RECEIVED

By lopprojectop at 10:18 am, Nov 07, 2005

October 31, 2005

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal
Quarterly Report
Third Quarter – 2005
76 Service Station #5043
449 Hegenberger Road
Oakland, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818 Phone: 916-558-7609

Fax: 916-558-7639

Sincerely,

Thomas Kosel

Risk Management & Remediation

Attachment

October 31, 2005

TRC Project No. 42014406

Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Quarterly Status Report - Third Quarter 2005

76 Station #5043, 449 Hegenberger Road, Oakland, California

Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Third Quarter 2005 Status Report for the subject site. The subject site is an operating 76 service station located on the southwestern corner of Hegenberger Road and Edgewater Drive in Oakland, California. Station facilities include three underground storage tanks (USTs), four dispenser islands, and a station building. A total of six groundwater-monitoring wells are located at or near the site.

Customer-Focused Solutions

PREVIOUS ASSESSMENTS

October 1991: Four soil samples were collected from the product pipe trenches at depths of approximately 3 feet below ground surface (bgs) during a dispenser island modification. Petroleum hydrocarbon concentrations were moderate to elevated. The product pipe trenches were subsequently excavated to the groundwater depth at 4 to 4.5 bgs.

February 1992: Three monitoring wells were installed at the site to depths ranging from 13.5 to 15 feet bgs.

August 1992: Three additional monitoring wells were installed at the site to depths of 13.5 feet bgs.

September 1994: One 280-gallon waste oil UST was removed from the site. The tank was made of steel, and no apparent holes or cracks were observed in the tank. One soil sample was collected from beneath the former tank at a depth of approximately 9 feet bgs. No petroleum hydrocarbons were detected.

January 1995: Two additional monitoring wells were installed at the site to a depth of 13 feet bgs. In addition, two existing monitoring wells were destroyed in order to accommodate the construction of a car wash at the subject site. Wells MW-4 and MW-5 were fully drilled out and backfilled with neat cement.

QSR – Third Quarter 2005 76 Service Station #5043, Oakland, California October 31, 2005 Page 2

March 1995: Two 10,000-gallon gasoline USTs and one 10,000-gallon diesel UST were removed from the site. Groundwater was encountered in the tank cavity at a depth of approximately 8.5 feet bgs. Soil samples contained low levels of total petroleum hydrocarbons as diesel (TPH-d) and benzene, and moderate levels of total petroleum hydrocarbons as gasoline (TPH-g). Approximately 125,000 gallons of groundwater were pumped from the site for remediation and properly disposed offsite. Four dispenser islands and associated product piping were also removed. Based on detections in confirmation samples, the product dispenser islands were over excavated to approximately 6 feet bgs.

March-April 1995: During demolition activities of the former station building, soil samples were collected from two excavations, which were subsequently over excavated. Confirmation samples contained low petroleum hydrocarbons. An additional area on the south side of the former station building was excavated based on photoionization detector (PID) readings. Two monitoring wells were destroyed in order to allow for over excavation activities to extend to an area adjacent to the dispenser islands in the southeastern quadrant of the site. The excavated areas were subsequently backfilled with clean-engineered fill.

April 1997: Two additional monitoring wells were installed in the vicinity of the site to depths of 13 to 15 feet bgs. In addition, well MW-3, which was damaged during the UST cavity overexcavation in 1995, was fully drilled out and reconstructed in the same borehole.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

SENSITIVE RECEPTORS

A sensitive receptor survey has not been performed for the site.

MONITORING AND SAMPLING

Groundwater samples have been collected on a quarterly basis since 1992. Since 1995, the highest hydrocarbon concentrations, with the exception of methyl tertiary butyl ether (MTBE), have been observed in onsite monitoring well MW-6.

Currently, three onsite and three offsite wells are monitored and sampled quarterly. All wells were sampled this quarter. The groundwater flow is toward the southeast at a calculated hydraulic gradient of 0.01 feet per foot, consistent with historical trends.

CHARACTERIZATION STATUS

The dissolved-phase hydrocarbon plume is defined within the current monitoring well network. Total purgeable petroleum hydrocarbons (TPPH) were detected in two of six wells sampled at a maximum concentration of 13,000 micrograms per liter (μ g/l) in onsite monitoring well MW-6. Benzene was detected in two of six wells sampled with a maximum concentration of 82 μ g/l detected in onsite monitoring well MW-6. MTBE was detected was detected in four of six wells

QSR – Third Quarter 2005 76 Service Station #5043, Oakland, California October 31, 2005 Page 3

sampled at a maximum concentration of 100 µg/l in onsite monitoring well MW-3. Total petroleum hydrocarbons as diesel (TPH-d) were detected in one of six wells sampled at a maximum concentration of 2,500 µg/l in onsite monitoring well MW-6.

These concentrations are consistent with recent trends.

REMEDIATION STATUS

Remediation is not currently being conducted at the site.

RECENT CORRESPONDENCE

No correspondence this quarter.

CURRENT QUARTER ACTIVITIES

September 27, 2005: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

CONCLUSIONS AND RECOMMENDATIONS

TRC will conduct a sensitive receptor survey and evaluate remedial alternatives capable of treating residual hydrocarbons in onsite groundwater.

TRC recommends continuing quarterly monitoring and sampling to assess plume stability and concentration trends at key wells.

If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely,

TRC

Keith Woodburne, P.G.

Senior Project Geologist

Attachments:

MydWoodle

Quarterly Monitoring Report, July through September 2005 (TRC, October 24, 2005)

cc: Ms. Shelby Lathrop, ConocoPhillips (electronic upload only)

Beretta Investment Group, 39560 Stevenson Pl., Suite 118, Fremont, CA 94539

October 24, 2005

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN:

MRS. SHELBY LATHROP

SITE:

76 STATION 5043

449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

Dear Mrs. Lathrop:

Please find enclosed our Quarterly Monitoring Report for 76 Station 5043, located at 449 Hegenberger Road, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan

QMS Operations Manager

CC: Mr. Keith Woodburne, TRC (3 copies)

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

76 Station 5043 449 Hegenberger Road Oakland, California

Prepared For:

Ms. Shelby Lathrop CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations October 24, 2005

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
·	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 3: Additional Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPPH Contour Map
	Figure 4: Dissolved-Phase Benzene Contour Map
	Figure 5: Dissolved-Phase MTBE Contour Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
Field Activities	General Field Procedures
	Groundwater Sampling Field Notes
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities July 2005 through September 2005 76 Station 5043 449 Hegenberger Road Oakland, CA

Project Coordinator: Shelby Lathrop Telephone: 916-558-7609	Water Sampling Contractor: TRC
Date(s) of Gauging/Sampling Event: 09/27/0	Compiled by: Christina Carrillo 5
Sample Points	
Groundwater wells: 3 onsite, 3 offsite Purging method: Diaphragm pump Purge water disposal: Onyx/Rodeo Unit 100 Other Sample Points: 0 Type: n/a	S S S S S S S S S S S S S S S S S S S
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (fee LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	t): n/a Method: n/a
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimulater Average groundwater elevation (relative to avail Average change in groundwater elevation since Interpreted groundwater gradient and flow direct Current event: 0.01 ft/ft, southeast Previous event: 0.02 ft/ft, southeast (06)	previous event: 0.03 feet tion:
Selected Laboratory Results	•
Wells with detected Benzene: 2 Maximum reported benzene concentration:	Wells above MCL (1.0 μg/l): 1 82 μg/l (MW-6)
Wells with TPPH 8260B 2 Wells with MTBE 4	Maximum: 13,000 μg/l (MW-6) Maximum: 100 μg/l (MW-3)
Notae	

TABLES

TABLE KEY

STANDARD ABREVIATIONS

-- e not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit
TOC = top of casing (surveyed reference elevation)

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction TPH-D = total petroleum hydrocarbons with diesel distinction

TPPH = total purgeable petroleum hydrocarbons
TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: Surface Elevation Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 5043 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Page 1 of 1

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS September 27, 2005 76 Station 5043

MTBE 8260B	$(\mu g/I)$	100	0.56	96'0	ND<0.50	2.3	ND<0.50
MTBE 8021B	(l/gn)	;	}	. 1	ŀ	1	;
Total Xylenes	(µg/I)	ND<1.0	066	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Ethyl- benzene	(hg/l)	ND<0.50	430	ND<0.50 ND<1.0	1.2	ND<0.50	ND<0.50
Toluene	(hg/l)	09.0	120	1.2	ND<0.50	0.73	ND<0.50
Benzene	(μg/l)	ND<0.50	83	0.59	ND<0.50 ND<0.50	ND<0.50	ND<0.50 ND<0.50 ND<0.50 ND<1.0
ТРРН 8260В	(μg/l)	210	13000	ND<50	ND<50	ND<50	ND<50
TPH-G	(hg/l)	i	1	!		ŀ	1
Ground- Change in water Elevation Elevation	(feet)	0)	5) -0.08	9) -0.04)) -0.21	9) -0.28	0.67
Ground- C water Elevation	(feet)	et: 2.5-14. (6.14	et: 2.5-13. 6.32	et: 3.0-13.(5.39	et: 3.0-15.0 6.09	et: 3.0-13. (6.31	et: 3.0-13.(4.66
LPH Ground- Change in Thickness water Elevation Elevation	(teet)	(Screen Interval in feet: 2.5-14.0) 1.90 0.00 6.14	(Screen Interval in feet: 2.5-13.5) 2.55 0.00 6.32	(Screen Interval in feet: 3.0-13.0) 3.44 0.00 5.39	(Screen Interval in feet: 3.0-15.0) 2.43 0.00 6.09	(Screen Interval in feet: 3.0-13.0) 1.98 0.00 6.31	(Screen Interval in feet: 3.0-13.0) 3.96 0.00 4.66
TOC Depth to levation Water	(feet)	(Screen In 1.90	(Screen In 2.55	(Screen In 3.44	(Screen In 2.43	(Screen In 1.98	(Screen In
TOC Elevation	(feet)	8.04	8.87	8.83	8.52	8.29	8.62
Date TOC Depth to Sampled Elevation Water		MW-3 09/27/05	MW-6 09/27/05	MW-7 09/27/05	MW-8 09/27/05	MW-9 09/27/05	MW-10 09/27/05

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

Comments							<u>-</u>	Not sampled - presence of free product		Not sampled - presence of free product	Not sampled - presence of free product	Not sampled - presence of free product	Destroyed						
MTBE 8260B	(µg/I)		:	ł	ļ	ŀ	;	ł	ŧ	i	i	I	ı	ŀ	ŀ	l	1	1,	1
MTBE 8021B	$(\mu g/I)$		ł	I	ł	I	ı	1	ł	1	ŀ	ł		ł	1	1	ŀ	ł	1
Total Xylenes	(l/gµ)		26000	!	22000	1	1	ı	i	ł	. 1	I	ł	ŀ	1		I	I	7900
Ethyl- benzene	(l/gn)		5200	ŀ	2500	ŀ	ı	I	ì	1 .	ı	. 1	ŀ	ŀ	I	I	1	1	260
Toluene	(l/gn)		26000	ł	12000	ſ	ſ	l	ı	1	I	1	l	ŀ	ı	ı	I .		5300
Benzene	(hg/l)		17000	ŀ	13000	ı	1	!	1	1	1	ı	1	ŧ	!	1	1	I	1000
TPPH 8260B	(µg/1)		;	ŀ	ł	ŀ	ŀ	I	1 .	ı	ŀ	1	;	1	1	1	1	i	1
TPH-G	(l/gr/)		150000	1	64000	ł	f	ł	Ą	I	1	!	ŀ	;	i	1	i	:	29000
Ground- Change water in Elevation Elevation	(feet)		Ţ	ı	1	ì	i	l	-0.84	-1.72	0.51	0.31	-0.26	-0.62	0.33	-0.11	1.37	ł	f
	(feet)	t: DNA)	ŀ	1	1	ŀ	;	6.90	90'9	4.34	4.85	5.16	4.90	4.28	4.61	4.50	5.87	ŀ	t: DNA)
LPH Thickness	(feet)	(Screen Interval in feet: DNA)	;	i	ŀ	1	ł	0.10	0.03	0.00	0.03	0.01	0.01	0.00	0.11	0.12	0.02	1	(Screen Interval in feet: DNA)
Depth to Water	(feet)	Screen Inte	ŀ	i	1	!		2.13	2.92	3.04	2.55	2.23	2.49	3.10	2.85	2.97	1.53	ł	screen Inte
TOC Elevation	(feet)		•	1	i		ľ	8.96	8.96	7.38		7.38	7.38	7.38	7.38		7.38	1	1
Date Sampled E		MW-1	02/18/92	05/20/92	08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94	06/25/94	07/27/94	08/15/94	11/14/94	02/21/95	05/18/95	MW-2 02/18/92

Page 1 of 16

5043

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005

76 Station 5043

Comments										Not sampled - presence of free product	•						Destroyed			Inaccessible		•			
MTBE 8260B	(l/grl)			ŀ	. 1	. 1	ŀ	ı	1	I		1	1	1	1	ļ	Į.		ŀ	ŀ	ł	ł		ì	1
MTBE 8021B	(µg/l)		;	ł	ŀ	ł	.	ł	ţ	1	ł	ł	ŀ	1	;	ł	}		ł	ļ	1	;	ł	ŀ	ŀ
Total Xylenes	$(\mu g/I)$		11000	2000	0069	0069	17000	12000	20000	ı	13000	1	;	15000	14000	1500	ŀ		33	ŀ	Q	QN	6.1	ND	ND
Ethyl- benzene	(hg/l)		630	140	1200	ND	470	1400	3700	;	2300	i	I	1700	1800	1300	ŀ		1.8	ŀ	N	ND	96	ND	ND
Toluene	(hg/l)		7600	640	3400	3000	17000	0099	16000	1	1300	ŀ	ŀ	850	9059	3200	I		22	ŀ	ND	N N	ND	QN.	QN N
Benzene	(μg/l)		2200	1800	2000	1600	3200	2100	3700	i	2500	l	ŀ	2400	2200	2200	1		4.8	ì	1	QN	320	95	QN
TPPH 8260B	(hg/l)		ŀ	:	;	ŀ	:	1	ł	;	ı	;	ŀ	ı	1	I	ı		Į.	ì	ı	I	ŀ	:	ŀ
TPH-G	(μg/l)		24000	0006	29000	18000	63000	45000	72000	!	42000	;	;	35000	43000	44000	ſ		230	ŀ	210	790	3300	1800	210
Ground- Change water in Elevation Elevation	(feet)		1	1	1	ŧ	ŀ	-0.72	-0.55	0.97	0.27	-0.52	-0.79	0.19	1.12	0.48	1		:	ł	1	;	1	ł	-0.62
Ground- water Elevation	(feet)		i	;		i	6.48	5.76	5.21	6.18	6.45	5.93	5.14	5.33	6.45	6.93	1	t: 2.5-14.0)	;	:	1	ţ	ŀ	3.52	2.90
LPH Thickness	(feet)		I	!	I,	I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	rval in fee	i	ï	1	1	ı	0.00	0.00
Depth to Water	(feet)		1	ł	ł	:	2.48	3.20	3.37	2.40	2.13	2.65	3.44	3.25	2.13	1.65	1	(Screen Interval in feet: 2.5-14.0)	ł	1	1	:	1	4.32	4.94
TOC Elevation	(feet)	continued	1	1	1	!	8.96	8.96	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	!	Ŭ		1	1	1	l	7.84	7.84
Date Sampled F		MW-2 continued	05/20/92	08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94	06/25/94	07/27/94	08/15/94	11/14/94	02/21/95	05/18/95	MW-3	02/18/92	05/20/92	· 08/31/92	11/30/92	02/04/93	05/04/93	08/04/93

