RECEIVED

4:03 pm, Jan 25, 2010

Alameda County Environmental Health

V I P SERVICE STATION 385 Century Circle Danville, CA 94526 925-838-0768

October 27, 2009

Mr. Paresh Khatri Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: GROUNDWATER AND SOIL GAS SUBSURFACE INVESTIGATION REPORT CERTIFICATION County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Khatri:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

• Groundwater and Soil Gas Subsurface Investigation Report (P28 through P34 and SG13 through SG16) dated October 27, 2009 (document 0047.R42).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned document for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact my consultant Paul King at P&D Environmental, Inc. at (510) 658-6916.

Sincerely,

VIP Service

sport

Lalji Patel

Enclosure

0047.L103

a concern contrata

1852

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

October 27, 2009 Report 0047.R42

Mr. L.B. Patel Mr. P. Gupta VIP Service 385 Century Circle Danville, CA 94526

SUBJECT: GROUNDWATER AND SOIL GAS SUBSURFACE INVESTIGATION REPORT (P28 THROUGH P34 AND SG13 THROUGH SG16) County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the drilling and collection of seven groundwater samples at locations P28 through P34 and four soil gas samples designated as SG13 through SG16 at properties neighboring the subject site. Drilling and sample collection activities were performed between September 2 through 11, 2008. The boreholes were drilled for the collection of groundwater samples to define the horizontal and vertical extent of petroleum hydrocarbons in groundwater adjacent to the subject site. The soil gas samples were collected to evaluate the presence of soil gas beneath a residence located down gradient of the subject site where elevated soil gas concentrations have historically been detected. A Site Location Map is attached as Figure 1, and a Site Vicinity Map showing the borehole and soil gas sample collection locations is attached as Figure 2.

Groundwater investigation was performed in accordance with activities identified in P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan dated May 17, 2005 (document 0047.W5), and P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan Addendum dated August 13, 2007 (document 0047.W5A).

Soil gas samples have historically been collected at locations downgradient from the subject site, including samples B10, B11 and B12 which were collected on September 9, 1999 from locations adjacent to the downgradient residence located at 3875 Castro Valley Boulevard which has a slab-on-grade foundation. In a letter dated April 18, 2008 from the Alameda County Department of Environmental Health (ACDEH), interim remedial action appeared warranted based upon the previous soil gas sample results. Based on a subsequent telephone conversation with the caseworker Mr. Paresh Khatri, it was determined that because of the time elapsed since the 1999 soil gas sample collection, and because the samples collected in 1999 were collected prior to establishment of industry-accepted protocol, petroleum hydrocarbon soil gas concentrations detected in 1999 were to be re-evaluated using current industry-accepted protocol. A work plan for collection of additional soil gas samples to evaluate present day soil gas concentrations was

identified as the next step necessary for the interim remedial action discussed in the April 18, 2008 letter. Soil gas investigation documented in this report was performed in accordance with P&D's Soil Gas Sample Collection Work Plan (SG13 Through SG16) dated August 6, 2008 (document 0047.W6).

All work was performed under the direct supervision of a professional geologist, and in accordance with the following regulatory guidance documents.

- San Francisco Bay Regional Water Quality Control Board (SFRWQCB) "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" dated May 2008,
- Department of Toxic Substances Control (DTSC) January 13, 2003 "Advisory Active Soil Gas Investigations" dated January 13, 2003,
- DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005.

BACKGROUND

It is P&D's understanding that the site was purchased by VIP Service in December 1984. Prior to purchase of the property by VIP Service, the site was operated as a retail gasoline station for an undetermined period of time. The site was operated by VIP Service as a retail gasoline station from the time of purchase until the tanks were removed by Accutite on April 26, 1993. The underground tank system consisted of three 10,000-gallon capacity gasoline tanks, two dispenser islands, and one 550-gallon waste oil tank. It is P&D's understanding that the fuel tanks contained leaded and unleaded gasoline while in use by VIP Service. In addition, VIP Service reported that diesel fuel was not stored at the site at any time.

A detailed site background discussion is provided in P&D's Remedial Investigation and Feasibility Study (RI/FS) Work Plan dated May 17, 2005 (document 0047.W5). The May 17, 2005 document includes historic soil, soil gas and groundwater sample results. Historic borehole groundwater grab sample results are attached with this work plan as Appendix A, and historic soil gas sample results are attached with this work plan as Appendix B.

FIELD ACTIVITIES

Prior to drilling, Alameda County Public Works Agency (ACPWA) permit W2008-0597 was obtained for the drilling of boreholes P28 through P34 and soil gas sample locations SG13 through SG16. An encroachment permit was also obtained from ACPWA for borehole P31 in the public right-of-way on the west side of Aspen Avenue. In addition, the drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, a traffic control plan was prepared, and notification of the scheduled drilling date was provided to ACPWA and ACDEH.

Drilling activities were performed between September 2 through 8, 2008. All subsurface exploration (continuous coring, hand augering, soil conductivity logging, first-encountered

groundwater sample collection, and Hydropunch sample collection) was performed by Vironex, Inc. of Pacheco, California.

Hand-Augering, Continuous Coring, and First-Encountered Groundwater Sample Collection

On September 2, 4, and 8, 2008 P&D personnel oversaw the hand-augering of borings P28 through P32 to a maximum depth of 12 feet below the ground surface (bgs), continuous coring at location P34 to a total depth of 34 feet bgs, soil conductivity logging at locations B32, B33, and B34, to depths of 65, 54, and 52 feet bgs, and collection of four soil gas samples SG13 through SG16 at a depth of 5 feet bgs. The sample collection locations are shown in Figure 2.

Borings P28 through P32 were hand-augered to depths of 12.0, 10.0, 7.0, 10.0, and 9.0 feet bgs, respectively, using a 3.5-inch outside diameter stainless steel hand auger. Boring P34 was continuously cored using GeoProbe direct push technology to a depth of 38.0 feet bgs (drilling refusal) with a Macrocore barrel sampler lined with transparent PVC sleeves. The soil from the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. The soil was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard. The soil was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No soil samples were retained for laboratory analysis.

No odors, elevated PID values, staining, or discoloration were detected in boreholes P28 through P30. In boreholes P31, P32 and P34, discoloration and detectable PID readings were recorded as follows.

- P31: blue-gray discoloration in clayey sand, accompanied by a slight petroleum hydrocarbon odor and a PID reading of 17 ppm, was detected from 5.0 to 7.5 feet bgs.
- P32: blue-gray discoloration in clayey sand was accompanied by a strong petroleum hydrocarbon odor and a PID reading of 22 ppm between 7 and 9 (total borehole depth) feet bgs.
- P34: slight petroleum hydrocarbon odors were detected from 11.0 to 16.0 feet bgs. The odors were accompanied by PID readings of 13 and 17 ppm, in sandy clay from 11.0 to 13.0 feet and gravel from 15.0 to 16.0 feet bgs, respectively, while no elevated PID readings accompanied the odors detected between 13.0 and 15.0 feet. Between 16.0 and 17.0 feet depth, a PID reading of 22 ppm was observed in sand without accompanying odor, and between 20.0 and 21.0 feet a slight petroleum hydrocarbon odor and a PID reading of 55 ppm were detected in sandy gravel.

Groundwater was initially encountered while hand augering boreholes B28 through B32 at depths of 7.5, 8.5, 6.2, 9.0 and 9.0 feet bgs, respectively, and was subsequently measured in the boreholes at depth of 7.1, 6.4, 5.7, 4.9 and 6.8 feet bgs, respectively. In continuously cored borehole B34, groundwater was initially encountered during drilling at a depth of 13.0 feet bgs, and was not subsequently measured in the borehole. Copies of the boring logs are attached with this report as Appendix C.

One groundwater grab sample was collected from each of hand augered boreholes P28 through P32. The groundwater grab samples were collected from the boreholes using a temporary slotted PVC pipe and a polyethylene tube with a stainless steel check valve. The samples were placed into 40-milliliter VOAs and 1-liter amber glass bottles preserved with hydrochloric acid and capped with Teflon-lined screw caps. All sample containers were clean and provided by the laboratory. The VOAs were overturned and tapped to ensure that no air bubbles were present. The samples were then stored in a cooler with ice, pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

All drilling and sampling equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Mr. Ron Smalley of the ACPWA was on site to observe grouting procedures on September 2, 4, and 8, 2009. Soil and water generated during drilling was stored in drums at the site pending characterization and disposal.

Soil Conductivity Logging

Soil conductivity logging was performed at locations P32 through P34 to depths of 64.8, 54.0, and 52.6 feet bgs, respectively. Soil conductivity values were continuously measured and recorded and printed as a log. Increased conductivity values indicate finer grained materials. Correlation of the log values with actual earth materials is performed by evaluation and comparison of the conductivity logs with the lithology recorded during the completion of continuously cored borehole P34. GeoProbe has suggested the following correlation between soil type and soil conductivity.

Coarse Sand = 75 Milli-Siemens per meter (ms/m)

Silty Sand = 76-150 ms/m

Silty Clay = 151-200 ms/m

Clay = 200 and greater ms/m

The soil conductivity logs are discussed in greater detail below in the Geology and Hydrogeology section. Please note that the vertical and horizontal scales for each of the logs are different. Copies of the soil conductivity logs for P32, P33, and P34 are attached with this report as Appendix D.

Hydropunch Groundwater Sample Collection

Following review of subsurface conditions identified in the soil conductivity logs, groundwater grab samples were collected at drilling locations P32 through P34 by driving a Hydropunch at locations approximately two feet away from the corresponding soil conductivity log boreholes. The Hydropunch was driven at locations P32 through P34 to depths of 39.0, 34.0 and 34.0 feet bgs, respectively. Prior to retracting the drilling rods to expose the Hydropunch screen, the interior of the drilling rods for each Hydropunch were evaluated to determine if water was present inside the drilling rods. No water was measured in any of the drilling rods prior to retracting the drilling rods to expose the Hydropunch screen.

Following retraction of the Hydropunch exterior rods to expose each Hydropunch screen, groundwater samples were collected from the Hydropunch rods using a polyethylene tube with a stainless steel check valve. The samples were transferred to VOA vials and handled as described above. The Hydropunch rods were removed at each location and a different Hydropunch was driven in the same borehole as the previous Hydropunch at each of locations P32 through P34 to depths of 64.0, 49.0 and 49.0 feet bgs, respectively. After verifying that groundwater had not entered the drilling rods, Hydropunch groundwater sample collection was then repeated at each location as described above for the shallow Hydropunch sample collection.

Soil Gas Sample Collection

A total of four soil gas samples designated as SG13 through SG16 and SG15-Dup were collected on September 8 and 11, 2009 at locations shown on Figure 2. All of the soil gas samples were collected at a depth of 5 feet bgs. The ground surface at each location was covered with asphalt. Although efforts to collect samples at locations SG13 and SG14 were made on September 8, 2008 high vacuum conditions were encountered at these locations, and it was necessary to return to the site on September 11, 2009 to collect samples at these locations.

All of the soil gas samples were collected using temporary soil gas sampling wells. The temporary wells were constructed by driving a hollow 1-inch diameter Geoprobe rod with an expendable tip to a depth of 5 feet, dislodging the expendable tip, and then inserting a 0.250-inch outside diameter (0.187-inch inside diameter) Teflon tube to the bottom of the hollow rod.

A 7-foot length of Teflon tubing was used. Prior to inserting the Teflon tubing the lowermost 6 inches of the Teflon tube was perforated at several locations by notching the sides of the tube with a clean razor blade. A #2/16 Lonestar sack sand was added to the annular space between the hollow rod and the Teflon tube as the hollow rod was withdrawn from the ground until the lowermost 8 inches of the hole was filled with sand. Granular bentonite (with grains the size of kitty litter) was placed in the annular space above the sand to the ground surface. The bentonite was hydrated and the 6-liter Summa purge canister and 1-liter Summa sample canister were then connected to the Teflon tubing using the configuration shown in Figure 7. At the time that the sampling manifold was assembled, the vacuum for the sample canister was checked with a vacuum gauge and recorded. The temporary well was then undisturbed for a minimum of 30 minutes prior to purging for sample collection to allow soil gas equilibration.

Following the equilibration period and prior to purging the soil gas from the temporary soil gas sampling well, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 7). Following successful verification of the manifold leak check, the purge volume was calculated. No purge testing for purge volume determination was done because no mobile laboratory was at the site. A default of three purge volumes was extracted prior to sample collection. The purge time was calculated using a nominal flow rate provided by the flow controller of 200 milliliters per minute. Purge volume calculations are provided in Appendix E of this report.

Following completion of purging three purge volumes, the valve to the purge canister was closed, a tracer gas (2-Propanol) was placed in a dish adjacent to the purge canister, and a clear

Rubbermaid bin was placed over the top of the temporary well, the sampling manifold, and the 1-liter sample canister. The vapor concentration of the 2-Propanol was monitored with a PID until 2-Propanol vapor concentrations appeared to have equilibrated. The Rubbermaid bin was then temporarily and partially lifted long enough to open the sample canister valve and the bin was then be replaced over the sampling equipment and the 2-Propanol vapor concentrations were then monitored again with the PID. Once the vacuum for the sample canister valve decreased to 5 inches of mercury, the Rubbermaid lid was removed and the sample canister valve closed.

A total of one replicate soil gas sample (designated as Dup) was collected into a one-liter Summa canister using procedures described above immediately after the collection of the corresponding original sample. The void space and tubing was not purged of three purge volumes prior to collection of the replicate sample. Following soil gas sample collection, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. The soil gas samples were then stored in a box and promptly shipped to the laboratory for extraction and analysis. Soil gas sampling was not performed during or following a precipitation event. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets that are provided in Appendix F of this report.

All drilling rods and associated drilling fittings were cleaned with an Alconox solution wash followed by a clean water rinse. New Teflon tubing was used at each sample collection location. Clean, unused vacuum gages and stainless steel sampling manifolds containing flow restrictors were used at each sample collection location. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was then removed, and the borehole was filled with neat cement.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Late Pleistocene Alluvium (Qpa), which is described as weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel.

Lithologic information was visually recorded in boring logs for six of the seven boreholes drilled in this investigation (P28 through P32 to total depths of 7.0 to 12.0 feet, and P34 to a total depth of 38.0 feet bgs). The subsurface materials encountered in the boreholes consisted predominantly of interlayered clay and coarse-grained materials made up predominantly of clayey and silty sand, but also including gravel and clayey gravel in boreholes P30 and P34. Coarse-grained layers were encountered in the visually logged boreholes as follows.

P28 - 0.0 to 3.0 and 9.0 to 11.0 feet bgs. P29 - 0.5 to 2.0 feet bgs. P30 - 0.0 to 4.0 and 6.0 to 7.0 (clayey gravel) feet bgs with a total depth explored of 7.0 feet bgs.

P31 - 0.5 to 1.5 and 5.0 to 7.5 feet bgs.

P32 - 0.0 to 2.0 and 6.0 to 9.0 feet bgs with a total depth explored of 9.0 feet bgs.

P34 – 9.0 to 11.0, 13.0 to 17.0 (interlayered gravel and sand), 20.0 to 21.0 (sandy gravel), 25.0 to 29.0 (sandy clayey gravel and clayey sand), 30.0 to 32.5 (sandy gravel), and 35.0 to 38.0 (clayey gravel) with a total depth explored of 38.0 feet.

Review of the soil conductivity logs for boreholes P32 (to 64.8 feet), P33 (to 54.0 feet), and P34 to (52.6 feet) shows that between approximately 11.0 and 25.0 feet in P32, 13 and 25 feet in P33, and 15 and 27 feet in P34, two clay intervals are present, separated by an interval of silty clay or silty sand up to 2 to 3 feet thick. At location P32, additional fine-grained materials are encountered to a depth of approximately 32.0 feet bgs. Underlying this sequence, coarser-grained materials predominate in all three borings, which include relatively thin interbeds of silty clay. Comparison of the soil conductivity and visually described lithologic logs for borehole B32 (to a depth of 9.0 feet bgs) and B34 (to a depth of 38.0 feet bgs) shows reasonable correlation.

