RECEIVED

1:35 pm, Apr 02, 2008

V I P SERVICE STATION 385 Century Circle Danville, CA 94526 925-838-0768

Alameda County Environmental Health

March 31, 2008

Ms. Donna Drogos Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT (FEBRUARY 19, 2008 SAMPLING EVENT) CERTIFICATION County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Dear Ms. Drogos:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

• Semi-Annual Groundwater Monitoring and Sampling Report (February 19, 2008 Sampling Event) dated March 31, 2008 (document 0047.R40).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned document for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 459-6525.

Sincerely,

VIP Service

applate

Lalii Patel

Enclosure

0047.L94

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

March 31, 2008 Report 0047.R40

Mr. L.B. Patel Mr. P. Gupta VIP Service 385 Century Circle Danville, CA 94526

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING REPORT (FEBRUARY 19, 2008 SAMPLING EVENT) County Case # RO 209 VIP Service 3889 Castro Valley Blvd. Castro Valley, CA

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent semi-annual monitoring and sampling of groundwater monitoring wells MW1, MW2, and MW3 at the subject site. This work was performed in accordance with requirements set forth in a letter from Mr. Scott Seery of the Alameda County Department of Environmental Health (ACDEH) dated March 18, 1994 for the subject site. Based upon a telephone conversation with Mr. Seery on July 31, 1995, the sampling of monitoring wells MW1 and MW2 was reduced to semi-annually. Based upon subsequent conversations, the sampling and monitoring of well MW3 was also reduced to semi-annually. In addition, it was agreed that no further analysis for Total Petroleum Hydrocarbons as Diesel (TPH-D) was required for well MW3.

The monitoring and sampling was performed on February 19, 2008. The reporting period is for September 2007 through February 2008. A Site Location Map (Figure 1) and Site Plan (Figure 2) are attached with this report.

BACKGROUND

It is P&D's understanding that the site was purchased by VIP Service in December 1984. Prior to purchase of the property by VIP Service, the site was operated as a retail gasoline station for an undetermined period of time. The site was operated by VIP Service as a retail gasoline station from the time of purchase until the tanks were removed by Accutite on April 26, 1993. The underground tank system consisted of three 10,000-gallon capacity gasoline tanks, two dispenser islands, and one 550-gallon waste oil tank. It is P&D's understanding that the fuel tanks contained leaded and unleaded gasoline while in use by VIP Service. In addition, VIP Service reported that diesel fuel was not stored at the site at any time.

March 31, 2008 Report 0047.R40

It is P&D's understanding that at the time of tank removal, eight soil samples were collected from the sidewalls of the fuel tank pit, and one soil sample was collected from the waste oil tank pit. Groundwater was reported to have been encountered in the fuel tank pit at a depth of approximately 11 feet. One water sample was collected from the water in the fuel tank pit. On April 28, 1993 Accutite returned to the site and collected seven soil samples from beneath the dispenser islands.

All of the samples were analyzed at Sequoia Analytical in Redwood City, California, for Total Petroleum Hydrocarbons as Gasoline (TPH-G); Benzene, Toluene, Ethylbenzene and Xylenes (BTEX); and for Total Lead. In addition, the samples from the waste oil tank were analyzed for TPH-D; Total Oil and Grease (TOG); Halogenated Volatile Organic Compounds (HVOCs) using EPA Method 8010; Semi-Volatile Organic Compounds (SVOCs) using EPA Method 8270; and for the metals Cadmium, Chromium, Lead, Nickel and Zinc.

The results of the soil samples collected from the fuel tank pit showed TPH-G concentrations ranging from 120 to 6,200 parts per million (ppm), and total lead results ranging from not detected to 13 ppm. The results of the water sample from the fuel tank pit showed 140 ppm TPH-G, and 0.095 ppm total lead.

The results of the soil samples collected from beneath the fuel dispensers showed TPH-G values ranging from not detected to 4.7 ppm, and total lead values ranging from not detected to 7.6 ppm.

The results of the sample collected from the waste oil tank pit showed 670 ppm TPH-G; 410 ppm TPH-D; 1,300 ppm TOG; 0.023 ppm 1,2-Dichloroethane and 0.0094 ppm Tetrachloroethylene in the EPA Method 8010 analysis; 2.7 ppm 2-Methylnapthalene and 3.8 ppm Naphthalene in the EPA Method 8270 analysis; and various metals concentrations, none of which exceeded ten times their respective STLC values. The laboratory identified the TPH-D results as being a "non-diesel mix," and indicated that the compounds reported as diesel were diesel-range gasoline and diesel-range oil compounds.

Between August 27 and November 1, 1993 P&D personnel collected stockpiled soil samples for stockpiled soil disposal characterization and oversaw the excavation of approximately 680 cubic yards of soil from the vicinity of the fuel tank pit in an effort to remove petroleum hydrocarbon-impacted soil. In addition, during this time the soil that was stockpiled by Accutite during the tank removal activities and during the subsequent soil excavation activities was disposed of at an appropriate disposal facility, and the tank pit backfilled and compacted. A total of eight confirmation soil samples were collected from the sidewalls of the tank pit on November 19, 1993 at a depth of 10 feet after over-excavation and prior to backfilling. The analytical results of the samples ranged from 33 to 3,200 ppm TPH-G. Documentation of excavation, stockpiled soil characterization and disposal, and backfilling of the pit are provided in P&D's report 0047.R1 dated January 24, 1994. The samples results associated with the removal of the tanks by Accutite are also summarized in P&D's report 0047.R1.

On November 10, 1993 P&D personnel oversaw the installation of three groundwater monitoring wells, designated MW1 through MW3, and one exploratory soil boring designated B1, at the subject site. The wells were developed on November 12 and sampled on November 16, 1993.

March 31, 2008 Report 0047.R40

The results of the water samples showed that TPH-G was not detected in wells MW1 and MW2, and that BTEX was not detected in MW2. In well MW1, 0.0022 ppm of benzene was detected.

In well MW3, TPH-G was detected at 12 ppm; benzene was detected at 3.3 ppm; TRPH was not detected; EPA Method 8010 compounds were not detected except for 0.027 ppm 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected except for 0.009 ppm Phenol, 0.006 ppm Benzyl Alcohol, 0.006 2-Methylphenol, 0.007 ppm 2,4-Dimethylphenol, 0.088 ppm Benzoic Acid, 0.042 ppm Naphthalene, and 0.015 2-Methylnaphthalene.

Documentation of the monitoring well and soil boring installation and associated sample results are presented in P&D's report 0047.R2 dated January 24, 1994. The locations of the monitoring wells are shown in Figure 2.

In response to a letter dated March 18, 1994 from Mr. Scott Seery of the ACDEH which commented upon the results of the initial groundwater sampling associated with the installation of the monitoring wells at the subject site, a quarterly groundwater monitoring and sampling program was initiated. Based upon subsequent conversations with Mr. Seery, the monitoring and sampling frequency was reduced to semi-annually.

FIELD ACTIVITIES

On February 19, 2008, all three of the monitoring wells at the site were monitored and sampled. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product or sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the wells, with the exception of a light sheen encountered on the purge water from well MW3. IN addition, a petroleum hydrocarbon odor was noted in the purge water from well MW3 also. Depth to water level measurements are presented in Table 1.

