RECEIVED

By dehloptoxic at 8:56 am, Dec 05, 2006

Estate of Michael D

Mr. Michael Fitzpatrick, Trustee 3215 Deer Park Dr. Walnut Creek, CA 94598

Joe. 4, 2006

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Perjury Statement

Dolan Property, 6393 Scarlett Court, Dublin, California; RO-210

Dear Mr Chan,

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached proposal or report is true and correct to the best of my knowledge."

Michael Fitzpatrick, Arustee

c. Peter MacDonald, Esquire Wanden Treanor, Esquire

Mr. Michael Fitzpatrick, Trustee Estate of Michael Dolan P.O. Box 31654 Walnut Creek, CA 94598

Subject: Third Quarter 2006 Groundwater Monitoring Event

Former Dolan Trust Property

6393 Scarlett Court Dublin, California

ACHCSA Fuel Leak Case No. RO0000210

Dear Mr. Fitzpatrick:

This letter documents the Third Quarter 2006 groundwater monitoring event at the subject site (Figure 1). This is the tenth groundwater monitoring event conducted by Blymyer Engineers, Inc. and the third post-remediation groundwater monitoring event at the former Dolan Trust Property in Dublin, California.

1.0 Background

A 600-gallon underground storage tank (UST) was removed in February 1990 from the subject site (Figure 2). Although the UST had reportedly stored diesel more recently, soil and groundwater samples collected for laboratory analysis indicated that the contaminant of concern at the site was gasoline. Files maintained by the Alameda County Department of Environmental (ACDEH) do not contain waste manifests for the disposal of soil, although a *Uniform Hazardous Waste Manifest* is present documenting the disposal of a 600-gallon UST. This suggests that contaminated soil may not have been removed from the site. In October 1990, five soil bores were installed at the site, and soil and grab groundwater samples were collected. Additional delineation work was conducted in November 1991, when groundwater monitoring wells MW-1 through MW-4 were installed to a depth of 20 feet below grade surface (bgs). Soil and groundwater samples were collected. In November 1992, 14 additional soil bores were installed, and soil and grab groundwater samples were collected from selected bore locations. Although there were several data gaps in the perimeter zone of soil and groundwater delineation, the soil and groundwater plumes were largely defined as a result of this investigation. The groundwater plume did not appear to extend offsite; however, a thin free-phase layer was present immediately adjacent to the former UST basin, and at a location approximately 40 feet to the east. Additional wells were proposed to fill the existing data gaps and to monitor the lateral extent of impacted groundwater and free-phase. As a consequence, in March 1995, wells MW-5 and MW-6 were installed to a depth of 10 feet bgs. Intermittent groundwater sample collection or groundwater monitoring has occurred at the facility since 1991. In an August 1998 letter, the

ACDEH suggested that a health risk analysis or the installation of an oxygen releasing compound (ORC) might be appropriate for the site. Also in the August 1998 letter, the ACDEH stated that groundwater sampling of wells MW-1, MW-3, MW-5, and MW-6 could be discontinued, stated that the sampling interval could be decreased to a semiannual basis, and requested resumption of groundwater monitoring.

In May 2002, Blymyer Engineers was retained by Mr. Michael Fitzpatrick, on behalf of Mr. Michael Dolan, to conduct semiannual groundwater sampling of wells MW-2 and MW-4, and to conduct a file review to help determine the next appropriate step at the site.

In May 2002, Blymyer Engineers located and rehabilitated the wells at the site. Well MW-5 required the most extensive rehabilitation work, and required resurveying due to a change in well casing elevation. In June 2002, wells MW-2 and MW-4 were sampled, while depth to groundwater was measured all of the wells. Except for a slight increase in benzene in groundwater from well MW-4, the concentration of all analytes in the two wells decreased from the August 1997 sampling event. Based upon a review of the results, the ACDEH recommended that well MW-5 be incorporated into the sampling program and that quarterly groundwater monitoring resume in order that contaminant concentrations and contaminant trends could be quickly generated for the recommended health risk assessment.

Two additional quarters were completed prior to the death of Mr. Dolan. Groundwater monitoring was on hold after January 2003 due to the Estate becoming established. During the groundwater monitoring event in December 2002, analysis for the fuel oxygenates was conducted by EPA Method 8260B. All fuel oxygenates were found to be non-detectable at good limits of detection. Consequently, all sporadic occurrences of methyl tert-butyl ether (MTBE) previously detected at the site have been attributed to 3-methyl-pentane, another gasoline related compound. This suggests that the release predates the use of MTBE and other fuel oxygenates as gasoline additives. All previously available data from the site has been tabulated on Tables I through III.

On June 13, 2003, a workplan was submitted to the ACDEH in order to allow further subsurface delineation of impacted soil at the site. In a telephone conversation on June 16, 2003, Mr. Scott Seery mentioned that it was unlikely that he would be able to respond in a timely manner due to the work load at the ACDEH, and noted that if a response was not issued 60 days after receipt, regulations stated that the workplan should be considered approved. Consequently, field work commenced on September 13, 2003. Nine Geoprobe⁷ soil bores were installed at the site to augment existing soil data. The data indicated that the lateral and vertical extent of impacted soil at the site had been adequately delineated to relatively low concentrations, and the limits further refined for the purposes of determining appropriate remedial actions (*Geoprobe* Subsurface Investigation, dated October 10, 2003).

Based on these data and a lack of further comments by the ACDEH, a *Remedial Action Plan* (RAP), dated April 6, 2004, was issued. The plan detailed overexcavation and construction dewatering, as the

principal method of remedial action. Introduction of ORC into the resulting excavation as an additional measure of insurance, should residual contamination be intentionally or unintentionally left in place, was also proposed. Use of ORC was proposed based on general knowledge that biodegradation of petroleum hydrocarbons is generally an oxygen limited process. A Request for Proposal (RFP) was generated in early May 2004 for contractor bidding purposes; however, it was not released due to a change in the timeline for sale closure. On September 2, 2004, Blymyer Engineers contacted Mr. Seery in order to determine the status of the RAP review. At that time, Mr. Seery notified Blymyer Engineers that Mr. Robert Schultz was the new case manager for the site. Mr. Schultz required time to review and become familiar with the file. On November 15, 2004, the ACDEH issued a 5-page response letter (*Fuel Leak Case No. RO0000210*) requesting extensive further work and containing several deadlines. A December 31, 2004 deadline was established for a workplan for additional site characterization. The *Workplan for Additional Investigation and Letter Report*, dated December 23, 2004, was submitted to the ACDEH on January 3, 2005.

In a letter dated January 24, 2005, the ACDEH approved the workplan provided four conditions were met:

- A pilot hole was to be used to identify lithology prior to collection of a groundwater sample from a deeper water-bearing zone,
- Should additional groundwater wells be required, the ACDEH would be consulted regarding well construction details,
- Should additional soil or groundwater samples be required, the ACDEH would be kept informed of
 planned changes and consistent dynamic investigation procedures, and
- A 72-hour written advanced warning would be provided.

On February 18, 2005, Blymyer Engineers mobilized to the site to install two to three dual-tube direct-push soil bores in an attempt to collect the approved soil and groundwater samples. As a precursor to the mobilization, a conduit survey was conducted. However, due to poor soil recovery an additional mobilization to the site was required. After notifying, and obtaining approval from, the ACDEH 72 hours in advance, a Cone Penetrometer Test (CPT) direct-push rig was mobilized to the site on March 28, 2005. Prior to the March 28, 2005 mobilization, the ACDEH approved a reduction in the quarterly analytical program, based on historical analytical trends. Specifically, hydrocarbon analysis of groundwater samples from wells MW-1, MW-3, and MW-6 was eliminated.

On April 13, 2005, CCS Environmental resurveyed all wells at the site. As of April 30, 2005, all tenant operations at the site ceased. This included the batch plant used by Dublin Concrete.

On May 10, 2005, Blymyer Engineers submitted the *Additional Site Investigation Data Transmittal* to the ACDEH providing a brief summary of the results of the CPT bore installations. Based on the detection of hydrocarbon compounds in groundwater between 30 and 40 feet bgs, the letter proposed the installation of groundwater well MW-7 across a deeper water-bearing zone in a downgradient position. Shortly

thereafter, the ACDEH reported that Mr. Schultz had left the employ of the agency and that the case had not been assigned to a new case worker yet. The ACDEH was apprised that due to the sale of the parcel, work would proceed, pending agency review.

As a part of another related project, Blymyer Engineers oversaw the permitted destruction of two old water production wells between May 16 and May 24, 2005. According to Zone 7, both wells appear to have dated from the 1940s or 1950s. Well "3S/1E 6F 1", located on the subject parcel was constructed of 8-inch-diameter steel casing and was 95 feet in total depth. Well "3S/1E 6F 2" was located on the adjacent parcel, also owned by Dolan Properties, and was constructed of 13-inch-diameter riveted steel casing and was 38 feet in total depth. All Zone 7 permit conditions were observed; however, the upper 6 to 7.5 feet of each well casing was removed by excavation seven days after it had been filled to the surface with cement grout. An approximately 6- to 12-inch-thick concrete mushroom cap was placed over and around the remaining casing at depths of 6 and 7.5 feet bgs, respectively (where the casing broke during removal). The excavation was backfilled with native soil, and track rolled.

On July 5 and July 8, 2005, Blymyer Engineers oversaw the installation of downgradient groundwater monitoring well MW-7 (Figure 2). The well was installed into the second water-bearing zone beneath the site due to the detection of hydrocarbon contamination in groundwater in both CPT bores at depths of approximately 30 to 40 feet bgs. A conductor casing was installed to a depth of 30 feet in order to exclude upper water-bearing zones, and to prevent cross-contamination of deeper water-bearing zones. A 2-inch-diameter PVC casing was installed through the conductor casing and the well was screened between 30 and 40 feet bgs.

On October 7, 2005, Blymyer Engineers issued the Remedial Investigation / Feasibility Study report documenting all field work conducted since January 2005, and the results of a feasibility study. The report evaluated three remedial alternatives, including monitored natural attenuation, dual-phase extraction, and source soil excavation and dewatering. It was found that, under monitored natural attenuation, benzene would require approximately 33 years to reach the Maximum Contaminant Level (MCL) and that the remedial cost was the highest of the three options. Remedial costs were the second highest under the dualphase extraction scenario, and would be more intrusive with respect to the future owner's land use. Remedial costs were lowest, and the site presence was least intrusive in the longer term under the remedial overexcavation and dewatering scenario. This scenario additionally proposed to introduce oxygen releasing compound (ORC) into the remedial excavation to stimulate biodegradation of the residual hydrocarbon contamination by indigenous microbes; previously shown to be oxygen-limited at the site. This scenario additionally proposed to treat soil and groundwater outside the plume core with ORC injected through Geoprobe bores on an approximately 10-foot spacing interval. Principally because remedial costs were lowest, remedial excavation was selected as the most appropriate remedial technology for the site. On October 26, 2005, Blymyer Engineers issued the Corrective Action Plan For Source Soil Excavation and Dewatering. On November 2, 2005, the ACDEH issued the letter Fuel Leak Case No.

RO0000210, which concurred with the recommended remedial plan, but contained six technical comments for clarification. On November 9, 2005, Blymyer Engineers issued the Response to November 2, 2005 Letter, that addressed the technical comments contained in the ACDEH letter. The letter indicated that soil reuse was not planned due to high perched groundwater as shallow as 3 feet bgs, provided documentation (Figure 2 of that letter) of the approximate planned bottom sample soil collection locations based on the isoconcentration figures, stated that ORC would be applied throughout the excavation as requested, attached NPK bio-nutrient calculations for the site, stated that a second excavation backfill well would be installed as requested, and stated that a post-remediation quarterly groundwater sampling program was planned for a minimum period of one year.

Remedial excavation began on November 29, 2005, with the initial installation of a slide-rail shoring system in the area for excavation. Between December 1, and December 8, 2005, Marcor Remediation, Inc. (Marcor) excavated and stockpiled 2,370 cubic yards (3,054.65 tons) of impacted soil from an area approximately 50 by 50 feet, by 20 to 21 feet in depth. Concurrent excavation dewatering was attempted, but due to the load of suspended fine particles, could not keep up with groundwater infiltration. Extracted groundwater was plumbed through a bag filter to remove the sediment load, and then through two 2,000pound granular activated carbon (GAC) vessels into a 20,000-gallon temporary aboveground storagetank. Prior to discharge to the sanitary sewer a groundwater sample was collected under observation of the Dublin-San Ramon Services District personnel. Four authoritative excavation bottom soil samples were collected from locations in close proximity to previously documented worst-case soil concentrations and each returned non-detectable concentrations for all analytes. The excavation was backfilled with imported crushed rock and locally derived recycled asphaltic baserock. ORC was applied in slurry form to the crushed rock as it was placed into the excavation. On December 21 and 22, 2005, twenty-six ORC injection bores were pushed to approximately 21 feet bgs, and an ORC slurry was injected into the bores in areas surrounding the backfilled excavation in order to address residual contamination outside the area of excavation. The soil stockpiles were sampled concurrently with remedial excavation, and the soil was loaded, transported, and disposed at Keller Canyon Landfill in Pittsburg, California, between December 29, 2005, and January 4, 2006. On January 11, 2006, the property was sold by the Dolan Trust to Ken Harvey Honda, and site redevelopment planning was initiated for a car dealership.

On February 27, 2006, Blaine Tech Services, Inc. (Blaine) mobilized to the site to develop the two new wells (MW-8 and MW-9) located within the remedial excavation. Development details have been reported under separate cover in the report entitled *Report on Source Soil Excavation and Dewatering*, dated April 20, 2006. The first post-remediation groundwater monitoring event occurred on March 2, 2006, and was reported in the report entitled *First Quarter 2006 Groundwater Monitoring Event*, dated April 4, 2006. The *Second Quarter 2006 Groundwater Monitoring Event* dated June 22, 2006, was issued on June 28, 2006.

Current site redevelopment activities include paving and infrastructure installation for the car dealership.

2.0 Groundwater Sample Collection and Analytical Methods

Groundwater samples were collected from all monitoring wells on September 27 and 28, 2006. The groundwater samples were collected by Blaine in accordance with Blaine *Standard Operating Procedures* for groundwater gauging, purging, and sampling. A copy is included as Appendix A. In accordance with the recommendation contained in the previous quarterly report, Remediation by Natural Attenuation (RNA) parameters were collected this quarter. Purging for the RNA parameters used micropurge techniques. Depth to groundwater was measured in all wells at the site. Temperature, pH, conductivity, and turbidity were measured initially, and then after removal of each purge volume. Depth to groundwater was measured initially, and then after removal of each purge volume. The groundwater depth measurements and details of the monitoring well purging and sampling are presented on the *Well Gauging Data* sheet and *Well Monitoring Data Sheets* generated by Blaine and included as Appendix B. Additional field forms included in Appendix B include the *Purge Drum Inventory Log*, and the *Wellhead Inspection Checklist*. Depth-to-groundwater measurements are presented in Table I. All purge and decontamination water was temporarily stored in Department of Transportation-approved 55-gallon drums for future disposal by the owner.

The groundwater samples were analyzed by McCampbell Analytical, Inc., a California-certified laboratory, on a 5-day turnaround time. Groundwater samples from all wells were analyzed for Total Petroleum Hydrocarbons (TPH) as gasoline and as diesel by Modified EPA Method 8015C; benzene, toluene, ethylbenzene, and total xylenes (BTEX) and MTBE by EPA Method 8021B; Carbon Dioxide by Standard Method 5310B; Sulfate by Standard Method E300.1; Nitrate (as N) by E300.1; Phosphorous by E365.1; Manganese and Potassium by E200.8; Methane by Method RSK 174; Biochemical Oxygen Demand (BOD) by SM 5210B; and Chemical Oxygen Demand (COD) by SM 5220D. The sample with the highest detected concentration of MTBE by EPA Method 8021B was selected for reanalysis by EPA Method 8260B for all fuel oxygenates. This analytical method includes the fuel oxygenates *tert*-Butyl Alcohol [TBA], Di-isopropyl Ether [DIPE], Ethyl *tert*-Butyl Ether [ETBE], and Methyl *tert*-Amyl Ether [TAME], the lead scavengers 1,2-Dibromoethane (EDB) and 1,2-Dichloroethane (1,2-DCA), as well as ethanol and methanol. Tables II to V summarize current and previous analytical results for groundwater samples. The laboratory analytical report for the current sampling event is included as Appendix C.

3.0 Petroleum Hydrocarbon Groundwater Sample Analytical Results

Hydrocarbon analysis of groundwater samples from all wells was conducted during the current sampling event. Well MW-2 was destroyed during the remedial excavation in November 2005. Only perimeter well

MW-3 and deep well MW-7 yielded non-detectable analyte concentrations; however, perimeter wells MW-1 and MW-6 yielded petroleum hydrocarbons below the RWQCB ESL goals (78 Fg/L TPH as gasoline and 61 Fg/L TPH as diesel, respectively). Similar analyte concentrations have been present previously in each of these wells; however, in well MW-6 the hydrocarbon was previously very low levels of TPH as gasoline with benzene. Benzene was not detected in the well during the current event. Well MW-5 contained 48 Fg/L MTBE during this monitoring event. MTBE continues to trend slightly higher with each quarterly sampling event in this well. No other fuel oxygenates, lead scavengers, or ethanol or methanol were detected via analysis by EPA Method 8260B this quarter. Well MW-4 contained both lower and higher analyte concentrations than the previous quarter and TPH remains at elevated concentrations. Decreases were observed in TPH as diesel, benzene, ethylbenzene, and total xylenes, while an increase was observed in the concentration of TPH as gasoline and toluene. TPH as gasoline, TPH as diesel, and BTEX were again present in excavation wells MW-8 and MW-9 this quarter. Concentrations increased for each compound in well MW-8, and TPH as gasoline, TPH as diesel, and benzene were over the respective RWQCB ESLs. Analyte concentrations increased and decreased in well MW-9; however, the volatile fraction (BTEX, MTBE) were, in general, relatively unchanged on the whole. The total TPH concentration, although slightly lower, was roughly similar to the previous quarter. Only the TPH fractions were above the RWQCB ESLs in well MW-9. Figure 3 documents the former rough correlation between a rise of groundwater and a rise in contaminant concentrations. This cycle appears to have been broken after the remedial actions.

Well MW-2 yielded a detectable concentration of 1, 2-DCA (5.4 Fg/L) during the first quarterly groundwater monitoring event of 2005. All other oxygenates and lead scavengers were not detected, sometimes at elevated limits of detection due to the dilutions required because of the elevated hydrocarbon compound concentrations in the sample. However, the lack of MTBE in groundwater collected from well MW-2 at that time, at good limits of detection, is consistent with previous analysis for fuel oxygenates conducted in December 2002. These results suggest that there may have been potentially two separate releases at the site, a non-MTBE-bearing release (from prior to use of MTBE as a fuel additive) as detected in well MW-2 (screened between 5 and 20 feet bgs) and an MTBE-bearing release detected in well MW-5 (screened between 3 and 10 feet bgs). Consistent with this interpretation is the lack of EDB, 1, 2-DCA, ethanol, and methanol in well MW-5, at good limits of detection. This suggests that portions of the release predate the use of fuel oxygenates as gasoline fuel additives.

The laboratory has previously included a note that the hydrocarbon quantified as TPH as diesel in wells MW-2 and MW-5 was present in the requested quantitation range (diesel), but that it did not resemble the fuel pattern requested. A review of the chromatograms from wells during the September 2002 quarterly event and the current event indicate that the hydrocarbon detected in the diesel range in groundwater from well MW-2 is associated with the heavy end of gasoline (carbon range C4 to C12) which overlaps into the typical carbon range occupied by diesel (carbon range C10 to C22). However, the compound previously detected in well MW-5 suggests that it may be an aged diesel product as the smooth curve lay between

carbon ranges C10 to C22. During the current and previous quarter, the laboratory included a note that oil range hydrocarbons were detected in the groundwater samples obtained from wells MW-8 and MW-9. McCampbell Analytical stated (personal communication, October 20, 2006) that the chromatograms indicate that this could be either oil or asphalt related compounds. Copies of the chromatograms for the current event are attached at the end of Appendix C.

