

RECEIVED

11:13 am, Jun 06, 2007

Alameda County Environmental Health

April 19, 2007

Mr. Matthew Klemchuk BARRY SWENSON BUILDER 777 North First Street San Jose, California 95112

Project No. 33107-007514.03

Subject: Subsurface Investigation Report, Groth Brothers Chevrolet Dealership Property, 57/59 South L Street, Livermore, California

Dear Mr. Klemchuk:

Bureau Veritas North America, Inc. (Bureau Veritas) is pleased to present this *Subsurface Investigation Report* (Report) for Barry Swenson Builder regarding the Groth Brothers Chevrolet Dealership property located at 57/59 South L Street in Livermore, California. Enclosed are three copies of the Report.

If you have any questions or comments regarding the information provided herein, please do not hesitate to contact me at 925.426.2607 or Jon Rosso at 925.426.2676.

Sincerely,

Mat Craig T. Pelletier, P.G.

Project Manager Environmental Services

CTP/ctp

Enclosures

Bureau Veritas North America, Inc.

6920 Koll Center Parkway, Suite 216 Pleasanton, CA 94566 Main (925) 426-2600 Fax (925) 426-0106 www.us.buseauveritas.com

Subsurface Investigation Report

Groth Brothers Chevrolet Dealership 57/59 South L Street Livermore, California

> April 19, 2007 Project No. 33107-007514.03 Prepared for BARRY SWENSON BUILDER San Jose, California

For the benefit of business and people

Bureau Veritas North America, Inc.

6920 Koll Center Parkway Pleasanton, California 94566 925.426.2600 www.us.bureauveritas.com

CONTENTS

<u>Secti</u>	on			<u>Page</u>						
1.0	INTR	ODUCT	10N	4						
2.0	BAC	KGROU	IND	4						
3.0	SCOPE OF WORK									
	3.1	PRE-F	FIELD ACTIVITIES	5						
	3.2	FIELD	ACTIVITIES	6						
		3.2.1	Underground Utility Clearance	6						
		3.2.2	Soil Borings	6						
		3.2.3	Soil Sampling	7						
		3.2.4	Grab-groundwater Sampling	7						
		3.2.5	Chemical Analyses	7						
		3.2.6	Equipment Decontamination	8						
		3.2.7	Soil Boring Abandonment	9						
		3.2.8	Waste Disposal	9						
4.0	INVE	STIGAT	FION FINDINGS	9						
	4.1	SOIL E	BORING OBSERVATIONS	9						
	4.2	SOIL A	ANALYTICAL RESULTS	9						
		4.2.1	TPH in Soil	10						
		4.2.2	PAHs in Soil	10						
		4.2.3	VOCs in Soil	10						
		4.2.4	PCBs in Soil	10						
		4.2.5	OC Pesticides in Soil	11						
		4.2.6	RCRA Metals in Soil	11						
	4.3	GRAB	-GROUNDWATER ANALYTICAL RESULTS	11						
		4.3.1	TPH in Grab-Groundwater	12						
		4.3.2	VOCs in Grab-Groundwater	12						
	4.4	QUALI	ITY ASSURANCE/QUALITY CONTROL	13						
5.0	DISC	USSION	N OF RESULTS	13						
	5.1	GEOL	OGY AND HYDROGEOLOGY	13						
	5.2	VEHIC	CLE REPAIR SHOPS	14						
	5.3	FORM	IER MACHINE SHOP	14						
	5.4	FORM	IER GASOLINE SERVICE STATIONS	15						
		5.4.1	Southwestern Former Gasoline Service Station	15						
		5.4.2	Southeastern Former Gasoline Service Station	15						
	5.5	VALLE	EY GAS PETROLEUM PLUME	16						

(Continued)

	5.6	CHLORINATED SOLVENT PLUME	. 17				
	5.7	NORTHERN LOT	. 17				
6.0	CON	ICLUSIONS	. 18				
7.0	RECOMMENDATIONS						
8.0	SIGN	NATURES	. 19				
9.0	REF	ERENCES	. 20				

<u>Tables</u>

1	Soil Analytic	al Results –	TPH, PAHs.	VOCs.	PCBs and	OC Pesticides
			,	,	i obo una	001000000

- 2 Soil Analytical Results RCRA Metals
- 3 Grab-Groundwater Analytical Results TPH
- 4 Grab-Groundwater Analytical Results VOCs

Figures

- 1 Site Location Map
- 2 Site Plan with Soil Boring Locations and Historical Features from 1884 to 1959
- 3 Concentrations of Petroleum Hydrocarbons in Groundwater
- 4 Concentrations of Chlorinated VOCs in Groundwater

Appendices

- A Soil Boring Permit
- B Soil Boring Logs
- C Soil Analytical Laboratory Reports
- D Grab-Groundwater Analytical Laboratory Reports

1.0 INTRODUCTION

Bureau Veritas North America, Inc. (Bureau Veritas) prepared this *Subsurface Investigation Report* for Barry Swenson Builder (Swenson) regarding the Groth Brothers Chevrolet Dealership property located at 57/59 South L Street in Livermore, Alameda County, California (the "Site", Figure 1).

This investigation was conducted in accordance with Bureau Veritas' Proposal Number 3303.07.073 dated March 3, 2007 based upon findings presented in our *Phase I Environmental Site Assessment (ESA) Report* dated March 15, 2007. This investigation was conducted to further assess the Site as part of a proposed property acquisition and redevelopment for mixed commercial and residential use.

2.0 BACKGROUND

The approximately 4.03-acre Site is composed of two parcels identified by assessor parcel numbers (APNs) 97-3-7-1 and 98-405-4. The Site is currently developed for use as a new and used auto dealership operated by Groth Brothers Chevrolet (Groth), containing four buildings and associated asphalt paved parking areas. Access to the Site is by driveways off Railroad Avenue to the north, South L Street to the east, 1st Street to the south, and South M Street to the west. The building housing the main offices and showroom is addressed as 59 South L Street. The parts and service department building, which includes service bays and offices, is addressed as 1934 1st Street. A body shop north of the service building off South M Street includes a paint booth and paint mixing room. The northern most building, addressed as 57 South L Street, houses used car sales offices, auto detailing, and a wash rack.

The Site has been developed and in use for a mix of residential, commercial, and industrial activities since at least 1884. While all uses of the Site have not been determined, historic data collected during this assessment has provided known uses for specific points in time. Railroad tracks crossed the northern portion of the Site from at least 1884 through the 1970s. Land use on the southern portion of the Site has included a number of retail facilities as well as a fuel and feed shop, printing, gasoline stations, and auto repair and service. Properties in the surrounding area also have been developed since the 1880s for commercial and residential use, including gasoline stations, auto repair facilities, and cleaners. Residential development of the Site is planned.

Bureau Veritas' *Phase I ESA* revealed no evidence of recognized environmental conditions (RECs) in connection with the Site, except for the following:

• Former uses: The Site has been in commercial use for more than a century; these former uses are associated with documented or potential subsurface impacts to soil and groundwater. Known notable historic uses or features include an oil room and laundry, fuel distributor, printing, a machine shop, paint room and other painting, two gasoline stations, and auto repair. Use for auto repair and painting continues today. In addition, railroad lines crossed the northern portion of the Site from at least 1884 through the 1970s, and fill placed across the Site is potentially from former railroad locations. Materials associated with these uses include petroleum hydrocarbons, halogenated volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) potentially associated with in-ground hydraulic equipment, and oils, metals and herbicides associated with railroad operations.

- **Current use:** Although regulatory inspections conducted by the Livermore Pleasanton Fire Department and City of Livermore Water Resources Division indicate that the existing auto repair facility has been generally well maintained since the mid-1990s, the 70+ year old facility currently includes features that suggest potential subsurface impacts including below ground hydraulic lifts and a plugged oil sump.
- Offsite concern: A petroleum hydrocarbon plume extends from the Valley Gas facility westnorthwestward below a portion of the Site, to existing railroad lines some 1,800 feet distant. The source zone was estimated to be approximately 80 to 120 feet wide and approximately 250 feet long. The contaminant "smear zone" is estimated to be around between 32 to 52 feet bgs. Some concentrations of benzene reported in the groundwater below the Site have exceeded regulatory screening levels for residential properties. A vapor study and risk assessment conducted at the Site in 2006 found that under current groundwater level conditions, there is relatively low potential for soil vapor intrusion into buildings resulting in indoor vapor concentrations above acceptable risks. However; should the groundwater level drop to below the top of the smear zone, soil vapors would be expected to increase, possibly to levels that may have an adverse impact on indoor air quality. Reportedly, remediation of the source zone is in the testing and planning stages.

Based on findings of the Phase I ESA, Bureau Veritas recommended additional evaluation of soil and groundwater conditions in the vicinity of the on-site printing room machine shop, auto repair facility, and gasoline stations on the southern corners of the side of the Site, as well as in near surface soils across the site with respect to potential railroad related impacts.

3.0 SCOPE OF WORK

Bureau Veritas performed the following scope of work to complete this investigation.

- Conducted pre-field activities that included preparing a site Health and Safety Plan to safely perform the proposed scope of work.
- Contracted with a utility locator service to locate and clear proposed soil boring locations of underground utilities.
- Contracted with a licensed drilling contractor to advance 28 soil borings and collected representative soil and/or grab-groundwater samples from the borings.
- Submitted soil and grab-groundwater samples for laboratory analysis.
- Prepared this report.

3.1 PRE-FIELD ACTIVITIES

Bureau Veritas obtained a soil boring permit from the Zone 7 Water District. A copy of the soil boring permit is included as Appendix A.

Bureau Veritas contracted with Environmental Control Associates, Inc. (ECA) located in Aptos, California to complete the subsurface investigation. ECA is a California licensed (C-57) drilling company.

Prior to commencing work, Bureau Veritas completed a site specific HASP for the proposed work at the Site in accordance with the requirements of the State of California General Industry Safety Order (GISO)

5192 and Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120). A copy of the HASP was kept onsite during field activities. The HASP detailed the work to be performed, safety precautions, emergency response procedures, nearest hospital information, and onsite personnel responsible for managing emergency situations.

On March 5, 2007, Underground Service Alert (USA) was contacted at least 48 hours prior to drilling, as required by law. Bureau Veritas visited the Site and marked each proposed sample location in white paint prior to notification.

3.2 FIELD ACTIVITIES

The following is a summary of the field activities completed during this investigation.

3.2.1 Underground Utility Clearance

On March 7, 2007, Bureau Veritas contracted with OHJ Subsurface of Oakland, California to clear the proposed soil boring locations of underground utilities in order to safely perform the proposed scope of work. Each proposed boring location was cleared of potential subsurface obstructions within a five foot by five foot area.

3.2.2 Soil Borings

On March 8 and 9, 2007, Mr. Craig Pelletier, P.G., and Mr. Jeremy Wilson of Bureau Veritas supervised the advancement of 28 exploratory borings at locations depicted on Figure 2. The soil borings were advanced as follows:

- Nine soil borings (BV-01 through BV-09) were advanced to a total depth of approximately 12 feet bgs in the vehicle repair shops that have in-ground hydraulic vehicle hoists and sumps to assess for petroleum hydrocarbon releases. Boring BV-04 was advanced to a depth of 10 feet bgs where drilling refusal was encountered.
- Nine soil borings (BV-10 through BV-18) were advanced to a depth of 8 feet below the ground surface (bgs) to collect soil samples to profile fill materials on the northern lot in the vicinity of the former rail road tracks.
- Nine soil borings (BV-19 through BW-28) were advanced into the groundwater table to depths
 ranging from 34 to 41 feet to collect soil and grab-groundwater samples to further assess the two
 former gasoline station areas, areas where halogenated solvents have been detected in
 groundwater, the area where a former railroad machine shop was located (northwest corner of
 the Site), and current and former paint and printing shop operations.
- One deeper grab-groundwater sample (BV-22A) was advanced to a depth of approximately 45 feet bgs in the south central lot to confirm the finding of halogenated solvents that were detected with a membrane interface probe at this location.

ECA utilized truck-mounted direct-push (Geoprobe) equipment to advance the boreholes. The borings were generally advanced to the desired depth as outlined above. During the drilling activities, soil cores were collected from the boreholes for soil logging purposes. Soil cores were obtained using a 4-foot-long

by 2-inch-diameter core barrel sampler. The core barrel contains a plastic liner that retains a relatively undisturbed soil core from which soil samples are collected. Each soil borehole was logged for lithological content using the Unified Soil Classification System (USCS) as a guide, and for relative moisture content, competency, and other observable characteristics (e.g., color changes, debris, rootlets, odor, etc.). Several soil samples were selected from each borehole and placed into a sealed plastic bag for field screening using a photoionization detector (PID) to determine the presence of VOC vapors. Field observations were entered onto soil boring logs that are included as Appendix B.

3.2.3 Soil Sampling

Bureau Veritas generally collected soil samples approximately every four feet from the bottom of each sampling interval within the vadose zone soils. Exact soil sampling depths were determined based on drilling conditions, sample recovery, field observations and encountered depth to groundwater. Selected soil samples were cut from the acetate liners and sealed with Teflon tape and plastic end caps, labeled with identifying information, and stored in a pre-chilled ice-chest awaiting transportation to the laboratory. Selected soil samples were subsequently recorded onto a chain-of-custody document.

3.2.4 Grab-groundwater Sampling

Bureau Veritas collected a grab-groundwater sample from Borings BV-19 through BV-28. Groundwater sampling points were advanced into the saturated zone to approximately 2 to 4 feet below the level of first encountered groundwater and were collected by one of the following methods:

- Grab-groundwater samples BV-22 and BV-27 were collected using a temporary one-inchdiameter, schedule 40 PVC casing that was placed into each open borehole. The lower five feet of casing consisted of 0.010-inch slotted screen to allow for water to enter the temporary well point. Grab-groundwater samples were collected using new disposable tubing and a decontaminated ball check valve for each borehole.
- Grab-groundwater samples from remaining boreholes were collected using a closed system Hydropunch® sampler. The Hydropunch® sampling tool was advanced beyond the drill bit into undisturbed soil, and the sampling tool was retracted, allowing water to flow into the sampling chamber by exposing the screen. Grab-groundwater samples were collected from the Hydropunch® sampler using new disposable tubing and a decontaminated ball-check valve for each borehole.

Upon retrieval, the samples were transferred into appropriate laboratory supplied containers, capped and sealed, labeled with identifying information, and placed in a pre-chilled ice chest for transportation to the analytical laboratory under formal chain-of-custody documentation.

3.2.5 Chemical Analyses

A total of 29 soil samples and 11 grab-groundwater samples were collected during the investigation. Soil and grab-groundwater samples were submitted to a State of California certified laboratory for analyses. Samples were submitted for the following United States Environmental Protection Agency (USEPA) approved methods:

- Total Petroleum Hydrocarbons (TPH) quantified as gasoline (TPH-g) by Method 8015M 26 soil (BV-01 through BV-28) and 11 grab-groundwater samples (BV-19 through BV-28).
- Extractable TPH quantified as diesel (TPH-d) and motor oil (TPH-m) by Method 8015M using silica gel cleanup – 26 soil (BV-01 through BV-28) and 11 grab-groundwater samples (BV-19 through BV-28).
- VOCs including fuel oxygenates using Method 8260B 20 soil samples (Borings BV-01 though BV-09, BV-19 through BV-28) and 11 grab-groundwater samples (BV-19 through BV-28).
- Resource Conservation and Recovery Agency (RCRA) Metals by Series 6000 & 7000 Methods six soil samples (Borings BV-10 through BV-18).
- Poly-aromatic hydrocarbons (PAHs) by Method 8310 six soil samples (Borings BV-10 through BV-18).
- Polychlorinated biphenols (PCBs) by Method 8082A 15 soil samples (Borings BV-01 through BV-18).
- Organo-chlorinated pesticides (OCPs) by Method 8081 six soil samples (Borings BV-10 through BV-18).

The soil and grab-groundwater samples were submitted for laboratory analyses on a rush 1 to 2 day turn around time. Remaining soil samples were placed on hold by the laboratory.

The following table summarizes the chemical analyses performed for each soil boring location. Boring locations are presented on Figure 2.

Boring Number	Medium	Analytical Method	Soil Boring Locations
BV-01 through BV-09	Soil	TPH 8015M VOCs 8260B PCBs 8082A	Service station, paint booth, body shop, etc.
BV-10 through BV 18	Soil	TPH 8015M RCRA Metals 6000/7000 OCPs 8081 PCBs 8082A PAHs 8310	Northern lot near former railroad tracks.
BV-19 through BV-28	Soil/Groundw ater	TPH 8015M VOCs 8260B	Former gasoline service stations, former machine shop, areas where chlorinated VOCs previously detected, etc.

3.2.6 Equipment Decontamination

Bureau Veritas replaced new plastic liners in the core barrel prior to each sampling interval. Down-hole equipment was washed in a solution of non-phosphate detergent and double rinsed with tap water after each use.

3.2.7 Soil Boring Abandonment

Upon completion of the boreholes to the desired depth, the remaining borehole annulus was backfilled with neat cement to grade in accordance with approved methods mandated by Zone 7 Water District. The surface was repaired to its pre-existing condition.

3.2.8 <u>Waste Disposal</u>

The soil cuttings generated during this subsurface investigation were contained in one United States Department of Transportation approved 55-gallon steel drum. The drum was sealed, labeled and stored onsite for future disposal pending receipt of analytical results.

4.0 INVESTIGATION FINDINGS

Bureau Veritas evaluated the data generated during this investigation. Our findings are summarized in the following subsections.

4.1 SOIL BORING OBSERVATIONS

Soils encountered in the soil borings consisted of approximately 3 to 6 inches of asphalt or concrete underlain by approximately one to ten feet of fill material comprised of one or more of the following lithologies: silt, clayey silt, silty clay, gravelly silt, silty gravel or gravel. Below the fill material, native soils generally consisted of brown silty gravel, gravelly silt, silty clay, clayey silt and gravelly clay to the maximum logging depth of explored of 37 feet bgs. Moist to wet conditions were encountered in the borings at depths ranging from approximately 30 and 40 feet. Exact groundwater depths could not be determined because the soil lithology prevented continuous soil logging to the groundwater table at each borehole location with the exception of Borings BV-22 and BV-27. Soil boring logs BV-01 through BV-28 are presented as Appendix B.

Bureau Veritas did not observe evidence of contaminated soil (*e.g.*, discoloration, odors) in the borings advanced during this subsurface investigation with the exception of Boring BV-03. At this location, a petroleum odor was noted between approximately one and ten feet below grade. Organic vapors detected in the field with the PID ranged from 0.0 to 189 parts per million (ppm) during this investigation. The PID data is noted on boring logs presented in Appendix B.

4.2 SOIL ANALYTICAL RESULTS

A total of 29 soil samples were submitted for laboratory analysis. Remaining soil samples were placed on hold at the laboratory. Summaries of the soil analytical results are provided on Tables 1 and 2. A copy of the soil analytical laboratory report is presented in Appendix C. Soil analytical data was compared to the Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) and/or the USEPA Preliminary Remediation Goals (PRGs). The following is a summary of the soil analytical results.

4.2.1 TPH in Soil

A total of 26 soil samples (including six composite samples from Borings BV-10 through BV-18) were analyzed for TPH-g, TPH-d and TPH-mo. Boring locations are presented on Figure 2. Concentrations of TPH were not detected in the soil samples submitted for chemical analysis, except as follows:

- TPH-g was detected in BV-03 (3.5-4.0') at a concentration of 5,000 milligrams per kilogram (mg/kg). This concentration is above the RWQCB ESL for residential soils established at 100 mg/kg.
- TPH-d was detected in 5 of 26 samples at concentrations ranging from 4.4 mg/kg and 1,800 mg/kg. Only one soil sample (BV-03 @ 1.5-2.0') exceeded the RWQCB ESL for residential soil established at 100 mg/kg.
- TPH-mo was detected in 5 of 27 samples concentrations ranging between 13 mg/kg and 420 mg/kg. These low-level concentrations are below the RWQCB ESL for residential soils established at 500 mg/kg.

4.2.2 PAHs in Soil

A total of six composite soil samples from Borings BV-10 through BV-18 (Figure 2) were analyzed for PAHs. No concentrations of PAHs were detected in the soil samples submitted for chemical analysis.

4.2.3 VOCs in Soil

A total of 20 soil samples were analyzed for VOCs from Borings BV-01 through BV-09 and BV-19 through BV-28 (Figure 2). Concentrations of VOCs were not detected in the soil samples submitted for chemical analysis, except from one sample as follows:

- 1,2 Dichlorobenzene was detected in BV-03 (3.5-4.0') at a concentration of 22 mg/kg. This concentration is above the RWQCB ESL established at 1.1 mg/kg for residential soils.
- 4-Isopropyl toluene was detected in BV-03 (3.5-4.0') at a concentration of 7.5 mg/kg. Currently, there is no ESL for 4-Isopropyl toluene.
- 1,2,4-Trimethylbenzene (TMB) was detected in BV-03 (3.5-4.0') at a concentration of 23 mg/kg. Currently, there is no ESL for 1,2,4-TMB.
- 1,3,5-TMB was detected in BV-03 (3.5-4.0') at a concentration of 7.6 mg/kg. Currently, there is no ESL for 1,3,5-TMB.

A deeper soil sample from BV-03 (11.5-12.0' bgs) did not report detectable concentrations of VOCs.

4.2.4 PCBs in Soil

A total of 15 soil samples (including six composite samples from Borings BV-10 through BV-18) were analyzed for PCBs. A summary of the soil analytical results for PCBs is presented in Table 1. Boring locations are presented on Figure 2. PCB concentrations were not detected in the soil samples submitted for analysis, except as follows:

• Arochlor 1242 was detected in BV-03 (3.5-4.0') at a concentration of 0.12 mg/kg. This concentration is below the RWQCB ESL for residential soils established at 0.22 mg/kg.

4.2.5 OC Pesticides in Soil

A total of six composite soil samples from Borings BV-10 through BV-18 were analyzed for OC Pesticides. Concentrations of OCPs were not detected in the soil samples submitted for chemical analysis.

4.2.6 RCRA Metals in Soil

A total of nine soil samples from Borings BV-10 through BV-18 (Figure 2) were analyzed for RCRA Metals. A summary of the soil analytical results for total metals is presented in Table 2. Metal concentrations were detected as follows:

- Lead was detected in each composite soil sample at concentrations ranging from 5.3 mg/kg to 950 mg/kg. Soil sample BV-16,17,18 (1.5-2.0') was submitted as a composite soil sample and reported a concentration of 950 mg/kg, which exceeded the residential RWQCB ESL for lead established at 150 mg/kg. Therefore, BV-16, BV-17 and BV-18 was discretely sampled from a depth of 1.5-2.0' bgs to determine the lead concentrations at these locations. The analytical results detected lead at concentrations of 320 mg/kg, 92 mg/kg and 4,800 mg/kg, respectively. Lead was found to exceed the residential RWQCB ESL at BV-16 and BV-18.
- Arsenic was detected in each composite soil sample at concentrations ranging from 3.2 mg/kg to 18 mg/kg. As presented on Table 2, three composite soil samples from the 1.5-2.0 foot horizon exceeded the RWQCB ESL for residential soils established at 5.5 mg/kg. As a result, shallow soil sample BV-16, 17, 18 (1.5-2.0') was discretely analyzed because the concentration of 18 mg/kg appeared to be elevated when compared to other samples. Results of the analytical testing detected total arsenic concentrations of 4.7 mg/kg, 12 mg/kg and 48 mg/kg, respectively with concentrations exceeding the residential ESL at BV-17 (1.5-2.0') and BV-18 (1.5-2.0).
- Remaining soil samples submitted for analysis contained low-level concentrations of metal analytes including barium, cadmium, copper, lead and mercury that are well below their respective RWQCB ESLs for residential land use. Concentrations of cadmium, selenium and silver were not detected in the soil samples.

4.3 GRAB-GROUNDWATER ANALYTICAL RESULTS

A total of 11 grab-groundwater samples were submitted for laboratory analysis from Borings BV-19 through BV-28 (Figure 2). Summaries of the grab-groundwater analytical results are provided on Tables 3 and 4. Copies of the grab-groundwater analytical laboratory reports are presented in Appendix D. Grab-groundwater analytical data was compared to the RWQCB ESLs and the California Department of Health Services (DHS) Maximum Contaminant Levels (MCLs). The following is a summary of the grab-groundwater analytical results.

4.3.1 TPH in Grab-Groundwater

Concentrations of TPH were detected in 10 of 11 grab-groundwater samples (BV-19 through BV-28) submitted for analysis. A summary of the TPH in grab-groundwater analytical results is presented as Table 3. Concentrations of TPH-g, TPH-d and TPH-mo were not detected in the grab-groundwater samples, except as follows:

- Concentrations of TPH-g were detected in 7 of 11 grab-groundwater samples ranging from 62 micrograms per liter (μg/L) to 61,000 μg/L. The RWQCB ESL for TPH-g established at 100 μg/L was exceeded in five grab-groundwater samples (BV-19, BV-22A, BV-23, BV-24 and BV-25.
- TPH-d was detected in 7 of 11 grab-groundwater samples (BV-19, BV-22A, BV-23 through BV-27) at concentrations ranging from 110 μg/L to 79,000 μg/L. Each of these grab-groundwater samples exceeded the RWQCB ESL established at 100 μg/L.
- TPH-mo was detected in 4 of 11 grab-groundwater samples (BV-22, BV-23, BV-26 and BV-27) concentrations ranging between 350 µg/L and 1,600 µg/L. These low-level concentrations are above the RWQCB ESL established at 100 µg/L. The laboratory noted elevated detection limits for grab-groundwater samples BV-22A and BV-24.

4.3.2 VOCs in Grab-Groundwater

A total of 11 grab-groundwater samples were analyzed for VOCs from Borings BV-19 through BV-28 (Figure 2). Concentrations of VOCs were not detected in the grab-groundwater samples submitted for chemical analysis, except as follows:

- Benzene was detected in 4 of 11 grab-groundwater samples at concentrations ranging from 1.0 μg/L (BV-25) to 3,100 μg/L (BV-24). Three samples (BV-19, BV-23 and BV-24) exceed the RWQCB ESL established at 1.0 μg/L.
- Ethylbenzene was detected in 4 of 11 grab-groundwater samples at concentrations ranging from 0.95 μg/L (BV-25) to 3,500 μg/L (BV-24). Two samples (BV-23 and BV-24) exceed the RWQCB ESL established at 30 μg/L.
- Methy-tert butyl ether (MTBE) was detected in 3 of 11 grab-groundwater samples at concentrations ranging from 29 μg/L (BV-19) to 1,200 μg/L (BV-24). These samples exceed the RWQCB ESL established at 5.0 μg/L.
- Naphthalene was detected in two grab-groundwater samples (BV-23 and BV-24) at concentrations of 490 μg/L and 660 μg/L, respectively. These samples exceed the RWQCB ESL established at 17 μg/L.
- Toluene was detected in two grab-groundwater samples (BV-23 and BV-24) at concentrations of 220 μg/L and 340 μg/L, respectively. These samples exceed the RWQCB ESL established at 40 μg/L.
- Total xylenes were detected in 4 of 11 grab-groundwater samples at concentrations ranging from 1.6 μg/L (BV-19) to 9,700 μg/L (BV-24). Two samples (BV-23 and BV-24) exceed the RWQCB ESL established at 20 μg/L.

- Tetrachlorethene (PCE) was detected in 7 of 11 grab-groundwater samples at concentrations ranging from 0.71 μg/L (BV-28) to 38 μg/L (BV-22). Four samples (BV-20, BV-21, BV-22 and BV-26) exceed the RWQCB ESL established at 5.0 μg/L.
- Cis-1,2 Dichloroethene (DCE) was detected in 7 of 11 grab-groundwater samples at concentrations ranging from 0.65 μg/L (BV-22) to 65 μg/L (BV-24). Two samples (BV-22A and BV-24) exceed the RWQCB ESL established at 6.0 μg/L.
- Vinyl Chloride was detected in MW-22A at a concentration of 7.8 µg/L and exceeds the RWQCB ESL established at 0.5 µg/L.
- Concentrations of other petroleum-related compounds including n-butyl benzene, sec-butyl benzene, tert-butyl benzene, n-propyl benzene, isopropyl benzene, 1,2,4-trimethylbenzene (TMB) and 1,3,5-TMB were detected in grab-groundwater samples BV-19, BV-22A, BV-23, BV-24 and BV-25. Currently, there are no RWQCB ESLs for these compounds.
- Low-level concentrations of chlorinated solvents including trans-1,2 DCE and/or TCE were detected in grab-groundwater samples BV-19, BV-20, BV-22, BV-25 and BV-26. These concentrations are below their respective RWQCB ESLs.

4.4 QUALITY ASSURANCE/QUALITY CONTROL

The analytical laboratory data was reviewed by Bureau Veritas to establish its validity and to ensure the laboratory data was complete and accurate. Bureau Veritas verified that holding times for each analytical method were achieved and that the laboratory achieved the specific data quality objectives for each selected analytical method. A review of the data validation process indicates that the laboratories completed all QA/QC activities required for the samples such as blanks, lab control samples, matrix spikes, and duplicates. Minor QA/QC issues, which are common for these analyses, are noted in the laboratory reports presented in Appendices C and D. The QA/QC parameters for the samples were within acceptable limits and suggest that the data is useful for its intended purpose.

It should be noted that certain concentrations of chlorinated solvents in grab-groundwater could not be accurately determined at BV-23 and BV-24 because the analytical laboratory reported elevated detection limits at these location. The elevated detection limits were a result of dilution from the relatively high concentration of petroleum compounds detected and may have "masked" the chlorinated solvent concentrations.

5.0 DISCUSSION OF RESULTS

The following is a discussion of the Bureau Veritas' findings during this investigation.

5.1 GEOLOGY AND HYDROGEOLOGY

Soils encountered during this investigation consisted primarily of silty fill material that is underlain by unconsolidated gravels containing varying percentages of sand, silt and clay. The soils beneath the Site are part of the Livermore Valley groundwater basin that consists of depositional braided stream channel sequences.

During this investigation, groundwater was generally encountered between 30 and 40 feet bgs. Historic static water levels in the vicinity of the Site have ranged between 17 and 69 feet bgs (Golder Associates, 2006). The groundwater flow direction beneath the Site is towards the northwest (Golder Associates, 2006).

5.2 VEHICLE REPAIR SHOPS

Bureau Veritas investigated vehicle hoists and oil sumps at selected locations throughout the Site (figure 2). Evidence of petroleum impacted soils were not identified or observed in the soils during the drilling of the soil in the vehicle repair shops with the exception of the used oil room located on the southwest side of the service building (Boring BV-03) where petroleum impacted soils were noted during drilling. Soil samples submitted from BV-03 (3.5-4.0 feet bgs) reported concentrations of TPH and VOCs that are above applicable RWQCB ESLs for residential land use. Low-level concentrations of PCBs were also detected in soil; however, the concentration of PCB (Arochlor 1242) was below the applicable RWQCB ESL. In addition, concentrations of TPH, VOCs and PCBs were not detected in soil samples collected from deeper depths (11.5-12'). Furthermore, no concentrations of TPH, VOCs or PCBs were detected in the soil samples collected from adjacent soil borings (BV-02, BV-09, BV-05 and BV-28). The concentrations of TPH and VOCs in soil are most likely associated with the repair shop activities and appear to be limited in extent.

Low-level concentrations of TPH-d and TPH-mo were detected in the soil sample obtained from BV-04 (9.5-10.0') and are below applicable ESLs. This sample was collected adjacent to and below the base of the above-ground hoists. No VOCs or PCBs were detected in these soil samples. In addition, TPH, VOCs and PCBs were not detected in adjacent borings (BV-05, BV-06).

Bureau Veritas collected soil samples surrounding the automobile showroom (BV-21, BV-22, BV-23 and BV-24) which operated as a garage repair facility from about 1929 to 1963. Concentrations of TPH or VOCs were not detected in the soil samples collected in the vicinity of the former garage. The detected concentrations of TPH and VOCs in the grab-groundwater samples at these locations appear consistent with known off-site sources.

5.3 FORMER MACHINE SHOP

A former machine shop operated in the northwestern portion of the northern lot of the Site. Bureau Veritas completed one boring (BV-19) in the vicinity the former machine shop. No visible signs of contamination or odors were identified during the drilling operations at this borehole location. The soil sample submitted for analysis did not detect any concentrations of TPH or VOCs.

Concentrations of TPH and VOCs including benzene and MTBE were detected in the grab-groundwater sample collected at this location above regulatory ESLs. The location of BV-19 is located downgradient of the Valley Gas plume and the detected concentrations of TPH-d (1,500 μ g/L), TPH-mo (1,600 μ g/L), benzene (3.2 μ g/L) and MTBE (29 μ g/L) are likely representative of the downgradient groundwater conditions of the distal end of the petroleum hydrocarbon plume.

5.4 FORMER GASOLINE SERVICE STATIONS

The Site formerly contained two gasoline service stations located at the southwest and southeast portions of the Site (Figure 2). The following is a discussion of the associated findings at these locations.

5.4.1 Southwestern Former Gasoline Service Station

Two soil borings (BV-27 and BV-28) were advanced in the vicinity of the former gasoline service station located on the southwest portion of the Site (Figure 2). A 1944 Sanborn Fire Insurance Map depicts a UST in the vicinity of Boring BV-27.

During drilling of these borings, no evidence of TPH and VOCs were observed in the soil samples. No organic odors were identified during drilling. Boring logs denote backfill of gravel sub-base identified at a depth of 5.5 to 6.0 feet bgs, which may be tank backfill material. A soil sample was collected from each of these borings from below the suspected tank invert and submitted for chemical analysis. No concentrations of TPH or VOCs were detected in the soil samples (Table 1).

No concentrations of TPH and VOCs were detected in the grab-groundwater at BV-28. No concentrations of VOCs were detected in the grab-groundwater sample from BV-27. In addition, no TPH-g was detected in grab-groundwater at BV-27.

Only low-level concentrations of TPH-d and TPH-mo were detected in BV-27. However, it is important to note that grab-groundwater BV-27 was collected from an open borehole. Based upon Bureau Veritas' experience, false positive detections of TPH-d and TPH-mo are sometimes the result of collecting extractable TPH grab-groundwater samples from open boreholes. The source of the slightly elevated heavier end petroleum hydrocarbons is not known; however, the extent does not appear to persist because TPH-d and TPH-mo were not detected to the north (BV-28).

5.4.2 Southeastern Former Gasoline Service Station

Two soil borings (BV-25 and BV-26) were advanced in the vicinity of the former gasoline service station located on the southeast portion of the Site (Figure 2). No evidence of physical contamination was observed during the drilling of these borings. A 1944 Sanborn Fire Insurance Map depicts a UST in the vicinity of Boring BV-25 and BV-26.

Boring logs did not note backfill material typically associated with UST excavations (i.e. pea gravel, base rock fill, etc.) at these locations. However, during the drilling at BV-26, a sudden drop was noted between depths of 10 and 16 feet bgs (which may suggest a former location of a former UST or tank). A soil sample was collected from each of these borings from below the suspected tank invert and submitted for chemical analysis. No concentrations of TPH or VOCs were detected in the soil samples (Table 1).

A grab-groundwater sample was also collected from each of these borings. TPH-g was not detected in grab-groundwater at BV-26 and TPH-mo was not detected in grab-groundwater at BV-25. TPH-g was detected in grab-groundwater sample BV-25 at a concentration of 700 μ g/L (Table 3, Figure 3). A low-level concentration of TPH-d was detected in groundwater at BV-25. In addition, low-level concentrations of petroleum based VOCs including benzene, n-butyl benzene, sec-butyl benzene and tert-butyl benzene

were detected in grab-groundwater at BV-25. It appears that concentrations of TPH-g and TPH-d in grabgroundwater may be associated with the off-site Valley Gas petroleum plume.

Low-level concentrations of TPH-d and TPH-mo were also detected in grab-groundwater at BV-25 at the property boundary. During the drilling of BV-25, the borehole collapsed to a depth of 10 feet bgs and the grab-groundwater sample was collected with the Hydropunch® sampler within this borehole. It is important to note that interference from above-lying soils may have caused false-positive detections of extractable TPH (as referenced above). The source of the slightly elevated heavier end petroleum hydrocarbons is not known; however, the detected concentrations may be associated with the off-site Valley Gas petroleum release immediately across the street.

5.5 VALLEY GAS PETROLEUM PLUME

BTEX and MTBE were detected only in grab-groundwater samples BV-19, BV-23, BV-24 and BV-25 (Table 1). Concentrations of benzene, MTBE and TPH-g and the estimated extent of each compound associated with the Valley Gas petroleum plume are presented on Figure 3. As presented on the figure, the grab-groundwater petroleum hydrocarbon plume is located immediately to the north of Borings BV-25 and BV-26 with the highest groundwater concentrations of petroleum compounds detected in samples BV-23 and BV-24 located on the upgradient property boundary of the Site.

Benzene and MTBE were detected in the furthest down-gradient grab-groundwater sample (BV-19) at concentrations of 3.5 μ g/L and 29 μ g/L (Figure 3). MTBE was only detected in two other grab-groundwater samples (BV-23 and BV-24) with the highest detection at BV-24 (1,200 μ g/L).

Two grab-groundwater samples were collected from BV-22 to evaluate the concentrations of VOCs and TPH with depth in the aquifer. Sample BV-22 was collected from an open borehole with a temporary well screen placed approximately 32 to 37 feet bgs. BV-22A was collected from an adjacent borehole with a Hydropunch® sampler that was screened between 41 and 43 feet bgs. In general, the analytical results indicate higher concentrations of TPH and VOCs were detected from the deeper grab-groundwater sample (BV-22A).

Relatively high concentrations of TPH-g and TPH-d were detected in grab-groundwater samples BV-19, BV-22A, BV-23 and BV-24. The analytical laboratory noted that sheen or product was present in the samples collected from BV-22A, BV-23 and BV-24. These samples are representative of the petroleum impacted groundwater plume associated with the Valley Gas service station. Only BV-23 and BV-24 are within the approximate limit of source zone as noted by Golder Associates (June 2006).

Moderate TPH-g and TPH-d concentrations were detected at BV-25. The analytical laboratory noted that the chromatograms for this sample were not representative of the TPH-g and TPH-d standards but similar to chromatograms of BV-19, BV-22A, BV-23 and BV-24. Based on these data, the TPH concentrations associated with BV-25 are likely associated with the Valley Gas groundwater petroleum plume.

In general, the grab-groundwater analytical results from this investigation indicate that the concentrations of dissolved petroleum hydrocarbons are generally consistent with the existing information regarding the known extent and concentration of the contaminant plume.

5.6 CHLORINATED SOLVENT PLUME

Concentrations of chlorinated solvents including tetrachloroethene (PCE) and its associated daughter compounds of trichloroethene (TCE), cis-1,2 dichloroethene (DCE), trans-1,2 DCE and vinyl chloride were detected in the grab-groundwater samples (Table 1). No chlorinated VOCs were detected in samples BV-23, BV-24 and BV-27; however, elevated detection limits were noted in samples BV-23 and BV-24. The total concentrations of chlorinated VOCs are presented on Figure 4.

In addition, concentrations of PCE breakdown components are more prevalent in areas where the groundwater flow transects the Valley Gas groundwater petroleum plume (Figure 3 and 4). It appears that the relatively high concentrations of petroleum hydrocarbons in/near the source zone may be causing degradation of the chlorinated solvent plume.

Based on these findings, the source of the detected chlorinated solvents appears to be associated with an upgradient release.

5.7 NORTHERN LOT

The northern portion of the Site (as represented by Boring BV-10 through BV-18) contained low-level concentrations of petroleum hydrocarbons in the composite soil samples collected from the shallow near surface soils (1.5-2.0'). The concentrations of detected TPH in fill material are below applicable regulatory screening limits. In addition, TPH was not detected in the deeper soils colleted between 7.5 and 8.0 feet bgs. The extent of the low-level detections of TPH appear to be confined to the near surface soil fill.

No concentrations of OC pesticides or PCBs were detected in the composite soil samples collected from Borings BV-10 through BV-18.

Composite soils within the fill material in the northern lot contained concentrations of total chromium, arsenic and lead (Table 2). According to the 2002 Lawrence Berkeley National Laboratory report *Background Distributions of Metals in the Soil at LBNL*, the mean concentration of total chromium in soil samples from the property was 1.7 mg/kg to 144 mg/kg with an arithmetic mean of 58 mg/kg. In addition, according to the February 2005 RWQCB's *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater,* background concentrations of total chromium can be significantly higher and potentially over 1,000 mg/kg. It appears that the concentrations of total chromium fall with in the range of background soils in the area.