Prior to sampling, the monitoring wells were purged of a minimum of three casing volumes of water. During purging operations, the field parameters of electrical conductivity, temperature and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged, a water sample was collected using a clean disposable bailer.

The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles, as appropriate, which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials and bottles were labeled and then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report. Water purged from the wells during purging operations was stored in a Department of Transportation (DOT) approved 55-gallon drum at the site pending appropriate disposal.

HYDROGEOLOGY

Water levels were measured in the monitoring wells once during the report period. The measured depth to water at the site on February 19, 2008 ranged from 7.99 to 8.47 feet. Since the previous monitoring and sampling event on August 16, 2007 the groundwater level has increased in wells MW1, MW2, and MW3, by 0.54, 0.30, and 0.42 feet, respectively,. The calculated groundwater flow direction at the site on February 19, 2008 was due west with a gradient of 0.012. The groundwater flow direction has remained relatively unchanged and the gradient has increased slightly from 0.011 since the previous semi-annual monitoring event on August 16, 2007.

Groundwater level data collected during the monitoring period are presented in Table 1. The calculated groundwater flow direction at the site on February 19, 2008 is shown on Figure 2.

LABORATORY RESULTS

The groundwater samples from monitoring wells MW1, MW2, and MW3 were analyzed for TPH-G using Modified EPA Method 8015C; and for benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) using EPA Method 8021B. In addition, the groundwater sample from MW3 (located near the former waste oil tank) was analyzed for Halogenated Volatile Organic Compounds (HVOCs) using EPA Method 8260B and for Semi-Volatile Organic Compounds (SVOCs) using EPA Method 8270C. The HVOC analytes reported by the laboratory for the EPA Method 8260B analysis were EPA Method 8010 analytes.

TPH-G, MTBE, and BTEX were not detected in the groundwater samples collected from wells MW1 and MW2. The laboratory analytical results of the groundwater sample collected from monitoring well MW3 show that TPH-G was detected at a concentration of 4.2 mg/L, benzene was detected at a concentration of 0.81 mg/L, and toluene, ethylbenzene, and xylenes were detected at concentrations of 0.028, 0.14, and 0.25 mg/L, respectively. MTBE was not detected. None of the EPA Method 8260B compounds were detected, and none of the EPA Method 8270C compounds were detected with the exception of naphthalene which was detected at a concentration of 0.037 mg/L. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

The sample results for wells MW1 and MW2 remained unchanged since the last sampling event on August 16, 2007 with no analytes detected. The analytical results for well MW3 show that the concentration of MTBE remained not detected, the concentrations of TPH-G and toluene have decreased, and the concentrations of benzene, ethylbenzene, and xylenes have all increased since the last monitoring and sampling event on August 16, 2007. Based on the analytical results, P&D recommends that the semi-annual monitoring and sampling be continued. Continuation of the monitoring and sampling program should be re-evaluated upon regulatory agency review of the Remedial Investigation/Feasibility Study Work Plan implementation results.

March 31, 2008 Report 0047.R40

DISTRIBUTION

Copies of this report will be uploaded to the ACDEH and State Water Resources Control Board GeoTracker databases.

LIMITATIONS

This report was prepared solely for the use of VIP Service. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

March 31, 2008 Report 0047.R40

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, P&D Environmental, Inc.

and W. King

Paul H. King Professional Geologist #5901 Expires: 12/31/09

Attachments: Tables 1 & 2 Site Location Map (Figure 1) Site Plan (Figure 2) Field Parameter Forms Laboratory Analytical Reports and Chain of Custody Documentation

PHK/sjc 0047.R40

TABLES

TABLE 1WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	02/19/08	180.83	8.47	172.36
	08/16/07		9.01	171.82
	02/13/07		6.85	173.98
	08/09/06		7.47	173.36
	01/31/06		7.53	173.30
	07/29/05		7.90	172.93
	01/31/05		8.37	172.46
	07/14/04		9.47	171.36
	12/18/03		9.26	171.57
	06/19/03		9.00	171.83
	12/21/02		9.09	171.74
	04/30/02		9.03	171.80
	10/16/01		9.33	171.50
	11/08/00		9.04	171.79
	05/24/00		7.97	172.86
	09/10/99		8.79	172.04
	02/10/99		7.72	173.11
	02/24/98		6.61	174.22
	11/18/97		9.71	171.12
	08/12/97		9.39	171.44
	04/25/97		8.37	172.46
	01/31/97		7.62	173.21
	07/19/96		8.81	172.02
	04/23/96		8.17	172.66
	01/17/96		9.66	171.17
	10/26/95		10.00	170.83
	08/15/95		9.23	171.60
	05/02/95		8.56	172.27
	01/30/95		9.50	171.33
	10/31/94		11.55	169.28
	07/29/94		10.86	169.97
	04/25/94		10.70	170.13
	11/16/93		11.63	169.20
	11/12/93*		11.53	169.30

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

TABLE 1 WELL MONITORING DATA (Continued)

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW2	02/19/08	179.70	8.15	171.55
	08/16/07		8.45	171.25
	02/13/07		7.56	172.14
	08/09/06		7.28	172.42
	01/31/06		7.10	172.60
	07/29/05		7.70	172.00
	01/31/05		7.94	171.76
	07/14/04		9.14	170.56
	12/18/03		8.76	170.94
	06/19/03		8.68	171.02
	12/21/02		7.95	171.75
	04/30/02		8.76	170.94
	10/16/01		9.76	169.94
	11/08/00		8.63	171.07
	05/24/00		7.65	172.05
	09/10/99		8.48	171.22
	02/10/99		7.05	172.65
	02/24/98		6.20	173.50
	11/18/97		9.26	170.44
	08/12/97		9.06	170.64
	04/25/97		8.10	171.60
	01/31/97		7.22	172.48
	07/19/96		8.57	171.13
	04/23/96		7.85	171.85
	01/17/96		8.94	170.76
	10/26/95		9.68	170.02
	08/15/95		8.91	170.79
	05/02/95		8.17	171.53
	01/30/95		8.68	171.02
	10/31/94		10.99	168.71
	07/29/94		10.34	169.36
	04/25/94		10.04	169.66
	11/16/93		11.10	168.60
	11/12/93*		10.95	168.75

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

Page 2 of 3

TABLE 1 WELL MONITORING DATA (Continued)

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW3	02/19/08	178.98	7.99	170.99
101 00 5	08/16/07	176.96	8.41	170.57
	02/13/07		7.21	171.77
	08/09/06		7.27	171.71
	01/31/06		7.14	171.84
	07/29/05		7.68	171.30
	01/31/05		7.86	171.12
	07/14/04		8.91	170.07
	12/18/03		8.55	170.43
	06/19/03		8.48	170.50
	12/21/02		7.88	171.10
	04/30/02		8.56	170.42
	10/16/01		10.14	168.84
	11/08/00		8.45	170.53
	05/24/00		7.62	171.36
	09/10/99		8.34	170.64
	02/10/99		7.12	171.86
	02/24/98		6.55	172.43
	11/18/97		8.97	170.01
	08/12/97		8.85	170.13
	04/25/97		7.99	170.99
	01/31/97		7.30	171.68
	07/19/96		8.42	170.56
	04/23/96		7.76	171.22
	01/17/96		8.61	170.37
	10/26/95		9.39	169.59
	08/15/95		8.62	170.36
	05/02/95		8.04	170.94
	01/30/95		8.46	170.52
	10/31/94		10.58	168.40
	07/29/94		10.03	168.95
	04/25/94		9.64	169.34
	11/16/93		10.63	168.35
	11/12/93*		10.66	168.32

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

* = Depth to water measurements prior to groundwater monitoring well development.