The conductivity logs indicate that the water samples collected by Hydropunch from 30.0 and 34.0 feet bgs in boreholes P33 and P34 were collected from sand, and silty sand in the upper part of the relatively coarse-grained zone that is encountered beneath the clay layers that extend to a depth of approximately 25.0 feet bgs. Similarly, the water samples collected from P33 and P34 by Hydropunch from 45.0 to 49.0 feet bgs were from zones consisting mainly of sand and silty sand, which were separated from the shallower Hydropunch samples by at least one interval of fine-grained materials. This was also the case for the water samples collected from P32 at depths of 35.0 to 39.0 and 60.0 to 64.0 feet bgs.

Groundwater was initially encountered while hand augering boreholes B28 through B32 at depths of 7.5, 8.5, 6.2, 9.0 and 9.0 feet bgs, respectively, and was subsequently measured in the boreholes at depth of 7.1, 6.4, 5.7, 4.9 and 6.8 feet bgs, respectively. In continuously cored borehole B34, groundwater was initially encountered during drilling at a depth of 13.0 feet bgs, and was not subsequently measured in the borehole. The groundwater flow direction at the site has been historically to the southwest.

LABORATORY ANALYSIS

The groundwater samples collected from boreholes P28 through P34 were analyzed at McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a state-accredited hazardous waste testing laboratory. The groundwater samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G), and methyl-tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (MBTEX), using EPA Method 8021B in conjunction with modified EPA Method 8015C.

The soil gas samples collected from boreholes SG13 through SG16 and a field duplicate for sample SG15 identified as SG15 DUP were analyzed at Air Toxics Limited of Folsom California for TPH-G and MBTEX using modified EPA Method TO-15. The laboratory also performed a duplicate sample analysis for sample SG14 identified as SG14 Lab Duplicate.

The groundwater sample results are summarized in Table 1, and the soil gas sample results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix G.

SOIL GAS RISK AND HAZARD EVALUATION

The SFRWQCB May 2008 ESL guidance document "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" section 2.7 references the DTSC Vapor Intrusion guide (Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised 2/7/05) for interpretation of sample results exceeding ESLs. The ESL Guidance document indicates that the recommended approach of DTSC for sensitive land use scenarios (i.e.-residential) is appropriate. The DTSC guidance document ("Guidance For The Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005) recommends that if look up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling (Step 7 in the guidance document). DTSC recommends that the USEPA version of the Johnson and Ettinger (JE) model be used (USEPA Vapor Intrusion Model, 2003). The DTSC has developed a California-specific spreadsheet for calculation of risk and hazard associated with exposure to chemicals which include the VOCs encountered in the soil gas samples collected during the current investigation. The DTSC has most recently updated the spreadsheet on February 4, 2009.

The February 2009 DTSC spreadsheet was used to calculate the risk and hazard index associated with the soil gas sample results for the current investigation. Evaluation of hazard associated with TPH-G using the DTSC JE model spreadsheet is not possible because TPH is not one of the chemicals available in the chemical properties lookup table for use in the model. Additionally, TPH is not considered a carcinogen, and it is therefore not possible to calculate risk for TPH-G. The risk and hazard were calculated using spreadsheet default values for a residential exposure scenario and a soil type of silt (SI).

The modeled cumulative risk and hazard for indoor air for the residential structure at 3945 Castro Valley Boulevard were evaluated by using the highest concentration for each detected chemical from all of the samples and duplicate samples (SG13, SG14, and SG15), and the cumulative risk and hazard for indoor air were also calculated for each sample.

The DTSC vapor intrusion model spreadsheet output results are summarized in Table 3, along with the calculated cumulative risk and hazard for the highest concentration scenario and for each sample. The model input, intercalcs and output sheets for each calculation are attached with this report as Appendix H. The cumulative hazard quotient was calculated to be less than one for the highest concentration scenario and for all of the samples. The cumulative risk for the highest concentration scenario and for each sample was calculated to be as follows.

Highest concentration scenario – 48 per million.

- SG13 1.9 per million.
- SG14 5.4 per million.
- SG15 43 per million.
- SG16 0.76 per million.

The evaluation results are summarized in Table 3. Review of Table 3 shows that the majority of the risk in sample SG15 and in the highest concentration scenario is from the benzene concentration in sample SG15. Copies of the Cal/EPA screening-level model work sheet print outs are attached as Appendix H.

DISCUSSION AND RECOMMENDATIONS

Based on the first encountered groundwater sample results, the horizontal extent of petroleum hydrocarbons in groundwater appears to be defined with the exception of the vicinity of P28 (see Figures 3 and 4). P&D recommends that one additional groundwater sample be collected from first encountered groundwater at proposed location P35 to complete delineation of the horizontal extent of petroleum hydrocarbons in first encountered groundwater. Based on the soil conductivity logs and the Hydropunch groundwater grab samples from boreholes P32 through P34, and the boring log from P34, the subsurface materials deeper than approximately 25.0 feet bgs consist predominantly of interlayered clay and coarse-grained materials made up predominantly of clayey and silty sand, but also including gravel and clayey gravel. The vertical extent of petroleum hydrocarbons appears to be defined by groundwater concentrations below SFRWQCB Table A May 2008 ESLs at downgradient location P32, but not at the former UST pit at location P34. Based on the sample results, P&D recommends that no further vertical evaluation of petroleum hydrocarbons in groundwater be performed.

Based on the soil gas sample results, none of the calculated hazard quotients exceeded 1. However, the calculated risk at location SG15 was 43 per million and the calculated risk for all of the highest detected concentrations from all of the samples was also 48 per million. Based on the calculated risk, P&D recommends that an additional sub-slab sample be collected adjacent to location SG15.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of VIP Service. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between boreholes and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the

appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, P&D Environmental, Inc.

King

Paul H. King President Professional Geologist # 5901 Expires: 12/31/09

Attachments:

Table 1: Summary of Groundwater Grab Sample Results Table 2: Summary of Soil Gas Sample Results Table 3: Summary of Soil Gas Risk and Hazard Analysis

Figure 1: Site Location Map

Figure 2: Site Vicinity Map Showing Groundwater and Soil Gas Sampling Locations

Figure 3: Site Vicinity Map Showing TPH-G Concentrations in First Encountered Groundwater

Figure 4: Site Vicinity Map Showing Benzene Concentrations in First Encountered Groundwater

Figure 5: Site Vicinity Map Showing TPH-G Concentrations in Soil Gas

Figure 6: Site Vicinity Map Showing Benzene Concentrations in Soil Gas

Figure 7: Typical Soil Gas Sampling Manifold

Appendix A – Historic Borehole Groundwater Grab Sample Results

Appendix B – Historic Soil Gas Sample Results

Appendix C – Soil Boring Logs

Appendix D – Soil Electric Conductivity Logs

Appendix E – Soil Gas Purge Volume Calculations

Appendix F – Soil Gas Sampling Data Sheets

Appendix G – Laboratory Analytical Reports and Chain of Custody Documentation

Appendix H – Soil Gas Risk and Hazard Calculation Work Sheets

PHK/sjc 0047.R42

TABLES

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
P28W	9/02/08	5,300	ND<50	180	33	390	500
P29-10	9/08/08	ND<50	ND<5.0	ND<0.5	0.60	ND<0.5	ND<0.5
P30W	9/02/08	87, a	ND<5.0	ND<0.5	3.3	ND<0.5	ND<0.5
D21 10	0.100.100	NID 70			1.0		1.0
P31-10	9/08/08	ND<50	ND<5.0	ND<0.5	1.2	ND<0.5	1.3
D22 10	0/00/00	12.000	ND (100	250	26	100	(9
P32-10	9/08/08	12,000	ND<100	350		180	60
P32-35	9/05/08	70	ND<5.0	12	5.0	13	26
1 52-55	7105/00	1)	11D<5.0	1,2	5.0	1.5	2.0
P32-60	9/05/08	59	ND<5.0	1.1	1.8	1.1	2.2
P33-30	9/05/08	1,400	ND<50	150	51	41	240
P33-45	9/05/08	190	ND<5.0	2.5	2.6	3.1	17
P34W-30	9/11/08	150	ND<5.0	3.9	2.5	3.1	12
P34W-45	9/11/08	1,600	ND<5.0	15	13	23	95
FOI		100	5.0	1.0	40	20	20
ESL		100	5.0	1.0	40	30	20
		1	1	1			

Table 1 Summary of Borehole Groundwater Grab Sample Results

Notes:

 $\overline{\text{TPH-D}}$ = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

MBTEX = methyl tert-butyl ether (MTBE), Benzene, Toluene, Ethylbenzene, Xylenes.

ND = Not Detected.

a = Laboratory analytical report note: no recognizable pattern.

ESL=Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water

BOLD = Concentration in excess of applicable ESL.

Results in µg/L, unless otherwise indicated.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN SOIL GAS SAMPLES

Sample/Borehole ID	Sample Date	Compound	Concentration	Residential ESL, a
SG13	9/11/2008	TPH-G	260,000	10,000
		Toluene	45,000	63,000
		Ethyl Benzene	2,200	980
		m, p-Xylene	6,500	21,000 (combined)
		o-Xylene	1,800	21,000 (combined)
SG14	9/11/2008	TPH-G	380,000	10,000
		Benzene	57	84
		Toluene	41,000	63,000
		Ethyl Benzene	5,600	980
		m, p-Xylene	19,000	21,000 (combined)
		o-Xylene	6,300	21,000 (combined)
SG14 Lab Duplicate	9/11/2008	TPH-G	380,000	10,000
		Benzene	54	84
		Toluene	41,000	63,000
		Ethyl Benzene	5,600	980
		m, p-Xylene	19,000	21,000 (combined)
		o-Xylene	6,300	21,000 (combined)
SG15	9/8/2008	TPH-G	41,000	10,000
		MTBE	53	9,400
		Benzene	3,900	84
		Toluene	680	63,000
		Ethyl Benzene	170	980
		m, p-Xylene	710	21,000 (combined)
		o-Xylene	250	21,000 (combined)
SG15-Dup	9/8/2008	TPH-G	12,000	10,000
		MTBE	31	
		Benzene	1,800	84
		Toluene	360	63,000
		Ethyl Benzene	110	980
		m, p-Xylene	430	21.000 (combined)
		o-Xylene	160	

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN SOIL GAS SAMPLES

Sample/Borehole ID	Sample Date	Compound	Concentration	Residential ESL, a
SG16	9/8/2008	TPH-G	11,000	10,000
		Benzene	61	84
		Toluene	880	63,000
		Ethyl Benzene	100	980
		m, p-Xylene	330	21,000 (combined)
		o-Xylene	92	21,000 (combined)

NOTES:

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

NA = Not Available

a = Environmental Screening Level, developed by San Francisco Bay Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table E – Shallow Soil Gas Screening Levels For Evaluation of Potential Vapor Intrusion Concerns, volatile chemicals only.

BOLD = Concentration in excess of ESL.

Results are in micrograms per cubic meter ($\mu g/m^3$).

Table 3 Calculated Vapor Intrusion Risk and Hazard Summary Cal/EPA Screening-Level Model for Soil Gas Contamination (last modified 2/4/2009) VIP Service **Residential Exposure** 3889 Castro Valley Blvd. Incremental Hazard Castro Valley, CA risk from quotient vapor from vapor intrusion to intrusion to indoor air, indoor air, Chemical Sample Concentration carcinogen noncarcinogen Location $(\mu g/m^3)$ (unitless) (unitless) CAS# **Highest Concentration** TPH-G SG14 380.000 Unknown Unknown None Benzene SG15 3.900 4.3E-05 1.1E-01 71432 Toluene SG13 45,000 NA 1.3E-01 108883 Ethyl Benzene SG14 5,600 4.8E-06 4.5E-03 100414 19,000 1.5E-01 m,p-xylene SG14 NA 106423 5.50E-02 o-xylene SG14 6,300 NA 95476 1.70E-05 MTBE SG15 5.70E-09 1634044 53 TOTALS 4.8E-05 4.5E-01 Unknown Unknown TPH-G SG13 260,000 None Benzene ND<42 0.0E+000.0E+0071432 1.3E-01 Toluene 45,000 NA 108883 Ethyl Benzene 2,200 .9E-06 1.8E-03 100414 m,p-xylene 6,500 NA 5.3E-02 106423 o-xylene 1,800 NA 1.6E-02 95476 MTBE ND<48 0.0E+00 0.0E+00 1634044 TOTALS 1.9E-06 2.0E-01 TPH-G SG14 380,000 Unknown Unknown None Benzene 57 6.3E-07 1.7E-03 71432 Toluene 41,000 1.2E-01 108883 NA Ethyl Benzene 5,600 4.8E-06 4.5E-03 100414 1.5E-01 19,000 NA 106423 m,p-xylene 5.5E-02 95476 o-xylene 6,300 NA MTBE ND<42 0.0E+00 0.0E+00 1634044 TOTALS 5.4E-06 3.3E-01 NOTES:

TPH-G = total petroleum hydrocarbons as gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

NA = Not Applicable.

For highest concentration analysis the highest concentration for each chemical from all samples and duplicates was used. When duplicate sample results were available, the highest concentration, from either the sample or the duplicate was used. Used p-xylene CAS # for m,p-xylene risk and hazard calculation.

JE spreadsheet default values were used with following exceptions:

• Used vadose zone SCS soil type SI for silt.

0047.R42 Soil Gas Model Results

Table 3 Calculated Vapor Intrusion Risk and Hazard Summary Cal/EPA Screening-Level Model for Soil Gas Contamination (last modified 2/4/2009) VIP Service 3889 Castro Valley Blvd.

vapor nom vapor	
interview to interview to	
intrusion to intrusion to	
indoor air, indoor air,	
<u>Sample Concentration carcinogen noncarcinogen</u>	
Location $(\mu g/m^3)$ (unitless) (unitless) CAS	S#
SG15 41,000 Unknown Unknown Nor	ne
ie 3,900 4.3E-05 1.1E-01 7143	32
e 680 NA 2.0E-03 1088	383
Benzene 170 1.5E-07 1.4E-04 1004	14
lene 250 NA 2.0E-03 1064	123
ie 250 NA 2.2E-03 954'	76
53 5.70E-09 1.70E-05 16340	044
TOTALS 4.3E-05 1.2E-01	
SG16 11,000 Unknown Unknown Nor	ne
e 61 6.70E-07 1.80E-03 7143	32
e 880 NA 2.6E-03 1088	383
Benzene 100 8.5E-08 8.0E-05 1004	14
lene 330 NA 2.7E-03 1064	123
92 NA 8.1E-04 954	76
ND<4.6 0.0E+00 0.0E+00 16340	044
e 880 NA 2.6E-0 Genzene 100 8.5E-08 8.0E-0 lene 330 NA 2.7E-0 ne 92 NA 8.1E-0 ND<4.6	13 1088 15 1004 1064 1064 100 1634

TOTALS

Residential Exposure

Hazard

Incremental

NOTES:

TPH-G = total petroleum hydrocarbons as gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

NA = Not Applicable.

For highest concentration analysis the highest concentration for each chemical from all samples and duplicates was used. When duplicate sample results were available, the highest concentration, from either the sample or the duplicate was used. Used p-xylene CAS # for m,p-xylene risk and hazard calculation.

7.6E-07

8.0E-03

JE spreadsheet default values were used with following exceptions:

• Used vadose zone SCS soil type SI for silt.

