

October 31, 2005

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal Quarterly Report Third Quarter – 2005 76 Service Station #5325 3220 Lakeshore Avenue Oakland, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

**RECEIVED** 

By lopprojectop at 4:24 pm, Nov 03, 2005

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818 Phone: 916-558-7609 Fax: 916-558-7639

Sincerely,

Home H. Havel

Thomas Kosel Risk Management & Remediation

Attachment



**RECEIVED** By lopprojectop at 4:24 pm, Nov 03, 2005

**Customer-Focused Solutions** 

October 31, 2005

TRC Project No. 42013704

Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-6577

# RE: Quarterly Status Report - Third Quarter 2005 76 Service Station #5325, 3220 Lakeshore Avenue, Oakland, California Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Third Quarter 2005 Status Report for the subject site, an operating ConocoPhillips (76) Service Station located on the southeast corner of the intersection of Lakeshore Avenue and Lake Park Avenue in Oakland, California. The site is bounded to the north by Lakeshore Avenue, to the west and southwest by Lake Park Avenue, to the southeast by a supermarket parking lot, and to the east by a pharmacy. Current site facilities consist of the service station building with three service bays, three product dispenser islands, and two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs).

# **PREVIOUS ASSESSMENTS**

May 1990: Three exploratory soil borings (U-A, U-B, and U-C) were advanced adjacent to the UST complex to depths ranging from 10 to 12.5 feet below ground surface (bgs). Soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and xylenes (BTEX). The samples contained TPH-g concentrations ranging from 2 to 7,500 parts per million (ppm) and benzene concentrations ranging from 0.14 to 13 ppm (GSI, June, 1990).

June 1990: Two 10,000-gallon gasoline USTs, one 550-gallon waste oil UST, and related product dispensers were replaced. Soil samples from the UST excavation sidewalls and bottom and product line trenches were reported to contain TPH-g and benzene at concentrations ranging from 12 to 2,800 ppm and 0.008 to 11 ppm, respectively. Approximately 250 cubic yards of soil and backfill material were aerated onsite to reduce concentrations to below 100 ppm TPH-g, then transported to an appropriate soil disposal facility. Groundwater was encountered at approximately 7.5 feet bgs (GSI, August, 1990).

September 1990: Monitoring wells U-1, U-2, and U-3 were installed. TPH-g was detected in soil samples collected from the capillary fringe in well borings U-1 and U-2 at levels of 110 and 480 ppm, respectively. Benzene was detected in the soil sample from well boring U-1 at a level of 4.5 ppm. Petroleum hydrocarbons were not detected in soil or groundwater samples from U-3.

QSR – Third Quarter 2005 76 Service Station #5325, Oakland, California October 31, 2005 Page 2

Groundwater samples collected from wells U-1 and U-2 were reported to contain 690 and 38 parts per billion (ppb) TPH-g and 780 and 27 ppb benzene, respectively (GSI, December, 1990).

June 1990: Monitoring wells U-4, U-5, and U-6 were installed. TPH-g and benzene were detected in the capillary fringe soil sample collected from boring U-5 at levels of 400 ppm and 1.9 ppm, respectively. TPH-g and benzene were not detected in soil samples collected from borings U-4 and U-6. Groundwater levels stabilized at depths between 8.8 and 9.2 feet bgs (GSI, August, 1994).

November 1996: One 550-gallon waste oil UST was removed and the product lines and dispensers were replaced. A soil sample collected from the sidewall of the waste oil UST excavation contained 1.5 ppm total petroleum hydrocarbons as diesel (TPH-d) and 78 ppm total oil and grease (TOG). TPH-g, benzene, methyl tertiary butyl ether (MTBE), halogenated volatile organic compounds (HVOCs), and semivolatile organic compounds (SVOCs) were not detected. Product line trench excavation and over excavation samples were reported to contain petroleum hydrocarbon levels ranging from non-detect to 880 ppm TPH-g, non-detect to 3.6 ppm benzene, and non-detect to 23 ppm MTBE. Approximately 276 tons of excavated soil was transported to an appropriate disposal facility (GSI, January, 1997).

October 2003: Site environmental consulting responsibilities were transferred to TRC.

# **SENSITIVE RECEPTORS**

Lake Merritt is located approximately 0.3 miles down gradient. No domestic wells are located within a one mile radius of the site.

# MONITORING AND SAMPLING

Currently, five onsite wells and one offsite well are monitored quarterly. All six wells were gauged and sampled this quarter. The groundwater flow is toward the northwest at a calculated hydraulic gradient of 0.01 feet per foot.

# CHARACTERIZATION STATUS

Total purgeable petroleum hydrocarbons (TPPH) were detected in four of six wells sampled at a maximum concentration of 560 micrograms per liter ( $\mu g/l$ ) in onsite monitoring well U-1.

Benzene was not detected above laboratory reporting limits in any of the six wells sampled.

Methyl tertiary butyl ether (MTBE) was detected in four of the six wells sampled at a maximum concentration of  $370 \ \mu g/l$  in onsite monitoring well U-5.

# **REMEDIATION STATUS**

Remediation is not currently being conducted at the site.



QSR – Third Quarter 2005 76 Service Station #5325, Oakland, California October 31, 2005 Page 3

# **RECENT CORRESPONDENCE**

August 31, 2005: TRC and ConocoPhillips conducted a conference call with Mr. Don Hwang of the Alameda County Health Care Services Agency (ACHCS) to address Mr. Hwang's concerns regarding the scope of work outlined in the Interim Remedial Measure/Feasibility Study Workplan submitted to the ACHCS on August 30, 2004.

# **CURRENT QUARTER ACTIVITIES**

September 28, 2005: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

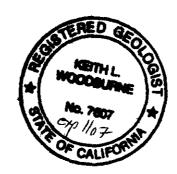
# **CONCLUSIONS AND RECOMMENDATIONS**

ConocoPhillips and TRC has discussed ACHCS concerns with the Interim Remedial Measure/Feasibility Study Workplan. Based on discussions during the conference call and on recent discussions with the ACHCS during an October 19, 2005 meeting, TRC will implement the following actions:

- Prepare a work plan for ozone sparge pilot testing to determine the suitability of this technology for remediating site hydrocarbons. If the ozone sparging pilot test is successful, TRC would recommend installing the ozone sparge system proposed in the August 30, 2004 work plan. The work plan may be submitted as part of a Site Conceptual Model, as outlined for other sites in the recent October 2005 meeting.
- Expand the site vicinity map and evaluate potential offsite boring/well locations to determine appropriate locations for additional offsite groundwater assessment, if required.
- Conduct a file review of the Shell Station formerly located on Rand Avenue, across Lakeshore Avenue from the site to determine if there are documented soil and groundwater impacts related to the former Shell Station.

TRC recommends continuing quarterly monitoring and sampling to assess plume stability and concentration trends at key wells.




QSR – Third Quarter 2005 76 Service Station #5325, Oakland, California October 31, 2005 Page 4

If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely, *TRC* 

Hurt Woodle

Keith Woodburne, P.G. Senior Project Geologist



Attachment: Quarterly Monitoring Report, July through September 2005 (TRC, October 27, 2005)

cc: Shelby Lathrop, ConocoPhillips (electronic upload only)





October 27, 2005

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN: MS. SHELBY LATHROP

- SITE: 76 STATION 5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

Dear Ms. Lathrop:

Please find enclosed our Quarterly Monitoring Report for 76 Station 5325, located at 3220 Lakeshore Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan QMS Operations Manager

CC: Mr. Keith Woodburne, TRC (2 copies)

Enclosures 20-0400/5325R08.QMS



# QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

76 Station 5325 3200 Lakeshore Avenue Oakland, California

Prepared For:

Ms. Shelby Lathrop CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

misforce



Senior Project Geologist, Irvine Operations October 24, 2005

|                  | LIST OF ATTACHMENTS                                            |
|------------------|----------------------------------------------------------------|
| Summary Sheet    | Summary of Gauging and Sampling Activities                     |
| Tables           | Table Key                                                      |
|                  | Table 1: Current Fluid Levels and Selected Analytical Results  |
|                  | Table 2: Historic Fluid Levels and Selected Analytical Results |
| -                | Table 3: Additional Analytical Results                         |
| Figures          | Figure 1: Vicinity Map                                         |
|                  | Figure 2: Groundwater Elevation Contour Map                    |
|                  | Figure 3: Dissolved-Phase TPPH Concentration Map               |
|                  | Figure 4: Dissolved-Phase Benzene Concentration Map            |
|                  | Figure 5: Dissolved-Phase MTBE Concentration Map               |
| Graphs           | Groundwater Elevations vs. Time                                |
|                  | Benzene Concentrations vs. Time                                |
| Field Activities | General Field Procedures                                       |
|                  | Groundwater Sampling Field Notes                               |
| Laboratory       | Official Laboratory Reports                                    |
| Reports          | Quality Control Reports                                        |
|                  | Chain of Custody Records                                       |
| Statements       | Purge Water Disposal                                           |
|                  | Limitations                                                    |

# Summary of Gauging and Sampling Activities July 2005 through September 2005 76 Station 5325 3220 Lakeshore Avenue Oakland, CA

| Project Coordinator: Shelby Lathrop<br>Telephone: 916-558-7609                                                                                                                                                                                                                                               | Water Sampling Contractor: <i>TRC</i><br>Compiled by: <b>Christina Carrillo</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Date(s) of Gauging/Sampling Event: 09/28/05                                                                                                                                                                                                                                                                  |                                                                                 |
| Sample Points                                                                                                                                                                                                                                                                                                |                                                                                 |
| Groundwater wells: <b>5</b> onsite, <b>1</b> offsitePurging method: <b>Diaphragm pump</b> Purge water disposal: <b>Onyx/Rodeo Unit 100</b> Other Sample Points: <b>0</b> Type: <b>n/a</b>                                                                                                                    | Wells gauged: <b>6</b> Wells sampled: <b>6</b>                                  |
| Liquid Phase Hydrocarbons (LPH)<br>Wells with LPH: <b>0</b> Maximum thickness (feet):<br>LPH removal frequency: <b>n/a</b><br>Treatment or disposal of water/LPH: <b>n/a</b>                                                                                                                                 | n/a<br>Method: n/a                                                              |
| Hydrogeologic ParametersDepth to groundwater (below TOC):Minimum:Average groundwater elevation (relative to availableAverage change in groundwater elevation since predimerInterpreted groundwater gradient and flow directionCurrent event:0.01 ft/ft, northwestPrevious event:0.03 ft/ft, northwest (06/1) | e local datum): <b>-1.30 feet</b><br>vious event: <b>-1.66 feet</b><br>n:       |
| Selected Laboratory Results                                                                                                                                                                                                                                                                                  |                                                                                 |
| Wells with detected <b>Benzene:</b> 0<br>Maximum reported benzene concentration: n/                                                                                                                                                                                                                          | Wells above MCL (1.0 µg/l): <b>n/a</b><br>a                                     |
|                                                                                                                                                                                                                                                                                                              | Maximum: <b>560 µg/l (U-1)</b><br>Maximum: <b>370 µg/l (U-5)</b>                |

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

# TABLES

# **TABLE KEY**

### STANDARD ABREVIATIONS

| SIMUARI | הי | <u>SKEVIATIONS</u>                                                  |
|---------|----|---------------------------------------------------------------------|
|         | =  | not analyzed, measured, or collected                                |
| LPH     | =  | liquid-phase hydrocarbons                                           |
| Trace   | =  | less than 0.01 foot of LPH in well                                  |
| μg/l    |    | micrograms per liter (approx. equivalent to parts per billion, ppb) |
| mg/l    |    | milligrams per liter (approx. equivalent to parts per million, ppm) |
| ND<     | =  | not detected at or above laboratory detection limit                 |
| TOC     | =  | top of casing (surveyed reference elevation)                        |
|         |    |                                                                     |

### ANALYTES

|         | - |                                                        |
|---------|---|--------------------------------------------------------|
| BTEX    | = | benzene, toluene, ethylbenzene, and (total) xylenes    |
| DIPE    | = | di-isopropyl ether                                     |
| ETBE    | = | ethyl tertiary butyl ether                             |
| MTBE    | = | methyl tertiary butyl ether                            |
| PCB     | = | polychlorinated biphenyls                              |
| PCE     | = | tetrachloroethene                                      |
| TBA     | = | tertiary butyl alcohol                                 |
| TCA     | = | trichloroethane                                        |
| TCE     | = | trichloroethene                                        |
| TPH-G   | = | total petroleum hydrocarbons with gasoline distinction |
| TPH-D   | = | total petroleum hydrocarbons with diesel distinction   |
| TPPH    | = | total purgeable petroleum hydrocarbons                 |
| TRPH    | = | total recoverable petroleum hydrocarbons               |
| TAME    | = | tertiary amyl methyl ether                             |
| 1,1-DCA | = | 1,1-dichloroethane                                     |
| 1,2-DCA | = | 1,2-dichloroethane (same as EDC, ethylene dichloride)  |
| 1,1-DCE | = | 1,1-dichloroethene                                     |
| 1,2-DCE | = | 1,2-dichloroethene (cis- and trans-)                   |
|         |   |                                                        |

### **NOTES**

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water</u> + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to resurvey.

### REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 5325 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

# CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS September 28, 2005

# 76 Station 5325

Comments

| MTBE<br>8260B                   | (μg/l)        | 18                                                     | 80                                                    | ND<0.50                                                | ND<0.50                                               | 370                                                   | 4.6                                                    |
|---------------------------------|---------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| MTBE<br>8021B                   | (hg/l)        | 1                                                      | I                                                     | ł                                                      | ł                                                     | 1                                                     | ł                                                      |
| Total<br>Xylenes                | (µg/])        | 26                                                     | ND<1.0                                                | ND<1.0                                                 | ND<1.0                                                | ND<1.0                                                | ND<1.0                                                 |
| Ethyl-<br>benzene               | (µg/l)        | 3.0                                                    | ND<0.50                                               | ND<0.50                                                | ND<0.50                                               | ND<0.50                                               | ND<0.50 ND<0.50 ND<0.50                                |
| Toluene                         | (µg/l)        | 09.0                                                   | ND<0.50 ND<0.50                                       | ND<0.50 ND<0.50 ND<0.50                                | ND<0.50 ND<0.50 ND<0.50                               | ND<0.50 ND<0.50 ND<0.50                               | ND<0.50                                                |
| Benzene                         | (hg/l)        | ND<0.50                                                | ND<0.50                                               | ND<0.50                                                | ND<0.50                                               | ND<0.50                                               | ND<0.50                                                |
| TPPH<br>8260B                   | (µg/l)        | 560                                                    | 320                                                   | ND<50                                                  | ND<50                                                 | 460                                                   | 150                                                    |
| D-H4T                           | (l/gµ)        | 1                                                      | ł                                                     | ł                                                      | I                                                     | I                                                     | 1                                                      |
| Change in<br>Elevation          | (feet)        | )<br>-2.44                                             | )<br>-0.95                                            | )<br>-0.41                                             | )<br>-1.49                                            | )<br>-2.13                                            | )<br>-2.56                                             |
| Ground- (<br>water<br>Slevation | (feet)        | et: 5.0-20.0<br>-2.89                                  | et: <b>5.0-20.0</b><br>-0.38                          | et: 5.0-20.0<br>-0.18                                  | et: 5.0-20.0<br>1.56                                  | a <b>t: 5.0-20.0</b><br>-2.61                         | et: <b>5.0-24.0</b><br>-3.30                           |
| LPH C<br>Thickness              | (feet)        | (Screen Interval in feet: 5.0-20.0<br>11.35 0.00 -2.89 | (Screen Interval in feet: 5.0-20.0<br>8.00 0.00 -0.38 | (Screen Interval in feet: 5.0-20.0<br>11.16 0.00 -0.18 | (Screen Interval in feet: 5.0-20.0)<br>9.59 0.00 1.56 | (Screen Interval in feet: 5.0-20.0<br>9.59 0.00 -2.61 | (Screen Interval in feet: 5.0-24.0<br>10.44 0.00 -3.30 |
| Depth to<br>Water               | (feet) (feet) | (Screen Interval in fe<br>11.35 0.00                   | (Screen Inte<br>8.00                                  | (Screen Interval in fee<br>10.98 11.16 0.00            | (Screen Inter<br>9.59                                 | (Screen Inter<br>9.59                                 | (Screen Interv<br>7.14 10.44                           |
| TOC<br>Elevation                | (feet)        | 8.46                                                   | 7.62                                                  |                                                        | 11.15                                                 | 6.98                                                  |                                                        |
| Date TOC<br>Sampled Elevation   |               | <b>U-1</b><br>09/28/05                                 | <b>U-2</b><br>09/28/05                                | <b>U-3</b><br>09/28/05                                 | <b>U-4</b><br>09/28/05                                | <b>U-5</b><br>09/28/05                                | <b>U-6</b><br>09/28/05                                 |

Page 1 of 1

| Comments                                          |        |                                     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | Not sampled due to LPH in well |
|---------------------------------------------------|--------|-------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| MTBE<br>8260B                                     | (µg/l) |                                     | ł        | 1        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł                              | I                              | ł                              | ł                              |
| MTBE<br>8021B                                     | (µg/l) |                                     | 1        | ł        | ł        | ł        | I        | ł        | ł        | ł        | I        | ł        | ł        | ł        | I        | I        | ł        | ł        | ł        | ł                              | ł                              | ł                              | ł                              |
| Total<br>Xylenes                                  | (µg/l) |                                     | 130      | 17       | 15       | 17       | ND       | Q        | QN       | 41       | 0.6      | 7300     | 3300     | 270      | ND       | ΟN       | 21       | ND       | 17000    | ł                              | 1                              | 1                              | ł                              |
| Ethyl-<br>benzene                                 | (µg/l) |                                     | 8.6      | 4.2      | 1.0      | 0.36     | ND       | ND       | ND       | 6.7      | ND       | 910      | 650      | 832      | ΟN       | QN       | 5.9      | QN       | 2400     | ł                              | ł                              | ł                              | ł                              |
| Toluene                                           | (µg/]) |                                     | 75       | 16       | 8.6      | 4.3      | ŊŊ       | ND       | QN       | 1.4      | ŊŊ       | 5500     | 240      | QN       | QN       | ŊŊ       | ŊŊ       | ND       | 9700     | ł                              | 1                              | ł                              | ł                              |
| Benzene                                           | (µg/]) |                                     | 38       | 22       | 13       | 21       | ŊŊ       | QN       | 1.2      | 80       | 1.0      | 1400     | 600      | 62       | ND       | QN       | ND       | ND       | 2500     | ł                              | I                              | 1                              | ł                              |
| ТРРН<br>8260В                                     | (µg/l) |                                     | :        | ł        | ;        | ł        | ł        | ł        | 1        | ł        | ł        | 1        | ł        | ł        | ł        | I        | ł        | ł        | 1        | 1                              | ł                              | ;                              | ł                              |
| TPH-G                                             | (µg/l) |                                     | 069      | 250      | 160      | 140      | ŊŊ       | 250      | 230      | 1000     | 400      | 34000    | 8700     | 4900     | 069      | 6800     | 200      | 6100     | 50000    | I                              | I                              | I                              | ł                              |
| Change<br>in<br>Elevation                         | (feet) |                                     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | 0.07     | 3.29     | -0.27    | 0.62     | 0.60                           | -1.71                          | 0.16                           | 0.03                           |
| Ground- Change<br>water in<br>Elevation Elevation | (feet) | 5.0-20.0)                           | 1        | ł        | I        | ł        | I        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | -3.29    | -3.22    | 0.07     | -0.20    | 0.42     | 1.02                           | -0.69                          | -0.53                          | -0.50                          |
| LPH<br>Thickness                                  | (feet) | (Screen Interval in feet: 5.0-20.0) | ł        | ł        | ł        | 1        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | 0.00     | 00.0     | 0.00     | 0.00     | 0.00     | 0.37                           | 0.20                           | 0.40                           | 0.03                           |
| Depth to<br>Water                                 | (feet) | creen Inter                         | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        | I        | ł        | ł        | ł        | 8.61     | 8.54     | 8.39     | 8.66     | 8.04     | 7.72                           | 9.30                           | 9.29                           | 8.98                           |
|                                                   | (feet) | S)                                  | ł        | ł        | ł        | 1        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        | 5.32     | 5.32     | 8.46     | 8.46     | 8.46     | 8.46                           | 8.46                           | 8.46                           | 8.46                           |
| Date TOC<br>Sampled Elevation                     |        | U-1                                 | 08/10/90 | 01/07/91 | 04/01/91 | 07/03/91 | 10/09/91 | 02/12/92 | 05/05/92 | 06/11/92 | 08/20/92 | 02/22/93 | 05/07/93 | 08/08/93 | 11/16/93 | 02/16/94 | 06/22/94 | 09/22/94 | 12/24/94 | 03/25/95                       | 06/21/95                       | 09/19/95                       | 12/19/95                       |

# Table 2

# HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005

76 Station 5325

5325

Page 1 of 14

well

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005 76 Station 5325 Table 2

| (μg/l)         (μg/l) | LPH<br>hickne                               | Change TPH-G TPPH Benzene Toluene<br>in 8260B | ene Ethyl-<br>benzene | Total<br>Xylenes | MTBE<br>8021B | MTBE<br>8260B | Comments                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------|------------------|---------------|---------------|--------------------------------|
| ND         2300         1400         11000         4900            540         4300         2600         2600         800            -         -         -         -         -         -         -           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< th=""><th>Elevation Elevation<br/>(feet) (feet) (feet)</th><th>(μg/l)</th><th></th><th>,<br/>(μg/l)</th><th>(μg/l)</th><th>(μg/l)</th><th></th></td<>                                                                                                              | Elevation Elevation<br>(feet) (feet) (feet) | (μg/l)                                        |                       | ,<br>(μg/l)      | (μg/l)        | (μg/l)        |                                |
| -         540         4300         2600         ND         -           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                       | 0.00 0.21 0.71                              | QN                                            |                       | 11000            | 4900          |               |                                |
| 1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                              |                                             |                                               |                       | 26000            | QN            | ł             |                                |
| 1         1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                              | 0.02 -0.63 -1.17                            |                                               |                       | ł                | ł             | ł             | Not sampled due to LPH in well |
| -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                              | 0.03 1.60 2.23                              |                                               | 1                     | ł                | ł             | ł             | Not sampled due to LPH in well |
| 1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                      | 0.55 -0.15 -1.75                            |                                               |                       | ł                | ł             | ł             | Not sampled due to LPH in well |
| -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                              | 0.02 0.07 0.21                              | -                                             |                       | ł                | ł             | ł             | Not sampled due to LPH in well |
| -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                              | 0.02 -0.09 -0.15                            | -                                             |                       | ł                | ł             | 1             | Not sampled due to LPH in well |
| I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                              | 0.01 -0.11 -0.03 -                          | 1                                             |                       | ł                | ł             | ł             | Not sampled due to LPH in well |
| -         ND         900         1800         13000         ND         -           -         ND         2600         13000         83000         4800         -           -         ND         1600         8600         71000         5700         -           -         470         1100         2000         28000         5700         -           -         470         1100         2000         28000         5700         -           -         230         640         590         13000         5700         -           -         2317         202         745         14300         6890         6690           -         89.3         ND         385         6930         15800         14700           -         490         610         2400         10000         22000         23000           -         -         200         ND         7200         15000         23000           -         92         ND         540         22000         23000         23000           -         92         ND         250         1900         15000         23000                                                                                                                                                                                                                                         | 0.04 0.26 0.37 -                            | •                                             |                       | ł                | I             | ł             | Not sampled due to LPH in well |
| -         ND         2600         13000         83000         4800         -           -         ND         1600         8600         71000         5700         -           -         470         1100         2000         28000         5700         -           -         470         1100         2000         28000         5700         -           -         230         640         590         13000         3500         2100           -         217         202         745         14300         6890         6690           -         89.3         ND         385         6930         15800         14700           -         490         610         2400         10000         22000         23000           -         -         200         ND         1200         7200         23000           -         92         ND         540         2800         74000         83000           -         92         ND         250         1900         15000         15000                                                                                                                                                                                                                                                                                                                            | 0.00 0.09 -0.17 52                          | - ND                                          |                       | 13000            | ND            | ł             | Sheen                          |
| -         ND         1600         8600         7100         5700         -           -         470         1100         2000         28000         5700         -           -         230         640         590         13000         3500         2100           -         217         202         745         14300         6890         6690           -         89.3         ND         385         6930         15800         14700           -         490         610         2400         10000         22000         23000           -         200         ND         1200         7200         15000         23000           -         92         ND         540         10000         22000         23000           -         92         ND         7200         15000         23000           -         92         ND         2300         15000         23000           -         92         ND         2300         15000         23000                                                                                                                                                                                                                                                                                                                                                            | 0.00 -0.48 -0.57 100                        | - ND                                          |                       | 83000            | 4800          | 1             | Sheen                          |
| <ul> <li>470 1100 2000 28000 5700 -</li> <li>230 640 590 13000 3500 2100</li> <li>217 202 745 14300 6890 6690</li> <li>89.3 ND 385 6930 15800 14700</li> <li>490 610 2400 10000 22000 23000</li> <li>200 ND 1200 7200 15000 20000</li> <li>92 ND 540 2800 74000 83000</li> <li>ND ND 250 1900 12000 15000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 -0.11 0.37 110                         | - ND                                          |                       | 71000            | 5700          | ł             |                                |
| -         230         640         590         13000         3500           -         217         202         745         14300         6890           -         89.3         ND         385         6930         15800           -         490         610         2400         10000         22000           -         490         610         2400         10000         22000           -         92         ND         1200         7200         15000           -         92         ND         540         2800         74000           -         ND         ND         250         1900         12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.28 0.39                                   |                                               |                       | 28000            | 5700          | ł             | Sheen                          |
| <ul> <li>217 202 745 14300 6890</li> <li>89.3 ND 385 6930 15800</li> <li>490 610 2400 10000 22000</li> <li>200 ND 1200 7200 15000</li> <li>92 ND 540 2800 74000</li> <li>ND ND 250 1900 12000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.91 -1.19                                 |                                               |                       | 13000            | 3500          | 2100          |                                |
| <ul> <li>89.3 ND 385 6930 15800</li> <li>490 610 2400 10000 22000</li> <li>200 ND 1200 7200 15000</li> <li>92 ND 540 2800 74000</li> <li>ND ND 250 1900 12000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 -1.07 -0.16 5                          |                                               |                       | 14300            | 6890          | 6690          |                                |
| <ul> <li>490 610 2400 10000 22000</li> <li>200 ND 1200 7200 15000</li> <li>92 ND 540 2800 74000</li> <li>ND ND 250 1900 12000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 -1.21 -0.14 4                          |                                               |                       | 6930             | 15800         | 14700         |                                |
| <ul> <li>200 ND 1200 7200 15000</li> <li>92 ND 540 2800 74000</li> <li>ND ND 250 1900 12000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00 0.02 1.23 4                            |                                               |                       | 10000            | 22000         | 23000         |                                |
| 92 ND 540 2800 74000<br>ND ND 250 1900 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.99 -1.01                                 |                                               |                       | 7200             | 15000         | 20000         |                                |
| ND ND 250 1900 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.83 0.16                                  |                                               |                       | 2800             | 74000         | 83000         |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00 -0.91 -0.08 5                          | ND                                            |                       | 1900             | 12000         | 15000         |                                |

|                                    |                 | Comments                                          |        |                               |          |          |          |          |          |          |          |          |          |          |          |          |          | Dry well |          |          |          |          |                                     |          |          |          |          |              |
|------------------------------------|-----------------|---------------------------------------------------|--------|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------------------------|----------|----------|----------|----------|--------------|
|                                    |                 | MTBE<br>8260B                                     | (μg/l) | 11800                         | 8700     | 4400     | 5100     | 6300     | 1        | 4700     | 4700     | 5500     | 10000    | 11000    | 11000    | 13000    | 12000    | -        | 8.2      | 460      | 60       | 18       |                                     | ł        | ł        | ł        | ł        |              |
|                                    |                 | MTBE<br>8021B                                     | (µg/]) | 11200                         | 6500     | 4400     | 5100     | 6400     | 6500     | 3500     | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |                                     | I        | I        | ł        | ł        |              |
|                                    |                 | Total<br>Xylenes                                  | (μg/l) | 638                           | 420      | 590      | 1500     | 069      | 180      | 68       | <100     | 130      | ND<50    | ND<200   | ND<200   | ND<200   | ND<200   | 1        | ND<1.0   | 5300     | 68       | 26       |                                     | 130      | 69       | 190      | 290      |              |
| er 2005                            |                 | Ethyl-<br>benzene                                 | (µg/l) | 96.3                          | 69       | 65       | 380      | 360      | 240      | ND<12    | ND<50    | 400      | ND<25    | ND<100   | ND<100   | 190      | ND<100   | ł        | ND<0.50  | 1500     | 48       | 3.0      |                                     | 15       | 58       | 34       | 3.1      |              |
| h Septemb                          | n 5325          | Toluene                                           | (μg/l) | 10.4                          | ND       | ND<25    | ND<100   | ND<20    | ND<10    | ND<12    | ND<50    | ND<25    | ND<25    | ND<100   | ND<100   | ND<100   | ND<100   | ł        | ND<0.50  | ND<10    | ND<0.50  | 0.60     |                                     | 46       | 5.8      | 89       | 25       | of 14        |
| 0 Throug                           | 76 Station 5325 | Benzene                                           | (µg/l) | 29.8                          | 17       | 36       | 220      | 28       | 31       | ND<12    | ND<50    | 26       | ND<25    | ND<100   | ND<100   | ND<100   | ND<100   | I        | ND<0.50  | ND<10    | ND<0.50  | ND<0.50  |                                     | 27       | 67       | 250      | 150      | Page 3 of 14 |
| August 1990 Through September 2005 |                 | TPPH<br>8260B                                     | (µg/]) | 1                             | ł        | ;        | ł        | ł        | ł        | ł        | ND<5000  | 8900     | 8300     | ND<10000 | ND<10000 | 12000    | 13000    | I        | ND<50    | 37000    | 3900     | 560      |                                     | ł        | ł        | ł        | ł        |              |
| •                                  |                 | TPH-G                                             | (µg/l) | 6220                          | 5200     | 4300     | 11000    | 5500     | 4600     | 2300     | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | 1        | 1        |                                     | 780      | 1900     | 1700     | 2100     |              |
|                                    |                 | Change<br>in<br>Elevation                         | (feet) | 0.92                          | -0.84    | -0.10    | 0.22     | -0.27    | 1.12     | -1.04    | 1.18     | -0.11    | 0.71     | I        | ł        | 0.52     | -1.97    | ł        | ł        | 06.0     | -0.81    | -2.44    |                                     | ;        | 1        | ł        | ł        |              |
|                                    |                 | Ground- Change<br>water in<br>Elevation Elevation | (feet) | 0.01                          | -0.83    | -0.93    | -0.71    | -0.98    | 0.14     | -0.90    | 0.28     | 0.17     | 0.88     | ł        | -0.44    | 0.08     | -1.89    | ł        | -0.54    | 0.36     | -0.45    | -2.89    | : 5.0-20.0)                         | ł        | ł        | ł        | ł        |              |
|                                    |                 | LPH<br>Thickness                                  | (feet) | 0.00                          | 0.00     | 00.00    | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | ł        | 0.00     | 0.00     | 0.00     | 0.00     | (Screen Interval in feet: 5.0-20.0) | ł        | ł        | ł        | ł        |              |
|                                    |                 | 0                                                 | (feet) | 8.45                          | 9.29     | 9.39     | 9.17     | 9.44     | 8.32     | 9.36     | 8.18     | 8.29     | 7.58     | 8.18     | 8.90     | 8.38     | 10.35    | ł        | 9.00     | 8.10     | 8.91     | 11.35    | creen Inte                          | I        | 1        | 1        | ł        |              |
|                                    |                 | TOC<br>Elevation                                  | (feet) | <b>continued</b><br>7/01 8.46 | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 1 8.46   | 8.46     | 1 8.46   | 8.46     | 8.46     | 8.46     | 8.46     |                                     | 1        | 1        | 1        | ł        |              |
|                                    |                 | Date<br>Sampled I                                 |        | <b>U-1 coi</b><br>03/07/01    | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03 | 12/02/03 | 03/30/04 | 06/07/04 | 09/00/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | U-2                                 | 08/10/90 | 01/07/91 | 04/01/91 | 07/03/91 | 5325         |