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS

Sample Location	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes
			Samples Colle February 19			
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ⁸	4.2	ND<0.10	0.81	0.028	0.14	0.25
Samples Collected on August 16, 2007						
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ⁷	4.3	ND<0.05	0.76	0.030	0.12	0.21
			Samples Colle February 13			
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ⁶	4.3	ND<0.05	0.61	0.014	0.094	0.13

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tertiary-Butyl Ether.

ND = Not Detected.

8 = EPA Method 8010 compounds analyzed by EPA Method 8260B were not detected. EPA Method 8270C compounds were not detected except for 0.037 mg/L Naphthalene.

7 = EPA Method 8260B compounds were not detected. EPA Method 8270C compounds were not detected except for 0.034 mg/L Bis (2-ethylhexyl) Phthalate, 0.077 mg/L Naphthalene, and 0.035 mg/L 2-Methylnaphthalene.

6 = EPA Method 8260B compounds were not detected except for 0.79 mg/L Benzene, 0.12 mg/L Ethylbenzene, 0.15 mg/L Xylenes, 0.028 mg/L n-Butyl benzene, 0.092 mg/L 1,2,4-Trimethylbenzene, 0.022 mg/L Naphthalene, 0.032 mg/L n-Propyl benzene, and 0.031 mg/L 1,3,5-Trimethybenzene. EPA Method 8270C compounds were not detected except 0.022 mg/L Naphthalene.

Results are in milligrams per liter (mg/L), unless otherwise specified.

Sample Location	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes	
Location			Samples Colle August 9,		benzene		
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW3 ⁵	2.9	ND<0.05	0.58	0.021	0.10	0.13	
	Samples Collected on January 31, 2006						
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW3 ⁴	2	ND<0.015	0.47	0.014	0.071	0.077	
			Samples Colle July 29, 2				
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	
MW3 ³	11	ND<0.11	2.1	0.077	0.35	0.41	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

5 = EPA Method 8260B compounds were not detected. EPA Method 8270D compounds were not detected except for 0.029 mg/L naphthalene and 0.011 mg/L 2-methylnaphthalene.

4 = EPA Method 8260B compounds were not detected. EPA Method 8270D compounds were not detected except for 0.015 mg/L naphthalene.

3 = EPA Method 8260B compounds were not detected. EPA Method 8270D compounds were not detected except for 0.023 mg/L 2-methylnaphthalene and 0.068 mg/L naphthalene.

Results are in milligrams per liter (mg/L), unless otherwise specified.

Sample Location	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes
Location			Samples Colle January 31,		benzene	
MW1	ND<0.05	0.021	1.6	0.028	0.19	0.14
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ^{1,2}	2.9	ND<0.050	0.96	0.013	0.037	0.089
			Samples Colle July 14, 2			
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ^a	4.1	ND<0.050	0.98	0.037	0.12	0.15
			Samples Colle December 18			
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ^b	9.7	ND<0.1	2.3	0.093	0.28	0.35

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

NA = Not Analyzed.

1 = EPA Method 8260B (not EPA Method 8021B) results are reported in the table. Additional EPA Method 8260B compounds detected were 0.018 mg/L isopropylbenzene, 0.043 mg/L 1,2,4-Trimthylbenzene, 0.062 mg/L naphthalene, and 0.046 mg/L n-Propyl benzene.

2 = EPA Method 8270D compounds were not detected.

Results are in milligrams per liter (mg/L), unless otherwise specified.

a = EPA Method 8010 Basic Target List compounds were not detected (using Method 8260B); and EPA Method 8270D compounds were not detected except for 0.055 mg/L naphthalene, and 0.016 mg/L 2-methyl naphthalene.

b = EPA Method 8021B compounds were not detected; and EPA Method 8270D compounds were not detected except for 0.063 mg/L naphthalene, and 0.021 mg/L 2-methyl naphthalene.

d = Laboratory Analytical Report Note: lighter than water immiscible sheen on sample.

Results are in milligrams per liter (mg/L), unless otherwise specified.

Sample Location	TPH-G	MTBE	Benzen	e Toluene	e Ethyl- benzen	Xylenes
			Samples Colle June 19, 2			
MW1	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW2	ND<0.05	ND<0.005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
MW3 ^c	16,d	ND<0.25	3.5	0.11	0.43	0.64
Samples Collected on December 21, 2002						
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3 ^{dd}	15	ND<0.4	5 3.3	0.18	0.48	1.0
			Samples Colle April 30, 2			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND

NOTES:

MW3^e

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND<200

MTBE = Methyl tert-Butyl Ether.

11

ND = Not Detected.

NA = Not Analyzed.

c = EPA Method 8010 compounds were not detected; and EPA Method 8270D compounds were not detected except for 0.024 mg/L phenol, 0.056 mg/L naphthalene, and 0.027 mg/L 2-methyl naphthalene.

2.2

dd = In MW3 EPA Method 8021B compounds were not detected except for 0.011 mg/L 1,2-dichloroethane; and EPA Method 8270D compounds were not detected except for 0.035 mg/L naphthalene and 0.014 mg/L 2-methyl naphthalene.

e = In MW3, EPA Method 8010 compounds were not detected; and EPA Method 8270 compounds were not detected except for 0.053 mg/L naphthalene.

f = In MW3 EPA Method 8010 compounds were not detected except for 0.0013 mg/L 1,2-dichloroethane; and EPA Method 8270 compounds were not detected.

Results are in parts per million (mg/L), unless otherwise specified.

0.37

0.12

0.59

Sample Location	TPH-G		Benzene ples Collected on ctober 16, 2001	Toluene	Ethyl- benzene	Xylenes
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3 ^f	2.1	ND	0.52	0.030	0.077	0.130
			ples Collected on ovember 8, 2000			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3**	0.54	ND	0.15	0.0069	0.018	0.029
			ples Collected on May 24, 2000			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3***	2.1	0.032	0.47	0.027	0.062	0.13

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

NA = Not Analyzed.

f = In MW3 EPA Method 8010 compounds were not detected except for 0.0013 mg/L 1,2-dichloroethane; and EPA Method 8270 compounds were not detected.

** = In MW3 EPA Method 8010 compounds were not detected except for 0.0013 mg/L 1,2-dichloroethane; and EPA Method 8270 compounds were not detected.

*** = In MW3 EPA Method 8010 compounds were not detected except for 0.0017 mg/L 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected.

Sample Location	TPH-D		Benzene ples Collected on otember 10, 1999	Toluene	Ethyl- benzene	Xylenes
MW1	ND	0.049	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3****	0.39	ND	0.098	0.0073	0.012	0.028
			ples Collected on bruary 10, 1999			
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3****	NA	4.1	1.7	0.96	0.27	0.42
			ples Collected on bruary 24, 1998			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3+	NA	19	4.6	0.33	0.65	1.8

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

- **** = In MW3 EPA Method 8010 compounds were not detected except for 0.002 mg/L 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected.
- ***** = In MW3, MTBE was not detected; EPA Method 8010 compounds were not detected except for 0.0028 mg/L 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected except for 0.021 mg/L Naphthalene.
- + = In MW3, MTBE was not detected; EPA Method 8010 compounds were not detected except for 0.011 mg/L 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected except for Naphthalene, 2-Methylnaphthalene and Phenol which were detected at concentrations of 0.083, 0.019, and 0.023 mg/L, respectively.