Prior to the remedial excavation, only wells MW-2 and MW-4 consistently yielded concentrations of petroleum hydrocarbons. Groundwater from well MW-2 consistently contained the highest concentrations at the site, followed by well MW-4. Well MW-2 was destroyed under permit during the remedial excavation. During the current monitoring event the predominant location of contaminants was in the vicinity of wells MW-4, MW-8, and MW-9; the latter two are tank basin wells. The concentrations of each analyte at these wells was significantly less than previously detected in destroyed well MW-2; however, they remain elevated in well MW-4. Over the two previous quarterly events in 2006, hydrocarbon concentrations in groundwater in well MW-4 have been assumed to be a by-product of remedial excavation, wherein contaminants formerly sequestered in soil were mixed and released into groundwaterin a one-time process. However, a closer review of the analytical data from groundwater collected in well MW-4 suggests that this assumption may be incorrect. There are multiple lines of evidence that suggest that a different source of gasoline hydrocarbons is reflected in groundwater collected from well MW-4, or that a fresh spill of gasoline may have occurred near well MW-4. These lines of evidence are as follows:

- There was a large increase in gasoline and volatile (BTEX) hydrocarbon concentrations in groundwater
 collected from well MW-4 between September 2005 and March 2006. The relative stability of those
 concentrations over three quarters appears to suggest a remaining source as opposed to a transient
 spike in contaminant concentrations to be expected from a one-time event.
- The analytical laboratory began to flag the gasoline hydrocarbon in groundwater collected from well MW-4 as "unmodified or weakly modified gasoline" (i.e. fresh) in the March 2006 groundwater monitoring event.
- There appears to be no MTBE associated with this hydrocarbon, as would be anticipated with recent release of gasoline due to the required removal of this chemical from reformulated gasoline by December 31, 2003.
- The apparent rapid decrease in the concentration of benzene in comparison to toluene and ethylbenzene would be typical of the chemical behavior (solubility) of these volatile compounds in groundwater.
- The concentration of TPH as diesel in wells MW-4, MW-8, and MW-9 are very similar, while the concentration of TPH as gasoline in well MW-4 is significantly higher than in the other two wells. This may suggest the source of the TPH as diesel is the same, but that the source of TPH as gasoline is different between the wells.

• The ratio of TPH as gasoline to TPH as diesel in groundwater collected from well MW-4 does not match the ratio seen previously in well MW-2, or currently in wells MW-8 or MW-9. Additionally the ratios of the various volatile organic compounds (BTEX) to TPH as gasoline or to TPH as diesel do not match between wells MW-4 and MW-8 or MW-9. Finally the ratios between the various volatile organic compounds, within a well, are generally not the same (see for example the ratio of total xylenes to benzene in each of the wells).

Each of these lines of evidence is suggestive of a separate source for the hydrocarbons in groundwater samples collected from well MW-4. This evidence appears to indicate an undiscovered residual pocket of contamination outside the area of excavation, or more likely, the introduction of fresh gasoline hydrocarbons in the vicinity of the well. One potential source may be surface spillage from vehicles parked in the vicinity of well MW-4 waiting for repair at the auto shop across Scarlett Court from the site. During site visits leading up to the remedial excavation, between 6 to 10 cars were parked adjacent to the fence in the vicinity of well MW-4 on a daily basis. Blymyer Engineers requested a review of chromatograms by McCampbell Analytical in the outside chance of determining if other fuel oxygenates used in more recently reformulated gasoline might be present in groundwater from the well. This requires analysis by EPA Method 8260, not requested as planned during the current quarterly event. As anticipated the available analysis (EPA Method 8015) was insufficient to resolve this during the current quarterly event.

A copy of the groundwater petroleum hydrocarbon analytical results can be found in Appendix C, and the results are summarized in Table II and Table III.

4.0 Intrinsic Bioremediation Groundwater Sample Analytical Results

Intrinsic bioremediation or RNA laboratory analytical parameters were collected during the current quarter. Field and analytical results for the current and for previous groundwater monitoring events are presented on Tables IV and V. Microbial use of petroleum hydrocarbons as a food source is affected by the concentration of a number of chemical compounds dissolved in groundwater at a site. RNA monitoring parameters were established by research conducted by the Air Force Center for Environmental Excellence. The research results were used to develop a technical protocol for documenting RNA in groundwater at petroleum hydrocarbon release sites (Wiedemeier, Wilson, Kampbell, Miller and Hansen, 1995, *Technical Protocol for Implementing the Intrinsic Remediation with Long Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater, Volumes I and II*, U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas). The protocol focuses on documenting both aerobic and anaerobic degradation processes whereby indigenous subsurface bacteria use various dissolved electron acceptors to degrade dissolved petroleum hydrocarbons.

In the order of preference, the following electron acceptors and metabolic by-products are used and generated, respectively, by the subsurface microbes (aerobes, Mn – Fe reducers, and methanogens) to degrade petroleum hydrocarbons: oxygen to carbon dioxide, nitrate to nitrogen, insoluble manganese (Mn⁴⁺) to soluble manganese (Mn²⁺), insoluble ferric iron (Fe³⁺) to soluble ferrous iron (Fe²⁺), sulfate to hydrogen sulfide, and carbon dioxide to methane. With the exception of oxygen, the use of all other electron acceptor pathways by microbes indicates increasingly anaerobic degradation. Aerobic degradation takes place first, and oxygen inhibits anaerobic degradation. As oxygen is consumed and an anoxic zone develops, the Mn – Fe reducers and methanogens begin to grow and release dissolved Mn, dissolved Fe, and methane (Commission on Geosciences, Environment and Resources, *Natural Attenuation for Groundwater Remediation*, 2000). Investigation of each of these electron acceptor pathways was conducted in all wells at the site as part of the evaluation of RNA chemical parameters. Analytical results collected prior to remedial excavation generally documented oxygen and nutrient (nitrate) limited RNA at the site.

Microbial use of petroleum hydrocarbons as a food source is principally affected by the concentration of dissolved oxygen (DO) in the groundwater present at a site; it is the preferred electron acceptor for the biodegradation of hydrocarbons. Pre-purge DO field readings documented two distinct regions. Plume core wells MW-4, MW-8, and MW-9 contained distinctly higher concentrations (0.97 to 1.88 milligrams per liter [mg/L]) of DO than the remaining wells (MW-1, MW-3, MW-5, MW-6, and MW-7; generally 0.64 to 0.75 mg/L). This suggests that the ORC product continues to provide additional oxygen to the excavation vicinity. Post-purge DO was present in groundwater in concentrations ranging from 0.23 mg/L to 0.78 mg/L. Post-purge DO is generally accepted to document the concentration of DO in the area surrounding each well and is generally considered more representative of a water-bearing zone. The concentration of post-purge DO in most wells shows a decreasing trend over the three post-remediation monitoring events. In comparison to the period prior to remediation, the concentration of post-purge DO remains at a slightly higher concentration in wells MW-1, MW-4, MW-5, and arguably in well MW-3. This is likely due to two causes; a natural increase in DO carried by rain water (see MW-1 or MW-3), and an increase produced by ORC (see MW-4). Because the two likely causes cannot be conclusively distinguished as previously observed, this may suggest that DO has been largely used in the vicinity of the excavation. This is not unexpected as ORC is noted to generate oxygen between 6 and 12 months. Excavation wells MW-8 and MW-9 both continue to contain slightly higher concentrations of post-purge DO than observed in well MW-2 prior to its destruction by excavation. In general, although there have been decreases in the concentration of DO in groundwater in some of the wells since the first quarterly event after remedial exaction, the concentration of DO generally remains higher than the concentration of DO prior to remedial action. Previously, lack of DO appeared to be one of the RNA-limiting factors in the remedial area and it may be transitioning back to a limiting factor due to the increased lack of clarity in the source of DO (rain water infiltration or ORC).

ORP is another measure of the supply and use of oxygen at a site. The higher the reading in millivolts (mV), the more oxygenated the subsurface environment is, and the lower the readings, the more anaerobic or reducing the subsurface environment is. Like DO, ORP values appear to represent a complex subsurface environment during the present monitoring event. The decrease in ORP value in wells MW-1 and MW-3 suggests that the decrease may partly be a seasonal change due to lower DO values as the wells are located away from the plume core, and generally have not contained detectable concentrations of contaminants. However, most other wells in the vicinity of the excavation contain slightly higher ORP readings than prior to and immediately after the remedial excavation. This appears to indicate continued oxygenation of the excavation vicinity and likely also reflects a generalized recovery in groundwater quality adjacent to the excavation area after the remedial excavation (In comparison to pre-remedial values; see for instance wells MW-4, MW-5, MW-6, and MW-7). Within the remedial excavation, ORP in wells MW-8 and MW-9 have marginally increased from the previous quarterly values, remain higher than ORP values in well MW-2 prior to the remedial excavation, but are lower than the first post-remedial monitoring event.

One of the by-products of microbial hydrocarbon degradation is the conversion of oxygen to carbon dioxide. In all wells carbon dioxide concentrations decreased in comparison to the March 2006 monitoring event. There appear to be at least two potential causes. This includes a natural seasonal decrease as most clearly seen in wells MW-1 and MW-3, and potentially, a general decrease in aerobic microbial activity as suggested by decreases in other wells (MW-4 and MW-6). Reviewing the data generated from upgradient well MW-1 and lateral to downgradient well MW-3, the data contained relatively similar and modest concentrations of carbon dioxide. These are presumed to be representative of background carbon dioxide concentrations. Groundwater from well MW-4 contained a lower concentration of carbon dioxide, presumed representative of some limited microbial activity; however, wells MW-6 and MW-7, had similar concentrations, but no or trace detectable concentrations of contaminants. Well MW-5 continues to contain the highest concentration of carbon dioxide for an undetermined reason. Excavation wells MW-8 and MW-9 contained only trace concentrations of carbon dioxide which suggests minimal microbial activity at these wells. This may be the result of removal of the majority of existing microbial colonies in the former plume core, and the inability in re-establishing colonies at that location due to higher, but still moderated, oxygen concentrations.

Should oxygen be in insufficient supply in groundwater, the next preferred electron acceptor is nitrate, which creates denitrifying conditions. In denitrifying conditions, nitrate concentrations decrease in the contaminant plume over background nitrate concentrations. During the present quarter, nitrate was nondetectable in all wells, except MW-3 and MW-8. Historically the site has yielded low nitrate concentrations; however, plume core wells (MW-4, MW-6, MW-8, and MW-9) yielded higher nitrate concentrations after the remedial excavation likely due to nutrient augmentation at that time. Nitrate in well MW-3 remains roughly within the range of nitrate concentrations prior to remedial excavation and is presumed to approximate natural concentrations in the well vicinity. Nitrate concentrations in well MW-8 (and MW-9) have decreased significantly. The low and nondetectable nitrate concentration in these latter wells during the current event appears to indicate that the nitrate has been essentially fully utilized and generally will not be

available for further microbial degradation of hydrocarbons in the vicinity.

As dissolved oxygen concentrations continue to decrease, insoluble manganese (Mn⁴⁺) is converted to soluble manganese (Mn²⁺). At the subject site, total manganese in groundwater was analyzed by the analytical laboratory as a proxy for soluble manganese. Groundwater from wells MW-8 and MW-9 did not contain detectable concentrations of total manganese. Groundwater from all remaining wells except well MW-1 yielded lower concentrations of soluble manganese during the present monitoring event. Again this is likely due to two different processes. In wells MW-8 and MW-9 this suggests essentially no usage of this degradation pathway. In other wells this may be a natural reduction. This may also be a component of the elevated COD in wells MW-8 and MW-9, as discussed below.

Following the continuing trend of electron acceptors at the site, ferrous iron concentrations were evaluated at the site. The reduction of iron is inhibited by solid-phase manganese; however, as soluble manganese concentrations increase, soluble ferrous iron concentrations are expected to rise as subsurface Mn – Fe reducing microbes convert solid-phase ferric iron to soluble ferrous iron. Soluble manganese did not increase this quarter, and ferrous iron concentrations were non-detectable in all wells during the current monitoring event. Until this monitoring event, well MW-4 has contained higher levels of ferrous iron. This has previously suggested that microbial activity near this well was continuing to utilize iron to degrade contaminants in this area of the site. However, the lack of ferrous iron in all wells, the non-detectable manganese in wells MW-8 and MW-9, and the reduced concentration of DO sitewide suggest that Mn – Fe microbial colonies have not been re-established at the site or within the plume core.

Continuing the trend of electron acceptors at the site, sulfate concentrations were also evaluated as part of the evaluation of RNA chemical parameters. If utilized by the microbes, sulfate concentrations, like nitrate concentrations, decrease in the contaminant plume over background sulfate concentrations and a commensurate decrease in pH is observed as the resulting hydrogen sulfide is converted to a dilute sulfuric acid. This trend has previously been seen at the site; however, only groundwater samples from excavation wells MW-8 and MW-9 yielded markedly lower sulfate concentrations during the present monitoring event. All other wells yielded sulfate concentrations that were essentially unchanged, but that both increased and decreased in comparison to the previous quarterly data. This suggests that sulfate is not currently used at the site, except perhaps in the excavation, to degrade hydrocarbon contaminants at the site. Judged more likely is that the higher COD in these two wells may have produced this sulfate reduction in the two wells. Associated trends in pH values also do not suggest use of this pathway.

As oxygen becomes less prevalent and other pathways are increasingly utilized, the degradation process becomes increasingly anaerobic and methanogenic microbes become more prevalent. To this end, the conversion of carbon dioxide to methane was investigated at the site. The presence of methane in groundwater can be attributed to fermentation of natural organic matter as well as petroleum hydrocarbons. However, if utilized by the microbes, methane would increase relative to carbon dioxide. Background

methane concentrations in groundwater found in wells MW-1, MW-3, and MW-7 is low to very low and is presumed to represent the degradation of natural organic matter. Methane concentrations in groundwater from excavation proximal wells MW-4 and MW-6 are slightly elevated in comparison to excavation wells MW-8 and MW-9. It should be noted that the conversion of carbon dioxide to methane is the least preferred pathway for microbial degradation of hydrocarbons principally because the conversion is the most anaerobic. Well MW-5 is slightly anomalous and has not been considered in this analysis. It appears probable that conversion of carbon dioxide to methane is not a significant process of hydrocarbon degradation except perhaps in the area immediately adjacent to the excavated plume core at this site. It can also be noted that there has been a reduction in methane generation over time at the site since the first methane sampling event in December 2004.

BOD and COD were again included in the analytical suite for the second time this quarter as suggested by REGENESIS to help evaluate the success of the ORC applications. All wells returned BOD values below the limits of detection; from upgradient, to excavation proximal, to down gradient wells. This appears to suggest limited biological degradation at the site. COD values were lowest in the upgradient and downgradient wells (MW-1 and MW-3, respectively) and the deeper well (MW-7). COD was slightly more elevated in excavation wells MW-8 and MW-9, in comparison to other excavation proximal wells. This suggests the chemical demand again remains a stronger factor on the use of oxygen than biological demand. This is also suggested by the RNA parameters reviewed above.

In summary, while the supply of DO in groundwater in the plume core appears to be higher than background and pre-remediation concentrations, the concentrations do not appear to be sufficient to allow the re-establishment of aerobic microbes. Within the RNA process, aerobic microbial degradation provides the quickest method to degrade hydrocarbons at a site. Microbial degradation of the groundwater hydrocarbon plume beneath the site appears to be becoming once again oxygen and nitrate limited. Indigenous aerobic microbes do not appear to have reestablished significant densities, yet oxygen appears to be in sufficient concentrations to limit reestablishment of Mn- Fe reducing microbes. Methanogenic microbes (Methanogens) also do not appear to be present at significant densities, except perhaps in the area immediately adjacent to the excavation (MW-5 and MW-6). While the reduction of DO was expected, the re-establishment of the microbes in the plume core was anticipated to be quicker, and was expected to assist in achieving the remedial goal. Each of these indicators suggests that the microbial process has temporarily reached an end point at the site, the remaining ORC has limited capacity to continue to provide DO to aerobic microbes beneath the site, and that additional efforts may be required.

5.0 Groundwater Flow Data

Surveyed top-of-casing (TOC) elevations were used to construct a groundwater gradient map (Figure 2). Well MW-1 was not used due to a bent casing noted by field personnel and caused by recent construction activities on the site. While not typically used, wells MW-5 and MW-6 were used to help construct the

figure for this monitoring event. Although wells MW-5 and MW-6 are screened at shallower levels, the groundwater levels were not significantly different for these wells for this period. Based on a review of the case file at the ACDEH, groundwater elevations in wells MW-5 and MW-6 historically appear to have been consistently somewhat different than wells MW-1 through MW-4 at the site. However by appearances there is no significant flow direction changes created by excluding these two wells during the current quarter. The water level in well MW-7, presumed to be set in a deeper water-bearing zone (30 to 40 feet bgs), is and has previously been, very similar to the water level in wells set in the middle water-bearing zone (10 to 20 feet bgs; MW-1, MW-3, and MW-4). The similarity of this water level may indicate the well is set in a deeper portion of the same water-bearing zone at the site. It was used again to help generate the gradient and flow direction depicted Figure 2.

Groundwater depths on September 28, 2006, ranged between 3.08 to 4.85 feet below the top of the casings. On average, depth to groundwater remained unchanged (an average <0.001 foot increase) across the site since the June 2006 monitoring and sampling event; however, in four wells an increase in the depth to water was observed, while a decrease was observed in four wells (excluding well MW-1 due to the reported bent casing). Based on these data, the direction of groundwater flow appears to be generally towards the west and south from a ridge high that extends from well MW-5 to MW-7. Historically, groundwater has generally flowed to the south to southwest at the site (see for example the Rose Diagram of historic groundwater flow directions included in the *Additional Site Investigation Data Transmittal*); however, in June 2005 and November 1993, groundwater was documented to have flowed to the east. The average groundwater gradient was calculated to be at approximately 0.012 feet/foot for this monitoring event.

6.0 Conclusions and Recommendations

The following conclusions were generated from the available data discussed above:

- Groundwater was collected from all wells during the present monitoring event, and RNA parameters were re-analyzed as planned for the second time since the remedial excavation.
- Groundwater obtained from wells MW-3 and MW-7 yielded nondetectable concentrations of the analytes. Groundwater obtained from wells MW-1 and MW-6 yielded trace concentrations of TPH. This is the second time groundwater from each well has yielded trace concentrations of petroleum hydrocarbons.
- Except for the detection of MTBE at a concentration of 48 Fg/L in well MW-5, this well again yielded nondetectable concentrations of petroleum hydrocarbons, consistent with the majority of historic groundwater analytical results from this perimeter well. The concentration of MTBE is

consistent with previously detected concentrations at this location, and continues an increasing concentration trend of this contaminant in groundwater from this well.

- Excavation wells MW-8 and MW-9, in the general location of destroyed plume core well MW-2, yielded concentrations of all analytes at significantly lower concentrations in comparison to concentrations previous detected in groundwater at well MW-2. Individually concentrations of TPH as gasoline and TPH as diesel in these two wells both increased and decreased. In well MW-9, the total TPH trend remained downward. Concentrations in the volatile components of gasoline (BTEX) generally marginally increased, although some compounds underwent modest reductions.
- Groundwater obtained from well MW-4 continued to contain elevated concentrations of all hydrocarbon compounds. This has previously been assumed to have been as a result of the remedial excavation process; however, a close inspection of the specific analytes appears to suggest an undetected residual source outside the area of excavation, or more likely, a fresh release of gasoline hydrocarbons. There are multiple lines of evidence to support these observations, and include the size of the increase; laboratory notes of fresh unweathered hydrocarbons; the lack of MTBE; the rapid decrease of benzene; similar concentrations of TPH as diesel but not of TPH as gasoline between wells MW-4, MW-8, and MW-9; multiple contaminant ratios; and observations of parked cars awaiting repair at the auto shop across the street.
- Microbial use of petroleum hydrocarbons as a food source has historically been principally limited by the concentration of DO in the groundwater; it is the preferred electron acceptor for the biodegradation of hydrocarbons. Nitrate concentrations in groundwater have also historically been a limiting factor at the site.
- During the current monitoring event, RNA chemical parameters appear to indicate a two-fold process at the site; a natural change in selected parameters as seen most clearly in perimeter wells, and a concurrent reduction in RNA chemical parameters within the plume core related to decreasing DO concentrations from ORC, and nitrate concentrations from the introduction of bionutrients. While DO concentrations in the plume remain above pre-remedial concentrations, post-purge DO concentrations in most wells shows a decreasing trend over the three post-remediation monitoring events.
- While the supply of DO in groundwater in the plume core appears to be higher than background and pre-remediation concentrations, the concentrations do not appear to be sufficient to allow the re-establishment of aerobic microbes. Within the RNA process, aerobic microbial degradation provides the quickest method to degrade hydrocarbons at a site. Microbial degradation of the groundwater hydrocarbon plume beneath the site appears to be becoming once again oxygen and nitrate limited. Indigenous aerobic microbes do not appear to have reestablished significant

densities, and oxygen appears to be in sufficient concentrations as to limit reestablishment of Mn-Fe reducing microbes. Methanogenic microbes (Methanogens) also do not appear to be present at significant densities, except perhaps in the area immediately adjacent to the excavation (MW-5 and MW-6). While the reduction of DO was expected, the re-establishment of the microbes in the plume core was anticipated to be quicker, and was expected to assist in achieving the remedial goal. The RNA parameters predominately suggest that the microbial process has temporarily reached an end point at the site, the remaining ORC has limited capacity to continue to provide DO to aerobic microbes beneath the site, and that additional augmentation may be required.