Table 2

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through Sentember 2005

|                                    |                 | Comments                                          |        |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | Not sampled due to LPH in well | Not sampled due to LPH in well |              |
|------------------------------------|-----------------|---------------------------------------------------|--------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|--------------------------------|--------------|
|                                    |                 | MTBE<br>8260B                                     | (µg/l) |           | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł                              | ł                              |              |
|                                    |                 | MTBE<br>8021B                                     | (µg/l) |           | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |          | I        | ł        | ł        | ł        | 22000    | 3000     | 18000    | 2700     | ł                              | I                              |              |
|                                    |                 | Total<br>Xylenes                                  | (µg/l) |           | 11       | 0.4      | 290      | 37       | 4.6      | 5800     | 4000     | 670      | ŊŊ       | 40       | 3500     | ND       | 5000     | 33000    | 1700     | 240      | 270      | 2200     | 3100     | ŊŊ       | 370      | 1                              | 1                              |              |
| ber 2005                           |                 | Ethyl-<br>benzene                                 | (µg/l) |           | ND       | 0.36     | 6.2      | ΟN       | 1.3      | 1200     | 1700     | 410      | QN       | 2.7      | 1500     | ND       | 1300     | 4800     | 1800     | 78       | 52       | 1200     | 2800     | ND       | 980      | ł                              | ł                              |              |
| gh Septem                          | n 5325          | Toluene                                           | (μg/l) |           | QN       | QN       | 52       | 2.1      | 6.5      | 2100     | 660      | Q        | Ŋ        | 13       | 62       | ND       | 890      | 21000    | QN       | ND       | 55       | ŊŊ       | ND       | ND       | 290      | ł                              | I                              | Page 4 of 14 |
| August 1990 Through September 2005 | 76 Station 5325 | Benzene                                           | (μg/l) |           | 7.1      | 1.9      | 120      | 17       | 28       | 2400     | 1800     | 420      | QN       | 49       | 2200     | 29       | 1500     | 1900     | 2100     | 610      | 140      | 2200     | 3400     | 750      | 5100     | I                              | I                              | Page 4       |
| August 19                          |                 | TPPH<br>8260B                                     | (µg/]) |           | ł        | ł        | ł        | I        | I        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | ł                              | I                              |              |
|                                    |                 | TPH-G                                             | (µg/l) |           | 230      | 410      | 1600     | 620      | 700      | 3400     | 17000    | 5600     | 510      | 980      | 31000    | 8500     | 32000    | 170000   | 16000    | 3000     | 1600     | 12000    | 28000    | 5900     | 13000    | ł                              | ł                              |              |
|                                    |                 | Ground- Change<br>water in<br>Elevation Elevation | (feet) |           | ł        | 1        | ł        | I        | I        | I        | ł        | ł        | ł        | 0.44     | 3.22     | -0.33    | 0.66     | 0.26     | 0.03     | -0.72    | 0.40     | 0.85     | -0.96    | -0.49    | 1.14     | -0.34                          | 0.91                           |              |
|                                    |                 |                                                   | (feet) |           | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | -3.64    | -3.20    | 0.02     | -0.31    | 0.35     | 0.61     | 0.64     | -0.08    | 0.32     | 1.17     | 0.21     | -0.28    | 0.86     | 0.52                           | 1.43                           |              |
|                                    |                 | LPH<br>Thickness                                  | (feet) |           | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.03                           | 0.00                           |              |
|                                    |                 | Depth to<br>Water                                 | (feet) |           | ł        | ł        | ł        | ł        | ł        | <b>¦</b> | ł        | ł        | 8.17     | 7.73     | 7.60     | 7.93     | 7.27     | 7.01     |          |          |          |          |          | 7.90     | 6.76     | 7.12                           | 6.19                           |              |
|                                    |                 | TOC<br>Elevation                                  | (feet) | continued | 1        | 1        |          |          |          | 1        | 1        | 1        | 3 4.53   | 4.53     | t 7.62   | t 7.62   | t 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 5 7.62   | 7 7.62                         | 7 7.62                         |              |
|                                    |                 | Date<br>Sampled                                   |        | U-2 co    | 10/09/91 | 02/12/92 | 05/05/92 | 06/11/92 | 08/20/92 | 02/22/93 | 05/07/93 | 08/08/93 | 11/16/93 | 02/16/94 | 06/22/94 | 09/22/94 | 12/24/94 | 03/25/95 | 06/21/95 | 09/19/95 | 12/19/95 | 03/18/96 | 06/27/96 | 09/26/96 | 12/09/96 | 03/14/97                       | 06/30/97                       | 5325         |

# HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS 2000 Å - P 0.7 Table 2 4 1000 T.b. .

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005 Table 2

# 76 Station 5325

| Comments                                          |        | Not sampled due to LPH in<br>well | Not sampled due to LPH in well | Sheen    | Sheen    | Sheen    |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |              |
|---------------------------------------------------|--------|-----------------------------------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|
| MTBE<br>8260B                                     | (µg/l) | ł                                 | I                              | ł        | I        | 1        | ł        | ł        | 7800     | 15300    | 15600    | 26000    | 22000    | 26000    | 7800     | 7900     | 10000    | 11000    | 2500     | 11000    | ł        | 15000    | 3200     | 7800     |              |
| MTBE<br>8021B                                     | (µg/l) | ł                                 | I                              | 16000    | 20000    | 19000    | 16000    | 25000    | 7900     | 16400    | 14900    | 22000    | 16000    | 20000    | 8000     | 5930     | 9200     | 9800     | 2500     | 11000    | 14000    | 11000    | ł        | ł        |              |
| Total<br>Xylenes                                  | (μg/l) | ł                                 | I                              | 16000    | 7900     | 00/6     | 5600     | 2900     | 2600     | 4110     | 157      | 2100     | 800      | 39       | 87       | 19.5     | 35       | 100      | 6.8      | 31       | 48       | ND<25    | ND<100   | ND<100   |              |
| Ethyl-<br>benzene                                 | (μg/l) | ł                                 | ł                              | 820      | 470      | 500      | 320      | 360      | 310      | 286      | ΟN       | ND       | ND       | QN       | QN       | 7.20     | 9.3      | 12       | 3.4      | 40       | 33       | ND<25    | ND<50    | ND<50    |              |
| Toluene                                           | (µg/l) | ł                                 | ł                              | 1100     | 330      | ΟN       | 160      | QN       | 190      | 138      | QN       | 160      | QN       | QN       | QN       | QN       | DN       | ND<2.5   | 0.55     | ND<10    | ND<25    | ND<25    | ND<50    | ND<50    | of 14        |
| Benzene                                           | (µg/l) | ł                                 | ł                              | 3000     | 1800     | 1300     | 590      | 1100     | 110      | 477      | 17.2     | 380      | 22       | 43       | 17       | 51.0     | 14       | 25       | 14       | 28       | 32       | ND<25    | ND<50    | ND<50    | Page 5 of 14 |
| ТРРН<br>8260 <b>В</b>                             | (µg/l) | ł                                 | ł                              | ł        | ł        | ł        | ł        | ł        | :        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ND<5000  | 8100     |              |
| D-H-T                                             | (µg/l) | 1                                 | ł                              | 80000    | 48000    | 60000    | 63000    | 28000    | 21000    | 23300    | 4840     | 11000    | 9100     | 2900     | 3600     | 1670     | 1100     | 1000     | 83       | ND<1000  | 7700     | 5200     | ł        | ł        |              |
| Change<br>in<br>Elevation                         | (feet) | -1.12                             | 0.56                           | 0.39     | -0.15    | -0.66    | 0.11     | 0.24     | -0.69    | -0.65    | -0.15    | 1.62     | -0.98    | 0.23     | -0.07    | 0.36     | -0.42    | -0.06    | 0.85     | -0.34    | -0.06    | -0.40    | -0.10    | -0.09    |              |
| Ground- Change<br>water in<br>Elevation Elevation | (feet) | 0.31                              | 0.87                           | 1.26     | 1.11     | 0.45     | 0.56     | 0.80     | 0.11     | -0.54    | -0.69    | 0.93     | -0.05    | 0.18     | 0.11     | 0.47     | 0.05     | -0.01    | 0.84     | 0.50     | 0.44     | 0.04     | -0.06    | -0.15    |              |
| LPH<br>Thickness                                  | (feet) | 0.00                              | 0.00                           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |              |
| Depth to<br>Water                                 | (feet) | 7.31                              | 6.75                           | 6.36     | 6.51     | 7.17     | 7.06     | 6.82     | 7.51     | 8.16     | 8.31     | 69.9     | 7.67     | 7.44     | 7.51     | 7.15     | 7.57     | 7.63     | 6.78     | 7.12     | 7.18     | 7.58     | 7.68     | 7.77     |              |
| TOC<br>Elevation                                  | (feet) | continued<br>9/97 7.62            | 7.62                           | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 2 7.62   | 2.62     | 2 7.62   | 2 7.62   | 3 7.62   |              |
| Date<br>Sampled I                                 |        | <b>U-2 сол</b><br>09/19/97        | 12/12/97                       | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 | 06/21/00 | 09/27/00 | 12/12/00 | 03/07/01 | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 5325         |

| Table 2 |  |
|---------|--|

# HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005

76 Station 5325

| MTBE<br>8260B                 | (µg/l) | 16000                       | 10000    | 10000    | 11000    | 13000    | 9500     | 11000    | 7000     | 2400     | 80       |                                     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        |              |
|-------------------------------|--------|-----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|
| MTBE<br>8021B                 | (µg/l) | 1                           | ł        | ł        | 1        | ł        | ł        | ł        | ł        | 1        | ł        |                                     | ł        | ł        | I        | ł        | ł        | ł        | ł        | Į        | ł        | ł        | ł        | ł        | ł        |              |
| Total<br>Xylenes              | (hg/l) | ND<100                      | ND<200   | ND<200   | ND<200   | ND<200   | ND<200   | ND<100   | 120      | 1.1      | ND<1.0   |                                     | QN       | 1.8      | 5.4      | DN       | ND       | ND       | ND       | ND       | ND       | Ŋ        | ND       | 4.1      | ND       |              |
| Ethyl-<br>benzene             | (µg/l) | ND<50                       | ND<100   | ND<100   | ND<100   | ND<100   | ND<100   | ND<50    | 160      | 3.7      | ND<0.50  |                                     | QN       | ND       | 0.53     | ND       | ΟN       | ΟN       | ΟN       | QN       | QN       | QN       | ΟN       | 0.7      | ND       |              |
| Toluene                       | (l/gµ) | ND<50                       | ND<100   | ND<100   | ND<100   | ND<100   | ND<100   | ND<50    | ND<50    | ND<0.50  | ND<0.50  |                                     | ND       | ND       | 2.9      | ŊŊ       | ND       | ND       | ŊŊ       | ND       | ND       | ND       | ND       | 9.7      | QN       | of 14        |
| Benzene                       | (μg/l) | ND<50                       | ND<100   | ND<100   | ND<100   | ND<100   | ND<100   | ND<50    | ND<50    | 0.75     | ND<0.50  |                                     | ΟN       | ŊŊ       | 1.0      | ŊŊ       | QN       | ND       | ŊŊ       | QN       | QN       | QN       | ŊŊ       | 5.0      | QN       | Page 6 of 14 |
| TPPH<br>8260B                 | (µg/l) | 11000                       | ND<10000 | ND<10000 | 12000    | 14000    | ND<10000 | ND<5000  | 12000    | 2000     | 320      |                                     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |              |
| TPH-G                         | (μg/l) | 1                           | ſ        | ł        | ł        | ł        | ł        | ł        | I        |          | ł        |                                     | QN       | QN       | ND       | QN       | QN       | DN       | QN       | QN       | ŊŊ       | ND       | DN       | 210      | QN       |              |
| Change<br>in<br>Elevation     | (feet) | 0.90                        | -0.62    | -0.46    | 0.88     | -0.68    | -0.90    | 0.92     | 1.49     | -0.81    | -0.95    |                                     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |              |
| Ground-<br>water<br>Elevation | (feet) | 0.75                        | 0.13     | -0.33    | 0.55     | -0.13    | -1.03    | -0.11    | 1.38     | 0.57     | -0.38    | : 5.0-20.0)                         | ł        | ł        | I        | I        | I        | ł        | I        | I        | I        | I        | I        | ł        | -3.96    |              |
| LPH<br>Thickness              | (feet) | 0.00                        | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 00:00    | 0.00     | 0.00     | 0.00     | (Screen Interval in feet: 5.0-20.0) | 1        | ł        | ł        | ľ        | I        | ł        | ł        | 1        | ł        | 1        | ł        | ł        | 0.00     |              |
| Depth to<br>Water             | (feet) | 6.87                        | 7.49     | 7.95     | 7.07     | 7.75     | 8.65     | 7.73     | 6.24     | 7.05     | 8.00     | creen Inter                         | ł        | I        | I        | I        | I        | ł        | I        | I        | I        | ł        | I        | I        | 11.82    |              |
|                               | (feet) | continued<br>3/03 7.62      | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | 7.62     | S)                                  | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | 1        | ł        | ł        | 7.86     |              |
| Date TOC<br>Sampled Elevation |        | <b>U-2 cont</b><br>06/18/03 | 09/24/03 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | U-3                                 | 08/10/90 | 01/07/91 | 04/01/91 | 07/03/91 | 10/09/91 | 02/12/92 | 05/05/92 | 06/11/92 | 08/20/92 | 02/22/93 | 05/07/93 | 08/08/93 | 11/16/93 | 5325         |

Comments

|                                                       | Comments                      |        |                               |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
|-------------------------------------------------------|-------------------------------|--------|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
|                                                       | MTBE<br>8260B                 | (μg/l) | -                             | ł        | ł        | ł        | 1        | ł        | ł        | 1        | ł        | ł        | ;        | 1        | +        | ł        | 1        | 1        | :        | +        | ł        | 1        | ł        | ł        | 1        | ł        |         |
|                                                       | MTBE<br>8021B                 | (hg/l) | -                             | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 50       | DN       | 29       | DN       | QN       | DN       | QN       | QN       | QN       | QN       | QN       | ŊŊ       | ΟN       | DN       | ŊŊ       |         |
|                                                       | Total<br>Xylenes              | (µg/l) | QN                            | ND       | 140      | QN       | QN       | QN       | ŊŊ       | ND       | QN       | QN       | QN       | ŊŊ       | ŊŊ       | QN       | QN       | QN       | QN       |         |
| er 2005                                               | Ethyl-<br>benzene             | (hg/l) | QN                            | QN       | ΟN       | DN       | ŊŊ       | QN       | ND       | ND       | ΟN       | 51       | ND       | ND       | ND       | ŊŊ       | DN       | ŊŊ       | Ŋ        | ND       | ŊŊ       | QN       | ND       | ND       | ND       | ŊŊ       |         |
| h Septemb<br>1 5325                                   | Toluene                       | (µg/l) | QN                            | QN       | QN       | QN       | ND       | ND       | ΟN       | ND       | QN       | 50       | ND       | ŊŊ       | ND       | ND       | ND       | ŊŊ       | ND       | ND       | ND       | ND       | ND       | ΟN       | ŊŊ       | ŊŊ       | 7 of 14 |
| August 1990 Through September 2005<br>76 Station 5325 | Benzene                       | (µg/l) | QN                            | DN       | QN       | ND       | QN       | QN       | ND       | ND       | ŊŊ       | 49       | ND       | ŊŊ       | ND       | ŊŊ       | QN       | ND       | ŊŊ       | ND       | ND       | QN       | Ŋ        | Ŋ        | ND       | QN       | Doco 7  |
| August 199                                            | TPPH<br>8260B                 | (µg/l) | I                             | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | 1        | l        | 1        |         |
| 7                                                     | TPH-G                         | (µg/l) | QN                            | Ŋ        | ND       | QN       | QN       | QN       | QN       | QN       | QN       | 440      | Ŋ        | QN       | QN       | QN       | ND       | ŊŊ       | ŊŊ       | ND       | ŊŊ       | ND       | ND       | ŊŊ       | ND       | QN       |         |
|                                                       | Change<br>in<br>Elevation     | (feet) | 0.20                          | 3.10     | -0.12    | 0.48     | 0.32     | -0.41    | -0.18    | 0.10     | 0.35     | -0.06    | -0.39    | 1.43     | -0.75    | -0.21    | 0.03     | 0.47     | 0.74     | -0.72    | -0.56    | 0.16     | 1.50     | -1.55    | -0.30    | 0.05     |         |
|                                                       | Ground-<br>water<br>Elevation | (feet) | -3.76                         | -0.66    | -0.78    | -0.30    | 0.02     | -0.39    | -0.57    | -0.47    | -0.12    | -0.18    | -0.57    | 0.86     | 0.11     | -0.10    | -0.07    | 0.40     | 1.14     | 0.42     | -0.14    | 0.02     | 1.52     | -0.03    | -0.33    | -0.28    |         |
|                                                       | LPH<br>Thickness              | (feet) | 0.00                          | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |         |
|                                                       | Depth to<br>Water             | (feet) | 11.62                         | 11.64    | 11.76    | 11.28    | 10.96    | 11.37    | 11.55    | 11.45    | 11.10    | 11.16    | 11.55    | 10.12    | 10.87    | 11.08    | 11.05    | 10.58    | 9.84     | 10.56    | 11.12    | 10.96    | 9.46     | 11.01    | 11.31    | 11.26    |         |
|                                                       | TOC<br>Elevation              | (feet) | <b>continued</b><br>5/94 7.86 | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    | 10.98    |         |
|                                                       | Date<br>Sampled E             |        | <b>U-3 con</b><br>02/16/94    | 06/22/94 | 09/22/94 | 12/24/94 | 03/25/95 | 06/21/95 | 09/19/95 | 12/19/95 | 03/18/96 | 06/27/96 | 09/26/96 | 12/09/96 | 03/14/97 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 |         |

 Table 2

 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

 August 1990 Through September 2005

5325

Page 7 of 14

| Table 2 | HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS | August 1990 Through September 2005 |
|---------|-------------------------------------------------------|------------------------------------|
|---------|-------------------------------------------------------|------------------------------------|

# 990 Through September 2005 76 Station 5325

| (feet)         (feet)           8.28         0.00           11.12         0.00           11.07         0.00           10.94         0.00           8.32         0.00           10.94         0.00           8.32         0.00           10.94         0.00           10.94         0.00           10.94         0.00           10.94         0.00           11.03         0.00           8.16         0.00           7.82         0.00           10.58         0.00 | 9       | (feet)<br>2.98<br>-2.84<br>0.05<br>0.13<br>2.62<br>-2.62<br>-2.62<br>-0.09<br>0.34 | (l/gµ)<br>ND<br>ND<br>ND<br>S0<br>ND<br>S0<br>ND<br>S0 |       | (l/gµ)<br>dN<br>dN<br>dN<br>dN<br>dN<br>dN<br>dN<br>dN<br>dN<br>dN | (μg/l)<br>ND<br>ND<br>ND<br>ND<br>ND<0.50<br>ND<0.50  | (I/gµ)<br>DN<br>DN<br>DN<br>DN<br>DN | (l/gµ)<br>UN | (µg/l) | (hg/l)<br> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------|--------------------------------------------------------|-------|--------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|--------------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 2.98<br>-2.84<br>0.05<br>0.13<br>2.62<br>-2.62<br>-0.09<br>0.34                    | UN<br>UN<br>UN<br>UN<br>VD<50<br>ND<50                 |       | UN<br>UN<br>UN<br>UN<br>UN<br>20.50<br>NN<br>20.50                 | ND<br>ND<br>ND<br>ND<br>ND<0.50<br>ND<0.50<br>ND<0.50 | an an an                             | Q            |        | :          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -2.84<br>0.05<br>0.13<br>2.62<br>-2.62<br>-0.09<br>0.34                            | ND<br>ND<br>ND<br>ND<br>S0<br>ND<br>S0                 |       | UN<br>UN<br>UN<br>UN<br>UN<br>ND<0.50<br>NN<br>202.00              | ND<br>ND<br>ND<br>ND<br>ND<br>20.50<br>ND<0.50        | ON ON ON                             |              | בר     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0.05<br>0.13<br>2.62<br>-2.62<br>-0.09<br>2.87<br>0.34                             | ND<br>ND<br>ND<br>ND<50<br>ND<50                       |       | ND<br>ND<br>ND<br>ND<0.50<br>ND<0.50<br>ND                         | ND<br>ND<br>ND<br>ND<br>ND<br>20.50<br>ND<br>20.50    | ON ON                                | QN           | DN     | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0.13<br>2.62<br>-2.62<br>-0.09<br>2.87<br>0.34                                     | ND<br>ND<br>ND<50<br>ND<50                             |       | ND<br>ND<br>ND<0.50<br>ND<0.50                                     | ND<br>ND<br>ND<br>ND<0.50<br>ND<0.50<br>ND<0.50       | ŊŊ                                   | ND           | QN     | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 2.62<br>-2.62<br>-0.09<br>2.87<br>0.34                                             | ND<br>ND<br>ND<50<br>ND<50                             |       | ND<br>ND<br>ND<0.50<br>ND<0.50                                     | ND<br>ND<br>ND<0.50<br>ND<0.50<br>ND<0.50             |                                      | ND           | ŊŊ     | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -2.62<br>-0.09<br>2.87<br>0.34                                                     | ND<br>ND<50<br>ND<50                                   |       | ND<br>ND<0.50<br>ND<0.50                                           | ND<br>ND<0.50<br>ND<0.50<br>ND<0.50                   | ND                                   | QN           | ŊŊ     | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -0.09<br>2.87<br>0.34                                                              | ND<50<br>ND<50                                         |       | ND<0.50<br>ND<0.50                                                 | ND<0.50<br>ND<0.50<br>ND<0.50                         | ND                                   | ND           | QN     | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 2.87<br>0.34                                                                       | ND<50                                                  | ł     | ND<0.50                                                            | ND<0.50<br>ND<0.50                                    | ND<0.50                              | ND<0.50      | ND<2.5 | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0.34                                                                               |                                                        |       |                                                                    | ND<0.50                                               | ND<0.50                              | ND<0.50      | ND<2.5 | I          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                    | ND<50                                                  | ł     | NC.N>UN                                                            |                                                       | ND<0.50                              | ND<0.50      | ND<5.0 | ł          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0.40  | -2./0                                                                              | ND<50                                                  | ł     | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<0.50      | ND<2.5 | ł          |
| 10.94 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.04  | -0.36                                                                              | ND<50                                                  | ł     | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<0.50      | ND<2.5 | ł          |
| 10.66 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.32  | 0.28                                                                               | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<2.0     |
| 10.76 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.22  | -0.10                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<2.0     |
| 10.26 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.72  | 0.50                                                                               | 1                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<2.0     |
| 10.88 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.10  | -0.62                                                                              | 1                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<2.0     |
| 11.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -0.02 | -0.12                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<2.0     |
| 10.64 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.34  | 0.36                                                                               | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |
| 11.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -0.02 | -0.36                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |
| 11.31 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -0.33 | -0.31                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |
| 10.79 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.19  | 0.52                                                                               | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |
| 9.80 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1.18  | 66.0                                                                               | 1                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |
| 10.75 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.23  | -0.95                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50                                               | ND<0.50                              | 1.2          | ł      | ND<0.50    |
| 11.16 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 -0.18 | -0.41                                                                              | ł                                                      | ND<50 | ND<0.50                                                            | ND<0.50 ND<0.50                                       | ND<0.50                              | ND<1.0       | ł      | ND<0.50    |

Comments

Page 8 of 14

|                                                       | Comments                      |        |                            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |   |
|-------------------------------------------------------|-------------------------------|--------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|
|                                                       | MTBE<br>8260B                 | (μg/l) |                            |          | ł        | ł        | ł        | ł        | I        | I        | 1        | 1        |          | 1        | ł        | 1        | 1        | ł        | ł        | I        |          | 1        | 1        | ł        | -        | ł        |   |
|                                                       | MTBE<br>8021B                 | (μg/l) |                            |          | ł        | ł        | ł        | ł        | ł        | ł        | ND       | ND       | 33       | ND       | ND       | ND       | ND       | ND       | ND       | ŊŊ       | ND       | ŊŊ       | ND       | ND       | ND       | ND       |   |
|                                                       | Total<br>Xylenes              | (μg/l) | CIN                        | 1.4      | QN       | Ŋ        | QN       | Ŋ        | Ŋ        | ŊŊ       | QN       | ŊŊ       | QN       | QN       | QN       | ŊŊ       | QN       | QN       | ΟN       | ŊŊ       | QN       | ND       | ΟN       | ΟN       | ΟN       | ND       |   |
| oer 2005                                              | Ethyl-<br>benzene             | (μg/l) | ÛN                         | a a      | QN       | ŊŊ       | QN       | QN       | QN       | QN       | QN       | QN       | ŊŊ       | ŊŊ       | QN       | ND       | ND       | ŊŊ       | ŊŊ       | ND       | ND       | ND       | ND       | ND       | QN       | ND       |   |
| h Septeml<br>n 5325                                   | Toluene                       | (µg/l) |                            | 5.1      | QN       | Ŋ        | ND       | QN       | ND       | QN       | QN       | ND       | ŊŊ       | QN       | ŊŊ       | ŊŊ       | ND       | ΟN       | ND       | QN       | ŊŊ       | ΟN       | ŊŊ       | ΟN       | ND       | ND       |   |
| August 1990 Through September 2005<br>76 Station 5325 | Benzene                       | (µg/l) | CIN                        | 0.78     | ND       | ND       | ΟN       | ND       | ŊŊ       | ND       | ¢ |
| August 199                                            | TPPH<br>8260B                 | (μg/l) |                            | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        |   |
|                                                       | D-H4T                         | (µg/l) | CN                         | a a      | ND       | ND       | ND       | ΩN       | ΩN       | DN       | ND       | QN       | ND       | QN       | QN       | QN       | ΟN       | QN       | QN       | ΟN       | QN       | ND       | ΟN       | ND       | ΟN       | QN       |   |
|                                                       | Change<br>in<br>Elevation     | (feet) | I                          | -0.63    | 0.98     | 0.30     | -0.03    | -0.63    | 0.19     | 0.32     | -0.08    | -0.40    | 1.47     | -0.68    | -0.54    | -0.07    | 1.40     | 0.71     | -1.23    | -0.67    | 0.16     | 1.25     | -1.05    | -0.51    | -0.15    | 2.81     |   |
|                                                       | Ground-<br>water<br>Elevation | (feet) | 00 U                       | 0.36     | 1.34     | 1.64     | 1.61     | 0.98     | 1.17     | 1.49     | 1.41     | 1.01     | 2.48     | 1.80     | 1.26     | 1.19     | 2.59     | 3.30     | 2.07     | 1.40     | 1.56     | 2.81     | 1.76     | 1.25     | 1.10     | 3.91     |   |
|                                                       | LPH<br>Thickness              | (feet) | 0.00                       | 0.00     | 0.00     | 0.00     | 00:00    | 00.00    | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |   |
|                                                       | Depth to<br>Water             | (feet) | 1016                       | 10.79    | 9.81     | 9.51     | 9.54     | 10.17    | 9.98     | 99.66    | 9.74     | 10.14    | 8.67     | 9.35     | 9.89     | 96.6     | 8.56     | 7.85     | 9.08     | 9.75     | 9.59     | 8.34     | 9.39     | 9.90     | 10.05    | 7.24     |   |
|                                                       | TOC<br>Elevation              | (feet) | continued 2/94 11 15       |          | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    | 11.15    |   |
|                                                       | Date<br>Sampled H             |        | <b>U-4 con</b><br>06/22/94 | 09/22/94 | 12/24/94 | 03/25/95 | 06/21/95 | 09/19/95 | 12/19/95 | 03/18/96 | 06/27/96 | 09/26/96 | 12/09/96 | 03/14/97 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 |   |

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS Table 2

5325

Page 9 of 14

|                        |                  |                     |                                                        |                               |                           | 7         | August 19     | August 1990 1 hrougn September 2005<br>76 Station 5325 | n Septemi<br>n 5325 | c002 190          |                  |               |               |  |
|------------------------|------------------|---------------------|--------------------------------------------------------|-------------------------------|---------------------------|-----------|---------------|--------------------------------------------------------|---------------------|-------------------|------------------|---------------|---------------|--|
| Date T<br>Sampled Ele  | TOC<br>Elevation | Depth to<br>Water   | LPH<br>Thickness                                       | Ground-<br>water<br>Elevation | Change<br>in<br>Elevation | D-H4T     | ТРРН<br>8260В | Benzene                                                | Toluene             | Ethyl-<br>benzene | Total<br>Xylenes | MTBE<br>8021B | MTBE<br>8260B |  |
|                        | (feet)           | (feet)              | (feet)                                                 | (feet)                        | (feet)                    | (µg/l)    | (µg/l)        | (l/g/l)                                                | (µg/])              | (l/g/l)           | (µg/l)           | (µg/l)        | (μg/l)        |  |
| U-4 continued          | inued            |                     | 6                                                      |                               |                           |           |               |                                                        |                     |                   |                  |               |               |  |
| 06/21/00               | 11.15            | 9.48                | 0.00                                                   | 1.67                          | -2.24                     | QN        | ł             | Ð                                                      | QN                  | Ŋ                 | ND               | ŊŊ            | ł             |  |
| 09/27/00               | 11.15            | 9.42                | 0.00                                                   | 1.73                          | 0.06                      | <b>UN</b> | E I           | Q                                                      | QN                  | ŊŊ                | ŊŊ               | QN            | ł             |  |
| 12/12/00               | 11.15            | 9.50                | 0.00                                                   | 1.65                          | -0.08                     | QN        | ł             | QN                                                     | ND                  | ΟN                | ND               | ND            | ł             |  |
| 03/07/01               | 11.15            | 6.88                | 0.00                                                   | 4.27                          | 2.62                      | ŊŊ        | ł             | Q                                                      | QN                  | ŊŊ                | ND               | ΟN            | ł             |  |
| 06/06/01               | 11.15            | 9.18                | 0.00                                                   | 1.97                          | -2.30                     | ŊŊ        | ł             | QN                                                     | QN                  | QN                | ND               | QN            | ł             |  |
| 09/24/01               | 11.15            | 9.21                | 0.00                                                   | 1.94                          | -0.03                     | ND<50     | ł             | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<0.50          | ND<2.5        | ł             |  |
| 12/10/01               | 11.15            | 7.32                | 0.00                                                   | 3.83                          | 1.89                      | ND<50     | ł             | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<0.50          | ND<2.5        | ł             |  |
| 03/11/02               | 11.15            | 6.92                | 0.00                                                   | 4.23                          | 0.40                      | ND<50     | ł             | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<0.50          | ND<5.0        | ł             |  |
| 06/04/02               | 11.15            | 7.58                | 0.00                                                   | 3.57                          | -0.66                     | ND<50     | ł             | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<0.50          | ND<2.5        | ł             |  |
| 09/03/02               | 11.15            | 9.17                | 0.00                                                   | 1.98                          | -1.59                     | ND<50     | ł             | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<0.50          | ND<2.5        | -             |  |
| 12/03/02               | 11.15            | 9.20                | 0.00                                                   | 1.95                          | -0.03                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<2.0        |  |
| 03/04/03               | 11.15            | 9.32                | 0.00                                                   | 1.83                          | -0.12                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | 1             | ND<2.0        |  |
| 06/18/03               | 11.15            | 7.65                | 0.00                                                   | 3.50                          | 1.67                      | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<2.0        |  |
| 09/24/03               | 11.15            | 8.26                | 0.00                                                   | 2.89                          | -0.61                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<2.0        |  |
| 12/02/03               | 11.15            | 9.16                | 0.00                                                   | 1.99                          | -0.90                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<2.0        |  |
| 03/30/04               | 11.15            | 7.47                | 0.00                                                   | 3.68                          | 1.69                      | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| 06/07/04               | 11.15            | 8.93                | 0.00                                                   | 2.22                          | -1.46                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| 09/09/04               | 11.15            | 9.83                | 0.00                                                   | 1.32                          | -0.90                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| 12/20/04               | 11.15            | 8.28                | 0.00                                                   | 2.87                          | 1.55                      | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| 03/28/05               | 11.15            | 6.35                | 0.00                                                   | 4.80                          | 1.93                      | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | I             | ND<0.50       |  |
| 06/14/05               | 11.15            | 8.10                | 0.00                                                   | 3.05                          | -1.75                     | .         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| 09/28/05               | 11.15            | 9.59                | 0.00                                                   | 1.56                          | -1.49                     | ł         | ND<50         | ND<0.50                                                | ND<0.50             | ND<0.50           | ND<1.0           | ł             | ND<0.50       |  |
| <b>U-5</b><br>06/22/94 | (S)<br>6.98      | icreen Inte<br>6.83 | (Screen Interval in feet: 5.0-20.0<br>3 6.83 0.00 0.15 | : <b>5.0-20.0)</b><br>0.15    | ł                         | 210       | ł             | 7.1                                                    | 13                  | 4.5               | 26               | ł             | I             |  |
| 5325                   |                  |                     |                                                        |                               |                           |           |               | Page 10 of 14                                          | of 14               |                   |                  |               |               |  |