Furthermore, the USEPA Groundwater Issue: Behavior of Metals in Soils (October 1992) states that the average concentration of arsenic in soil is 5.0 mg/kg, with a common range of 1.0 to 50 mg/kg. In addition, background concentrations of arsenic in soils range from <0.1 to 97 mg/kg (Shacklette and Boergnen, 1984) in the conterminous U.S. and from 0.59 to 11 mg/kg (Bradford et al., 1996) in California soils (as cited in the 2004 PRG user's guide). It appears that the concentrations of total arsenic fall with in the range of background soils in the area with the exception of one composite soil sample (BV-16, 17, 18 @ 1.5-2.0').

Total arsenic and total lead was detected in one composite soil sample (BV-16, 17, 18 @1.5-2.0') at concentrations of 18 mg/kg and 950 mg/kg, respectively. The total arsenic concentration is above the

normal background range of California soils and total lead exceeded the RWQCB ESL established at 150 mg/kg. Therefore, Bureau Veritas analyzed the shallow soil samples (1.5-2.0') discretely at each of these locations. The analytical results reported slightly elevated arsenic concentrations at BV-17 (12 mg/kg) and BV-18 (48 mg/kg). Total lead was detected at BV-16 and BV-18 at concentrations of 320 mg/kg and 4,900 mg/kg. The deeper composite samples did not contain elevated concentrations of total lead or arsenic. In addition, shallow soil composite samples collected to the east (BV-13,14,15 @ 1.5-2.0') did not detect the presence of elevated lead or arsenic concentrations.

Based on these findings, the concentrations of total lead and arsenic appear to be limited to the soil fill material above seven feet bgs in the northwest portion of the Site.

6.0 CONCLUSIONS

Bureau Veritas advanced a total of 28 soil borings during this subsurface investigation. A total of 29 soil samples and 11 grab-groundwater samples were collected to evaluate the potential presence of chemicals of concern that may have been associated with former and present operations at the Site, known off-site petroleum hydrocarbon contamination associated with the Valley Gas facility and unknown sources of chlorinated solvents detected in groundwater.

Based on the information obtained during this investigation, Bureau Veritas concludes the following:

- Groundwater flow is towards the northwest based upon the chemical analytical data, as documented in previous reports.
- Petroleum hydrocarbons were identified in soil in the vicinity of the used oil room (BV-03). The analytical results indicate that there is limited soil petroleum hydrocarbon contamination in the vicinity of the used oil room. The soil contamination at this location is likely associated with the current Site operational uses.
- Total arsenic and lead in soil were detected in the shallow near-surface soils (1.5-2.0 feet) in the northern lot at concentrations above RWQCB ESLs. The extent of these chemicals of concern appears limited to the northwest portion of the Site near Borings BV-16, BV-17 and BV-18.
- Petroleum hydrocarbons including BTEX, MTBE and TPH were detected in the grab-groundwater samples at the Site above RWQCB ESLs and the California Primary MCLs (where established). The analytical data is fairly consistent with data previously collected at the Site. Based on these findings, petroleum hydrocarbons in groundwater beneath the Site are associated with the Valley Gas facility.
- Chlorinated VOCs were detected in the groundwater beneath the Site above the RWQCB ESLs and/or California primary MCLs. As presented on Figure 4, the origin of these chemicals appears to be originating from an off-site source. The petroleum hydrocarbon plume associated with the Valley Gas facility appears to be causing degradation of the chlorinated solvent plume.

7.0 RECOMMENDATIONS

Based on the results of this investigation, Bureau Veritas recommends that a dialogue be initiated with the appropriate regulatory agency to discuss the necessity for further characterization of impacted groundwater or cleanup of Valley Gas Plume. As the Site is located within the Downtown Livermore Redevelopment Area, Bureau Veritas recommends that the Site be entered into a Voluntary Cleanup Program to facilitate remedial efforts that may be required to obtain Site closure.

8.0 SIGNATURES

This report prepared by:

This report reviewed by:

111 Craig T. Pelletier, P.G. Project Manager Environmental Services

Jon A. Rosso, P.E. Director Environmental Services

April 19, 2007

Project No. 33107-007514.03

9.0 <u>REFERENCES</u>

Berkeley Lab, Analysis of Background Distribution of Metals in the Soil at Lawrence Berkeley National Laboratory for the Lawrence Berkeley National Laboratory, Environmental Restoration Program, June 2002.

G. R. Bradford, A. C. Chang, A. L. Page, D. Bakhtar, J. A. Frampton, and H. Wright, *Background Concentrations of Trace and Major Elements in California Soils*, Kearney Foundation of Soil Science Special Report, 1996.

Bureau Veritas North America, *Phase I Environmental Site Assessment Report*, Groth Brothers Property, 57/59 South L Street, Livermore, California, March 15, 2007.

California Regional Water Quality Control Board, San Francisco Bay Region, 2005, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final* – February 2005.

Fugro West, Inc., *Phase 2 Environmental Site Assessment*, 57/59 South L Street, Livermore, California, November 23, 2004.

Golder Associates Inc., *Field Investigation for Source Zone Remediation*, B& C Mini Mart (Valley Gas), 2008 1st Street, Livermore, California (APN 097-0001-24-01), June 6, 2006.

McLean, Joan E. and Bledsoe, Bert E., *Behavior of Metals in Soil*, USEPA Ground Water Issue, October 1992

Shacklette, H. and Boergnen, J. *Elemental Concentrations in Soils and Other Surficial Materials in the Conterminous United States*, US Geological Survey Professional Paper No. 1270, 1984.

United States Environmental Protection Agency, *Preliminary Remediation Goals (PRGs) Tables*, Region 9, October 2004.

TABLES

TABLE 1 Soil Analytical Results - TPH, PAHs, VOCs, PCBs and OC Pesticides 57/59 South L Street

Livermore California

Soil Sample ID	Sample Depth (feet bgs)	Sample Date	TPH-g (mg/kg)	TPH-d (mg/kg)	TPH-mo (mg/kg)	PAHs (mg/kg)	1,2-Dichloro- benzene (mg/kg)	4-Isopropyl toluene (mg/kg)	1,2,4-TMB (mg/kg)	1,3,5-TMB (mg/kg)	Other VOCs (mg/kg)	Arochlor 1242 (mg/kg)	Total PCBs (mg/kg)	OC Pesticides (mg/kg)
BV-01	7.5-8.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-02	9.5-10.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-03	3.5-4.0'	3/8/2007	5,000 g	1,800 n,g	420	NA	22	7.5	23	7.6	ND	0.12	0.12	NA
BV-03	11.5-12.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-04	9.5-10.0'	3/8/2007	<1.0	4.4 g,b	13	NA	<0.005	<0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-05	7.5-8.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-06	7.5-8.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-07	11.5-12.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-08	7.5-8.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-09	7.5-8.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	<0.025	<0.025	NA
BV-10,11,12	1.5-2.0'	3/9/2007	<1.0	19 g,b	90	ND	NA	NA	NA	NA	NA	<5.0	<5.0	ND
BV-10,11,12	7.5-8.0'	3/9/2007	<1.0	<1.0	<5.0	ND	NA	NA	NA	NA	NA	<0.050	<0.050	ND
BV-13,14-15	1.5-2.0'	3/9/2007	<1.0	9.2 g,b	66	ND	NA	NA	NA	NA	NA	<5.0	<5.0	ND
BV-13,14-15	7.5-8.0'	3/9/2007	<1.0	<1.0	<5.0	ND	NA	NA	NA	NA	NA	<0.025	<0.025	ND
BV-16,17,18	1.5-2.0'	3/9/2007	<1.0	43 g,b	190	ND	NA	NA	NA	NA	NA	<25	<25	ND
BV-16,17,18	7.5-8.0'	3/9/2007	<1.0	<1.0	<5.0	ND	NA	NA	NA	NA	NA	<0.025	<0.025	ND
BV-19	3.5-4.0'	3/9/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
BV-20	3.5-4.0'	3/9/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
BV-21	3.5-4.0'	3/9/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	NA	NA	NA
BV-22	5.5-6.0'	3/9/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
BV-23	9.5-10.0'	3/9/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	NA	NA	NA
BV-24	5.5-6.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	NA	NA	NA
BV-25	19.5-20.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
BV-26	15.5-16.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
BV-27	11.5-12.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	< 0.005	<0.005	<0.005	ND	NA	NA	NA
BV-28	15.5-16.0'	3/8/2007	<1.0	<1.0	<5.0	NA	<0.005	<0.005	<0.005	<0.005	ND	NA	NA	NA
	RWQCB ESL		100	100	500		1.1					0.22	0.22	

Notes:

Sample depths in feet below ground surface (bgs).

Analytical results are reported in milligrams per kilogram (mg/kg) or parts per million (ppm).

TPH-g = Total petroleum hydrocarbons quantified as gasoline.

TPH-d = Total petroleum hydrocarbons quantified as diesel.

TPH-mo = Total petroleum hydrocarbons quantified as motor oil.

TPH-d and TPH-mo analyzed using USEPA Method 8015M with Silica Gel Cleanup.

VOCs analyzed using USEPA Method 8260B

PCBs = Polychlorinated bi-phenols; analyzed by USEPA Method 8082A

OC Pesticides = Organochlorine pesticides; analyzed by USEPA Method 8081B

<1.0 = Not detected at specified detection limit.

g = oil range compounds are significant

n = stoddard solvent/mineral oil

ND = Not detected

NA = Not analyzed for this compound.

RWQCB ESL = Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level, for residential land use (Table A, RWQCB, February 2005).

TABLE 2Soil Analytical Results - RCRA Metals57/59 South L StreetLivermore, California

Soil Sample ID	Sample Depth (feet bgs)	Sample Date	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
BV-10,11,12	1.5-2.0'	3/9/2007	10	210	<0.25	61	82	0.28	<0.5	<0.5
BV-10,11,12	7.5-8.0'	3/9/2007	3.2	150	<0.25	52	17	0.1	<0.5	<0.5
BV-13,14-15	1.5-2.0'	3/9/2007	10	170	<0.25	83	53	0.19	<0.5	<0.5
BV-13,14-15	7.5-8.0'	3/9/2007	3.9	110	<0.25	58	5.3	0.056	<0.5	<0.5
BV-16,17,18	1.5-2.0'	3/9/2007	18	180	<0.25	46	950	0.26	<0.5	<0.5
BV-16	1.5-2.0'	3/9/2007	4.7	NA	NA	NA	320	NA	NA	NA
BV-17	1.5-2.0'	3/9/2007	12	NA	NA	NA	92	NA	NA	NA
BV-18	1.5-2.0'	3/9/2007	48	NA	NA	NA	4,900	NA	NA	NA
BV-16,17,18	7.5-8.0'	3/9/2007	4.9	200	<0.25	69	6.8	0.1	<0.5	<0.5
	RWQCB ESL		5.5	750	1.7	58	150	3.7	10	20

Notes:

Sample depths in feet below ground surface (bgs).

Analytical results are reported in milligrams per kilogram (mg/kg) or parts per million (ppm).

RCRA Metals analyzed using USEPA 6000/7000 Series Methods

<1.0 = Not detected at specified detection limit.

NA = Not analyzed for this compound

RWQCB ESL = Regional Water Quality Control Board - San Francisco Bay Region

Environmental Screening Level, for residential land use (Table A, RWQCB, February 2005).

RCRA = Resource Conservation Recovery Act

TABLE 3 Grab-Groundwater Analytical Results - TPH 57/59 South L Street

Sample ID	Sample Date	TPH-g (µg/L)	TPH-d (µg/L)	TPH-mo (μg/L)
BV-19	3/9/2007	1,500 m,i	1,600 k,i	<250
BV-20	3/9/2007	64 f,i	64 f,i <50 i	
BV-21	3/9/2007	<50 i	<50 i <50 i	
BV-22	3/9/2007	62 i	62 i <50 g,i	
BV-22A	3/9/2007	9,300 b,m,h,i	64,000 n,h,i	<12,000
BV-23	3/9/2007	50,000 a,h,i	43,000 d,h,i	720
BV-24	3/8/2007	61,000 a,h,i	79,000 d,h,i	<12,000
BV-25	3/8/2007	700 m	290 n,i	<250
BV-26	3/8/2007	<50 i	110 g,b,i	1,200
BV-27	3/8/2007	<50 i	290 g,b,i	1,600
BV-28	3/8/2007	<50 i	<50 i	<250
RWQCB	ESL	100	100	100

Livermore, California

Notes:

Sample depths in feet below ground surface (bgs).

Analytical results are reported in micrograms per liter (μ g/L) or parts per billion (ppb).

TPH-g = Total petroleum hydrocarbons quantified as gasoline.

TPH-d = Total petroleum hydrocarbons quantified as diesel.

TPH-mo = Total petroleum hydrocarbons quantified as motor oil.

TPH-d and TPH-mo analyzed using USEPA Method 8015M with Silica Gel Cleanup.

VOCs analyzed using USEPA Method 8260B

<1.0 = Not detected at specified detection limit.

a = unmodified or weakly modified diesel is significant

b = heavier gasoline range hydrocarbons are significant

d = gasoline range compounds are significant

f = one to a few isolated peaks present

g = oil range compounds are significant

h = lighter than water immiscible sheen/product is present

i = liquid sample that contains greater than \sim 1 vol.% sediment.

k = kerosene/kerosene range

- m = fuel oil
- n = stoddard solvent/mineral oil

RWQCB ESL = Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level where groundwater is a potential source of drinking water (Table A, RWQCB, February 2005).

TABLE 4Grab-Groundwater Analytical Results - VOCs57/59 South L Street

Livermore, California

Sample ID	Sample Date	Benzene (µg/L)	n-Butyl benzene (µg/L)	sec-Butyl benzene (µg/L)	tert-Butyl benzene (µg/L)	n-propyl benzene (µg/L)	Ethyl- benzene (µg/L)	lsopropyl- benzene (µg/L)	MTBE (µg/L)	Napthalene (µg/L)	Toluene (µg/L)	1,2,4- ΤΜΒ (μg/L)	1,3,5 TMB (μg/L)	Total Xylenes (µg/L)	cis-1,2 DCE (µg/L)	TCE (µg/L)	PCE (µg/L)	Vinyl Chloride (µg/L)
BV-19	3/9/2007	3.5	2.3	1.1	2.9	0.95	0.86	<0.5	29	<0.5	<0.5	0.77	<0.5	1.6	2.4	1.1	<0.5	<0.5
BV-20	3/9/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.74	0.63	30	<0.5
BV-21	3/9/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	31	<0.5
BV-22	3/9/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.65	1.0	38	<0.5
BV-22A	3/9/2007	<2.5	56	24	<2.5	66	25	42	<2.5	<2.5	<2.5	<2.5	3.5	2.5	12	<2.5	4.2	7.8
BV-23	3/9/2007	1,100	160	<50	<50	510	3,400	180	90	490	220	1,500	540	4,200	<50	<50	<50	<50
BV-24	3/8/2007	3,100	140	72	<50	460	3,500	100	1,200	660	340	2,100	660	9,700	65	<50	<50	<50
BV-25	3/8/2007	1.0	1.3	1.8	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	22	2.7	3.7	<0.5
BV-26	3/8/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.2	0.67	5.1	<0.5
BV-27	3/8/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BV-28	3/8/2007	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.71	<0.5
RWQC	B ESL	1.0					30		5.0	17	40			20	6.0	5.0	5.0	0.5
DHS	MCL	1.0					300		13		150	5.0		1,750	6.0	5.0	5.0	0.5

Notes:

VOCs = Volatile organic compounds

DCE = Dichloroethene

PCE = Tetrachlorethene

TCE = Trichloroethene

TMB = Trimethylbenzene

MTBE = Methyl tert butyl ether

Analytical results are reported in micrograms per liter (μ g/L) or parts per billion (ppb).

<0.005 = Not detected at specified detection limit.

ND = Not detected at the laboratory method detection limit.

VOCs analyzed by USEPA Method 8260B.

RWQCB ESL = Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Level,

Groundwater (Table A, 2005) where groundwater is a potential source of drinking water.

DHS MCL = California Department of Health Services Maximum Contaminant Level - A Compilation of Water Quality Goals, August 2003.

-- = No regulatory limit established for this analyte.

Bolded and shaded indicates where RWQCB ESL and/or DHS MCL was exceeded for this analyte.

FIGURES

BV-21	3/9/2007
Benzene	<0.5
MTBE	<0.5
TPH-g	<50
TPH-d	<50
TPH-mo	<250

BV-22	3/9/2007	BV-22A	3/9/2007
Benzene	<0.5	Benzene	<2.5
MTBE	<0.5	MTBE	<2.5
TPH-g	62 i	TPH-g	9,300
TPH-d	<50	TPH-d	64,000
TPH-mo	350	TPH-mo	<12,000

	BV-23	3/9/2007
	Benzene	1,100
	MTBE	90
-	TPH-g	50,000
	TPH-d	43,000
	TPH-mo	720

_	BV-24	3/8/2007				
	Benzene	3,100				
	MTBE	1,200				
	TPH-g	61,000				
	TPH-d	79,000				
	TPH-mo	<12,000				

_	BV-25	3/8/2007					
	Benzene	1.0					
	MTBE	<0.5					
	TPH-g	700					
	TPH-d	290					
	TPH-mo	<250					

CONCENTRATIONS OF PETROLEUM HYDROCARBONS IN GROUNDWATER

57 / 59 SOUTH L STREET LIVERMORE, CALIFORNIA

Project No. 33107-007514.03

Figure

3 03/15/07 SITE0307.DWG

DV 21]	
DV-21	3/9/2007		
PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	31 <0.5 <0.5 <0.5 <0.5 31		
BV-22	3/9/2007	BV-22A	3/9/2007
PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	38 1.0 0.65 <0.5 <0.5 39.65	PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	4.2 <2.5 12 <2.5 7.8 24
BV-23	3/9/2007		
PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	<50 <50 <50 <50 <50 0.0		
BV-24	3/8/2007		
PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	<50 <50 <50 65 <50 <50 65		
BV-25	3/8/2007		
PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	3.7 2.7 22 1.0 <0.5 29.4		
	PCE TCE cis-1,2 DCE Vinyl Chloride Total VOCs BV-22 PCE TCE cis-1,2 DCE Vinyl Chloride Total VOCs BV-23 PCE TCE cis-1,2 DCE trans-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs BV-24 PCE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride TOE TCE cis-1,2 DCE trans-1,2 DCE Vinyl Chloride TOE TCE cis-1,2 DCE trans-1,2 DCE trans-1,2 DCE Vinyl Chloride Total VOCs	BV-2.1 3/3/2.007 PCE 31 TCE <0.5 cis-1,2 DCE <0.5 trans-1,2 DCE <0.5 Vinyl Chloride <0.5 Total VOCs 31 BV-22 3/9/2007 PCE 38 TCE 1.0 cis-1,2 DCE 0.65 trans-1,2 DCE <0.5 Vinyl Chloride <0.5 Total VOCs 39.65 BV-23 3/9/2007 PCE <50 TCE <50	BV-21 3/8/2007 PCE 31 TCE <0.5 cis-1,2 DCE <0.5 Vinyl Chloride <0.5 Total VOCs 31 BV-22 3/9/2007 BV-22A PCE 38 PCE TCE 1.0 TCE cis-1,2 DCE <0.5 trans-1,2 DCE vinyl Chloride <0.5 trans-1,2 DCE vinyl Chloride <0.5 trans-1,2 DCE Vinyl Chloride <0.5 Vinyl Chloride Total VOCs 39.65 Total VOCs BV-23 3/9/2007 PCE PCE <50 trans-1,2 DCE cis-1,2 DCE <50 trans-1,2 DCE trans-1,2 DCE <50 trans-1,2 DCE Vinyl Chloride <50 trans-1,2 DCE TCE <50 trans-1,2 DCE trans-1,2 DCE <50 trans-1,2 DCE trans-1,2 DCE <50 trans-1,2 DCE trans-1,2 DCE <50 trans-1,2 DCE

	Figure	AND VER
	4	
ct No. 33107-007514.03	03/15/07 SITE0307.DWG	BUREAU

APPENDIX A

SOIL BORING PERMIT

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551-9486

PHONE (925) 454-5000

March 7, 2007

Mr. Craig Pelletier Bureau Veritas (Clayton Group Services) 6920 Koll Center Parkway, Suite 216 Pleasanton, CA 94566

Dear Mr. Pelletier:

Enclosed is drilling permit 27044 for a contamination investigation at 57 – 59 South "L" Street in Livermore for Barry Swenson Builder. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site at www.zone7water.com.

Please note that permit conditions A-2 and G requires that a report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, permit number and any analysis of the soil and water samples. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong () Water Resources Specialist

E	n	С	•	

? . 1

ZONE 7 WA	TER AGENCY 10RE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728
DRILLING PERI	
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
California Coordinates Source ft. Accuracy the ft. Accura	PERMIT NUMBER 27044 WELL NUMBER APN 097-0003-007-01 & 098-0405-004-00 PERMIT CONDITIONS
APN <u>97-3-7-1</u> AN <u>98-405-4</u> CLIENT Name <u>Barry Sun 150</u> B. ULL Address Jon J. J. C. C. A. B. C. C. S. S. C. S. C. S. S. C. S. C. S. C. S. C. S. C. S. C. S. S. S. S. C. S.	(Circled Permit Requirements Apply)
City	 A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects. Permit is void if project not begun within 90 days of approval date. WATER SUPPLY WELLS Minimum surface seal thickness is two inches of cement grout placed by tremie. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved
PROPOSED WELL USE Irrigation I New Domestic Industrial Remediation I Industrial Groundwater Monitoring I Dewatering Other I	 An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement orout
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Other Drilling COMPANY ELA - Environmental Confrol I DRILLING COMPANY ELA - Environmental Confrol I DRILLER'S LICENSE NO. C-T The 695970	 Aster Aster Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
Orill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number	 E. CATHODIC. Fill hole above anode zone with concrete placed by tremis. F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the section of the secti
SOIL BORINGS Number of Borings 28 Hole Diameter 2 in, Depth ~ 45 ft.	 completion of permitted work the well installation report including all soil and water laboratory analysis results.
ESTIMATED STARTING DATE 3/8/07 ESTIMATED COMPLETION DATE 3/9/07	Approved Myman Hong Date 3/6/07
County Ordinance No. 73-68. APPLICANT'S SIGNATURE Date	U
ATTACH SITE PLAN OR SKETCH	Revised: April 27, 2005

APPENDIX B

SOIL BORING LOGS

HUREAU VERINTAS					C	Clayton GROUP SERVICES LOG OF SOIL BORING					Project No.: 33 Project Name: 4 Location: Love Logged By: CA Start Date: 3-5 Finish Date: 3-5 Driller: ECA Hammer Weight Borehole Comple Depth To ∑ (ft) Time: Date:	107-00 7 and more unfric -0.7 8-0.7 NA etion Data	7574.02 59 South Galifor, JJWIIso Start Tim Finish Tir NWFC	L Street JA V e: : $$20$ Elevati ne:: 900 Boring Drill Method: D. Drop: N/A where Geourt Depth To $ ilde{}$ (ft) Time: Data:	BORING NO. BV - O tion (ft, msl):	
		284WbfE ID								sosn A L	SILTY GRAVEL SILTY GRAVEL SILT W/ GRAVEL SILT W/ GRAVEL SILT W/ GRAVEL	$= \frac{\beta_{12}}{\beta_{12}}$ $= \frac{\beta_{12}}{\beta_{12}}$ $= \frac{\beta_{12}}{\beta_{12}}$ $= \frac{\beta_{12}}{\beta_{12}}$	DESCR 	Ime: Date: IPTION prime = prime =	24 , Ac ada , 100 sc	
						- 13 - 14 - 15 - 16 - 17 - 18- - 18-							× { }			
					L B	00 SC	ay G DI RI	Vto SERVI OF L NG	n ces	Project No.: 33 Project Name: 3 Location: Live Logged By: CA Start Date: 3 - 5 Finish Date: 3 - 5 Finish Date: 3 - 5 Driller: FCA Hammer Weight Borehole Comple Depth To ⊻ (ft) Time: Date:	107-00 7 and more unfrer 7-0.7 2-0.7 2-0.7 2-0.7 2-0.7	7514.02 59 South CALIFOR [JWI]SO Start Tim Finish Tir a: Nute	L Street N e: : 115 Elevat ne:: 950 Boring Drill Method: D; Drop: N/A eneved Gecaut Depth To $¥$ (ft) Time: Date:	BORING NO. BV-02_ ion (ft, msl): Diameter (in): 2 rectfash		
--------	-------------------------	------------	-------------	---	--------	--	---------------------	-------------------------------	----------	---	---	---	---	--		
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING	TIME		DEPTH (ft)	SAMPLE	GRAPHIC LOG	USCS		f	DESCR	IPTION	I		
48	30	9.5 9.5	0.0	125 125 125 125 1 125 1 1 1 1 1 1 1 1 1		$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ -\\ 7\\ -\\ 8\\ -\\ 9\\ -\\ 10\\ -\\ 12\\ -\\ 13\\ -\\ 14\\ -\\ 15\\ -\\ 16\\ -\\ 17\\ -\\ 18\\ -\\ 19\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$		S D O C C D B	GN	SILT how no intre grave	<u>+</u> m - d. <u>+</u> n c <u>+</u> n c	<u>cnsc</u> , <u>á</u> <u>c</u> <u>c</u> <u>c</u> <u></u>	y to $dump$ f(m)	$\frac{1}{2}$		

EUREAD VERMAS	Clayton GROUP SERVICES LOG OF SOIL BORING	Project No.: $33/07$ - Project Name: $57 a$, Location: Livernor Logged By: CRUCH Start Date: $3-5-07$ Finish Date: $3-5-07$ Driller: ECA Hammer Weight: N Borehole Completion E Depth To $\overline{\nabla}$ (ft) Time: Date:	0075714.02 JA South L Street Galifortian Start Time: : 100 S Elevi Tinish Time: : 105 Borir Drill Method: C Drill Method: C Drop: √/A Data: NetCenet Geourn Depth To ¥ (ft) Time: Date:	BORING NO. $BV - 0_3$ ation (ft, msl): ng Diameter (in): 2 Direct Push
SAMPLE INTERVAL SAMPLE RECOVERY (in) SAMPLE ID SAMPLE ID PID READING (ppm) TIME	DEPTH (ft) sample GRAPHIC LOG USCS		DESCRIPTION	
- -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 GELANGLYSHE de Newy generation I-11 S-1+, black truce grad Fill SHY GELAND, to Source course send No Retro leven Jone: Shoc sumple very	<u>C Druce to Black, dense</u> oder , m-dense; demp, her <u>n-brown, m-dense</u> <u>trace petrices (200- SINTY GRAVEL ten-Dre</u> , damp, trace potrois galar	$\frac{dunp}{dunp}$

	E V		A TANK		Q	L B	Cla .oc sc oR		ton RVTC DF		Project No.: 3710 Project Name: 5710 Location: 4747 Logged By: CR Start Date: 3102 Finish Date: 3162 Driller: ECA Hammer Weight: Borehole Complet Depth To $\overline{2}$ (ft) Time: Date:	17-00757403 7(55 South money J. Mor Start Tin 17 Finish T 	$\begin{array}{c} \mathcal{L} 5\mathcal{H} \\ \mathcal{L} \mathcal{S} \mathcal$	BORING NO. BV-04 ion (ft, msl): - g Diameter (in): Z inct Rust.
SAMPLE	SAMPLE RECOVERY (In)	SAMPLE ID	PID READING (PPPM)	TIME			(I) DEPTH (I)	E SAMPLE	CRAPHIC	nscs ML	SILT tur No odor	DESCI	MULL M	derse, dry
48	36	3.5	0.0	((30 			3- 4- 5- 7- 8-				No Recove	ry 4-8 ry 4-8	powdery , fi	u, frace
	&	9,5	0.0		,		9				g church - Patrisa (635	۰
							18- 19-				· · · · · · · · · · · · · · · · · · ·			

			A TAS		Ŕ	L		ay G Cl	OF L NG)]] 	Ĩ ŝ	Project No.: $33/07$ Project Name: 57 Location: Loom Start Date: $3-3^{-1}$ Finish Date: $3-3^{-1}$ Driller: ECA Hammer Weight: M Borehole Completion Depth To Σ (ft) Time: Date:	7-007 Ard 5 Ard 5 Ard 5 Ard 7 07 07 NA n Data:	PS74.02 CALIFOR JSWIISON Start Time Finish Tin	L Street A A A A A A A A	BORING NO. BV - 05 ion (ft, msl): Diameter (in): 2 Feat fash
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG		nscs	well concrete		DESCRI	PTION	
		<u>i,C</u>		1255			1			~	ML	Silt w/ grav slight petro	el ulem	brunn n odo	danp, m-	ten sej
48	<u>30</u> 30	<u>3.5</u>	0.0	1240			4- 5- 7- 8- 9- 10-					Sitty Grand Caty Grand No one)	1-brown	. m-dense, d	ry-damp dry-damp
48	42	ii.5							<u> </u>] =03							

.

					E		ay G OI RI		n 	Project No.: 3310 Project Name: 57 Location: Liver, Logged By: Cftut Start Date: 3-5- Finish Date: 3-5- Driller: ECA- Hammer Weight: Borehole Completic Depth To ⊻ (ft) Time: Date:	7-00 - and - and - or - or	F514.02 F9 South L Galiford IA Start Time: : 16 Finish Time: : 16 Drill Drop Nut Cened Depth Time: Date:	Streed 305 Streed Boring Method: D. Method: D. M	BORING NO. $BV - O_{b}$ ion (ft, msl): Diameter (in): Z - c f h s h
SAMPLE INTERVAL	SAMPLE RECOVERY (Ir	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (II)	SAMPLE	GRAPHIC LOG	uscs			DESCRIPTION	N	
48	36	3.5 3.5 1 1 1 5 5	5.0 			- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 11- - 12- - 11- - 12- - 13- - 14- - 15- - 16- - 17- - 18- - 19-			GM	S: 1+ w/ g: 2 w i: 1+ w/ g: 2 w i: 1+ b 2 w 2, Tryce grave S: 1+ w/ grave S: 1+ w/ grave Ac oden m-dense		r = r + r + r + r + r + r + r + r + r +	+ damp, ≥ F, n≈ 10052, 14 10052, 14	no odor odor mp. no odr dy-deap

Page 1 of $oldsymbol{I}$

	E C		ATAS A LAND		Ŕ	L E		ar G Cl	of L NG) n 	Project No.: 33 Project Name: 5 Location: Live Logged By: CA Start Date: 3 - 3 Finish Date: 3 - Driller: ECA- Hammer Weight: Borehole Comple Depth To ∑ (ft) Time: Date:	07-00 7 and more, <u>uchis</u> (-07 -8-07 <u>MA</u> tion Data	F514.02 59 South CALIFOR JWIISO Start Time Finish Tin Finish Tin	L Street A A A A A B C C C C C C C C C C C C C	BORING NO. BV-OD tion (ft, msl): Diameter (in): 2 Treof Pash
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs		<u>.</u>	DESCRI	IPTION	
48	3.00	3.5 D.5	0.0	1405 1405			- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 - 9 - 10-			mh Gm	- 5:1+ w/ 9	12021, 20 00	$\frac{16n - 6}{20 - 1}$	nn, M-den FIL dry-dang dry-dang drnp use Sind d	amp; 102 52
<u>Ч</u> 8	36	ii. 5	0.0				11- 12- 13- 14- 15- 16- 17- 18- 19-		DO CO	,				ND COOP Nother	

Page 1 of L

DUREAU VERITAS	LOG OF SOIL BORING) n ICES -	Project No.: $33/07-0$ Project Name: 57 and Location: Liverner (Logged By: Church Start Date: $3-8-07$ Finish Date: $3-8-07$ Driller: ECA- Hammer Weight: N L Borehole Completion Date Depth To Σ (ft) Time: Date:	DF5714.02 d 59 South L Street GLUIFORHAN FINISH TIME: : 1435 Elev Finish Time: : 1505Borin Drill Method: T. Drop: 1/A ata: Newternet Geow Depth To ¥ (ft Time: Date:	BORING NO. BJ $-DS$ ation (ft, msl): ng Diameter (in): 2 Direct Prisch
SAMPLE INTERVAL SAMPLE RECOVERY (In) SAMPLE ID PID READING (ppm) TIMF	DEPTH (II) DEPTH (II) sample GRAPHIC LOG	USCS C		DESCRIPTION	- I
- -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ML DOCOG CEO CEO	Silting trace give dimp-mont, or Silting Granel w/ ioose, no odd	Massingek	m-dinse

					LC S BO	la: OG OI RI	ytc strv OF L NG		Project No.: 33 Project Name: 5 Location: Live Logged By: CR Start Date: 3-S Finish Date: 3- Driller: ECA Hammer Weight: Borehole Comple Depth To ∑ (ft) Time: Date:	107-007514.0 7 and 59 South Money CALIFO Under [JW1] r-07 Start T 8-01) Finish NA etion Data: New	2 th L Street erith sont ime: : 15/5 Elevat Time: : 15/5 Elevat Drill Method: D; Drop: N/A Carrent Geourt Depth To ¥ (ft) Time: Data:	BORING NO. BU-09 ion (ft, msl): Diameter (in): 2 reof Pash
SAMPLE	SAMPLE	SAMPLE ID	PID READING	(phin) TIME	DEPTH (II)	SAMPLE	GRAPHIC LOG	uscs	w 3 ^{il} concerte	DESC	RIPTION	
48	30	3. C		1520 1520 1520 1525 1525 1 1525 1 1 1525 1 1 1 1 1 1 1			0000000	Gro	Silt w/grove	$\frac{1}{2} \frac{1}{2} \frac{1}$	inse , danp , m sinse , danp , m sinse , dan , d www.odor inse	

					Ć	L		ay G Cl RI	vtc SERV OI L NC	DID TCET	5	Project No.: $33/07 - 007574.02$ Project Name: 57 and 59 South L Street Location: Livernor californian Logged By: <u>Charter / Switson</u> BORING NO.Start Date: $3-9-0^{12}$ Start Time: 1755 Elevation (ft, msl): Finish Date: $3-9-0^{12}$ Drill Method: Direct Pash Hammer Weight: MA Borehole Completion Data: Depth To $\overline{\checkmark}$ (ft)Borling Mathematical Street Depth To $\overline{\checkmark}$ (ft)Date:Date:Date:
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC	LOG	uscs	DESCRIPTION
48	2.4	1,5 3,5 1,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2		800 800 810 857 857 857			1 2 3 4 5 6 7 8 - 8 - 10 - 11- 12- 11- 12- 11- 12- 11- 12- 11- 12- 11- 11		0002 E08			S. It wi grovel, b. 223, M-dense, dry-den p, p. ocle F. II S. It wi grovel, b. 223, M-dense, dry-den p, p. ocle S. It & Gravel wi Learse Sand, M-dense, dry-den p Native No oder Pade 1 of Page 1 of Page 1 of P

			ATTAS DE AL		Ć	Cla OG SO DR	SER SO IL IN(DI F G	1 E3	Project No.: 33/0 Project Name: 57 Location: Liver Logged By: CAM Start Date: 3-7-1 Finish Date: 3-7-1 Finish Date: 3-7-1 Driller: FCA- Hammer Weight: Borehole Completi Depth To ⊻ (ft) Time: Date:	7-007 7 and 5 more, (infier 07 -07 ΝΔ ion Data:	PSTY.02 GALIFOR- ISWISSON Start Time Finish Tim	L Street L Street L Street Street Drill Method: D; Drop: J/A MenA Gecourt Depth To ▼ (ft) Time: Date:	BORING NO. BV-11 ion (ft, msl): Diameter (in): 2 -eof Pnsh
SAMPLE INTERVAL	SAMPLE RECOVERY (In)	SAMPLE (D	PID READING (ppm)	TIME		DEPTH (ft)	GRAPHIC	LOG	uscs			DESCRI	PTION	L
<u>ч</u> ч <u></u>	3.6	7.5	0. <i>C</i>	\$35 832 832 838 838 838		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Gm	Silty Gravel 1			dense, dry:	dyng, no vil
		- 119				18								

			AAE		Ć	L		ay G Cl	Vto OF L NG	n 	Project No.: $33/$ Project Name: $5/$ Location: Liver Logged By: CR Start Date: $3-7$ Finish Date: $3-7$ Finish Date: $3-7$ Borehole Comple Depth To ∇ (ft) Time: Date:	07-00 7 and 9 10 frie- -07 i-07 i-07 i-07	HILSON A SULT CALIFOR JWILSO Start Tim Finish Tir NWLC	L Street N e: :8'50 Eleva ne: 905 Boring Drill Method: D Drop: N/A enc for I Depth To I (ft) Time: Date:	BORING NO. BU-12 tion (ft, msi): g Diameter (in): 2 Freat Pash
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	nscs	w 3" asphalt	т 3 ¹¹ h	DESCR	IPTION	
		1,5		<u>359</u>			2			ML	Sitt WI grime	1, 60-	im.	-dense, dry	te dump
48	36	3,5	0,0	<u> </u>			4								
		6.5 7.5	G 0	903 900			6 7.		000	Gm	silly Grane Nuture	1_w/c	ourses m-dens	cady bigin X no od	dry to demp or
· · · · · · · · · · · · · · · · · · ·							9- 10-		202					· · · · · · · · · · · · · · · · · · ·	
							11 - 12 -						· · · · · · · · · · · · · · · · · · ·		
						·····	13- 14- 15-								
							16~ 17-					· · · · · · · · · · · · · · · · · · ·			
							18 19-								

-		NU V	Ē				<u></u>				Project No.: 33/ Project Name: 5 Location: Live Logged By: CB	07-00 7 and more	7514.02 59 South californ 15W1150	L Street	boring no. BV-13
	BUR		ALL S		L	9		dy		n ees	Start Date: 3-4 Finish Date: 3-9	-07	Start Tim Finish Tir	e: : 910 Eleval ne: :930 Boring	ion (ft, msl): I Diameter (in): 2
		182				L	-00	G	OF		Driller: FCA- Hammer Weight:	NA		Drill Method: D: Drop: 人人	reof fish
	B () V E	liri Rif	а () П/А (S			В	SC) R	L NG		Borehole Comple	tion Data	" Nute	anenA 6 court	-
											Depth To 🔽 (ft)	ļ		Depth To 👤 (ft)	
											Date:		·····	Time:	
	Ê				1 1	····				1		<u> </u>			
SAMPLE	SAMPLE RECOVERY ()	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	uscs			DESCR	IPTION	
								4		<u> </u>	- 3" itsphalt	+ 3″_	O GISCAN	16	
$\left \right $	-	<u>+</u>				·	1	\mathbb{H}		301					
		15		9.10			2			I''C	Silt wij grave	(, hr	owhitma.	m-dense, o	ha no odar
┣								\square			<u>_</u>	Ц	·	· · · · · · · · · · · · · · · · · · ·	
				<u> </u>			3.		$\left \right $						
48	34	3.5	00	914			4.								
			<u> </u>					H					······	·····	
							5-	H				~~~~			
		[ļ				6-						dif a d	m-demp	
		6.0	 	921			0		11				<u>v</u>	······································	
			<u> </u>]	7-		00	GM	Silty Gravel	_₩/C	<u>Derse Sa</u>	of proving	ump, no oda
48	30	7.5	00	918				Ĩ	00		Ngtive		M - 0	ense	
							0-	<u></u>	UB E						
							9-								
							10-							······································	
							11				····				
								-							
							12-								
	·						13-	_							
							ļ	\neg		ļ	·····				
							14-					·			
							15								
							-	-		-					
					<u> </u>		16-	-							
							17]	ĺ	F	······································	·			
					····			4		F					
							18	_		╞					
								-		-	·			······································	
							19								

	Clayton CROUP SERVICES LOG OF SOIL BORING (II) H UNANAGO (III) H UNANAGO (IIII) H UNANAGO (III) H (III) H (IIII) H (III) H (III) H (III) H (IIII) H (IIII) H (IIII)									Project No.: $33/2$ Project Name: Location: Live C Logged By: Cfor Start Date: $3 - 9$ Driller: ECA Hammer Weight: Borehole Complet Depth To Σ (ft) Time: Date:	97-007579.02 7 and 59 Sout more, califor tutic (JWIIS. -07 Start Tin -07 Finish Ti NA ion Data: NWH	h L Street HA he: :940 Eleva me: :000 Borin Drill Method: D Drop: N/A Levent 62007 Depth To ♥ (ft) Time: Date:	BORING NO. BV-14 tion (ft, msl): J Diameter (in): Z
SAMPLE		2.5 2.5		943 951 948 951		(ii) HLd30		SO S	soon mi Gr	Date: M 3" a sph c 11-t. Scute CCCOS ² Scute CCCOS ² Scute CCCOS ² Scute CCCOS ² Scute CCCOS ²	DESCF 3" b-xrz_K Sj growel, b Marke Arcy Marke Arc	Date: RIPTION 2. Modens 2. Modens Marchener Marche	e d a - p