Sample Location	TPH-D	TPH-G	Benzene	Toluene	Ethyl- benzene	Xylenes
Samples Collect	ed on	Nov	vember 18, 1997			
MW1	NA	NA	NA	NA	NA	NA
MW2	NA	NA	NA	NA	NA	NA
MW3++	NA	2.1	0.48	0.052	0.071	0.19
			ples Collected on ugust 12, 1997			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3+++	NA	16	4.2	0.45	0.54	1.9
			ples Collected on April 25, 1997			
MW1	NA	NA	NA	NA	NA	NA
MW2	NA	NA	NA	NA	NA	NA
MW3++++	NA	30	5.3	0.52	0.95	3.0

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

- ++ = In MW3, MTBE was not detected; EPA Method 8010 compounds were not detected except for 0.0021 mg/L
 1,2 Dichloroethane; and EPA Method 8270 compounds were not detected except for Naphthalene and 2-Methylnaphthalene which were detected at concentrations of 0.058 and 0.026 mg/L, respectively.
- +++ = In MW3, MTBE was not detected; EPA Method 8010 compounds were not detected except for 0.0091 mg/L 1,2-Dichloroethane; and EPA Method 8270 compounds were not detected except for Bis(2-ethylhexyl) Phthalate, Naphthalene, and 2-Methylnaphthalene which were detected at concentrations of 0.021, 0.087, and 0.024 mg/L, respectively.
- ++++ = In MW3, MTBE was not detected; EPA Method 8010 compounds were not detected except for 0.012 mg/L 1,2 Dichloroethane; and EPA Method 8270 compounds were not detected except for Phenol, 4-Methylphenol, 2,4-Dimethylphenol, Naphthalene, and 2-Methylnaphthalene which were detected at concentrations of 0.0028, 0.0024, 0.0028, 0.066 mg/L, and 0.015 mg/L, respectively.

Sample Location	TPH-D		Benzene ples Collected on nuary 31, 1997	Toluene	Ethyl- benzene	Xylenes
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3+++++	NA	5.5	1.6	0.10	0.19	0.41
			ples Collected on July 19, 1996			
MW1	NA	NA	NA	NA	NA	NA
MW2	NA	NA	NA	NA	NA	NA
MW3@	NA		4.8 ples Collected on April 23, 1996	0.61	0.76	2.8
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3@@	NA	9.7	2.9	0.17	0.38	0.68

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

- +++++ = In MW3, MTBE was detected at a concentration of 0.063 mg/L; EPA Method 8010 compounds were not detected except for 0.014 mg/L 1,2 Dichloroethane; and EPA Method 8270 compounds were not detected except for Phenol, 2,4-Dimethylphenol, Naphthalene, and 2-Methylnaphthalene which were detected at concentrations of 0.0094, 0.0028, 0.031, and 0.0048 mg/L, respectively.
- @ = In MW3, EPA Method 8010 compounds were not detected; EPA Method 8270 compounds were not detected except for 0.0022 mg/L 2,4-Dimethylphenol, 0.1 mg/L Naphthalene, and 0.022 mg/L 2-Methylnaphthalene. The EPA Method 8020 showed that MTBE was detected in MW3 at a concentration of 0.21 mg/L.

@ @ = In MW3, EPA 8010 compounds were not detected except for 0.0051 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for Naphthalene and Phenol which were detected at concentrations of 0.056 and 0.025 mg/L, respectively. The EPA Method 8020 results showed that MTBE was not detected in MW1 or MW2, and was detected in MW3 at a concentration of 0.15 mg/L.
 Pacults are in parts per million (mg/L) unless otherwise specified

Page 8 of 11

Sample Location	TPH-D		Benzene ples Collected on nuary 17, 1996	Toluene	Ethyl- benzene	Xylenes
MW1	NA	NA	NA	NA	NA	NA
MW2	NA	NA	NA	NA	NA	NA
MW3@@@	NA	21	4.1	0.37	0.52	1.5
			ples Collected on ctober 26, 1995			
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3@@@@	NA	19	4.0	0.48	0.64	1.8
			ples Collected on ugust 15, 1995			
MW1	NA	NA	NA	NA	NA	NA
MW2	NA	NA	NA	NA	NA	NA
MW3@@@@@	@ NA	7.0	2.4	0.23	0.26	0.73

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

- @ @ @ = In MW3, EPA 8010 compounds were not detected except for 0.011 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.0022 mg/L Phenol, 0.0051 mg/L 4-Methylphenol, 0.0029 mg/L 2,4-Dimethylphenol, 0.032 mg/L Naphthalene, and 0.010 mg/L 2-Methylnaphthalene.
- @@@@@ = In MW3, EPA 8010 compounds were not detected except for 0.011 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.043 mg/L Naphthalene. The EPA Method 8020 results showed that MTBE was not detected in MW1 or MW2, and was detected in MW3 at a concentration of 0.24 mg/L.
- @@@@@@ = EPA 8010 compounds were not detected except for 0.0091 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.003 mg/L 4-Methylphenol, 0.005 mg/L 2,4-Dimethyl Phenol, 0.019 mg/L Naphthalene, and 0.003 mg/L 2-Methylnaphthalene.

Sample Location	TPH-D		Benzene ples Collected on May 2, 1995	Toluene	Ethyl- benzene	Xylenes
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3#	0.84	18	5.4	0.39	0.65	1.7
			ples Collected on anuary 30, 1995			
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3##	0.70	24	7.6	0.35	0.90	2.2
			ples Collected on ctober 31, 1994			
MW1	NA	ND	ND	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3###	0.60	8.7	2.6	0.26	0.32	0.92

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

- # = Review of the laboratory report and discussions with the laboratory indicate that the results reported as TPH-D are gasoline-range compounds. EPA 8010 compounds not detected except for 0.014 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.010 mg/L 2-Methyl naphthalene and 0.062 mg/L Naphthalene.
- ## = Review of the laboratory report and discussions with the laboratory indicate that the results reported as TPH-D are gasoline-range compounds. EPA 8010 compounds not detected except for 0.018 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.014 mg/L 2-Methyl naphthalene and 0.11 mg/L Naphthalene.

= Review of the laboratory report and discussions with the laboratory indicate that the results reported as TPH-D are gasoline-range compounds. EPA 8010 compounds not detected except for 0.019 mg/L 1,2-Dichloroethane; EPA 8270 compounds were not detected except for 0.008 mg/L 2-Methyl naphthalene, 0.047 mg/L Naphthalene, and 0.002 mg/L Bis (2-Ethylhexyl) Phthalate.