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005 Table 2

Comments

|                                                        | Comments                                          |        |                            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |               |
|--------------------------------------------------------|---------------------------------------------------|--------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|
|                                                        | MTBE<br>8260B                                     | (μg/l) | 1                          | -        | ł        | ł        | X<br>1   | -        | ł        | 1        | 1        | 1        | 1        | 1        | 1        | ł        | ł        | ł        | 1        | ł        | 1        | 350      | 239      | 301      | 37       | 140      |               |
|                                                        | MTBE<br>8021B                                     | (µg/l) |                            | ł        | ł        | ł        | ł        | ł        | ł        | 530      | QN       | 76       | 14       | 270      | 480      | 47       | 330      | 330      | 60       | 150      | 350      | 280      | 280      | 235      | 46       | 120      |               |
|                                                        | Total<br>Xylenes                                  | (µg/]) | 18                         | 430      | 7600     | 3.5      | 99       | ND       | 5.4      | 4600     | 0.96     | 140      | QN       | 980      | 1000     | 2.1      | 190      | 83       | 150      | 27       | 4.5      | 35       | 157      | 22.7     | 8.7      | 4.0      |               |
| c002 190                                               | Ethyl-<br>benzene                                 | (µg/l) | 8.5                        | 670      | 1500     | 9.1      | 13       | ŊŊ       | 0.51     | 1400     | ND       | ND       | ND       | 180      | 370      | 1.6      | 150      | 91       | 39       | 13       | 0.76     | 10       | 32.2     | 11.2     | 5.6      | 66.0     |               |
| n Septemt<br>n 5325                                    | Toluene                                           | (µg/l) | 10                         | 70       | 960      | QN       | 7.1      | QN       | 0.5      | 150      | 0.57     | 46       | QN       | 51       | 13       | ND       | ND       | ND       | ND       | ND       | ND       | QN       | Ŋ        | QN       | 1.0      | ŊŊ       | of 14         |
| August 1990 1 nrougn September 2005<br>76 Station 5325 | Benzene                                           | (µg/l) | 8.4                        | 560      | 390      | 2.3      | 14       | ŊŊ       | 0.67     | 280      | ND       | 29       | ND       | 74       | 160      | 1.3      | 29       | 32       | 44       | 59       | 8.9      | QN       | 26.2     | 9.26     | 12       | 4.0      | Page 11 of 14 |
| vugust 199                                             | TPPH<br>8260B                                     | (µg/l) | 1                          | 1        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        | I        | ł        | ł        | ł        | I        | ł        | ł        | ł        |               |
| 4                                                      | TPH-G                                             | (µg/l) | 170                        | 8700     | 44000    | 400      | 850      | ND       | 100      | 16000    | ND       | 1300     | ŊŊ       | 4200     | 6300     | 60       | 1700     | 1500     | 1700     | 1400     | 780      | 1000     | 2620     | 949      | 880      | 700      |               |
|                                                        | Change<br>in<br>Elevation                         | (feet) | -0.07                      | 0.47     | 0.08     | -0.76    | 0.12     | -0.18    | 0.52     | 0.16     | -0.64    | 1.23     | -1.09    | -0.09    | 0.30     | -0.16    | 0.44     | -0.35    | -0.46    | 0.06     | 0.39     | -0.42    | -0.24    | -0.15    | 0.94     | -0.66    |               |
|                                                        | Ground- Change<br>water in<br>Elevation Elevation | (feet) | 0.08                       | 0.55     | 0.63     | -0.13    | -0.01    | -0.19    | 0.33     | 0.49     | -0.15    | 1.08     | -0.01    | -0.10    | 0.20     | 0.04     | 0.48     | 0.13     | -0.33    | -0.27    | 0.12     | -0.30    | -0.54    | -0.69    | 0.25     | -0.41    |               |
|                                                        | LPH<br>Thickness                                  | (feet) | 0.00                       | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |               |
|                                                        | Depth to<br>Water                                 | (feet) | 6.90                       | 6.43     | 6.35     | 7.11     | 6.99     | 7.17     | 6.65     | 6.49     | 7.13     | 5.90     | 6.99     | 7.08     | 6.78     | 6.94     | 6.50     | 6.85     | 7.31     | 7.25     | 6.86     | 7.28     | 7.52     | 7.67     | 6.73     | 7.39     |               |
|                                                        | TOC<br>Elevation                                  | (feet) | continued<br>2/94 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     |               |
|                                                        | Date<br>Sampled E                                 |        | <b>U-5 con</b><br>09/22/94 | 12/24/94 | 03/25/95 | 06/21/95 | 09/19/95 | 12/19/95 | 03/18/96 | 06/27/96 | 09/26/96 | 12/09/96 | 03/14/97 | 06/30/97 | 26/61/60 | 12/12/97 | 03/03/98 | 06/15/98 | 06/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 | 06/21/00 | 5325          |

# Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005

# 76 Station 5325

| MTBE<br>8260B                 | (µg/l) | 750                           | 12       | 73 4     |          | 42       |          | 47       | ł        | 53       | 11       | 44       | 36       | ND<2.0   | 24       | 130      | 160      | 260      | 120      | 230      | 400      | 370      |                                     | ł         | ł        |
|-------------------------------|--------|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------------------------|-----------|----------|
| MTBE<br>8021B                 | (µg/l) | 160                           | 201      | 357      | dN<br>QN | 40       | ND<2.5   | 42       | 29       | 37       | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |                                     | ł         | 1        |
| Total<br>Xylenes              | (l/gµ) | v<br>-                        |          | 0 669    | QN       | ND<0.50  | ND<0.50  | ND<0.50  | 0.69     | ND<0.50  | ND<1.0   | 2.0      | ND<4.0   | ND<1.0   | ND<1.0   |                                     | QN        | 0 73     |
| Ethyl-<br>benzene             | (hg/l) | ,<br>Q                        |          | QN ON    | n di     | ND<0.50  | 0.66     | ND<0.50  | 0.87     | ND<0.50  | 5.7      | ND<0.50  | 1.9      | ND<2.0   | ND<0.50  | ND<0.50  |                                     | QN        |          |
| Toluene                       | (µg/l) | QN                            |          |          | e q      | ND<0.50  | 09.0     | ND<0.50  | 0.77     | ND<0.50  | ND<2.0   | ND<0.50  | ND<0.50  |                                     | ŊŊ        | 0 8      |
| Benzene                       | (µg/l) | 1 0                           | 3 7      | 5 15     | QN       | ND<0.50  | 13       | ND<0.50  | ND<2.0   | ND<0.50  | ND<0.50  | !                                   | <b>UN</b> | 1 2      |
| ТРРН<br>8260 <b>В</b>         | (µg/l) | ł                             | ;        | 1        | I        | I        | ł        | ł        | ł        | I        | 320      | 100      | 51       | ND<50    | ND<50    | 100      | 250      | 340      | 130      | 670      | 160      | 460      |                                     | ł         | 1        |
| D-H-I                         | (µg/l) | 400                           | 022      | 623      | 110      | 270      | 420      | 260      | 170      | ND<50    | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |                                     | ND        | 130      |
| Change<br>in<br>Elevation     | (feet) | -0.06                         | -0.73    | 0.85     | -0.59    | -0.08    | 0.85     | -0.35    | 0.29     | -0.76    | 0.83     | -0.11    | 0.50     | -0.61    | -0.26    | 0.24     | -1.65    | -3.75    | 4.77     | 0.29     | -0.24    | -2.13    |                                     | I         | -0.20    |
| Ground-<br>water<br>Elevation | (feet) | -0.47                         | -0.70    | 0.15     | -0.44    | -0.52    | 0.33     | -0.02    | 0.27     | -0.49    | 0.34     | 0.23     | 0.73     | 0.12     | -0.14    | 0.10     | -1.55    | -5.30    | -0.53    | -0.24    | -0.48    | -2.61    | : 5.0-24.0)                         | 0.00      | -0.20    |
| LPH<br>Thickness              | (feet) | 0.00                          | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | (Screen Interval in feet: 5.0-24.0) | 0.00      | 0.00     |
| Depth to<br>Water             | (feet) | 7.45                          | 7.68     | 6.83     | 7.42     | 7.50     | 6.65     | 7.00     | 6.71     | 7.47     | 6.64     | 6.75     | 6.25     | 6.86     | 7.12     | 6.88     | 8.53     | 12.28    | 7.51     | 7.22     | 7.46     | 9.59     | creen Inter                         | /.14      | 734      |
| TOC<br>Elevation              | (feet) | <b>continued</b><br>7/00 6.98 | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | 6.98     | S)                                  | /.14      | 7.14     |
| Date<br>Sampled El            |        | <b>U-5 cont</b><br>09/27/00   | 12/12/00 | 03/07/01 | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | U-6<br>02/22/04                     | 100/22/94 | 09/22/94 |

Comments

5325

Page 12 of 14

Table 2

,

# HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS August 1990 Through September 2005

# 76 Station 5325

| Comments                      |        |                            |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |               |
|-------------------------------|--------|----------------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|
| MTBE<br>8260B                 | (µg/l) | ł                          | 1          | I        | 1        | 1        | :        | 1        | 1        | 1        | 1        | ł        | 1        | 1        | -        | -        | 1        | 1        | -        | 850      | 1040     | 1150     | 670      | 590      | 2800     |               |
| MTBE<br>8021B                 | (µg/l) | 1                          | 1          | ł        | ł        | ł        | ł        | 510      | 1400     | 58       | 1500     | 066      | 1400     | 680      | 1600     | 1000     | 1200     | 730      | 1800     | 1000     | 851      | 1140     | 560      | 400      | 2500     |               |
| Total<br>Xylenes              | (µg/]) | 380                        | 8200       | ŊŊ       | ND       | 17       | ND       | QN       | ND       | 140      | DN       | ND       | QN       | ND       | ΟN       | DN       | QN       | QN       | QN       | DN       | QN       | QN       | QN       | QN       | QN       |               |
| Ethyl-<br>benzene             | (hg/l) | 600                        | 1700       | ND       | ND       | 2.9      | QN       | ND       | ŊŊ       | 6.4      | ND       |               |
| Toluene                       | (µg/l) | 59                         | 1300       | Ŋ        | QN       | 1.0      | QN       | QN       | ŊŊ       | 48       | QN       | QN       | QN       | QN       | ŊŊ       | ΟN       | ŊŊ       | ŊŊ       | ŊŊ       | ND       | ΟN       | ΟN       | ND       | ND       | ΟN       | of 14         |
| Benzene                       | (µg/l) | 500                        | 450        | Ŋ        | QN       | 2.5      | QN       | QN       | QN       | 29       | ŊŊ       | QN       | QN       | QN       | QN       | ŊŊ       | ŊŊ       | ΟN       | ŊŊ       | ND       | QN       | ND       | QN       | QN       | QN       | Page 13 of 14 |
| TPPH<br>8260B                 | (µg/l) | . 1                        | - <b>1</b> | ł        | I        | 1        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |               |
| TPH-G                         | (µg/]) | 6900                       | 47000      | ŊŊ       | QN       | 210      | QN       | QN       | ŊŊ       | 1200     | QN       | ŊŊ       | QN       | ŊŊ       | ND       | Ŋ        | QN       | ΟN       | QN       |               |
| Change<br>in<br>Elevation     | (feet) | 0.67                       | 0.38       | -1.31    | -0.10    | -0.05    | 0.89     | 0.34     | -1.10    | 1.74     | -1.42    | -0.05    | 0.10     | -0.04    | 0.29     | -0.18    | -0.72    | 0.11     | 0.32     | -0.26    | -0.22    | -0.15    | 1.15     | -0.89    | 0.16     |               |
| Ground-<br>water<br>Elevation | (feet) | 0.47                       | 0.85       | -0.46    | -0.56    | -0.61    | 0.28     | 0.62     | -0.48    | 1.26     | -0.16    | -0.21    | -0.11    | -0.15    | 0.14     | -0.04    | -0.76    | -0.65    | -0.33    | -0.59    | -0.81    | -0.96    | 0.19     | -0.70    | -0.54    |               |
| LPH<br>Thickness              | (feet) | 0.00                       | 0.00       | 0.00     | 00.0     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |               |
| Depth to<br>Water             | (feet) | 6.67                       | 6.29       | 7.60     | 7.70     | 7.75     | 6.86     | 6.52     | 7.62     | 5.88     | 7.30     | 7.35     | 7.25     | 7.29     | 7.00     | 7.18     | 7.90     | 7.79     | 7.47     | 7.73     | 7.95     | 8.10     | 6.95     | 7.84     | 7.68     |               |
| TOC<br>Elevation              | (feet) | continued<br>1/94 7.14     | 7.14       | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     |               |
| Date<br>Sampled E             |        | <b>U-6 con</b><br>12/24/94 | 03/25/95   | 06/21/95 | 09/19/95 | 12/19/95 | 03/18/96 | 06/27/96 | 09/26/96 | 12/09/96 | 03/14/97 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 | 06/21/00 | 09/27/00 | 5325          |

| MTBE<br>8260B                 | (µg/I) |               | 580      | 321      | 330      | 660      | 220      | 760      | ł        | 1200     | 870      | 2700     | 1700     | 1500     | 1800     | 1700     | 1800     | 1400     | 65       | 150      | 20       | 4.6      |
|-------------------------------|--------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MTBE<br>8021B                 | (µg/l) |               | 590      | 310      | 250      | 530      | 220      | 720      | 470      | 860      | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | I        | ł        | ł        |
| Total<br>Xylenes              | (µg/J) |               | ΟN       | ŊŊ       | ND       | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | 4.7      | ND<10    | ND<20    | ND<20    | ND<200   | ND<20    | ND<20    | ND<20    | ND<20    | ND<5.0   | ND<1.0   | ND<2.0   | ND<1.0   |
| Ethyl-<br>benzene             | (µg/l) |               | ND       | ND       | ΠN       | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | ND<2.5   | ND<5.0   | ND<10    | ND<10    | ND<100   | ND<10    | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<1.0   | ND<0.50  |
| Toluene                       | (µg/l) |               | QN       | Ŋ        | ND       | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | ND<2.5   | ND<5.0   | ND<10    | ND<10    | ND<100   | ND<10    | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<1.0   | ND<0.50  |
| Benzene                       | (hg/l) |               | ND       | ND       | ΠN       | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | ND<2.5   | ND<5.0   | ND<10    | ND<10    | ND<100   | ND<10    | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<1.0   | ND<0.50  |
| TPPH<br>8260B                 | (μg/l) |               | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ND<500   | 2300     | 1300     | ND<10000 | 1300     | 1200     | 1700     | ND<1000  | 320      | ND<50    | ND<100   | 150      |
| TPH-G                         | (µg/l) |               | ŊŊ       | ŊŊ       | ŊŊ       | ND<50    | ND<50    | ND<50    | 250      | 420      | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
| Change<br>in<br>Elevation     | (feet) |               | -0.06    | 0.47     | -0.53    | -0.02    | 0.67     | -0.17    | 0.14     | -0.54    | 0.80     | -0.09    | 0.41     | -0.64    | -0.56    | 0.48     | -2.03    | -3.46    | 4.85     | 0.89     | -0.81    | -2.56    |
| Ground-<br>water<br>Elevation | (feet) |               | -0.60    | -0.13    | -0.66    | -0.68    | -0.01    | -0.18    | -0.04    | -0.58    | 0.22     | 0.13     | 0.54     | -0.10    | -0.66    | -0.18    | -2.21    | -5.67    | -0.82    | 0.07     | -0.74    | -3.30    |
| LPH<br>Thickness              | (feet) |               | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| Depth to<br>Water             | (feet) |               | 7.74     | 7.27     | 7.80     | 7.82     | 7.15     | 7.32     | 7.18     | 7.72     | 6.92     | 7.01     | 6.60     | 7.24     | 7.80     | 7.32     | 9.35     | 12.81    | 7.96     | 7.07     | 7.88     | 10.44    |
|                               | (feet) | nued          | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     | 7.14     |
| Date TOC<br>Sampled Elevation | · · ·  | U-6 continued | 12/12/00 | 03/07/01 | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 |

Comments

# Page 14 of 14

|                                                  | Ethanol<br>8260B              | (μg/l) |     | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ND<400000 | ND<8000  | ND<25000 | ł        | ND<50000 | ND<50000 | ND<25000 | ND<25000 | ND<100000 | ND<100000 | ND<10000 | ND<10000 | ND<50    |
|--------------------------------------------------|-------------------------------|--------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|----------|
|                                                  | Phosphate                     | (mg/l) |     | ND       | ΟN       | 28       | 3.5      | ND       | ND       | 17.0     | ND       | ND       | 18.4     | 16.0     | 6.89     | 2.7      | ł         | 2.2      | 0.11     | ND<0.10  | ND<0.10  | ND<1.0   | ND<1.0   | ND<1.0   | ND<1.0    | ł         | ł        | ł        | ł        |
|                                                  | ortho-<br>Phosphate           | (mg/l) |     | ł        | ł        | 1        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł         | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I         | ł         | ND<1.0   | 6.8      | ND<1.0   |
|                                                  | Acenaph-<br>thylene           | (µg/]) |     | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł         | ł        | ł        | ł        | I        | ł        | I        | I        | ł         | ł         | ł        | ł        | ł        |
|                                                  | ORP                           | (mV)   |     | 382      | 366      | 298      | 320      | 260      | 85       | 404      | 262      | 148      | 119      | 131      | 125      | 141      | 125       | 141      | 132      | 117      | 94       | 72       | -125     | -48      | -36       | ł         | ł        | ł        | ł        |
|                                                  | Fe+2                          | (hg/l) |     | 39000    | 17000    | 4300     | 4900     | 1200     | 1800     | 5700     | 8000     | 9300     | 2800     | 490      | 483      | 1000     | ND<100    | 14000    | 15000    | ND<500   | ND<500   | 9600     | 36000    | 16000    | 15        | 4000      | 12000    | 660      | 0.015    |
| RESULTS                                          | ETBE<br>8260B                 | (μg/l) |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ND       | 1        | ND       | DN       | ND<1000   | ND<100   | ND<100   | ł        | ND<200   | ND<200   | ND<100   | ND<100   | ND<400    | ł         | ND<100   | ND<100   | ND<0.50  |
| XTICAL I<br>m 5325                               | DIPE<br>8260B                 | (μg/l) |     | ł        | 1        | ł        | 1        | 1        | ł        | ł        | ł        | ł        | QN       | ł        | QN       | ND       | ND<1000   | ND<100   | ND<100   | ł        | ND<200   | ND<200   | ND<100   | ND<100   | ND<400    | ł         | ND<200   | ND<200   | ND<1.0   |
| VAL ANALYTICA<br>76 Station 5325                 | TBA<br>8260B                  | (μg/l) |     | ł        |          | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ND       | ł        | ŊŊ       | ND       | ND<20000  | ND<4000  | ND<5000  | ł        | ND<10000 | ND<10000 | ND<5000  | ND<5000  | ND<20000  | I         | 3100     | 3300     | 11       |
| ADDITIONAL ANALYTICAL RESULTS<br>76 Station 5325 | TAME<br>8260B                 | (μg/l) |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ND       | ł        | QN       | ΟN       | ND<1000   | ND<100   | ND<100   | I        | ND<200   | ND<200   | ND<100   | ND<100   | ND<400    | ł         | ND<100   | ND<100   | ND<0.50  |
| ·                                                | NO3                           | (mg/l) |     | QN       | QN       | 6.30     | QN       | ND       | QN       | ΟN       | 0.18     | QN       | ΟN       | Ŋ        | 2.64     | ND       | 0.45      | ND<0.50  | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | ND<1.0   | ND<1.0   | ND<1.0    | 1         | ND<1.0   | ND<0.50  | ND<1.0   |
|                                                  | Post Purge<br>DO              | (mg/l) |     | ł        | I        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł         | I        | ł        | ł        | ł        | ł        | ł        | 1.7      | ł         | 6.46      | 1.08     | 1.62     | 1.35     |
|                                                  | Pre-Purge Post Purge<br>DO DO | (mg/l) |     | ł        | ł        | ł        | ł        | ł        | ł        | 1.36     | ł        | 1.53     | 1.63     | 1.48     | 1.91     | 1.77     | 1.64      | 1.82     | 2.21     | 1.88     | 1.62     | 1.71     | 0.30     | :        | 0.40      | 2.05      | 3.05     | 2.30     | 5.55     |
|                                                  | EDB                           | (µg/l) |     | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | I        | ND       | ł        | ŊŊ       | ND       | ND<1000   | ND<100   | ND<100   | ł        | ND<200   | ND<200   | ND<100   | ND<100   | ND<400    | I         | ND<100   | ND<100   | ND<0.50  |
|                                                  | EDC                           | (µg/l) |     | I        | ł        | I        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ND<1000   | ND<100   | ND<100   | ł        | ND<200   | ND<200   | ND<100   | ND<100   | ND<400    | ł         | ND<100   | ND<100   | ND<0.50  |
|                                                  | Date<br>Sampled               |        | U-1 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 | 06/21/00 | 09/27/00 | 12/12/00 | 03/07/01 | 06/06/01 | 09/24/01  | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03  | 12/02/03  | 03/30/04 | 06/07/04 | 12/20/04 |

 Table 3

 ADDITIONAL ANALYTICAL RESULTS

5325

Page 1 of 8

|         | 2                |                |
|---------|------------------|----------------|
| Table 3 | <b>NALYTICAL</b> | <br> <br> <br> |
|         | -4               | ,              |
|         | IONAL            |                |

| Date EDC<br>Sampled (µg/l)       |         |                               |                  |         |               |                 |               |               |        |      |                     |                     |           |                  |
|----------------------------------|---------|-------------------------------|------------------|---------|---------------|-----------------|---------------|---------------|--------|------|---------------------|---------------------|-----------|------------------|
|                                  |         |                               |                  |         |               | 76 Station 5325 | on 5325       |               |        |      |                     |                     |           |                  |
| (μg/l)                           | EDB     | Pre-Purge Post Purge<br>DO DO | Post Purge<br>DO | NO3     | TAME<br>8260B | TBA<br>8260B    | DIPE<br>8260B | ETBE<br>8260B | Fe+2   | ORP  | Acenaph-<br>thylene | ortho-<br>Phosphate | Phosphate | Ethanol<br>8260B |
|                                  | (µg/l)  | (mg/l)                        | (mg/l)           | (mg/l)  | (μg/l)        | (μg/l)          | (μg/l)        | (μg/l)        | (l/gη) | (mV) | (μg/l)              | (mg/l)              | (mg/l)    | (μg/l)           |
| <b>U-1 continued</b><br>03/28/05 | I       | 3.26                          | 4.32             | ND<1.0  | ł             | ł               | ł             | 1             | 16     | ł    | ł                   | ND<1.0              | 1         | ND<1000          |
| 06/14/05 ND<10                   | ND<10   | 4.52                          | 3.95             | ND<1.0  | ND<10         | 4400            | ND<10         | ND<10         | 7100   | ł    | 1                   | 12                  | 1         | ND<1000          |
| 09/28/05 ND<10                   | ND<10   | 2.59                          | 7.13             | ND<0.10 | ND<10         | 5500            | ND<10         | ND<10         | 7300   | 1    | ł                   | 39                  | ł         | ND<250           |
| U-2                              |         |                               |                  | !       |               |                 |               |               |        | ;    |                     |                     |           |                  |
| 03/03/98                         | ł       | ł                             | ł                | ŊŊ      | ł             | ł               | 1             | ł             | 25000  | 369  | 1                   | ł                   | QN        | 1                |
| 06/15/98                         | ł       | ł                             | ł                | ŊŊ      | ł             | ł               | ł             | ł             | 42000  | 341  | ł                   | ł                   | DN        | ł                |
| 09/30/98                         | ł       | ł                             | ł                | QN      | ł             | I               | ł             | ł             | 25000  | 354  | *                   | ł                   | QN        | ł                |
| 12/28/98                         | ł       | ł                             | ł                | ND      | ł             | ł               | ł             | 1             | 28000  | 276  | ł                   | ł                   | ND        | ł                |
| 03/22/99                         | I       | ł                             | ł                | ND      | ł             | ł               | ł             | ł             | 680    | 320  | ł                   | ł                   | 2.3       | ł                |
| 66/60/90                         | ł       | I                             | ł                | ND      | ł             | 1               | ł             | ł             | 500    | 290  | ł                   | ł                   | ND        | ł                |
| 66/80/60                         | ł       | ł                             | 1                | DN      | ł             | ł               | ł             | ł             | 1900   | 235  | 1                   | ł                   | ND        | ł                |
| 12/07/99                         | ł       | 2.28                          | ł                | ND      | ł             | ł               | ł             | ł             | 250    | 389  | ľ                   | ł                   | DN        | ł                |
| 03/13/00                         | ł       | ł                             | ł                | 0.31    | I             | ł               | ł             | I             | 4300   | 184  | ł                   | ł                   | ND        | ł                |
| 06/21/00                         | ł       | 1.96                          | ł                | ND      | ł             | ł               | ł             | ł             | 260    | 136  | ł                   | 1                   | ND        | ł                |
| 09/27/00                         | ł       | 2.12                          | ł                | ND      | ł             | ł               | ł             | I             | 640    | 142  | ł                   | ł                   | 10.5      | 1                |
| 12/12/00                         | ł       | 2.35                          | ł                | ND      | I             | ł               | I             | ł             | 2700   | 155  | ł                   | ł                   | QN        | ł                |
| 03/07/01 ND                      | ŊŊ      | 2.21                          | I                | 2.24    | QN            | Q               | ND            | QN            | 677    | 148  | ł                   | ł                   | 3.02      | ND               |
| 06/06/01 ND                      | ŊŊ      | 2.67                          | ł                | QN      | QN            | QN              | DN            | QN            | 800    | 163  | ł                   | ł                   | 2.8       | ND               |
| 09/24/01 ND<1000                 | ND<1000 | 2.10                          | ł                | 0.49    | ND<1000       | ND<20000        | ND<1000       | ND<1000       | ND<100 | 151  | ł                   | ł                   | :         | ND<40000         |
| 12/10/01 ND<50                   | ND<50   | 2.81                          | ł                | ND<0.50 | ND<50         | ND<2000         | ND<50         | ND<50         | ND<100 | 171  | ł                   | ł                   | 0.20      | ND<4000          |
| 03/11/02 ND<200                  | ND<200  | 2.77                          | ł                | ND<0.50 | ND<200        | ND<10000        | ND<200        | ND<200        | ND<100 | 156  | ł                   | ł                   | 0.65      | ND<50000         |
| 06/04/02                         | ł       | 3.14                          | ł                | ND<0.50 | ł             | ł               | I             | ł             | ND<100 | 144  | ł                   | ł                   | ND<0.10   | ł                |
| 09/03/02 ND<1000                 | ND<1000 | 2.85                          | ł                | ND<0.50 | ND<1000       | ND<50000        | ND<1000       | ND<1000       | ND<250 | 151  | ł                   | ł                   | 0.26      | ND<250000        |
| 12/03/02 ND<200                  | ND<200  | 1.97                          | I                | ND<1.0  | ND<200        | ND<10000        | ND<200        | ND<200        | 0066   | 94   | ł                   | ł                   | ND<1.0    | ND<50000         |
| 03/04/03 ND<200                  | ND<200  | 0.40                          | 1                | ND<1.0  | ND<200        | ND<10000        | ND<200        | ND<200        | 8600   | -147 | ł                   | ł                   | ND<1.0    | ND<50000         |
| 06/18/03 ND<200                  | ND<200  | ł                             | 3.2              | ND<1.0  | ND<200        | ND<10000        | ND<200        | ND<200        | 5500   | 8-   | ł                   | ł                   | 3.1       | ND<50000         |

Page 2 of 8

|                                                             | Ethanol<br>8260B              | (μg/l) | ND<100000                               | ND<10000 | ND<10000 | ND<10000 | ND<10000 | ND<5000         | ND<5000  | ND<2000  | ND<250   |     | ţ        | ł        | ;        | ł        | ł        | 1        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
|-------------------------------------------------------------|-------------------------------|--------|-----------------------------------------|----------|----------|----------|----------|-----------------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                                             | Phosphate                     | (mg/l) | ND<1.0                                  | -        | -        | 1        | 1        |                 | I        | ł        | -        |     | 0.86     | ND       | 0.85     | ND       | ND       | ND       | ND       | 0.14     | 1.2      | ŊŊ       | ΟN       | ND       | ND       | 15.7     | ŊŊ       | 0.443    |
|                                                             | ortho-<br>Phosphate           | (mg/l) | ;                                       | ;        | 2.9      | 2.4      | 5.9      | ND<1.0          | ND<1.0   | ND<1.0   | 7.5      |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
|                                                             | Acenaph-<br>thylene           | (hg/l) | 1                                       | ł        | ł        | ł        | ł        | ł               | ł        | ł        | ł        |     | ł        | ł        | ł        | 1        | ł        | ł        | ł        | 1        | :        | 1        | <b>I</b> | ł        | ł        | 307      | :        | 1        |
|                                                             | ORP                           | (mV)   | -10                                     | I        | ł        | ł        | I        | ł               | ł        | ł        | ł        |     | 190      | 75       | 390      | 358      | 318      | 295      | 281      | 310      | 350      | 417      | 437      | 307      | 225      | 211      | 246      | 251      |
|                                                             | Fe+2                          | (μg/l) | 14                                      | 2700     | ND<200   | 210      | 930      | 0.87            | 4.0      | 3400     | 4000     |     | 1400     | 570      | 1900     | 13       | 160      | 40       | ND       | 15       | ND       | ΟN       | 52       | 150      | 200      | QN       | QN       | ŊŊ       |
| RESULTS                                                     | ETBE<br>8260B                 | (μg/l) | ND<400                                  | I        | ND<100   | ND<100   | ND<100   | ND<50           | ND<50    | ND<20    | ND<0.50  |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
| 3<br>YTICAL I<br>n 5325                                     | DIPE<br>8260B                 | (hg/l) | ND<400                                  | I        | ND<200   | ND<200   | ND<200   | ND<100          | ND<50    | ND<20    | ND<0.50  |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        |
| Table 3<br>AL ANALYTICA<br>76 Station 5325                  | TBA<br>8260B                  | (μg/l) | ND<20000                                | I        | 2400     | 2600     | 2700     | 3500            | 830      | 10000    | 13000    |     | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
| Table 3<br>ADDITIONAL ANALYTICAL RESULTS<br>76 Station 5325 | TAME<br>8260B                 | (hg/l) | ND<400                                  | ł        | ND<100   | ND<100   | ND<100   | ND<50           | ND<0.50  | ND<20    | ND<0.50  |     | ;        | ł        | ;        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
| 7                                                           | NO3                           | (mg/l) | ND<1.0                                  | 1        | ND<1.0   | ND<0.50  | ND<1.0   | ND<1.0          | ND<1.0   | ND<1.0   | ND<0.20  |     | 21       | 19       | 23       | 36       | 33       | 31       | 29       | 30       | 26       | 32.90    | 27.90    | 33       | 32       | 34       | 31       | 36.5     |
|                                                             | Post Purge<br>DO              | (mg/l) | 1                                       | 1.81     | ł        | 3.29     | 3.10     | 6.54            | 4.30     | 3.99     | 6.62     |     | ł        | ł        | ł        | ł        | I        | ł        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ļ        | ł        |
|                                                             | Pre-Purge Post Purge<br>DO DO | (mg/l) | 0.20                                    | 1.70     | 2.40     | 3.10     | 3.12     | <sub>-</sub> 41 | 3.76     | 3.28     | 2.87     |     | 4.10     | 4.20     | 2.97     | 2.63     | 2.93     | 3.11     | 3.59     | 4.02     | 3.70     | 3.96     | 4.21     | ł        | 4.27     | 4.67     | 4.79     | 5.16     |
|                                                             | EDB                           | (µg/]) | ND<400                                  | ł        | ND<100   | ND<100   | ND<100   | ND<50           | ND<50    | ND<20    | ND<0.50  |     | 1        | I        | ł        | I        | ł        | I        | ł        | I        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        |
|                                                             | EDC                           | (µg/l) | <b>U-2 continued</b><br>09/24/03 ND<400 | ł        | ND<100   | ND<100   | ND<100   | ND<50           | ND<50    | ND<20    | ND<0.50  |     | ł        | ł        | ł        | ł        | I        | ł        | ł        | I        | I        | I        | I        | ł        | ł        | ł        | ł        | I        |
|                                                             | Date<br>Sampled               |        | <b>U-2 cont</b><br>09/24/03             | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04        | 03/28/05 | 06/14/05 | 09/28/05 | U-3 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 09/08/99 | 12/07/99 | 03/13/00 | 06/21/00 | 09/27/00 | 12/12/00 | 03/07/01 |

