V I P SERVICE STATION 385 Century Circle Danville, CA 94526 925-838-0768

February 22, 2011

10:20 am, Mar 02, 2011

RECEIVED

Alameda County Environmental Health

Mr. Paresh Khatri Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: GROUNDWATER AND SOIL GAS SUBSURFACE INVESTIGATION REPORT CERTIFICATION County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Khatri:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

• Groundwater and Soil Gas Subsurface Investigation Report (P35 and SG17) dated February 22, 2011 (document 0047.R46).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned document for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact my consultant Paul King at P&D Environmental, Inc. at (510) 658-6916.

Sincerely,

VIP Service

2Bfatte

Lalji Patel

Enclosure

0047.L114

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

February 22, 2011 Report 0047.R46

Mr. L.B. Patel Mr. P. Gupta VIP Service 385 Century Circle Danville, CA 94526

SUBJECT: GROUNDWATER AND SOIL GAS SUBSURFACE INVESTIGATION REPORT (P35 AND SG17) County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the collection of one groundwater grab sample at location P35 and one soil gas sample designated as SG17 at properties neighboring the subject site. Drilling and sample collection activities were performed on November 30, 2010. The groundwater grab sample was collected to verify that the horizontal extent of petroleum hydrocarbon-impacted groundwater has been defined. The soil gas sample was collected to evaluate the presence of soil gas beneath a residence located down gradient of the subject site where elevated soil gas concentrations have historically been detected. A Site Location Map is attached as Figure 1, and a Site Vicinity Map showing the borehole and soil gas sample collection locations is attached as Figure 2.

The groundwater grab sample and the soil gas samples were collected in accordance with recommendations set forth in P&D's Groundwater and Soil Gas Subsurface Investigation Report dated October 27, 2009 (document 0047.R42). The recommendations were approved in a letter from the Alameda County Department of Environmental Health (ACDEH) in a letter dated May 20, 2010. All work was performed under the direct supervision of a professional geologist.

BACKGROUND

It is P&D's understanding that the site was purchased by VIP Service in December 1984. Prior to purchase of the property by VIP Service, the site was operated as a retail gasoline station for an undetermined period of time. The site was operated by VIP Service as a retail gasoline station from the time of purchase until the tanks were removed by Accutite on April 26, 1993. The underground tank system consisted of three 10,000-gallon capacity gasoline tanks, two dispenser islands, and one 550-gallon waste oil tank. It is P&D's understanding that the fuel tanks contained leaded and unleaded gasoline while in use by VIP Service. In addition, VIP Service reported that diesel fuel was not stored at the site at any time.

Documentation of the installation of monitoring wells MW1 through MW3, associated soil boring, and associated sample results are presented in P&D's report 0047.R2 dated January 24, 1994. The locations of the monitoring wells are shown in Figure 2.

In response to a letter dated March 18, 1994 from Mr. Scott Seery of the ACDEH which commented upon the results of the initial groundwater sampling associated with the installation of the monitoring wells at the subject site, a quarterly groundwater monitoring and sampling program was initiated. Based upon subsequent conversations with Mr. Seery, the monitoring and sampling frequency was reduced to semi-annually.

A detailed discussion on the site background, and historical monitoring and sampling, and investigations are provide in P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan dated May 17, 2005 (document 0047.W5), and P&D's Groundwater and Soil Gas Subsurface Investigation Report dated October 27, 2009 (document 0047.R42). The 2009 report documents the collection of soil gas samples SG13 through SG16 from locations surrounding the house located at 3945 Castro Valley Boulevard at a depth of approximately 5 feet below the ground surface (bgs). The highest soil gas benzene concentration encountered during the investigation was at SG15, which was located approximately 10 feet away from the building because of a large diameter high pressure natural gas main that services the mobile home park and that is located near the side of the house. The locations of soil gas sample locations SG13 through SG16 are shown in Figure 2, and the soil gas sample results and calculated risk and hazard for vapor intrusion to indoor air (tables 2 and 3, respectively) are presented in Appendix A.

On December 6 through 9, 2010 P&D oversaw the installation of dual phase extraction wells EW1 through EW3, observation wells OW1 and OW3 through OW6, soil vapor extraction wells C1 through C4, and soil vapor extraction wells F1 through F4 at and near the subject site. The wells were installed in accordance with procedures identified in P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan dated May 17, 2005 (document 0047.W5), P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan dated May 17, 2005 (document 0047.W5), P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan Addendum dated August 13, 2007 (document 0047.W5A), and documents referenced in an ACDEH August 20, 2010 letter approving installation of the wells. New wells EW1 through EW3, OW1 and OW3 through OW6, C1 through C4, and F1 through F4 were installed and surveyed in December 2010. Documentation of the installation of the new wells is provided in P&D's Well Installation Report dated February 22, 2011 (document 0047.R47). The measured depth to water in the wells, and the groundwater sample results for samples collected from the wells are attached with this report in Appendix A.

FIELD ACTIVITIES

Prior to drilling, Alameda County Public Works Agency (ACPWA) permit W2010-0944 was obtained for the drilling of boreholes for collection of a groundwater grab sample at location P35 and for collection of a soil gas sample at location SG17. In addition, permission for offsite property access was obtained, the drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, and notification of the scheduled drilling date was provided to ACPWA and ACDEH. Drilling activities were performed on November 30, 2010 by Vironex, Inc. of Pacheco, California.

Groundwater Sample Collection

On November 30, 2010 P&D personnel oversaw the hand-augering of boring P35 to a depth of 12.0 feet bgs with a 3.5-inch outside diameter stainless steel hand auger at the location shown in Figure 2. The soil from the borehole was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. The soil was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard, and was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No soil samples were retained for laboratory analysis.

In borehole P35, discoloration and detectable PID readings were recorded as follows.

• Greenish-brown discoloration in clayey sand, accompanied by a strong petroleum hydrocarbon odor and a PID reading of 249 ppm, was detected from 9.0 to 12.0 feet bgs.

Groundwater was initially encountered while hand augering borehole P35 at a depth of 8.5 feet bgs, and was not subsequently measured in the borehole. A copy of the boring log is attached with this report as Appendix B.

One groundwater grab sample was collected from the borehole using a temporary slotted PVC pipe and a polyethylene tube with a stainless steel check valve. The sample was placed into 40milliliter VOAs and 1-liter amber glass bottles preserved with hydrochloric acid and capped with Teflon-lined screw caps. All sample containers were clean and provided by the laboratory. The VOAs were overturned and tapped to ensure that no air bubbles were present. The sample was then stored in a cooler with ice, pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

All drilling and sampling equipment was either new or cleaned with an Alconox solution followed by a clean water rinse prior to use in the borehole. Following completion of sample collection activities, the borehole was filled with neat cement grout. Soil and water generated during drilling was stored in drums at the site pending characterization and disposal.

Soil Gas Sample Collection

A total of one soil gas sample and one soil gas sample duplicate, designated as SG17 and SG17-Dup, were collected from a temporary soil gas sampling well on November 30, 2010 that was constructed beneath a concrete slab located adjacent to the building at the location shown as SG17 on Figure 2. The sample location was located horizontally approximately one foot from the northeast corner of the house. The east side of the house is inaccessible because of a large diameter high pressure natural gas pipe that provides service to the mobile home park at the site.

The temporary well was constructed by driving a hollow 1-inch diameter Geoprobe rod with an expendable tip to a depth of 1.5 feet, dislodging the expendable tip, and then inserting a 0.250-inch outside diameter (0.187-inch inside diameter) Teflon tube measuring 7 feet in length to the

bottom of the hollow rod. Prior to inserting the Teflon tubing, a 1-inch long, 3/8-inch diameter stainless steel screen was attached to the Teflon tubing. A #2/16 Lonestar sack sand was added to the annular space between the hollow rod and the Teflon tube as the hollow rod was withdrawn from the ground until the lowermost 8 inches of the hole was filled with sand. Granular bentonite (with grains measuring approximately 2 to 3 millimeters in diameter) was placed in the annular space to a height of approximately 2 inches above the sand, and the remaining borehole annular space was filled with bentonite slurry. The 6-liter Summa purge canister and 1-liter Summa sample canister were then connected to the Teflon tubing using the location of the sample canister, and a duplicate Summa canister was attached to the stainless steel tee. At the time that the sampling manifold was assembled, the vacuum for the sample canister were checked with a vacuum gauge and recorded.

The temporary well was then undisturbed to allow soil gas equilibration for a minimum of 30 minutes prior to leak testing and purging for sample collection. Following the equilibration period and prior to purging the soil gas from the temporary soil gas sampling well, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 3). No purge testing for purge volume determination was done because samples were collected into Summa canisters. Following successful verification of the manifold leak check, a default of three purge volumes was extracted prior to sample collection. The calculations for the purge volume are provided in Appendix C. The purge time was calculated using a nominal flow rate provided by the flow controller of 200 milliliters per minute. Following completion of purging three purge volumes, the valve to the purge canister was closed, a tracer gas (2-Propanol) was placed in a dish adjacent to the purge canister, and a clear Rubbermaid bin was placed over the top of the temporary well, the sampling manifold, the 1-liter duplicate canister.

The vapor concentration of the 2-Propanol was monitored with a Photoionization Detector (PID) until 2-Propanol vapor concentrations appeared to have equilibrated. The Rubbermaid bin was then temporarily and partially lifted long enough to open the sample canister and duplicate canister valves and the bin was then replaced over the sampling equipment and the 2-Propanol vapor concentrations was then monitored again with the PID. Once the vacuum for the manifold had decreased to 5 inches of mercury, the Rubbermaid bin was removed and the sample canister and duplicate canister valves were closed. The pressure gage on the inlet side of the flow controller (see Figure 3) was monitored during sample collection to ensure that the vacuum applied to the temporary well did not exceed 100 inches of water.

Following collection of the Summa canister sample and duplicate sample, a soil gas sample was collected using a sorbent tube. The sorbent tube was kept in a cooler with ice prior to use and after use. At the time of sample collection, the inlet for the sampling tube was connected to the temporary well by connecting the sorbent tube inlet to the manifold where the 1-liter sampling canister had been connected to the manifold. A vacuum pump was connected to the downstream side of the sorbent tube using a length of tubing and Swagelok fittings, and the Rubbermaid bin was placed over the sorbent tube (the vacuum pump was located outside of the Rubbermaid bin). A vacuum was applied with the vacuum pump to the sorbent tube for 5 minutes. The flow controller in the manifold resulted in a nominal flow rate of 200 milliliters per minute.

Following completion of the 5 minute sample collection period, the sorbent tube was removed from the temporary well tubing, the ends of the sorbent tube were sealed, and the sorbent tube was stored in a cooler with ice pending delivery to the laboratory. One replicate soil gas sample was collected using a sorbent tube immediately following collection of the sorbent tube sample using the methods described above. Following soil gas sample collection, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. The Summa canisters were then stored in a box and the sorbent tubes were then stored in a cooler with ice and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets that are provided in Appendix C of this report.

All drilling rods and associated drilling fittings for construction of the temporary soil gas wells were cleaned with an Alconox solution wash followed by a clean water rinse prior to use at each location. New Teflon tubing and clean, unused vacuum gages and stainless steel sampling manifolds were used at each sample collection location. A new stainless steel tee was used in the sampling manifold for collection of the duplicate sample. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and the temporary soil gas wells were destroyed using a 1-inch diameter solid steel rod driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was removed, and the borehole was filled with neat cement.

No precipitation occurred during the week preceding the soil gas sampling or on the day of soil gas sampling (November 30, 2010). Weather data, including precipitation and barometric pressure for the day of the sampling event and also for the month of November 2010 and the first two weeks of December 2010 is provided as Appendix C. The weather station is located at Agualinda Pool in Castro Valley at an elevation of 278 feet, approximately 1.3 miles to the northwest of the subject site. The subject site is located at an elevation of approximately 175 feet above sea level. An internet link to the weather station information is provided in Appendix C.

The drilling rod and associated drilling fittings were cleaned with an Alconox solution wash followed by a clean water rinse prior to use, and new Teflon tubing was used. Clean, unused vacuum gages and a stainless steel sampling manifold containing a flow restrictor were used. Following completion of soil gas sample collection the Teflon tubing was pulled from the temporary soil gas sampling well borehole and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was then removed, and the borehole was filled with neat cement.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Late Pleistocene Alluvium (Qpa), which is described as weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel.

Review of the boring log for borehole P35 attached with this report as Appendix A shows that the subsurface materials encountered in the borehole are consistent with the Qpa description provided above. The subsurface materials consisted of clay, with clayey sand encountered between the depths of approximately 9.0 and 10.5 feet bgs. Groundwater was encountered at a depth of approximately 8.5 feet bgs while hand augering. The depth of the sand layer and the depth at which groundwater was encountered are consistent with the depth at which the petroleum-impacted sand layer is encountered and the depth at which groundwater are encountered in boreholes located at and near the subject site.

Based on the water levels measured in wells MW1, MW2 and MW3 on December 20, 2010 the groundwater flow direction at the site was to the west, and the historical groundwater flow direction at the site has been westerly. Based on the measured depth to water in all of the wells, groundwater surface contours were identified as shown on Figure 4. Review of Figure 4 shows that the groundwater surface contours suggest a more northwesterly flow direction than the groundwater flow direction calculated using the depth-to-water level measurements in wells MW1 through MW3. The lower water levels in wells F1 and F4 when compared with adjacent wells is interpreted to be the result of slow infiltration of water into the clay layer in which these wells were constructed.

LABORATORY ANALYSIS

The groundwater sample collected from borehole P35 was analyzed at McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for Total Petroleum Hydrocarbons as Gasoline (TPH-G), and methyl-tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (MBTEX), using EPA Method 8021B in conjunction with modified EPA Method 8015B.

The soil gas sample collected from borehole SG17 and the duplicate sample identified as SG17 DUP that were collected with Summa canisters were analyzed at Air Toxics Limited (Air Toxics) of Folsom California for TPH-G, MBTEX and 2-Propanol using modified EPA Method TO-15. Additionally, the soil gas sample and the replicate that were collected from borehole SG17 using sorbent tubes were analyzed at Air Toxics for 2-Propanol and naphthalene using modified EPA Method TO-17.

The groundwater sample results are summarized in Table 1, and the soil gas sample results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix E.

SOIL GAS RISK AND HAZARD EVALUATION

The SFRWQCB May 2008 Environmental Screening Level (ESL) guidance document "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" section 2.7 references the DTSC Vapor Intrusion guide (Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised 2/7/05) for interpretation of sample results exceeding ESLs. The ESL Guidance document indicates that the recommended approach of DTSC for sensitive land use scenarios (i.e.- residential) is appropriate. The DTSC guidance document ("Guidance For The Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor

Air" revised February 7, 2005) recommends that if look up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling (Step 7 in the guidance document). DTSC recommends that the USEPA version of the Johnson and Ettinger (JE) soil gas model be used (USEPA Vapor Intrusion Model, 2003). The DTSC has developed a California-specific spreadsheet for calculation of risk and hazard associated with vapor intrusion and exposure to the chemicals which were detected in the soil gas sample collected during the current investigation. The DTSC has most recently updated the soil gas model spreadsheet on February 4, 2009.

The February 2009 DTSC soil gas model spreadsheet was used to calculate the risk and hazard index associated with the soil gas sample results for the current investigation. Evaluation of hazard associated with TPH-G using the DTSC JE model spreadsheet is not possible because TPH is not one of the chemicals available in the chemical properties lookup table for use in the model. Additionally, TPH is not considered a carcinogen, and it is therefore not possible to calculate risk for TPH-G. The risk and hazard for the remaining detected compounds were calculated using the DTSC JE model spreadsheet default values for a residential exposure scenario with a soil gas sampling depth of 45.72 cm (1.5 feet) and a soil type of silt (SI).

The modeled cumulative risk and hazard for indoor air for the residential structure at 3945 Castro Valley Boulevard was evaluated by using the highest concentration for each detected chemical from the sample and the duplicate sample (SG17 and SG17 DUP), and the cumulative risk and hazard for indoor air were also calculated for sample SG17.

The DTSC vapor intrusion model spreadsheet output results for sample SG17 are summarized in Table 3, along with the calculated cumulative risk and hazard for the highest concentrations encountered in either the sample or the duplicate for each compound. The model input, intercalcs and output sheets for each calculation are attached with this report as Appendix F. The cumulative hazard quotient was calculated to be less than one and the incremental carcinogenic risk was calculated to be less than 1 in a million for both the highest concentration scenario and for sample SG17. Review of Table 3 shows that all of the risk and the majority of the hazard in sample SG17 and in the highest concentration scenario is from benzene.

Sensitivity analysis of the soil gas model was performed using benzene for a total of eight scenarios, including the DTSC JE model spreadsheet default value scenario for a residential exposure scenario with a soil gas sampling depth of 45.72 cm (1.5 feet) and a soil type of silt (SI). The results of the sensitivity analysis are summarized in Table 4, and the model input, intercalcs and output sheets for each calculation are attached with this report as Appendix G. Review of Table 4 shows that the model is insensitive to average soil temperature and soil type, but is sensitive to soil gas sampling depth and soil gas contaminant concentration.

DISCUSSION AND RECOMMENDATIONS

Based on the calculated risk and hazard for exposure from vapor intrusion for the highest concentrations of detected compounds collected at soil gas sample location SG17 (see Table 3), P&D recommends that no further investigation be performed in the vicinity of this sample location at this time. Appendix A contains the soil gas sample results and the associated calculated risk and hazard from vapor intrusion to indoor air (Tables 2 and 3, respectively) obtained from P&D's

Groundwater and Soil Gas Subsurface Investigation Report dated October 27, 2009 associated with historical investigation of the structure at 3495 Castro Valley Boulevard. Review of Appendix A Table 3 shows that the majority of the risk and hazard were from benzene, with the highest benzene soil gas concentrations detected in soil gas sample SG15 at a horizontal distance of approximately ten feet from the building. However, Appendix A Table 3 also shows that risk exceeding one in a million associated with ethyl benzene was also encountered at locations SG13 and SG14 (1.9E-06 and 4.8E-06, respectively). Based on the depth to groundwater of less than ten feet bgs at and near the subject site, P&D recommends that a permanent soil gas well be installed to a depth of 5 feet bgs adjacent to the building between locations SG13 and SG14, and that two soil gas samples be collected from the soil gas well on a semi-annual basis to evaluate soil gas quality during the wet season and the dry season.

Review of Table 1 shows that the groundwater grab sample collected at location P35 contained 99,000 ug/L TPH-G and 93 ug/L benzene. Although all detected compounds exceeded their May 2008 SFRWQCB Table A groundwater ESL, none of the detected compounds exceeded their respective Table E-1 ESL values for vapor intrusion to indoor air. Additionally, review of benzene concentrations in groundwater grab samples collected from nearby historical locations P5 and P28 shows that benzene was detected at concentrations of 40 and 180 ug/L, respectively, and was not detected at nearby location P29.

Appendix A contains all available groundwater level (Table 1) and water quality (Table 2) information for all of the wells at and near the site. Based on information obtained from the wells, groundwater surface elevation contours are shown in Figure 4, and groundwater TPH-G and benzene concentrations are shown in Figures 5 and 6, respectively. Appendix A contains Figures 3 and 4 from P&D's October 27, 2009 Groundwater and Soil Gas Subsurface Investigation Report showing TPH-G and benzene concentrations in groundwater, respectively, for groundwater grab samples collected from boreholes.