Sample Location	TPH-D		Benzene ples Collected on July 29, 1994	Toluene	Ethyl- benzene	Xylenes
MW1	NA	ND	0.0012	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3####	0.67	6.3	2.0	0.13	0.22	0.52
			ples Collected on April 25, 1994			
MW1	ND	ND	ND	ND	ND	ND
MW2	ND	ND	ND	ND	ND	ND
MW3#####	2.1	17	4.8	0.47	0.29	1.6
			ples Collected on vember 16, 1993			
MW1	NA	ND	0.0022	ND	ND	ND
MW2	NA	ND	ND	ND	ND	ND
MW3^	NA	12	3.3	0.66	0.24	1.6

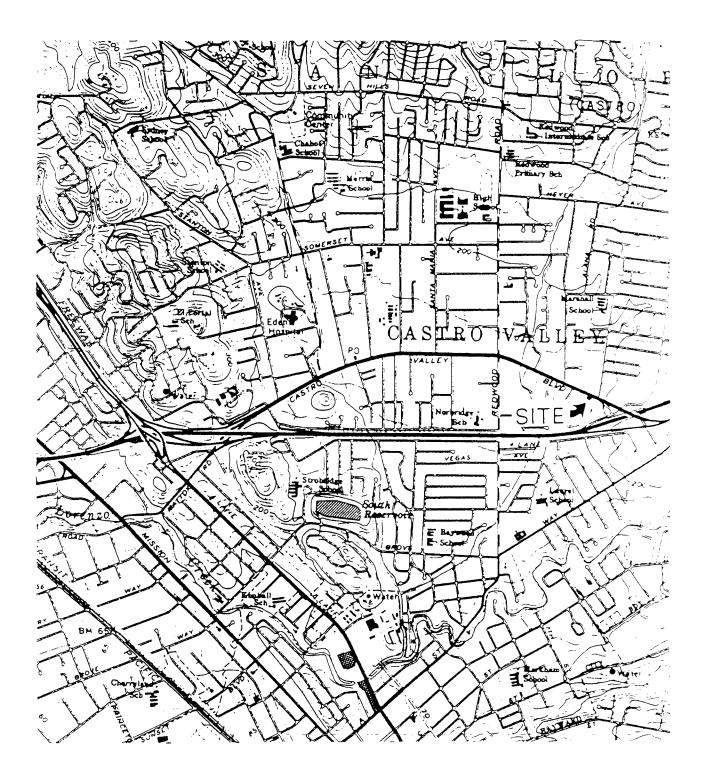
NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.


= Review of the laboratory report and discussions with the laboratory indicate that the results reported as TPH-D are gasoline-range compounds. EPA 8010 compounds not detected except for 0.0077 mg/L 1,2-Dichloroethane; EPA 8270 compounds not detected except for 0.008 mg/L 2-Methylnaphthalene and 0.044 mg/L Naphthalene.

Results are in parts per million (mg/L), unless otherwise specified.

- ##### = Review of the laboratory report and discussions with the laboratory indicate that the results reported as TPH-D are gasoline-range compounds. EPA 8010 compounds not detected except for 0.28 mg/L 1,2-Dichloroethane; EPA 8270 compounds not detected except for 0.013 mg/L 2-Methylnapthalene and 0.084 mg/L Naphthalene.
- ^ = TRPH not detected; EPA 8010 compounds not detected except for 0.027 mg/L 1,2-Dichloroethane; EPA 8270 compounds not detected except for 0.009 mg/L Phenol, 0.006 mg/L Benzyl Alcohol, 0.006 2-Methylphenol, 0.007 mg/L 2,4-Dimethylphenol, 0.088 mg/L Benzoic Acid, 0.042 mg/L Naphthalene, and 0.015 mg/L 2-Methylnapthalene.

FIGURES

P & D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

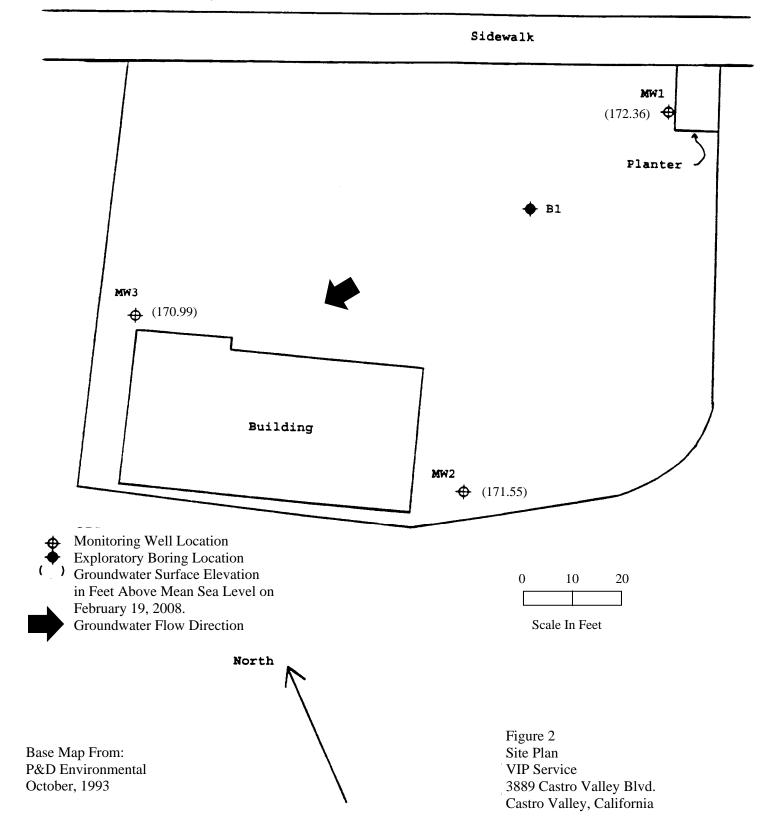

Base Map From U.S Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

Figure 1 Site Location Map VIP Service 3889 Castro Valley Blvd. Castro Valley, California

P & D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Castro Valley Boulevard

WELL MONITORING AND PURGE DATA SHEETS

	DATA S	RING/WELL PURGING	
Site Name <u>VIP Service/Cos</u>	troValley	Well No	MW1
JOB NO. 0047	_ /	Date 7	
TOC to Water (ft.) 8.47		Sheen	U _o
Well Depth (ft.) 20.0		Pree Produ	ct Thickness Ø
Well Diameter <u> </u>)	Sample Col	lection Method
Gal./Casing Vol		Pispo.	sable bailer
3VJ=5.7		TEMPERATURE °C	ELECTRICAL MICA
ogys 0.6	<u>明</u> ア・10	17.5	1.850
0947 1.2	7.14	18.2	1,842
0949 1.9	7.12	18.5	1,877
0951 2.5	7.14	18.8	1,822
0953 3.1	7.14	18.7	1.813
6955 3.8	7.13	18.7	1,808
0957 4.4	7.14	18.8	1,803
0959 5.0	7.13	18.8	1,800
1001 5.7	7.16	18.8	1, 794
energy and the second	<u></u>		у Чалава били во 180-180-180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180 - 180
waya an ang ang ang ang ang ang ang ang ang			
4	<u></u>	ala ang ang ang ang ang ang ang ang ang an	- Antoning Barket and Antonia Barakan Barakan Barakan Barakan Antonia
an a		See Although The The Tomore Annual State	
			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

	<u> </u>		
NOTES:		and the second	And Standing and an and and a standing and a
NOTES: Nosheen, No Sample	000-		
Sample	Time =7	olshrs	an a