Page 3 of 8

Table 3 ADDITIONAL ANALYTICAL RESULTS 76 Station 5325

| Ethanol<br>8260B                            | (μg/l) |           | ł        | ł        | 1        | 1        | 3        | ł        | ł        | ł        | ł        | ND<500   | ND<500   | ND<50    | ND<50    | ND<50    | ND<50    | ND<50    | ND<50    | ND<250   |     | 1        | ł        | ł        | I        | ł        | ł        |          |
|---------------------------------------------|--------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|
| ortho- Phosphate Ethanol<br>Phosphate 8260B | (mg/l) |           | 0.18     | ND       | 0.11     | 0.14     | ND<0.10  | ND<0.10  | ND<1.0   | ND<1.0   | ND<1.0   | 1.4      | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        |     | 0.52     | DN       | 0.73     | ND       | ΟN       | ΟN       | !        |
|                                             | (mg/l) |           | ł        | ł        | ł        | ł        | 1        | I        | I        | ł        | I        | ł        | ł        | ND<1.0   | ND<0.20  | 1.2      | ND<1.0   | ND<1.0   | ND<1.0   | 0.66     |     | ł        | ł        | ł        | ł        | I        | ł        |          |
| Acenaph-<br>thylene                         | (hg/l) |           | ł        | ł        | ł        | ł        | I        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ţ        | ł        | ł        |     | ł        | I        | I        | ł        | ł        | ł        |          |
| ORP                                         | (mV)   |           | 214      | 198      | 188      | 166      | 151      | 143      | 154      | -136     | 333      | -50      | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        |     | 200      | 45       | 380      | 284      | 256      | 276      |          |
| Fe+2                                        | (μg/l) |           | DN       | ND<100   | ND<100   | ND<100   | ND<100   | ND<100   | ND<200   | ND<200   | ND<200   | ND<0.20  | ND<200   | ND<200   | ND<200   | ND<10    | ND<0.010 | ND<0.050 | ND<50    | ND<100   |     | 130      | 350      | 680      | 18       | 140      | 49       |          |
| ETBE<br>8260B                               | (μg/l) |           | ł        | I        | I        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | ł        |          |
| DIPE<br>8260B                               | (μg/l) |           | ł        | ł        | :        | ł        | ł        | ł        | ł        | ;        | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | 1        |          |
| TBA<br>8260B                                | (µg/l) |           | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | 1        | ł        | 1        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | 1        |          |
| TAME<br>8260B                               | (μg/l) |           | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | ł        |          |
| NO3                                         | (mg/l) |           | 8.0      | 23.0     | 21       | 30       | 18       | 28       | 20       | 18       | 17       | 18       | 1        | 16       | 17       | 16       | 17       | 17       | 18       | 4.3      |     | 35       | 30       | 31       | 3.2      | 33       | 31       |          |
| Post Purge<br>DO                            | (mg/l) |           | ł        | ł        | ł        | ł        | 1        | ł        | ;        | ł        | 3.5      | ł        | 4.28     | 7.75     | 4.19     | 4.68     | 6.70     | 4.21     | 2.97     | 6.99     |     | ł        | ł        | ł        | I        | ł        | 1        |          |
| Pre-Purge Post Purge<br>DO DO               | (mg/l) |           | 4.79     | 4.27     | 4.66     | 5.06     | 5.79     | 6.04     | 5.58     | 0.20     | ł        | 0:60     | 4.30     | 2.80     | 4.70     | 4.75     | 3.28     | 3.32     | 2.82     | 4.96     |     | 5.40     | 5.10     | 3.11     | 2.94     | 3.08     | 4.05     | 1 5 V    |
| EDB                                         | (μg/l) |           | ł        | ł        | ł        | ł        | I        | ł        | ł        | I        | ł        | I        | I        | ł        | ł        | ł        | 1        | ł        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | ł        |          |
| EDC                                         | (μg/l) | continued | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ł        | ł        | ł        | ł        |     | ł        | ł        | ł        | ł        | ł        | ł        |          |
| Date<br>Sampled                             |        | U-3 cont  | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | U-4 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 17/78/08 |

Page 4 of 8

| ETBEFc+2ORPAcenaph-ortho-PhosphateEthanol8260BthylenePhosphate8260B | $(\mu g')$ $(\mu g')$ $(mV)$ $(\mu g')$ $(mg')$ $(mg')$ $(mg')$ |                 | 320      | 340      | 391      | 478      | 244      | 34 248 ND |          | 210      | - ND 233 0.226 - |          | ND<100 262 | ND<100 242 0.10 | ND<100 195 0.14 |          |          | - ND<200 133 ND<1.0 - | 1        | ND<200 250 ND<1.0 |          | -24 1.5  | -24 1.5  | -24 1.5<br> | -24 1.5<br><br>ND<1.0<br>- ND<0.20 | -24 1.5<br>1.5<br>ND<1.0 -<br>ND<0.20 - | -24 1.5<br>1.5<br>ND<1.0<br>ND<1.0<br>ND<1.0 - |
|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|----------|----------|----------|----------|----------|-----------|----------|----------|------------------|----------|------------|-----------------|-----------------|----------|----------|-----------------------|----------|-------------------|----------|----------|----------|-------------|------------------------------------|-----------------------------------------|------------------------------------------------|
|                                                                     | (mg/l)                                                          |                 | 0.14     | 0.91     | QN       | Q        | QN       | QN        | QN       | QN       | 0.226            | 0.21     | I          | 0.10            | 0.14            | ND<0.10  | 0.27     | ND<1.0                | ND<1.0   | ND<1.0            | 1.5      |          | 1        | 1 1         |                                    |                                         |                                                |
|                                                                     | (mg/l)                                                          |                 | 1        | ł        | ł        | ł        | ł        | ł         | ł        | 1        | ł                | ł        | ł          | ł               | ł               | ł        | ł        | ł                     | ł        | ł                 | ł        | ł        |          | ND<1.0      | ND<1.0<br>ND<0.20                  | ND<1.0<br>ND<0.20<br>ND<1.0             | ND<1.0<br>ND<0.20<br>ND<1.0<br>ND<1.0          |
| Acenaph-<br>thylene                                                 | (µg/l)                                                          |                 | 1        | ł        | :        | 1        | ł        | ł         | ł        | ł        | I                | ł        | ł          | ł               | ł               | 1        | ł        | ł                     | ł        | I                 | I        | ł        |          | ł           | 1                                  |                                         | 1 1 1 1                                        |
| ORP                                                                 | (mV)                                                            |                 | 320      | 340      | 391      | 478      | 244      | 248       | 198      | 210      | 233              | 248      | 262        | 242             | 195             | 169      | 126      | 133                   | -148     | 250               | -24      | ł        |          | I           |                                    |                                         |                                                |
| Fe+2                                                                | (μg/l)                                                          |                 | QN       | QN       | QN       | ŊŊ       | QN       | 34        | QN       | QN       | ND               | QN       | ND<100     | ND<100          | ND<100          | ND<100   | ND<100   | ND<200                | ND<200   | ND<200            | ND<0.20  | ND<200   |          | 007>UN      | ND<200                             | ND<200<br>ND<200<br>ND<10               | ND<200<br>ND<200<br>ND<10<br>ND<0.010          |
| ETBE<br>8260B                                                       | (μg/l)                                                          |                 | ł        | ł        | ł        | ł        | ł        | 1         | ł        | ł        | ł                | ł        | I          | I               | ł               | I        | ł        | ł                     | ł        | ł                 | ł        | ł        | 1        | 1           |                                    |                                         |                                                |
| DIPE<br>8260B                                                       | (µg/l)                                                          |                 | ł        | ł        | ł        | ł        | 1        | ł         | ł        | ł        | ł                | ł        | I          | ł               | ł               | ł        | ł        | ł                     | ł        | ł                 | ł        | ł        | 1        |             | I                                  |                                         |                                                |
| TBA<br>8260B                                                        | (µg/])                                                          |                 | 1        | ł        | ł        | ł        | ł        | ł         | ł        | ł        | ł                | I        | ł          | ł               | ł               | ł        | ł        | ł                     | ł        | ł                 | ł        | ;        | ;        |             | ł                                  | 1 1                                     |                                                |
| TAME<br>8260B                                                       | (µg/l)                                                          |                 | 1        | ł        | ł        | ł        | ł        | ł         | ł        | ł        | ł                | ł        | ł          | ł               | ł               | ł        | ł        | ł                     | ł        | ł                 | ł        | ł        | ł        |             | ł                                  |                                         |                                                |
| NO3                                                                 | (mg/l)                                                          | ć               | 30       | 35       | 24       | 27.7     | 33       | 32        | 28       | 30       | 33.9             | 7.4      | 24         | 19              | 31              | 27       | 28       | 20                    | 26       | 31                | 17       | 1        | 25       |             | 24                                 | 24<br>22                                | 24<br>20                                       |
| Post Purge<br>DO                                                    | (mg/l)                                                          |                 | ł        | ł        | I        | I        | ł        | 1         | ł        | I        | I                | ł        | I          | ł               | ł               | ł        | I        | I                     | I        | 3.6               | ł        | 3.45     | 3.84     |             | 4.02                               | 4.02<br>4.09                            | 4.02<br>4.09<br>6.19                           |
| Pre-Purge Post Purge<br>DO DO                                       | (mg/l)                                                          |                 | 4.20     | 3.61     | 3.75     | 4.03     | ł        | 4.89      | 5.09     | 4.86     | 4.97             | 5.12     | 4.86       | 5.05            | 4.83            | 5.58     | 5.94     | 5.82                  | 0.30     | ł                 | 0.20     | 3.57     | 4.29     |             | 4.56                               | 4.56<br>4.20                            | 4.56<br>4.20<br>5.11                           |
| EDB                                                                 | (µg/l)                                                          |                 | ł        | ł        | ł        | ł        | ł        | ł         | ł        | ł        | ł                | ł        | ł          | ł               | ł               | ł        | ł        | I                     | ł        | ł                 | ł        | ł        | 1        |             | ł                                  | 1 1                                     | 1                                              |
| EDC                                                                 | (l/gµ)                                                          | continued       | ł        | ł        | ł        | ł        | I.       | ł         | ł        | ł        | ł                | ł        | ł          | ł               | ł               | ł        | ł        | ł                     | ł        | ł                 | ł        | ł        | ł        |             | ł                                  | : :                                     |                                                |
| Date<br>Sampled                                                     |                                                                 | <b>U-4 cont</b> | 66/22/20 | 66/60/90 | 66/80/60 | 12/07/99 | 03/13/00 | 06/21/00  | 09/27/00 | 12/12/00 | 03/07/01         | 06/06/01 | 09/24/01   | 12/10/01        | 03/11/02        | 06/04/02 | 09/03/02 | 12/03/02              | 03/04/03 | 06/18/03          | 09/24/03 | 12/02/03 | 03/30/04 |             | 06/07/04                           | 06/07/04<br>09/09/04                    | 06/07/04<br>09/09/04<br>12/20/04               |

Table 3 ADDITIONAL ANALYTICAL RESULTS

Page 5 of 8

| Table 3       ADDITIONAL ANALYTICAI |
|-------------------------------------|
|-------------------------------------|

| T GDTC C | NAL ANALYTICAL RESULTS | 76 Station 5325 |
|----------|------------------------|-----------------|

| Ethanol<br>8260B              | (μg/l) | ND<250                           |     | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | 4        | 1        | ł        | ł        | ł        | 1        | QN       | ł        | ND<4000  | ł        | ND<500   | ł        | ND<500   | ND<500   | ND<500   |
|-------------------------------|--------|----------------------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Phosphate                     | (mg/l) | ł                                |     | ND       | ND       | ND       | DN       | ND       | ND       | ND       | 2.4      | ŊŊ       | ΟN       | DN       | ND       | DN       | QN       | QN       | 4.00     | 1.2      | ł        | 2.6      | 0.52     | ND<0.10  | ND<0.10  | ND<1.0   | ND<1.0   |
| ortho-<br>Phosphate           | (mg/l) | 0.45                             |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |          | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | I        | ł        | ł        | ł        | ł        |
| Acenaph-<br>thylene           | (μg/l) | I                                |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        |          | ł        | ł        | ł        | ł        | I        | ł        |
| ORP                           | (mV)   | ł                                |     | 160      | 63       | 400      | 345      | 333      | 318      | 305      | 340      | 320      | 335      | 408      | 264      | 159      | 136      | 122      | 141      | 112      | 146      | 96       | 108      | 118      | 87       | 104      | -166     |
| Fe+2                          | (μg/l) | 190                              |     | 16000    | 220      | 6700     | 18000    | 17000    | 17000    | 17000    | 120      | 230      | 2100     | 310      | 330      | 150      | 330      | 86       | 1070     | DN       | ND<100   | 3700     | 100      | ND<250   | ND<250   | 22000    | 19000    |
| ETBE<br>8260B                 | (μg/l) | ł                                |     | ł        | ł        | .1       | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ND       | ł        | ND<10    | ł        | ND<2.0   | ł        | ND<2.0   | ND<2.0   | ND<2.0   |
| DIPE<br>8260B                 | (μg/l) | ł                                |     | ł        | ł        | ;        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I        | ND       | ł        | ND<10    | ;        | ND<2.0   | ł        | ND<2.0   | ND<2.0   | ND<2.0   |
| TBA<br>8260B                  | (μg/l) | I                                |     | ł        | ľ        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | QN       | ł        | ND<200   | ł        | ND<100   | I        | ND<100   | ND<100   | ND<100   |
| TAME<br>8260B                 | (μg/l) | I                                |     | ł        | 1        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | I        | ł        | ND       | ł        | ND<10    | ł        | ND<2.0   | ł        | ND<2.0   | ND<2.0   | ND<2.0   |
| NO3                           | (mg/l) | 6.8                              |     | QN       | Q        | QN       | 3.1      | QN       | QN       | 6.6      | ND       | ND       | ND       | ŊŊ       | 0.16     | QN       | ŊŊ       | ND       | 3.02     | ΟN       | 0.77     | ND<0.50  | ND<0.50  | ND<0.50  | ND<0.50  | ND<1.0   | ND<1.0   |
| Post Purge<br>DO              | (mg/l) | 6.59                             |     | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ;        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
| Pre-Purge Post Purge<br>DO DO | (mg/l) | 5.02                             |     | 3.40     | 09.0     | 1.75     | 2.36     | 2.55     | 1.93     | 1.64     | 1.99     | 2.10     | 2.21     | 2.66     | ł        | 3.42     | 3.85     | 3.53     | 2.98     | 2.67     | 3.15     | 2.85     | 3.15     | 3.46     | 2.85     | 2.71     | 0.20     |
| EDB                           | (μg/l) | I                                |     | ł        | 1        | ł        | 1        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | QN       | ł        | ND<10    | ł        | ND<2.0   | ł        | ND<2.0   | ND<2.0   | ND<2.0   |
| EDC                           | (μg/l) | tinued                           |     | ł        | I        | I        | ł        | I        | I        | 1        | I        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | QN       | ł        | ND<10    | ł        | ND<2.0   | I        | ND<2.0   | ND<2.0   | ND<2.0   |
| Date<br>Sampled               |        | <b>U-4 continued</b><br>09/28/05 | U-5 | 06/30/97 | 09/19/97 | 12/12/97 | 03/03/98 | 06/15/98 | 09/30/98 | 12/28/98 | 03/22/99 | 66/60/90 | 09/08/99 | 12/07/99 | 03/13/00 | 06/21/00 | 09/27/00 | 12/12/00 | 03/07/01 | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 |

Page 6 of 8

| SI                                               | Fe+2 ORP Acenaph- ortho- Phosphate Ethanol<br>thylene Phosphate 8260B | ) ( $\mu g/l$ ) (mV) ( $\mu g/l$ ) (mg/l) (mg/l) ( $\mu g/l$ ) | .0 11000 -10 ND<1.0 ND<500 | ND<0.20 -28 1.8 | 9400 ND<500 | 50 5900 ND<1.0 ND<50 | .5 3800 ND<0.20 ND<50 | 4100 ND<1.0 | ł        | 6.5      | <sup>50</sup> 7400 ND<1.0 ND<100 | 50 7300 0.10 ND<250 |      | 88000 190 ND | 2900 ND ND | 51000 380 ND | 60000 327 ND | 590000 315 ND | 33000 345 ND | 83000 297 ND | 2100 330 0.98 | :        | 140 305 ND | 260 443 ND | 790 222 ND | 1900 159 ND | 2600 170 ND | ND 128 ND |
|--------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|-----------------|-------------|----------------------|-----------------------|-------------|----------|----------|----------------------------------|---------------------|------|--------------|------------|--------------|--------------|---------------|--------------|--------------|---------------|----------|------------|------------|------------|-------------|-------------|-----------|
|                                                  |                                                                       |                                                                | ł                          | ł               | ł           |                      |                       |             | -        |          | -                                | ł                   |      | ł            | ł          | ł            | ł            | - 1           | ł            | ł            | ł             | ł        | ł          | ł          | ł          | ł           | ł           | ł         |
|                                                  |                                                                       | (mV)                                                           | -10                        | -28             | ł           | 1                    | ł                     | ł           | ł        | ł        | ł                                | I                   |      | 190          | QN         | 380          | 327          | 315           | 345          | 297          | 330           | 320      | 305        | 443        | 222        | 159         | 170         | 128       |
|                                                  | Fe+2                                                                  | (μg/l)                                                         | 11000                      | ND<0.20         | 9400        | 5900                 | 3800                  | 4100        | 5.0      | 6.5      | 7400                             | 7300                |      | 88000        | 2900       | 51000        | 60000        | 590000        | 33000        | 83000        | 2100          | 470      | 140        | 260        | 790        | 1900        | 2600        | DN        |
| KESULTS                                          | ETBE<br>8260B                                                         | (l/gµ)                                                         | ND<2.0                     | ł               | ł           | ND<0.50              | ND<0.5                | ND<0.50     | ł        | ND<0.50  | ND<0.50                          | ND<0.50             |      | ł            | ł          | ł            | ł            | ł             | ł            | ł            | ł             | ł        | ł          | ł          | ł          | ł           | ł           | ł         |
| VTICAL I<br>on 5325                              | DIPE<br>8260B                                                         | (hg/l)                                                         | ND<2.0                     | I               | ł           | ND<1.0               | ND<1.0                | ND<1.0      | ł        | ND<0.50  | ND<0.50                          | ND<0.50             |      | ł            | ł          | 1            | ł            | ł             | ł            | ł            | ł             | ł        | ł          | ł          | ł          | ł           | ł           | ł         |
| ADDITIONAL ANALYTICAL RESULTS<br>76 Station 5325 | TBA<br>8260B                                                          | (μg/l)                                                         | ND<100                     | ł               | ł           | 52                   | 69                    | 130         | ł        | 150      | 160                              | 220                 |      | ł            | ł          | ł            | ł            | ł             | :            | 1            | ł             | ł        | ł          | ł          | 1          | ł           | ł           | ł         |
| ADITIQUA                                         | TAME<br>8260B                                                         | (μg/l)                                                         | ND<2.0                     | ł               | I           | ND<0.50              | ND<0.5                | ND<0.50     | ł        | ND<0.50  | ND<0.50                          | ND<0.50             |      | ł            | ł          | ł            | ł            | ł             | ł            | ł            | ł             | ł        | ł          | ł          | ł          | 1           | ł           | 1         |
|                                                  | NO3                                                                   | (mg/l)                                                         | ND<1.0                     | 18              | ł           | ND<1.0               | ND<0.50               | ND<1.0      | ND<1.0   | ND<1.0   | 3.6                              | ND<0.50             |      | 0.80         | 1.80       | QN           | 3.5          | 4.8           | ND           | 7.2          | ND            | 0.20     | 5.59       | QN         | 0.26       | Ŋ           | Ŋ           | 2.7       |
|                                                  | Post Purge<br>DO                                                      | (mg/l)                                                         | 2.4                        | ł               | 2.22        | 1.89                 | 1.88                  | 2.38        | .71      | 2.02     | 2.38                             | 6.94                |      | ł            | ł          | ł            | ł            | ł             | ł            | ł            | ł             | ł        | ł          | 1          | ł          | ł           | ł           | ł         |
|                                                  | Pre-Purge Post Purge<br>DO DO                                         | (mg/l)                                                         | ł                          | 0.30            | 2.15        | 1.88                 | 1.92                  | 2.58        | 2.01     | 1.06     | 2.02                             | 4.58                |      | 0:30         | 0.60       | 2.70         | 2.18         | 2.48          | 3.06         | 3.42         | 3.88          | 3.29     | 3.12       | 3.44       | ł          | 3.27        | 3.49        | 3.06      |
|                                                  | EDB                                                                   | (μg/l)                                                         | ND<2.0                     | ł               | ł           | ND<0.50              | ND<0.5                | ND<0.50     | ł        | ND<0.50  | ND<0.50                          | ND<0.50             |      | ł            | 1          | ł            | I            | I             | I            | ł            | ļ             | ł        | ł          | ł          | ł          | ł           | ł           | ł         |
|                                                  | EDC                                                                   | (µg/l)                                                         | continued<br>/03 ND<2.0    | ł               | ł           | ND<0.50              | ND<0.5                | ND<0.50     | ł        | ND<0.50  | ND<0.50                          | ND<0.50             |      | ł            | ł          | ł            | ł            | ł             | ł            | ł            | ł             | ł        | ł          | ł          | ł          | ł           | ł           | ł         |
|                                                  | Date<br>Sampled                                                       |                                                                | <b>U-5 con</b><br>06/18/03 | 09/24/03        | 12/02/03    | 03/30/04             | 06/07/04              | 09/09/04    | 12/20/04 | 03/28/05 | 06/14/05                         | 09/28/05            | 11-6 | 06/30/97     | 09/19/97   | 12/12/97     | 03/03/98     | 06/15/98      | 09/30/98     | 12/28/98     | 03/22/99      | 66/60/90 | 66/80/60   | 12/07/99   | 03/13/00   | 06/21/00    | 09/27/00    | 12/12/00  |

Table 3 ADDITIONAL ANALYTICAL RESULTS

5325

Page 7 of 8

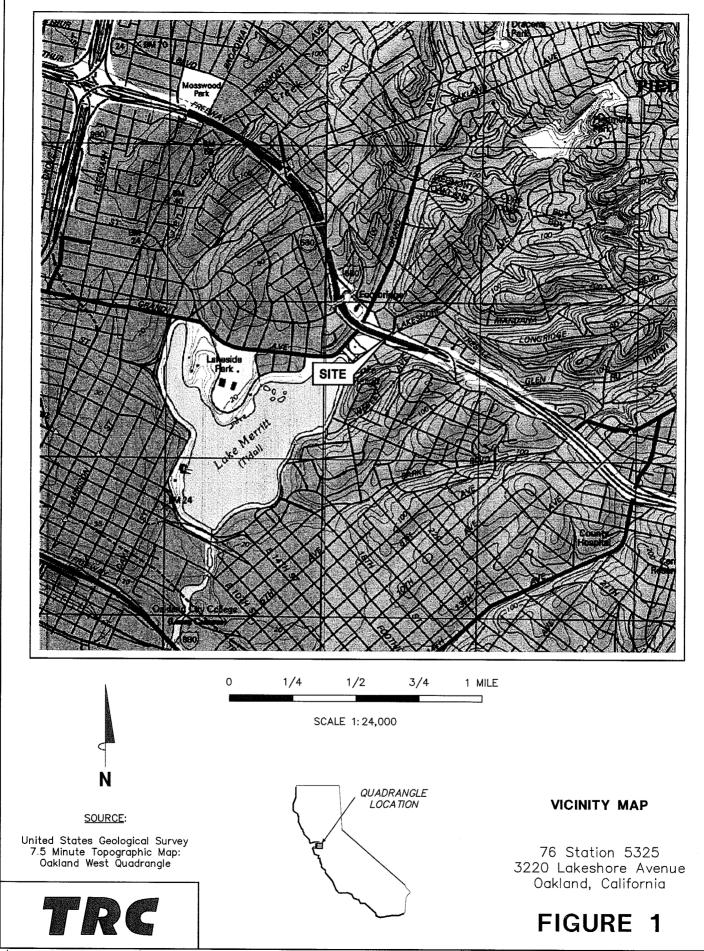
|                 | Ethanol<br>8260B              | (µg/l) | QN                                  | DN       | ND<40000 | ND<400   | ND<2000  | ł        | ND<10000 | ND<5000  | ND<10000 | ND<1000  | ND<100000 | ND<10000 | ND<1000  | ND<1000  | ND<1000  | ND<250   | ND<50    | ND<100   | ND<250   |
|-----------------|-------------------------------|--------|-------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                 | Phosphate                     | (mg/l) | 1                                   | 0.70     | ł        | 2.0      | 0.089    | ND<1.0   | 1.1      | 2.6      | ND<1.0   | 2.0      | 4.6       | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
|                 | ortho-<br>Phosphate           | (mg/l) | I                                   | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | I         | ł        | ND<1.0   | ND<0.20  | 3.8      | ND<1.0   | ND<1.0   | ND<1.0   | 3.4      |
|                 | Acenaph-<br>thylene           | (µg/l) | ł                                   | ł        | ł        | ł        | ł        | 1        | ł        | ł        | ł        | ł        | ł         | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        |
|                 | ORP                           | (mV)   | I                                   | 76       | 123      | 112      | 128      | 76       | 110      | 95       | -112     | -15      | -12       | ł        | ł        | ł        | ł        | ł        | ŀ        | ł        | 1        |
|                 | Fe+2                          | (µg/l) | ł                                   | 470      | ND<100   | 066      | 1200     | ND<100   | ND<100   | 1200     | 20000    | 3200     | 1.4       | 1400     | 2600     | 2100     | 870      | 2.5      | 3.4      | 4100     | 21000    |
|                 | ETBE<br>8260B                 | (μg/l) | QN                                  | ND       | ND<100   | ND<5.0   | ND<8.0   | ;        | ND<40    | ND<20    | ND<40    | ND<40    | ND<400    | ł        | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<0.50  | ND<0.50  |
| n 5325          | DIPE<br>8260B                 | (hg/l) | QN                                  | Q        | ND<100   | ND<5.0   | ND<8.0   | ł        | ND<40    | ND<20    | ND<40    | ND<40    | ND<400    | ł        | ND<20    | ND<20    | ND<20    | ND<5.0   | ND<0.50  | ND<0.50  | ND<0.50  |
| 76 Station 5325 | TBA<br>8260B                  | (µg/l) | QN                                  | QN       | ND<2000  | ND<200   | ND<400   | ł        | ND<2000  | ND<1000  | ND<2000  | ND<2000  | ND<20000  | ł        | 770      | 110      | 1900     | 5000     | 066      | ND<5.0   | 3800     |
|                 | TAME<br>8260B                 | (μg/l) | QN                                  | QN       | ND<100   | ND<5.0   | ND<8.0   | ł        | ND<40    | ND<20    | ND<40    | ND<40    | ND<400    | ł        | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<0.50  | ND<0.50  |
|                 | NO3                           | (mg/l) | 1                                   | 0.15     | 0.58     | 0.50     | ND<0.50  | ND<0.50  | 0.58     | ND<1.0   | ND<1.0   | ND<1.0   | ND<1.0    | ł        | ND<1.0   | 0.8      | ND<1.0   | ND<1.0   | ND<1.0   | 3.8      | ND<0.20  |
|                 | Post Purge<br>DO              | (mg/l) | ł                                   | ł        | ł        | ł        | ł        | ł        | ł        | ł        | ł        | 3.2      | ł         | 3.10     | 3.61     | 2.43     | 2.84     | ł        | 3.18     | 4.02     | 7.93     |
|                 | Pre-Purge Post Purge<br>DO DO | (mg/l) | 1                                   | 2.46     | 3.10     | 2.57     | 3.03     | 2.84     | 3.12     | 2.96     | 0.30     | I        | 0.30      | 2.53     | 1.88     | 2.90     | 2.96     | ł        | 2.57     | 4.20     | 6.82     |
|                 | EDB                           | (μg/l) | QN                                  | QN       | ND<100   | ND<5.0   | ND<8.0   | I        | ND<40    | ND<20    | ND<40    | ND<40    | ND<400    | ł        | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<2.5   | ND<0.5   | ND<0.50  |
|                 | EDC                           | (μg/l) | tinued<br>ND                        | Q        | ND<100   |          | ND<8.0   | I        |          |          |          |          | ND<400    | I        | ND<10    | ND<10    | ND<10    | ND<2.5   | ND<0.50  | ND<0.5   | ND<0.50  |
|                 | Date<br>Sampled               |        | <b>U-6 continued</b><br>03/07/01 NI | 06/06/01 | 09/24/01 | 12/10/01 | 03/11/02 | 06/04/02 | 09/03/02 | 12/03/02 | 03/04/03 | 06/18/03 | 09/24/03  | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 |

Table 3 ADDITIONAL ANALYTICAL RESULTS

Page 8 of 8

| Table 3 bADDITIONAL ANALYTICAL RESULTS76 Station 5325 |
|-------------------------------------------------------|
|-------------------------------------------------------|

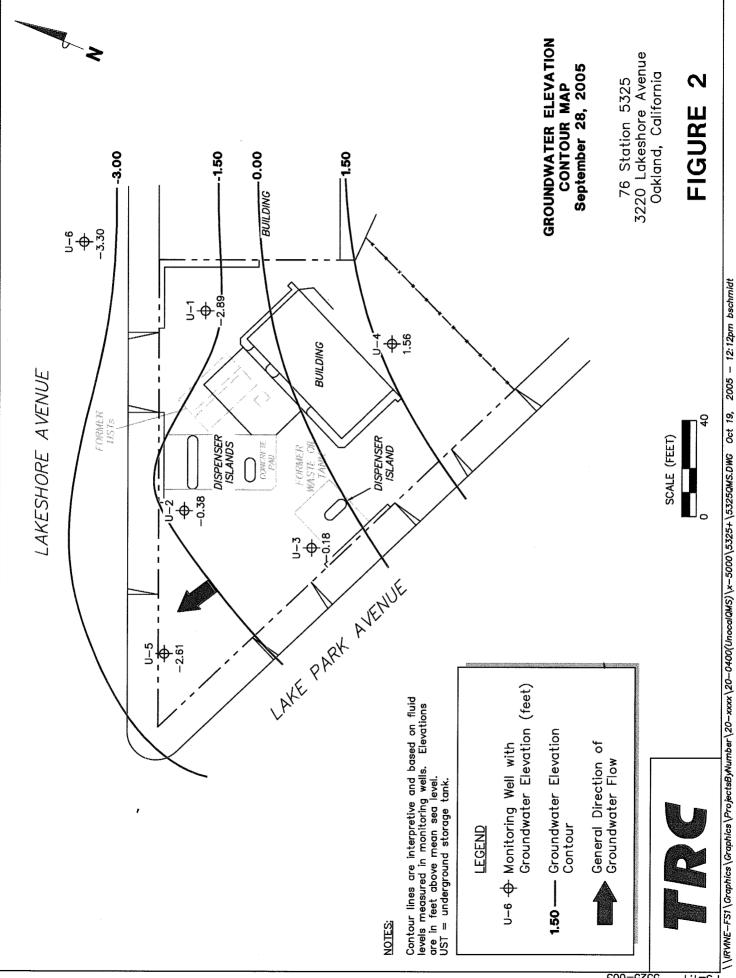
| Post Purge | ORP     |
|------------|---------|
| Pre-Purge  | ORP     |
| Date       | Sampled |

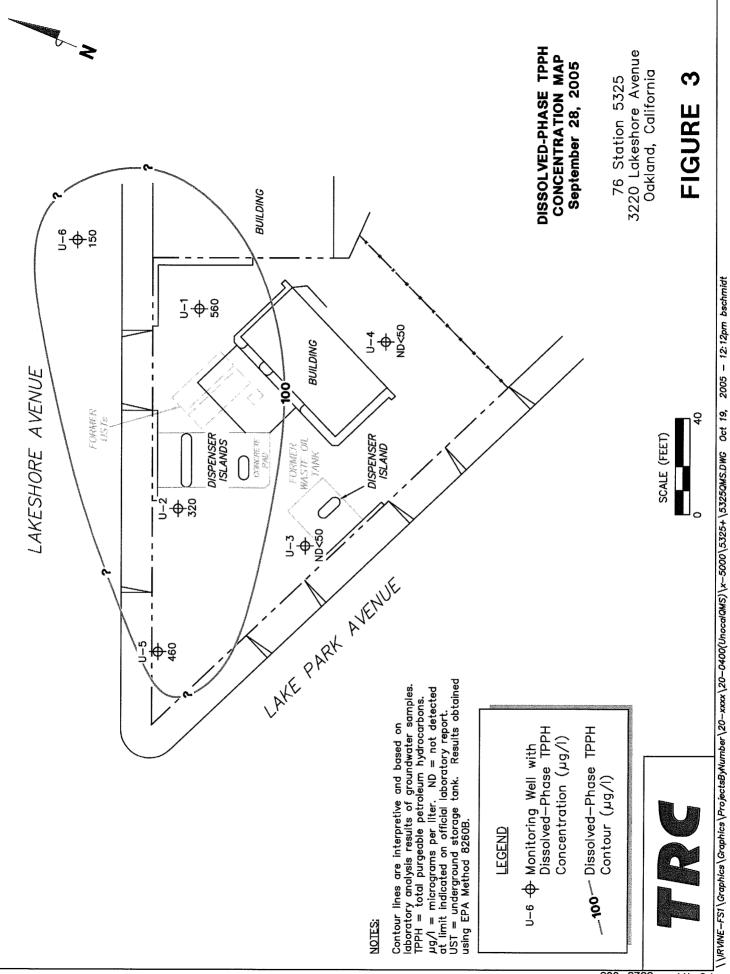

| and time |      |      |  |
|----------|------|------|--|
|          | (mV) | (mV) |  |
| U-1      |      |      |  |
| 12/02/03 | -72  | -73  |  |
| 03/30/04 | -40  | -54  |  |
| 06/07/04 | -32  | -48  |  |
| 12/20/04 | ł    | 32   |  |
| 03/28/05 | 124  | 138  |  |
| 06/14/05 | -145 | -177 |  |
| 09/28/05 | -065 | -160 |  |
| U-2      |      |      |  |
| 12/02/03 | -29  | -67  |  |
| 03/30/04 | -9   | 1    |  |
| 06/07/04 | 8    | 7    |  |
| 09/09/04 | -74  | -79  |  |
| 12/20/04 | -84  | -72  |  |
| 03/28/05 | 118  | 140  |  |
| 06/14/05 | -155 | -206 |  |
| 09/28/05 | -100 | -179 |  |
| U-3      |      |      |  |
| 12/02/03 | 76   | 105  |  |
| 03/30/04 | -38  | 12   |  |
| 06/07/04 | 23   | 42   |  |
| 09/09/04 | 14   | 21   |  |
| 12/20/04 | 45   | 32   |  |
| 03/28/05 | 145  | 137  |  |
| 06/14/05 | 90   | 86   |  |
| 09/28/05 | -068 | -060 |  |
|          |      |      |  |