	Clayton GROUP SERVICES LOG OF SOIL BORING										Project No.: $33/07 - 00757/9.02$ Project Name: 57 and 59 South L Street Location: Livernor , CALIFORMANBORING NO.Logged By: Churtier / Switcon $BV - 15$ Start Date: $3 - 9 - 0^{27}$ Start Time: : 1023 Elevation (ft, msl): Finish Date: $3 - 9 - 0^{27}$ Start Date: $3 - 9 - 0^{27}$ Start Time: : 1025 Boring Diameter (in): 2Driller: ECA Hammer Weight: NA Borehole Completion Data:Drill Method: Direct Pash Depth To I (ft)Depth To I (ft)Depth To I (ft)Time: Date:Date:
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE (D	PID READING (ppm)	TIME		DEPTH (II)	SAMPLE		EOG COG	nscs	DESCRIPTION + 3" asphalt + 3" base out-
48	24	1,5 3.5 4.5	Q. O	1011 1010 1015		2 3 4 5				ML	Silt w/ Gravel w/ course sand, brown damp
Ч {	24	2,5	0,0	1013		- 6 - 7 - 8 - 9 - 10			B B		
						- 11- - 12- - 13- - 13-					
						- 15- 16- 17- 17- 18- 			***********		
						19-					

	AND CLayton CROUP SERVICES LOG OF SOIL SOIL BORING										Project No.: 331 Project Name: 5 Location: Livea Start Date: 3-9 Finish Date: 3-9 Driller: ECA- Hammer Weight: Borehole Complet Depth To ∑ (ft) Time: Date:	NA NA NA NA NA	7514.02 59 South GLUIFOR JWIISD Start Tim Finish Tir	L Street J d d d d d d d d	BORING NO. BV-16 tion (ft, msl): Diameter (in): 2 Freat Push
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	nscs	wa! A at the	-2"	DESCR	IPTION	
		1.5	9,0	iciss			1- 2- 3-			im.	5-11- w/ 9/200 F.MI	el, k	<u>accrose</u> 203-20 1	n-donsi, da,	np, No odor
48	<u>36</u>	3.5	0.0	1032			4 - 5 -								
48	2iy	6,5 2,5	0.0	104C 1038			6- 7- 8-		Disco B B	G۴	 STHY Grond Native	4 wl	Course dan	Schol, DA. P. NO octo	-s, m-dense
							9-10-				FOBC 8	+ 5y s	· · · · · · · · · · · · · · · · · · ·		
							12- 13- 14								
							15-								
							18								

			ATTAS DE CAS		C	LO S BO	a G G R	yte seri IL IN(D11 F G	N 75	Project No.: $33/$ Project Name: 5 Location: $1/\sqrt{4}$ Start Date: $3-9$ Finish Date: $3-9$ Driller: FCA Hammer Weight: Borehole Complet Depth To $\sqrt{2}$ (ft) Time: Date:	$\frac{1}{7} = \frac{1}{7} = \frac{1}$	7574.02 GALIFOR JUISS Start Tim Finish Tin	L Street N e: : 1249 Eleve ne::100 Borin Drill Method: D Drop: N/A neA Geourt Depth To \mathbf{Y} (ft) Time: Date:	BORING NO. BV-17 tion (ft, msl): g Diameter (in): 2 Freat Pash
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	JOS C		DFPTH (t)	1	GRAPHIC		nscs	2 3" Asphilt Silt wigome	7 3" 1 bou	DESCRI beseered	ense dang,	no odar
48		3,5 6,5	0.()	1102					00		StHy Caravel 1	υί ςυεί	se Send	in many m.	dense denz
<u>48</u>	42	2.5	<u>ð.0</u>	1102 		εε 		Tel Exi	3		ED IS G	815	33		
						13 14 14 15 16 17									
						17 18 19									· · · · · · · · · · · · · · · · · · ·

EURIEAU VERITAS	Clayton GROUP STRVICTS LOG OF SOIL BORING	Project No.: $33/07 - 007579.02$ Project Name: 57 and 59 South LLocation: Livernor , chirochianLogged By: Churtor / Swith SonStart Date: $3-9-07$ Finish Date: $3-9-07$ Finish Date: $3-9-07$ Finish Time: :Driller: ECAHammer Weight: NABorehole Completion Data:NutlenceDepth To Σ (ft)Time:Time:Date:	Streef BORING NO. Streef BU-LS BU-LS BU-LS BU-LS BU-LS BU-LS BU-LS BU-LS BU-LS BU-LS DISTRET $DISTRET DISTRET DISTRET$
Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constrate <td>Image: Signal state of the second state of the se</td> <td>DESCRIPTION </td> <td>N dense, dry, no edo dense, dry, no edo den p breum, m-dese dan; ho cuto</td>	Image: Signal state of the second state of the se	DESCRIPTION 	N dense, dry, no edo dense, dry, no edo den p breum, m-dese dan; ho cuto

	E		V PLUE 2B A		Ć		Cla Co SO Cla SO Cla SO Cla SO Cla SO Cla SO Cla SO Cla SO Cla SO Cla	yte str i O IL IN(on F G		Project No.: 33 Project Name: 5 Location: Love Logged By: CRU Start Date: $3 - 9$ - Finish Date: $3 - 9$ Driller: FCA- Hammer Weight: Borehole Complet Depth To Σ (ft) Time:	07-007574.00 7 and 59 Source 10100 / JW1/5 07 Start Ti -07 Finish T NA	L L Street 2~1A me: : 15 Eleva ime: : 19 Boring Drill Method: D Drop: √/A Cenent Geour Depth To ¥ (ft) Time:	BORING NO. BV - 19 tion (ft, msl): Diameter (in): 2 T = cf Pnsh
SAMPLE	INTERVAL SAMPLE	RECOVERY (in)	PID READING	(ppm) TIME			DEPTH (fl)	GRAPHIC		0969	Date:	DESCI	Date:	
	- bc		5 Q.C	131 ³ 21310 1310 1310							- 3" Hophalt. SHIP why grave Find Ship GRANEL Nature	$\frac{r 3'' \log c r v}{r v}$	Maderse, dam	<u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>
4 <u>8</u> 3¢	48	10.5	0.0	1324		14 15 16 16 17 18 19 			<u>CL</u> GM		TY FRAVELLY CL TITY GRAVEL	Ay bronde	Sing Send, bosin, m danp,	c odor -dense, no odor

E E			0	Clay	ton	s		B	OF ORIN	IG	Project No.: 33107-00757 4.03. Project Name: 57/59 5. C Struf Location: Chermine CA. Logged By: CRIMENT
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	uscs	DESCRIPTION
				1757							finers jannes; Hole slaughed past
	-			1405	<u> </u>		21-	Ц			Zo' by s
								Н			
							22-	Н			DI/r = pust nutriphally TO 28 232
								Η			
							23-				
			ļ				24-	Ц			
		L	ļ					Ц			
	<u> </u>						25-	$\left - \right $			
	·· ·							Н			
							26-	H			
							27-				
							28-				
								H			
· · · ·							29-				
							20				
							30				
							- 31-				
								L			·
							32-				
								Η			
							33-				
							34-	Д			
								μ			Soner Hydroper of 39-78
<u> </u>							35-	Н			concet on surple c (472' for
		•						Η			Left-+ Voc.s
		└ <u>··</u> ···					36-	Η			
							37-	П			
				10				Ц			
				172	0	· · · ·	38-	μ		COLOR OF COLOR	
								Н			EAL 0.38 66 1
							39-	Η			
							40				
							~~~	Ц			
		ļ,				·····	41-				
								Н			
			$\left  - \right $				42-	$\left  - \right $			
		·									
							43-				
					]		44-	Ц			
			<u> </u>					$\left  - \right $			
							1				

.

											Project No.: 33/0	7-007514.02		BORING NO.
		II VA					~1				Location: Liver Logged By: / B d	7 and 59 South more californ	L Street	BU-20
	44	(A)	17		Ŕ	U		Ŋ	/to	n	Start Date: 3/9(:	1 Start Time	e: /400 Elevat	ion (ft, msl):
	B U		γΩ		×d.		GROU	P 5	ERVIO	2 6 5	Finish Date: 3/4	( - Finish Tin	ne: 1575 Boring	Diameter (in): 2
		1828	IJ			L	.00	3	OF		Driller: FCA Hammer Weight:	MA	Drill Method: D. Drop: V/A	reot fash
	BU	irae Ruit	AU AS	2015		в	SC OF	)   }	L NG		Borehole Complet	ion Data: NW-C	ment beaut	-
			exemite such				<b>.</b>				Depth To 🔽 (ft)		Depth To 工 (ft)	
											Time:		Time:	
<u> </u>		T	r	T	r	r	<u> </u>				Date:		Date:	
AMPLE	AMPLE LECOVERY (in	AMPLE ID	ID READING	IME			)EPTH (II)	AMPLE	SRAPHIC OG	ISCS		DESCR	IPTION	
0.=	OIL.		43	1400				5			Acohalt			· · · · · · · · · · · · · · · · · · ·
				_			1	Г	]]	ML	- ORFILEUR S	11-T, I brow	1. m. roft (1	n. devisi
		. 		<u> </u>			[	Н			little d	lay, damp t	Moist N	o odon.
							2				· /	· · ·		
		ļ					3							· · · · · · · · · · · · · · · · · · ·
48	41	3.5	60	14.12	<u></u>									
	- 1 0						4 -		$\ $		NO Recons	· 4-55		
							5-	$\left  \right $				<u> </u>		
<u> </u>								Η				···· ··· · · · · · · · · · · · · · · ·		
							6-	Π						
<b> </b>							7-		d۴	GM	SILTY GRA	EL FARS	North loose +	6 red dense
48	30	Tri	0.0	1410			_		Ĭď		PATPIC See	A NACE OF	my dunp	NO oden '
							8-	Π		7			······································	
							9-		6 1					
							4.0	H	10				· · · ·	
							10-		9		broked noc	ke los in	With - tal	
							11-	Н	20		1the class	have been	to antital at	al 0.
YB	36	115	0.0	1418			12-		5		- Mue Clary	COUPA DEAL		
								μ	۱Ï b					
							13-	┢┥			·····			
							14 -	Д	111	M	CLAYEN (	SILT, LOON	1. A. SHEF	little U. Sonte
71	36	105	0.0	1425				h			Sade 1	Imp' No a	der	· · · · · · · · · · · · · · · · · · ·
		141	0.0				15-	ľ	胡白	GA	CRAVELES 6	rowd, Stargh	7	
12	17	*****	00	1430			16-	μ	1th	UM	Hole colle	pres at 1]	- afferpted	- to push
								Н			- blyald	to' two tri		•
							17-				Dove 14	dreamsh to	38 420 1	\$
L							18-				water	Sample	Q,	
								Н						
						·	19-					······································	·····	
L										Į				

			0	Clay	yton	5	L( SOIL	DC B	9 of Orin	١G	Project No.: 37/107-0075/14.03 Project Name: 57/ 5 S. L Street Location: Livense, Ca. Logged By: Chillens
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE	GRAPHIC LOG	uscs	DESCRIPTION
	<u> </u>	-		1435	1		21-				BING drill w/ Hadopurch to 381
							22-				
							23-				
							24-				
							25-				
							26-				
							27-				
							28-				
							30-				
							31-		-		
							32-				
							33-				•
							34-	_			Set Hydropunch at 38' 5's: northered from the is the c
							35-				
							37-				Collect and Imple C1770 to- TOH+
				1500			38				- Ear P 381355
							39				
							40			-	Backfill Hole of Neat Compt Growt
							41-				· · · · · · · · · · · · · · · · · · ·
							42			÷	
							43				
								-		-	

	H H H H H H H H H H H H H H H H H H H		ATAS		C	L B	00 00 00	iy S Dill		ព័	Project No.: $33/4$ Project Name: $5$ : Location: $L$ via Logged By: $L$ via Start Date: $3/4$ Finish Date: $3/4$ Driller: $FCA$ Hammer Weight: Borehole Complet Depth To $\Sigma$ (ft) Time: Date:	$\begin{array}{c c} 107-007514.02 \\ \hline 7 and 59 South L Street \\ rmsr, chlippenia \\ uchief  Sun _{South} BORING NO.\begin{array}{c} 7 and 59 South L Street \\ Sun \\ Uchief  Sun \\ \hline 17 Start Time: 1200 Elevation (ft, msl): \\ g 17 Finish Time: 1335 Boring Diameter (in): 2 \\ \hline Drill Method: D e of Push \\ \hline Drop: N/A \\ \hline Drop: N/A \\ \hline Drop: N/A \\ \hline \hline Depth To \Psi (ft) \\ \hline Time: \\ \hline Date: \\ \end{array}$
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	1200			DEPTH (II)	SAMPLE	GRAPHIC LOG	nscs	- Asphart.	DESCRIPTION
							1- 2- 3-			M	CLAMEN SIL Med Shift Bock at	21 2 brown - 6 luck, some grand, 4 to soft, doup, No alson, File 2'
48	40	5.5	0.0	1707			4 - 5 -			 SM	No Massery SILTY GRA	4-6' Wey tour bown some youly loose
	¥	75	0.3	1201			6- 7- 8-				Ab accusion	en dense, demp; No dave.
				· · · ·			9- 10- 11-				Dradge - 60	ours, little clay, m. dense, dasp, no. 8d
48	36	14,5	00	1729			12- 13-	<b>酔</b> -	0	•	ZZ2 - 3 - 3/0	attempts to push past 12' augh entry hale at 9-10' bigs
							14 15- 16-				Ly leet	- GW Somple 34-38 C 1370 For TPIT + VOCS.
							17				<del>Eess (</del>	
				1110				_				

			I	Clay	yton	S	L( SOIL	00 . B	of Orii	١G	Project No.: 37107-007574.03 Project Name: 54/54 South L Street Location: Wempre, LA Logged By: C. Whiter
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION
				1172	Ф			Н			Bladd drift to 28 bys V
							21-				- Hydrophach
			-	<u> </u>			22-				
							22	Н		:	
ļ		<u> </u>					23-				
							24 -	$\left  \right $			
			1	<b></b>			25-	П			
<b> </b>	<u> </u>							H			
							26-	Ц			
							27-				
						··	28-				
							29-				
							30-				
							31-				
				<u> </u>			32-	_			
							33-	-			
							34-				
							35-			-	Hypoppich screened 34-38' by
							20			ŀ	(allest bed Sandle A 1720 for TPH+
]						]	30				Vicis
· · · ·							37 -	-		ŕ	
				172	5		38-		_+		
		·				[	ŀ	-			1200 E SY Sy
							39+				Duckforred hole of weat comb grout
							40 +	_		-	
							41				
								-		F	
							42	-		┝	
							43				
			-+				-				
							44				
							ſ			ſ	

Project No.: 33/07-007514.01 BORING NO. Project Name: 57 and 59 South L Street Location: Livernor , californian Logged By: Cheudrics /JWIIson BU-ZZ Clayton Start Date: 3/9(7 Start Time: 09.40 Elevation (ft, msl): GROUP SERVICES Finish Date: 3/4/2 Finish Time: : 1135 Boring Diameter (in): 2_ Driller: ECA Drill Method: Direct Pash LOG OF Hammer Weight: NA Drop: ٨١٨ Borehole Completion Data: NetConer Geour SOIL BURREAU VERITAS BORING Depth To 👤 (ft) 52.30 Depth To X (ft) 29.5 Time: 1015 Time: 1070 Date: 3/9/7 Date: 3/9/ Ξ PID READING (ppm) SAMPLE RECOVERY (I SAMPLE ID SAMPLE INTERVAL DEPTH ((() GRAPHIC LOG DESCRIPTION SAMPLE TIME USCS Oqy. Azphnitt 0.0 GP GRAVEL BASEROCK SILTY GRAVES WITH, SAND GA brown moderin. damp to moist NO odar FILL C SILTY CLAN d. BROWN A. SHIFF rebider Malit Ty alfrer, bank-tal, m. dente, doing, GM SIL 72 76 5.5 0.00144 da-6 Antimel barret lage nock R 0 d . بر Q Anoller dentites Vo!1 whit. 9-131 acic 10 11 12 13 SANDY GRAVEL GP ō ş, CAL SA Loud Sine clan dance to ' Mints \$. 3 14 PU g. *. 15 Ģ 4 -110 4B 155 QD 0949 Ì 16 SILTY ORANGL, LIDIA, little class 6-11 Mu dense long, al dor. 17 Ó 18 CLAY, brown, little gravel, stiff, drup L JULTY 19 s Stor. 48 48 19.5 0.0 0950

37107-007174.03 57159 SonAL 51 BORING NO. Project No.: Project Name: Wilmure, CA LOG OF Clayton BV-22 SOIL BORING Location: Logged By: Cluthin VEBITAS (ii) PID READING (ppm) SAMPLE INTERVAL SAMPLE RECOVERY ( £ DESCRIPTION SAMPLE GRAPHIC LOG DEPTH (I SAMPLE uscs 'IME 190 GM SILTY GRANEL, TIPULA, Some sandy m. Sprin, a 21 CLAMENT GRANGE brown, some 5. It., m. dense, due SILTY CLAY GRAND, W. STAR Junp, no star U. 22-36 225 0.01002 23 24 M.Shff, kmp, no odon 25 SILTY GRANE, Lorented, M. denter, frace sind tog GAN 26 stiff, and oder, dange - blick mothing. 27 60 48 77.1 0.0 1010 28 29 changer SILT brodd, most for to make a public ML L 30 some clay, sirty altrea broand little save G-M 31 <u>V</u>³² 60 48 D.7 1015 -33 SILTY CLAY, Gowd, stiff, most to wet, no also CL 34 Ŀ GRANECCY CLAY brown, still well no odor 35 SILTY GRAVEL, Goda, V. Sedie, why no GM 36 day. 48 48 - 1.0 1025 37 EABE 37' bas -set 1" PUL 32-37' 38 Collect and jup for Vocs + TPUT C-1040. 39 40 Advance BV-22A to 45' bas C 1045 -set Hydropych, 47-451 bas C 1055 - Water arisandered 41 42. -iolliet BU-22A 2 H25 for TPH + VUCS 43. 44 IONS EOB C. IT bys. Page 2 of Z

											Project No.: 33107-007574.01 BORING NO.
	,	AU I	E				1_		<b>-</b>		Project Name: 57 and 59 South L Street 17V-23 Location: Livermore californian Logged By: Chedufic ISWIIsoni
		En	闾		R			<u>y</u>		n	Start Date: 3 9 7, Start Time: 0800 Elevation (ft, msl):
	B	R	N S			цж Ск	UUP	36	KVIC	. 5 5	Finish Date: )/4/7 Finish Time: 110 Boring Diameter (in): 2
		182				LC	DG	i C	)F		Hammer Weight: NA Drop: //a
	13 (L	<u>]</u> :祖 日-日		J		5	SO				Borehole Completion Data: NetConert Geour
		S . E	IPAS	29		BC	JK	IN	G		Depth To 又 (ft) Depth To ▼ (ft)
											Time:         Time:
	·····	· <u>··</u> ·			······································	·····		<del></del>			Date: Date:
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING	TIME			DEPTH (II)	SAMPLE	LOG	USCS	DESCRIPTION
			-	- 0310				1	υ	GP	- Asphalt 2 Inserved almis: Euro San sill
	[			0.6	ļ		14		0	)	look, dry no odor
		1.5	10%	2 0815			2-	4 (	) ι		
									⁰ و	) 	Mil le caure 2 - 6
							Ĩ			ML	
			. <u> </u>				4			1	Chippenly SILI tan brew louse dry no abor
		<u> </u>					5			), ,	
27	281	5.5	0.0	0/15							
	~~1			-117			6-6				
			<u> </u>				7				
									Ч	C.a.	SILTY GALINEL BROWN IN LONG THE LA
		[						1	0	6-101	While day, damp, NU oh -
							9	۴.	4		
48	42	1.5	0.0	887	,		10	þ	6		
			<u> </u>			_	-	q	Ы		
							11-	ļφ	\$		
							12-	6			browly delse
						-	-	Ø	Ĭ		little sont, trace day, danp, no ider
.10	110	70	8.1	00-0			3		<b>b</b> []		
<u>48</u>	<u>48</u>	0.5	0.0	0821		-  1	4	J			hard detilling; hole slongly at 13'
							5	Jə	Ĭ		dense little south little clone,
74	ug	1505	0,0	200				1	IJ		some wante oxide staining, doug to maist, no ador
		1343		~ØJO		_ 1	6-4	۱ <u>ــــ</u> ۱			COSTO -> hole starte + 91
						1	7				
						-	H				Knu hydropath to 35' bys for when
						1					
						-  1	9+				
				2/31	<					<u> </u>	

		/ton	 LI SOIL	0 . E	g of Bori	: NG	Project No.: 33107-007574.03 Project Name: 57155 S. L St. Location: L. Vornare, CA Logged By: Construction: IV-23						
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (#)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION			
						21 22 23 24 25 26 27 28				Drave hydrigenech to 35' 545 due to repetative Attacts to core soil only to get slongh entering hile of 9-45' 535			
	· · · · · · · · · · · · · · · · · · ·					29- 30- 31- 32- 33-				Experie since 31 - JT bis Experie since 31 - JT bis 0900 - No water encountered, pulling and server 9100 - 2-4 feet; He odors rotal as in chard the relieves allow the water			
				0829		34 - 35 - 36 - 37 - 38 - 39 - 40 -				Drive the dopent to 49' by i sure of a 17 - 41 Brive the dopent to 49' by i sure of a J7 - 41 R940 - no water - relient to set. prove to BV- 27 110 - collect and sompt - strend on water strong gasoline soor.			
				295 200		41-				Eoscyi Bruthilled hole of reationst fort.			





												Project No.: 3310	7-007	1514.02		BORING NO.	
	,	NU V	E		R							Location: Livernore, californian BV-25 Logged By: Churchies ISWIIsmi					
	BUR				Ć							Start Date: 3/8/7 Start Time: 1355 Elevation (ft, msl): Finish Date: 3/8/7 Finish Time: 044/ Boring Diameter (in): 7					
		182				LC	)(	3	OF	2		Driller: ECA Drill Method: Direct Pash Hammer Weight: NA Drop: JA					
	IBU VE	na i R I	А () П А ()	2 2 2		BC	SC DF	)   	L NG	ì		Borehole Completion Data: NetConet Grant					
												Depth To 又 (ft)			Depth To 👤 (ft)		
											-	Date:	. <u> </u>		Time:		
	Ē		0	<u> </u>				Π		<u> </u>	-						
AMPLE	AMPLE ECOVERY (	AMPLE ID	D READING	WE			EPTH (ft)	MPLE	ZAPHIC	scs				DESCRI	PTION		
<u>60</u> 4≞	ഗ്ഷ	ۍ ۱	128		╞╼╌┼╴		3		ចប	<u> </u>							
							1-		阳	60	~	SILTY GRAVE	L, d.	bruild	FILL, Isa	e, duyo to	
									11	M		CRANELLAN S.	<u>a idar</u>	11-1			
												drup, n	. S.L.FP	- to las	ite No dar	7 +120 /	
			<u> </u>				3~		11		, ,	SANNY GRINFI	in Loo	unt. co.	me hasked	march and	
<u> </u>							4-	Ĩ.	09	07		fusse, N	ads/			sour maisty	
								-	04		_	face to	<u>(</u> #h	5.15			
<u> </u>							5-	Ţ	d e								
17.	36	5.5	0.0	UY4	<u>}</u>		6-	<u> </u>	0		<u>د</u>	51			1		
							7		5	Gin		days to	MA	st a	Josie Little	sandy	
							ĺ	-K	19								
							8	-		K	-	····			·····		
							9		0								
							_		0			m de Re	e				
,	1/2	10-	0.2	1 - 1 - 1			0		יו				(	• 010			
60	74	10.1	0,0	1344		- 1	1-	్ట	6		<u> </u>	····					
							2		]]4			V. S. Ff.	Min	: Jay !!	in cores (1	-78 1	
						-		-¦,*	Ϊh			<u> </u>	Sarp	br ;	Recovery 16	5-22'	
							3	Jþ	líľ						<u> </u>		
						- 1	4-	è							······		
						-	╞	l	) (M ) (M								
						_ *	Ĩ										
						- 10	5		1			Na o la vi					
						17	,[	0	8				~**``	······			
						-		$\mathbf{H}$	1-N	JM	5	11 JU SANA		16 16 0			
						-  18 -	ï	Ż	7	L.	5	ILTY CLA	$\frac{1}{1}$	now 1	E. STAFF, dunp	a jour	
						- 19	+	/					+ `	•	• • • • • • • • • • • • • • • • • • •	[	
8	48	1.50	0.7	1344			þ	2	1								

Project No.: 33107 -007514.03 BORING NO. Project Name: 57159 B.C. Street Location: Lovernare, cA Logged By: Churter LOG OF Clayton B1-25 SOIL BORING VERITAS Ē PID READING (ppm) SAMPLE RECOVERY ( SAMPLE ID SAMPLE DEPTH (#) GRAPHIC LOG DESCRIPTION SAMPLE uscs TIME Ц. 95 Abile MGM SILTY GLAJEL, browdy in derive 6 21 4 Dlo 22 a 23 Gravel, m. soft Fifte SILTY CLAY 610 moist no oldo-<u>C1</u> for sil 24 SILTY CLAY 25 L day is dar 72 43 200 00 1400 26 27 driller notes soft 26-14 Jall. 28 Y( NG 29 30-M. deric, Jamp, rodder 31 32-33drap to matit, no dar; 16 48 6-0 1470 ____ 34 ; hale collapses at 10' f 34'35--pash to yo' ul thydroparch -apen 36- yo' ul hydroparch screed. 36 Gen Samply C 14210 for -Colle of 37 VOLS + TPH 38~ 39 1430 FL -_ _ 4Ö-Easo 401 41 hile of vent count your back f.M 42-43. 44-

Page 2 of 2



Page 1 of _2_

	Ê	Ì	A	Clay	yton			20	G OF		Project No.: 33107-007574.03 Project Name: 57159 S. C Struf Location: Werring CA. BV-26					
		AS				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<b>1</b> G	Logged By: CPMfu	5				
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (II)	SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION					
							21-		\$\$P	am	SILTY GRAVEL, brown, m denseg day	tinosidan				
31	J6	22.5	0.0	(23,	<b>&gt;</b>		22-	國		4	SILTY CLAY, Grand, hard, drap;	nobdon				
							24 - 25 -		000	Gon	SULTY actual, brows, moderase,	derp no der				
							26~		0140	<u>C</u> Ľ	SILTY CLAY bound little in fruit densil, daing, is adon	Jandy				
60	48	27.5	0.0	1240			28-	1								
							29- 30-		7881	GM	SILTY GRAVEL, brown, though miles	ste, odo- insist				
प४	18	1	9.3	125	<b>b</b>		31 - 32 -				1/the s. Kine sander,					
							33-				- aped the population 37-75 - aped the population 37-75 - Nourater N purch - nourater in	h le				
							34-				-collect Gul Sample C 13 20 1	er Vocst				
<u>48</u>				1253			36 - 37 -				Eose 361 by					
							38 - 39 -	-			Backfill of mat covert po	n.4.				
							40-	_								
			·····				41 - 42 -									
					:		43 - 44 -			4						
					<u> </u>											

					C		la )G OI RI	vto of L NG	<b>n</b> ^{CES}	Project No.: $33/$ Project Name: $5$ Location: Liver Logged By: CR Start Date: $3/8/$ Finish Date: $7/8$ Driller: ECA Hammer Weight: Borehole Comple Depth To $\overline{\bigtriangledown}$ (ft) Time: Date:	$7$ and $59$ South L StreetBUT NO. $7$ and $59$ South L Street $8V-2.7$ $30$ South L Street $8V-2.7$ $31$ Start Time: $0.957$ Elevation (ft, msl): $107$ Finish Time: 1110 Boring Diameter (in): 2Drill Method: $D.rect Pash$ $MA$ Drop: $\sqrt{A}$ etion Data: $30.00^{\circ}$ Depth To $\mathbf{V}$ (ft) $1045$ $3 8 2$ Date:				
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE (D	PID READING	0112				GRAPHIC LOG	Ulscs	Aspha (+ to SILTY CL	311 14 L	DESCR	IPTION 1 black, of 566 for 50 fd	ya.Mc.5. danje	
48	24 ⁴	3.5	6,0	Δ95 8 Δ95 8 Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι					GP GM	Mo oder d bound Mo Recovery I GRAVEL SU SINTY GRAN day, large well day to dup Robert work M. dense	- Field molit to y-it BBASE NEI b LODE N - Field - BBASE -	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Subounded Subounded tu, some bump, no	I dor do udar	
48 4	18 1	<u>ז</u> קר 	0.7	[b] )		15 16 17 18 19		0000000		how how	2:4 Að - Čedse	j mo:	it q nu odu		

Project No .: 33107-007574. 03 BORING NO. Ø Project Name: 57/59 South L street Location: Wike more, CA. LOG OF Clayton RV-Z7 SOIL BORING VERITAS Logged By: Crinhi-Ē PID READING (ppm) SAMPLE RECOVERY (I SAMPLE ID sample GRAPHIC LOG SAMPLE INTERVAL JEPTH (II) DESCRIPTION JSCS TIME GAN SILTY altre, debrass some organic starsing devise, moist, some surly some day, MU'ddor. 21 72 48 41.5 0.0 1025 22. 23 durage to moist, no ador Ø 24 an SILTY CLA, d. brown mushift, damp through all der an SILTY GRAVEL, brown some sand, delse, moist, no ador 25 48 48 25.5 0.0 1035 26-27 28-29-Het at 30' bys. **V**ao-- 210 1045 48 60 31ø 32þ 33lo 48 36 ----1055 34-EDBC 34'Sis -set 1" BVC in open bore for - Collect Ged Sample C 1105 for 35-36-TPH+ VOL'S 37-- Backfined hole of Next-cent group 38-39+ 40-41+ 42 43 44

												Project No.: 33/07-007574.02 BORING NO.						
		SU V.	Ē				<u></u>					Location: Livermore, californian BV-28 Logged By: CRUction IJWIIson						
	BURE		ATTAS		Q			<b>ly</b> P 51		<b>n</b>		Start Date: 3/8/07 Start Time: 08/0 Elevation (ft, msl): - Finish Date: 3/8/07 Finish Time: 094 Boring Diameter (in): 7						
		1821	IJ			L	.00	<b>G</b> (	OF			Driller: ECA Drill Method: Direct Pash Hammer Weight: NA Drop: JA						
BUREAU SOIL VIERIEAS BORING												Borehole Complet	ion Data:	Nute	enerA Geour	•		
												Depth To ⊻ (ft)	31.	ا م	Depth To 👤 (ft)			
												Time:	090	10	Time:	,		
	<u></u>	<b>.</b>	T	1	<u> </u>	1			,			Date:	319	17-	Date:			
AMPLE ITERVAL	AMPLE ECOVERY (ir	AMPLE ID	ID READING pm)	ME			EPTH (ft)	BLE	RAPHIC DG	scs	2			DESCR	IPTION			
ம்≟	U CC	ы С	<u> </u>					3		13 14	5	Acd. 14 + 7"						
·						·	1 1.		11	IM	1	GLANEWY SIL	T bra	Not down	p. m. dense	No udar		
	<b> </b>						-		Щ	ļ <b>ļ</b>		FILL	1		· · · · · · · · · · · · · · · · · · ·	······		
		<u> </u>					2.	$\left  \cdot \right $		M	L	SILT, brown	hand	day	no odon			
				ļ			1 .	Ш				JIRCE PO	<u>· // // ((</u> _	Janet	······			
110	10		0.															
10	40	5.)	0.0	0815			4 -	P										
							5-	٦,										
								┢	111 11	Gr	5	SILTY GRAVE	er, tr	N-STUN	1, loose de	y, No adar		
	<u> </u>						6-				ľ							
					****		7-				-							
			0.0	200 4		<u> </u>		7	$\ \ $									
78	52	+)	0.0	9818			8-											
							9-					tad-brand,	M. deals	. da	- solar	·····		
							-				ŀ			-				
	······						10-				ŀ	1001						
			ļ				11-											
UQ	Ug	11.5-		127							-							
	18	1(.)	0.0	~~Z	<u>/</u>		12-	21			-							
							13-				Ĺ							
												de browned son	me sa	A fre	re clay, dur	p as a dor		
							14-				-			/	/			
							15-				Ļ							
Ug	YQ	15-0	00	2000							╞	·		······				
	10	1.145	<u>, , , , , , , , , , , , , , , , , , , </u>	0034			16-	X			-							
						· · · ·	17-				_	*						
	******										ŀ	de board to	are for	-litte	sand, little	chy		
							18-					dapap 70	Maish	<u></u>	<u>پ۲. '</u>	- •		
							19-											
48	48	19.5	0.0	०८५०				歃			-							
			Ì	Clay	yton		LO SOIL	00 . B	g of Orii	NG	Project No.: 33107-007574.0] Project Name: Location: Logged By: (0.4.4.5	BORING NO. BV-28						
------------	-------------------------	-----------	----------------------	------	------	----------------------------------------	------------------------------	-----------	----------------	------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------	--------------------------------------						
SAMPLE	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (tt)	SAMPLE	SRAPHIC .0G	Iscs	DESCRIPTION	L						
							21		0000	GM	SILTY GRAVEL, J. browds, frace sind m. dense, drap for moist, no ode	there day.						
<b>Y</b> 8	48	25.5	0-0				23 - 24 - 25 - 26 -		0,00		dong to noist, no adar							
49	નવુ	275	0.0	0855			27 - 28 -		69		muist, modure							
<u>u</u>				0920			29 - 30 - 31 - 32 -		V.		Core barrel sampler jammed Whol core sampler ; hile slaughed to Auch to 36' bys will hydropenech Gow C 31' bys.	1 12 1 645						
						······	33 - 34 - 35 -				top 2 76'							
						······································	36 - 37 - 38 -				Set Hydropondala C 76': exposed 32-35' bys. Went rids wet 31- & Callechic and Sanyle & 2940 and UDE'S.	Screen from -36 / bys. For TPH						
							39 40 41			ra de numeros de la constante de	Each filled hole all vest cenent gro	··t						
							42-											



# APPENDIX C

SOIL ANALYTICAL LABORATORY REPORTS



# **McCampbell Analytical, Inc.**

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33107-007514.03	Date Sampled: 03/08/07
6920 Koll Center Pkwy, Ste. 216		Date Received: 03/08/07
Pleasanton, CA 94566	Client Contact: Craig Pelletier	Date Reported: 03/12/07
	Client P.O.:	Date Completed: 03/12/07

#### WorkOrder: 0703184

March 12, 2007

### Dear Craig:

Enclosed are:

- 1). the results of 15 analyzed samples from your #33107-007514.03 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

B	07031	84	-													
C C	layton Gro	un Se	rvices	Ano A	•	10	and the	IN	POR	TANT			_		Page _	6
	A Bureau	Veritas C	Combany	Ano	1	Dat	e Result	ts Reque	ested:	18 4	R TAT	-		For C Clayto	n Lab Project	t No.
			empenny			Rus	h Charg	es Auth	orized?	X	Yes [	No				
	QUEST FO	OR LA	BORA	TORY				Fax o	X	E-mail	Results	,		2		
VERITAS	ANALYTIC	AL SE	RVIC	ES		E-m	ail addr	ress: LO	is f	ing	we	sburga	-VU.	125.00	2	
Q Name CRMG Pelletie	0	lient Job N	No. 3310	7~00757	4.03	Pur	chase (	Order N	0.	~	1			1125	12282	
To Company Incan Vertag		ept. Clien	t Services	ĒS	, Ш	Nar	ne			5	AM	15		5392	2.5.0	
Mailing Address 6970 tol Cer	Au Phay .	# 216	- 0.8.8	148533	<b>N</b>	O Cor	npany	-		2	110	E			Dept.	
City, State, Zip Plan, CA	945661	6. 5.	4260	. 0.(	IN N	Add	ress State	7:-			-	28			10363	-
Special instructions and/or specific regulat	ory requirements:	Soils:	Wate	ers:		City	, State	, <u>ZI</u> D		A	NALYSIS	REQUES	STED	12.2.2	86221	
(method, limit of detection, etc.)		Which		rinking Mator	iners		(Enter	r an 'X' ir	the bo	x below	to indicate	e request. E	Enter a 'F	' if Preser	vative added.	
SGCM for (Pot-2)	mo.	state		roundwater	onta	1		15	W.	/	/ /	/ /	/	/	/ /	
		from?		astewater	of C		1	how	107	/	/	/ /	/ /	/ /	///	
* Explanation of Preservative		CH	-		per		M	X	an	A	/ /	//	/	/	/ /	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Num	K	Sty ?	Jour	200	8/2		//	//	/	FO	R LAB ONLY
BV-28 3.5-4.01	38/07	0815	50.1		1	WHE	KK		X						1	
BV-28 75-8.01	1	0918	1		1				X							
BJ-28 11.5-12.01		0822			1				x							
BV-28 1575-16.01		0834			1	X	X		Ma							
61-28 19.5-20.01		0840			1		9		X						1. 200	
31-28 23.5-24.0'		0846	1.1	12.13	1		22		x	3.	2.2.2.1					
81-28 27.5-28.01		0855		18556	1				X	100			5		le la	1
B1-21 3.5-4.0'		0835			1				x							
BV-01 75-8.0'		0845	19.5	1.00 84	1	X	x	X				1				
QV-01 165-12.01	V	6855	V	128435	1		\$ E -		1×	01						2
Collected by: Crain full	har		書意義	(print)	Collec	ctor's S	gnature	e: G	11	17		1244				
CHAIN Relinquished by:	1	112	Date/Time	3/8/2	Recei	ived by:	Sh.	1º la	nt	am	n 3	18107		Date/Tim	105151	$\rangle$
CUSTODY Relinquished by:			Date/Time	-10()	Recei	ived by:	a w	4	p	1000	<u>v</u> <u>v</u>	0101		Date/Tim	ne	
Method of Shipment: Dopp	fe				Recei	ived at L	ab by:		2	1		1.1.7		Date/Tim	ne	1
Authorized by:	1	Date			Samp	le Conc	lition U	pon Re	ceipt:		Acceptat	ole 🗌	] Other	(explain)		
Please return completed form and sample	es to one of the (	lavton G	TOUD Sen	vices Inc Jah	s lister	d below	v.	-	/		1		_			_
Detroit Regional Lab         Atlanta Regional           22345 Roethel Drive         3380 Chastain M           Novi, MI 48375         Kennesaw, GA 3           (800) 806-5887         (800) 252-9919           (248) 344-1770         (770) 499-7500           FAX (248) 344-2655         FAX (770) 499-750	i <b>Lab</b> eadows Parkway, Sui 0144	te 300	Se 463 Se (80 (20 FA	attle Regional L 36 E. Marginal W attle, WA 98134 0) 568-7755 6) 763-7364 X (206) 763-4189	ab ay S., S	uite 140	ICE/ GOO HEA DEC PRE	DD CON DD SPAC CHLORIN SERVA	DITION E ABSE NATED	IN LAB	Al C( PF O&G M	PPROPRIA ONTAINEF RESERVEI METALS C	DIS VIE VIE DIN EAN DIN EAN	$\frac{TRIBUTII}{IIte} = C$ $\frac{1}{IIte} = C$	ON: Bayton Labor Iayton Accou Bient Copy	atory inting 0/05 20K
											-					