0047.R42 Soil Gas Model Results

FIGURES

Figure 1 Site Location Map VIP Service 3889 Castro Valley Blvd. Castro Valley, California

Base Map From: U.S.Geological Survey Hayward, California 7.5 Minute Quadrangle Photorevised 1980

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

Figure 7
Typical Soil Gas Sampling Manifold
3889 Castro Valley Boulevard
Castro Valley, Čalifornia

P&D Environmental, Inc.
55 Santa Clara Ave., Suite 240
Oakland, CA 94610

APPENDIX A Historic Borehole Groundwater Grab Sample Results

•	Report 0047.R8 dated July 14, 1995	Table 1
•	Report 0047.R11 dated December 27, 1995	Table 2
•	Report 0047.R15 dated October 9, 1996	Table 2
•	Report 0047.R23 dated January 14, 2000	Table 1
•	Report 0047.R28 dated July 2, 2002	Table 3

TABLE 1 GROUNDWATER GRAB SAMPLE SUMMARY OF LABORATORY ANALYTICAL RESULTS

Location No.	TPH-D	TPH-G	Benzene	Toluene	Ethyl- benzene	Total Xylenes
			Samples Co on June 9	llected , 1995		
P1	NA	160	27	27	3.5	18
P2*	NA	3.9	0.026	0.0054	0.034	0.029
Р3	NA	44	2.6	2.9	2.2	7.5
P4	NA	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P5**	NA	0.43	0.040	0.0012	0.0081	0.0028

TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel.

ND = Not Detected.

* = The laboratory identified the results reported as gasoline as appearing aged and biodegraded.

** = The laboratory identified the results reported as gasoline as being the most mobile gasoline fraction ("lighter" gasoline range compounds). Results in milligrams per Liter (mg/L), unless otherwise indicated.

NA = Not Analyzed.

TABLE 2 GROUNDWATER GRAB SAMPLE SUMMARY OF LABORATORY ANALYTICAL RESULTS

Location No.	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
			San on N	nples Colle ovember 17	ected , 1995		
P6	NA	ND<0.05	0.017	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P7	NA	7.3	0.067	ND<0.005	0.0077	0.010	0.0069
P8	NA	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
Р9	NA	51	0.25	2.0	1.5	1.9	8.8
P10	NA	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel. ND = Not Detected.							

Results in milligrams per Liter (mg/L), unless otherwise indicated.

11

TABLE 2 GROUNDWATER GRAB SAMPLE SUMMARY OF LABORATORY ANALYTICAL RESULTS

Location No.	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
		Samp. on Augus	les Collect st 8 and 9,	ced 1996		
P11	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P12	0.32	0.03	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P13	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P14	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
P15	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005

NOTE :

TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel. ND = Not Detected. NA = Not Analyzed. Results in milligrams per Liter (mg/L), unless otherwise indicated.

TABLE 1SUMMARY OF LABORATORY ANALYTICAL RESULTSWATER SAMPLES(Samples collected on September 8 and 9, 1999)

Sample No.	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
B3-GW	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B4-GW	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B6-GW	4.3	ND<0.005	0.026	0.0031	0.16	0.42
B8-GW	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005

TPH-G = Total Petroleum Hydrocarbons as Gasoline. MTBE = Methyl tert-Butyl Ether. ND = Not Detected. NA = Not Analyzed. Results are in milligrams per Liter (mg/L), unless otherwise indicated.

TABLE 3

SUMMARY OF LABORATORY ANALYTICAL RESULTS GROUNDWATER GRAB SAMPLES TPH-G, MTBE AND BTEX ANALYSIS (Samples Collected on October 17 - 18, 2001)

Sample No.	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
P16	34°	ND<0.2	0.15	0.066	2.5	2.6
P17	9.4	ND<0.01	0.0051	0.037	0.26	0.18
P18	76°	ND<0.2	0.38	1.5	3.2	17
P19	73°	ND<0.2	2.0	8.3	3.5	16
P20	140 ^c	ND<0.5	4.0	11	4.3	19
P21	120 ^c	ND<0.5	12	0.97	4.3	18
P22	130 ^e	ND<2.0	17	26	4.6	22
P23	130 ^e	ND<2.0	17	19	4.4	22
P24	73°	ND<0.55	11	0.34	3.3	10
P25	4.6	ND<0.025	0.18	0.057	0.13	0.51
P26	8.0	ND<0.02	1.4	0.2	0.25	0.93
P27	49	ND<0.1	0.83	4.1	1.9	8.4

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

c = Laboratory Analytical Report note: lighter than water immiscible sheen is present. Results are in milligrams per Liter (mg/L), unless otherwise indicated.

APPENDIX B Historic Soil Gas Sample Results

- Report 0047.R23 dated January 14, 2000 Table 2
- Report 0047.R23 dated January 14, 2000 Table 2 Amended for Work Plan 47.W5 Appendix D

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS SOIL GAS SAMPLES (Samples collected on September 9, 1999)

Sample No.	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total
Xylenes						
B1-SG	53	ND	ND	ND	ND	ND
B1-DUPLICATE-SG	360	ND	ND	ND	ND	ND
B2-SG	94	ND	ND	ND	ND	ND
B3-SG	130	0.74	3.7	ND	ND	ND
B4-SG	90	0.84*	ND	ND	ND	ND
B5-SG	540	5.2	11*	0.56	0.83	1.8
B6-SG	560	2.6	10*	1.1	2.3	6.7
B8-SG	150	ND	ND	ND	ND	ND
B8-DUPLICATE-SG	94	ND	ND	ND	ND	ND
B8-DUPLICATE-SG-NV	NA	NA	NA	NA	NA	NA
B10-SG	200	0.068	1.6*	ND	ND	ND
B11-SG	140	0.045	0.41*	ND	ND	ND
B12-SG	66	0.018	0.035*	ND	ND	ND

TPH-G = Total Petroleum Hydrocarbons as Gasoline. MTBE = Methyl tert-Butyl Ether. ND = Not Detected. NA = Not Analyzed. * = Laboratory report note: reported value may be biased due to apparent matrix interference. Results are in parts per million by volume (ppmv), unless otherwise indicated.

January 14, 2000 Report 0047.R23 Amended for 0047.W5 Appendix D

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS SOIL GAS SAMPLES (Samples Collected on September 9, 1999)

Sample No.	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
B1-SG	220	ND<1.6	ND<1.4	ND<1.6	ND<1.9	ND<1.9
B1-DUPLICATE-SG	1500	ND<0.32	ND<0.28	ND<0.33	ND<0.38	ND<0.38
B2-SG	390	ND<2.2	ND<2.0	ND<2.3	ND<2.7	ND<2.7
B3-SG	540	2.7	12	ND<1.8	ND<2.1	ND<2.1
B4-SG	370	3.1*	ND<2.4	ND<2.8	ND<3.2	ND<3.2
B5-SG	2200	19	36*	2.1	3.7	8.0
B6-SG	2300	-9.7	32*	- 4.3	10	29
B8-SG	620	ND<0.077	ND<0.068	ND<0.080	ND<0.092	ND<0.092
B8-DUPLICATE-SG	390	ND<0.16	ND<0.14	ND<0.16	ND<0.19	ND<0.19
B8-DUPLICATE-SG-NV	NA	NA	NA	NA	NA	NA
B10-SG	830	0.25	5.2*	ND<0.17	ND<0.19	ND<0.19
B11-SG	580	0.16	1.3*	ND<0.080	ND<0.092	ND<0.092
B12-SG	270	0.065	0.11*	ND<0.065	ND<0.075	ND<0.075
ESL	26	9.4	0.085	63	420	150

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

NA = Not Analyzed.

* = Laboratory report note: reported value may be biased due to apparent matrix interference.

ESL = February 2005 RWQCB Table E Environmental Screening Levels, Shallow Soil Gas Screening Levels for Residential Land Use.

Results are in micrograms per liter (ug/L), unless otherwise indicated.

APPENDIX C Soil Boring Logs
B	ORING	NO.:	P28 project no.: 0047 project	CT N	AME: V	VIP Service, Cas	tro Va	alley		
1	ORING	LO	CATION: 25 feet south of southwest corner of service s	tatio	on.			ELEVA	TION AND DA	тим: None
D	RILLIN	G A(GENCY: Vironex, Inc.		DRILLE	R: Tim/Manuel	DAT	E & TIMI 0/2/	E STARTED:	DATE & TIME FINISHED: Q/2/08
I	RILLI	ig e	QUIPMENT: 3.5-inch O.D. Hand Auger					092	.5	1015
(OMPL	etio	N DEPTH: 12.0 Feet BEDROCK DEPTH:	Nc	t Encou	untered		LOGGI	ED BY:	CHECKED BY:
F	IRST W	ATE	R DEPTH: 7.5 Feet NO. OF SAMPLES:	1 V	Vater			MI	.D	
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION	BLOW COUNT PER 6"	PID]	REMARKS
			0.0 to 3.0 ft. Brown silty sand (SM); loose, dry, with minor gravel to 0.25-in. diameter. No Petroleum Hydrocarbon (PHC) odor.		SM	No Well Constructed		0	Borehole I 3.5-inch C	hand augered using a D.D. hand auger.
	5		 3.0 to 9.0 ft. Dark brown silty clay (CL); stiff, dry. No PHC odor. 4.0 ft. Color change to brown. 		CL			0		
			7.0 ft. Moist.		▼ ⊡ ∑⊒					
	10		9.0 to 11.0 ft. Greenish brown clayey sand (SC); soft, wet. No PHC odor.		SC			0	First water	encountered during
_			11.0 to 12.0 ft. Greenish brown clay (CL); soft, we No PHC odor.		CL				augering at 10:15 a.m.	7.5 ft depth at
	15								Borehole te on 9/2/08. diameter sl placed in b P28-W coll 9/2/08; no sample. W measured a a.m. Borehole g	erminated at 12.0 ft. Temporary 1-in. otted PVC casing orehole, and sample lected at 10:20 a.m. on odor or sheen on ater subsequently tt 7.1 ft. depth at 11:00 routed on 9/2/08
	20								using neat Smalley of Public Wor observe gro	Alameda County Alameda County ks Agency onsite to buting.
	25									
	30									

E	ORING	NO.:	P29 project no.: 0047 project	NAM	1E: \	/IP Service, Cas	tro V	alley		
1	BORING	G LOG	CATION: 160 feet south of sidewalk at mobile home park	c ent	trance	;		ELEVA	TION AND DA	тим: None
г	RILLI	G AC	GENCY: Vironex, Inc.	Dł	RILLER	a: Tim/Manuel	DAT	E & TIMI Q/Q/	E STARTED:	DATE & TIME FINISHED: Q/8/08
I	RILLI	NG EO	QUIPMENT: 3.5-inch O.D. Hand Auger					111	0	1210
(OMPL	ετιο	N DEPTH: 10.0 Feet BEDROCK DEPTH: N	Not 1	Encou	intered		LOGGI	ED BY:	CHECKED BY:
F	IRST W	ATEI	R DEPTH: ~8.5 Feet NO. OF SAMPLES: 1	Wa	ter			ML	.D	
	DEPTH (FT.)		DESCRIPTION		GKAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID]	REMARKS
			0.0 to 0.5 ft. Asphalt and road base. 0.5 to 2.0 ft. Orange brown clayey sand (SC); medium dense, moist, with gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor.		SC	No Well Constructed		0	Borehole h 3.5-inch O. First water	and augered using a D. hand auger. encountered during ~8.5 ft denth
	_		2.0 to 5.0 ft. Dark gray silty clay (CL); stiff, moist, with orange brown mottling. No PHC odor.		CL			0	Borehole te 9/8/08. Ter slotted PV(borehole, a	erminated at 10.0 ft. on mporary 1-in. diameter C casing placed in nd sample P29-10W
	5		5.0 to 7.5 ft. Olive gray silty clay (CL); medium stiff, moist. No PHC odor.	_	CL Ţ				collected at no odor or Water subs 6.4 ft. dept	t 1:30 p.m. on 9/8/08; sheen on sample. equently measured at h at 2:55 p.m.
	10		7.5 to 10.0 ft. Brown silty clay (CL); medium stiff, wet. No PHC odor. 7.5 to 8.0 ft. With gravel.	-	∑ CL			0	Borehole g using neat Smalley of Public Wor observe gro	routed on 9/8/08 cement grout. Ron Alameda County ks Agency onsite to buting.
	10									
	15									
	20		-							
			-							
	25									
	30	_	-							

I	ORING	G NO.	PROJECT NO.: 0047 PROJECT	NAME:	VIP Service, Cas	stro V	alley				
	BORIN	CORING LOCATION: 16 feet west of southwest corner of mobile home #1. ELEVATION AND DATUM: None									
I	RILLI	NG AO	GENCY: Vironex, Inc,.	DRILLE	R: Tim/Manuel	DAT	e & timi 9/2/	e started: 08	DATE & TIME FINISHED: 9/2/08		
Ŀ	ORILLI	NG E	QUIPMENT: 3.5-inch O.D. Hand Auger				105	50	1130		
4	COMPL	ETIO	N DEPTH: 7.0 Feet BEDROCK DEPTH: N	lot Enco	untered		LOGG	ED BY:	CHECKED BY:		
I	IRST V	VATE	R DEPTH: 6.2 Feet NO. OF SAMPLES: 1	Water			IVII	_D			
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	OIId		REMARKS		
			0.0 to 4.0 ft. Brown silty sand (SM); loose, dry. No Petroleum Hydrocarbon (PHC) odor.	SM	No Well Constructed		0	Borehole h 3.5-inch O	and augered using a .D. hand auger.		
	5		4.0 to 6.0 ft. Dark brown silty clay (CL); stiff, dry. No PHC odor. 5.0 ft. Color change to brown, with orange mottling.		_		0	Hand auge	r refusal at 7.0 feet.		
			6.0 to 7.0 ft. Greenish gray clayey gravel (GC); loose; wet. No PHC odor.	→ Ţ GC	_		0	augering a 11:25 a.m.	t 6.2 ft depth at		
	10							Borehole t on 9/2/08. measured a a.m. Temp slotted PV borehole, a collected a no odor or Borehole g using neat Smalley of Public Wor observe gro	erminated at 7.0 ft. Water subsequently at 5.7 ft. depth at 11:40 oorary 1-in. diameter C casing placed in and sample P30-W t 11:30 a.m. on 9/2/08; sheen on sample. routed on 9/2/08 cement grout. Ron Calameda County rks Agency onsite to outing.		
	20										
	25										
	30	_	-	-				I			

в	ORING	NO.:	P31 PROJECT NO.: 0047 PROJECT N	AME: V	VIP Service, Cas	stro Va	alley		
в	ORING	LO	CATION: West side of Aspen Ave., 120 feet south of Castr	o Valley	v Blvd.		ELEVA	TION AND DA	тим: None
D	RILLIN	G A(GENCY: Vironex, Inc.	DRILLEI	R: Tim/Manuel	DAT	E & TIME 0/9/0	E STARTED:	DATE & TIME FINISHED:
D	RILLIN	IG E	QUIPMENT: 3.5-inch O.D. Hand Auger				094	.5	1020
с	OMPLE	TIO	N DEPTH: 10.0 Feet BEDROCK DEPTH: No	ot Encou	untered		LOGGI	ED BY:	CHECKED BY:
F	IRST W.	ATEI	R DEPTH: 9.0 Feet NO. OF SAMPLES: 1 V	Vater			ML	.D	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID]	REMARKS
			0.0 to 0.5 ft. Asphalt and road base. 0.5 to 1.5 ft. Orange brown clayey sand (SC); medium dense, moist, with minor gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor.	SC	No Well Constructed		0	Borehole h 3.5-inch O First water	and augered using a D. hand auger.
			1.5 to 5.0 ft. Grayish brown clay (CL); medium — stiff, moist, mixed with dark brown clay. No PHC odor	CL			0	Borehole te 9/8/08. Ter slotted PV0	erminated at 10.0 ft. on mporary 1-in. diameter C casing placed in
	5		5.0 to 7.5 ft. Bluish gray clayey sand (SC); medium dense, moist. Slight PHC odor.	⊻ SC			17	borehole, a collected at no odor or Water subs 4 9 ft_dept	nd sample P31-10W t 12:00 p.m. on 9/8/08; sheen on sample. equently measured at h at 2:50 p.m.
			minor gravel to 0.25-in. diameter. 7.5 to 10.0 ft. Brown clay (CL); stiff, moist, with black mottling. No PHC odor.	CL ∑			0	Borehole g using neat Smalley of Public Wor	routed on 9/8/08 cement grout. Ron Alameda County ks Agency onsite to
	10							observe gro	outing.
_									
F									
E	15								
	10								
E									
F									
_									
_	20		_						
_			_						
F									
E									
	25		_						
E	20								
F			=						
F									
E			=						
F	30								