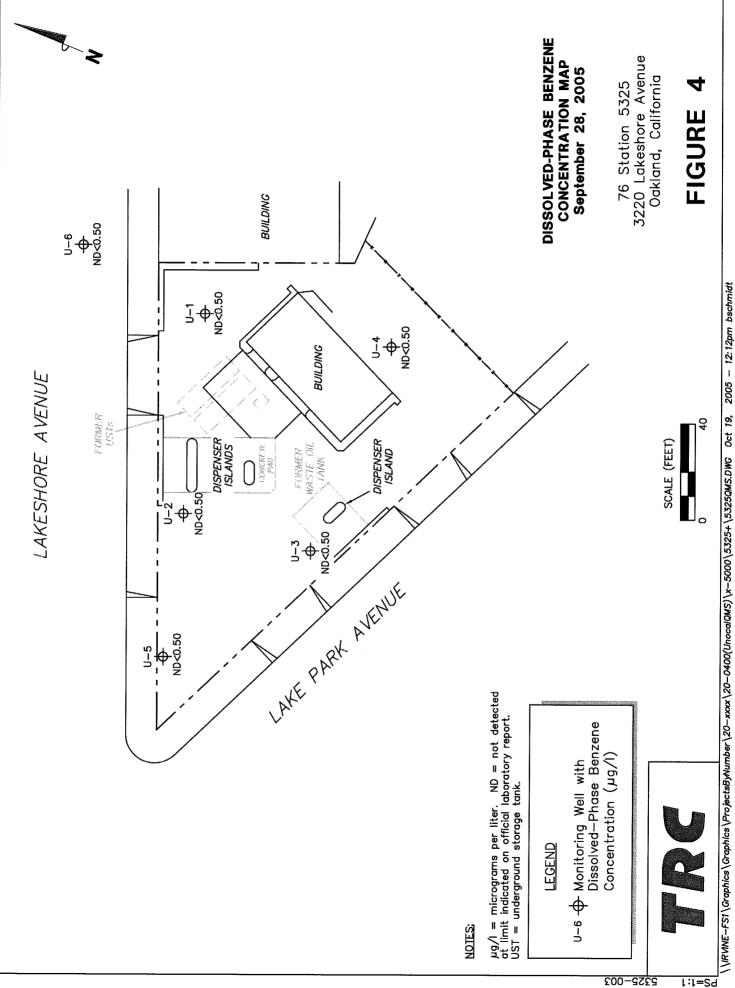
# Table 3 bADDITIONAL ANALYTICAL RESULTS76 Station 5325

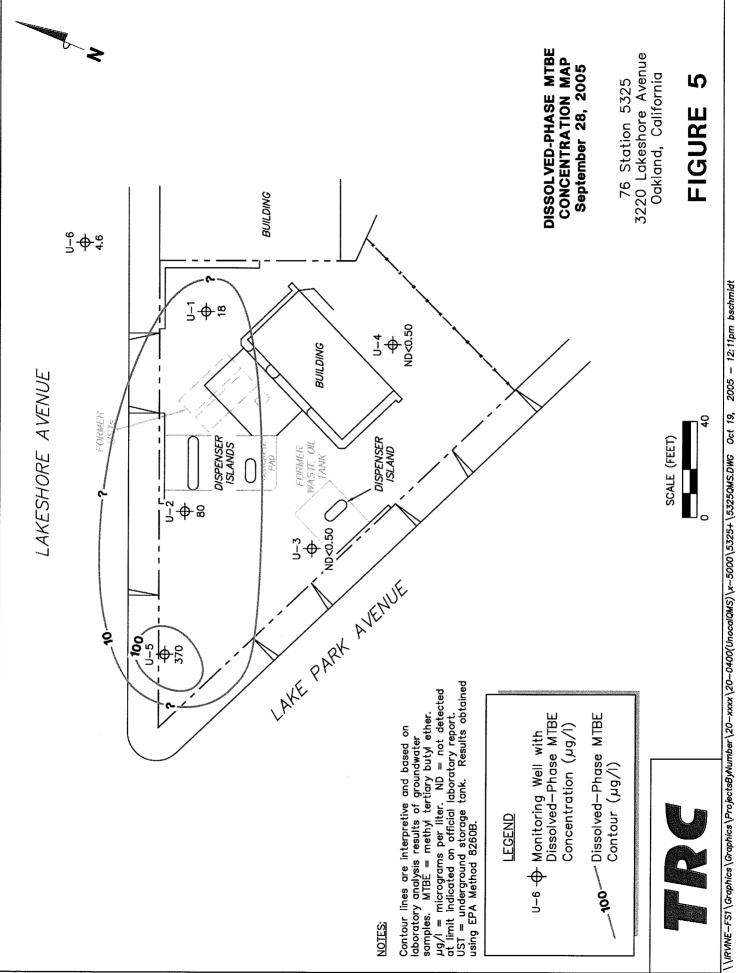
| Post Purge<br>ORP | (mV) |     | 102      | 42       | 15       | 8 <mark>-</mark> | 77       | 130      | 88       | 082      |     | -39      | -37      | -31      | -67      | -72      | 133      | -168     | -125     |     | -74      | -33      | -62      | ł        | 96       | -175     | -141     |
|-------------------|------|-----|----------|----------|----------|------------------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|
| Pre-Purge<br>ORP  | (mV) |     | 107      | 19       | 27       | -26              | 84       | 163      | 78       | 660      |     | -39      | -19      | -15      | -41      | -65      | 132      | -163     | -126     |     | 66-      | -28      | -32      | -89      | 84       | -158     | -028     |
| Date I<br>Sampled |      | U-4 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04         | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | U-5 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 12/20/04 | 03/28/05 | 06/14/05 | 09/28/05 | 0-6 | 12/02/03 | 03/30/04 | 06/07/04 | 09/09/04 | 03/28/05 | 06/14/05 | 09/28/05 |

### FIGURES


,



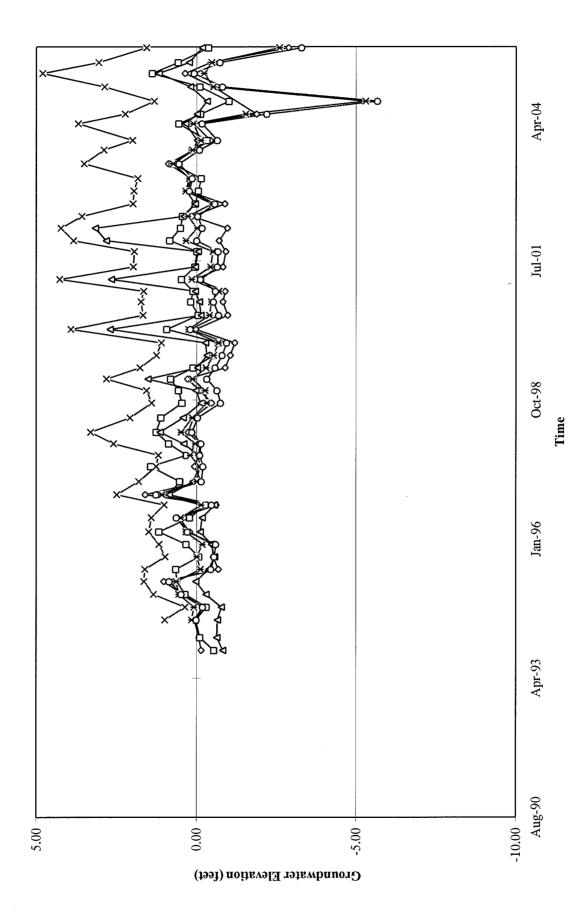


PS L: \ VICINITY MAPS\5325VMDWG Aug 22, 2005 - 10:25am lwinters


÷

11

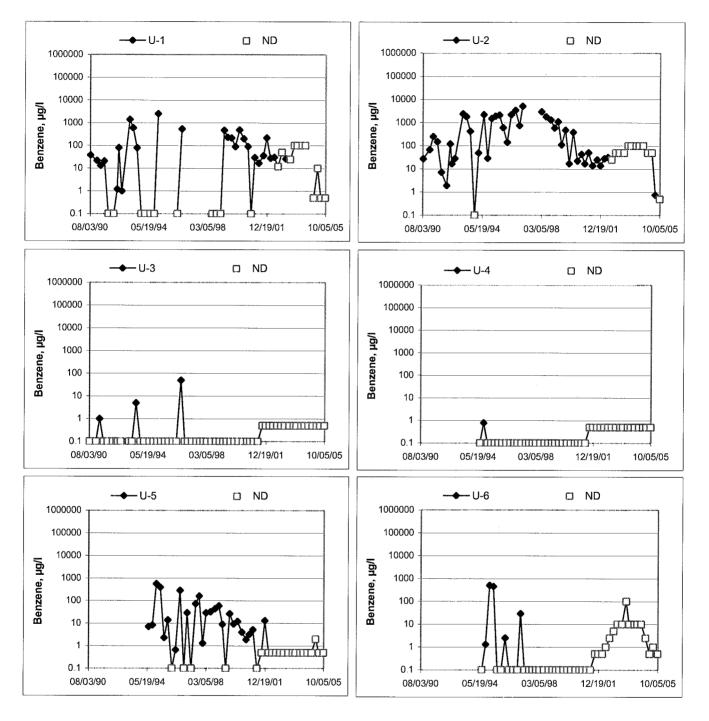









<sup>5325-003</sup> 1:1=Sq


### GRAPHS

**-\*-** U-5 -0-U-6 **1**-0-1 -**⊳**-U-3 **--x--** U-4



Groundwater Elevations vs. Time 76 Station 5325

### Benzene Concentrations vs Time 76 Station 5325



### GENERAL FIELD PROCEDURES

### **Groundwater Monitoring and Sampling Assignments**

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

### Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

### Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

### **Groundwater Sample Collection**

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

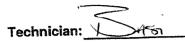
After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

### Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

### Decontamination


In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

### Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

### FIELD MONITORING DATA SHEET



Job #/Task #: 4.05000. / FAD

Date: 09/28/05

Site # 5325 Project Manager A. Collins

Page \_\_\_\_\_ of \_\_\_\_\_

|                   | T       |              |            | Depth    | Depth    | Product   |           |                                       |
|-------------------|---------|--------------|------------|----------|----------|-----------|-----------|---------------------------------------|
|                   | Time    |              | Total      | to       | to       | Thickness | Time      | Misc. Well Notes                      |
| Well #            | Gauged  | тос          | Depth      | Water    | Product  | (feet)    | Sampled   |                                       |
| U.S.              | 0747    | $\checkmark$ | 19.98      | 9.59     | ð        | C         | 1110      | 4"                                    |
| U-3               | 0756    | )            | 19.39      | 11.16    |          |           | 1123      | 3″                                    |
| u-6               | 0809    |              | 23.70      | 10.44    |          |           | 1132      | 2"                                    |
| 11 - 1            | 0814    |              | 13.24      | 1135     |          |           | 1146      | 3"                                    |
| h.E.              | 0822    |              | 2005       | 9.59     |          |           | 1202      | 4"                                    |
| U-1<br>h-5<br>U-2 | 0826    | V            | 19.81      | 8.00     | V        | $\nabla$  | 1231      | 3"                                    |
| <u>u</u>          | 0866    |              |            |          |          |           |           |                                       |
|                   |         |              |            |          |          |           |           |                                       |
|                   |         | <u> </u>     | <u> </u>   |          |          |           |           |                                       |
|                   |         |              | <u> </u>   |          | <u></u>  |           |           |                                       |
|                   |         |              | +          |          | <u> </u> | <u> </u>  |           |                                       |
|                   |         |              |            |          | +        |           |           |                                       |
|                   |         |              |            |          |          |           |           |                                       |
| <u> </u>          |         |              |            |          | 7        |           |           |                                       |
|                   |         |              |            | <u> </u> |          | 1         |           |                                       |
|                   |         |              | 1          |          |          |           |           |                                       |
|                   |         |              |            |          | -        |           |           |                                       |
| <b></b>           |         |              |            | <u> </u> |          | +         |           |                                       |
|                   |         |              |            |          |          | +         | <u> </u>  | · · · · · · · · · · · · · · · · · · · |
|                   |         | ļ            |            |          | 1        | +         |           | -                                     |
|                   |         |              |            |          |          | +         |           |                                       |
|                   |         |              | +          | <u> </u> |          |           |           |                                       |
|                   |         | <u> </u>     | . <u> </u> |          |          |           |           |                                       |
| ļ                 |         |              |            |          |          |           |           |                                       |
|                   |         | <u> </u>     | L          | 1        | <u> </u> | <u> </u>  |           |                                       |
| FIELD DAT         | A COMPL | ETE          |            | <u>}</u> | ୍ବର୍ଚ୍ଚ  | N         | ELL BOX C | ONDITION SHEETS                       |
|                   |         |              |            |          |          |           |           |                                       |
| WTT CERT          | IFICATE |              | MANIFE     | ST       | DRUM IN  | VENTORY   | TRA       | FFIC CONTROL                          |

|                                                                                                                           |                                                                                                            | GRC                                                                                                   | UNDWATE                                       |                                                                                                                                                                          | 1122-                                                                                                               |                                                  |                                                   |                                        |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|
|                                                                                                                           |                                                                                                            | T                                                                                                     | echnician:                                    | DAS                                                                                                                                                                      |                                                                                                                     |                                                  |                                                   | 1 0                                    |
| te:                                                                                                                       | 325                                                                                                        | F                                                                                                     | Project No.:                                  | 41050                                                                                                                                                                    | 00. /F42                                                                                                            | J D                                              | ate: 07                                           | 28/05                                  |
| ell No.:                                                                                                                  | U-5                                                                                                        |                                                                                                       |                                               | Purge Method                                                                                                                                                             | P                                                                                                                   | à-                                               |                                                   |                                        |
| oth to Water                                                                                                              | (feet):                                                                                                    | 759                                                                                                   |                                               |                                                                                                                                                                          | ct (feel):                                                                                                          | <del></del>                                      |                                                   |                                        |
| tal Deoth (fee                                                                                                            | et): <u>20</u> .                                                                                           | 05                                                                                                    |                                               | LPH & Water R                                                                                                                                                            | lecovered (gallo                                                                                                    | ns):                                             | 2                                                 |                                        |
|                                                                                                                           | (feel):                                                                                                    |                                                                                                       |                                               | Casing Diameter                                                                                                                                                          | er (inches):                                                                                                        | $\varphi^{\prime\prime}$                         |                                                   |                                        |
|                                                                                                                           | Depth (feet):_                                                                                             |                                                                                                       |                                               | 1 Well Volume                                                                                                                                                            | (gallons):                                                                                                          | 7                                                | and sectors of the                                |                                        |
| Time                                                                                                                      | Time                                                                                                       | Depth                                                                                                 | Volume                                        | Conduc-                                                                                                                                                                  | Temperature                                                                                                         |                                                  |                                                   |                                        |
| Start                                                                                                                     | Stop                                                                                                       | To Water                                                                                              | Purged                                        | tivity                                                                                                                                                                   |                                                                                                                     | pН                                               | Turbidity                                         | D.O.                                   |
|                                                                                                                           | 4                                                                                                          | (feet)                                                                                                | (galions)                                     | (uS/cm)                                                                                                                                                                  | (F,C)                                                                                                               |                                                  | ORP                                               |                                        |
| 1004                                                                                                                      |                                                                                                            |                                                                                                       | フ                                             | 3.37ms                                                                                                                                                                   | 22.0                                                                                                                | 673                                              | -126                                              | 4.58mg/4                               |
|                                                                                                                           |                                                                                                            |                                                                                                       | 14                                            | 3.67.45                                                                                                                                                                  | H.1                                                                                                                 | 6.56                                             | -111                                              | 4.58 mg/2<br>2.63 mg/2<br>6.99 meg/2   |
|                                                                                                                           | 1016                                                                                                       |                                                                                                       | 2)                                            | 3.6845                                                                                                                                                                   | 21.7                                                                                                                | 7.56                                             | -125                                              | 69 Yneyla                              |
| 1                                                                                                                         | 1016                                                                                                       |                                                                                                       |                                               |                                                                                                                                                                          |                                                                                                                     | -                                                |                                                   |                                        |
|                                                                                                                           |                                                                                                            |                                                                                                       |                                               |                                                                                                                                                                          | •                                                                                                                   |                                                  |                                                   | · ·                                    |
| Ctati                                                                                                                     | c at Time Sam                                                                                              | l                                                                                                     | 1                                             | otal Gallons Pu                                                                                                                                                          | roed                                                                                                                |                                                  | Time Samp                                         | led                                    |
|                                                                                                                           | C at time ban                                                                                              | ipieu                                                                                                 | l                                             |                                                                                                                                                                          | .3                                                                                                                  | 1                                                | 1200                                              |                                        |
|                                                                                                                           | 10.96                                                                                                      |                                                                                                       |                                               | 21                                                                                                                                                                       |                                                                                                                     |                                                  | 1000                                              |                                        |
|                                                                                                                           |                                                                                                            |                                                                                                       |                                               |                                                                                                                                                                          |                                                                                                                     |                                                  |                                                   |                                        |
| omments:                                                                                                                  | 10.96                                                                                                      |                                                                                                       |                                               |                                                                                                                                                                          | j                                                                                                                   | ), A                                             |                                                   |                                        |
| omments:<br>/ell No.:                                                                                                     | 10.96<br>U-2                                                                                               | 2                                                                                                     |                                               | Purge Method<br>Depth to Prod                                                                                                                                            | 1:<br>Juct (feet):                                                                                                  | Ą                                                |                                                   |                                        |
| omments:<br>Vell No.:                                                                                                     | /0 .96<br>Let (feet):                                                                                      | 2<br>B.00                                                                                             |                                               | Purge Method<br>Depth to Prod                                                                                                                                            | luct (feet):                                                                                                        | Ą                                                |                                                   |                                        |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fi                                                                   | /0 .96                                                                                                     | 2<br>8.00<br>81                                                                                       |                                               | Purge Method<br>Depth to Prod<br>LPH & Water                                                                                                                             | luct (feet):<br>Recovered (gal                                                                                      | <b>لار)</b><br>الons):                           | of                                                |                                        |
| ornments:<br>/ell No.:<br>epth to Wate<br>otal Depth (find<br>/ater Column                                                | /0.96                                                                                                      | 2<br>8.00<br>8.<br>1,81                                                                               |                                               | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame                                                                                                             | luct (feet):<br>Recovered (gat<br>eter (inches):                                                                    | lions):<br>ろご                                    | of                                                |                                        |
| ornments:<br>/ell No.:<br>/epth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge                                  | /0 .96<br>er (feet):<br>eet):<br>/9<br>n (feet):<br>e Depth (feet):                                        | 2<br>8.00<br>81<br>1.81<br>_10.37                                                                     |                                               | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum                                                                                             | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):                                                    | lions):<br>ろご                                    | of                                                |                                        |
| ornments:<br>/ell No.:<br>pepth to Wate<br>otal Depth (fi<br>/ater Column<br>0% Recharge<br>Time                          | /0.96<br>// - 2<br>er (feet):<br>eet):<br>feet):<br>Depth (feet):<br>Time                                  | 2<br>8.00<br>8.<br>1.81<br>                                                                           | Volume                                        | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-                                                                                  | luct (feet):<br>Recovered (gat<br>eter (inches):                                                                    |                                                  | e<br>                                             |                                        |
| ornments:<br>/ell No.:<br>/epth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start                 | /0 .96<br>// - 2<br>er (feet):<br>eet):?<br>n (feet):?<br>e Depth (feet):<br>Time<br>Stop                  | 2<br>8.00<br>8.<br>1.81<br>10.37<br>Depth<br>To Water                                                 | Volume<br>Purged                              | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum                                                                                             | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):                                                    | lions):<br>ろご                                    | d                                                 |                                        |
| omments:<br>Vell No.:<br>Pepth to Wate<br>Total Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start                 | /0.96<br>// - 2<br>er (feet):<br>eet):<br>feet):<br>Depth (feet):<br>Time                                  | 2<br>8.00<br>8.<br>1.81<br>                                                                           | Volume                                        | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)                                                             | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F,C)                            | СЧ<br>llons):<br>У<br>рН                         | Iurbidity<br>Dep                                  | D.O.                                   |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start                   | /0 .96<br>// - 2<br>er (feet):<br>eet):?<br>n (feet):?<br>e Depth (feet):<br>Time<br>Stop                  | 2<br>8.00<br>8.<br>1.81<br>10.37<br>Depth<br>To Water                                                 | Volume<br>Purged                              | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)                                                             | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F.C)<br>22./                    | ср<br>Ilons):<br>З ''<br>У<br>рН<br>6.95         | Intertetativ<br>Cep<br>-100                       | D.O.                                   |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start                   | /0 .96<br>// - 2<br>er (feet):<br>eet):/9<br>h (feet):/9<br>h (feet):/9<br>E Depth (feet):<br>Time<br>Stop | 2<br>8.00<br>8.<br>1.81<br>10.37<br>Depth<br>To Water                                                 | Volume<br>Purged<br>(gallons)                 | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>3.33.45<br>1845                                          | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F.C)<br>g22, /<br>222, 9        | ef<br>Ilons):<br>g/<br>pH<br>6.95<br>6.67        | ср<br>Інтототу<br>сер<br>-/00<br>- 32             | D.O.                                   |
| ornments:<br>/ell No.:<br>/epth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start                 | /0 .96<br>// - 2<br>er (feet):<br>eet):?<br>n (feet):?<br>e Depth (feet):<br>Time<br>Stop                  | 2<br>8.00<br>8.<br>1.81<br>10.37<br>Depth<br>To Water                                                 | Volume<br>Purged                              | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>3.33.45<br>1845                                          | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F.C)<br>22./                    | ef<br>Ilons):<br>g/<br>pH<br>6.95<br>6.67        | Intertetativ<br>Cep<br>-100                       | D.O.<br>2.97mg/<br>3.69mg/1            |
| omments:<br>/eli No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start<br>/oz z          | /0 .96<br>// - 2<br>er (feet):<br>eet):?<br>n (feet):?<br>n (feet):?<br>Time<br>Stop<br>/ 0.3/             | 2<br>8.00<br>8.<br>1.81<br>10.57<br>Depth<br>To Water<br>(feet)                                       | Volume<br>Purged<br>(gallons)<br>4<br>8<br>12 | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>3.33.45<br>1845<br>3.28.45                               | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F,C)<br>2Z, 9<br>2Z, 9<br>2Z, 7 | ef<br>Ilons):<br>g/<br>pH<br>6.95<br>6.67        | ср<br>Інтотопу<br>огр<br>-/00<br>- 32<br>( - 17 9 | D.O.<br>2.97mg/<br>3.69mg/<br>6.62mg/  |
| ornments:<br>/eII No :<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start<br>/oz z<br><br> | /0 .96<br>// - 2<br>er (feet):<br>eet):?<br>n (feet):?<br>Time<br>Stop<br>/ a3/<br><br>atic at Time Sa     | 2<br>8.00<br>8.<br>1.81<br>10.57<br>Depth<br>To Water<br>(feet)                                       | Volume<br>Purged<br>(gallons)<br>4<br>8<br>12 | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>3.33ms<br>1845<br>3.28ms                                 | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F,C)<br>2Z, 9<br>2Z, 9<br>2Z, 7 | ef<br>Ilons):<br>g/<br>pH<br>6.95<br>6.67        | СР<br>                                            | D.O.<br>2.97mg/<br>3.09mg/<br>6.62 mg/ |
| ornments:<br>/eII No :<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start<br>/oz z<br><br> | 10.96<br>12<br>er (feet):<br>eet):9<br>n (feet):<br>tic at Time Sa<br>19.92                                | 2<br>8<br>8<br>7<br>8<br>7<br>7<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Volume<br>Purged<br>(gallons)<br>4<br>8<br>12 | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diame<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>3.33.45<br>1845<br>3.28.45<br>3.28.45<br>Total Gallons P | luct (feet):<br>Recovered (gal<br>eter (Inches):<br>e (gallons):<br>Temperature<br>(F,C)<br>2Z, 9<br>2Z, 9<br>2Z, 7 | ср<br>Ilons):<br>У<br>рн<br>6.95<br>6.67<br>7.67 | ср<br>Інтотопу<br>огр<br>-/00<br>- 32<br>( - 17 9 | D.O.<br>2.97mg/<br>3.09mg/<br>6.62 mg/ |

2

|                                                                                                                    |                                                                                                                                                                   | GRO                                                         |                                         |                                                                                                                                                  |                                                                                                                                    |                                          |                                                        |                                             |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------|
|                                                                                                                    |                                                                                                                                                                   | т                                                           | echnician:                              | Ens                                                                                                                                              | י <u>י</u>                                                                                                                         |                                          |                                                        |                                             |
| e: <u>5</u>                                                                                                        | 325                                                                                                                                                               | [                                                           | -                                       |                                                                                                                                                  | xx. / Fuzza                                                                                                                        |                                          | ate: 0                                                 | 9/28/15                                     |
|                                                                                                                    | U-6                                                                                                                                                               |                                                             |                                         | Purge Method.                                                                                                                                    | Di                                                                                                                                 | 9                                        |                                                        |                                             |
|                                                                                                                    | (feet):                                                                                                                                                           |                                                             |                                         | Depth to Produ                                                                                                                                   |                                                                                                                                    | $-\varphi$                               | 1                                                      |                                             |
|                                                                                                                    | et): <u>23</u>                                                                                                                                                    |                                                             |                                         | LPH & Water F                                                                                                                                    | Recovered (gallo                                                                                                                   | ons):4                                   |                                                        |                                             |
|                                                                                                                    | (feel):/                                                                                                                                                          |                                                             |                                         | Casing Diame                                                                                                                                     | ter (inches):                                                                                                                      | 2"                                       |                                                        |                                             |
|                                                                                                                    | Depth (feet):_                                                                                                                                                    |                                                             |                                         | 1 Well Volume                                                                                                                                    | (gallons):                                                                                                                         | 2_                                       |                                                        |                                             |
| Time                                                                                                               | Time                                                                                                                                                              | Depth                                                       | Volume                                  | Conduc-                                                                                                                                          | Temperature                                                                                                                        |                                          |                                                        |                                             |
| Start                                                                                                              | Stop                                                                                                                                                              | To Water                                                    | Purged                                  | tivity                                                                                                                                           | (F.C)                                                                                                                              | рН                                       | Jurbicity                                              | D.O.                                        |
| <u>ir asta</u>                                                                                                     | -                                                                                                                                                                 | (feet)                                                      | (gallons)                               | (uS/cm)                                                                                                                                          | (F,C)                                                                                                                              | 7.87                                     | 028                                                    | 6 Starall                                   |
| 7935                                                                                                               |                                                                                                                                                                   |                                                             | $\frac{2}{4}$                           | 1359                                                                                                                                             | 203                                                                                                                                | 728                                      | -074                                                   | 6.52 mg/L<br>3.49 mg/L<br>7.93 mg/L         |
|                                                                                                                    |                                                                                                                                                                   |                                                             | <u> </u>                                | 1667                                                                                                                                             | 20.0                                                                                                                               | 7.61                                     | -141                                                   | 762 1.                                      |
|                                                                                                                    | 0942                                                                                                                                                              |                                                             | 6                                       | 17:45                                                                                                                                            | 19.4                                                                                                                               | 1.6'                                     |                                                        | 1.1 Smg IL                                  |
|                                                                                                                    |                                                                                                                                                                   |                                                             |                                         |                                                                                                                                                  |                                                                                                                                    |                                          |                                                        | · · · · · · · · · · · · · · · · · · ·       |
|                                                                                                                    |                                                                                                                                                                   |                                                             |                                         |                                                                                                                                                  | L                                                                                                                                  | <u> </u>                                 | Time Samp                                              | lad                                         |
|                                                                                                                    | c at Time Sam                                                                                                                                                     | pled                                                        | Ţ                                       | otal Gallons Pu                                                                                                                                  | irged                                                                                                                              | I                                        | // 3Z                                                  |                                             |
|                                                                                                                    | 069                                                                                                                                                               |                                                             |                                         | 6                                                                                                                                                |                                                                                                                                    |                                          | <i>,,, , , , , , , , , ,</i>                           | 5-                                          |
| omments:<br>/ell No.:                                                                                              | <i>U-1</i>                                                                                                                                                        |                                                             |                                         |                                                                                                                                                  |                                                                                                                                    | i A<br>L                                 |                                                        | 1 <u>5</u> .                                |
| omments:<br>Jell No.:<br>Pepth to Wate                                                                             |                                                                                                                                                                   | 1.35                                                        |                                         | Purge Method<br>Depth to Proc                                                                                                                    | d<br>duct (feet):<br>Recovered (ga                                                                                                 |                                          |                                                        | 1 <u>5</u> .                                |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe                                                            | <br><br>er (feet):                                                                                                                                                | 1.35<br>24                                                  |                                         | Purge Methor<br>Depth to Proc<br>LPH & Water                                                                                                     | d                                                                                                                                  | llons):                                  |                                                        |                                             |
| omments:<br>Vell No.:<br>Pepth to Wate<br>Total Depth (fe                                                          | <u> </u>                                                                                                                                                          | 1.35<br>24<br>1.89                                          |                                         | Purge Methor<br>Depth to Proc<br>LPH & Water<br>Casing Diam                                                                                      | d<br>duct (feet):<br>Recovered (ga                                                                                                 | ilons):<br>3''                           | cP                                                     | 1 <u>5</u> .                                |
| omments:<br>Vell No.:<br>Pepth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time                    | <br>er (feet):<br>eet):3<br>(feet):<br>e Depth (feet):<br>                                                                                                        | 1.35<br>24<br>1.89<br>11.73<br>-Depth                       | Volume                                  | Purge Methor<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum                                                                      | d<br>duct (feet):<br>Recovered (ga<br>eter (Inches):                                                                               | llons):<br><br>                          |                                                        |                                             |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start            | tr (feet):<br>eet):3<br>n (feet):<br>e Depth (feet):<br>Time<br>Stop                                                                                              | 1.35<br>24<br>1.89<br>11.73                                 |                                         | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum                                                                      | d<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>ne (gallons):                                                              | llons):<br>                              | cP<br>                                                 | 1 <u>5</u> .                                |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start            | <br>er (feet):<br>eet):3<br>(feet):<br>e Depth (feet):<br>                                                                                                        | 1.35<br>20<br>1.89<br>11.73<br>Depth<br>To Water            | Volume<br>Purged                        | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diam<br>1 Well Volum<br>Conduc-<br>tivity                                                 | d<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>ne (gallons):<br>Temperature                                               | llons):<br><br>                          | CP<br>Iunbiotity<br>OR,0                               | D.O.                                        |
| omments:<br>Vell No.:<br>Depth to Wate<br>Otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start           | tr (feet):<br>eet):3<br>n (feet):<br>e Depth (feet):<br>Time<br>Stop                                                                                              | 1.35<br>20<br>1.89<br>11.73<br>Depth<br>To Water            | Volume<br>Purged<br>(gallons)           | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)                                      | d<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>ne (gallons):<br>Temperature<br>(F,C)                                      | lions):<br>/<br><br>рН                   | CP<br>Iunbiotity<br>OR,0                               | D.O.                                        |
| omments:<br>Vell No.:<br>Pepth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start           | tr (feet):<br>eet):3<br>n (feet):<br>e Depth (feet):<br>Time<br>Stop                                                                                              | 1.35<br>20<br>1.89<br>11.73<br>Depth<br>To Water            | Volume<br>Purged<br>(gallons)           | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)                                      | d. $Q$<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>ne (gallons):<br>Temperature<br>(F,C)<br>2Z-3                         | lions):<br>3″/<br>/<br>рН<br>770         | 1<br>Iuntidity<br>ORpo<br>- 065<br>- 089               | D.O.<br>2.59 no. 11<br>3. Vbneg/L           |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start            | tr (feet):<br>eet):3<br>n (feet):3<br>e Depth (feet):<br>Time<br>Stop                                                                                             | 1.35<br>20<br>1.89<br>11.73<br>Depth<br>To Water            | Volume<br>Purged<br>(gallons)           | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>1331<br>8555                      | d. $2$<br>duct (feet): $2$<br>Recovered (ga<br>eter (Inches): $2$<br>ne (gallons): $2$<br>Temperature<br>(F,C)<br>2Z-3<br>2Z-3     | lions):<br>3″/<br>/<br>рн<br>770<br>6.76 | 1<br>Iuntidity<br>ORpo<br>- 065<br>- 089               | D.O.                                        |
| omments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start            | tr (feet):<br>eet):3<br>n (feet):3<br>e Depth (feet):<br>Time<br>Stop                                                                                             | 1.35<br>24<br>1.89<br>1.73<br>- Depth<br>To Water<br>(feet) | Volume<br>Purged<br>(gallons)<br>2<br>3 | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diam<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>1331<br>8555                      | d. $Q$<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>te (gallons):<br>Temperature<br>(F,C)<br>22-3<br>22-3<br>22-3<br>22-3 | lions):<br>3″/<br>/<br>рн<br>770<br>6.76 | 1<br>Iuntidity<br>ORpo<br>- 065<br>- 089               | D.O.<br>2.57najle<br>3.Vbneg/L<br>7.13neg/L |
| rell No.:<br>epth to Wate<br>otal Depth (fe<br>fater Column<br>0% Recharge<br>Time<br>Start<br>2950                | U       -1         er (feet):          peet):          e Depth (feet):          Time       Stop         09255                                                     | 1.35<br>24<br>1.89<br>1.73<br>- Depth<br>To Water<br>(feet) | Volume<br>Purged<br>(gallons)<br>2<br>3 | Purge Method<br>Depth to Prod<br>LPH & Water<br>Casing Diarn<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br>1331<br>855<br>925               | d. $Q$<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>te (gallons):<br>Temperature<br>(F,C)<br>22-3<br>22-3<br>22-3<br>22-3 | lions):<br>3″/<br>/<br>рн<br>770<br>6.76 | Iuntidity<br>OR,0<br>- 065<br>- 039<br>- 160           | D.O.<br>2.59najle<br>3.16neg/L<br>7.13neg/L |
| omments:<br>/ell No.:<br>repth to Wate<br>otal Depth (fe<br>Vater Column<br>0% Recharge<br>Time<br>Start<br>       | U - /         er (feet):         set):         3         h (feet):         2         Depth (feet):         Time         Stop         0955         tic at Time Sat | 1.35<br>24<br>1.89<br>1.73<br>- Depth<br>To Water<br>(feet) | Volume<br>Purged<br>(gallons)<br>2<br>3 | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diarm<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br><i>1331</i><br>855<br>925<br>925 | d. $Q$<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>te (gallons):<br>Temperature<br>(F,C)<br>22-3<br>22-3<br>22-3<br>22-3 | lions):<br>3″/<br>/<br>рн<br>770<br>6.76 | Iurbidhy<br>ORp<br>- 065<br>- 089<br>- 160<br>Time Sar | D.O.<br>2.59najle<br>3.16neg/L<br>7.13neg/L |
| ornments:<br>/ell No.:<br>epth to Wate<br>otal Depth (fe<br>/ater Column<br>0% Recharge<br>Time<br>Start<br>/2957) | U - /         er (feet):         set):         3         h (feet):         2         Depth (feet):         Time         Stop         0955         tic at Time Sat | 1.35<br>24<br>1.89<br>1.73<br>- Depth<br>To Water<br>(feet) | Volume<br>Purged<br>(gallons)<br>2<br>3 | Purge Method<br>Depth to Proc<br>LPH & Water<br>Casing Diarm<br>1 Well Volum<br>Conduc-<br>tivity<br>(uS/cm)<br><i>1331</i><br>855<br>925<br>925 | d. $Q$<br>duct (feet):<br>Recovered (ga<br>eter (Inches):<br>te (gallons):<br>Temperature<br>(F,C)<br>22-3<br>22-3<br>22-3<br>22-3 | lions):<br>3″/<br>/<br>рн<br>770<br>6.76 | Iurbidhy<br>ORp<br>- 065<br>- 089<br>- 160<br>Time Sar | D.O.<br>2.59najle<br>3.16neg/L<br>7.13neg/L |