	C	G		π		-							í.			Page _	Z of 6
Clayt	on Gro	up Se	rvices,	, Inc.				IIVI	POR	Lan I	1.10				For Clay	yton Us	e Only
	A Bureau	Veritas C	ompany			Date	Result	s Reque	sted: orized?	78	Yes [	No	-		oluyton	240 110	
Teze REQU	EST FO	DR LA	BORA	TORY				] Fax or		E-mail	Results	_					
BUREAU VEBITAS	ALYTIC	AL SE	RVICI	ES		E-ma	ail addr	ess:	_	-	<u>.</u>	_	_				<u> </u>
O Name ( Rec. Pullet 5	0	lient Job N	No. 33/0	2-00757	4.07	Pure	hase (	Order N	0.	/	1						
Company Rocan Ventag		Dept. Clien	t Services	1 - 12	щ	Nan	ne		<	A	N	15	2.4.5	1.5			
Mailing Address 6922 , Kohler	for Ph	y th	216			Con	npany	S		24	/	T.		2.1	D	ept.	-
City, State, Zip. Mas Mul CAT	FAVAL	(	2.2.2.1		IN N	Add	State	Zin			-	11					2
Special instructions and/or specific regulatory re	quirements	: Soils:	Wate	rs:	(0)	City	, State	, <u>ZI</u> D	the less	AN	ALYSI	S REQ	JESTE	D	Proconus	tive adde	vd *)
(method, limit of detection, etc.)		Which		inking Water	iner	-	(Ente	ran X II	n the poor			te reque			Freserva		///
* Explanation of Preservative		state are the from?	ese Gr	roundwater astewater	mber of Conta		1	Hour .	Neg .				/		//	/	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Nur	1	S.	100	8	×		/ /	/		/ /		FOR LAB
BV-27 3.5-4.01	3/8/7	0958	50-1		1	18AT	110		X								
BV-27 75-8.01	ſ	1002							x								
BV-27 165-12.00		[00]			1	X	X		4						_		-
BV-27 105-16.01		1012			1				x								
QJ-27 21.5-22.0'		1025			1				×								
11-27 255-4.01	2.41	1035	21 22	3.896.8	1	4.2	31		X	1							
BV-02 3.5-4.01		0925		6	1				X	1							
BV-02 7.5-8.01		0930			1			1	×				1				
RV-02 9,5-10.0'		0940		1202	1	X	X	X									
BV-02 115-12-2	V	0440	1		1		1.1	18	X	6	6.8.4		3				
Collected by: Cons Pulls h of				(print)	Colle	ctor's S	ignatur	e:	Ta	1	/	1.23					\
CHAIN Relinquished by:	-		Date/Time	2/8/2	Recei	ved by:	Sh	l'l	nnd	In	m	3	1410	70	ate/Time	SOL	5
OF CUSTODY Relinquished by:			Date/Time	1017	Recei	ved by:	0 1	1	10		1.2.3	/		D	ate/Time	)	
Method of Shipment: Dals P	-				Recei	ved at I	_ab by	:				1.5.4		D	ate/Time	)	
Authorized by:		Date			Samp	ole Cond	dition L	Jpon Re	eceipt:		Accept	able		)ther (e	explain)		
Litent signature MUST Accompany Hequest           Please return completed form and samples to the period regional Lab         Atlanta Regional Lab           22345 Roethel Drive         3380 Chastain Meadow           Novi, MI 48375         Kennesaw, GA 30144           (800) 806-5887         (800) 252-9919           (248) 344-1770         (770) 499-7500           FAX (248) 344-2655         FAX (770) 499-7511	one of the s Parkway, Su	Clayton G	roup Serv 463 Sea (80) (20) FA	vices, Inc. lab attle Regional I 36 E. Marginal W attle, WA 98134 10) 568-7755 16) 763-7364 X (206) 763-4189	s liste Lab Jay S., S	d below	v:	7		2				DIST White Yello Pink	RIBUTIO e = Cla w = Cla = Clie	N: lyton Lal lyton Ac ent Copy	counting / 10/05 20k

		• Т		-		154						Page 3 of 6
	A Burgan Varitas Co	vices, Inc.		Date	Results	Reque	sted:	48HR			For ( Clayte	Clayton Use Only on Lab Project No.
	A Dureau vertus Co	лпрану		Rush	Charge	es Autho	orized?	Yes	No.	>		
1828 RE	QUEST FOR LAE	BORATORY				Fax or	Å	E-mail Resu	ults		1.	
VERITAS	ANALYTICAL SE	RVICES		E-ma	il addre	SS:				_		
O Name Buren Vertas	Client Job N	0. 33/07-00757	0.0	Purc	hase O	rder No	o.	/	"		_	
Company 6922 hord for	Dept. Client	Services *	ЪЪ	Nam	e			5	A	ME		Dent
Mailing Address	A My IT MA		NAC	Addr	ess			/	//*	UE		Dept.
Telephone No. 12747.7	67 FAX No. 925	476.2607	″≚	City,	State,	Zip		C				
Special instructions and/or specific regulat	ory requirements: Soils:	Waters:	S	6	(Enter	an 'X' in	the box	below to inc	Icate requ	UESTED	) a 'P' if Prese	ervative added.*)
TPH of Soch.	which state are thes from?	Drinking Water	ber of Containe		- China - Chin	all son	Me -					
	DATE TIME	MATRIX/ AIR VOLUME	Num	1	×.	5/	S.	Y/	/ /	/	/ /	FOR LAB
CLIENT SAMPLE IDENTIFICATION	SAMPLED SAMPLED	MEDIA (specify units)	-	$\langle \cdot \rangle$	7 3	<u>~</u>	<u>× </u>			$\leftarrow \leftarrow$		USE ONLY
BV-03 3.5-4.01	318/07/030	50.1	(	X	X	X			-			83 /
BV-03 75- 8.01	1 1040	1					X		_			
BV-03 11.5-12.01	1050			X	$\times$	X						-
BV-04 3.5-4.01	1130		1				X					
JV-04 9.5-10.01	1150		1	X	X	X						
DV-01 15-201	1245		7	5	2100		x					
11-05 3.5-401	1240						X					
RV-05 25-801	17.42			X	X	×		2.3				
R. ( AS 115-12.2"	1757						X					
00-01 1(11 1211	10)	V						K				
Collected by:	Δ	(print)	Collec	tor's Sig	gnature	): 	1	Pt	-			C
CHAIN Relinquished by:	1	Date/Time	Receiv	ved by:	li	El	NA	4 And	- 21	8107	Date/T	ime 5150
OF CUSTODY Relinquished by:	<i>c)</i>	Date/Time	Receiv	/ed by:	1001	1	-	0000	A		Date/Ti	ime
Method of Shipment:	aff		Receiv	ed at L	ab by:						Date/T	ime
Authorized by:	Date		Sampl	e Cond	ition Up	oon Re	ceipt:	Acce	eptable	Oth	her (explai	n)
Please return completed form and sampl	es to one of the Clayton Gr	oup Services, Inc. lab	s listed	below	:					[	DISTRIBUT	TION:
Detroit Regional LabAtlanta Regional22345 Roethel Drive3380 Chastain MNovi, MI 48375Kennesaw, GA 3(800) 806-5887(800) 252-9919Control Control Cont	a <b>l Lab</b> leadows Parkway, Suite 300 80144	Seattle Regional 4636 E. Marginal W Seattle, WA 98134 (800) 568-7755 (206) 763-7354	<b>Lab</b> /ay S., Su	uite 140							White = Yellow = Pink =	Clayton Laboratory Clayton Accounting Client Copy
(248) 344-1770 (770) 499-7500 FAX (248) 344-2655 FAX (770) 499-7	511	FAX (206) 763-4189	9									10/05 20

	C	G		T		_							Pa	4 4 6
CI	yton Gra	oup Ser	vices	, Inc.				IMPO	RTAN		1-1		For Clayton	Use Only
	A Bureau	Veritas Co	mpany			Date	e Results R	equested:		ITA 1	1	(	Slayton Lab	Project No.
1828 BE	OUEST FO		ORA	TORY		HUS	n Charges	ax or	E-mai	res	NO			C
BUREAU	ANALYTIC	AL SE	RVIC	ES		E-m	ail address	:						
O Name Con William		Client Job No	77.0	2 - 1/1 Jun	4	Pur	chase Ord	er No		1	1			
Company Rundan Van Ta	C 1	Dept. Client	Services	g==00 /3/	ш	Nan	ne	01110.	/		1/1	6		
A Mailing Address by 20 boll (i	Av Pla	4 #2	16		PSC PSC	Con	npany		_	TK	PU	E	Dept.	
City, State, Zip	-	1	_		N N N	Add	iress	_	_/	/ /		-		
Telephone No. 975 916. 26	FAX No	Soile:	Wate	are		City	, State, Zij	p	(	NALYSIS	REQUES	TED		
(method, limit of detection, etc.)	/	Which	wate		ners		(Enter an	'X' in the l	ox below	to indicate	e request. E	inter a 'P' if	Preservative a	dded.*)
TPH- Juno W SG-CI	hl	state		rinking Water	ontai		/	5	/	/	/ /	/	/ /	/ /
- /*		from?		/astewater	of Co		15	Vinh"	/ /	/ /	/ /	/ /	/ /	/
* Explanation of Preservative		-CA-	-		ber		www.	S	/~	/ /	//	/ /	//	
CLIENT SAMPLE, IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Num	1	let no	24	Hale		//		//	FOR LAB USE ONLY
BV-76 5.5-6.01	387	1203	5.1		/	MA	40,	×						
BV-76 9.5-10.01		1207	1		1			×						
BV-76 15.5-16.01		1212	1		1	X	X	M						
BV-26 19.5-20.01		1220			1			X						
BV-26 225-2321		1230			1			×						
11-26 27.5-28.0'		1240	10.5		1		51	X	1					
BV-25 55-601		1346			1	Mr	Uner	X						
DV-75 1005-10.01		1344			1			X	8.0					
BY-75 195-20.0'		1749	1		1	X	V	M	1					1
BU = = 755-71 AL	V	1400	V		1	-		X	2.8	$\Lambda$				
Collected by: An Pringh	Se Se	1100	-	(print)	Collec	tor's Si	ignature:	1	110	-				
CHAIN Relinquished by:	1	D	ate/Time	211-	Receiv	ved by:	Shit.	h	Ja.	0	3/8/	OT Da	te/Time5	50
CUSTODY Relinquished by:	}	D	ate/Time	1017	Receiv	ved by:	200	uny	~w	w	11 -1	Da	te/Time	
Method of Shipment:	ff		0.9		Receiv	ved at L	ab by:					Da	te/Time	
Authorized by:		Date			Samp	le Cond	lition Upor	n Receipt:		Acceptal	ble	Other (ex	kplain)	
Client Signature MUST Accompany Require Please return completed form and complete	to one of the	Clayton Gr	un Son	vices Inc. Joh	e lieter	helow	w.							
Detroit Regional Lab Atlanta Regional	Lab	orayton on	Se Se	attle Regional L	ab	Delow	•.					DISTR	RIBUTION:	Laboratory
22345 Roethel Drive3380 Chastain MeaNovi, MI 48375Kennesaw, GA 301	dows Parkway, Su 44	lite 300	46 Se	36 E. Marginal W attle, WA 98134	ay S., Su	uite 140						Yellow	v = Clayton	Accounting
(800) 806-5887         (800) 252-9919           (248) 344-1770         (770) 499-7500			(80	00) 568-7755 06) 763-7364								Pink	= Client C	ору
FAX (248) 344-2655 FAX (770) 499-751	1		FA	X (206) 763-4189	)									10/05 20K

i

Clay	ton Grou	ap Sei	rvices	, Inc.				IMP	ORTAI	ΝT		_	For C	Page 5 of 6
	A Bureau V	eritas C	ompany			Date F	Results	Request	ed: Y	8-4R	-		Clayto	n Lab Project No.
DEOL				TODY		Rush (	Charges	s Authori	zed?	Yes	No			
BUREAU AN	JALYTIC		RVIC	ES		E-mail	l addres	Fax or	E-m	all Results		1.1.1.1		
O Name (A. 444 A.		ant Joh N	77/		107	Burch		rdor No						
Company Ring a last	De	ent Job N	Services	14-00 +11·	(.03	Name	ase Or	rder No.	1	M	110			
Mailing Address		pt. onorn	00111000		P S S S S S	Comp	bany		1	AV	MB		1	Dept.
City, State, Zip					E S S S S S S S S S S S S S S S S S S S	Addre	ess			1	(F			
Telephone No.	FAX No.				≤	City, S	State, Z	Zip	/	* (				
Special instructions and/or specific regulatory r (method, limit of detection, etc.)	equirements:	Soils:	Wate	ers:	S		(Enter a	an 'X' in t	box bel	ANALYSI ow to indica	IS REQUES ate request. E	Enter a 'P'	if Preser	vative added.*)
		state		rinking Water	taine			B	2/ /	//	/ /	/ /	/	///
		are the	se 🗌 G	roundwater	Con		/	3/	0/	/ /	/ /	/ /	/ ,	
		from?		astewater	r of		1	2/2V	0/ /		/ /	/ /	/	/ /
* Explanation of Preservative		-01			mbe	15	N	S	X	V/	/ /	/ /	/ /	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED S	TIME	MATRIX/ MEDIA	AIR VOLUME (specify units)	N	12	75	2 3	Y Y				/	FOR LAB USE ONLY
BV-06 3.5-4.0	387	1315	Soil		1				X					
BV-06 7.5-8.01		1325	1			X	×	X						
BV-06 11.5-12.01		1370			]				$\times$					
BV-24 5.5-6.01		1504			1	X	X							
BV-24 9.5-10.01		1589			1				x					
BV-24 155-160'		1574			/				X			1		
5V-24 20.5 - 21.0'		1520			1				X					
W-24 24.5-2501		1528			1			>	2 I					
					1					0				100 100
	V		V		1					XI				
Collected by:	F /			(print)	Collec	tor's Sigr	nature:	1	all					
CHAIN Relinquished by:		[	Date/Time	201-	Receiv	ved by:	Oh.O	1. J.		V		3/8/05	ate/Tin	ne 5150
CUSTODY Relinquished by:		(	Date/Time	)/0/7	Receiv	red by:	2 ma	1 -01	you	min			)ate/Tin	ne
Method of Shipment: Drochff	-				Receiv	ved at La	b by:	-				0	Date/Tin	ne
Authorized by:		Date	1.0	100	Sampl	e Conditi	ion Up	on Rece	ipt:	Accept	able	] Other (	explain	)
(Client Signature MUST Accompany Request)			-					_						
Please return completed form and samples to Detroit Regional Lab	one of the C	layton Gi	oup Sen	vices, Inc. lab	s listed	below:						DIST	RIBUTI	ON:
22345 Roethel Drive 3380 Chastain Meadow	vs Parkway, Suite	e 300	46	36 E. Marginal W	ay S., Su	ite 140						Yello	e = C	layton Laboratory
Rom, MI 46375         Remesaw, GA 30144           (800) 806-5887         (800) 252-9919			(80	0) 568-7755								Pink	; = C	lient Copy
(248) 344-1770 (770) 499-7500 FAX (248) 344-2655 FAX (770) 499-7511			(20 .FA	6) 763-7364 X (206) 763-4189										10/05 20

Clayt	on Gro	oup Se	rvices	, Inc.		12		IN	IPOR	TAN	Г				For C	Page _	6 of <u>~</u> Only
	A Bureau	Veritas C	Company			Date	Result	ts Requ	ested:	48	K			_	Clayto	n Lab Proj	ect No.
1828 BEOL	EST EC		BORA	TOPY		Rus	h Charg	jes Auth	orized?		Yes		D				
BUREAU VERITAS	ALYTIC	AL SE		FS		E-m	ail addr	」 ⊩ax o 'ess:	r 🗀	E-mai	Result	S					
O Name Country III - Da D		Night Joh N	33/	NT CORRECT	e d.e.												
Company Runa Ventas		ent Clien	t Services	04-0075/4 E	[0]	Nan	chase (	Order N	0.	1	1.1						
Mailing Address 61 24 Lik GN	for pla	a Ho		ES	<u>۾ ٿو</u>	Con	noany		(	51	HH	1-				Dopt	
Eity, State, Zip Please And, CA		9 4 - 0			NSE	Add	ress			$/\uparrow$	1	P	-			Dept.	
Telephone No. 915. 42. 20	7 FAX No	).			≤	City	, State	, Zip									
(method, limit of detection, etc.)	quirements:	Soils:	Wate	ers:	S		(Enter	r an 'X' i	n the be	below	to indic	IS REC	QUEST lest. Ent	ED ter a 'P' i	f Preser	vative added	.*)
Secu for TPH.	e'mo	state are the from?	se G	rinking Water roundwater /astewater	of Containe		/	15 cm	03	/	/	/	/	/	/	//	
* Explanation of Preservative		-CA	-		nber		N	28	V.	12	/ ,	/ ,	/	/ ,	/ ,	/ /	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Nun	/1	AT S	St A	3/2	s'						FO US	DR LAB E ONLY
BV-07 3.5-40	387	1405	Soil		)				X								
15-07 75-801		1410	1						X							1	
01-07 11.5-12.0'		1415			1	X	X	X			5						
BV-08 3.5-4.01		1445			1				x								
0V-08 75-8.01		1450			1	V	1-	. 2	,								
BV-08 7.5-10.01	1.1	1455			1		×	-	Y								
BV-09 3.5-9.01		1570			1	-	R	4	X							40,	D
BV-09 7.5-801		1525			1	X	X	X									V
DV-09 11.5-12.0'		1530	1		1			4	X			1					
	V		V						2		1						
Collected by: Comis funtre 5	A			(print)	Collec	tor's Sig	gnature	: (	in	1A	1						
CHAIN Relinquished by:	1	[	Date/Time	3/8/2	Receiv	ed by:	26	A a	Co.	. 6.	110		3	NO-DA	ate/Tim	e Kall	D
CUSTODY Relinquished by:	J	[	Date/Time	-1011	Receiv	ed by:	0-0	ry_	-04	ans	2112			Da	ate/Tim	e	
Method of Shipment:					Receiv	ed at La	ab by:							Da	ate/Tim	е	
Authorized by:		Date			Sampl	e Condi	tion Up	oon Red	ceipt:		ccepta	able		)ther (e	xplain)		
Please return completed form and samples to o           Detroit Regional Lab         Atlanta Regional Lab           22345 Roethel Drive         3380 Chastain Meadows           Novi, MI 48375         Kennesaw, GA 30144           (800) 806-5887         (800) 252-9919           (248) 344-1770         (770) 499-7500           FAX (248) 344-2655         FAX (770) 499-7511	ne of the C Parkway, Suit	layton Gr e 300	oup Serv Sea 463 Sea (800 (200 FA)	<b>ices, Inc. lab</b> <b>attle Regional L</b> 6 E. Marginal Wa (6 E. Marginal Wa (6 E. Marginal Wa (755 (763-7364 (763-7364 (763-4189	s listed .ab ay S., Su	below ite 140	:							DISTR White Yellov Pink	RIBUTIC = Cl v = Cl = Cl	DN: ayton Labo ayton Acco ient Copy	ratory unting 10/05 20K

# McCampbell Analytical, Inc.

	SW)
6	JU
1	

1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C. (925) 252-9	A 94565-1701 262					Work	Order	07031	184	(	ClientII	): BVP					
				EDF		F	ax		Email		H	lardCopy	[	Third	Party		
Report to:		Emoile	oroig pollotio	Que hureeuwerite		_	Bill to	n Millo	-				Req	Jueste	I TAT:	2(	days
Bureau Veritas 6920 Koll Cente Pleasanton, CA	er Pkwy, Ste. 216 94566	Email: TEL: ProjectNo: PO:	craig.pelletier (925) 426-26 #33107-0075	"@us.bureauventa 0 FAX: (925) 4 514.03	s.com 426-0	10	Joa Bui 692 Ple joa	reau Ve 20 Koll ( asanto n.miller	r ritas Center n, CA 9 @us.b	Pkwy, S 94566 ureauv	Ste. 210 eritas.c	6 :om	Dat Dat	te Rec te Prii	eived: 1ted:	03/08/ 03/08/	2007 2007
									Req	uested	Tests	(See lege	end be	elow)			
Sample ID	ClientSampID		Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0703184-004	BV-28 15.5-16.0	•	Soil	03/08/07 8:34:00			А	А									
0703184-009	BV-01 7.5-8.0'		Soil	03/08/07 8:45:00		Α	А	Α									
0703184-013	BV-27 11.5-12.0	I	Soil	03/08/07 10:06:00			А	Α									
0703184-019	BV-02 9.5-10.0'		Soil	03/08/07 9:40:00		А	А	Α	А								
0703184-021	BV-03 3.5-4.0'		Soil	03/08/07 10:30:00		А	А	Α	Α								
0703184-023	BV-03 11.5-12.0	I	Soil	03/08/07 10:50:00		А	А	Α	Α								
0703184-025	BV-04 9.5-10.0'		Soil	03/08/07 11:50:00		А	А	Α	Α								
0703184-028	BV-05 7.5-8.0'		Soil	03/08/07 12:47:00		А	А	Α	Α								
0703184-032	BV-26 15.5-16.0	I	Soil	03/08/07 12:12:00			А	Α	Α								
0703184-038	BV-25 19.5-20.0	1	Soil	03/08/07 1:49:00			А	Α	Α								
0703184-041	BV-06 7.5-8.0'		Soil	03/08/07 1:25:00		А	А	Α	А								
0703184-043	BV-24 5.5-6.0'		Soil	03/08/07 3:04:00			А	Α	А								
0703184-050	BV-07 11.5-12.0		Soil	03/08/07 2:15:00		А	А	Α	Α								
0703184-052	BV-08 7.5-8.0'		Soil	03/08/07 2:50:00		А	А	Α	Α								
0703184-055	BV-09 7.5-8.0'		Soil	03/08/07 3:25:00		Α	Α	Α	Α								
<u>Test Legend</u> :																	

1 8082A_PCB_S 6 11

2

7

12

3	3	G-MBTEX_
	8	

4 TPH(DMO)WSG_S 9

5		
10		

The following SampIDs: 0703184-004A, 0703184-009A, 0703184-013A, 0703184-019A, 0703184-021A, 0703184-023A, 0703184-025A, 0703184-028A, 0703184-032A, 0703184-038A, 0703184-041A, 0703184-043A, 0703184-050A, 0703184-052A, 0703184-055A contain

8260B_S

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell An "When Oualit	nalyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Bureau Veritas		Client Pr	oject ID: #	#33107-	007514.03	Date Sampled:	03/08/07		
6920 Koll Center Pkwy, Ste. 216						Date Received:	03/08/07		
Pleasanton CA 94566		Client C	ontact: Ci	aig Pel	letier	03/08/07			
Treasanton, CA 94500		Client P.	O.:			Date Analyzed	03/08/07-03/10/07		
Р	olychloi	rinated Bi	phenyls (P	CBs) A	roclors by GC-E	CCD*			
Extraction Method: SW3550C	1	Work Order:	0703184						
Lab ID	07031	84-009A	0703184	-019A	0703184-021A	0703184-023A			
Client ID	BV-0	1 7.5-8.0'	BV-02 9.	5-10.0'	BV-03 3.5-4.0'	BV-03 11.5-12.0'	Reporting DF	Limit for =1	
Matrix		S	S		S	S			
DF		1	1	1		1	S	W	
Compound				Conce	entration		mg/kg	ug/L	
Aroclor1016		ND N			ND	ND	0.025	NA	
Aroclor1221		ND	ND		ND	ND	0.025	NA	
Aroclor1232		ND	ND	1	0.12	ND	0.025	NA	
Aroclor1242		ND	ND	1	ND	ND	0.025	NA	
Aroclor1248		ND	ND	1	ND	ND	0.025	NA	
Aroclor1254		ND	ND		ND	ND	0.025	NA	
Aroclor1260		ND	ND	1	ND	ND	0.025	NA	
PCBs, total		ND	ND	1	0.12	ND	0.025	NA	
		Surr	ogate Rec	overies	s (%)				
%SS: 117					109	103			
Comments									
* water samples in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.									

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains  $>\sim 1$  vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

<u>McCampl</u>	When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas			Client Pro	oject ID: #	ŧ33107-	007514.03	Date Sampled:	03/08/07					
6920 Koll Center Pkwy, St	te. 216						Date Received:	03/08/07					
Pleasanton CA 94566			Client Co	ontact: Ci	raig Pelletier Date Extracted:			03/08/07					
r leasanton, CA 94500			Client P.	D.:			Date Analyzed	03/08/07-03/10/07					
Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*													
Extraction Method: SW3550C			Anal	ytical Method	1	Work Order:	0703184						
	Lab ID	07031	84-025A	0703184	-028A	0703184-041A	0703184-050A						
	Client ID	BV-04	9.5-10.0'	BV-05 7.	5-8.0'	BV-06 7.5-8.0'	BV-07 11.5-12.0	Reporting DF	Limit for =1				
	Matrix		S	S		S	S						
	DF		1	1	1		1	S	W				
Compound					Conce	entration		mg/kg	ug/L				
Aroclor1016		]	ND	ND		ND	ND	0.025	NA				
Aroclor1221		]	ND	ND		ND	ND	0.025	NA				
Aroclor1232		]	ND	ND		ND	ND	0.025	NA				
Aroclor1242		]	ND	ND		ND	ND	0.025	NA				
Aroclor1248		]	ND	ND		ND	ND	0.025	NA				
Aroclor1254		]	ND	ND		ND	ND	0.025	NA				
Aroclor1260		]	ND	ND		ND	ND	0.025	NA				
PCBs, total		]	ND	ND		ND	ND	0.025	NA				
			Surr	ogate Rec	overies	s (%)							
%SS:			109	103		114	114						
Comments	0												
* water samples in $\mu g/L$ , soil/sludge/solid samples in $mg/kg$ , wipe samples in $\mu g/wipe$ , filter samples in $\mu g/filter$ , product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in $mg/L$ .													

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

McCampbell An	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Bureau Veritas		Client Pro	oject ID: #	#33107-	007514.03	Date Sampled:	03/08/07				
6920 Koll Center Pkwy, Ste. 216						Date Received:	03/08/07				
Discourter CA 045()	-	Client Co	ontact: Cr	aig Pell	03/08/07						
Pleasanton, CA 94566	-	Client P.C	D.:			Date Analyzed	03/08/07-0	3/10/07			
Po	lychlor	inated Bip	ohenyls (P	CBs) A	roclors by GC-I	ECD*					
Extraction Method: SW3550C		Analy	ytical Method	l: SW808	2A		Work Order:	0703184			
Lab ID	070318	84-052A	0703184	-055A							
Client ID	BV-08	7.5-8.0'	BV-09 7.	.5-8.0'			Reporting DF	Limit for =1			
Matrix		S	S								
DF		1	1				S	W			
Compound				Conce	entration		mg/kg	ug/L			
Aroclor1016	١	٩D	ND				0.025	NA			
Aroclor1221	1	١D	ND				0.025	NA			
Aroclor1232	١	ND	ND				0.025	NA			
Aroclor1242	١	ND	ND				0.025	NA			
Aroclor1248	١	٩D	ND				0.025	NA			
Aroclor1254	١	ND	ND				0.025	NA			
Aroclor1260	١	ND	ND				0.025	NA			
PCBs, total	١	ND	ND				0.025	NA			
		Surro	ogate Rec	overies	s (%)						
%SS:	1	.03	115	i							
Comments											
^s water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.											

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

McCampbell Ar	nalytical, In Counts"	<u>nc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Bureau Veritas	Client F	roject ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-			Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: (	⁷ raio I	Pelletier	Date Extracted:	03/08/07		
Pleasanton, CA 94566	Client			enetier	03/00/07			
, 		.0				03/07/01		
	Volatile Organ	nics by P8	eT and	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		Analytical Me	ethod:	SW8260B		Work Order: 070318	34	
Lab ID				0/03184-	004A			
Client ID				BV-28 15.	5-16.0			
Matrix		r		Soil				Description
Compound	Concentration *	DF	Limit	Compound	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl eth	ner (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachioride	ND	1.0	0.005	2 Chloroothul Vinul	Ethor	ND	1.0	0.005
Chloroform	ND	1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluane	ND	1.0	0.005	4 Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1 2-Dibromo-3-chlor	copropage	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	opropune	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (	1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroether	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	1	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	ene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether	r (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	41	ND	1.0	0.005
Styrene	ND	1.0	0.005	T,1,1,2-Tetrachioroe	tnane	ND	1.0	0.005
Teluene	ND	1.0	0.005	1 2 2 Trichlorobanzo		ND	1.0	0.005
1 2 4-Trichlorobenzene	ND	1.0	0.005	1 1 1-Trichloroethan		ND	1.0	0.005
1 1 2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloroprop	ane	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND         1.0         0.005         1.2.5-Trimethylbenzene           ND         1.0         0.005         1.3.5-Trimethylbenzene					ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005
		Surrog	ate Re	coveries (%)				
%SS1· 78				%SS2:		117		
%\$\$3:	13	5						
Commonstat	12	-						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell An "When Quality	nalytical, In Counts"	<u>ic.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 15-252-9269		
Bureau Veritas	Client P	roject ID:	#331	07-007514.03	Date Sampled:	03/08/07		
					Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client C	Contact: (	Craig H	Pelletier	Date Extracted:	03/08/07		
Pleasanton, CA 94566	Client P	.0.:	0		Date Analyzed	03/09/07		
	Volatile Organ	ics hy P <i>8</i>	&T and	l GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B	A	nalytical Me	ethod:	SW8260B		Work Order: 070318	84	
Lab ID				0703184	-009A			
Client ID				BV-01 7	.5-8.0'			
Matrix				Soi	1			
Compound	Concentration *	DF	Reporting Limit	Compoun	ıd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
1.2 Dibromosthana (EDB)	ND	1.0	0.005	Dibromomothere	ropropane	ND	1.0	0.005
1,2-Diblorobenzene	ND	1.0	0.005	1 3-Dichlorobenzene	<u>,</u>	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1 1-Dichloroethane	ND	1.0	0.005	1 2-Dichloroethane	(1.2-DCA)	ND	1.0	0.005
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ene	ND	1.0	0.005
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	2	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	- e	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
1 2 4 Trichlorchonzone	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Inchorosthena		1.0	0.005	Trichloroothana			1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1 2 3-Trichloroprop	ane	ND	1.0	0.005
1 2 4-Trimethylbenzene	ND 1.0 0.005 1.3.5-Trimethylbenzene ND						1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.005
		Surroo	ate Re	coveries (%)				
%SS1:	77	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,	%\$\$2.		116		
%\$\$3.	12	7		/0002.		110		
Commontes	12	,		L				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	nalytical, I	nc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07			
		-			Date Received:	03/08/07			
6920 Koll Center Pkwy, Ste. 216	Client	Contact: (	'raig F	Pelletier	Date Extracted:	03/08/07			
Pleasanton, CA 94566	Client		Jaig I	enetier	03/00/07				
, 			<b>T</b>			03/07/01			
	Volatile Orga	nics by P&	anc	l GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B		Analytical Me	thod: S	SW8260B		Work Order: 070318	34		
Lab ID				0/03184-	013A				
Client ID				BV-2/11.	5-12.0				
Matrix				Soil				Description	
Compound	Concentration	* DF	Limit	Compound	d	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl etl	ner (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ane	ND	1.0	0.005	
Bromoform	ND	1.0 0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0 0	<u>).005</u>	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachioride	ND	1.0	0.005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.005	
Chloroform	ND	1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01	
2 Chlorotoluane	ND	1.0	0.005	4 Chlorotoluene		ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1 2-Dibromo-3-chlor	copropage	ND	1.0	0.005	
1 2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	opropune	ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (	1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	1	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	ene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0 0	0.005	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0 0	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	41	ND	1.0	0.005	
Styrene	ND	1.0	0.005	T,1,1,2-Tetrachioroe	tnane	ND	1.0	0.005	
Teluene	ND	1.0	0.005	1 2 2 Trichlorobanzo		ND	1.0	0.005	
1 2 4-Trichlorobenzene	ND	1.0	0.005	1 1 1-Trichloroethan		ND	1.0	0.005	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	••	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloropropa	ine	ND	1.0	0.005	
1.2.4-Trimethylbenzene	ND         1.0         0.005         1,2,5-Trientoropropane         ND           ND         1.0         0.005         1,3,5-Trimethylbenzene         ND					ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surrog	ate Re	coveries (%)					
%SS1: 102				%SS2: 101					
%\$\$3:	1	16				101			
Commonstat	<u> </u>								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