Page 2 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005

5
ě
5
On
ä
S
5
<u>~</u>

Comments												Inaccessible	Inaccessible	Obstructed at 0.55 feet	Inaccessible	Inaccessible			•							
MTBE 8260B	(hg/l)		:	ı	ı	ŀ	ŀ	ı	ł	ł	1	ŀ	ŀ	ţ	;	ŧ	i	1	ł	ł	ł	ŀ	ŀ	ŧ	;	;
MTBE 8021B	(µg/l)		. :	ŀ	ļ	1	ŀ	. 1	ł	ŀ	ŀ	I	ł	}	:	!	250	;	490	910	140	93	230	09	180	160
Total Xylenes	$(\mu g/1)$		ON T	QN	9.1	ł	ŀ	0.97	QN	22	ON	1	ŀ	ł	1	ł	ND	i	ND	1.4	0.65	ND	ON	QN	ND	N
Ethyl- benzene	(hg/l)		Q.	17	6.2	ŀ	ŀ	ND	N	130	QN	ŀ	ŀ	l	ŀ	ŀ	ND	1	N	2.4	0.62	ND	QN	QN	ND	S
Toluene	(µg/I)		R	ND	ND	ł	ŀ	0.54	N N	N Q	QN	ł	ı	ì	i	ł	ND	ŀ	ND	ND	QN	ND Q	<u>R</u>	N N	ND	QN.
Benzene	(hg/l)		Q	110	83	ł	ŀ	1.1	QN	350	42	;	1	1	ł	;	6.5	, 1	QN Q	1.1	S	5.7	ND	4.7	1.5	0.54
ТРРН 8260В	(µg/])		ŀ	I	ŀ	1	ŀ	ŀ	;	i	i	1	. 1	ı	ŀ	ı	ŀ	1	ŀ	ŀ	Ę	ţ	1	ł	1	ſ
TPH-G	(l/gn/)	·	640	2700	1800	. !	1	130	1600	3800	1300	ì	1	ł	1	ŀ	029	ſ	240	270	310	370	460	330	420	290
Ground- Change water in Elevation Elevation	(feet)		-0.01	2.13	-1.20	-0.98	0.00	-0.07	1.47	1.37	-2.75		ı	I	1	I	ı	-0.05	0.41	0.01	1.54	-0.04	-1.18	1.08	-0.12	0.26
Ground- water Elevation	(feet)		2.89	5.02	3.82	2.84	2.84	2.77	4.24	5.61	2.86	1	}	1	ł	ł	3.97	3.92	4.33	4.34	5.88	5.84	4.66	5.74	5.62	5.88
LPH Thickness	(feet)	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ł	ì	. 1	ł	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water	(feet)		4.53	2.40	3.60	4.58	4.58	4.65	3.18	1.81	4.56	ſ	ŀ	ł	ŀ	ł	3.45	3.50	3.71	3.70	2.16	2.20	3.38	2.30	2.42	2.16
TOC Elevation	(feet)	onti	3 7.42	4 7.42	4 7.42	4 7.42		4 7.42	4 7.42	5 7.42	5 7.42	5 7.42	6 7.42	6 7.42	7 7.42	7 7.42	7 7.42	7 7.42	7 8.04	7 8.04	8 8.04	8 8.04	8 8.04	8 8.04	9 8.04	9 8.04
Date Sampled		MW-3	11/03/93	02/07/94	05/19/94	06/25/94	07/27/94	08/15/94	11/14/94	02/21/95	05/18/95	08/17/95	07/26/96	10/28/96	01/29/97	04/15/97	05/27/97	06/01/97	07/15/97	10/09/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99

Page 3 of 16

Page 4 of 16

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS February 1992 Through September 2005 76 Station 5043

MTBE 8260B	(hg/l)		ł	;	ł	150	ł	;	ł	ł		1	1	59	130	120	110	210	70	210	99	81	72	48	64	110
MTBE 8021B	(µg/l)		160	82	54	91	94.7	120	118	237	150	53	110	ı	ŀ	;	ł	1	ł	ì	ŀ	ŀ	ŀ	ł	;	ł
Total Xylenes	(l/gn)		N N	ND	R	ND QN	ΩN	ND	N N	0.802	Q R	ND<0.50	ND<1.0	ND<2.0	ND<1.0	ND<10	ND<1.0	ND<2.0	ND<5.0	ND<5.0	1.5	9.4	ND<1	46	2.4	1.9
Ethyl- benzene	(hg/l)		ND	ND	ND	ND	NO	S	ND	ND	QN	ND<0.50	ND<1.0	ND<2.0	ND<0.50	ND<5	ND<0.50	ND<1.0	ND<2.5	ND<2.5	0.53	2.9	ND<0.5	10	ND<0.50	0.56
Toluene	(µg/J)		QZ	N Q	N N	QN	ND	N	ND	ND ND	Ą	ND<0.50	ND<1.0	ND<2.0	ND<0.50	ND<5	ND<0.50	ND<1.0	ND<2.5	ND<2.5	0.53	5.5	ND<0.5	15	0.62	0.70
Benzene	(hg/l)		3.2	0.77	0.81	69.0	QN	6.0	1.59	1.24	QN	1.0	3.5	ND<2.0	ND<0.50	ND<5	ND<0.50	ND<1.0	ND<2.5	ND<2.5	ND<0.50	2.5	ND<0.5	5.6	ND<0.50	ND<0.50
ТРРН 8260В	(µg/I)		ł	ł	ł	i	ł	ŀ	ŀ	ŀ	1	ŀ	ł	1	200	069	310	250	450	ND<250	300	440	420	460	280	460
TPH-G	(hg/J)		290	360	QN Q	250	345	480	364	417	480	310	250	300	ſ	1	ł	ł		:	ł	ı	1	ł	[ł
	(feet)		-0.19	-0.14	0.11	-0.38	-0.50	0.14	-0.53	-0.33	98.0	-0.13	0.98	-1.28	1.00	0.08	0.77	-1.78	0.83	-0.47	0.73	-0.72	09'0	0.51	0.48	-0.48
Ground- water Elevation	(teet)		5.69	5.55	5.66	5.28	4.78	4.92	4.39	4.06	4.92	4.79	5.77	4.49	5,49	5.57	6.34	4.56	5.39	4.92	5.65	4.93	5.53	6.04	6.52	6.04
LPH Thickness	(feet)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
0	(feet)		2.35	2.49	2.38	2.76	3.26	3.12	3.65	3.98	3.12	3.25	2.27	3.55	2.55	2.47	1.70	3.48	2.65	3.12	2.39	3.11	2.51	2.00	1.52	2.00
TOC	(feet)	continued	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04
Date 7 Sampled Ele		MW-3 co	07/14/99	10/21/99	01/20/00	04/13/00	07/14/00	10/26/00	01/03/01	04/04/01	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

Comments															Destroyed									
MTBE 8260B	100		ŀ	1	ı	;	ſ	1	;	ļ	;	1	ŀ	ţ	i		[i	ŀ	ŀ	ŀ	1	;	ţ
MTBE 8021B			;	ţ	1	;	ł	ŀ	I	ł	I	ı	ł	1			ł	ŀ	ł	ł	1	1	Į	ŀ
Total Xylenes	ND<1.0		0.54	ND	ND	ND	4.1	ND	ND	QN	1	ŀ	N	ON .	ŀ		13	14	170	35	11	530	110	4.1
Ethyl- benzene	ND<0.50		ND	N	ND	ND	ND	ND	ND	ND	ŀ	I	ND	ND	!		ND	0.79	620	1000	460	3500	370	32
Toluene (u.g./l)	09:0		N ON	QN	ND	Q.	3.5	NON	ND	S	ţ	;	9.0	ND	ŀ		N	290	QN	ND	-	N	N N	QN
Benzene	ND<0.50		N Ox	ON	ON	0.95	R	ND	QN	QN	1	ł	ND	N QN	ł		0.89	70	38	41	130	350	87	4
TPPH 8260B (ug/l)	210		1	:	:	}	ŀ		;	ŀ	ŀ	ļ	ŀ	I	ŀ		:	;	:	;	1	1		ŀ
TPH-G	1		240	420	ND	110	250	130	99	140	1	i	59	130	ŧ		78	930	5700	7400	1500	13000	2000	260
Change in Elevation (feet)	0.10		l	ŀ	ł	ŀ	-0.92	0.19	0.88	-0.57	-0.43	0.07	0.01	0.22	1		;	i	ł	1	-1.44	0.13	0.57	0.02
Ground- Change water in Elevation Elevation (feet) (feet)	6.14	: DNA)	۱ ۱	i	i	4.91	3.99	4.18	5.06	4.49	4.06	4.13	4.14	4.36	i	DNA)	1	ľ	ŀ	4.58	3.14	3.27	3.84	3.86
LPH Thickness (feet)	0.00	(Screen Interval in feet: DNA)	ŀ	ŧ	I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		(Screen Interval in feet: DNA)	1	:	1	0.00	0.00	0.00	0.00	0.00
Depth to Water (feet)	1.90	creen Inter	1	1	;	4.09	5.01	4.23	3.35	3.92	4.35	4.28	4.27	4.05	;	creen Inter	ţ	ŀ	ı	4.37	5.81	5.68	5.11	5.09
TOC Elevation (feet)	continued 5 8.04	Ś		:	;	9.00	9.00	8.41	8.41	8.41	8.41	8.41	8.41	8.41	ŧ	Š)	ŀ	1	ţ	8.95	8.95	8.95	8.95	8.95
Date Sampled El	MW-3 co	MW-4	08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94	06/25/94	07/27/94	08/15/94	11/14/94	02/21/95	MW-5	08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94

5043

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

Comments							Destroyed													Inaccessible	Inaccessible	Not sampled - presence of free product	Not sampled - presence of free product	
MTBE 8260B	(hg/l)			ŀ	1	;	:		;	;	ŀ	;	ŀ	I	1	1	1		ŀ	ı	ŀ	ł		;
MTBE 8021B	(hg/l)		ŀ	1	ŀ	ŀ	l		ł	ŀ	!	}	ŀ	;	ł	į	ŀ	ł	1	ŀ	ŀ	1	ł	. 1
Total Xylenes	(hg/l)		ì	!	72	S	1		ND ND	1600	550	430	190	7.7	35	41	57	39	30	ŀ	ŀ	:	:	1
Ethyl- benzene	(µg/l)		:	ŀ	340	QN	ŀ		ND	740	290	450	440	200	250	210	54	ND	25	1	ŀ	I	1	ŀ
Toluene	(hg/l)		ţ	1	ND	N N	ł		S	ND	ND	18	N	QN	Q.	1.7	6.7	QN	4.6	1	ŀ	1	1	ł
Benzene	(l/g _H)		ł	ł	110	40	1		ON	550	340	360	390	320	650	300	130	20	250	ŀ	1		I	:
TPPH 8260B	(µg/l)		:	1	;	ł	;		ŀ	1	l	1	!	1	1,	;	1	}	- }	1	;	ŀ	ŀ	ł
TPH-G	(l/gn)		ŀ	1	1600	250	ţ		QN	9200	3600	4900	3400	1400	4900	3600	1300	730	2000	ł	1	;		;
Ground- Change water in Hevation	(feet)		0.54	-1.17	0.04	0.05	1		I	ļ	:	ł	-1.43	-0.35	0.70	-0.07	-0.46	-0.22	-0.07	i	ŀ	ŀ	-0.04	0.11
Ground- water	(feet)		4.40	3.23	3.27	3.32	ŀ	: 2.5-13.5)	;	;	1	5.40	3.97	3.62	4.32	4.25	3.79	3,57	3,50	ł	ŀ	4.97	4.93	5.04
LPH Thickness	(feet)		0.00	0.00	0.00	0.00	1	rval in feet	;	ſ	i	0.00	0.00	0.00	0.00	00.00	00'0	0.00	0.00	1	1	3.33	0.21	0.25
Depth to Water	(feet)		4.55	5.72	5.68	5.63	ł	(Screen Interval in feet: 2.5-13.5)	1	Į.	ł	3.72	5.15	5.25	4.55	4.62	5.08	5.30	5.37	i	i	6.40	4.10	4.02
	(feet)	continued	8.95	8.95	8.95	8.95	ŀ	92	ŀ	ŀ	1	9.12	9.12	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87
Date TOC Sampled Elevation		MW-5	06/25/94	07/27/94	08/15/94	11/14/94	02/21/95	9-MW	08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94	08/15/94	11/14/94	02/21/95	05/18/95	08/17/95	07/26/96	10/28/96	11/13/96

Page 6 of 16

0.11

5.04

0.25

4.02

8.87

11/13/96 11/25/96

5043

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

Comments							Not sampled - presence of	free product						Not sampled - presence of	tree product							Not sampled - presence of free product	i i		
MTBE 8260B	(l/gn)		ł	ł	ŧ	ŀ	ł		;	:	ł	1	:	:		t r	;	:	;	[ı	1	I	ŀ	ŀ
MTBE 8021B	$(\mu g/I)$	ŀ	ŀ	ł	I	ŀ	l .		l	ŀ	ł	ł	ŀ	ł		ŀ	:	!	:	ŀ	ŀ	ŀ	ŀ	i	ŀ
Total Xylenes	(µg/l)	I	ł	:	1	ŀ	1		1	ŀ	;	;	ł	1		ł	ł	1	ł	ŀ	ŀ	ŀ	ŀ	ŀ	·
Ethyl- benzene	(hg/l)	ŀ	ŀ	ł	ŀ	ŀ	ł		ŀ	ì	I	. 1	1	ł		ŀ	ì	I	1	I	!	ŀ	ŀ	ŀ	ŀ
Toluene	(l/grl)	ŀ	ŀ	i	ŀ	ŀ	į		į	ŀ	ł	ì	ŀ	ł		ŀ	i	i	i	ı	ŀ	I	1	;	1
Benzene	$(\mu g/l)$	l		ł	1	!	ł		ŀ	1	:	ı	ŀ	1		1	ŧ	:	ì	:	1	ł	i	I	I
TPPH 8260B	(hg/l)	1	;	ł	ŀ	ì	ł		.1	ì	ł	ſ	ŀ	i		;	3	ł	ł	ŀ	1	I	!	ļ	ŧ
TPH-G	(l/gn)	1	1	ł		:	ł			;	1	1	;	ŀ		i	.1	1		ł	ŀ	ı	ł	:	
Change in Elevation	(feet)	0.17	0.13	-0.38	-0.12	0.96	-0.32		-0.74	-0.23	0.10	0.05	-0.07	-0.23		-0.63	0.35	0.10	-0.14	0.14	-0.04	0.04	-0.25	0.14	-0.05
Ground- water Elevation	(feet)	5.59	5.72	5.34	5.22	6.18	5.86		5.12	4.89	4.98	5.04	4.97	4.74		4.11	4.46	4.56	4.42	4.56	4.52	4.55	4.31	4.44	4.39
LPH Thickness	(feet)	0.50	2.20	1.75	1:15	1.75	0.31		1.20	1.10	0.95	0.89	1.00	1.03		0.03	0.25	0.25	0.20	0.25	0.60	0.42	0.25	0.10	0.10
Depth to Water	(feet)	3.65	4.80	4.84	4.51	4.00	3.24		4.65	4.81	4.60	4.50	4.65	4.90		4.78	4.60	4.50	4.60	4.50	4.80	4.63	4.75	4.50	4.55
TOC	(feet)	continued 6 8.87	8.87	8.87	8.87	8.87	8.87	-	8.87	8.87	8.87	8.87	8.87	8.87		8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87
Date Sampled E		MW-6 012/04/96	12/19/96	01/08/97	01/14/97	01/27/97	01/29/97	• .	02/11/97	02/24/97	03/10/97	03/17/97	03/31/97	04/15/97		04/28/97	05/12/97	05/27/97	26/60/90	06/24/97	76/60/70	07/15/97	07/21/97	26/90/80	08/20/97

Page 7 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

			,
•			
			7
			•
			3
			11.4
-			
			(
			£

Comments			Not sampled - presence of free product	Not sampled - presence of free product			Not sampled - presence of free product	•		Not sampled - presence of	free product			Not sampled - presence of	free product				Not sampled - presence of	free product			Not sampled - presence of	nee product	
							÷																		
MTBE 8260B	(hg/l)	1	ŀ	1	:	1	ţ	•	ł	ì		;	ŀ	ŀ		1		ŀ	1		;	1	;	1	
MTBE 8021B	(hg/l)	·	¦	1		:	ŀ	!	ŀ	;		:	1	;		:	ŀ	ŀ	ł		ì	!	1	:	
Total Xylenes	(hg/l)	1	. 1	i	ŀ	ŀ	ł	ŀ	ŀ	1		ł	1	I		l	ŀ	ŀ	:		:	ţ	ł	;	
Ethyl- benzene	(l/gn)	I	ŀ	I	ŀ	ı	1	ŀ	ì	I		ı	:	;		1	1	ı	i		Į.	ļ	i	I	
Toluene	([/gr])		I	. f	i	1	ŀ	ł	ŀ	ı		1	Į.		-	ŀ	:	:	ŀ		!	:	ŧ	1	of 16
Benzene	([/gr])	ŀ	ŀ	I	;	1	ŀ	;	ţ	:	٠	:	ł	ł		ı		ŀ	1		ŀ	ì	ŀ	:	Page 8 of 16
TPPH 8260B	(hg/l)	1	1	I	ŧ	ľ	ı	ŧ	I	ŀ		E	1	1		;	1	;	;		:	ŀ	:	ŀ	
TPH-G	(µg/l)	ł	ŀ	ł	ł	ŀ	1.	. 1	ł	1		ł	ł	ł		ŀ	:	;	ł		ł	i	ł	1	
Change in	Elevation (feet)	-0.24	-0.10	1.61	0.33	-1.63	2.03	-1.26	-1.07	0.28		-0.23	-0.30	2.55		-1.34	0.01	0.10	0.02	0	07.7	-0.30	69.0	-0.57	
Ground- water	Elevation Elevation (feet) (feet)	4.16	4.06	5.67	00.9	4.37	6.40	5.13	4.06	4.35		4.11	3.81	6.36		5.02	5.02	5.12	5.14	70 7	2 ;	4.66	5.35	4.78	
LPH Thickness	(feet)	0.05	0.04	0.94	0.64	0.02	1.60	0.50	0.30	0.05		0.02	0.03	2.40		0.17	0.10	0.20	09.0	0.22	1 .	0.15	0.95	0.39	
Depth to Water	(feet)	4.75	4.84	3.90	3.35	4.51	3.67	4.11	5.03	4.56		4.77	5.08	4.31		3.98	3.92	3.90	4.18	707		4.32	4.23	4.38	
	(feet)	continued 7 8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87		8.87	8.87	8.87		8.87	8.87	8.87	8.87	0 07		8.8/	8.87	8.87	
Date TOC Sampled Elevation		MW-6 09/02/97	10/09/97	01/14/98	02/12/98	03/03/98	04/01/98	05/26/98	06/15/98	07/15/98		08/21/98	86/30/60	10/16/98		11/06/98	11/25/98	12/28/98	01/25/99	00/66/60	00,000	03/22/99	04/12/99	05/28/99	5043