в	ORING	NO.:	P32 PROJECT NO.: 0047 PROJECT	ΓN.	AME: V	VIP Service, Cas	tro V	alley		
В	ORING	LOC	CATION: East side of realty office parking lot, 60 feet so	utl	h of Cas	stro Valley Blvd.		ELEVA	TION AND DA	тим: None
DI	RILLIN	G AC	GENCY: Vironex, Inc.		DRILLEF	a: Tim/Manuel	DAT	E & TIMI 0/8//	E STARTED:	DATE & TIME FINISHED:
D	RILLIN	G E(QUIPMENT: 3.5-inch O.D. Hand Auger					083	0	0900
С	OMPLE	TIO	N DEPTH: 9.0 Feet BEDROCK DEPTH:]	No	ot Encou	intered		LOGGI	ED BY:	CHECKED BY:
FI	RST W	ATEF	R DEPTH: 8.5 Feet NO. OF SAMPLES: 3	3 V	Vater			ML	LD	
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 2.0 ft. Gray gravelly silty sand (SM); dense, dry, with gravel to 0.25-in. diameter. No Petroleum Hydrocarbon (PHC) odor.		SM	No Well Constructed		0	Soil condu 65.0 ft. dep conductivit Boring gro	ctivity probe pushed to oth for electrical ty logging on 9/5/08. uted on 9/5/08 using a
			2.0 to 4.0 ft. Dark brown silty clay (CL); medium stiff, moist. No PHC odor.		CL				tremie pipe	e and neat cement grout.
	5		4.0 to 6.0 ft. Brown clay (CL); medium stiff, moist, with trace gravel to 0.25-in. diameter, and orange mottling. No PHC odor.		CL			0	from the so hole, a Hyd 39.0 ft. and	bil conductivity probe dropunch was pushed to d drill rods were 35.0 ff. to collect
		_	6.0 to 9.0 ft. Bluish gray clayey sand (SC); medium dense, moist, with orange mottling. No PHC odor.		⊈ SC			22	water samp am on 9/5/ on sample.	ble P32-35W at 11:35 08. No odor or sheen
		_	7.0 to 9.0 ft. wet to saturated, strong PHC odor.		Ā			22	A different pushed to 6	Hydropunch was then 64.0 ft. in the same
L	10								borehole, a retracted to	nd the drilling rods 60.0 ft. to collect water
		_							9/5/08. No sample. Bo	odor or sheen on prehole grouted on
		_							9/5/08 usin tremie pipe	g the Hydropunch as a with neat cement grout.
E		_								
	15								At a location from the H borehole w 0.0 to 9.0 f 3.5-inch C	on approximately 2 feet ydropunch hole, a vas hand augered from t. on 9/8/08 using a 0.D. hand auger.
			-						First water augering at	encountered during 8.5 ft depth.
E		_							Borehole to 9/8/08. Te	erminated at 9.0 ft. on mporary 1-in. diameter
_	20	_							slotted PV0 borehole, a	C casing placed in and sample P32-10W
									no odor or Water subs 6.8 ft. dept	sheen on sample. equently measured at h at 2:55 p.m.
		_							Borehole g	routed on 9/8/08
	25								Smalley of Public Wor observe gro	Cement grout. Kon Alameda County cks Agency onsite to outing.
E		_								
E		_								
E		_								
E	30									

BORING LOCATION: 15 feet west of P23 DRILLING AGENCY: Vironex, Inc. DRILLER: Tim/Manue DRILLING EQUIPMENT: Geoprobe 6600 Geoprobe 6600 COMPLETION DEPTH: 54.0 Feet BEDROCK DEPTH: Not Encountered FIRST WATER DEPTH: NO. OF SAMPLES: 2 Water Ú Ú DESCRIPTION U Ú DESCRIPTION U U HLLEG No lithologic log. No Well Constructed	ELEV	vation and d/ me started: 5/08 Ged by: 4LD	ATUM: None DATE & TIME FINISHED: 9/5/08
DRILLING AGENCY: Vironex, Inc. DRILLER: Tim/Manue DRILLING EQUIPMENT: Geoprobe 6600 COMPLETION DEPTH: Not Encountered FIRST WATER DEPTH: 54.0 Feet BEDROCK DEPTH: Not Encountered FIRST WATER DEPTH: NO. OF SAMPLES: 2 Water Image: Complex Comple	DATE & TIM 9/5, LOGO M	ME STARTED: 5/08 GED BY: 4LD	DATE & TIME FINISHED: 9/5/08
DRILLING EQUIPMENT: Geoprobe 6600 COMPLETION DEPTH: 54.0 Feet BEDROCK DEPTH: Not Encountered FIRST WATER DEPTH: NO. OF SAMPLES: 2 Water Ú DESCRIPTION DIATEST WATER DEPTH: DIATEST WATER DEPTH: DIATEST WATER DEPTH: DIATEST WATER DEPTH: NO. OF SAMPLES: 2 Water Ú Ú DESCRIPTION DIATEST WATER DEPTH: DIATEST WATER DEPTH: <td>9/5.</td> <td>5/08 Ged by: ALD</td> <td>9/5/08</td>	9/5.	5/08 Ged by: ALD	9/5/08
COMPLETION DEPTH: 54.0 Feet BEDROCK DEPTH: Not Encountered FIRST WATER DEPTH: NO. OF SAMPLES: 2 Water L DESCRIPTION Unit of the section of the	LOGO M	GED BY: ALD	CHECKED DV.
FIRST WATER DEPTH: NO. OF SAMPLES: 2 Water L DESCRIPTION DHATOO DHATOO HLAG DESCRIPTION NMUTOO THATOO HLAG No lithologic log. No Well Constructed	M S ⁶ ⁽¹⁾	/ILD	CHECKED BI.
Line Description Discription Description Description Discription Description Discription Discription Discription Discription Discription Discription Discription Discription Discription Discription Discription	count 86" D		
No lithologic log. No Well Constructed	BLOW BLOW		REMARKS
Soil conductivity log only (see conductivity log P33).		Soil condu 54.0 ft. (re electrical o 9/5/08. Bd using a tre cement gro At a locati from the sc hole, a Hy 34.0 ft. am, retracted to water sam p.m. on 9/, on sample A Differen pushed to 4 borehole, a retracted to sample. B 9/5/08. No sample. B 9/5/08 usin tremie pipo	ctivity probe pushed to fusal depth) for sonductivity logging on oring grouted on 9/5/08 mie pipe and neat out. on approximately 2 feet bil conductivity probe dropunch was pushed to d drill rods were o 30.0 ft. to collect ole P33-30W at 3:00 5/08. No odor or sheen t Hydropunch was then 19.0 ft. in the same nd the drilling rods o 45.0 ft. to collect water 3-45W at 4:18 p.m. on o odor or sheen on orehole grouted on ig the Hydropunch as a s with neat cement grout.

В	ORING	NO.:	Р34 ргојест но.: 0047 ргојест н	NAME:	VIP Service, Cas	stro Va	alley		
в	ORING	LO	CATION: Parking lot in front of service station.				ELEVA	TION AND DA	тим: None
D	RILLIN	GAG	GENCY: Vironex, Inc.	DRILLE	R: Tim/Manuel	DATI	E & TIMI 9/4/	E STARTED:	DATE & TIME FINISHED: 9/4/08
D	RILLIN	iG E	QUIPMENT: Geoprobe 6600				084	0	1100
с	OMPLE	етю	N DEPTH: 38.0 Feet BEDROCK DEPTH: N	ot Enco	untered		LOGGI	ED BY:	CHECKED BY:
F	RST W.	ATE	R DEPTH: 13.0 Feet NO. OF SAMPLES: 2	Water			MI	.D	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		0.0 to 0.5 ft. Asphalt and road base. 0.5 to 6.0 ft. Dark brown sandy silt (ML); stiff, dry, with minor gravel to 0.5 in. diameter. No Petroleum Hydrocarbon (PHC) odor.	ML	- No Well Constructed		0	Borehole c 0.0 to 38.0 2-inch O.D barrel sam long 1.5-in PVC sleev 0 to 5 ft. 90	ontinuously cored from ft.using a 5-foot long D. Geoprobe Macrocore pler lined with 5-foot ich O.D. transparent es.
			6.0 to 9.0 ft. Grayish brown sandy clay (CL); medium stiff, moist, with minor gravel to 0.25 in. diameter. No PHC odor.	CL			0	5 to 10 ft.	90% recovery
E	10		10.0 ft. With gravel to 0.25 in. diameter.	SC	_		0	10 to 15 ft.	70% recovery
			11.0 to 13.0 ft. Gray sandy clay (CL); soft, saturated	CL ▽ GP			13	First water drilling at	encountered during 13.0 ft depth.
	15		14.0 to 15.0 ft. Gray sand (SP); loose, wet; change to - orange-brown at 15.0 ft. Slight PHC odor. 15.0 to 16.0 ft. Gray gravel (GP); loose, wet, with - gravel to 0.25 in. diameter. Slight PHC odor. 16.0 to 17.0 ft. Brown sand (SP); medium dense, moist.	- SP - GP - SP	-		17 22	15 to 20 ft.	90% recovery
	20		17.0 to 20.0 ft. Brown silty clay (CL); stiff, moist, with black mottling. No PHC odor.	CL	_		0	20 to 25 ft	100% recovery
			Slight PHC odor. 21.0 to 25.0 ft. Brown silty clay (CL); stiff, moist. No PHC odor.	CL	-		55	20 10 25 11	. 10070 1000 1019
	25		25.0 to 27.0 ft. Brown sandy claves gravel (GC):	-	-		0		1000/
			27.0 to 29.0 ft. Brown clayey sand (SC); loose, wet No PHC odor 28.0 ft. With some gravel to 0.25 in. diameter	GC GC SC	-		0	25 to 30 ft.	. 100% recovery
E	30		29.0 to 30.0 ft. Grayish brown silty clay (CL); stiff, — moist, with black mottling. No PHC odor. —	CL	-		0		

в	DRING	NO.	P34 project no.: 0047 project	NAME:	VIP Service, Cas	tro V	alley		
В	ORING	LO	CATION: Parking lot in front of service station.				ELEVA	TION AND DA	тим: None
DI	RILLIN	G A(GENCY: Vironex, Inc.	DRILLE	R: Tim/Manuel	DAT	E & TIMI 9/4/	E STARTED: 08	DATE & TIME FINISHED: 9/4/08
D	RILLIN	G E	QUIPMENT: Geoprobe 6600				084	40	1100
С	OMPLE	тю	N DEPTH: 38.0 Feet BEDROCK DEPTH: N	ot Enco	untered		LOGG	ED BY:	CHECKED BY:
FI	RST W	ATE	R DEPTH: 13.0 Feet NO. OF SAMPLES: 2	Water			MI	LD	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	UIA		REMARKS
			30.0 to 32.5 ft. Gray sandy gravel (GP); loose, wet, with gravel mainly to 0.25 in. diameter No PHC odor	GP	No Well Constructed		0	30 to 35 ft.	90% recovery
			32.5 to 35.0 ft. Brown silty clay (CL); stiff, moist, with trace gravel to 0.25 in. diameter, and black mottling. No PHC odor.	CL			0		
	35		35.0 to 38.0 ft. Brownish gray clayey gravel (GC); loose, wet, with gravel to 0.25 in. diameter. No PHC odor. –	GC	-		0	35 to 38 ft.	100% recovery
E		_	38.0 ft. Color change to bluish gray, and increased clay content.					jammed in	barrel.
		_		-				Borehole to on 9/4/08.	erminated at 38.0 ft.
_	40	_						Borehole g	routed on 9/4/08
E		_		_				using near	cement grout.
		_		-				Soil condu	ctivity probe pushed to
		_		-				52.0 ft. for	electrical conductivity $9/4/08$ approximately
E		_						1.5 feet fro	m P34. Boring $9/4/08$ using neat
		_		-				cement gro	ut.
E		_		-					
E		_	-	-				For collect	ion of groundwater
_		_	-	-				samples, ac a separate l	ljacent boring made in borehole with
_		_						Hydropunc approxima	tely 1.5 feet from P34.
		_	-					Hydropunc then retract	th pushed to 34.0 ft., ted to 30.0 ft., to
		_		-				collect wat 12:35 a.m.	er sample P34-30W at A different
		_		-				Hydropunc 49.0 ft. in t	h was then pushed to he same borehole, and
_		_		-				retracted to water same	45.0 ft., to collect ble P34-45W at 1350
_		_	=	-				Boring gro	uted on 9/11/08 using
_		_		_				and neat ce	ement grout.
E		_		-				Public Wor	ks Agency onsite to
F		_	=	-				observe gro	ouung.
E		_		-					

APPENDIX D Soil Electric Conductivity Logs

C:\COND\LOGFILES\EC0156.INF

SITE INFORMATION -- DIRECT IMAGE CONDUCTIVITY PROBE

LOG UNITS: ENGLISH PROBE AND ARRAY: SC-500 WITH TOP DIPOLE 80 INCH STRING POT USED LOG START TIME: Fri Sep 05 2008 10:30

LOG END DEPTH: 64.800 FEET

LOG END TIME: Fri Sep 05 2008 11:20

C:\COND\LOGFILES\EC0155.INF

SITE INFORMATION -- DIRECT IMAGE CONDUCTIVITY PROBE

LOG UNITS: ENGLISH PROBE AND ARRAY: SC-500 WITH TOP DIPOLE 80 INCH STRING POT USED LOG START TIME: Thu Sep 04 2008 17:29

LOG END DEPTH: 54.000 FEET

LOG END TIME: Thu Sep 04 2008 18:15

C:\COND\LOGFILES\EC0154.INF

SITE INFORMATION -- DIRECT IMAGE CONDUCTIVITY PROBE

LOG UNITS: ENGLISH PROBE AND ARRAY: SC-500 WITH TOP DIPOLE 80 INCH STRING POT USED LOG START TIME: Thu Sep 04 2008 15:30

LOG END DEPTH: 52.550 FEET

LOG END TIME: Thu Sep 04 2008 16:27

APPENDIX E Soil Gas Purge Volume Calculations

Report 0047.R42 Appendix E

Soil Gas Purge Volume Calculations

One purge volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follows.

V tubing = pi X (r X r) X h, where pi = 3.14, r = 0.187 in./2, and h = 7 ft.

V tubing = 3.14 X (0.0935 X 0.0935) X (7 ft. X 12 in./ft.) = 2.31 cubic inches.

The sand interval volume is calculated as follows.

V sand interval = pi X (r X r) X h X porosity, where pi = 3.14, r = 1.0 in./2, h = 8 in., and porosity = 0.35.

V sand interval = 3.14 X (0.5 X 0.5) X 8 in. X 0.35 = 2.20 cubic inches.