<u>McCampbell Ar</u>	<u> McCampbell Analytical, Inc.</u> "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com					
"When Ouality	Counts"			Telephone: 8	77-252-9262 Fax: 92	5-252-9269				
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07				
6920 Koll Center Pkwy Ste 216					Date Received:	03/08/07				
0720 Kon Center I kwy, Ste. 210	Client	Contact: C	Craig F	Pelletier	Date Extracted:	03/08/07				
Pleasanton, CA 94566	Client	P.O.:			Date Analyzed	03/09/07				
	Volatile Org	anics by P&	T and	l GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B	volume org	Analytical Met	thod: S	SW8260B	i get List)	Work Order: 07031	84			
Lah ID				0703184	-019A					
Client ID				BV-02.9	5-10.0'					
Matrix				Soi	1					
	C	* DE Re	eporting	501	1	<b>C *</b>	DE	Reporting		
Combound	Concentration	* DF	Limit	Compoun	d	Concentration *	DF	Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0 (	<u>).005</u>	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0 (	).005	Bromodichlorometha	ane	ND	1.0	0.005		
Bromotorm	ND	1.0 (	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alconol (IBA	A)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0 (	2.005	Sec-Butyl benzene		ND	1.0	0.005		
Carbon Tatrachlarida	ND ND	1.0 (	).005	Carbon Disulfide		ND	1.0	0.005		
Chloroothono	ND	1.0 (	) 005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.003		
Chloroform	ND	1.0 (	005	Chloromethane	Ether	ND	1.0	0.01		
Chlorotoluono	ND	1.0 (	) 005	4 Chlorotoluono		ND	1.0	0.005		
2-Chlorotoluene Dibromachloromathana	ND	1.0 (	).005	4-Chlorotoluene	ronronana	ND	1.0	0.005		
1.2 Dibromosthana (EDB)	ND	1.0 (	) 005	Diharmomothono	ropropane	ND	1.0	0.005		
1.2 Dichlorobenzene	ND	1.0 (	005	1.3 Dichlorobenzene		ND	1.0	0.005		
1.4 Dichlorobenzene	ND	1.0 (	005	Dichlorodifluoromet	hana	ND	1.0	0.005		
1 1-Dichloroethane	ND	1.0 (	005	1.2-Dichloroethane (	(1.2-DCA)	ND	1.0	0.005		
1 1-Dichloroethene	ND	1.0 (	005	cis-1 2-Dichloroethe	ne	ND	1.0	0.005		
trans-1 2-Dichloroethene	ND	1.0 (	005	1 2-Dichloropropage	<u>.</u>	ND	1.0	0.005		
1 3-Dichloropropane	ND	1.0 (	0.005	2.2-Dichloropropane		ND	1.0	0.005		
1 1-Dichloropropene	ND	1.0 (	005	cis-1 3-Dichloropror	ene	ND	1.0	0.005		
trans-1.3-Dichloropropene	ND	1.0 (	0.005	Dijsopropyl ether (D	DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0 (	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005		
Hexachloroethane	ND	1.0 (	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND	1.0 (	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0 (	0.005	Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0 0	0.005	Naphthalene		ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0 0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0 0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0 (	0.005	1,2,3-Trichlorobenze	ene	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0 (	0.005	1,1,1-Trichloroethar	ne	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0 (	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0 (	).005	1,2,3-Trichloropropa	ane	ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0 0	0.005	1,3,5-Trimethylbenz	ene	ND	1.0	0.005		
Vinvl Chloride	ND	1.0 (	0.005	Xvlenes		ND	1.0	0.005		
		Surroga	ate Re	coveries (%)						
%SS1:		85		%SS2:		103				
%SS3:		105								
	•									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Analytical, Inc.           "When Ouality Counts"           Bureau Veritas				Web: www.mccampt Telephone: 8'	ell.com E-mail: main 77-252-9262 Fax: 92	@mccampbell.com 5-252-9269				
Bureau Veritas	Client Pro	oject ID:	#3310	07-007514.03	Date Sampled:	03/08/07				
				-	Date Received:	03/08/07				
6920 Koll Center Pkwy, Ste. 216	Client Co	ontact:	Craig F	Pelletier	Date Extracted:	03/08/07				
Pleasanton, CA 94566	Client P.0	).:	8-		Date Analyzed	03/09/07				
	alatila Organi	og by D	P-T ond	CC/MS (Decie Te	ngot I igt)*					
Extraction Method: SW5030B	Extraction Method: SW5030B Analytical Method:					Work Order: 07031	24			
Lah ID	2 11	lary tiear in	ethou. t	0703184	0702194 021 A					
Client ID				BV-03 3	5-4.0'					
Matrix				Br-03 5	I					
	, , •	DE	Reporting	501	1		DE	Reporting		
Compound	oncentration *	DF	Limit	Compoun	d	Concentration *	DF	Limit		
Acetone	ND<50	1000	0.05	Acrolein (Propenal)		ND<50	1000	0.05		
Acrylonitrile	ND<20	1000	0.02	tert-Amyl methyl et	her (TAME)	ND<5.0	1000	0.005		
Benzene	ND<5.0	1000	0.005	Bromobenzene		ND<5.0	1000	0.005		
Bromochloromethane	<u>ND&lt;5.0</u>	1000	0.005	Bromodicniorometha	ane	ND<5.0	1000	0.005		
2 Butanana (MEK)	ND<20	1000	0.003	t Putul alashal (TP/		ND<5.0	1000	0.005		
2-Dutatione (MEK)	<u>ND&lt;20</u>	1000	0.02	sec-Butyl benzene	<u>()</u>	ND<50	1000	0.03		
tert-Butyl benzene	ND<5.0	1000	0.005	Carbon Disulfide		ND<5.0	1000	0.005		
Carbon Tetrachloride	ND<5.0	1000	0.005	Chlorobenzene		ND<5.0	1000	0.005		
Chloroethane	ND<5.0	1000	0.005	2-Chloroethyl Vinyl	Ether	ND<10	1000	0.01		
Chloroform	ND<5.0	1000	0.005	Chloromethane		ND<5.0	1000	0.005		
2-Chlorotoluene	ND<5.0	1000	0.005	4-Chlorotoluene		ND<5.0	1000	0.005		
Dibromochloromethane	ND<5.0	1000	0.005	1,2-Dibromo-3-chlor	ropropane	ND<5.0	1000	0.005		
1,2-Dibromoethane (EDB)	ND<5.0	1000	0.005	Dibromomethane		ND<5.0	1000	0.005		
1,2-Dichlorobenzene	22	1000	0.005	1,3-Dichlorobenzene		ND<5.0	1000	0.005		
1,4-Dichlorobenzene	ND<5.0	1000	0.005	Dichlorodifluoromet	hane	ND<5.0	1000	0.005		
1,1-Dichloroethane	ND<5.0	1000	0.005	1,2-Dichloroethane (	(1,2-DCA)	ND<5.0	1000	0.005		
1,1-Dichloroethene	ND<5.0	1000	0.005	cis-1,2-Dichloroethe	ne	ND<5.0	1000	0.005		
trans-1,2-Dichloroethene	ND<5.0	1000	0.005	1,2-Dichloropropane		ND<5.0	1000	0.005		
1,3-Dichloropropane	<u>ND&lt;5.0</u>	1000	0.005	2,2-Dichloropropane		ND<5.0	1000	0.005		
1,1-Dichloropropene	<u>ND&lt;5.0</u>	1000	0.005	CIS-1,3-Dichloroprop	vine vine	ND<5.0	1000	0.005		
trans-1,5-Dicinoropropene	ND<5.0	1000	0.005	Ethyl tort butyl otho	(ETPE)	ND<5.0	1000	0.005		
Ethylbelizene	ND<100	1000	0.005	Hexachlorobutadiene	I (LIDL)	ND<5.0	1000	0.005		
Hexachloroethane	ND<5.0	1000	0.005	2-Hexanone		ND<5.0	1000	0.005		
Isopropylbenzene	ND<5.0	1000	0.005	4-Isopropyl toluene		7.5	1000	0.005		
Methyl-t-butyl ether (MTBE)	ND<5.0	1000	0.005	Methylene chloride		ND<5.0	1000	0.005		
4-Methyl-2-pentanone (MIBK)	ND<5.0	1000	0.005	Naphthalene		ND<5.0	1000	0.005		
Nitrobenzene	ND<100	1000	0.1	n-Propyl benzene		ND<5.0	1000	0.005		
Styrene	ND<5.0	1000	0.005	1,1,1,2-Tetrachloroe	ethane	ND<5.0	1000	0.005		
1,1,2,2-Tetrachloroethane	ND<5.0	1000	0.005	Tetrachloroethene		ND<5.0	1000	0.005		
Toluene	ND<5.0	1000	0.005	1,2,3-Trichlorobenze	ene	ND<5.0	1000	0.005		
1,2,4-Trichlorobenzene	ND<5.0	1000	0.005	1,1,1-Trichloroethar	ne	ND<5.0	1000	0.005		
1,1,2-Trichloroethane	ND<5.0	1000	0.005	Trichloroethene		ND<5.0	1000	0.005		
Trichlorofluoromethane	ND<5.0	1000	0.005	1,2,3-Trichloropropa	ane	ND<5.0	1000	0.005		
1,2,4-Trimethylbenzene	23 1000 0.005 1,3,5-Trimethylbenzene 7.6						1000	0.005		
Vinvl Chloride	ND<5.0	1000	0.005	Xvlenes		ND<5.0	1000	0.005		
ļ		Surro	gate Re	coveries (%)						
%SS1:	91			%SS2:		101				
%\$\$3:	93									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	nalytical, l	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-		-	Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	'raig F	Pelletier	Date Extracted:	03/08/07		
Pleasanton, CA 94566	Client		Jaig I	enetier	Date Analyzed	03/00/07		
, 		1.0 • • • •	<b>T</b>		Date 7 maryzed	03/07/07		
	Volatile Orga	anics by P&	anc	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		Analytical Me	thod: S	SW8260B		Work Order: 07031	34	
Lab ID				0/03184-	-023A			
Client ID				BV-03 11.	5-12.0			
Matrix				Sol				Description
Compound	Concentration	* DF	Limit	Compoun	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0 0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0 (	0.005	Bromodichlorometha	ane	ND	1.0	0.005
Bromoform	ND	1.0 0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0 0	<u>).005</u>	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0 0	0.005	Carbon Disulfide		ND	1.0	0.005
Chloroothono	ND	1.0 0	0.005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.003
Chloroform	ND	1.0 0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluane	ND	1.0 (	0.005	4 Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0 0	0.005	1 2-Dibromo-3-chlor	ronronane	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	1.0 (	0.005	Dibromomethane	lopiopane	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0 (	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0 0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0 0	0.005	1,2-Dichloroethane (	(1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0 (	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0 (	0.005	1,2-Dichloropropane	•	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0 0	0.005	2,2-Dichloropropane		ND	1.0	0.005
1,1-Dichloropropene	ND	1.0 0	0.005	cis-1,3-Dichloroprop	ene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0 (	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0 (	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND	1.0 (	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0 (	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0 0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0 0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	41	ND	1.0	0.005
Styrene	ND	1.0 0	0.005	T,1,1,2-1etrachioroe	etnane	ND	1.0	0.005
Teluene	ND	1.0 0	0.005	1 2 2 Trichlorobanz		ND	1.0	0.005
1 2 4-Trichlorobenzene	ND	1.0 0	0.005	1,2,3-Trichloroethar	ne lie	ND	1.0	0.005
1 1 2-Trichloroethane	ND	1.0 (	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0 (	0.005	1.2.3-Trichloroprop	ane	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND 1.0 0.005 1.3.5-Trimethylbenzene ND						1.0	0.005
Vinvl Chloride	ND	1.0 (	0.005	Xvlenes		ND	1.0	0.005
		Surrog	ate Re	coveries (%)				
%SS1: 101				%SS2:		101		
%\$\$3:	1	16				101		
Commonstat								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	nalytical, ]	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07			
		-		-	Date Received:	03/08/07			
6920 Koll Center Pkwy, Ste. 216	Client	t Contact: C	'raig F	Pelletier	Date Extracted:	03/08/07			
Pleasanton, CA 94566	Client		Juig I	enetier	03/09/07				
, 					Date / MaryZed	03/07/01			
	Volatile Org	anics by P&	T and	l GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B	1	Analytical Me	thod: S	SW8260B		Work Order: 070318	84		
Lab ID				0/03184-	-025A				
Client ID				BV-04 9.3	5-10.0'				
Matrix				Sol			1	Description	
Compound	Concentration	* DF	Limit	Compoun	d	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005	
Benzene	ND	1.0 (	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0 (	0.005	Bromodichlorometha	ane	ND	1.0	0.005	
Bromoform	ND	1.0 (	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0 (	<u>).005</u>	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0 (	).005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachioride	ND	1.0 (	).005	2 Chloroothyl Vinyl	Ethon	ND	1.0	0.005	
Chloroform	ND	1.0 (	005	2-Chloromethane	Ether	ND	1.0	0.01	
2 Chlorotoluane	ND	1.0 (	005	4 Chlorotoluene		ND	1.0	0.005	
Dibromochloromethane	ND	1.0 (	005	1 2-Dibromo-3-chlor	ronronane	ND	1.0	0.005	
1 2-Dibromoethane (EDB)	ND	1.0 (	005	Dibromomethane		ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0 (	0.005	1.3-Dichlorobenzene		ND	1.0	0.005	
1.4-Dichlorobenzene	ND	1.0 (	).005	Dichlorodifluoromet	hane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0 (	0.005	1,2-Dichloroethane (	(1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0 (	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0 (	0.005	1,2-Dichloropropane		ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0 (	0.005	2,2-Dichloropropane	2	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0 (	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0 (	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0 (	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005	
Hexachloroethane	ND	1.0 (	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0 (	0.005	4-Isopropyl toluene		ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0 (	<u>).005</u>	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0 (	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0 (	).005	T,1,1,2-1etrachioroe	etnane	ND	1.0	0.005	
Teluene	ND	1.0 (	).005	1 2 2 Trichlorobanz	200	ND	1.0	0.005	
1 2 4-Trichlorobenzene	ND	1.0 (	005	1,2,3-Trichloroethar		ND	1.0	0.005	
1 1 2-Trichloroethane	ND	1.0 (	005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0 (	0.005	1.2.3-Trichloroprop	ane	ND	1.0	0.005	
1.2.4-Trimethylbenzene	ND 1.0 0.005 1.3.5-Trimethylbenzene ND						1.0	0.005	
Vinvl Chloride	ND	1.0 (	0.005	Xvlenes		ND	1.0	0.005	
		Surroga	ate Re	coveries (%)					
% SS1 · 99				%SS2: 102					
%\$\$3:		113				102			
Commonstat									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	nalytical, In Counts"	<u>ic.</u>		1534 Willow P Web: www.mccampl Telephone: 8	ass Road, Pittsburg, CA pell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 5-252-9269			
Bureau Veritas	Client P	roject ID:	#331	07-007514.03	Date Sampled:	03/08/07			
		-			Date Received:	03/08/07			
6920 Koll Center Pkwy, Ste. 216	Client (	ontact.	Craig I	Pelletier	Date Extracted:	03/08/07			
Pleasanton, CA 94566	Client P	$\Omega$		enetier	03/09/07				
, 		. <u></u>			Date / MaryZea	03/07/01			
	Volatile Organ	ics by P&	&T and	d GC/MS (Basic Ta	rget List)*				
Extraction Method: SW5030B		analytical M	ethod:	SW8260B		Work Order: 070318	34		
Lab ID				0703184	-028A				
Client ID		BV-05 7.5-8.0'							
Matrix		1 1	Dementione	Soi				Description	
Compound	Concentration * DF Reporting Limit Compound				d	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Chloroothono	ND	1.0	0.005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.003	
Chloroform	ND	1.0	0.005	Chloromethane	Ether	ND	1.0	0.01	
2 Chlorotoluane	ND	1.0	0.005	4 Chlorotoluene		ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1 2-Dibromo-3-chlor	ronronane	ND	1.0	0.005	
1 2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	Topropulie	ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	e	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	e	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	bene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	Tetra chlere ethere	etnane	ND	1.0	0.005	
Teluene	ND	1.0	0.005	1 2 2 Trichlorohonz	202	ND	1.0	0.005	
1 2 4-Trichlorobenzene	ND	1.0	0.005	1 1 1-Trichloroethau		ND	1.0	0.005	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloroprop	ane	ND	1.0	0.005	
1.2.4-Trimethylbenzene	ND 1.0 0.005 1,3,5-Trimethylbenzene ND						1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surros	gate Re	coveries (%)					
%SS1: 104				%SS2: 102					
%\$\$3:	10	0				102			
	12	~							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell An "When Quality	nalytica Counts"	l, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 55-252-9269		
Bureau Veritas	C	ient Pro	oject ID	: #331	07-007514.03	Date Sampled:	03/08/07		
						Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	C	ient Co	ntact	Craig F	Pelletier	Date Extracted:	03/08/07		
Pleasanton, CA 94566	C	ient P (	).	Cluig I	eneuer	Date Analyzed	03/09/07		
			<u>,                                     </u>	0.75		Dute I mary zea	03/07/01		
	&T and	d GC/MS (Basic Ta	arget List)*						
Extraction Method: SW5030B		An	alytical N	lethod: S	SW8260B		Work Order: 070313	54	
					0/03184	-032A			
					BV-26 15	.5-16.0			
Matrix				Doporting	So	1		1	Paparting
Compound	Concentra	tion *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND		1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND		1.0	0.02	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005
Benzene	ND		1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND		1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND		1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND		1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND		1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND		1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachioride	ND		1.0	0.005	2 Chloroothyl Vinyl	Ethon	ND	1.0	0.005
Chloroform	ND		1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluana	ND		1.0	0.005	4 Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND		1.0	0.005	4-Chlorototuelle	ropropage	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND		1.0	0.005	Dibromomethane	Topropulie	ND	1.0	0.005
1.2-Dichlorobenzene	ND		1.0	0.005	1.3-Dichlorobenzen	2	ND	1.0	0.005
1.4-Dichlorobenzene	ND		1.0	0.005	Dichlorodifluorome	hane	ND	1.0	0.005
1,1-Dichloroethane	ND		1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND		1.0	0.005	cis-1,2-Dichloroethe	ene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND		1.0	0.005	1,2-Dichloropropan	e	ND	1.0	0.005
1,3-Dichloropropane	ND		1.0	0.005	2,2-Dichloropropan	e	ND	1.0	0.005
1,1-Dichloropropene	ND		1.0	0.005	cis-1,3-Dichloropro	pene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND		1.0	0.005	Diisopropyl ether (I	DIPE)	ND	1.0	0.005
Ethylbenzene	ND		1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005
Freon 113	ND		1.0	0.1	Hexachlorobutadien	9	ND	1.0	0.005
Hexachloroethane	ND		1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND		1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND		1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene Sturene	ND		1.0	0.1	1 1 1 2 Tetrachloro	athana	ND	1.0	0.005
1 1 2 2 Tetrachloroethane	ND		1.0	0.005	Tetrachloroethene	ethane	ND	1.0	0.005
Toluene	ND		1.0	0.005	1 2 3-Trichlorobenz	ene	ND	1.0	0.005
1.2.4-Trichlorobenzene	ND		1.0	0.005	1.1.1-Trichloroetha	ne	ND	1.0	0.005
1.1.2-Trichloroethane	ND		1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND		1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND		1.0 0.005 1,3,5-Trimethylbenzene ND 1.0					1.0	0.005
Vinvl Chloride	ND		1.0	0.005	Xvlenes		ND	1.0	0.005
			Surro	gate Re	coveries (%)				
%SS1:		98			%SS2:		102		
%SS3:		114							
Commentati									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	When Ouality Counts"					x 94565-1701 a@mccampbell.com 5-252-9269		
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-		-	Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	'raig F	Pelletier Date Extracted: 03/08/07				
Pleasanton, CA 94566	Client		Jaig I	enetier	Date Analyzed	03/09/07		
	Chent	1.0				05/07/07		
	Volatile Orga	anics by P&	T and	l GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B	1	Analytical Me	thod: S	SW8260B		Work Order: 07031	34	
Lab ID				0703184-	038A			
Client ID				BV-25 19.	5-20.0'			
Matrix				Soil				
Compound	Concentration	* DF	eporting Limit	Compound	1	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl eth	ner (TAME)	ND	1.0	0.005
Benzene	ND	1.0 (	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0 (	0.005	Bromodichlorometha	ne	ND	1.0	0.005
Bromoform	ND	1.0 (	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	.)	ND	1.0	0.05
n-Butyl benzene	ND	1.0 (	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0 (	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0 (	<u>).005</u>	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0 0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01
	ND	1.0 (	0.005			ND	1.0	0.005
2-Chlorotoluene	ND	1.0 (	0.005	4-Chlorotoluene		ND	1.0	0.005
1 2 Dibromochloromethane (EDB)	ND	1.0 (	0.005 Dibromomethane		opropane	ND	1.0	0.005
1,2-Diblomoennane (EDB)	ND	1.0 (	0.005	1.3 Dichlorobenzene		ND	1.0	0.005
1.4 Dichlorobenzene	ND	1.0 (	0.005	Dichlorodifluorometh	2220	ND	1.0	0.005
1 1-Dichloroethane	ND	1.0 (	0.005	1.2-Dichloroethane (	1.2 - DCA	ND	1.0	0.005
1 1-Dichloroethene	ND	1.0 (	0.005	cis-1.2-Dichloroether	1 <u>,2 DON)</u> 1e	ND	1.0	0.005
trans-1 2-Dichloroethene	ND	1.0 (	0.005	1 2-Dichloropropane		ND	1.0	0.005
1.3-Dichloropropane	ND	1.0 (	0.005	2.2-Dichloropropane		ND	1.0	0.005
1 1-Dichloropropene	ND	1.0 (	0.005	cis-1.3-Dichloroprop	ene	ND	1.0	0.005
trans-1.3-Dichloropropene	ND	1.0 (	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0 (	0.005	Ethyl tert-butyl ether	· (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	()	ND	1.0	0.005
Hexachloroethane	ND	1.0 (	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0 (	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0 (	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0 (	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0 (	0.005	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0 (	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0 (	0.005	1,2,3-Trichlorobenze	ne	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0 (	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0 (	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND 1.0 0.005			1,2,3-Trichloropropa	ine	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0 (	0.005	1,3,5-Trimethylbenze	ND	1.0	0.005	
Vinvl Chloride	ND	1.0 (	0.005	Xvlenes		ND	1.0	0.005
	1	Surroga	ate Re	coveries (%)		1		
%SS1:	1	100		%SS2:		102		
%SS3:		117						
Commenter								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	When Ouality Counts"					A 94565-1701 n@mccampbell.com 25-252-9269		
Bureau Veritas	Client P	roject ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-			Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client (	ontact.	Craig I	Pelletier Date Extracted: 03/08/07				
Pleasanton, CA 94566	Client P	$\Omega$		enetier	Date Analyzed	03/09/07		
, 		.0			Date / MaryZea	03/07/07		
	Volatile Organ	ics by Pe	&T and	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		analytical M	ethod:	SW8260B		Work Order: 070318	84	
Lab ID				0703184	-041A			
Client ID				BV-06 /	.5-8.0			
Matrix		1 11	Doporting	Soi	1		1	Paparting
Compound	Concentration *	DF	Limit	Compour	ıd	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	5 Chlorobenzene		ND	1.0	0.005
Chloroothono	ND	1.0	0.005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.003
Chloroform	ND	1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluene	ND	1.0	0.005	4 Chlorotoluana		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	4-Chlorototuelle	ropropage	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	$\frac{10}{10}$ $\frac{100}{0.005}$ $\frac{1,2-Dibromo-5-cmo}{Dibromomethane}$			Topropane	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene	2	ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	e	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	e	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	- 41	ND	1.0	0.005
Styrene	ND	1.0	0.005	Tetra chlere ethere	ethane	ND	1.0	0.005
Teluene	ND	1.0	0.005	1 2 2 Trichlorohonz	272	ND	1.0	0.005
1 2 4-Trichlorobenzene	ND	1.0	0.005	1,2,3-Trichloroetha	ne	ND	1.0	0.005
1 1 2-Trichloroethane	ND	1.0	0.005	Trichloroethene	lie	ND	1.0	0.005
Trichlorofluoromethane	ND 1.0 0.005			1.2.3-Trichloroprop	ane	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND	1.0	0.005	1.3.5-Trimethylbenz	zene	ND	1.0	0.005
Vinvl Chloride	ND	ND 1.0 0.005 Xylenes				ND	1.0	0.005
		Surrog	gate Re	coveries (%)				
%SS1:	94			%SS2:		103		
%\$\$3:								
Commonstat		~						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell An "When Quality	When Ouality Counts"					A 94565-1701 n@mccampbell.com 5-252-9269			
Bureau Veritas	Client P	oject ID:	#331	07-007514.03	Date Sampled:	03/08/07			
					Date Received:	03/08/07			
6920 Koll Center Pkwy, Ste. 216	Client C	ontact:	Craig H	Pelletier	elletier Date Extracted: 03/08/07				
Pleasanton, CA 94566	Client P	0.:	ering i		Date Analyzed	03/09/07			
	Volatila Organ	ios by Dá		CC/MS (Basia Ta	raot I ist)*				
Extraction Method: SW5030B	volatile Organ	nalytical M	ethod:	SW8260B	ii get List)	Work Order: 07031	84		
Lah ID		inal y treat in		0703184	-0434				
Client ID	Client ID BV-24 5 5-6 0'								
Matrix				Soi	1				
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB)	4)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005	
Dibromochloromethane	ND	1.0	1.0 0.005 Dibromomethane		ropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	1.2 Dichlorohanzon	<u>,</u>	ND	1.0	0.005	
1.4 Dichlorobenzene	ND	1.0	0.005	Diablorodifluoromat	hana	ND	1.0	0.005	
1,4-Dichloroethane	ND	1.0	0.005	1.2-Dichloroethane	(1.2 - DCA)	ND	1.0	0.005	
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ene	ND	1.0	0.005	
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropan	2	ND	1.0	0.005	
1.3-Dichloropropane	ND	1.0	0.005	2.2-Dichloropropan	e	ND	1.0	0.005	
1.1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloroprop	bene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	9	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-1richloropenzene	ND	1.0	0.005	Trichloroetha	ne	ND	1.0	0.005	
1,1,2-1richloroethane	ND 1.0 0.005			1 2 2 Trichloroprop		ND	1.0	0.005	
1.2.4 Trimethylbergene		1.0	0.005	05 1,2,3-Trichloropropane			1.0	0.005	
Vinyl Chloride	ND	ND 1.0 0.005 1,5,5-11111etity10et			Lene	ND	1.0	0.005	
		Surros	v.vvJ	$\alpha$ coveries (%)			1.0	0.005	
04 551.	0.1	Surrog	,are ne	0/ 552.		102			
%SS1: 91 %SS3: 110				70002.		102			
	1 11	5		I					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	When Ouality Counts"					x 94565-1701 a@mccampbell.com 5-252-9269		
Bureau Veritas	Client	Project ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-			Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	'raig F	elletier Date Extracted: 03/08/07				
Pleasanton, CA 94566	Client		Juig I	enetier	Date Analyzed	03/09/07		
, 		1.0				05/07/07		
	Volatile Orga	anics by P&	T and	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		Analytical Me	thod: S	SW8260B		Work Order: 070318	34	
Lab ID				0/03184-	050A			
Client ID BV-0/ 11.5-12.0								
Matrix				Soil				Description
Compound	Concentration	* DF	Limit	Compound	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl eth	ner (TAME)	ND	1.0	0.005
Benzene	ND	1.0 (	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0 (	0.005	Bromodichlorometha	ane	ND	1.0	0.005
Bromoform	ND	1.0 (	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0 (	<u>).005</u>	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0 (	).005	5 Chlorobenzene		ND	1.0	0.005
Chloroothono	ND	1.0 (	) 005	2 Chloroothul Vinul	Ethor	ND	1.0	0.003
Chloroform	ND	1.0 (	005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluane	ND	1.0 (	005	4 Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0 (	005	1 2-Dibromo-3-chlor	copropage	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	ND 1.0 0.005 Dibromomethane		opropune	ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0 (	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0 (	).005	Dichlorodifluoromet	hane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0 (	0.005	1,2-Dichloroethane (	1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0 (	0.005	cis-1,2-Dichloroether	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0 (	0.005	1,2-Dichloropropane		ND	1.0	0.005
1,3-Dichloropropane	ND	1.0 (	0.005	2,2-Dichloropropane	1	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0 (	0.005	cis-1,3-Dichloroprop	ene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0 (	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0 (	0.005	Ethyl tert-butyl ether	r (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND	1.0 (	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0 (	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0 (	<u>).005</u>	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0 (	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	41	ND	1.0	0.005
1 1 2 2 Tetrachloroothone	ND	1.0 (	).005	Totrachloroothono	thane	ND	1.0	0.005
Teluene	ND	1.0 (	).005	1 2 2 Trichlorobanzo		ND	1.0	0.005
1 2 4-Trichlorobenzene	ND	1.0 (	005	1 1 1-Trichloroethan		ND	1.0	0.005
1.1.2-Trichloroethane	ND	1.0 0	0.005	Trichloroethene	••	ND	1.0	0.005
Trichlorofluoromethane	ND 1.0 0.005			1.2.3-Trichloropropa	ine	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND	1.0 (	).005	1.3.5-Trimethylbenz	ND	1.0	0.005	
Vinvl Chloride	ND	ND 1.0 0.005 Xylenes				ND	1.0	0.005
		Surroga	ate Re	coveries (%)				
%SS1:		88	-	%SS2:		102		
%\$\$1: 00 %\$\$3: 109						102		
Commonstat		~ /						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell Ar	When Ouality Counts"					x 94565-1701 a@mccampbell.com 5-252-9269		
Bureau Veritas	Client P	roject ID:	#331	07-007514.03	Date Sampled:	03/08/07		
		-		-	Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client (	ontact: (	Traig I	Pelletier	Date Extracted:	03/08/07		
Pleasanton, CA 94566	Client P			enetier	Date Analyzed 03/09/07			
, 		.0			Date / MaryZed	05/07/07		
	Volatile Organ	ics by P8	eT and	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B	1	Analytical Me	ethod:	SW8260B		Work Order: 070318	34	
Lab ID				0/03184-	-052A			
Client ID				BV-08 7.	5-8.0'			
Matrix		r		Sol				Description
Compound	Concentration *	DF	Limit	Compoun	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	5 Chlorobenzene		ND	1.0	0.005
Chloroothono	ND	1.0	0.005	2 Chloroothyl Vinyl	Ethor	ND	1.0	0.003
Chloroform	ND	1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluane	ND	1.0	0.005	4 Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1 2-Dibromo-3-chlor	ronronane	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	1.0 0.005 Dibromomethane		lopiopane	ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (	(1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	•	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	ene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	r (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	41	ND	1.0	0.005
1 1 2 2 Tetrachloroothone	ND	1.0	0.005	Tatrachloroathona	etnane	ND	1.0	0.005
Teluene	ND	1.0	0.005	1 2 2 Trichlorobanz	200	ND	1.0	0.005
1 2 4-Trichlorobenzene	ND	1.0	0.005	1,2,3-Trichloroethar	ne second	ND	1.0	0.005
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	~	ND	1.0	0.005
Trichlorofluoromethane	ND 1.0 0.005			1.2.3-Trichloroprop	ane	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND 1.0 0.005 1,3,5-Trimethylbenzene					ND	1.0	0.005
Vinvl Chloride	ND	1.0 0.005 Xylenes				ND	1.0	0.005
		Surrog	ate Re	coveries (%)				
%SS1:	10	1		%SS2: 101				
%\$\$3:				101				
Commenter								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



McCampbell An "When Ouality	nalytical, In	<u>c.</u>		1534 Willow Pa Web: www.mccampb Telephone: 87	ass Road, Pittsburg, CA eell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 5-252-9269			
Bureau Veritas	Client Pr	oject ID	: #331	07-007514.03	Date Sampled:	03/08/07			
		0		-	Date Received:	03/08/07			
6920 Koll Center Pkwy, Ste. 216	Client C	ontact:	Craig F	Pelletier	elletier Date Extracted: 03/08/07				
Pleasanton, CA 94566	Client P	0 ·	cruig I	eneuer	Date Analyzed	03/09/07			
		<u> </u>	о <b>т</b>			00/07/07			
	volatile Organi	cs by P	& I and	I GC/IVIS (Basic 1 a	rget List)*	W. 1 0 1 07001			
Extraction Method: SW5030B	A	nalytical N	lethod:	SW8260B	0.5.5.1	Work Order: 070313	54		
Lab ID				0/03184-	055A				
Client ID BV-09 7.5-8.0									
Matrix		1	D	Soil		1		D d	
Compound	Concentration *	DF	Reporting Limit	Compound	d	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl eth	ner (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ine	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	<b>D</b> -1	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	4 Chloromethane		ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005	
1.2 Dibromoethane (EDP)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0	0.005	1 3-Dichlorobenzene	ND	1.0	0.005		
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	ane	ND	1.0	0.005	
1 1-Dichloroethane	ND	1.0	0.005	1 2-Dichloroethane (	1.2 - DCA	ND	1.0	0.005	
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ne	ND	1.0	0.005	
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane		ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005	
1.1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloroprop	ene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether	r (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005	
1,1,2-Trichloroethane	ND 1.0 0.005			Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	ene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surro	gate Re	coveries (%)					
%SS1:	78			%SS2:		117			
%SS3:	124								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.



	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Web: www.mccam Telephone:	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Bureau Verit	as	Client Project II	<b>b</b> : #33107-007514.03	Date Sampled: 03/08	/07			
6920 Koll Ce	enter Pkwy, Ste. 216	Date Received: 03/08						
Disconton (	7 1 04566	Client Contact: Craig Pelletier Date Extracted: 03/0						
Fleasanton, C	CA 94300	Client P.O.:	Client P.O.: Date Analyzed 03/09					
	Gasoline Ra	ange (C6-C12) V	olatile Hydrocarbons as G	Fasoline*				
Extraction method	SW5030B	Analyti	cal methods SW8015Cm	Work O	rder: 070	03184		
		Matrix	IPH(g	)	DF	% 55		
004A	BV-28 15.5-16.0'	S	ND		1	93		
009A	BV-01 7.5-8.0'	S	ND		1	91		
013A	BV-27 11.5-12.0'	S ND				90		
019A	BV-02 9.5-10.0'	S ND				98		
021A	BV-03 3.5-4.0'	S 5000,g				109		
023A	BV-03 11.5-12.0'	S		1	92			
025A	BV-04 9.5-10.0'	S	ND		1	89		
028A	BV-05 7.5-8.0'	S	ND		1	90		
032A	BV-26 15.5-16.0'	S	ND		1	84		
038A	BV-25 19.5-20.0'	S	ND		1	98		
041A	BV-06 7.5-8.0'	S	ND		1	101		
043A	BV-24 5.5-6.0'	S	ND		1	85		
050A	BV-07 11.5-12.0	S	ND		1	93		
052A	BV-08 7.5-8.0'	S ND				95		
055A	BV-09 7.5-8.0'	S	ND		1	97		
R	eporting Limit for DF =1;	W	NA		N	A		
NI	D means not detected at or above the reporting limit	S	1.0		mg	/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Bureau Veritas		Client Project ID:	#33107-007514.03	Date Sampled: 03/	08/07						
6920 Koll Center	Pkwy, Ste. 216			Date Received: 03/	Date Received: 03/08/07						
		Client Contact: Ci	raig Pelletier	Date Extracted: 03/	Date Extracted: 03/08/07						
Pleasanton, CA 9	94566	Client P.O.:		Date Analyzed 03/	08/07-03/	09/07					
	Diesel (C10-23) and Oil (C	C18+) Range Extract	+) Range Extractable Hydrocarbons with Silica Gel Clean-Up*								
Extraction method: SW	/3550C/3630C	Analytical metho	ods: SW8015C	Wor	k Order: 0'	703184					
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS					
0703184-004A	BV-28 15.5-16.0'	S	ND	ND	1	108					
0703184-009A	BV-01 7.5-8.0'	S	ND	ND	1	107					
0703184-013A	BV-27 11.5-12.0'	S	ND	ND	1	88					
0703184-019A	BV-02 9.5-10.0'	S	ND	ND	1	109					
0703184-021A	BV-03 3.5-4.0'	S	1800,n,g	420	5	#					
0703184-023A	BV-03 11.5-12.0'	S	ND	ND	1	107					
0703184-025A	BV-04 9.5-10.0'	S	4.4,g,b	13	1	100					
0703184-028A	BV-05 7.5-8.0'	S	ND	ND	1	95					
0703184-032A	BV-26 15.5-16.0'	S	ND	ND	1	81					
0703184-038A	BV-25 19.5-20.0'	S	ND	ND	1	114					
0703184-041A	BV-06 7.5-8.0'	S	ND	ND	1	118					
0703184-043A	BV-24 5.5-6.0'	S	ND	ND	1	112					
0703184-050A	BV-07 11.5-12.0	S	ND	ND	1	108					
0703184-052A	BV-08 7.5-8.0'	S	ND	ND	1	110					
0703184-055A	BV-09 7.5-8.0'	S	ND	ND	1	107					
Repor	ting Limit for DF =1;	W	NA	NA	ug	/L					
ND me aboy	eans not detected at or the reporting limit	S	1.0	5.0	mg	/Kg					

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis



### McCampbell Analytical, Inc.

"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0703184

EPA Method SW8082A	Extra	BatchID: 26641				Sp	Spiked Sample ID: 0703160-012A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)		
	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	122	120	1.64	116	115	0.507	70 - 130	20	70 - 130	20
%SS:	119	0.050	119	119	0	123	124	1.00	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 26641 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703184-009A	03/08/07 8:45 AM	03/08/07	03/09/07 6:52 AM	0703184-019A	03/08/07 9:40 AM	03/08/07	03/09/07 7:47 AM
0703184-021A	03/08/07 10:30 AM	03/08/07	03/10/07 12:46 AM	0703184-023A	03/08/07 10:50 AM	03/08/07	03/09/07 1:35 AM
0703184-025A	03/08/07 11:50 AM	03/08/07	03/09/07 3:30 AM	0703184-028A	03/08/07 12:47 PM	03/08/07	03/09/07 12:37 AM
0703184-041A	03/08/07 1:25 PM	03/08/07	03/09/07 5:01 AM	0703184-050A	03/08/07 2:15 PM	03/08/07	03/09/07 5:57 AM
0703184-052A	03/08/07 2:50 PM	03/08/07	03/08/07 11:40 PM	0703184-055A	03/08/07 3:25 PM	03/08/07	03/09/07 8:43 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





NONE

"When Ouality Counts"

# QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0703184

EPA Method SW8015Cm	Extra	Extraction SW5030B				BatchID: 26672			piked Sample ID: 0703184-055A			
Analyte	Sample	nple Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD						Acc	Acceptance Criteria (%)			
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	0.60	98.9	101	2.24	103	102	1.13	70 - 130	30	70 - 130	30
MTBE	ND	0.10	108	92	15.6	103	102	0.933	70 - 130	30	70 - 130	30
Benzene	ND	0.10	98.4	98	0.420	97.5	97.6	0.116	70 - 130	30	70 - 130	30
Toluene	ND	0.10	89	91	2.20	89.1	90.2	1.22	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	75.3	94.5	22.6	98.8	101	2.61	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	100	100	0	92.7	100	7.61	70 - 130	30	70 - 130	30
%SS:	97	0.10	101	105	3.88	100	82	19.8	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

#### BATCH 26672 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703184-004A	03/08/07 8:34 AM	03/08/07	03/09/07 6:02 AM	0703184-009A	03/08/07 8:45 AM	03/08/07	03/09/07 11:14 AM
0703184-013A	03/08/07 10:06 AM	03/08/07	03/09/07 11:49 AM	0703184-019A	03/08/07 9:40 AM	03/08/07	03/09/07 5:32 AM
0703184-021A	03/08/07 10:30 AM	03/08/07	03/09/07 12:05 PM	0703184-023A	03/08/07 10:50 AM	03/08/07	03/09/07 7:02 AM
0703184-025A	03/08/07 11:50 AM	03/08/07	03/09/07 8:33 AM	0703184-028A	03/08/07 12:47 PM	03/08/07	03/09/07 8:03 AM
0703184-032A	03/08/07 12:12 PM	03/08/07	03/09/07 8:59 AM	0703184-038A	03/08/07 1:49 PM	03/08/07	03/09/07 1:05 PM
0703184-041A	03/08/07 1:25 PM	03/08/07	03/09/07 7:51 AM	0703184-043A	03/08/07 3:04 PM	03/08/07	03/09/07 11:35 AM
0703184-050A	03/08/07 2:15 PM	03/08/07	03/09/07 12:23 PM	0703184-052A	03/08/07 2:50 PM	03/08/07	03/09/07 8:25 AM
0703184-055A	03/08/07 3:25 PM	03/08/07	03/09/07 4:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0703184

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 26	Spiked Sample ID: 0703184-004A           S         LCSD         LCS-LCSD         Acceptance Criteria (%)           ec.         % Rec.         % RPD         MS / MSD         RPD         LCS/LCSD         RPD           99.1         2.19         70 - 130         30         70 - 130         30           5         125         0.912         70 - 130         30         70 - 130         30           7         98.3         8.80         70 - 130         30         70 - 130         30           4         105         1.07         70 - 130         30         70 - 130         30           2         119         6.53         70 - 130         30         70 - 130         30           2         101         1.19         70 - 130         30         70 - 130         30           3         81.7         0.777         70 - 130         30         70 - 130         30					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	)
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	98	97.8	0.259	97	99.1	2.19	70 - 130	30	70 - 130	30
Benzene	ND	0.050	127	124	2.02	126	125	0.912	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	101	99.9	1.35	107	98.3	8.80	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	104	105	0.0870	104	105	1.07	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	113	116	2.48	112	119	6.53	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	104	102	1.99	102	101	1.19	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	82.4	83.3	1.09	82.3	81.7	0.777	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	114	113	0.772	112	114	1.06	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	102	102	0	102	103	1.27	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	100	100	0	98.3	99.6	1.34	70 - 130	30	70 - 130	30
Toluene	ND	0.050	107	113	4.66	110	117	6.21	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	71.5	70.6	1.24	71.6	70.5	1.65	70 - 130	30	70 - 130	30
%SS1:	78	0.050	99	98	0.700	99	98	1.33	70 - 130	30	70 - 130	30
%SS2:	117	0.050	87	91	4.45	88	93	5.81	70 - 130	30	70 - 130	30
%SS3:	125	0.050	102	105	2.38	105	106	0.739	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 26674 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703184-004A	03/08/07 8:34 AM	03/08/07	03/09/07 1:21 PM	0703184-009A	03/08/07 8:45 AM	03/08/07	03/09/07 2:05 PM
0703184-013A	03/08/07 10:06 AM	03/08/07	03/09/07 7:40 PM	0703184-019A	03/08/07 9:40 AM	03/08/07	03/09/07 2:31 PM
0703184-021A	03/08/07 10:30 AM	03/08/07	03/09/07 1:47 PM	0703184-023A	03/08/07 10:50 AM	03/08/07	03/09/07 8:26 PM
0703184-025A	03/08/07 11:50 AM	03/08/07	03/09/07 9:57 PM	0703184-028A	03/08/07 12:47 PM	03/08/07	03/09/07 9:12 PM
0703184-032A	03/08/07 12:12 PM	03/08/07	03/09/07 5:26 PM	0703184-038A	03/08/07 1:49 PM	03/08/07	03/09/07 6:56 PM
0703184-041A	03/08/07 1:25 PM	03/08/07	03/09/07 4:42 PM	0703184-043A	03/08/07 3:04 PM	03/08/07	03/09/07 3:59 PM
0703184-050A	03/08/07 2:15 PM	03/08/07	03/09/07 3:15 PM	0703184-052A	03/08/07 2:50 PM	03/08/07	03/09/07 6:11 PM
0703184-055A	03/08/07 3·25 PM	03/08/07	03/09/07 2·50 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





"When Ouality Counts"

### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703184

EPA Method: SW8015C	Extraction: SW3550C/3630C				Bat	chID: 26	673	Spiked Sample ID: 0703184-055a							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%	)			
, and yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH(d)	ND	20	97.7	119	19.8	113	117	2.83	70 - 130	30	70 - 130	30			
%SS:	107	50	92	101	8.82	103	102	0.757	70 - 130	30	70 - 130	30			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 26673 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703184-004A	3/08/07 8:34 AM	3/08/07	3/09/07 4:34 AM	0703184-009A	3/08/07 8:45 AN	3/08/07	3/09/07 5:42 AN
0703184-013A	3/08/07 10:06 AM	3/08/07	3/08/07 11:03 PN	0703184-019A	3/08/07 9:40 AN	3/08/07	3/09/07 6:51 AN
0703184-021A	3/08/07 10:30 AM	3/08/07	3/09/07 7:59 AM	0703184-023A	3/08/07 10:50 AN	3/08/07	3/09/07 10:16 AN
0703184-025A	3/08/07 11:50 AM	3/08/07	3/09/07 1:37 PN	0703184-028A	3/08/07 12:47 PN	3/08/07	3/08/07 9:55 PN
0703184-032A	3/08/07 12:12 PN	3/08/07	3/09/07 12:11 AN	0703184-038A	3/08/07 1:49 PN	3/08/07	3/09/07 2:26 AN
0703184-041A	3/08/07 1:25 PN	3/08/07	3/09/07 5:49 AM	0703184-043A	3/08/07 3:04 PN	3/08/07	3/09/07 3:32 PN
0703184-050A	3/08/07 2:15 PN	3/08/07	3/09/07 5:49 PN	0703184-052A	3/08/07 2:50 PN	3/08/07	3/09/07 2:24 PN
0703184-055A	3/08/07 3:25 PN	3/08/07	3/09/07 4:41 PN				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contrastignificant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer



# **McCampbell Analytical, Inc.**

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33107-007514.03	Date Sampled: 03/09/07
6920 Koll Center Pkwy, Ste. 216		Date Received: 03/09/07
Pleasanton, CA 94566	Client Contact: Craig Pelletier	Date Reported: 03/12/07
	Client P.O.:	Date Completed: 03/12/07

#### WorkOrder: 0703221

March 12, 2007

### Dear Craig:

Enclosed are:

- 1). the results of 11 analyzed samples from your #33107-007514.03 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

