit			
RPD	Relative Percent Difference			
A01	PQL's and MDL's are raised due to sample dilution.			
A10	PQL's and MDL's were raised due to matrix interference.			
A40	Initial calibration linearity criteria not met,			
Z1	Sample was a foamer.			

BC LABORATORIES INC.		SAMPLE	RECEIP	T FORM	Rev	v. No. 12	06/24/05	Page _	_ Of				
Submission #: 090407	- 1												
SHIPPING INFOF Federal Express D UPS D BC Lab Field Service D Other I	Hand Deli	very 🗆		SHIPPING CONTAINER									
	- (-1	/				•		··· = (- <u>;</u>					
Refrigerant: Ice Blue Ice	None	Oth	ner 🗆 🛛	Comment	is:								
		IS ELLI	None 🗆	Comma	nter		·			······			
inter Yest Mot	Intact??Yes	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	None L	oomme	111.3.		_						
All samples received? Yes No D	Ali samples	containers	intact? Ye	es er Not]	Descript	ion(s) mate	ch COC? Y	es Ø No C				
	·-					· · · · · ·		2220					
COC Received E	nissivity:	. <u>98</u> c	ontainer: <u>(</u>	1 <u>47</u>	hermomet	er ID: <u>7//f</u>	163	Date/Tim	e <u>03-26</u>	-09			
YES INO	mperature	A <u>2</u> ,	9.	c / c	2.7	۰C		Analyst I	nik <u>Mlh</u>				
	<u></u>				SAMPLE 1	UMBERS		T	1 · · · · · · · · · · · · · · · · · · ·				
SAMPLE CONTAINERS	1	2	. 3	4	5	6	7	8.	9	10			
QT GENERAL MINERALI GENERAL PHYSICAL		ALTEC				pu 3/26			 				
PT PE UNPRESERVED	<u> </u>	ABC				AB			<u> </u>				
OT INORGANIC CHEMICAL METALS							ļ	<u> </u>					
PT INORGANIC CHEMICAL METALS	·						<u> </u>	 	 	·			
PT CYANIDE	<u> </u>					<u> </u>	· · · ·						
PT NITROGEN FORMS									ļ	—·			
PT TOTAL SULFIDE							*						
202 NITRATE / NITRITE						and the second							
PETOTAL ORGANIC CARBON	<u> </u>					<u></u>	<u> </u>						
PT TOX	*		· · · · · · · · · · · · · · · · · · ·			electrony -							
PT CHEMICAL OXYGEN DEMAND						1. C. S. S.				[
PLA PHENOLICS		· · · ·			·	<u>∴, π∿g</u> e		<u> </u>					
40mi VOA VIAL TRAVEL BLANK 40mi VOA VIAL	103	A.3	ر الات کر	A-13	~ ~ 2	A-13							
TUMI VOA VIAL			///										
OT EPA 413.1, 413.1; 418.1 P F ODOR RADIOLOGICAL						1	L	1					
PEDIOLOGICO													
BACTERIOLOGICAE						- (4 <u>)</u> (
40 ml VOA VIAL- 504	<u> </u>			·	· · · · · · · · · · · · · · · · · · ·	- <u></u>							
OT EPA 508/608/8080	1								×				
OT EPA 515.1/8150		Сн	K BY	ומדפות	BUTION			1					
OT EPA 525	1												
OT EPA 525 TRAVEL BLANK			010-1	/#~~~~ ¥	#J====								
100mlEPA 547				- 501	OUT E								
100ml EPA 531.1	1			· ,	· · ·	[1					
OT EPA 548						(
QT EPA 549								1					
QT EPA 632									'				
QI EPA 8015M								1					
QT AMBER			<u>eucor</u>		0		i — —						
8 OZ. JAR		L		7-5	GEIME			T					
31 OZ. JAR			140			88	<u> </u>						
SOIL SLEEVE		D		BOD N	BAS C	þ т (–							
PCB VIAL						· · · · · · · · · · · · · · · · · · ·							
PLASTIC BAG													
FERROUS IRON								<u> </u>	L				
ENCORE							<u> </u>	<u></u>					