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

•		ı	će.			(1)																			
Comments			Not sampled - presence of	ree product		Not sampled - presence of free product																			
MTBE 8260B	$(\mu g/l)$	1	ŀ	i	ŀ	ŀ	!	;	ł	ï	ŀ	I	Į	ŀ	ON	ł	:	43	QN	47.8	ŀ	ŀ	I	I	
MTBE 8021B	(hg/l)	;	ŀ	ŀ	į	f .	1	ŀ	ND	ł	ł	7700	ì	ł	ND	. 1	ŧ.	029	QX	ND	ND	ND<1000	ND<2500	ND<500	
Total Xylenes	(µg/l)	1	ŀ	1	1	ł	ţ	:	16000	ŀ	ŀ	27000	ŀ	ŀ	40700	;	1	12000	11800	10900	12000	13000	16000	19000	
Ethyl- benzene	(hg/l)	. 1	I	ŀ	ŀ	ŀ	i	. 1	2000	. 1	ŀ	3600	1	ì	0989	1	ŀ	3700	3650	3650	3400	4500	5400	3000	
Toluene	(hg/l)		;	I	ı	1	ł	i	8600	ŀ	ŀ	14000	ŀ	ł	13700	ŀ	l.	6200	4130	2840	3300	2400	1800	13000	
Benzene	(l/gn)	{	ļ	ŀ	ŀ	i	ı	1	2900	1	1	2000	I	ŀ	0/9/	1	ı	7000	3950	2060	3200	3200	2400	0089	
TPPH 8260B	(l/g _µ)	ŀ	J	I	I	ŀ	1	ì	ŀ	ı	1	:	1	1	ŀ	ŀ	ł		ı	I	ŀ	I	:	ŀ	
TPH-G	(µg/l)	l	ı	1	ł	1	;	ŀ	130000	ı	ŀ	140000	. 1	ł	259000	ł	ł	110000	84700	00869	100000	110000	230000	94000	
Change in Elevation	(feet)	-0.02	-0.07	-0.15	0.29	-0.14	0.00	-0.07	-0.06	0.33	-0.16	0.10	-0.37	90.0	-0.12	0.76	-0.62	0.01	-0.20	0.23	-0.08	-0.08	0.42	0.58	
Ground- Change water in Elevation Elevation	(feet)	4.76	4.69	4.54	4.83	4.69	4.69	4.62	4.56	4.89	4.73	4.83	4,46	4.52	4.40	5.16	4.54	4.55	4.35	4.58	4.50	4.42	4.84	5.42	
LPH Thickness	(feet)	0.02	0.03	0.24	0.17	0.12	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	
Depth to Water	(feet)	4.12	4.20	4.51	4.17	4.27	4.18	4.26	4.31	3.98	4.14	4.04	4.41	4.35	4.47	3.71	4.33	4.32	4.52	4.29	4.37	4.45	4.03	3.45	
	(feet)	ontinued 8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	
Date TOC Sampled Elevation	-	MW-6 continued 06/29/99 8.87	07/14/99	08/23/99	66/30/60	10/21/99	11/29/99	12/20/99	01/20/00	02/26/00	03/31/00	04/13/00	05/26/00	06/11/00	07/14/00	08/24/00	09/27/00	10/26/00	01/03/01	04/04/01	07/11/01	10/01/01	01/31/02	04/18/02	

Page 9 of 16

5043

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

MTBE 8260B	(hg/l)		ND<100	ND<2000	ND<200	ND<2000	ND<100	ND<800	ND<200	ND<50	ND<200	ND<50	ND<50	ND<50	0.56		Į	1	ı	Į.	l	f	ı	1	ł	ŀ
MTBE 8021B	$(\mu g/l)$		ŧ	ŀ	ŀ	ŀ	ŀ	;	1	1	ł		1	;	;	٠	ND	i	ND	ND	36	ND	QN	QN Q	ND	QN QN
Total Xylenes	(µg/I)		7300	94000	37000	260000	9200	18000	16000	23000	16000	15000	0066	9300	066		ND	i	QN	ND	ND	QN Q	QN QN	ND	ND	ND
Ethyl- benzene	(µg/l)		3200	13000	5400	37000	2700	4700	4700	5100	4000	4200	2100	2200	430		ND	1	ND							
Toluene	(µg/I)		170	39000	15000	39000	066	0069	3300	0006	5100	6100	3700	1800	120		N	1	QN.	N Q	ND	ND	NO	N Q	N Q	ND
Benzene	(µg/l)		530	10000	6100	8000	2100	\$600	2800	2900	4100	5200	1600	800	82		ND	1	QN	ND	QN	QN Q	QN QN	QN Q	<u>R</u>	ND
TPPH 8260B	$(\mu g/l)$		110000	970000	270000	3000000	38000	100000	170000	97000	110000	100000	71000	130000	13000		· I	1	ļ	ŀ	ŀ	ŀ	ł	1	ŧ.	1
TPH-G	(µg/I)		;	;	. 1	;	ŧ	ł	1		Į	ŀ	ŀ	1	ŀ		89	1	ND	ND	ND	ND	ND	QN	ND	Ν̈́Ο
Change in Elevation	(feet)		1.21	-1.29	1.19	-0.83	-0.38	-0.27	1.02	-0.60	-0.14	0.51	89.0	-0.12	-0.08		1	-0.04	-0.16	0.40	1.42	-0.25	-1.32	1.00	0.23	0.11
Ground- Change water in Elevation Elevation	(teet)		6.63	5.34	6.53	5.70	5.32	5.05	6.07	5.47	5.33	5.84	6.52	6.40	6.32	3.0-13.0)	4.33	4.29	4.13	4.53	5.95	5.70	4.38	5.38	5.61	5.72
LPH Thickness	(feet)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	val in feet:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water	(feet)		2.24	3.53	2.34	3.17	3.55	3.82	2.80	3.40	3.54	3.03	2.35	2.47	2.55	(Screen Interval in feet: 3.0-13.0)	4.50	4.54	4.70	4.30	2.88	3.13	4.45	3.45	3.22	3.11
	(feet)	continued	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	8.87	Š	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83
Date TOC Sampled Elevation)	MW-6 co	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	MW-7	05/27/97	06/01/97	07/15/97	10/06/01	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99

Page 10 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

MTBE 8260B	(hg/l)	-	!	1	ŀ	ŀ	ŀ	ŀ	!	1	3.9	3.9	ND<2.0	3.4	35	4.9	2.4	2.3	1.4	ND<0.50	ND<0.50	0.88	96.0	Ī
MTBE 8021B	(l/gn)	C Z	Q.	4.2	ND	7.83	ND	ND<5.0	ND<2.5	5.7	ŀ	Ì	ŀ	1	ŀ	1	ł	1	1	. 1	1	ł	1	Ñ
Total Xylenes	$(\mu g/l)$	QN	R	QN	ND	ND	N	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0	ND<1.0	1.5	6.6	5.8	7.0	ND<1.0	ND<1.0	70
Ethyl- benzene	(µg/l)	QN.	QN	ND	NO	ND	ND	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.71	0.77	ND<0.50	ND<0.50	ND<0.50	3.5	1.7	1.7	ND<0.50	ND<0.50	15
Toluene	$(\mu g/I)$	Œ	QN.	N Q	N ON	N Q	N Q	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50			1.6			1.2	0.67
Benzene	(µg/l)	CN	QN	QX	QN	N	QN Q	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50			ND<0.50	06.0	0.67	0.51		0.59	0.88
TPPH 8260B	(l/gr/)	ŀ	1	ł	;	;		;	1	1	ND<50	ND<50	ND<50	71	49		54					ND<50	ND<50	ł
TPH-G	(µg/l)	QN	QN	ND	ON	ND	ND	ND<50	ND<50	ND<50	ţ	;	ł	1	;	i	i	i	1	1	:	:	;	310
Change in Elevation	(teet)	-0.23	-0.09	0.14	-0.10	-1.03	-0.64	0.08	1.10	-0.15	0.44	-0.94	1.17	-0.58	-0.66	-0.86	1.91	-0.94	-0.44	1.22	0.94	-0.63	-0.04	į
Ground- water Elevation	(feet)	5.49	5.40	5.54	5.44	4.41	3.77	3.85	4.95	4.80	5.24	4.30	5.47	4.89	4.23	3.37	5.28	4.34	3.90	5.12	90.9	5.43	5.39	: 3.0-15.0) 5.10
LPH Thickness	(teet)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	rval in feet 0.00
Depth to Water	(feet)	3,34	3.43	3.29	3.39	4.42	5.06	4.98	3.88	4.03	3.59	4.53	3.36	3.94	4.60	5.46	3.55	4.49	4.93	3.71	2.77	3.40	3.44	(Screen Interval in feet: 3.0-15.0) 2 3.42 0.00 5.10
TOC Elevation	(teet)	continued 9 8.83		8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.83	8.52
Date Sampled		MW-7 0	10/21/99	01/20/00	04/13/00	07/14/00	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/03/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/02	06/15/05	09/27/05	MW-8 05/27/97
									•															

Page 11 of 16

5043

Table 2

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS February 1992 Through September 2005

76 Station 5043

Comments

MTBE	870078	(l/gn)		1	ŀ	;	1	ŀ	ł	1	ŀ	I	ì	ŀ	1	1	;	1	ł	1		ND<2.0	ND<2.0	ND<2.0	ND<2:0	ND<2.0	ND<2.0
MTBE	8021B	(µg/l)		:	ND	QN.	QN QN	4.7	NON	QN	ND	NO	QN	ND	ND	ND	ND	ND	ND<5.0	ND<2.5	ND<2.5	ł	{	ŧ	ł	:	1
Total	Ayienes	(l/gr/)		ì	3.8	4.1	QN	ND	1.1	ΩN	QN N	ND	ND	ND	QN.	ND	QN	QN	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	80
Ethyl-	penzene	(hg/l)		1	2.7	32	N ON	N QN	0.56	ND	ND	N	ND	ND	ND	ND	ND	ND	ND<0.50	29							
Toluene		(hg/l)		:	S S	N ON	Ŋ.	Q	N	ON	ND	S	N ON	N	N N	ND	ND	NO	ND<0.50	15							
Benzene		(l/gr/)		1	N Q	1.4	N Q	S S	N N	ND	QN	QN	QN	QN QN	NO	QN	<u>R</u>	Q.	ND<0.50								
TPPH	070070	(µg/l)		ł	1	ł	1	1	1	ŀ	1	1	ŀ	1	ŀ	ŀ	I			1	1	ND<50	ND<50	ND<50	ND<50	ND<50	540
TPH-G		(hg/l)		;	ND	290	QN	ND	ND	ND	QN	ND	ND	ND	NO NO	ND	QN	ND	ND<50	ND<50	ND<50	1	l'	1	ŀ	ŀ	1
Change	Elevation Elevation	(feet)		-0.04	-0.03	-0.24	1.81	-0.46	-1.15	0.49	0.12	0.52	-0.63	-0.08	0.05	0.22	-0.55	-0.07	-0.05	0.76	-0.23	0.57	0.32	0.11	-0.68	-0.42	-0.81
Ground-	water Elevation	(teet)		5.06	5.03	4.79	09'9	6.14	4.99	5.48	5.60	6.12	5.49	5.41	5.46	5.68	5.13	5.06	5.01	5.77	5.54	6.11	6.43	6.54	5.86	5.44	4.63
LPH	THEMICS	(feet)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to	X arci	(feet)		3.46	3,49	3.73	1.92	2.38	3.53	3.04	2.92	2.40	3.03	3.11	3.06	2.84	3.39	3,46	3.51	2.75	2.98	2.41	2.09	1.98	2.66	3.08	3.89
TOC	or various	(feet)	continued	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52
Date Sampled E			MW-8	06/01/97	07/15/97	10/09/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99	07/14/99	10/21/99	01/20/00	04/13/00	07/14/00	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03
			5.	÷															•								

Page 12 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

		٠																								
MTBE 8260B	$(\mu g/I)$		ND<2.0	ND<0.50	ND<0.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		;	ı	ŀ	:	:	ţ		;	ŀ	1	ł	:	:	1	ı	ľ
MTBE 8021B	$(\mu g/l)$!	ł	ł	ł	1		ł		ł	1	ŀ	ND	7.6	5.4	5.4	ŀ	ND	ND	3.0	QN	ND	ND	ND	089
Total Xylenes	(µg/l)		ND<1.0	ND<1.0	ND<1	2.5	4.0	ND<1.0	ND<1.0		ND	1.9	ND	ND	ND	ND	ND	ł	QN	QN	QN	ND	QN QN	ND	QN Q	1.1
Ethyl- benzene	(µg/l)		ND<0.50	ND<0.50	ND<0.5	0.82	1.2	ND<0.50	1.2		ND	ND	ND	QN	QN	QN	NO	ì	ND	N Q	QN	<u>N</u>	N Q	ND ND	ND	ND
Toluene	(I/gn)		ND<0.50	ND<0.50	ND<0.5	ND<0.50	0.61	ND<0.50	ND<0.50		ND ND	1.1	ND	8 R	QN Q	ND	S	ł	NO	N QN	S S	ND ND	ND	Ŋ.	ND	<u>R</u>
Benzene	(l/gr/)		ND<0.50	ND<0.50	ND<0.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		N	QN	N	QN	QN	QN	QN	ł	QN	QN	QN	ND	Q.	N N	ND	21
ТРРН 8260В	(μg/l)		ND<50	ND<50	ND<50	ND<50	58	ND<50	ND<50		:	1	i	;	i	i	1	ŀ	ŀ	;	ŀ	ŀ	I	ì	I	Į
TPH-G	(l/grl)		ł	1	;	ł	i	i	ł		70	52	N O N	2	NO	ND QN	ND	ŀ	QN ON	QN	Q	QN	ND	ON	ND	75
つ 回	(feet)		1.51	-0.51	-0.36	0.19	1.14	-0.30	-0.21		ł	-1.49	1.98	1.21	-0.87	0.10	-0.83	0.83	-0.85	0.14	0.50	0.41	-0.67	0.71	-0.11	0.05
_ ը	(teet)		6.14	5.63	5.27	5.46	09'9	6.30	60.9	: 3.0-13.0)	6.31	4.82	6.80	8.01	7.14	7.24	6.41	7.24	6:39	6.53	7.03	7.44	6.77	7.48	7.37	7.39
LPH Thickness	(feet)		0.00	0.00	0.00	0.00	0.00	00.00	00.00	rval in feet	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
. 0	(teet)		2.38	2.89	3.25	3.06	1.92	2.22	2.43	(Screen Interval in feet: 3.0-13.0)	1.98	3.47	1.49	0.28	1.15	1.05	1.88	1.05	1.90	1.76	1.26	0.85	1.52	0.81	0.92	0.90
u	(feet)	continued	8.52	8.52	8.52	8.52	8.52	8.52	8.52	S	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29
Date Sampled I		WW-8	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	6-WW	02/21/95	05/18/95	08/17/95	04/56/96	10/28/96	01/29/97	04/15/97	05/27/97	07/15/97	10/09/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99
			•																			÷				

Page 14 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

Comments										·															
MTBE 8260B	(hg/l)	1	ł	ŧ	I	. 1	1	ł	1	;	1	;	:	3.5	17	9.8	9.4	3.2	ND<2.0	ND<2.0	0.51	0.78	ND<0.50	ND<0.50	9.9
MTBE 8021B	(l/gµ)	260	170	35	53	20.2	26	50.2	135	13	5.0	5.8	5.1	ł	ł	ł	1	ł	;	1	ł.	1	ł	1	ł
Total Xylenes	(l/g _H)	S	Q	N Q	ND	ND	Q	1.28	0.907	N Q	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	6.2	ND<1.0	ND<1	1.0	0.6	ND<1.0
Ethyl- benzene	$(\mu g/l)$	Ž	ND	QN	ND	ND	ND	CN	ND	ND	ND<0.50	2.3	ND<0.50	ND<0.5	ND<0.50	2.4	ND<0.50								
Toluene	([/gr/])	Ŕ	QN	N ON	QN	ND	ND	0.776	N Q	S S	ND<0.50	86.0	ND<0.50	ND<0.5	ND<0.50	2.3	ND<0.50								
Benzene	$(\mu g/I)$	61	Q.	1.1	0.64	ΩN	2.9	0.763	0.738	R	ND<0.50	ND<0.5	ND<0.50	09.0	ND<0.50 ND<0.50										
TPPH 8260B	(l/gr/)	!		ŀ	;	;	ì	i	ŀ	1	1	1	1	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	74	. 51	ND<50	ND<50	93	ND<50
TPH-G	(μg/l)	QN	ND	NO	160	QN QN	240	166	296	QN	51	ND<50	ND<50	;	;	;	ŀ	ł	;	ł	ŀ	ł	ì	;	;
Ground- Change water in Elevation Elevation	(feet)	-0.14	-0.19	0.05	0.10	-0.35	0.05	-0.28	0.39	-0.11	-0.55	-0.15	0.32	0.19	0.12	0.27	-0.86	-0.76	0.10	08.0	0.28	-0.26	09.0	1.21	-1.63
Ground- water Elevation	(feet)	7.25	7.06	7.11	7.21	98.9	6.91	6.63	7.02	6.91	6.36	6.21	6.53	6.72	6.84	7.11	6.25	5.49	5.59	6:36	19.9	6.41	7.01	8.22	6.59
LPH Thickness	(feet)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.0
Depth to Water	(feet)	1.04	1.23	1.18	1.08	1.43	1.38	1.66	1.27	1.38	1.93	2.08	1.76	1.57	1.45	1.18	2.04	2.80	2.70	1.90	1.62	1.88	1.28	0.07	1.70
TOC Elevation	(feet)	continued 9 8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29	8.29
Date Sampled E		MW-9 c	10/21/99	01/20/00	04/13/00	07/14/00	10/26/00	01/03/01	04/04/01	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005
76 Station 5043