CG 5	ip	070	3221	777	2.40	0-0	æ										1 16
Clayt	on Gro	oup Se	ervices	, Inc.	V		1.06	IN	IPOR	TAN	110				For Cla	Page	of Only
	A Bureau	Veritas (	Company			Date	Result	s Reque	ested: _	UY IN	ML_		_		Clayton	Lab Proj	ECT NO.
1828 BEOL	EST E		BORA	TORY	Hush Charges Authorized?						,				2		
BUREAU VERITAS AN	ALYTIC	CAL S	ERVIC	ES	E-mail address:						_	-	222	162	9		
Q Name Cray Putties	(	Client Job	No. 3310	2-007514.	0)	Purc	chase (	Order N	lo.	1	A	1.					S.,
Company J Burean Verter		Dept. Clie	nt Services	ES	<u>- Ш</u>	Nam	ne		1	5	A	MA	-		-		-
Mailing Address 692 tok Conce	- PEng	#11	0.6.8	1000	NO NO	Con	npany			/	11	E	-			Dept.	0
City, State, Zip Pleas	94568			112312	ω <u>₹</u> .	Add	Ctoto	7:-	8								
End Instructions and/or specific regulatory re	FAX No	o. Soils	Wate	ers:		City	, State,	, ZIP	-	A	NALYS	SIS REC	UESTI	ED			
(method, limit of detection, etc.)	quirentente	Which		10.	ners		(Enter	r an 'X' i	n the bo	ox below	to indic	ate requ	lest. Ente	er a 'P' i	if Preserv	ative adde	d.*)
dmo wisg		state are th from?		rinking Water roundwater astewater	r of Contai	Lines of	1	15m	and?	2/	/	/	//	//	//	//	
* Explanation of Preservative		a			mbe	/	2	25/	No/	/ /	/ /	/ /	/ /	/ /	/ /	/	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	N	//	Y	50/	Z	/					1		OR LAB SE ONLY
BV-23 1.5-2.01	3/9/7	0815	50;1		1			X					22	2			
BV-27 9.5-1001	1	0820	1		1	X	x									150	
11-23 13.5-14.0'	1	0825			1			x				14					
17-23 155-16.2'		083	0		1			X									
31-22 5.5-6-0'		0944			1	X	X	2.50		2							
DV-22 15:5-16.01		0948		31910	1	1		X		1							
0-22 19.5-20.0'		0955			1			X		1	3.1.						
11-22 225-27.0'		1002			1			x			1.34						
BV-22 27.5-28.0'		1010		1191	1			X									9
BV-21 3.5-4.01	V	1202	V		1	X	X		1								2
Collected by: Con function	h	1111		(print)	Collec	ctor's Si	gnatur	e:	heid	Part		1	17.5			1	
CHAIN Relinquished by:	1	1194	Date/Time	3/9/2	Received by: Date/Time 3/9/6-									16:051			
OF CUSTODY Relinquished by:	]	1411	Date/Time	7117	Received by: Date/Time												
Method of Shipment: Draceft	328	1233		51311	Received at Lab by: Date/Time												
Authorized by:		Date	e		Samp	le Conc	lition U	lpon Re	eceipt:		Accep	table		Other (e	explain)		
Please return completed form and samples to           Detroit Regional Lab         Atlanta Regional Lab           22345 Roethel Drive         3380 Chastain Meadow           Novi, MI 48375         Kennesaw, GA 30144           (800) 806-5887         (800) 252-9919           (248) 344-1770         (770) 499-7500           FAX (248) 344-2655         FAX (770) 499-7511	one of the rs Parkway, St	Clayton ( uite 300	Group Ser Se 46: Se (80 (20 FA	vices, Inc. lab attle Regional I 36 E. Marginal W attle, WA 98134 00) 568-7755 60) 763-7364 X (206) 763-4189	s liste .ab ay S., S	d belov uite 140	V: G H D P	CE/tº BOOD C IEAD SI DECHLC PRESER	ONDITI PACE A DRINAT	ION BSENT_ ED IN L VOAS	AB	APPI CON PRE G ME	ROPRIA TAINEF SERVEI TALS	DIST Whit RS Glo D IN DA	$\begin{array}{c} \text{RIBUTIC} \\ \text{e} &= \text{CI} \\ \text{bw} &= \text{CI} \\ \text{B} &= \text{CI} \\ \end{array}$	DN: ayton Lab ayton Acc ient Copy	oratory ounting 10/05 20K
Clay	ton Gra	oup Se	rvices	Inc		1		IMP	ORTA	NT	1				Page Z	of	
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------	------------------------------------	-------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------	------------------------------	-----------	-----------	-------------------	--------	------------	---------	-------	----------------------------------	----------------------------------------	------------------------------------------------	------------------------	
	A Bureau	Veritas C	ompany	y 11100		Date	Result	s Request	ed: 20	1 HR	-		C	layton L	ab Project	No.	
						Rush	Charg	es Authori	ized?	Yes		0					
Te28 REQU	JEST FO	OR LAI	BORA	TORY				Fax or	E-r	nail Resul	ts						
VERITAS AN	IALYTIC	CAL SE	RVIC	ES	2.1	E-ma	ail addro	ess:		-							
P Name Cong Allihor	(	Client Job N	No. 3310	7-00757	1.03	Purc	hase C	Order No.	/	$\wedge$	A						
Company J Buren Vertes	()	Dept. Clien	t Services	55	6	Nam	le	<u>a</u> <u>a</u>	C	>	A	A/	r		5000		
Mailing Address 6422 For Corn	- Phy	HU.	6	11111	Шğр	Com	pany			/	A	10	R	De	ept.		
Telephone No. 920 476. 740	2 FAX N	0		11111	s N	City	State	Zip		( )	,	1.5	9		2225		
Special instructions and/or specific regulatory r	equirements	Soils:	Wate	ers:	50	Unity 1	(Entor	an 'V' in th	ha	ANALY	SIS REC		ED	Droconvoti	vo addad *)		
TPH W (SG-CM)		Which state are the from?		rinking Water roundwater lastewater	ber of Containe		1	A STAN	01							/	
CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	MATRIX/ MEDIA	AIR VOLUME (specify units)	Numl	/~	Str. 2	20 10		//	/	/	/	/ /	FOR	LAB	
BV-21 7.5-5.01	3/2/7	1204	50.1		1		8	X	1						al an		
BV-21 11.5-12.00	1	1209			(			X									
BV-20 3.5-4.0'		1403			1	x	X										
IV-20 715-8.01		1410			1			x									
BV-20 11.5- (2.01		1418			1		15 - 14	X									
BV-20 14.5-15.01	276	1425		ERET	1	331	-	X			1.0.0	1					
BV-19 3.5-4.01	1.19	(313			1	X	X	,			1						
5V-19 55-6.01		1310			1			x									
31-19 9.5-10.5'		(317-		1.158.55	1		1	x		1						2.7	
BV-10 12-5-12.01	1.1	(724	V		1			X	1	N						2.	
Collected by:	-01	1 1 2 1 1		(print)	Collec	tor's Sig	gnature	e: (	-11	AL	-	-					
CHAIN Relinquished by:	11		Date/Time	Talon	Receiv	ed by:	1	10	Val	l			Dat	e/Time	3/9/07	6500	
CUSTODY Relinquished by:			Date/Time	ft of	Receiv	ved by:		F	V		177	2 1 5	Dat	e/Time	511101	0.01	
Method of Shipment: Data ff				1.1.1.1	Receiv	ed at L	ab by:				1.11		Dat	e/Time			
Authorized by:		Date			Sampl	e Cond	ition U	pon Rece	ipt: [	Accep	otable		ther (ex	plain)			
Atlanta Regional Lab       Atlanta Regional Lab         22345 Roethel Drive       3380 Chastain Meadow         Novi, MI 48375       Kennesaw, GA 30144         (800) 806-5887       (800) 252-9919         (248) 344-1770       (770) 499-7500         FAX (248) 344-2655       FAX (770) 499-7511	one of the	Clayton Gi	roup Ser Se 463 Se (80 (20 FA	vices, Inc. lab attle Regional L 36 E. Marginal W attle, WA 98134 0) 568-7755 6) 763-7364 X (206) 763-4189	s listed .ab ay S., Su	ite 140	r:		1				DISTR White Yellow Pink	IBUTION = Clay = Clay = Clier	: ton Laborat ton Accoun t Copy 10	ory ting /05 20K	

B U R E A U V E R I T A S	Clayton Group A Bureau Verita REQUEST FOR L ANALYTICAL	Services, s Company ABORAT( SERVICES	Inc. ORY S		Date R Rush C E-mail	esults R Charges F address	IMPC equested Authorize ax or [ :	רבא (Constraint) איז (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Constraint) (Cons	I <b>T</b> I HL I Yes ail Result:	No S	-		P For Clayto Clayton Lab	age <u>, i o</u> n <b>Use On</b> 9 Project N	of lý
Aailing Address Company Mailing Address City, State, Zip Telephone No.	Client J Dept. C Client J Dept. C Later Phy Later FAX No.	bb No. 37037	-00 757- 55	SEND INVOICE	Purcha Name Compa Addres City, S	ase Ord any ss State, Zi	er No.	<	51	m	E		Dept	t.	
Special instructions and/or specific re (method, limit of detection, etc.) TMA SGCn ! * Explanation of Preservative	gulatory requirements: So Wh sta are frou	ils: Waters ich te Drink these Grou n? Was	: king Water Indwater tewater	nber of Containers	(	Enter an	'X' in the	pox below	ANALYS w toyinglice	IS REQ	UESTE est. Ente	D ra'P' if	Preservative	added.*)	
CLIENT SAMPLE IDENTIFICATION	DATE TIM SAMPLED SAMPL	E MATRIX/ A ED MEDIA (	AIR VOLUME specify units)	Nur	15	6 701	the state	0002	IN.	××.		/ /	/ /	FOR L	AB
BV-19 16.5-1701	3/9/2	50:1		1					X						
2 BV-19 19.5 - 200'				(					X						
BV-10 1.5 - 2.0'	080			1			$\Lambda$	$\Lambda$					2		
BV-1 1.5-201	083	5		1	V		XIX	X							
BV-12 1.5-2.0'	085	8		1	$\wedge$	1	V								
BV-10 75-8:01	080	2	100.13	1	$\langle \rangle$	h	A	11							
BU-11 75-8.0'	083	8	1123.1	1	X	1		/ V			2.4				
SL2 BV-12 7.5-8.0'	090	N		1	$\Lambda$	1	λ	A							
BV-10 3.7-4.01	ORU		1111	1		1		V	V						_
BV-10 6.0-6.5	V OF			1					£						_
Collected by:	letter		(print)	Collec	tor's Signa	ature:	L	1.1.	P						_
CHAIN Relinquished by:		Date/Time	9/07	Receiv	ed by:	. Il	Q Va	00				Dat	e/Time 3	GIUT I	6:0501
CUSTODY Relinquished by:		Date/Time	111-1	Receiv	ed by:	-	- 10	ore	115.7	20	1.1	Dat	e/Time	401	
Method of Shipment:	)ropuff.			Receiv	ed at Lab	by:						Dat	e/Time		
Authorized by: (Client Signature MUST Accom	DD	ate		Sampl	e Conditio	on Upor	n Receipt	: 🗆	Accept	able	Ot	her (ex	plain)		
Please return completed form and sa         Detroit Regional Lab       Atlanta R         22345 Roethel Drive       3380 Chas         Novi, MI 48375       Kennesaw         (800) 806-5887       (800) 252-4         (248) 344-1770       (770) 499-5         FAX       (244) 0555	e Regional L Marginal W WA 98134 68-7755 63-7364	s listed .ab ay S., Su	below: ite 140							DISTR White Yellow Pink	BUTION: = Clayton = Clayton = Client C	Laborator Accountin Copy	у у		

	B U R E A U VE R I T AS	ton Gr A Bureau UEST F	OUP Se Veritas ( OR LA CAL SI	ervices Company BORA ERVIC	s, Inc. TORY ES		Da Ru E-r	te Resul sh Charg nail add	IN ts Requ ges Aut Fax o ress:	APOR lested: horized? or	TANT 124 - E-mail	Yes Results				For Clay Clayton İ	Page rton Use .ab Projec	of <b>B</b> Only ot No.
	P Name (ma future		Client Job	No. 371	12-002514	03	Pu	rchase	Order I	No.	1	-		_	-	_		
	Company Burgen Vertas	(A)	Dept. Clier	nt Services	Es	ш	Na	me		-	/	h.						
	Mailing Address 69 20 Koll Centre	- Pky	#116					mpany		-	71	IN	15			D	ept.	
	City, State, Zip	/			1.5.1	"SS	Ad	dress		1	//	,	C	-	35			
	Telephone No.   Special instructions and/or specific regulatory	FAX N	lo.	Wet			Cit	y, State	, Zip				C DEC	UECT				
	(method, limit of detection, etc.)	equirements	Which	wat	ers:	S.J.		(Ente	r an 'X'	in the bo	x below	to indica	ate requ	est. Ente	er a 'P' if	Preservat	ive added.*	)
	- TPH of SGCh		state are the from?		Prinking Water Groundwater Vastewater	ber of Contain		1	Althore		July a	S mit	A.	/				
	CLIENT SAMPLE IDENTIFICATION	DATE	TIME	MATRIX/	AIR VOLUME	Num	1	CXX.	NY.	10%	SX	A	/	/	/	/	FOF	RIAB
	BV-11 3,5-401	SAMPLED	SAMPLED	MEDIA	(specify units)	1	-	Y			r	×		$\leq$		-	USE	ONLY
	Rul-11 6.5-2.01	144	adda	30.1					-		V							
	13/-12 2 4 21	+	000			(	-	-			~							
	150 16 3.5 - 160	+ +	OVJ			(					X							
	00-12 6.5-7.0		0903			(					X							
. [	P BU-13 1.5-20'		0910			(	$\left  \right\rangle$	/	$\Lambda /$	1\ /								
3-	BV-14 1.5-20'		8945			1	$\nabla$	X	IV	$\nabla$								
J	DV-15 1.5-201		1011			(	X	$\Lambda$	$\Lambda$	Ň		-						
5	21-13 25-801		1910			1	$\langle \rangle$	( )	K Y	KY		-						
3-	n1-14 25-801	+ +	Davo			1	$\mathbb{V}$	H	$\mathbb{N}$	+ + /				-				
3			0198			,	A	X	IĂ-	X		1						
	BV-15 F.5-2.0.	v	1013	V		1	$\langle \rangle$	$ \rangle$	$\langle \rangle$	14		11						
	Collected by: Cond puttor	6			(print)	Collec	tor's S	ignature	э:	h	st	4						
	CHAIN Relinquished by:	1		Date/Time	3/9/2	Receiv	/ed by:	J	Jul	Va	00	-			Dat	te/Time	3/9/07	GUSPI
	CUSTODY Relinquished by:			Date/Time	14	Receiv	ed by:		1	V	na				Dat	e/Time	1400	
	Method of Shipment:			1.1		Receiv	ed at l	Lab by:							Dat	e/Time		
	Authorized by:		Date	_		Sampl	e Cond	dition U	pon Re	ceipt:		ccepta	ble		ther (ex	plain)		
	Please return completed form and samples to         Detroit Regional Lab       Atlanta Regional Lab         22345 Roethel Drive       3380 Chastain Meadow         Novi, MI 48375       Kennesaw, GA 30144         800) 806-5887       (800) 252-9919         248) 344-1770       (770) 499-7500         FAX (248) 344-2655       FAX (770) 499-7511	one of the vs Parkway, Su	Clayton G uite 300	roup Serv Sec (80 (20 FA)	vices, Inc. lab attle Regional L 36 E. Marginal W attle, WA 98134 0) 568-7755 6) 763-7364 X (206) 763-4189	s listed .ab ay S., Su	ite 140	w:							DISTR White Yellow Pink	BUTION = Clayt = Clayt = Clien	on Laborai on Accour t Copy 1(	tory hting )/05 20K

AU V			C		т				IMDO		т				Page 5 of	6
	Clay	A Bureau	Veritas C	rvices	, Inc.		Date	Results R	INIPO	ZY	HR 7	AT		For C Clayto	layton Use Only n Lab Project No	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	11 Durcu	i venus O	ompany			Rus	h Charges	Authorized	1? 2	Yes	No				
182	REQ	UEST F	OR LAI	BORA	TORY			F	ax or	E-ma	il Results					
VERI		NALYTI	CAL SE	RVIC	ES		E-m	ail address			-		L			
O Name Cmg	Aufer 1		Client Job N	10. 3310	7-017570	1.07	Pur	chase Ord	ler No.	/	~					
Company J	Bren Verta	5	Dept. Client	t Services	55	_ U	Nan	ne		\leftarrow	A	Ar	6			
Mailing Address	6920 to hearte	r Ma	y #2	16		<u>õ</u> El	Cor	npany		\rightarrow	/ /	E	er.		Dept.	_
City, State, Zip	925 474 265	FAX				s N	City	State, Zi	n		/					_
Special instructions	and/or specific regulatory	requirement	s: Soils:	Wate	ers:	y)	Only	(Entor on	V' in the l		NALYS	IS REQU	ESTED	' if Procor	votive added *)	
(method, limit of detection	on, etc.)		Which		rinking Water	ainer	-	(Enter an								7
TPH	1 soca		are the	se G	roundwater	Cont		/	2	0.	1/3	/ /	/	/	/ / /	
			from?		/astewater	r of (14	7 38/	04	V.	/	/ /	/	///	
* Explanation of Prese	ervative		-0-	_		mbe		NW 3	Bas	XX	S.J		/	/ /		
CLIENT SAMPLE IDE	ENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Nu	/A	6 X	en en	W	1	/ /		/	FOR LA	B LY
BV-13 3	35-401	3/9/7	0414	50-1		(x						
DV-13 6	6-0-65	1	0921			(ĸ						
01-14 7	7.5-4.0		0943			1				×						
BV-14 5	5.5-6.01		0951							¥						
DV-15 3	3.5-4.01		1010			i		-		×						
DV-15 4	6 50'		1015			(X						
BV-16 3	3.5-4.01		1037			1				x						
BV-16 6	5-7.01		1040			1				7						
IV-17 .	3.5-4.01		1054			1				X						
171-17 6	0-651	V	402	V		1				X	Λ					
Collecte	ed by: Can have	or A			(print)	Colle	ctor's Si	gnature:	6	11	KP'	T				
CHAIN Relinqui	ished by:	A		Date/Time	3/1/2	Rece	ived by:	No	PV	oA	25	111		Date/Tin	ne 3/9/07 6.	asay
CUSTODY Relinqui	ished by:	M	1	Date/Time		Rece	ived by:	-		~~~~				Date/Tin	ne	-
Method	of Shipment: Drugo 00					Rece	ived at l	ab by:						Date/Tin	ne	
Authorized by:			Date			Samp	ole Conc	lition Upo	n Receipt		Accept	able	Other	(explain))	
(Client	Signature MUST Accompany Reques	()		-					_							
Please return compl Detroit Regional Lab 22345 Roethel Drive Novi, MI 48375 (800) 806-5887 (248) 344-1770	leted form and samples to Atlanta Regional La 3380 Chastain Meado Kennesaw, GA 30144 (800) 252-9919 (770) 499-7500	o one of the ws Parkway, S	Clayton Gi	roup Ser Se 46 Se (80 (20	vices, Inc. lab attle Regional I 36 E. Marginal W attle, WA 98134 00) 568-7755 06) 763-7364	o s liste Lab /ay S., S	d belov Suite 140	v:					DIS Wh Yell Pin	STRIBUTI ite = C low = C k = C	ON: Ilayton Laboratory Ilayton Accounting Ilient Copy	1
FAX (248) 344-2655	FAX (770) 499-7511			FA	X (206) 763-4189)									10/05	ZUK

	B U R V E R	Clay REQUERTAS	ton Grou A Bureau V JEST FO NALYTIC	Veritas C R LAB	rvices, ompany BORA RVICI	Inc.		Date Rush E-mai	Results Charge	IMI Reques s Autho Fax or ss:	rized?	ANT 24 E-mail	Yes Results				For C Claytor	Page 🛓 I ayton Us n Lab Proj	e Only ect No.	
	P Name	funne	Cli	ient Job N	10. 3310	4-002514	107	Purcl	hase O	rder No		~								_
	Company	Jisman Vintes	to pe	ept. Client	t Services		ъŬ	Nam	e			- A	hh	E		-		Dent		-
		S Gq 10 God G	to in	1			NEN	Addr	ess			11	1-1	P	<u></u>			Dept.		1
	Telephone No.	426.2607	FAX No.				" <u>Z</u>	City,	State,	Zip	(1]
	Special instruction	is and/or specific regulatory (requirements:	Soils:	Wate	rs:	S		(Enter a	an 'X' in	the box	below	to indica	IS REC	UESTI est. Ente	E D er a 'P'	if Preser	vative adde	d.*)	
	(state are the from?	se Gr Wa	inking Water oundwater astewater	ber of Containe		-	5-14	JA OF	Pert	- rue		/					
	* Explanation of Pre	DENTIFICATION	DATE	TIME	MATRIX/	AIR VOLUME	Numb	2	XY OF	No.	SY2	y.	V	/	/	/	/	F	OR LAB	
		DENTIFICATION	SAMPLED S	SAMPLED	MEDIA	(specify units)	-	KA	Y		Y		7	/			\leftarrow		SE ONLY	-
	110-18	3.5-4.0	3/9/7	130	50.1		1					x								-
2	BV-18	T.T-6.01		1139			(-			1	×								-
T	BV-16	1.5-2.01		1035				Ň/	$\backslash /$	Λ	\mathbf{V}									_
gr-	BV-17	1.5-201		1056			ĺ,	X	X	X	Λ									
3	7 BV-18	1.5-20'		1133			i	$ \langle \rangle $	$/ \rangle$	$/\backslash$										
	RJ-16	25-8,01		1078			1	1/1												1
10	R/-17	1- 80'		1100			1	XI	VI	XI	$\forall \uparrow$									1
Z	1 10/-10/	75-821	3/	1172	V		1	1/1	Λ	\wedge	Λ									1
SL	P DV-18	m 1 - 010	V		V		<u> </u>	1			11									1
				-									M							-
	Caller	A D	1			(print)	Coller	ator's Sig	natura		A	- X	4	/						-
	CHAIN Beling	wished by:	1		Date/Time	2/4/2	Recei	ived by:	I	d	fit	the	F)ate/Tim	ne. 3/01	7 10	Non
	OF Beling	uished by:	+		Date/Time	MA	Recei	ived by:	M	NR	Va	YK-					Date/Tim	10 - 19/0	10-	p
	CUSTODY Heiling	ad of Shipment:			Date/ Inne		Recei	ived at La	ab by:								Date/Tim	ne		-
	Wethe	Roppi	4				Samp	le Condi	tion Up	on Rec	eipt:		Accept	able)ther (e	explain			1
	Authorized by:(Clie	ent Signature MUST Accompany Request)	Date													1			
	Please return com Detroit Regional Lab 22345 Roethel Drive Novi, MI 48375 (800) 806-5887 (248) 344-1770 FAX (248) 344-2655	tices, Inc. lab attle Regional L 36 E. Marginal W 405 August 405 Augus	s liste .ab ay S., S	d below								DIST Whit Yello Pink	TRIBUTI te = C tow = C = C	ON: layton Lab layton Acc lient Copy	oratory ounting 10/05 201					

	ALL ALL
6	JU
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	A 94565-1701 262					Work	Order: ⁻ ax	: 0703	221 Emai	(): BVP HardCopy	,	Third	lParty		
Report to: Craig Pelletier Bureau Veritas 6920 Koll Cente Pleasanton, CA	er Pkwy, Ste. 216 94566	Email: TEL: ProjectNo: PO:	craig.pelletie (925) 426-26 #33107-007	r@us.bureauverita 0 FAX: (925) 514.03	as.con 426-0	n 10	Bill t Jo Bu 69 Ple joa	an Mille Ireau Ve 20 Koll easanto an.mille	er eritas Center on, CA S r@us.b	Pkwy, 94566 pureauv	Ste. 21 veritas.	6 com	Red Da Da	quested te Rec te Prin	d TAT: eived nted:	1 03/09/ 03/09/	day '2007 '2007
									Req	uested	Tests	(See leo	end b	elow)			
Sample ID	ClientSampl	D	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0703221-002	BV-23 9.5-10	.0'	Soil	03/09/07 8:20:00			Α		А					T			
0703221-005	BV-22 5.5-6.	0'	Soil	03/09/07 9:44:00			А		А								
0703221-010	BV-21 3.5-4.	0'	Soil	03/09/07 12:02:00			А		А								
0703221-013	BV-20 3.5-4.	0'	Soil	03/09/07 2:03:00			А		А								
0703221-017	BV-19 3.5-4.	0'	Soil	03/09/07 1:13:00			А		А								
0703221-023	BV-10,11,12 1.5	-2.0'	Soil	03/09/07 8:00:00		А		А	А	А							
0703221-024	BV-10,11,12 7.5	-8.0'	Soil	03/09/07 8:07:00		А		А	А	А							
0703221-031	BV-13,14,15 1.5	-2.0'	Soil	03/09/07 9:10:00		А		А	А	А							
0703221-032	BV-13,14,15 7.5	-8.0'	Soil	03/09/07 9:18:00		Α		А	А	А							
0703221-045	BV-16,17,18 1.5	-2.0'	Soil	03/09/07 10:35:00		Α		А	А	А							
0703221-046	BV-16,17,18 7.5	-8.0'	Soil	03/09/07 10:38:00		Α		Α	Α	А							

Test Legend:

1 8081PCB_S	2 8260B_S	3 8310_S	4 G-MBTEX_S	5 RCRAMS_S
6	7	8	9	10
11	12			

The following SampIDs: 0703221-002A, 0703221-005A, 0703221-010A, 0703221-013A, 0703221-017A, 0703221-023A, 0703221-024A, 0703221-031A, 0703221-032A, 0703221-045A, 0703221-046A contain testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell A:	nalyti v Counts"	cal, In	<u>c.</u>		1534 Willow Pa Web: www.mccampb Telephone: 87	ass Road, Pittsburg, CA pell.com E-mail: main 77-252-9262 Fax: 925	94565-1701 @mccampbell.com 5-252-9269	l
Bureau Veritas		Client Pr	oject ID: 🕴	#33107-	007514.03	Date Sampled:	03/09/07	
(020 Kall Cantar Diama Sta 21)					ľ	Date Received:	03/09/07	
6920 Koll Celler Pkwy, Ste. 216		Client C	ontact: C	raig Pel	letier	Date Extracted:	03/09/07	
Pleasanton, CA 94566		Client P.	0.:			Date Analyzed:	03/10/07	
0	rganoch	lorine Pe	sticides (8	080 Ba	sic Target List)	+ PCBs*		
Extraction Method: SW3550C	0	Ana	lytical Method	: SW808	1B/8082A		Work Order: 07	03221
Lab ID	07032	21-023A	0703221-	-024A	0703221-031A	0703221-032A		
Client ID	BV-10	11 12 1 5-	BV-10.11	1275-	BV-13 14 15 1 5-	BV-13 14 15 7 5-	Reporting	Limit for
Chent ID	D 10	2.0'	8.0	12 7.5	2.0'	8.0'	DF	=1
Matrix		S	S		S	S	G	
DF		200	2		200	1	S	W
Compound				Conce	entration		mg/kg	μg/L
Aldrin	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
a-BHC	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
b-BHC	NE	0<0.20	ND<0.0	0020	ND<0.20	ND	0.001	NA
d-BHC	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
g-BHC	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Chlordane (Technical)	NI	D<5.0	ND<0.	050	ND<5.0	ND	0.025	NA
a-Chlordane	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
g-Chlordane	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
p,p-DDD	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
p,p-DDE	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
p,p-DDT	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Dieldrin	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Endosulfan I	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Endosulfan II	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Endosulfan sulfate	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Endrin	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Endrin aldehyde	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Heptachlor	NE	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Heptachlor epoxide	NL	0<0.20	ND<0.0	020	ND<0.20	ND	0.001	NA
Hexachlorobenzene	NI	D < 2.0	ND<0.	020	ND<2.0	ND	0.01	NA
Mathayyahlar		$\frac{0}{4.0}$	ND<0.	040	ND<4.0	ND	0.02	NA
Toyophone	NL NL	D < 10		10	ND<0.20	ND	0.001	NA
Aroclor1016	N	D < 10	ND<0	050	ND<10	ND	0.025	NA
Aroclor1221	NI	2 < 5.0	ND < 0	050	ND<5.0	ND	0.025	NA
Aroclor1232	NI	0 < 5.0	ND < 0	050	ND<5.0	ND	0.025	NA
Aroclor1242	NI	D<5.0	ND < 0	050	ND<5.0	ND	0.025	NA
Aroclor1248	NI	D<5.0	ND<0.	050	ND<5.0	ND	0.025	NA
Aroclor1254	NI	D<5.0	ND<0.	050	ND<5.0	ND	0.025	NA
Aroclor1260	NI	D<5.0	ND<0.	050	ND<5.0	ND	0.025	NA
PCBs, total	NI	D<5.0	ND<0.	050	ND<5.0	ND	0.025	NA
		5	Surrogate I	Recover	ies (%)			
%SS:		#	105		100	104		
Comments	ĺ	i	i		i			

* water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell Au "When Ouality	nalyti Counts"	cal, In	<u>c.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 925	94565-1701 @mccampbell.com 5-252-9269	1
Bureau Veritas		Client Pr	oject ID: #	#33107-	007514.03	Date Sampled:	03/09/07	
						Date Received:	03/09/07	
6920 Koll Center Pkwy, Ste. 216		Client C	ontact: Ci	aig Pel	letier	Date Extracted:	03/09/07	
Placementary CA 04566				ang i ci	letter	Date Extracted.	03/07/07	
Pleasanton, CA 94566		Client P.	0.:			Date Analyzed:	03/10/07	
Oı	ganoch	lorine Pe	sticides (8	080 Ba	sic Target List)	+ PCBs*		
Extraction Method: SW3550C		Anal	ytical Method	: SW808	1B/8082A		Work Order: 07	/03221
Lab ID	07032	21-045A	0703221-	046A				
Client ID	BV-16	17 18 1 5-	BV-16.17	1875-			Reporting	Limit for
Chent ID	D V-10,	2.0'	8.0	10 7.5-			DF	=1
Matrix		S	S					
DF	1	000	1				S	W
Compound				Conce	ntration		mo/ko	μσ/L
Aldrin		0<1.0	ND	Conce	initiation		0.001	NA
a-BHC	NI	D < 1.0	ND				0.001	NA
b-BHC	NI	0 < 1.0	ND				0.001	NA
d-BHC	NI	D<1.0	ND				0.001	NA
g-BHC	NI	D<1.0	ND				0.001	NA
Chlordane (Technical)	N	D<25	ND				0.025	NA
a-Chlordane	NI	D<1.0	ND				0.001	NA
g-Chlordane	NI	D<1.0	ND				0.001	NA
p,p-DDD	NI	D<1.0	ND				0.001	NA
p,p-DDE	NI	D<1.0	ND				0.001	NA
p,p-DDT	NI	D<1.0	ND				0.001	NA
Dieldrin	NI	D<1.0	ND				0.001	NA
Endosulfan I	NI	D<1.0	ND				0.001	NA
Endosulfan II	NI	D<1.0	ND				0.001	NA
Endosulfan sulfate	NI	D<1.0	ND				0.001	NA
Endrin	NI	D<1.0	ND				0.001	NA
Endrin aldehyde	NI	D<1.0	ND				0.001	NA
Heptachlor	NI	D<1.0	ND				0.001	NA
Heptachlor epoxide	NI	D<1.0	ND				0.001	NA
Hexachloroovelenentadiene	N.	D<10 D<20	ND ND				0.01	NA
Methoxychlor	NI NI	D<20	ND				0.02	NA
Toyaphene	N	D < 50	ND				0.05	NA
Aroclor1016	N	D<25	ND				0.025	NA
Aroclor1221	N	D<25	ND				0.025	NA
Aroclor1232	N	D<25	ND				0.025	NA
Aroclor1242	N	D<25	ND				0.025	NA
Aroclor1248	N	D<25	ND				0.025	NA
Aroclor1254	N	D<25	ND				0.025	NA
Aroclor1260	N	D<25	ND				0.025	NA
PCBs, total	N	D<25	ND				0.025	NA
		5	Surrogate F	<u>Recover</u>	ies (%)	-		
%SS:		98	110					
Comments		j						

* water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell An "When Quality	nalytical, In Counts"	<u>c.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: mair 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 5-252-9269		
Bureau Veritas	Client Pr	oject ID:	#331	07-007514.03	Date Sampled:	03/09/07		
					Date Received:	03/09/07		
6920 Koll Center Pkwy, Ste. 216	Client C	ontact:	Craig H	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566	Client P.	0.:	8-		Date Analyzed	03/10/07		
	Volatile Organi	ics by Pá	&T and	d CC/MS (Basic Ta				
Extraction Method: SW5030B	A A	nalytical M	ethod:	SW8260B	ii get List)	Work Order: 070322	21	
Lab ID				0703221	-002A			
Client ID				BV-23 9.	5-10.0'			
Matrix				Soi	1			
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
1.2 Dibromosthana (EDB)	ND	1.0	0.005	Dibromomothono	ropropane	ND	1.0	0.005
1,2-Diblorobenzene	ND	1.0	0.005	1 3-Dichlorobenzen	<u>,</u>	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1 1-Dichloroethane	ND	1.0	0.005	1 2-Dichloroethane	(1.2-DCA)	ND	1.0	0.005
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ene	ND	1.0	0.005
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropan	2	ND	1.0	0.005
1.3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropan	- e	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (I	DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
1 2 4 Trichlorchonzone	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Inchorosthena		1.0	0.005	Trichloroothana			1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1 2 3 Trichloroprop	200	ND	1.0	0.005
1.2.4.Trimethylbenzene	ND	1.0	0.005	1.3.5-Trimethylbon	ano	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	Lone	ND	1.0	0.005
		Surros	vate Ro	coveries (%)			1.0	. 0.005
0/ 551.	05	Bullug	are ne	04 992.		100		
70.551:	95)		%332. 		102		
	110	,		1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	nalytical, Ir	<u>nc.</u>		1534 Willow P Web: www.mccampl Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com /5-252-9269		
Bureau Veritas	Client P	roject ID:	#331	07-007514.03	Date Sampled:	03/09/07		
					Date Received:	03/09/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: (Craig I	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566	Client P			enetier	Date Analyzed	03/10/07		
, ,		· · · •			Date / MaryZea	03/10/07		
	Volatile Organ	ucs by Pð	eT and	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		Analytical Me	ethod:	SW8260B		Work Order: 070322	21	
				0703221	-005A			
Client ID				BV-22.5	.5-6.0			
Matrix		1	anorting	Soi				Paparting
Compound	Concentration *	DF	Limit	Compoun	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	2 Chlorobenzene	E4h	ND	1.0	0.005
Chloroform	ND	1.0	0.005	2-Chloromethane	Ether	ND	1.0	0.01
2 Chlorotoluono	ND	1.0	0.005	4 Chlorotoluono		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	4-Chiorototuelle	ropropaga	ND	1.0	0.005
1 2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	Topropane	ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1 4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005
1.1-Dichloroethane	ND	1.0	0.005	1.2-Dichloroethane	(1.2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	e	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	2	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	bene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	1 2 2 Trichland		ND	1.0	0.005
1 2 4 Trichlorohonzono	ND	1.0	0.005	1,2,3-Irichlorobenz	ene	ND	1.0	0.005
1,2,4-Inchoroethana		1.0	0.005	Trichloroothono	le		1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1 2 3-Trichloroprop	ane	ND	1.0	0.005
1 2 4-Trimethylbenzene	ND	1.0	0.005	1 3 5-Trimethylber	vene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	.0110	ND	1.0	0.005
		Surrog	ate Re	coveries (%)			1.0	. 0.000
04 551.	01	7	,are ne	0/ 552.		100		
/0.551. 0/ \$\$2.	9	і Л		70002.		102		
	I II	+		l				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 5-252-9269						
Bureau Veritas	Client P	oject ID:	#331	07-007514.03	Date Sampled:	03/09/07				
					Date Received:	03/09/07				
6920 Koll Center Pkwy, Ste. 216	Client C	ontact:	Craig H	Pelletier	Date Extracted: 03/09/07					
Pleasanton, CA 94566	Client P	0.:	0	Date Analyzed 03/10/07						
	Volatile Organ	ics hy P <i>å</i>	bT and	l GC/MS (Basic Ta	rget I ist)*					
Extraction Method: SW5030B	A	nalytical Me	ethod:	SW8260B	inger List)	Work Order: 070322	21			
Lab ID				0703221	-010A					
Client ID				BV-21 3	.5-4.0'					
Matrix				Soi	1					
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB)	A)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01		
Chloroform	ND	ND 1.0 0.		Chloromethane		ND	1.0	0.005		
2-Chlorotoluene	ND 1.0 0.00			4-Chlorotoluene		ND	1.0	0.005		
1.2 Dibromosthana (EDB)	ND	1.0	0.005	Dibromomothere	ropropane	ND	1.0	0.005		
1,2-Diblorobenzene	ND	1.0	0.005	1 3-Dichlorobenzen	<u>,</u>	ND	1.0	0.005		
1.2-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hane	ND	1.0	0.005		
1 1-Dichloroethane	ND	1.0	0.005	1 2-Dichloroethane	(1.2-DCA)	ND	1.0	0.005		
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ene	ND	1.0	0.005		
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropan	2	ND	1.0	0.005		
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	e	ND	1.0	0.005		
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005		
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
1 2 4 Trichlorchonzone	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005		
1,2,4-Inchorosthena	ND	1.0	0.005	Trichloroothana			1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	5 Trichloroethene NI			1.0	0.005		
1 2 4-Trimethylbenzene	ND	1.0	0.005	005 1.3.5-Trimethylbenzene ND 1			1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.005		
		Surros	ate Re	coveries (%)			1.0	. 0.000		
%SS1	00	~~~~	, 110	%\$\$2.		101				
%551.	11	5		/0002.		101				
	1 11	5		1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Bureau Veritas	Client Pr	oject ID:	#331	07-007514.03	Date Sampled:	03/09/07				
					Date Received:	03/09/07				
6920 Koll Center Pkwy, Ste. 216	Client C	ontact: (Craig I	Pelletier	Date Extracted:	03/09/07				
Pleasanton, CA 94566	Client P.	0.:	0	Date Analyzed 03/10/07						
	Volatile Organ	ics by P <i>8</i>	&T and	l GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B	A	nalytical Me	ethod:	SW8260B		Work Order: 070322	21			
Lab ID				0703221	-013A					
Client ID				BV-203	.5-4.0'					
Matrix				Soi	1					
Compound	Concentration *	DF	Reporting Limit	Compoun	ıd	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	4)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005			
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01		
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005		
2-Chlorotoluene	ND	ND 1.0 0.00		4-Chlorotoluene		ND	1.0	0.005		
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.005		
1,2-Diblomoethane (EDB)	ND	1.0	0.005	1.2 Dichlorohonzono	`	ND	1.0	0.005		
1.4 Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	hana	ND	1.0	0.005		
1 1-Dichloroethane	ND	1.0	0.005	1 2-Dichloroethane	(1 2-DCA)	ND	1.0	0.005		
1.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethe	ene	ND	1.0	0.005		
trans-1.2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	2	ND	1.0	0.005		
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	- e	ND	1.0	0.005		
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloroprop	oene	ND	1.0	0.005		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (E	DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005		
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005		
1,2,4-1 FICHIOFODENZENE		1.0	0.005	Trichloroathana	ne	ND ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1 2 3 Trichloroprop	ND	1.0	0.005			
1 2 4-Trimethylhenzene	0.005	005 1 3 5-Trimethylbenzene ND			1.0	0.005				
Vinyl Chloride	1.0	0.005	Xylenes	20110	ND	1.0	0.005			
		coveries (%)				. 0.000				
% \$\$1. 100				%\$\$2.		102				
%SS1: 100				/0002.		102				
	12									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Bureau Veritas	Client Pr	oject ID:	#331	07-007514.03	Date Sampled:	03/09/07				
					Date Received:	03/09/07				
6920 Koll Center Pkwy, Ste. 216	Client C	ontact:	Craig H	Pelletier	Date Extracted: 03/09/07					
Pleasanton, CA 94566	Client P.	0.:	8-	Date Analyzed 03/10/07						
	Volatile Organi	ies by Dá	FT on	CC/MS (Basic Ta	raat I ist)*					
Extraction Method: SW5030B	A A	nalytical M	ethod:	SW8260B	ii get List)	Work Order: 070322	21			
Lab ID				0703221	-017A					
Client ID				BV-193	.5-4.0'					
Matrix				Soi	1					
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB)	4)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01		
Chloroform	ND	ND 1.0 0.0		Chloromethane		ND	1.0	0.005		
2-Chlorotoluene	ND 1.0 0.005			4-Chlorotoluene		ND	1.0	0.005		
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.005		
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.005		
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorodifluoromot	hana	ND	1.0	0.005		
1,4-Dichloroethane	ND	1.0	0.005	1.2 Dichloroethane	(1.2 DCA)	ND	1.0	0.005		
1 1-Dichloroethene	ND	1.0	0.005	cis-1 2-Dichloroethe	(1,2-DCA)	ND	1.0	0.005		
trans-1 2-Dichloroethene	ND	1.0	0.005	1 2-Dichloropropan	2	ND	1.0	0.005		
1.3-Dichloropropane	ND	1.0	0.005	2.2-Dichloropropan	8	ND	1.0	0.005		
1 1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloroproj	pene	ND	1.0	0.005		
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (I	DIPE)	ND	1.0	0.005		
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.005		
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	2	ND	1.0	0.005		
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005		
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005		
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005		
1,1,2-1richloroethane	ND	1.0	0.005	1 2 2 Trichloroethene		ND	1.0	0.005		
1 2 4 Trimethethemene	ND	1.0	0.005	05 1,2,3-Trichloropropane ND 1 05 1,2,5 Trimestallander ND 1			1.0	0.005		
Vinyl Chloride	0.005	1,5,5-1 rimetnyibenz	ene	ND ND	1.0	0.005				
		Sume a		covorios (94)			1.0	0.003		
		Surrog	gate Ke	coveries (%)						
%SS1: 101				%882:		100				
<u>%353:</u>	120	J								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas		Client Pr	oject ID: #	#33107	-007514.03	Date Sampled:	03/09/07				
6920 Koll Center Pkwy, Ste. 216					-	Date Received:	03/09/07				
Pleasanton, CA 94566		Client C	ontact: Cr	aig Pel	letier	Date Extracted:	03/09/07				
		Client P.	O.:			Date Analyzed	03/10/07-03/12/07				
Poly	nuclear	Aromatic									
Extraction Method: SW3550C	1	Ana	lytical Method	l: SW831	0	[Work Order:	0703221			
Lab ID	07032	0703221-023A 0703221		-024A	0703221-031A	0703221-032A	Reporting	Limit for			
Client ID	BV-10,	,11,12 1.5- 2.0'	BV-10,11, 8.0	12 7.5-	BV-13,14,15 1.5- 2.0'	BV-13,14,15 7.5- 8.0'	DF	=1			
Matrix		S			S	S	ç	W			
DF		20 1			20	1	5	vv			
Compound				Conce	entration		mg/kg	ug/L			
Acenaphthene	ND	ND<0.10			ND<0.10	ND	0.005	NA			
Acenaphthylene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Anthracene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Benzo (a) anthracene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Benzo (a) pyrene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Benzo (b) fluoranthene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Benzo (g,h,i) perylene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Benzo (k) fluoranthene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Chrysene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Dibenzo (a,h) anthracene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Fluoranthene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Fluorene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Indeno (1,2,3) pyrene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
1-Methylnaphthalene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
2-Methylnaphthalene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Naphthalene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Phenanthrene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
Pyrene	ND	0<0.10	ND		ND<0.10	ND	0.005	NA			
		Surr	ogate Rec	overies	s (%)	1					
%SS1 94			114	ŀ	99	86					
%SS2 87 91				95	85						
Comments j					j						