Although the downgradient extent of petroleum hydrocarbons is not fully defined in wells EW1 and OW1, groundwater grab samples collected from boreholes P29 and P30 show that benzene was not detected at these downgradient locations and that petroleum hydrocarbons were not detected at these locations at concentrations exceeding their respective SFRWQCB May 2008 Table A groundwater ESL values (see Figures 3 and 4 in Appendix A). Similarly, benzene was not detected in groundwater grab samples collected from locations P29, P30 or P32 at concentrations exceeding the SFRWQCB May 2008 Table E-1 (groundwater screening level for evaluation of potential vapor intrusion concerns) ESL value of 540 ug/L for residential land use. Although elevated groundwater grab sample petroleum hydrocarbon concentrations have historically been detected at groundwater grab sample locations downgradient of the wells, groundwater grab samples from boreholes are intended for screening purposes only and may be positively biased from petroleum hydrocarbons adsorbed on sediments in the samples. The groundwater results from wells are considered to be representative of water quality in the vicinity of the site. For these reasons, the extent of petroleum hydrocarbons in groundwater exceeding the SFRWQCB May 2008 Table E-1 residential land use benzene concentration of 540 ug/L has been defined by the wells located at and near the subject site.

Based on the groundwater benzene concentrations obtained from wells on December 20 and 21, 2010 (see Figure 6), in conjunction with the historically elevated groundwater benzene

concentration at P3, P&D recommends that crawl space air samples be collected from beneath trailers #1, #2, #3 and #4 identified in Figure 6. At the time of crawl space air sample collection, P&D recommends that an ambient air sample also be collected.

As discussed in the semi-annual well monitoring and sampling report documenting the collection of groundwater samples from wells at and near the subject site on December 20 and 21, 2010 P&D recommends that the semi-annual monitoring and sampling program be continued for the wells located at and near the subject site, with monitoring of all of the wells, and collection of samples from wells MW3, EW1, OW1, OW3, OW5 and C3 on a semi-annual basis. Continuation of the monitoring and sampling program should be re-evaluated upon regulatory agency review of the Remedial Investigation/Feasibility Study Work Plan implementation results.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of VIP Service. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between boreholes and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, ONAL P&D Environmental, Inc. PAUL H. KING No. 5901 Paul H. King TEOFCALIFO Professional Geologist # 5901 Expires: 12/31/11

Attachments:

- Table 1 Summary of Borehole Groundwater Grab Sample Results
- Table 2 Summary of Detected Compounds in Soil Gas Samples
- Table 3 Summary of Soil Gas Risk and Hazard Analysis
- Table 4 Summary of Soil Gas Model Sensitivity Analysis
- Figure 1 Site Location Map
- Figure 2 Site Vicinity Map Showing Groundwater and Soil Gas Sampling Locations
- Figure 3 Typical Soil Gas Sampling Manifold
- Figure 4 Site Vicinity Map Detail Showing Groundwater Surface Contours
- Figure 5 Site Vicinity Map Showing TPH-G Concentrations in Groundwater
- Figure 6 Site Vicinity Map Showing Benzene Concentrations in Groundwater
- Appendix A Historical Investigation Data
- Appendix B Soil Boring Log
- Appendix C Weather Data
- Appendix D Soil Gas Purge Volume Calculations and Sampling Data Sheets
- Appendix E Laboratory Analytical Reports and Chain of Custody Documentation
- Appendix F Soil Gas Risk and Hazard Calculation Work Sheets
- Appendix G Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

PHK/sjc 0047.R46 TABLES

Groundwater Grab Sumple Results									
Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes		
•	^						-		
P35-W	11/30/10	99,000, a	ND<100	93	440	990	2,800		
ESL^1		100	5.0	1.0	40	30	20		
ESL^2		Use	24,000	540	380,000	170,000	160,000		
		Soil							
		Gas							

Table 1 Summary of Borehole Groundwater Grab Sample Results

Notes:

 $\overline{\text{TPH-G}}$ = Total Petroleum Hydrocarbons as Gasoline.

MTBE = methyl tert-butyl ether

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen/product present..

ESL¹ = Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water

ESL²= Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table E-1 – Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns. Residential land use.

BOLD = Concentration in excess of applicable ESL¹.

Results and ESL values in micrograms per Liter (µg/L), unless otherwise indicated.

Table 2 Summary of Detected Compounds In Soil Gas Samples

Sample/Borehole ID	Sample Date	Compound	Concentration	Residential ESL, a
SG-17	11/30/2010	TPH-G	670	10,000
		MTBE	ND<4.0	9,400
		Benzene	3.9	84
		Toluene	8.0	63,000
		Ethyl Benzene	ND<4.9	980
		m, p-Xylene	4.8	21,000 (combined)
		o-Xylene	ND<4.9	21,000 (combined)
		Naphthalene	ND<5.0	72
		2-Propanol	240	None
SG-17-Dup	11/30/2010	TPH-G	870	10,000
		MTBE	ND<4.0	9,400
		Benzene	6.8	84
		Toluene	16	63,000
		Ethyl Benzene	ND<4.8	980
		m, p-Xylene	9.2	21,000 (combined)
		o-Xylene	ND<4.8	21,000 (combined)
		2-Propanol	28	None
SG17 Rep	11/30/2010	Naphthalene	ND<5.0	72
		2-Propanol	ND<50	None
		-		

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = methyl tert-butyl ether

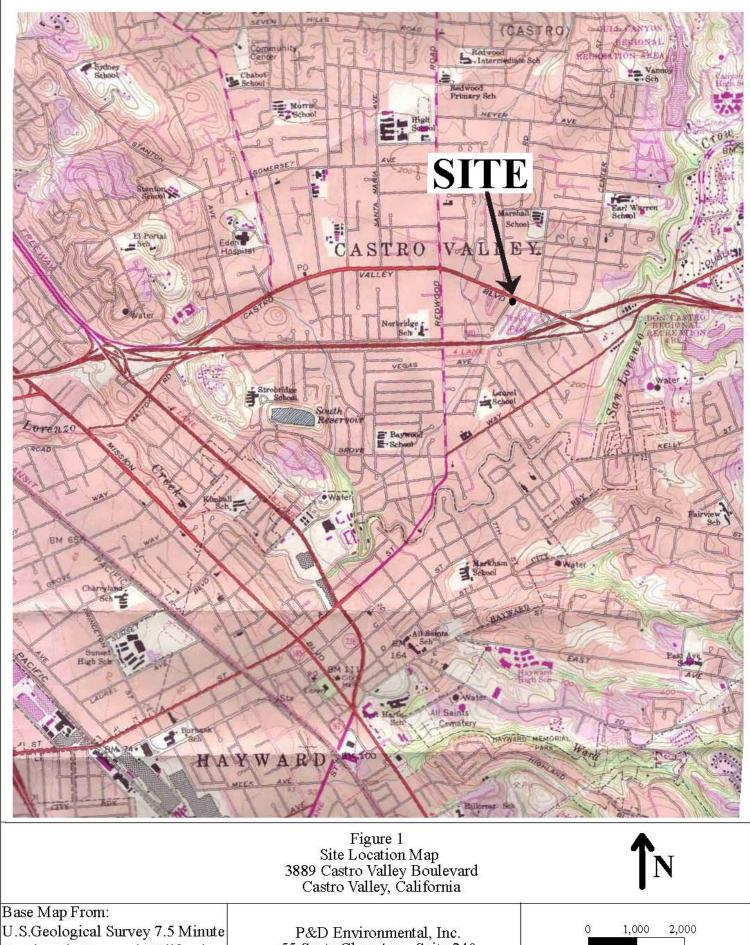
ND = Not Detected

2-Propanol used as leak detection compound.

a = Environmental Screening Level, developed by San Francisco Bay Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table E – Shallow Soil Gas Screening Levels For Evaluation of Potential Vapor Intrusion Concerns, volatile chemicals only.

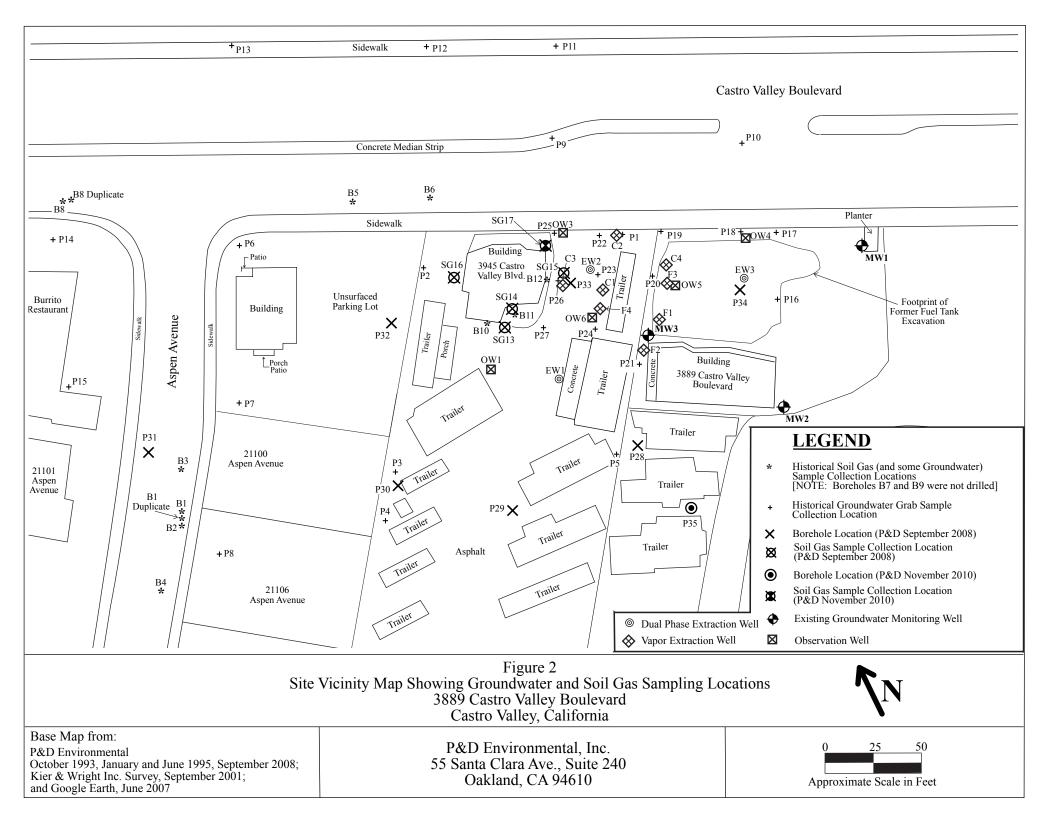
BOLD = Concentration in excess of ESL.

Results and ESL values in micrograms per cubic meter ($\mu g/m^3$), unless otherwise noted.

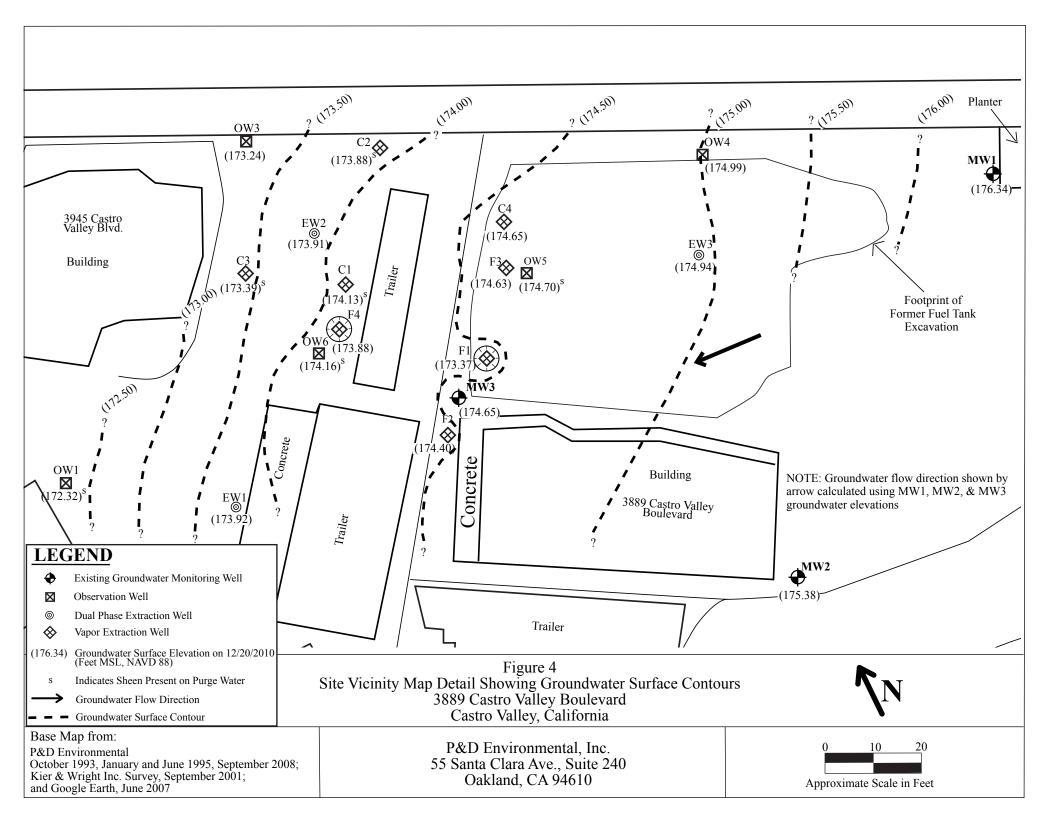

Table 3Summary of Soil Gas Risk and Hazard Analysis

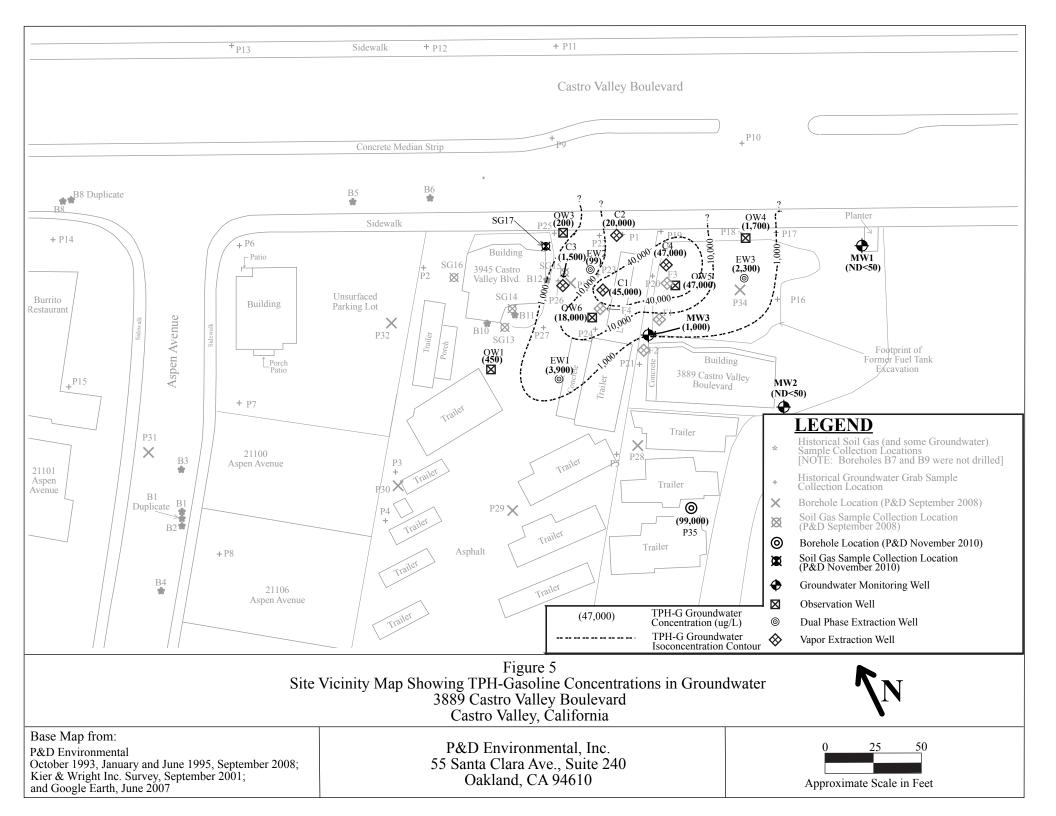
USEPA Vapor Intrusion M	Model (2003)					
Johnson and Ettinger mod		et)				
VIP Service						
3889 Castro Valley Blvd.			Incremental	Hazard		
Castro Valley, CA			risk from	quotient		
custro valley, err			vapor	from vapor		
			intrusion to	intrusion to		
			indoor air,	indoor air,		
	Concentration	Sample Result	carcinogen	noncarcinogen		
Chemical	(mg/m^3)	Location	(unitless)	(unitless)	NOTES	CAS#
Highest Concentration				`		
TPH-G	870	SG17-DUP	Unknown	Unknown		None
Benzene		SG17-DUP	1.5E-07	3.9E-04		71432
Toluene		SG17-DUP	NA	9.1E-05		108883
Ethylbenzene	ND<4.8	SG17-DUP	0.0E+00	0.0E+00		100003
m,p-xylene		SG17-DUP	NA	1.5E-04	used p-xylene CAS #	106423
o-xylene	ND<4.8	SG17-DUP	0.0E+00	0.0E+00	used p xytene erib "	95476
MTBE	ND<4.0	SG17-DUP	0.0E+00	0.0E+00		1634044
Naphthalene	ND<5.0	SG17 DC1 SG17	0.0E+00	0.0E+00		91203
Tuphindiene	110 05.0	5617	0.01100	0.01100		71205
		TOTAL	1.5E-07	6.3E-04		
		TOTAL	1.52.07	0.01 04		
SG17						
TPH-G	670	SG17	Unknown	Unknown		None
Benzene	3.9	SG17	8.3E-08	2.2E-04		71432
Toluene	8.0	SG17	NA	4.6E-05		108883
Ethylbenzene	ND<4.9	SG17	0.0E+00	0.0E+00		100414
m,p-xylene	4.8	SG17	NA	7.9E-05	used p-xylene CAS #	106423
o-xylene	ND<4.9	SG17	0.0E+00	0.0E+00		95476
MTBE	ND<4.0	SG17	0.0E+00	0.0E+00		1634044
Naphthalene	ND<5.0	SG17	0.0E+00	0.0E+00		91203
		TOTAL	8.3E-08	3.5E-04		
NOTES:			<u> </u>			
NA = Not Applicable beca						
For highest concentration						
When duplicate sample re				ample or the duplica	te was used.	
The highest concentration						
JE spreadsheet default val	ues were used except	a soil gas sampli	ing depth of 45.7	2 centimeters (18 in	ches) and a soil type was	s SI.
Report 0047.R46 Soil Gas	s Model Results					

Table 4Summary of Soil Gas Model Sensitivity Analysis


USEPA Vapor Intrusion M	odel (2003)			
Johnson and Ettinger mode		et)		
VIP Service	(D15C spicadsile			
3889 Castro Valley Blvd.			Incremental	Hazard
Castro Valley, CA			risk from	quotient
			vapor	from vapor
			intrusion to	intrusion to
			indoor air,	indoor air,
	Concentration	Sample Result	carcinogen	noncarcinogen
Chemical	(ug/m^3)	Location	(unitless)	(unitless)
Scenario 1 = Table 2 High	est Concentration	with Model Def		
	Sample Depth = 45			
Benzene	6.8	SG17-DUP	1.5E-07	3.9E-04
Scenario 2 = Scenario 1 va				<u>s C.</u>
Benzene	6.8	SG17-DUP	1.5E-07	3.9E-04
Scenario 3 = Scenario 1 va				
Benzene	6.8	SG17-DUP	1.5E-07	3.9E-04
Scenario 4 = Scenario 1 va				
Benzene	6.8	SG17-DUP	1.5E-07	3.9E-04
	1		h in 152 A and (5	64)
Scenario 5 = Scenario 1 va		SG17-DUP	n is 152.4 cm (5 7.5E-08	<u>11).</u> 2.0E-04
Benzene	0.8	SGI/-DUP	7.5E-08	2.0E-04
Scenario 6 = Scenario 1 va	alues excent soil g	as samnling dent	h is 304 8 cm (1	0 ft)
Benzene		SG17-DUP	4.4E-08	1.2E-04
	0.0	5017 201	1.112 00	1.22 01
Scenario 7 = Scenario 1 va	alues except benze	ne concentration	h = 100 ug/m3.	
Benzene		SG17-DUP	2.1E-06	5.7E-03
Scenario 8 = Scenario 1 va	alues except benze	ene concentration		
Benzene	1,000	SG17-DUP	2.1E-05	5.7E-02
Report 0047.R46 Soil Gas	Model Sensitivity A	Analysis		