. 198

5

1

- AP

| /             | <u></u>                  | 1                           |                               |                              |                                  |      |                               |                                  |
|---------------|--------------------------|-----------------------------|-------------------------------|------------------------------|----------------------------------|------|-------------------------------|----------------------------------|
| Sta           | itic at Timè Sa          | mpled                       | <u> </u>                      | Total Gallons I              | Purged                           |      | Time Sam                      |                                  |
|               |                          |                             |                               |                              |                                  |      | Time Sam                      |                                  |
|               | 0923                     |                             | 9                             | 673                          | 21.9                             | 8.24 | -060                          | 6.99mg 1                         |
|               |                          |                             | 6                             | 689                          | 31.5                             | 7.90 | -053                          | 496mg1c<br>7.10 mg1 L<br>6.99mg1 |
| 916           |                          |                             | 3                             | 684                          | 22.0                             | 828  | -068                          | Y.glongle                        |
| Time<br>Start | Time<br>Stop             | Depth<br>To Water<br>(feet) | Volume<br>Purged<br>(gallons) | Conduc-<br>tivity<br>(uS/cm) | Temperature<br>(F,C)             | рН   | - <del>Furbidity</del><br>DRP | D.O.                             |
|               |                          | 12.81                       |                               | •                            | re (gallons):                    | Z    | •                             | 2                                |
|               | r (feet):                |                             |                               |                              | eter (Inches):                   | 3"   |                               |                                  |
|               | er (feet):               |                             |                               |                              | duct (feet):<br>r Recovered (gal |      | l                             |                                  |
| ell No.:      | <u><u>    (r</u> - 3</u> | 11 11                       |                               | -                            | d                                |      |                               |                                  |
| 5747.         | e WAS                    | (17.88)                     | <i>D-9</i> ,                  | n't Re                       | Course in                        | v 2, | Hougs                         |                                  |
| mments:       | Went                     | - Day                       | +7 16                         | SALS                         | DIANT                            | Reco | er in                         | Asren                            |
|               | c at Time Sam<br>6.79    | npled                       |                               | tal Gallons Pu               | irged                            | L    | ·····                         |                                  |
|               |                          |                             |                               |                              |                                  |      | Time Sampl                    | her                              |
|               |                          |                             | 21                            |                              | · · · · · ·                      |      |                               |                                  |
|               | 0910                     |                             | 19                            | 786                          | 22.7                             | 8.19 | 480                           | 6. ) Ingh                        |
| 857           |                          |                             |                               | 818                          | 23.4                             | 7.81 | 099                           | 5.02mg/2<br>6.59mg/2             |
| Start         | Stop                     | To Water<br>(feet)          | Purged<br>(gallons)           | (uS/cm)                      | (F.C)                            |      | ORP                           |                                  |
| Time          | Time                     | Depth                       | Volume                        | Conduc-<br>tivity            | Temperature                      | pH   | Iurbidity                     | D.O.                             |
| % Recharge    | Depth (feet):_           | 11.67                       |                               | 1 Well Volume                | e (gallons):                     |      |                               |                                  |
|               | (feet):                  |                             | (                             | Casing Diame                 | ter (Inches):                    | 9    | <del></del>                   |                                  |
|               | (leel)                   |                             | l                             | PH & Water                   | Recovered (gallo                 | ns): |                               |                                  |
|               | (feet):                  |                             |                               |                              | uct (feet):                      | e    |                               |                                  |
|               |                          |                             |                               |                              | pin                              |      |                               |                                  |
| e: <u>5</u>   | <25                      | P                           | mectino                       | 1 1 1 ST 13                  | SI I MALL                        |      |                               | 128/05                           |

\*

ş

BC > Laboratories, Inc

Date of Report: 10/26/2005

Anju Farfan

BC Lab Number: 0509653 **TRC Alton Geoscience** 21 Technology Drive Irvine, CA 92618-2302 RE: 5325

Enclosed are the results of analyses for samples received by the laboratory on 09/28/05 22:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker

**Client Service Rep** 

Authorized Signature

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| Laboratory / Client Sample Cross Reference         Cleat Sample Information       Cleat Sample Information         Cleat Sample Information       5325         Sampling Docation:       1-4         Sampling Docation:       1-4         Sampling Docation:       1-4         Sampling Docation:       1-4         Sampling Point:       5325         Sampling Point:       1-4         Sampling Point:       1-4         Sampling Point:       1-4         Sampling Point:       1-4         Sampling Point:       1-3         Sampling Dotation:       1-3         Sampling Point:       1-5         Sampling Point:       1-6         Sampling Point:       1-6         Sampling Point:       1-7         Sampled By:       Basi Foster of TRCI         Sampling Point:       1-6         Sampled By:       Basi Foster of TRCI         Sampled By:       Basi Foster of TRCI         Sampled By:       Basi Foster of TRCI         Sampled By:       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRC Alton Geoscience<br>21 Technology Drive<br>Irvine CA, 92618-2302 | oscience<br>Drive<br>18-2302                                                           | Proje<br>Proje | Project: 5325<br>Project Number: [none]<br>Project Manager: Anju Farfan |                                               | Reported: 10/26/05 09:49                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                        | -              | ient Sample Cross R                                                     | eference                                      |                                                                                                               |
| COC Number:       5325       Sampling Date:       09/28/05 11:10         Sampling Location:       U-4       Sampling Date:       09/28/05 11:10         Sampling Location:       U-4       Sampling Point:       Matrix:       Water         Sampling Location:       U-4       Sample Depth:        Sample Depth:          Sampling Location:       U-3       Sample Depth:        Sample Depth:          Sampling Location:       U-3       Sample Depth:        Sample Depth:          COC Number:       5325       Sampling Date:       09/28/05 11:23       Sample Depth:          Sampling Location:       U-3       Sample Depth:        Sample Depth:          COC Number:       5325       Sample Depth:        Sample Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Laboratory                                                           | <b>Client Sample Inform</b>                                                            | ation          |                                                                         |                                               |                                                                                                               |
| COC Number:       5325       Sampling Date:       09/28/05 22:30         Project Number:       5325       Sampling Date:       09/28/05 11:23         Sampling Location:       U-3       Sampling Date:       09/28/05 11:23         Sampling Point:       U-3       Sampling Date:       09/28/05 11:23         Sampling Point:       U-3       Sampling Date:       09/28/05 11:32         Sampling Point:       U-6       Sampling Date:       09/28/05 11:32         Sampling Point:       U-6       Sampling Date:       09/28/05 11:32         Sampling Point:       U-6       Sampling Date:       09/28/05 22:30         Sampling Point:       U-6       Sampling Date:       09/28/05 22:30         Sampling Point:       U-6       Sampling Date:       09/28/05 22:30         Sampling Point:       U-1       Sampling Date: <td< th=""><th><b>509653-01</b></th><th>COC Number:<br/>Project Number:<br/>Sampling Location:<br/>Sampling Point:<br/>Sampled By:</th><th></th><th>Receive Date:<br/>Sampling Date:<br/>Sample Depth:<br/>Sample Matrix:</th><th>09/28/05 22:30<br/>09/28/05 11:10<br/><br/>Water</th><th>Delivery Work Order (LabW:<br/>Global ID: T0600101463<br/>Matrix: W<br/>Samle QC Type (SACode): CS<br/>Cooler ID:</th></td<> | <b>509653-01</b>                                                     | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: |                | Receive Date:<br>Sampling Date:<br>Sample Depth:<br>Sample Matrix:      | 09/28/05 22:30<br>09/28/05 11:10<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |
| COC Number:Receive Date:09/28/05 11:32Project Number:5325Sampling Date:09/28/05 11:32Sampling Location:U-6Sample Depth:Sampled By:U-6Sample Depth:Sampled By:Basi Foster of TRCIReceive Date:09/28/05 11:32Sampled By:Basi Foster of TRCIReceive Date:09/28/05 11:46Sampled By:5325Sampling Date:09/28/05 11:46Froject Number:U-1Sampling Date:09/28/05 11:46Sampling Location:U-1Sampling Date:09/28/05 11:46Sampling Location:U-1Sampling Date:09/28/05 11:46Sampling Location:U-1Sampling Date:09/28/05 11:46Sampling Location:U-1Sample Depth:Sampling Location:U-1Sample Depth:Sampling Location:U-5Sample Depth:Sampling Location:U-5Sampling Date:09/28/05 12:02Project Number:5325Sampling Date:09/28/05 12:02Sampling Location:U-5Sampling Date:09/28/05 12:02Project Number:U-5Sampling Date:09/28/05 12:02Sampling Location:U-5Sampling Date:09/28/05 12:02Project Number:D-5Sampling Date:09/28/05 12:02Sampling Location:U-5Sampling Date:09/28/05 12:02Sampling Location:U-5Sampled By:Sampled By:Sampling Location:U-5Sampled By: </td <td>509653-02</td> <td>COC Number:<br/>Project Number:<br/>Sampling Location:<br/>Sampling Point:<br/>Sampled By:</td> <td></td> <td>Receive Date:<br/>Sampling Date:<br/>Sample Depth:<br/>Sample Matrix:</td> <td>09/28/05 22:30<br/>09/28/05 11:23<br/><br/>Water</td> <td>Delivery Work Order (LabW:<br/>Global ID: T0600101463<br/>Matrix: W<br/>Samle QC Type (SACode): CS<br/>Cooler ID:</td>                                                                                                                                                                                                  | 509653-02                                                            | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: |                | Receive Date:<br>Sampling Date:<br>Sample Depth:<br>Sample Matrix:      | 09/28/05 22:30<br>09/28/05 11:23<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |
| COC Number:Receive Date:09/28/05 22:30Project Number:53255325Sampling Date:09/28/05 11:46Sampling Location:U-1Sample Depth:Sampled By:Basi Foster of TRCISample Matrix:WaterSampled By:The state of TRCISample Depth:Sampled By:Basi Foster of TRCISample Matrix:WaterSampling Location:U-5Sampling Date:09/28/05 12:02Sampling Location:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sample Depth:Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sampling Point:U-5Sample Depth:Sample Depth:Sample Depth:Sample Depth:Sample DepthiSample Depth:Sample D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1509653-03                                                           | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: |                | Receive Date:<br>Sampling Date:<br>Sample Depth:<br>Sample Matrix:      | 09/28/05 22:30<br>09/28/05 11:32<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |
| COC Number: Receive Date: 09/28/05 22:30<br>Project Number: 5325 5325 Sampling Date: 09/28/05 12:02<br>Sampling Location: U-5 Sampling Point: U-5 Sampling Point: W-5 Sample Matrix: Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1509653-04                                                           | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: |                | Receive Date:<br>Sampling Date:<br>Sample Depth:<br>Sample Matrix:      | 09/28/05 22:30<br>09/28/05 11:46<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1509653-05                                                           | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: |                | Receive Date:<br>Sampling Date:<br>Sample Depth:<br>Sample Matrix:      | 09/28/05 22:30<br>09/28/05 12:02<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |

 $BC \searrow Laboratories, Inc$ 

|            | TRC Alton Geoscience<br>21 Technology Drive<br>Irvine CA, 92618-2302                   |                                               | Project: 5325<br>Project Number: [none]<br>Project Manager: Anju Farfan                |                                               | Reported: 10/26/05 09:49                                                                                      |
|------------|----------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |                                                                                        | Laboratory                                    | ory / Client Sample Cross Reference                                                    | rence                                         |                                                                                                               |
| Laboratory | <b>Client Sample Information</b>                                                       |                                               |                                                                                        |                                               |                                                                                                               |
| 0509653-06 | COC Number:<br>Project Number:<br>Sampling Location:<br>Sampling Point:<br>Sampled By: | <br>5325<br>U-2<br>U-2<br>Basi Foster of TRCI | Receive Date: 09/28/<br>Sampling Date: 09/28/<br>Sample Depth:<br>Sample Matrix: Water | 09/28/05 22:30<br>09/28/05 12:31<br><br>Water | Delivery Work Order (LabW:<br>Global ID: T0600101463<br>Matrix: W<br>Samle QC Type (SACode): CS<br>Cooler ID: |
|            |                                                                                        |                                               |                                                                                        |                                               |                                                                                                               |
|            |                                                                                        |                                               |                                                                                        |                                               |                                                                                                               |

| Laboratories, Inc |  |
|-------------------|--|
|                   |  |

21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project Number: [none] Project Manager: Anju Farfan Project: 5325

**Reported:** 10/26/05 09:49

# Volatile Organic Analysis (EPA Method 8260)

| BCL Sample ID: 0509653-01   Client Sample Name: 5325, U-4, U-4, 9/28/2005 11:10:00AM, Basi Foster | 0509653-01  | Client Samp | le Name | : 5325, U-    | 4, U-4, | 9/28/2005         | 11:10:0  | 0AM, Basi Fos                           | ter     |                          |          |          |      |                                                |
|---------------------------------------------------------------------------------------------------|-------------|-------------|---------|---------------|---------|-------------------|----------|-----------------------------------------|---------|--------------------------|----------|----------|------|------------------------------------------------|
|                                                                                                   |             |             |         |               |         |                   | Prep     | Run                                     |         | Instru-                  |          | gc       | MB   | Lab                                            |
| Constituent                                                                                       |             | Result      | Units   | Pal           | MDL     | <b>MDL</b> Method | Date     | Date/Time                               | Analyst | Analyst ment ID Dilution | Dilution | Batch ID | Bias | Quals                                          |
| Benzene                                                                                           |             | QN          | ng/L    | 0.50          |         | EPA-8260          | 09/30/02 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ٢        | BOI1220  | QN   |                                                |
| Ethylbenzene                                                                                      |             | QN          | ng/L    | 0.50          |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ٢        | BOI1220  | QN   |                                                |
| Methyl t-butyl ether                                                                              |             | QN          | ng/L    | 0.50          |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ٢        | BOI1220  | QN   |                                                |
| Toluene                                                                                           |             | QN          | ng/L    | 0.50          |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ٢        | BOI1220  | QN   |                                                |
| Total Xylenes                                                                                     |             | QN          | ng/L    | 1.0           |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ~        | BOI1220  | QN   |                                                |
| Ethanol                                                                                           |             | ND          | ng/L    | 250           |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | MS-V9                    | ٢        | BOI1220  | QN   | n menodo de la constante de la constante de la |
| Total Purgeable Petroleum<br>Hydrocarbons                                                         | m           | QN          | ng/L    | 50            |         | EPA-8260          | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:25        | MWB     | 6V-SM                    | ~        | BOI1220  | QN   |                                                |
| 1,2-Dichloroethane-d4 (Surrogate)                                                                 | Surrogate)  | 107         | %       | 76 - 114 (LCL | UCL)    | EPA-8260          | 09/30/05 | 09/30/05 09/30/05 22:25                 | MWB     | MS-V9                    | -        | BOI1220  |      |                                                |
| Toluene-d8 (Surrogate)                                                                            |             | 90.7        | %       | 88 - 110 (LCL |         | - UCL) EPA-8260   | 09/30/05 | 09/30/05 09/30/05 22:25                 | MWB     | MS-V9                    | -        | BOI1220  |      |                                                |
| 4-Bromofluorobenzene (Surrogate)                                                                  | (Surrogate) | 88.7        | %       | 86 - 115 (LCL |         | EPA-8260          | 09/30/05 | - UCL) EPA-8260 09/30/05 09/30/05 22:25 | MWB     | MS-V9                    | -        | BOI1220  |      |                                                |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 3 of 25

| Inc           |                                                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------|
| Laboratories, |                                                                                                                 |
| $\mathcal{A}$ | _                                                                                                               |
| BC            | Contraction of the second s |
|               |                                                                                                                 |

21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project Number: [none] Project Manager: Anju Farfan Project: 5325

**Reported:** 10/26/05 09:49

### Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-01   Client Sample Name: 5325, U-4, | 0509653-01 | Client Sam | ole Name:        | 5325, 1 | U-4, U-4, | 9/28/2005  | 11:10:00 | U-4, 9/28/2005 11:10:00AM, Basi Foster       | iter    |           |         |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|------------|------------|------------------|---------|-----------|------------|----------|----------------------------------------------|---------|-----------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |            |            |                  |         |           |            | Prep     | Run                                          |         | Instru-   |         | ac       | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Constituent                                                |            | Result     | Result Units PQL | PQL     | MDL       | IDL Method | Date     | Date Date/Time Analyst ment ID Dilution      | Analyst | ment ID D | ilution | Batch ID | Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate as N                                               |            | 6.8        | mg/L             | 0.10    |           | EPA-300.0  | 09/29/05 | EPA-300.0 09/29/05 09/29/05 20:32 NTN IC2    | NTN     | IC2       | -       | BOI1160  | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iron (II) Species                                          |            | 190        | ng/L             | 100     |           | SM-3500-Fé | 09/29/05 | 5M-3500-Ft 09/29/05 09/29/05 08:15 MV1       |         | SPEC05    | -       | BOI1184  | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ortho-Phosphate                                            |            | 0.45       | mg/L             | 0.050   |           | EPA-365.1  | 10/04/05 | EPA-365.1 10/04/05 10/04/05 14:37 TDC KONE-1 | TDC     | KONE-1    | -       | BOJ0149  | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                            |            |            |                  |         |           |            |          |                                              |         |           |         |          | A REAL PROPERTY AND A REAL | CONTRACTOR OF A DESCRIPTION OF A DESCRIP |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 4 of 25

|                        | Project: 5325        |
|------------------------|----------------------|
| BC > Laboratories, Inc | TRC Alton Geoscience |

21 Technology Drive Irvine CA, 92618-2302

|          |                 | <b>Reported:</b> 10/26/05 09:49 |
|----------|-----------------|---------------------------------|
|          |                 | ١                               |
| : 5325   | [none]          | Anju Farfan                     |
| Project: | Project Number: | Project Manager:                |

# Volatile Organic Analysis (EPA Method 8260)

| BCL Sample ID: 0509653-02                 | 0509653-02  | Client Sample Name: | vle Name: | 5325, U-3       | 3, U-3, | 9/28/2005  | 11:23:00 | 5325, U-3, U-3, 9/28/2005 11:23:00AM. Basi Foster | ster    |                          |          |          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|-------------|---------------------|-----------|-----------------|---------|------------|----------|---------------------------------------------------|---------|--------------------------|----------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |             |                     |           |                 |         |            | Prep     | Run                                               |         | Instru-                  |          | gc       | MB   | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Constituent                               |             | Result              | Units     | PQL             | MDL     | MDL Method | Date     | Date/Time                                         | Analyst | Analyst ment ID Dilution | Dilution | Batch ID | Bias | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzene                                   |             | QN                  | ng/L      | 0.50            |         | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | F        | BOI1220  | QN   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene                              |             | ND                  | ng/L      | 0.50            |         | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | ٢        | BOI1220  | QN   | A MARKET PLANT PROVIDE A VEHICLE AND A VEHIC |
| Methyl t-butyl ether                      |             | QN                  | ng/L      | 0.50            |         | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | -        | BOI1220  | Q    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene                                   |             | QN                  | ng/L      | 0.50            |         | EPA-8260   | 09/30/05 | 09/30/05 09/30/05 22:52                           | MWB     | MS-V9                    | -        | BOI1220  | QN   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Xylenes                             |             | ND                  | ng/L      | 1.0             |         | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | ٦        | BOI1220  | QN   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethanol                                   |             | ND                  | ng/L      | 250             |         | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | -        | BOI1220  | Q    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Purgeable Petroleum<br>Hydrocarbons | m           | QN                  | ng/L      | 50              |         | EPA-8260   | 09/30/05 | 09/30/05 09/30/05 22:52                           | MWB     | 6V-SM                    | -        | BOI1220  | QN   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane-d4 (Surrogate)         | Surrogate)  | 112                 | % 7       | 76 - 114 (LCL - | - UCL)  | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | F        | BOI1220  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene-d8 (Surrogate)                    |             | 90.4                | %         | 88 - 110 (LCL - | - UCL)  | EPA-8260   | 09/30/05 | EPA-8260 09/30/05 09/30/05 22:52                  | MWB     | MS-V9                    | F        | BOI1220  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Bromofluorobenzene (Surrogate)          | (Surrogate) | 88.7                | % 8(      | 86 - 115 (LCL - | - UCL)  | EPA-8260   | 09/30/05 | 09/30/05 09/30/05 22:52                           | MWB     | MS-V9                    | -        | BOI1220  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 5 of 25

| Inc           |  |
|---------------|--|
| Laboratories, |  |
| Л             |  |
| BC            |  |

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

## Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-02   Client Sample Name: 5325, U-3, | 0509653-02 | Client Samp | le Name:         | 5325, L |     | 9/28/2005  | 11:23:00 | U-3, 9/28/2005 11:23:00AM, Basi Foster       | ster    |           |          |          |       |       |
|------------------------------------------------------------|------------|-------------|------------------|---------|-----|------------|----------|----------------------------------------------|---------|-----------|----------|----------|-------|-------|
|                                                            |            |             |                  |         |     |            | Prep     | Run                                          |         | Instru-   |          | gc       | MB    | Lab   |
| Constituent                                                |            | Result      | Result Units PQL | PQL     | MDL | ADL Method | Date     | Date/Time Analyst ment ID Dilution Batch ID  | Analyst | ment ID C | Dilution | Batch ID | Bias  | Quals |
| Nitrate as N                                               |            | 4.3         | mg/L             | 0.10    |     | EPA-300.0  | 09/29/05 | EPA-300.0 09/29/05 09/29/05 20:51 NTN IC2    | NTN     | IC2       | +        | BOI1160  | QN    |       |
| Iron (II) Species                                          |            | QN          | ng/L             | 100     |     | SM-3500-F6 | 09/29/05 | SM-3500-F( 09/29/05 09/29/05 08:15 MV1       | MV1     | SPEC05    | -        | BOI1184  | Q     |       |
| ortho-Phosphate                                            |            | 0.66        | mg/L             | 0.050   |     | EPA-365.1  | 10/04/05 | EPA-365.1 10/04/05 10/04/05 14:37 TDC KONE-1 | TDC     | KONE-1    | -        | BOJ0149  | 0.012 | S05   |
|                                                            |            |             |                  |         |     |            |          |                                              |         |           |          |          |       |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

**BC** Laboratories

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 6 of 25

|                                           |                            |         | 4                 | Project Manager: | Anju Farfan                                       |         |                    |          | Re             | ported: 10 | <b>Reported:</b> 10/26/05 09:49 |
|-------------------------------------------|----------------------------|---------|-------------------|------------------|---------------------------------------------------|---------|--------------------|----------|----------------|------------|---------------------------------|
|                                           | Vola                       | tile (  | Volatile Organic  | c Analysis       | sis (EPA Method 8260)                             | thod    | 826(               | ()       |                |            |                                 |
| BCL Sample ID: 0509653-03                 | <b>Client Sample Name:</b> | ole Nam |                   | U-6, 9/28/200    | 5325, U-6, U-6, 9/28/2005 11:32:00AM, Basi Foster | ster    |                    |          |                |            |                                 |
| Constituent                               | Result                     | Units   | PQL               | VIDL Method      | Prep Run<br>Date Date/Time                        | Analyst | Instru-<br>ment ID | Dilution | QC<br>Batch ID | MB<br>Bias | Lab<br>Quals                    |
| Benzene                                   | Q                          | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | ) MWB   | MS-V9              | 1        | BOI1220        | QN         |                                 |
| 1,2-Dibromoethane                         | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | ~        | BOI1220        | QN         |                                 |
| 1,2-Dichloroethane                        | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | ~        | BOI1220        | Q          |                                 |
| Ethylbenzene                              | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | ~        | BOI1220        | Q          |                                 |
| Methyl t-butyl ether                      | 4.6                        | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | -        | BOI1220        | QN         |                                 |
| Toluene                                   | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB (   | 6V-SM              | ~        | BOI1220        | QN         |                                 |
| Total Xylenes                             | QN                         | ng/L    | 1.0               | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | ~        | BOI1220        | QN         |                                 |
| t-Amyl Methyl ether                       | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        | QN         | ,                               |
| t-Butyl alcohol                           | 3800                       | ng/L    | 100               | EPA-8260         | 09/30/05 10/09/05 16:32                           | MWB     | MS-V9              | 10       | BOI1220        | QN         | A01                             |
| Diisopropyl ether                         | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        | Q          |                                 |
| Ethanol                                   | QN                         | ng/L    | 250               | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        | ND         |                                 |
| Ethyl t-butyl ether                       | QN                         | ng/L    | 0.50              | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        | QN         |                                 |
| Total Purgeable Petroleum<br>Hydrocarbons | 150                        | ng/L    | 50                | EPA-8260         | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | ٣-       | BOI1220        | QN         | A53                             |
| 1,2-Dichloroethane-d4 (Surrogate)         | 106                        | %       | 76 - 114 (LCL - U | UCL) EPA-8260    | 09/30/05 10/09/05 16:32                           | MWB     | 6V-SM              | 10       | BOI1220        |            |                                 |
| 1,2-Dichloroethane-d4 (Surrogate)         | 107                        | %       | 76 - 114 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | -        | BOI1220        |            |                                 |
| 1,2-Dichloroethane-d4 (Surrogate)         | 107                        | %       | 76 - 114 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        |            |                                 |
| 1,2-Dichloroethane-d4 (Surrogate)         | 107                        | %       | 76 - 114 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        |            |                                 |
| Toluene-d8 (Surrogate)                    | 102                        | %       | 88 - 110 (LCL - U | UCL) EPA-8260    | 09/30/05 10/09/05 16:32                           | MWB     | 6V-SM              | 10       | BOI1220        |            |                                 |
| Toluene-d8 (Surrogate)                    | 94.0                       | %       | 88 - 110 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | ۲        | BOI1220        |            |                                 |
| Toluene-d8 (Surrogate)                    | 94.0                       | %       | 88 - 110 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | WS-V9              | -        | BOI1220        |            |                                 |
| Toluene-d8 (Surrogate)                    | 94.0                       | %       | 88 - 110 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | 6V-SM              | -        | BOI1220        |            |                                 |
| 4-Bromofluorobenzene (Surrogate)          | 92.7                       | %       | 86 - 115 (LCL - U | UCL) EPA-8260    | 09/30/05 10/09/05 16:32                           | MWB     | MS-V9              | 10       | BOI1220        |            |                                 |
| 4-Bromofluorobenzene (Surrogate)          | 88.9                       | %       | 86 - 115 (LCL - U | UCL) EPA-8260    | 09/30/05 09/30/05 23:20                           | MWB     | MS-V9              | -        | BOI1220        |            |                                 |

BC 🗡 Laboratories, Inc

Page 7 of 25

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| <ul> <li>Laboratories, Inc</li> </ul> |
|---------------------------------------|
| <ul> <li>Laboratories, Inc</li> </ul> |
| <ul> <li>Laboratories, l</li> </ul>   |
| <ul> <li>Laboratories</li> </ul>      |
| - Laborator                           |
| • Laborat                             |
| • Laboi                               |
| Lal                                   |
|                                       |
|                                       |
| $\mathcal{A}$                         |
| [U]                                   |
| Ř                                     |
|                                       |

21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project Number: [none] Project Manager: Anju Farfan Project: 5325

**Reported:** 10/26/05 09:49

## Volatile Organic Analysis (EPA Method 8260)

| BCL Sample ID: 0509653-03   Client Sample Name: 5325, U-6,        | 09653-03 | Client Samp      | ole Name | e: 5325,            |             | , 9/28/2005            | 11:32:00   | U-6, 9/28/2005 11:32:00AM, Basi Foster                        | ster    |         |          |         |      |       |
|-------------------------------------------------------------------|----------|------------------|----------|---------------------|-------------|------------------------|------------|---------------------------------------------------------------|---------|---------|----------|---------|------|-------|
|                                                                   |          |                  |          |                     |             |                        | Prep       | Run                                                           |         | Instru- |          | gc      | MB   | Lab   |
| Constituent                                                       |          | Result Units PQL | Units    | PQL                 | N           | <b>ADL Method</b> Date | Date       | Date/Time Analyst ment ID Dilution Batch ID                   | Analyst | ment ID | Dilution |         | Bias | Quals |
| 4-Bromofluorobenzene (Surrogate)                                  | rrogate) | 88.9             | %        | 86 - 115 (          | TCL - UCL)  | EPA-8260               | 09/30/05 ( | % 86-115 (LCL-UCL) EPA-8260 09/30/05 09/30/05 23:20 MWB MS-V9 | MWB     | MS-V9   | -        | BOI1220 |      |       |
| 4-Bromofluorobenzene (Surrogate)                                  | rrogate) | 98.5             | %        | % 86 - 115 (LCL - L | (TCL - UCL) | EPA-8260               | 09/30/02 ( | UCL) EPA-8260 09/30/05 09/30/05 23:20 MWB MS-V9               | MWB     | MS-V9   | -        | BOI1220 |      | 10    |
| VALUE AND ALL AND A LOUGH AND |          |                  |          |                     |             |                        |            |                                                               |         |         |          |         |      |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Barkersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 8 of 25



TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

## Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-03 Client Sample Name: 5325, U-6, | 0509653-03 | Client Samp | le Name:         | 5325, ( |     | 9/28/2005         | 11:32:00 | U-6, 9/28/2005 11:32:00AM, Basi Foster       | ster    |         |          |          |       |       |
|----------------------------------------------------------|------------|-------------|------------------|---------|-----|-------------------|----------|----------------------------------------------|---------|---------|----------|----------|-------|-------|
|                                                          |            |             |                  |         |     |                   | Prep     | Run                                          |         | Instru- |          | ပ္စ      | MB    | Lab   |
| Constituent                                              |            | Result      | Result Units PQL | Pal     | MDL | <b>MDL Method</b> | Date     | Date/Time Analyst ment ID Dilution           | Analyst | ment ID | Dilution | Batch ID | Bias  | Quals |
| Nitrate as N                                             |            | QN          | mg/L             | 0.20    |     | EPA-300.0         | 09/29/05 | EPA-300.0 09/29/05 09/29/05 22:05 NTN IC2    | NTN     | IC2     | 2        | BOI1160  | QN    | A01   |
| Iron (II) Species                                        |            | 21000       | ng/L             | 500     |     | SM-3500-Fe        | 09/29/05 | SM-3500-Ft 09/29/05 09/29/05 08:15 MV1       | MV1     | SPEC05  | 5        | BOI1184  | QN    | A01   |
| ortho-Phosphate                                          |            | 3.4         | mg/L             | 0.25    |     | EPA-365.1         | 10/04/05 | EPA-365.1 10/04/05 10/04/05 15:24 TDC KONE-1 | TDC     | KONE-1  | 5        | BOJ0149  | 0.059 | S05   |
|                                                          |            |             |                  |         |     |                   |          |                                              |         |         |          |          |       |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Page 9 of 25

BC Laboratories

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Barkersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

|                                           |                     |         |                      | I TOJOVI III III III III III IIII |              |                                          |         |                    |          |                | A LAND CONTRACT IN A LAND |                                           |
|-------------------------------------------|---------------------|---------|----------------------|-----------------------------------|--------------|------------------------------------------|---------|--------------------|----------|----------------|---------------------------|-------------------------------------------|
|                                           | Vola                | atile ( | Volatile Organic A   | : Analysis                        |              | (EPA Method 8260)                        | hod     | 8260               |          |                |                           |                                           |
| BCL Sample ID: 0509653-04                 | Client Sample Name: | ple Nam | 5325, U-1            | , 9/28/200£                       | 5 11:46:0    | , U-1, 9/28/2005 11:46:00AM, Basi Foster | ster    |                    |          |                |                           |                                           |
| Constituent                               | Result              | Units   | PQL MDL              | Method                            | Prep<br>Date | Run<br>Date/Time                         | Analyst | Instru-<br>ment ID | Dilution | QC<br>Batch ID | MB<br>Bias                | Lab<br>Quals                              |
| Benzene                                   | QN                  | ng/L    | 0.50                 | EPA-8260                          | 09/30/05     | 09/30/05 10/11/05 13:23                  | MWB     | 6V-SM              | 1        | BOI1220        | QN                        |                                           |
| 1,2-Dibromoethane                         | QN                  | ng/L    | 10                   | EPA-8260                          | 09/30/05     | 09/30/05 10/11/05 12:28                  | MWB     | 6V-SM              | 20       | BOI1220        | QN                        |                                           |
| 1,2-Dichloroethane                        | QN                  | ng/L    | 10                   | EPA-8260                          | 09/30/05     | 10/11/05 12:28                           | MWB     | 6V-SM              | 20       | BOI1220        | QN                        |                                           |
| Ethylbenzene                              | 3.0                 | ng/L    | 0.50                 | EPA-8260                          | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | -        | BOI1220        | QN                        |                                           |
| Methyl t-butyl ether                      | 18                  | ng/L    | 0.50                 | EPA-8260                          | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | -        | BOI1220        | DN                        |                                           |
| <b>Foluene</b>                            | 0.60                | ng/L    | 0.50                 | EPA-8260                          | 09/30/05     | 09/30/05 10/11/05 13:23                  | MWB     | MS-V9              | -        | BOI1220        | QN                        | American - or an east of the second state |
| Total Xylenes                             | 26                  | ng/L    | 1.0                  | EPA-8260                          | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | ٢        | BOI1220        | QN                        |                                           |
| t-Amyl Methyl ether                       | QN                  | ng/L    | 10                   | EPA-8260                          | 09/30/05     | 10/11/05 12:28                           | MWB     | MS-V9              | 20       | BOI1220        | QN                        |                                           |
| t-Butyl alcohol                           | 5500                | ng/L    | 200                  | EPA-8260                          | 09/30/05     | 10/11/05 12:28                           | MWB     | MS-V9              | 20       | BOI1220        | QN                        | A01                                       |
| Diisopropyl ether                         | QN                  | ng/L    | 10                   | EPA-8260                          | 09/30/05     | 10/11/05 12:28                           | MWB     | MS-V9              | 20       | BOI1220        | QN                        |                                           |
| Ethanol                                   | QN                  | ng/L    | 250                  | EPA-8260                          | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | ٢        | BOI1220        | QN                        |                                           |
| Ethyl t-butyl ether                       | QN                  | ng/L    | 10                   | EPA-8260                          | 09/30/05     | 10/11/05 12:28                           | MWB     | MS-V9              | 20       | BOI1220        | QN                        |                                           |
| Total Purgeable Petroleum<br>Hydrocarbons | 560                 | ng/L    | 50                   | EPA-8260                          | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | -        | BOI1220        | Q                         |                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 103                 | %       | 76 - 114 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | -        | BOI1220        |                           |                                           |
| I,2-Dichloroethane-d4 (Surrogate)         | 95.9                | %       | 76 - 114 (LCL - UCL) | ) EPA-8260                        | 09/30/02     | 10/11/05 12:28                           | MWB     | MS-V9              | 20       | BOI1220        |                           |                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 95.9                | %       | 76 - 114 (LCL - UCL) | ) EPA-8260                        | 09/30/02     | 09/30/05 10/11/05 12:28                  | MWB     | MS-V9              | -        | BOI1220        |                           |                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 95.9                | %       | 76 - 114 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 09/30/05 10/11/05 12:28                  | MWB     | MS-V9              | 20       | BOI1220        |                           |                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 103                 | %       | 76 - 114 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 09/30/05 10/11/05 13:23                  | MWB     | MS-V9              | -        | BOI1220        |                           |                                           |
| Toluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 09/30/05 10/11/05 13:23                  | MWB     | MS-V9              | +        | BOI1220        |                           |                                           |
| Toluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | ) EPA-8260                        | 09/30/02     | 09/30/05 10/11/05 12:28                  | MWB     | MS-V9              | 20       | BOI1220        |                           |                                           |
| Toluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 09/30/05 10/11/05 12:28                  | MWB     | MS-V9              | -        | BOI1220        |                           |                                           |
| Toluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | ) EPA-8260                        | 09/30/02     | 09/30/05 10/11/05 12:28                  | MWB     | MS-V9              | 20       | BOI1220        |                           |                                           |
| Toluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | ) EPA-8260                        | 09/30/05     | 10/11/05 13:23                           | MWB     | MS-V9              | -        | BOI1220        |                           |                                           |

•

BC > Laboratories, Inc

Page 10 of 25

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| TRC Alton Geoscience | Project: 5325          |                          |
|----------------------|------------------------|--------------------------|
| 21 Technology Drive  | Project Number: [none] |                          |
| 2                    | urfan                  | Renorted: 10/26/05 09:49 |

| BCL Sample ID: 0509653-04   Client Sample Name: 5325, U-1, | 3-04 <b>Clie</b> | ant Samp | le Name | : 5325, L         | J-1, U-1, | 9/28/2005              | 11:46:00   | , U-1, 9/28/2005 11:46:00AM, Basi Foster                          | ster    |         |          |          |      |       |
|------------------------------------------------------------|------------------|----------|---------|-------------------|-----------|------------------------|------------|-------------------------------------------------------------------|---------|---------|----------|----------|------|-------|
|                                                            |                  |          |         |                   |           |                        | Prep       | Run                                                               |         | Instru- |          | gC       | MB   | Lab   |
| Constituent                                                | Ľ                | Result   | Units   | Result Units PQL  |           | <b>ADL Method</b> Date | Date       | Date/Time Analyst ment ID Dilution Batch ID                       | Analyst | ment ID | Dilution | Batch ID | Bias | Quals |
| 4-Bromofluorobenzene (Surrogate)                           | te)              | 94.0     | %       | % 86 - 115 (LCL - | SL - UCL) | EPA-8260               | 09/30/05 1 | UCL) EPA-8260 09/30/05 10/11/05 12:28 MWB MS-V9 20                | MWB     | MS-V9   | 20       | BOI1220  |      |       |
| 4-Bromofluorobenzene (Surrogate)                           | te)              | 99.5     | %       | 86 - 115 (LC      | SL - UCL) | EPA-8260               | 09/30/05   | % 86 - 115 (LCL - UCL) EPA-8260 09/30/05 10/11/05 13:23 MWB MS-V9 | MWB     | MS-V9   | -        | BOI1220  |      |       |
| 4-Bromofluorobenzene (Surrogate)                           | te)              | 94.0     | %       | % 86 - 115 (LCL - | UCL)      | EPA-8260               | 09/30/05   | EPA-8260 09/30/05 10/11/05 12:28 MWB MS-V9                        | MWB     | MS-V9   | -        | BOI1220  |      |       |
| 4-Bromofluorobenzene (Surrogate)                           | te)              | 99.5     | %       | % 86 - 115 (LCL - | SL - UCL) | EPA-8260               | 09/30/05 1 | UCL) EPA-8260 09/30/05 10/11/05 13:23 MWB MS-V9                   | MWB     | MS-V9   | -        | BOI1220  |      |       |
| 4-Bromofluorobenzene (Surrogate)                           | te)              | 94.0     | %       | % 86 - 115 (LCL - | SL - UCL) | EPA-8260               | 09/30/05 1 | UCL) EPA-8260 09/30/05 10/11/05 12:28 MWB MS-V9                   | MWB     | MS-V9   | 20       | BOI1220  |      |       |

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Page 11 of 25



21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project Manager: Anju Farfan Project Number: [none] Project: 5325

**Reported:** 10/26/05 09:49

## Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-04 Client Sample Name: 5325, U-1, | 0509653-04 | Client Sam | le Name:         | 5325, 1 |     | 9/28/2005  | 11:46:0  | U-1, 9/28/2005 11:46:00AM, Basi Foster        | ster     |           |          |          |      |            |
|----------------------------------------------------------|------------|------------|------------------|---------|-----|------------|----------|-----------------------------------------------|----------|-----------|----------|----------|------|------------|
|                                                          |            |            |                  |         |     |            | Prep     | Run                                           |          | Instru-   |          | gc       | MB   | Lab        |
| Constituent                                              |            | Result     | Result Units PQL | Pal     | MDL | ADL Method | Date     | Date Date/Time Analyst ment ID Dilution       | Analyst  | ment ID   | Dilution | Batch ID | Bias | Quals      |
| Nitrate as N                                             |            | QN         | mg/L             | 0.10    |     | EPA-300.0  | 09/29/05 | EPA-300.0 09/29/05 09/29/05 22:24 NTN IC2     | NTN      | <u>IC</u> | 1        | BOI1160  | QN   | · .<br>· . |
| Iron (II) Species                                        |            | 7300       | ng/L             | 200     |     | SM-3500-F€ | 09/29/05 | SM-3500-Ft 09/29/05 09/29/05 08:15 MV1 SPEC05 | 1<br>MV1 | SPEC05    | 2        | BOI1184  | QN   | A01        |
| ortho-Phosphate                                          |            | 39         | mg/L             | 2.5     |     | EPA-365.1  | 10/04/05 | EPA-365.1 10/04/05 10/04/05 15:42 TDC KONE-1  | TDC      | KONE-1    | 50       | BOJ0149  | 0.59 | S05        |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 12 of 25

| Notable Droportical Parality Propertical Parality Parality Propertical Parality Pa | TRC Alton Geoscience<br>21 Technology Drive<br>Irvine CA, 92618-2302 |            |         | Pro        | Project Number:<br>Project Manager: | 5325<br>[none]<br>Anju Farfan |                |         |         |          | Я        | eported: | <b>Reported:</b> 10/26/05 09:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------|---------|------------|-------------------------------------|-------------------------------|----------------|---------|---------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OF         Client Sample Name:         5325, U-5, U-5, 928/2005         1:::::::         Free         Faun         I::::::           Result         Units         PQL         MDL         Method         Date         Date         I::::::         I::::::           ND<         ug/L         0:0         EPA-8260         09/3005         09/3005         09/3005         09/3005         1::::::         I::::::           ND         ug/L         0:0         EPA-8260         09/3005         09/3005         09/3005         0/3/347         MMB         MS-V9         1           ND         ug/L         0:50         EPA-8260         09/3005         09/3005         09/3005         0/3/47         MMB         MS-V9         1           ND         ug/L         0:50         EPA-8260         09/3005         09/3005         0/3/47         MMB         MS-V9         1           ND         ug/L         0:50         EPA-8260         09/3005         0/3/47         MMB         MS-V9         1           ND         ug/L         0:50         EPA-8260         09/3005         0/3/47         MMB         MS-V9         1           ND         ug/L         0:50         EPA-8260         09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      | Volâ       | atile   |            | Inalys                              |                               | PA Met         | poq     | 8260    |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Freq         Freq         Run         Instru-           ND         ug/L         0.50         EPA-8260         09/30/05         234/1         MMI         Dilution           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         234/1         MMI         MA-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         234/1         MMS         9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         234/1         MMS         9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         234/1         MMS         9         1           ND         ug/L         1.0         EPA-8260         09/30/05         09/30/05         234/1         MMS         9         1           ND         ug/L         1.0         050         EPA-8260         09/30/05         09/30/05         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | Client Sam | pie Nan | 5325, U-   | 5, 9/28/200                         | 5 12:02:00                    | PM, Basi Fos   | ster    |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Result         Dirity         QL         MDL         Method         Data Time         Analyst         meth LD         Dilution           ND         ug/L         0.50         EPA-2826         09/30/05         3247         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3247         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L         0.50         EPA-2826         09/30/05         3747         MWB         MS-V9         1           ND         ug/L <th></th> <th></th> <th></th> <th></th> <th></th> <th>Prep</th> <th>Run</th> <th></th> <th>Instru-</th> <th></th> <th>gC</th> <th>MB</th> <th>Lab</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |            |         |            |                                     | Prep                          | Run            |         | Instru- |          | gC       | MB       | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND         ug/L         0.50         EPA-8260         0930/05         23.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         0930/05         53.47         MWB         MS-V9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Constituent                                                          | Result     | Units   | PQL        |                                     |                               | Date/Time      | Analyst | ment ID | Dilution | Batch ID | Bias     | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND         ug/L         0.50         EPA-8260         09/30/05         23347         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         53347         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         53347         MWB         MS-V9         1           370         ug/L         25         EPA-8260         09/30/05         09/30/05         5347         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         5347         MWB         MS-V9         1           ND         ug/L         1.0         EPA-8260         09/30/05         09/30/05         09/30/05         347         MWB         MS-V9         1           VD         ug/L         1.0         EPA-8260         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05         09/30/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzene                                                              | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | Q        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         ug/L         0.56         EPA.8260         09/30/05         23.47         MWB         MS-V9         1           ND         ug/L         0.56         EPA.8260         09/30/05         23.47         MWB         MS-V9         1           370         ug/L         25         EPA.8260         09/30/05         59/30/05         59/30/05         50.347         MWB         MS-V9         70           ND         ug/L         0.50         EPA.8260         09/30/05         09/30/05         53.47         MWB         MS-V9         70           ND         ug/L         1.0         EPA.8260         09/30/05         09/30/05         53.47         MWB         MS-V9         70           ND         ug/L         0.50         EPA.8260         09/30/05         09/30/05         53.47         MWB         MS-V9         70           ND         ug/L         0.50         EPA.8260         09/30/05         09/30/05         53.47         MWB         MS-V9         71           ND         ug/L         0.50         EPA.8260         09/30/05         09/30/05         09/30/05         74         MWB         MS-V9         7           ND         ug/L         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dibromoethane                                                    | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | 1        | BOI1220  | Q        | The summaries and sum a set of the strength of |
| NDug/L $0.50$ EPA-8260 $09/30/65$ $15.01$ MNBMS-V9 $1$ $370$ ug/L $25$ EPA-8260 $09/30/65$ $16/03/05$ $15.01$ MNBMS-V9 $1$ NDug/L $0.50$ EPA-8260 $09/30/65$ $09/30/65$ $16/03/05$ $13.71$ MNBMS-V9 $1$ NDug/L $1.0$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ NDug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ VDug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ NDug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ NDug/L $50$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ NDug/L $50$ $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ NDug/L $50$ EPA-8260 $09/30/05$ $09/30/05$ $23.47$ MNBMS-V9 $1$ 117 $\%$ $76 - 114$ $(LCL - UCL)$ EPA-8260 $09/30/05$ $23.47$ MNBMS-V9 $1$ 117 $\%$ $76 - 114$ $(LCL - UCL)$ EPA-8260 $09/30/05$ $23.47$ MNBMS-V9 $1$ 118 $\%$ $76 - 114$ $(LCL - UCL)$ $EPA-8260$ $09/30/05$ $23.47$ MNBMS-V9 $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloroethane                                                   | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | ~        | BOI1220  | QN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 370         ug/L         25         EPA-8260         09/30/05         15:01         MMB         MS-V9         50           ND         ug/L         0.50         EPA-8260         09/30/05         53:47         MMB         MS-V9         1           ND         ug/L         1.0         EPA-8260         09/30/05         9/30/05         53:47         MMB         MS-V9         1           ND         ug/L         1.0         EPA-8260         09/30/05         09/30/05         53:47         MMB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         53:47         MMB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         53:47         MMB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         53:47         MMB         MS-V9         1           ND         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MMB         MS-V9         1           ND         ug/L         50         11         MMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethylbenzene                                                         | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | QN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         ug/L $0.50$ EPA-8260 $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $1.0$ EPA-8260 $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ ND         ug/L $0.50$ EPA-8260 $09/30/05$ $09/30/05$ $23:47$ MMB         MS-V9 $1$ 117 $W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methyl t-butyl ether                                                 | 370        | ng/L    | 25         | EPA-8260                            | 09/30/02                      | 10/03/05 15:01 | MWB     | MS-V9   | 50       | BOI1220  | QN       | A01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND         ug/L         1.0         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           220         ug/L         10         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           ND         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           ND         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           ND         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           ND         ug/L         50         117         %         76-114         LCL-UCL         EPA-8260         09/30/05         23:47         MVB         MS-V9         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toluene                                                              | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | QN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND         ug/L         0.50         EPA-8260         09/30/05         23:47         MWB         MS-V9         1           220         ug/L         10         EPA-8260         09/30/05         23:47         MWB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           ND         ug/L         250         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           ND         ug/L         250         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           ND         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           VD         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         23:47         MWB         MS-V9         1         1           116         %         76-114         (LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Xylenes                                                        | QN         | ng/L    | 1.0        | EPA-8260                            | 09/30/02                      |                | MWB     | MS-V9   | -        | BOI1220  | DN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 220         ug/L         10         EPA-8260         09/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05         03/30/05 </td <td>t-Amyl Methyl ether</td> <td>QN</td> <td>ng/L</td> <td>0.50</td> <td>EPA-8260</td> <td>09/30/05</td> <td>09/30/05 23:47</td> <td>MWB</td> <td>MS-V9</td> <td>-</td> <td>BOI1220</td> <td>QN</td> <td>er property was a contra a to contra a seconda a seconda a contra a contra a contra a contra a contra a contra</td>                                                                                                                                                                                                                                                                                                                                                                                   | t-Amyl Methyl ether                                                  | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | QN       | er property was a contra a to contra a seconda a seconda a contra a contra a contra a contra a contra a contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NDug/L $0.50$ EPA-8260 $9/30/05$ $5/3.47$ MWBMS-V91NDug/L $250$ EPA-8260 $9/30/05$ $9/30/05$ $23.47$ MWBMS-V91NDug/L $50$ $0.50$ $EPA-8260$ $9/30/05$ $09/30/05$ $23.47$ MWBMS-V91NDug/L $50$ $50$ $EPA-8260$ $09/30/05$ $09/30/05$ $23.47$ MWBMS-V91117 $\%$ $76-114$ $(LCL-UCL)$ EPA-8260 $09/30/05$ $23.47$ MWBMS-V91 $91.7$ $\%$ $88-110$ $(LCL-UCL)$ EPA-8260 $09/30/05$ $23.47$ MWBMS-V91 $91.7$ $\%$ $88-110$ $(LCL-UCL)$ EPA-8260 $09/30/05$ $23.47$ MWBMS-V91 $91.7$ $\%$ $88-110$ $(LCL-UCL)$ EPA-8260 $09/30/05$ $23.47$ MWBMS-V91 $88.3$ $\%$ $88-110$ $(LCL-UCL)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t-Butyl alcohol                                                      | 220        | ng/L    | 10         | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | 6V-SM   | -        | BOI1220  | QN       | A REAL PROPERTY AND A REAL |
| ND         ug/L         250         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           ND         ug/L         0.50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           460         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           106         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           117         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         03/3/05         23:47         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diisopropyl ether                                                    | Q          | ng/L    | 0.50       | EPA-8260                            | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | QN       | A THE OWNER AND A REPORT OF A DESCRIPTION OF A DESCRIPTIO |
| ND         ug/L         0.50         EPA-8260         09/30/05         23:47         MWB         MS-V9         1           460         ug/L         50         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         09/30/05         23:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethanol                                                              | QN         | ng/L    | 250        | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | MS-V9   | +        | BOI1220  | QN       | a na managana ang kang kang kang kang kang kan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 460         ug/L         50         EPA-8260         09/30/05         03/30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         03:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         03:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         03:30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         03:30/05         23:47         MWB         MS-V9         1           117         %         76-114         (LCL-UCL)         EPA-8260         09/30/05         23:47         MWB         MS-V9         1         1           91.7         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         03:3/05         23:47         MWB         MS-V9         1         1           91.7         %         88-110         (LCL-UCL)         EPA-8260         09/30/05         03:3/05         23:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethyl t-butyl ether                                                  | QN         | ng/L    | 0.50       | EPA-8260                            | 09/30/05                      | 09/30/05 23:47 | MWB     | 6V-SM   | ÷        | BOI1220  | QN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           106         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         16:01         MVB         MS-V9         1           117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         17:01         MVB         MS-V9         1           117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47 <td>Total Purgeable Petroleum<br/>Hydrocarbons</td> <td>460</td> <td>ng/L</td> <td>50</td> <td>EPA-8260</td> <td>09/30/02</td> <td>09/30/05 23:47</td> <td>MWB</td> <td>MS-V9</td> <td>-</td> <td>BOI1220</td> <td>QN</td> <td>A53</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Purgeable Petroleum<br>Hydrocarbons                            | 460        | ng/L    | 50         | EPA-8260                            | 09/30/02                      | 09/30/05 23:47 | MWB     | MS-V9   | -        | BOI1220  | QN       | A53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 117         %         76-114         (LcL - UcL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           106         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         16:01         MVB         MS-V9         50           117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         15:01         MVB         MS-V9         7           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dichloroethane-d4 (Surrogate)                                    | 117        | %       |            |                                     |                               | 09/30/05 23:47 | MWB     | MS-V9   | ٦        | BOI1220  |          | 60S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 106         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         15:01         MVB         MS-V9         50           117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         10           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           88.3         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichloroethane-d4 (Surrogate)                                    | 117        | %       |            |                                     |                               |                | MWB     | 6V-SM   | -        | BOI1220  |          | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 117         %         76-114         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         03:3/47         MWB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MWB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MWB         MS-V9         1           91.7         %         88-110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MWB         MS-V9         1           92.9         %         86-115         (LCL - UCL)         EPA-8260         09/30/05         23:47         MWB         MS-V9         1           92.9         %         86-115         (LCL - UCL)         EPA-8260         09/30/05         15:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichloroethane-d4 (Surrogate)                                    | 106        | %       |            |                                     |                               | 10/03/05 15:01 | MWB     | MS-V9   | 50       | BOI1220  |          | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           81.3         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         15:01         MVB         MS-V9         1           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1           92.9         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         15:01         MVB         MS-V9         1           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         15:01         MVB         MS-V9         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dichloroethane-d4 (Surrogate)                                    | 117        | %       |            | 1                                   |                               | 09/30/05 23:47 | MWB     | 6V-SM   | -        | BOI1220  |          | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         23:47         MVB         MS-V9         1           88.3         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         15:01         MVB         MS-V9         50           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         29/30/05         23:47         MVB         MS-V9         1           92.9         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         1           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene-d8 (Surrogate)                                               | 91.7       | %       | - 110 (LCL |                                     | 09/30/05                      |                | MWB     | 6V-SM   | -        | BOI1220  |          | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 88.3         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         15:01         MVB         MS-V9         50           91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         50           92.9         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         1           92.9         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         15:01         MVB         MS-V9         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Toluene-d8 (Surrogate)                                               | 91.7       | %       | (LCL       |                                     | 09/30/02                      |                | MWB     | 6V-SM   | -        | BOI1220  |          | ANN IN THE REAL PROPERTY OF TH |
| 91.7         %         88 - 110         (LCL - UCL)         EPA-8260         09/30/05         03/30/05         23:47         MVB         MS-V9         1           92.9         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         10/03/05         15:01         MVB         MS-V9         50           92.4         %         86 - 115         (LCL - UCL)         EPA-8260         09/30/05         09/30/05         23:47         MVB         MS-V9         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene-d8 (Surrogate)                                               | 88.3       | %       |            |                                     |                               | 10/03/05 15:01 | MWB     | 6V-SM   | 50       | BOI1220  |          | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 92.9 % 86 - 115 (LCL - UCL) EPA-8260 09/30/05 10/03/05 15:01 MWB MS-V9 50<br>92.4 % 86 - 115 (LCL - UCL) EPA-8260 09/30/05 09/30/05 23:47 MWB MS-V9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene-d8 (Surrogate)                                               | 91.7       | %       |            |                                     | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | 1        | BOI1220  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92.4 % 86 - 115 (LCL - UCL) EPA-8260 09/30/05 09/30/05 23:47 MWB MS-V9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Bromofiuorobenzene (Surrogate)                                     | 92.9       | %       | - 115 (LCL |                                     | 09/30/05                      |                | MWB     | 6V-SM   | 50       | BOI1220  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Bromofiuorobenzene (Surrogate)                                     | 92.4       | %       | (LCL       |                                     | 09/30/05                      | 09/30/05 23:47 | MWB     | MS-V9   | 1        | BOI1220  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |            |         |            |                                     |                               |                |         |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

BC > Laboratories, Inc

Page 13 of 25

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| Inc          |
|--------------|
| ories,       |
| aboratories, |
| r r          |
| 入            |
| BC           |
| M            |

21 Technology Drive Irvine CA, 92618-2302 TRC Alton Geoscience

Project Number: [none] Project Manager: Anju Farfan Project: 5325

**Reported:** 10/26/05 09:49

## Volatile Organic Analysis (EPA Method 8260)

| BCL Sample ID: 0509653-05   Client Sample Name: 5325, U-5, | 0509653-05    | Client Sam       | ole Name | : 5325,     |            | 9/28/2005              | 12:02:00   | U-5, 9/28/2005 12:02:00PM, Basi Foster                            | ster    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|------------------------------------------------------------|---------------|------------------|----------|-------------|------------|------------------------|------------|-------------------------------------------------------------------|---------|---------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                            |               |                  |          |             |            |                        | Prep       | Run                                                               |         | Instru- |          | gc       | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab   |
| Constituent                                                |               | Result Units PQL | Units    | PQL         |            | <b>MDL Method</b> Date | Date       | Date/Time Analyst ment ID Dilution                                | Analyst | ment ID | Dilution | Batch ID | Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quals |
| 4-Bromofluorobenzene (Surrogate)                           | ệ (Surrogate) | 6.66             | %        | 86 - 115 (L | -CL - UCL) | EPA-8260               | 09/30/05 ( | % 86 - 115 (LCL - UCL) EPA-8260 09/30/05 09/30/05 23:47 MWB MS-V9 | MWB     | MS-V9   | -        | BOI1220  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 4-Bromofluorobenzene (Surrogate)                           | e (Surrogate) | 92.4             | %        | 86 - 115 (L | -CL - UCL) | EPA-8260               | 09/30/05 0 | % 86-115 (LCL-UCL) EPA-8260 09/30/05 09/30/05 23:47 MWB MS-V9     | MWB     | MS-V9   | £        | BOI1220  | THE CASES OF THE PERSON AND THE REAL PROPERTY AND A DESCRIPTION OF THE PERSON AND A DESCRIPTION A DESCRIPTION AND A DESCRIPTION A DESCRIPTION AND A DESCRIPTION AND A DESCRIPTION AND A DESCRIPTION |       |
|                                                            |               |                  |          |             |            |                        |            |                                                                   |         |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 14 of 25



TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

### Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-05   Client Sample Name: 5325, U-5, | 0509653-05 | Client Samp | le Name:         | 5325, 1 | J-5, U-5, | 9/28/2005  | 12:02:00 | U-5, 9/28/2005 12:02:00PM, Basi Foster        | iter    |                          |          |          |       |       |
|------------------------------------------------------------|------------|-------------|------------------|---------|-----------|------------|----------|-----------------------------------------------|---------|--------------------------|----------|----------|-------|-------|
|                                                            |            |             |                  |         |           |            | Prep     | Run                                           |         | Instru-                  |          | ос       | MB    | Lab   |
| Constituent                                                |            | Result      | Result Units PQL | PQL     | MDL       | DL Method  | Date     | Date/Time                                     | Analyst | Analyst ment ID Dilution | Dilution | Batch ID | Bias  | Quals |
| Nitrate as N                                               |            | QN          | mg/L             | 0.50    |           | EPA-300.0  | 09/29/05 | EPA-300.0 09/29/05 09/29/05 23:57 NTN IC2     | NTN     | IC2                      | 5        | BOI1160  | QN    | A01   |
| Iron (II) Species                                          |            | 7300        | ng/L             | 200     |           | SM-3500-F€ | 09/29/05 | SM-3500-F¢ 09/29/05 09/29/05 08:15 MV1 SPEC05 | MV1     | SPEC05                   | 2        | BOI1184  | QN    | A01   |
| ortho-Phosphate                                            |            | 0.10        | mg/L             | 0.050   |           | EPA-365.1  | 10/04/05 | EPA-365.1 10/04/05 10/04/05 14:37 TDC KONE-1  | TDC     | KONE-1                   | -        | BOJ0149  | 0.012 | S05   |
|                                                            |            |             |                  |         |           |            |          |                                               |         |                          |          |          |       |       |

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Barkersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 15 of 25

|                                           |                     |         |                      |             |              |                                                   |         |                    |          |                | •                                                                                                              |                                                           |
|-------------------------------------------|---------------------|---------|----------------------|-------------|--------------|---------------------------------------------------|---------|--------------------|----------|----------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                           | Volã                | atile   | Volatile Organic A   | c Analysis  | 1            | (EPA Method 8260)                                 | hod     | 8260               |          |                |                                                                                                                |                                                           |
| BCL Sample ID: 0509653-06                 | Client Sample Name: | ole Nam |                      | , 9/28/2005 | 5 12:31:0    | 5325, U-2, U-2, 9/28/2005 12:31:00PM, Basi Foster | iter    |                    |          |                |                                                                                                                |                                                           |
| Constituent                               | Result              | Units   | PQL MDL              | Method      | Prep<br>Date | Run<br>Date/Time                                  | Analyst | Instru-<br>ment ID | Dilution | QC<br>Batch ID | MB<br>Bias                                                                                                     | Lab<br>Quals                                              |
| Benzene                                   | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | MS-V9              | -        | BOI1220        | QN                                                                                                             |                                                           |
| 1,2-Dibromoethane                         | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/02     | 10/01/05 00:14                                    | MWB     | 6V-SM              | 1        | BOI1220        | QN                                                                                                             |                                                           |
| 1,2-Dichloroethane                        | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | 6V-SM              | -        | BOI1220        | QN                                                                                                             |                                                           |
| Ethylbenzene                              | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | 6V-SM              | -        | BOI1220        | QN                                                                                                             |                                                           |
| Methyl t-butyl ether                      | 80                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | MS-V9              | -        | BOI1220        | QN                                                                                                             |                                                           |
| Toluene                                   | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        | QN                                                                                                             |                                                           |
| Total Xylenes                             | QN                  | ng/L    | 1.0                  | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | 6V-SM              |          | BOI1220        | QN                                                                                                             |                                                           |
| t-Amyl Methyl ether                       | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | 6V-SM              | -        | BOI1220        | QN                                                                                                             |                                                           |
| t-Butyl alcohol                           | 13000               | ng/L    | 100                  | EPA-8260    | 09/30/05     | 10/09/05 17:00                                    | MWB     | 6V-SM              | 10       | BOI1220        | QN                                                                                                             | A01                                                       |
| Diisopropyl ether                         | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | MS-V9              | ٢        | BOI1220        | QN                                                                                                             | AND A THE REPORT OF AN AND AN A THE ADDRESS OF A DECISION |
| Ethanol                                   | QN                  | ng/L    | 250                  | EPA-8260    | 09/30/05     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | ٢        | BOI1220        | DN                                                                                                             |                                                           |
| Ethyl t-butyl ether                       | QN                  | ng/L    | 0.50                 | EPA-8260    | 09/30/05     | 10/01/05 00:14                                    | MWB     | 6V-SM              | 1        | BOI1220        | QN                                                                                                             |                                                           |
| Total Purgeable Petroleum<br>Hydrocarbons | 320                 | ng/L    | 50                   | EPA-8260    | 09/30/02     | 10/01/05 00:14                                    | MWB     | 6V-SM              | -        | B011220        | Q                                                                                                              | A53                                                       |
| 1,2-Dichloroethane-d4 (Surrogate)         | 111                 | %       | 76 - 114 (LCL - UCL) | EPA-8260    | 09/30/05     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        |                                                                                                                |                                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 116                 | %       | 76 - 114 (LCL - UCL) | EPA-8260    | 09/30/02     | 10/01/05 00:14                                    | MWB     | MS-V9              | +        | BOI1220        |                                                                                                                | 60S                                                       |
| 1,2-Dichloroethane-d4 (Surrogate)         |                     | %       | 76 - 114 (LCL - UCL) | EPA-8260    | 09/30/02     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | ٢        | BOI1220        |                                                                                                                |                                                           |
| 1,2-Dichloroethane-d4 (Surrogate)         | 108                 | %       | 76 - 114 (LCL - UCL) | EPA-8260    | 09/30/02     | 09/30/05 10/09/05 17:00                           | MWB     | MS-V9              | 10       | BOI1220        |                                                                                                                |                                                           |
| Toluene-d8 (Surrogate)                    | 96.1                | %       | 88 - 110 (LCL - UCL) | EPA-8260    | 00/30/02     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        |                                                                                                                |                                                           |
| Toluene-d8 (Surrogate)                    | 96.1                | %       | 88 - 110 (LCL - UCL) | EPA-8260    | 09/30/05     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        | -                                                                                                              |                                                           |
| Foluene-d8 (Surrogate)                    | 102                 | %       | 88 - 110 (LCL - UCL) | EPA-8260    | 09/30/05     | 09/30/05 10/09/05 17:00                           | MWB     | MS-V9              | 10       | BOI1220        |                                                                                                                |                                                           |
| Toluene-d8 (Surrogate)                    | 96.1                | %       | 88 - 110 (LCL - UCL) | EPA-8260    | 09/30/02     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        |                                                                                                                |                                                           |
| 4-Bromofluorobenzene (Surrogate)          | 106                 | %       | 86 - 115 (LCL - UCL) | EPA-8260    | 09/30/05     | 09/30/05 10/01/05 00:14                           | MWB     | 6V-SM              | -        | BOI1220        |                                                                                                                |                                                           |
| 4-Bromofluorobenzene (Surrogate)          | 88.2                | %       | 86 - 115 (LCL - UCL) | EPA-8260    | 09/30/02     | 09/30/05 10/01/05 00:14                           | MWB     | MS-V9              | -        | BOI1220        | Canada da Angelanda | na mananana manin'ny faritr'o dia mandri                  |