- All wells returned BOD values below the limits of detection, apparently indicating limited biological demand while elevated COD values indicate the chemical demand for oxygen remains a stronger factor than biological demand.
- During the current quarter, groundwater flow appears to be towards the west to south from a ridge high extending from well MW-5 to MW-7. The average groundwater gradient was calculated at 0.012 feet/foot.

The following recommendations were generated from the available data discussed above:

- As a cost savings measure, analysis for RNA parameters (carbon dioxide, nitrate, sulfate, methane, manganese, potassium, total phosphorous, BOD, and COD) can again be temporarily stopped.
 Field measurements including DO, ORP, and ferrous iron can be used as proxies for the extent of biological or chemical degradation in groundwater beneath the subject site. Analytical testing for RNA parameters can be resumed in the future as it is warranted.
- \$ The next quarterly groundwater sampling event is scheduled to occur in December 2006. Analysis of groundwater collected from well MW-4 for fuel oxygenates by EPA Method 8260 should be included in the analytical program.
- \$ A subsurface investigation should be performed in an attempt to determine the source of the hydrocarbons in well MW-4. This would consist of the installation of a minimum of two to three Geoprobe bores around the well, or slightly upgradient towards the location of the excavation.
- **\$** A copy of this letter report should be forwarded to:

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Protection Division

1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

7.0 Limitations

Services performed by Blymyer Engineers have been provided in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. The scope of work for the project was conducted within the limitations prescribed by the client. This report is not meant to represent a legal opinion. No other warranty, expressed or implied, is made. This report was prepared for the sole use of the client. Please call Mark Detterman at (510) 521-3773 with any questions or comments.

Sincerely,
Blymyer Engineers, Inc.
By:
Mark Detterman, C.E.G. 1788
Senior Geologist
And:
Michael S. Lewis
Vice President, Technical Services

Enclosures:

Table I:Summary of Groundwater Elevation Measurements

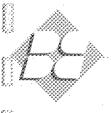
Table II: Summary of Groundwater Sample Hydrocarbon Analytical Results
Table III: Summary of Groundwater Sample Fuel Additive Analytical Results
Table IV: Summary of Groundwater Intrinsic Bioremediation Field Results
Table V: Summary of Groundwater Intrinsic Bioremediation Analytical Results

Figure 1: Site Location Map

Figure 2: Site Plan and Groundwater Gradient, September 28, 2006

Figure 3: TPH Concentration and Groundwater Elevation vs. Time in Wells MW-2 / MW-9

Appendix A: Standard Operating Procedures, Blaine Tech Services, Inc.


Appendix B: Purge Drum Inventory Log, Test Equipment Calibration Log, Wellhead Inspection

Checklist, Well Gauging Data, and Repair Data Sheet, Dated September 27 and 28,

2006

Appendix C: Analytical Laboratory Report, McCampbell Analytical, Inc., Dated October 4, and 11,

2006

Please call Mark Detterman at (510) 521-3773 with any questions or comments.

Sincerely,

Blymyer Engineers, Inc.

Mark Detterman, C.E.G. 1788

Senior Geologist

CERTIFIED

Michael S. Lewis

Vice President, Technical Services

Enclosures:

Table 1: Summary of Groundwater Elevation Measurements

Summary of Groundwater Sample Hydrocarbon Analytical Results Table II:

Summary of Groundwater Sample Fuel Additive Analytical Results Table III: Summary of Groundwater Intrinsic Bioremediation Field Results Table IV:

Summary of Groundwater Intrinsic Bioremediation Analytical Results Table V:

Figure 1: Site Location Map

Site Plan and Groundwater Gradient, September 28, 2006 Figure 2:

TPH Concentration and Groundwater Elevation vs. Time in Wells MW-2 / MW-9 Figure 3:

Appendix A: Standard Operating Procedures, Blaine Tech Services, Inc.

Purge Drum Inventory Log, Test Equipment Calibration Log, Wellhead Inspection Appendix B: Checklist, Well Gauging Data, and Repair Data Sheet, Dated September 27 and 28,

Analytical Laboratory Report, McCampbell Analytical, Inc., Dated October 4, and Appendix C:

11, 2006

	6393 Scarlett Court, Dublin, California									
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)						
MW-1	11/27/1991	326.61	4.82	321.79						
	9/30/1992		5.34	321.27						
	4/7/1994		3.38	323.23						
	8/12/1994		4.23	322.38						
	11/29/1994		3.44	323.17						
	3/21/1995		1.00	325.61						
	5/22/1995		2.20	324.41						
	8/24/1995		3.45	323.16						
	2/12/1996		1.95	324.66						
	2/5/1997		Data	Missing						
	8/6/1997		3.60	323.01						
	6/6/02*		2.89	323.72						
	9/23/2002		3.48	323.13						
	12/13/2002		3.18	323.43						
	12/14/2004		2.76	323.85						
	3/23/2005		1.14	325.47						
	6/22/2005	329.41	2.58	326.83						
	7/18/2005		2.21	327.20						
	9/6/2005		3.30	326.11						
	3/2/2006		2.32	327.09						
	6/12/2006		3.61	325.80						
	9/28/2006		3.34 1	326.07						

	6393 Scarlett Court, Dublin, California								
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)					
MW-2	11/27/1991	326.67	4.92	321.75					
	9/30/1992		5.42	321.25					
	4/7/1994		3.48	323.19					
	8/12/1994		4.18	322.49					
	11/29/1994		3.76	322.91					
	3/21/1995		1.25	325.42					
	5/22/1995		2.20	324.47					
	8/24/1995		3.57	323.10					
	2/12/1996		2.60	324.07					
	2/5/1997		1.72	324.95					
	8/6/1997		3.72	322.95					
	6/6/02*		3.46	323.21					
	9/23/2002		4.14	322.53					
	12/13/2002		3.45	323.22					
	12/14/2004		2.96	323.71					
	3/23/2005		1.83	324.84					
	6/22/2005	329.46	3.82	325.64					
	7/18/2005		3.55	325.91					
	9/6/2005		3.70	325.76					
	3/2/2006		Destroyed	Destroyed					
	6/12/2006		Destroyed	Destroyed					
	9/28/2006		Destroyed	Destroyed					

6393 Scarlett Court, Dublin, California									
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)					
MW-3	11/27/1991	326.58	4.96	321.62					
	9/30/1992		5.46	321.12					
	4/7/1994		3.66	322.92					
	8/12/1994		4.37	322.21					
	11/29/1994		3.60	322.98					
	3/21/1995		1.62	324.96					
	5/22/1995		2.73	323.85					
	8/24/1995		3.76	322.82					
	2/12/1996		2.45	324.13					
	2/5/1997		1.99	324.59					
	8/6/1997		3.83	322.75					
	6/6/02*		3.66	322.92					
	9/23/2002		4.66	321.92					
	12/13/2002		3.66	322.92					
	12/14/2004		3.52	323.06					
	3/23/2005		1.83	324.75					
	6/22/2005	329.37	3.99	325.38					
	7/18/2005		3.60	322.98					
	9/6/2005		4.42	324.95					
	3/2/2006		2.50	326.87					
	6/12/2006		3.52	325.85					
	9/28/2006		3.88	325.49					

	6393 Scarlett Court, Dublin, California									
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)						
MW-4	11/27/1991	326.92	5.26	321.66						
	9/30/1992		5.78	321.14						
	4/7/1994		4.02	322.90						
	8/12/1994		4.81	322.11						
	11/29/1994		4.39	322.53						
	3/21/1995		1.80	325.12						
	5/22/1995		3.07	323.85						
	8/24/1995		4.09	322.83						
	2/12/1996		2.80	324.12						
	2/5/1997		2.32	324.60						
	8/6/1997		4.14	322.78						
	6/6/02*		3.76	323.16						
	9/23/2002		4.14	322.78						
	12/13/2002		3.90	323.02						
	12/14/2004		3.68	323.24						
	3/23/2005		1.93	324.99						
	6/22/2005	329.70	3.65	326.05						
	7/18/2005		3.69	323.23						
	9/6/2005		3.97	325.73						
	3/2/2006		2.90	326.80						
	6/12/2006		3.88	325.82						
	9/28/2006		4.23	325.47						

6393 Scarlett Court, Dubin, California									
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)					
MW-5	2/21/1007	326.50	` '						
171 77 -3	3/21/1995	320.30	2.10	324.40					
	5/22/1995		2.93	323.57					
	8/24/1995		1.57	324.93					
	2/12/1996		2.78	323.72					
	2/5/1997		2.24	324.26					
	8/6/1997		3.02	323.48					
	6/6/02*	**	2.79	NM					
	9/23/2002		3.07	NM					
	12/13/2002		3.14	NM					
	12/14/2004		2.92	NM					
	3/23/2005		2.39	NM					
	6/22/2005	329.16	2.99	326.17					
	7/18/2005		3.39	325.77					
	9/6/2005		3.07	326.09					
	3/2/2006		2.74	326.42					
	6/12/2006		3.36	325.80					
	9/28/2006		3.33	325.83					
MW-6	3/21/1995	327.23	3.24	323.99					
	5/22/1995		4.70	322.53					
	8/24/1995		4.95	322.28					
	2/12/1996		4.50	322.73					
	2/5/1997		3.68	323.55					
	8/6/1997		4.79	322.44					
	6/6/02*		4.81	322.42					

0373 Scariett Court, Dubini, Camornia								
Well ID	Date	TOC Elevation	Depth to Water	Water Surface Elevation				
		(feet)	(feet)	(feet)				
MW-6	9/23/2002	327.23	5.10	322.13				
	12/13/2002		4.88	322.35				
	12/14/2004		4.61	322.62				
	3/23/2005		3.40	323.83				
	6/22/2005	330.02	4.72	325.30				
	7/18/2005		2.65	327.37				
	9/6/2005		4.98	325.04				
	3/2/2006		3.89	326.13				
	6/12/2006		4.73	325.29				
	9/28/2006		4.85	325.17				
MW-7	7/18/2005	**	6.38					
	9/6/2005		6.78					
	3/2/2006	330.25	3.33	326.92				
	6/12/2006		4.18	326.07				
	9/28/2006		4.52	325.73				
MW-8	3/2/2006	328.93	1.54	327.39				
	6/12/2006		3.69	325.24				
	9/28/2006		3.10	325.83				
MW-9	3/2/2006	328.67	1.54	327.13				
	6/12/2006		3.68	324.99				
	9/28/2006		3.08	325.59				

	Table I, Summary of Groundwater Elevation Measurements BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California								
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)					

Notes: TOC = Top of Casing

* = Initial data set collected under direction of Blymyer Engineers, Inc.

** = Surveyed elevation not available

¹ = Sampling form indicates casing is bent.

NM = Not measured

= Resurveyed on April 13, 2005 by CSS Environmental Services, Inc.

² = Surveyed on February 7, 2006 by CSS Environmental Services, Inc.

Elevations in feet above mean sea level

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ $(\mu g/L)$ Well ID Sample Date TPH TPH Total Benzene Toluene Ethylbenzene **MTBE** as Diesel **Xylenes** as Gasoline RWQCB ESLs; Table F-1a: **Groundwater Screening** Levels (groundwater IS a 100 100 1 40 30 20 5 current or potential drinking water resource) MW-1 11/27/1991 < 50 NA < 0.3 < 0.3 < 0.3 < 0.3 NA 9/30/1992 < 50 NA < 0.3 < 0.3 < 0.3 < 0.3 NA 4/7/1994 < 50 NA < 0.5 < 0.5 < 0.5 < 0.5 NA 8/12/1994 < 50 NA 1 < 0.3 <2 NA 1 11/29/1994 < 50 NA < 0.5 < 0.5 < 0.5 <2 NA 3/21/1995 < 50 NA < 0.5 < 0.5 < 0.5 <2 NA < 0.5 < 0.5 < 0.5 NA 5/22/1995 NA < 50 <2 8/24/1995 < 50 < 0.5 < 0.5 < 0.5 NA <2 NA 2/12/1996 NA < 50 < 0.5 < 0.5 < 0.5 <2 NA 6/6/02* NA NA NA NA NA NA NA 9/23/2002 NA 12/13/2002 NA 12/14/2004 < 50 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 3/23/2005 NA NA NA NA NA NA NA 6/22/2005 NA NA NA NA NA NA NA 9/6/2005 NA NA NA NA NA NA NA $62^{\,k}$ 3/2/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/1/2006 NA NA NA NA NA NA NA 78 k

< 50

< 0.5

< 0.5

< 0.5

< 0.5

< 5.0

9/28/2006

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ $(\mu g/L)$ Well ID Sample Date **TPH** TPH Total Benzene Toluene Ethylbenzene **MTBE** as Diesel **Xylenes** as Gasoline RWQCB ESLs; Table F-1a: **Groundwater Screening** Levels (groundwater IS a 100 100 1 40 30 20 5 current or potential drinking water resource) MW-2 11/27/1991 NA 170,000 24,000 13,000 3,500 16,000 NA 9/30/1992 NA 120,000 24,000 15,000 3,800 17,000 NA 4/7/1994 4.300 NA NA 120,000 21,000 14,000 21,000 8/12/1994 10,000 NA NA 140,000 17,000 4,300 18,000 11/29/1994 NA 90,000 17,000 7,500 3,400 15,000 NA 3/21/1995 NA 83,000 17,000 8,000 3,800 17,000 NA 82,000 14,000 6,000 4,000 NA 5/22/1995 NA 16,000 8/24/1995 NA 86,000 13,000 8,100 3,700 16,000 NA 2/12/1996 NA 78,000 15,000 8,100 4,200 18,000 NA 2/5/1997 NA 58,000 11,000 6,900 3,500 15,000 480 8/6/1997 NA 66,000 7,000 9,200 3,500 16,000 < 500 NA 25,000 a 6/6/02* 2,900 50 2,700 2,200 < 250 14,000^b 9/23/2002 4,300° 2,700 81 2,100 1,800 <250 12/13/2002 4,000° 26,900 91 2,370 197 d 1,120 1,480 7,600 f, g 12/14/2004 21,000 e 1,700 120 1,600 2,400 < 60 15,000 f, g, i 3/23/2005 27,000 ^{e i} 1,400 170 1,700 2,500 <170 6/22/2005 1,200 g < 50 5,800 e 53 46 **570 58** 4,900 f, g, j 14,000 e <100 9/6/2005 1,000 40 1,500 680 NS NS NS NS 3/2/2006 NS NS NS 6/1/2006 NS NS NS NS NS NS NS 9/28/2006 NS NS NS NS NS NS NS

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ $(\mu g/L)$ Well ID Sample Date TPH TPH Total Benzene Toluene Ethylbenzene **MTBE** as Diesel **Xylenes** as Gasoline RWQCB ESLs; Table F-1a: **Groundwater Screening** Levels (groundwater IS a 100 100 1 40 30 20 5 current or potential drinking water resource) MW-3 11/27/1991 NA < 50 < 0.3 < 0.3 < 0.3 < 0.3 NA 9/30/1992 NA < 50 < 0.3 < 0.3 < 0.3 < 0.3 NA 4/7/1994 NA < 50 2.5 5.5 0.9 5.1 NA 8/12/1994 NA < 50 < 0.5 < 0.5 < 0.3 <2 NA 11/29/1994 NA < 50 < 0.5 < 0.5 < 0.5 <2 NA 3/21/1995 NA < 50 < 0.5 < 0.5 < 0.5 <2 NA < 0.5 < 0.5 < 0.5 NA 5/22/1995 NA < 50 <2 8/24/1995 < 50 < 0.5 < 0.5 < 0.5 NA <2 NA 2/12/1996 NA < 50 < 0.5 < 0.5 < 0.5 <2 NA NA 2/5/1997 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5 6/6/02* NA 9/23/2002 NA NA NA 12/13/2002 NA NA NA NA NA NA NA 12/14/2004 < 50 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 3/23/2005 NA NA NA NA NA NA NA 6/22/2005 NA NA NA NA NA NA NA 9/6/2005 NA NA NA NA NA NA NA 3/2/2006 < 50 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 NA NA NA NA 6/1/2006 NA NA NA 9/27/2006 < 50 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ $(\mu g/L)$ Well ID Sample Date TPH TPH Total Benzene Toluene Ethylbenzene **MTBE** as Diesel **Xylenes** as Gasoline RWQCB ESLs; Table F-1a: **Groundwater Screening** Levels (groundwater IS a 100 100 1 40 30 20 5 current or potential drinking water resource) MW-4 11/27/1991 NA 11,000 100 0.7 250 330 NA 9/30/1992 NA 380 3.5 8.9 NA 2.4 3.4 4/7/1994 NA 5.5 **17** NA 1,100 61 12 8/12/1994 NA 3 8 4 NA 1,000 1 11/29/1994 NA 1,100 2 < 0.5 10 6 NA 3/21/1995 NA 1,400 200 5 66 18 NA 1,200 1 **12** 8 5/22/1995 NA **60** NA 8/24/1995 1 < 0.5 1 NA 400 <2 NA 2/12/1996 NA 1,500 130 < 0.5 NA 120 51 2/5/1997 94 NA 1,200 250 4.9 **12 16** 8/6/1997 NA 330 1.5 < 0.5< 0.5 < 0.5 <5 1.7 < 0.5 < 0.5 6/6/02* NA < 50 < 0.5 < 2.5 9/23/2002 <48 < 50 < 0.5 1.3 < 0.5 < 0.5 < 2.5 86° 12/13/2002 < 50 < 0.5 < 0.5 < 0.5 < 0.5 <1.5 95^h < 5.0 12/14/2004 < 50 2.6 < 0.5 < 0.5 < 0.5 120^h 3/23/2005 < 50 < 0.5 5 < 0.5 < 0.5 < 5.0 6/22/2005 < 50 180^e 7.5 < 0.5 < 0.5 < 5.0 1.7 < 50 < 0.5 < 0.5 < 0.5 < 5.0 9/6/2005 < 50 < 0.5 1.600 e 220^g 47 4.1 1.6 19 < 20 3/2/2006 250 f, g 22 2.8 3.9 0.59 6/1/2006 1,000 e < 5.0 9/27/2006 220 f, g 8.5 7.3 2.4 < 0.5 <15

1.400 e

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

	0373 Scarrett Court, Dubini, Camorina									
Well ID		Modified EPA Method 8015 (µg/L)		EPA Method 8020 or 8021B (μg/L)						
wen ib	Sample Date	TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
Ground Levels (s current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking er resource)	100	100	1	40	30	20	5		
MW-5	3/21/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA		
	5/22/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA		
	8/24/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA		
	2/12/1996	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA		
	2/5/1997	NA	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5		
	6/6/02*	NA	NA	NA	NA	NA	NA	NA		
	9/23/2002	310 °	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	12/13/2002	97 ^c	< 50	< 0.5	< 0.5	< 0.5	<1.5	0.720 d		
	12/14/2004	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	12		
	3/23/2005	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	23		
	6/22/2005	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	31		
	9/6/2005	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	32		
	3/2/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	30		
	6/1/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	44		
	9/28/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	48		

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

	0595 Scariett Court, Dubini, Camorina										
		Modified EPA Method 8015 (µg/L)		EPA Method 8020 or 8021B (μg/L)							
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE			
Ground Levels (s current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking eer resource)	100	100	1	40	30	20	5			
MW-6	3/21/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA			
	5/22/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA			
	8/24/1995	NA	< 50	< 0.5	< 0.5	< 0.5	<2	NA			
	2/12/1996	NA	<50	<0.5	<0.5	<0.5	<2	NA			
	2/5/1997	NA	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5			
	6/6/02*	NA	NA	NA	NA	NA	NA	NA			
	9/23/2002	NA	NA	NA	NA	NA	NA	NA			
	12/13/2002	NA	NA	NA	NA	NA	NA	NA			
	12/14/2004	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	3/23/2005	NA	NA	NA	NA	NA	NA	NA			
	6/22/2005	NA	NA	NA	NA	NA	NA	NA			
	9/6/2005	NA	NA	NA	NA	NA	NA	NA			
	3/2/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	6/1/2006	50 ^e	< 50	0.84	< 0.5	< 0.5	< 0.5	< 5.0			
	9/27/2006	< 50	61 ^f	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Well ID Sample Date		Method	Iodified EPA Method 8015 (µg/L)		EPA I	Method 8020 (µg/L)	or 8021B	
wen ib	Sample Date	TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Ground Levels (g current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking er resource)	100	100	1	40	30	20	5
MW-7	7/18/2005	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	9/6/2005	< 50	< 50	0.7	< 0.5	1.2	< 0.5	< 5.0
	3/2/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	6/1/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	9/27/2006	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
MW-8	3/2/2006	590 ^e	550 ^{f g}	6.2	2.7	0.67	21	< 5.0
	6/1/2006	97 ^k	250 f, j	< 0.5	< 0.5	< 0.5	1.1	< 5.0
	9/28/2006	150 ^e	300 f, g, j	3	1.2	1.1	7.2	< 5.0
MW-9	3/2/2006	280 ^e	430 ^{f g}	2.6	0.96	1	10	< 5.0
	6/1/2006	680 ^k	180 f, j	0.85	< 0.5	1.9	3.9	< 5.0
	9/28/2006	150 ^e	530 f, g, j	0.95	0.69	0.87	6.7	< 5.0

	Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California											
Well ID Sample Date	Modified Method (µg/I	8015	L EPA Method 8020 or 8021B									
	Sample Date	TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
Ground Levels (current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking ter resource)	100	100	1	40	30	20	5				

Notes: ug/L = micrograms per liter

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl *tert* -Butyl Ether

RWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

ESL = Environmental Screening Level

ND = Not Detected (method reporting limit not known)

NA = Not Analyzed

NS = Not Sampled

 $\langle x \rangle$ = Analyte not detected at reporting limit x

- * = Initial data set collected under direction of Blymyer Engineers, Inc.
- a = Laboratory note indicates the result is an unidentified hydrocarbon within the C6 to C10 range.
- b = Laboratory note indicates the result is gasoline within the C6 to C10 range.
- c = Laboratory note indicates the result is a hydrocarbon within the diesel range but that it does not represent the pattern of the requested fuel.
- d = MTBE analysis by EPA Method 8260B yielded a non-detectable concentration at a detection
- e = Laboratory note indicates that unmodified or weakly modified gasoline is significant.
- f = Laboratory note indicates that diesel range compounds are significant, with no recognizable pattern.
- g = Laboratory note indicates that gasoline range compounds are significant.
- h = Laboratory note indicates that no recognizable pattern is present.
- i = Laboratory note indicates that a lighter than water immiscible sheen / product is present.
- j = Laboratory note indicates that oil range compounds are significant.
- k = Laboratory note indicates one to a few isolated non-target peaks are present.

