RECEIVED

2:23 pm, Feb 15, 2008

Alameda County Environmental Health

Fourth Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared by: **Tait Environmental Management, Inc.**

February 14, 2008

February 14, 2008

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SUBJECT: FOURTH QUARTER 2007

GROUNDWATER MONITORING AND SAMPLING REPORT

MISSION VALLEY ROCK COMPANY

7999 ATHENOUR WAY, SUNOL, CALIFORNIA

Dear Mr. Wickham,

Please find enclosed Tait Environmental Management's *Fourth Quarter 2007 Groundwater Monitoring and Sampling Report* on the above referenced site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please don't hesitate to contact the undersigned at (925) 426-4170.

Sincerely,

Lee W. Cover

Environmental Manager

Hanson Aggregates Mid-Pacific, Inc.

Lee W. Com

cc: Bill Butler, Hanson Aggregates Mid-Pacific, Inc.

February 14, 2008

Fourth Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared for:

Mr. Lee Cover Hanson Aggregates Northern California 3000 Busch Rd., Pleasanton, CA 94566

Prepared by:

Michael Schenone

Michael Schenone Project Scientist

Reviewed by:

Paul N. McCarter, PG, CHG, REAII Senior Project Manager

Tait Environmental Management 701 North Parkcenter Drive Santa Ana, California 92705

Project No. EM-5009C

TABLE OF CONTENTS

1.0	INTRODUCTION2
2.0	OBJECTIVE AND SCOPE OF WORK2
3.0	BACKGROUND2
4.0	SITE HYDROGEOLOGY2
5.0	GROUNDWATER MONITORING WELL PURGING AND SAMPLING3
6.0	LABORATORY ANALYSES4
7.0	SUMMARY OF ACTIVITIES AND FINDINGS5
8.0	QUALITY ASSURANCE/QUALITY CONTROL6
9.0	REFERENCES7
10.0	LIMITATIONS7
FIGL	JRES
1.	Site Vicinity Map
2.	Site Plan
3.	Groundwater Contour Map (Shallow Zone) Fourth Quarter 2007
4.	Groundwater Contour Map (Deep Zone) Fourth Quarter 2007
5.	Groundwater Contour Map (Livermore Formation) Fourth Quarter 2007
6.	TPHg Concentrations in Groundwater (Shallow Zone) Fourth Quarter 2007
7. 8.	TPHg Concentrations in Groundwater (Deep Zone) Fourth Quarter 2007 TPHg Concentrations in Groundwater (Livermore Formation) Fourth Quarter 2007
8. 9.	MTBE Concentrations in Groundwater (Elvermore Formation) Fourth Quarter 2007
9. 10.	MTBE Concentrations in Groundwater (Shallow Zone) Fourth Quarter 2007 MTBE Concentrations in Groundwater (Deep Zone) Fourth Quarter 2007
11.	MTBE Concentrations in Groundwater (Livermore Formation) Fourth Quarter 2007
12.	Benzene Concentrations in Groundwater (Shallow Zone) Fourth Quarter 2007
13.	Benzene Concentrations in Groundwater (Deep Zone) Fourth Quarter 2007
14.	Benzene Concentration is Groundwater (Livermore Formation) Fourth Quarter 2007

TABLES

- 1. Well Construction Details and Groundwater Elevation Data – Fourth Quarter 2007
- Historical Groundwater Gauging Data 2.
- Groundwater Analytical Results Fourth Quarter 2007
 Historical Groundwater Analytical Results 3.
- 4.

APPENDICES

- A. Cross Sections
- Sampling Data Sheets B.
- C.
- Certificate of Disposal TEM Laboratory Report D.

Fourth Quarter 2007 Groundwater Monitoring and Sampling Report Mission Valley Rock Company Sunol, California

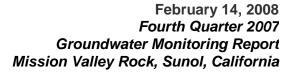
1.0 INTRODUCTION

This report summarizes the Fourth Quarter 2007 groundwater monitoring and sampling event conducted at the Mission Valley Rock Company (site) located at 7999 Athenour Way in Sunol, California (Figure 1). The wells were sampled as part of the Fourth Quarter 2007 groundwater monitoring and sampling program.

2.0 OBJECTIVE AND SCOPE OF WORK

The objective of the proposed scope of work was to monitor and sample the existing groundwater monitoring wells at the site (Figure 2).

The scope of work that Tait Environmental Management (TEM) developed to meet the objectives included the following tasks:


- Groundwater Monitoring & Sampling
- Laboratory Analyses
- Report Preparation
- Non-hazardous Waste Disposal

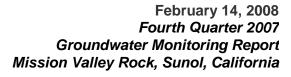
3.0 BACKGROUND

In May 1996, Tank Protect Engineering (TPE) removed one gasoline and two diesel underground storage tanks (USTs). During June 1998, three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed at the site. Quarterly groundwater monitoring continued from January 1999 through March 2000 (TEM, 2000).

In June 2000, TEM assumed the contract for environmental services at the site. In December 2002, eight soil borings (TB-1 through TB-8) were drilled and sampled at the site using a direct-push rig.

In January 2005, eight additional soil borings were advanced at the site using a hollow-stem auger drill rig. Six of the borings were converted to single-, double-, and triple-completion groundwater monitoring wells for a total of 12 wells (MW-2S, MW-2M, MW-2D, MW-4S, MW-4D, MW-5S, MW-52, MW-6S, MW-6D, MW-7S, MW-7D, MW-8). Shallow wells were designated with an "S" and deep wells were designated with a "D". Groundwater monitoring well MW-2 was abandoned. The work was performed in accordance with the Alameda County Environmental Health Services (ACEHS) directive of November 16, 2004, which requested the collection of depth-discrete groundwater samples from the site (ACEHS, 2004).

In April and May 2006, LFR, Inc. (LFR) installed, developed, sampled, and surveyed 12 additional wells (MW-9S, MW-9D, MW-9LF, MW-10S, MW-10D, MW-10LF, MW-11S, MW-11D, MW-11LF, MW-12S, MW-12D, and MW-12LF) in four well clusters, which were located peripherally to the existing wells. The "LF" wells were screened in the Livermore Formation below the deep-zone wells.


The wells installed by LFR were surveyed and added to the groundwater monitoring and sampling schedule during the Second Quarter 2006. Data concerning the wells installed in April and May 2006 were provided to TEM by LFR. Quarterly groundwater monitoring and sampling have been conducted by TEM from the Fourth Quarter 2000 through the present, excluding the 2004 calendar year.

In February 2007, LFR completed a site assessment to more completely characterize the lateral extent of the fuel hydrocarbons in groundwater in the areas north and south of well clusters MW-9 and MW-11, respectively, as well as the vertical extent of fuel hydrocarbons at deeper intervals than those currently screened in wells MW-9LF and MW-11LF (LFR, 2007). In its Site Assessment Report, dated April 10, 2007, LFR concluded, with subsequent ACEHS concurrence, that the lateral and vertical extent of the contamination in the groundwater has been sufficiently characterized in the area of the asphalt plant and that further investigation in this area is not necessary. The ACEH also concurred with LFR's recommendation of a pilot test for proposed air sparging as the primary remedial alternative. Additional data from that investigation was included in the First Quarter 2007 Groundwater Monitoring Report, and the contours presented in this report reflect that data.

4.0 SITE HYDROGEOLOGY

The site is located within the Sunol Valley at an elevation of approximately 260 feet above mean sea level (USGS, 1989). The land surface at the site has been disturbed by excavation activities; however, the natural surface slopes at a gradient of approximately 35 feet per mile toward San Antonio Creek to the east-northeast. San Antonio Creek flow is toward the northwest.

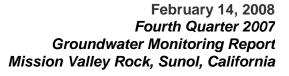
Drilling and sampling activities at the site indicate that a discontinuous clay layer is present below the surficial road-base gravels in the area west of the gravel road to depths of 10 to 15 feet below ground surface (bgs), with the exception of the area at MW-2S/2M/2D, where the clay layer extends to a depth of 25 feet bgs (TEM, 2005). This clay layer was not observed east of this area. Soils below the clay layer to the maximum depth explored (30 feet bgs) consist primarily of gravelly sand and sandy gravel mixtures. The top of the Livermore Formation is not well defined; however, the Livermore Formation appears to contain a higher percentage of fine-grained material, primarily silt, than the overlying higher permeability gravels. Cross sections showing the site hydrogeology, and the analytical results from soil samples collected during assessment activities and current groundwater analytical results are contained in Appendix A.

Groundwater levels are measured from the shallow-zone, deep-zone, and Livermore Formation wells. With the exception of the area of MW-4 and MW-10, the levels are generally similar between the zones, and the groundwater zones appear to be generally hydraulically continuous.

Based on the Fourth Quarter 2007 groundwater monitoring data, the overall depth to groundwater at the site ranged from 5.06 feet bgs in well MW-9S to 9.73 feet bgs in well MW-10LF. Relative to the Third Quarter 2007 groundwater monitoring event, groundwater levels declined in the majority of the wells. However, water levels in wells MW-1, MW-7S, MW-7D, MW-8, MW-9S, MW-10S, MW-11D, MW-12S, MW-12D, and MW-12LF have increased relative to their respective Third Quarter 2007 levels. In general, overall groundwater levels have declined an average of 0.06 feet in the wells relative to the Third Quarter 2007 monitoring event (Tait, 2007).

Groundwater in the shallow-zone wells in the southern and western parts of the site is generally flowing in a southeasterly direction at an approximate gradient of 0.012 foot/foot (ft/ft). In the northeastern part of the site, this direction appears to be affected by a groundwater mound in the area of wells MW-4S and MW-10S (Figure 3). In this area, shallow-zone groundwater is flowing in a southwesterly direction away from the mound at a gradient of approximately 0.057 ft/ft.

Groundwater in the deep-zone wells is flowing in a general southeasterly direction at a gradient of approximately 0.010 ft/ft (Figure 4).


Groundwater in the Livermore Formation is flowing in a general easterly direction a gradient of approximately 0.017 ft/ft (Figure 5).

With the exception of well MW-12S, where groundwater levels were lower than those measured in wells MW-12D and MW-12LF, vertical gradients were directed downward during the Fourth Quarter 2007.

The flow direction in the shallow-zone, deep-zone, and Livermore Formation flow regimes is opposite to the regional northwesterly groundwater flow direction in the Sunol Valley as reported by the ACEHS in their letter to Mission Valley Rock Company, dated November 3, 2005 (ACEHS, 2005). The variation from the regional trend may reflect local conditions, and the groundwater levels at the site may be affected by excavation and pumping operations related to aggregate extraction at the site. Groundwater flow in the Livermore Formation during the Fourth Quarter 2007 appears to correlate with the Third Quarter 2007 data.

5.0 GROUNDWATER MONITORING WELL PURGING AND SAMPLING

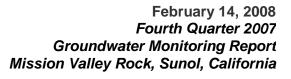
On December 10, 2007, static groundwater levels were measured and recorded in the on-site groundwater monitoring wells using an electrical product/water interface meter. Water levels were measured relative to the top of the well casing (representing the wellhead survey point). Prior to use at each well, the meter was decontaminated with a mild detergent solution and two

de-ionized water rinses. Groundwater gauging and elevation data for the Fourth Quarter 2007 event are summarized in Table 1. Historical groundwater elevation data are summarized in Table 2. Groundwater sampling data sheets are presented in Appendix B.

On December 10, 11, and 12, 2007, the groundwater monitoring wells were purged using low-flow (micro-purge) techniques. A portable Barant peristaltic low-flow pump was employed as part of the Fourth Quarter 2007 groundwater monitoring and sampling event. The Barant peristallic pump is a portable pump that uses a rotating pump head and flexible tubing to create peristaltic pumping action. Dedicated 1/8-inch polyethylene tubing was used for each well, and the tubing was left in the well as dedicated tubing following sampling activities. The Barant pump does not come in contact with groundwater, and therefore, eliminates the need for decontamination. The tubing inlet was placed into the well approximately in the middle of the screened interval.

Groundwater samples were collected from 26 wells at the site. Samples were collected once field parameters had stabilized following three successful readings. Based on the sampling method employed, it was determined that equipment blank samples were not required. Groundwater samples were collected from the discharge end of the pump tubing at low-flow levels and transferred into laboratory-supplied containers. Care was taken to ensure that no headspace was present in the containers. Following sample collection, the samples were labeled, placed into an ice-chilled cooler (4°C), and transported under chain-of-custody protocols to SunStar Laboratories, Inc. (SunStar), a State-Certified laboratory (ELAP No. 2250) for chemical analysis. In addition to the groundwater samples, a trip blank sample (MW-1T) was included with the samples for quality assurance/quality control (QA/QC) purposes.

Approximately 10 gallons of purged groundwater were pumped into a steel 55-gallon drum during the Fourth Quarter 2007 sampling event. Integrated Waste Management of Milpitas, California provided pick-up services for the drummed purge water generated by the sampling activities. The drum was transported and disposed as non-hazardous water at Seaport Refining & Environmental in Redwood City, California on December 18, 2007. The Certificate of Disposal is contained in Appendix C.


6.0 LABORATORY ANALYSES

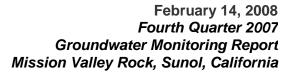
The groundwater samples collected during the Fourth Quarter 2007 groundwater monitoring and sampling event were analyzed for the diesel and gasoline fractions of Total Petroleum Hydrocarbons (TPHd and TPHg, respectively) using EPA Method No. 8015M; for benzene, toluene, ethylbenzene, total xylenes (BTEX); and for methyl tertiary butyl ether (MTBE), and the other fuel oxygenates tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), disopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE) using EPA Method No. 8260B.

Contoured dissolved-phase TPHg concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 6, 7, and 8, respectively. Contoured dissolved-phase MTBE concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 9, 10, and 11, respectively. Contoured dissolved-

Engineering • Environmental • Compliance • Construction
701 N. Parkcenter Drive • Santa Ana, California 92705 • 714-560-8200 • 714-560-8235 fax
San Diego • Concord • Rancho Cordova • Tempe • Loveland • Boise

www.tait.com

phase benzene concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 12, 13, and 14, respectively.

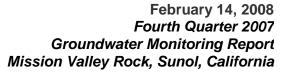

7.0 SUMMARY OF ACTIVITIES AND FINDINGS

Based upon the data presented in this report, previous investigations, current regulatory guidelines, and the judgment of TEM, the following is a summary of activities and findings:

- Based on the depth to water measurements obtained by TEM, groundwater levels have declined an average of 0.06 feet this quarter relative to the corresponding Third Quarter 2007 groundwater levels.
- The groundwater flow direction for the shallow zone ranges from southeasterly to southwesterly at gradients ranging from 0.012 to 0.057 ft/ft, respectively.
- Groundwater in the deep zone is flowing toward the southeast at a gradient of about 0.010 ft/ft.
- Groundwater in the Livermore Formation is flowing in an easterly direction at a gradient of 0.017 ft/ft.
- The mounding effect in the area of wells MW-4S and MW-10s cannot be adequately explained by any specific mechanism and may be a combination of factors, including excavation and pumping operations related to aggregate extraction during the Fourth Quarter of 2007. The mounding may be potentially related to the former pit located east of the site that has been filled in over time by fine sediments settling out of the wash water and likely is less permeable than the rest of the site.
- Twenty-six groundwater samples and one trip blank sample were collected by TEM from the monitoring wells at the site, and they were delivered to SunStar for analysis.
- A maximum TPHd concentration of 48,000 micrograms per liter (μg/L) was detected in well MW-11D. Highest TPHd concentrations appear to be localized in deep-zone wells in the central and southern parts of the area extending from well MW-11D in the south to MW-9D in the north, as well as in the area of shallow zone wells MW-2S and MW-6S.
- A maximum TPHg concentration of 57,000 μg/L was detected in well MW-9D. Highest concentrations of TPHg appear to be localized in the deep-zone wells in the north-central part of the area, particularly in the vicinity of wells MW-7D and MW-9D, and in the vicinity of well MW-11D in the south-central part of the area (Figure 7).
- A maximum MTBE concentration of 86 µg/L was detected in well MW-11LF. MTBE is localized in the central and southern parts of the area in the vicinity of wells MW-2, MW-6, MW-10, and MW-11 (Figures 9, 10, and 11). MTBE is notably absent in well clusters MW-7 and MW-9 in the northern part of the area.

Engineering • Environmental • Compliance • Construction
701 N. Parkcenter Drive • Santa Ana, California 92705 • 714-560-8200 • 714-560-8235 fax
San Diego • Concord • Rancho Cordova • Tempe • Loveland • Boise

www.tait.com



- A maximum benzene concentration of 880 µg/L was detected in well MW-9D. Benzene tends to be localized in the deep-zone wells in the northern part of the area in the vicinity of wells MW-7D and MW-9D (Figure 13).
- Concentration trends of toluene, ethylbenzene, and total xylenes are similar to those of benzene.
- TBA was not detected in any of the wells during the Fourth Quarter 2007.
- In general, TPHg and BTEX tend to be localized in the groundwater in the northern part of the area, upgradient of the former USTs, whereas MTBE concentrations tend to be localized in the groundwater in the central and southern parts of the area, downgradient of the former USTs. Fluctuating groundwater conditions may have occurred at the site in the past, resulting in variable migration pathways for the fuel hydrocarbons in the groundwater.
- There is some variability between the Third Quarter 2007 and Fourth Quarter 2007 fuel hydrocarbon concentration trends; however, overall concentrations generally tended to be somewhat higher relative to the Third Quarter of 2007 levels.
- The concentrations of hydrocarbons in groundwater indicate that the deep zone is the most impacted zone at the site.
- The trip blank sample (MW-1T) contained no detectable concentrations of fuel hydrocarbons.

8.0 QUALITY ASSURANCE/QUALITY CONTROL

To increase the confidence levels in the data obtained and minimize the likelihood that judgments were made from potentially erroneous data, a quality assurance/quality control (QA/QC) program was implemented. QA refers to management of actions designed to maintain precision, accuracy, completeness, and representativeness of the data developed from the project. QC refers to accepted formal procedures and activities specifically designed for the purpose of collecting data that are intended to be reliable and consistent for the site conditions.

The program includes formal procedures for sampling, decontamination, instrument calibration, documentation of activities and calculations, and peer review. Routine QC procedures were performed by the laboratory and included daily calibration of instruments, percent surrogate recoveries and analysis of matrix spikes and matrix spike duplicates. The laboratory reported the results to be within acceptable percent recoveries with no results exceeding the laboratory-established control limits.

9.0 REFERENCES

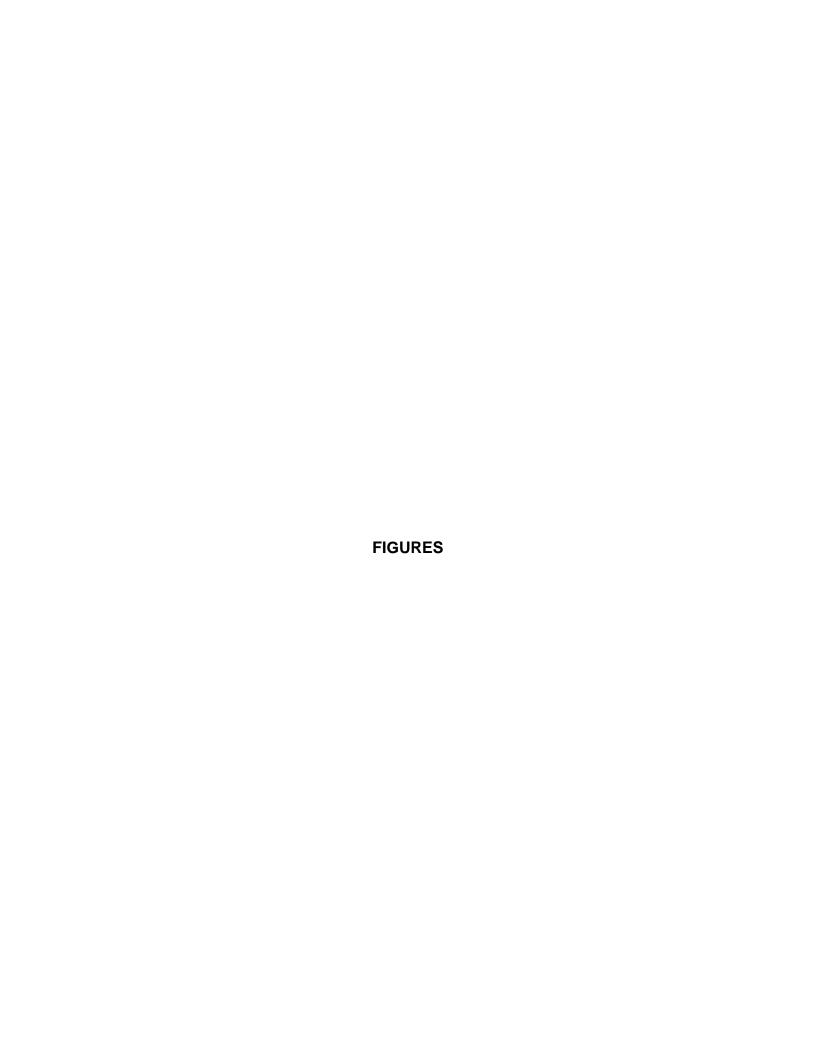
Alameda County Environmental Health Services, November 16, 2004, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

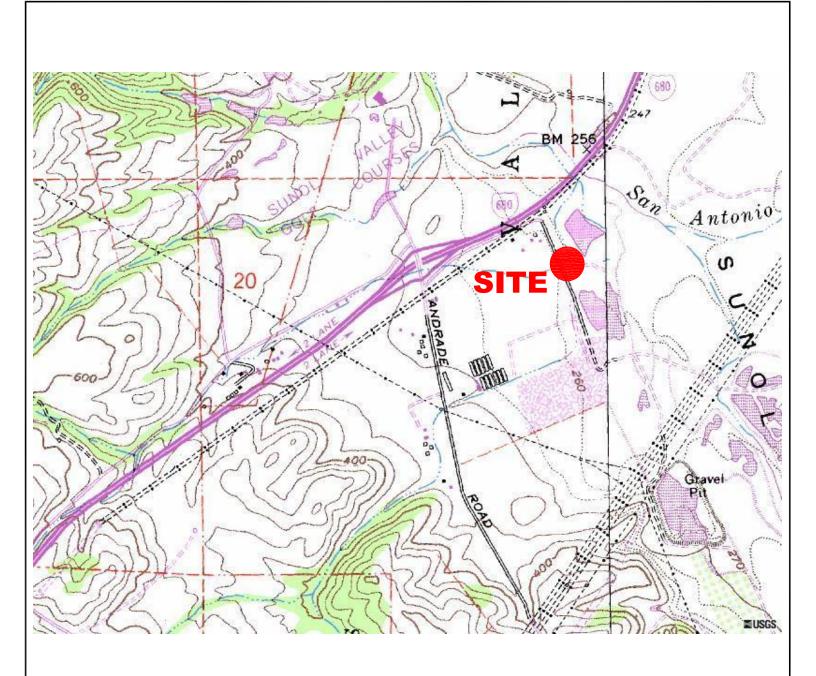
Alameda County Environmental Health Services, November 3, 2005, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

LFR, Inc., April 10, 2007, Site Assessment Report of Additional Lateral and Vertical Characterization and Plan for Interim Remediation at the Asphalt Plant, Hanson Aggregates Mission Valley Rock Facility, 7999 Athenour Way, Sunol, Alameda County, California.