PURGE10.92

	GROUND	P&D ENVIRO MATER MONITOR DATA SI	ING/WELL PURGING	
Site Name	VIP Service/Ca	stro Vulley	Well No	MWZ
JOD NO		_ /	Date 2	/19/08
TOC to Wat	er (ft.) 8,15		Sheen	No
	(ft.) 20,0		Free Produ	ct Thickness
Well Diame	ter2"(0.)[$\overline{)}$	Sample Coll	lection Method
Gal./Casin	g Vol. 1.9		<u> </u>	sposable bailer
TIME	Jud= 5.7 GAL. PURGED	<u>pH</u>	TEMPERATURE °C	ELECTRICAL CONDUCTIVITY p 5/(~
1018	0.6	7.78	16.8	1,770
1020	1.2	7.21	17.5	1,779
1037	1.9	7.18	17.7	1,762
1034	<u> </u>	7.17	17.9	1,746
(026	3.1	7.18	18.0	1778
1038	3.8	7.18	18.0	1,724
1032	4.4	7.19	18.7	1,720
1032	5.0	7.20	18.2	11718
1034	5.7	7.21	18.2	1,705
		<u></u>		
			<u></u>	
	·	tenten in the Co-The		
<u></u>				
				مۇسىيىتى <u>مۇرىمىيە بىرى بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىم</u>
	an the second	······	Cartal Andre Tamatti - Carta Andrean Andrean	
		- <u>112-1112</u> -112-112-112-112-112-112-	<u></u>	
<u></u>				
NOTES:	No sheen N	o odor	Sangle time =	Ployshas

PURGE10.92

	GROUN		AING/WELL PURGING	
Site Name	VIP Service/(DATA S <u>est</u> ro Valley	HEET Well No	MWZ
JOD NO.	2	<u>ass</u> in valley	Date	
TOC to Wat		7	Sheen	Yes
Well Depth)		ict Thickness
Well Diame	- 11 1	s)		lection Method
Gal./Casin			Dispo	
	31/31=5	.7		ELECTRICAL MS
TIME	GAL. PURGED	DH	TEMPERATURE	CONDUCTIVITY
1047	0.6	7.24	16.1	1,819
1049	1.2	7.22	16.3	1,852
1051	<u> </u>	431	16.5	1,896
1053	<u>_d.5</u>	7.21	16.7	1,878
1055	<u> </u>	7.21	16.9	1,850
1057	3.8	1.20	16.8	1,875
1059	<u> </u>	7.21	16.9	1,850
110)	5.0	- 7.21	17.1	- 1+845
1103	<u> </u>	7.22	17.1	1,846
	·····	and the second second		
4	••••••••••••••••••••••••••••••••••••••			- <u> </u>
	an air ann an an an ann an ann an ann an ann an a	terrent data - Table The	Auge Bill - Althon Billy (Billy (Barrada) (Bill) (Barrada) (Bill)	

. <u></u>				
		· <u>alas agras malignas</u>	Carlos alla Cir Circana da Anna anna	And Andrews
NOTES :	Moderate p	he odor o	- sheen time => 11056	
		Sandle	hre => 11056	10

PURGE10.92

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

	Analytical, Inc. Ouality Counts"	Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: n ne: 877-252-9262 Fax:	nain@mccampbell.com
P & D Environmental	Client Project ID: #0047; V	VIP	Date Sampled:	02/19/08
55 Santa Clara, Ste.240	Service/Castro Valley		Date Received:	02/19/08
Oakland, CA 94610	Client Contact: Steve Car	mack	Date Reported:	02/27/08
	Client P.O.:		Date Completed:	02/27/08

WorkOrder: 0802416

February 27, 2008

Dear Steve:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: **#0047; VIP Service/Castro Valley,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

&	D ENVIRON 55 Santa Clara Oakland, C (510) 658	ve, Suite 240 A 94610	l, Ing		CHAI	N OF CUSTO	DY F	RE	С	DF						PAGE	1	0F
s	COLECT NUMBER: 004 SAMPLED BY: (PRI Steve Carr SAMPLE NUMBER				NAME: Servin	SAMPLE LOCATION	NUMBER OF CONTAINERS	ANAL YSICIA	is a second	Test.	Second and			PRESCO	MUKAUNE		REMAR	ĸs
Ľ	MW 1	2/19/08		Ha	-		5	X	E	5	4	+	1	CE	Nag	n1-	Tuma	17.
	MW 2		1045	ľ			5	X						11		1	11	l
\vdash	MW3		1105	Y			7	X	X	X	+	+	+	11	1	1	11	~ (
	1		1105				1			1	+	+	+		-			
L_										-	+	+	+	_	-			
⊢									-	-	+	+	+		-			
		1				-						1	1					
						· · · · ·				_	4	1	1					
							ICEN	9	20	C	1		-			1	-	
⊢							GOOD HEAD DECH	SRA OR	JEA NAT	DON DOE	T	A		PROPR	ED IN L	ABH	a	
-							PRES	-	-		JAS	02		TETALS	OTHER	+		
	-					1				1	1				-			
RE	ELINQUISHED BY:	SICNATURE)	DATE	TIME	RECEIVED BY: (SIGNATURE	F	TOTA	THIS :	OF CO	MTAN	_	317	LAB	CAN	phel	IAna	lytic
R	ELINQUISHED BY:	(SIGNATUR	E) /	DATE	TIME 295	RECEIVED BY: (SIGNATURE	m	LAR						LAB	ORATOR	Y PH	ONE NI	UMBE
	LINQUISHED BY:	(SIGNATURE	E) /	DATE	TIME	RECEIVED FOR LABORATOR	Y BY:	Í	The second value of the se	SA		A	ALY	_	EQUEST			

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262	01					WorkC	order:	08024	416	(ClientC	ode: P	DEO				
			WriteOn	EDF		Excel	[Fax	٦	Email		Hard	Сору	Thire	dParty	J-`	flag
Report to:						E	Bill to:						Requ	uested	TAT:	5 c	days
Steve Carmack		Email:	lab@pdenvirc	o.com			Co	nstanza	a Rodrig	guez							
P & D Environmental 55 Santa Clara, Ste.240		TEL: PO:	(510) 658-6916	6 FAX: 510-83	34-0152	2			ironme Clara, S				Date	e Recei	ived:	02/19/	2008
Oakland, CA 94610		ProjectNo:	#0047; VIP Se	ervice/Castro Vall	ey			,	CA 946 .rodrigu		denviro	.com	Date	e Print	ed:	02/19/	2008
									Requ	lested	Tests (See leg	gend be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				1						1	1						

Test Legend:

1 8010BMS_W	2 8270D_W	3 G-MBTEX_W	4	5
6	7	8	9	10
11	12			

Prepared by: Samantha Arbuckle

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental				Date	and Time Received:	2/19/2008	3:46:23 PM
Project Name:	#0047; VIP Servi	ce/Cast	ro Valley			Chec	klist completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0802416	Matrix	Water			Carrie	er: <u>Rob Pringle (M</u>	AI Courier)	
			Chain	of Cu	stodv (C	OC) Inform	ation		
Chain of custody	(procont?			Yes		No 🗌			
Chain of custouy	presenti			165					
Chain of custody	v signed when relinqui	ished and	I received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?		Yes	\checkmark	No 🗆			
Sample IDs noted	by Client on COC?			Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	lient on CO	C?	Yes	\checkmark	No 🗆			
Sampler's name r	noted on COC?			Yes	\checkmark	No 🗆			
			s	amnle	Receint	Informatio	n		
				-			<u> </u>	🗖	
Custody seals in	tact on shipping conta	ainer/coole	er?	Yes		No 🗆		NA 🗆	
Shipping contain	er/cooler in good cond	dition?		Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?			Yes	\checkmark	No 🗆			
Sample containe	rs intact?			Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?		Yes		No 🗌			
		Sa	mple Prese	rvatio	n and Ho	old Time (H1	[] Information		
						-	<u>,</u>		
All samples recei	ived within holding tim	ie?		Yes	\checkmark	No 🗆		_	
Container/Temp I	Blank temperature			Coole	er Temp:	9.2°C		NA 🗆	
Water - VOA via	ls have zero headspa	ice / no bi	ubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted 🗌	
Sample labels ch	necked for correct pre	servation	?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2))?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

When C	Analyti	cal,	Inc.		Web: www.mccamp	bell.com	Pittsburg, CA 94565-1' E-mail: main@mccamp 62 Fax: 925-252-926	bell.com	
P & D Environmental		Clie	nt Proje	ect ID:	#0047; VIP	Date S	ampled: 02/19/0)8	
		Serv	vice/Ca	stro Val	ley	Date Received: 02/19/08			
55 Santa Clara, Ste.240		Clie	nt Con	tact: St	eve Carmack	Date F	xtracted: 02/21/0)8	
Oakland, CA 94610			nt P.O.:				analyzed 02/21/0		
Haloger	nated Volati	e Org	ganics	by P&T	' and GC-MS (8010 Ba		-		
Extraction Method: SW5030B			Analy	tical Meth	od: SW8260B	U	Work Or	der: 080)2416
Lab ID					0802416-003B				
Client ID					MW-3				
Matrix	~ .			Reporting	Water				Reportir
Compound	Concentrati	on *	DF	Limit	Compound		Concentration *	DF	Limit
Bromodichloromethane	ND<2.5		5.0	0.5	Bromoform		ND<2.5	5.0	0.5
Bromomethane	ND<2.5		5.0	0.5	Carbon Tetrachloride		ND<2.5	5.0	0.5
Chlorobenzene	ND<2.5		5.0	0.5	Chloroethane		ND<2.5	5.0	0.5
2-Chloroethyl Vinyl Ether	ND<5.0	5.0 1.0			Chloroform	ND<2.5	5.0	0.5	
Chloromethane	ND<2.5		5.0	0.5	Dibromochloromethane	ND<2.5	5.0	0.5	
1,2-Dibromoethane (EDB)	ND<2.5		5.0	0.5	1,2-Dichlorobenzene		ND<2.5	5.0	0.5
1,3-Dichlorobenzene	ND<2.5		5.0	0.5	1,4-Dichlorobenzene		ND<2.5	5.0	0.5
Dichlorodifluoromethane	ND<2.5		5.0	0.5	1,1-Dichloroethane		ND<2.5	5.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND<2.5		5.0	0.5	1,1-Dichloroethene		ND<2.5	5.0	0.5
cis-1,2-Dichloroethene	ND<2.5		5.0	0.5	trans-1,2-Dichloroethene		ND<2.5	5.0	0.5
1,2-Dichloropropane	ND<2.5		5.0	0.5	cis-1,3-Dichloropropene		ND<2.5	5.0	0.5
trans-1,3-Dichloropropene	ND<2.5		5.0	0.5	Freon 113		ND<2.5	5.0	0.5
Methylene chloride	ND<2.5		5.0	0.5	1,1,1,2-Tetrachloroethar	ne	ND<2.5	5.0	0.5
1,1,2,2-Tetrachloroethane	ND<2.5		5.0	0.5	Tetrachloroethene		ND<2.5	5.0	0.5
1,1,1-Trichloroethane	ND<2.5		5.0	0.5	1,1,2-Trichloroethane		ND<2.5	5.0	0.5
Trichloroethene	ND<2.5		5.0	0.5	Trichlorofluoromethane		ND<2.5	5.0	0.5
Vinyl Chloride	ND<2.5		5.0	0.5				·	·
			Surro	ogate Re	coveries (%)				
%SS1:		104	4		%SS2:		10	3	
%SS3:	1	114	4				•		
Comments: j	1								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell	Analytica	l, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
		ent Proje	ect ID•	#0047; VIP	ampled: 02/19/0				
P & D Environmental		rvice/Ca			•				
55 Santa Clara, Ste.240	50	i vice, cu	suo vui	ley	Date R	Received: 02/19/08			
55 Sulla Child, 510.210	Cl	ient Con	tact: St	eve Carmack	xtracted: 02/19/0	8			
Oakland, CA 94610	Cl	ent P.O.:			Date A	analyzed 02/27/0	8		
	CI	ent I .O			Dute		0		
	Semi-Volati	le Orgai	nics by (GC/MS (Basic Target	List)*				
Extraction Method: SW3510C		ytical Met	hod: SW8270C		Work Ord	er: 080	02416		
Lab ID				0802416-003	С				
Client ID				MW-3	0				
Matrix		Water							
	a i i		Reporting			G	DE	Report	
Compound	Concentration	* DF	Limit	Compound	Concentration *	DF	Ĺim		
Acenaphthene	ND	1.0	10	Acenaphthylene		ND	1.0	10	
Acetochlor	ND	1.0	10	Anthracene		ND	1.0	10	
Benzidine	ND	1.0	50	Benzoic Acid		ND	1.0	50	
Benzo(a)anthracene	ND	1.0	10	Benzo(b)fluoranthene		ND ND	1.0	10	
Benzo(k)fluoranthene	ND	1.0	10	Benzo(g,h,i)perylene			1.0	10	
Benzo(a)pyrene	ND	1.0	10	Benzyl Alcohol	r .1	ND	1.0	5	
1,1-Biphenyl	ND	ND1.010Bis (2-chloroethoxy) MethaneND1.010Bis (2-chloroisopropyl) Ether			ND	1.0	1		
Bis (2-chloroethyl) Ether			20	4-Bromophenyl Phenyl		ND	1.0	10	
Bis (2-ethylhexyl) Phthalate Butylbenzyl Phthalate	ND	1.0	10	4-Bromophenyl Phenyl 4-Chloroaniline	Etner	ND	1.0	10	
4-Chloro-3-methylphenol	ND ND	1.0	10	2-Chloronaphthalene		ND ND	1.0	10	
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl	Ether	ND	1.0	10	
Chrysene	ND		1.010Femorophenyl Finelyl Ener1.010Dibenzo(a,h)anthracene		ND	1.0	10		
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate	/	ND	1.0	10	
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene		ND	1.0	10	
1.4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine		ND	1.0	20	
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate		ND	1.0	10	
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate		ND	1.0	10	
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol		ND	1.0	50	
2,4-Dinitrotoluene	ND	1.0	10	2,6-Dinitrotoluene		ND	1.0	10	
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine		ND	1.0	10	
Fluoranthene	ND	1.0	10	Fluorene		ND	1.0	10	
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene		ND	1.0	10	
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane		ND	1.0	10	
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone		ND	1.0	1	
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Created	sol)	ND	1.0	10	
3 &/or 4-Methylphenol (m,p-Cres	ND	1.0	10	Naphthalene		37	1.0	10	
2-Nitroaniline	ND	1.0	50	3-Nitroaniline		ND	1.0	5	
4-Nitroaniline	ND	1.0	50	Nitrobenzene		ND	1.0	10	
2-Nitrophenol	ND	1.0	50	4-Nitrophenol	nina	ND ND	1.0	5	
N-Nitrosodiphenylamine	ND ND	1.0	10 50	N-Nitrosodi-n-propylan Phenanthrene	unne	ND ND	1.0	10	
Pentachlorophenol Phenol	ND ND	1.0	10	Pyrene		ND ND	<u>1.0</u> 1.0	10	
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol		ND	1.0	10	
2.4.6-Trichlorophenol	ND	1.0	10	2,4,3-111010pitell01		ΠD	1.0	1 1	
				coveries (%)					
%SS1:	(98	Rt	%SS2:		47			
%SS3:		38							
/0000.	(%SS4: 84 %SS6: 89					

* water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits.