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds ESL

	Table II	I, Summary	BEI Job	No. 202010	mple Fuel A 6, Dolan Re Dublin, Ca	entals	nalytical R	esults		
Well ID	Sampla Data				EPA Met	hod 8260B	(ug/L)			
Well ID	Sample Date	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol	ETBE	Methanol	MTBE
Table F-1 Screening L IS a current of	Groundwater ESLs I a: Groundwater evels (groundwater or potential drinking ter source)	NV	12	0.05	0.5	NV	50,000	NV	NV	5.0
MW-2	12/13/2002	< 0.50	<2,000	NA	NA	< 0.50	NA	< 0.50	NA	< 0.50
IVI VV -2	3/23/2005	< 5.0	<50	< 5.0	5.4	< 5.0	< 500	< 5.0	<5,000	< 5.0
	12/14/2004	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5	< 50	< 0.5	< 500	12
MW 5	3/2/2006 MW-5		< 5.0	< 0.5	< 0.5	< 0.5	< 50	< 0.5	< 500	28*
101 00 -3	6/1/2006		< 5.0	< 0.5	< 0.5	< 0.5	< 50	< 0.5	< 500	40*
	9/28/2006	< 0.5	< 5.0	< 0.5	<0.5	< 0.5	< 50	< 0.5	< 500	48

Notes: TAME = Methyl tert-Amyl Ether

TBA = tert-Butyl Alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

 $ETBE = \ Ethyl \ tert-butyl \ ether$

 $MTBE \,=\, Methly \; tert-butyl \; ether$

 $(\mu g/L)$ = Micrograms per liter

NA = Not analyzed

NV = No value

* = Differs from result yielded by EPA 8021B

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds ESL

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(oC)	pH units
MW-1	12/14/2004	0.2 / 2.0	224 / 160	0.1	18.8	6.9
	3/23/2005	5.1 / 0.2	105 / 102	0.0	17.3	6.9
	6/22/2005	0.51 / 0.28	-208.2 / -137.4	0.3	19.6	6.7
	3/2/2006	0.53 / 0.38	441.3 / 448.7	0.0	17.4	6.8
	6/1/2006	NS	NS	NS	NS	NS
	9/28/2006	0.74 / 0.45	-11.9 / -129.5	>0.2	22.6	6.8
MW-2	12/14/2004	0.3 / 2.0	-160 / -148	1.4	18.4	6.9
	3/23/2005	0.1 / 0.1	-133 / -145	2.0	16.6	7.0
	6/22/2005	0.55 / 0.11	-208.5 / -229.6	1.0	22.6	7.0
	3/2/2006	NS	NS	NS	NS	NS
	6/1/2006	NS	NS	NS	NS	NS
	9/28/2006	NS	NS	NS	NS	NS
MW-3	12/14/2004	0.3 / 0.6	171 / 165	0.1	19.4	7.2
	3/23/2005	0.1 / 0.1	81 / 79	0.0	17.7	7.2
	6/22/2005	1.49/1.39	100.7 / 30.3	0.1	20.8	7.1
	3/2/2006	0.49 / 0.17	414.9 / 419.7	0.0	18.7	6.1
	6/1/2006	NS	NS	NS	NS	NS
	9/27/2006	0.64 / 0.39	-49.0 / -103.2	>0.2	22.1	7.0

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(oC)	pH units
MW-4	12/14/2004	0.7 / 0.1	-7 / -41	0.8	18.0	6.8
	3/23/2005	0.1 / 0.4	-17 / -19	1.2	15.9	6.9
	6/22/2005	0.23 / 0.12	-28.6 / -30.9	1.2	20.1	6.7
	3/2/2006	0.58 / 0.56	-169.5 / -205.6	1.2	16.2	7.5
	6/1/2006*	0.31	-78	1.0	18.5	7.0
	9/27/2006	1.88 / 0.51	109 / -1.9	< 0.2	19.4	6.7
MW-5	12/14/2004	0.5 / 2.0	5 / 532	0.1	17.9	7.1
	3/23/2005	0.1 / 0.9	-17 / 0	0.0	15.1	7.2
	6/22/2005	0.52 / 0.27	14.4 / -35.3	0.1	23.8	7.0
	3/2/2006	0.84 / 0.59	436.8 / 449.2	0.0	14.6	6.2
	6/1/2006*	0.49	-34	0.0	19.4	7.16
	9/28/2006	0.75 / 0.78	153.1 / 94.1	>0.2	20.5	6.70
MW-6	12/14/2004	0.3 / 1.2	125 / -25	0.0	15.5	7.2
	3/23/2005	0.1 / 0.8	52 / -4	0.0	13.9	7.2
	6/22/2005	0.53 / 0.49	-22.3 / -18	0.1	22.7	7.0
	3/2/2006	1.53 / 0.51	-116.5 / -189.9	0.2	13.5	8.2
	6/1/2006*	0.50	16	0.0	20.1	8.0
	9/27/2006	0.69 / 0.35	-50.2 / -72.9	>0.2	22.9	7.5

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(oC)	pH units
MW-7	7/18/2005	NS	NS	NS	68.7 / 69.4	7.0 / 7.0
	3/2/2006	2.71 / 1.08	214.3 / -176.9	0.4	14.0	8.0
	6/1/2006*	0.45	62	0.4	20.2	7.15
	9/27/2006	0.67 / 0.26	70.0 / 62.0	>0.2	19.8	7.0
MW-8	3/2/2006	1.20 / 0.85	423.8 / 456.9	0.0	14.1	8.4
	6/1/2006*	0.60	-50	0.0	19.9	10.3
	9/28/2006	0.97 / 0.40	51.9 / 63.9	>0.2	20.2	10.3
MW-9	3/2/2006	0.52 / 0.20	118.0 / 112.6	0.0	15.2	9.4
	6/1/2006*	0.42	-30	0.0	20.5	10.45
	9/28/2006	1.15 / 0.23	78.5 / -6.1	>0.2	21.1	10.80

Notes: mV = Millivolts

mg/L = Milligrams per liter oC = Degrees Centigrade

2.6 / 2.2 = Initial reading (pre-purge) / Final reading (post-purge)

NS = Not sampled * = Post purge value

Table V, Summary of Groundwater Intrinsic Bioremediation Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

			0373 k	scarien Co	uit, Dubiii	, Camorma				
		Method SM 5310B	Method I	E300.1	Method RSK 174	Method 1	E200.7	Method E365.1	Method SM 5210B	Method SM 5220D
Well ID	Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD
			mg/L			μg/L			mg/L	
MW-1	12/14/2004	580	<20	1,100	2.2	NA	NS	NS	NS	NS
	3/23/2005	660	0.41	620	< 0.5	NS	NS	NS	NS	NS
	6/22/2005	660	< 0.1	580	0.91	NS	NS	NS	NS	NS
	3/2/2006	850	<0.71	610	0.65	1,700	5,100	0.19	<3.0	43
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	660	< 0.1	980	0.86	1,900	1,200	0.18	<4.0	15
MW-2	12/14/2004	940	<5.0	220	4,700	NS	NS	NS	NS	NS
	3/23/2005	1,100	0.34	180	3,700	NS	NS	NS	NS	NS
	6/22/2005	990	< 0.1	290	1,800	NS	NS	NS	NS	NS
	3/2/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table V, Summary of Groundwater Intrinsic Bioremediation Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

			0373 k	scaricti Co	uit, Dubiii	, Camorina				
		Method SM 5310B	Method I	E300.1	Method RSK 174	Method	E200.7	Method E365.1	Method SM 5210B	Method SM 5220D
Well ID	Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD
			mg/L			μg/L			mg/L	
MW-3	12/14/2004	610	<20	780	< 0.5	NS	NS	NS	NS	NS
	3/23/2005	590	0.2	560	< 0.5	NS	NS	NS	NS	NS
	6/22/2005	320	1.3	540	< 0.5	NS	NS	NS	NS	NS
	3/2/2006	730	2.0 1	630	< 0.5	1,800	4,400	0.18	<3.0	<10
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	650	1.5	580	< 0.5	1,500	900	0.16	<4.0	<10
MW-4	12/14/2004	680	<10	760	170	NS	NS	NS	NS	NS
	3/23/2005	700	0.3	430	24	NS	NS	NS	NS	NS
	6/22/2005	700	< 0.1	480	71	NS	NS	NS	NS	NS
	3/2/2006	370	0.88 1	490	90	5,300	3,900	0.17	<3.0	33
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	290	<0.1	480	51	4,100	670	0.13	<4.0	22

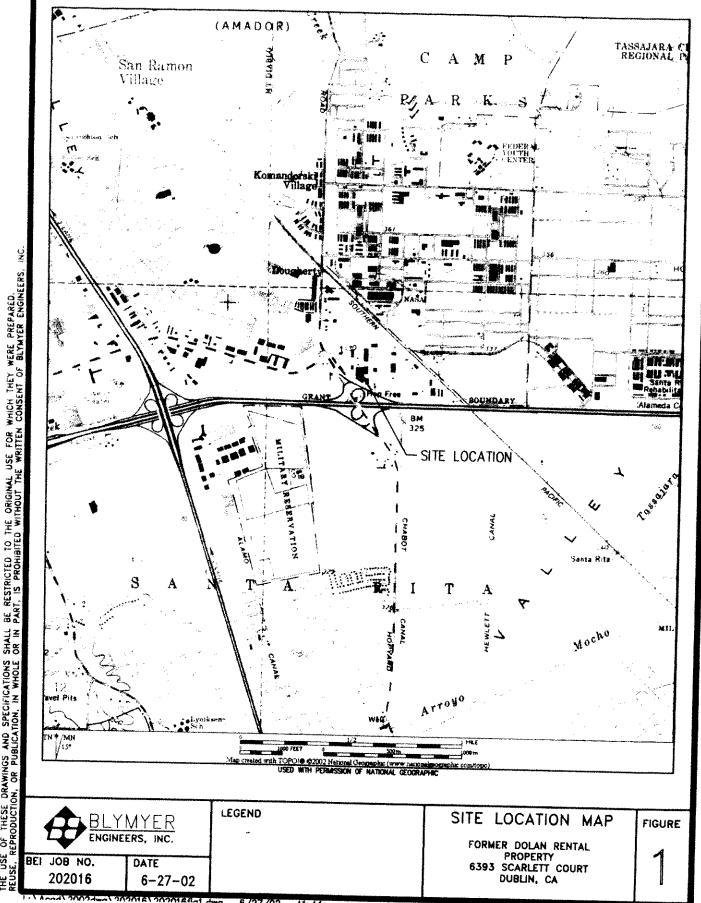
Table V, Summary of Groundwater Intrinsic Bioremediation Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Method SM 5310B	Method F	E300.1	Method RSK 174	Method	E200.7	Method E365.1	Method SM 5210B	Method SM 5220D
Well ID	Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD
			mg/L			μg/L			mg/L	
MW-5	12/14/2004	1,400	<20	1,200	120	NS	NS	NS	NS	NS
	3/23/2005	1,400	1	640	57	NS	NS	NS	NS	NS
	6/22/2005	1,500	< 0.1	590	1.5	NS	NS	NS	NS	NS
	3/2/2006	1,600	<0.7 1	450	490	960	4,000	0.14	<3.0	31
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	1,400	< 0.1	410	24	630	920	0.13	<4.0	15
MW-6	12/14/2004	790	<10	460	180	NS	NS	NS	NS	NS
	3/23/2005	770	0.12	380	60	NS	NS	NS	NS	NS
	6/22/2005	770	< 0.1	400	36	NS	NS	NS	NS	NS
	3/2/2006	470	5.2 1	540	12	480	1,600	0.099	<3.0	21
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	400	<0.1	530	55	410	320	0.079	<4.0	25
MW-7	7/18/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/2/2006	450	<0.7 1	260	1.7	5,500	7,300	0.16	<3.0	26
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	350	<0.1	270	1.1	4,600	1,700	0.13	<4.0	<10

Page 22 of 23

Table V, Summary of Groundwater Intrinsic Bioremediation Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Method SM Method Method Method Method Method E300.1 Method E200.7 5310B **RSK 174** E365.1 SM 5210B SM 5220D Total Nitrate Well ID Sample Date Manganese Potassium CO₂ Sulfate Methane Phosphorous BOD COD (as N) (as P) mg/L μg/L mg/L MW-8 13^{1} 3/2/2006 570 17 < 20 19,000 0.21 9 < 3.0 71 NS NS 6/1/2006 NS NS NS NS NS NS NS 6,000 < 0.04 9/28/2006 5 0.29 290 18 < 20 < 4.0 34 MW-9 11^{1} 3/2/2006 8 890 19 < 20 20,000 < 0.04 < 3.0 61 6/1/2006 NS NS NS NS NS NS NS NS NS 9/28/2006 6.3 < 0.1 120 28 < 20 5,300 < 0.04 < 4.0 42

Notes: SM = Standard Method


 $\begin{array}{ll} mg/L &= Milligrams \ per \ liter \\ \mu g/L &= Micrograms \ per \ liter \end{array}$

 CO_2 = Carbon Dioxide

NS = Not sampled

BOD = Biological Oxygen Demand COS = Chemical Oxygen Demand

¹ = Total Nitrogen (Nitrate, Nitrite, & Ammonia)

BE RESTRICTED TO THE PART, IS PROHIBITED WIT DRAWINGS AND SPECIFICATIONS SHALL ON, OR PUBLICATION, IN WHOLE OR IN THE USE OF THESE REUSE, REPRODUCTION

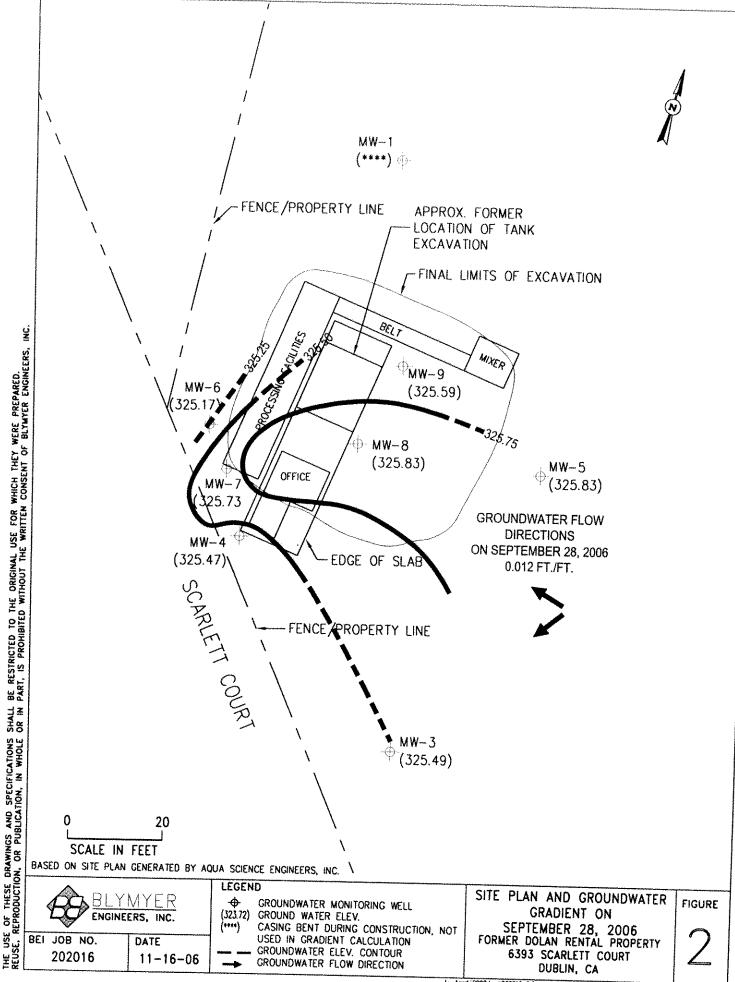
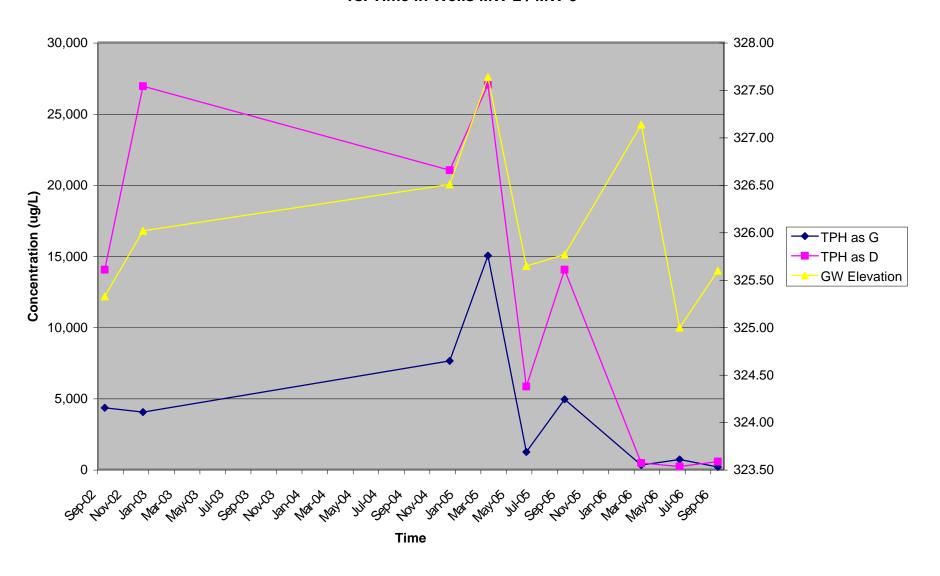



Figure 3: TPH Concentration and Groundwater Elevation vs. TIme in Wells MW-2 / MW-9

Appendix A

Standard Operating Procedures
Blaine Tech Services, Inc.