Tait Environmental Management, July 28, 2000, Second Quarter Report, June 2000, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.

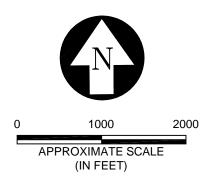
Tait Environmental Management, April 1, 2005, Site Assessment and First Quarter 2005 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.


Tait Environmental Management, November 14, 2007, Third Quarter 2007 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California.


U.S. Geological Survey (USGS), 1989, Fremont 7.5 Minute Topographic Quadrangle Map, 1:24,000.

10.0 LIMITATIONS

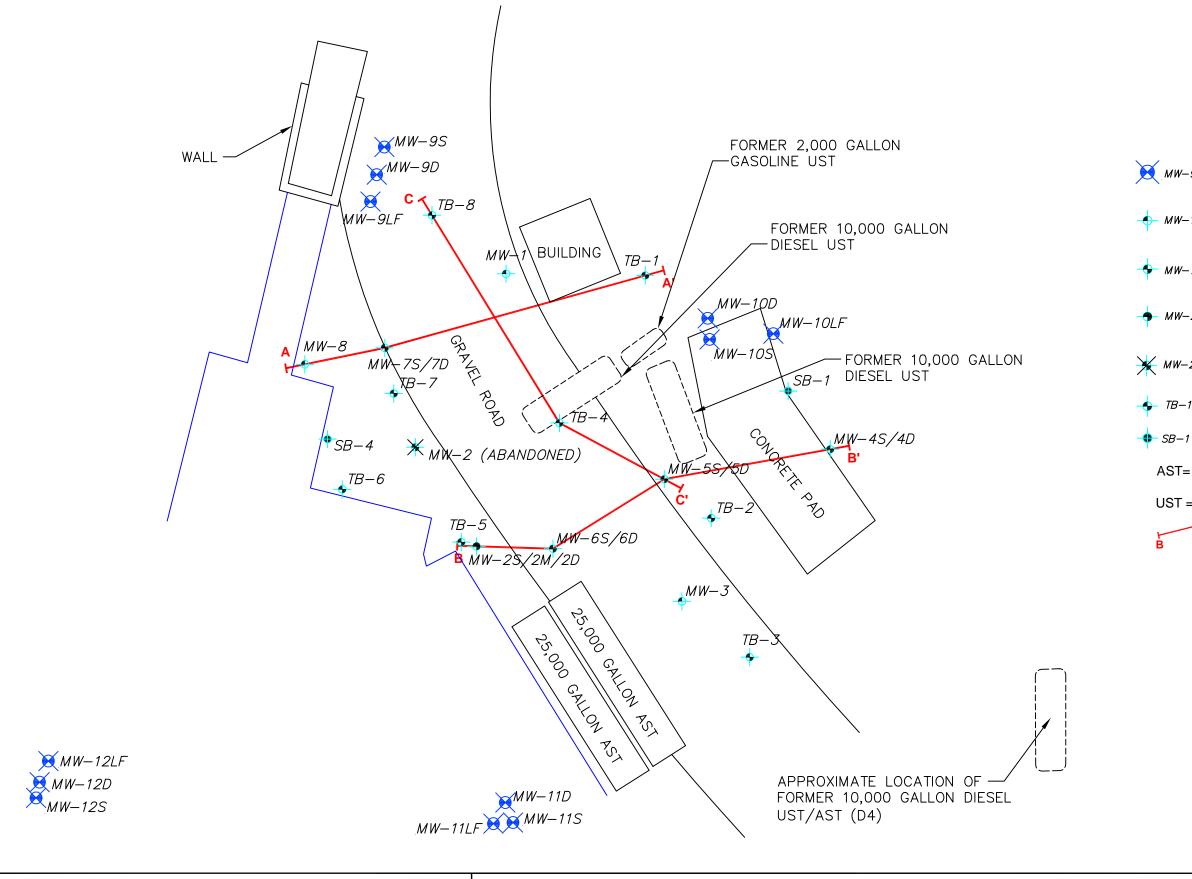
No investigation is considered thorough enough to exclude the presence of hazardous materials at a given site. Opinions and/or recommendations presented apply to site conditions existing at the time of the performance of services and TEM is unable to report on or accurately predict events which may impact the site following conduct of the described services, whether occurring naturally or caused by external forces. No responsibility is assumed by TEM for conditions it is not authorized to investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed. Services hereunder were performed in accordance with our agreement and understanding with, and solely for the use of, Mission Valley Rock. TEM is not responsible for the subsequent separation, detachment or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.


M:\TEM\9002\Active Projects\EM5009C-Hanson Aggregates (Formerly MV Rock)\Qtly GW Monitoring\GW Monitoring 4th Qtr 2007\DRAFT MVR 4th Qtr Report 2007.doc

NOTES:

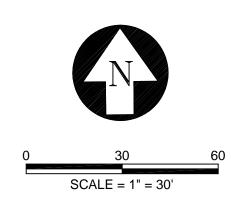
BASE MAP TAKEN FROM TERRASERVER.COM, UNITED STATES GEOLOGICAL SURVEY (USGS), FREEMONT QUADRANGLE, ALAMEDA COUNTY, CALIFORNIA. PRINTED JULY 1, 1989.

TAIT ENVIRONMENTAL MANAGEMENT, INC. 701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX


SITE VICINITY MAP

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA DRAWN BY: N.M.

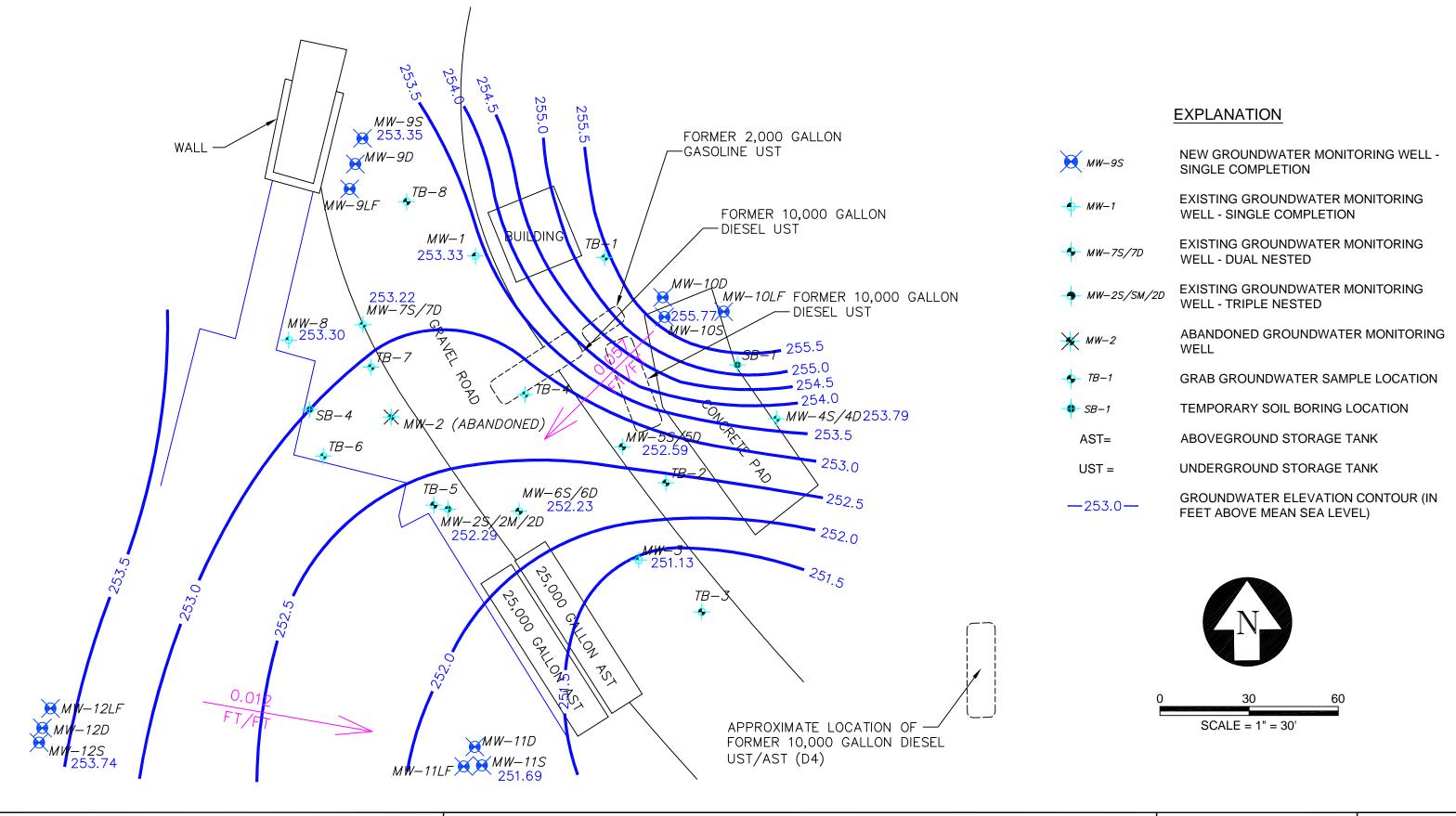
REVIEWED BY: P.M.


PROJECT: EM5009C

DATE: JANUARY 2008

EXPLANATION

NEW GROUNDWATER MONITORING WELL -MW-9S SINGLE COMPLETION **EXISTING GROUNDWATER MONITORING →** MW−1 **WELL - SINGLE COMPLETION** EXISTING GROUNDWATER MONITORING 💠 MW-7S/7D WELL - DUAL NESTED EXISTING GROUNDWATER MONITORING ♠ MW-2S/SM/2D **WELL - TRIPLE NESTED** ABANDONED GROUNDWATER MONITORING ₩-2 WELL **♦** TB−1 **GRAB GROUNDWATER SAMPLE LOCATION** TEMPORARY SOIL BORING LOCATION AST= ABOVEGROUND STORAGE TANK UST = UNDERGROUND STORAGE TANK CROSS SECTION LOCATIONS (APPENDIX A)

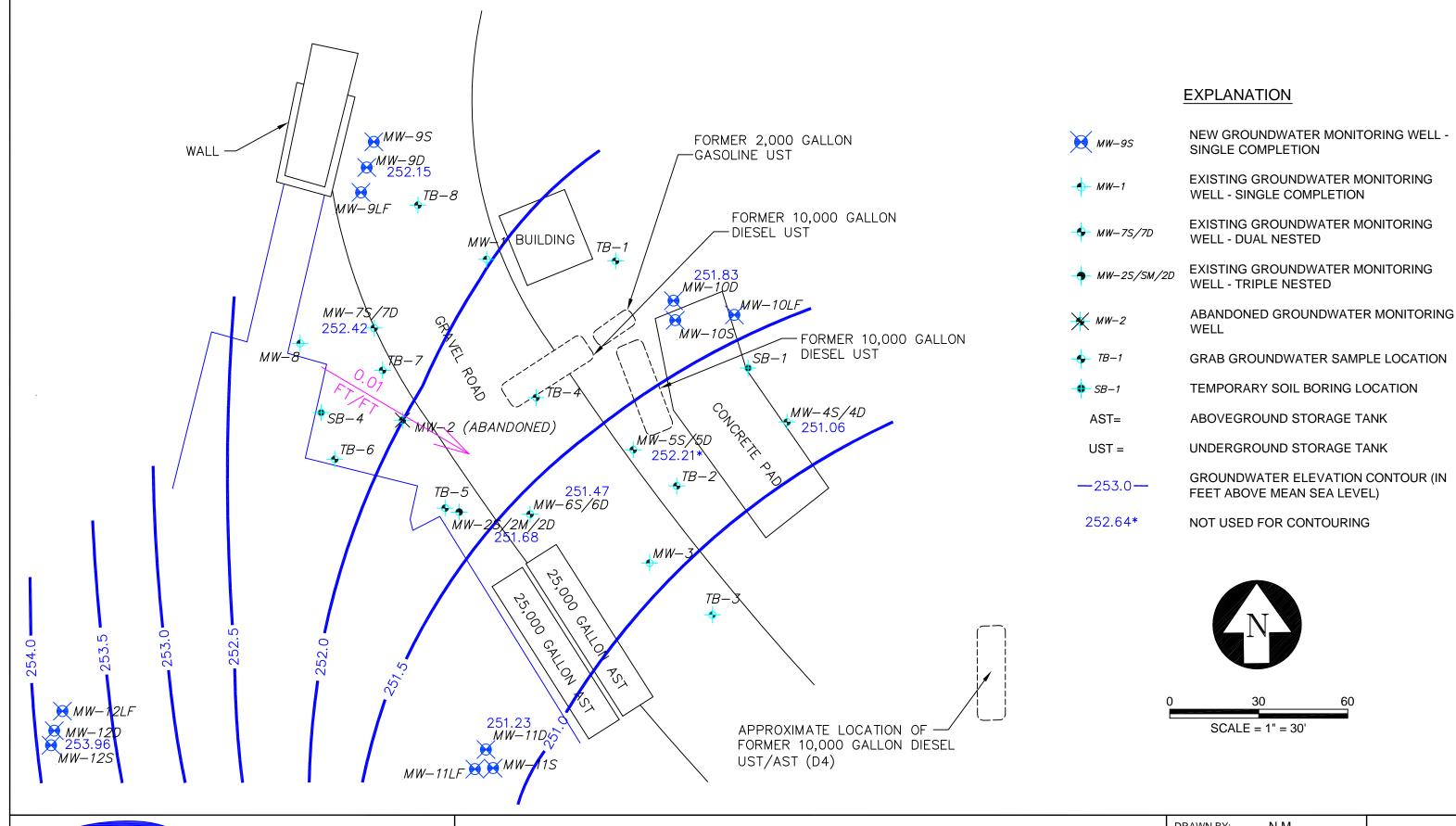

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

SITE PLAN

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY:	P.M.
PROJECT:	EM5009C
DATE: JA	NUARY 2008



GROUNDWATER CONTOUR MAP (SHALLOW ZONE)

FOURTH QUARTER 2007

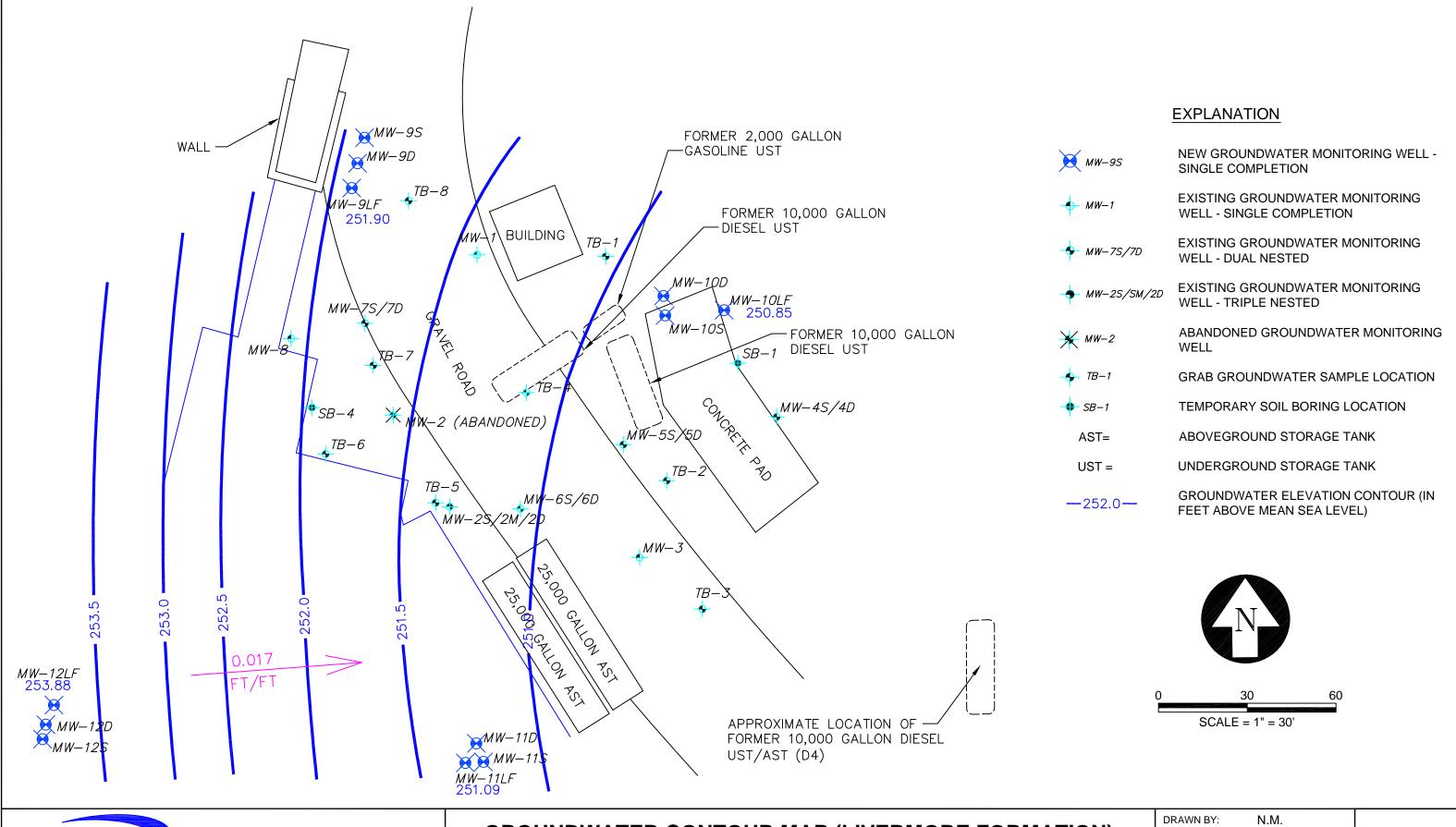
HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

l	DRAWN BY:	N.M.	
	REVIEWED E	BY: P.M.	
	PROJECT:	EM5009C	
	DATE:	JANUARY 2008	
Г		•	_

701 NORTH PARKCENTER DRIVE
SANTA ANA, CALIFORNIA 92705
(714) 560-8200

(714) 560-8235 FAX

ENVIRONMENTAL

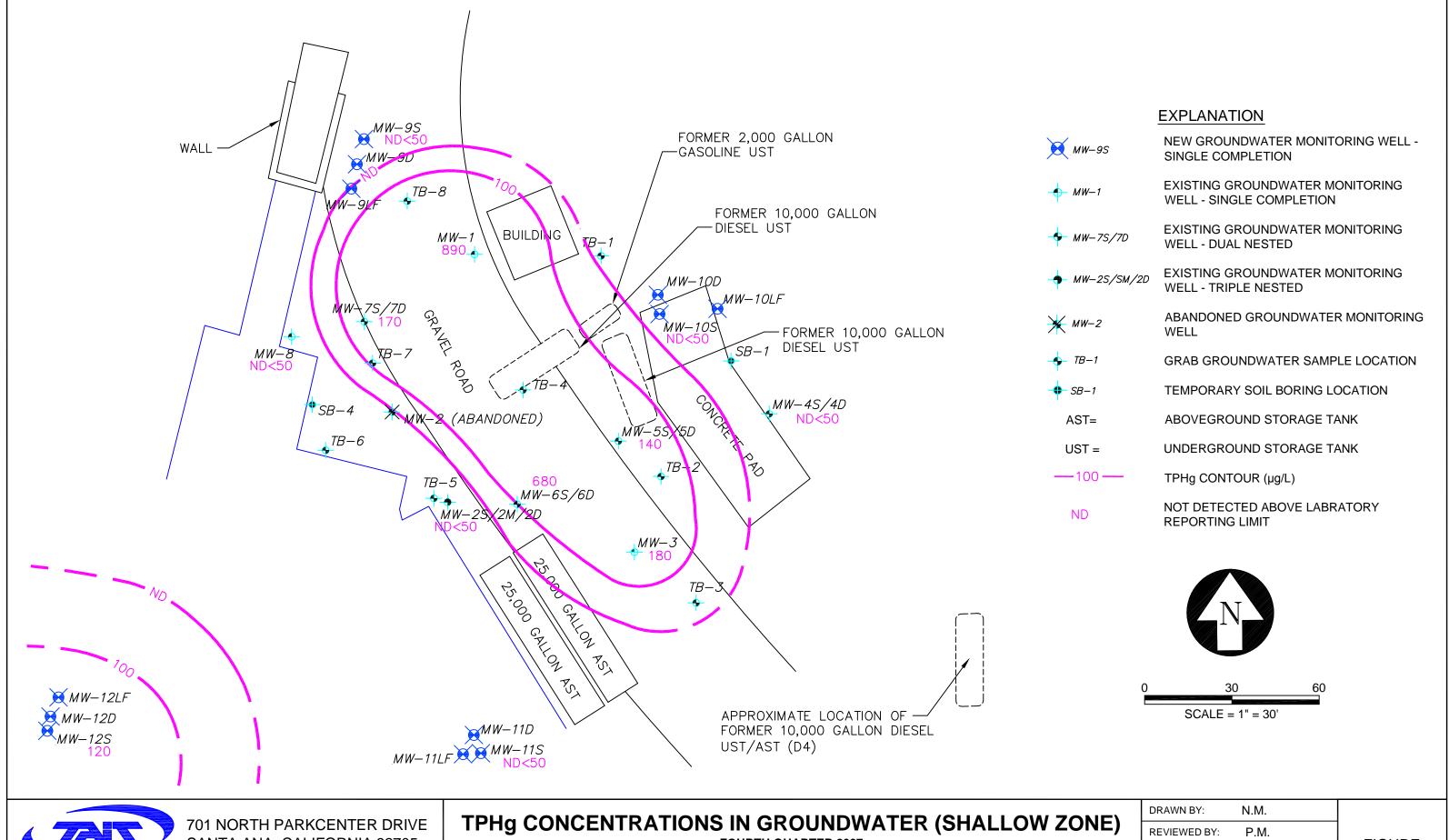

MANAGEMENT, INC.