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due

McCampbell Au "When Quality	<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas	Client	Project ID: 🗄	#33107-	007514.03	Date Sampled:	03/09/07		
6920 Koll Center Pkwy, Ste. 216					Date Received:	03/09/07		
Pleasanton CA 94566	Client	Contact: Cr	aig Pell	letier	Date Extracted:	03/09/07		
Treasanton, CAT 94500	Client	P.O.:	03/10/07-03/12/07					
Poly	nuclear Aroma	tic Hydrocar	bons (I	PAHs / PNAs) by	HPLC*			
Extraction Method: SW3550C	A	nalytical Method	l: SW831	0	1	Work Order: 0703221		
Lab ID	0703221-045A	0703221	-046A					
Client ID	BV-16,17,18 1.	5- BV-16,17,	18 7.5-			Reporting DF	Limit for =1	
Matrix	S	S	<u>8.0'</u> S					
DF	100	1				- 5	W	
Compound	Concentration						ug/L	
Acenaphthene	ND<0.50	ND				0.005	NA	
Acenaphthylene	ND<0.50	ND				0.005	NA	
Anthracene	ND<0.50	ND				0.005	NA	
Benzo (a) anthracene	ND<0.50	ND				0.005	NA	
Benzo (a) pyrene	ND<0.50	ND				0.005	NA	
Benzo (b) fluoranthene	ND<0.50	ND				0.005	NA	
Benzo (g,h,i) perylene	ND<0.50	ND				0.005	NA	
Benzo (k) fluoranthene	ND<0.50	ND				0.005	NA	
Chrysene	ND<0.50	ND				0.005	NA	
Dibenzo (a,h) anthracene	ND<0.50	ND				0.005	NA	
Fluoranthene	ND<0.50	ND				0.005	NA	
Fluorene	ND<0.50	ND				0.005	NA	
Indeno (1,2,3) pyrene	ND<0.50	ND				0.005	NA	
1-Methylnaphthalene	ND<0.50	ND				0.005	NA	
2-Methylnaphthalene	ND<0.50	ND				0.005	NA	
Naphthalene	ND<0.50	ND				0.005	NA	
Phenanthrene	ND<0.50	ND				0.005	NA	
Pyrene	ND<0.50	ND				0.005	NA	
	Su	rrogate Rec	overies	s (%)				
%SS1	#	99						
%SS2#		83						
Comments	j							

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due

	CCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow I Web: www.mccamp Telephone: 3	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccan 377-252-9262 Fax: 925-252-92	1701 npbell.com 69					
Bureau Verita	lS	Client Project ID	: #33107-007514.03	Date Sampled: 03/09	9/07					
6920 Koll Cer	nter Pkwy, Ste. 216			Date Received: 03/09	/07					
Pleasanton C	4 9/1566	Client Contact:	Craig Pelletier	Date Extracted: 03/09	/07					
T leasanton, e	A 94300	Client P.O.:	Client P.O.: Date Analyzed 03/10/07							
Extraction method	Gasoline Ra SW5030B	ange (C6-C12) Vo Analytic	Dlatile Hydrocarbons as G al methods SW8015Cm	¦asoline* Work O	rder: 07	03221				
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS				
002A	BV-23 9.5-10.0'	S	ND		1	84				
005A	BV-22 5.5-6.0'	S	ND		1	86				
010A	BV-21 3.5-4.0'	S	ND		1	84				
013A	BV-20 3.5-4.0'	S	ND		1	82				
017A	BV-19 3.5-4.0'	S	ND		1	87				
023A	BV-10,11,12 1.5-2.0'	S	ND		1	90				
024A	BV-10,11,12 7.5-8.0'	S	ND		1	92				
031A	BV-13,14,15 1.5-2.0'	S	ND		1	97				
032A	BV-13,14,15 7.5-8.0'	S	ND		1	91				
045A	BV-16,17,18 1.5-2.0'	S	ND		1	88				
046A	BV-16,17,18 7.5-8.0'	S	ND		1	87				
Re	porting Limit for DF =1;	W	NA		N	A				
ND al	means not detected at or bove the reporting limit	S		mg/Kg						

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com								
Bureau Veritas	Counts"	Client Pr	oiect ID: #	±33107.	-007514 03	Date Sampled:	03/09/07			
Bureau ventas		Chent I I	oject ID. 7	55107		Date Received:	03/09/07			
6920 Koll Center Pkwy, Ste. 216		Client C	ontact: Cr	aig Pel	etier	Date Extracted:	Date Extracted: 03/09/07			
Plassanton CA 04566		Client P				Date Analyzed	03/12/07			
ricasanton, CA 94500		Client F.	<u> </u>			Date Analyzed	03/12/07			
RCRA 8 Metals*										
Extraction Method: SW 3050B	07032	Anal	0703221	024A	0703221-0314	0703221-0324	Work Order: 0703221			
Client ID	BV-10.	11.12 1.5-	BV-10.11.	12 7.5-	BV-13.14.15 1.5-	BV-13.14.15 7.5-	1			
		2.0'	8.0		2.0'	8.0'	Reporting	Limit for		
Matrix	2	Soil	Soil		Soil	Soil	DI	-1		
DF		1	1		1	1				
Extraction Type	T	ГLC	TTL	С	TTLC	TTLC	S	W		
Compound				Conce	entration		mg/Kg	µg/L		
Arsenic	10		3.2		10	3.9	0.5	NA		
Barium	210		0 150		170	110	5.0	NA		
Cadmium]	ND	ND		ND	ND	0.25	NA		
Chromium		61	52		83	58	0.5	NA		
Lead		82	17		53	5.3	0.5	NA		
Mercury	0	.28	0.10)	0.19	0.056	0.05	NA		
Selenium	Selenium N		ND		ND	ND	0.5	NA		
Silver	ND		ND	ND	0.5	NA				
	rogate Re	coveri	es (%)		1					
%SS: 107 10					117	105				
Comments										

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An	nalyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas	counts	Client Pr	oject ID: #	#33107-	007514.03	Date Sampled:	03/09/07			
(020 K-11 Contro DI Con 21 C			-			Date Received: 03/09/07				
6920 Koll Center Pkwy, Ste. 216		Client C	ontact: Cr	aig Pel	letier	Date Extracted:	1: 03/09/07			
Pleasanton, CA 94566		Client P.	D.:	03/12/07						
			RCRA 8	Metals	3*					
Extraction Method: SW3050B		Anal	ytical Method	: 6020A			Work Order:	0703221		
Lab ID	07032	21-045A	0703221-	-046A						
Client ID	BV-16,	17,18 1.5-	BV-16,17,	18 7.5-			Reporting	Limit for		
Matrix		Soil	Soil				DF	5 =1		
DF		1	1							
Extraction Type	ГLC	TTLC				S	W			
Compound		Conce	entration		mg/Kg	μg/L				
Arsenic		18	4.9				0.5	NA		
Barium	1	180	200				5.0	NA		
Cadmium]	ND	ND				0.25	NA		
Chromium		46	69				0.5	NA		
Lead	ç	950	6.8				0.5	NA		
Mercury	0	.26	0.10)			0.05	NA		
Selenium]	ND	ND				0.5	NA		
Silver ND							0.5	NA		
	1	Sur	rogate Re	ecoveri	es (%)					
%SS: 108 11										
Comments										

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Bureau Veritas		Client Project ID:	#33107-007514.03	Date Sampled: 03/	09/07					
6920 Koll Cente	er Pkwy, Ste. 216			Date Received: 03/	Date Received: 03/09/07					
Disconton CA	04566	Client Contact: C	raig Pelletier	Date Extracted: 03/	Date Extracted: 03/09/07					
r leasanton, CA	94300	Client P.O.:		Date Analyzed 03/	10/07-03/	12/07				
	Diesel (C10-23) and Oil (C	C18+) Range Extrac	3+) Range Extractable Hydrocarbons with Silica Gel Clean-Up*							
Extraction method: S	W3550C/3630C	Analytical meth	ods: SW8015C	Wor	k Order: 0'	703221				
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
0703221-002A	BV-23 9.5-10.0'	S	ND	ND	1	104				
0703221-005A	BV-22 5.5-6.0'	S	ND	ND	1	107				
0703221-010A	BV-21 3.5-4.0'	S	ND	ND	1	113				
0703221-013A	BV-20 3.5-4.0'	S	ND	ND	1	115				
0703221-017A	BV-19 3.5-4.0'	S	ND	ND	1	106				
0703221-023A	BV-10,11,12 1.5-2.0'	S	19,g,b	90	5	105				
0703221-024A	BV-10,11,12 7.5-8.0'	S	ND	ND	1	111				
0703221-031A	BV-13,14,15 1.5-2.0'	S	9.2,g,b	66	5	111				
0703221-032A	BV-13,14,15 7.5-8.0'	S	ND	ND	1	86				
0703221-045A	BV-16,17,18 1.5-2.0'	S	43,g,b	190	10	111				
0703221-046A	BV-16,17,18 7.5-8.0'	S	ND	ND	1	110				
Repo	orting Limit for DF =1;	W	NA	NA	ug	:/L				
ND m	neans not detected at or	S	1.0	5.0	mg	/Kg				

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8081B/8082A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703221

EPA Method SW8081B/8082A Extraction SW3550C						BatchID: 26650				Spiked Sample ID: 0703156-004A			
Analyte	Sample	Spiked MS MSD MS				LCS	LCSD	LCS-LCSD	Acceptance Criteria (%))	
, and y to	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Aldrin	ND<0.020	0.010	73.7	82.3	11.0	114	114	0	70 - 130	30	70 - 130	30	
g-BHC	ND<0.020	0.010	73.4	80.2	8.93	87.2	87	0.211	70 - 130	30	70 - 130	30	
p,p-DDT	ND<0.020	0.025	NR	NR	NR	77.8	78.3	0.624	70 - 130	30	70 - 130	30	
Dieldrin	ND<0.020	0.025	91.1	98.2	7.51	106	106	0	70 - 130	30	70 - 130	30	
Endrin	ND<0.020	0.025	90.2	97.8	8.12	105	105	0	70 - 130	30	70 - 130	30	
Heptachlor	ND<0.020	0.010	66, F1	72.6	9.51	81	80.7	0.437	70 - 130	30	70 - 130	30	
%SS:	99	0.050	99	105	6.24	109	106	3.22	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch.

	BATCH 26650 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed					
0703221-023A	03/09/07 8:00 AM	03/09/07	03/10/07 6:42 AM	0703221-024A	03/09/07 8:07 AM	03/09/07	03/10/07 7:39 AM					
0703221-031A	03/09/07 9:10 AM	03/09/07	03/10/07 8:35 AM	0703221-032A	03/09/07 9:18 AM	03/09/07	03/10/07 2:16 PM					
0703221-045A	03/09/07 10:35 AM	03/09/07	03/10/07 9:32 AM	0703221-046A	03/09/07 10:38 AM	03/09/07	03/10/07 1:20 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703221

EPA Method SW8260B		Ba	tchID: 26	700	Spiked Sample ID: 0703215-002A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance Criter					e Criteria (%))	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	110	108	1.86	114	110	3.53	70 - 130	30	70 - 130	30
Benzene	ND	0.050	126	126	0	128	128	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	106	105	1.01	115	107	6.66	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	112	109	3.16	115	113	1.35	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	117	116	1.16	123	117	5.56	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	117	113	3.83	118	116	1.37	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	79.3	76.1	4.17	83.4	88.5	5.84	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	124	122	2.08	125	124	0.806	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	114	112	2.15	117	114	3.20	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	115	113	1.46	120	114	4.57	70 - 130	30	70 - 130	30
Toluene	ND	0.050	115	112	2.22	121	114	5.47	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	77.2	74.5	3.53	77.4	76.4	1.25	70 - 130	30	70 - 130	30
%SS1:	109	0.050	100	100	0	101	100	0.890	70 - 130	30	70 - 130	30
% SS2:	98	0.050	91	92	0.952	94	91	3.79	70 - 130	30	70 - 130	30
%SS3:	119	0.050	101	102	0.644	102	100	2.38	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26700 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-002A	03/09/07 8:20 AM	03/09/07	03/10/07 2:33 AM	0703221-005A	03/09/07 9:44 AM	03/09/07	03/10/07 3:18 AM
0703221-010A	03/09/07 12:02 PM	03/09/07	03/10/07 4:05 AM	0703221-013A	03/09/07 2:03 PM	03/09/07	03/10/07 4:51 AM
0703221-017A	03/09/07 1:13 PM	03/09/07	03/10/07 5:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8310

WorkOrder 0703221 W.O. Sample Matrix: Soil QC Matrix: Soil EPA Method SW8310 Extraction SW3550C BatchID: 26713 Spiked Sample ID: 0703221-046a Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte mg/kg mg/kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD Benzo (a) pyrene ND 0.015 85.7 84.3 1.67 83.8 90.4 7.62 80 - 120 20 80 - 120 20 ND 0.015 99.3 95.2 4.20 85.2 88.6 3.90 80 - 120 2.0 80 - 120 20 Chrysene 1-Methylnaphthalene ND 0.015 91.4 90.6 0.785 99.7 94.2 5.68 80 - 120 20 80 - 120 20 ND 0.015 105 103 1.91 111 104 6.51 80 - 120 20 80 - 120 20 2-Methylnaphthalene Phenanthrene ND 0.015 96.2 98.7 2.58 100 98.5 1.91 80 - 120 20 80 - 120 20 0.015 83.9 85.2 1.58 102 12.3 80 - 120 80 - 120 Pyrene ND 116 20 20 %SS1: 3.04 4.31 70 - 130 70 - 130 99 1 93 96 85 89 30 30 %SS2: 83 0.50 114 110 3.08 96 115 18.4 70 - 130 30 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26713 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-023A	03/09/07 8:00 AM	03/09/07	03/10/07 2:12 AM	0703221-024A	03/09/07 8:07 AM	03/09/07	03/10/07 1:03 AM
0703221-031A	03/09/07 9:10 AM	03/09/07	03/10/07 2:46 AM	0703221-032A	03/09/07 9:18 AM	03/09/07	03/10/07 1:38 AM
0703221-045A	03/09/07 10:35 AM	03/09/07	03/12/07 10:20 AM	0703221-046A	03/09/07 10:38 AM	03/09/07	03/10/07 12:29 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate or not applicable to this method.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703221

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 26	712	Sp	Spiked Sample ID: 0703221-046A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))		
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	RPD % Rec. % Rec. %		% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f	ND	0.60	103	99	4.10	111	98.5	11.6	70 - 130	30	70 - 130	30		
MTBE	ND	0.10	101	96.1	5.16	107	104	3.31	70 - 130	30	70 - 130	30		
Benzene	ND	0.10	101	102	1.66	106	97.7	7.75	70 - 130	30	70 - 130	30		
Toluene	ND	0.10	89.1	89.5	0.512	92.2	85	8.07	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	0.10	97.7	101	2.99	102	96.9	5.26	70 - 130	30	70 - 130	30		
Xylenes	ND	0.30	91.3	95	3.94	95.3	91	4.65	70 - 130	30	70 - 130	30		
%SS:	87	0.10	109	90	18.7	97	105	7.88	70 - 130	30	70 - 130	30		
All target compounds in the Method E	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:					

BATCH 26712 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-002A	03/09/07 8:20 AM	03/09/07	03/10/07 10:39 AM	0703221-005A	03/09/07 9:44 AM	03/09/07	03/10/07 12:11 PM
0703221-010A	03/09/07 12:02 PM	03/09/07	03/10/07 11:10 AM	0703221-013A	03/09/07 2:03 PM	03/09/07	03/10/07 10:09 AM
0703221-017A	03/09/07 1:13 PM	03/09/07	03/10/07 9:07 AM	0703221-023A	03/09/07 8:00 AM	03/09/07	03/10/07 4:34 AM
0703221-024A	03/09/07 8:07 AM	03/09/07	03/10/07 5:04 AM	0703221-031A	03/09/07 9:10 AM	03/09/07	03/10/07 9:38 AM
0703221-032A	03/09/07 9:18 AM	03/09/07	03/10/07 11:41 AM	0703221-045A	03/09/07 10:35 AM	03/09/07	03/10/07 12:00 PM
0703221-046A	03/09/07 10:38 AM	03/09/07	03/10/07 11:25 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

NONE

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Ma	trix: Soil				QC M			WorkO	rder 07032	21			
EPA Method 60)20A			Extracti	on SW305	0B	B	atchID: 2	6630	Spiked Sa	mple	ID 0702418-	-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	CS-LCSD Acceptance Criter)
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Arsenic	10	50	100	101	0.859	10	104	102	2.23	75 - 125	20	80 - 120	20
Barium	100	500	98.1	98.8	0.571	100	97.6	95.7	1.92	75 - 125	20	80 - 120	20
Cadmium	ND	50	94	94.4	0.360	10	98.9	97.1	1.84	75 - 125	20	80 - 120	20
Chromium	53	50	86.2	84.5	0.909	10	103	102	1.27	75 - 125	20	80 - 120	20
Lead	16	50	93.1	93.8	0.512	10	101	98.2	2.62	75 - 125	20	80 - 120	20
Mercury	0.31	2.5	98.9	100	0.965	0.50	102	101	1.64	75 - 125	20	80 - 120	20
Selenium	ND	50	89.4	93.4	4.34	10	94.9	95.4	0.494	75 - 125	20	80 - 120	20
Silver	ND	50	91.6	92.5	1.02	10	103	100	2.27	75 - 125	20	80 - 120	20
%SS:	101	250	101	98	3.30	250	99	96	2.80	70 - 130	20	70 - 130	20
All target compou	nds in the M	lethod Bla	ank of thi	s extractio	on batch wer	e ND less	than the n	nethod RL	with the fol	lowing exce	eptions:		

BATCH 26630 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-023A	03/09/07 8:00 AM	1 03/09/07	03/12/07 2:39 PM	0703221-024A	03/09/07 8:07 AM	03/09/07	03/12/07 2:46 PM
0703221-031A	03/09/07 9:10 AN	1 03/09/07	03/12/07 2:54 PM	0703221-032A	03/09/07 9:18 AM	03/09/07	03/12/07 3:01 PM
0703221-045A)3/09/07 10:35 AM	1 03/09/07	03/12/07 3:34 PM	0703221-045A	03/09/07 10:35 AM	03/09/07	03/12/07 3:49 PM
0703221-046A)3/09/07 10:38 AN	1 03/09/07	03/12/07 3:41 PM	0703221-046A	03/09/07 10:38 AM	03/09/07	03/12/07 3:54 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

_____QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703221

A QA/QC Officer

EPA Method SW8015C	Extraction SW3550C/3630C				Ba	tchID: 26	699	Sp	iked Sam	ole ID:	0703221-04	6A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	98.7	99.2	0.554	101	102	1.59	70 - 130	30	70 - 130	30
%SS:	110	50	106	106	0	109	111	2.29	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26699 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-002A	03/09/07 8:20 AM	03/09/07	03/10/07 6:53 PM	0703221-005A	03/09/07 9:44 AM	03/09/07	03/10/07 8:02 PM
0703221-010A	03/09/07 12:02 PM	03/09/07	03/10/07 9:10 PM	0703221-013A	03/09/07 2:03 PM	03/09/07	03/10/07 10:18 PM
0703221-017A	03/09/07 1:13 PM	03/09/07	03/10/07 11:27 PM	0703221-023A	03/09/07 8:00 AM	03/09/07	03/11/07 12:35 AM
0703221-024A	03/09/07 8:07 AM	03/09/07	03/11/07 2:52 AM	0703221-031A	03/09/07 9:10 AM	03/09/07	03/11/07 1:44 AM
0703221-032A	03/09/07 9:18 AM	03/09/07	03/12/07 3:31 PM	0703221-045A	03/09/07 10:35 AM	03/09/07	03/11/07 5:09 AM
0703221-046A	03/09/07 10:38 AM	03/09/07	03/10/07 10:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33107-007514.03	Date Sampled: 03/09/07
6920 Koll Center Pkwy, Ste. 216		Date Received: 03/09/07
Pleasanton, CA 94566	Client Contact: Craig Pelletier	Date Reported: 03/12/07
	Client P.O.:	Date Completed: 03/14/07

WorkOrder: 0703221

March 14, 2007

Dear Craig:

Enclosed are:

- 1). the results of 1 analyzed sample from your #33107-007514.03 project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

B U R E A U V E R I T A S	REQUEST FO A Bureau	Veritas C OR LAI CAL SE	Company BORA RVIC	, Inc. TORY ES		Date Rush E-ma	Result Charg	IV s Reque jes Auth] Fax of ess:	ested:		k (x es lesults	No		For Cl Claytor	ayton Use (Lab Projec	Only et No.
2 Name Crave funtres		Client Job N	No. 331	4-002514	107	Purc	hase (Order N	lo.	1		1233	9.85		28283	
Company Bren	Mutes 1	Dept. Clien	t Services		Ъ	Nam	le	-	6	A	MAG	-	-	-	Dent	*
City State Zip	and a for 1	4	121	11111	VOIN	Add	ress			1AI	TE	-	1919	22.2	Dept.	
Telephone No. 476. 7	607 FAX N	0.		11114	‴≚	City,	State	, Zip	('		1.55	285		SKEAL	
Special instructions and/or specific (method, limit of detection, etc.)	regulatory requirements	Soils: Which state are the from?	Wate	ers: rinking Water roundwater /astewater	ber of Containers	Classes of the	(Enter	ran 'X' i	n the box	AN below to	ALYSIS Foindicate r	Pequest. Er	TED Inter a 'P'	if Presen	vative added.*	
CLIENT SAMPLE IDENTIFICATION	DATE	TIME	MATRIX/	AIR VOLUME	Numl	1	xr.	MAYO	35	y y	100	4/	/	/	FOL	
BU-18 25-40	1 2/9/2	MZ2	C'I	(specify drifts)	1		/	ŕ		2	3	1	1	[]	/ 001	ONLI
RV-10 5.5-6	pl pluft	1136	3041		1				•						2. 8. 11	
11-11 171	1	107	1		1	17	1,	1	Λ	X						
DV-12 15 71		1050			1	X	X	HV	X			1				
15 17 1.) - u.	•	1137			($ \Lambda $	\wedge	A	/	22		-				
9/11 7-2	1	1.70		1 2 2 4 1 2	1	$\langle \rangle$	()	()								
01-16 1-0		1058		-	1	X	\forall	HV	\mathbb{N}		$ \rightarrow $					-
5V-17 +5-81		100	V		1		A	A	Å	<			-			
151-18 - 1-8	<u>, N</u>	1137	V	130531	1	1	/ \	KI	()		X	-				
		1387			-	8.20	-				2	-				-
A l	0 m			(0-11-				A	X	1					
CHAIN Belinguished by:	funtry		Date/Time	1 (print)	Rece	ved by:	gnatur	1 d	the	16		1200	1	Date/Tim	a. 2/0/-	2 100
OF OF Relinquished by:	hipt		Date/Time	JULF	Rece	ved by:	A	for	Va	W.		1123		Date/Tim	e 5/9/0	100
Method of Shipment	Dates		Locitor Hille		Rece	ved at L	ab by:	-	1.1	-	100	100	1	Date/Tim	e	
Authorized by:(Client Signature MUST Ac	company Request)	Date			Samp	le Cond	ition U	pon Re	eceipt:		cceptable	e 🗆	Other (explain)		٩.
Please return completed form and Detroit Regional Lab Atlant 22345 Roethel Drive 3380 Novi, MI 48375 Kenne 800) 806-5887 (800) 2	I samples to one of the a Regional Lab hastain Meadows Parkway, S saw, GA 30144 52-9919	Clayton G uite 300	roup Ser Se 46 Se (80	vices, Inc. lab attle Regional I 36 E. Marginal W attle, WA 98134 00) 568-7755	s liste .ab ay S., S	d below uite 140	<i>r</i> :		the desired	and the second			DIS Whi Yello Pink	TRIBUTIC te = Cl ow = Cl c = Cl	DN: ayton Labora ayton Accou ient Copy	atory Inting

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262			Wo	rkOrder	: 07032	21	ClientI	D: BV	Р				
		EDF		Fax		Email	Пн	ardCopy	Ľ	Third	Party		
Report to: Craig Pelletier Bureau Veritas 6920 Koll Center Pkwy, Ste. 216 Pleasanton, CA 94566	Email: craig.pellet TEL: (925) 426- ProjectNo: #33107-00 PO:	ier@us.bureauveritas 260 FAX: (925)4 7514.03	s.com 26-010	Bill t Jo Bu 69 Pl jo	oan Miller ureau Ve 020 Koll (easantor an.miller	- ritas Center Pł n, CA 94 @us.bur	wy, Ste. 21 566 eauveritas.c	6 com	Rđ D D D	equest ate Re ate Ac ate Pr	ted TAT eceived dd-On: rinted:	: 3/09 3/13 3/13	1 day 0/2007 0/2007 0/2007
						Reque	sted Tests	(See leg	gend be	elow)			
Sample ID ClientSampID	Matrix	Collection Date	Hold 1	2	3	4	5 6	7	8	9	10	11	12

0703221-045	BV-16, 1.5-2.0'	Soil	03/09/07 10:35:00	В						
0703221-045	BV-17, 1.5-2.0'	Soil	03/09/07 10:35:00	С						
0703221-045	BV-18, 1.5-2.0'	Soil	03/09/07 10:35:00	D						

Test Legend:

Prepared by: Melissa Valles

#045; as, pb added on 24hr tat on sample but wants it as discrete on comp per cp 3/13 **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Analyti "When Quality Counts"	ical, Ir	<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Burea	u Veritas	Client P	roject ID:	#33107-00	7514.03	Date	Sampled: 03/09/07					
6920 I	Koll Center Pkwy, Ste. 216					Date	Date Received: 03/09/07					
Pleasa	unton, CA 94566	Client C	Contact: C	raig Pelleti	er	Date	Date Extracted: 03/13/07					
		Client P	.0.:			Date	Analyzed: 03/13/07	7				
			Me	tals*								
Extraction	n method: SW3050B		Analytical r	nethods: 6020	A		Work Orde	r: 07032	221			
Lab ID	Client ID		Matrix	Extraction	Arsenic		Lead	DF	% SS			
045B	BV-16, 1.5-2.0'		S	TTLC	4.7		320	1	102			
045C	BV-17, 1.5-2.0'		S	TTLC	12		92	1	104			
045D	BV-18, 1.5-2.0'		S	TTLC	48		4900	1	105			
	Reporting Limit for DF =1;		W	TTLC	NA		NA	N.	A			

ND means not detected at or above the reporting limit	S	TTLC	0.5	0.5	mg/Kg						
water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in											

mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

J) analyte detected between reporting limits (RLs) and method detection limits (MDLs).

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification Nº 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0703221

EPA Method 60	EPA Method 6020A				Extraction SW3050B				6655	Spiked Sa	mple	ID 0703137	-007A	
Analyte	Sample	Spiked	MS	MS MSD MS-MSD Spiked LCS LCSD LCS-LCSI						Acceptance Criteria (%)				
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Arsenic	1.4	50	102	102	0	10	105	105	0	75 - 125	20	80 - 120	20	
Lead	22	50	93.9	96.8	2.06	10	97.6	98.9	1.36	75 - 125	20	80 - 120	20	
%SS:	102	250	100	101	0.557	250	98	100	1.69	70 - 130	20	70 - 130	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 26655 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703221-045B)3/09/07 10:35 AM	A 03/13/07	03/13/07 5:04 PM	0703221-045B	03/09/07 10:35 AM	I 03/13/07	03/13/07 5:52 PM
0703221-045C)3/09/07 10:35 AN	A 03/13/07	03/13/07 5:10 PM	0703221-045D	03/09/07 10:35 AM	I 03/13/07	03/13/07 5:16 PM
0703221-045D)3/09/07 10:35 AN	A 03/13/07	03/13/07 5:58 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

_____QA/QC Officer

APPENDIX D

GRAB-GROUNDWATER ANALYTICAL LABORATORY REPORTS

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #33107-007574.03	Date Sampled: 03/08/07
6920 Koll Center Pkwy, Ste. 216		Date Received: 03/08/07
Pleasanton, CA 94566	Client Contact: Craig Pelletier	Date Reported: 03/12/07
	Client P.O.:	Date Completed: 03/12/07

WorkOrder: 0703185

March 12, 2007

Dear Craig:

Enclosed are:

- 1). the results of **5** analyzed samples from your **#33107-007574.03 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

			BVP	C	37	0 3	318	5								
	on Grou A Bureau V	IP Sei Veritas Co	rvices, ompany	, Inc.		Date I Rush	Results Re Charges A	IMPOF quested: uthorized		T HK Yes				For C Clayton	Page _ layton Use n Lab Proje	of Only ect No.
BUREAU VERITAS AN	EST FO	R LAE AL SE	BORA RVICI	tory Es		E-mai	Fail address:	xor X	E-mail	i Result	urb	Jea	wer	ts.	con	-
Name (Mala Ellerter Company Burran (Arts Mailing Address Lave full Centre City, State, Zip Aussidert, CA que Telephone No. 92 M 424, 2607 Special instructions and/or specific regulatory re (method, limit of detection, etc.) Telephone Mala Solom M SGC	FAX No.	ent Job N pt. Client 4 Z (6 12 T Soils: Which state are thes from?	o. 3310 Services 47. ↓ .01 Wate Be Dr Gr Gr	7-007 ES oc rs: inking Water oundwater astewater	r of Containers INVOICE	Purch Name Comp Addre City,	nase Orde Dany Dess State, Zip (Enter an f	x' in the b	All ox below	NALYS to indic	HE SIS REC	QUEST.	ED ter a 'P'	if Preser	Dept.	
* Explanation of Preservative CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED S	TIME	MATRIX/ MEDIA	AIR VOLUME (specify units)	Number	1ª	H-2414	SPL SPL	\$°/	/	/	/	/		FC	
BV-28	3/9/07	0946	Water-		6	X	X	(
BV-27	1	1105	1		6	×	XX	<								
3 BV-26		1320			1	x	XX	-								
BV-25		1440				X	XX									
DV-24		1605				X	XX									
			V		V		ICE/ GOO HE/ DEC	THE COND AD SPACE CHLORIN ESERVAT	ATED IN VO		AF CC PR &G N	PROPR NTAIN ESERV ETALS	ERS ED IN OTHE			
Collected by A & Peter L =	1			(print)	Colleo	tor's Sig	nature:		110	4						
CHAIN Belinguished by:	1)ate/Time*	zla la	Receiv	ed by:	XIAD-	yn	al	<u> </u>		2 KIA	7 0	Date/Tim	e 6 15	$\overline{)}$
OF Relinquished by:	T		Date/Time	11017	Receiv	/ed by:	sug	my	ym	n		200		Date/Tim	10	
Method of Shipment:					Receiv	ed at La	b by:						0	Date/Tim	e	
Authorized by:		Date			Sampl	e Condit	ion Upon	Receipt:		Accept	able		Other (explain)		
Please return completed form and samples to Detroit Regional Lab Atlanta Regional Lab 22345 Roethel Drive 3380 Chastain Meadow Novi, MI 48375 Kennesaw, GA 30144 (800) 806-5887 (800) 252-9919 (248) 344-1770 (770) 499-7500	one of the Cl s Parkway, Suite	ayton Gr	oup Serv Sea 463 Sea (800 (200	ices, Inc. lab attle Regional L 6 E. Marginal W attle, WA 98134 0) 568-7755 6) 763-7364	s listed .ab ay S., Su	below: ite 140							DIST Whit Yello Pink	FRIBUTIO e = Cl ow = Cl = Cl	ON: layton Labo layton Acco lient Copy	ratory unting
(248) 344-1770 (770) 499-7500 FAX (248) 344-2655 FAX (770) 499-7511			(200 FA)	6) 763-7364 ((206) 763-4189										- 76		10/05

BV-24

	AW.	è
1	10	1
1		١
		l

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	A 94565-1701 262				WorkOrder: 0703185				C	lientID	: BVP						
				EDF		F	ах		Email		ΠHa	ardCopy		Thirc	Party		
Report to: Craig Pelletier		Email:	craig.pelletie	r@us.bureauveritas	s.com	Bill to m Joan Miller						Requested TAT: 2 days				days	
Bureau VeritasTEL:(925) 426-260FAX:(96920 Koll Center Pkwy, Ste. 216ProjectNo:#33107-007574.03Pleasanton, CA 94566PO:						10	Bur 692 Ple joa	eau Ve 20 Koll asanto n.mille	eritas Center P on, CA 94 r@us.bu	Pkwy, S 1566 reauve	te. 216 ritas.co	om	Da Da	te Rec te Pri	eived: nted:	03/08/ 03/08/	2007 2007
									Requ	ested 1	Fests (\$	See leg	end b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0703185-001	BV-28		Water	03/08/07 9:40:00		В	А										
0703185-002	BV-27		Water	03/08/07 11:05:00		В	Α										
0703185-003	BV-26		Water	03/08/07 1:20:00		В	Α										
0703185-004	BV-25		Water	03/08/07 2:40:00		В	А										

В

А

03/08/07 4:05:00

Water

Test Legend:

0703185-005

1	8260B_W	2 G-MBTEX_W	3]	4	5
6		7	8]	9	10
11		12				

The following SampIDs: 0703185-001A, 0703185-002A, 0703185-003A, 0703185-004A, 0703185-005A contain testgroup.

Prepared by: Sheli Cryderman

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Ar	nalytical, I	nc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Eax: 925-252-9269						
Bureau Veritas	Client I	Project ID:	#331	07-007574.03	Date Sampled:	03/08/07				
		·			Date Received:	03/08/07				
6920 Koll Center Pkwy, Ste. 216	Client	Contact: (Troig I	Dollation	Date Extracted:	03/00/07				
Pleasanton, CA 94566	Client			ellettel	Date Analyzed	03/09/07				
	Chefit	.0			Date Analyzed	03/07/07				
	Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B		Analytical Me	thod:	SW8260B		Work Order: 070318	35			
Lab ID				0703185	-001B					
Client ID				BV-	28					
Matrix				Wat	er					
Compound	Concentration	k DE R	eporting	Compose	.d	Concentration *	DE	Reporting		
Combound	Concentration	· DF	Limit	Collibour	id	Concentration *	DF	Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)	1 (77.4.3.67.)	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
2 Butenene (MEK)	ND	1.0	2.0	t Butul alaohal (TB	A)	ND	1.0	5.0		
2-Butalione (MEK)	ND	1.0	0.5	t-Bulyi alcollol (IB)	A)	ND	1.0	0.5		
II-Butyl benzene	ND	1.0	0.5	Carbon Disulfida		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane	Ether	ND	1.0	0.5		
2-Chlorotoluene	ND 1			4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1.2-Dibromo-3-chlo	ropropane	ND	1.0	0.5		
1 2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ropropune	ND	1.0	0.5		
1.2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene	e	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromet	hane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane	(1,2-DCA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethe	ene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropan	e	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropan	e	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop	oene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	2	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene	.1	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND 0.71	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	1 2 2 Trichland		0.71	1.0	0.5		
1 2 4 Trichlorohonzono	ND	1.0	0.5	1,2,3-Irichlorobenz	ene	ND	1.0	0.5		
1,2,4-Trichloroothana	richloroethane ND 1.0			Trichloroethene ND			1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1 2 3-Trichloroprop	ND	1.0	0.5			
1 2 4-Trimethylbenzene	ND 1.0 0.5			1 3 5-Trimethylben	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5			
		Surrog	ate Re	coveries (%)			1.0			
0% SS1.	1.	03		04 552		101				
///////////////////////////////////////	%SSI: 103					101				
70333.	1 1	14		1						

Comments: i

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	nalytical, I	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas	Client	Project ID:	#331	07-007574.03	Date Sampled:	03/08/07				
					Date Received	03/08/07				
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	'raia I	Pelletier	Date Extracted:	03/09/07				
Pleasanton, CA 94566	Client		Jaig I	chetter	Date Analyzed	03/09/07				
,	Chem	1.0			Date / Mary Zed	03/07/01				
	Volatile Orga	anics by P&	T and	d GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B		Analytical Me	thod:	SW8260B		Work Order: 070318	35			
Lab ID				0703185	-002B					
Client ID				BV-2	27					
Matrix				Wat	er					
Compound	Concentration	* DF	eporting Limit	Compoun	d	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	A)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND 1.0			4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene) 1	ND	1.0	0.5		
1,4-Dichloroothana	ND	1.0	0.5	1.2 Dichloroothano	(1.2 DCA)	ND	1.0	0.5		
1.1-Dichloroethene	ND	1.0	0.5	cis-1 2-Dichloroethe	(1,2-DCA)	ND	1.0	0.5		
trans_1 2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan		ND	1.0	0.5		
1 3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropane		ND	1.0	0.5		
1 1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloroprot	pene	ND	1.0	0.5		
trans-1.3-Dichloropropene	ND	1.0	0.5	Dijsopropyl ether (E	DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	2,4-Trichlorobenzene ND 1.0			1,1,1-Trichloroethane NI			1.0	0.5		
1,1,2-Trichloroethane	,2-1richloroethane ND 1.0			Trichloroethene N			1.0	0.5		
1 2 4 Trimethaller	ND 1.0 0.5			1,2,3-Trichloroprop	ND	1.0	0.5			
Vinyl Chloride	<u>ND</u> 1.0 0			1,3,3-1rimethylbenz	ene		1.0	0.5		
		S	0.3	$\Delta vienes$		ND	1.0	0.5		
0/ 001	-	Surrog	ate Ke	w sec						
%551:	%SS1: 105					101				
<u>%883:</u>]	110								