Blaine Tech Services, Inc. Standard Operating Procedure FLOW CELL PURGING AND SAMPLING

Flow Cell purging provides the user with a constant stream of real time, highly accurate water quality information during the purge process. Typically, this equipment is utilized as part of the Low-Flow sampling process, where parameter stabilization is the most important prerequisite prior to sample collection and/or when very accurate Dissolved Oxygen measurements are required.

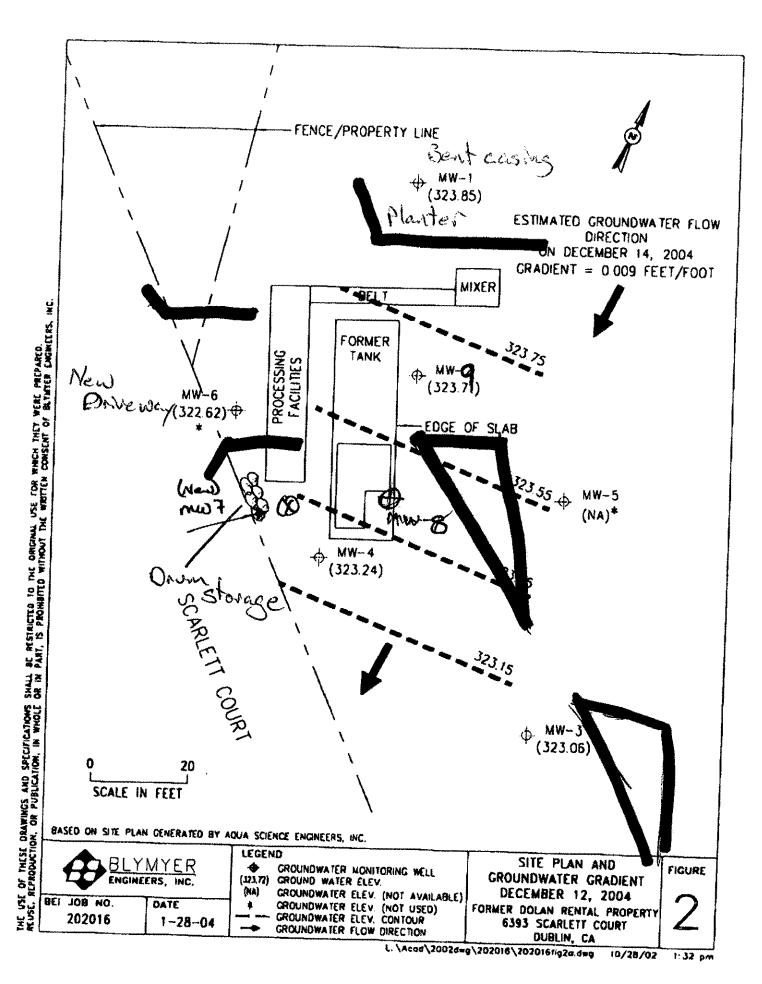
The Flow Cell system consists a flow cell, a sonde, a display unit and various hose lines. Flow cell system brands commonly used by BLAINE include YSI, HORIBA and QED. A separate pump must be used to supply the flow of water to the Flow Cell. The pump must be capable of purging water at rates that are variable and low. The most common purge pump used is the Grunfos Redi-Flo II variable speed electric submersible pump. Both peristaltic and pneumatic bladder pumps are common alternatives.

As the Low-Flow methodology stipulates sampling through the purge tube (as opposed to a bailer) to minimize disturbance to the water column, dedicated, small-diameter tubing is typically used.

Flow cell purging and sampling using dedicated, in-place, pump

- 1. Plug the display unit into the sonde.
- 2. Calibrate the sonde for all parameters using the supplied calibration fluids, following the manufacturer's instruction manual.
- 3. Connect the flow cell to the sonde.
- 4. Without disturbing the water column in the well, connect the water line from the inplace pump to the lower end of the flow cell.
- 5. Connect a water discharge line to the upper end of the flow cell.
- 6. Without disturbing the water column, connect the power source (electricity, compressed air, etc.) to the in-place pump.
- 7. Lower an electronic water level indicator (sounder) slowly into the well until it hits the water surface.
- 8. While monitoring the sounder, commence pumping at a rate that does not induce draw-down in the well.
- 9. Collect parameter measurements from the display unit as per job specifications (ie. every 1 minute, every 3 minutes, etc.).
- 10. Monitor flow cell to make sure it remains free of air bubbles.
- 11. Once parameters have stabilized, adjust the pump rate to the lowest technically feasible setting.
- 12. Disconnect the water line from the lower end of the flow cell.
- 13. Fill the appropriate sample containers.
- 14. Remove power supply and sounder from well.

Appendix B


Purge Drum Inventory Log, Wellhead Inspection Checklist, Well
Gauging Data, and Repair Data Sheet
Blaine Tech Services, Inc.
Dated September 27 and 28, 2006

Office Review by:

PURGE DRUM INVENTORY LOG

CLIENT Blymyer						······································	
SITE ADDRESS 6393 S	carse	stety	Das	Jin _			
STATUS OF DRUM(S) UPON ARRIVAL							
Number of drum(s) empty:			0		a		
Number of drum(s) 1/4 full:		2	0		Ø		
Number of drum(s) 1/2 full:		2	Ø		Ð		
Number of drum(s) 3/4 full:	i	1	0		ì		
Number of drum(s) full:	14	18	0	3	3	6	
Total drum(s) on site:	15	24	6	4	4	6	
STATUS OF DRUM(S) AT DEPARTURE							
Number of drum(s) empty:			Ø			Ø	
Number of drum(s) 1/4 full:		>	Ø				
Number of drum(s) 1/2 full:			Ø				
Number of drum(s) 3/4 full:			l		1		
Number of drum(s) full:	15	19	3	4	8	6	
Total drum(s) on site:	15	24	4	4	6	7	
LOCATION OF DRUM(S)							
Is/Are drum(s) at wellhead(s)?	135	464		405	4	У	
Describe location if drum(s) is/are located elsewhere:	Next Next		W-7 \$1	ruz.	Ct. sià	(
Label drum(s) properly:	Yes	465	163	443	4	\sim	
FINAL STATUS		•		7/		Í	
Number of new BTS drum(s) left on site this event:	D	*	4	9	Z	1	
Date of inspection:	7/18/04	9.6.05	62/27/06	3.2.06	01106	9/19/6	
Logged by BTS Field Technician:	mit	b N	73	DW	PAV	we	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Birmyes (o Dolon Into	<u>k</u>	PROJECT NUM	MBER C 60927-0	we-1	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS
YSJ 556 Flow Cell	05C1520 AK	•	6.0,7.0,10.6 H	0H 717 9.94	4.0,7.0,10.0 At	23.11	V.C
			2900 US	3895	3900 119		we
			23.3.0 mV	236.3 mV	233-0		£
<i>Y</i>	V	V	100%	106.4%	100%	V	0_0_
Much 2100P Turbidinater	2 8444	9127/06 @0930	5.0/80.0/470 NTU	6.1/593/773 NTU	okv	23.10	i~
ART ERF	05C1520 AK	9127106 @0615	4.0,7.0,10.0 pH	0H	4.0,70,100 pt	22.00	he
			3900 US	3405 MS	3900 ds		u
			2330 mV	235.1 mV	233.0 mV		we
1	\lor	1	100% DO	101.2%	100%		L .
thack 21007 Tubidindes	28998	9127106 @0615	5.0,60.0,470 NTU	5.1,595,473 NTU	ok v	U	be

WELLHEAD INSPECTION CHECKLIST

Page of

Date	91:	7/	06	·	_ C	lient	BI.	√ №	New	@	108	lan K	-	m (5		
Site Ad	ddress	63	93	S	<u>narl</u>	e#	CL	(2	yeu Dub	lin						
Job Nu	ımber	0	300	<u>a</u>	7-1	عد	-1			hnicia			: []		1-0 W. J	
	ID - ・3 -女		Well Insp No Corr Action R	ected ·	Wate	er Bailed From allbox	Wellbur Compon Cleane Low Coy Coy Tal	ents ed)	Cap Replaced	Debri Remov From Wellbo	s s s s s s s s s s s s s s s s s s s	Lock Replaced	Ta (ex	3	Well Not Inspected (explain below)	
																-
NOT	ES:	m	w -(110	5/	3,	<u>ත</u> /	9) N	ine	ed	ip	<u> //c</u>	21	nhal	-
mw	-]	1.4	SOX	6	vok	en	a	rd	Red) in	y)	di	Ŧ.	Rin	1	-
	ent	t	row	<u>~</u> ~_Y	ve lec	rec Lb	×	(O 70	nsh	ncy	lon	as, v	Th.	Sevilie	crly Si	
	90	\$	lo	ck		ep	laco	ec	<u>/</u>	· · · · · · · · · · · · · · · · · · ·						

9/28/06

MU-1

· Boried under 25 feet about . Well box comented full by solidified grey dirt · Cap & lock had to be chisted free and pryed loose . Replaced cap & lock

· Casing is sawely bent. all otherwiewells mw(3,5,8,9,2)

(.5-1.5) deep.

total 5 buried mw-(1,3,5,8,9)

WELL GAUGING DATA

Project # 060927-well Date 9/28/06 Client Blymyer

Site Dublin Concrete / Delan Pentals 6393 Scartett Ct, Oublin

		Well		Depth to	Thickness of	Volume of Immiscibles	1		Survey Point:	
Well ID ,	Time	Size (in.)	Sheen / Odor	Immiscible	Immiscible Liquid (ft.)	Removed	Depth to water (ft.)	Depth to well bottom (ft.)	TOB or	Notes
mw-h	113.1	2					3,34	19.21		
mw-3	0738	2					3.88	18.35		
mw.4	0718	2					4.23	18.63		
mw.5	0754	2					3,33	9.74		
mw-6	0732	2	West of the Wasternand of the Parkey				4.85	9.81		
mw-7	0726	2					4.52	39.91		
mu-8							3.10	20.00		
mw-9	0748	4					3.08	19.83	J.	
<u>-∕8€</u> ∧	<u>~~-</u> 1	_30	veed	after	3 ~	lls had	been mier	opulando	be to	
arce	sesibil	1		***************************************						
	·····									

WELL GAUGING DATA

Project #060927-20-1 Date 9/27/06 Client Blymyer

Site Doblin Concrete (Dolan Lentels)

Well ID ्	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
mw-1										
mw.3	1313	2					3.87	18-35		
mw-4	0854	2					4.20	18163		
nw-5										
nw-6	0906	2					4.85	9.81		
	0900	2					4,50	39.91		
w-8										
w-9										
	0	1/2	7/	06-	<u> </u>	aas	ce d	1 40	www.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a	•
	4-	11						Jo 1	-1 /	
5	14	((\ \ \ \ \	we	いち	CWE	-aa	2851	ble	^
to	11 4	, O ?	nd	ot	javo	sites	Don	e 91	28/	06.
								**************************************	****	<u> </u>
									T-181-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

Project #:	000927	-we-1		Client: 🖔	bymyn	101	Joslan Rock	1-				
Sampler:	we			Start Date:								
Well I.D.	· MW	- 1		Well Dian	_	3 4						
Total We	ll Depth:	19.2	1	Depth to V	Vater	Pre: 3.	34 Post:	3.60				
Depth to	Free Produ	act:		Thickness	Thickness of Free Product (feet):							
Reference	ed to:	(PVC)	Grade	Flow Cell	Flow Cell Type: YSI 556							
Purge Metho Sampling M	ethod:	2" Grundfe Dedicated			Peristaltic Pump Bladder Pump New Tubing Other							
Flow Rate:	200.	/- ->-			Pump Deptl	h:	14'					
Time	Temp.	рН	Cond. (mS or (S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 166)	Observations	Jores			
11248	22.24	7.26	4490	63	0.74	-11.99	0	clear	3.34			
1131	22.40	7.02	4462	72	0.54	~73.9	600		3.5%			
1134	22.47	6.89	4453	73	0.46	-102.7	1,200		3,54			
1137	4413/				0.47	-14.6	1,800		3,56			
1140					1	 	2,400		358			
1143			4424	53	1		3,000		3,59			
1146	22.56	680	4420	49			3,600		3,60			
				_	<			-	1			
				fer-	XC)- Q	mg/L					
Did well o	dewater?	Yes (\mathfrak{D}_{0}	N.	Amount a	ictually e	vacuated: S	.6 L				
Sampling	Time:	1156	2				7128106					
Sample I.	D.: Mu	٦-			Laborator	y: Ma	Campbell					
Analyzed for: TPH-G BTEX MT												
Equipmer	nt Blank I.	D.:	@ Time		Duplicate	: I.D.:		***************************************	****			
				***************************************			**************************************					

			WELL MC	DIALT (NICT)	NODAL	rough)	L			
Project #	: 0609	27-WC.		Client: 🗸	Slymyer	@ Dola	n hertales			
Sampler				Start Date	=					
Well I.D	:.ww:	-3			neter: 💋		6 8			
1	ell Depth:			Depth to \	Depth to Water Pre: 3.87 Post, 31					
	Free Prod		·		Thickness of Free Product (feet):					
Referenc	ed to:	0	Grade		Flow Cell Type: YSI 56 B					
Purge Meth Sampling M Flow Rate:		2" Grundfi Dedicated	Tubing		Peristaltic Pump New Tubing Other Pump Depth:					
						<u>-</u>				
Time	Temp.	pН	Cond. (mS or µ G)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or)	Observations		
1512	21.85	7-31	3661	38	0.64	-49.0		clear 13.8		
(315	21.76	7.09	3619	29	0.40	-86,5	600	1 14:		
1318	21.78	7.67	3613	21	0-34	-96.0	1,200	(A).		
1321	21.79	7.03	3606	19	0.31	-956	1,800	14.		
1824	21.72	7.03	3611	17	0.40	-102.0	<u> </u>	1 / 44.		
1327	21.96	7.04	3597	16	0.41		3,000	14.		
1330	22,11	7.02	3593	16	0.39		3,600			

					1	<		***************************************		
					(227	0.2	a la		
Did well dewater? Yes (\$10 Amount actually evacuated: 3.6 L										
Sampling Time: 1337 Sampling Date: 9/27/06										
Sample I.D.: Me Carpbell Laboratory: Me Carpbell										
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D			See COC			
Equipmer	nt Blank I.I	D.:	(a) Time	****	Duplicate					
			***************************************		*					

Project #:	ampler: WC				Client: Blymyer @ Dolon Restorly						
				Start Date	9/2	7/06					
Well I.D.	: mw	4		Well Dian	_	3 4	6 8				
Total We	ll Depth:	18.63	>	Depth to V	Vater	Pre: 4.2	Post:	4.44			
Depth to	Free Produ	uct:			Thickness of Free Product (feet):						
Reference	ed to:	৶	Grade	Flow Cell Type: YSI 556							
Purge Metho Sampling M	ethod:	2" Grundf Dedicated	Tubing		Peristaling Pump Bladder Pump New Tubing Other						
Flow Rate:		mllain	***************************************		Pump Dept	h: 1	-13.51	**************************************			
Time	Temp.	рН	Cond. (mS or 🙉)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Observations/D7			
0940	19.64	6.84	3201	116	1.08	109.0	Ø	cloudy 14.			
0943	19.45	6.71	3327	76	0.44	22.6	600	clas 14			
0946	19.38	6.67	3365	45	0.37	10.8	1,200	1 /41.2			
0949	19.40	6.66	3367	35	0.37	5.01	1,800	14,2			
095.2	14.43	6.67	3361	25	0.42	2-0	2,400	Ju.			
0955	14.37	6.67	3366	21	0.48	-1.2	3,000	14,2			
6958	19.38	6 ·68	3367	19	0.51	-1.9	3,600	11/10/4			
		Pos	Pag	e f	e2+ <	(0.3	male				
			•			,					

Did well d	ewater?	Yes (N)		Amount a	ctually e	vacuated: 3.	64			
Sampling '	Time:	100	5		Sampling	Date:	9128710	6			
Sample I.I).: Mh	ا - د			Laborator	y: Mc(Campbell				
Analyzed	for:	ТРН-G	BTEX MTB				ee coc				
Equipment	t Blank I.I	D.:	@ Time		Duplicate						

Project #	*: 06093	17-WC	-/	Client:	Bhym,	e~ @1	Delan Routal	5			
Sampler				1	: 912						
Well I.D	: mw	-5		Well Diar	neter: 🖄	3 😸	6 8				
Total Wo	ell Depth:	9.74		Depth to V	Water	Pre: S	33 Post:	: 3,88	*******		
Depth to	Free Prod	uct:		Thickness	of Free Pr	**************************************					
Reference	ed to:	(PVC)	Grade	T	Flow Cell Type:						
Sampling N	Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: 100 ml/ml				Peristaltic Pump Bladder Pump New Tubing Other Pump Depth: ~ 7.5						
Time	Temp.	рН	Cond. (mS or KS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. o(m))	Observations	D7W=		
0944	19.86	6.14	4282	25	0.75	153.)	8	clear	3.33		
0947	19.95	6.46	4281	15	0.85	120.0	300	1 /	8.61		
0950	20.01	6.59	4283	14	0.88	106.3			3.76		
0953	20.15	6.66	4277	13	0.90	9199.8	1200900		379		
0956	20.32	6.65	4267	9	0.90	97.2	1,500		\$ 82		
0959	20.40	664	4263	8	0.83		1,500		3,85		
1002	26.47	6.46	4257	8	0.78	94.	1,800	V /	3,88		
						· · · · · · · · · · · · · · · · · · ·			M		
					<				una		
·				Fe2+	\nearrow \bigcirc	٠2	mell				
Did well	dewater?	Yes (No.		Amount a	/06 ctually e	vacuated: [,	87			
Sampling	Time:	100	6				128/06				
Sample I.	D.: Mu	~5			Laborator				T		
Analyzed	for:	ТРН-G	BTEX MTB				ee coc		1		
Equipmen	ıt Blank I.I	D.:	@ Time		Duplicate	I.D.:			A		
									ئ. ا		

Project #:	0600	127-6	X-1	Client: &	Slyony	er-o (Dolar Red	Js			
Sampler:	we		A	Start Date							
Well I.D.	:mw-	-6		Well Dian		3 4	6 8				
Total We	ll Depth:	9.81		Depth to V	Vater	Pre: 4	.85 Post:	5.68			
Depth to	Free Produ	act:		Thickness	Thickness of Free Product (feet):						
Reference	ed to:	(PV)	Grade	Flow Cell	Туре:						
Purge Metho Sampling M Flow Rate:	ethod:	2" Grundfi Dedicated	•	nl/nih	Peristablic F New Tabing Pump Depti	3	Bladder Pump Other 7 • 5 • 7				
Time	Temp.		Cond. (mS or 68)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. o mL)	Observations/D76			
1137	21.64	7,48	4012	10	0.69	-50,2	0	clear /4.			
1146	21-92	7,50	4000	9	6.43	-74.9	600	1 4.0			
1143	22.00	7.50	4009	7	0.39	-77.6	1200	5.3			
4146	22-71	7.52	3994	7	0.41	-69.8	1,800	A C			
1149	22.77	7.52	3994	7	0-37	-71.2	3, 100	6.63			
1152	82-86	7.52	3993	U	0.36	-70.7	2400 23,000	8.69			
1155	2291	7.52	3993	7	6.35	-729	2,600	16.61			

Dre	المحادا	Claus	tola	100ml/n							
·				100-176	~	fo	24 × 0.2	ugle			
Did well d	lewater?	Yes (<u> </u>		Amount a	ctually e	vacuated: 3,7	8t=2.7L			
Sampling	Time:	1200	>		Sampling	Date: C	1127/06				
Sample I.I	D.: Mu	J-6	· · · · · · · · · · · · · · · · · · ·		Laborator	y: Mc	Campbell				
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D		Other: <	see coc				
Equipmen	t Blank I.I	D.:	@ Time		Duplicate						