	McCampbell	Analyt		-	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D	Environmental			ject ID: #	ID: #0047; VIP Service/Castro Date Sampled: 02/19/08							
55 Sai	nta Clara, Ste.240		Valley	Date Received: 02/19/08								
Oakla	nd, CA 94610		Client Cor	ntact: Stev	Steve Carmack Date Extracted: 02/20/08							
Oakia	nd, CA 94010		Client P.O	.:				Date Analyz	ed 02/20/08			
Extracti	Gasolin	ne Range (O		•		oons as Gaso 3021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0802	416	
Lab ID	Client ID	Matrix	TPH(g)	MTBE		Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-1	W	ND	ND		ND	ND	ND	ND	1	91	
002A	MW-2	W	ND	ND		ND	ND	ND	ND	1	91	
003A	MW-3	W	4200,a	ND<100	0	810	28	140	250	20	95	
Rej	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	µg/L	
	means not detected at or bove the reporting limit	S	NA	NA		NA	NA	NA	NA	1	mg/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

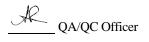
QC Matrix: Water

WorkOrder 0802416

EPA Method SW8021B/8015Cm	hod SW8021B/8015Cm Extraction SW5030B					BatchID: 33849				Spiked Sample ID: 0802398-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS		LCSD	LCS-LCSD	Acceptance Criteria (%)				
, unary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	92.3	93.2	0.940	108	102	5.71	70 - 130	30	70 - 130	30	
MTBE	ND	10	97.2	98.1	0.890	107	95.2	11.7	70 - 130	30	70 - 130	30	
Benzene	ND	10	95.7	102	6.10	108	100	7.49	70 - 130	30	70 - 130	30	
Toluene	ND	10	95.3	101	5.78	119	111	6.89	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	99.9	106	5.55	114	106	6.48	70 - 130	30	70 - 130	30	
Xylenes	ND	30	111	117	4.83	122	115	5.77	70 - 130	30	70 - 130	30	
%SS:	109	10	90	95	5.98	96	97	0.975	70 - 130	30	70 - 130	30	

BATCH 33849 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802416-001A	02/19/08 10:15 AM	02/20/08	02/20/08 3:08 AM	0802416-002A	02/19/08 10:45 AM	02/20/08	02/20/08 3:41 AM
0802416-003A	02/19/08 11:05 AM	02/20/08	02/20/08 9:19 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

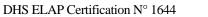
QC Matrix: Water

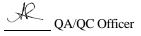
WorkOrder 0802416

EPA Method SW8260B	Extra	ction SW	5030B	BatchID: 33857				Sp	Spiked Sample ID: 0802391-020A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	ND	10	103	103	0	101	102	0.0712	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	97	99.1	2.16	99.2	102	2.51	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	96.8	97.8	1.07	103	104	1.29	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	70.5	70	0.749	87.3	104	17.5	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	75.8	74	2.47	73.2	72.8	0.594	70 - 130	30	70 - 130	30
%SS1:	102	10	101	100	1.44	109	106	2.57	70 - 130	30	70 - 130	30
%SS2:	99	10	101	103	1.11	102	103	0.0704	70 - 130	30	70 - 130	30
%SS3:	103	10	99	98	0.997	94	93	0.760	70 - 130	30	70 - 130	30

BATCH 33857 SUMMARY

Lab ID	Date Sampled Date Extracted		Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802416-003B	02/19/08 11:05 AM	02/21/08	02/21/08 10:00 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water

QC Matrix: Water

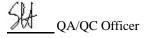
WorkOrder: 0802416

EPA Method: SW8270C	Extraction: SW3510C					BatchID: 33866 S			piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MSD MS-MSD LCS LCSD LCS-LCSD Acce				eptance	tance Criteria (%)		
, maryte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Acenaphthene	N/A	50	N/A	N/A	N/A	79.4	79	0.619	N/A	N/A	30 - 130	20
4-Chloro-3-methylphenol	N/A	100	N/A	N/A	N/A	75.2	76.2	1.34	N/A	N/A	30 - 130	20
2-Chlorophenol	N/A	100	N/A	N/A	N/A	81	82.2	1.45	N/A	N/A	30 - 130	20
1,4-Dichlorobenzene	N/A	50	N/A	N/A	N/A	64	64.8	1.21	N/A	N/A	30 - 130	20
2,4-Dinitrotoluene	N/A	50	N/A	N/A	N/A	84.1	85.6	1.72	N/A	N/A	30 - 130	20
4-Nitrophenol	N/A	100	N/A	N/A	N/A	83.3	80.4	3.46	N/A	N/A	30 - 130	20
N-Nitrosodi-n-propylamine	N/A	50	N/A	N/A	N/A	120	122	1.89	N/A	N/A	30 - 130	20
Pentachlorophenol	N/A	100	N/A	N/A	N/A	73.6	73.6	0	N/A	N/A	30 - 130	20
Phenol	N/A	100	N/A	N/A	N/A	59.2	61.2	3.40	N/A	N/A	30 - 130	20
Pyrene	N/A	50	N/A	N/A	N/A	82.2	81.7	0.683	N/A	N/A	30 - 130	20
1,2,4-Trichlorobenzene	N/A	50	N/A	N/A	N/A	69.7	69.8	0.272	N/A	N/A	30 - 130	20
%SS1:	N/A	5000	N/A	N/A	N/A	95	96	1.48	N/A	N/A	30 - 130	20
%SS2:	N/A	5000	N/A	N/A	N/A	73	76	4.10	N/A	N/A	30 - 130	20
%SS3:	N/A	5000	N/A	N/A	N/A	98	99	0.753	N/A	N/A	30 - 130	20
%SS4:	N/A	5000	N/A	N/A	N/A	84	84	0	N/A	N/A	30 - 130	20
%SS5:	N/A	5000	N/A	N/A	N/A	107	106	1.01	N/A	N/A	30 - 130	20
%SS6:	N/A	5000	N/A	N/A	N/A	99	99	0	N/A	N/A	30 - 130	20
All target compounds in the Method Bla NONE	nk of this extr	action bate	h were NI	D less than	the method	l RL with	the follow	ing exception	s:			

BATCH 33866 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802416-003C	02/19/08 11:05 AM	4 02/19/08	02/27/08 10:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