GROUNDWATER CONTOUR MAP (DEEP ZONE)

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY	: P.M.
PROJECT:	EM5009C
DATE: J	ANUARY 2008

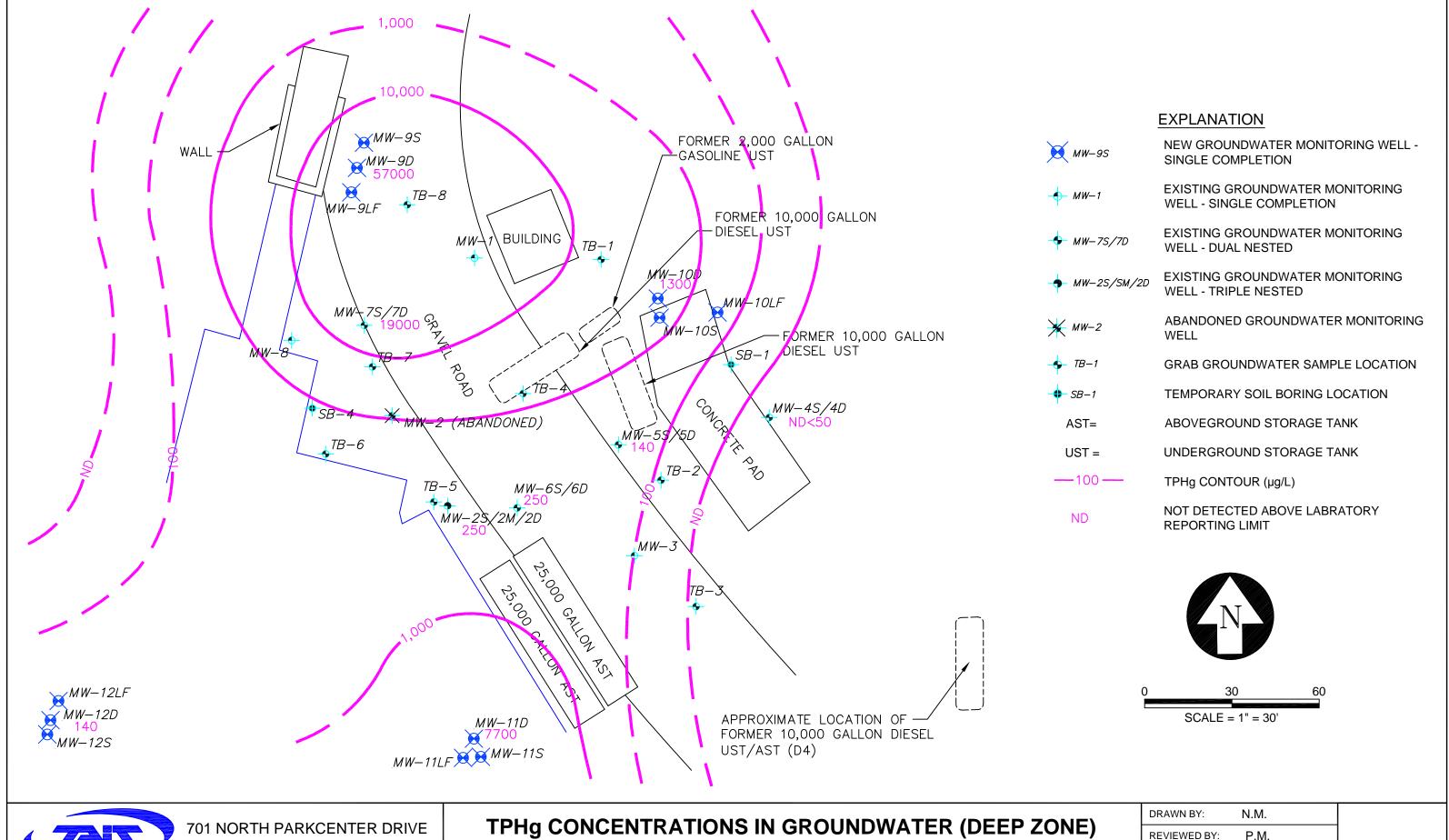


GROUNDWATER CONTOUR MAP (LIVERMORE FORMATION)

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED B	Y: P.M.	
PROJECT:	EM5009C	
DATE: ,	JANUARY 2008	

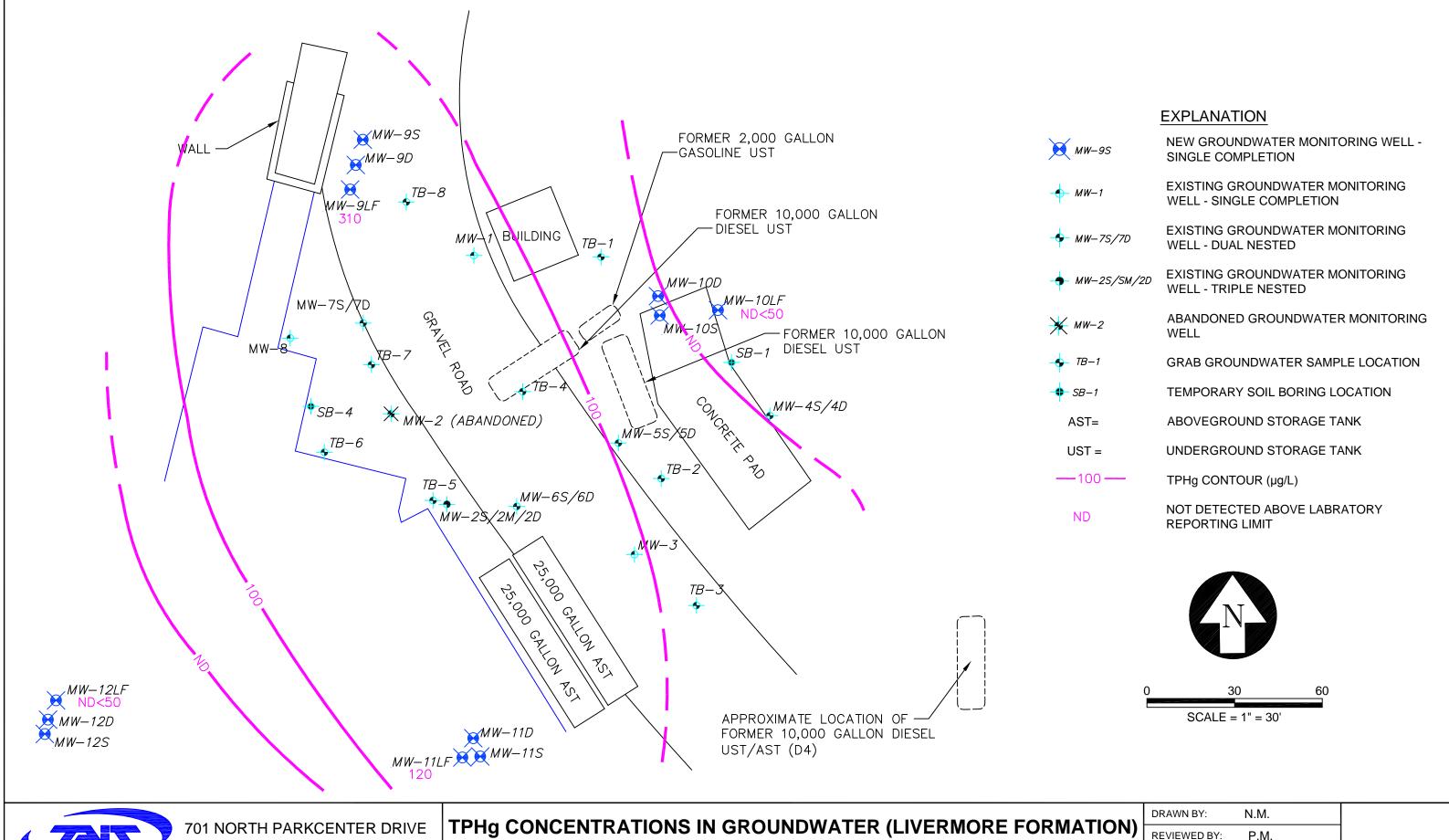

ENVIRONMENTAL MANAGEMENT, INC.

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED I	BY: P.M.	
PROJECT:	EM5009C	
DATE:	JANUARY 2008	

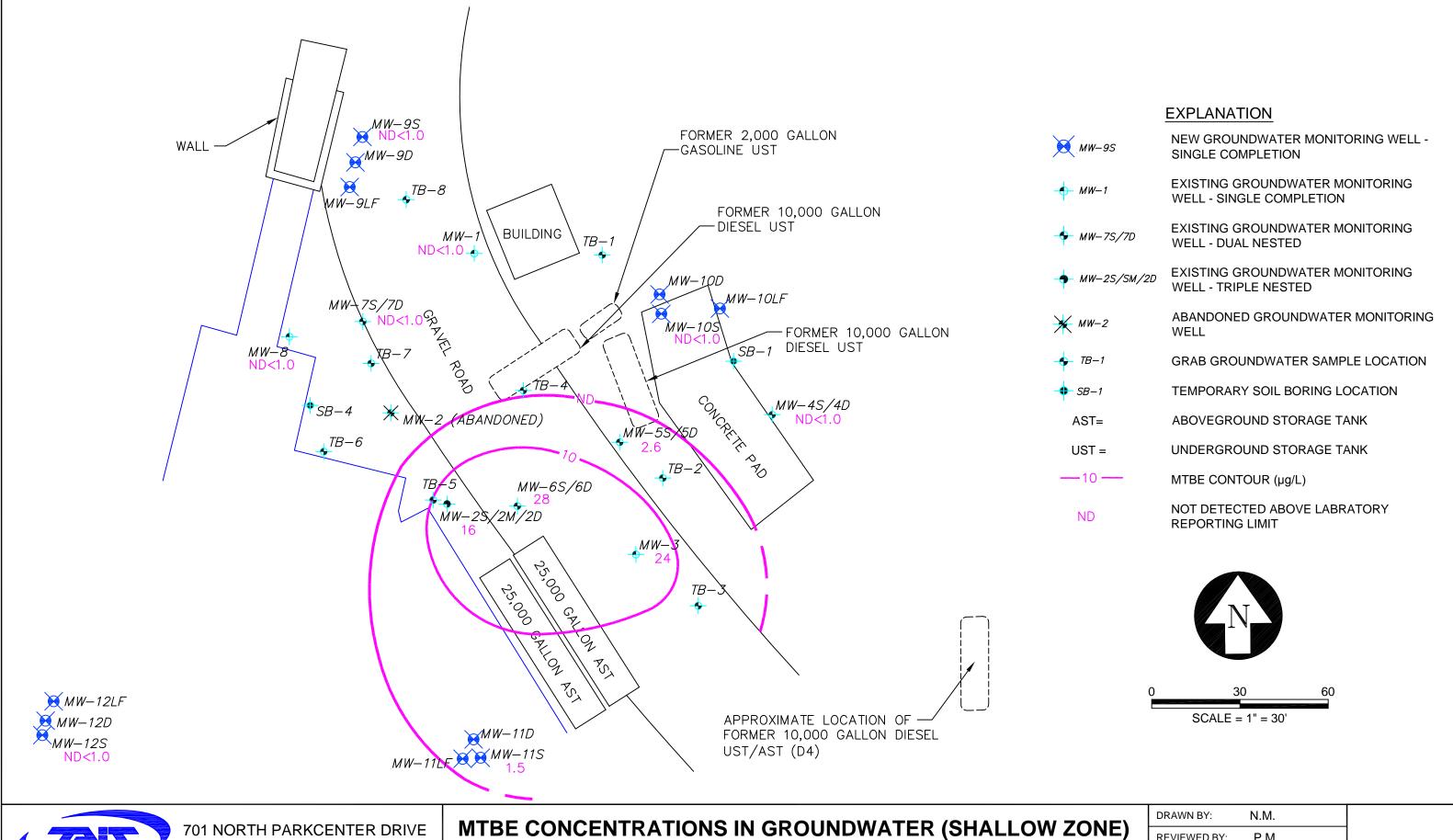

ENVIRONMENTAL MANAGEMENT, INC.

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED BY:	P.M.	
PROJECT:	EM5009C	
DATE: JA	NUARY 2008	·

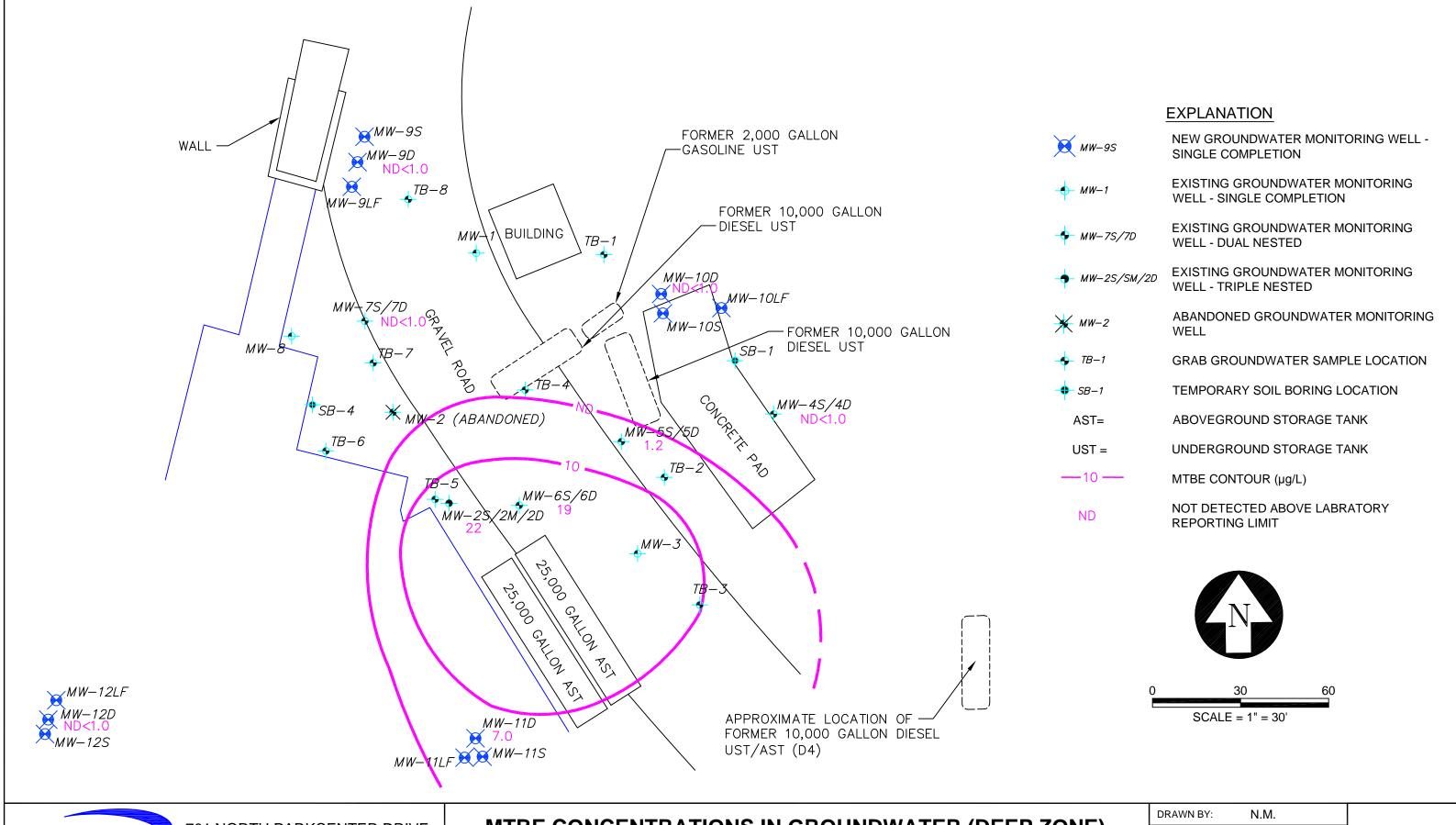


SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK (CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA	

.1.	DRAWN BY:	N.M.	
N)	REVIEWED B	SY: P.M.	
	PROJECT:	EM5009C	
	DATE: ,	JANUARY 2008	



SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

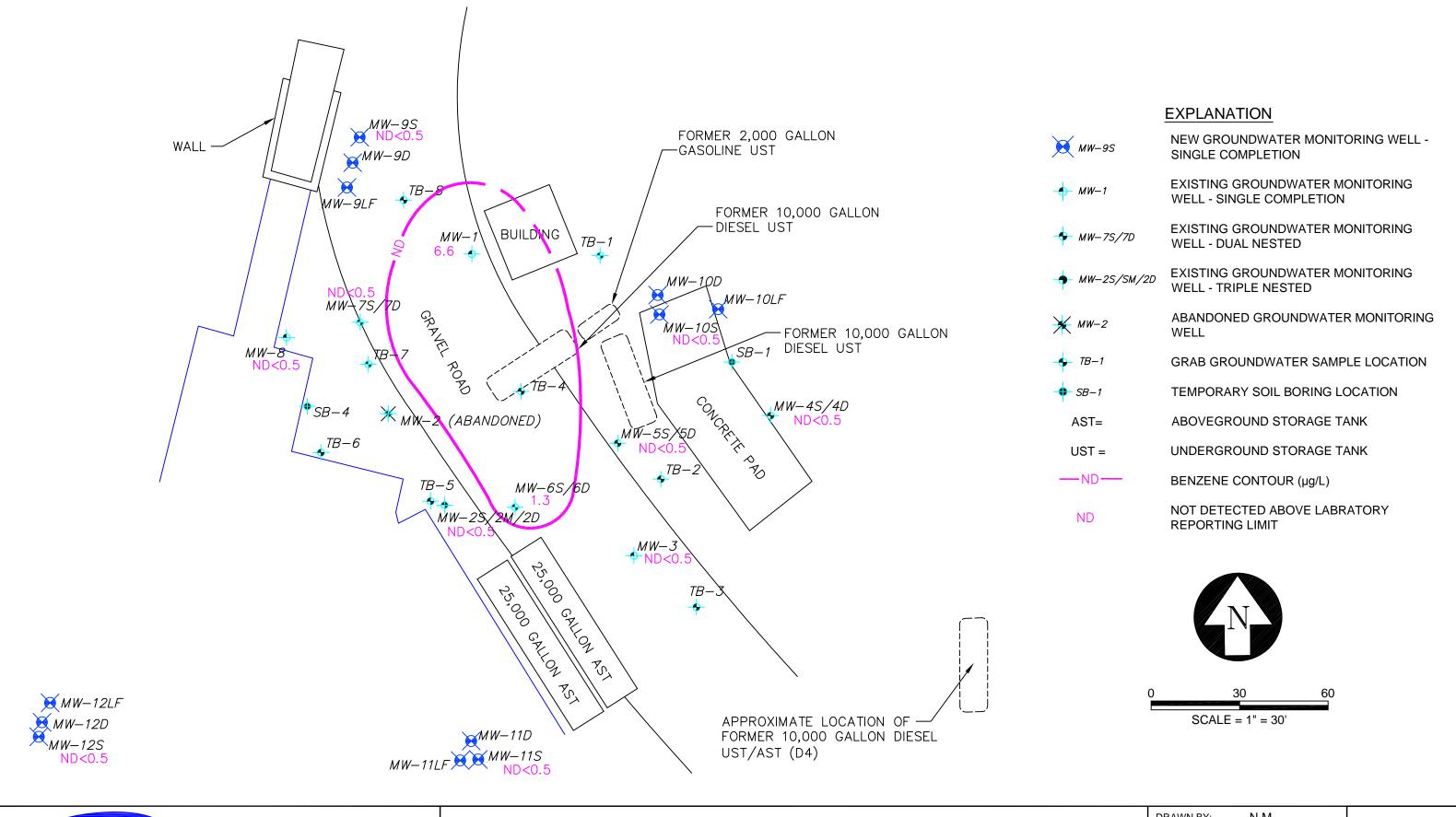
DRAWN BY:	N.M.
REVIEWED	BY: P.M.
PROJECT:	EM5009C
DATE:	JANUARY 2008

MTBE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED E	BY: P.M.
PROJECT:	EM5009C
DATE:	JANUARY 2008

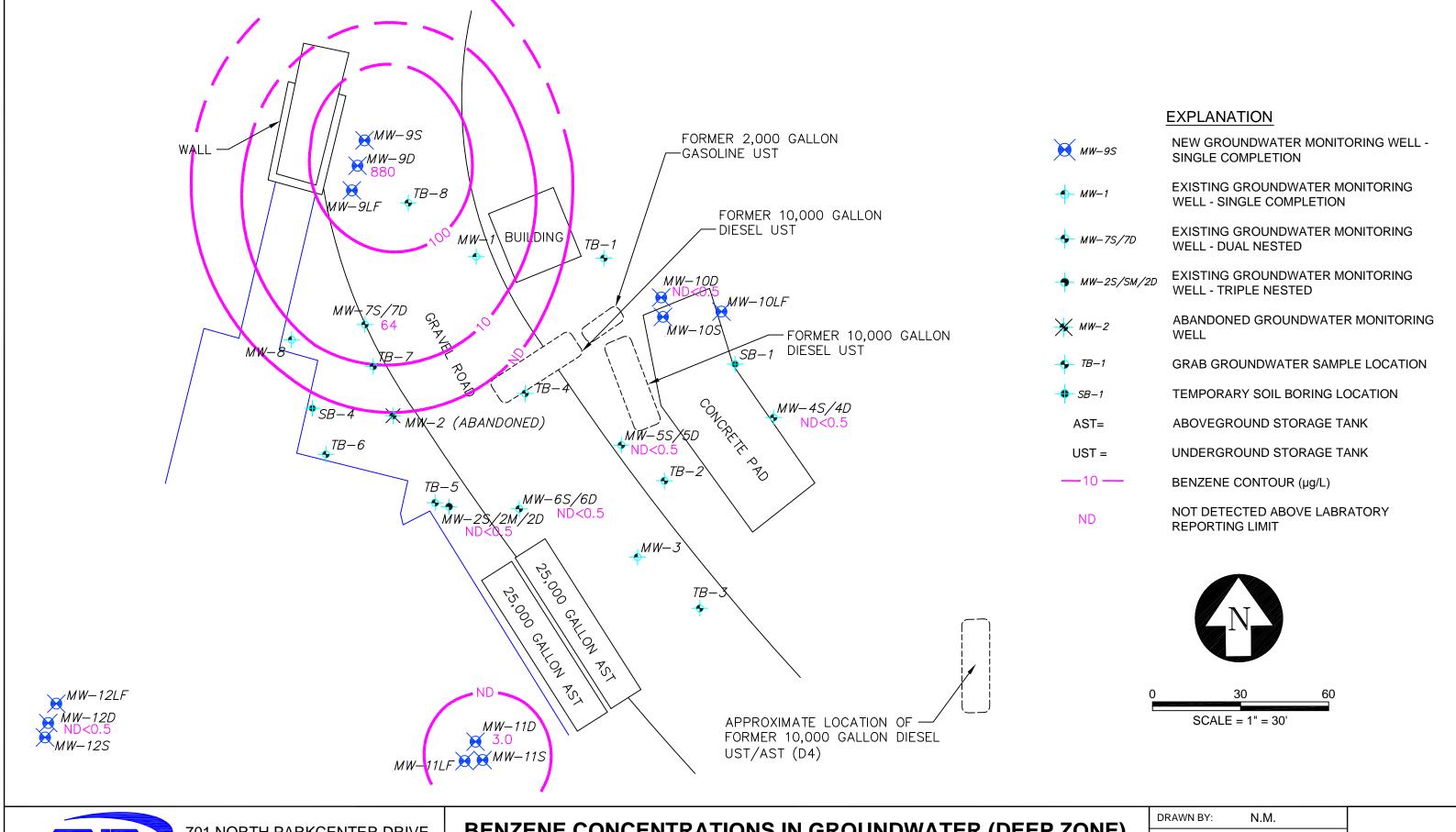


ENVIRONMENTAL MANAGEMENT, INC.

SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

	DRAWN BY:	N.M.
۱)	REVIEWED BY	: P.M.
	PROJECT:	EM5009C
	DATE: J	ANUARY 2008

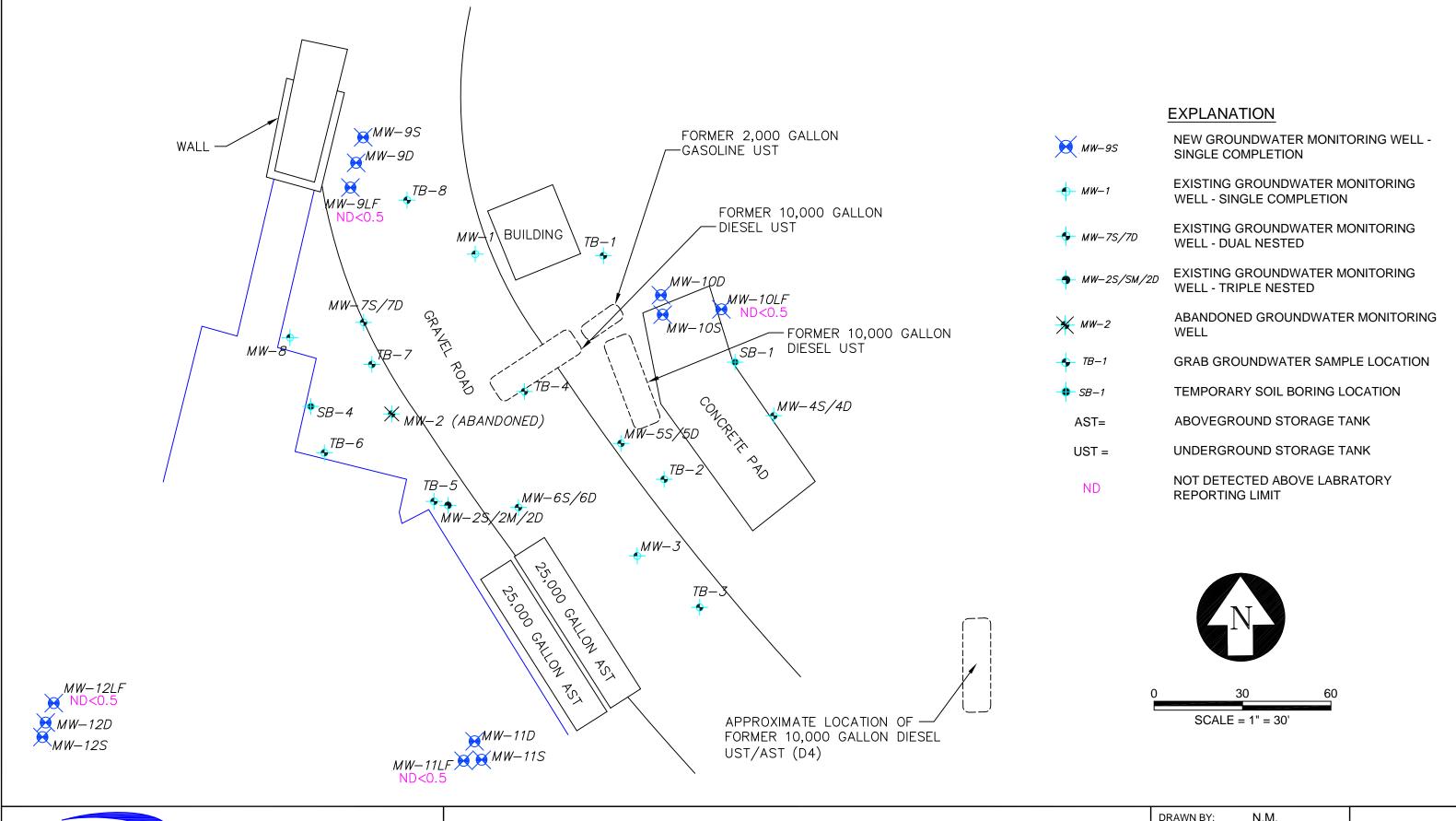


BENZENE CONCENTRATIONS IN GROUNDWATER (SHALLOW ZONE)

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

`	DRAWN BY:		N.M.	
•)	REVIEWED BY:		P.M.	
	PROJECT:		EM5009C	
	DATE:	JAN	NUARY 2008	



BENZENE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY	⁄: Р.М.
PROJECT:	EM5009C
DATE: J	ANUARY 2008
·	

BENZENE CONCENTRATIONS IN GROUNDWATER (LIVERMORE FORMATION) FOURTH QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	JANUARY 2008	·

Table 1 Well Construction Details and Groundwater Elevation Data Fourth Quarter 2007

Mission Valley Rock Company Sunol, California

Well ID	Casing Diameter (inches)	Depth to Water (feet below TOC)	Total Depth (feet below TOC)	Screened Interval (feet bgs)	Measuring Point Elevation (feet MSL)	Groundwater Elevation (feet MSL)
MW-1	2	5.35	17.78	5.0 - 20.0	258.68	253.33
MW-2S	2	6.55	8.71	3.0-8.0	258.84	252.29
MW-2M	2	7.04	12.29	14.0-19.0	258.99	251.95
MW-2D	2	7.23	29.54	25.0-30.0	258.91	251.68
MW-3	2	7.95	14.70	5.0-20.0	259.08	251.13
MW-4S	2	5.35	8.35	3.0-8.0	259.14	253.79
MW-4D	2	8.16	23.38	17.0-22.0	259.22	251.06
MW-5S	2	6.84	8.24	3.0-8.0	259.43	252.59
MW-5D	2	7.19	22.65	17.0-22.0	259.40	252.21
MW-6S	2	6.52	15.00	5.0-15.0	258.75	252.23
MW-6D	2	7.80	29.15	24.5-29.5	259.27	251.47
MW-7S	2	5.62	8.48	5.0-8.0	258.84	253.22
MW-7D	2	6.38	23.61	20.0-25.0	258.80	252.42
MW-8	2	5.54	15.34	5.0-15.0	258.84	253.30
MW-9S	2	5.06	12.20	5.3-12.3	258.41	253.35
MW-9D	2	6.71	24.28	18.9-23.9	258.86	252.15
MW-9LF	2	7.04	39.11	33.3-38.3	258.94	251.90
MW-10S	2	4.90	9.58	4.8-9.8	260.67	255.77
MW-10D	2	8.81	19.38	15.5-20.5	260.64	251.83
MW-10LF	2	9.73	39.90	34.4-39.4	260.58	250.85
MW-11S	2	7.27	9.43	4.8-9.8	258.96	251.69
MW-11D	2	7.75	20.50	15.3-20.3	258.98	251.23
MW-11LF	2	7.92	39.41	32.8-37.8	259.01	251.09
MW-12S	2	8.95	11.04	4.6-11.6	262.69	253.74
MW-12D	2	8.74	19.70	16.0-21.0	262.70	253.96
MW-12LF	2	9.02	39.50	33.7-38.7	262.90	253.88

Notes:

Screened intervals are approximated. Screened interval in wells is lower than the measured total depth due to silting in the bottom of wells.

The measurement point for the above wells is the north side of the top of casing.

Depth to water and total depth measurements taken by Tait Environmental Management, Inc. personnel on December 10, 2007.

Total depth and depth to water measurements taken by Tait Environmental Management from designated measurement point.

Groundwater Elevation = Measurement Point Elevation - Depth to Water.

TOC = Top of Casing

bgs = Below Ground Surface

MSL = Mean Sea Level

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet
		06/23/98	1.32	255.19	ND
		01/05/99	2.28	254.23	ND
		03/29/99	1.88	254.63	ND
		06/10/99	3.35	253.16	ND
	 	09/17/99	3.66	252.85	ND
	<u> </u>	12/27/99	2.94	253.57	ND
	<u> </u>	03/22/00	2.72	253.79	Odor
	<u> </u>	06/30/00	4.01	252.50	Slight Odor
		09/14/00	5.11	251.40	Slight Odor
		12/20/00	4.95	251.56	ND
	 	03/22/01	2.28	254.23	ND
	256.51	06/27/01	3.60	252.91	ND
		09/21/01	6.50	250.01	ND
		12/27/01	1.29	255.22	ND
	Ī	03/29/02	2.91	253.60	ND
MW-1	į į	06/13/02	3.95	252.56	ND
	Ī	09/27/02	5.18	251.33	ND
		12/03/02	3.90	252.61	ND
		03/31/03	1.40	255.11	ND
		06/27/03	2.65	253.86	ND
		09/19/03	4.67	251.84	ND
		12/22/03	4.60	251.91	ND
		01/17/05	3.41	255.27	ND
		05/04/05	1.20	257.48	ND
		08/12/05	4.52	254.16	ND
	258.68	12/12/05	6.44	252.24	ND
		03/02/06	0.71	257.97	ND
		06/12/06	2.47	256.21	ND
		09/05/06	6.13	252.55	ND ND
		12/04/06	5.42	253.26	ND ND
		02/26/07	2.46	256.22	ND ND
		06/11/07	4.10	254.58	ND ND
		09/11/07	5.48		ND ND
		12/10/07	5.35	253.20	ND ND
				253.33	
		06/23/98	1.72	254.98 254.01	0.005 4.00
		01/05/99	2.69		4.00 ND
		03/29/99	2.50	254.20	
		06/10/99	4.00	252.70	Sheen
		09/17/99	4.54	252.16	0.50
		12/27/99	3.85	252.85	0.13
		03/22/00	3.20	253.50	0.03
		06/30/00	4.62	252.08	0.02
		09/14/00	5.95	250.75	>0.01
MW-2	050.7	12/20/00	5.65	251.05	0.07
	256.7	03/22/01	3.21	253.49	0.10
		06/27/01	3.31	253.39	0.06
		09/21/01	7.08	249.62	0.34
		12/27/01	2.18	254.52	0.26
		03/29/02	3.40	253.30	0.90
		06/13/02	4.35	252.35	0.08
	l L	09/27/02	5.54	251.16	ND
	[12/03/02	4.30	252.40	ND
	1	03/31/03	1.78	254.92	ND

			Sunol, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		06/27/03	3.10	253.60	ND
		09/19/03	5.02	251.68	ND
		12/22/03	NM	NM	ND
MW-2	256.7	01/05/05	14101	Abandoned	112
		01/17/05	4.25	254.59	ND
		05/04/05	1.98	256.86	ND ND
		08/12/05	5.46	253.38	ND ND
		12/12/05	7.38	251.46	ND
		03/02/06	2.24	256.60	ND ND
		06/12/06	3.08	255.76	ND ND
MW-2S	258.84	09/05/06	7.01	251.83	ND
WW-23 250.0		12/04/06	6.40		ND ND
				252.44	
		02/26/07	3.52	255.32	ND ND
		06/11/07	4.93	253.91	ND ND
		09/11/07	6.45	252.39	ND
		12/10/07	6.55	252.29	ND
		01/17/05	4.68	254.31	ND
		05/04/05	2.32	256.67	ND
		08/12/05	5.77	253.22	ND
		12/12/05	7.78	251.21	ND
		03/02/06	2.10	256.89	ND
MW-2M	258.99	06/12/06	3.39	255.60	ND
	200.00	09/05/06	7.36	251.63	ND
		12/04/06	6.89	252.10	ND
		02/26/07	3.79	255.20	ND
		06/11/07	5.30	253.69	ND
		09/11/07	6.88	252.11	ND
		12/10/07	7.04	251.95	ND
		01/17/05	4.75	254.16	ND
		05/04/05	2.38	256.53	ND
		08/12/05	5.90	253.01	ND
		12/12/05	7.85	251.06	ND
		03/02/06	2.16	256.75	ND
		06/12/06	3.48	255.43	ND
MW-2D	258.91	09/05/06	7.44	251.47	ND
		12/04/06	6.94	251.97	ND
		02/26/07	3.89	255.02	ND
		06/11/07	5.45	253.46	ND
		09/11/07	7.00	251.91	ND
		12/10/07	7.23	251.68	ND
		06/23/98	2.66	254.06	ND
		01/05/99	4.47	252.25	Slight Odor
		03/29/99	3.96	252.25	Sheen
		06/10/99	5.54	251.18	ND
		09/17/99	6.18	250.54	Sheen
		12/27/99	5.52	251.20	Odor
		03/22/00	4.61	252.11	Odor
		06/30/00	6.35	250.37	Very Slight Odor
NA1-4 C	050 70	09/14/00	7.30	249.42	Very Slight Odor
MW-3	256.72	12/20/00	7.29	249.43	ND ND
		03/22/01	4.73	251.99	ND
		06/27/01	NM	NM	NM
		09/21/01	7.89	248.83	ND

			Sunol, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		12/27/01	3.77	252.95	ND
		03/29/02	5.12	251.60	ND
		06/13/02	6.52	250.20	ND
		09/27/02	7.28	249.44	ND
		12/03/02	6.40	250.32	ND
		03/31/03	4.01	252.71	ND
		06/27/03	5.13	251.59	ND
	256.72	09/19/03	5.13	251.59	ND
		12/22/03	7.20	249.52	ND
		01/17/05	5.81	253.27	ND
		05/04/05	3.50	255.58	ND
		08/12/05	6.01	253.07	ND
		12/12/05	8.45	250.63	ND
MW-3		03/02/06	3.42	255.66	ND
		06/12/06	4.15	254.93	ND
	259.08	09/05/06	7.97	251.11	ND
		12/04/06	7.30	251.78	ND
		02/26/07	4.62	254.46	ND
		06/11/07	6.11	252.97	ND
		09/11/07	7.47	251.61	ND
		12/10/07	7.95	251.13	ND
		01/17/05	4.62	254.52	ND
		05/04/05	3.73	255.41	ND
		08/12/05	3.45	255.69	ND
	259.14	12/12/05	5.48	253.66	ND
		03/02/06	3.10	256.04	ND
		06/12/06	4.10	255.04	ND
MW-4S		09/05/06	3.90	255.24	ND
		12/04/06	4.05	255.09	ND
		02/26/07	3.40	255.74	ND
		06/11/07	4.75	254.39	ND
		09/10/07	4.77	254.37	ND
		12/10/07	5.35	253.79	ND
		01/17/05	5.96	253.26	ND
		05/04/05	3.93	255.29	ND
		08/12/05	5.60	253.62	ND
		12/12/05	8.50	250.72	ND
		03/02/06	3.63	255.59	ND
		06/12/06	4.51	254.71	ND
MW-4D	259.22	09/05/06	8.18	251.04	ND
		12/04/06	7.95	251.27	ND
		02/26/07	4.49	254.73	ND
		06/11/07	6.25	252.97	ND
		09/10/07	7.54	251.68	ND
		12/10/07	8.16	251.06	ND
		01/17/05	4.57	254.86	ND
		05/04/05	2.50	256.93	ND
		08/12/05	5.30	254.13	ND
		12/12/05	7.68	251.75	ND
		03/02/06	1.42	258.01	ND
		06/12/06	3.73	255.70	ND
MW-5S	259.43	09/05/06	7.02	252.41	ND ND
		12/04/06	6.31	253.12	ND
	1	, 0 ., 00	1 0.0.		1,5

Sunoi, California							
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)		
		02/26/07	3.06	256.37	ND		
		06/11/07	5.10	254.33	ND		
		09/10/07	6.49	252.94	ND		
		12/10/07	6.84	252.59	ND		
		01/17/05	5.15	254.25	ND		
		05/04/05	2.75	256.65	ND		
		08/12/05	5.60	253.80	ND		
MW-5D	259.40	12/12/05	7.92	251.48	ND		
		03/02/06	1.98	257.42	ND		
		06/12/06	3.64	255.76	ND		
		09/05/06	7.30	252.10	ND		
		12/04/06	6.69	252.71	ND		
		02/26/07	3.56	255.84	ND		
		06/11/07	5.39	254.01	ND		
		09/11/07	6.76	252.64	ND		
		12/10/07	7.19	252.21	ND		
		01/17/05	4.30	254.45	ND		
		05/04/05	1.96	256.79	ND		
		08/12/05	5.17	253.58	ND		
		12/12/05	7.48	251.27	ND		
		03/02/06	1.95	256.80	ND		
		06/12/06	3.10	255.65	ND		
MW-6S	258.75	09/05/06	6.94	251.81	ND		
		12/04/06	6.30	252.45	ND		
		02/26/07	3.44	255.31	ND		
		06/11/07	4.80	253.95	ND		
		09/11/07	6.32	252.43	ND		
		12/10/07	6.52	252.23	ND		
		01/17/05	5.17	254.10	ND		
		05/04/05	2.80	256.47	ND		
		08/12/05	6.30	252.97	ND		
		12/12/05	8.32	250.95	ND		
		03/02/06	2.70	256.57	ND		
1414 OD	050.07	06/12/06	4.05	255.22	ND		
MW-6D	259.27	09/05/06	7.90	251.37	ND		
		12/04/06	7.37	251.90	ND		
		02/26/07	4.35	254.92	ND		
		06/11/07	5.93	253.34	ND		
		09/11/07	7.46	251.81	Odor		
		12/10/07	7.80	251.47	ND		
		01/17/05	3.42	255.40	ND		
		05/04/05	1.44	257.38	ND		
	258.82	08/12/05	4.80	254.02	ND		
		12/12/05	6.64	252.18	ND		
		03/02/06	0.95	257.87	ND		
B4147 = 0		06/12/06	2.55	256.29	ND		
MW-7S		09/05/06	6.30	252.54	ND		
		12/04/06	5.60	253.24	ND		
	258.84	02/26/07	2.61	256.23	ND		
		06/11/07	4.32	254.52	ND		
		09/10/07	5.76	253.08	ND		
		12/10/07	5.62	253.22	ND ND		
		01/17/05	5.50	252.57	ND ND		
	I	0.,11,00	5.00				

Sunol, California							
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	(feet MSL)	LPH Thickness (feet)		
		05/04/05	1.45	256.62	ND		
	258.07	08/12/05	4.70	253.37	ND		
		12/12/05	7.40	250.67	ND		
		03/02/06	5.10	252.97	Gasoline odor		
MW-7D		06/12/06	3.66	255.14	Gasoline odor		
		09/05/06	7.19	251.61	ND		
		12/04/06	6.64	252.16	ND		
	258.80	02/26/07	3.65	255.15	ND		
		06/11/07	4.95	253.85	ND		
		09/11/07	6.59	252.21	Odor		
		12/10/07	6.38	252.42	ND		
		01/17/05	3.45	255.39	ND		
		05/04/05	1.25	257.59	ND		
MW-8	258.84	08/12/05	4.92	253.92	ND		
		12/12/05	6.67	252.17	ND		
		03/02/06	0.78	258.06	ND		
		06/12/06	2.44	256.40	ND		
		09/05/06	6.45	252.39	ND		
		12/04/06	5.80	253.04	ND		
		02/26/07	2.68	256.16	ND		
		06/11/07	4.32	254.52	ND		
		09/10/07	5.80	253.04	ND		
		12/10/07	5.54	253.30	ND		
		06/12/06	2.14	256.27	ND		
		09/05/06	5.92	252.49	ND ND		
MN4/ 00	050.44	12/04/06	5.21	253.20	ND NB		
MW-9S	258.41	02/26/07	3.28	255.13	ND ND		
		06/11/07	3.70	254.71	ND ND		
		09/11/07	5.26	253.15	ND ND		
		12/10/07	5.06	253.35	ND		
		06/12/06	3.16 7.12	255.70	ND		
		09/05/06		251.74	ND ND		
MW-9D	250.06	12/04/06	6.58	252.28 255.34	ND Chann		
MM-9D	258.86	02/26/07	3.52		Sheen		
		06/11/07 09/11/07	5.19	253.67 252.19	Sheen		
		12/10/07	6.67 6.71	252.19	Odor ND		
		06/12/06	3.46	255.48	ND		
		09/05/06	7.37	251.57	ND ND		
		12/04/06	6.85	252.09	ND		
MW-9LF	258.94	02/26/07	3.79	255.15	ND ND		
14144-3L1	250.34	06/11/07	8.94	250.00	ND		
		09/11/07	7.00	251.94	ND		
		12/10/07	7.04	251.94	ND		
		06/12/06	5.00	255.67	ND ND		
		09/05/06	5.62	255.05	ND ND		
		12/04/06	5.04	255.63	ND ND		
MW-10S	260.67	02/26/07	3.88	256.79	ND ND		
	200.07	06/11/07	4.84	255.83	ND ND		
		09/11/07	4.94	255.73	ND ND		
		12/10/07	4.90	255.77	ND		
		06/12/06	5.42	255.22	ND ND		
		09/05/06	8.92	251.72	ND		
	ı	23,00,00	0.02	202	110		

			Sunol, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet
		12/04/06	8.18	252.46	ND
MW-10D	260.64	02/26/07	5.40	255.24	ND
		06/11/07	7.13	253.51	ND
		09/11/07	8.50	252.14	ND
		12/10/07	8.81	251.83	ND
		06/12/06	5.99	254.59	ND
		09/05/06	9.65	250.93	ND
		12/04/06	9.02	251.56	ND
MW-10LF	260.58	02/26/07	6.23	254.35	ND
		06/11/07	7.86	252.72	ND
		09/11/07	9.24	251.34	ND
		12/10/07	9.73	250.85	ND
		06/12/06	3.69	255.27	ND
		09/05/06	7.69	251.27	ND
	Ī	12/04/06	7.28	251.68	ND
MW-11S	258.96	02/26/07	4.20	254.76	ND
		06/11/07	5.72	253.24	ND
	Ī	09/11/07	7.10	251.86	ND
	Ī	12/10/07	7.27	251.69	ND
	258.98	06/12/06	3.70	255.28	ND
		09/05/06	8.50	250.48	ND
		12/04/06	7.65	251.33	ND
MW-11D		02/26/07	4.48	254.50	Sheen
		06/11/07	6.14	252.84	Sheen
		09/12/07	8.08	250.90	Sheen
		12/10/07	7.75	251.23	ND
MW-11LF	259.01	06/12/06	3.90	255.11	ND
		09/05/06	7.84	251.17	ND
		12/04/06	7.75	251.26	ND
		02/26/07	4.69	254.32	ND
	Ī	06/11/07	6.15	252.86	ND
	Ī	09/10/07	7.70	251.31	ND
		12/10/07	7.92	251.09	ND
		06/12/06	5.77	256.92	ND
	Ī	09/05/06	10.51	252.18	ND
		12/04/06	10.00	252.69	ND
MW-12S	262.69	02/26/07	6.45	256.24	ND
		06/11/07	7.95	254.74	ND
		09/10/07	9.54	253.15	ND
		12/10/07	8.95	253.74	ND
		06/12/06	5.69	257.01	ND
		09/05/06	10.40	252.30	ND
		12/04/06	9.94	252.76	ND
MW-12D	262.70	02/26/07	6.47	256.23	ND
		06/11/07	7.96	254.74	ND
		09/11/07	9.45	253.25	ND
		12/10/07	8.74	253.96	ND
		06/12/06	5.92	256.98	ND
		09/05/06	10.69	252.21	ND
		12/04/06	10.25	252.65	ND
	262.00	02/26/07	6.65	256.25	ND
MW-12LF	262.90	02/20/07	0.00		
MW-12LF	262.90	06/11/07	8.10	254.80	ND

Table 2 Historical Groundwater Gauging Data

Mission Valley Rock Company Sunol, California

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		12/10/07	9.02	253.88	ND

Notes:

Depth to water and liquid phase hydrocarbon (LPH) thickness reported in feet below measurement point.