MTBE 8260B	(µg/I)	2.3		ŧ	ł	. :	;	ŀ	1	ŀ	1	ŀ	1		ŀ	ŀ	ł	ł	ŀ	ſ	f	ı	ŀ	ł	:
MTBE 8021B	$(\mu g/l)$	ŀ		1	:	ŀ	ND	ND	11	6.7	1	ND	ND	4.5	6.4	21	17	23	14	6.1	5.3	5.2	3.8	ND	N
Total Xylenes	(µg/l)	ND<1.0		160	23	ND	S	Q	8.8	Q Q	f	0.73	7.6	1.7	17	38	10	8.9	5.1	31	7.7	ND	S N	ND	1.5
Ethyl- benzene	(hg/l)	ND<0.50		9.1	18	2.4	S	ND	7.2	0.77	ŀ	29.0	9.9	1.2	12	21	2.5	2.8	8:1	11	1.7	ND	2.6	ND	0.83
Toluene	(l/grl)	0.73		26	S S	ND	N	N Q	19.0	ND	ı	ND	0.92	0.85	1.7	45	96.0	S S	N	3.2	0.59	98.0	N ON	N Q	ND
Benzene	(l/grl)	ND<0.50		250	520	25	3.7	1.1	41	12	ŀ	2.1	38	9.5	99	86	4	27	18	55	22	0.73	54	0.547	3.3
ТРРН 8260В	(l/gn)	ND<50		ŀ	ı	ŀ	ŀ	:	;	!	;	ł	;	1	1	i	;	ŧ	ŀ	ŀ	;	1	ł	1	1
TPH-G	(l/gn)	;		1500	810	29	QN	ND	210	110	ļ	ND	190	59	230	290	160	140	120	280	140	ND	<i>L</i> 9	QN	ND
Change in Elevation	(feet)	-0.28		ı	-0.23	0.87	-0.03	-0.01	1.15	-1.13	-0.33	0.21	-0.56	2.09	-0.79	-0.76	0.10	0.85	-0.37	-0.26	-0.20	0.17	0.07	-0.33	0.22
Ground- water Elevation	(feet)	6.31	: 3.0-13.0)	3.93	3.70	4.57	4.54	4.53	5.68	4.55	4.22	4.43	3.87	5.96	5.17	4.41	4.51	5.36	4.99	4.73	4.53	4.70	4.77	4.44	4.66
LPH Thickness	(feet)	0.00	(Screen Interval in feet: 3.0-13.0)	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Depth to Water	(feet)	1.98	creen Inte	4.69	4.92	4.05	4.08	4.09	2.94	4.07	4.40	4.19	4.75	2.66	3.45	4.21	4.11	3.26	3.63	3.89	4.09	3.92	3.85	4.18	3.96
TOC Elevation	(feet)	continued 5 8.29		8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62
Date TOC Sampled Elevation		MW-9 c 09/27/05	MW-10	02/21/95	05/18/95	08/17/95	07/26/96	10/28/96	01/29/97	04/15/97	05/27/97	07/15/97	10/09/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/12/99	07/14/99	10/21/99	01/20/00	04/13/00	07/14/00	10/26/00

Page 16 of 16

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
February 1992 Through September 2005

m	
643	
n 50	
<u> </u>	
tat	
Š	
9	

		:									•										
MTBE 8260B	(l/gr/)		l	ı	I	1	ı	;	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<0.50	ND<0.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MTBE 8021B	$(\mu g/1)$		QN	N Q	N Q	ND<5.0	ND<2.5	ND<2.5	ŀ	1	ŀ	1	i		ł	ŀ	ł	ł	:	;	;
Total Xylenes	$(\mu g/I)$		1.57	10.1	1.8	12	5.6	4.5	7.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	4.9	1.6	2.9	ND<1	3.6	8.9	ND<1.0	ND<1.0
Ethyl- benzene	$(\mu g/I)$		0.823	4.97	1.0	4.0	2.3	1.4	0.94	ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.3	0.70	1.0	ND<0.5	1.1	2.2	ND<0.50	ND<0.50
Toluene	(hg/J)		ND	1.67	N N	0.51	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50			ND<0.50	1.3	ND<0.5	1.2	2.7	ND<0.50	
Benzene	$(\mu g/l)$		5.15	28.1	4.1	30	16	11	15	0.67	ND<0.50	11	ND<0.50	6.6	1.2	2.8	ND<0.5	2.0	7.8	ND<0.50	ND<0.50
TPPH 8260B	(hg/l)		ţ	ţ	1	;	;	i	<i>L</i> 9	ND<50	ND<50	ND<50	ND<50	11	53	ND<50	ND<50	100	84	ND<50	ND<50
TPH-G	(µg/l)		52.7	129	ND	140	110	ND<50	f	ŀ	1	ŀ	ŀ	1	١.	ŀ	;	ł	ŀ	ŀ	ŀ
Change in Elevation	(feet)		-0.18	0.26	-0.20	-0.14	0.54	-0.33	-0.10	0.14	0.94	-0.80	-0.30	0.08	0.65	-0.49	0.16	0.32	0.73	-1.95	29.0
Ground- water Elevation	(feet)		4.48	4.74	4.54	4.40	4.94	4.61	4.51	4.65	5.59	4.79	4.49	4.57	5.22	4.73	4.89	5.21	5.94	3.99	4.66
LPH Thickness	(feet)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Depth to Water	(feet)	ਾਹ	4.14	3.88	4.08	4.22	3.68	4.01	4.11	3.97	3.03	3.83	4.13	4.05	3.40	3.89	3.73	3.41	2.68	4.63	3.96
TOC Elevation	(feet)	continued	1 8.62	1 8.62	1 8.62	8.62	2 8.62	2 8.62	8.62	8.62	3 8.62	3 8.62	3 8.62	3 8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62
Date Sampled		MW-10	01/03/01	04/04/01	0//11//01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/02	06/15/05	09/27/05

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

(448) (448) (4481) (448	C etc etc	C HOT	. Ç	d d	TARGE	, F	מנים	/O Station 3043	Telegram	Ç	
(μg/l)		Ira-D	EDC	EUB	1 AIME 8260B	1.BA 8260B	8260B	E1BE 8260B	8260B	10g	
13000		(hg/l)	(µg/l)	(l/gη)	(hg/l)	(l/gn)	(hg/l)	(µg/l)	(μg/l)	(mg/l)	
8900 — — — — 4300 — — — — 1600 — — — — 5700 — — — — 6100 — — — — 1800 — — — — 2600 — — — — 10000 — — — — 2800 — — — — 10000 — — — — 2000 — — — — 1000 — — — — 2000 — — — — 1000 — — — — 2000 — — — — 2000 — — — — 2000 — — — — 2000 — — — — 2000 — — — —	V-1 02/18/92	13000	I	. 1	ı	1	ï	1	I	ŧ	
	/92	8900	I	ŀ	ł	ţ	1	1	ı	. 1	
	/92	4300	I	1	·	ŀ	1	ŧ	:		
	05/20/92	4300	I	ŀ	ł	ł	ı	ł	:	i	
	08/31/92	1600	ı	ŀ	1	ŀ	ŀ	ł	ŀ	1	
•	11/30/92	5700	ŀ	ŀ	;	1	.1	;		ŀ	
•	02/04/93	6100	1	ł	ŀ	ł	;	;	ł	i	
	05/04/93	7100	1	;	ŀ	ŀ	1	ł	;	i	
	08/04/93	1800	1	, 1	ŀ	1	ł	;	ł	ı	
	11/03/93	7 2600	;	;	1	ŀ	;	ŀ	:	ł	
	05/19/94	3000	:	1.	;	. 1	ŧ,	;	ł	Į	
	08/15/94	2800	}	ŀ	ì	ŀ	;	1	i	i	
	11/14/94	10000		;	ŀ		;	ł	÷	l	
	02/21/95	2000	}	ł	ſ	ŀ	1	f			
	76/	N Q	ŀ	;	ı	!	:	ł	ŀ	1	
	08/31/92	92	;	ì	ı	ŀ	;	ŧ	ł	I	
	11/30/92	94	ŀ	. 1	ı	ŀ	;	ŀ	ŀ	1	
	02/04/93	550	:	ı	ï	:		ł	ł	I	
	05/04/93	250	;	I	ŀ	ł	ı	ŀ	1	ı	
	08/04/93	100	ł	ı	1	ŧ	.i	ŀ	ŀ	1	
	11/03/93	160	}	ŀ	1	ŀ		ŀ	ŀ	ŀ	
	02/07/94	620	ŀ	ŀ	ŀ	ł	I	ŀ	ŀ	ł	
	05/19/94	480	ŀ	ļ	;	ŀ	I	;	ļ	ţ	
	08/15/94	110	ŀ	;	ł	ı	ı	ł	ŀ	ŀ	

Page 1 of 11

Table 3
ADDITIONAL ANALYTICAL RESULTS

		-				•	76 Station 5043	on 5043		
Date impled	TPH-D	EDC	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8260B	TOG	
	(hg/l)	(l/gr/l)	(μg/l)	(μg/l)	 (μg/l)	(µg/l)	(l/g _µ)	(I/gµ)	(mg/l)	
AW-3 (continued									
11/14/94	150	ł	:	1	ſ	!	1	1	;	
)2/21/95	850	:	1	;	1.	;	;	:	ï	
05/18/95		!	;	ł	ı	;	ŀ	ŀ	;	
26/10/90	610	1	. !	1.	. 1	ŀ	:	ĺ	ł	
7/15/97	240	;	ţ	ŀ	ı	1	f	ŀ	ŀ	
26/60/01		;	ì	ł	ı	ł	ŀ	ı	ł	
)1/14/98		;		ı	ŀ	1	į	i	1	
04/01/98		į	ŀ	i	ł	ŀ	;	ì	ŀ	
37/15/98		ł	1	ı	ŀ	ł	ł	ł	I	
10/16/98		ŀ	;	1	I	ŀ	ì	ł	ŀ	
01/25/99			ì	ł	ł	1	ŀ	F	ŀ	
)4/15/99		ŀ	. 1	1	ľ	. ;	ŀ	ì	ŀ	
07/14/99		;	1	1	;	;	ŀ	ı	ŀ	
10/21/99		1	1	ı	ı	;	:	ł	ľ	
01/20/00		;	. 1	ŀ	;	ł	ſ	ŀ	ŀ	
04/13/00		QN	N	Q	N Q	ND	ND	QN QN	ŧ	
02/14/00		;	I	ŀ	;	J	ł	ŀ	1	
10/26/00	330	:	1.	1		ł			ŀ	
01/03/01		ſ	ı	1	ŀ	ŀ	I	ŀ	ŀ	
04/04/01	360	ŀ	ı	ŀ	;	ŀ	ł	ì	;	
10//11//01	270	ŀ	ŀ	;	ł	ı	ł	I		
10/01/01		!	ł	ŀ	;	1	ŀ	ŀ	;	
01/31/02		ŀ		ł	ł	ł	I	1	1	
04/18/02		;	ł	ł	ı	I	:	ł	ŀ	
07/28/02	310	ŀ	;	1	:	1	}	ŀ	ł	
10/09/02	700	ŀ	1	ļ	i	1	;	:	1	

01/31/02 04/18/02 07/28/02 10/09/02

10/01/01

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

				-																		-				
TOG	(mg/l)	ŀ	ł		ì	ŀ	I	ı	I	f	1	I				i	i	i	I	ŀ	ı	ŀ		ŀ	S S	Q.
Ethanol 8260B	(l/gn)	ND<500	ŀ	ND<2500	ND<2500	ND<500	ND<50	ND<1000	ND<50	ND<50	ND<50	ND<250		l 1	;	ł	1	1	;	ı	ì	ŀ		I	ı	I
ETBE 8260B	$(\mu g/1)$	ND<2.0	1	:	ł	ŀ	ł	ţ	;	;	ŀ	ND<0.50		i i	ł	;	;	ł	;	ļ	I	ŀ		1	ł	1
DIPE 8260B	(l/gn)	ND<2.0	!	ŀ	ł	;	;	ł	ł	1	i	ND<0.50	;	l 1	ŀ	1	ł	ł	1	ł	i	ì		I	1	ı
TBA 8260B	(µg/I)	ND<100	ı	;	I	ı	ı	ı	ŀ	:	1	6/	!			ŀ	ŀ	ŀ	ı	:	ł	!		i	:	1
TAME 8260B	(l/gπ)	ND<2.0	ł	٠,	1	1	1	1	ł	ı	ì	ND<0.50	1	1	;	ł	1	1	ŀ	1	1	J		,I	ŀ	!
EDB	(μg/l)	ND<2.0	ŀ	1	ŀ	;	;		;	;	1	ł	!	l !	ŀ	•	;	:	:	i	ľ	ŀ		1	1	1
EDC	(l/gr/)	ND<2.0	1	ŀ	ì	1	1	;	ł	ţ	ł	ł	1	I	ŀ	ı	ł	ł	1	ł	:	1		1	ŀ	ŀ
TPH-D	(l/gn)	continued 3 210	200	380	300	200	160	330	200	250	360	ND<200	· &	61	ND	QN.	81	89	QN	06	72	ND		069	470	5500
Date Sampled		MW-3 c	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	MW-4 08/31/92	11/30/92	02/04/93	05/04/93	08/04/93	11/03/93	02/07/94	05/19/94	08/15/94	11/14/94	MW-5	08/31/92	11/30/92	02/04/93

Page 3 of 11

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

	TOG	(mg/l)	i	ŀ	ŀ	ŀ	ŀ	1	ŀ	ı	i	1	I	ì	ł	ı	ŀ	I		;	ŀ	ŀ	ı	ì	I.	i	ı	1
!	Ethanol 8260B	(hg/l)	ı	i	ŀ	ł	I	ŀ	ı	ND<25000	ND~200000	ND<50000	ND<5000	ND<300000	ND<5000	ND<5000	ND<5000	ND<250		;	ł	i	1	i	1	i	ŀ	ŀ
!	ETBE 8260B	(hg/l)	ı	ŀ	ł	ì	1	ł	ţ	;	ŧ	;	1	ŀ	;	;	;	ND<0.50		ŀ	1	;	;	ì	;	· i	ŀ	ŀ
	DIPE 8260B	(hg/l)	1	ţ	ſ	i	1	ŧ	1		1	ŀ	į	ŀ	;		1	1.8		;	ł		;	ŀ	;	ł	1	ŀ
	TBA 8260B	(l/g _H)	!	1	ı	ŀ	1	l	ł	ı	ł	ı	ŀ	ì	ŀ	i	ì	ND<10		1	ŀ	ı	ŀ	ı	E	1	;	
	TAME 8260B	(l/gr/)	i	1	ł	i	i	ŀ	ı	1	i	ŀ	i	;	ŀ	;	:	ND<0.50		!	ł	ł	ţ	;	1	ŀ	ŀ	ŀ
	EDB	(l/gµ)	;	ŀ	;	;	;	ŀ	;	ŀ	;	;	;	:	1	I.	:	1		1	1	1		;	į	i	1	i
	EDC	(µg/l)	;	;	;	1	ţ	ł	;	:	;	;	įł.	;	. 1	ŀ	ŀ	ł		!	ł	ŀ	:	ŀ	;		;	ŀ
	TPH-D	(hg/l)	continued 1 24000	11000	3500	27000	170000	00099	35000	11000	ND<50	20000	13000	33000	78000	12000	16000	2500		69	Q.	190	92	ND	74	ND	ND	ND
	Date Sampled		MW-6 co	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	MW-7	06/01/97	07/15/97	10/09/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99
		ı	•																Z .			٠						