FIGURES


Quadrangle Hayward, California Topomap Photorevised 1980 P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610


APPROXIMATE SCALE IN FEET

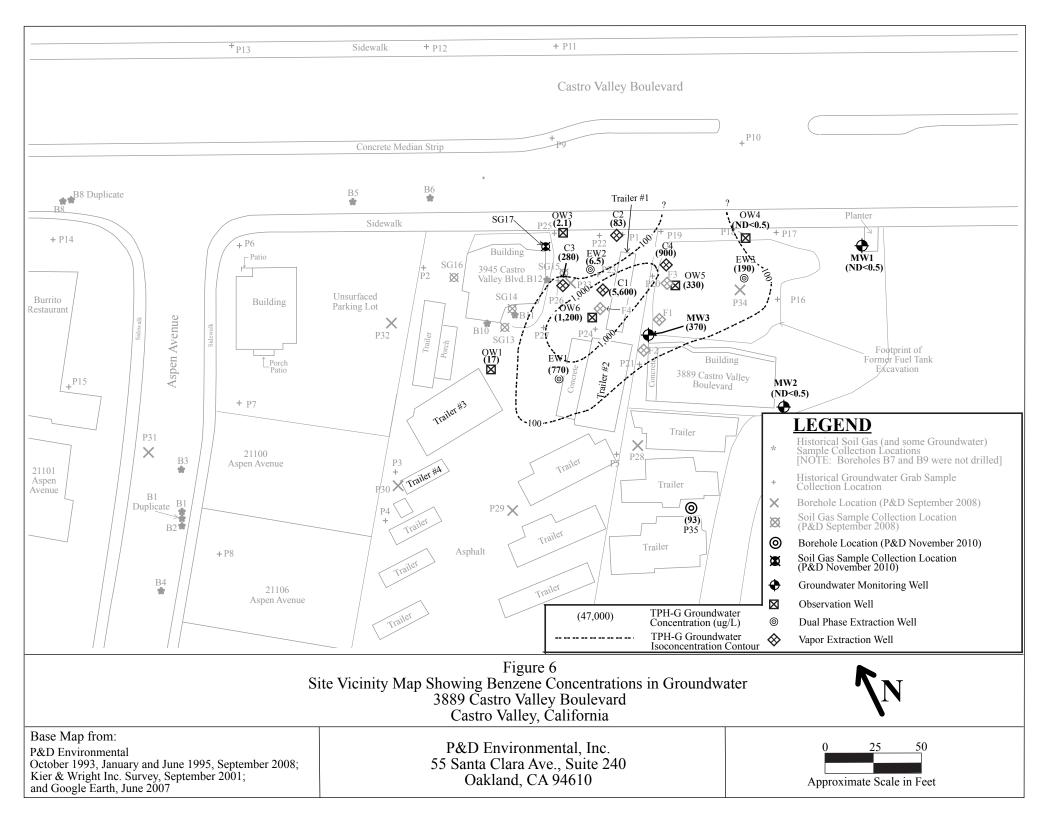


Figure 3 Typical Soil Gas Sampling Manifold 3889 Castro Valley Boulevard Castro Valley, California	
P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610	

APPENDIX A

Historical Investigation Data

- Report 0047.R42 Table 2 Summary of Detected Compounds in Soil Gas Samples
- Report 0047.R42 Table 3 Summary of Soil Gas Risk and Hazard Analysis
- Report 0047.R48 Table 1 Summary of Well Monitoring Data
- Report 0047.R48 Table 2 Summary of Groundwater Analytical Results
- Report 0047.R42 Figure 3 Site Vicinity Map Showing TPH-G Concentrations in First Encountered Groundwater
- Report 0047.R42 Figure 4 Site Vicinity Map Showing Benzene Concentrations in First Encountered Groundwater

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN SOIL GAS SAMPLES

Sample/Borehole ID	Sample Date	Compound	Concentration	Residential ESL, a
	_	_		
SG13	9/11/2008	TPH-G	260,000	10,000
		Toluene	45,000	63,000
		Ethyl Benzene	2,200	980
		m, p-Xylene	6,500	21,000 (combined)
		o-Xylene	1,800	21,000 (combined)
SG14	9/11/2008	TPH-G	380,000	10,000
		Benzene	57	84
		Toluene	41,000	63,000
		Ethyl Benzene	5,600	980
		m, p-Xylene	19,000	21.000 (combined)
		o-Xylene	6,300	21,000 (combined)
SG14 Lab Duplicate	9/11/2008	TPH-G	380,000	10,000
•		Benzene	54	84
		Toluene	41,000	63,000
		Ethyl Benzene	5,600	980
		m, p-Xylene	19,000	21.000 (a such in sul)
		o-Xylene	6,300	21,000 (combined)
SG15	9/8/2008	TPH-G	41,000	10,000
		MTBE	53	9,400
		Benzene	3,900	84
		Toluene	680	63,000
		Ethyl Benzene	170	980
		m, p-Xylene	710	21,000 (combined)
		o-Xylene	250	21,000 (combined)
SG15-Dup	9/8/2008	TPH-G	12,000	10,000
		MTBE	31	
		Benzene	1,800	84
		Toluene	360	63,000
		Ethyl Benzene	110	980
		m, p-Xylene	430	21,000 (combined)
		o-Xylene	160	21,000 (combined)

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN SOIL GAS SAMPLES

Sample/Borehole ID	Sample Date	Compound	Concentration	Residential ESL, a
SG16	9/8/2008	TPH-G	11,000	10,000
		Benzene	61	84
		Toluene	880	63,000
		Ethyl Benzene	100	980
		m, p-Xylene	330	21,000 (combined)
		o-Xylene	92	21,000 (combined)

NOTES:

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

NA = Not Available

a = Environmental Screening Level, developed by San Francisco Bay Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table E – Shallow Soil Gas Screening Levels For Evaluation of Potential Vapor Intrusion Concerns, volatile chemicals only.

BOLD = Concentration in excess of ESL.

Results are in micrograms per cubic meter ($\mu g/m^3$).

TABLE 3 SUMMARY OF SOIL GAS RISK AND HAZARD ANALYSIS

Johnson and Ettinger mod	lel (DTSC spread	dsheet)				
VIP Service	, <u> </u>				1 1	1
3889 Castro Valley Blvd.			Incremental	Hazard		
			risk from			
Castro Valley, CA				quotient		
			vapor	from vapor		
			intrusion to	intrusion to		
			indoor air,	indoor air,		
	Concentration	Sample Result	carcinogen	noncarcinogen		
Chemical	(µg/m ³)	Location	(unitless)	(unitless)	NOTES	CAS#
	(µg/m)	LUCATION	(unitiess)	(unitiess)	NOTES	043#
Highest Concentration						
TPH-G	380000	SG14	Unknown	Unknown		None
Benzene	3900	SG15	4.3E-05	1.1E-01		7143
Toluene	45000	SG13	NA	1.3E-01		10888
Ethylbenzene		SG14	NA	4.5E-03		1004
,	19000		NA	1.5E-01	upod p vulopo CAS t	
m,p-xylene					used p-xylene CAS #	
o-xylene		SG14	NA	5.5E-02		9547
MTBE	53	SG15	5.7E-09	1.7E-05		163404
		TOTAL	4.3E-05	3.9E-01		
	1	-				
SG13					+ +	
		0010			+	
TPH-G	260000		Unknown	Unknown		None
Benzene	ND<42	SG13	0.0E+00	0.0E+00		7143
Toluene	45000	SG13	NA	1.3E-01		10888
Ethylbenzene		SG13	NA	1.8E-03		10041
m,p-xylene		SG13	NA	5.3E-02	used p-xylene CAS #	
					useu p-xylerie CAS #	
o-xylene		SG13	NA	1.6E-02		9547
MTBE	ND<48	SG13	0.0E+00	0.0E+00		163404
		TOTAL	0.0E+00	1.8E-01		
			0.02.00			
0014						
SG14						
TPH-G	380000		Unknown	Unknown		None
Benzene	57	SG14	6.3E-07	1.7E-03		7143
Toluene	41000	SG14	NA	1.2E-01		10888
Ethylbenzene		SG14	NA	4.5E-03		10041
					used a valence CAC t	
m,p-xylene	19000		NA	1.5E-01	used p-xylene CAS #	
o-xylene		SG14	NA	5.5E-02		9547
MTBE	ND<42	SG14	0.0E+00	0.0E+00		163404
		TOTAL	6.3E-07	2.8E-01		
		10172	0.02 07	2.02 01		
0015						
SG15						
TPH-G	41000	SG15	Unknown	Unknown		None
Benzene	3900	SG15	4.3E-05	1.1E-01		7143
Toluene	680	SG15	NA	2.0E-03		10888
		SG15	NA	1.4E-04		10041
Ethylbenzene						
m,p-xylene		SG15	NA	2.0E-03	used p-xylene CAS #	
o-xylene	250	SG15	NA	2.2E-03		9547
MTBE	53	SG15	5.7E-09	1.7E-05		163404
						1
	-	TOTAL	4.3E-05	1.1E-01		1
		IUTAL	4.JE-05	1.12-01		
						-
SG16						
TPH-G	11000	SG16	Unknown	Unknown		None
Benzene		SG16	6.7E-07	1.8E-03		7143
Toluene		SG16	NA	2.6E-03		10888
Ethylbenzene		SG16	NA	8.0E-05		10041
m,p-xylene		SG16	NA	2.7E-03	used p-xylene CAS #	
o-xylene	92	SG16	NA	8.1E-04		9547
0-Aylerie	ND<4.6	SG16	0.0E+00	0.0E+00		163404
		1	6.7E-07	7.2E-03	+ +	+
		τοται	0./E-U/	1.22-03		-
		TOTAL		1		1
		TOTAL				
		TOTAL				
NOTES:		TOTAL				
NOTES:						
NOTES: NA = Not Applicable beca		not considered	a carcinogen.	ploc and duplicate		
NTBE NOTES: NA = Not Applicable beca For highest concentration	analysis the high	s not considered	a carcinogen. n from all sam			
NTBE NOTES: NA = Not Applicable becar For highest concentration When duplicate sample re	analysis the high sults were availa	s not considered nest concentratio able, the highest	a carcinogen. n from all sam concentration			
NTBE NOTES: NA = Not Applicable becar For highest concentration When duplicate sample re	analysis the high sults were availa	s not considered nest concentratio able, the highest	a carcinogen. n from all sam concentration			
NTBE NOTES: NA = Not Applicable beca For highest concentration When duplicate sample re The highest concentration	analysis the high sults were availa of each chemica	not considered nest concentratic able, the highest al was used for e	a carcinogen. In from all sam concentration each address.			
NTBE NOTES: NA = Not Applicable beca For highest concentration	analysis the high sults were availa of each chemica	not considered nest concentratic able, the highest al was used for e	a carcinogen. In from all sam concentration each address.			

TABLE 1

SUMMARY OF WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table	Sheen	Odor
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)		
MW1						
	12/20/2010	183.61#	7.27	176.34	None	None
	6/17/2010		7.63	175.98	None	None
	11/25/2009		7.66	175.95	None	None
	2/26/2009		8.64	174.97	None	None
	8/13/2008		9.56	174.05	None	None
	2/19/2008		8.47	175.14	None	None
	8/16/2007		9.01	174.60	None	None
	2/13/2007		6.85	176.76	None	None
	8/9/2006		7.47	176.14	None	None
	1/31/2006		7.53	176.08	None	None
	7/29/2005		7.90	175.71	None	None
	1/31/2005		8.37	175.24	None	None
	7/14/2004		9.47	174.14	None	None
	12/18/2003		9.26	174.35	None	None
	6/19/2003		9.00	174.61	None	None
	12/21/2002		9.09	174.52	None	None
	4/30/2002		9.03	174.58	None	None
	10/16/2001		9.33	174.28	None	None
	11/8/2000		9.04	174.57	None	None
	5/24/2000		7.97	175.64	None	None
	9/10/1999		8.79	174.82	None	None
	2/10/1999		7.72	175.89	None	None
	2/24/1998		6.61	177.00	None	None
	11/18/1997		9.71	173.90	None	None
	8/12/1997		9.39	174.22	None	None
	4/25/1997		8.37	175.24	None	None
	1/31/1997		7.62	175.99	None	None
	7/19/1996		8.81	174.80	None	None
	4/23/1996		8.17	175.44	None	None
	1/17/1996		9.66	173.95	None	None
	10/26/1995		10.00	173.61	None	None
	8/15/1995		9.23	174.38	None	None
	5/2/1995		8.56	175.05	None	None
	1/30/1995		9.50	174.11	None	None
	10/31/1994		11.55	172.06	None	None
	7/29/1994		10.86	172.00	None	None
	4/25/1994		10.30	172.91	None	None
	11/16/1993		11.63	172.91	None	None
	11/12/93*		11.53	172.08	None	None
	11/12/73		11.55	172.00	NONE	NOILE

NOTES:

Elevations are in feet above Mean Sea Level (NAVD 1988).

Elevations are in feet above Mean Sea Level (NGVD 1929) prior to December 17, 2010 in all other reports.

(NAVD 1929 top of casing elevation for MW1, MW2, MW3 are 180.83, 179.70, and 178.98 feet, respectively.

ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

TABLE 1

Well	Date	Top of Casing	Depth to	Water Table	Sheen	Odor
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)		
			· ·			
MW2						
	12/20/2010	182.48#	7.10	175.38	None	None
	6/17/2010		7.33	175.15	None	None
	11/25/2009		7.43	175.05	None	None
	2/26/2009		8.00	174.48	None	None
	8/13/2008		9.20	173.28	None	None
	2/19/2008		8.15	174.33	None	None
	8/16/2007		8.45	174.03	None	None
	2/13/2007		7.56	174.92	None	None
	8/9/2006		7.28	175.20	None	None
	1/31/2006		7.10	175.38	None	None
	7/29/2005		7.70	174.78	None	None
	1/31/2005		7.94	174.54	None	None
	7/14/2004		9.14	173.34	None	None
	12/18/2003		8.76	173.72	None	None
	6/19/2003		8.68	173.80	None	None
	12/21/2002		7.95	174.53	None	None
	4/30/2002		8.76	173.72	None	None
	10/16/2001		9.76	172.72	None	None
	11/8/2000		8.63	173.85	None	None
	5/24/2000		7.65	174.83	None	None
	9/10/1999		8.48	174.00	None	None
	2/10/1999		7.05	175.43	None	None
	2/24/1998		6.20	176.28	None	None
	11/18/1997		9.26	173.22	None	None
	8/12/1997		9.06	173.42	None	None
	4/25/1997		8.10	174.38	None	None
	1/31/1997		7.22	175.26	None	None
	7/19/1996		8.57	173.91	None	None
	4/23/1996		7.85	174.63	None	None
	1/17/1996		8.94	173.54	None	None
	10/26/1995		9.68	172.80	None	None
	8/15/1995		8.91	173.57	None	None
	5/2/1995		8.17	174.31	None	None
	1/30/1995		8.68	173.80	None	None
	10/31/1994		10.99	171.49	None	None
	7/29/1994		10.34	172.14	None	None
	4/25/1994		10.04	172.44	None	None
	11/16/1993		11.10	171.38	None	None
	11/12/1993*		10.95	171.53	None	None

SUMMARY OF WELL MONITORING DATA

NOTES:

Elevations are in feet above Mean Sea Level (NAVD 1988).

Elevations are in feet above Mean Sea Level (NGVD 1929) prior to December 17, 2010 in all other reports.

(NAVD 1929 top of casing elevation for MW1, MW2, MW3 are 180.83, 179.70, and 178.98 feet, respectively. ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

SUMMARY OF WELL MONITORING DATA

Well	Date Top of Casing	Depth to	Water Table	Sheen	Odor
No.	Monitored Elev. (ft.)	Water (ft.)	Elev. (ft.)		
10112					
MW3					
	12/20/2010 181.72#	7.07	174.65	None	Slight-Moderate
	6/17/2010	7.28	174.44	None	Slight
	11/25/2009	7.42	174.30	None	Slight-Moderate
	2/26/2009	7.85	173.87	None	Slight-Moderate
	8/13/2008	8.92	172.80	Yes	Moderate
	2/19/2008	7.99	173.73	Yes	Moderate
	8/16/2007	8.41	173.31	No	Slight-Moderate
	2/13/2007	7.21	174.51	Yes	Slight-Moderate
	8/9/2006	7.27	174.45	Yes	Yes
	1/31/2006	7.14	174.58	None	Moderate-Strong
	7/29/2005	7.68	174.04	None	Strong
	1/31/2005	7.86	173.86	None	Moderate
	7/14/2004	8.91	172.81	None	None
	12/18/2003	8.55	173.17	None	Slight
	6/19/2003	8.48	173.24	None	Moderate
	12/21/2002	7.88	173.84	None	Strong
	4/30/2002	8.56	173.16	None	Strong
	10/16/2001	10.14	171.58	Yes	Moderate
	11/8/2000	8.45	173.27	Yes	Moderate
	5/24/2000	7.62	174.10	None	Slight
	9/10/1999	8.34	173.38	None	Slight
	2/10/1999	7.12	174.60	None	Moderate
	2/24/1998	6.55	175.17	Yes	Not Described
	11/18/1997	8.97	172.75	None	None
	8/12/1997	8.85	172.87	None	Strong
	4/25/1997	7.99	173.73	None	None
	1/31/1997	7.30	174.42	None	Not Described
	7/19/1996	8.42	173.30	None	None
	4/23/1996	7.76	173.96	None	Not Described
	1/17/1996	8.61	173.11	None	None
	10/26/1995	9.39	172.33	None	Not Described
	8/15/1995	8.62	173.10	None	None
	5/2/1995	8.04	173.68	Yes	None
	1/30/1995	8.46	173.26	Yes	Not described
	10/31/1994	10.58	175.20	None	None
	7/29/1994	10.03	171.69	None	Yes
	4/25/1994	9.64	172.08	None	None
	11/16/1993	10.63	172.08	None	Not Described
	11/12/93*	10.66	171.09	None	Yes

NOTES:

Elevations are in feet above Mean Sea Level (NAVD 1988).

Elevations are in feet above Mean Sea Level (NGVD 1929) prior to December 17, 2010 in all other reports.

(NAVD 1929 top of casing elevation for MW1, MW2, MW3 are 180.83, 179.70, and 178.98 feet, respectively.

ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

TABLE 1

SUMMARY OF WELL MONITORING DATA	
---------------------------------	--

Well No	Date	Top Of Casing Elevation (ft.)**	Depth To Water (ft.)	Water Table Elevation (ft.)	Change in Water Table Elevation (ft.)	<u>Sheen</u>	<u>Odor</u>
EW1	12/20/2010 12/17/2010*	175.51	1.59 2.10	173.92 173.41	0.51	None	Slight
EW2	12/20/2010 12/17/2010*	176.65	2.74 3.18	173.91 173.47	0.44	None	Very Slight
EW3	12/20/2010 12/17/2010*	181.02	6.08 6.57	174.94 174.45	0.49	None	No
OW1	12/20/2010 12/17/2010*	174.20	1.88 2.70	172.32 171.50	0.82	Yes	Very Slight
OW3	12/20/2010 12/17/2010*	176.70	3.46 4.05	173.24 172.65	0.59	None	No
OW4	12/20/2010 12/17/2010*	180.74	5.75 6.15	174.99 174.59	0.40	None	Slight
OW5	12/20/2010 12/17/2010*	180.52	5.82 6.32	174.70 174.20	0.50	Yes	Moderate - Strong
OW6	12/20/2010 12/17/2010*	177.02	2.86 3.34	174.16 173.68	0.48	Yes	Moderate - Strong
C1	12/20/2010 12/17/2010*	177.37	3.24 3.61	174.13 173.76	0.37	Yes	Moderate - Strong
C2	12/20/2010 12/17/2010*	177.72	3.84 4.21	173.88 173.51	0.37	Yes	Slight - Moderate
C3	12/20/2010 12/17/2010*	176.41	3.02 3.10	173.39 173.31	0.08	None	Very Slight
C4	12/20/2010 12/17/2010*	180.06	5.41 5.90	174.65 174.16	0.49	Yes	Moderate - Strong
F1	12/20/2010 12/17/2010*	181.35	7.98 8.27	173.37 173.08	0.29	N/A	N/A
F2	12/20/2010 12/17/2010*	181.56	7.16 7.53	174.40 174.03	0.37	N/A	N/A
F3	12/20/2010 12/17/2010*	180.08	5.45 5.95	174.63 174.13	0.50	N/A	N/A
F4	12/20/2010 12/17/2010*	177.14	3.26 2.28	173.88 174.86	-0.98	N/A	N/A

NOTES:

Elevations are in feet above Mean Sea Level (NAVD 1988).

* = Prior to well development. N/A = Not Applicable.

MW1

MW2

MW3

MW1

MW2

MW3

1/31/2006

1/31/2006

1/31/2006

7/29/2005

7/29/2005

7/29/2005

N/A

N/A

N/A

N/A

N/A

N/A

ND<50

ND<50

2,000

ND<50

ND<50

11,000

ND<5.0

ND<15

ND<110

ND<0.5 ND<0.5

14

ND<0.5

77

ND<5.0 ND<0.5 ND<0.5

470

ND<5.0 ND<0.5 ND<0.5

2,100

ND<5.0 ND<0.5

ND<0.5

ND<0.5

71

ND<0.5

ND<0.5

350

ND<0.5

ND<0.5

77

ND<0.5

ND<0.5

410

N/A

N/A

All ND

N/A

N/A

All ND

N/A

N/A

All ND, except Naphthalene = 15,

N/A

N/A

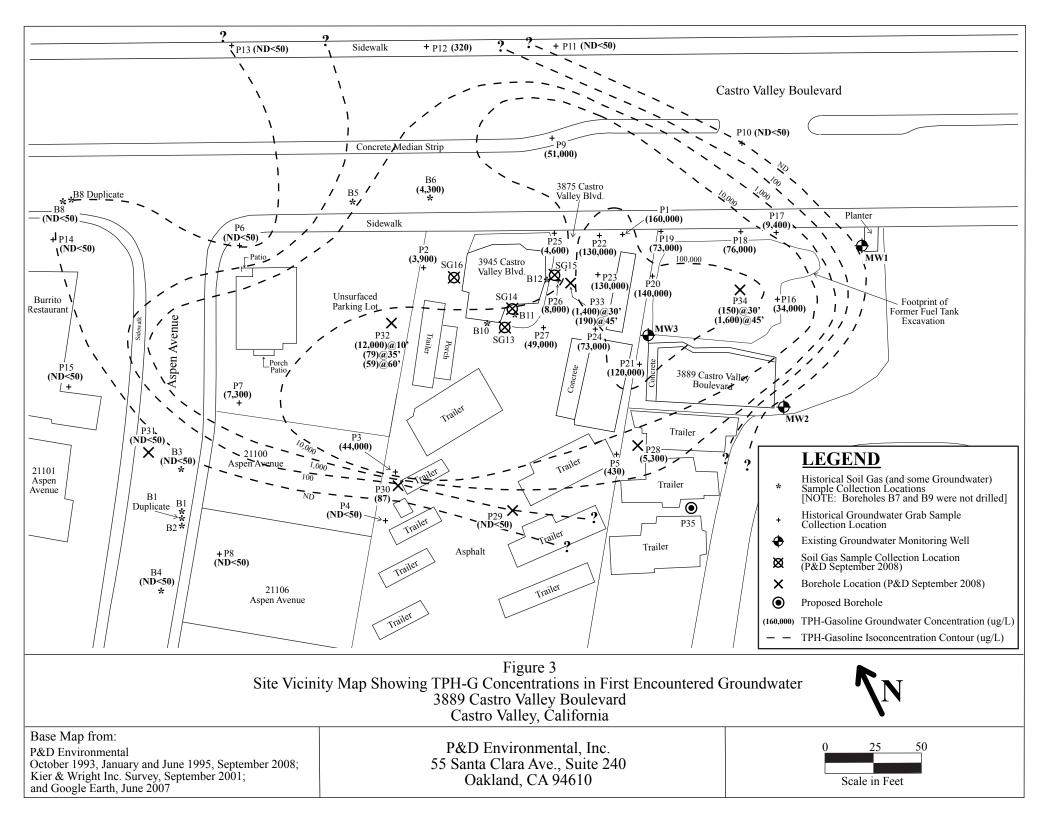
All ND, except Naphthalene = 68, 2-Methylnaphthalene = 23

Sample ID	Sampling Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	EPA Method 8260B	EPA Method 8270C
MW1	12/20/2010	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	12/20/2010	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	12/20/2010	N/A	1,000, a	ND<20	370	5.5	28	38	All ND	All ND
MW 3	12/20/2010	NA	1,000, a	NDC20	3/0	5.5	28		All ND	All ND
MW1	6/17/2010	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	6/17/2010	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	6/17/2010	N/A	1,200	ND<45	350	9.7	31	43	All ND	All ND, except Naphthalene = 15
MW1	11/25/2009	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	11/25/2009	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	11/25/2009	N/A	1,300	ND<20	320	8.4	36	41	All ND	All ND, except Naphthalene = 12
MW1	2/26/2009	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	2/26/2009	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	2/26/2009	N/A	2,400	ND<50	500	14	54	43	All ND	All ND, except
										Naphthalene = 18
MW1	8/13/2008	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	8/13/2008	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	8/13/2008	N/A	8,700	ND<90	1,000	31	150	280	All ND, except 1,2-DCA = 0.55	All ND, except Naphthalene = 27
										· · · · · · · · · · · · · · · · · · ·
MW1	2/19/2008	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	2/19/2008	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	2/19/2008	N/A	4,200	ND<100	<u>810</u>	28	140	250	All ND	All ND, except Naphthalene = 37
MW1	8/16/2007	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	8/16/2007	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	8/16/2007	N/A	4,300	ND<50	760	30	120	210	All ND	
MW3	8/10/2007	IN/A	4,300	ND<50	760		120	210	All ND	All ND, except Naphthalene = 77,
										Bis(2-ethylhexyl) Phthalate = 34 2-Methylnaphthalene = 35
MW1	2/13/2007	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	2/13/2007	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
					ND<0.5	ND<0.5	ND<0.5			N/A
MW3	2/13/2007	N/A	4,300	ND<50	<u>610</u>	14	94	130	All ND, except Benzene = 790 ,	All ND, except Naphthalene = 22
									Ethylbenzene = 120,	
									Xylenes = 150, Naphthalene = 22,	
									n-Butyl benzene = 28, n-Propyl benzene = 32,	
									1,2,4-Trimethylbenzene = 92,	
									1,3,5-Trimethylbenzene = 31	
MW1	8/9/2006	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	8/9/2006	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	8/9/2006	N/A	2,900	ND<50	580	21	100	130	All ND	All ND, except
										Naphthalene = 29,

	Report	0047.R48	
--	--------	----------	--

ene	Toluene	Ethylbenzene	Xylenes	

0.1.00	0 F D .	2011 0	TRUC	MEDE	D	T 1	F-1 1	N 1		EPA M -1 102202
	Sampling Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	EPA Method 8260B	EPA Method 8270C
MW1	1/31/2005	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	1/31/2005	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	1/31/2005	N/A	2,900	ND<50	<u>960</u>	13	37	89	All ND, except	NA, All ND using EPA Method 8270D
									Benzene = $1,600$, Toluene = 28,	
									Ethylbenzene = 190, Xylenes = 140,	
									Naphthalene = 62 , MTBE = 21 ,	
									n-Propyl benzene = 46,	
									1,2,4-Trimethylbenzene = 43, Isopropylbenzene = 18	
MW1	7/14/2004	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	7/14/2004	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	7/14/2004	N/A	4,100	ND<50	<u>980</u>	37	120	150	All ND	NA, All ND using EPA Method 8270D, except Naphthalene = 55,
										2-Methylnaphthalene = 16
MW1	12/18/2003	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	12/18/2003	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	12/18/2003	N/A	9,700	ND<100	2,300	93	280	350	NA, All ND using EPA Method 8021B	NA, All ND using EPA Method 8270D, except
										Naphthalene = 63, 2-Methylnaphthalene = 21
MW1	6/19/2003	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	6/19/2003	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	6/19/2003	N/A	16,000, a	ND<250	3,500	110	430	640	NA, All ND using EPA Method 8021B	NA, All ND using EPA Method 8270D, except Naphthalene = 56,
										2-Methylnaphthalene = 27, Phenol = 24
MW1	12/21/2002	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	12/21/2002	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	12/21/2002	N/A	15,000, a	ND<450	3,300	180	480	1,000	NA, All ND using EPA Method 8021B, except 1,2-DCA = 11	NA, All ND using EPA Method 8270D, except Naphthalene = 35,
									1,2 ⁻ DCA= H	2-Methylnaphthalene = 14
MW1	4/30/2002	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	4/30/2002	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	4/30/2002	N/A	11,000	ND<200	2,200	120	370	590	NA, All ND using EPA Method 8021B	NA, All ND using EPA Method 8270D, except
										Naphthalene = 53
MW1	10/16/2001	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	10/16/2001	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	10/16/2001	N/A	2,100	ND<20	520	30	77	130	NA, All ND using EPA Method 8010	NA, All ND using EPA Method 8270
MW1	11/8/2000	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	11/8/2000	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A N/A	N/A
MW3	11/8/2000	N/A	540	ND<10	150	6.9	18	29	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270
							~		1,2-DCA = 1.3	,
MW1	5/24/2000	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	5/24/2000	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	5/24/2000	N/A	2,100	32	470	27	62	130	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270
									1,2-DCA = 1.7	
MW1	9/10/1999	N/A	ND<50	49	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	9/10/1999	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	9/10/1999	N/A	390	ND<10	98	7.3	12	28	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270
									1,2-DCA = 2.0	
MW1	2/10/1999	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	2/10/1999	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	2/10/1999	N/A	4,100	ND<220	1,700	96	270	420	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270, except
									1,2-DCA = 2.8	Naphthalene = 21
MW1	2/24/1998	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	2/24/1998	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	2/24/1998	N/A	19,000, a	ND<200	4,600	330	650	1,800	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270B, except
									1,2-DCA = 11	Naphthalene = 83, 2-Methylnaphthalene = 19,
										Phenol = 23


Sample ID	Sampling Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	EPA Method 8260B	EPA Method 8270C
MW1	11/18/1997	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW2	11/18/1997	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW3	11/18/1997	N/A	2,100	ND<55	480	52	71	190	NA, All ND using EPA Method 8010, except 1,2-DCA = 2.1	NA, All ND using EPA Method 8270B, except Naphthalene = 58,
MW1	8/12/1997	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	2-Methylnaphthalene = 26 N/A
MW2	8/12/1997	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	8/12/1997	N/A	16,000	ND<330	4,200	450	540	1,900	NA, All ND using EPA Method 8010, except 1,2-DCA = 9.1	NA, All ND using EPA Method 8270B, except Naphthalene = 87, Bis(2-ethylhexyl) Phthalate = 21, 2-Methylnaphthalene = 24
MW1	4/25/1997	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW2	4/25/1997	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW3	4/25/1997	N/A	30,000, a	ND<440	5,300	520	950	3,000	NA, All ND using EPA Method 8010, except 1,2-DCA = 12	NA, All ND using EPA Method 8270A, except Naphthalene = 66,
										2-Methylnaphthalene = 15,
										Phenol = 2.8, 2,4-Dimethylphenol = 2.8, 4-Methylphenol = 2.4
MW1	1/31/1997	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	1/31/1997	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	1/31/1997	N/A	5,500	63	<u>1,600</u>	100	190	410	NA, All ND using EPA Method 8010, except 1,2-DCA = 14	NA, All ND using EPA Method 8270A, except Naphthalene = 31, 2-Methylnaphthalene = 4.8,
										Phenol = 9.4, 2,4-Dimethylphenol = 2.8
MW1	7/19/1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW2	7/19/1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW3	7/19/1996	N/A	18,000, b	210	4,800	610	760	2,800	NA, All ND using EPA Method 8010	NA, All ND using EPA Method 8270, except Naphthalene = 100, 2-Methylnaphthalene = 22, 2,4-Dimethylphenol = 2.2
MW1	4/23/1996	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	4/23/1996	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	4/23/1996	N/A	9,700	150	2,900	170	380	680	NA, All ND using EPA Method 8010, except 1,2-DCA = 5.1	NA, All ND using EPA Method 8270, except Naphthalene = 56, Phenol = 25
MW1	1/17/1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW2	1/17/1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW3	1/17/1996	N/A	21,000	260	4,100	370	520	1,500	NA, All ND using EPA Method 8010, except 1,2-DCA = 11	NA, All ND using EPA Method 8270, except Naphthalene = 32, Bis(2-ethylhexyl) Phthalate = 4.7,
										2-Methylnaphthalene = 10, Phenol = 2.2,
										2,4-Dimethylphenol = 2.9, 4-Methylphenol = 5.1
MW1	10/26/1995	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	10/26/1995	N/A	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	10/26/1995	N/A	19,000	240	4,000	480	640	1,800	NA, All ND using EPA Method 8010, except 1,2-DCA = 11	NA, All ND using EPA Method 8270, except Naphthalene = 43
MW1	8/15/1995	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW2	8/15/1995	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW3	8/15/1995	N/A	7,000	N/A	2,400	230	260	730	NA, All ND using EPA Method 8010, except 1,2-DCA = 9.1	NA, All ND using EPA Method 8270, except Naphthalene = 19,
										2-Methylnaphthalene = 3.0 , 2,4-Dimethylphenol = 5.0, 4-Methylphenol = 3.0
MW1	5/2/1995	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	5/2/1995	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	5/2/1995	840, c	18,000	N/A	<u>5,400</u>	390	650	1,700	NA, All ND using EPA Method 8010, except 1,2-DCA = 14	NA, All ND using EPA Method 3510, except Naphthalene = 62, 2-Methylnaphthalene = 10
MW1	1/30/1995	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	1/30/1995	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	1/30/1995	700, c	24,000	N/A N/A	<u>7,600</u>	350	900	2,200	NA, All ND using EPA Method 8010, except 1,2-DCA = 18	NA, All ND using EPA Method 3510, except Naphthalene = 110,
										2-Methylnaphthalene = 14
	10/31/1994	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A