Groundwater elevations reported in feet above mean sea level (msl).

Adjusted groundwater elevation = Measurement Point Elevation - Depth to Water + (LPH Thickness x 0.75)

ND = Not Detected

TOC = Top of Casing

MSL = Mean Sea Level

LPH = Liquid-Phase Hydrocarbon

Table 3 Groundwater Analytical Results Fourth Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Tert-amyl methyl ether TAME (ug/L)	Tert-butyl alcohol (ug/L)	MTBE (ug/L)
MW-1	12/11/07	ND<500	890	6.60	0.54	0.50	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-2S	12/11/07	16000	ND<50	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<10	ND<50	16
MW-2M	12/11/07	ND<500	370	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	9.4
MW-2D	12/11/07	ND<500	250	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	22
MW-3	12/11/07	ND<500	180	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	24
MW-4S	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-4D	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-5S	12/10/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.6
MW-5D	12/11/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.2
MW-6S	12/11/07	5200	680	1.3	ND<0.5	12.0	1.1	ND<2.0	ND<10	28
MW-6D	12/12/07	ND<500	250	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	19
MW-7S	12/10/07	ND<500	170	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-7D	12/12/07	2500	19000	64	160	1100	2000	ND<2.0	ND<10	ND<1.0
MW-8	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9S	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9D	12/12/07	3400	57000	880	5800	2800	9100	ND<2.0	ND<10	ND<1.0
MW-9LF	12/11/07	ND<500	310	ND<0.5	0.89	ND<0.5	2.22	ND<2.0	ND<10	ND<1.0
MW-10S	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10D	12/11/07	ND<500	1300	ND<0.5	ND<0.5	0.61	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10LF	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.6
MW-11S	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.5

Table 3 Groundwater Analytical Results Fourth Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Tert-amyl methyl ether TAME (ug/L)	Tert-butyl alcohol (ug/L)	MTBE (ug/L)
MW-11D	12/12/07	48000	7700	3.0	3.0	11	30	ND<2.0	ND<10	7.0
MW-11LF	12/10/07	ND<500	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	86
MW-12S	12/10/07	ND<500	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12D	12/10/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12LF	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

Notes:

Analyses for Total Petroleum Hydrocarbons as Gasoline and Diesel (TPHg and TPHd, respectively) were performed using EPA Method No. 8015M.

Analyses for benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl ether (MTBE), Tert-amyl methyl ether (TAME), and Tert-butyl alcolhol (TBA) were performed using EPA Method No. 8260B. Di-isoproppyl ether (DIPE), and Ethyl tert-butyl ther (ETBE) were not detected above laboratory detection limits.

Total xylene concentrations were determined by adding m,p-xylene and o-xylene from laboratory report.

ug/L = Micrograms per Liter

ND = Non-detect at or above corresponding laboratory reporting limit.

Table 4 Historical Groundwater Analytical Results Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	06/23/98	0.1	3,100	19	2.3	91	48	ND<2.0	ND<10	110
	10/01/98	0.1	2,300	3.1	4.2	5.0	15	ND<2.0	ND<10	ND<0.5
	01/05/99	350	ND<50	12	7.5	20	6.2	ND<2.0	ND<10	ND<5.0
	03/29/99	190	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	210	1,800	1.2	0.9	1.5	4.6	ND<2.0	ND<10	ND<0.5
	09/17/99	62	180	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	12/27/99	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	03/22/00	86	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/30/00	70	450	2.1	ND<0.5	2.1	1.4	ND<2.0	ND<10	7.6
	09/14/00	ND<50	850	5.4	ND<0.5	9.4	2.6	ND<2.0	ND<10	9.8
	12/20/00	ND<1,000	370	5.3	ND<1.0	2.7	ND<3.0	ND<2.0	ND<10	55
	03/22/01	ND<1,000	700	ND<1.0	ND<1.0	1.4	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/27/01	ND<1,000	170	ND<1.0	ND<1.0	1.2	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/21/01	ND<1,000	730	1.4	ND<1.0	7.6	1.2	ND<2.0	ND<10	ND<1.0
	12/27/01	1000	500	15	ND<1.0	27	5.5	ND<2.0	ND<10	ND<1.0
	03/29/02	12000	29000	50	ND<25	960	290	ND<2.0	ND<10	ND<25
	06/13/02	ND<1,000	1400	3.5	ND<1.0	42	7.9	ND<2.0	ND<10	ND<1.0
MW-1	09/27/02	1400	760	ND<1.0	ND<1.0	4.3	1.1	ND<2.0	ND<10	ND<1.0
	12/03/02	ND<1,000	1600	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/31/03	ND<1,000	620	1.2	ND<1.0	12	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/27/03	ND<1,000	0.61	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/19/03	ND<1,000	1.2	ND<1.0	ND<1.0	6.4	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/22/03	ND<1,000	0.49	ND<1.0	ND<1.0	3	ND<1.0	ND<2.0	ND<10	ND<1.0
	01/17/05	ND<50	63	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	1200	ND<0.5	ND<0.5	8.5	1.2	ND<2.0	ND<10	ND<1.0
	08/12/05	ND<50	410	ND<0.5	ND<0.5	2.4	ND<0.5	ND<2.0	ND<10	ND<1.0
	12/13/05	ND<50	750	3.8	ND<0.5	4.2	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	96	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	920	ND<0.5	ND<0.5	5.3	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/05/06	ND<50	1200	1.4	ND<0.5	1.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/27/07	ND<500	430	1.1	ND<0.5	7.9	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	370	0.9	ND<0.5	17	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	270	0.80	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/11/07	ND<500	890	6.60	0.54	0.50	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline
TAME: tert amyl methyl ether
TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

					Surioi, Ca	III OTTTIC				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	06/23/98	12,000	2,500	0.68	ND<0.50	1.2	0.57	ND<2.0	ND<10	14
	10/01/98	4,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	01/05/99	38,000	ND<5,000	ND<50	ND<50	51	190	ND<2.0	ND<10	ND<500
	03/29/99	580	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	4,500	24,000	38	27	41	98	ND<2.0	ND<10	ND<0.5
	09/17/99	24,000	1,400	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	27
	12/27/99	2,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	03/22/00	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/30/00	1,700	270	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	17
	09/14/00	5,800	130	ND<0.5	ND<0.5	ND<0.5	0.94	ND<2.0	ND<10	12
	12/20/00	19,000	1700	ND<50	ND<50	ND<50	ND<150	ND<2.0	ND<10	ND<250
	03/22/01	610000	3300	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	9
MW-2	06/27/01	8800	1800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	6.7
	09/21/01	530000	7000	ND<50	ND<1.0	ND<50	ND<1.0	ND<2.0	ND<10	ND<50
	12/27/01	27000	310	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	62
	03/29/02	65000	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	30
	06/13/02	130000	460	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	24
	09/27/02	480000	290	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	16
	12/03/02	61000	1800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	10
	03/31/03	5000	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	14
	06/27/03	8.1	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	20
	09/19/03	85	12	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	15
	12/22/03	65	12	NDC1.0	NDC1.0	NS NS	NDC1.0	ND<2.0	NDC10	13
	01/17/05					Abandone	nd			
	01/17/05	1100	730	ND<0.5	ND<0.5	1.0	3.5	ND<2.0	ND<10	50
	05/04/05	8200	190	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	44
	08/12/05	6100	120	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	77
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	26
	03/03/06	5900	160	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	21
	06/13/06	8700	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	22
MW-2S	09/06/06	11000	190	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	29
	12/05/06	18000	ND<50	ND<0.5	ND<50	ND<0.5	ND<1.0	ND<2.0	ND<10	38
	02/28/07	6600	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	33
	06/12/07	3700	90	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	12	19
	09/11/07	17000	ND<50	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<10	ND<50	46
	12/11/07	16000	ND<50	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<10	ND<50	16
	01/17/05	4100	3300	6.5	1.7	89	82.2	ND<2.0	ND<10	38
	05/04/05	ND<50	610	ND<0.5	ND<0.5	16	10.6	ND<2.0	ND<10	32
	08/12/05	ND<50	460	ND<0.5	ND<0.5	2.5	1.2	ND<2.0	ND<10	56
	12/12/05	ND<50	410	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	28
	03/03/06	ND<50	290	ND<0.5	ND<0.5	0.5	ND<1.0	ND<2.0	ND<10	17
B. 83.4	06/13/06	ND<50	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-2M	09/06/06	1900	330	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	22
	12/05/06	6100	340	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	37
	02/27/07	ND<500	310	ND<0.5	ND<0.5	0.65	ND<1.0	ND<2.0	ND<10	25
	06/12/07	350	290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	14
	09/11/07	4900	220	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	14
	12/11/07	ND<500	370	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	9.4

TPHd: diesel

TPHg: gasoline
TAME: tert amyl methyl ether
TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

					Sunoi, Ca	IIIOITIIA				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	01/17/05	1800	1000	6.5	ND<0.5	80	71	ND<2.0	ND<10	62
	05/04/05	ND<50	250	ND<0.5	ND<0.5	4.6	1.6	ND<2.0	ND<10	72
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.8	1.1	ND<2.0	ND<10	51
	12/12/05	ND<50	200	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	39
	03/03/06	ND<50	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	38
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	36
MW-2D	09/06/06	1700	230	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	27
	12/05/06	3000	150	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	37
	02/27/07	1100	140	ND<0.5	ND<0.5	0.63	1.1	ND<2.0	ND<10	25
	06/12/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	19
	09/11/07	4600	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	15
	12/11/07	ND<500	250	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	22
	06/23/98	12,000	300	0.80	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	150
	10/01/98	6400	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	01/05/99	5,600	ND<100	1.6	1.4	ND<1.0	ND<1.0	ND<2.0	ND<10	110
	03/29/99	150	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	09/17/99	1,500	230	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	89
	12/27/99	58	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	03/22/00	94	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/30/00	240	170	ND<0.5	0.52	ND<0.5	ND<0.5	ND<2.0	ND<10	100
	09/14/00	850	170	0.81	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	68
	12/20/00	1600	230	ND<1.0	ND<1.0	ND<1.0	ND<3.0	ND<2.0	ND<10	80
	03/22/01	1100	140	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	83
	06/27/01		_			NS	<u> </u>		-	
	09/21/01	3800	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	45
	12/27/01	3100	340	1.4	1.1	10	3.8	ND<2.0	ND<10	45
	03/29/02	1500	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	50
	06/13/02	ND<1000	160	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	36
MW-3	09/27/02	ND<1000	ND<1000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	43
	12/03/02	ND<1000	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	41
	03/31/03	ND<1000	ND<100	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.0	ND<10	92
	06/27/03	1200	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	93
	09/19/03	ND<1000	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	65
	12/22/03	5700	190	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	56
	01/17/05	ND<50	590	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	47
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	190
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	110
	12/13/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	75
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	140
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	100
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	67
	12/05/06	ND<50	82	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	39
	02/27/07	56	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	43
	06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	45
	09/11/07	ND<500	60	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	27
	12/11/07	ND<500	180	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	24

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

				ı	Surioi, Ca	illottila				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	01/17/05	ND<50	65	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.2	5.8	ND<2.0	ND<10	ND<1.0
ŀ	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
•	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-4S	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	01/17/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
•	08/12/05	ND<50	410	ND<0.5	2.2	10	25.5	ND<2.0	ND<10	ND<1.0
•	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	7.8
MW-4D	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
ŀ	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
ŀ	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
•	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	01/17/05	ND<50	ND<50	ND<0.5	4.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
•	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
-	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	5.8
•	12/12/05	ND<50	ND<50	3.4	1.3	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
•	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
NAVA 50	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-5S	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	5.4
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	5.8
	02/26/07	360	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	3.2
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	2.2
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.0
	12/10/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.6
	01/17/05	ND<50	210	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	10
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	6.4
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.7
MW-5D	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	5.0
OC-AAIM	09/05/06	ND<50	ND<50	ND<0.5	0.60	ND<0.5	ND<1.0	ND<2.0	ND<10	5.3
	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.9
	02/28/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.6
	06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.4
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.2
	12/11/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.2

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

01/ 05/ 08/ 12/	Date /17/05	TPHd (ug/L)	TPHg (ug/L)	Benzene	Toluene	Ethylbenzene		TANE	TDA	
05/ 08/ 12/			(**3/ =/	(ug/L)	(ug/L)	(ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
05/ 08/ 12/		2800	1600	6.1	ND<0.5	3.6	2.3	ND<2.0	ND<10	160
08/ 12/	5/04/05	ND<50	750	ND<0.5	ND<0.5	3.0	ND<0.5	ND<2.0	ND<10	160
12/	3/12/05	1300	1100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	410
	2/12/05	ND<50	1000	ND<0.5	ND<0.5	1.4	ND<1.0	ND<2.0	ND<10	190
I 03/	3/03/06	ND<50	940	ND<0.5	ND<0.5	4.9	ND<1.0	ND<2.0	ND<10	60
06/	6/14/06	1300	650	ND<0.5	1.7	1.9	2.0	ND<2.0	ND<10	ND<1.0
IVIVV-65	9/06/06	2400	750	ND<0.5	ND<0.5	0.7	0.5	ND<2.0	ND<10	200
	2/05/06	2600	1000	ND<0.5	ND<0.5	1.2	ND<1.0	ND<2.0	ND<10	110
	2/27/07	3000	1100	0.79	ND<0.5	1.1	ND<1.0	ND<2.0	ND<10	54
	6/12/07	490	1200	ND<0.5	ND<0.5	1.6	ND<1.0	ND<2.0	ND<10	47
	0/11/07	930	370	ND<0.5	ND<0.5	1.3	ND<1.0	ND<2.0	ND<10	48
	2/11/07	5200	680	1.3	ND<0.5	12.0	1.1	ND<2.0	ND<10	28
	/17/05	2100	1200	10	ND<0.5	1.6	2.2	ND<2.0	ND<10	180
	5/04/05	ND<50	360	2	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	360
	3/12/05	ND<50	480	2	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	270
	2/12/05	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	92
	3/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	93
	6/14/06	ND<50	130	ND<0.5	3.0	1.1	2.6	ND<2.0	ND<10	69
IVIVV-61)	9/06/06	ND<50	230	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	74
	2/06/06	1300	500	0.98	8.1	16	38.8	ND<2.0	ND<10	59
	2/27/07	470	150	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	48
	6/13/07	ND<500	180	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	39
	9/12/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	28
	2/12/07	ND<500	250	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	19
	/17/05	ND<50	12000	10	89	590	1670	ND<2.0	ND<10	ND<1.0
	5/04/05	520	1600	ND<0.5	ND<0.5	31	18.4	ND<2.0	ND<10	ND<1.0
	3/12/05	ND<50	660	ND<0.5	ND<0.5	5.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	2/12/05	ND<50	610	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	3/03/06	ND<50	630	1.1	9	31	78	ND<2.0	ND<10	ND<1.0
	6/14/06	ND<50	430	ND<0.5	ND<0.5	6.1	14.5	ND<2.0	ND<10	ND<1.0
IVIVV-/5	9/07/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	2/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	2/26/07	ND<500	55	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	6/11/07	ND<500	64	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	0/10/07	ND<500	76	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	2/10/07	ND<500	170	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	/17/05	ND<50	23000	350	1000	1800	5200	ND<2.0	ND<10	ND<1.0
	5/04/05	140<50	23000	330	1000	NS	3200	ND\Z.0	NDC10	140<1.0
	3/12/05	37	83000	550	2200	4400	10600	ND<2.0	ND<10	ND<50
	2/12/05	150000	1300000	640	3100	21000	54800	ND<2.0	ND<10	ND<50
	3/03/06	45000	71000	420	2400	4400	11300	ND<2.0	ND<10	ND<1.0
	6/14/06	ND<50	160000	310	2400	4500	9800	ND<2.0	ND<10	ND<1.0
MW-/D	9/07/06	22000	71000	360	8600	33000	87000	ND<2.0	ND<10	ND<1.0
	2/06/06	12000	58000	160	1300	3900	5800	ND<2.0	ND<10	ND<1.0
	2/28/07	790	6800	29	51	460	491	ND<2.0	ND<10	ND<1.0
	6/13/07	23000	100000	270	950	4000	950	ND<2.0	ND<10	ND<1.0
	9/13/07	3500	15000	72	340	1300	1940	ND<2.0	ND<10	ND<1.0
	2/12/07	2500	19000	64	160	1100	2000	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

-			l		Surioi, Ca	monna				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	01/17/05	ND<50	120	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	12/12/05	830	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MANA/ O	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-8	09/07/06	ND<50	ND<50	ND<0.5	3.3	ND<0.5	5.5	ND<2.0	ND<10	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	1300	8.6	24	40	29.8	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	330	ND<0.5	ND<0.5	3.0	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9S	12/05/06	ND<50	190	ND<0.5	ND<0.5	0.76	ND<1.0	ND<2.0	ND<10	ND<1.0
10100-93	02/27/07	ND<500	130	0.79	0.58	8.4	1.0	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	210	0.76	ND<0.5	5.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	52	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	13	88000	5500	15000	4200	15000	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	76000	3200	13000	2700	9200	ND<2.0	ND<10	ND<1.0
	09/07/06	5400	58000	1800	7400	2400	8000	ND<2.0	ND<10	ND<1.0
MW-9D	12/06/06	9100	170000	1800	6700	3400	7400	ND<2.0	ND<10	ND<1.0
10100-35	02/28/07	4500	210000	1900	6200	2400	9000	ND<2.0	ND<10	ND<1.0
	06/13/07	11000	42000	1600	5100	2600	2131	13	39	ND<1.0
	09/12/07	4400	36000	990	5700	2800	4600	ND<2.0	30	ND<1.0
	12/12/07	3400	57000	880	5800	2800	9100	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	5400	12	17	190	150	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	1800	13	17	30	36	ND<2.0	ND<10	ND<1.0
_	09/07/06	ND<50	1100	58	23	31	58	ND<2.0	ND<10	ND<1.0
MW-9LF	12/05/06	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	31
	02/27/07	ND<500	530	39	5	31	25.4	ND<2.0	ND<10	ND<1.0
_	06/12/07	ND<500	280	14	0.92	3.8	4.5	ND<2.0	ND<10	ND<1.0
_	09/11/07	ND<500	320	2.5	0.59	ND<0.5	1.94	ND<2.0	ND<10	ND<1.0
	12/11/07	ND<500	310	ND<0.5	0.89	ND<0.5	2.22	ND<2.0	ND<10	ND<1.0
<u> </u>	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
<u> </u>	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	93	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10S	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	54	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
<u> </u>	06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
		N.D	110	A 150	1 ID					
-	09/11/07 12/11/07	ND<500 ND<500	ND<50 ND<50	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<1.0 ND<1.0	ND<2.0 ND<2.0	ND<10 ND<10	ND<1.0 ND<1.0

TPHd: diesel

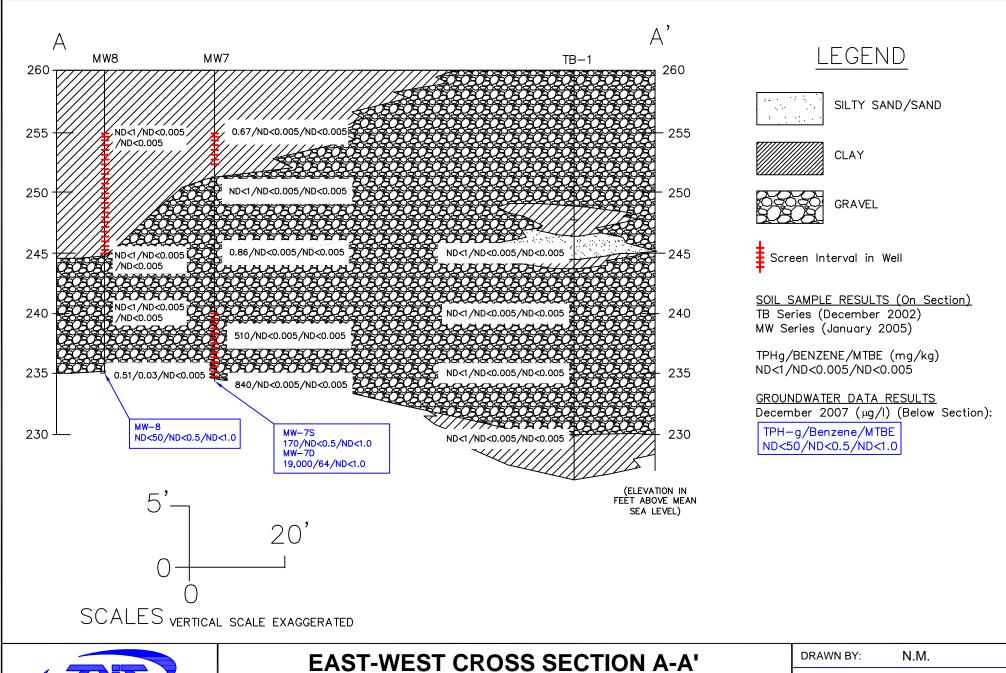
TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