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

	,																											
	TOG	(mg/l)	ł	1	!	1	1	1	ł	1	1	ł	ł	ł	I		ļ	1	I	ł	;	ŀ		ŀ	l		1	ŀ
o Station 2043	Ethanol 8260B	(l/gn/)	ſ	ŀ	1	ł	ŀ	ł	ŀ	;	:		ł	ŀ	1	ND<500	ND<500	ND<500	ND<50	, ND<1000	ND<50	ND<50	ND<50	ND<250	:		i	1
neico/	ETBE 8260B	(l/gn/)	1	I	i	I	I	ł	I	l	ı	ı	ŀ	!	ŀ	ŀ	ŀ	;	I	ŀ	1	ŀ	ı	ND<0.50	ŀ		1	:
	DIPE 8260B	(μg/l)	ţ	ŀ	i	ł	1	}	1	ł	1	ŀ	ł	I	;	;	;	1				1	1	ND<0.50	!		;	¦
	TBA 8260B	(µg/1)	I	ţ	;	;	ŀ	;	ţ	;	;	;	ŀ	1	ŀ		ŀ	ŀ	ŀ	;	ł	:	ı	ND<10	I		l	ł
	TAME 8260B	(µg/l)	I	ì	ŀ	ł	ŀ	ŀ	;	1		1	ţ	;	1	1	;	ŀ	ì	ţ	ŀ	I	!	ND<0.50	ł	1	ł	ŧ
	EDB TAME 8260B	(l/gr/)	ŀ	ŀ	. I	ŀ	1	ŀ	ŀ	ŀ	:	:	:	!	:	;	ŧ	1	i	ŀ	1	1	:	:	;	ł	ł	:
	EDC	(l/grl)	ŀ	1	ł	ł	ŀ		1	.1	ŀ	ŀ	I	;	ţ	1	1	1	1	1	;	٠.۱	I	ł	1	;	!	ł
	TPH-D	(μg/l)	ontinued 69	N	S	QN	0.89	N ON	ND<51	06	78	ND<50	ND<96	78	1.9	89	82	75	ND<50	ND<200	54	ND<50	ND<50	ND<200	320		3 8	390
	Date Sampled	-	MW-7 continued 07/14/99 69	10/21/99	01/20/00	04/13/00	07/14/00	01/11/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/03/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	MW-8 06/01/97	07/15/97	10,00,01	16/60/01
										•																		

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

TOG	(mg/l)	;	;	;	;	;	ļ	ŀ	ŀ	f	ł	ŧ	ŀ	ì	ŀ	ŀ	ł	;	ł	;	ŀ	;	;	;	ŀ	ŀ	ŀ
Ethanol 8260B	(μg/l)	ı	i	ŀ		. !	ŀ	ł	;	;	!	1	ŀ	ł	i	ì	ł	ı	1	ŀ	ND<500	ND<500	ND<500	ND<50	ND<1000	ND<50	ND<50
ETBE 8260B	(μg/l)	ı	ŀ	I	I	ŀ	ŀ	ŀ	l	:	ŀ	ŀ	ŀ	ł	ŀ	ł	ì	ŀ	ŀ	ł	I	ļ	ı	ŀ	ł	;	1
DIPE 8260B	(l/gµ)		ŀ	ł	1	ŀ	ł	ŀ	ł	ŀ	1	ŀ	ţ	;	1	;	ł	. 1	. 1	ŀ	I	ŀ	ł	ľ	!	1	1
TBA 8260B	(l/grl)		;	ŀ		;		;	ŀ	ı	ŀ	ł	1	ı	;	;	1	1	;	ł		ŗ	i	i	1	1	ŀ
TAME 8260B	(l/gr/)	I		I	l	ı	ŀ	ŀ		1	ŀ	ŧ	ŀ	ŀ	ı	ł	ŀ	ŀ	ı	:	- 1	. 1	ł	:	;	;	ŀ
EDB	(l/gn)	1	I	ŀ	1	:		}	:	:	;	ì	ŀ	ſ	ŀ	ŀ	- 1	ŀ	1	ŀ	- 1	:	;	}	;		1
EDC	(µg/l)	ŀ	ŀ	ŀ	ŀ	ľ	1	ŀ	I	ł	ŀ	. :	;	ł	ł	1	;	i		1	. 1	ŀ	ŀ	ł	ł	ŀ	ŀ
TPH-D	(µg/l)	ontinued 230	510	140	170	QN	91	120	110	583	80	113	N N	ND<50	260	160	140	120	210	220	170	350	180	100	250	120	140
Date Sampled		MW-8 continued 01/14/98 230	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99	07/14/99	10/21/99	01/20/00	04/13/00	07/14/00	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05
																	1										

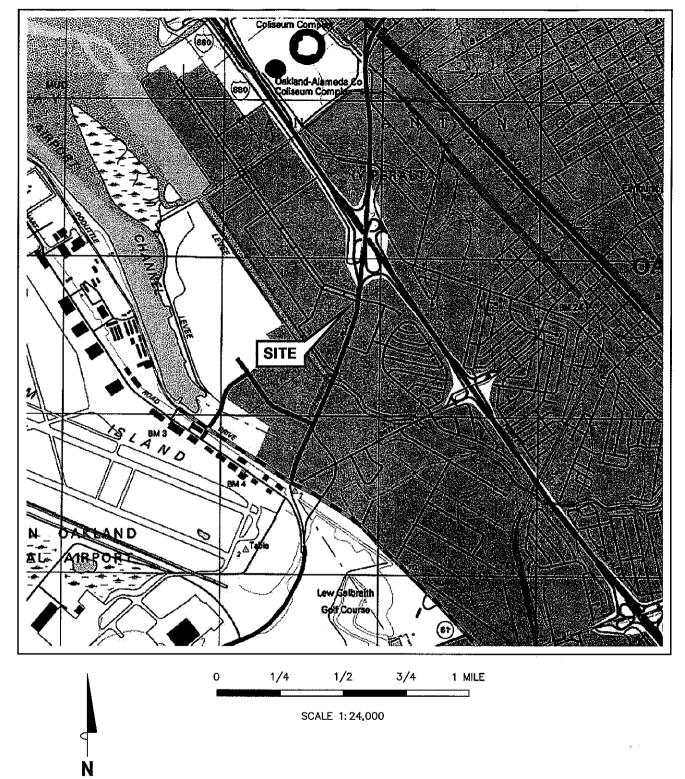
Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

													٠															
TOG	(mg/l)		ţ	1			ł	ŀ	1	ŀ	ł	ł	}	f	ŀ	ł	ł	ł	I	I	ì	ł	ł	ŀ		ŀ	:	ŀ
Ethanol 8260B	(l/gn)		ND<50	ND<250		1	;	;		;	İ	;	ŀ	1	i	;	ı	ŀ	1	1	ı	ì	!	I	1	ŀ	ł	1
ETBE 8260B	(μg/l)		ł	ND<0.50		ı	ı	ŀ	1	ŀ	:	ŀ	ſ	ŀ	ŀ	ŀ	ı	1	1	ı	I	1		ı	ŀ	ł	;	1
DIPE 8260B	(l/gn)		ŀ	ND<0.50		ŀ	ł	ł	:	ļ	ļ	1	;		1	1	;	;	i	. 1	1	ſ	I	ŀ	ı	ł	ŀ	;
TBA 8260B	(µg/l)		ł	ND<10		ì	ı	:	1.	ŀ	I	:	;	1	;	1	l		1	i		1	;	1	1	. }	1	f
TAME 8260B	(l/gπ)		:	ND<0.50		!	;	ţ	;	1	i	ŀ	ŀ	. 1	i	1	1	1	ŀ	ŀ	ŀ	ŀ	ŀ	ł	;	1	;	1
EDB	(µg/l)		Į.			1	1	1	ł	1	ł	1	i	ł	ł	ł	ŀ	ŀ	ŀ	ŀ		ŀ	ł	ł	ŀ	ł	.	;
EDC	(µg/l)		1	ı		ł	ŀ	ł	ł	ŀ	1	ŀ	;	1	1	1	1	:	ŀ	i	ł	1	ł	l	ì	1	į	ŀ
TPH-D	(l/gn/)	ontinued	140	09/27/05 ND<200		71	N	ND	86	66	54	94	ND	160	110	110	200	SN	ND	QN	140	210	519	81	107	240	164	240
Date Sampled		MW-8 continued	06/15/05	09/27/05	MW-9	02/21/95	05/18/95	08/17/95	04/26/96	10/28/96	01/29/97	04/15/97	07/15/97	10/06/97	01/14/98	04/01/98	07/15/98	10/16/98	01/25/99	04/15/99	07/14/99	10/21/99	01/20/00	04/13/00	07/14/00	10/26/00	01/03/01	04/04/01
										*			1					-										

Page 8 of 11

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

TOG	(ing/l)		1	E	ł	ł	ţ	€.	;	:	ł	;	ł	1	:	ŧ	1	1	ŀ		ì	ŀ	ł	!	ŀ	ŀ	;	1
Ethanol 8260B	(hg/l)		ŀ	1	ł	I	ł	ł	ı	f	ND<500	ND<500	ND<500	ND<50	ND<1000	ND<50	ND<50	ND<50	ND<250		:	:	ſ	I	ı	. 1	I	ŀ
ETBE 8260B	(l/gn)		ł	:	ı	1	, 1	I	1	I	1	1	1	-1	ı	:	ŀ	:	ND<0.50		1	ŀ	}	ł	ı	1	ı	I
DIPE 8260B	(hg/l)		ì	ŧ	ł	ļ	ŀ	ł	ŀ	1	. [ŀ	ı	ŀ	1	!	1	ţ	ND<0.50		;	1	;	;	;	;	. !	1
TBA 8260B	(µg/l)		:	1	;	1	1	;	ţ	;	1	ţ	ŀ	ì	;	ł	ł	ŀ	ND<10		ŀ	:		}	!	1	1	;
TAME 8260B	(µg/l)		ſ	ł		ì	;	ł	ì	ł	:		;	;	}	;	;	;	ND<0.50		ł	;	1	ì	ŀ	ŀ	!	I
EDB	(hg/l)		i	ſ	1	ŀ		ł		Þ	ŀ	!	ŀ	. 1	1	;	ł	ŀ	;		;	i	. 1	ł	ì	f	ł	1
EDC	(hg/l)		;	1	ŀ	1	ì	ŀ	ł	ŀ	ŀ	1	ŀ	ì	ı	ŀ	1	ŀ	ŀ		ŀ	;		ł	ł	1	i	Ι.
ТРН-Б	(µg/l)	ontinued	2	1 ND<52	200	ND<50	ND<50	100	ND<50	26	ND<50	ND<50	91	ND<50	ND<200	9/	11	29	ND<200		270	75	N ON	ND	N	ND	ND	R
Date Sampled		MW-9 c	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04	07/22/04	10/29/04	01/10/05	06/15/05	09/27/05	4W-10	02/21/95	05/18/95	08/17/95	07/26/96	10/28/96	01/29/97	04/15/97	07/15/97
					•																							


Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 5043

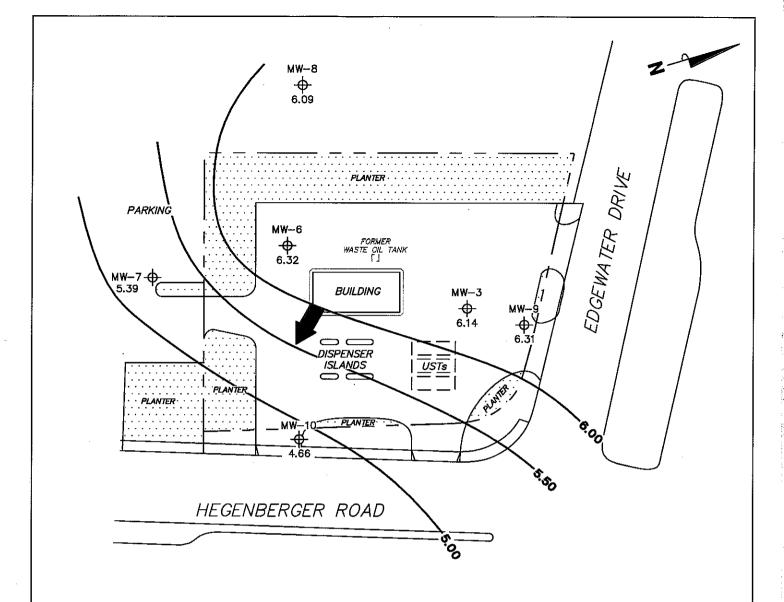
TOG	(mg/l)	ł	i	1	ı	ł	ł	ł	1	ŀ	!	ŀ	ł	1	ţ	ł	i	ŀ	1	I	ł	I	ł	!	;	;	ŀ
Ethanol 8260B	(l/gn)	:	ł	;	ł	ŀ	ŀ	ŀ	ŀ	ı	ı	1	ŀ		ł	;	ł	ŀ	ł	i	ł	ı	ŀ	ND<500	ND<500	ND<500	ND<50
ETBE 8260B	(μg/l)	ł	1	1	1	1	i	ł	ı	ŀ	ŀ	ł	I	I	ł	ţ	;	ŀ	1	ŧ	ł	ŀ	1	1	1	ł	I
DIPE 8260B	(hg/l)	;	ŀ	;	ł	;	1	ŀ	;	†	.[ł	ŀ	ł	1	ł	ŀ	;	ł	ł	ł	÷	i	ŀ	. 1	. 1	1
TBA 8260B	(l/gη)	ı	1	.	1	I	ł	ı	ŀ	ł	1	:	ŀ	ŀ	ŀ	ŀ	ì	1	ł	ŧ	ŀ	ŀ	1	ł	1	ł	ı
TAME 8260B	(μg/l)	ľ	;	;	;	;	ł	;	ì	ŀ	ŀ	ŀ	!	;	}	;	}	:	ļ	;	ı	ŀ	ŀ	ŀ	ŀ	1	1
EDB	(l/gn)	;	ŀ	ł	1	f	;	ŀ	ł	1	ŀ	ŀ	ŀ	ł	;	;	:	ŀ	:	1	. 1	ſ	ŀ	1		:	
EDC	(µg/l)	I	ŀ	1	1	ł	ł	1	1	ł	i	f	ì	1	I	1	ł	!	. !	1	ł		;	1	ŀ	ł	l
TPH-D	(l/gr/l)	continued ND	62	78	R	R	R	180	96	252	69	149	83	126	75	S	100	170	130	. 58	ND<94	49	92	87	160	74	ND<50
Date Sampled				07/15/98	10/16/98	01/25/99	04/15/99	07/14/99	10/21/99	01/20/00	04/13/00	02/14/00	10/26/00	01/03/01	04/04/01	07/17/01	10/01/01	01/31/02	04/18/02	07/28/02	10/09/02	01/02/03	04/01/03	07/01/03	10/02/03	01/09/04	04/26/04
								1.0				-															

Table 3 ADDITIONAL ANALYTICAL RESULTS 76 Station 5043

	TOG	(mg/l)		I .	ŀ	:	ŀ	;
CLOC HOUSE	Ethanol 8260B	(l/gn)	ND<1000	2001	ND<50	ND<50	ND<50	ND<250
N Death	ETBE 8260B	(l/gη)		!	ŀ	ł	ŀ	ND<0.50
	DIPE 8260B	(μg/l)		ł	;	ŧ	ł	ND<0.50
	TBA 8260B	(μg/l)		ł	P.	1	;	ND<10
	TAME 8260B	(µg/l)		ł	ì	ŀ	ŀ	ND<0.50
	EDB	(µg/l)	;	}	;	1	ŀ	ł
	EDC	(l/gr/)	;		1	;	ł	ŧ
	TPH-D	(l/g/l)	continued	007-71	ND<50	8	62	ND<200
	Date Sampled		MW-10	100	10/29/04	01/10/05	06/15/05	09/27/05

FIGURES

SOURCE:


United States Geological Survey 7.5 Minute Topographic Maps: San Leandro Quadrangle

VICINITY MAP

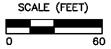
76 Station 5043 449 Hegenberger Road Oakland, California

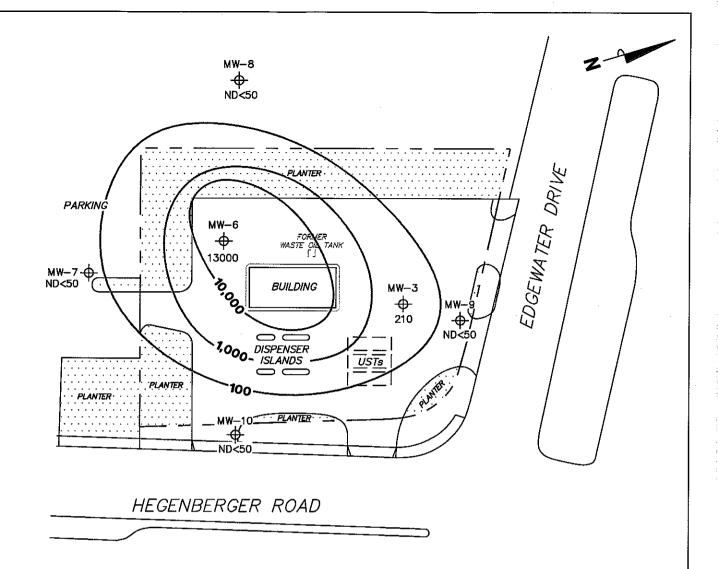
FIGURE 1

PS=1:1 5043-003

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank.