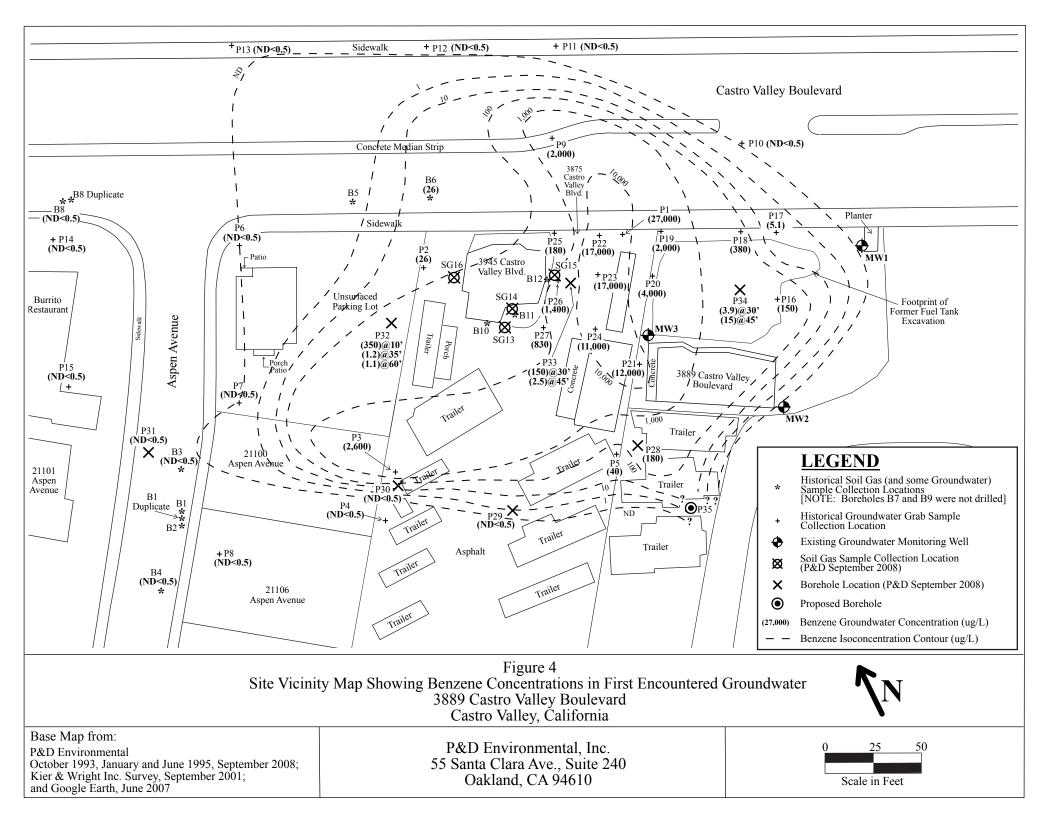

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Sample ID	Sampling Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	EPA Method 8260B	EPA Method 8270C
MW2	10/31/1994	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	10/31/1994	600, c	8,700	N/A	2,600	260	320	920	NA, All ND using EPA Method 8010, except 1,2-DCA = 19	NA, All ND using EPA Method 3510, except Naphthalene = 47,
										2-Methylnaphthalene = 8
MW1	7/29/1994	N/A	ND<50	N/A	1.2	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	7/29/1994	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	7/29/1994						220			
MW3	//29/1994	670, c	6,300	N/A	2,000	130	220	520	NA, All ND using EPA Method 8010, except 1,2-DCA = 7.7	NA, All ND using EPA Method 3510, except Naphthalene = 44,
										2-Methylnaphthalene = 8
MW1	4/25/1994	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	4/25/1994	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	4/25/1994	2,100, c	17,000	NA	4,800	470	290	1,600	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 8270, except
									1,2-DCA = <u>280</u>	Naphthalene = 84, 2-Methylnaphthalene = 13
MW1	11/16/1993	N/A	ND<50	N/A	2.2	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW2	11/16/1993	N/A	ND<50	N/A	ND<0.5	ND<0.5	ND<0.5	ND<0.5	N/A	N/A
MW3	11/16/1993	N/A	12,000	N/A	3,300	660	240	1,600	NA, All ND using EPA Method 8010, except	NA, All ND using EPA Method 625, except
									1,2-DCA = 27	Naphthalene = 42, 2-Methylnaphthalene = 15,
										2,4-Dimethylphenol = 7.0, Phenol = 9.0,
										4-Methylphenol = 5.0,
										2-Methylphenol =6.0, Benzyl alcohol = 6.0
EW/	12/20/2010	NI/A	3 000 -	ND<90	770	58	220	440	N!/A	
EW1		N/A	3,900, a		<u>770</u>			440	N/A	N/A
EW2	12/20/2010	N/A	99	ND<5.0	6.5	1.2	4.8	4.0	N/A	N/A
EW3	12/20/2010	N/A	2,300	ND<50	190	15	31	72	N/A	N/A
OW1	12/20/2010	N/A	450	ND<5.0	17	5.6	6.2	29	N/A	N/A
OW3	12/20/2010	N/A	200, a	ND<5.0	2.1	7.7	5.7	35	N/A	N/A
OW4	12/20/2010	N/A	1,700, b,c	ND<5.0	ND<0.5	8.2	60	170	N/A	N/A
OW5	12/20/2010	N/A	47,000	ND<500	330	300	1,900	8,900	N/A	N/A
OW6	12/20/2010	N/A	18,000, a	ND<250	1,200	450	480	2,700	N/A	N/A
Cl	12/20/2010	N/A	45,000	ND<1,100	5,600	1,900	1,600	10,000	N/A	N/A
C2	12/20/2010	N/A	20,000	ND<100	83	190	600	3,800		N/A
	ĺ									
C3	12/20/2010	N/A	1,500	ND<50	280	7.3	47	72	N/A	N/A
C4	12/20/2010	N/A	47,000	ND<800	<u>900</u>	480	2,200	10,000	N/A	N/A
Fl	12/20/2010		l					Not S	ampled.	
F2	12/20/2010		I					Not S	ampled.	I
F3	12/20/2010								ampled.	
										I
F4	12/20/2010							Not S	ampled.	
ESL 1		100	100	5.0	1.0	40	30	20	1,2-DCA = 0.5,	Naphthalene = 17,
									Benzene = 1.0,	2-Methylnaphthalene = 2.1,
									Toluene = 40, Ethylbenzene = 30,	2,4-Dimethylphenol = 100, Phenol = 5.0,
									Xylenes =20, Naphthalene = 17,	Bis(2-ethylhexyl) Phthalate = 4, 4-Methylphenol = None,
									MTBE = 5.0, n-Butyl benzene = None,	2-Methylphenol = None,
									n-Propyl benzene = None,	Benzyl alcohol = None
									1,2,4-Trimethylbenzene = None, 1,3,5-Trimethylbenzene = None,	
									Isopropylbenzene = None	
ESL ₂		Use Soil Gas	Use Soil Gas	24,000	540	380,000	170,000	160,000	1,2-DCA = 200	Naphthalene = 3,200,
									Benzene = 540, Toluene = 380,000,	2-Methylnaphthalene = 260,000, 2,4-Dimethylphenol = 2,500,000,
									Ethylbenzene = 170,000,	Phenol = None,
									Xylenes = 160,000, Naphthalene = 3,200,	Bis(2-ethylhexyl) Phthalate = None, 4-Methylphenol = None,
									MTBE = 24,000, n-Butyl benzene = None,	2-Methylphenol = None, Benzyl alcohol = None
									n-Propyl benzene = None,	benzyi uconoi = None
									1,2,4-Trimethylbenzene = None, 1,3,5-Trimethylbenzene = None,	
									Isopropylbenzene = None	
NOTES:									· · · · · · · · · · · · · · · · · · ·	I
TPH-D = Tota	l il Petroleum Hyd	rocarbons as Die	sel.							
MTBE = Meth	il Petroleum Hyd hyl-tert butyl Eth		onne.	I					L	l
ND = Not Det N/A = Not An	ected.									
1,2-DCA = 1,2	2-Dichloroethane									
			er immiscible shee gly aged diesel or g							
c = Laboratory	analytical note:	consistes of gaso	line range compour	nds.		ualit: C	al Bas-1 (CE BTT	OCB) 1	d May 2008 from T-bl- A. Come 1 and C.	avala Grannedmatar :-
a current or po	otential source of	drinking water.							d May 2008, from Table A-Groundwater Screening I	
$ESL_2 = Enviro$		ng Level, develop	oed by San Francis	co Bay – Regio	nal Water Q	uality Contr	ol Board (SF-RW	QCB) update	d May 2008, from Table E-1-Groundwater Screening	Levels for Evaluation
BOLD = Con	centration in ex	cess of applicab	le ESL ₁ value.					<u> </u>		
	Concentration in			ted						
accounts are in	HE/L (microgram	is per mer), unle:	ss otherwise indica	acd.						1

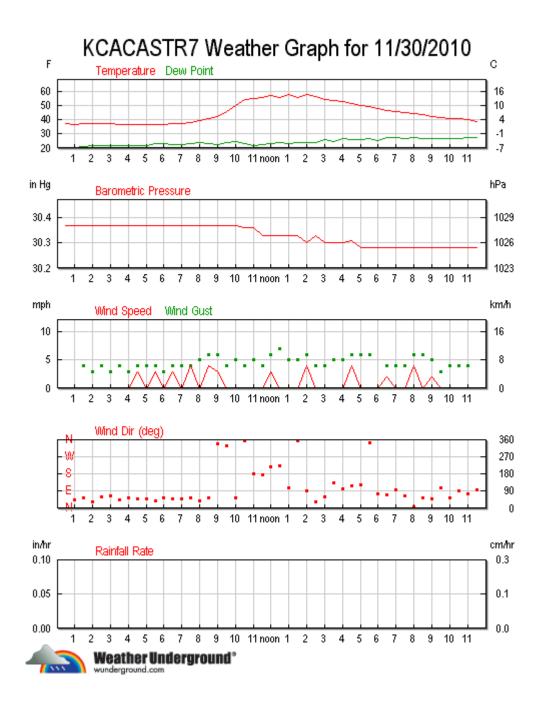
APPENDIX B

Soil Boring Log

P&D ENVIRONMENTAL, INC.

в	DRING	NO.:	P35 project no.: 0047 project	NA	ME: VI	P Ser	vice, Castro	o Va	llev			
в	ORING	LOC	CATION: Planter at SE corner of Trailer # 4, Chetwood							and datum: None		
DF	RILLING	GAC	GENCY: Vironex, Inc.		DRILLEF			DA	DATE & TIME STARTED: DATE & TIME FINISHED			
D	RILLIN	G E(QUIPMENT: 3.5-inch O.D. Hand Auger		11/30/10 1120	11/30/10 1230						
С	OMPLE	тю	N DEPTH: 12.0 Feet BEDROCK DEPTH:]		LOGGED BY:	CHECKED BY:						
FI	RST WA	TEF	R DEPTH: 8.5 Feet NO. OF SAMPLES:		MLD	PAK						
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID	REMARKS				
	-		0.0 to 4.5 ft. Dark brown clay (CL); stiff, moist, with minor gravel to 0.25-inch diameter. No Petroleum Hydrocarbon (PHC) odor.		CL		No Well Constructed	0	Borehole hand augered using a 3.5-inch O.D. Hand Auger. First water encountered during drilling at 8.5 ft. Borehole terminated at 12.0 ft. on 11/30/10. Temporary 1-inch diameter slotted PVC casing placed in borehole, and sample			
	5		4.5 to 9.0 ft. Brown silty clay (CL); medium stiff, moist to wet, with olive-green mottling. 6.0 ft. Color change to olive-green. Wet at 8.5 ft.				Ţ	7	and sheen on sample Borehole grouted or cement grout.	1235. Strong PHC odor e.		
E	10		9.0 to 10.5 ft. Greenish-brown clayey fine sand (SC); soft, saturated, with minor subrounded gravel to 0.25-inch diameter. Strong PHC odor. 10.5 to 12.0 ft. Greenish-brown clay (CL); soft,		SC CL			249 293				
	15 20 25		saturated. Strong PHC odor.									
	30											

APPENDIX C

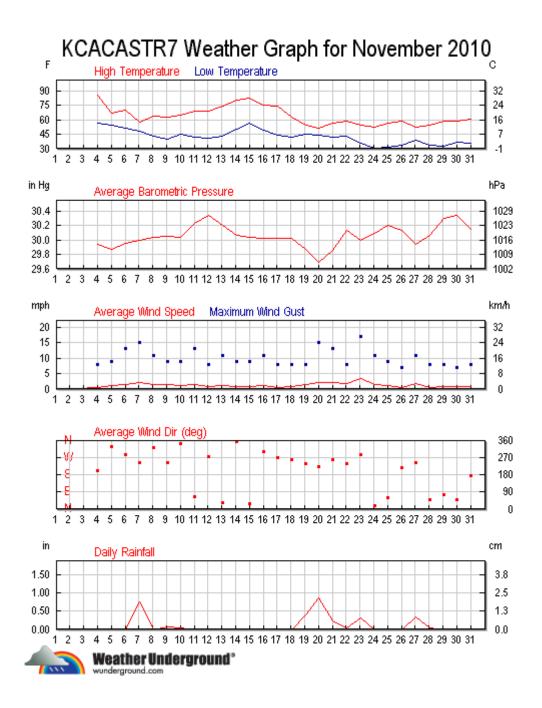

Weather Data

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCACASTR7&graphspan=day &month=11&day=30&year=2010

History for KCACASTR7 Agualinda Pool, Castro Valley, CA —

About This Station Lat: N 37 ° 42 ' 37 " (37.711 °) Lon: W 122 ° 4 ' 38 " (-122.077 °) Elevation (ft): 278 Hardware: WMR-968 Weather Station Software: wview-5.15.0

<u>« Previous Day</u>	Novembe	r 🔽 30 🔽 2	2010 - View	<u>Next Day »</u>							
Daily Weekly Monthly Yearly Custom											
	Current:	High:	Low:	Average:							
Temperature:	56.8 °F	58.1 °F	36.3 °F	44.5 °F							
Dew Point:	29.4 °F	25.9 °F	20.0 °F	22.7 °F							
Humidity:	35%	57%	26%	44%							
Wind Speed:	4.0 mph	4.0 mph	-	0.8 mph							
Wind Gust:	6.0 mph	7.0 mph	-	-							
Wind:	North	-	-	NE							
Pressure:	30.09 in	30.40 in	30.30 in	-							
Precipitation:	0.00 in										
Statistics for the rest of	f the month										
		High:	Low:	Average:							
Temperature:		85.4 °F	30.2 °F	52.6 °F							
Dew Point:		49.1 °F	12.1 °F	32.8 °F							
Humidity:		78.0%	18.0%	50.2%							
Wind Speed:		9.0mph from the WNW	-	1.3mph							
Wind Gust:		17.0 mph from the NNW	-	-							
Wind:		-	-	SSW							
Pressure:		30.40 in	29.59 in	-							
Precipitation:		3.11 in									

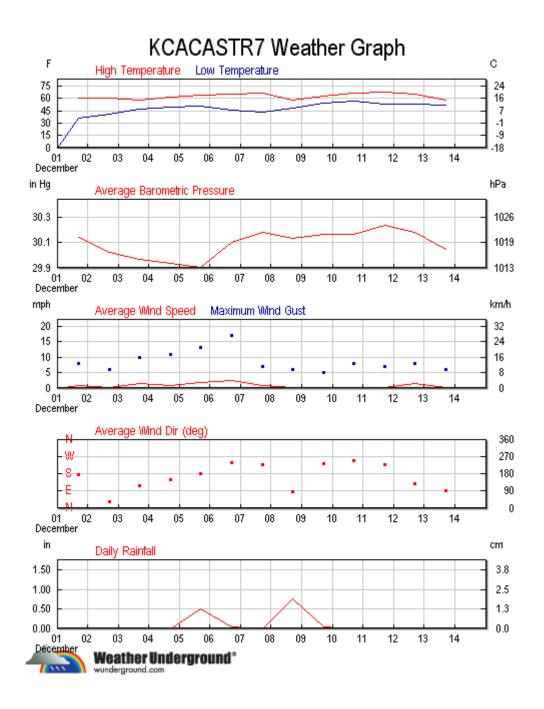

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCACASTR7&graphspan=mo nth&month=11&day=1&year=2010

History for KCACASTR7 Agualinda Pool, Castro Valley, CA

About This Station

Lat: N 37 ° 42 ' 37 " (37.711 °) Lon: W 122 ° 4 ' 38 " (-122.077 °) Elevation (ft): 278 Hardware: WMR-968

<u>« Previous Month</u>	November - 1 - 2010 -	View	<u>Next Month »</u>									
Daily Weekly Monthly Yearly Custom												
	High:	Low:	Average:									
Temperature:	85.4 °F	30.2 °F	52.6 °F									
Dew Point:	49.1 °F	12.1 °F	32.8 °F									
Humidity:	78.0%	18.0%	50.2%									
Wind Speed:	9.0mph from the WNW	-	1.3mph									
Wind Gust:	17.0mph from the NNW	-	-									
Wind:	-	-	SSW									
Pressure:	30.40 in	29.59 in	-									
Precipitation:	3.11in											



http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCACASTR7&gr aphspan=custom&month=12&day=1&year=2010&monthend=12&dayend=14&yearend =2010

History for KCACASTR7 Agualinda Pool, Castro Valley, CA

About This Station Lat: N 37 ° 42 ' 37 " (37.711 °) Lon: W 122 ° 4 ' 38 " (-122.077 °) Elevation (ft): 278 Hardware: WMR-968

December 1	▼ 2010 ▼ - TO - December ▼	14 - 2010	Go
Daily Weekly Monthly Yearly	Custom		
	High:	Low:	Average:
Temperature:	67.8 °F	35.7 °F	54.1 °F
Dew Point:	51.3 °F	24.4 °F	40.1 °F
Humidity:	77.0%	26.0%	60.6%
Wind Speed:	8.0mph from the SSW	-	0.9 mph
Wind Gust:	17.0mph from the WSW	-	-
Wind:	-	-	South
Pressure:	30.27 in	29.79 in	-
Precipitation:	1.85in		

APPENDIX D

Soil Gas Purge Volume Calculations and Sampling Data Sheets Report 0047.R46 Appendix C 7 feet tubing, 8 inch sand interval

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follows:

V tubing = pi x (r x r) x h, where pi =
$$3.14$$
, r = 0.187 in./2, and h = 7 ft.

V tubing =
$$3.14 \times (0.0935 \times 0.0935) \times (7 \text{ ft. } x \ 12 \text{ in./ft.}) = 2.31$$

cubic inches

The sand interval volume is calculated as follows:

V sand interval = pi x (r x r) x h x porosity, where pi = 3.14, r = 1.0 in./2, h = 8 in., and porosity = 0.35

V sand interval =
$$3.14 \times (0.5 \times 0.5) \times 8 \times 0.35 =$$
 2.20
2.20
2.20
2.20
2.20

The total volume for one purge volume is V tubing + V sand interval, where

V total = 2.31 cubic inches + 2.20 cubic inches = 4.50 $\frac{\text{cubic}}{\text{inches}}$

To convert to cubic centimeters:

V total = 4.50 cubic inches x 16.39 cubic centimeters/cubic inches =	73.8	cubic
v total – 4.50 cubic menes x 10.57 cubic centimeters/cubic menes –		centimeters

The total volume to be purged is 3 purge volumes.

V purge total = 73.8 cubic centimeters x 3 =	221	cubic
v purge total = 75.8 cubic centimeters x 5 =	221	centimeters

The flow controller has a nominal flow rate of 200 cubic centimeters per minute.

The purge time is calculated as follows:

T purge = 221 cubic centimeters/200 cubic centimeters per minute =	1.11	minutes
Converting the purge time to seconds,1.11 minutes x 60seconds/ minute =	66	seconds

ob#												1	
ate	001	dia +		Probe Method (c o PRT	neck one)								
&D Sampler	r (4 2	Mar.		Temp Well		-							
rilling Comp	pany 🗘	ROLEX		~									
		1											
oil Gas ocation lesignation	Probe Depth (Ft.)	Time Probe Installed	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (In. Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE time	End PURGE time	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	Begin sample collection vacuum (In. Hg) and time	End sample collection vacuum (in. Hg) and time NOTES
GIT	55	0910	34608	vac - 29	vac - 72	vac - 22	vac	095300	095407	095600	conc 1	war	vac
		- 710	14600	Vac A	time C 940	time 0950					timeCO	100-1	vac 5 Rumej 01620 101800 0 81
				time 0900	umer. 740	time C 7 D	time	time	time	time	umgc CX	ume10020	Cumerois and i or such of fi
BG 17 DUP		ļ.		vac	vac	vac	vac				conc.	vac	vac
DUP			30825	time	time	time	time	time	time	time	time	time	time
			•										
SG				vac	vac	vac	vac	1		1	conc.	vac	vac
	· · · · · · · · · · · · · · · · · · ·	+		time	time	time	time	time	time	time	time	time	time
SG		+		· +									
,o				vac	vac	vac	vac				conc.	vac	vac
				time	time	time	time	time	time	time	time	time	time
				······································									
SG				vac	vac	vac	vac				conc.	vac	vac
				time	time	time	time	time	time	time	time	time	time
· .	÷ •					· · · · · · · · · · · · · · · · · · ·							
SG	1. j			vac	vac	vac	vac				conc.	vac	vac
<u>, , , , , , , , , , , , , , , , , , , </u>										41			
				time	time	time	time	time	time	time	time	time	time
				· · · · · · · · · · · · · · · · · · ·	. .								
SG	ļ.,	a fastan an an an an		vac	vac	vac	vac				CONC.	vac	vac
				time	time	time	time	time	time	time	time	time	time
SG				vac	vac	vac	vac				conc.	vac	vac
				time	time	time	time	time	time	time	time	time	time
								unio					
20	lyn i w	· • · · · · · · · · · · · · · · · · · ·						÷		<u> </u>			
SG	ļ			vac	vac	vac	vac	· · · · · · · · · · · · · · · · · · ·		1	conc.	vac	vac
				time	time	time	time	time	time	time	time	time	time
	<u>.</u>			. i									
SG				vac	vac	vac	vac		. ;,		conc.	vac	vac
				time	time	time	time	time	time	time	time	time	time
		1		1									
SG		+		vac	vac	vac	vac				conc.	vac	vac
	+			time				Itimo	timo	time	time	time	time
				ume	time	time	time	time	time	time	ume	UITIO	umo
	<u></u>				······								
SG		<u> </u>		vac	vac	vac	vać		·····		conc	vac	vac
				time	time	time	time	time	time	time	time	time	time
									·				
SG	15			vac	vac	vac	vac		,	· .	conċ.	vac	vac
a a sa			- e	time	time	time	time	time	time	time	time	time	time