				I	Surioi, Ca	illionna				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	05/05/06	ND<50	5900	24	9	260	23	ND<2.0	ND<10	ND<1.0
-	06/13/06	ND<50	2300	7.6	2.4	66	6.6	ND<2.0	ND<10	ND<1.0
-	09/07/06	ND<50	2400	3.9	2.0	54	11.89	ND<2.0	ND<10	ND<1.0
	12/06/06	ND<50	1600	2.5	1.0	28	4	ND<2.0	ND<10	ND<1.0
MW-10D	02/27/07	200	850	2.7	0.90	28	2.3	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	830	1.0	ND<0.5	14	2.0	ND<2.0	ND<10	ND<1.0
-	09/11/07	ND<500	780	ND<0.5	ND<0.5	1.7	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/11/07	ND<500	1300	ND<0.5	ND<0.5	0.61	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<500	860	ND<0.5	11	ND<0.5	4.6	ND<2.0	ND<10	ND<1.0
-	06/13/06	ND<50	780	2.0	2.4	1.1	4.2	ND<2.0	ND<10	ND<1.0
-		ND<50	780	1.7	1.6	1.7	7.8	ND<2.0	ND<10	ND<1.0
-	09/07/06	190	610	0.5	0.56	ND<0.5	1.5	ND<2.0	ND<10	3.7
MW-10LF	12/05/06									
-	02/27/07	ND<500	580	1.0	1.1 0.7	0.51	3.6	ND<2.0	ND<10	ND<1.0
-	06/12/07	260	440	0.5		ND<0.5	2.5	ND<2.0	ND<10	2.0
	09/11/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	3.0
	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.6
	05/05/06	ND<50	11000	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	8.4
-	06/14/06	ND<50	730	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
-	09/06/06	3300	1400	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	4.8
MW-11S	12/06/06	1700	130	0.71	ND<0.5	0.64	0.51	ND<2.0	ND<10	11
-	02/27/07	540	300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.3
	06/12/07	ND<500	1800	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.3
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.8
	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.5
	05/05/06	ND<50	13000	20	20	26	77	ND<2.0	ND<10	47
-	06/14/06	18000	6500	12	4.4	11	22	ND<2.0	ND<10	26
-	09/06/06	210000	33000	25	30	28	97	ND<2.0	ND<10	31
MW-11D	12/06/06	190000	2100	15	23	29	101	ND<2.0	ND<10	19
	02/28/07	13000	7400	8.4	16	17	54	ND<2.0	ND<10	18
-	06/13/07	6700	11000	6.2	7	13	39	ND<2.0	ND<10	15
-	09/12/07	21000	3000	3.6	4.0	7.9	22	ND<2.0	ND<10	8.5
	12/12/07	48000	7700	3.0	3.0	11	30	ND<2.0	ND<10	7.0
-	05/05/06	ND<50	1300	ND<0.5	ND<0.5	ND<0.5	3	ND<2.0	ND<10	250
_	06/14/06	1100	99	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	240
_	09/06/06	5300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	160
MW-11LF	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	240
10100 11121	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	110
_	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	110
_	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	13	190
	12/10/07	ND<500	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	86
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	81	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12S	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	210	ND<1.0
14144-123	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
Ţ	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	19	ND<1.0
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/10/07	ND<500	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

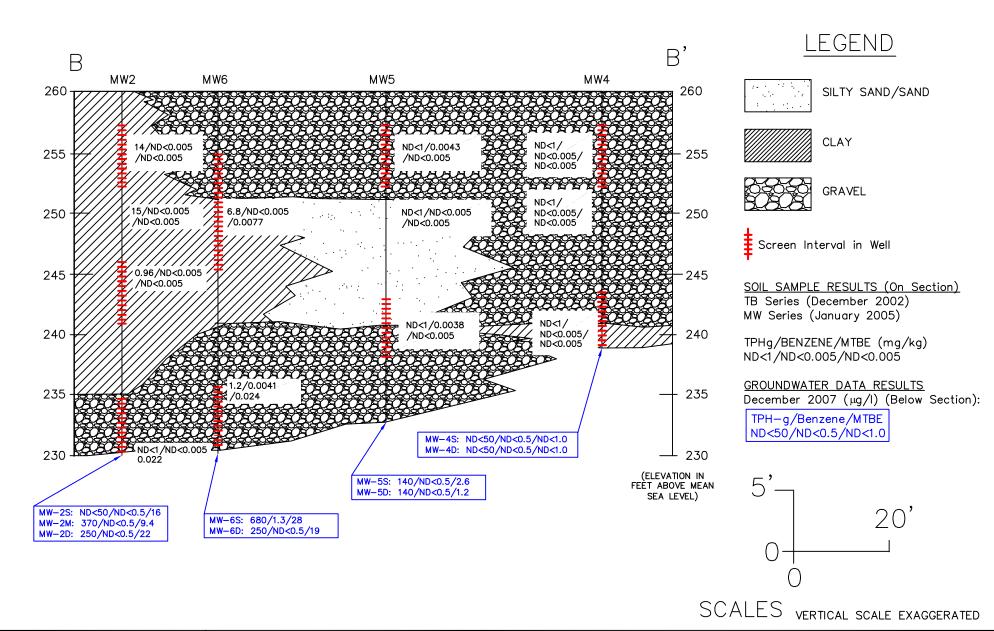

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12D	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
IVIVV-12D	02/28/07	ND<500	51	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/10/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12LF	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
IVIVV-12LF	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

APPENDIX A CROSS SECTIONS



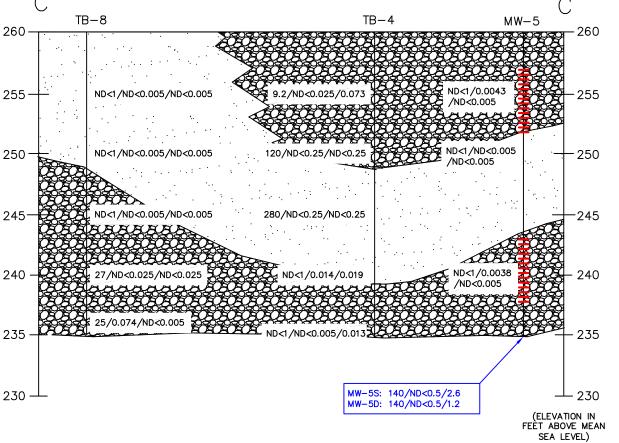
HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA DRAWN BY: N.M.

REVIEWED BY: P.M.

PROJECT: EM5009C

DATE: JANUARY 2008

SANTA ANA, CALIFORNIA 92705


(714) 560-8200 (714) 560-8235 FAX

EAST-WEST CROSS SECTION B-B'

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA

	DRAWN BY:	N.M.	
I	REVIEWED BY:	P.M.	
	PROJECT:	EM5009C	
I	DATE: JA	NUARY 2008	

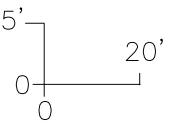
LEGEND TB-8 TB-4

SILTY SAND/SAND

GRAVEL

Screen Interval in Well

SOIL SAMPLE RESULTS (On Section)


TB Series (December 2002) MW Series (January 2005)

TPHq/BENZENE/MTBE (mq/kg) ND<1/ND<0.005/ND<0.005

GROUNDWATER DATA RESULTS

December 2007 (µg/I) (Below Section):

TPH-q/Benzene/MTBE ND<50/ND<0.5/ND<1.0

SCALES

VERTICAL SCALE EXAGGERATED

(714) 560-8200 (714) 560-8235 FAX

NORTH-SOUTH CROSS SECTION C-C'

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	JANUARY 2008	

APPENDIX B SAMPLING DATA SHEETS

Project Name: Mission Valley Rock Date: 12-10-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 45 Weather: Screen: **Measurement Point Description: TOC North** Pump Intake: 7 Depth to Water Depth to Three (3) **Well Total Depth** Column LNAPL LNAPL Thickness Above **Static Water** One (1) Casing Casing Screen (ft-bmp) (ft-bmp) Height Screen Level (ft-bmp) (ft-bmp) Volume (gallons) Volumes Volume (ft) Volume (gallons) NA 5.35 8.35 3.0 NA Gallons/Foot Fleid Equipment: Horiba, 2 stage pump Well Diameter (in) Low-flow 0.75 2 6 Purge Method: -2 stage pump --Low- Flow 0.75 2 6 0.02 0.16 0.65 1.47 good Well Condition: Volume Water Flow Rate Time Casing / Screen Purged Dissolved Temperature Turbidity Conductivity Level pΗ ORP (gpm) Oxygen (gallons) (°C) (ft-bmp) (NTU) (S/M) **Observations** (mV) (ma/L)1210 d 5.38 7.58 1.81 16.3 0.46 2.62 -131 1212 CIEAR 250 5.38 7.79 17.6 0.44 9.2 1.41 - 148 1215 500 5.38 7.80 17.5 7.1 0.43 1.40 - 156 1217 750 17.4 5.38 7.81 6.9 PP.0 1.40 - 151 1220 1000 5.3B 7.82 17.3 7.4 44.0 1.39 -152 Purge Start 80% Purge End **Total Casing** Average Flow Total Gallons Water Level Sample Recovery Time Time Volumes (gpm) Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 1210 loour/win 1220 1000 11 _ 5.38 1224 MW-45 Notes:

Project N	lo.: E	M500	90	Valley								10-0					
Well Iden				1W-4								r. Mich	ael Sc	henone	······································	ē	
Measure			losc	detion	TOCI	W					ther:			S	creen:		
	1			T.pt.on.	100	TOLL	l	 .		Pum	p intak	B: 19	<u> </u>	(··· · · · · · · · · · · · · · · · · ·
Depth LNAP (ft-bm	L	Stat		to later bmp)		rotal It-bm;	Depth o)	Wat Colui Heig (ft)	mn Jht	LNAPL Thick (ft-bmp)	II		1) Casiı • (gailo	ng Ca ns) Vol	sing umes ilons)	Above Screen Volume	Scr ee n Volume
NA		8	ماا.		23	38	· .			NA				(3		-	
Well D	iamete	r (in)			Ga	llons/	Foot		F	ield Equipment	Hor	iba, 2 s	tage po	mp vo	wa= 6 10	•••	
				0.75	2		4	6	P	urge Method:			np -				
0.75 2	<u> </u>		6	0.02	0.10	6	0.65	1.47	M	Vell Condition:	900	-					····
Time	Casing /	Screen	P	olume 'urged allons)	Flow (gp		Wate Level (ft-bm)		pН	Temperature (°C)	Turbidit (NTU)		ductivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
240				ø		······	8.16	- 	81	18.4	7.0		30	(mg/L)			
242			2:	50		· · · · · · · · · · · · · · · · · · ·	8.16	. 7.	روی		5.1		28	2.47	-128	CLEA	Q
244			5	00			8.16		58		2.1	 -	<u> 28</u>	1.74	-139		·····
246		· · · · · · · · · · · · · · · · · · ·	7	50		- <u>.</u>	8.16		57		2.3		28	1.71	-141		
249			10	>00			8.10		ما5		2.0			1.70	-142		
												8.	28	1.70	-144	<u> </u>	
									.								· · · · · · · · · · · · · · · · · · ·
Purge Stan		rge En Time	ıd	Average (gpn	n)	Total	Gallons irged		Casi umes rged	s Hecovery	at S	er Level ampling (ft-bmp)	Coll	mple ection ime	Sam	ple Identificat	ion
Votes:	13	.49		111 ml	aim	(60	lmod	_	-		8	.16	130	>1	MW-	<u>на</u> .	

Page 3 of 26

Project No Project No				,						12-	*******					
Well Ident				-							: Mic	hael Sc	henone	······································	ŧ	
Measuren	ent Pol	nt Do	740 - D	> - TOO:	N44				Wea	ther:			3	creen:		
			scription	FIOC	MOLTH				Pum	p Intak	e: 6	′	(
Depth t LNAPL (ft-bmp	s	tatic	th to Water ft-bmp)		Total ft-bmp	Depth	Wate Colum Heigh (ft)	nn ht	LNAPL Thick (ft-bmp)			(1) Casir re (gaile	ns) Ca	sing umes lons)	Above Screen Volume	Screen Volume
NA		g . G	4	8	. 2_4				NA					_		
Well Di	ameter ((lm)		Ga	llons/	Foot		Fi	eid Equipment	l-ior		eleme en	mp Lo.	. 5)	-	-
		,	0.75	2		4	6	1-	urge Method:		age pu	 -	Low-		. w	····
0.75 2) 4	6	0.02	0.1	6	0.65	1.47	W	ell Condition:	٩٥						
Time	Casing / Scr	Be n	Volume Purged (gallons)	Flow (gp		Water Level (ft-bmp	p	Н	Temperature (°C)	Turbidit (NTU)		nductivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
320	·		ø			6.84	(p.1	Le.Y	18.5	٥٠٦		.28	(mg/L)			
328 336			125			6.80	(0.1	00	18.2	8.3		.28	3.48	- 10¢	CIEA	10
344			250	 -		6.89	و.ما	8	18.5	7.4		.29	3.24	- 114		
350	·		375			6.92	و.ق	57	18.4	6.9	0	.29	3.20	- 116		
	····		500		_	6.93	(6.5	ما 5	18.4	7.1	0	.29	3.17	- 117		
					— _			·		·						
Purge Start Time		∋ End ne		je Flow om)		Gallons irged	Total C Volun Purg	nes	Water Level	at S	er Level ampling (ft-bmp	Coll	mple ection me	San	nple Identificat	ion
1320	135	0	17 ml	min	50	OMI			Depth —						i depr	
iotes:				<u></u>						9	.93	13	>8	mw-	55 ·	

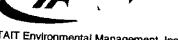
TAIT Environmental Management, Inc.

Project N				aney	NOCK					Date	: 12 ~	10-07	7				
Project i Neli ider												: Micha	el Sch	enone			
				<u>v - 7</u>						West				S.	creen:		
deasure	ment	POINT D	SCI	iption:	TOCK	lorth				Pum	p intake	: 8′		ŀ			
Depth LNAP (ft-bm	L	Dej Stati Lovel		ter	Well 1	otai [t-bmp		Water Colum Heigh (ft)	n	LNAPL Thick (ft-bmp)	4	One (1 Volume) Casin (gallor	g Ca: (s) Vok	e (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		5.6	٤		용.	84		: - 		NA						•	-
Well D)iame1	ter (in)			Gal	ions/f	oot		Fiel	ld Equipment:	-Hori	ba, 2 st	age pur	np Lev	- - 610	دب	
	X			0.75	2		4	6	Pur	ge Method:	- 2 st	age pun	ip	Low-	410 m	7	
0.75 2	<u> </u>	4 6		0.02	0.16		0.65	1.47	Wei	Il Condition:	G	ood					
Time	Casing	/ Screen	Pu (ga	lume rged Ilons)	Flow (gp		Wate Leve (ft-bm	l pl	Н	Temperature (°C)	Turbidity (NTU)		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1408			9				5.65		<u> </u>	18.3	4.5	٥.	وا ۱	3:10	- 103	CLE	AR.
1416			5 0				5.68			17.6	1.8	٥.	26	2.87	- 100	1	
1419			100			·	5.68			16.4	2.4	0.7	26	2.75	-111		***
	<u> </u>		156		·		5.68	6 4	12	16 2	1.4	0	26	2.75	- 113	↓ ↓	
					~	· · · · · ·	1				 ,						
								- 			 			*** ····			·
Purge Sta Time		Purge En Time		Average (gp	m)	Pu	G ellons rged	Total Co Volun Purg	nes	80% Recovery Water Leve Depth	at S	er Level ampling (ft-bmp)	Colle	nple ection me	Sar	mple Identifica	tion
1408	\	419		136m	\m	150	1200	-		_	5.	<u>40</u>	1428		1w-7		
lotes:								<u> </u>					1100	,	~~- I		

Project N											ate:	12-	10-6	7				
Project N Well Iden						 				P	repar	ed By:	Micha	el Sch	enone			
				MW-						V	leath)r:			34	creen:		
neasure:	ment	Point	Des	cription:	TOC	North				P	ump l	ntake:	12	,	1		r	
Depth LNAP (ft-bm	L	Sta		h to Water t-bmp)	Weli 1	rotal i t-bmp	7	Wate Colun Heigi (ft)	nn ht	LNAPL TI		- 1	One (1) /olume		g Car s) Volu	e (3) ling Imes lons)	Above Screen Volume	Screen Volume
NA		5	.54		15	34				N.	A						<u> </u>	<u> </u>
Well D	iamet	er (ir	1)		Ga	lions/i	Foot		F	ield Equipm	ent:	Horib	a, 2 sta	ige pur	mp - \	میں ۔ ح	Flow	
	~	· 		0.75	2		4	6	P	urge Method	d:	-2 sta	ge pum	p-	Low-	Flow	· · · · · · · · · · · · · · · · · · ·	<u></u>
0.75 2		4	6	0.02	0.1	5	0.65	1.47	W	Veli Conditio	n:	٥٥٠	<u>b</u>	·	······································	······································	······································	
Time	Casing	/ Scree	en	Volume Purged (gallons)	Flow (9p		Wate Leve (ft-bm	# p	οН	Temperatu (°C)		urbidity (NTU)	Condi	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)		ervations
1438		·		ø			5.54	i (o	اب	٦. ما ا	1	٠.٠	0.1	21	2:79	-118	clei	
1442 1446				500			5.54	(Lo -	81	1،01	3	5.3	0.1	7	2.75	-92	1	
450		·		1000			5.54	6 8	35	16.8	2	. 7	0.1	و	2.72	- 74		
730			- -	500			5.5	4 6.8	<u>ම</u>	16.8	3	5.0	0,	9	2.71	-70		
						····												
								 			-							
Purge Star Time		urge (B 		m) -		Gallons irged	Total C Volum Purç	mes	B Hecov	ery evel		Level npling it-bmp)	Colle	nple iction	Sa	Imple Identificat	ion
1438	1'	450	·	125 m	Min	150	lm o	_		_		5.5	4	145	2	MW- 9	; a :	
lotes;		,						<u> </u>						1.12.	0	10140-7	0	

Project Name: Mission Valley Rock Date: 12-10-07 Project No.: EM5009C Prepared By: Michael Schenone Weli Identification: MW-ILF Weather: Screen: **Measurement Point Description: TOC North** Pump Intake: 30 / Water Depth to Depth to Three (3) **Well Total Depth** Column **LNAPL Thickness** Above LNAPL Static Water One (1) Casing Casing Screen (ft-bmp) Height Screen (ft-bmp) Level (ft-bmp) (ft-bmp) Volume (galions) **Volumes** Volume Volume (ft) (gallons) NA 7.92 39.41 NA Gallons/Foot Field Equipment: Weil Diameter (in) Horiba, 2 stage pump Low - Flow 0.75 2 6 Purge Method: 2 stage pump -Low-flow 2 0.75 6 0.02 0.16 0.65 1.47 **Well Condition:** Good Volume Water Flow Rate Time Casing / Screen Dissolved Purged Temperature Conductivity **Turbidity** Level ρH ORP (gpm) Oxygen (°C) (gallons) (s/m) (NTU) Observations (ft-bmp) (mV) (mg/L)1510 ø 7.92 6.92 17.4 95 0.15 3.28 -131 CIBAL 1514 500 7.94 6.99 18.5 121 0.14 2.58 -159 1518 1000 7.94 7.02 18.5 118 VI. 0 2.51 - 164 1522 1500 7.94 7.03 18.4 112 0.14 2.50 ~166 80% Purge Start Purge End **Total Casing** Average Flow Total Gallons Water Level Sample Recovery Time Time Volumes -(mag) Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 125 m/. 1510 1522 1500ml 7.94 1521 MW-ILF Notes:

Project Name: Mission Valley Rock Date: 12-10-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW-125 Weather: Screen: **Measurement Point Description: TOC North** Pump Intake: (0.5' Water Depth to Depth to Three (3) **Well Total Depth** Above Column **LNAPL Thickness** LNAPL One (1) Casing Static Water Casing Screen (ft-bmp) Height Screen (ft-bmp) (ft-bmp) Level (ft-bmp) Volume (gallons) Volumes Volume Volume (ft) (galions) NA 8.95 11.04 NA Gallons/Foot Field Equipment: Horiba, 2 stage pump Low- 410w Well Diameter (in) 0.75 2 4 6 2 stage pump Low - flow Purge Method: 0.75 2 6 0.02 0.16 0.65 1.47 (2000) Well Condition: Volume Water Flow Rate Time Dissolved Casing / Screen Purged Temperature Turbidity Conductivity Level pΗ ORP (gpm) Oxygen (gallons) (°C) **Observations** (NTU) (Sm) (ft-bmp) (mV) (mg/L) 1536 Ø 8.95 **6.84** 17.4 35 0.21 3.68 -83 CLEAR 1538 250 9.16 4.81 17.3 33 0.21 3.84 -64 15 40 500 9.19 6.80 17.3 31 0.22 4.23 - 35 1542 750 9.22 6.90 17.3 32 0.22 4.29 -33 80% **Purge Start** Purge End **Total Casing** Average Flow Total Gallons-Water Level Sample Recovery Time Time Volumes (gpm) Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 125ml/min 1542 1536 750 ml 19.22 1544 MW-125 Notes:


Project N	lo ·	EMERA	00	y Noch	·				Date	12-	10-07	?		···		
			MW - 12						Prep	ared By:	Mich	nel Sci	1enone		f f	<u>-</u> -
Measure	mont	Dalas D	escription	-0					Weat	her:			8	creen:		
		FOIRE D	escription	: 100	Norti	1			Pum	Intake	: اله	,	1			
Depth LNAP (ft-bm	L	Stat	pth to c Water (ft-bmp)	ŀ	Total ft-bm	Depth p)	Wate Colur Heigi (ft)	nn ht	LNAPL Thick (ft-bmp)	ì	One (1 Volume) Casin	g Car	e (3) sing imes ions)	Above Screen Volume	Screen Volume
NA		&.	74	19	٥٢.				NA			-	(841	.0118)		
Well D	iamet	er (in)		G	llons	Foot		Fie	old Equipment:	Hori	ba, 2 s t	202 50	(TDC)	2 - f 1 c		-
			0.75	2		4	6	+	rge Method:		ige pun			2-410		
0.75 (2) .	4 6	0.02	0.1	6	0.65	1.47	·}	ell Condition:		ood	<u>.h</u>				
Time	Casing	/Screen	Volume Purged (gallons)	4	Rate m)	Water Level (ft-bmp		ж	Temperature (°C)	Turbidity (NTU)	Conc	luctivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
556			ø		· · · · <u>-</u>	8.80	ا. و)	<u> </u>	17.0		 		(mg/L)	(1114)		
ဝဝေ			500			8.82			 	82	0.	19	3.42	-15	دله	AL
400			1000			8.84			17.0	36	0.	דו	3.11	- 8	1	
1608		······································	1500						17-1	13	٥.	דו	3.02	- 3		
1612					<u>.</u>	8.85		78	17.1	12	0.	17	2.94	- 1	+	
			7000		·	B.86	(e -	76	17.1	10	0.	16	2.90	+1		······································
					··········		-	<u>_</u>		·····					-	
Purge Star Time		urge En Time	-(91	ge Flow		Gallons urged	Total C Volu Purg	mes	80% Recovery Water Level Depth	at Sa	r Level impling (ft-bmp)	Colle	nple oction me	Sam	ple Identificat	ion
1556	11	2١٥_	125	Juin.	26	00 MC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	8.9	36	الو:	20	NW-	i .	
Notes:												1.00		inm -	12 d .	