LEGEND


6.00 — Groundwater Elevation Contour



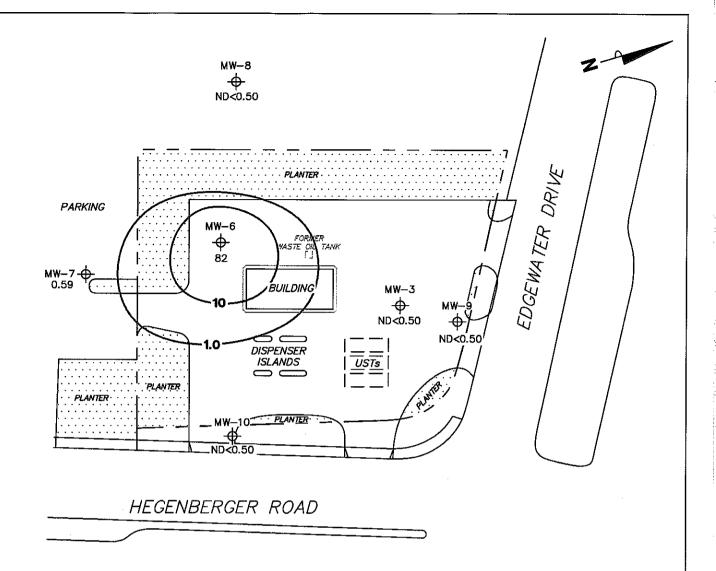
GROUNDWATER ELEVATION CONTOUR MAP September 27, 2005

76 Station 5043 449 Hegenberger Road Oakland, California

FIGURE 2

PS=1:15043-003

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPPH = total purgeable petroleum hydrocarbons. $\mu g/l$ = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Results obtained using EPA Method 8260B.


LEGEND

_10,000 — Dissolved—Phase TPPH Contour (µg/I) DISSOLVED-PHASE TPPH CONCENTRATION MAP September 27, 2005

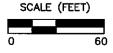
76 Station 5043 449 Hegenberger Road Oakland, California

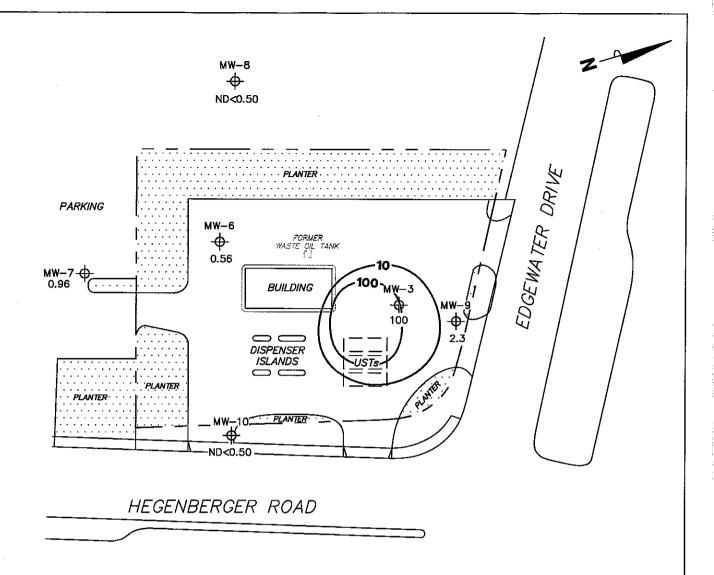
SCALE (FEET)

FIGURE 3

PS=1:1 5043-003

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank.


LEGEND


Dissolved—Phase Benzene Contour (µg/I)

DISSOLVED-PHASE BENZENE CONCENTRATION MAP September 27, 2005

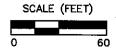
76 Station 5043 449 Hegenberger Road Oakland, California

FIGURE 4

PS=1:1 5043-003

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. $\mu g/l = \text{micrograms per liter. } ND = \text{not detected at limit indicated on official laboratory report.} UST = \text{underground storage tank. } Results obtained using EPA Method 8260B.}$

LEGEND MW-10 Monitoring Well with Dissolved—Phase MTBE Concentration (µg/l) Dissolved—Phase MTBE Contour (µg/l)

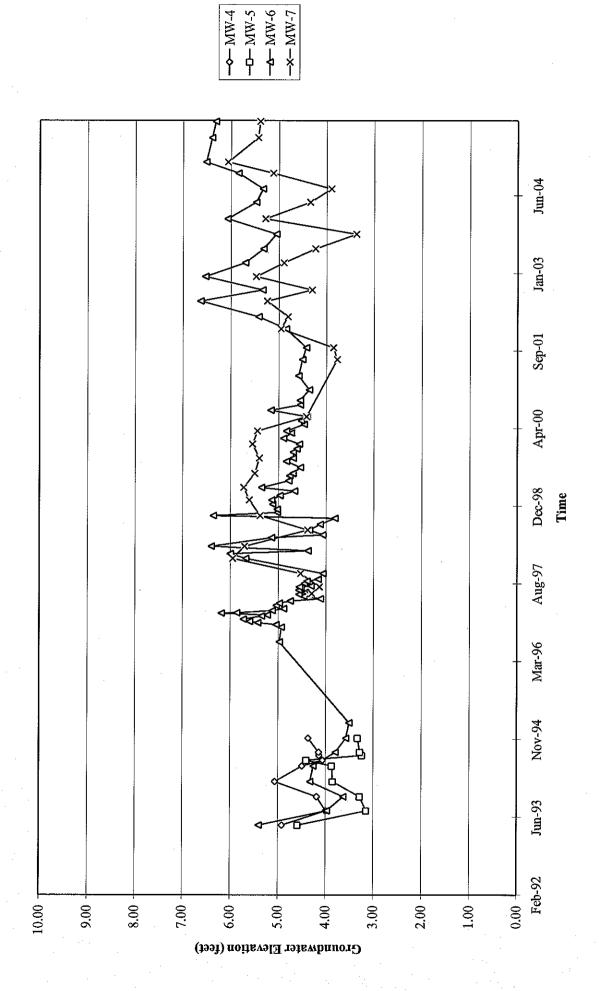

76 Station 5043 449 Hegenberger Road Oakland, California

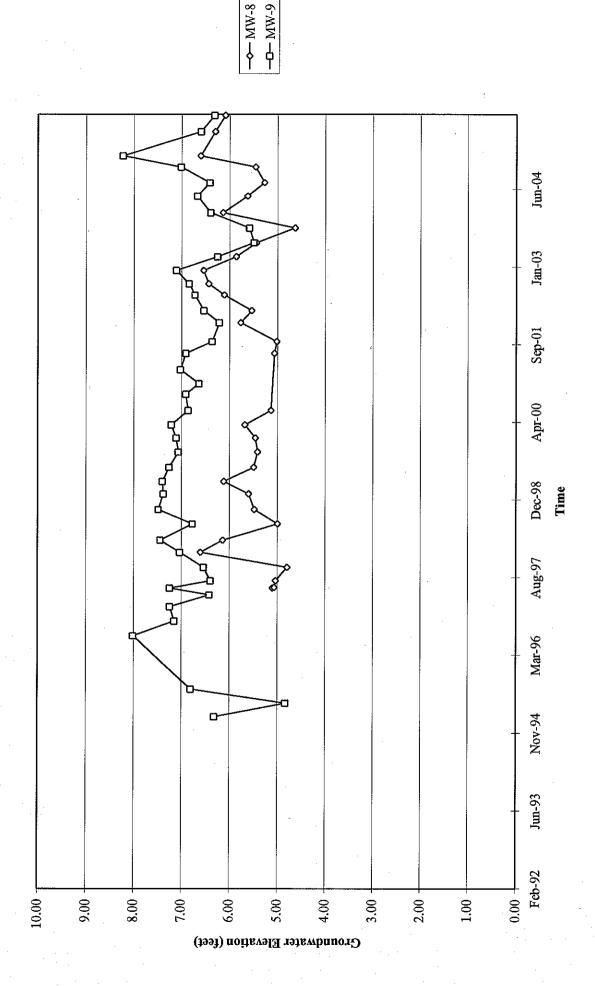
DISSOLVED-PHASE MTBE

CONCENTRATION MAP

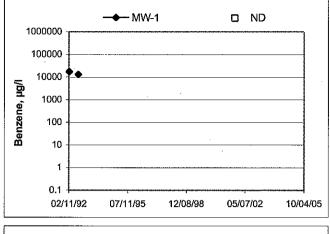
September 27, 2005

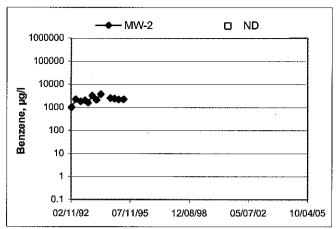
FIGURE 5

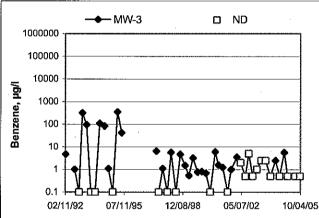


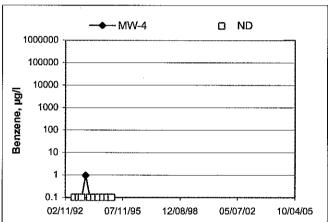

GRAPHS

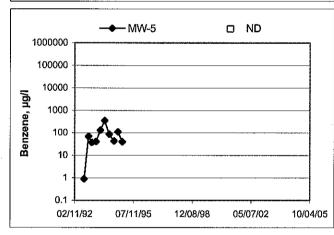
—— MW-10 **-△**- MW-2 -×- MW-3 **→** MW-1 Jun-04 Jan-03 Sep-01 Apr-00Dec-98 Time Aug-97 Mar-96 Nov-94 Jun-93 Feb-92 0.00 - 00'6 10.008.007.00 2.00 1.00 6.00 5.004.00 3.00 Groundwater Elevation (feet)

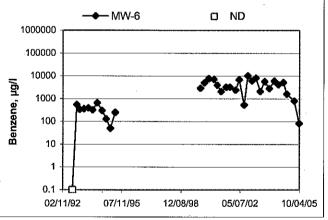

Groundwater Elevations vs. Time 76 Station 5043

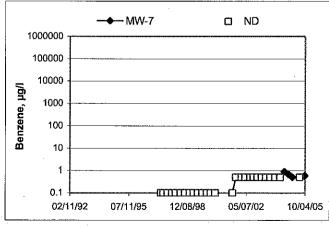

Groundwater Elevations vs. Time 76 Station 5043

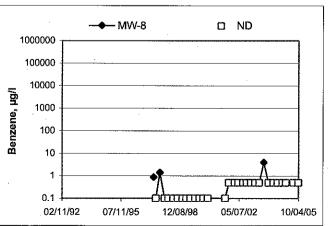


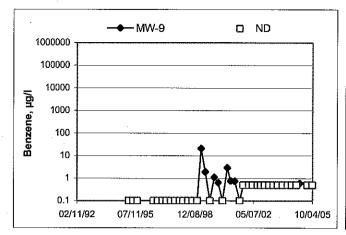


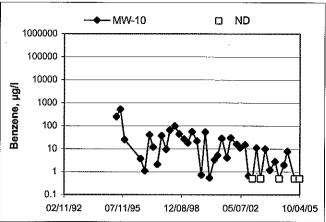

Benzene Concentrations vs Time 76 Station 5043











Benzene Concentrations vs Time 76 Station 5043

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician: AVEX	Job #/Task #: _	41050001 / 1420	Date: _	09-27-05
Site # 50 43	Project Manager_	ROGER BATRA	Page _	

Well#	Time Gauged	y TOC	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
Mw-8	0643		14.78	2.48	E	6	0912	
Nu - 10	0438		12.71	3.96	6	6	6834	24
MW-7	6450		12.79	3.44	6_	. C	6960	24
MW-9	0453		12.54	1.98	6	6-	1107	24
MW -3	0458		1401	1.90	.6-	6-	1144	24
Mh - 4	1705		12.74	2,55	c	c	1/32	2.11
		-						
	·							
		<u>'</u> ,						
<u>, , , , , , , , , , , , , , , , , , , </u>			 					
·								
<u> </u>				<u> </u>				
					1			
		,					1	
IELD DATA	A COMPLI	ETE	ayoc	:	goc	<u> </u>	ELL BOX	ONDITION SHEETS
/TT CERT	IFICATE		MANIFES	ST	DRUM IN	VENTORY	TRA	FFIC CONTROL

GROUNDWATER SAMPLING FIELD NOTES

		er spenjage se sentre au tra de constant						
l No -	5043 Mw-8		Į	Purge Method:	DIA			
	r (feet):2	42			ct (feet):	et		
th to Wate	r (teet):	8			lecovered (gaile	a		
al Depth (fe	eet):	-30			er (inches):			
ter Column	(feet): /2	200		Casing Diame	(gallons):	2	•	•
& Recharge	Depth (feet):	4.90		1 Men Aomine	(gaions)		 .	
Time	Time	Depth	Volume	Conduc-	Temperature			
Start	. Stop	To Water	Purged	tivity	45	pН	Turbidity	D.O.
		(feet)	(gallons)	(uS/cm)	(F, 6)	4 37 7		
141			2	14.62 mg	20.5	6.72		
			4	12.18 mg	22.4	4.35	· ·	
	6844		6	11.86 mg	23.9	617		
<u> </u>						-		. •
	<u> </u>							•
· Stat	ic at Time San	noted	To	tal Gallons Pu	l rged		Tirne Sample	ed
		T	J		6		0917	7
mments:								
ell No.:	MW-17)	3.96		Purge Method Depth to Prod	d:	- •		
ell No.:	MW-17)	3.96		Purge Method Depth to Prod LPH & Water	i:	llons):		
ell No.:epth to Wat otal Depth (dater Colum	// /// /// er (feet):/	3.96 2.71 ?.75		Purge Method Depth to Prod LPH & Water Casing Diam	d:	llons):		
ell No.:epth to Wal otal Depth (ater Colum	Mw-//) er (feet):/	3.96 2.71 ?.75		Purge Method Depth to Prod LPH & Water Casing Diam	i:	llons):		
ell No.:epth to Wal otal Depth (ater Colum	er (feet):/ feet):/ in (feet):&	3.96 2.71 ?.75 5.71		Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum	d:	lions):		
ell No.:epth to Wallater Colum	er (feet):/ feet):/ in (feet):/ ge Depth (feet)	3.96 2.71 7.75 5.71	Volume	Purge Method Depth to Prod LPH & Water Casing Diam	d:	lions):		D.O.
ell No.:epth to Wal otal Depth (ater Colum	er (feet):/ feet):/ in (feet):&	3.96 2.71 ?.75 5.71		Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum	d:	llons):		D.O.
ell No.:epth to Wat otal Depth (ater Colum % Rechan	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 7.75 5.71 Depth To Water	Volume Purged	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity	d:	llons):		D.O.
ell No.: epth to Wat stal Depth (ater Colum ow Rechan Time Start	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 7.75 5.71 Depth To Water	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm)	d:	flons):/		D.O.
eti No.:epth to Wat tal Depth (ater Colum % Rechan Time Start	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 7.75 5.71 Depth To Water	Volume Purged (gallons)	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 3-30 mS	Ji. DIA Juct (feet): Recovered (galeter (Inches): re (gallons): Temperature (F.C) IA.4 21.4	flons):/ / pH 7.24		D.O.
ell No.:epth to Wat stal Depth (ater Colum s% Rechan Time Start	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 7.75 5.71 Depth To Water	Volume Purged (gallons) /	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 3.30 mS 3.37 ms	Ji	flons):/ / pH 7.24 7.22		
ell No.:epth to Wat stal Depth (ater Colum s% Rechan Time Start	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 7.75 5.71 Depth To Water	Volume Purged (gallons) /	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 3.30 mS 3.37 ms	Ji	flons):/ / pH 7.24 7.22		
ell No.:epth to Wattal Depth (after Column Start	privale of the state of the sta	3.96 2.71 2.75 5.71 Depth To Water (feet)	Volume Purged (gallons) / 2	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 3.30 mS 3.37 ms	DIA Juct (feet): Recovered (gallens): Temperature (F.C) 19.4 21.4 21.2	flons):/ / pH 7.24 7.22	Turbidity	4
ell No.:epth to Wattal Depth (after Column Start	er (feet): feet): ge Depth (feet) Time Stop	3.96 2.71 2.75 5.71 Depth To Water (feet)	Volume Purged (gallons) / 2	Purge Method Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 3.30 mS 3.37 ms	DIA Juct (feet): Recovered (gallens): Temperature (F.C) 19.4 21.4 21.2	flons):/ / pH 7.24 7.22		4

GROUNDWATER SAMPLING FIELD NOTES

· · · · · · · · · · · · · · · · · · ·	Technician:		•
Site: 50 43	Project No.: 46 50001	Date:_	09-27-05
Well No.:	Purge Method: PrA Depth to Product (feet): LPH & Water Recovered (gallor Casing Diameter (Inches): 1 Well Volume (gallons):	211	