OIL GAS SA	MPLING DA	TA SHEET		1											
ddress		y				· · · · · · · · · · · · · · · · · · ·									
ob# ate ///	CONT CALC		- <u> </u>	Probe Method (o o PRT	check one)										
&D Sampler	hu)		STemp Well	··· • · · · · · ·										
rilling Compa	any ARD	NEX		1				1				· · · · · · · · · · · · · · · · · · ·			
		-										+			
	Probe Depth (Ft.)	Time Probe Installed	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (In. Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE time	End PURGE time	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	Begin sample collection vacuum (In. Hg) and time	End sample collection vacuum (In. Hg) and time	NOTES	· · · · · · · · · · · · · · · · · · ·
SG 17			M1130236	vac	vac	vac	vac				conc.26	vac	vac		
	1			time	time	time	time	time	time	time/0774	0 time/02700	time/0224	time 10.33	2 163402	oppu
	1														
G 17			Mi153270) vac	vac	vac	vac				concal	vac 1040	Ovac/045	co124600	Off
GIT REP			A1112/110	time	time	time	time	time	time	time//34/0	Ctime 103400	time	time		
<u></u>	· · · · · · · · · · · · · · · · · · ·						unite				•			···· · · · · · · · · · · · · · · ·	
G	1			vac	vac	vac	vac				conc.	vac	vac		
				time	time	time	time	time	time	time	time	time	time		· · · · · · · · · · · · · · · · · · ·
	+	<u>.</u>		unle	une	uitte	une	unte	une	ame	une	uille	u110		
SG			+		·····		• ••• • • • • • • • • • •								
90				vac	vac	vac	vac				conc.	vac	vac	Ļ	· · · · · · · · · · · · · · · · · · ·
	+			time	time	time	time	time	time	time	time	time	time		
SG			· · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac	1			conc.	vac	vac		
·	ļ		. <u>.</u>	time	time	time	time	time	time	time	time	time	time		
:															·····
SG	İ			vac	vac	vac	vac				conc.	vac	vac		· · · · · · ·
				time	time	time	time	time	time	time	time	time	time		
SG				vac	vac	vac	vac				сопс.	vac	vac		
				time	time	time	time	time	time	time	time	time	time		
							1								
G	•		-	vac	vac	vac	vac			· · · · · · · · · · · · · · · · · · ·	conc.	vac	vac	1	
				time	time	time	time	time	time	time	time	time	time	····· • • • • • • • • • • • • • • • • •	
		· · · · · · · · · · · · · · · · · · ·						unio		unio	unio	14110	1		
SG								····		···	conc.	vac	vac		
<u>, , , , , , , , , , , , , , , , , , , </u>				Vac	vac	vac	vac		41	4:	•••• • • • • • • • • • • • • • • • • •		time	·····	
				time	time	time	time	time	time	time	time	time	time		
20												+			······
SG				vac	vac	vac	vac				conc.	vac	vac		
		· · · · · · · · · · · · · · · · · · ·		time	time	time	time	time	time	time	time	time	time	<u> </u>	
												÷			·····
SG	ļ			vac	vac	vac	vac			i	conć.	vac	vac		
		Liji in 1		time	time	time	time	time	time	time	time	time	time	· · · · · · · · · · · · · · · · · · ·	
	:				 										
SG				vac	vac	vac	vac				conc.	vac	vac		
1				time	time	time	time	time	time	time	time	time ,	time		
SG ·				vac	vac	vac '	vac		· · · · · · · · · · · · · · · · · · ·		conċ.	vac	vac	· ·····	
				angan Tanan ang Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabup	{ · · • · · [−] · · · · · · · · · · · · · · · · · · ·		4		a de la companya de la			and an initial and a second			

APPENDIX E

Laboratory Analytical Reports and Chain of Custody Documentation

- Field Date 11/30/2010 Groundwater grab sample P35-W McCampbell Work Order # 1012007
- Field Date 11/30/2010 Soil Gas sampleSG17 and field duplicate SG17-DUP Modified TO-15 Air Toxics Work Order # 1012047
- Field Date 11/30/2010 Soil Gas sample SG17 and field duplicate SG17 Rep Modified TO-17 Air Toxics Work Order # 1012046

McCampbell A	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0047; V	Client Project ID: #0047; VIP Service					
55 Santa Clara, Ste.240			Date Received:	12/01/10			
55 Sunta Chira, 510.240	Client Contact: Michael D	Date Reported:	12/06/10				
Oakland, CA 94610	Client P.O.:	Date Completed:	12/06/10				

WorkOrder: 1012007

December 06, 2010

Dear Michael:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #0047; VIP Service,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

55 San	VIRONMENTAL Its Clars Ave, Suite 240 Dakland, CA 94610 (510) 658-6916	, Inc.			(CHAIN	OF CU	STO	DY I	REC	ORE)	10120 PAGE	07
	PROJECT NUMBER:	24	,	V/I 3 CA	PS	ERVIC CASTRO JALLE	E UNILEY BU Y	Ð	12		1	$\left \right $		
	SAMPLED BY: (PRI Michael D SAMPLE NUMBER	/		-	lich	SAMPLE U	Schener	NUMBER OF CONTAINERS	TPH-GUISSIES)			PRESCRIME	RE	ARKS
ye	P35-W	11/39/10	1235	1620				5	×			LE.	NORMAL TO	en Arna E
	ICE / tº 3.60													
	ICE / t° GOOD CONDIT HEAD SPACE A DECHLORINAT PRESERVATION	ON BSENT D IN LAB VOAS 108			N LAB_									
	RELINQUISHED BY: (Desch	ener	DATE	TIME TIME 129	RECEIVED	BY: (SIGNATURE		(THE TOTAL MO (BHE LABOS		CONTAC	Mr.	RATORY: CAMPISEL RATORY PHON 7) 252 -	E NUMBER:
┝	RELINGUISHED BY: (Results and billing to P&D Environmental, lab@pdenviro.com	×	*/	DATE	TIME	RECEIVED (SIGNATUR REMARKS:	FOR LABORATOR			SAMP	E ANA	()YTS RE	QUEST SHEET (\2)NO	

McCampbell Analytical, Inc.

P35-W

 153
Pitt
(92

1012007-001

34 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262		V	WorkOrder:	1012007	7 C	lientCode: PDEO		
	WaterTrax WriteOn E	DF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to: Michael Deschenes P & D Environmental 55 Santa Clara, Ste.240	Email: lab@pdenviro.com cc: PO:		P 8 55		onmental ara, Ste.240	Da	equested TAT: ate Received:	
Oakland, CA 94610 (510) 658-6916 FAX 510-834-0152	ProjectNo: #0047; VIP Service	.	Oa	ikland, CA	Requested 1	Da Fests (See legend		12/01/2010
Lab ID Client ID	Matrix Collection	Date Hold	1 2	3	4 5	6 7 8	9 10	11 12

А

11/30/2010 12:35

Test Legend:

1	G-MBTEX_W	
6] [
11		1

2	
7	
12	

Water

3	
8	

5				
10				

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal				Date	and Time Receive	ed: 12/1/2010	12:43:07 PM
Project Name:	#0047; VIP Servio	ce				Chec	klist completed a	nd reviewed by:	Melissa Valles
WorkOrder N°:	1012007	Matrix	<u>Water</u>			Carri	er: <u>Rob Pringl</u>	e (MAI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Inform	ation		
Chain of custody	present?			Yes	✓	No 🗆			
Chain of custody	signed when relinquis	shed and	d received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	✓	No 🗆			
Sampler's name n	noted on COC?			Yes	✓	No 🗆			
			<u>S:</u>	ample	Receipt	Informatio	<u>n</u>		
Custody seals int	tact on shipping contai	iner/cool	er?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample container	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗌			
		<u>Sa</u>	mple Prese	vation	and Ho	Id Time (H	<u> T) Information</u>		
All samples receive	ved within holding time	ə?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	3.6°C		NA 🗆	
Water - VOA vial	s have zero headspac	ce / no b	ubbles?	Yes	✓	No 🗆	No VOA vials s	ubmitted 🗌	
Sample labels ch	necked for correct pres	servation	1?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	<2)?		Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Typ	e: WE	TICE))			
* NOTE: If the "No" box is checked, see comments below.									

Client contacted:

Date contacted:

Contacted by:

Comments:

	When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D	Environmental			Client F	Project ID: #	#0047; VIP Service Date Sampled: 11/30/10						
55 Santa Clara, Ste.240								Date Receive	ed: 12/01	/10		
	Client Contact: N					chael Desch	ienes	Date Extract	ed: 12/02	2/10		
Oakland, CA 94610 Client P.O.:								Date Analyz	ed: 12/02	2/10		
Extractio	Gon method: SW5030B	asoline R	ange (C6-C12)	-	drocarbons		e with BTEX a	and MTBE*		k Order:	1012007
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	P35-W	w	99	,000	ND<100	93	440	990	2800	20	106	d1,b6,b1
	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/I	J
	eans not detected at or ve the reporting limit	S]	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

%SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than \sim 1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

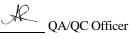
W.O. Sample Matrix: Water QC Matrix: Water					BatchID: 54722 WorkOrder 1012007					07		
EPA Method SW8021B/8015Bm	Extraction SW5030B							s	piked San	nple ID	: 1011822-0	03A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	106	104	1.43	105	106	1.09	70 - 130	20	70 - 130	20
MTBE	ND	10	106	109	2.50	103	112	7.98	70 - 130	20	70 - 130	20
Benzene	ND	10	92.6	96.6	4.20	92.4	95.6	3.49	70 - 130	20	70 - 130	20
Toluene	ND	10	93.1	96.2	3.23	92.1	96	4.18	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.4	94.4	2.12	91	94.5	3.70	70 - 130	20	70 - 130	20
Xylenes	ND	30	94.8	96.6	1.85	93.7	97.4	3.85	70 - 130	20	70 - 130	20
%SS:	99	10	95	97	1.62	96	95	1.11	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following e	exceptions:			

BATCH 54722 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012007-001A	11/30/10 12:35 PM	I 12/02/10	12/02/10 2:30 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

12/14/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: VIP SERVICE 3889 CASTRO VALLEY BLVD Project #: 0047 Workorder #: 1012047

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 12/2/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1012047

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0047 VIP SERVICE 3889 CASTRO
DATE RECEIVED:	12/02/2010	CONTACT:	VALLEY BLVD Kyle Vagadori
DATE COMPLETED:	12/14/2010		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SG-17	Modified TO-15	3.0 "Hg	15 psi
02A	SG-17-DUP	Modified TO-15	2.5 "Hg	15 psi
03A	Lab Blank	Modified TO-15	NA	NA
04A	CCV	Modified TO-15	NA	NA
05A	LCS	Modified TO-15	NA	NA
05AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>12/14/10</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1012047

Two 1 Liter Summa Canister samples were received on December 02, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG-17

Lab ID#: 1012047-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4.5	97	11	240
Benzene	1.1	1.2	3.6	3.9
Toluene	1.1	2.1	4.2	8.0
m,p-Xylene	1.1	1.1	4.9	4.8
TPH ref. to Gasoline (MW=100)	56	160	230	670

Client Sample ID: SG-17-DUP

Lab ID#: 1012047-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4.4	12	11	28
Benzene	1.1	2.1	3.5	6.8
Toluene	1.1	4.2	4.1	16
m,p-Xylene	1.1	2.1	4.8	9.2
TPH ref. to Gasoline (MW=100)	55	210	220	870

Client Sample ID: SG-17 Lab ID#: 1012047-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	6120623 2.24		of Collection: 11/ of Analysis: 12/6	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4.5	97	11	240
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
Benzene	1.1	1.2	3.6	3.9
Toluene	1.1	2.1	4.2	8.0
Ethyl Benzene	1.1	Not Detected	4.9	Not Detected
m,p-Xylene	1.1	1.1	4.9	4.8
o-Xylene	1.1	Not Detected	4.9	Not Detected
TPH ref. to Gasoline (MW=100)	56	160	230	670

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	119	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SG-17-DUP Lab ID#: 1012047-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:				ollection: 11/30/10 10:20:00 / nalysis: 12/6/10 11:47 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	4.4	12	11	28	
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected	
Benzene	1.1	2.1	3.5	6.8	
Toluene	1.1	4.2	4.1	16	
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected	
m,p-Xylene	1.1	2.1	4.8	9.2	
o-Xylene	1.1	Not Detected	4.8	Not Detected	
TPH ref. to Gasoline (MW=100)	55	210	220	870	

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: Lab Blank Lab ID#: 1012047-03A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: NA of Analysis: 12/6	/10 10:54 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	2.0	Not Detected	4.9	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected

······································		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	116	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: CCV Lab ID#: 1012047-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 6120602 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 12/6/10 08:40 AM	
Compound		%Recovery	
2-Propanol		114	
Methyl tert-butyl ether		120	
Benzene		96	
Toluene		96	
Ethyl Benzene		101	
m,p-Xylene		104	
o-Xylene		108	
TPH ref. to Gasoline (MW=100)		100	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	116	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCS Lab ID#: 1012047-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 6120603 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 12/6/10 09:17 AM	
Compound		%Recovery	
2-Propanol		107	
Methyl tert-butyl ether		107	
Benzene		86	
Toluene		83	
Ethyl Benzene		88	
m,p-Xylene		90	
o-Xylene		94	
TPH ref. to Gasoline (MW=100)		Not Spiked	

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	111	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1012047-05AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	6120604 1.00	Date of Collection: NA Date of Analysis: 12/6/10 09:36 AM				
Compound		%Recovery				
2-Propanol		101				
Methyl tert-butyl ether		104				
Benzene		81				
Toluene		80				
Ethyl Benzene		84				
m,p-Xylene		89				
o-Xylene		90				
TPH ref. to Gasoline (MW=100)		Not Spiked				

		Method				
Surrogates	%Recovery	Limits				
Toluene-d8	102	70-130				
1,2-Dichloroethane-d4	114	70-130				
4-Bromofluorobenzene	102	70-130				

ľ	(510) 658-6916. PROJECT NUMBER:		_			;	:Q.	<i>1</i> 34 i .				L.	11	TT	7	7	
			ľ	ROJECT		SINCE						/ 🕺			Ι	/	
	0047			38	17 50 189 (ERUÍCE CASTRO V. VALLEY	ALLEY	BLVD			1	R.		'	/ /		
l				CA.	STRO	VALLEY						19		11			
	· · · · · · · · ·						ŧ			ANA TACA		A	///	[]]	5		
Ī	SAMPLED BY: (PR	A		URE)		1 1 1	/		P01	E.	3		' :			REVARK	5
ŀ	LichAEL DE	Esclien	ES_		plice	ear l'hles	<u>den</u>	~	NUMBER OF CONTAINERS	Ą	৩	1	11	PRESERVAL		102.00000	
	SAMPLE NUMBER	DATE	שאת		INIT. JA	SAMPLE LO	CATION FINAL VAL	- 6-0	₹§	Ve] [[]]		/		
A	56-17	11/30/10	101620			34608		Om Om		X	f f	11				TIAU ARC	XHI
,2A	SG-17-DUP	11/30/10	101620	61	-29	30825	-5	Ony	1	X					11		10
ŀ		ļ. <u></u>		ļ						 	_						
ł	<u></u>					.					┝╌┠╴						
f					<u> </u>		<u> </u>	<u></u>	<u> </u>	╋	$\left \right $	+	++				
<u> </u>						· · · · · · · · · · · · · · · · · · ·				T	\Box						
ŀ	<u>.</u>					•				-	\square						
ł									<u> </u>	╋						•••••	
									┟╍╍╍	\uparrow	\mathbf{H}	-	╶╌╂╼╌╊			<u> </u>	
										Γ							
1							and the second second										
ŀ						·			<u> </u>	-							
	RELINQUISHED BY:	SCNATUR	[DATE	TIME	RECEIVED B	Y. CRICH	ATURE	<u> </u>			-		L ART	RATORY:		
k	Willow De	seliens		12/1/10		Fear					(1445-34 4, 140, 0 (1445-34	F-CONFLA				<u>CS_1JI</u>	>
	RELINQUISHED BY:	(SICNATUR	E)	DATE	TIME	RECEIVED B	Y: (SIGN			11	BORA	TORY	CONTACT	: LABC	RATORY	PHONE NU	MBER
-	PLUM CHECK DY	(C1C14 & 77 1)	-	17/2/10	09:K	ame fl				K			100RI			5-1000	<u>)</u>
	RELINQUISHED BY:	SUNA NIKI	-)	DATE	TIME	RECEIVED F		RATORI	(8¥;						COUEST S ; (×)NO		
E-	Results and billing t			1	L	REMARKS:	وحيادهما التعالي					·,					

12/15/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: VIP SERVICE 3889 CASTRO VALLEY BLVD Project #: 0047 Workorder #: 1012046

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 12/2/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1012046

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX: DATE RECEIVED:	510-834-0772 12/02/2010	PROJECT # CONTACT:	0047 VIP SERVICE 3889 CASTRO VALLEY BLVD Kyle Vagadori
DATE COMPLETED:	12/15/2010		

FRACTION #	NAME	TEST
01A	SG17	Modified TO-17
02A	SG17 REP	Modified TO-17
03A	Lab Blank	Modified TO-17
04A	CCV	Modified TO-17
05A	LCS	Modified TO-17
05AA	LCSD	Modified TO-17

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>12/15/10</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-17 P & D Environmental Workorder# 1012046

Two TO-17 Tube (Tenax-TA) samples were received on December 02, 2010. The laboratory performed the analysis via EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for further separation.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A sampling volume of 1.00 L was used to convert ng to ug/m3 for the associated Lab Blank.

The reported CCV and LCS for each daily batch may be derived from more than one analytical file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED METHOD TO-17

Client Sample ID: SG17

Lab ID#: 1012046-01A No Detections Were Found.

Client Sample ID: SG17 REP

Lab ID#: 1012046-02A No Detections Were Found.