Project N	o.: F	MSOO	ion Valle	,					Date		-11-0					
Well Iden				12LF	 -		· · · · · · · · · · · · · · · · · · ·				y: Micha	el Sci	enone		, , , , , , , , , , , , , , , , , , , ,	*****
			escription	TOC	4-4					ther:				cr ee n:		
			-scription	1. 100	TOITH				Pum	p Intak	e: 35	<u>'</u>				······································
Depth (LNAP) (ft-bm)	L	Stati Level	pth to c Water (ft-bmp)	1	rotal t-bmp	Depth)	Wate Colur Helg (ft)	nn ht	LNAPL Thick (ft-bmp)	E E	One (1 Volume) Casin (gailor	g Ca 15) Vok	sing umes lons)	Above Screen Volume	Screen Volume
NA		9.0	2	39	·50	,			NA		_					
Well D	ia4			Ga	llons/	Foot		F	ield Equipment	He	riba 2 ot-	200 014				•
**************************************		or (110)	0.75	2		4	6	+-	urge Method:				mp Lo			
0.75 2) 4	‡ e	0.02	0.1	3	0.65	1.47		Veil Condition:		rage hou	<u>, Ai</u>				
Time	Casing	/ Screen	Volume Purged (gallons)	Flow (gp		Wate Leve (ft-bm	# F	рН	Temperature (°C)	Turbidi (NTU	ty Cond	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
934	<u> </u>		φ	ļ	<u></u> .	9.15	.ف	91	15.8	42	0.1	5	4.04	- 4		
937			500			9.30	ن م	78	15.8	25	0.1	6	3.69	4 4	معا	<u> </u>
940			1000	ļ		9.31	. وي	79	16.2	24	0.1		3:47	+8		
943			1560			9.30	۱ م	80	16.1	25	0.0		3.15	+ 9		
946	·		2000			9.30	٠ (. ا	80	15.9	23	0.	·	3.13			
													5.15	711		
									200/							
Purge Start Time	P	urge En Time	- (g	ge Flow pm) -		Gallons rged	Total C Volu Pur	mes	B Hecovery	at S	ter Level Sampling (ft-bmp)	Colle	nple ection me	San	nple Identificat	ion
934	0	146	ILET A	min	20	00 ~~				9	30	944				
Notes:				· · · · · · · · · · · · · · · · · · ·								ाप१	2	MW-1	2 LF	

Project					KOCK					Date	: 12-	11-07					
Project Well Ide										Prep	ared By	: Mich	ael Sch	enone			
				<u> - WL</u>						Weat	iher:			84	creen:		
measure	men	T POIN	Des	cription	TOC	North				Pum	p intak	: 19		ı			
Dopth LNAI (ft-bn	PL np)	St		h to Nater I-bmp)	Well 1	rotal I It-bmp	-	Wate Colum Hoigh (ft)	nn ht	LNAPL Thick (ft-bmp)		-	l) Casin • (gallor	g Cas (s) Volu	e (3) sing imes lons)	Above Screen Volume	Screer Volume
NA		7	.19		22	. نو ج	5 .			NA			_	_	-	-	_
Well i	Diam	eter (le	n)		Ga	ilons/l	Foot	•	F	leid Equipment:	Hor	iba, 2 s	lage pui	mp- Le:	w - 41	(C)	
				0.75	2		4	6	Pt	urge Method:		age pur		-	۱-۶ - د	•	
0.75	<u>2) </u>	4	6	0.02	0.1	6	0.65	1.47	W	ell Condition:	6	000					
Time	Cas	ing / Screi	en l	Volume Purged gallons)	Flow (gp		Wate Leve (ft-brr	o. g le	Н	Temperature (°C)	Turbidit (NTU)		ductivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
958	-			\$	-	·	7.30	ے (ړ.د	18	17.1	41	0.	29	3.19	-105	داده	
001				250			7.35	ا.ما ک	ا ما	17.4	38	٥.	38	2.94	-132	1	
007	_			500			7.3	5 (0.	70		33	٥.	39	2.88	-138		
010				000	·		7.35		11	17.4	30	0	39	2.75	-139		······································
0.0	-			000			7.39	5 (o	72	17.3	29	0.	40	2.78	-140	4	
																	
Purge Sta Time	art	Purge Tim		- (86			Gallons irged	Total C Volum Pung	mes	Mecovery	at S	er Level ampling (ft-bmp)	Colle	mple action me	Sam	nple Identifica	tion
958		1010)	83 ~	min	100	W.C				.ما		101	1	MW - 5	ــــــــــــــــــــــــــــــــــــــ	
lotes:													101	<u>- </u>	~w- 5	ρŒ	

TAIT Environmental Management, Inc.

Project N	No.: E	M500	on Valley						Dat	D: 12	~11-0	7				
Well Ider			MW - 3	-					Pre	pared B	y: Mich	nel Sc	henone	······································		
			escription	TOC	Mante	<u> </u>	<u> </u>			ther:				Screen:	····	
	1				1011				Pur	np Intak	e: 11'		1			
Depth LNAP (ft-bm	L	Static	oth to Water (ft-bmp)		Fotal ft-bm	Depth p)	Wat Colu Heig (ft	mn jht		1	One (1 Volume) Casir (gaile	ng C	ree (3) asing dumes	Above Screen Volume	Screen Volume
NA		7.9	5	<u>lu</u>	.70				NA				(94	elions)		
Well D	lamet	er (in)		Ga	llons/	Foot		F	Field Equipmen	t: Ho	riha 9 et					-
		_	0.75	2		4	6	_	Purge Method:					m-410		
0.75 2		6	0.02	0.16	3	0.65	1.47	+	Well Condition:		tage pun	ıb		-+100		
			Volume						Well Condition:	ی	ood					
Time	Casing	/ Screen	Purged (gallons)	Flow (gp		Wate Leve (ft-bm		рH	Temperature (°C)	Turbidi (NTU)		luctivity	Dissolved Oxygen		Obs	ervations
1024			ø			8.14	(g .	91	17.6	96	0.3		(mg/L)			
1028			500			8.23	(4.1	89		78			3.19	- 143	ر د د	26
1031			1000			8.23	٠ ما	81			0.		2.72	-148		
034			1500	······································		8.24	-+-			81	0.3		2.64	-152		
686			2000	·		8.24	- -	<u> </u>		84	0.		2.62	- (55		
						1.64	<u>.</u>	.78	17.8	79	0.	32	2.60	-156	V	
	···					 										
Purge Start Time		urge End Time	-(gp)	'')-		Gallons urged	Total (Volu Pun	ımes	s Hecovery	, atS	er Level ampling (ft-bmp)	Colle	mple ection	San	nple Identificat	ion
1024	10	38	143 ~	min	200	1m 0x	_			8	.24	100				······································
Notes:		ı		 								_ (00	יו !	MW-3		

Project N	o.: E	MSO	ngr	n Valley				····				12 - 11	<u>`</u>					
Weli Iden				MW-	100								Micha	el Sci	1enone	** ************************************		
Measure			Dec	redation:	TOC	N - 4L					Veat				84	creen:		
				-cription:	100	HOITE) 			!	nmb	intake:	<u> ඉ</u> ′		,			
Depth LNAP (ft-bm	L	Sta	tic	h to Water (t-bmp)		Total ft-bm _l	Depth p)	Wat Colu Heig (ft)	mn Jht	LNAPL TI			One (1 /olume		g Car 15) Volu	ee (3) sing imes ions)	Above Screen Volume	Screen Volume
NA		니.	90		٩	·28				N	A				(841)	- IONS)		
Well D	amet	er (in			Ga	lions/	Foot		F	ield Equipm	ent:	Horib	a 2 ct	200 0111	mp			•
		o. (111)		0.75	2		4	6		urge Metho	·				Low-			
0.75 2) 4	1	6	0.02	0.1	6	0.65	1.47	┪	Vell Conditio		ري صو		ib.	Cow-	-100		
Time	Casing	/ Screen		Volume Purged (gallons)		Rate m)	Water Level (ft-bmg		рН	Temperati		Turbidity (NTU)		uctivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
1053				ø	·		4.70		.49	1 16.0		47	<u> </u>		(mg/L)	(1114)		
1055			7	250			4.70		64	- 	 -	32.	0.3	<u> </u>	3.11	-132	دلوه	
1058			1	500		 -	4.70	 -	<u>.</u> 7ما.				 		3.27	-106		
1100				750	· · · · · · · · · · · · · · · · · · ·		4.71		75	,		33	0.1		3.26	-103		
103			1	1000			4.71		.76	1.0.5		24	0.		3.25	-94		
106		··		1250	· · · · · · · · · · · · · · · · · · ·		4.71		.77			18	0.	· ·	3.25	- 94		
108			ı	500			4.71		. // 7გ		·	17	0.		3.25	- 94		
5							4. (1	0.	00			الم	0.	3ዓ	3.24	-92	1	
Purge Start Time		urge E Time	nd ——	Average (gp)	m)-		Gallens irged	Total (Volu Pur		Hecov	ery evel	Water at San Time (f	npling	Colle	nple action me	Sam	ple Identifical	tion
lo53	11	80		100 m	min	150	w,					4.7	1	1110		MW-1	D e	

TAIT Environmental Management, Inc.

Project N				y ROCK	 -				Date	: 12	- 11-c	7				
Project N Well-Iden									Prep	ared By	Mich	nael Sch	enone		····	· · · · · · · · · · · · · · · · · · ·
			MW		····	······			Weat	her:	***		54	creen:		
Measure	ment Po	int De	scriptio	n: TOC	North	·			Pum	p intake	: 24	()	1			
Depth LNAP (ft-bm	L .	Static	th to Water (ft-bmp)	1	Total ft-bmp		Wate Colum Heigh (ft)	nn ht	LNAPL Thick (ft-bmp)			(1) Casin le (gailer	g Car 18) Volu	e (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		7.23)	2.9	9.5V	4.			NA					,	-	_
Weil D	iameter	(in)		Ga	llons/	Foot		F	ield Equipment:	Hori	ba. 2 s	stage ou	mp Lo	w = £1	(04)	
	<u> </u>	(0.75	2		4	6	P	urge Method:		age pu		ر سه د			
0.75 (2	4	6	0.02	0.1	6	0.65	1.47	W	fell Condition:	<u>(-</u>					<u> </u>	
Time	Casing / S	creen	Volume Purged (gallons)	/	Rate om)	Wate Leve (ft-bm	el p	Н	Temperature (°C)	Turbidit (NTU)		nductivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
1119			ø			7.45	7.0	9	18.1	7.5		.33	(mg/L) 3.31	-135		
122	<u> </u>		500	<u> </u>		7.53	2 6.0	19	18.0	5.4		·24	3.29	-138	رلو	عد
130			1000	-		7.57	ع.م) ع	34	18.0	4.3	O	. 24	3.21	-143		
134			1500		···	7.53	8.0 ﴿	32	17.9	1.8	0	-24	3.04	- 150		
131	 ,,.		2000	-		7.5	1 6.8	1	17.9	1,9	0	. 24	2.99	-153		
						-	- 									
Purge Star Time		ge End ime	-4	ige Flow		Callons irged	Total C Volur Purg	mes	Hecovery	at S	er Level ampling (ft-bmp	Colle	mple ection me	Sai	mple Identificat	tion
1119	11.	34	133	m hin	300	w_ 00	-		_	7.	54	113	7	N A 14 1 5 7	, , , , , , , , , , , , , , , , , , ,	
tes:		ı		<u> </u>	<u>'</u>		<u> </u>				<i>3</i> 7	113		MW-7	20	

Page 14 of 26

Depti Static I Level (fi 7 · O 4	MW - scription: h to Water t-bmp) 0.75 0.02 Volume	Well Tot (ft-b	ni Depth mp)	War Colu Heig (fr	imn ght t)	LNAPL T	Weathe Pump In hicknes emp)	ntake:	(0 ')ne (1) plume (el Schei Casing (gallons)	Three Cas	creen: De (3) Bing Imes Ions)	Above Screen Volume	
Depti Static I Level (fi 7.04	0.75 0.02 Volume	Well Tot (ft-b	ni Depth mp) Q	Colu Heig (fi	imn ght t)	LNAPL T	Weathe Pump In hicknes emp)	ntake:	(0 ')ne (1) plume (Casing	Three Ca: Voice (gail	ee (3) sing imes lons)	Screen Volume	Screen Volume
Depti Static I Level (fi 7 · O 4	0.75 0.02	Well Tot (ft-b	ni Depth mp) Q	Colu Heig (fi	imn ght t)	LNAPL T (ft-b	hickne emp)	ss Q Vo)ne (1) olume (Ca: Voit (gal	ing imes lons)	Screen Volume	
Static I Level (fi 7.04 or (in)	0.75 0.02	(ft-b	mp) Q	Colu Heig (fi	imn ght t)	(ft-b	omp)	Vo	omuke (Ca: Voit (gal	ing imes lons)	Screen Volume	
or (in)	0.75 0.02 Volume	Gallor 2	1s/Foot	6										. •
6 Screen	0.02 Volume	2	4	6		Field Equipm	ent:	·					-	•
6 Screen	0.02 Volume	+		6				-Horiba	2 sta	n a num		0-41		
Screen	Volume	0.16	0.65			Purge Metho		2 stage				- (100		
Screen			1 5.55	1.47	_ _	Nell Conditio		C-Co						
(Purged gallons)	Flow Rate (gpm)	Wate Leve	el le	pΗ	Temperati (°C)	ure Tu	rrbidity NTU)	Condu	CHAICA (Dissolved Oxygen	ORP	Obse	ervations
	ø			''- -	.71	18.1					(mg/L)	(mV)		
	500		7.35	3 6	.72					—— 			<u> </u>	re
	1000		7.41	. ن ا	.72			 +						,
	1606		7.4	7 (0	.73						<u></u>			
	2000		7.49	6.	72	18.2		- <u>-</u>				<u> </u>		
										1 /	.78	-169	<u> </u>	
rge End Time	- (gpn	1)	tal Gallons Purged	Volt	ume	s Recov	very Level	at Samp	gnik	Collectio	e on	Sam	ple Identificati	on
१०७	91 ml	min 2	.000 M1	_			-							
Ţ	ge End	Soo loos loos 2000 ge End Average (gpn	ge End Average Flow (gpm)	500 7.35 1000 7.41 1600 7.41 2000 7.49 7	500 7.38 6 7.44 6 7.47 6 7.49 7.49 6 7.49 7.	500 7.38 6.71 6.72 6.72 6.73 7.47 6.73 7.49 6.72 7.49 6.72 6.73 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6.72 6.73 6	Soo 7.38 6.72 18.3 18.2 18.3 1	Soo 7.38 6.71 18.1 2	Soo 7.38 6.71 18.3 0.9 1000 7.44 6.72 18.2 1.7 18.0 7.47 6.73 18.2 0.5 18.2 0.5 18.2 0.9 0.9 18.2 0.9 0.9 18.2 0.9 0.9 18.2 0.9 0	Soo 7.38 6.71 18.7 0.2 18.0 0.2 18.0 0.2 18.2 1.7 0.2 18.0 1.7 0.2 18.0 1.7 0.2 18.0 0.5 0.2 18.0 0.5 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.2 18.0 0.9 0.0	Soo 7.38 6.71 18.7 2.1 0.24 2 1000 7.44 6.72 18.2 1.7 0.24 2 1600 7.47 6.73 18.2 0.5 0.24 2 2 2 2 2 2 2 2 2	7.34 6.71 18.1 2.1 0.24 3.02	1.34 6.11 18.1 2.1 0.24 3.02 -162	Total Gallons Purged Pur

Project	No.: F	MSOO	ion Valle	<i>y</i>			·····		Date	: 12	-11-0	7				
Well Ide									Prep	ared By:	Micha	nel Sci	henone		· · · · · · · · · · · · · · · · · · ·	
	·		MW- escription	<u> 45</u>	N - 41				Wea	ther:			5	creen:		
	ŀ	OIII, D	oscapilor	100	HOLL)			Pum	p intake	: 10	1	l .			
Depth LNA! (ft-bn	PL,	Stati	pth to c Water (ft-bmp)		Total ft-bm;	Depth P)	Wate Colur Helg (ft)	mn ht	LNAPL Thick (ft-bmp)	1	One (1 Volume) Casin	g Ca 18) Vol	ee (3) sing umes	Above Screen Volume	Screen Volume
NA		5.0	Φ	12	. 20			•	NA				(84)	lions)		
Well I	Diamet	er (In)		Ga	llons/	Foot	-	F	ield Equipment	Horik	12 D at	***	mp L.		-	•
		(,	0.75	2		4	6	- 	urge Method:				Low-			
0.75	2) 4	ϵ	0.02	0.16	В	0.65	1.47	-	Vell Condition:							
Time	Casing	/ Screen	Volume Purged (gallons)	Flow (gp		Wate Leve (ft-bm	1 5	<u>—</u> _	Temperature (°C)	Turbidity (NTU)	Cond	uctivity	Dissolved Oxygen	ORP	11 box	ervations
1226			ď		·	5.25		. 0				<u> </u>	(mg/L)	(mV)	Cos	ervations
1229			504			5.30	 -		- 3	146	0.3	<u> </u>	2.87	-154	mure	٧
1233			1000			5.30			 	128	0.3		2.74	- 140		
1237			1500			 			17.4	38	0.3	57	2.65	-126	Clear	e
1240			2000			5.30	(. · ·			5 5	0.	37	2.67	-122		
244			2500			 	7. ما	<u> </u>	17.4	52	0.3	7	2.46	-120	1	
						5-30	6.7	<u> </u>	٧٠.٧	47	0.3	7	2.44	-118	1	
Purge Stal Time		irge End Time	_(gr			Callons irged	Total C Volui Purg	mes	Recovery	at Sa	Level mpling ft-bmp)	Colle	nple oction	Sam	pple Identificati	on
l Z Z Lp Notes:	17	244	139 ~	min	250	20 21				5.	30	1246	2	nw-) e	····· <u>·</u> ·······

TAIT Environmental Management, Inc.

Project N			ion Valle 9C	<u>,</u>	<u> </u>				Date		11-07							
Well Iden			MW-	1 - =	<u>.</u>					ared By:	Micha	el Sci	enone			···		
			escription	TOC	Ma-41					Weather: Screen:								
				. 100	NOIL	1			Pum	p intake:	13/	,	ı					
Depth LNAP (ft-bm	L	Static Water			Well Total Depth (ft-bmp)			or nn ht	n LNAPL Thickness		One (1) Casing Volume (gallons)			e (3) sing imes ions)	Above Screen Volume	Screen Volume		
NA		6.52			15.00			-	NA				(841)	ions)				
Well D	lame	ter (in)		Ga	llons	Foot		F	eid Equipment:	Horit	n 2 ct	900 000	mp Lou	2 51-		-		
Weil Diameter (in)			0.75	2 4					urge Method:	_2 sta			Low-		- W			
0.75 2)	4 (0.02	0.1	6	0.65	1.47	┼──	eli Condition:	صی)	- :	ip-						
Time	Casin	g / Screen	Volume Purged (gallons)	Flow Rate		Water Level (ft-bmp	р	H	Temperature (°C)	Turbidity (NTU)	T	uctivity	Dissolved Oxygen	ORP	Obse	ervations		
1256			ď				9. ه. ه. ه		17.6	640	 		(mg/L)	(mV)	1			
1259			250			6.95	٠.٤		17.4		0.3		2:89	-152	geny	MURKY		
1302			500		·	4.98	ه. و		17.8	173	0.7	· ·	3.17	-139	clear			
1305			750			7.02				41	0.2		3.28	-146				
(308		-	1000		· · · · · ·	7.08			17.9	24	0.7		3.09	-148				
1310			1250			7.12	ري.		(7.8	32	0.7		2.97	- 150				
312		······································	1500			7.14	ري .		17.9	47	0.7		2.94	-150				
D				l	·				17.8	43	6.	29	2.92	-152				
Purge Start Time	Time (gr		je Flow om)	Purged		Total Casing Volumes Purged			at Sar	Sampling Co		nple oction ne	Sample Identification		on			
1256 1312 94 Notes:		312	94 m	min	min 1500		-		-	7.1	V V	1315		رw- (د				

TAIT Environmental Management, Inc

Project No Project No				- 4110)	NOCK					Date	: 12	-11-07					
Well Ident										Prep	ared B	y: Michi	el Sci	enone	· · · · · · · · · · · · · · · · · · ·		·
Measuren			1	<u> </u>	10 LF	-				West	her:			8	cr oo n:		
	TOIR F	Olist F	OSC	ription	: 1001	AOLTH				Pum	p Intak	e: 35	,	,			
Depth t LNAPL (ft-bmp		Static W		Water Well T		Total Depth (ft-bmp)		Water Column Height (ft)		LNAPL Thickness (ft-bmp)		One (1) Casing Volume (gallons)		g Car ns) Volu	e (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		9.73			39.90					NA					_		
Well Di	amete	r (in)			Ga	lions/	Foot		Fie	eld Equipment:	He	riba, 2 st	age pu	mp	- - 4	امس	1
	0.75			2	2 4		6	Pu	rge Method:	hod: 2 st		יסר	ب وب	~ \$10 u	٠		
0.75 (2) 4		5	0.02	0.1	3	0.65	1.47	W	ell Condition:		ood	<u>·</u>				
Time	Casing /	Screen	P	olume urged allons)	1	Flow Rate War Le (gpm) (ft-b		l p	Н	Temperature (°C)	Turbidi (NTU)		luctivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
1336		·	<u> </u>	ø		9.80		9.80 6.8 9.80 6.8		17.2	11.4	0.	ว น	(mg/L) 2 · 9 · 5	-176	clear	
1339		·	50	>0			9.80			17.2	٠.١	0.25		2.77	-182	ر د د	are_
1342			10	00		9.80		ه. ي	10	17.2	4.1	0.25		2.70	- 185	-	
1344		1500		· · · · · · · · · · · · · · · · · · ·		9.80 6.9		97	17.2	2.6	0.	26	2.63				
1546		<u> </u>	20	XX D	·········	···	9.80	٠,٩	8	17.2	3.1	0.	26	2.42	-193	1 1	
			-				 			,							
Purge Start Time		urge End Average Time (gpr		Purged		Total C Volur Purg	nes	g 80% Recovery Water Level Depth	at S	Water Level at Sampling Time (ft-bmp)		nple ection	Sample Identification				
1336	13	46		200 m	min	2006 M'		-			9	.80 134		R	MW-10LF		
lotes:												· · · · · · · · · · · · · · · · · · ·	,,,,		mw-	10 FE	