The total volume for one purge volume is V tubing + V sand interval, where

V total = 2.31 cubic inches + 2.20 cubic inches = 4.51 cubic inches.

To convert to cubic centimeters,

V total = 4.51 cubic inches X 16.39 cubic centimeters/cubic inches = 73.9 cubic centimeters.

The total volume to be purged is 3 purge volumes.

V purge total = 73.9 cubic centimeters X 3 = 222 cubic centimeters.

The flow controller has a nominal flow rate of 200 cubic centimeters per minute.

The purge time is calculated as follows.

T purge = 222 cubic centimeters/200 cubic centimeters per minute = 1.11 minutes.

Converting the purge time to seconds, 1.11 minutes X 60 seconds/minute = 67 seconds.

APPENDIX F Soil Gas Sampling Data Sheets

Appendix F Soil Gas Sampling Data Sheets

SOIL GAS SAMPLING DATA SHEET									1					1
Address	3889 Castro Valley Blvd.													
Job #	0047		Pro	be Method (check	one)									
Date	9/8/2008			o PRT										
P&D Sampler	MLD			X o Temp Well										1
Drilling Company														
	Vironex:	Tim												
				Sample										
				Canister										
				Initial	Start leak	End leak	ADDITIONA			Start of	Time and	Begin sample	End sample	
		Time		Vacuum	check	check	L leak check	Start		tracer gas	conc. (ppm)	collection	collection	
		Probe		Check (In.	vacuum (In.	vacuum (In.	vacuum (In.	PURGE	End PURGE	equilibration	of tracer gas	vacuum (In.	vacuum (In.	
Soil Gas Location Designation	Probe Depth (Ft.)	Installed	Canister #	Hg) and time	Hg) and time	Hg) and time	Hg) and time	time	time	time	equilibration	Hg) and time	Hg) and time	NOTES
SG -13	5	13:58	36523	vac: -30	vac: -30	vac: -29.5	vac:				conc.: 28	vac: -30	vac: -28.5	No sample taken, formation too
				time: 14:28	time: 15:39	time: 15:49	time	time:15:58:27	time:15:59:06	time:16:18:12	time: 16:19:12	time: 16:25:30	time: 17:40:23	tight.
SG - 14	5	14:10	33399	vac: -30	vac: -30	vac: -29.5	vac				conc.: 59	vac: -30	vac: -29	
				time: 14:30	time: 15:37	time: 15:47	time	time:15:51:00	time: 5:51:39	time:15:54:31	time:15:56:31	time:15:56:05	time:17:46:25	No sample taken, formation too
														tight.
SG - 15	5	15:08	12355	vac: -30	vac: -30	vac: -27	vac				conc.: 34	vac: -28.5	vac: -5	
				time: 14:31	time: 16:12:13	time: 16:48:14	time	time:16:50:30	time:16:51:09	time:16:52:00	time:16:53:12	time:16:55:00	time:17:14:10	
SG - 16	5	15:20	34660	vac: -30	vac: -30	vac: -28	vac				conc.: 31	vac: -27.5	vac: -5	
				time:14:50:30	time:14:51:09	time:15:12:00	time	time:17:24:10	time:17:24:49	time:17:25:05	time:17:26:05	time17:26:45	time:17:54:00	
SG - 15	5	15:08	36497	vac: -30	vac: -30	vac: -29	vac				conc.: 24	vac: -26.5	vac: -5	
Dup.				time:14:29	time:16:25:10	time:16:35:14	time	time:17:10:00	time:17:10:39	time:17:11:31	time:17:12:31	time:17:13:00	time:17:21:05	

Appendix F Soil Gas Sampling Data Sheets

SOIL GAS	SAMPLING	DATA SHEE	ΕT											
Address	Castro Valley	Blvd.												
Job #	0047		Pro	be Method (check	cone)									
Date	9/11/2008			o PRT										
P&D Samp	le MLD			X o Temp Well										
Drilling Co	mpany													
	Vironex:	Tim												
				Sample								Begin		
				Canister	Start leak	End leak					Time and	sample	End sample	
Soil Gas				Initial	check	check	ADDITIONA			Start of	conc. (ppm)	collection	collection	
Location	Probe	Time		Vacuum	vacuum (In.	vacuum (In.	L leak check	Start	End	tracer gas	of tracer gas	vacuum (In.	vacuum (In.	
Designatio	Depth	Probe		Check (In.	Hg) and	Hg) and	vacuum (In.	PURGE	PURGE	equilibratio	equilibratio	Hg) and	Hg) and	
n	(Ft.)	Installed	Canister #	Hg) and time	time	time	Hg) and time	time	time	n time	n	time	time	NOTES
SG -13	5	8:45	36497	vac: -29	vac: -25	vac: -24.5	vac				conc.	vac	vac	Cancelled sampling because water
				time:09:13:24	time:09:14:26	time:09:26:58	time	time	time	time	time	time	time	seeped into the line.
SG -14	5	9:15	33399	vac: -29	vac: -29	vac: -28	vac				conc.: 30	vac: -29	vac: -5	
				time:9:20:23	time:9:21:54	time:9:31:58	time	time:9:41:10	time:9:41:49	time:9:44:45	time:09:45:50	time:09:46:40	time:09:53:17	
SG -13	5	10:00	35560	vac: -30	vac: -27.5	vac: -28	vac				conc.: 26	vac: -28.5	vac: -5	
				time:10:03	time:10:14:50	time:10:24:20	time	time:10:38:00	time:10:38:39	time:10:40:00	time:10:41:30	time10:43:00	time:10:49:36	

APPENDIX G Laboratory Reports and Chain of Custody Documentation

- McCampbell Work Order # 0809074 Borehole Groundwater P28 and P30
- McCampbell Work Order # 0809265 Borehole Groundwater P29, P31, and P32
- McCampbell Work Order # 0809208 Borehole Groundwater P32 and P33
- McCampbell Work Order # 0809409 Borehole Groundwater P34
- AirToxics Work Order #0809291 Soil Gas (TPH-G & HVOCs) SG13 through SG16

McCampbell A	nalytical, Inc. v Counts"	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
P & D Environmental	Client Project ID: #0047;	VIP Services	Date Sampled:	09/02/08
55 Santa Clara, Ste.240			Date Received:	09/03/08
Oakland CA 94610	Client Contact: Steve Car	mack	Date Reported:	09/09/08
	Client P.O.:		Date Completed:	09/09/08

WorkOrder: 0809074

September 09, 2008

Dear Steve:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#0047; VIP Services,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

& D EN	IRONMENTAL ta Clara Ave, Suite 240 akland, CA 94610 (510) 658-6916	, Inc. 08(090	07	40	CHAIN OF	CUS	TOE	Y	R	EC	0	RC)	PAGE OF _	1
	PROJECT NUMBER:		P	Roject VI 38 CA	NAME: P S 889 C STRO	ERVICES ASTRO VALLEY VALLEY, CA	BLID		S(ES).		/			$\left \right $	1	
	SAMPLED BY: (PRI MICHAEL SAMPLE NUMBER	DESC DATE	HEN TIME	URE) ES TYPE	Alla	SAMPLE LOCATIO		NUMBER OF CONTAINERS	TOWNTY T	A PT	1		//	PRES	REWARKS	
+1+3	P28W P30W	9 2 08						5							APPROPRIATE CONTAINERS	
	RELINQUISHED BY: (Michaeling RELINQUISHED BY: (RELINQUISHED BY: (RELINQUISHED BY: (RESULTS and billing to	SIGNATURE SIGNATURE	1/2/	DATE DATE DATE	TIME BOD TIME	RECEIVED BY: (1) RECEIVED BY: (1) RECEIVED FOR L (SIGNATURE') REMARKS: 41/	SIGNATURE)	BY:	POTAL POTAL DABI AUCO PRE	P HO. 0 HS HO HS HO HS HO HS HO HS HA HS HA HS HS HS HS HS HS HS HS HS HS HS HS HS HS H	TOR'SAU	TANDE		2 LAE 2 Ma T: LAE () YSIS R () YT	TORATORY: CAMPELL ANALY WORATORY PHONE NUMB 17) 252-9262 EQUEST SHEET S (X)NO	<u>Y TIG</u> 3ER:

and the

McCampbell Analytical, Inc.

6

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			Work	Order: 080	9074	ClientCode: PDEO		
	WriteO	n 🗌 EDF	Excel	Fax	🖌 Emai	il 🗌 HardCopy	ThirdParty	J-flag
Report to:				Bill to:		Re	quested TAT:	5 days
Steve Carmack P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610	Email: lab@pdenviro cc: PO: ProjectNo: #0047: VIP S	o.com ervices		Accounts P & D Er 55 Santa Oakland	s Payable ivironmental i Clara, Ste.24(. CA 94610	Da Da	te Received: te Printed:	09/03/2008 09/03/2008
(510) 658-6916 FAX 510-834-0152				Califana		2.		0,100,2000
					Requested	d Tests (See legend	below)	
Lab ID Client ID	Matrix	Collection Date	Hold 1	2 3	4 5	6 7 8	9 10	11 12

	Glicilli IB	matrix	Concollon Date non	• •	-	•	-	•	•	•		
0809074-0	D1 P28W	Water	9/2/2008 10:20	А								
0809074-0	D2 P30W	Water	9/2/2008 11:30	А								

Test Legend:

1	G-MBTEX_W	2
6		7
11		1

2	
7	
12	

3	
8	

4			
9			

5				
10				

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal				Date a	and Time Received:	9/3/08 7:12	2:38 PM
Project Name:	#0047; VIP Servio	ces				Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0809074	Matrix N	Water			Carrie	r: <u>Rob Pringle (M</u>	IAI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Informa	ition		
Chain of custody	present?			Yes	\checkmark	No 🗆			
Chain of custody signed when relinquished and received?				Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample l	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ient on CC	C?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes	✓	No 🗆			
			<u>Sa</u>	ample	Receipt	Information	L		
Custody seals int	tact on shipping conta	iner/coole	er?	Yes	\checkmark	No 🗆		NA 🗆	
Shipping containe	er/cooler in good cond	lition?		Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?		Yes		No 🗌			
		<u>San</u>	nple Preser	vatior	n and Ho	ld Time (HT)	Information		
All samples recei	ved within holding time	e?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	7.2°C		NA 🗆	
Water - VOA vial	s have zero headspa	ce / no bu	ibbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation	?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)	?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comme	ents below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbo	ell An en Ouality	alyti	cal, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D	Environmental			Client Project I	D: #0047; V	IP Services	Date Sa	ampled: 09/0)2/08				
55 Sa	nta Clara, Ste.240						Date R	eceived: 09/0)3/08				
				Client Contact:	Steve Carm	eve Carmack Date Extracted: 09/05/08							
Oakland, CA 94610Client P.O.:Date Analyzed)5/08				
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0809074											9074		
Lab ID	Client ID	Matrix		TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	P28W	w	:	5300,d1,b1	ND<50	180	33	390	500	10	108		
002A	P30W	w		87,d9,b1	ND	ND	3.3	ND	ND	1	121		
Repo	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5	μ	g/L		
abo	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d1) weakly modified or unmodified gasoline is significant

d9) no recognizable pattern

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 37959 WorkOrder: 0809074 EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0809061-007A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 90.9 85.1 6.52 89.9 92.1 2.36 70 - 130 70 - 130 60 20 20 MTBE 10 102 70 - 130 ND 100 1.94 94.1 96.5 2.50 70 - 130 2.0 20 Benzene ND 10 88.2 84 4.99 81.8 80.6 1.50 70 - 130 20 70 - 130 20 Toluene ND 10 80.6 76.4 5.41 74.1 73.3 1.00 70 - 130 2.0 70 - 130 20 Ethylbenzene ND 10 90 84.6 6.23 82.3 82.8 0.649 70 - 130 20 70 - 130 20 Xvlenes ND 30 86 80.2 6.86 79.9 79.9 0 70 - 130 20 70 - 130 20 20 %SS: 98 10 96 96 0 97 96 1.01 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 37959 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
0809074-001A	09/02/08 10:20 AM	09/05/08	09/05/08 3:50 AM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 37981 WorkOrder: 0809074 EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0809079-003A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 92.3 90.6 1.77 96.8 86.7 11.1 70 - 130 70 - 130 60 20 20 MTBE 10 107 70 - 130 ND 104 3.40 102 92.2 10.5 70 - 130 2.0 20 Benzene ND 10 82.3 84.4 2.49 82.4 92.9 11.9 70 - 130 20 70 - 130 20 94.1 92.6 Toluene ND 10 91.6 2.75 103 11.1 70 - 130 20 70 - 130 20 70 - 130 Ethylbenzene ND 10 90.2 92.5 2.52 91.2 102 11.0 20 70 - 130 20 Xylenes ND 30 100 102 2.13 101 112 9.88 70 - 130 20 70 - 130 20 20 %SS: 88 10 93 94 0.981 94 107 13.4 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809074-002A	09/02/08 11:30 AM	09/05/08	09/05/08 7:45 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell A	nalytical, Inc. v Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0047;	VIP Service	Date Sampled:	09/08/08			
55 Santa Clara, Ste.240			Date Received:	09/09/08			
Oakland, CA 94610	Client Contact: Paul King	r	Date Reported:	09/16/08			
	Client P.O.:		Date Completed:	09/15/08			

WorkOrder: 0809265

September 16, 2008

Dear Paul:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: **#0047; VIP Service**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

PROJECT NUMBER	-		RDECT	NAME						7	7	7	7	77	1	1	1	
0047	-		Ūlf	2 SE	TRACE			Å	1	/				//	/	/		
SAMPLED BY: (F	RINTED AND	SIGNAT	URE)	Tosla	Marchin		SER OF	WAL YAJO	FOL	X	1	/	/	1	ALL ALL		REMAR	KS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATIO	И	NUME	1	1	1	//	//	/	BRE	/	ŝ		
P29-10	9/8/09	13:28	WATES				5	X	X		1	Í	1	CE	Nort	halt	uner	aind
P31-10	9/8/08	12:00	21				5	×	X	-+	+	+	+	11	11		11	
1 392-10	110100	01.10	- 1				2	1	^	-	+	+	+				11	
	1																	
										-	+	+	+					
												1	1					
	+										-	+	+					
	1								0	+	+	+	+					
							GOOD C	DNE	ITIC	N	Z		APPI	ROPRI	ATE	/		_
					÷		DECHLO	RIN	ATE	DINI	AF		PRE	SERVI	D IN L	AB		
							PRESE	VAT	ION	-	+	-	-					
												T	T					
RELINQUISHED BY	(SICNATURE	E)	DATE	THE	RECEIVED BY: (S	IGNATURE)		TOTA	THE HO	OF SU		05 1	3	LAB	ORATO	RY:	trad	tio
RELINQUISHED BY	(SIGNATURE	E)	DATE 9/9/28	TIME 1800	RECEIVED BY: (S	ENATURE)		IN	BOR	ATOR		ONT/	CT:	LAB	ORATO	RY PI	HONE H	UME
REVINQUISHED BY:	(SICNATURE	E)	DATE	TIME	RECEIVED FOR L	BORATORY	8Y:	F	17	SAL	MPL	AN	ALYS	SIS R	COUES	T SHE	E1	2

McCampbell Analytical, Inc.