Time	Time	Depth	Volume	Conduc-	Temperature			5.0
Start	. Stop	To Water	Purged	tivity	(m, m)	pH ·	Turbidity	D.O.
	•:	(feel)	(gallons)	(uS/cm)	(F,E))			
18 53			,	9.22 ms	20.8	7.08		
			2	2.51ms	22.9	724	-	
	08576		3	1406	23.Ç	7.07		
					-	ļ		
Stati	c at Time Sa	mpled	Ī	otal Gallons Pu	ırged	<u></u>	Time Samp	
	3.60				3		0900	
Comments:					,			
							· ·	
,								

Well No.:	Purge Method: DA
Depth to Water (feet): 1.98	Depth to Product (feet):
Total Depth (feet): /2.54	LPH & Water Recovered (gallons):
Water Column (feet): /6 +5 6	Casing Diameter (Inches):
80% Recharge Depth (feet): 409	1 Well Volume (gallons): 2

Time	Time	- Depth	Volume	Conduc-	Temperature			
Start	Stop ·	To Water	Purged	tivīty		Нq	Turbidity	D.O.
		(feet)	(gallons)	(uS/cm)	(F. Q)			
0720			2	2.94 m	24.0	6.81		
			4	232 ms	^{25.} 2	6.95		·
	0923		6	3.69 ms	24.8	7.08		,,,
-								
Sta	itic at Time Sar	noled ·	- Т	otal Gallons Pu	rged		Time Samp	led
-0,0	41.07	Ī	1	i i			11 0	7
<u></u>		_1	,					
Comments:								
							•	

M

GROUNDWATER SAMPLING FIELD NOTES

<u>.</u>	5043	P	roject No.:	41050061		Da	09 - 27 ale:	
oth to Water at Depth (fee oter Column (15043 100 3 (feet): 1. (14.0) (feet): 12 Depth (feet):	90 . . (Purge Method: Depth to Produ LPH & Water F Casing Diamet	Ct (feet): lecovered (galler er (Inches): (gallons):	ons):	,	
Time Start	Time Stop	Depth To Water	Volume Purged	Conduc- tivity	Temperature	рĦ	Turbidity	D.O.
% 32_	*:	(feet)	(gallons)	2.50 mg	(F.O) =4-3	685		
7832		<u> </u>	4	2.63 mg		C-86		
	0935		6	2.73 45	23.8	7.02		
						-		
						1	7:	
1		oled	T	otal Gallons Pu	rged	J	Time Sampl	21 del
omments:	p.95	NUT RE		N 2HRS				1144
ell No.:epth to Waterotal Depth (feter Column	MW-4 or (feet): 12- or (feet): 16	.53 .74 5.21		Purge Methor Depth to Proc LPH & Water Casing Diam	d:	allons):	5-	77 9 4
rell No.:epth to Water ofal Depth (fel vater Column 0% Recharge	MW-4 or (feet): 12- or (feet): 1/2- or (feet): 1/2- or (feet): 1/2-	.55 .74 5.21 4.57		Purge Methor Depth to Proc LPH & Water Casing Diam 1 Well Volum	d:	ئے allons): 21	5-	77 44-
omments: /ell No.: epth to Wate otal Depth (fe	MW-4 or (feet): 12- or (feet): 16	.53 .74 5.21		Purge Methor Depth to Proc LPH & Water Casing Diam	d:	ئے allons): 21	5-	D.O.
rell No.:epth to Water otal Depth (fer after Column 0% Recharge	## - \$ ## ## ## ## ## ## ## ## ## ## ## ## #	.53 .74 5.2/ 4.57 Depth To Water	Volume Purged	Purge Methor Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity	d:	8- allons):	Turbidity	
rell No.:epth to Water Column O% Recharge Time	## - \$ ## ## ## ## ## ## ## ## ## ## ## ## #	.53 .74 5.2/ 4.57 Depth To Water	Volume Purged (gallons)	Purge Methor Depth to Proc LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm)	d:	pH 7.02	Turbidity	D.O.
omments: /ell No.: epth to Wate otal Depth (fe Vater Column 0% Recharge Time Start	## - \$ ## ## ## ## ## ## ## ## ## ## ## ## #	.53 .74 5.2/ 4.57 Depth To Water	Volume Purged (gallons)	Purge Methor Depth to Proc LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 967	d:	pH	Turbidity	
rell No.:epth to Water Column 0% Recharge Time Start	### ### ##############################	.53 .74 5.2/ 4.57 Depth To Water	Volume Purged (gallons) 22	Purge Methor Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 947 //76	d:	pH 7.02	Turbidity	D.O.
rell No.:epth to Water Column 0% Recharge Time Start	### ### ##############################	.53 .74 5.2/ 4.57 Depth To Water (feet)	Volume Purged (gallons) 2 4 6	Purge Methor Depth to Prod LPH & Water Casing Diam 1 Well Volum Conductivity (uS/cm) 947 //76	d:	pH 7.02	Turbidity	D.O.

Date of Report: 10/14/2005

Anju Farfan

TRC Alton Geoscience

21 Technology Drive Irvine, CA 92618-2302

RE: 5043

BC Lab Number: 0509593

Enclosed are the results of analyses for samples received by the laboratory on 09/27/05 21:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Surratt

Client Service Rep

Authorized Signature

TRC Alton Geoscience Irvine CA, 92618-2302 21 Technology Drive

Project Manager: Anju Farfan Project Number: [none] Project: 5043

Reported: 10/14/05 13:48

Laboratory / Client Sample Cross Reference

Laboratory	Chont Somule Information	u o i			
Laboratory	Cucin Sample miorina			i.	
0509593-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 5043 MW-8 MW-8 Alex of TRCi	Receive Date: (Sampling Date: Sample Depth: Sample Matrix:	09/27/05 21:30 09/27/05 09:12 Water	Delivery Work Order (LabW: Global ID: T0600101476 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509593-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 5043 MW-10 MW-10 Alex of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/27/05 21:30 09/27/05 08:34 	Delivery Work Order (LabW: Global ID: T0600101476 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509593-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 5043 MW-7 MW-7 Alex of TRCI	Receive Date: (Sampling Date: (Sample Depth: Sample Matrix:	09/27/05 21:30 09/27/05 09:00 Water	Delivery Work Order (LabW: Global ID: T0600101476 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509593-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 5043 MW-9 MW-9 Alex of TRCI	Receive Date: (Sampling Date: Sample Depth: Sample Matrix:	09/27/05 21:30 09/27/05 11:07 Water	Delivery Work Order (LabW: Global ID: T0600101476 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509593-05	COC Number: Project Number: Sampling Location: Sampling Point:	 5043 MW-3 MW-3 Alex of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/27/05 21:30 09/27/05 11:44 	Delivery Work Order (LabW: Global ID: T0600101476 Matrix: W Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Irvine CA, 92618-2302 TRC Alton Geoscience 21 Technology Drive

Project Number: [none] Project: 5043

Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Laboratory / Client Sample Cross Reference

Client Sample Information Laboratory

COC Number: 0509593-06

Project Number:

MW-6 MW-6 Sampling Location: Sampling Point:

Alex of TRCI Sampled By:

09/27/05 11:32 09/27/05 21:30 Sampling Date: Receive Date:

Sample Matrix: Water Sample Depth:

Samle QC Type (SACode): CS Cooler ID: Global ID: T0600101476 Matrix: W

Delivery Work Order (LabW:

BC Laboratories

TRC Alton Geoscience

21 Technology Drive Irvine CA, 92618-2302

Project: 5043
Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

DCI Cample ID.	0500503 04	Client Samuel Mame	olo Mom	5042	MAY O MAN	7/20/0 0 //	0.0	MANA O MANA O O/OZ/OOGE 0:40:00 ANA Alex						
COL Calline ID.		Olicine Galli	DIG Nam	5	,	0,000	Prep 8.	Run		Instru-	:	ဗွ	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Difution	Batch ID	Bias	Quals
Benzene		QN	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	QN	
Ethylbenzene		1.2	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 13:57	SDU	MS-V12	~	BOJ0065	S	
Methyl t-butyl ether		Q.	T/6n	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 13:57	nas	MS-V12	_	BOJ0065	QN	
Toluene		Q.	ng/L	0.50		EPA-8260		10/05/05 10/06/05 13:57	nas	MS-V12	-	BOJ0065	N Q	
Total Xylenes		QN	ng/L	1.0		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	Q	
t-Amyl Methyl ether		QN	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	N Q	
t-Butyl alcohol		QN	ng/L	10		EPA-8260	10/05/05	10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	2	
Diisopropyl ether		QN	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	9	
Ethanol		QN	ng/L	250	-	EPA-8260		10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	N Q	
Ethyl t-butyl ether		Q.	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 13:57	nds	MS-V12	-	BOJ0065	S S	
Total Purgeable Petroleum Hydrocarbons	leum	QN	ng/L	20		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065	Q	
1,2-Dichloroethane-d4 (Surrogate)	(Surrogate)	112	%	76 - 114 (L(CL - UCL)	EPA-8260	10/05/05	(LCL - UCL) EPA-8260 10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065		
Toluene-d8 (Surrogate)	(6	104	%	88 - 110 (L((TCF - NCF)	EPA-8260	10/05/05	10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065		
4-Bromofluorobenzene (Surrogate)	e (Surrogate)	104	%	86 - 115 (L((LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 13:57	SDU	MS-V12	-	BOJ0065		

TRC Alton Geoscience 21 Technology Drive

Irvine CA, 92618-2302

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

BCL Sample ID: 0509593-01 Client Sample Name: 5043,	0509593-01	Client Sam	ole Nam	э: 5043, №	TW-8, M	W-8, 9/27!.	2005 9:	MW-8, MW-8, 9/27/2005 9:12:00AM, Alex	\ \					
							Prep	Run		Instru-		၁	MB	Lab
Constituent		Result	Units	Units PQL	MDL	MDL Method	Date	Date/Time	Analyst	ment ID	Dilution	Analyst ment ID Dilution Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	; (C12 - C24)	2	ng/L	200		Luft/TPHd	10/11/05	_uft/TPHd 10/11/05 10/12/05 23:57 VTR GC-12A 0.94	VTR	GC-12A		BOJ0514	N	A52
Tetracosane (Surrogate)	(ә	38.7	%	36 - 134 (LC	(TOOT)	Luft/TPHd	10/11/05	LCL - UCL) Luft/TPHd 10/11/05 10/12/05 23:57 VTR GC-12A 0.94 BOJ0514	VTR	GC-12A	0.94	BOJ0514		

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

DOI Comple ID.	0500502 02	المردي فيروزان	lo Money	5773	A 07 40 R	MAY 40 019	7/2005	NAME TO BASE TO CONTRACT CONTRACTOR AND	 <u>}</u>					
DOL Sample ID.		cheff Sample Name.	ole Nami	5045,	VIVV-10, IN	1144-10, 3/2	11/2003	0.04.UUAIVI, A	<u>×</u>		:			
							Prep	Run		Instru-		သွ	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene		Q.	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	QN	
Ethylbenzene		QN	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	2	
Methyl t-butyl ether		Ð	ug/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	γ-	BOJ0065	9	
Toluene		QN	ng/L	0.50		EPA-8260		10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	2	:
Total Xylenes		QN	J/Bn	1.0		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	S	
t-Amyl Methyl ether		2	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	Q.	
t-Butyl alcohol		2	T/Bn	10		EPA-8260	10/05/05	10/05/05 10/06/05 14:20	nas	MS-V12	-	BOJ0065	Q.	
Diisopropyl ether		2	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	9	
Ethanol		Q	ng/L	250		EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	Q.	
Ethyl t-butyl ether		Ð	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065	8	
Total Purgeable Petroleum Hydrocarbons	oleum	QN	ng/L	20		EPA-8260	10/02/05	EPA-8260 10/05/05 10/06/05 14:20	nas	MS-V12	-	BOJ0065	QN	
1,2-Dichloroethane-d4 (Surrogate)	14 (Surrogate)	106	%	76 - 114 (LC	OL - UCL)	EPA-8260	10/05/05	76 - 114 (LCL - UCL) EPA-8260 10/05/05 10/06/05 14:20	nas	MS-V12	~	BOJ0065		
Toluene-d8 (Surrogate)	te)	103	%	88 - 110 (L(CL - UCL)	.CL - UCL) EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	-	BOJ0065		
4-Bromofluorobenzene (Surrogate)	ne (Surrogate)	101	%	86 - 115 (LCL - UCL)	CL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 14:20	SDU	MS-V12	1	BOJ0065		

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

BCL Sample ID: 0509593-02 Client Sample Name: 5043,	0509593-02	Client Sam	ole Nam	9: 5043, MV	V-10, N	1W-10, 9/2	7/2005	MW-10, MW-10, 9/27/2005 8:34:00AM, Alex	×e					
							Prep	Run		Instru-		ည္မွ	MB	Lab
Constituent		Result Units PQL	Units		MDL	MDL Method	Date	Date/Time /	Analyst	ment ID	Dilution	Analyst ment ID Dilution Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	s (C12 - C24)	<u>N</u>	ng/L	200		Luft/TPHd	10/11/05	Luft/TPHd 10/11/05 10/13/05 00:17 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514	QN	A52
Tetracosane (Surrogate)	te)	60.5	%	36 - 134 (LCL	- UCL)	Luft/TPHd	10/11/05	(LCL - UCL) Luft/TPHd 10/11/05 10/13/05 00:17 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514		

TRC Alton Geoscience 21 Technology Drive

Irvine CA, 92618-2302

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

	00000000			25	B.83.4.7.0.00	10000	4440000				·		
BCL Sample IU:	0208287-03	Client Sample Name:	ole Name	5043,	, IVIVV-1, 5/2/	72005 83	WIVV-7, INVV-7, S/Z7/ZUUS S:UU:UUAIM, AIEX						
						Prep	Run		Instru-		ည္မွ	MB	Lab
Constituent		Result	Units	PQL MDL	L Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Jilution	Batch ID	Bias	Quals
Benzene		0.59	T/6n	0.50	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	nas	MS-V12	-	BOJ0065	ND	
Ethylbenzene		S S	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	ND	
Methyl t-butyl ether		96.0	ng/L	0:50	EPA-8260	ı	10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q.	
Toluene		1.2	ng/L	0.50	EPA-8260		10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	<u>Q</u>	
Total Xylenes		QN	ng/L	1.0	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q	
t-Amyl Methyl ether		Q	ng/L	0.50	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q.	
t-Butyl alcohol		<u>R</u>	ng/L	10	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q	
Diisopropyl ether		Ð	ng/L	0.50	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	QN	
Ethanol		QN	ng/L	250	EPA-8260		10/05/05 10/06/05 05:39	SDU	MS-V12	_	BOJ0065	QN	
Ethyl t-butyl ether		ON	ng/L	0:50	EPA-8260		10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q.	
Total Purgeable Petroleum Hydrocarbons	enm	Q	ng/L	50	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065	Q.	
1,2-Dichloroethane-d4 (Surrogate)	(Surrogate)	104	%	76 - 114 (LCL - UCL)		10/05/05	EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065		
Toluene-d8 (Surrogate)	(6	102	%	88 - 110 (LCL - UC	CL) EPA-8260	10/05/05	(LCL - UCL) EPA-8260 10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065		
4-Bromofluorobenzene (Surrogate)	(Surrogate)	98.8	%	86 - 115 (LCL - UCL)	CL) EPA-8260	1	10/05/05 10/06/05 05:39	SDU	MS-V12	-	BOJ0065		

TRC Alton Geoscience 21 Technology Drive

Irvine CA, 92618-2302

Project: 5043
Project Number: [none]

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

Project Manager: Anju Farfan

BCL Sample ID: 0509593-03 Client Sample Name: 5043,	0509593-03	Client Samp	le Name		MW-7, M	W-7, 9/27/;	2005	MW-7, MW-7, 9/27/2005 9:00:00AM, Alex						
							Prep	Run		Instru-		သွ	MB	Lab
Constituent		Result Units PQL	Units	PQL	MDL	MDL Method	Date	Date/Time	Analyst	ment ID	Dilution	Analyst ment ID Dilution Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	s (C12 - C24)	QN	; 7/6n	200		Luft/TPHd	10/11/05	_ufi/TPHd 10/11/05 10/13/05 00:37 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514	QN	
Tetracosane (Surrogate)	(e)	61.3	%	% 36 - 134 (L	CL - UCL)	Luff/TPHd	10/11/05	(LCL - UCL) Luft/TPHd 10/11/05 10/13/05 00:37 VTR GC-12A 0.94	YT.	GC-12A	0.94	BOJ0514		