Project #	#:0609	<u> 27-we</u>	~ /	Client: B	lymyer	2 Dola	n Renfals				
Sampler				Start Date	9/27	106					
Well I.D	::Mw	7		Well Dian		3 4	6 8				
Total W	ell Depth:	89.9	1	Depth to \	Water	Pre: 4-1	50 Post:	4.68			
Depth to	Free Prod	uct:			hickness of Free Product (feet):						
Reference	ed to:	Øс	Grade	Flow Cell	Flow Cell Type: YSI 556						
Sampling N	Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: ~ 200 ~ 1/a~				Peristate Pump Bladder Pump New Tubing Other Pump Depth: ~35						
Time	Temp.	 	Cond. (mS or 🎉)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. orm)	Observation (172			
1035	19.64	6.90	3591	18	0.67	70.0	Ø	clear /41.5			
1038	19.68	6.92	3587	9	0.31	68.5	600	1/464			
1041	19.76	6.93	3592	В	0.26	68.8	1,200	121.61			
1044	19.71	6,94	3593	9	0.23	67.3	1,808	1466			
1047	19.69	6,04	3595	10	0.25	67.3	2400	146			
1050	19.76	695	3601	9	0.26		3,000	121.6			
1053	19.79	6,96	3613	9	0.26		3,600	1 104.60			
								To the second			
M-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				***************************************			(
					6	e247	60.2 m	2/2			
Did well	dewater?	Yes (6	· · · · · · · · · · · · · · · · · · ·	Amount a	70/2 ctually e	vacuated: S	.64			
Sampling	Time:	1100)				127/06				
Sample I.	D.: M1	<u> ハ- フ</u>			Laborator						
Analyzed	for:	TPH-G	BTEX MTB				Bee coc				
Equipmer	nt Blank I.I	D.:	@ Time		Duplicate						
						···					

Project #: 060927-wc-1	Client: &	Lyma ex	00	slan Apontal					
Sampler: WC	Start Date:		8/06						
Well I.D.: mw-96	Well Dian	neter: 2	3 4) 6 8					
Total Well Depth: 20-00	Depth to V	Vater	Pre: 3	Post:	3.11				
Depth to Free Product:		Thickness of Free Product (feet):							
Referenced to: EVE Grade		Flow Cell Type: 1556							
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing		Periodatid Pump Bladder Pump New Tubing Other							
Flow Rate: ~200 ~1		Pump Depti	n:	15'	*************************************				
Time Cond. (mS or 168)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (n).)	Observations /				
0806 19.69 9.42 245%	20	0.97	51.9	Ø	clear /3.10				
0809 19.89 10.20 2250	18	0.58	6.6	600	1 /8.12				
0812 20.05 10.31 2190	15	0.55	6.9	1,200	9.13				
0815 20.17 10.35 2136	13	0.54	19.7	1,800	3.12				
0818 20.22 10.34 2128	11	0.51	33.9	2,400					
0821 20.23 10.29 2137	10	0.39	61.8	3,000	3.1				
0824 20.25 10.27 2139	10	0.40	63.9	3,600	3.11				

			<						
	+	eat	X O.	2 mg/					
Did well dewater? Yes No Amount actually evacuated: 3.64									
Sampling Time: つる 30		······································	***************************************	7/28/06					
Sample I.D.: prw- 8				Campbell.					
Analyzed for: TPH-G BTEX MTB	•								
Equipment Blank I.D.: @ Time		Duplicate	I.D.:	**************************************					

	**************************************		* * * * * * * * * * * * * * * * * * * *			r mitting i	L _				
Project #	:0609	se-1	Client: (Slymy,	~ @ [Slan Revisale					
Sampler				Start Date	: 9/28	106					
Well I.D	.: MW-	9		Well Dian		3 B	6 8				
Total We	ell Depth:	Q, 8	33	Depth to \	Water	Pre: २	ast Post:	3.23			
Depth to	Free Prod	uct:			Thickness of Free Product (feet):						
Referenc	ed to:	eve	Grade	Flow Cell	Flow Cell Type: YSI 556						
Purge Meth Sampling N	Method:	2" Grunds Dedicated	Tubing		Peristaltic Pump Bladder Pump New Tubing Other						
Flow Rate:	~ 200	<u> </u>	<u> </u>		Pump Dept	h:	15/1				
Time	Temp.	pH	Cond. (mS or 68)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Observations/074			
0845	21.09	9.82	1048	12	1.15	78.5	Ø	clear Ba			
0848	21.22	10.05	1071	7	1.44	66,6	600	1 /3.1			
0851	21.43	10.31	1146	8	0.70	57.1	1,200	18,1			
0854	21.41	10.56	1266	7	0.36	34.0	1,800	/3.2			
0857	2113	10-73	1384	7	0.44	3,3	2,400	/3.2			
0900	21.16	16.77	1406	G	0.27	-3.8	3,000	3.2			
0903	21.13	l	1426	6	0.23	-6.1	3,600	3.2			

			,	0 0+	_<_						
				fe2+	R C	1	mg/L				
Did well	dewater?	Yes	<u> </u>		Amount a	ctually e	vacuated:	3.64			
Sampling	Time:	09	10		Sampling	Date: 9	128/06				
Sample I.	D.: mu	1-9			Laborator		Campbell				
Analyzed	for:	BTEX MTB	E TPH-D	2000							
Equipme	nt Blank I.	D.:	@ Time		Duplicate		***************************************	- Annual Control of the Control of t			

Appendix C

Analytical Laboratory Report McCampbell Analytical, Inc. Dated October 4 and 11, 2006

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Kentais	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Reported: 10/04/06
	Client P.O.:	Date Completed: 10/04/06

WorkOrder: 0609558

October 04, 2006

Dear Mark:

Enclosed are:

- 1). the results of 4 analyzed samples from your Dublin Concrete/Dolan Rentals project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

"When Quality Counts"

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan	Date Sampled:	09/27/06
1829 Clement Avenue	Nonais	Date Received:	09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted	09/29/06-09/30/06
	Client P.O.:	Date Analyzed:	09/29/06-09/30/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTRE*

ab ID	od: SW5030B			rtical methods: SV				Work Ord	er: 060	9558
ao 1D	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	%
01A	MW-3	W	ND	ND	ND	ND	ND	ND	ı	1
02A	MW-4	W	1400,a	ND<15	8.5	7.3	2.4	ND	1	
)3A	MW-6	w	ND	ND	ND	ND	ND	ND	1	1
04A	MW-7	w	ND	ND	ND	ND	ND	ND	1	1
		111 mm 111 112 113 114 114 114 114 114 114 114 114 114	H H 10000 1111 (gr. grav, 1111 (gr. gr. H H 10000 111 111000 111 111000 111 111	ende all philips agress where it is no constant annual systematical and		annual of the saids of annual of the saids o				
								7.77		ļ
			·A···							
						, , , , , , , , , , , , , , , , , , ,	1,7		, , , , , , , , , , , , , , , , , , , ,	<u> </u>
***************************************	1974, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	111 _{4 11} 14 ₁ 15	·				//		

								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19-16-1	·			7,01			
	191 (1) - 191 (1) - 194 (1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				······································						
				· · · · · · · · · · · · · · · · · · ·					***************************************	۸
Reportin	g Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μ
	is not detected at or	9	NA	NIA	NI A	N. 1. 4		3.7.1		P*2

	ND means not detected at or	ļ		2.0	0.5	0.5	0.5	0.5	1	μg/L	İ
	above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	
									}		ĺ
- 3	* water and vapor samples and all TCLP.	Pr SDI Da	vtracte ara ronom	tod in wall sails	t 1 /1: t	; ; a		****			ì

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DHS ELAP Certification Nº 1644

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Concrete Dotal Remais	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/27/06
	Client P.O.:	Date Analyzed 09/28/06-09/30/06

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method: SW35		Analytical methods: SW8015C				
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS	
0609558-001B	MW-3	w	ND	1	105	
0609558-002B	MW-4	W	220,d,b	1	106	
0609558-003B	MW-6	w	61,b	1	113	
0609558-004B	MW-7	W	ND	1	106	
	and the following and an an analysis and a second a second and a second a second and a second a second and a second and a second and a			14 July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Section 1						
	* N					
				777		
races of companies and the man frames, the man the man of the second of						
					,,	
				77,7		
n = 2 ¹ 11 ¹ 11						

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

An An

_Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation; a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Constitution point remains	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed 09/28/06

Methane*

Extraction method: RSK 174 Analytical methods: RSK174 Work Order: 0609558 Lab ID Client ID Matrix Methane DF % SS 0609558-001D MW-3 W ND 1 N/A 0609558-002D MW-4 W51 40 N/A 0609558-003D MW-6 W 55 40 N/A 0609558-004D MW-7 W 1.1 I N/A

Reporting Limit for DF =1; ND means not detected at or	W	0.5	μg/L
above the reporting limit	S	NA	NA
* water samples are reported in μg/L.			

DHS ELAP Certification Nº 1644

Angela Rydelius, Lab Manager

"When Quality Counts"

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue		Date Received 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/27/06
	Client P.O.:	Date Analyzed 09/28/06-09/29/06

Inorganic Anions by IC*

Extraction method: E300.1

Analytical methods: E300.1

traction method		Analytical methods: E300.1			Work Order:		0609558		
.ab ID	Client ID	Matrix	Nitrate as N	DF	Nitrate as NO3	DF	Sulfate	DF	% SS
001G	MW-3	W	1.5	1	6,8	I	580	100	104
002G	MW-4	W	ND	1	ND	1	480	50	104
003G	MW-6	W	ND	1	ND	1	530	100	102
004G	MW-7	w	ND	1	ND	1	270	50	105
	A	~~~~					·····	-	
								10 A A	
~~~									
	-/^***								······································
	, , ,	A. (1) A.	1,4,4,4,				////_du.h.		
*****	V-111 ⁴ 11 11 11 11 11 11 11 11 11 11 11 11 11	v	7° C	,,,					,
Reportin	g Limit for DF =1;	W	0.1		0.45		0.1		ma/I
ND means not detected at or above the reporting limit		S	NA		NA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NA		mg/I mg/K

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.



^{* [}Nitrate as  $NO3^{-}$ ] = 4.4286 x [Nitrate as N]

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted/reporting limit raised due to high inorganic content/matrix interference; k) sample arrived with head space.





1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fay: 925-252-9269

"When Quality Counts"				Telephone: 8	77-252-9262 Fax: 92	5-252-9269	
Blymyer Engineers, Inc.		Client Project ID: Dublin Concrete/Dolan Rentals		Date Sampled:	09/27/06		
1829 Clement A	venue	Concrete/Dolan Remais		Date Received:	09/27/06		
Alameda, CA 94	501-1395	Client Contact:	Mark	k Detterman	Date Extracted	09/27/06-10	)/02/06
		Client P.O.:			Date Analyzed:	10/02/06	
	j	Biochemical Ox	vgen l	Demand (BOD)*			
Analytical Method: SM5210B			- C			Work Order: 00	509558
Lab ID	Client ID	М	atrix		BOD		DF
0609558-001E	MW-3	, , , , , , , , , , , , , , , , , , ,	W		ND		I
0609558-002E	MW-4		W		ND		1
0609558-003E	MW-6	11 10 11 11 11 11 11 11 11 11 11 11 11 1	W		ND		1
0609558-004E	MW-7		W		ND		1
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· · · · · · · · · · · · · · · · · · ·					7-7- man		***************************************
						.,,,,	

Reporting Limit for DF = 1; ND means not detected at or	W	4.0 mg/L	
above the reporting limit	S	NA	

^{*} water samples are reported in mg/L.



i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to insufficient sample amount; p) see attached narrative.





"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Concrete/Dolan Remais	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed: 09/28/06

#### Chemical Oxygen Demand (COD)*

Analytical Method: SM5220D Work Order: 0609

Maryica Method, SM522017			Work Order: 0609558		
Lab ID	Client ID	Matrix	COD	D	
0609558-001F	MW-3	W	ND	1	
0609558-002F	MW-4	W	22	1	
0609558-003F	MW-6	W	25	1	
0609558-004F	MW-7	w	ND	1	
				111111111111111111111111111111111111111	
annata V A Sunst inmentione materials (a School and a management					
e de Andread e commo de activitações propries de la commo de activitações propries de la commo de la commo de a					
e to for the control of the control of the foreign for the control of the control			2,500		
				, m,	
,					
7 100					

	······		
Reporting Limit for DF = 1; ND means not detected at or	W	10 mg/L	
above the reporting limit			
	5	NA	

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.





"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Constitute Dotain Actuals	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/27/06
	Client P.O.:	Date Analyzed: 10/02/06

#### Inorganic Carbon as Carbon Dioxide*

Analytical Method: SM5310 B

Work Order: 0609558

ranayawa memou, 3m3340 b		Wor	Work Order: 0609558	
Lab ID	Client ID	Matrix	IC as CO2	DF
0609558-001C	MW-3	W	650	5
0609558-002C	MW-4	W	290	5
0609558-003C	MW-6	W	400	5
0609558-004C	MW-7	w	350	5
e specification and a specific				
		4944	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			·	
			~~~	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
				-,
	· · · · · · · · · · · · · · · · · · ·			

Reporting Limit for DF = 1; ND means not detected at or	W	2.6 mg/L	
above the reporting limit	S	NA	

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg.

i) liquid sample contains greater than ~1 vol. % sediment.

^{*} Non-Purgeable Organic Carbon=NPOC; TOC=Total Organic Carbon; DOC=Dissolved Organic Carbon; POC=Purgeable Organic Cabon; IC=Inorganic Carbon.

"When Quality Counts"

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/27/06
1829 Clement Avenue	Concrete/Dolan Remais	Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 10/03/06
	Client P.O.:	Date Analyzed: 10/03/06

Total Phosphorous as P*

Analytical Method: E365.1

Work Order: 0609558

Lak ID			work Order: 0609558		
Lab ID	Client ID	Matrix	Total Phosphorous as P	DF	
0609558-001F	MW-3	w	0.16	I	
0609558-002F	MW-4	W	0.13	1	
0609558-003F	MW-6	W	0.079	1	
0609558-004F	MW-7	W	0.13	1	
		1400000			
\$ \$4555 of the section of the sectio		4.00			
				The state of the s	
				φ,σ	
				,,,,,	

Reporting Limit for DF = 1; ND means not detected at or	W	0.04 mg/L
above the reporting limit	S	NA

^{*}water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

i) liquid sample contains greater than ~1 vol. % sediment; J) analyte detected below quantitation limits.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin	Date Sampled: 09/27/06
,	Concrete/Dolan Rentals	Date Sampled: 09/2//00
1829 Clement Avenue		Date Received: 09/27/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/27/06
	Client P.O.;	Date Analyzed: 09/29/06

VI	et	я	S

Extraction method: E200.8	Analytical methods: E200.8	Work Order: 0609558
	. manj irott mottogs, £250.6	WEIK LEGET DODANS

	. 12200.0		Ana	iyircal methods: E200,8		Work Order: (609558
Lab ID	Client ID	Matrix	Extraction	Manganese	Potassium	DF	% S
001H	MW-3	W	TTLC	1500	900	1	106
002H	MW-4	w	TTLC	4100	670	1	113
003H	MW-6	W	TTLC	410	320	1	112
004Н	MW-7	W	TTLC	4600	1700	1	110
50 50 50 50 50 50 50 50 50 50 50 50 50 5		, a _ , a					
* = * · · · · · · · · · · · · · · · · ·						Antonio Antonio I	
	on the second transport of a game, i.e., and it is a second transport to second or each of the second of the second or each or each of the second or each or						
e de como como esta esta esta esta esta esta esta esta							
						The state of the s	<u> </u>
		3					
			1,				
	, 11 HAVA						
					4,000		
Reporti	ng Limit for DF =1; ns not detected at or	W	TILC	20	20	u	<u></u> g/L
ND mea	iis not detected at of		TTLO	2.5.4			-

	ND means not detected at or	W	TILC	20	20	μg/L
	above the reporting limit	S	TTLC	NA	NA	NA
ł						

^{*}water samples are reported in ug/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/soild samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

 \mathbb{W}

Angela Rydelius, Lab Manager

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609558

EPA Method: SW8021B	/8015Cm E	xtraction	: SW503	0B		BatchID: 23977			Spiked Sample ID: 0609553-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	SD LCS	s LCSD	LCS-LCSD	Acceptance Criteria (%)			
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) ^E	ND	60	103	106	2.98	101	103	2.21	70 - 130	30	70 - 130	30
МТВЕ	ND	10	80.2	77.8	2.99	82.8	85.7	3.42	70 - 130	30	70 - 130	30
Benzene	ND	10	110	109	0.946	108	115	6.22	70 - 130	30	70 - 130	30
Toluene	ND	10	109	106	2.83	107	113	5.37	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	112	112	0	111	118	5.96	70 ~ 130	30	70 - 130	30
Xylenes	ND	30	123	123	0	123	130	5.26	70 - 130	30	70 - 130	30
%\$\$;	106	10	106	104	2.62	104	111	6.39	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23977 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001A	9/27/06 1:37 PM	9/30/06	9/30/06 12:40 PM	0609558-002A	9/27/06 10:05 AM	9/29/06	9/29/06 9:52 PM
0609558-003A	9/27/06 12:00 PM	9/29/06	9/29/06 10:22 PM	0609558-004A	9/27/06 11:00 AM	9/29/06	9/29/06 10:51 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609558

EPA Method: SW8015C	BatchID: 23982 Spiked Sample			ple ID:	N/A	***************************************						
Analyte	Sample	Sample Spiked MS MSD MS-		MS-MSD	LCS	S LCSD LCS-LCSD		Acceptance Criteria (%)				
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	97.5	95.2	2.37	N/A	N/A	70 - 130	30
%\$\$:	N/A	2500	N/A	N/A	N/A	104	101	3.08	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23982 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001B	9/27/06 1:37 PM	9/27/06	9/28/06 6:38 PM	0609558-002B	9/27/06 10:05 AM	9/27/06	9/28/06 7:46 PM
0609558-003B	9/27/06 12:00 PM	9/27/06	9/30/06 8:35 AM	0609558-004B	9/27/06 11:00 AM	9/27/06	9/28/06 10:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR RSK174

W.O. Sample Matrix: Water

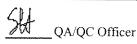
QC Matrix: Water

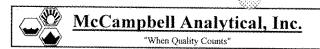
WorkOrder: 0609558

EPA Method: RSK174	EPA Method: RSK174 Extraction: RSK 174							BatchID: 23984 Spik			piked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	%)	
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Methane	N/A	1.76	N/A	N/A	N/A	102	104	1.58	N/A	N/A	80 - 120	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23984 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001D	9/27/06 1:37 PM	9/28/06	9/28/06 3:51 PM	0609558-002D	9/27/06 10:05 AM	9/28/06	9/28/06 6:07 PM
0609558-003D	9/27/06 12:00 PM	9/28/06	9/28/06 6:25 PM	0609558-004D	9/27/06 11:00 AM	9/28/06	9/28/06 5:35 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609558

EPA Method: E300.1	E	Extraction: E300.1				BatchID: 23951 Spiked Sample ID: N/A					N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Α	cceptar	ice Criteria (9	%)
	mg/L mg/L % Rec. % Rec.			c. % RPD % Rec. % Rec			% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Nitrate as N	N/A	1	N/A	N/A	N/A	95.9	96.4	0.568	N/A	N/A	85 - 115	15
Nitrate as NO3	N/A	4.4	N/A	N/A	N/A	95.9	96.4	0.568	N/A	N/A	85 - 115	15
Sulfate	N/A	1	N/A	N/A	N/A	101	97.5	3.22	N/A	N/A	85 - 115	15
%\$\$:	N/A	0.10	N/A	N/A	N/A	96	95	0.946	N/A	N/A	90 - 115	10

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23951 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001G	9/27/06 1:37 PM	9/27/06	9/28/06 7:57 PM	0609558-001G	9/27/06 1:37 PM	9/27/06	9/29/06 10:36 PM
0609558-002G	9/27/06 10:05 AM	9/27/06	9/28/06 8:28 PM	0609558-002G	9/27/06 10:05 AM	9/27/06	9/28/06 10:35 PM
0609558-003G	9/27/06 12:00 PM	9/27/06	9/28/06 9:00 PM	0609558-003G	9/27/06 12:00 PM	9/27/06	9/29/06 11:08 PM
0609558-004G	9/27/06 11:00 AM	9/27/06	9/28/06 9:32 PM	0609558-004G	9/27/06 11:00 AM	9/27/06	9/28/06 11:39 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SM5210B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609558

EPA Method: SM5210B	E	xtraction	SM5210)B		Batchil	D: 23944	S	Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (%	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
BOD	N/A	198	N/A	N/A	N/A	102	105	2.68	N/A	N/A	80 - 120	16

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23944 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001E	9/27/06 1:37 PM	9/27/06	10/02/06 2:08 PM	0609558-002E	9/27/06 10:05 AM	9/27/06	10/02/06 2:26 PM
0609558-003E	9/27/06 12:00 PM	9/27/06	10/02/06 2:44 PM	0609558-004E	9/27/06 11:00 AM	9/27/06	10/02/06 3:02 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SM5220D