[

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					Work	Order:	08092	265	0	ClientC	ode: PDEO				
		WriteO	n 🗌 EDF		Excel	[Fax	~	Email		HardCopy	Thire	dParty	J-`	flag
Report to:						Bill to:					Re	quested [.]	TAT:	5 c	days
Paul King P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610 (510) 658-6916 FAX 510-834-0152	Email: cc: PO: ProjectNo	lab@pdenviro 2 #0047; VIP S	o.com ervice			Ac P & 55 Oa	counts & D Env Santa (Ikland, (Payable rironmer Clara, S CA 9461	e ntal ite.240 10		Da Da	te Recei te Print	ived: ed:	09/09/ 09/09/	2008 2008
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	Requ 4	uested 5	Tests (6	See legend	below) 9	10	11	12

0809265-001	P29-10	Water	9/8/2008 13:28	А						
0809265-002	P31-10	Water	9/8/2008 12:00	А						
0809265-003	P32-10	Water	9/8/2008 9:15	A						

Test Legend:

1	G-MBTEX_W	2
6		7
11		12

2	
7	
2	

3	
8	

4			
9			

5		
10		

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal				Date	and T	Time Received:	9/9/2008 7	:28:53 PM
Project Name:	#0047; VIP Servi	ce				Chec	cklist o	completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0809265	Matrix	Water			Carri	er:	Michael Herna	ndez (MAI Cou	<u>urier)</u>
			<u>Chair</u>	n of Cu	istody (C	OC) Inform	atior	<u>n</u>		
Chain of custody	present?			Yes	\checkmark	No 🗌				
Chain of custody	signed when relinqui	shed and	d received?	Yes	\checkmark	No 🗆				
Chain of custody	agrees with sample la	abels?		Yes	\checkmark	No 🗆				
Sample IDs noted	by Client on COC?			Yes		No 🗆				
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	\checkmark	No 🗆				
Sampler's name r	noted on COC?			Yes	\checkmark	No 🗆				
			<u>s</u>	ample	Receipt	Informatio	<u>n</u>			
Custody seals int	tact on shipping conta	iner/cool	er?	Yes		No 🗆			NA 🗹	
Shipping containe	er/cooler in good cond	ition?		Yes	\checkmark	No 🗆				
Samples in prope	er containers/bottles?			Yes		No 🗆				
Sample containe	rs intact?			Yes	\checkmark	No 🗆				
Sufficient sample	volume for indicated	test?		Yes	\checkmark	No 🗌				
		Sa	mple Prese	rvatio	n and Ho	ld Time (H	<u>T) Inf</u>	ormation		
All samples recei	ved within holding time	e?		Yes		No 🗆				
Container/Temp E	Blank temperature			Coole	er Temp:	4.6°C			NA 🗆	
Water - VOA vial	s have zero headspa	ce / no b	ubbles?	Yes	\checkmark	No 🗆	No	VOA vials subm	litted 🗆	
Sample labels ch	necked for correct pres	servatior	ו?	Yes		No 🗌				
TTLC Metal - pH	acceptable upon recei	pt (pH<2	?)?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	\checkmark	No 🗆				
			(Ісе Тур	e: WE	TICE))				
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.							
		===	====		===:	====	==	=====	====	=======

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampb	ell An	alytical, Inc.		1534 Willo Web: www.mcca Telephor	ow Pass Road, F ampbell.com ne: 877-252-926	Pittsburg, CA 9456 E-mail: main@mcc 52 Fax: 925-252	55-1701 campbell.com -9269		
P & D	Environmental		Client Project	ID: #0047; V	TP Service	Date Sa	ampled: 09/	08/08		
55 Sa	nta Clara-Ste 240					Date R	eceived: 09/	09/08		
55 54	ita Chira, 50.210		Client Contac	ct: Paul King Date Extracted: 09/12/08-09/16/08						
Oakla	nd, CA 94610		Client P.O.:	Date Analyzed 09/12/08-09/16/08						
Extraction	Ga	soline Ra	nge (C6-C12) Volatil	e Hydrocarbo	ns as Gasolir w8021B/8015Cr	ne with BTH	EX and MTBI	E * Work Ore	ler: 080	9265
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	P29-10	w	ND	ND	ND	0.60	ND	ND	1	94
002A	P31-10	W	ND,b1	ND	ND	1.2	ND	1.3	1	98
003A	P32-10	W	12,000,d1,b1	ND<100	350	36	180	68	20	119
<u> </u>							<u> </u>		<u> </u>	
Report ND m	rting Limit for DF =1; eans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μ	g/L
abo	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 38124 WorkOrder: 0809265 EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0809270-005A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 96.2 93.9 2.45 96.4 87.8 9.30 70 - 130 70 - 130 60 20 20 MTBE 10 99.7 ND 105 4.90 108 103 4.81 70 - 130 2.0 70 - 130 20 Benzene ND 10 87.4 84.7 3.04 87.2 87.4 0.179 70 - 130 20 70 - 130 20 Toluene ND 10 97.5 95.1 2.49 97.7 97.5 0.261 70 - 130 20 70 - 130 20 Ethylbenzene ND 10 96.7 93.6 3.30 96.4 95.9 0.482 70 - 130 20 70 - 130 20 Xylenes ND 30 107 104 3.17 107 106 1.18 70 - 130 2.0 70 - 130 20 20 %SS: 97 10 96 93 2.30 94 97 3.03 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38124 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809265-001A	09/08/08 1:28 PM	09/16/08	09/16/08 2:28 AM	0809265-002A	09/08/08 12:00 PM	09/12/08	09/12/08 3:05 AM
0809265-003A	09/08/08 9:15 AM	09/12/08	09/12/08 10:42 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell A	nalytical, Inc. v Counts"	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
P & D Environmental	Client Project ID: #0047;	VIP Service	Date Sampled:	09/05/08
55 Santa Clara, Ste.240			Date Received:	09/08/08
Oakland, CA 94610	Client Contact: Paul King	r	Date Reported:	09/12/08
	Client P.O.:		Date Completed:	09/10/08

WorkOrder: 0809208

September 12, 2008

Dear Paul:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#0047; VIP Service**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0809208

.

(Dakland, CA 94610 (510) 658-6916				(CHAIN O	F CUS	TOE)Y	R	EC	OR	D		PAGE	+	OF
	PROJECT NUMBER:		P	ROJECT	NAME:						7	Π	Π	Π	/	/	
	0047			V11 38 C	P 50 89 (ASTR	ERVICE LASTRO VALLEY BLVD. D VALLEY, CA			i(ES);								
	SAMPLED BY: (PRINTED AND SIGN MICHAEL DESCHENES			URE)	Idau	1 Deschene		BER OF	STOCK STOCK			//	//	SCRUAN	REMARKS		
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCA	NOIT	NUM	V	12	11		1	Ē /			
130	P32-35	9/5/08	11:35	WATER				5	1	V	T	ff	10	Nor	RMAL	TUR	NAROL
-20	P32-60	9/5/08	12:35	11				5	1	V	-		"		11	10	
40	P33-30	9/5/08	1500	"				2	V		+	+	11	+	11	11	11
10	P33-45	9/5/08	1618	Ŋ				5	V	V		\square	11	-	11	6)	10
													-	-			
											_						
ł	ICE / t . 5.6		PPROP	RIATE	1				\vdash	\square	+		+	+			
ļ	HEAD SPACE A		CONT	AINERS	V NLAB												
	PRESERVATIO	VOAS O&	6 METAL	OTHER							+		-				
ł	RELINQUISHED BY: ((SIGNATURE)		DATE THE 9/2/08 1646		RECEIVED BY: (SIGNATURE)			TOT	L HQ.	OF SAMP	LS MOIS	4 10	BORAT	ORY:	- And	AIVTI
	RELINQUISHED BY: (SIGNATURE)			DATE 9/8/08	TIME 17735	RECEIVED BY:	LABORATORY CONTACT:					CT: U	ABORATORY PHONE NUMBER:				
ľ	RELINQUISHED BY: (.)	DATE	TIME	RECEIVED FOR LABORATORY BY: SA (SIGNATURE)					SAMP	IPLE ANALYSIS REQUEST SHEET TTACHED: () YTS (×)NO						
ſ	Results and billing to: P&D Environmental, Inc. lab@pdenviro.com				REMARKS: ALL SAMPLES ARE PRESERVED WITH HYDROCHLORIC ACID.												

* Sample P32-355 P33-30 had headspace
McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	(925) 252-9262					Work	Order	0809	208	Client	Code: PDEC)			
			WriteOr	EDF		Excel		Fax	🖌 Er	mail	HardCop	у	ThirdParty	□ J-	flag
Report to:							Bill to:				R	eques	ted TAT:	5 0	days
Paul King P & D Envir 55 Santa Cl Oakland, C/ (510) 658-69	onmental ara, Ste.240 A 94610 16 FAX 510-834-0152	Email: cc: PO: ProjectNo	lab@pdenvirc : #0047; VIP Se	o.com ervice			Ac P { 55 Oa	counts & D Env Santa kland,	Payable vironmental Clara, Ste.2 CA 94610	240	D D	ate R Date P	eceived: rinted:	09/08/ 09/08/	2008 2008
									Request	ted Tests	(See legen	d belov	w)		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	56	7 8	3	9 10	11	12
0809208-001	P32-35		Water	9/5/2008 11:35		Α									
0809208-002	P32-60		Water	9/5/2008 12:35		Α									
0809208-003	P33-30		Water	9/5/2008 15:00		А									

9/5/2008 16:18

А

Test Legend:

0809208-004

1	G-MBTEX_W	
6		
11		

2	
7	
12	

Water

P33-45

3	
8	

4	
9	

5	
10	

I I CDAI CU DV. IVICIISSA VAILS	Prepared	bv:	Melissa	Valles
---------------------------------	----------	-----	---------	--------

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal				Date	and	Time Received:	9/8/08 6:24	:18 PM
Project Name:	#0047; VIP Servio	ce				Cheo	cklist	completed and re	eviewed by:	Melissa Valles
WorkOrder N°:	0809208	Matrix	<u>Water</u>			Carri	ier:	Michael Herna	ndez (MAI Cou	<u>irier)</u>
			<u>Chain</u>	of Cu	stody (C	OC) Inform	natio	<u>n</u>		
Chain of custody	present?			Yes	✓	No 🗆				
Chain of custody	signed when relinquis	shed and	d received?	Yes	✓	No 🗆				
Chain of custody	agrees with sample la	abels?		Yes		No 🗌				
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆				
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	✓	No 🗆				
Sampler's name r	noted on COC?			Yes	✓	No 🗆				
			<u>Sa</u>	ample	Receipt	Informatio	<u>on</u>			
Custody seals int	tact on shipping contai	iner/cool	er?	Yes		No 🗆			NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No 🗆				
Samples in prope	er containers/bottles?			Yes	\checkmark	No 🗆				
Sample containe	rs intact?			Yes	\checkmark	No 🗆				
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗌				
		Sa	mple Preser	vatior	n and Ho	<u>Id Time (H</u>	T) Ini	formation		
All samples recei	ved within holding time	e?		Yes	✓	No 🗌				
Container/Temp E	Blank temperature			Coole	er Temp:	5.6°C			NA 🗆	
Water - VOA vial	s have zero headspac	ce / no b	ubbles?	Yes		No 🗹	No	VOA vials subm	itted 🗆	
Sample labels ch	ecked for correct pres	servation	1?	Yes	✓	No 🗌				
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆				
			(Ice Type	e: WE	TICE)	1				
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.							
		===		===	====		==		=====	=======

Client contacted:

Date contacted:

Contacted by:

Comments: Sample P32-35 and P33-30 had headspace.

	McCampbo	ell An en Ouality	alytical, Inc. Counts"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269											
P & D	Environmental		Client Project II	D: #0047; V	#0047; VIP Service Date Sampled: 09/05/08											
55 Sai	nta Clara, Ste.240					Date Received: 09/08/08										
00.54			Client Contact:	Paul King		Date E	xtracted: 09/2	10/08								
Oakla	nd, CA 94610		Client P.O.:			Date A	nalyzed 09/	10/08								
Extraction	Gas	oline Ra	ange (C6-C12) Volatile I	C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*												
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	% SS							
001A	P32-35	w	79,d1,b1	ND	1.2	5.0	1.3	2.6	1	97						
002A	P32-60	w	59,d1,b1	ND	1.1	1.8	1.8 1.1		1	93						
003A	P33-30	w	1400,d1,b1	ND<50	150	51	41	240	10	94						
004A	P33-45	w	190,d1,b1	ND	2.5	2.6	3.1	17	1	104						
									<u> </u>							
Repo: ND m	rting Limit for DF =1; eans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5 μg/L								
above the reporting limit S			1.0	0.05	0.005	0.005	0.005	0.005	nig	'ng						

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water BatchID: 38063 WorkOrder: 0809208 W.O. Sample Matrix: Water EPA Method: SW8021B/8015Cm Extraction: SW5030B Spiked Sample ID: 0809209-004A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH(btex)[£] 91.3 99.2 101 92.1 0.931 ND 60 1.34 70 - 130 20 70 - 130 20 MTBE ND 10 105 106 1.20 105 97.9 6.85 70 - 130 20 70 - 130 20 Benzene ND 10 96.1 96.8 0.801 91.6 91.1 0.600 70 - 130 20 70 - 130 20 Toluene ND 10 96.2 96.7 0.495 84.5 83.4 1.22 70 - 130 20 70 - 130 20 ND 10 101 101 0 93.9 93.2 0.740 70 - 130 20 70 - 130 20 Ethylbenzene **Xylenes** ND 30 112 113 0.350 89.7 91.3 1.76 70 - 130 20 70 - 130 20 94 20 70 - 130 20 %SS: 96 10 94 0 96 98 1.40 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38063 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809208-001A	09/05/08 11:35 AM	09/10/08	09/10/08 5:12 AM	0809208-002A	09/05/08 12:35 PM	09/10/08	09/10/08 6:18 AM
0809208-003A	09/05/08 3:00 PM	09/10/08	09/10/08 9:03 AM	0809208-004A	09/05/08 4:18 PM	09/10/08	09/10/08 6:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell A	nalytical, Inc. v Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental	Client Project ID: #0047;	VIP Service	Date Sampled:	09/11/08					
55 Santa Clara, Ste.240			Date Received:	09/12/08					
Oakland CA 94610	Client Contact: Steve Car	mack	Date Reported:	09/18/08					
	Client P.O.:		Date Completed:	09/18/08					

WorkOrder: 0809409

September 18, 2008

Dear Steve:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#0047; VIP Service**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

b ENVIRONMENTAL, 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916	INC.			C	CHAIN OF CUS	TOD	Y	R	RE	С	OF	RD	1		PAGE	OF
PROJECT NUMBER:			ROJECT VIP 3289 ASTR	NAME: SER GAS 20 VA	EVICE, THE VALLEY BUT					The Boy of		/	$\left \right $	K		
SAMPLED BY: (PRI MICHAEL D SAMPLE NUMBER	DATE	TIME	URE) M TYPE	Mart	SAMPLE LOCATION	NUMBER OF CONTAINERS	AMAL TAIL	-H-	ABIE			//		THESERVAN	/	REMARKS
+ P34W30 +5 P34W-45	9/11/08 9/11/08	12:35 13:50	WATER N			55	27	22					ice	1	IORMAL "	TURN AROU
														+		
de .							0	.9								
					•	GOOD O HEAD S DECHLO				HA	1-1213	PPF	OPRI/ DNTAI RESE	NERS RVED		<u>P</u>
RELINQUISHED BY: (SCNATURE)	DATE.	TIME	RECEIVED BY: (SIGNATURE)		TOTA	L HO.	0F 1		100	101		BOR	ATORY:	ANALUTICAL
RÉLINQUISHED BY: (SIGNATURE)	DATE	тыс 1735	RECEIVED BY: (SIGNATURE)		IN	BOR	ATO	RY RY RY	CON	LIG	T: U 5 (877	ATORY PI	HONE NUMBER
RELINQUISHED BY Results and billing to P&D Environmental, lab@pdenviro.com	SIGNATURE		DATE	TIME	RECEIVED FOR LABORATORY (SIGNATURE) REMARKS: ALL S	BY:	S	PR	S/	ATT		EO:	() HCl	REQU	iest she (~)no	