Comments:_______Sample Numbering Completed By:_____ A = Actual / C = Corrected

DO LADORATORIES INC		SANADIE	RECEIP		Dev	v. No. 12	ACIDAINS	Page	Of	1		
BC LABORATORIES INC.	2				Nev	7. 180. 12	0012408					
Submission #: ()7()901	1		k									
SHIPPING INFO							NG CON					
	Hand Deliv			ł	ce Chest	er	Non		16-0			
BC Lab Field Service B Other	□ (Specny)				Box	U	Office	r 🗆 (Spec				
							······					
Refrigerant: Ice Blue Ice None O Other Comments:												
	Custody Seals Containers None Comments:											
HTTERIA VESCE-NOLE	Intact?/Yes	D-No.E	<u> </u>									
All complete specified? Yes 24 No 1	Alleemplac	containers	infact? Ve	No F	 ר	Descript	ion(e) matr	h COC? Y	es Oz No T	-		
All samples received? Yes 🖉 No 🗆				6			· · · · · · · · · · · · · · · · · · ·	2220				
COC Received E	missivity: _	<u>.9δ</u> c	ontainer:	PTP2 1	hermomet	er ID: <u>-7/</u> 4,	<u>163</u>		03-26	-09		
				-				ų.	nit Mln			
	emperature:	A1	<u> </u>		116	°C		Analystin	m <u>#th</u>			
	1				SAMPLE	UMBERS						
SAMPLE CONTAINERS	1	2	. 3	4	5	6	7	8.		10		
QT GENERAL MINERAL GENERAL PHYSICAL												
PT PE UNPRESERVED	13		BC	BC	BC							
OT INORGANIC CHEMICAL METALS												
PT_INORGANIC CHEMICAL METALS						•						
PT CYANIDE			··									
PT.NITROGEN FORMS						197.07.1			1917 <u>- 19</u> 17			
PT TOTAL SULFIDE												
2071 NITRAGE / NITRYTE												
PTIOTAL ORGANIC CARBON								anti-				
PT TOX						enterral ^{en} terral		1				
PT_CHEMICAL OTYGEN DEMAND								1 N	yan ya sa			
PLA PHENOLICS	-											
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL		t)	()		(- I					{ 1		
OT EPA 413.1. 413-10418.1									y ta tradição de la companya de la c			
OT EPA 413.1, 413.2 418.1 PT ODOR RADIOLOGICAL					с. <u>К</u>							
R.DIOLOGICAL			_			<u></u>						
BACTERIOLOGICAE						s u, is .			an a			
40 ml VOA VIAL- 504												
OT EPA 508/608/8080												
OT EPA 515.1/8150												
OT EPA 525						[
OT EPA 525 TRAVEL BLANK]						
100mi EPA 547												
100mi EPA 531.1									_			
OT EPA 548		······				[
QT EPA 549												
OT EPA 632									,			
QT EPA 8015M	_											
QT AMBER	_		· · · · · · · · · · · · · · · · · · ·			[
8 OZ. JAR			·				i	-				
32 OZ. JAR			·			1	<u> </u>	<u> </u>	······································			
SOIL SLEEVE					<u>├──</u> ─── [└]		<u> </u>	,				
PCB VIAL							<u>+</u> -					
PLASTIC BAG	- [L			<u> </u>	<u> </u>	+ -	†	· · · · ·			
FERROUS IRON #				·	<u> </u>		<u> </u>	1				
ENCORE 27					<u> </u>			<u> </u>				
	. 4		أحجب والمتحد والمراجع	<u>د</u>	1	J	L	A		لح سب بيسيما		

Comments: Sample Numbering Completed By: <u>ALM</u> A = Actual / C = Corrected

BC LAB	ORATORIES, INC	4100 Atlas Cou (661) 327-49	4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918				CHAIN OF CUSTODY							
		670	14017			Ana	lysis	s Re	que	est	əd			
Bill to: Co	noco Phillips/ TRC	Consultant Firm: T	, , ,	MATRIX	Ş		CITANOT CAR IN DATA ON THE	9100E000000000000000	14130 2 400 /9070		TORNOLOGIA (C. 1979)	ogorialiansee indegele	(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
Address: 21 Technology Dri			ve	Ground-	by 8015									
<220 Lakeshove AU		Irvine, CA 92618-23 Attn: Anju Farfan	-				ates	8260B					ested	
City:		4-digit site#:532	4-digit site#:532 S				gena	BX	m			-Fj	edn	
Öc	Klanel	Workorder #	Workorder #			8015M	o Xo		260	SM	۲	pha	ne R	
State: CA	Zip:	21	– water (SL)	E by	by 80	st w	E	by 8	00	1 1001	Say	d Tir		
Conoco Pl	Conoco Phillips Mgr: Terry Grayson Sampler Name: Ric			Sludge	MTB	GAS by		MTB	VOL	ດ by	35		uno.	
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by	л нат О Нат	8260 full list w/ oxygenates	BTEX/MTBE/	ETHANOL by 8260B	TPH -G by GC/MS	Therews 1	orther phesphertc	Turnaround Time Requested	
	-]	U. 6	03/26/09 064TH	+ GW				X	X	X	X	×	STD	
		0.4	0907	- 1				}	Î		Í	l'	1	
	-3	V-3	0845				_							
	-4	U-5	0915											
	~5	<u>U-1</u>	0130				_					<u> </u>		
	-6	U.2	V 10/5					V	V	J		V_{\parallel}		
	***************************************							-						
Comments:		Relinquished by: (Signifure)		<u>.</u>	Receiv	ed by:			Dat	 e & Tin	ne		
Kun 80 MTRE	DXYS 8260 on a hits / plcase	H Africant	May			0-1n	Refr	15019	tor				30	
GLOBAL ID:	Preserve	for and a	Vhu J			Receive ZUR	ed by:	لل			e & Tin 6 • 09		500	
	01463 (Ferrous	Iron Relinquished by: (- · -	7 2215		Receiv		$\frac{1}{1}$		Dat	e & Tin - 210-		291	
							T	- \/			<u>~~\V</u> _	<u> </u>		

.....

کی کار

TO REORDER CALL PROFORMA SOLUTIONS FOR PRINTING • (661) 633-1117 781489

· . .

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.