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0509593-04 Client Sample Name:	Client Samr	le Name	5043	/M 6-W/V	3/26/6-W	2005 11	MW-9 MW-9 9/27/2005 11:07:00AM Alex		!				
					5		Prep	Run		Instru-		တ္မ	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene		9	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:01	SDU	MS-V12	+	BOJ0065	ND	
Ethylbenzene		Ð	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	QN	
Methyl t-butyl ether		2.3	ng/L	0.50		EPA-8260	10/02/05	10/05/05 10/06/05 06:01	SDU	MS-V12	_	BOJ0065	2	
Toluene		0.73	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 06:01	SDU	MS-V12	+	BOJ0065	Q.	
Total Xylenes		QN.	ng/L	1.0		EPA-8260	10/05/05	10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	NO ON	
t-Amyl Methyl ether		9	ng/L	0.50		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:01	SDU	MS-V12	1	BOJ0065	Q.	
t-Butyl alcohol		9	ng/L	9		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	Q	
Diisopropyl ether		QN	ug/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	Q	
Ethanol		Q.	ng/L	250		EPA-8260	10/05/05	10/05/05 10/06/05 06:01	SDU	MS-V12	·	BOJ0065	Q	
Ethyl t-butyl ether		9	ng/L	0.50		EPA-8260	10/05/05	10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	Q	
Total Purgeable Petroleum Hydrocarbons	leum	ΩN	ng/L	20		EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065	Q	
1,2-Dichloroethane-d4 (Surrogate)	(Surrogate)	98.6	%	76 - 114 (L(OL - UCL)	LCL - UCL) EPA-8260		10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065		
Toluene-d8 (Surrogate)	(6	102	%	88 - 110 (L(CCL - UCL)	EPA-8260		10/05/05 10/06/05 06:01	SDU	MS-V12	-	BOJ0065		
4-Bromofluorobenzene (Surrogate)	e (Surrogate)	98.8	%	86 - 115 (L(LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:01	nas	MS-V12	-	BOJ0065		

TRC Alton Geoscience 21 Technology Drive

zi recimology Dilve Irvine CA, 92618-2302

Project: 5043 Project Number: [none] Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

BCL Sample ID: 0509593-04 Client Sample Name: 5043,	0509593-04	Client Samp	ole Nam	e: 5043, M	1W-9, M	W-9, 9/27/2	2005 11:	MW-9, MW-9, 9/27/2005 11:07:00AM, Alex	×					
							Prep	Run		Instru-		၁၀	MB	Lab
Constituent		Result Units PQL	Units	집	MDL	MDL Method	Date	Date/Time	Analyst	Analyst ment ID Dilution I	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	s (C12 - C24)	QN.	ng/L	200		Luft/TPHd	10/11/05	Luft/TPHd 10/11/05 10/13/05 00:56 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514	QN	
Tetracosane (Surrogate)	(e)	49.7	%	36 - 134 (LC	L - UCL)	Luff/TPHd	10/11/05	(LCL - UCL) Luft/TPHd 10/11/05 10/13/05 00:56 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514		

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 05(0509593-05	Client Sample Name:	le Name	5043,	/W-3, 9/27/	2005 11	MW-3, MW-3, 9/27/2005 11:44:00AM, Alex	\ \ \					
			:			Prep	Run		Instru-		ည္မ	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	ilution	Batch ID	Bias	Quals
Benzene		QN	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	ND	
Ethylbenzene		QV	ng/L	0:20	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	_	BOJ0065	Q	
Methyl t-butyl ether		100	ng/L	5.0	EPA-8260	10/05/05	10/05/05 10/06/05 14:42	SDU	MS-V12	10	BOJ0065	2	A01
Toluene		09:0	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	₽	
Total Xylenes		2	ng/L	1.0	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	_	BOJ0065	2	
t-Amyl Methyl ether	:	Q	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	1	BOJ0065	9	
t-Butyl alcohol		79	ng/L	10	EPA-8260	1	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	2	:
Diisopropyl ether		ON	ng/L	0.50	EPA-8260		10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	S	
Ethanol		QN	ng/L	250	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	Q	
Ethyl t-butyl ether		QN	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	_	BOJ0065	2	
Total Purgeable Petroleum Hydrocarbons		210	ng/L	50	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065	Ð	
1,2-Dichloroethane-d4 (Surrogate)	rogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 14:42	SDU	MS-V12	10	BOJ0065		
1,2-Dichloroethane-d4 (Surrogate)	rogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	1	BOJ0065		
Toluene-d8 (Surrogate)		104	%	88 - 110 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 14:42	SDU	MS-V12	10	BOJ0065		
Toluene-d8 (Surrogate)		103	%	88 - 110 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:23	SDU	MS-V12	-	BOJ0065		
4-Bromofluorobenzene (Surrogate)	rrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 14:42	SDU	MS-V12	10	BOJ0065		
4-Bromofluorobenzene (Surrogate)	rrogate)	101	%	86 - 115 (LCL - UCL)		10/05/05	EPA-8260 10/05/05 10/06/05 06:23	SDU	MS-V12	_	BOJ0065		

Project: 5043 Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

BCL Sample ID: 0509593-05 Client Sample Name: 5043,	0509593-05	Client Sam	ole Nam	e: 5043, N	/W-3, M	W-3, 9/27/;	2005 11:	MW-3, MW-3, 9/27/2005 11:44:00AM, Alex	×					
							Prep	Run		Instru-		သွ	MB	Lab
Constituent		Result Units PQL	Units	PQL	MDL	MDL Method	Date	Date/Time Analyst ment ID Dilution Batch ID	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	s (C12 - C24)	Q	ng/L	200		Luft/TPHd	10/11/05	_uft/TPHd 10/11/05 10/13/05 01:16 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514	QN	A52
Tetracosane (Surrogate)	(e)	55.3	%	% 36 - 134 (LC	X - UCL)	Luft/TPHd	10/11/05	(LCL - UCL) Luft/TPHd 10/11/05 10/13/05 01:16 VTR GC-12A 0.94	VTR	GC-12A	0.94	BOJ0514		

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0509593-06	\vdash	Client Sample Name:	le Name	5043.	AW-6. 9/27/	2005 11	MW-6, MW-6, 9/27/2005 11:32:00AM, Alex	×					
	1					Prep	Run		Instru-		၁ဗ	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	Analyst ment ID Dilution	Dilution	Batch ID	Bias	Quals
Benzene		82	T/6n	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	SDU	MS-V12	-	BOJ0065	Q	
Ethylbenzene		430	ng/L	5.0	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	SDU	MS-V12	10	BOJ0065	Q.	A01
Methyl t-butyl ether		0.56	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	nas	MS-V12	-	BOJ0065	Q.	
Toluene		120	ng/L	5.0	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	nas	MS-V12	10	BOJ0065	Q.	A01
Total Xylenes		066	T/6n	10	EPA-8260	10/05/05	10/06/05 15:05	nas	MS-V12	10	BOJ0065	9	A01
t-Amyl Methyl ether		QN	ng/L	0.50	EPA-8260	10/05/05	10/06/05 06:46	nds	MS-V12	_	BOJ0065	9	
t-Butyl alcohol		9	T/6n	10	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	nas	MS-V12	1	BOJ0065	g	
Diisopropyl ether		1.8	ug/L	0.50	EPA-8260	10/05/05	EPA-8260 10/05/05 10/06/05 06:46	nas	MS-V12	-	BOJ0065	N Q	
Ethanol		9	ng/L	250	EPA-8260	1	10/05/05 10/06/05 06:46	SDU	MS-V12	-	BOJ0065	S	
Ethyl t-butyl ether		QN	ng/L	0.50	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	SDU	MS-V12	-	BOJ0065	Ð	
Total Purgeable Petroleum Hydrocarbons		13000	ng/L	500	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	ngs	MS-V12	10	BOJ0065	Q	A01
1,2-Dichloroethane-d4 (Surrogate)	(e)	107	%	76 - 114 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	SDU	MS-V12	-	BOJ0065		
1,2-Dichloroethane-d4 (Surrogate)	(e)	102	%	76 - 114 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	nas	MS-V12	10	BOJ0065		
Toluene-d8 (Surrogate)		104	%	88 - 110 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	ngs	MS-V12	-	BOJ0065		
Toluene-d8 (Surrogate)		104	%	88 - 110 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	SDU	MS-V12	10	BOJ0065		
4-Bromofluorobenzene (Surrogate)	te)	104	%	86 - 115 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 15:05	SDU	MS-V12	10	BOJ0065		
4-Bromofluorobenzene (Surrogate)	(e)	101	%	86 - 115 (LCL - UCL)	EPA-8260	10/05/05	10/05/05 10/06/05 06:46	SDU	MS-V12	-	BOJ0065		

TRC Alton Geoscience

21 Technology Drive Irvine CA, 92618-2302

Project: 5043

Project Manager: Anju Farfan Project Number: [none]

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

BCL Sample ID: 0509593-06 Client Sample Name: 5043,	0509593-06	Client Sam	ole Nam	e: 5043, N	AW-6, M	W-6, 9/27/;	2005 11	MW-6, MW-6, 9/27/2005 11:32:00AM, Alex	×					
							Prep	Run		Instru-		ညွ	MB	Lab
Constituent		Result Units PQL	Units	PQL	MDL	MDL Method	Date	Date/Time Analyst ment ID Dilution	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	s (C12 - C24)	2500	ng/L	ug/L 1000		Luff/TPHd	10/11/05	Luft/TPHd 10/11/05 10/13/05 09:06 VTR GC-12A 4.72	VTR	GC-12A	4.72	BOJ0514	QN	A01, A52
Tetracosane (Surrogate)	(e,	44.5	%	36 - 134 (LC	CL - UCL)	Luft/TPHd	10/11/05	(LCL - UCL) Luft/TPHd 10/11/05 10/13/05 09:06 VTR GC-12A 4.72 BOJ0514	VTR	GC-12A	4.72	BOJ0514		

TRC Alton Geoscience 21 Technology Drive

21 Technology Drive Irvine CA, 92618-2302

Project: 5043

Project Number: [none] Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contro	Control Limits	
				Source		Spike			Percent		Percent	-
Constituent	Batch ID	QC Sample ID	Batch ID QC Sample ID QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals	rals
Benzene	BOJ0065	BOJ0065 BOJ0065-MS1	Matrix Spike	QN	24.970	25.000	ng/L		99.9		70 - 130	
		BOJ0065-MSD1	BOJ0065-MSD1 Matrix Spike Duplicate	2	24.940	25.000	ng/L	0.100	8.66	20	70 - 130	
Toluene	BOJ0065	BOJ0065 BOJ0065-MS1	Matrix Spike	9	23.740	25,000	ng/L		95.0		70 - 130	
		BOJ0065-MSD1	Matrix Spike Duplicate	9	23.630	25.000	ng/L	0.528	94.5	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	BOJ0065	BOJ0065 BOJ0065-MS1	Matrix Spike	9	10.310	10.000	ng/L		103		76 - 114	
		BOJ0065-MSD1	Matrix Spike Duplicate	9	10.610	10.000	ng/L		106		76 - 114	
Toluene-d8 (Surrogate)	BOJ0065	BOJ0065 BOJ0065-MS1	Matrix Spike	9	10.080	10.000	ng/L		101		88 - 110	
		BOJ0065-MSD1	BOJ0065-MSD1 Matrix Spike Duplicate	2	10.130	10.000	ng/L		101		88 - 110	
4-Bromofluorobenzene (Surrogate)	BOJ0065	BOJ0065 BOJ0065-MS1	Matrix Spike	9	9.9600	10.000	ng/L		9.66		86 - 115	
		BOJ0065-MSD1	Matrix Spike Duplicate	2	10.000	10.000	ng/L		100		86 - 115	

TRC Alton Geoscience 21 Technology Drive

Irvine CA, 92618-2302

Project: 5043 Project Number: [none]

rroject ivumber: Inonej Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contro	Control Limits
				Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample ID	Batch ID QC Sample ID QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24) BOJ0514 BOJ0514-MS1 Matrix Spike	BOJ0514	BOJ0514-MS1	Matrix Spike	N O	377.72	500.00	T/6n		75.5		41 - 139
		BOJ0514-MSD1	BOJ0514-MSD1 Matrix Spike Duplicate	2	414.28	500.00	ng/L	9.34	82.9	30	41 - 139
Tetracosane (Surrogate)	BOJ0514	BOJ0514 BOJ0514-MS1 Matrix Spike	Matrix Spike	9	14.569	20.000	ng/L		72.8		36 - 134
		BOJ0514-MSD1	BOJ0514-MSD1 Matrix Spike Duplicate	2	14.903	20,000	ng/L		74.5		36 - 134

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

									ပ	Control Limits	401
Constituent	Batch ID	Batch ID QC Sample ID QC Type	QC Type	Result	Spike Level	Po	Units	Percent Recovery	Percent RPD Recover	Percent Recovery RPD	Lab Quals
Benzene	BOJ0065	BOJ0065 BOJ0065-BS1 LCS	SOT	25.480	25.000	0.50	ug/L	102	70 - 130		
Toluene	BOJ0065	BOJ0065 BOJ0065-BS1 LCS	SOT	24.300	25.000	0.50	ng/L	97.2	70 - 130	130	
1,2-Dichloroethane-d4 (Surrogate)	BOJ0065	BOJ0065 BOJ0065-BS1 LCS	SOT	10.110	10.000		ug/L	101	76 - 114	114	
Toluene-d8 (Surrogate)	BOJ0065	BOJ0065 BOJ0065-BS1 LCS	SOT	10.050	10.000		ng/L	100	88 - 110	110	
4-Bromofluorobenzene (Surrogate) BOJ0065 BOJ0065-BS1 LCS	BOJ0065	BOJ0065-BS1	SOT	10.040	10.000		ng/L	100	86 - 115	115	

Project: 5043
Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control Limits	-imits		
					Spike			Percent		Percent			
Constituent	Batch ID	Batch ID QC Sample ID QC Type	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Diesel Range Organics (C12 - C24) BOJ0514 BOJ0514-BS1 LCS	BOJ0514	BOJ0514-BS1	SOT	394.61	500.00	200	ug/L	78.9		62 - 101			1
Tetracosane (Surrogate)	BOJ0514	BOJ0514 BOJ0514-BS1 LCS	SOT	13.241	20.000		ug/L	66.2		36 - 134			-

TRC Alton Geoscience 21 Technology Drive

Irvine CA, 92618-2302

Project: 5043

Project Number: [none] Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

	-						
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BOJ0065	BOJ0065-BLK1	Q	ng/L	0:20	0.13	
Ethylbenzene	BOJ0065	BOJ0065-BLK1	ND	ng/L	0.50	0.14	
Methyl t-butyl ether	BOJ0065	BOJ0065-BLK1	Q	ng/L	0.50	0.15	
Toluene	BOJ0065	BOJ0065-BLK1	QN	ng/L	0.50	0.15	
Total Xylenes	BOJ0065	BOJ0065-BLK1	Q	ng/L	1.0	0.40	
t-Amyl Methyl ether	BOJ0065	BOJ0065-BLK1	ON	ng/L	0.50	0.31	
t-Butyl alcohol	BOJ0065	BOJ0065-BLK1	ON	ng/L	10	10	
Diisopropyl ether	BOJ0065	BOJ0065-BLK1	QN	ng/L	0.50	0.23	
Ethanol	BOJ0065	BOJ0065-BLK1	QN	ng/L	1000	110	
Ethyl t-butyl ether	BOJ0065	BOJ0065-BLK1	QN	ng/L	0.50	0.27	
Total Purgeable Petroleum Hydrocarbons	BOJ0065	BOJ0065-BLK1	QN	T/Bn	50	23	
1,2-Dichloroethane-d4 (Surrogate)	BOJ0065	BOJ0065-BLK1	98.6	%	76 - 114 (LCL - UCL)	CL - UCL)	
Toluene-d8 (Surrogate)	BOJ0065	BOJ0065-BLK1	100	%	88 - 110 (LCL - UCL)	CL - UCL)	
4-Bromofluorobenzene (Surrogate)	BOJ0065	BOJ0065-BLK1	92.2	%	86 - 115 (LCL - UCL)	CL - UCL)	

Project: 5043 Project Number: [none]

Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

39	anty control i	Adamy College Inchol - Inculod Dialin Alialysis	שווע שוומום	yolo			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BOJ0514	BOJ0514-BLK1	QN	ng/L	200	99	
Tetracosane (Surrogate)	BOJ0514	BOJ0514-BLK1	79.3	%	36 - 134 (LCL - UCL)	.cr - UCL)	

Project: 5043
Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/14/05 13:48

Notes and Definitions

	-
ne	
Estimated value	
imate	
Esti	ξ
	C 4

A52 Chromatogram not typical of diesel.

A01 PQL's and MDL's are raised due to sample dilution.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

· Land	
-	

ACCEPO TO NIETO 4100 Allas Court E Bakensfield CA 93303 (561) 327-4311 J FAX (661) 327-1913 24 2420 23

2007 KOR KATES Ditte & Time 20-12-60 SOUTH THE STATE OF THE STATE OF LbbH PÀ 8560B 4 ETHANOL by 82608 X REGARDA Received by TPH GAS by 8015M STEX/MTBE by 80218, Gas by 8015 S.Counch Waste 6.6 Jo-12-00 S Water. Water (MAN) Î 9 Δ. 2160 7530 0000 1107 71711 1132 Date & Time Semple: 9000 20-27-60 1847 TRC 50 5043 ンジサ 1000001/1 THE THE PARTY OF tryine, CA 92518-2302 KSI Techology Drive C Provided Attn. Anju Parten Phillips 85 filnocal Mg.: Sully Leby Sample: Name. Tak Point lene Worker # G-CHOIL STANK Address: 449 HEGENEGELE whillips 660 unoca ample Descriptor るちんでひ MRIG mm-3 MW-8 Anto-10 A16-7 Mr. -9 いまどろどう Circle one. SEE CA ् अधानकार् 15 10 14

CLUEAL D 70400 101 476

いのうのが

75.

Jane & Time

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.