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					WorkO	rder:	08094	109	Clie	ntCode: PD	EO				
		WriteC	Dn 🗌 🛙	EDF	Excel		Fax	✓	Email	HardCo	ору	Third	Party	J-1	ilag
Report to:					В	ill to:					Requ	uested T	TAT:	5 c	lays
Steve Carmack	Email:	lab@pdenvir	ro.com			Acc	ounts F	Payable							
P & D Environmental	CC:					Ρ&	D Envi	ironmen	tal		D .			00/10/	••••
55 Santa Clara, Ste.240	PO:					55 8	Santa C	Clara, St	e.240		Date	e Receiv	ved:	09/12/2	2008
Oakland, CA 94610	ProjectNo	o: #0047; VIP S	Service			Oak	kland, C	CA 9461	0		Date	e Printe	ed:	09/17/2	2008
(510) 658-6916 FAX 510-834-0152															
								Requ	ested Te	sts (See lege	nd be	elow)			
Lah ID Client ID		Matrix	Collectio	n Date Ho	1 1	2	3	4	5	6 7	8	a	10	11	12

	Glient ID	Watin	Conection Date	noiu		2	3	7	3	0	0	3	10	 12
0809409-001	P34W-30	Water	9/11/2008 12:35		А									
0809409-002	P34W-45	Water	9/11/2008 13:50		А									

Test Legend:

1	G-MBTEX_W	
6		
11		1

2	
7	
2	

3	
8	

4			
9			

5		
10	T	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbo	ell An en Ouality	alyti	ical, Inc.		1534 Willow Pass Road, Pittsburg, CA94565-1701Web: www.mccampbell.comE-mail: main@mccampbell.comTelephone: 877-252-9262Fax: 925-252-9269									
P & D	Environmental			Client Project II	D: #0047; V	#0047; VIP Service Date Sampled: 09/11/08									
55 Sai	nta Clara, Ste.240					Date Received: 09/12/08									
00.54			Client Contact:	Steve Carn	eve Carmack Date Extracted: 09/16/08-09/17/08										
Oakla	nd, CA 94610			Client P.O.:			Date A	nalyzed 09/	16/08-09/17	/08					
Extraction	Gas	soline Ra	inge (C	6-C12) Volatile I Analy	Hydrocarbo	ns as Gasolin W8021B/8015Cn	ne with BTH	EX and MTB	E * Work Ord	der: 080	9409				
Lab ID	Client ID	Matrix		TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	P34W-30	w		150,d1,b1	ND	3.9	2.5	3.1	12	1	103				
002A	P34W-45	W		1600,d1,b1	ND	15	13	23	95	1	104				
										<u> </u>					
Repo	rting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5	μ	g/L				
abov	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water	QC Matrix: Water						BatchID: 38218				WorkOrder 0809409		
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B				Spiked Sample ID: 0809406-001B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))	
, mayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	109	111	2.00	78.3	80.5	2.69	70 - 130	20	70 - 130	20	
MTBE	ND	10	81.1	81.3	0.273	92.6	95.9	3.43	70 - 130	20	70 - 130	20	
Benzene	ND	10	84.4	86.3	2.13	89.9	96.6	7.13	70 - 130	20	70 - 130	20	
Toluene	ND	10	84	84.9	1.04	80.3	85.7	6.52	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	85.8	87.7	2.16	89.2	94.9	6.14	70 - 130	20	70 - 130	20	
Xylenes	ND	30	85.8	87.4	1.87	88.6	93.1	4.99	70 - 130	20	70 - 130	20	
%SS:	115	10	98	96	1.65	99	102	3.59	70 - 130	20	70 - 130	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 38218 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809409-001A	09/11/08 12:35 PM	09/16/08	09/16/08 11:40 PM	0809409-002A	09/11/08 1:50 PM	09/17/08	09/17/08 6:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

WORK ORDER #: 0809291

Work Order Summary

CLIENT:	Mr. Paul King	BILL TO:	Mr. Paul King
	P & D Environmental		P & D Environmental
	55 Santa Clara		55 Santa Clara
	Suite 240		Suite 240
	Oakland, CA 94610		Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0047 VIP Service, Castro Valley
DATE RECEIVED:	09/15/2008	CONTACT	Kyle Vagadori
DATE COMPLETED:	09/26/2008	contact.	Kyle v ugudoli

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG13	Modified TO-15	7.0 "Hg	15 psi
02A	SG14	Modified TO-15	4.0 "Hg	15 psi
02AA	SG14 Lab Duplicate	Modified TO-15	4.0 "Hg	15 psi
03A	SG15	Modified TO-15	5.0 "Hg	15 psi
04A	SG15-DUP	Modified TO-15	5.0 "Hg	15 psi
05A	SG16	Modified TO-15	6.5 "Hg	15 psi
06A	Lab Blank	Modified TO-15	NA	NA
06B	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
07B	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08B	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>09/26/08</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 17

LABORATORY NARRATIVE Modified TO-15 Std & Soil Gas P & D Environmental Workorder# 0809291

Five 1 Liter Summa Canister samples were received on September 15, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A date was not provided by the field sampler.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

Client Sample ID: SG13

Lab ID#: 0809291-01A

	Rot. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Toluene	13	12000	50	45000
Ethyl Benzene	13	520	57	2200
m,p-Xylene	13	1500	57	6500
o-Xylene	13	410	57	1800
TPH ref. to Gasoline (MW=100)	260	64000	1100	260000

Client Sample ID: SG14

Lab ID#: 0809291-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	12	18	37	57
Toluene	12	11000	44	41000
Ethyl Benzene	12	1300	50	5600
m,p-Xylene	12	4400	50	19000
o-Xylene	12	1400	50	6300
TPH ref. to Gasoline (MW=100)	230	93000	950	380000

Client Sample ID: SG14 Lab Duplicate

Lab ID#: 0809291-02AA

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	12	17	37	54
Toluene	12	11000	44	41000
Ethyl Benzene	12	1300	50	5600
m,p-Xylene	12	4400	50	19000
o-Xylene	12	1400	50	6300
TPH ref. to Gasoline (MW=100)	230	92000	950	380000

Client Sample ID: SG15

Lab ID#: 0809291-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methyl tert-butyl ether	6.0	15	22	53
Benzene	6.0	1200	19	3900
Toluene	6.0	180	23	680

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG15

Lab ID#: 0809291-03A				
Ethyl Benzene	6.0	40	26	170
m,p-Xylene	6.0	160	26	710
o-Xylene	6.0	58	26	250
TPH ref. to Gasoline (MW=100)	120	10000	490	41000

Client Sample ID: SG15-DUP

Lab ID#: 0809291-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Methyl tert-butyl ether	2.8	8.6	10	31
Benzene	2.8	570	9.1	1800
Toluene	2.8	97	11	360
Ethyl Benzene	2.8	26	12	110
m,p-Xylene	2.8	100	12	430
o-Xylene	2.8	37	12	160
TPH ref. to Gasoline (MW=100)	57	2900	230	12000

Client Sample ID: SG16

Lab ID#: 0809291-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	1.3	19	4.1	61
Toluene	1.3	230	4.9	880
Ethyl Benzene	1.3	24	5.6	100
m,p-Xylene	1.3	77	5.6	330
o-Xylene	1.3	21	5.6	92
TPH ref. to Gasoline (MW=100)	26	2700	100	11000

Client Sample ID: SG13

Lab ID#: 0809291-01A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092216 2.64	Date of Collection: 9/11/08 Date of Analysis: 9/22/08 05:31 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	53	Not Detected	130	Not Detected
Methyl tert-butyl ether	13	Not Detected	48	Not Detected
Benzene	13	Not Detected	42	Not Detected
Toluene	13	12000	50	45000
Ethyl Benzene	13	520	57	2200
m,p-Xylene	13	1500	57	6500
o-Xylene	13	410	57	1800
TPH ref. to Gasoline (MW=100)	260	64000	1100	260000

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: SG14 Lab ID#: 0809291-02A

$\begin{array}{c} \text{Eab 1D} \#, 0009291-02A \\ \text{MODIFIED EPA METHOD TO-15 GC/MS} \end{array}$

File Name: Dil. Factor:	w092218 2.33		Date of Collection: Date of Analysis: 9	9/11/08 /22/08 06:55 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	18	37	57
Toluene	12	11000	44	41000
Ethyl Benzene	12	1300	50	5600
m,p-Xylene	12	4400	50	19000
o-Xylene	12	1400	50	6300
TPH ref. to Gasoline (MW=100)	230	93000	950	380000

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SG14 Lab Duplicate Lab ID#: 0809291-02AA

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092217 2.33	Date of Collection: 9/11/08 Date of Analysis: 9/22/08 06:20 PM		9/11/08 /22/08 06:20 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	17	37	54
Toluene	12	11000	44	41000
Ethyl Benzene	12	1300	50	5600
m,p-Xylene	12	4400	50	19000
o-Xylene	12	1400	50	6300
TPH ref. to Gasoline (MW=100)	230	92000	950	380000

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: SG15

Lab ID#: 0809291-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092511 12.1	Date of Collection: 9/8/08 Date of Analysis: 9/25/08 05:42 PM		9/8/08)/25/08 05:42 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	24	Not Detected	59	Not Detected
Methyl tert-butyl ether	6.0	15	22	53
Benzene	6.0	1200	19	3900
Toluene	6.0	180	23	680
Ethyl Benzene	6.0	40	26	170
m,p-Xylene	6.0	160	26	710
o-Xylene	6.0	58	26	250
TPH ref. to Gasoline (MW=100)	120	10000	490	41000

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: SG15-DUP

Lab ID#: 0809291-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092512 5.69	Date of Collection: 9/8/08 Date of Analysis: 9/25/08 06:37		9/8/08 0/25/08 06:37 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	11	Not Detected	28	Not Detected
Methyl tert-butyl ether	2.8	8.6	10	31
Benzene	2.8	570	9.1	1800
Toluene	2.8	97	11	360
Ethyl Benzene	2.8	26	12	110
m,p-Xylene	2.8	100	12	430
o-Xylene	2.8	37	12	160
TPH ref. to Gasoline (MW=100)	57	2900	230	12000

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: SG16 Lab ID#: 0809291-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092514 2.58	Date of Collection: 9/8/08 Date of Analysis: 9/25/08 08:29 PM		9/8/08 /25/08 08:29 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	5.2	Not Detected	13	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
Benzene	1.3	19	4.1	61
Toluene	1.3	230	4.9	880
Ethyl Benzene	1.3	24	5.6	100
m,p-Xylene	1.3	77	5.6	330
o-Xylene	1.3	21	5.6	92
TPH ref. to Gasoline (MW=100)	26	2700	100	11000

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	81	70-130	
4-Bromofluorobenzene	87	70-130	

Client Sample ID: Lab Blank Lab ID#: 0809291-06A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092210 1.00	Date of Collection: NA Date of Analysis: 9/22/08 01:34 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	20	Not Detected	49	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
TPH ref. to Gasoline (MW=100)	100	Not Detected	410	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 0809291-06B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092505 1.00	Date of Collection: NA Date of Analysis: 9/25/08 12:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
2-Propanol	2.0	Not Detected	4.9	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TPH ref. to Gasoline (MW=100)	10	Not Detected	41	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	77	70-130	
4-Bromofluorobenzene	82	70-130	

Client Sample ID: CCV

Lab ID#: 0809291-07A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092206 1.00	Date of Collection: NA Date of Analysis: 9/22/08 11:42 AM
Compound		%Recovery
2-Propanol		116
Methyl tert-butyl ether		99
Benzene		106
Toluene		104
Ethyl Benzene		105
m,p-Xylene		106
o-Xylene		107
TPH ref. to Gasoline (MW=10	00)	Not Spiked

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: CCV

Lab ID#: 0809291-07B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092502 1.00	Date of Collection: NA Date of Analysis: 9/25/08 09:14 AM
Compound		%Recovery
2-Propanol		82
Methyl tert-butyl ether		93
Benzene		100
Toluene		98
Ethyl Benzene		99
m,p-Xylene		97
o-Xylene		95
TPH ref. to Gasoline (MW=100)		Not Spiked

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	86	70-130

Client Sample ID: LCS

Lab ID#: 0809291-08A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092208 1.00	Date of Collection: NA Date of Analysis: 9/22/08 12:38 PM
Compound		%Recovery
2-Propanol		117
Methyl tert-butyl ether		82
Benzene		104
Toluene		103
Ethyl Benzene		105
m,p-Xylene		107
o-Xylene		108
TPH ref. to Gasoline (MW=100)		Not Spiked

Container Type: NA - Not Applicable

Г

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCS

Lab ID#: 0809291-08B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	r092503 1.00	Date of Collection: NA Date of Analysis: 9/25/08 09:45 AM
Compound		%Recovery
2-Propanol		87
Methyl tert-butyl ether		94
Benzene		100
Toluene		101
Ethyl Benzene		99
m,p-Xylene		98
o-Xylene		96
TPH ref. to Gasoline (MW=100)		Not Spiked

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	84	70-130	
4-Bromofluorobenzene	88	70-130	

APPENDIX H Soil Gas Risk and Hazard Calculation Work Sheets

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:39 AM

INTERMEDIATE CALCULATIONS SHEET

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
(cm)	(cm^3/cm^3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(ug/m ³)	(cm ³ /s)
(citi)	(cm/cm/)	(cm/cm)	(cm)	(em)	(enr)	(citi)	(µg/m)	(em /a)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	3.90E+03	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ _{TS}	Don	L _d
(cm*)	(unitless)	(cm)	(cal/mol)	(atm-m"/mol)	(unitless)	(g/cm-s)	(cm*/s)	(cm)
1.00E+06	5.00E-03	15	7 977	5 20E-03	2 17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{erack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	3.90E+03	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	3.59E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)-1	(mg/m ³)
_	
2.9E-05	3.0E-02
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:40 AM

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.3E-05	1.1E-01

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

1 of 1

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:47 AM

INTERMEDIATE CALCULATIONS SHEET

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	Ha 3. 3.	Ste 3	K, 2	K _{rg}	K. 2	Xoraok	conc.	Clauiding
(cm)	(cm°/cm°)	(cm°/cm°)	(cm^)	(cm*)	(cm*)	(cm)	(µg/m°)	(cm°/s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	4.50E+04	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ_{TS}	Demv	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient, D ^{crack}	Area of crack,	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
-p	(ug/m ³)	(crack	(cm ³ /c)	(cm ² /c)	(cm ²)	(unitions)	(unitions)	(up/m ³)
(cm)	(hðvur)	(cm)	(cm/s)	(ciii /s)	(cm)	(unidess)	(unidess)	(µg/m)
15	4.50E+04	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	4.12E+01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:48 AM

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard			
risk from	quotient from vapor intrusion to indoor air, noncarcinogen (unitless)			
vapor				
intrusion to				
indoor air,				
carcinogen				
(unitless)				
NA	1.3E-01			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

1 of 1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:54 AM

INTERMEDIATE CALCULATIONS SHEET

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{ra}	k,	Xoraok	conc	Quuilding
(cm)	(cm3/cm3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	5.60E+03	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{ν,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mot)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, Lp	Source vapor conc., C _{souros}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, a	Infinite source bldg. conc., C _{building}
(on)	1.9.111/	(600)	10	(0 /0)	10.11 /	[01111033]	(01111033)	(1-3-11)
15	5.60E+03	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	4.66E+00

Linit			
Unit			
nsk	Reference		
factor,	conc.,		
URF	RfC		
(µg/m ³) ⁻¹	(mg/m ³)		
2.5E-06	1.0E+00		
	-		
END			

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:55 AM
Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.8E-06	4.5E-03