BC > Laboratories, Inc

Page 16 of 25

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| S            |
|--------------|
| s, Inc       |
| torie        |
| aboratories, |
| La           |
| 六            |
| Ř            |

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

# Volatile Organic Analysis (EPA Method 8260)

| BCL Sample ID: 0509653-06   Client Sample Name: 5325, U-2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0509653-06    | Client Samp      | ole Name | 1: 5325, L          |           | 9/28/2005  | 12:31:00   | U-2, 9/28/2005 12:31:00PM, Basi Foster             | ster    |         |          |          |      |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------|---------------------|-----------|------------|------------|----------------------------------------------------|---------|---------|----------|----------|------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |          |                     |           |            | Prep       | Run                                                |         | Instru- |          | gC       | MB   | Lab   |
| Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Result Units PQL | Units    | PQL                 | MDL       | MDL Method | Date       | Date/Time Analyst ment ID Dilution                 | Analyst | ment ID | Dilution | Batch ID | Bias | Quals |
| 4-Bromofluorobenzene (Surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e (Surrogate) | 88.2             | %        | % 86 - 115 (LCL - 1 | SL - UCL) | EPA-8260   | 09/30/05 1 | UCL) EPA-8260 09/30/05 10/01/05 00:14 MWB MS-V9    | MWB     | MS-V9   | -        | BOI1220  |      |       |
| 4-Bromofluorobenzene (Surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e (Surrogate) | 88.3             | %        | % 86 - 115 (LCL - 1 | CT- NCL)  | EPA-8260   | 09/30/05 1 | UCL) EPA-8260 09/30/05 10/09/05 17:00 MWB MS-V9 10 | MWB     | MS-V9   | 10       | BOI1220  |      |       |
| The second s |               |                  |          |                     |           |            |            |                                                    |         |         |          |          |      |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

**BC** Laboratories

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 17 of 25



TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

### Water Analysis (General Chemistry)

| BCL Sample ID: 0509653-06 Client Sample Name: 5325, U-2, | 0509653-06 | Client Samp | le Name:         | 5325, L |     | 9/28/2005    | 12:31:00 | U-2, 9/28/2005 12:31:00PM, Basi Foster       | iter    |         |          |          |       |       |
|----------------------------------------------------------|------------|-------------|------------------|---------|-----|--------------|----------|----------------------------------------------|---------|---------|----------|----------|-------|-------|
|                                                          |            |             |                  |         |     |              | Prep     | Run                                          |         | Instru- |          | gc       | MB    | Lab   |
| Constituent                                              |            | Result      | Result Units PQL | PQL     | MDL | ADL Method   | Date     | Date/Time Analyst ment ID Dilution           | Analyst | ment ID | Dilution | Batch ID | Bias  | Quals |
| Nitrate as N                                             |            | QN          | mg/L             | 0.20    |     | EPA-300.0 (  | 39/29/05 | EPA-300.0 09/29/05 09/30/05 05:50            | NTN     | IC2     | 2        | BOI1160  | Q     | A01   |
| Iron (II) Species                                        |            | 4000        | ng/L             | 100     |     | SM-3500-Fé ( | 39/29/05 | M-3500-F€ 09/29/05 09/29/05 08:15 MV1        | MV1     | SPEC05  | -        | BOI1184  | QN    |       |
| ortho-Phosphate                                          |            | 7.5         | mg/L             | 0.25    |     | EPA-365.1    | 10/04/05 | EPA-365.1 10/04/05 10/04/05 15:24 TDC KONE-1 | TDC     | KONE-1  | 5        | BOJ0149  | 0.059 | S05   |
|                                                          |            |             |                  |         |     |              |          |                                              |         |         |          |          | 1     |       |

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Thus analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Barkersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 18 of 25

BC > Laboratories, Inc

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

## Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

|                                   |          |                     |                                      |        |        |        |       |      |          | Contro | Control Limits     |
|-----------------------------------|----------|---------------------|--------------------------------------|--------|--------|--------|-------|------|----------|--------|--------------------|
|                                   |          |                     |                                      | Source |        | Spike  |       |      | Percent  |        | Percent            |
| Constituent                       | Batch ID | QC Sample ID        | Batch ID QC Sample ID QC Sample Type | Result | Result | Added  | Units | RPD  | Recovery | RPD    | Recovery Lab Quals |
| Benzene                           | BOI1220  | BOI1220 BOI1220-MS1 | Matrix Spike                         | QN     | 20.370 | 25.000 | ng/L  |      | 81.5     |        | 70 - 130           |
|                                   |          | BOI1220-MSD1        | BOI1220-MSD1 Matrix Spike Duplicate  | QN     | 19.160 | 25.000 | ng/L  | 6.20 | 76.6     | 20     | 70 - 130           |
| Toluene                           | BOI1220  | BOI1220-MS1         | Matrix Spike                         | g      | 22.650 | 25.000 | ng/L  |      | 90.6     | ANY    | 70 - 130           |
|                                   |          | BOI1220-MSD1        | Matrix Spike Duplicate               | QN     | 22.160 | 25.000 | ng/L  | 2.23 | 88.6     | 20     | 70 - 130           |
| 1,2-Dichloroethane-d4 (Surrogate) | BOI1220  | BOI1220-MS1         | Matrix Spike                         | Q      | 11.380 | 10.000 | ng/L  |      | 114      |        | 76 - 114           |
|                                   |          | BOI1220-MSD1        | Matrix Spike Duplicate               | QN     | 10.570 | 10.000 | ng/L  |      | 106      |        | 76 - 114           |
| Toluene-d8 (Surrogate)            | BOI1220  | BOI1220-MS1         | Matrix Spike                         | Q      | 9.6800 | 10.000 | ng/L  |      | 96.8     |        | 88 - 110           |
|                                   |          | BOI1220-MSD1        | Matrix Spike Duplicate               | QN     | 9.6700 | 10.000 | ng/L  |      | 96.7     |        | 88 - 110           |
| 4-Bromofluorobenzene (Surrogate)  | BOI1220  | BOI1220-MS1         | Matrix Spike                         | Q      | 9.9500 | 10.000 | ng/L  |      | 99.5     |        | 86 - 115           |
|                                   |          | BOI1220-MSD1        | Matrix Spike Duplicate               | QN     | 9.4900 | 10.000 | ng/L  |      | 94.9     |        | 86 - 115           |
|                                   |          |                     |                                      |        |        |        |       |      |          |        |                    |

Page 19 of 25 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

| <b>A</b> .   |
|--------------|
| Inc          |
| ies,         |
| aboratories, |
| bore         |
| Lal          |
| 人            |
| 5            |
|              |

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

### Water Analysis (General Chemistry)

| Accuracy    |
|-------------|
| õ           |
| Precision & |
| I           |
| Report      |
| -           |
| Contro      |
| >           |
| £.          |
| Qual        |
|             |

|                   |          |                                 |                        |         |         |         |       |       |          | Contro | Control Limits                                                                                                             |
|-------------------|----------|---------------------------------|------------------------|---------|---------|---------|-------|-------|----------|--------|----------------------------------------------------------------------------------------------------------------------------|
|                   |          |                                 |                        | Source  |         | Spike   |       |       | Percent  |        | Percent                                                                                                                    |
| Constituent       | Batch ID | Batch ID QC Sample ID QC Sample | QC Sample Type         | Result  | Result  | Added   | Units | RPD   | Recovery | RPD    | Recovery Lab Quals                                                                                                         |
| Nitrate as N      | BOI1160  | BOI1160 BOI1160-DUP1 Duplicate  | Duplicate              | 4.3460  | 4.3590  |         | mg/L  | 0.299 |          | 10     |                                                                                                                            |
|                   |          | BOI1160-MS1                     | Matrix Spike           | 4.3460  | 9.7434  | 5.0505  | mg/L  |       | 107      |        | 80 - 120                                                                                                                   |
|                   |          | BOI1160-MSD1                    | Matrix Spike Duplicate | 4.3460  | 9.7485  | 5.0505  | mg/L  | 0.00  | 107      | 10     | 80 - 120                                                                                                                   |
| Iron (II) Species | BOI1184  | BOI1184 BOI1184-DUP1 Duplicate  | Duplicate              | 7313.8  | 7296.4  |         | ng/L  | 0.238 | i.       | 10     | A01                                                                                                                        |
| ortho-Phosphate   | BOJ0149  | BOJ0149 BOJ0149-DUP1 Duplicate  | Duplicate              | 0.45463 | 0.44667 |         | mg/L  | 1.77  |          | 10     | Bernard View a State of more and a market with the State of the State Barnet State Barnet of the state of the state Barnet |
|                   |          | BOJ0149-MS1                     | Matrix Spike           | 0.45463 | 1.0923  | 0.64547 | mg/L  |       | 98.8     |        | 90 - 110                                                                                                                   |
|                   |          | BOJ0149-MSD1 Matrix Spike Du    | Matrix Spike Duplicate | 0.45463 | 1.0998  | 0.64547 | mg/L  | 1.21  | 100      | 10     | 90 - 110                                                                                                                   |
|                   |          |                                 |                        |         |         |         | >     |       |          |        |                                                                                                                            |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

| <b>A</b> .     |
|----------------|
| Inc            |
| es,            |
| ori            |
| aboratories,   |
| abo            |
|                |
| 人              |
| $\frac{3C}{2}$ |
|                |
|                |

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302

Project: 5325 Project Number: [none] Project Manager: Anju Farfan

**Reported:** 10/26/05 09:49

# Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

| -                                 |          |                               |     |        |                |      |        |      |   | CONTROL LIMITS | nits |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|----------|-------------------------------|-----|--------|----------------|------|--------|------|---|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constituent                       | Batch ID | Batch ID OC Samula ID OC Tuna |     | Poent! | Spike<br>Level |      | l nite |      |   |                |      | alenO de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzene                           | BOI1220  | BOI1220 BOI1220-BS1 LCS       | LCS | 21.230 | 25.000         | 0.50 | ng/L   | 84.9 |   | 70 - 130       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Toluene                           | BOI1220  | BOI1220 BOI1220-BS1           | LCS | 22.780 | 25.000         | 0.50 | ng/L   | 91.1 | 7 | 0 - 130        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2-Dichloroethane-d4 (Surrogate) | BOI1220  | BOI1220 BOI1220-BS1           | LCS | 11.000 | 10.000         |      | ng/L   | 110  | 7 | 76 - 114       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Toluene-d8 (Surrogate)            | BOI1220  | BOI1220 BOI1220-BS1           | LCS | 9.3400 | 10.000         | -    | ng/L   | 93.4 | ω | 88 - 110       |      | And a close of a close of the second s |
| 4-Bromofluorobenzene (Surrogate)  |          | BOI1220 BOI1220-BS1           | rcs | 9.7000 | 10.000         |      | ng/L   | 97.0 | ω | 86 - 115       | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 21 of 25

| Inc          |
|--------------|
| ories,       |
| lboratories, |
| - La         |
|              |
|              |

| TRC Alton Geoscience | 21 Technology Drive | Irvine CA, 92618-2302 |
|----------------------|---------------------|-----------------------|
|----------------------|---------------------|-----------------------|

Project Number: [none] Project Manager: Anju Farfan Project: 5325

**Reported:** 10/26/05 09:49

## Water Analysis (General Chemistry)

| Sample                                             |  |
|----------------------------------------------------|--|
| Control                                            |  |
| Quality Control Report - Laboratory Control Sample |  |
| Report - L                                         |  |
| <b>/</b> Control                                   |  |
| Quality                                            |  |

|                   |                               |         |         |         |       |       |          |       | <b>Control Limits</b> | ts            |
|-------------------|-------------------------------|---------|---------|---------|-------|-------|----------|-------|-----------------------|---------------|
|                   |                               |         |         | Spike   |       |       | Percent  |       | Percent               |               |
| Constituent       | Batch ID QC Sample ID QC Type | QC Type | Result  | Level   | PQL   | Units | Recovery | RPD F | Recovery RP           | RPD Lab Quals |
| Nitrate as N      | BOI1160 BOI1160-BS1 LCS       | rcs     | 5.3530  | 5.0000  | 0.10  | mg/L  | 107      |       | 90 - 110              |               |
| Iron (II) Species | BOI1184 BOI1184-BS1           | LCS     | 1964.3  | 2000.0  | 100   | ng/L  | 98.2     |       | 90 - 110              |               |
| ortho-Phosphate   | BOJ0149 BOJ0149-BS1 LCS       | LCS     | 0.62063 | 0.61320 | 0.050 | mg/L  | 101      |       | 90 - 110              |               |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atrias Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 22 of 25

| TRC Alton Geoscience<br>21 Technology Drive<br>Irvine CA, 92618-2302 | Proj                                           | Project: 5325<br>Project Number: [none]<br>Project Manager: Anju Farfan |           |         |                      | Reported: | <b>Reported:</b> 10/26/05 09:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-----------|---------|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | Volatile Organic Analysis (EPA Method 8260)    | Analysis (El                                                            | PA Metho  | od 8260 |                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                      | Quality Control Report - Method Blank Analysis | Report - Method                                                         | Blank Ana | lysis   |                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Constituent                                                          | Batch ID                                       | QC Sample ID                                                            | MB Result | Units   | PQL                  | MDL       | Lab Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzene                                                              | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dibromoethane                                                    | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.11      | ner ren or anna Arne en ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2-Dichloroethane                                                   | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.25      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene                                                         | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.13      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl t-butyl ether                                                 | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene                                                              | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Xylenes                                                        | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 1.0                  | 0.40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t-Amyl Methyl ether                                                  | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.31      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t-Butyl alcohol                                                      | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 10                   | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diisopropyl ether                                                    | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.25      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethanol                                                              | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 1000                 | 110       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethyl t-butyl ether                                                  | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 0.50                 | 0.27      | rant a manufacture con the man and man in class to be considered and an external                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Purgeable Petroleum Hydrocarbons                               | BOI1220                                        | BOI1220-BLK1                                                            | QN        | ng/L    | 50                   | 23        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane-d4 (Surrogate)                                    | BOI1220                                        | BOI1220-BLK1                                                            | 110       | %       | 76 - 114 (LCL - UCL) | CL - UCL) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene-d8 (Surrogate)                                               | BOI1220                                        | BOI1220-BLK1                                                            | 92.7      | %       | 88 - 110 (LCL - UCL) | CL - UCL) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Bromofluorobenzene (Surrogate)                                     | B0I1220                                        | BOI1220-BLK1                                                            | 90.2      | %       | 86 - 115 (LCL - UCL) | CL - UCL) | n men of the first |

BC ≻ Laboratories, Inc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 23 of 25

| TRC Alton Geoscience<br>21 Technology Drive<br>Irvine CA, 92618-2302 | Pro                                | Project: 5325<br>Project Number: [none]<br>Project Manager: Anju Farfan |                       |                        |       | Reported: | <b>Reported:</b> 10/26/05 09:49 |
|----------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|-----------------------|------------------------|-------|-----------|---------------------------------|
|                                                                      | Water Analysis (General Chemistry) | sis (General<br>Aenort - Methoc                                         | Chemist<br>Blank Anal | ry)<br><sub>veie</sub> |       |           |                                 |
| Constituent                                                          | Batch ID                           | QC Sample ID                                                            | MB Result             | Units                  | PQL   | MDL       | Lab Quals                       |
| Nitrate as N                                                         | BOI1160                            | BOI1160-BLK1                                                            | QN                    | mg/L                   | 0.10  | 0.018     |                                 |
| Iron (II) Species                                                    | BOI1184                            | BOI1184-BLK1                                                            | QN                    | ng/L                   | 100   | 100       |                                 |
| ortho-Phosphate                                                      | BOJ0149                            | BOJ0149-BLK1                                                            | QN                    | mg/L                   | 0:050 | 0.030     |                                 |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

BC Laboratories

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 24 of 25

| 2. Totalinging Diving     Project Manger     Regist Manger                                                                                                | 21 Tecl |                                                         | Project: 5325                                                                                                                          |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Total contained       Total contained <thtotal contained<="" th="">       T</thtotal> | L V ISU | hnology Drive<br>24 92618-2302                          |                                                                                                                                        |                                        |
| Notes and Definitions           uregate recovery on the sample for this compound was not within the control limits           unple holding time was covereded.           atogarem not typical of gracolina           and DDL's are market dire to sample filtution.           e NOT DETECTED in or above the reporting time           and NDL's are market dire to sample filtution.           e NOT DETECTED in or above the reporting time           and NDL's are market dire to sample filtution.           e NOT DETECTED in or above the reporting time           e NOT DETECTED in or above the reporting time           e NOT DETECTED in or above the reporting time           e NOT DETECTED in or above the reporting time           e NOT DETECTED in or above the reporting time           e NOT DETECTED in or above the reporting time           e Not distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                         |                                                                                                                                        | Keported: 10/20/02                     |
| rrogate recovery on the sample for this compound was not within the control limits<br>any holding time was exceeded.<br>asogram not typical of gasolins<br>and MDL's are raised due to sample dilution.<br>e NOT DETECTED at or above the reporting limit<br>e NOT DETECTED at or above the reporting limit<br>e recatil reported due to sample dilution.<br>e Percent Difference<br>e Fercent Difference.<br><i>The realist on the report apple to the samples and peak of the control forcenter. The analytical report matche reportedua</i><br>Attending the relevant efforted eachere are of the holding gave, B.C. Laborance, I.C. a samples of disconter accordance with the <i>chain of castoly decontert. The analytical report matche reportedua</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | £.                                                      | Notes and Definitions                                                                                                                  |                                        |
| targe holding time was exceeded.<br>anogram not typical of geoline.<br>and MDL's are raused due to sample dittaton.<br>e NOT DETECTED at or alove the reporting time.<br>e results reported on a dy weigh basis<br>e Precent Difference.<br>e Precent Difference.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 809     | The surrogate recovery on the sample for this con       | mpound was not within the control limits                                                                                               |                                        |
| artogram not typical of gasolin:<br>and MDL's are raised due to sample dilution:<br>e NOT DETECTED at or show the reporting limit<br>c results reported on a dry weight bass<br>e Percent Difference<br>e Percent Difference<br>e Percent Difference.<br><i>The result on the report spyle to the samples analyzed in accontance with the otom of controly document. This samplitait report must be reproduced</i><br>All realis in the report spyle to the samples analyzed in accontance with the otom of controly document. This samplitait report must be reproduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S05     | The sample holding time was exceeded.                   |                                                                                                                                        |                                        |
| and MDL's are raised due to sample dilution.<br>e NOT DETECTED at or above the reporting limit:<br>e results reported on a dry weight bass<br>e Percent Difference<br>e Percent Difference<br>e Percent Difference<br>met and met and in the report apply to the samples and percent in cocordance with the otom of cantony document. This candiptical report must be reproduced a<br>Mercent in the report apply to the samples and percent in cocordance with the otom of cantony document. This candiptical report must be reproduced a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A53     | Chromatogram not typical of gasoline.                   |                                                                                                                                        |                                        |
| e NOT DETECTED at or above the reporting limit<br>c results reported on a dry weight hass<br>e Fercent Difference<br>e Fercent Difference<br><i>The results on the report apply to the samples and peel in accordance with the claim of cantody document. The analytical report must he reproduced</i><br>All realis finds lived in this report apply to the samples analyzed in accordance with the claim of cantody document. The analytical report must he reproduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A01     | PQL's and MDL's are raised due to sample dilutio        | DN.                                                                                                                                    |                                        |
| e results reported on a dry weight basis<br>e Percent Difference<br>I <i>The results in this report apply to the samples andyaed in accordance with the chain of cancedy document. This and/accut report must be reproduced 1</i><br>M reads larger the fact the receiver are of the shimming party. BC Laboratories Inc. summes on expossibility for report elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN      | Analyte NOT DETECTED at or above the reporting li       | limit                                                                                                                                  |                                        |
| e Pecent Diffecto:<br>The results in this report apply to the samples analysed in accordance with the chern of canody document. The analytical report must be reproduced i<br>All results lated in this report apply to the samples analysed in accordance with the chern of canody document. The analytical report must be reproduced in accordance with the chern of canody document. The analytical report must be reproduced in accordance with the chern of canody document. The analytical report must be reproduced in accordance with the chern of canody document. The analytical report must be reproduced in accordance with the chern of canody document. The analytical report must be reproduced in accordance with the chern of canody document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dry     | Sample results reported on a dry weight basis           |                                                                                                                                        |                                        |
| The results in this report apply to the samples andyard in accordance with the chain of castody document. This analysical report must be reproduced A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD     | Relative Percent Difference                             |                                                                                                                                        |                                        |
| The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                         |                                                                                                                                        |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC Lat  |                                                         | sults in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical                   | report must be reproduced in its entir |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | All results listed in this report are for the exclusive | use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third pa | ty interpretation.                     |

BC > Laboratories, Inc

| BC LABORATORIES INC                                       |                                       | SAN            | APLE REG                              | CEIPT FO                                                                                                       | RM                                    | Rev. No.                     | 10 01/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/04 <b>f</b>                         | Page (           | )f       |
|-----------------------------------------------------------|---------------------------------------|----------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|----------|
| Submission #: 05-965                                      | 53 1                                  | Project C      | ode:                                  |                                                                                                                |                                       | ТВ                           | Batch #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                  |          |
| SHIPPING INFOR                                            |                                       |                |                                       | 1                                                                                                              |                                       |                              | ING CONT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |          |
| Federal Express 🔲 UPS 🗆                                   | Hand De                               | elivery 🛛      |                                       |                                                                                                                | Ice Che                               |                              | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |          |
| BC Lab Field Service D Other                              | ∃ (Specif                             | y)             |                                       |                                                                                                                |                                       | × O                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r 🗋 (Sp                               | ecify)           |          |
|                                                           |                                       |                |                                       | <u>I</u>                                                                                                       |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| Refrigerant: Ice-C Blue Ice C                             | Non                                   | e 🗌 🛛 🕻        | Other 🛛                               | Сотт                                                                                                           | ents:                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| Custody Seals: Ice Chest 🗆                                | Containe                              | ers 🛛          | None                                  | Comm                                                                                                           | ents:                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| intact? Yes 🗆 No 🗋                                        | Intact? Ye                            | s 🗆 No 🗆       | -                                     |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| All samples received? Yes 🗋 No 🗆                          | All sample                            | es containe    | rs intact?                            | Yes (C) . No                                                                                                   | ы ()                                  | Descria                      | tion(s) match                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COC2 Y                                | es 🕅 No          |          |
| COC Received                                              |                                       |                |                                       |                                                                                                                |                                       | ssivity                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | ime <b>9</b> /28 |          |
|                                                           |                                       |                | chest ID <u>6</u><br>erature: <u></u> | 2.4 °c                                                                                                         | Con                                   | tainer                       | rife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                     |                  |          |
|                                                           | <b></b>                               | Thermom        | eter ID;                              | 48                                                                                                             |                                       |                              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analys                                | t Init HR        | <u>~</u> |
| SAMPLE CONTAINERS                                         | <u> </u>                              | <b>T</b>       | T                                     | <b>T</b>                                                                                                       | SAMPLE                                | NUMBERS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a.                                    |                  |          |
|                                                           | 1                                     | 2              | 3                                     | 4                                                                                                              | 5                                     | 6                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                     | 9                | 10       |
| OT GENERAL MINERAL/ GENERAL PHYSICAL<br>PT PE UNPRESERVED | P                                     | <u> </u>       |                                       |                                                                                                                | P                                     | D                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT INORGANIC CHEMICAL METALS                              |                                       | <u> </u>       |                                       |                                                                                                                |                                       |                              | ╂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |          |
| PT INORGANIC CHEMICAL METALS                              |                                       | 1              | · · ·                                 | t                                                                                                              |                                       |                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |          |
| PT CYANIDE                                                |                                       | 1              |                                       |                                                                                                                |                                       |                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |          |
| PT NITROGEN FORMS                                         | С                                     | C              | c                                     | C                                                                                                              | C                                     | C                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| PT TOTAL SULFIDE                                          |                                       |                |                                       | 1                                                                                                              |                                       | 1                            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |          |
| 202 NITRATE / NITRITE                                     |                                       |                |                                       |                                                                                                                |                                       | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| 100ml TOTAL ORGANIC CARBON                                |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT TOX                                                    |                                       | ļ              |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| PT CHEMICAL OXYGEN DEMAND                                 | <u> </u>                              |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| <u>PIA PHENOLICS</u>                                      |                                       | ļ              | ļ                                     | ļ                                                                                                              |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| 40mi VOA VIAL TRAVEL BLANK                                |                                       |                |                                       |                                                                                                                | ļ                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| 40ml VOA VIAL                                             | A 13                                  | <u>A · 3 ·</u> | A.7 .                                 | A.3                                                                                                            | Ais                                   | A 13                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · ·                                 | r                | 1 1      |
| <u>QT EPA 413.1, 413.2, 418.1</u><br>PT ODOR              |                                       |                |                                       |                                                                                                                |                                       |                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                  |          |
| RADIOLOGICAL                                              | · · · · · · · · · · · · · · · · · · · | <u> </u>       |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| BACTERIOLOGICAL                                           |                                       |                |                                       |                                                                                                                |                                       |                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                  |          |
| 40 mł VQA VIAL- 504                                       |                                       |                |                                       | ·                                                                                                              |                                       | <u> </u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT EPA 508/608/8080                                       |                                       |                |                                       |                                                                                                                |                                       | <u> </u>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                     |                  |          |
| QT EPA 515.1/8150                                         |                                       |                |                                       |                                                                                                                |                                       | and the second second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT EPA 525                                                |                                       |                | Second Second                         |                                                                                                                |                                       | NG TIM                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |          |
| QT EPA 525 TRAVEL BLANK                                   |                                       |                | 1 100103                              | SHOR                                                                                                           | WADDINGS CONTRACTOR                   |                              | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                  |          |
| 100mi EPA 547                                             |                                       |                | C                                     | +6 NC                                                                                                          | 2 (NO                                 | $\sum_{i=1}^{n}$             | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  | [        |
| 100ml EPA 531.1                                           |                                       |                |                                       | <u>) BOE</u>                                                                                                   | MBAS                                  |                              | NUMERO (NEW YORK) AND ADDRESS OF THE OWNER ADDRESS |                                       |                  | 1        |
| QT EPA 548                                                |                                       |                |                                       | and a second | anover-day and break relations        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT EPA 549                                                |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| QT EPA 632                                                |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  | ]        |
| QT EPA 8015M                                              |                                       |                |                                       |                                                                                                                |                                       | СНК                          | kv——⊓ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOIDI                                 | TIONI            | <b></b>  |
|                                                           |                                       |                |                                       |                                                                                                                |                                       |                              | wanter processing water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIBU                                 |                  | <b>_</b> |
| QT AMBER                                                  |                                       |                |                                       |                                                                                                                |                                       | $ +\alpha' $                 | DARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                  | ∥        |
| 8 OZ. JAR<br>32 OZ. JAR                                   |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUB-O                                 | ло               |          |
| 32 OZ. JAR<br>SOIL SLEEVE                                 |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| PCB VIAL                                                  |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  | {        |
| PLASTIC BAG                                               |                                       |                |                                       |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| FERROUS IRON                                              | B                                     | ß              | B                                     | B                                                                                                              | R                                     | B                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
| ENCORE .                                                  |                                       |                |                                       | ~                                                                                                              | B                                     | 15                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |          |
|                                                           |                                       |                |                                       |                                                                                                                | · · · · · · · · · · · · · · · · · · · |                              | <u>`</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                  |          |
| omments                                                   |                                       |                | 1                                     |                                                                                                                |                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | L                |          |

Sample Numbering Completed By:

Date/Time: 9/29 0130

AFM

| BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratories, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chain of                                                                                                | f Custody Form                                                                                                                         |                                                                                                                                                                            | PLEASE COMPLETE.<br>BCL QUOTE ID:                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Client: Attn: Attn | u Freefording De<br>Revines CA 92618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project #: Vaszev Kazo<br>Project Name: Conce Millips<br>Project Code: 5325<br>Sampler(s): Kast rec sol | HAN STORES                                                                                                                             | 36578 Pag<br>Comments: "Run Barys<br>ON ALL UTBE LATS"                                                                                                                     | Page / of /                                                                                                                          |
| Email Addree<br>Submittal #:<br>Sample<br>#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | utime time of the second secon | H-Thravior 5<br>Date T<br>Sampled Sar                                                                   | 0<br>1001<br>1001<br>1001                                                                                                              | Sample Matrix<br>Dinking Water<br>Sjudge<br>Ground Water<br>Ground Water<br>Turnaround<br># of work days<br>* Standard Turn<br>Cther<br>* Standard Turn<br>* Standard Turn | Are there any tests with holding times less than<br>or equal to 48 hours?<br>Pes Do<br>* Standard Turnaround = 15 work days<br>Notes |
| 1-1-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-4<br>12-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05 28 65 11/0                                                                                           |                                                                                                                                        | K 244 3 vons where                                                                                                                                                         |                                                                                                                                      |
| 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11-1<br>12-5<br>11-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 12°2                                                                                                 |                                                                                                                                        | n nuces                                                                                                                                                                    | 12509, 025                                                                                                                           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (K, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V V /23/                                                                                                | >     .       >     .       >     .       >     .       >     .       >     .       >     .       >     .       >     .       >     .  |                                                                                                                                                                            |                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                      |
| Billing<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | avec Pullos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Report Drinking<br>Waters on State Form?                                                                | sal<br>o Client Disposal by lab Archive:<br>Date Time                                                                                  | ths ac                                                                                                                                                                     | porting<br>Baw I<br>Date<br>OF/28/65-                                                                                                |
| City:<br>Attn:<br>PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Send Copy to State of 2. Reline<br>CA? 3. Reline<br>3. Reline                                           | Religenshard By Time<br>Religenshed By 7/246/1445<br>Religenshed By Date 7/246/1820                                                    | 5- Recoved By Secondary                                                                                                                                                    | Date<br>9/24/05 1.44                                                                                                                 |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOCHNUK CA BC Laborator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, Inc. – 4100 Atlas Ct. – Bakérsfield,                                                                | BC Laboratories, Inc 4100 Atlas Ct Bakérsfield, CA 93308 - 861.327.4911 - Fax: 661.327.1918 - Www.Pclabs.gom<br>9 · 98 - 55<br>20 - 55 | 18 - Www.bclatiston M. M. 4<br>9. 28. 23 200 203 3                                                                                                                         | aller<br>21 230                                                                                                                      |

### **STATEMENTS**

### **Purge Water Disposal**

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the Conoco Phillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R -149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid -phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter R ecycling, Inc.

### Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.