W.O. Sample Matrix: Water

QC Matrix: Water

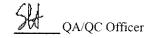
WorkOrder: 0609558

EPA Method: SM5220D	E	xtraction:	SM5220	D		Batchl	D: 23985	S	Spiked Sample ID: 0609558-001F			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Α	cceptan	ce Criteria (º	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
COD	ND	400	101	103	1.20	98.9	100	1.23	80 - 120	20	90 - 110	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23985 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001F	9/27/06 1:37 PM	9/28/06	9/28/06 1:37 PM	0609558-002F	9/27/06 10:05 AM	9/28/06	9/28/06 1:43 PM
0609558-003F	9/27/06 12:00 PM	9/28/06	9/28/06 1:49 PM	0609558-004F	9/27/06 11:00 AM	9/28/06	9/28/06 1:55 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SM5310B

W.O. Sample Matrix: Water

QC Matrix: Water

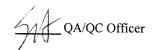
WorkOrder: 0609558

EPA Method: SM5310 B	E	xtraction	: SM5310	В		Batchil	D: 23983	S	Spiked Sample ID: 0609558-004C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
IC as CO2	350	36.7	118	116	0.232	103	102	0.585	70 - 130	20	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23983 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001C	9/27/06 1:37 PM	9/27/06	10/02/06 7:58 PM	0609558-002C	9/27/06 10:05 AM	9/27/06	10/02/06 8:04 PM
0609558-003C	9/27/06 12:00 PM	9/27/06	10/02/06 8:11 PM	0609558-004C	9/27/06 11:00 AM	9/27/06	10/02/06 8:19 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR E365.1

W.O. Sample Matrix: Water

QC Matrix: Water

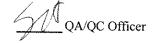
WorkOrder: 0609558

EPA Method: E365.1	E	xtraction	: E365.1			Batchl	D: 23986	S	piked San	ple ID:	0609558-0	01F
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (º	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Total Phosphorous as P	0.16	0.80	86.2	88	1.66	93.1	92.7	0.363	80 ~ 120	20	90 - 110	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23986 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001F	9/27/06 1:37 PM	10/03/06	10/03/06 1:21 PM	0609558-002F	9/27/06 10:05 AM	10/03/06	10/03/06 1;22 PM
0609558-003F	9/27/06 12:00 PM	10/03/06	10/03/06 1:23 PM	0609558-004F	9/27/06 11:00 AM	10/03/06	10/03/06 1:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

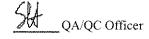
WorkOrder: 0609558

EPA Method: E200.8	E	xtraction	: E200.8	***************************************		Batchl	D: 23976		Spiked Sample ID: 0609542-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD RPD	
Manganese	98	100	89.1	91.1	1.06	100	102	2.08	75 - 125	20	85 - 115 20	
Potassium	14,000	100	90	100	0.0722	88.5	93.6	5.53	75 - 125	20	85 - 115 20	
%SS:	111	750	109	111	1.37	102	105	2.48	70 - 130	20	70 - 130 : 20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23976 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609558-001H	9/27/06 1:37 PM	9/27/06	9/29/06 2:28 AM	0609558-002H	9/27/06 10:05 AM	9/27/06	9/29/06 2:34 AM
0609558-003H	9/27/06 12:00 PM	9/27/06	9/29/06 2:39 AM	0609558-004Н	9/27/06 11:00 AM	9/27/06	9/29/06 2:45 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

(925) 252-9262

Pittsburg, CA 94565-1701 Dittehung CA OACKE 1

CHAIN-OF-CUSTODY RECORD

ţ

Page

WorkOrder: 0609558

ClientID: BEIA

EDF: NO

5 days

Report to:

Blymyer Engineers, Inc. 1829 Clement Avenue Mark Detterman

(510) 521-3773 Email:

ProjectNo: Dublin Concrete/Dolan Rentals

Ö

Alameda, CA 94501-1395

Bill to: FAX: (510) 865-2594

Blymyer Engineers, Inc. 1829 Clement Avenue Accounts Payable

Requested TAT:

Date Received:

09/27/2006 09/27/2006

Date Printed:

Alameda, CA 94501-1395

Requested Tests (See legend below)

#

4-

5

ထ

ဖ

K)

寸

Sample ID

ClientSampID

Matrix

Collection Date Hold

3 J. w N ш ш O ග O 9/27/06 1:37:00 PM 9/27/06 12:00:00 9/27/06 10:05:00

LL.. LL. ш. Ω Ω Ω I I I Ç \Diamond O ⋖ ⋖ ⋖

LŁ.

Ш

G

9/27/06 11:00:00

MW-7

0609558-003 0609558-002

0609558-001

0609558-004

Water Water Water

Water

MW-3 MW-4 MW-6

Ц.

 α

Φ

 $\mathbf{\Omega}$ α

LL.

Ö

4

Test Legend:

METALSMS W 300_1_W ø

RSK174 W BOD_W

N ~ 7

TotalP W COD W ဆ ന

G-MBTEX W TPH(D) W o,

IC(CO2)_W 0 ΙO.

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Be1a 0609558

BLAINE			ERS AVEN			CON	DUCT	ANAL	YSIS	TO DE	TECT		LAB	McCampbell		DHS#
TECH SERVICES, INC	SAN JOSE, (FAX ((408) 573-77 (408) 573-77 (408) 573-05	71		delth bressumhry Verdinn sevening dan							ALL ANALYSES MUS	T MEET SPECIF FORNIA DHS AN	ICATIONS AN	ID DETECTION
CHAIN OF CUSTODY	BTS# 06 0	0927	-wc-/	3S							(p)		U LIA OTHER			
	Engineers,	Inc.		CONTAINERS		*		ane		sno	· Hold)		SPECIAL INSTRUCT	ONS		PPPP Michael and result the passing angular transfer support and square to the support of the su
	Concrete/ Do	lan Rent	als	CONT		(8021B)**		Met	<u> </u>	Total Phosphorous	(48 hr	Potassium	Invoice and Rep	ort to: Blym	nyer Engin	eers, Inc.
6393 Sc	arlett Ct			AL AL	SM)		5 1 M)	ide,	(48 hr hold)	hos	te (4	otas	Attn: Mark Dett	erman		
Dublin, C		w.L. CON	TAINERS	SITE	(8015M)	(tBE	(8015M)	iox.	þr	tal F	Nitrate		EDF Format Rec			
	MATR 1100 S 1100 S TIME S	1	AINERS	COMPOSITE	TPH-G (BTEX/MtBE	TPH-D (Carbon Dioxide, Methane	BOD (48	ar.	Sulfate, N	Manganese,	**Rerun highest MTBE EDB, Methanol and Et	detection by 802 hanol all by EPA I	≧1 for (5) oxyge 8260. - I	enates, 1,2-DCA.
SAMPLE I.D. DATE	I			ပ	TT	B.1		Ca	BC	COD	Su	Ma	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
1 MW-3 9127/00	i 1837 V	112	Mix		<u>*</u> (-		1	<u>{</u>	$\frac{1}{\sqrt{2}}$	X	(-	X				
11mm-6 +	1005	1			×	7	X	4	X.,	7.	×	5				
mw-6	15-00				7	7	×	<u>Y-</u>	У., •Z	\mathcal{I}	X	<i>†</i> -				
Mary 7	1100		v		X		λ	7		7		7				

															-	
Note that the second se													60 - CO-ELLION	APPRO	PRIATE	
***************************************													Therefore the the two		RVEURIN LAH	
SAMPLING DATE	TIME SAMPI			. ,	1								RESULTS NEEDED		2000 10 10 10 10 10 10 10 10 10 10 10 10	
COMPLETED 9/21/06 RELEASED BY , //	1337 PERFO	ORMED BY	<i>y</i>			<u>~ (</u>) n	<u>) </u>					NO LATER THAN	As contracted	İ	
$\mathcal{M}_{\mathcal{I}}$	ne	The second secon		DATE	7/0	17	IME		2 	RECE	VED E	77 776	sene_		DATE -1/27/01	TIME 6 4:250
RELEASED BY				DATE			TIME		a	RECEI	VEŐ B		10 VOC		DATE 9/37/0	TIME
RELEASED BY				DATE		T	TIME		أو	RECEI	VED B	Y			DATE	TIME
SHIPPED VIA		· · · · · · · · · · · · · · · · · · ·		DATE	SENT		TIME S	ENT		COOLE	ER#			ATT-E-A		

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Remais	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Reported: 10/04/06
,	Client P.O.:	Date Completed: 10/11/06

WorkOrder: 0609597

October 11, 2006

Dear Mark:

Enclosed are:

- 1). the results of 4 analyzed samples from your Dublin Concrete/Dolan Rentals project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan	Date Sampled: 09/28/06
1829 Clement Avenue	Reinais	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 10/02/06
	Client P.O.:	Date Analyzed: 10/02/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0609597

LAGRETION INCH			Analy	tical methods: SV	V8021B/8015Cm	15Cm			er: 060	0609597	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% S3	
001A	MW-1	W	78,f	ND	ND	ND	ND	ND	1	119	
002A	MW-5	w	ND	48	ИD	ND	ND	ND	1	97	
003A	MW-8	w	150,a	ND	3.0	1.2	1.1	7.2	1	#	
004A	MW-9	W	150,a	ND	0.95	0.69	0.87	6.7	1	113	
										,,,,	
								,,,,,			
· · · · · · · · · · · · · · · · · · ·			and and a second state of the second			***************************************				***************************************	
								······································		,	
			· · · · · · · · · · · · · · · · · · ·								
	\$20.000 mm		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	11-11-11-11-11-11-11-11-11-11-11-11-11-	44474	Politica Association and Company of Political As	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (***************************************	
	7 / A - 2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	, and, i, a	v 1111 -	7,1,1 = 1,1	V	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11					
								, , , , , , , , , , , , , , , , , , ,	and the first transfer of the first transfer		
			, and a second s								
·····	***************************************		***************************************								
Reportin	g Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	/I	

ND means not detected at or	VV .	30	5.0	0.5	0.5	0.5	0.5	1	μg/L	l
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	ĺ
* trater and supple sometime and all TOLD	e coro							<u> </u>		ı

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web; www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax; 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Doian Rentais	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed 10/02/06-10/03/06