Client Sample ID: SG17 Lab ID#: 1012046-01A MODIFIED METHOD TO-17

File Name: Dil. Factor:	j120618a Date o 1.00		n: NADate of Collection: 11/30/10 10:33:00 A Date of Analysis: 12/6/10 07:46 PM				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)			
Naphthalene	5.0	5.0	Not Detected	Not Detected			
2-Propanol	50	50	Not Detected	Not Detected			
Air Sample Volume(L): 1. Container Type: TO-17 Tu							
				Method			
Surrogates		%Recovery					

96

Limits 70-130

Client Sample ID: SG17 REP Lab ID#: 1012046-02A MODIFIED METHOD TO-17

٦

70-130

File Name: Dil. Factor:	j120619a Date o 1.00			of Collection: 11/30/10 10:45:00 A of Analysis: 12/6/10 08:17 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)			
Naphthalene	5.0	5.0	Not Detected	Not Detected			
2-Propanol	50	50	Not Detected	Not Detected			
Air Sample Volume(L): 1.							
Container Type: TO-17 Tu	ibe (Tenax-TA)			Method			
Surrogates		%Recovery					

Naphthalene-d8	
----------------	--

Client Sample ID: Lab Blank Lab ID#: 1012046-03A MODIFIED METHOD TO-17

٦

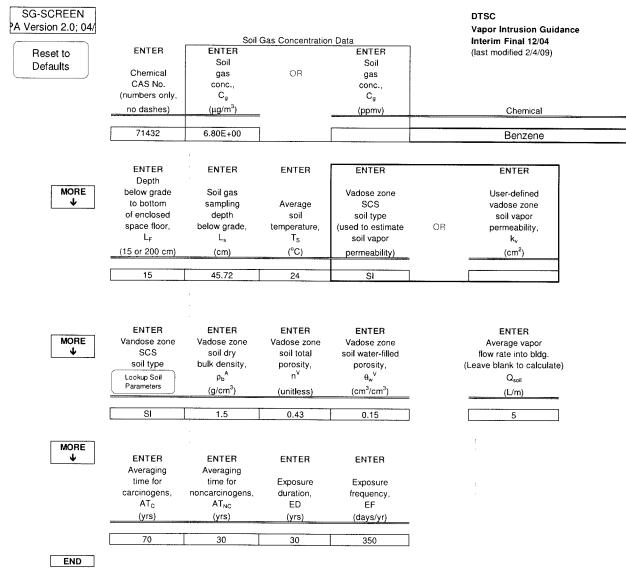
Dil. Factor:	1.00	Dat	Extraction: NADate of Collection: NA Date of Analysis: 12/6/10 07:16 PM					
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)				
Naphthalene	5.0	5.0	Not Detected	Not Detected				
2-Propanol	50	50	Not Detected	Not Detected				
Air Sample Volume(L): 1.00								
Container Type: NA - Not Ap	plicable							
				Method				
Surrogates		%Recovery						
Naphthalene-d8		89						

Client Sample ID: CCV Lab ID#: 1012046-04A MODIFIED METHOD TO-17

File Name: Dil. Factor:	j120614 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 12/6/10 04:57 PM				
Compound			%Recovery			
Naphthalene			89			
2-Propanol			112			
Air Sample Volume(L): 1.00						
Container Type: NA - Not Applicable						
			Method			
Surrogates		%Recovery	Limits			
Naphthalene-d8		97	70-130			

Client Sample ID: LCS Lab ID#: 1012046-05A MODIFIED METHOD TO-17

File Name: Dil. Factor:	j120615 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 12/6/10 05:25 PM				
Compound			%Recovery			
Naphthalene			101			
2-Propanol			116			
Air Sample Volume(L): 1.00						
Container Type: NA - Not Applicable						
			Method			
Surrogates		%Recovery	Limits			
Naphthalene-d8		135	70-130			


Client Sample ID: LCSD Lab ID#: 1012046-05AA MODIFIED METHOD TO-17

File Name: Dil. Factor:	j120612a 1.00	Date of Extraction: NA Date of Analysis: 12/6/10 03:00 PM				
Compound			%Recovery			
Naphthalene			100			
2-Propanol			Not Spiked			
Air Sample Volume(L): 1.00						
Container Type: NA - Not Applicable	e					
			Method			
Surrogates		%Recovery	Limits			
Naphthalene-d8		128	70-130			

(510) 658-6916.		<u> </u>			HAIN OF CUS		•			1 1		
PROJECT NUMBER:		P	ROJECT						'//		//	/ / 103
0047				Р Я 600	RULLE				Ă			
			e P	007 KTAN	CASTRO VALLEY BUD VALLEY				7/	11		
			Ģ	DINC	011/		Ē	14	11			
SAMPLED BY: (PRI			the second			62	ANAL YAISIER	11	77	11		MUX
Michael DESC	1	1	UKEJ INTAN	Am. A	hal	N. C.	3	319		11		REMARKS
			and	ary .	ugenen	NUMBER OF CONTANERS	1	EN LO	11		/ &	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	STARTTÍN	SAMPLE LOCATION LE SURE ENDITINE		Ž	11	\square	\square	[1
5G17					Mii30236 103300	1	X				ICE	GORDENT TUDE
5617 REP.	11/30/10	104500	50.4GAS	104000	· MI153270 104500		Ž		++	┼╌┥	(IE	11 K
		ļ			÷	<u> </u>	\vdash			+		
					· · · · · · · · · · · · · · · · · · ·							
		 			<u> </u>				<u> </u>	++		
		 							$\left\{ - \right\}$	+		
						[
		 			God	 			╇╌╄╴	+		
	•	[0.000			╂╌╂╌	+		
					Y WRODIER	200			++	-		
				·	Lodox							
·			<u> </u>		- 12001			L HO OF				
RELINQUISHED BY: (Mintan Nes		E)	DATE 17/1/10	TIME	received by: (Signature) Fed EX		TOTA	145 344 (140. OF	10017) 001174440	12		EDRATORY; IR TOXICS, LID
RELINQUISHED BY:	SIGNATURI	E)	DATE	TIME	RECEIVED BY: (SIGNATURE)		_	BORAT				BORATORY PHONE NUMB
					Snoul huttekei ATL	•	K	_	AGA			161 985 - 1000
RELINQUISHED BY: (SIGNATURI	E)	DATE	TIME	RECEIVED FOR LABORATOR			S				request sheet rs (K)NO

APPENDIX F

Soil Gas Risk and Hazard Calculation Work Sheets

SG17-Dup Benzene 6.8 ug/m³

Report 0047.R46 Appendix F

Page 1 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model

								E
Source-	vadose zone soil	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-		
building	air-filled	effective total fluid	soil intrinsic	soil	soil	wall		Bldg.
separation,	porosity,	saturation,		relative air	effective vapor	seam	Soil	ventilation
	θ_a^{V}	,	permeability,	permeability,	permeability,	perimeter,	gas	rate,
LT		Ste	k,	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm²)	(cm ²)	(cm²)	(cm)	(µg/m³)	(cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00	3.39E+04
Area of								
enclosed	Crack-	Crack	Enthologicat	Lineada Inc.	Hammed a 1		Vadose	
space	to-total	depth	Enthalpy of vaporization at	Henry's law	Henry's law	Vapor	zone	
below	area	below	ave. soil	constant at ave. soil	constant at	viscosity at	effective	Diffusion
grade,	ratio,	grade,	temperature.		ave. soil	ave. soil	diffusion	path
•		0,	• • •	temperature,	temperature,	temperature,	coefficient,	length,
A _B	η	Zcrack	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	$D^{eff}{}_{V}$	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
	· ····································							
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72
1						Exponent of	Infinite	
0	0		Average	Crack		equivalent	source	Infinite
Convection	Source	Oracla	vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient, D ^{crack}	crack,	number,	coefficient,	conc.,
L _p	C _{source}	r _{crack}	Q _{soil}	e	Acrack	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm²)	(unitless)	(unitless)	(µg/m³)
	,							
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.22E-02
Unit	Deferens-							
risk	Reference							
factor, URF	conc., RfC							
$(\mu g/m^3)^{-1}$	(mg/m ³)							

END

2.9E-05

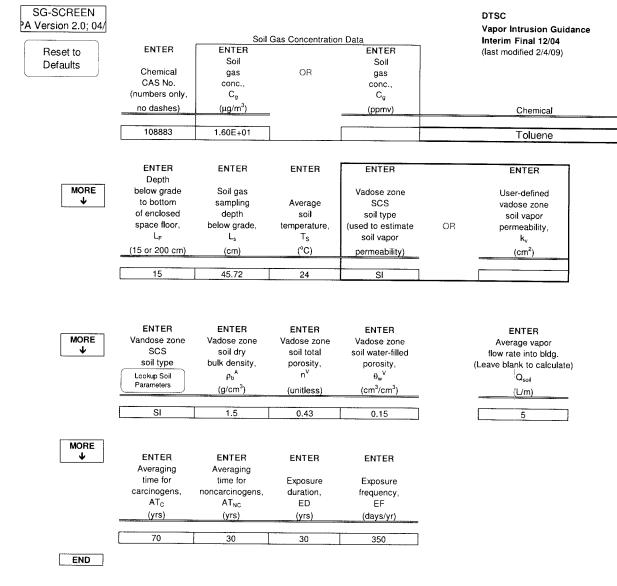
3.0E-02

Report 0047.R46 Appendix F

Page 2 of 3

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

END

SG17-Dup Benzene 6.8 ug/m³

Report 0047.R46 Appendix F

SG17-Dup Toluene 16 ug/m³

Report 0047.R46 Appendix F

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ ^V _a (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.60E+01	2.205.04
			1	0.000	0.702.00	4,000	1.60E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.[†]S} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{sourcé} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	1.60E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	1.79E-03	2.86E-02

Unit risk	Reference
factor,	conc.,
URF	RfC ¹
(µg/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
END]

Report 0047.R46 Appendix F

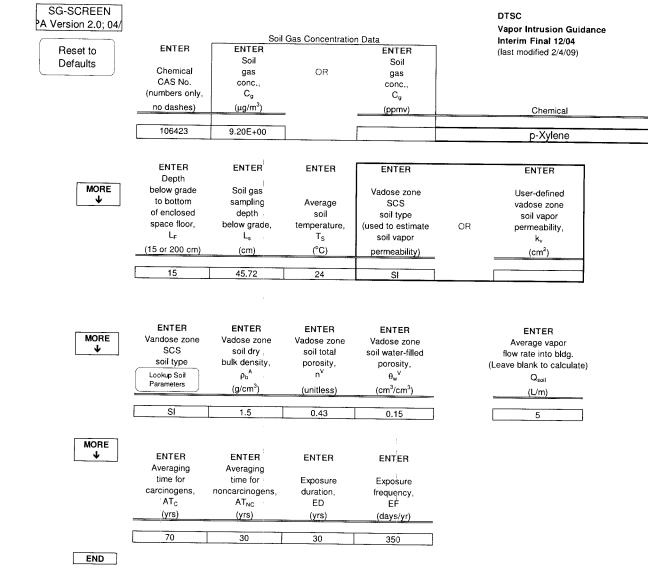
> DTSC / HERD Last Update: 11/1/03

Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:15 PM

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	9.1E-05

MESSAGE SUMMARY BELOW:

END

SG17-Dup Toluene 16 ug/m³

Report 0047.R46 Appendix F

SG17-Dup m,p-Xylene 9.2 ug/m³

Report 0047.R46 Appendix F

DTSC / HERD Last Update: 11/1/03

DTSC Indoor Air Guidance Unclassified Soil Screening Model

Page 1 of 3

SG17-Dup m,p-Xylene 9.2 ug/m³

Source- building	Vadose zone soil air-filled	Vadose zone effective	Vadose zone soil	Vadose zone soil	Vadose zone soil	Floor- wall		Bldg.	m,
separation,	porosity,	total fluid saturation,	intrinsic permeability,	relative air permeability.	effective vapor permeability,	seam	Soil	ventilation	
LT	θ_a^{V}	Saturation, Ste	ki			perimeter,	gas	rate,	
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	k _{rg} (cm²)	k _v	Xcrack	conc.	Q _{building}	
	(cm/cm)			(cm)	(cm²)	(cm)	(μg/m³)	(cm³/s)	
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	9.20E+00	3.39E+04	Г
									_
Area of							Vadose		
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone		
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion	
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path	
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	length,	
A _B	η	Zcrack	$\Delta H_{v,TS}$	H _{⊺s}	H' _{TS}	μ_{TS}	D ^{eff} v	La	
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(q/cm-s)	(cm^2/s)	(cm)	
								(011)	-
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	30.72	٦
			Average	Crack		Exponent of equivalent	Infinite		-
Convection	Source		vapor	effective		foundation	source indoor	Infinite	
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	source bldg	
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	
Lp	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^f)	α	C _{building}	
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m ³)	
		······································			(0)	(unidess)	(unitiess)	(µg/m)	=
15	9.20E+00	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	1.72E-03	1.59E-02]
	1								
Unit									
risk	Reference								
factor, URF	conc., RfC								
(μg/m ³) ⁻¹	(mg/m ³)								
NA	1.0E-01								
END									

Report 0047.R46 Appendix F

Page 2 of 3

DTSC / HERD Last Update: 11/1/03

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

SG17-Dup m,p-Xylene 9.2 ug/m³

In a second second set	
Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	1.5E-04

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix F

		Soil	Gas Concentratio	n Data	Interim Final 12/04		
set to aults	ENTER	ENTER Soil gas	OR	ENTER Soil gas	(last modified 2/4/09)		
	CAS No. (numbers only,	conc., C _g		conc., C _g			
	no dashes)	(μg/m ³)		(ppmv)	Chemical		
	71432	3.90E+00			Benzene		
	ENTER Depth	ENTER	ENTER	ENTER	ENTER		
MORE	below grade	Soil gas		Vadose zone	User-defined		
V	to bottom	sampling	Average	SCS	vadose zone		
	of enclosed	depth	soil	soil type	soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR permeability,		
	L _F	Ls	Ts	soil vapor	k _v		
	(15 or 200 cm)	(cm)	(°C)	permeability)	(cm²)		
	15	45.72	24	SI			
MORE	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm ³ /cm ³)	ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)		
	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, ρ _b ^A	Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity, θ _w ^v	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soit}		
	Vandose zone SCS soil type Lookup Soil Parameters SI ENTER Averaging time for	Vadose zone soil dry bulk density, pb ^A (g/cm ³) 1.5 ENTER Averaging time for	Vadose zone soil total porosity, n ^V (unitless) 0.43 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^V (cm ³ /cm ³) 0.15 ENTER Exposure	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)		
MORE	Vandose zone SCS soil type Lookup Soil Parameters SI ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, p _b ^A (g/cm ³) 1.5 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, n ^V (unitless) 0.43 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^V (cm ³ /cm ³) 0.15 ENTER Exposure frequency,	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)		
MORE	Vandose zone SCS soil type Lookup Soil Parameters SI ENTER Averaging time for	Vadose zone soil dry bulk density, pb ^A (g/cm ³) 1.5 ENTER Averaging time for	Vadose zone soil total porosity, n ^V (unitless) 0.43 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^V (cm ³ /cm ³) 0.15 ENTER Exposure	Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)		

Report 0047.R46 Appendix F SG17 Benzene 3.9 ug/m³

Benzene 3.9 ug/m³

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^{\vee} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³) 0.263	Vadose zone soil intrinsic permeability, k _i (cm ²) 6.91E-09	Vadose zone soil relative air permeability, k _{rg} (cm ²) 0.833	Vadose zone soil effective vapor permeability, k _v (cm ²) 5.75E-09	Floor- wall seam perimeter, X _{crack} (cm) 4,000	Soil gas conc. (μg/m ³) 3.90E+00	Bldg. ventilation rate, Q _{building} (cm ³ /s) 3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L₀ (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	3.90E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	6.99E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(μg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

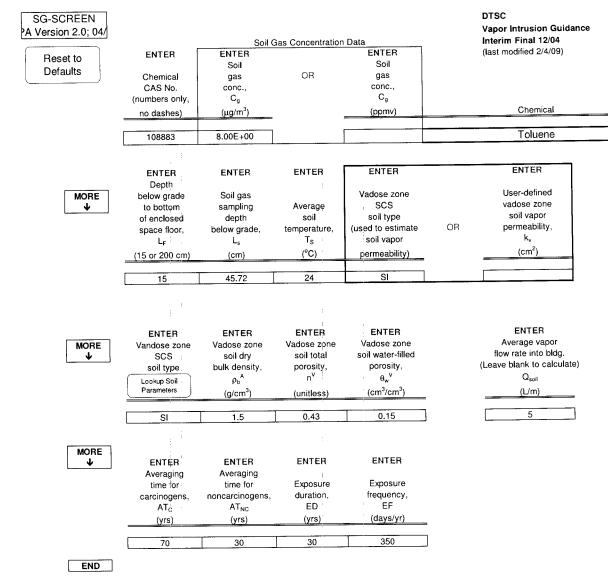
Report 0047.R46 Appendix F

.

Page 2 of 3

SG17 Benzene 3.9 ug/m³

INCREMENTAL RISK CALCULATIONS:


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
8.3E-08	2.2E-04

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix F

HERD_Soil_Gas_Screening_Model_2009rev

SG17 Toluene 8.0 ug/m³

Report 0047.R46 Appendix F

Page 1 of 3

DTSC / HERD Last Update: 11/1/03

•

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:16 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θa ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	8.00E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ๆ (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{τs} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{scii} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	8.00E+00	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	1.79E-03	1.43E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
NA	3.0E-01
	-
END	

rt 0047.R46 pendix F

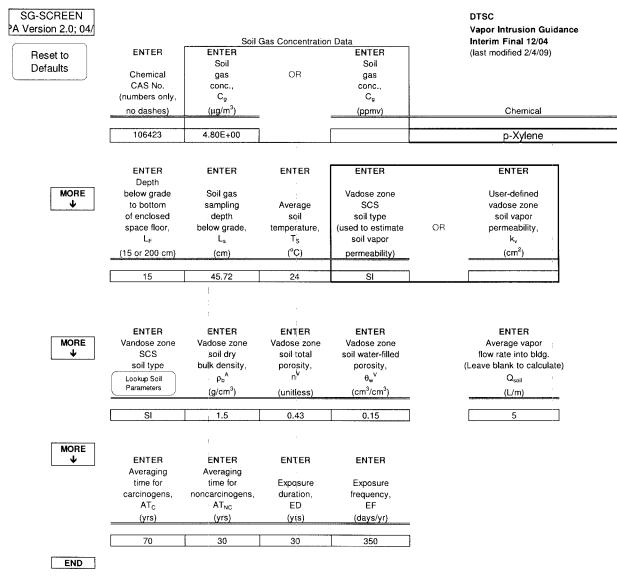
SC / HERD st Update: 11/1/03 Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:16 PM

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

SG17 Toluene 8.0 ug/m³


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	4.6E-05

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix F

;

SG17 m,p-Xylene 4.8 ug/m³

Report 0047.R46 Appendix F

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:18 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^{V} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	4.80E+00	3.39E+04
		01200		0.000		.,	1	
Area of enclosed space	Crack- to-total	Crack depth	Enthalpy of vaporization at	Henry's law constant at	Henry's law constant at	Vapor viscosity at	Vadose zone effective	Diffusion
below	area	below	ave. soil	ave. soil temperature,	ave. soil temperature,	ave. soil temperature,	diffusion coefficient,	path length,
grade, A _B	ratio,	grade, Z _{crack}	temperature, ΔH _{v TS}	H _{TS}	H' _{TS}	μ _{ts}	D ^{eff} v	L _d
(cm ²)	η (unitless)	∠ _{crack} (cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
(cm)	(unitiess)	(cm)	(cai/moi)	(aun-117/1101)	(unitiess)	(g/cm-s)	(61173)	(ciii)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	30.72
Convection path	Source vapor	Crack	Average vapor flow rate	Crack effective diffusion	Area of	Exponent of equivalent foundation Peclet	Infinite source indoor attenuation	Infinite source bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
L	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^f)	α	Cbuilding
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	4.80E+00	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	1.72E-03	8.27E-03
Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	1.23	<u>- 3.35LT01 </u>	0.001-03		,, <u>e</u> +1 <u>e</u>		

Report 0047.R46 Appendix F NA

END

1.0E-01

Page 2 of 3

DTSC / HERD Last Update: 11/1/03

.

INCREMENTAL RISK CALCULATIONS:

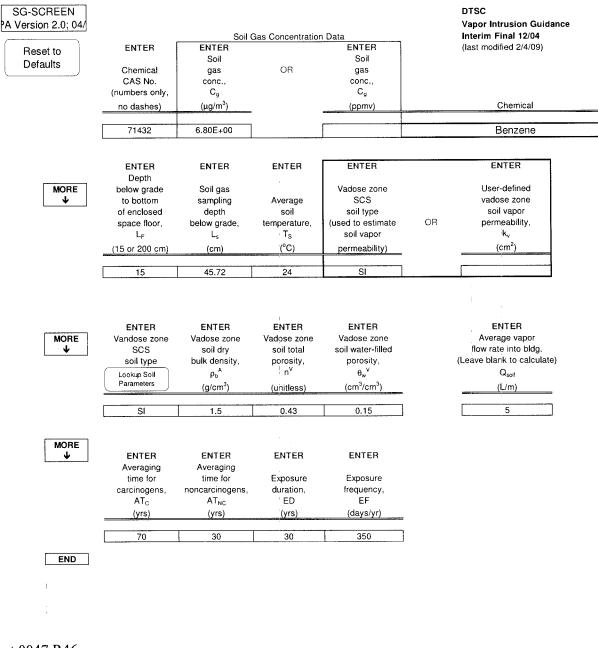
Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA	7.9E-05

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix F

•


HERD_Soil_Gas_Screening_Model_2009rev

APPENDIX G

Soil Gas Model Sensitivity Analysis Risk and Hazard Calculation Work Sheets

Benzene 6.8 ug/m³ Scenario 1

.