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 12:59 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{ra}	k,	Xoraok	conc	Quuilding
(cm)	(cm3/cm3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu g/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.90E+04	3.39E+04
Area of enclosed space below grade, Ag (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, Η' _{τs} (unitiless)	Vapor viscosity at ave, soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10.083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bdg.,	Crack effective diffusion coefficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
Lp	Source	Forack	Caso!	2.	Perack	exp(Pe)	α	Ubuilding
(cm)	(µg/m³)	(cm)	(cm³/s)	(cm*/s)	(cm*)	(unitless)	(unitless)	(µg/m³)
15	1.90E+04	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	1.61E+01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:00 PM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	1.5E-01			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:07 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	0°	Sto	k,	k _{ra}	k,	Xoraok	conc	Qualding
(cm)	(cm3/cm3)	(cm3/cm3)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu g/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.30E+03	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10.245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p	Source vapor conc., C _{source}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{sol}	Crack effective diffusion coefficient, D ^{crack}	Area of crack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, α	Infinite source bldg. conc., C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	6.30E+03	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	5.77E+00

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:07 PM

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinoger
(unitless)
E 5E 02

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:13 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k, (cm ²)	Floor- wall seam perimeter, X _{orask} (cm)	Soil gas conc. (ug/m ³)	Bldg. ventilation rate, O _{building} (cm ³ /s)
(4.1.)	(,	()	(2007)	(,	()	(****)	(Fighting)	(0.0.0)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	5.30E+01	3.39E+04
Area of enclosed space below grade, Ag (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{τs} (unitless)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{off} v (cm ² /s)	Diffusion path length, L _d (cm)
1.005+08	E 00E 02	15	7 1 1 2	5 00E 04	2.465.02	1 805 04	7 00E 02	127.4
Convection path length, Lp (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet numbor, exp(Pe ^f) (unitless)	nfinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	5.30E+01	1.25	8.33E+01	7.99E-03	5.00E+03	1.14E+09	1.01E-03	5.36E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.6E-07	3.0E+00
END	

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:13 PM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
5.7E-09	1.7E+05

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:47 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	Ha 3. 3.	Ste 3	K, 2	K _{rg}	K. 2	Xoraok	conc.	Clauiding
(cm)	(cm°/cm°)	(cm°/cm°)	(cm^)	(cm*)	(cm*)	(cm)	(µg/m°)	(cm°/s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	4.50E+04	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ_{TS}	Demv	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient, D ^{crack}	Area of crack,	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
-p	(ug/m ³)	(crack	(cm ³ /c)	(cm ² /c)	(cm ²)	(unitions)	(unitions)	(up/m ³)
(cm)	(hðvur)	(cm)	(cm/s)	(ciii /s)	(cm)	(unidess)	(unidess)	(µg/m)
15	4.50E+04	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	4.12E+01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:48 AM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	1.3E-01			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:57 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{V}	Sto	k,	k,9	k,	Xorack	conc.	Quality
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
					,			
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	2.20E+03	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave, soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, Lp (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{buildng} (μg/m ³)
15	2.20E+03	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	1.83E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:57 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.9E-06	1.8E-03

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:01 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	0°	Sto	k,	k _{rg}	k,	Xoraok	conc	Quilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
127.4	0.290	0.263	6 01E 00	0.833	5 75E 00	4.000	6 50E±02	2 20E+04
137.4	0.200	0.205	0.912-09	0.000	5.75E-09	4,000	0.002+03	3.392+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	ΔH _{v,TS}	HTS	H' _{TS}	μ _{TS}	Dett	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path	Source vapor	Crack	Average vapor flow rate	Crack effective diffusion	Area of	Exponent of equivalent foundation Peclet	Infinite source indoor attenuation	Infinite source bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	Csource	r _{crack}	Q _{sol}	Dorack	Acrack	exp(Pe ^f)	α	Cbuilding
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	6.50E+03	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	5.50E+00

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:03 PM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	5.3E-02			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:08 PM

Source- building separation, L _T	$\begin{array}{c} \text{Vadose zone} \\ \text{soil} \\ \text{air-filled} \\ \text{porosity,} \\ \theta_a^{\ V} \end{array}$	Vadose zone effective total fluid saturation, S ₁₀	Vadose zone soil intrinsic permeability, ki	Vadose zone soil relative air permeability, k _{r9}	Vadose zone soil effective vapor permeability, k,	Floor- wall seam perimeter, X _{oraok}	Soil gas	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.80E+03	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
A _B	η	Zorack	ΔH _{v,TS}	H _{TS}	H' _{TS}	μ _{TS}	D ^{om} v	Ld
(cm)	(unitiess)	(cm)	(cai/mol)	(aun-in /inor)	(unitiess)	(g/cm-s)	(cm /s)	(cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection	Source		Average	Crack		Exponent of equivalent foundation	Infinite source indoor	Infinite
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	Csource	r _{crack}	Q _{sol}	Dorack	Acrack	exp(Pe ^t)	α	Cbuilding
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	1.80E+03	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	1.65E+00

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:09 PM

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
NIA	1.05.00		
NA	1.6E+02		

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:42 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{rg}	k,	Xoraok	conc	Obuilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	5.70E+01	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mot)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7 977	5 29E-03	2 17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{erack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	5.70E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	5.25E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)-1	(mg/m ³)
2.9E-05	3.0E-02
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:43 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.3E-07	1.7E-03

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:49 AM

Source- building	Vadose zone soil air-filled	Vadose zone effective total fluid	Vadose zone soil intrinsic	Vadose zone soil relative air	Vadose zone soil effective vapor	Floor- wall seam	Soil	Bldg. ventilation
separation,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	gas	rate,
LT	θ_a^{V}	Sto	k,	k _{rg}	k,	Xoraok	conc	Quilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	4.10E+04	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ_{TS}	Demv	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
			Augroage	Crack		Exponent of	Infinite	Infinito
Convection	Source		vapor	offective		foundation	indoor	FOURCO
nath	vanor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	blda
length.	conc	radius.	into bldg	coefficient.	crack.	number.	coefficient.	conc
Lp	Csource	r _{crack}	Q _{sol}	Dorack	Acrack	exp(Pe ^f)	α	Cbuilding
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	4.10E+04	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	3.75E+01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:49 AM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	1.2E-01			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:54 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{ra}	k,	Xoraok	conc	Quuilding
(cm)	(cm3/cm3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	5.60E+03	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{ν,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mot)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, Lp	Source vapor conc., C _{souros}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, a	Infinite source bldg. conc., C _{building}
(on)	1.9.111/	(600)	10	(0 /0)	10.11 /	[01111033]	(01111033)	(1-3-11)
15	5.60E+03	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	4.66E+00

Linit	
Unit	
nsk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
	-
END	

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:55 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.8E-06	4.5E-03

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 12:59 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{ra}	k,	Xoraok	conc	Quuilding
(cm)	(cm3/cm3)	(cm3/cm3)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu g/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.90E+04	3.39E+04
Area of enclosed space below grade, Ag (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, Η' _{τs} (unitiless)	Vapor viscosity at ave, soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coofficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
Lp	Csource	r crack	Q _{soll}	Dorack	Acrack	exp(Pe ^t)	α	Cbuilding
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	1.90E+04	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	1.61E+01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:00 PM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
	1.55.04			
NA	1.5E+01			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:07 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	0°	Sto	k,	k _{ra}	k,	Xoraok	conc	Qualding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu q/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.30E+03	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave, soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10.245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p	Source vapor conc., C _{source}	Crack radius, r _{orack}	Average vapor flow rate into bldg., Q _{sol}	Crack effective diffusion coefficient, D ^{crack}	Area of crack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, a	Infinite source bldg. conc., C _{building}
(cm)	(µg/m³)	(cm)	(cm³/s)	(cm²/s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	6.30E+03	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	5.77E+00

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:07 PM
Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinoger
(unitless)
E 5E 02

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:39 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
(cm)	(cm^3/cm^3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(ug/m ³)	(cm ³ /s)
(citi)	(cm/cm/)	(cm/cm)	(cm)	(em)	(enr)	(citi)	(µg/m)	(em /a)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	3.90E+03	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ _{TS}	Don	L _d
(cm*)	(unitless)	(cm)	(cal/mol)	(atm-m"/mol)	(unitless)	(g/cm-s)	(cm*/s)	(cm)
1.00E+06	5.00E-03	15	7 977	5 20E-03	2 17E-01	1.80E-04	6.86E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{erack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	3.90E+03	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	3.59E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)-1	(mg/m ³)
2.9E-05	3.0E-02
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:40 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.3E-05	1.1E-01

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:50 AM

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ _a ^V	Vadose zone effective total fluid saturation, S ₁₀	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{r9}	Vadose zone soil effective vapor permeability, k,	Floor- wall seam perimeter, X _{orask}	Soil gas	Bldg. ventilation rate, O _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.80E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	$\Delta H_{v,TS}$	HTS	H' _{TS}	μ_{TS}	Deu	Ld
(cm²)	(unitless)	(cm)	(cal/mol)	(atm-m ^a /mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{emek} (cm)	Average vapor flow rate into bldg., Q ₉₀₁ (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
45	L 6 90E+02	1.05	0.22E+04	6 70E 02	E 00E+02	4.625+10	0.455.04	6.025.04
10	0.00E+02	1.20	0.332+01	0.752-03	3.002+03	4.03E+10	5.13E-04	0.222-01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:51 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NIA	2 0E 02

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:59 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	0°	Sto	k,	k _{ra}	k,	Xoraok	conc	Quilding
(cm)	(cm3/cm3)	(cm3/cm3)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu g/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.70E+02	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' ₁₅ (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{erack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	1.70E+02	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	1.41E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m³)-1	(mg/m ³)
2.5E-06	1.0E+00
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:59 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.5E-07	1.4E-04

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:04 PM

Source- building separation, L _T	Vadose zone soil air-filled porosity, θ_a^{V}	Vadose zone effective total fluid saturation, Ste	Vadose zone soil intrinsic permeability, ki	Vadose zone soil relative air permeability, k _{rg}	Vadose zone soil effective vapor permeability, k,	Floor- wall seam perimeter, X _{orosk}	Soil gas	Bldg. ventilation rate, Opuilding
(cm)	(cm°/cm°)	(cm°/cm°)	(cm ^c)	(cm ^c)	(cm ²)	(cm)	(µg/m°)	(cm°/s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	2.50E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	ΔH _{v,TS}	HTS	H' _{TS}	μ_{TS}	Deff	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length, L _p	Source vapor conc., C _{source}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{soll}	Crack effective diffusion coefficient, D ^{crack}	Area of orack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, α	Infinite source bldg. conc., C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	2.50E+02	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	2.11E-01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:05 PM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NIA	2 0E 02

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:10 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θa [*]	Sto	k,	k _{rg}	k,	Xoraok	conc.	Obuilding
(cm)	(cm³/cm³)	(cm³/cm³)	(cm²)	(cm ²)	(cm²)	(cm)	(µg/m°)	(cm³/s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	2.50E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
AB	η	Zcrack	ΔH _{v,TS}	HTS	H' _{TS}	μ_{TS}	Deff	Ld
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
Lp	Csource	r crack	Q _{sol}	Denov	Acrack	exp(Pe')	α	Cbuilding
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	2.50E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.29E-01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:10 PM

quotient from vapor intrusion to indoor air
from vapor intrusion to
intrusion to
indoor air
macor an,
noncarcinogen
(unitless)
0.05.00

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:13 PM

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k, (cm ²)	Floor- wall seam perimeter, X _{orask} (cm)	Soil gas conc. (ug/m ³)	Bldg. ventilation rate, O _{building} (cm ³ /s)
(4.1.)	(,	()	(2007)	(,	()	(****)	(Fighting)	(0.0.0)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	5.30E+01	3.39E+04
Area of enclosed space below grade, Ag (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{τs} (unitless)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{off} v (cm ² /s)	Diffusion path length, L _d (cm)
1.005+08	E 00E 02	15	7 1 1 2	5 00E 04	2.465.02	1 805 04	7 00E 02	127.4
Convection path length, Lp (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet numbor, exp(Pe ^f) (unitless)	nfinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	5.30E+01	1.25	8.33E+01	7.99E-03	5.00E+03	1.14E+09	1.01E-03	5.36E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.6E-07	3.0E+00
END	

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:13 PM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
5.7E-09	1.7E+05

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DATA ENTRY SHEET

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:45 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θa	Sto	k,	k _{r9}	k,	Xoraok	conc	Obuilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
							1	
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	6.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{τs} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7 977	5 29E-03	2 17E-01	1 80E-04	6.86F-03	137.4
Convection path length, Lp (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	6.10E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	5.62E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-02
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:45 AM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
6.7E-07	1.8E+03

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:52 AM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θa ^v	Sto	k,	k _{r9}	k,	Xoraok	conc	Quilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	8.80E+02	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{τs} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9.001	6 20E-03	2.58E-01	1.80E-04	6 70E-03	137.4
Convection path length, Lp (cm)	Source vapor conc., C _{souros} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{sol} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of orack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	8.80E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	8.05E-01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 11:52 AM

quotient rom vapor
rom vapor
ntrusion to
indoor air,
ncarcinogen
(unitless)

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 12:00 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{V}	Sto	k,	k _{rg}	k,	Xoraok	conc	Quuilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	1.00E+02	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.15} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave, soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
Convection path	Source vapor	Crack	Average vapor flow rate	Crack effective diffusion	Area of	Exponent of equivalent foundation Peclet	Infinite source indoor attenuation	Infinite source bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	Csource	r _{crack}	Q _{soll}	Dorack	Acrack	exp(Pe ^f)	α	C _{building}
(cm)	(µg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m ³)
15	1.00E+02	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	8.32E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
2.5E-06	1.0E+00
END	1

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 12:01 PM

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
8 5E-08	8 0E+05

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:05 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{ra}	k,	Xoraok	conc	Quilding
(cm)	(cm3/cm3)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	$(\mu g/m^3)$	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	3.30E+02	3.39E+04
Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10.083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path	Source vapor	Crack	Average vapor flow rate	Crack effective diffusion	Area of	Exponent of equivalent foundation Peclet	Infinite source indoor attenuation	Infinite source bldg.
iongui,	C.	radido,	O Diag.,	D ^{crack}	Δ.	exp(Ref)	ooomoiont,	C
Lp (mm)	(up (m ³)	Crack	(om ³ /o)	(om ² /c)	(om ²)	exp(re)	Ω (veitlese)	(building
(cm)	(µg/m-)	(cm)	(cm /s)	(cm/s)	(cm-)	(unitiess)	(unitiess)	(µg/m ⁻)
15	3.30E+02	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	2.79E-01

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:06 PM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	2.7E+03			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls

DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:11 PM

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{\vee}	Sto	k,	k _{rg}	k,	Xoraok	conc	Quilding
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	5.75E-09	4,000	9.20E+01	3.39E+04
Area of enclosed space below grade, Ag (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mot)	Henry's law constant at avec. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10.245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length, Lp	Source vapor conc., C _{source}	Crack radius, r _{emak}	Average vapor flow rate into bldg., Q ₉₀₁	Crack effective diffusion coefficient, D ^{crack}	Area of orack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient, α	Infinite source bldg. conc., C _{building}
(cm)	(µg/m.)	(cm)	(61178)	(61178)	(citri)	(unidess)	(unidess)	(µg/m)
15	9.20E+01	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	8.42E-02

DTSC / HERD Last Update: 11/1/03 DTSC Indoor Air Guidance Unclassified Soil Screening Model HERD_Soil_Gas_Screening_Model_2009rev.xls 2/11/2009 1:11 PM

Incremental	Hazard			
risk from	quotient			
vapor	from vapor			
intrusion to	intrusion to			
indoor air,	indoor air,			
carcinogen	noncarcinogen			
(unitless)	(unitless)			
NA	8.1E-04			

MESSAGE SUMMARY BELOW:

END

HERD_Soil_Gas_Screening_Model_2009rev.xls