Comments: i

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.
McCampbell An	When Ouality Counts"				ass Road, Pittsburg, CA	A 94565-1701 n@mccampbell.com		
Bureau Veritas	Client F	roject ID:	#331	07-007574.03	Date Sampled:	03/08/07		
					Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client (Contact: (Craig I	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566	Client F	2.0.:	Juigi		Date Analyzed	03/09/07		
	Valatila Organ	taa har De	Tam	CCME Derie Te				
	volatile Orgai	lics by Po	zi and	a GC/MS (Basic 1a	arget List)*			
Extraction Method: Sw 5050B Analytical Method: Sw 8200B work Order: 070518.						55		
Lab ID 0703185-003B								
Client ID BV-26								
Matrix				Wat	er			
Compound	Concentration * DF Reporting Limit Compound			ıd	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	Dishlang diffuserement	ihana	ND	1.0	0.5
1,4-Dichloroethane	ND	1.0	0.5	1.2 Dichloroethane	(1.2 DCA)	ND	1.0	0.5
1 1-Dichloroethene	ND	1.0	0.5	cis-1 2-Dichloroethe	(1,2-DCA)	4.2	1.0	0.5
trans_1 2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan		ND T.Z	1.0	0.5
1 3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropan	e	ND	1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloroprop	pene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	e	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		5.1	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ne	ND	1.0	0.5
1,1,2-Trichloroethane	ND 1.0 0.5		Trichloroethene		0.67	1.0	0.5	
1 2 4 Trimethall	ND	1.0	0.5	1,2,3-Trichloroprop	ane	ND	1.0	0.5
Vinyl Chlorida	ND	1.0	0.5	1,3,5-1rimethylbenz	zene	ND ND	1.0	0.5
		<u> </u>	U.3	Avienes		ND	1.0	0.5
		Surrog	ate Ke	ecoveries (%)				
%SS1:	10	6		%SS2:		101		
<u>%883:</u>	11	0		1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	nalytical, In Counts"	<u>ıc.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 55-252-9269		
Bureau Veritas	Client F	Project ID:	#331	07-007574.03	Date Sampled:	03/08/07		
					Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	Craig I	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566	Client H	? .O.:			Date Analyzed	03/09/07		
	Volatile Orga	nics by P&	zT and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B		Analytical Me	thod:	SW8260B		Work Order: 070318	85	
Lab ID 0703185-004B								
Client ID				BV-2	25			
Matrix Water								
Compound	Concentration * DF Reporting Limit Compound			Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5
Benzene	1.0	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	4)	ND	1.0	5.0
n-Butyl benzene	1.3	1.0	0.5	sec-Butyl benzene		1.8	1.0	0.5
tert-Butyl benzene	1.5	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
1 2 Dibromochloromethane (EDB)	ND	1.0	0.5	1,2-Dibromo-5-chio	ropropane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1 3-Dichlorobenzene	<u>,</u>	ND	1.0	0.5
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromet	hane	ND	1.0	0.5
1 1-Dichloroethane	ND	1.0	0.5	1 2-Dichloroethane	(1.2-DCA)	ND	1.0	0.5
1.1-Dichloroethene	ND	1.0	0.5	cis-1.2-Dichloroethe	ene	22	1.0	0.5
trans-1.2-Dichloroethene	1.0	1.0	0.5	1.2-Dichloropropane	2	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	e	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop	oene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (D	DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	2	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		3.7	1.0	0.5
1 2 4 Trichlorchonzone	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5
1,2,4-Trichloroothono	ND	1.0	0.5	Trichloroothono	ne	ND 2.7	1.0	0.5
Trichlorofluoromethane	profluoromethane ND 1.0 0.5 1123-Trichlor		1 2 3-Trichloroprop	ane	2.7 ND	1.0	0.5	
1 2 4-Trimethylbenzene	ND	1.0	1.0 0.5 1.2.5-Tricnloropropane ND 1.0 0.5 1.3.5 Trimethylhenzone ND			ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xvlenes	20110	ND	1.0	0.5
		Surrog	ate Re	coveries (%)				
% SS1.	0	2 2		%\$\$2.		05		
%551.	9			/0002.		93		
Commonto:	%SS3: 98							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality"	nalyti ^{Counts"}	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	x 94565-1701 n@mccampbell.com 5-252-9269		
Bureau Veritas		Client Pro	oject ID:	#331	07-007574.03	Date Sampled:	03/08/07		
						Date Received:	03/08/07		
6920 Koll Center Pkwy, Ste. 216		Client Co	ontact:	Craig I	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566		Client P.0	D.:			Date Analyzed	03/09/07		
	Volati	le Organi	cs by P&	&T and	l GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B		Ar	nalytical M	ethod:	SW8260B	8	Work Order: 070318	35	
Lab ID 0703185-005B									
Client ID					BV-	24			
Matrix Water									
Compound	Concentration * DF Reporting Limit Compound			Concentration *	DF	Reporting Limit			
Acetone	ND		100	10	Acrolein (Propenal)		ND<500	100	5.0
Acrylonitrile	NI	D < 200	100	2.0	tert-Amyl methyl et	her (TAME)	ND<50	100	0.5
Benzene		3100	100	0.5	Bromobenzene		ND<50	100	0.5
Bromochloromethane	N	D<50	100	0.5	Bromodichlorometh	ane	ND<50	100	0.5
Bromoform	N	D<50	100	0.5	Bromomethane		ND<50	100	0.5
2-Butanone (MEK)	NI	D<200	100	2.0	t-Butyl alcohol (TB.	A)	ND<500	100	5.0
n-Butyl benzene		140	100	0.5	sec-Butyl benzene		72	100	0.5
tert-Butyl benzene	N	D<50	100	0.5	Carbon Disulfide		ND<50	100	0.5
Carbon Tetrachloride	N	D<50	100	0.5	Chlorobenzene		ND<50	100	0.5
Chloroethane	N	D<50	100	0.5	2-Chloroethyl Vinyl	Ether	ND<100	100	1.0
Chloroform	N	D<50	100	0.5	Chloromethane		ND<50	100	0.5
2-Chlorotoluene	N	D<50	100	0.5	4-Chlorotoluene		ND<50	100	0.5
Dibromochloromethane	N	D<50	100	0.5	1,2-Dibromo-3-chlo	ropropane	ND<50	100	0.5
1,2-Dibromoethane (EDB)	N	D<50	100	0.5	Dibromomethane		ND<50	100	0.5
1,2-Dichlorobenzene	N	D<50	100	0.5	1,3-Dichlorobenzen	2	ND<50	100	0.5
1,4-Dichlorobenzene	N	D<50	100	0.5	Dichlorodifluorome	thane	ND<50	100	0.5
1,1-Dichloroethane	N.	D<50	100	0.5	1,2-Dichloroethane	(1,2-DCA)	ND<50	100	0.5
trans 1.2 Dichloroothono	IN. N	D<50	100	0.5	1.2 Dichloropropen		03 ND <50	100	0.5
1 3-Dichloropropane	IN N	D < 50	100	0.5	2.2-Dichloropropan	e	ND < 50	100	0.5
1 1-Dichloropropene	N	D < 50	100	0.5	cis-1 3-Dichloropro	nene	ND<50	100	0.5
trans-1 3-Dichloropropene	N	D<50	100	0.5	Diisopropyl ether (I	DIPE)	ND<50	100	0.5
Ethylbenzene	11	3500	100	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND<50	100	0.5
Freon 113	ND	<1000	100	10	Hexachlorobutadien	e	ND<50	100	0.5
Hexachloroethane	N	D<50	100	0.5	2-Hexanone		ND<50	100	0.5
Isopropylbenzene		100	100	0.5	4-Isopropyl toluene		ND<50	100	0.5
Methyl-t-butyl ether (MTBE)		1200	100	0.5	Methylene chloride		ND<50	100	0.5
4-Methyl-2-pentanone (MIBK)	N	D<50	100	0.5	Naphthalene		660	100	0.5
Nitrobenzene	ND	<1000	100	10	n-Propyl benzene		460	100	0.5
Styrene	N	D<50	100	0.5	1,1,1,2-Tetrachloroethane		ND<50	100	0.5
1,1,2,2-Tetrachloroethane	N	D<50	100	0.5	Tetrachloroethene		ND<50	100	0.5
Toluene		340	100	0.5	1,2,3-Trichlorobenzene		ND<50	100	0.5
1,2,4-Trichlorobenzene	N	D<50	100	0.5	1,1,1-Trichloroetha	ne	ND<50	100	0.5
1,1,2-Trichloroethane	P-Trichloroethane ND<50 100 0.5 Trichloroethene			ND<50	100	0.5			
Trichlorofluoromethane	N	D<50	100	0.5	0.5 1,2,3-Trichloropropane		ND<50	100	0.5
1,2,4-Trimethylbenzene		2100 D (50	100	0.5	1,3,5-Trimethylben	zene	660	100	0.5
	N	U<3U	100 Su		Avienes		9/00	100	0.5
			Surrog	gate Ke	coveries (%)				
%881:		87			%SS2:		100		
<u>%883:</u>	<u> </u>	99							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell Analyti	<u>cal, Inc.</u>	1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 69				
Bureau Ve	ritas	Client Project ID:	#33107-007574.03	Date Sampled: 03/08/	07				
6920 Koll	Center Pkwy, Ste. 216			Date Received: 03/08/07					
Pleasanton	CA 94566	Client Contact: C	Craig Pelletier	Date Extracted: 03/09/	07				
Treasunton	Client P.O.: Date Analyzed 03/09								
Extraction math	Gasoline Ra	ange (C6-C12) Vola	atile Hydrocarbons as G	asoline*	rdor: 070	12195			
Lab ID	Client ID	TPH(g)	DF	r: 0703185 DF % SS 1 91 1 88 1 94 1 108 50 99 1 108 50 99				
001A	BV-28	W	ND,i		1	91			
002A	BV-27	W	ND,i		1	88			
003A	BV-26	W	ND,i		1	94			
004A	BV-25	W	700,m	L	1	108			
005A	BV-24	W	61,000,a	,h,i	50	99			
	Reporting Limit for DF =1;	W	50		μ	g/L			
-	above the reporting limit	S	NA		NA				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyti	cal, Inc.	1534 Willo Web: www.mcca Telephon	w Pass Road, Pittsburg, CA 945 ampbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	. Road, Pittsburg, CA 94565-1701 l.com E-mail: main@mccampbell.com -252-9262 Fax: 925-252-9269			
Bureau Veritas		Client Project ID:	#33107-007574.03	Date Sampled: 03/	08/07			
6920 Koll Cente	er Pkwy, Ste. 216			Date Received: 03/	08/07			
Plasanton CA	04566	Client Contact: C	Praig Pelletier Date Extracted: 03/08/07					
r leasanton, CA	94500	Client P.O.:		Date Analyzed 03/	12/07			
Extraction method: S	Diesel (C10-23) and Oil (C	C18+) Range Extract	table Hydrocarbons w	vith Silica Gel Clean-Up*	k Order: 0	703185		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0703185-001A	BV-28	W	ND,i	ND	1	98		
0703185-002A	BV-27	W	290,g,b,i	1600	1	98		
0703185-003A	BV-26	W	110,g,b,i	1200	1	108		
0703185-004A	BV-25	W	290,n,i	ND	1	100		
0703185-005A	BV-24	W	79,000,d,h,i	ND<12,000	50	96		
			1					
Repo	orting Limit for DF =1;	W	50	250	μg/L			
abc	ove the reporting limit	S	NA	NA	mg/Kg			

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0703185

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 26	671	Sp	iked Sam	ole ID:	0703185-00	2B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	96.6	96.1	0.537	103	100	2.95	70 - 130	30	70 - 130	30
Benzene	ND	10	125	123	1.37	127	128	0.760	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	95.3	101	5.68	101	105	4.55	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	96.3	96.3	0	108	105	2.67	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	104	105	0.515	116	113	2.29	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	99.1	99.4	0.268	108	107	1.19	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	89	83.1	6.81	87.7	92	4.82	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	112	110	1.87	117	112	3.61	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	102	99.6	2.12	107	103	3.39	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	97.4	97.6	0.237	104	102	2.77	70 - 130	30	70 - 130	30
Toluene	ND	10	100	98.7	1.23	111	105	5.76	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	71.6	70.6	1.45	76.6	74.4	2.82	70 - 130	30	70 - 130	30
%SS1:	105	10	107	104	2.35	100	99	0.601	70 - 130	30	70 - 130	30
% SS2:	101	10	90	88	1.57	85	82	3.94	70 - 130	30	70 - 130	30
%SS3:	110	10	104	104	0	104	101	3.30	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26671 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703185-001B	03/08/07 9:40 AM	03/09/07	03/09/07 5:07 AM	0703185-002B	03/08/07 11:05 AM	03/09/07	03/09/07 5:53 AM
0703185-003B	03/08/07 1:20 PM	03/09/07	03/09/07 6:38 AM	0703185-004B	03/08/07 2:40 PM	03/09/07	03/09/07 7:24 AM
0703185-005B	03/08/07 4:05 PM	03/09/07	03/09/07 8:09 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0703185

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 26	653	Sp	iked Sam	nple ID: 0703158-002A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	93.9	95.5	1.73	98.7	99.4	0.686	70 - 130	30	70 - 130	30
MTBE	ND	10	102	96	5.87	94.8	93.1	1.82	70 - 130	30	70 - 130	30
Benzene	ND	10	99.2	99.4	0.234	103	96.8	6.19	70 - 130	30	70 - 130	30
Toluene	ND	10	90.1	90.7	0.735	95.2	89	6.74	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	90.6	79.6	12.9	99.6	99.3	0.349	70 - 130	30	70 - 130	30
Xylenes	ND	30	93	96.7	3.87	100	96.7	3.39	70 - 130	30	70 - 130	30
%SS:	87	10	91	92	1.72	99	94	5.01	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

BATCH 26653 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703185-001A	03/08/07 9:40 AM	03/09/07	03/09/07 7:29 AM	0703185-002A	03/08/07 11:05 AM	03/09/07	03/09/07 8:34 AM
0703185-003A	03/08/07 1:20 PM	03/09/07	03/09/07 9:07 AM	0703185-004A	03/08/07 2:40 PM	03/09/07	03/09/07 9:40 AM
0703185-005A	03/08/07 4:05 PM	03/09/07	03/09/07 8:01 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0703185

EPA Method SW8015C	Extra	ction SW	3510C/3	630C	Bat	tchID: 26	587	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	109	108	0.964	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	104	103	0.419	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this autreation betch were ND less than the method BL with the following automations.												

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26587 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703185-001A	03/08/07 9:40 AM	03/08/07	03/12/07 1:14 PM	0703185-002A	03/08/07 11:05 AM	03/08/07	03/12/07 1:15 PM
0703185-003A	03/08/07 1:20 PM	03/08/07	03/12/07 2:23 PM	0703185-003A	03/08/07 1:20 PM	03/08/07	03/12/07 2:23 PM
0703185-004A	03/08/07 2:40 PM	03/08/07	03/12/07 3:41 PM	0703185-005A	03/08/07 4:05 PM	03/08/07	03/12/07 2:27 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Bureau Veritas	Client Project ID: #3310700751403	Date Sampled: 03/09/07
6920 Koll Center Pkwy, Ste. 216		Date Received: 03/09/07
Pleasanton, CA 94566	Client Contact: Craig Pelletier	Date Reported: 03/12/07
	Client P.O.:	Date Completed: 03/12/07

WorkOrder: 0703223

March 12, 2007

Dear Craig:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#3310700751403 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

	AW/
[NU
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C. (925) 252-9	A 94565-1701 262				WorkOrder: 0703223 ClientID: BV					: BVP							
						'	an				'	laiucopy		11110	arty		
Report to:							Bill to						Red	Jueste	d TAT:	1	day
Craig Pelletier		Email:	craig.pelletie	r@us.bureauverita	s.com	1	Joa	an Mille	er								
Bureau VeritasTEL:(925) 426-260FAX:(925)6920 Koll Center Pkwy, Ste. 216ProjectNo:#3310700751403Pleasanton, CA 94566PO:				0 FAX: (925)4 1403	126-0 ⁻	10	Bur 692 Ple joa	eau Ve 20 Koll asanto n.mille	eritas Center on, CA 9 r@us.b	Pkwy, \$ 94566 ureauv	Ste. 216 eritas.c	6 om	Da Da	te Rec te Prii	eived: nted:	03/09/ 03/09/	2007 2007
					Γ				Req	uested	Tests	See leg	end b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0703223-001	BV-23		Water	03/09/07 11:10:00		А	В										
0703223-002	BV-22		Water	03/09/07 10:40:00		А	В										
0703223-003	BV-21		Water	03/09/07 1:30:00		А	В										
0703223-004	BV-20		Water	03/09/07 3:10:00		А	В										
0703223-005	BV-19		Water	03/09/07 2:20:00		А	В										

Test Legend:

1 8260B_W	2 G-MBTEX_W	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 0703223-001B, 0703223-002B, 0703223-003B, 0703223-004B, 0703223-005B, 0703223-006B contain testgroup.

Prepared by: Sheli Cryderman

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell An "When Quality	nalyti Counts"	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: maii 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 5-252-9269		
Bureau Veritas		Client Pro	oject ID:	#331	0700751403	Date Sampled:	03/09/07		
						Date Received:	03/09/07		
6920 Koll Center Pkwy, Ste. 216		Client Co	ontact:	Craig H	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566		Client P.C).:	ering i		Date Analyzed	03/09/07		
	Volot	le Organi	og by D	-T on	CC/MS (Desia Te	waat I ist)*			
Extraction Method: SW5030B	v olati		ualytical M	ethod:	SW8260B	arget List)	Work Order: 07032	23	
Lah ID		111		ethiou.	0703223	-001A	Work Order. 07032		
Client ID					BV-	23			
Matrix					Wat	er			
Compound	Conce	ntration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	<1000	100	10	Acrolein (Propenal)		ND<500	100	5.0
Acrylonitrile	NI	D<200	100	2.0	tert-Amyl methyl et	ther (TAME)	ND<50	100	0.5
Benzene		1100	100	0.5	Bromobenzene		ND<50	100	0.5
Bromochloromethane	Ν	D<50	100	0.5	Bromodichlorometh	ane	ND<50	100	0.5
Bromoform	N	D<50	100	0.5	Bromomethane		ND<50	100	0.5
2-Butanone (MEK)	NI	D<200	100	2.0	t-Butyl alcohol (TB.	A)	ND<500	100	5.0
n-Butyl benzene		160	100	0.5	sec-Butyl benzene		ND<50	100	0.5
tert-Butyl benzene	N	D<50	100	0.5	Carbon Disulfide		ND<50	100	0.5
Carbon Tetrachloride	N	D<50	100	0.5	Chlorobenzene	ND<50	100	0.5	
Chloroethane	N	<u>D<50</u>	100	0.5	2-Chloroethyl Vinyl	Ether	ND<100	100	1.0
Chloroform	N	D<50	100	0.5	Chloromethane		ND<50	100	0.5
2-Chlorotoluene	N	D<50	100	0.5	4-Chlorotoluene		ND<50	100	0.5
Dibromochloromethane	IN N	D<50	100	0.5	1,2-Dibromo-3-chio	ropropane	ND<50	100	0.5
1,2-Dibromoethane (EDB)	IN N	D<50	100	0.5	1.2 Dichlorohonzon	ND<50	100	0.5	
1.4 Dichlorobenzene	IN N	D < 50	100	0.5	Dishlorodifluoroma	thene	ND<50	100	0.5
1,4-Dichloroethane	N	D < 50	100	0.5	1.2-Dichloroethane	(1.2 - DCA)	ND < 50	100	0.5
1 1-Dichloroethene	N	D<50	100	0.5	cis-1.2-Dichloroethe	ene	ND<50	100	0.5
trans-1.2-Dichloroethene	N	D<50	100	0.5	1.2-Dichloropropan	e	ND<50	100	0.5
1.3-Dichloropropane	N	D<50	100	0.5	2.2-Dichloropropan	e	ND<50	100	0.5
1.1-Dichloropropene	N	D<50	100	0.5	cis-1.3-Dichloropro	pene	ND<50	100	0.5
trans-1,3-Dichloropropene	Ν	D<50	100	0.5	Diisopropyl ether (I	DIPE)	ND<50	100	0.5
Ethylbenzene		3400	100	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND<50	100	0.5
Freon 113	ND	0<1000	100	10	Hexachlorobutadien	e	ND<50	100	0.5
Hexachloroethane	Ν	D<50	100	0.5	2-Hexanone		ND<50	100	0.5
Isopropylbenzene		180	100	0.5	4-Isopropyl toluene		ND<50	100	0.5
Methyl-t-butyl ether (MTBE)		90	100	0.5	Methylene chloride		ND<50	100	0.5
4-Methyl-2-pentanone (MIBK)	N	D<50	100	0.5	Naphthalene		490	100	0.5
Nitrobenzene	ND	<1000	100	10	n-Propyl benzene		510	100	0.5
Styrene	N	D<50	100	0.5	1,1,1,2-Tetrachloro	ethane	ND<50	100	0.5
1,1,2,2-Tetrachloroethane	N	D<50	100	0.5	Tetrachloroethene		ND<50	100	0.5
	N	220	100	0.5	1,2,3-Trichlorobenz	ene	ND<50	100	0.5
1,2,4-Trichlorobenzene	IN N	D<50	100	0.5	T, T, T- Trichloroetha	ne	ND<50	100	0.5
Trichlorofluoromethana		D<50	100	0.5	1 2 3 Trichlorogram	ana	ND<50	100	0.5
1.2.4 Trimethylbergene		1500	100	0.5	1 3 5 Trimothylbon	7909	540	100	0.5
Vinyl Chloride	N	D<50	100	0.5	Xylenes	20110	4200	100	0.5
			Surroy	u.J nate Ro	α coveries (%)		4200	100	0.5
0/ 551.		101	Juii0	are ne	0/ 552.		00		
70351:		101			70332.		92		
	1	98							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	nalytical, In Counts"	<u>.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	x 94565-1701 n@mccampbell.com 5-252-9269				
Bureau Veritas	Client P	oject ID:	#331	0700751403	Date Sampled:	03/09/07				
					Date Received: 03/09/07					
6920 Koll Center Pkwy, Ste. 216	Client C	contact:	Craig I	Pelletier	Pelletier Date Extracted: 03/09/07					
Pleasanton, CA 94566	Client P	0.:			Date Analyzed	03/09/07				
	Volatile Organ	ics by P&	&T and	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	A	nalytical M	ethod:	SW8260B		Work Order: 070322	23			
Lab ID				0703223	-002A					
Client ID				BV-	22					
Matrix				Wat	er					
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amvl methvl et	her (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	· ·	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1.4 Dishlarahangana	ND	1.0	0.5	Dishlara diffuarament	thono	ND	1.0	0.5		
1.1-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane	(1.2 - DCA)	ND	1.0	0.5		
1 1-Dichloroethene	ND	1.0	0.5	cis-1 2-Dichloroethe	ene	0.65	1.0	0.5		
trans-1 2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan	e	ND	1.0	0.5		
1.3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropan	e	ND	1.0	0.5		
1.1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloroprop	pene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	e	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		38	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5		
1,2,4-1 FICHIOFODENZENE	ND	1.0	0.5	Trichloreethana	lie	ND 1.0	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5 Trichloroethene			1.0 ND	1.0	0.5		
1 2 4-Trimethylbenzene	ND	1.0	0.5	1 3 5-Trimethylbox	zene		1.0	0.5		
Vinyl Chloride	ND	1.0	0.5	Xylenes	LUIIC	ND	1.0	0.5		
		Surros	v.v vate Re	coveries (%)			1.0	. 0.2		
06881.	10	2	,att M	04 552.		02				
06531.	10	ر -		/0.552.		92				
	90			1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	nalytical, In	<u>c.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: maii 77-252-9262 Fax: 92	x 94565-1701 n@mccampbell.com 5-252-9269		
Bureau Veritas	Client Pr	oject ID:	#331	0700751403	Date Sampled:	03/09/07		
					Date Received:	03/09/07		
6920 Koll Center Pkwy, Ste. 216	Client C	ontact: (Craig I	Pelletier	Date Extracted:	03/09/07		
Pleasanton, CA 94566	Client P.	0.:			Date Analyzed	03/09/07		
	Volatile Organ	ics by P8	T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	A	nalytical Me	ethod:	SW8260B		Work Order: 070322	23	
Lab ID				0703223	-003A			
Client ID				BV-	21			
Matrix				Wat	er			
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	• •	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB)	A)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	1.2 Dichlorohonzon	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	Dishlara difluoromat	hana	ND	1.0	0.5
1.1-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane	(1.2 - DCA)	ND	1.0	0.5
1 1-Dichloroethene	ND	1.0	0.5	cis-1.2-Dichloroethe	ene	ND	1.0	0.5
trans-1.2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan	2	ND	1.0	0.5
1.3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropan	2	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop	bene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (E	DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	9	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		31	1.0	0.5
	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5
1,2,4-1 FICHIOFODENZENE		1.0	0.5	Trichloreethan	ne	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1 2 3 Trichloroprop	200	ND	1.0	0.5
1 2 4-Trimethylbenzene	ND	1.0	0.5	1 3 5-Trimethylben	ano vene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	Sout	ND	1.0	0.5
		Surros	ate Re	coveries (%)				
% SS1.	10/)	116	%\$\$2.		02		
%551.	102	-		/0002.		92		
Commonto:	90			I				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas	Client	Project ID:	#331	0700751403	Date Sampled:	03/09/07						
					Date Received:	03/09/07						
6920 Koll Center Pkwy, Ste. 216	Client	Contact: C	'raio I	Pelletier	Date Extracted:	03/10/07						
Pleasanton, CA 94566	Client	P.O.:	iuig i	Cheuch	Date Analyzed							
	Valatila Oraca	utos ha De	Tan	CCME Desie Te								
	volatile Orga	nics by P&	and in a second	a GC/MS (Basic 1a	irget List)*							
Extraction Method: SW5030B		Analytical Me	thod:	SW8260B		Work Order: 070322	23					
Lab ID				0703223	-004A							
Client ID				BV-	20							
Matrix				Wat	er							
Compound	Concentration	* DF	eporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit				
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0				
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5				
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5				
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5				
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5				
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB)	A)	ND	1.0	5.0				
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5				
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5				
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5					
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0				
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5				
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5				
1.2 Dibromocniorometnane	ND	1.0	0.5	1,2-D10romo-3-cnio	ropropane	ND	1.0	0.5				
1,2-Diblomoethane (EDB)	ND	1.0	0.5	1.2 Dichlorohanzan	ND	1.0	0.5					
1.4 Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromet	hana	ND	1.0	0.5				
1 1-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane	(1.2 - DCA)	ND	1.0	0.5				
1 1-Dichloroethene	ND	1.0	0.5	cis-1.2-Dichloroethe	ene	0.74	1.0	0.5				
trans-1.2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan	2	ND	1.0	0.5				
1.3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropan	2	ND	1.0	0.5				
1.1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloroprop	bene	ND	1.0	0.5				
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	DIPE)	ND	1.0	0.5				
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5				
Freon 113	ND	1.0	10	Hexachlorobutadiene	e	ND	1.0	0.5				
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5				
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5				
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride		ND	1.0	0.5				
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5				
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5				
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		30	1.0	0.5				
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5				
1,2,4-1 FICHIOFODENZENE	ND	1.0	0.5	Trichlors - the re-	ne	ND 0.62	1.0	0.5				
1,1,2-1richloroethane	ND	1.0	0.5	1 2 2 Trichloroprop		0.63 ND	1.0	0.5				
1.2.4 Trimethylbergene		1.0	0.5	1 3 5 Trimothylbor	ant	ND	1.0	0.5				
Vinyl Chloride	ND	1.0	0.5	Xylenes	Lene		1.0	0.5				
		Surrog	ote Do	coveries (%)			1.0	0.5				
0/ 881.	1	02	are ne	0/ 552.		02						
%0551: 0/ 552:		02		%SS2:		92						
<u> </u>		10		1								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Bureau Veritas	Clie	nt Project ID:	#331	0700751403	Date Sampled:	03/09/07						
					Date Received:	03/09/07						
6920 Koll Center Pkwy, Ste. 216	Clie	nt Contact: (Traig I	Pelletier	Date Extracted:	03/10/07						
Pleasanton, CA 94566	Clie	nt PO \cdot		chetter	Date Analyzed	03/10/07						
						03/10/07						
	Volatile Or	ganics by P&	ar and	d GC/MS (Basic Ta	rget List)*							
Extraction Method: SW5030B	1	Analytical Me	thod:	SW8260B		Work Order: 070322	23					
Lab ID				0703223	-005A							
Client ID				BV-	19							
Matrix				Wat	er							
Compound	Concentratio	on * DF	eporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit				
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0				
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5				
Benzene	3.	5 1.0	0.5	Bromobenzene		ND	1.0	0.5				
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5				
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5				
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0				
n-Butyl benzene	2.	3 1.0	0.5	sec-Butyl benzene		1.1	1.0	0.5				
tert-Butyl benzene	2.	9 1.0	0.5	Carbon Disulfide		ND	1.0	0.5				
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5					
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND	1.0	1.0				
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5				
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.5				
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.5				
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5					
1,2-Dichlorobenzene	ND	1.0	0.5	Distance differences) 	ND	1.0	0.5				
1,4-Dichloroothana	ND ND	1.0	0.5	1.2 Dichloroothana	(1.2 DCA)	ND	1.0	0.5				
1.1-Dichloroethene	ND	1.0	0.5	cis-1 2-Dichloroethe	(1,2-DCA)	2.4	1.0	0.5				
trans_1 2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropan	2	ND	1.0	0.5				
1 3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropan	2	ND	1.0	0.5				
1 1-Dichloropropene	ND	1.0	0.5	cis-1 3-Dichloroprop	oene	ND	1.0	0.5				
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (I	DIPE)	ND	1.0	0.5				
Ethylbenzene	0.8	36 1.0	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	0.5				
Freon 113	ND	1.0	10	Hexachlorobutadiene	2	ND	1.0	0.5				
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5				
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5				
Methyl-t-butyl ether (MTBE)	2	9 1.0	0.5	Methylene chloride		ND	1.0	0.5				
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5				
Nitrobenzene	ND	1.0	10	n-Propyl benzene		0.95	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5				
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5				
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5				
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ne	ND	1.0	0.5				
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		1.1	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	5 1,2,3-Trichloropropane			1.0	0.5				
Vinyl Chloride	0. ⁻	1.0	0.5	1,5,5-1rimethylbenz	ene	ND 1 2	1.0	0.5				
	I ND	<u> </u>	U.J	$\frac{1}{2} \frac{1}{2} \frac{1}$		1.0	1.0	0.5				
		Surrog	ale Ke									
%551:		103		%882:		95						
<u>%883:</u>		102		1								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	nalyti Counts"	cal, In	<u>c.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Bureau Veritas		Client Pro	oject ID:	#331	0700751403	Date Sampled:	03/09/07			
			-			Date Received:	03/09/07			
6920 Koll Center Pkwy, Ste. 216	•	Client Co	ontact:	Craig F	Pelletier	Date Extracted:	03/12/07			
Pleasanton, CA 94566		Client P.0).:	erang r		Date Analyzed	03/12/07			
	Voloti	la Organi	og by D	-T on	CC/MS (Desia Te	waat I ist)*				
Extraction Method: SW5030B	v olau		us Dy I C	ethod:	SW8260B	arget List)	Work Order: 07032	23		
Lab ID					0703223	-006A				
Client ID					BV-2	2A				
Matrix					Wat	er				
Compound	Concer	stration *	DE	Reporting	Compour	nd	Concentration *	DE	Reporting	
Combound	Colleel	ill ation	DI	Limit	Combour	lu	Concentration		Limit	
Acetone	N	D<50	5.0	10	Acrolein (Propenal)		ND<25	5.0	5.0	
Acrylonitrile	N	D < 10	5.0	2.0	tert-Amyl methyl et	ther (TAME)	ND<2.5	5.0	0.5	
Benzene	INI NI)<2.5	5.0	0.5	Bromobenzene Duous distala usus eth		ND<2.5	5.0	0.5	
Bromoform	INI NI	$\frac{3}{2.5}$	5.0	0.5	Bromomethane	ane	ND<2.5	5.0	0.5	
2-Butanone (MEK)	NI	D < 10	5.0	2.0	t-Butyl alcohol (TB	Δ)	ND<2.5	5.0	5.0	
n-Butyl benzene	111	56	5.0	0.5	sec-Butyl benzene	n)	24	5.0	0.5	
tert-Butyl benzene	NI) < 25	5.0	0.5	Carbon Disulfide		ND<2.5	5.0	0.5	
Carbon Tetrachloride	NI	D<2.5	5.0	0.5	Chlorobenzene		ND<2.5	5.0	0.5	
Chloroethane	NI	D<2.5	5.0	0.5	2-Chloroethvl Vinvl	ND<5.0	5.0	1.0		
Chloroform	NI	D<2.5	5.0	0.5	Chloromethane		ND<2.5	5.0	0.5	
2-Chlorotoluene	NI	D<2.5	5.0	0.5	4-Chlorotoluene		ND<2.5	5.0	0.5	
Dibromochloromethane	NI	D<2.5	5.0	0.5	1,2-Dibromo-3-chlo	ropropane	ND<2.5	5.0	0.5	
1,2-Dibromoethane (EDB)	NI	D<2.5	5.0	0.5	Dibromomethane		ND<2.5	5.0	0.5	
1,2-Dichlorobenzene	NI	D<2.5	5.0	0.5	1,3-Dichlorobenzen	e	ND<2.5	5.0	0.5	
1,4-Dichlorobenzene	NI	D<2.5	5.0	0.5	Dichlorodifluorome	thane	ND<2.5	5.0	0.5	
1,1-Dichloroethane	NI	D<2.5	5.0	0.5	1,2-Dichloroethane	(1,2-DCA)	ND<2.5	5.0	0.5	
1,1-Dichloroethene	NI	D<2.5	5.0	0.5	cis-1,2-Dichloroethe	ene	12	5.0	0.5	
trans-1,2-Dichloroethene	NI	D<2.5	5.0	0.5	1,2-Dichloropropan	e	ND<2.5	5.0	0.5	
1,3-Dichloropropane	NI	D<2.5	5.0	0.5	2,2-Dichloropropan	e	ND<2.5	5.0	0.5	
1,1-Dichloropropene	NI	<u>D<2.5</u>	5.0	0.5	cis-1,3-Dichloropro	pene	ND<2.5	5.0	0.5	
trans-1,3-Dichloropropene	NI	0<2.5	5.0	0.5	Diisopropyl ether (I	DIPE)	ND<2.5	5.0	0.5	
Ethylbenzene	NI	<u> </u>	5.0	10	Ethyl tert-butyl ethe	er (EIBE)	ND<2.5	5.0	0.5	
Fleoil 115	INI	D< <u>30</u>	5.0	0.5	2 Havanona	8	ND<2.5	5.0	0.5	
Isopropylbenzene	INI	<u>12.5</u>	5.0	0.5	4-Isopropyl toluene		ND<2.5	5.0	0.5	
Methyl_t_butyl ether (MTBE)	NI	$\frac{+2}{2}$	5.0	0.5	Methylene chloride		ND<2.5	5.0	0.5	
4-Methyl-2-pentanone (MIBK)	NI	2 < 2.5	5.0	0.5	Naphthalene		ND<2.5	5.0	0.5	
Nitrobenzene	N	D<50	5.0	10	n-Propyl benzene		66	5.0	0.5	
Styrene	NI	D<2.5	5.0	0.5	1.1.1.2-Tetrachloro	ethane	ND<2.5	5.0	0.5	
1.1.2.2-Tetrachloroethane	NI	D<2.5	5.0	0.5	Tetrachloroethene		4.2	5.0	0.5	
Toluene	NI	D<2.5	5.0	0.5	1,2,3-Trichlorobenz	ene	ND<2.5	5.0	0.5	
1,2,4-Trichlorobenzene	NI	D<2.5	5.0 0.5 1,1,1-Trichloroe			ne	ND<2.5	5.0	0.5	
1,1,2-Trichloroethane	NI	D<2.5	5.0	0.5	Trichloroethene		ND<2.5	5.0	0.5	
Trichlorofluoromethane	NI	D<2.5	5.0	0.5	1,2,3-Trichloroprop	ane	ND<2.5	5.0	0.5	
1,2,4-Trimethylbenzene	NI	D<2.5	5.0	0.5	1,3,5-Trimethylben	zene	3.5	5.0	0.5	
Vinvl Chloride		7.8	5.0	0.5	Xvlenes		2.5	5.0	0.5	
			Surrog	gate Re	coveries (%)					
%SS1:		112			%SS2:		91			
%SS3:		92								
Communities 1. 1						· · · · · · · · · · · · · · · · · · ·				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	CCampbell Analyti	<u>cal, Inc.</u>	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccarr 877-252-9262 Fax: 925-252-92	1701 1pbell.com 69		
Bureau Verita	IS	Client Project ID:	#3310700751403	Date Sampled: 03/09/	/07		
6920 Koll Cer	nter Pkwy, Ste. 216			Date Received: 03/09/	/07		
Pleasanton, C	A 94566	Client Contact: C	raig Pelletier	Date Extracted: 03/10/	10/07-03/12/07		
		Client P.O.:		Date Analyzed 03/10/	/07-03/1	2/07	
Extraction method:	Gasoline Ra SW5030B	ange (C6-C12) Vola Analytical n	tile Hydrocarbons as G nethods: SW8015Cm	asoline* Work C	order: 070	03223	
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	
001B	BV-23	W	50,000,a	,h,i	100	98	
002B	BV-22	W	62,i		1	107	
003B	BV-21	W	ND,i		1	111	
004B	BV-20	W	W 64,f,i				
005B	BV-19	W	,i	1	103		
006B	BV-22A	W	10	103			
-							
Re	porting Limit for DF =1;	W	50		μ	g/L	
ND al	means not detected at or bove the reporting limit	S	NA		N	A	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsburg, CA 945 pbell.com E-mail: main@mc 877-252-9262 Fax: 925-252	65-1701 campbell.con 2-9269	1			
Bureau Veritas		Client Project ID:	#3310700751403	Date Sampled: 03/	09/07				
6920 Koll Cente	er Pkwy, Ste. 216			Date Received: 03/	09/07				
Pleasanton CA	94566	Client Contact: C	raig Pelletier	Date Extracted: 03/	09/07				
		Client P.O.:	Client P.O.: Date Analyzed: 03/10						
Extraction method: S	Diesel (C10-23) and Oil (C W3510C/3630C	C18+) Range Extract Analytical metho	table Hydrocarbons wit	h Silica Gel Clean-Up* ^{Wor}	k Order: 07	703223			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS			
0703223-001B	BV-23	W	43,000,d,h,i	720	1	#			
0703223-002B	BV-22	W	ND,g,i	350	1	111			
0703223-003B	BV-21	W	ND,i	ND	1	110			
0703223-004B	BV-20	W	ND,i	ND	1	110			
0703223-005B	BV-19	W	1600,k,i	ND	1	117			
0703223-006B	BV-22A	W	64,000,n,h,i	ND<12,000	50	105			
Repo	orting Limit for DF =1;	W	50	250	με	g/L			
ND n	neans not detected at or	S	NA	NA	mg	/Kg			

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0703223

EPA Method SW8260B	Extra	Extraction SW5030B BatchID: 260				671 Spiked Sample ID: 0703185-002B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, individe	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	96.6	96.1	0.537	103	100	2.95	70 - 130	30	70 - 130	30
Benzene	ND	10	125	123	1.37	127	128	0.760	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	95.3	101	5.68	101	105	4.55	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	96.3	96.3	0	108	105	2.67	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	104	105	0.515	116	113	2.29	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	99.1	99.4	0.268	108	107	1.19	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	89	83.1	6.81	87.7	92	4.82	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	112	110	1.87	117	112	3.61	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	102	99.6	2.12	107	103	3.39	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	97.4	97.6	0.237	104	102	2.77	70 - 130	30	70 - 130	30
Toluene	ND	10	100	98.7	1.23	111	105	5.76	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	71.6	70.6	1.45	76.6	74.4	2.82	70 - 130	30	70 - 130	30
%SS1:	105	10	107	104	2.35	100	99	0.601	70 - 130	30	70 - 130	30
% SS2:	101	10	90	88	1.57	85	82	3.94	70 - 130	30	70 - 130	30
%SS3:	110	10	104	104	0	104	101	3.30	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26671 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703223-001A	03/09/07 11:10 AM	03/09/07	03/09/07 9:54 PM	0703223-002A	03/09/07 10:40 AM	03/09/07	03/09/07 10:41 PM
0703223-003A	03/09/07 1:30 PM	03/09/07	03/09/07 11:26 PM	0703223-004A	03/09/07 3:10 PM	03/10/07	03/10/07 1:44 AM
0703223-005A	03/09/07 2:20 PM	03/10/07	03/10/07 2:31 AM	0703223-006A	03/09/07 11:25 AM	03/12/07	03/12/07 12:10 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0703223

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		BatchID: 26653			Spiked Sample ID: 0703158-002A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	ce Criteria (%)	
, and yee	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	93.9	95.5	1.73	98.7	99.4	0.686	70 - 130	30	70 - 130	30
MTBE	ND	10	102	96	5.87	94.8	93.1	1.82	70 - 130	30	70 - 130	30
Benzene	ND	10	99.2	99.4	0.234	103	96.8	6.19	70 - 130	30	70 - 130	30
Toluene	ND	10	90.1	90.7	0.735	95.2	89	6.74	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	90.6	79.6	12.9	99.6	99.3	0.349	70 - 130	30	70 - 130	30
Xylenes	ND	30	93	96.7	3.87	100	96.7	3.39	70 - 130	30	70 - 130	30
%SS:	87	10	91	92	1.72	99	94	5.01	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

BATCH 26653 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703223-001B	03/09/07 11:10 AM	03/10/07	03/10/07 3:35 AM	0703223-002B	03/09/07 10:40 AM	03/10/07	03/10/07 4:34 AM
0703223-003B	03/09/07 1:30 PM	03/10/07	03/10/07 6:03 AM	0703223-004B	03/09/07 3:10 PM	03/10/07	03/10/07 6:33 AM
0703223-005B	03/09/07 2:20 PM	03/10/07	03/10/07 5:04 AM	0703223-006B	03/09/07 11:25 AM	03/12/07	03/12/07 3:13 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0703223

EPA Method: SW8015C	Extraction: SW3510C/3630C				BatchID: 26709			Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	93.3	97	3.89	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	105	111	4.99	N/A	N/A	70 - 130	30
All toward an and the state Mathed Dise	1		I NT	N 1 4	41	1 DI	41 E- 11	• • • • • • • • • • • • • • • • • • • •				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26709 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703223-001B	03/09/07 11:10 AM	03/09/07	03/10/07 4:37 PM	0703223-002B	03/09/07 10:40 AM	03/09/07	03/10/07 1:11 PM
0703223-003B	03/09/07 1:30 PM	03/09/07	03/10/07 5:45 PM	0703223-004B	03/09/07 3:10 PM	03/09/07	03/10/07 10:55 AM
0703223-005B	03/09/07 2:20 PM	03/09/07	03/10/07 12:03 PM	0703223-006B	03/09/07 11:25 AM	03/09/07	03/12/07 2:23 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.