SG17-Dup Benzene 6.8 ug/m³ Scenario 1

Source- building separation, L⊤ (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00	3.39E+04
00112	0.200	01200					1	
Area of enclosed space below grade, A_B	Crack- to-total area ratio, η	Crack depth below grade, Z _{crack}	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$	Henry's law constant at ave. soil temperature, H _{TS} (atm. m ³ (mol)	Henry's law constant at ave. soil temperature, H' _{TS}	Vapor viscosity at ave, soil temperature, الم	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, La
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm /s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72
Convection path length, (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.22E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

Report 0047.R46 Appendix G

> DTSC / HERD Last Update: 11/1/03

.

Page 2 of 3

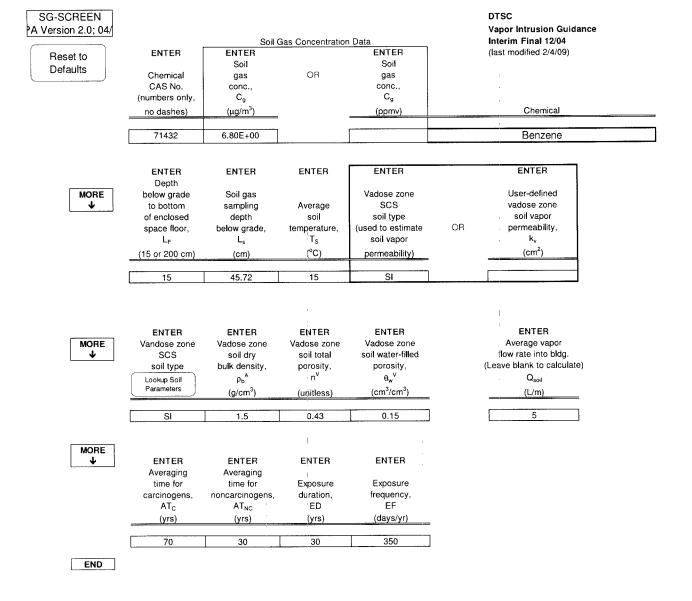
DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:12 PM

SG17-Dup Benzene 6.8 ug/m³ Scenario 1

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04


MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G

HERD_Soil_Gas_Screening_Model_2009rev

.

SG17-Dup Benzene 6.8 ug/m³ Scenario 2

Report 0047.R46 Appendix G

Page 1 of 3

.

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:41 PM

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

SG17-Dup

Benzene 6.8 ug/m³ Scenario 2

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G

HERD_Soil_Gas_Screening_Model_2009rev

,

SG17-Dup

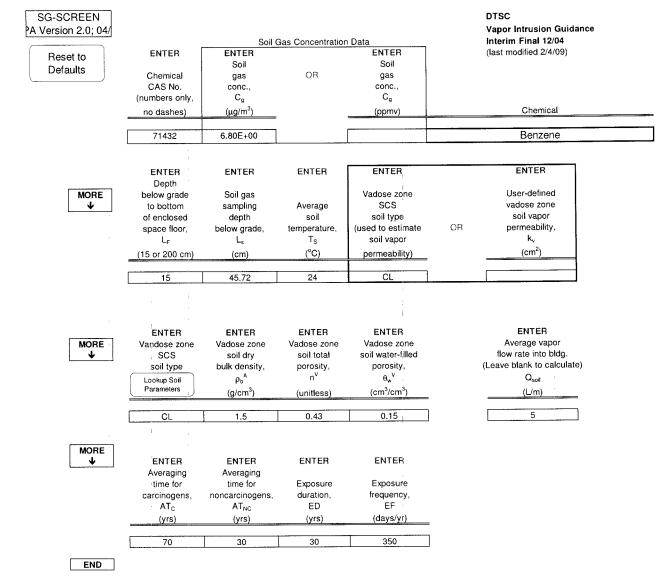
Benzene 6.8 ug/m³

Scenario 2

	(cm ³ /cm ³)	(cm²)	k _{rg} (cm²)	k _v (cm²)	X _{crack} (cm)	conc. (µg/m ³)	Q _{building} (cm ³ /s)
0.280	0.263	6.80E-09	0.833	5.67E-09	4,000	6.80E+00	3.39E+04
Crack- to-total area ratio, η (unitleşs)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L₀ (cm)
5.00E-03	15	8,071	3.45E-03	1.46E-01	1.77E-04	6.86E-03	30.72
Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conC., C _{building} (μg/m ³)
6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.22E-02
	to-total area ratio, η (unitless) 5.00E-03 Source vapor conc., C _{source}	to-total depth area below ratio, grade, η Z _{crack} (unitless) (cm) 5.00E-03 15 Source vapor Crack conc., radius, C _{source} r _{crack} (μg/m ³) (cm)	$\begin{array}{c cccc} to-total & depth & vaporization at area & below & ave. soil ratio, grade, temperature, \\ \eta & Z_{crack} & \Delta H_{v,TS} \\ \hline (unitless) & (cm) & (cal/mol) \\ \hline 5.00E-03 & 15 & 8,071 \\ \hline \\ \hline \\ Source & vapor \\ vapor & Crack & flow rate conc., radius, into bldg., \\ C_{source} & r_{crack} & Q_{soil} \\ \hline (\mug/m^3) & (cm) & (cm^3/s) \\ \hline \end{array}$	$\begin{array}{ccccccc} to-total & depth & vaporization at & constant at \\ area & below & ave. soil & ave. soil \\ ratio & grade, & temperature, & temperature, \\ \eta & Z_{crack} & \Delta H_{v,TS} & H_{TS} \\ (unitless) & (cm) & (cal/mol) & (atm-m^3/mol) \\ \hline 5.00E-03 & 15 & 8,071 & 3.45E-03 \\ \hline \\ Source & vapor & effective \\ vapor & Crack & flow rate & diffusion \\ conc., & radius, & into bldg., & coefficient, \\ C_{source} & r_{crack} & Q_{soil} & D^{crack} \\ (\mug/m^3) & (cm) & (cm^3/s) & (cm^2/s) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m³)
2.9E-05	3.0E-02
END]

Report 0047.R46 Appendix G


Page 2 of 3

DTSC / HERD Last Update: 11/1/03

.

.

DTSC Indoor Air Guidance Unclassified Soil Screening Model

SG17-Dup Benzene 6.8 ug/m³ Scenario 3

Report 0047.R46 Appendix G

SG17-Dup

									South Dup
	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Vadose zone	Floor-			Benzene 6.8 ug/m^3
Source-	soil	effective	soil	soil	soil	wall		Bldg.	-
building	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	Soil	ventilation	Scenario 3
separation,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	gas	rate,	
Lr	θ_a^{V}	Ste	k,	k _{rg}	k,	X _{crack}	conc.	Qbuilding	
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)	
									1
30.72	0.280	0.202	1.29E-09	0.891	1.15E-09	4,000	6.80E+00	3.39E+04	
		1							
							Vadose		
Area of	a 1	·	E de de caf	: Linneda Jaur	Hennio Jow	Vapor	zone		
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law constant at	viscosity at	effective	Diffusion	
space	to-total	depth	vaporization at	constant at ave. soil	ave. soil	ave. soil	diffusion	path	
below	area	below	ave. soil		temperature,	temperature,	coefficient,	length,	
grade,	ratio,	grade,	temperature,	temperature,		•	D ^{eff} v	L _d	
AB	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ _{TS}	•		
(cm²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)	=
						1 005 04	0.005.00	30.72	1
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72]
						Exponent of	Infinite		
			A	Crack		equivalent	source	Infinite	
o	0		Average	effective		foundation	indoor	source	
Convection		Crack	vapor flow rate	diffusion	Area of	Peclet	attenuation	bldg.	
path	vapor conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	
length,			-	D ^{crack}	A _{crack}	exp(Pe ^f)	α	C _{building}	
L_p	C _{source}	r _{crack}	Q _{soil}		(cm ²)	(unitless)	(unitless)	(μg/m ³)	
(cm)	(µg/m³)	(cm)	(cm ³ /s)	(cm²/s)	(cm)	(unitiess)	(unniess)	(µg/11)	=
45	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.22E-02	7
15	6.80E+00	1.25	0.33E+01	0.002-03	J.002+00	0.002110	1		
	:			Į.					
Unit									
risk	Reference								
factor,	conc.,								
URF	RfC								
$(\mu g/m^3)^{-1}$	(mg/m ³)								
<u>_</u>		=							
2.9E-05	3.0E-02]							
END]								

Report 0047.R46 Appendix G

Page 2 of 3

DTSC / HERD Last Update: 11/1/03

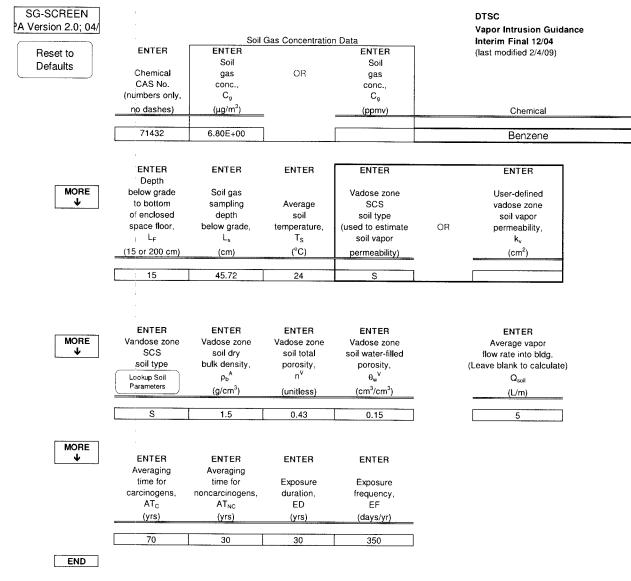
.

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:44 PM

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

SG17-Dup Benzene 6.8 ug/m³ Scenario 3


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air.	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	3.9E-04

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G

.

SG17-Dup Benzene 6.8 ug/m³ Scenario 4

Report 0047.R46 Appendix G

Page 1 of 3

SG17-Dup Benzene 6.8 ug/m³ Scenario 4

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.257	1.02E-07	0.703	7.15E-08	4,000	6.80E+00	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., G _{soil} (cm ³ /s)	Crack, effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.22E-02

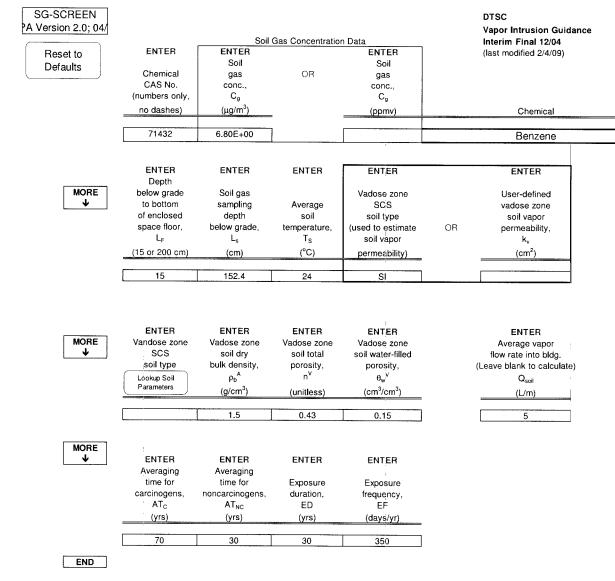
Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	

Report 0047.R46 Appendix G

Page 1 of 3

DTSC / HERD Last Update: 11/1/03

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 3:02 PM


INCREMENTAL RISK CALCULATIONS:

Incremental Hazard risk from quotient vapor from vapor intrusion to intrusion to indoor air, indoor air, carcinogen noncarcinogen (unitless) (unitless) 1.5E-07 3.9E-04

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G SG17-Dup Benzene 6.8 ug/m³ Scenario 4

SG17-Dup Benzene 6.8 ug/m³ Scenario 5

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	SG17-Dup Benzene 6.8 ug/m ³ Scenario 5
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00	3.39E+04]
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ग (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm²/s)	Diffusion path length, L₀ (cm)	_
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4	Г
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	-
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	6.27E-03	1

Unit risk factor, URF	Reference conc., RfC
(μg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

Report 0047.R46 Appendix G

> DTSC / HERD Last Update: 11/1/03

Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 1/25/2011 10:33 AM

SG17-Dup

INCREMENTAL RISK CALCULATIONS:

Incremental Hazard risk from quotient vapor from vapor intrusion to intrusion to indoor air, indoor air, carcinogen noncarcinogen (unitless) (unitless) 7.5E-08 2.0E-04

MESSAGE SUMMARY BELOW:

END

SG17-Dup Benzene 6.8 ug/m³ Scenario 5

Report 0047.R46 Appendix G

A-SCREEN ersion 2.0; 04/						DTSC Vapor Intrusion Guida
			Gas Concentratio			Interim Final 12/04
Reset to	ENTER	ENTER		ENTER		(last modified 2/4/09)
Defaults	<u>.</u>	Soil		Soil		
)	Chemical	gas	OR	gas		
	CAS No.	conc.,		conc.,		
	(numbers only,	Cg		Cg		
	no dashes)	(μg/m ³)		(ppmv)		Chemical
	71432	6.80E+00]			Benzene
	ENTER	ENTER	ENTER	ENTER		ENTER
	Depth			I.		
MORE	below grade	Soil gas		Vadose zone		User-defined
	to bottom	sampling	Average	SCS		vadose zone
	of enclosed	depth	soil	soil type		soil vapor
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
	Lf	Ls	Τs	soil vapor		k _v
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
		(only	(-)	porneability)		
	15	304.8	24	SI		
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ _b ^Δ (g/cm ³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^{\vee} (cm ³ /cm ³)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
	SI	1.5	0.43	0.15		5
MORE	ENTER	ENTER	ENTER	- ENTED		
. ▼	Averaging	Averaging	CHICN	ENTER		
	time for	time for	Exposure	Evennute		
			Exposure	Exposure		
	carcinogens,	noncarcinogens,	duration,	frequency,		
	AT _C	AT _{NC}	ED	EF		
	(yrs)	(yrs)	(yrs)	(days/yr)		
	70	30	30	350		
END	70	30	30	350		

SG17-Dup Benzene 6.8 ug/m³ Scenario 6

Report 0047.R46 Appendix G

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:48 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	SG17-Dup Benzene 6.8 ug/m ³ Scenario 6
289.8	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+00	3.39E+04	
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,Ts} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L₀ (cm)	
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	289.8	
Convection path length, L _p (cm)	Source vapor conc ⁻ , C _{sourcb} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	
15	6.80E+00	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	5.44E-04	3.70E-03	
Unit									

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

Report 0047.R46 Appendix G

DTSC / HERD Last Update: 11/1/03 Page 2 of 3 DTSC Indoor Air Guidance

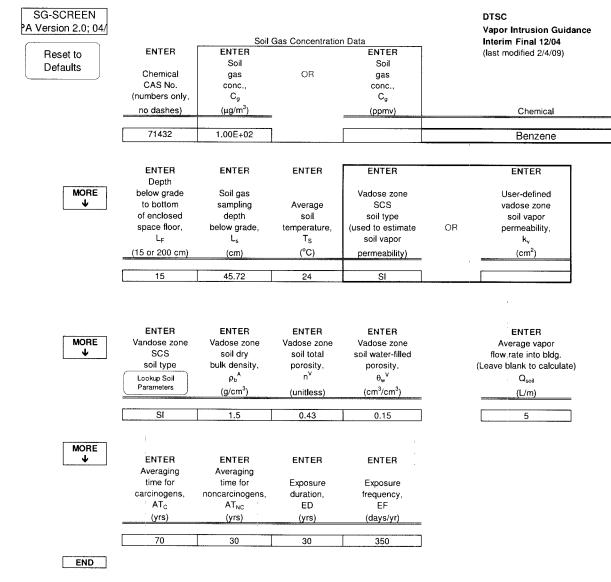
Unclassified Soil Screening Model

HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:49 PM

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.4E-08	1.2E-04
-	

MESSAGE SUMMARY BELOW:


END

SG17-Dup Benzene 6.8 ug/m³ Scenario 6

Report 0047.R46 Appendix G

.

HERD_Soil_Gas_Screening_Model_2009rev

SG17-Dup Benzene 100 ug/m³ Scenario 7

Report 0047.R46 Appendix G

Page 1 of 3

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:50 PM

SG17-Dup Benzene 100 ug/m³ Scenario 7

Source- building separation, L⊤ (cm)	Vadose zone soil air-filled porosity, θ_a^{V} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.00E+02	3.39E+04
Area of enclosed space below grade, A_{B} (cm^{2})	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{Ts} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	1.00E+02	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.79E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END]

Report 0047.R46 Appendix G

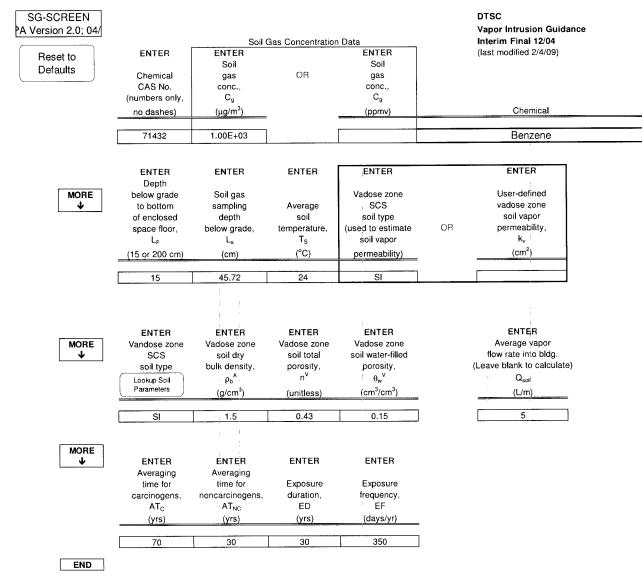
> DTSC / HERD Last Update: 11/1/03

,

Page 2 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:51 PM

INCREMENTAL RISK CALCULATIONS:


Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
2.1E-06	5.7E-03

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G

SG17-Dup Benzene 100 ug/m³ Scenario 7

SG17-Dup Benzene 1,000 ug/m³ Scenario 8

Report 0047.R46 Appendix G

> DTSC / HERD Last Update: 11/1/03

•

Page 1 of 3

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:52 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θa ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)	SG17-Dup Benzene 1,000 ug/m ³ Scenario 8
30.72	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.00E+03	3.39E+04	
Area of enclosed space	Crack- to-total	Crack depth	Enthalpy of vaporization at	Henry's law constant at	Henry's law constant at	Vapor viscosity at	Vadose zone effective	Diffusion	
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path	
grade,	ratio,	grade,	temperature,	temperature, H _{TS}	temperature, H' _{⊺S}	temperature,	coefficient, D ^{eff} v	length, L _d	
A _B (cm ²)	η (unitless)	Z _{crack} (cm)	$\Delta H_{v,TS}$	(atm-m ³ /mol)	(unitless)	μ _{τs} (g/cm-s)	(cm²/s)	(cm)	
(cm)	(unitiess)	(CIII)	(cal/mol)	(am-m/mor)	(unitiess)	(y/cm-s)	(01173)	(CIII)	
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	30.72]
Convection path length, p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	
15	1.00E+03	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	1.79E-03	1.79E+00]
Unit risk factor, URF (µg/m ³) ⁻¹ 2.9E-05 END	Reference conc., RfC (mg/m ³) 3.0E-02	_							

Report 0047.R46 Appendix G

Page 2 of 3

DTSC / HERD Last Update: 11/1/03

,

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev 2/22/2011 2:52 PM

SG17-Dup Benzene 1,000 ug/m³ Scenario 8

INCREMENTAL RISK CALCULATIONS:

_
_

MESSAGE SUMMARY BELOW:

END

Report 0047.R46 Appendix G

HERD_Soil_Gas_Screening_Model_2009rev

.