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method: SW35		Analytical metho	Work Order: 0609597		
Lab ID	Client lD	Matrix	TPH(d)	DF	% SS
0609597-001B	MW-I	w	ND	1	103
0609597-002B	MW-5	w	ND	1	106
0609597-003B	MW-8	W	300,d,g,b	1	105
0609597-004B	MW-9	W	530,b,d,g	1	106
	~~~				
~~					
e sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sala a sal				, , , , , , , , , , , , , , , , , , ,	
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
					Ì
					2
2-10-12-13-13-13-13-13-13-13-13-13-13-13-13-13-					

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

4



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dolan Rentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 10/11/06
	Client P.O.:	Date Analyzed: 10/11/06

Maneua, C/1 74301-1373	Client P.O.:	Client P.O.:		Date Analyzed: 10/11/06		
Oxygenated Extraction Method: SW\$030B		+ EDB and 1,2-DC	A by P&T and GC/M	IS*  Work Order:	A600507	
Lab ID	0609597-0021		:	Work Order.	0009397	
Client ID	MW-5			Reporting	Limit for	
Matrix	W			DF	<b>== 1</b>	
DF	2			s	W	
Compound		Concentrati	on	ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<1.0			NA	0.5	
t-Butyl alcohol (TBA)	ND<10			NA ****	5.0	
1,2-Dibromoethane (EDB)	ND<1.0			NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<1.0		70-4-5-4-10 mm-4-10 mm	NA	0.5	
Diisopropyl ether (DIPE)	ND<1.0			NA .	0.5	
Ethanol	ND<100			NA	50	
Ethyl tert-butyl ether (ETBE)	ND<1.0	N	7 A A A A A A A A A A A A A A A A A A A	NA	0.5	
Methanol	ND<1000			NA	500	
Methyl-t-butyl ether (MTBE)	48			NA	0.5	
	Surrogat	e Recoveries (%)	Ţ.			
%SS1:	114					
Comments						

^{*} water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.





"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dolan Rentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 10/02/06
•	Client P.O.:	Date Analyzed 10/02/06

M	eth	ane*	
---	-----	------	--

Extraction method: RSK 174 Analytical methods: RSK174 Work Order: 0609597

Lab ID	Client ID	Matrix	Methane	DF	% SS
0609597-001H	MW-1	w	0.86	**************************************	N/A
0609597-002Н	MW-5	w	24	20	N/A
0609597-003H	MW-8	W	18	20	N/A
0609597-004H	MW-9	W	28	20	N/A
	14.000/11.00				
				.,,,	
	747.00			Telephone Annual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont	
	N. N. N. N. N. N. N. N. N. N. N. N. N. N				
No. No. No. of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co					
# 1 # 11 11 11 11 11 11 11 11 11 11 11 1					
				Ž.	

Reporting Limit for DF =1; ND means not detected at or above the reporting limit	w	0.5	μg/L
	S	NA	NA
* water samples are reported in µg/L.			

Angela Rydelius, Lab Manager

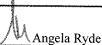
DHS ELAP Certification N° 1644



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dotail Rentals	Date Received 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed 09/29/06-09/30/06


#### Inorganic Anions by IC*

Extraction method: E300.1 Analytical methods: E300.1 Work Order: 0609597

Lab ID	Client ID	Matrix	Nitrate as N	DF	Nitrate as NO3	DF	Sulfate	DF	% SS
001F	MW-I	w	ND	1	ND	ī	980	200	105
002F	MW-5	w	ND	1	ND	1	410	100	103
003F	MW-8	w	0.29	1	1.3	1	290	100	99
004F	MW-9	W	ND	1	ND	I	120	50	107
				****					
					***************************************				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7 J. 27 H. H. H. H. H. H. H. H. H. H. H. H. H.						
							~		
					~~~~~~	j			
							,	***************************************	
							,,,		
	as their for Tr								***************************************

Reporting Limit for DF =1;  ND means not detected at or	W	0.1	0.45	0.1	mg/L
above the reporting limit	S	NA	NA	NA	mg/Kg

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.



^{* [}Nitrate as NO3 $^-$ ] = 4.4286 x [Nitrate as N]

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted/reporting limit raised due to high inorganic content/matrix interference; k) sample arrived with head space.





"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Doian Rentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06-10/03/06
	Client P.O.:	Date Analyzed: 10/04/06

#### Biochemical Oxygen Demand (BOD)*

	***	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Analytical Method: SM5210B			Work Order:	0609597

rinaryseas Method, 5/45210D			Work Order: 0609597		
Lab ID	Client ID	Matrix	BOD	DF	
0609597-001D	MW-1	w	ND	1	
0609597-002D	MW-5	W	ND	1	
0609597-003D	MW-8	W	ND	1	
0609597-004D	MW-9	W	ND	1	
none and a second and a second					
for your graphing is grown and the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of the graphing of					
mary A					
			Andrew (1984)		
, , , , , , , , , , , , , , , , , , ,					

Reporting Limit for DF = 1; ND means not detected at or	W	4.0 mg/L	
above the reporting limit	S	NA	

^{*} water samples are reported in mg/L.



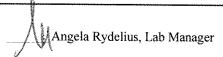
i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to insufficient sample amount; p) see attached narrative.



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dolan Kentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/29/06
	Client P.O.:	Date Analyzed: 09/29/06


#### Chemical Oxygen Demand (COD)*

l	Analytical Method: Si	VI5220D		Work Order: 0	609597
	Lab ID	Client ID	Matrix	COD	DI

Lab ID	Client ID	Matrix	COD	DF
0609597-001E	MW-I	W	15	I
0609597-002E	MW-5	W	15	1
0609597-003E	MW-8	W	34	1
0609597-004E	MW-9	w	42	¥
	V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-			
				~~

Reporting Limit for DF = 1; ND means not detected at or	W	10 mg/L
above the reporting limit	S	NA

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.





"When Quality Counts'

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampb Telephone: 877-252-9262 Fax: 925-252-9269 E-mail: main@mccampbell.com

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dolan Kentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed: 10/02/06

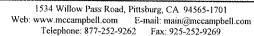
#### Inorganic Carbon as Carbon Dioxide*

Analytical Method: SM5310 B

Work Order: 0609597 Lab ID Client ID Matrix IC as CO2 DF 0609597-001C MW-1 W 660 5 0609597-002C MW-5 W 1400 5 0609597~003C MW-8 W 5.0 1 0609597-004C MW-9 W 6.3 ì

	· · · · · · · · · · · · · · · · · · ·		
Reporting Limit for DF = 1; ND means not detected at or	W	2.6 mg/L	
above the reporting limit	S	NA	

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg.




^{*} Non-Purgeable Organic Carbon=NPOC; TOC=Total Organic Carbon; DOC=Dissolved Organic Carbon; POC=Purgeable Organic Cabon; IC=Inorganic

i) liquid sample contains greater than ~1 vol. % sediment.



"When Quality Counts"



Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue		Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 10/03/06
	Client P.O.:	Date Analyzed: 10/03/06

#### Total Phosphorous as P*

Analytical Method: E365.1	Work Order: 0609597

			work Order, 0009					
Lab ID	Client ID	Matrix	Total Phosphorous as P	DF				
0609597-001E	MW-1	W	0.18	I				
0609597-002E	MW-5	W	0.13	1				
0609597-003E	MW-8	W	ND	1				
609597-004E MW-9	W	ND	1					
. V - X - V - V - V - V - V - V - V - V -				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
e to set an order an announcement and the second to the second to the second to the second to the second to the								
40 mil 10								
And Astronomy				***************************************				
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	747	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			110 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt 11 pt					
	**A							

	:	
Reporting Limit for DF = 1; ND means not detected at or	W	0.04 mg/L
above the reporting limit	S	NA

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

i) liquid sample contains greater than ~1 vol. % sediment; J) analyte detected below quantitation limits.

Angela Rydelius, Lab Manager



"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: Dublin Concrete/Dolan Rentals	Date Sampled: 09/28/06
1829 Clement Avenue	Concrete/Dolan Rentals	Date Received: 09/28/06
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Extracted 09/28/06
	Client P.O.:	Date Analyzed: 09/30/06

#### Metals*

Extraction method: E200.8 Analytical methods: E200.8

extraction method	i: E200,8		Anal	ytical methods: E200.8		Work Order: 0	609597
Lab ID	Client ID	Matrix	Extraction	Manganese	Potassium	DF	% SS
001G	MW-1	w	TTLC	1900	1200	ı	109
002G	MW-5	W	TTLC	630	920	1	107
003G	MW-8	w	TTLC	ND	6000	l	104
004G	MW-9	W	TTLC	ND	5300	1	108
**** ** ******************************		***************************************					
						•/-	
				****			
						111111111111111111111111111111111111111	
**************************************			According to the second				
#1404Finite (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-							
** ** ** ** ***************************			A. '				
	0.00° a 1.00° a				\$		
			44			-,,,	
			Ar				
	ing Limit for DF =1;	W	TTLC	20	20	με	g/L
	the reporting limit	S	TTLC	NA	NA	N	Α

Reporting Limit for DF =1; ND means not detected at or	W	TTLC	20	20	μg/L
above the reporting limit	S	TTLC	NA	NA	NA

^{*}water samples are reported in ug/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

DHS ELAP Certification Nº 1644

Angela Rydelius, Lab Manager

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.





#### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

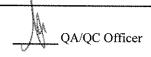
WorkOrder: 0609597

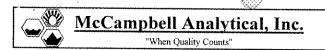
EPA Method: SW8021B	/8015Cm E	xtraction	: SW503	0B		Batchl	D: 24013	\$	Spiked San	ple ID:	0609590-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (º	%)
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	109	111	1.88	107	104	3.28	70 - 130	30	70 - 130	30
МТВЕ	ND	10	103	111	7.39	94.9	95.5	0.687	70 - 130	30	70 - 130	30
Веплене	ND	10	98.8	101	2.21	102	105	3.12	70 - 130	30	70 - 130	30
Toluene	ND	10	93.9	94.9	1.07	95.4	100	4.82	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	101	103	1.93	101	105	3.37	70 - 130	30	70 - 130	30
Xylenes	ND	30	95.3	95.3	0	95	95.7	0.699	70 - 130	30	70 - 130	30
%SS:	98	10	101	103	1.60	104	110	5.55	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24013 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001A	9/28/06 11:52 AM	10/02/06	10/02/06 4:11 PM	0609597-002A	9/28/06 10:06 AM	10/02/06	10/02/06 4:44 PM
0609597-003A	9/28/06 8:30 AM	10/02/06	10/02/06 3:57 PM	0609597-004A	9/28/06 9:10 AM	10/02/06	10/02/06 4:26 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.







#### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: SW8015C Extraction: SW3510C					Batchli	D: 24016	S	piked Sam	ple ID:	N/A	·····	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (º	%)
,	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	119	118	0.904	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	103	103	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 24016 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001B	9/28/06 11:52 AM	9/28/06	10/02/06 7:31 PM	0609597-002B	9/28/06 10:06 AM	9/28/06	10/02/06 8:38 PM
0609597-003B	9/28/06 8:30 AM	9/28/06	10/02/06 9:46 PM	0609597-004B	9/28/06 9:10 AM	9/28/06	10/03/06 2:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QA/QC Officer





#### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

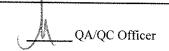
NONE

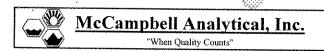
QC Matrix: Water

WorkOrder: 0609597

EPA Method: SW8260B	E	Extraction	: SW503	0B		BatchID: 24114			Spiked Sample ID: 0610102-001C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptar	ice Criteria (	%)
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	94.2	91.3	3.04	79.9	86.2	7.51	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	111	110	1.12	83.3	86	3.18	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	119	113	5.23	85.5	90.2	5.28	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	103	99.9	3.11	89.8	92.2	2.64	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	106	102	3.29	93.3	99,1	5.99	70 - 130	30	70 - 130	30
Ethanol	ND	500	116	113	1.95	95.8	96.8	1.08	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	98.8	94.6	4.32	84.9	91.6	7.54	70 - 130	30	70 - 130	30
Methanol	ND	2500	99.7	98.5	1.26	92.7	107	13.9	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	102	98.1	3.94	90.3	98.4	8.61	70 - 130	30	70 - 130	30
%SS1:	102	10	107	104	2.50	95	96	1.63	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:


BATCH 24114 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0609597-0021	9/28/06 10:06 AM	10/11/06	10/11/06 10:50 AM								


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.





#### QC SUMMARY REPORT FOR RSK174

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: RSK174	E	xtraction	: RSK 17	4		Batchil	D: 23984	S	piked Sam	ple ID:	N/A	<del></del>
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Methane	N/A	1.76	N/A	N/A	N/A	102	104	1.58	N/A	N/A	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 23984 SUMMARY**

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001H	9/28/06 11:52 AM	10/02/06	10/02/06 2:34 PM	0609597-002H	9/28/06 10:06 AM	10/02/06	10/02/06 7:26 PM
0609597-003H	9/28/06 8:30 AM	10/02/06	10/02/06 7:57 PM	0609597-004H	9/28/06 9:10 AM	10/02/06	10/02/06 8:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QA/QC Officer



**(**)

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

#### QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: E300.1		BatchID: 23951 Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (9	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Nitrate as N	N/A	1	N/A	N/A	N/A	95.9	96.4	0.568	N/A	N/A	85 - 115	15
Nitrate as NO3	N/A	4.4	N/A	N/A	N/A	95.9	96,4	0.568	N/A	N/A	85 - 115	15
Sulfate	N/A	1	N/A	N/A	N/A	101	97.5	3.22	N/A	N/A	85 - 115	15
%SS:	N/A	0.10	N/A	N/A	N/A	96	95	0.946	N/A	N/A	90 - 115	10

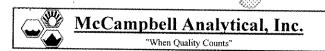
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 23951 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001F	9/28/06 11:52 AM	9/28/06	9/29/06 4:56 AM	0609597-001F	9/28/06 11:52 AM	9/28/06	9/30/06 5:28 AM
0609597-002F	9/28/06 10:06 AM	9/28/06	9/29/06 5:28 AM	0609597-002F	9/28/06 10:06 AM	9/28/06	9/30/06 6:00 AM
0609597-003F	9/28/06 8:30 AM	9/28/06	9/29/06 6:00 PM	0609597-003F	9/28/06 8:30 AM	9/28/06	9/30/06 6:32 AM
0609597-004F	9/28/06 9:10 AM	9/28/06	9/29/06 6:31 AM	0609597-004F	9/28/06 9:10 AM	9/28/06	9/30/06 7:03 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QA/QC Officer





#### QC SUMMARY REPORT FOR SM5210B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: SM5210B	E	xtraction	SM5210	)B		Batchil	D: 23944	S	piked Sam	ple ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	<b>%</b> )
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
BOD	N/A	198	N/A	N/A	N/A	102	105	2.68	N/A	N/A	80 - 120	16

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 23944 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001D	9/28/06 11:52 AM	9/28/06	10/04/06 2:50 PM	0609597-002D	9/28/06 10:06 AM	9/28/06	10/04/06 3:08 PM
0609597-003D	9/28/06 8:30 AM	9/28/06	10/04/06 3:26 PM	0609597-004D	9/28/06 9:10 AM	9/28/06	10/04/06 3:44 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

AM_QA/QC Officer



#### QC SUMMARY REPORT FOR SM5220D

W.O. Sample Matrix: Water

QC Matrix: Water

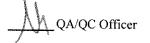
WorkOrder: 0609597

EPA Method: SM5220D	E	xtraction	SM5220	OD		Batchi	D: 23985	S	piked Sam	ple ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
COD	N/A	400	N/A	N/A	N/A	98.9	100	1.23	N/A	N/A	90 - 110	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 23985 SUMMARY**


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001E	9/28/06 11:52 AM	9/29/06	9/29/06 4:19 PM	0609597-002E	9/28/06 10:06 AM	9/29/06	9/29/06 4:25 PM
0609597-003E	9/28/06 8:30 AM	9/29/06	9/29/06 4:31 PM	0609597-004E	9/28/06 9:10 AM	9/29/06	9/29/06 4:37 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.







#### QC SUMMARY REPORT FOR SM5310B

W.O. Sample Matrix: Water

QC Matrix: Water

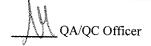
WorkOrder: 0609597

EPA Method: SM5310 B	E	xtraction	: SM5310	В		Batchil	D: 23983	S	piked Sam	ple ID:	0609558-0	04C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (º	%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
IC as CO2	350	36.7	118	116	0.232	103	102	0.585	70 - 130	20	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 23983 SUMMARY**


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001C	9/28/06 11:52 AM	9/28/06	10/02/06 9:22 PM	0609597-002C	9/28/06 10:06 AM	9/28/06	10/02/06 9:28 PM
0609597-003C	9/28/06 8:30 AM	9/28/06	10/02/06 10:18 PM	0609597-004C	9/28/06 9:10 AM	9/28/06	10/02/06 10:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.





#### QC SUMMARY REPORT FOR E365.1

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: E365.1	E	E365.1			Batchil	D: 23986	S	Spiked Sample ID: 0609558-001F						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%	%)		
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Total Phosphorous as P	0.16	0.80	86.2	88	1.66	93.1	92.7	0.363	80 - 120	20	90 - 110	20		

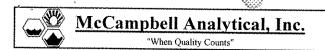
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 23986 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001E	9/28/06 11:52 AM	10/03/06	10/03/06 1:33 PM	0609597-002E	9/28/06 10:06 AM	10/03/06	10/03/06 1:34 PM
0609597-003E	9/28/06 8:30 AM	10/03/06	10/03/06 1:35 PM	0609597-004E	9/28/06 9:10 AM	10/03/06	10/03/06 1:36 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer



#### QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609597

EPA Method: E200.8	E	: E200.8			Batchi	D: 23976		Spiked Sample ID: 0609542-001A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptar	ice Criteria (	%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Manganese	98	100	89.1	91.1	1.06	100	102	2.08	75 - 125	20	85 - 115	20			
Potassium	14,000	100	90	100	0.0722	88.5	93.6	5.53	75 - 125	20	85 - 115	20			
%SS:	111	750	109	111	1.37	102	105	2.48	70 - 130	20	70 - 130	20			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 23976 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609597-001G	9/28/06 11:52 AM	9/28/06	9/30/06 12:06 AM	0609597-002G	9/28/06 10:06 AM	9/28/06	9/30/06 12:11 AM
0609597-003G	9/28/06 8:30 AM	9/28/06	9/30/06 12:17 AM	0609597-004G	9/28/06 9:10 AM	9/28/06	9/30/06 12:47 AM

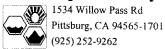
MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.




0609597 **1680 ROGERS AVENUE CONDUCT ANALYSIS TO DETECT** BLAINE McCampbell SAN JOSE, CALIFORNIA 95112-1105 ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND TECH SERVICES, INC. ☐ EPA ☐ RWQCB REGION LIA CHAIN OF CUSTODY TOTHER Nitrate (48 hr Hold) CLIENT Carbon Dioxide, Methane SPECIAL INSTRUCTIONS Phosphorous Blymyer Engineers, Inc. BTEX/MtBE (8021B)** SITE Dublin Concrete/ Dolan Rentals Invoice and Report to: Blymyer Engineers, Inc. 6393 Scarlett Ct TPH-G (8015M) TPH-D (8015M) Attn: Mark Detterman COMPOSITE Dublin, CA EDF Format Required MATRIX **CONTAINERS** (48 **Rerun highest MTBE detection by 8021 for (5) oxygenates, 1,2-DCA, Sulfate, S= SOIL W=H₂0 EDB, Methanol and Ethanol all by EPA 8260. BOD SAMPLE I.D. DATE TIME TOTAL ADD'L INFORMATION STATUS CONDITION LAB SAMPLE # 9128/06 mix 9-0xy add-on on note 10/4/do 1006 8330 X APPROPRIATE HEAD STACE ABSE O&G ME SAMPLING TIME SAMPLING RESULTS NEEDED COMPLETED 4/28/06 1200 PERFORMED BY TIME NO LATER THAN As contracted RELEASED BY RECEIVED BY DATE TIME 4:000 RELEASED BY TIME RECEIVED BY Jal RELEASED BY DATE TIME RECEIVED BY

DATE SENT

TIME SENT

COOLER#

SHIPPED VIA



# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

WorkOrder: 0609597

ClientID: BEIA

**▼**EDF

Fax

Email

HardCopy

ThirdParty

Report to:

Mark Detterman

Blymyer Engineers, Inc.

Alameda, CA 94501-1395

1829 Clement Avenue

Email: TEL:

MDetterman@blymyer.com (510) 521-3773

FAX: (510) 865-2594

ProjectNo: Dublin Concrete/Dolan Rentals

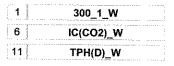
PO:

Bill to: Accounts Payable

Blymyer Engineers, Inc.

1829 Clement Avenue Alameda, CA 94501-1395 Date Received:

Requested TAT:


09/28/2006

5 days

Date Printed: 10/04/2006

										Re	queste	d Tests	(See	lege	nd be	low)				
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1		2	3		4	5	6		, [	8	9	10	1	1	12
0609597-001	MW-1	Water	9/28/06 11:52:00		F			D		E	Α	С	1 (	3	Α	Н	E	В		
0609597-002	MW-5	Water	9/28/06 10:06:00		F	<u> </u>	l	D	UK SUSYON MININE	E	Α	С	(	3	W. W. S.	H	F	В	**************************************	
0609597-003	MW-8	Water	9/28/06 8:30:00 AM		F		Niceron variant and	D	CARREST AND STREET	E	A	C		}	·//A % %A	H	œdoumenu <u>.</u> E	B	COMMUNICATION	·/*************
0609597-004	MW-9	Water	9/28/06 9:10:00 AM		ezanziwaniimia	TERRITOR			alaby s decrease		шиллишчерович А	entransember 1.	-	waz 411.20 .			Seed A 16 27 11 11 11 11 11 11 11		~~~	

#### Test Legend:



2	9-OXYS_W
7	METALSMS_W
12	

3	BOD_W	
8	PREDF REPORT	

4	COD_W
9	RSK174_W

5	G-MBTEX_W
10	TotalP_W

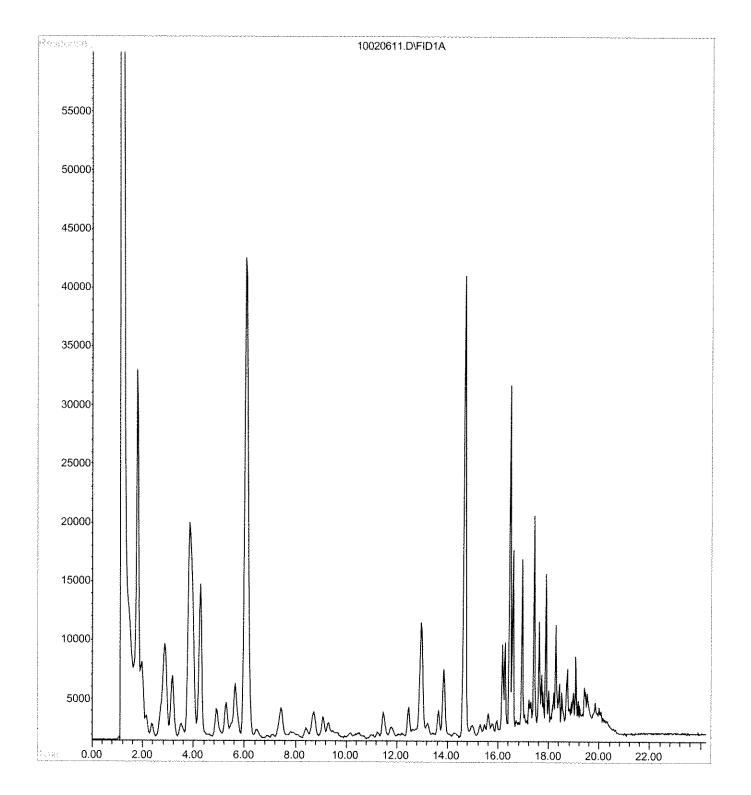
Prepared by: Melissa Valles

Comments:

9-Oxys added 10-4-06 per note on coc; 5 day

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

File : D:\HPCHEM\GC19\DATA\10020611.D


Operator :

Acquired : 2 Oct 2006 4:26 pm using AcqMethod GC19J.M

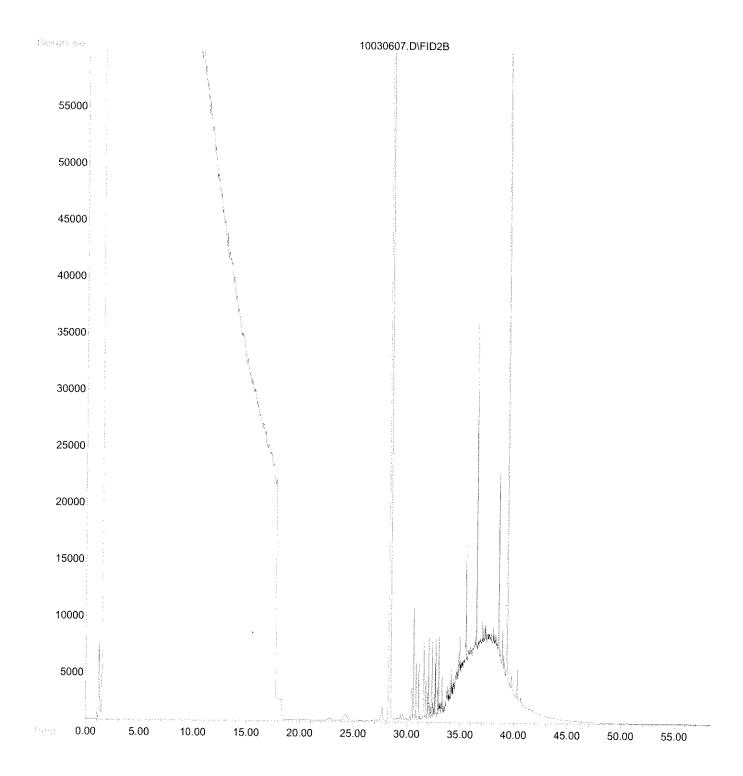
Instrument: GC-19

Sample Name: 0609597-004A W

Misc Info : G-MBTEX_W



File : D:\HPCHEM\GC6\DATAB\10030607.D


Operator :

Acquired : 3 Oct 2006 2:21 pm using AcqMethod GC6ANEWN.M

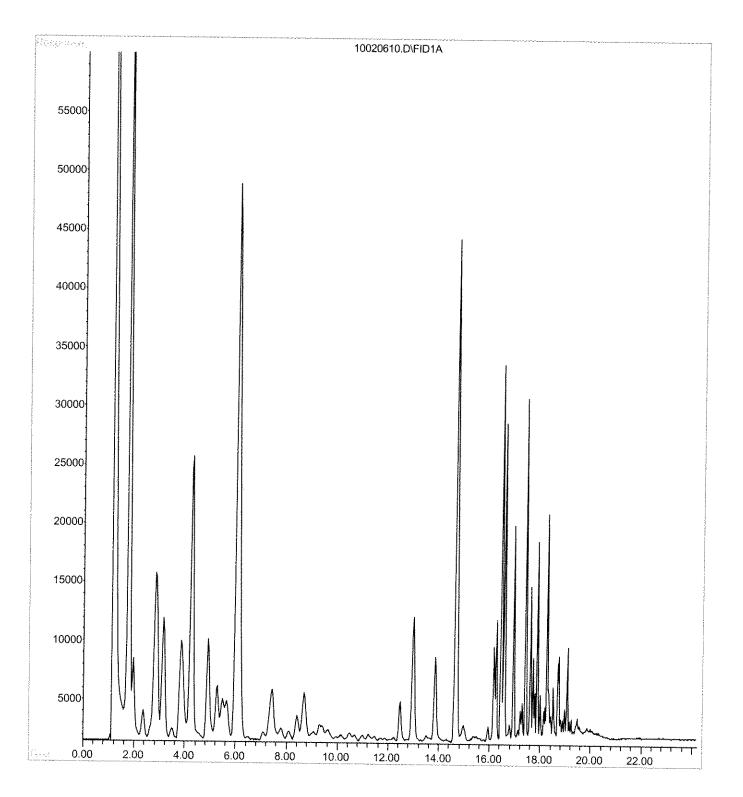
Instrument: GC-6

Sample Name: 0609597-004B W

Misc Info : TPH(D) W



File : D:\HPCHEM\GC19\DATA\10020610.D


Operator

Acquired : 2 Oct 2006 3:57 pm using AcqMethod GC19J.M

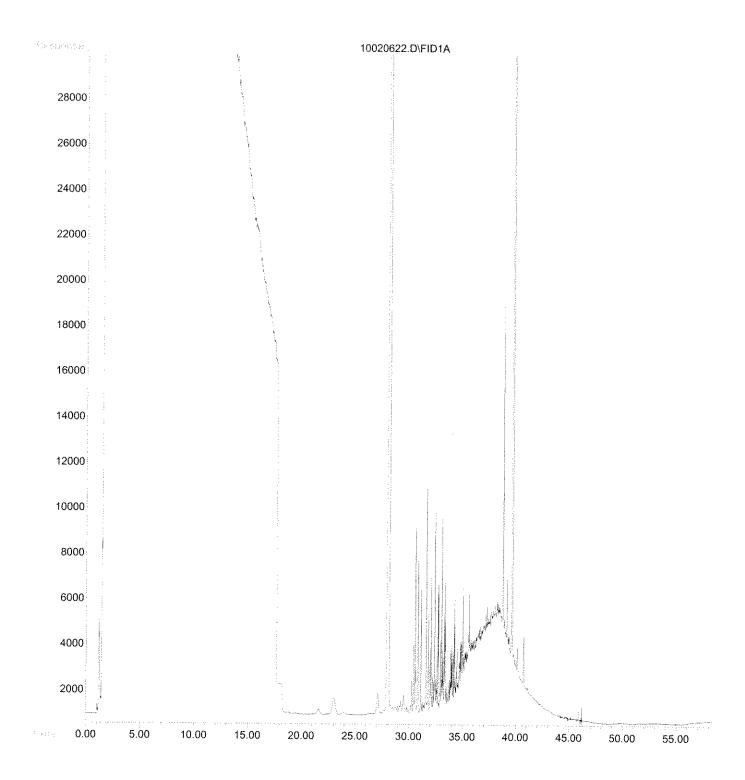
Instrument : GC-19

Sample Name: 0609597-003A W

Misc Info : G-MBTEX W



File : D:\HPCHEM\GC6\DATAA\10020622.D


Operator :

Acquired : 2 Oct 2006 9:46 pm using AcqMethod GC6ANEWN.M

Instrument: GC-6

Sample Name: 0609597-003B W

Misc Info : TPH(D) W