Project Name: Mission Valley Rock Date: 12-11-07 Project No.: EM5009C Prepared By: Michael Schenone Weli Identification: MW-Weather: Screen: **Measurement Point Description: TOC North** Pump Intake: \4' Water Depth to Depth to Three (3) **Well Total Depth** Above Column **LNAPL Thickness** LNAPL Static Water One (1) Casing Casing Screen (ft-bmp) Height Screen (ft-bmp) Level (ft-bmp) (ft-bmp) Volume (gallons) Volumes Volume Volume (ft) (gallons) NA 5.35 17.78 NA Gallons/Foot **Field Equipment:** Horiba, 2 stage pump Low-Flow Well Diameter (in) 0.75 2 6 **Purge Method:** -2 stage pump Low-flow 0.75 (2 ⁻ 0.02 0.16 0.65 1.47 Good Well Condition: Volume Water Flow Rate Time Dissolved Casing / Screen Purged Temperature **Turbidity** Conductivity Level ρН ORP (gpm) Oxygen (gallons) (°C) (S/m) (NTU) **Observations** (ft-bmp) (MV) (mg/L) ø 1358 5.50 6.9; 17.7 55 0.35 2:93 -182 clear 1400 250 5.55 6.94 17.9 10.5 0.37 2.59 -180 1402 500 5.55 6.95 18.0 4.4 0.37 2.57 -180 1404 750 5.55 6.95 18.0 7.1 0.37 2.54 -181 1406 1000 5.55 4.96 18.0 5.1 0.37 -181 2.52 80% Purge Start Purge End **Total Casing** Average Flow Total-Gallons Water Level Sample Recovery Time Volumes Time -(gpm)at Sampling Purged Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 83 ml /mm 1358 1406 1000 ml 5.55 1408 MW-1 Notes:

Page 19 of 26

Project Name: Mission Vailey Rock Date: 12-11-07 Project No.: EM5009C Prepared By: Michael Schenone Weil Identification: MW-9LF Weather: Screen: **Measurement Point Description: TOC North** Pump Intake: Water Depth to Depth to Three (3) **Well Total Depth** Column Above LNAPL **LNAPL Thickness** Static Water One (1) Casing Casing Screen (ft-bmp) Height Screen (ft-bmp) (ft-bmp) Level (ft-bmp) Volume (galions) Volumes Volume Volume (ft) (gallons) NA 7.04 39.11 NA Gallons/Foot Field Equipment: Horiba, 2 stage pump Low - flow Well Diameter (in) 0.75 2 4 6 Purge Method: 2 stage pump — Low-Flow (2 0.75 4 6 0.02 0.16 0.65 1.47 Well Condition: Good Volume Water Flow Rate Time Dissolved Casing / Screen Purged Temperature Turbidity Conductivity Level рΗ ORP (gpm) Oxygen (galions) (°C) (NTU) (5/m) **Observations** (ft-bmp) (mV) (mg/L) 1418 ർ 7.13 7.15 17.6 3.7 0.23 2.69 -185 clear 1420 500 7 28 7.13 17.5 3.1 0.22 - 185 2.60 1422 1060 7.28 7.10 17.4 4.3 0.21 2:41 - 185 1425 1500 7.28 7.08 17.3 3.8 0.21 2.59 -185 1428 7.000 7.28 17.3 7.07 3.2 2.58 0.21 - (85 80% **Purge Start** Purge End **Total Casino** Average Flow Total Gallons Water Level Sample Recovery Time Time Volumes (gpm)at Sampling Purged Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 200 m1/ . 1418 1428 2000 min 7.28 mL 1430 MW-ALF Notes:

Project	No.:	EM500	ion Valle 9C			····			Date	12.	-11-0	7			**	
Well Id			MW-	7 c			·		Prep	ared By:	Mich	ael Sc	henone		4	
Measur	ement	Point D	escription	· TOC N	lo-th				Wea	ther:			· · · · · · · · · · · · · · · · · · ·	Creen:	<u></u>	
					OLCH				Pum	p Intake	: ප		1		· · · · · · · · · · · · · · · · · · ·	
Depth to LNAPL (ft-bmp)		Static Water			Well Total Depth (ft-bmp)			er on ot	n LNAPL Thickn				g Ca rs) Voli	sing	Above Screen Volume	Screen Volume
N/	\	4.55		8.71					NA					lons)		
Well	Diame	ter (in)		Gail	ons/Fo	ot	·	Fle	eld Equipment:	Horit	na 2 c	2000 000			*	•
	7_ \		0.75	2		4	6		rge Method:				mp, co		<u> </u>	
0.75	(2)	4 6	0.02	0.16	0.	65	1.47	 	oll Condition:		se pui		<u> </u>	#10W		
Time	Casing / Screen Pur		Volume Purged (gallons)	ged Flow Rate		Water Level (ft-bmp)	pl		Temperature (°C)	Turbidity (NTU)	Conc	luctivity	Dissolved Oxygen	ORP	`	
440			ø		(b-le9		ه. ي	94 14.9			<u>~</u>)	(mg/L)	(mV)	Observations		
444	<u> </u>		125				9.0		4.6	0.		2.76	-175			
449	 		250			c .85	8. ب	2	+		0.		2.45	-175	1	
454	<u> </u>		375			6.92	8.0		16.9	8.4		22	2-43	-175		
458	ļ		500		(6.99			17.0	5.2	+	22	2.40	-176	+-+-	
	-						 			٣٠٦	0	.22	5.40	-176	V	
	1	}		· · · · · · · · · · · · · · · · · · ·						·						
Purge Sta Time		urge End Time	-(gpr	m) Pur		Gallone Irged Total C Volun Purg		106	80% Recovery Water Level Depth	Water at Sar Time (f	Level npling t-bmp)	San Colle Tin	ction	Samp	le Identificati	on
1440 Notes:		458	28 min		500ml				- Dopin		(ه ۹۹ د ک			MW-2s		

Page 21 of 210

Project I	ło.: E	M500	9C						Date		-11-0-							
Well Ide			MW-	lic	<u>-</u> -						y: Micha	el Sci	henone		· · · · · · · · · · · · · · · · · · ·			
			escriptio	·· TOC	Node		·		Weather: Screen:									
	İ			1.100	HOILI	<u> </u>			Pum	p Intak	e: 9'		1	······································	· · · · · · · · · · · · · · · · · · ·			
Depth to LNAPL (ft-bmp)		Depth to Static Water Level (ft-bmp)			Well Total Depth (ft-bmp)			Water Column LN Height (ft)		LNAPL Thickness (ft-bmp)		One (1) Casing Volume (gallons)		sing	Above Screen Volume	Screen Volume		
NA		7.27			9.43				NA		_		(94.	(gallons)				
Weil D	iamet	er (in)		G	ilons/	Foot		Fie	eld Equipment	: Ho	riba, 2 st	age nu	mp. Les			•		
			0.75	2		4	6	Pu	irge Method:				- 6w -					
0.75 (2		6	0.02	0.1	6	0.65	1.47	W	ell Condition:		and and	'P			·			
Time	Casing	/ Screen	Volume Purged (gallons)		Rate Wate Leve			pН	Temperature (°C)	Turbidi (NTU)		uctivity	Dissolved Oxygen	ORP (mV)	Obse	ervations		
522			ø			7.34		47	16.9	10.4			(mg/L)					
527		-	500			7.47 6		78	8.51	8.6	0.19		2.81	-168	cleo	e		
531			1000			7.51 6.9		80	17.9	وا، ما	0.19		2.61	-149				
536		1500			7.55			82	18.0	5.7	0.19		2.55	-171				
					<u>-</u>		_		1010	3 - 1	- 0 .	· -	2.54	-172	1	·-		
		-								· · · · · · · · · · · · · · · · · · ·								
	1																	
Purge Star Time	ne Time		-(9	ge Flow Total Gallons Purged			Total Casin Volumes Purged		g 80% Recovery Water Level Depth	at S	Sampling Co		mple ection me	Sample Identification				
1522	\	1536		1536 107 m		חוות ליח לכ		00ml	<i>,</i> 1 –			7.	55	153	<u>a</u>		<u> </u>	
iotes:												13 5	סי	MM-	115			

Project	No.: E	EM500	9C		·					Dat) : [7	2-11	-07	<u></u>					
Well Ide			MW-1	~ 1						Рге	ared E	ly: M	licha	iel Sc	henon	Э			3
			escription	TOC	NI41	· · · · · · · · · · · · · · · · · · ·				Wea	ther:				 	Se	creen:		
			- Scription	: 100	HOIT	<u> </u>				Pun	p Inta	ke:	16	,	1			· · · · · · · · · · · · · · · · · · ·	
Depth LNAF (ft-bn	L	Stat	pth to c Water (ft-bmp)		Total ft-bm	Depth p)	Col: Hei	i te r umn ight 't)	.	LNAPL Thic (ft-bmp) Casii (gallo		Cas Voiu	e (3) sing mes	Above Screen	Screen
NA		&	.81	la	9€∙	> .				NA			······································			(gail	ons)		
Well [Diamet	er (in)		Ga	llons	Foot		1	Field	i Equipment	: Ho	riha	2 etc	200 54	900		- c	-	-
		,	0.75	2		4	6			e Method:		tage	·				Flour		<u> </u>
0.75	<u> </u>	4 6	0.02	0.1	6	0.65	1.47			Condition:		ood	pairi	<u> </u>			- (60		
Time	Casing	/Screen	Volume Purged (gallons)		Rate m)	Wate Leve (ft-bm		pН		Temperature (°C)	Turbic (NTU	lity	Condi	uctivity	Disso Oxyg	en	ORP	<u> </u>	Observations
550			ø			8.99	-	.70	a	17.8			<u> </u>		(mg/	·	·(mV)		
554			500			9.17		. \$ 7		17.7	ڪاھا		0.3		2:9		-186	M	exy
557			1000			9.17		.90		17.6	329	 	Ø · `		2.6	>	-207		
600			1500			9.17	 -	.07		17.6	253		0.		2.5		-212		
403			2006	·······	 -	9.1		.04		17.6	242		0.		2.5	+	-213		
									<u>'</u>	11.0	255		6.1	42	2.5	3	- 214	1	/
	<u> </u>									·— <u>———</u>		_						ļ	·
Purge Star Time	t P	urge End Tirne	-(gr	m)		Gallene urged		Cas lume irgec	8	80% Recovery Water Leve Depth	at	ater Le Sampli e (ft-bi	ing	Colle	mple ection me		Sam	ple Identi	fication
1550	10	७०७	154 ^	min	200	W/	-	_	·		+	.17		الود			·	1	į
Notes:		ı									'	,		1 00	2 2	M	W-10	Ь	n

Project	No.: E	M500	ion Valley						Date	12.	-12-0	7				
Well Ide			MW-1	14					Prep	ared By:	Mich	ael Sc	henone			
			escription	TOC	locth	· · · · · · · · · · · · · · · · · · ·			Wea	ther:				creen:		
					TOI Ch	·			Pum	p Intake	: اله	,	1			
Depth LNAI (ft-bn	PL	Stati	oth to Water (ft-bmp)	Well 1	otal t-bm	- 1	Wate Colun Heigi (ft)	nn ht	LNAPL Thick (ft-bmp)		One (1 Volume	l) Casir (gallo	ng Ca ns) Vol	sing umes	Above Screen Volume	Screen Volume
NA		7.	75	20	. 50	> .			NA					ilons)		
Well [Diamet	or (in)		Gal	lons/	Foot		Flo	eid Equipment	Horit	na 2 et	200.01	mp \		-	•
		` '	0.75	2		4	6	1	irge Method:		ge pun					
0.75	2) 4	1 6	0.02	0.16		0.65	1.47	 	ell Condition:		ac ban	ıb	<u> </u>	3- 6 /0	<u> </u>	
Time	Casing	/ Screen	Volume Purged (gailons)	Flow F		Water Level (ft-bmp	q	Н	Temperature (°C)	Turbidity (NTU)	<u> </u>	luctivity	Dissolved Oxygen	ORP		
930			φ			7.79	7.7		15.0			···	(mg/L)	(mV)	Obse	ervations
935			508			7.90	7.1		 	935	0.	22	3.33	-125	MUE	KU
940			1000			7.95	7.0		17.4	124	0.	17	2.98	-151	clea	<u> </u>
945			1500	······		8.02	ه. ه		17.5	81	0.	17	2.96	-157		
950			2000			8.05	٠. وي	<u> </u>	17.5	83	0.	17	2.93	-160		
956			2500			8.09	6.9		17.5	79	0.	17	2.89	- 161		
·					·—		G		17.5	81	0.	છ	2.88	-163		
Purge Star Time	t Pi	urge End Time	Average _ (gpr	Flow		Gallons rged	Total C Volun Purg	nes Î	Recovery Water Level	at Sar		Colle	nple oction	Sami	ple Identificati	On.
930	٩	56	96 ml	min	25c	0			Depth	8.0	(t-bmp)	Ti	me		Ĭ	
Notes:		i.				4-1					77	1000)	MW-1	/q	

Proje	ct No	.: EM5	009	on Valley C						Da	ete:	۲ - ۱	Σ-0 <u>-</u>	7				
		fication		MW-	1.1			····		Pr	epared	By:	Micha	ael Sci	nenone		· · · · · · · · · · · · · · · · · · ·	
				scription:	TOC	W - 41		······		W	eather:					Screen:		
		- 1		2011Pt/Off:	1001	TORE	<u> </u>			Pu	ımp İnt	ake:	2.4	1	r			
LN	pth to IAPL -bmp)	St	atic	th to Water ft-bmp)		ľotal t-bm _l	Depth p)	Wa Colu Hei (fi	ımn ght	LNAPL Th			One (1 olume) Casin	g C	ree (3) asing iumes	Above Screen Volume	Screen Volume
!	NA		7 . 8	o	20	۱.۱۹	5.			NA		+-		-		alions)		
We	il Dia	meter (i	n)		Ga	lons/	Foot		ı	Field Equipme	nt: +	loribs) O ct	200 500			-	-
	_	·		0.75	2		4	6	_	Purge Method:						- flou		
0.75	(2)	4	6	0.02	0.16	3	0.65	1.47		Nell Condition		700				- 4-100		
Time	C	Sasing / Scre	t t	Volume Purged (gallons)	Flow I		Wate Leve (ft-bm		pН	Temperature (°C)	<u> </u>	idity	Cond	uctivity	Dissolved Oxygen	ORP	01-	
012				œ			7.88		.78				 -	<u>~)</u>	(mg/L)	(mV)	Oose	ervations
015	_			500			7.97		.91		50		0.		3.98	-1601	clea	مو
810			1	000	· · · · · · · · · · · · · · · · · · ·		8.00		8 6				0.		3.70	-161	\	
021				500		 -	8.00		88		27		0.	19	3.59	-160		
025				2000			\$.00		89		25		0.		3.55	-160		
									01	17.2	2.6		0.7	20	3.52	-161		
											 						-	
Purge S Time	•	Purge Time	∍ 	Average -(gpn	**	Total Pu	Gallon s rged		Casi umes rged	s Hecover	ai ai	/ater L t Samp ne (ft-	oling	San Colle Tin	ction	Sam	ple Identificati	on
lotes:		102	<u> </u>	154 2	min	200	>D	-		Depart	 	3.00		1030			į	
ra2!		·												10 20	,	MW-L	ed	

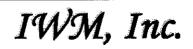
Project	No.:	EM500	ion Valle) 9C						Date	: 12	-12 -	07				
Well Ide			MW-0	7					Prep	ared By:	Mich	ael Sc	henone			
			escription	· TOC N-					Wea	ther:		············		Screen:	· · · · · · · · · · · · · · · · · · ·	
		Ţ			H TA				Pum	p Intake	: 20	5/	1		· · · · · · · · · · · · · · · · · · ·	
Dept LNA (ft-b	PL	Stati	pth to c Water (ft-bmp)	Well To	tal Do	- 1	Wate Colum Heigh (ft)	nn ht	LNAPL Thick (ft-bmp)	ì		i) Casir (galio	a C	ree (3) asing lumes	Above Screen	Scr een Volume
N/	1	6.7	1	24.2	8				NA				(9:	ailons)	Volume	
Well	Diame	ter (in)		Gallo	ns/Fo			Fie	id Equipment:	. Hosii					-	-
		(1,1,1)	0.75	2		4	6	1	rge Method:			age pu	<u> </u>	ous-Fi	•	
0.75	2)	4 6	0.02	0.16	0	.65	1.47	 	il Condition:		စေရ ae bnu	<u>пр</u>	Low.	- 4 100	<u></u>	
Time	Casing]/Screen	Volume Purged (gallons)	Flow Ra (gpm)		Water Level (ft-bmp)	p	<u> </u>	Temperature (°C)	Turbidity (NTU)	Cond	luctivity	Dissolved Oxygen	ORP		
1039			6			(n.71	و)	77	16.7		(5/1		(mg/L)	(mV)	Obse	ervations
1043	<u> </u>		500			6.93	. و		17.1	53	0.		3:44	- 156	clea	28_
1047	<u> </u>		1000		 -	6.96	6.7		17.3	39	0.		2.77	-165		
051	 		1500			7.00	6.7		17.3	31	0.		2.79	- 179		
055	-		2000			7.04	٠.7عا		17.3	35	0.		2.78	- 181		
	 										0.3	54	2.78	-183	V	
-	1										 				 	
Purge Sta Time	art P	urge End Time	(gpr	11)	otal Ge Purg	4110113	Total Ca Volum Purga	າອຣັ	80% Recovery Water Level Depth	at Sar	Level	San Colle Tir		Sam	ple (dentificati	on
1039	1	055	125 M	min 20	200				Debtu	7.0	• • •	1100			į.	
lotes:											1	1100	ر	Mw-	4d	

Groundwater Sampling Data Sheet

Project	No.:	EM500	ion Valle							Date	: 12	-12-	67					
Well Ide			MW-	7.4					·- <u>-</u>	Prep	ared By	: Mich	ael Sc	henone				
Measur	ement	Point E	escriptio	n: TOC	Nort	<u> </u>		·		Wea	ther:				Sci	reen:		
					.,,,,,,		T			Pum	p intake	: 20	. /	t	······································			
Depti LNA (ft-bi	PL mp)	Stat	pth to ic Water i (ft-bmp)	[Tota (ft-bn	Depth	Cole Hei	ster umr ight it)	ı LN	IAPL Thici (ft-bmp)			1) Casi: • (gailo	ng (ns) V	Casi olun	nes	Above Screen Volume	Screen Volume
N.A	1	(o·	38	2	3 · G	»1.				NA		· · · · · · · · · · · · · · · · · · ·		(8	alio			
Well	Diame	ter (in)		G	allons	/Foot	<u> </u>		Field I	Equipment	. Hori	ho 0 -	A				-	•
		(313)	0.75	2	:	4	6	_		Method:				mp (low_	·
0.75	2)	4 (0.02	0.	16	0.65	1.47			ondition:		ood ood	mp	روس	- -	-اهس		
Time	Casing	/ Screen	Volume Purged (gallons)	1	Rate	Wate Leve (ft-br	el	рH		emperature (°C)	Turbidity (NTU)	Con	ductivity	Dissolve Oxygen		ORP		
1118			ø	 		6.50		۰.9				<u> </u>	<u>~</u>)	(mg/L)		(mV)	Obs	servations
1121	<u> </u>		250			6.71		.91		(b. 4 (c. 2	33	- 	26	3.15		- 201	دل	al
124			500		-	6.78		.9		L . 1	26		23	2.87		205		
1127	<u> </u>		750	<u> </u>		6.80		.9)		(6.1	24		22	2.84		207		· · · · · · · · · · · · · · · · · · ·
130			1000			6.80		.90			۷5		21	2.82	_]-	208		
	ļ					 				14.2	23	0	.21	2.81	_] -	- 208		,
	<u> </u>										·			"				
Purge Sta Time	rt P	urge End Time	(gr	ge Flow om)		l Gallons urged		Cas ume	s	80% Recovery Water Level	at Sa	r Level mpling ft-bmp)	Colle	nple oction		Samo	ole Identifica	tion
118	١	130	83 m	min		90	<u> </u>			Depth	- 		 	ne	·		i	
otes:						ML					(a·8	.0	113	7	M	W-7	4	

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record


Client: Tout Loss	x C(10)15 X (X)	121						Dat	:e:	1	<u> </u>	<u>√.5</u>	₩ \$3	5"1			_ Pa	ige:	<u> </u>	c	of		
Address: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Vadue C	W 20 25 1 3	Down	المستعمدة				Pro	iect	Nar	ne:	W	Visa	5.0	۲۰۰	المون	4 500	V	cV.				
Phone: (91) 769.																					Suc	1C	
Project Manager:					_	*		- Ba t		::						<u>>^</u> \$				727			
							OXY only			ine)	(1	arbon Chain	le 22 Metals				#						tainers
Sample ID	Date Sampled	Time	Sample Type	Container Type	8260	+ OXY	8260 BTEX, (8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				Laboratory ID	.	Comn	nents/F	reservativ	/e	Total # of containers
11W-45	12-10-67	1224	GC. NS	VOA			> <			X	X						_						5
EAVU- HO		1301					\times			X	\times												
MW - 55		1358					\times			X	\times	ļ											Ĺ
14W-75		1438		1	!		\bowtie			X	X												\sqcup
MW-8	-	1458			<u> </u>		\geq			X	\angle												Ц
MM-III		1521		-			≥ 5			X,	X		<u> </u>										1
MW - 125	 ,	1544			ļ	L	X			X	$\stackrel{\times}{\hookrightarrow}$	<u> </u>	ļ							·····			
MW-129	<u> </u>	1620	 			L_	\geq			\geq	X	┡											11
MM-15TE	12-11-07	JH8					\simeq			\times	\sim	┖	<u> </u>										Ш
MW-5d		1012		<u> </u>	ļ		\times		<u> </u>	\times	X	-	 	ļļ.	_ _								11
MW-3		1041	 	 			>	<u> </u>	<u> </u>	\geqslant	$\stackrel{\times}{\hookrightarrow}$	├	ļ		_	_	 						H
MW-105		1110	1 1		├		\sim	├—		X,	$\langle \Sigma \rangle$	┡	<u> </u>	 			<u> </u>						H
NW-3d	 	11:3:7		ļ{	_	_	$\stackrel{\sim}{\sim}$		<u> </u>	>	\rightleftharpoons		—	\vdash	\rightarrow	_	_	_					\sqcup
<u> </u>	 	1210	 	<u></u>	-		X		ļ	$\langle \rangle$		↓	<u> </u>		_	 -	_						Ļ
Relinquished by: (signature)	Date / T	1246	Donoisted b	· · · (a)anatura)		ш	Ďate	- / T	1	ĹŽ	2	Ŧ	<u></u>	ш			7000	_					1,
Pelinquished by (signature)	Date / I 13 - 14 13 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	IIIIe , ⊜7 20		y: (signature)		,	Date /	e / i	нпе	-	Ch	ain o				ntainer Y/N/N			j Salem Tu		otes	A 1800	
Relinquished by: (signature)	Date / T	ime		y: (sighature)			Date	e / T	ìme							Y/N/N		٦ ٪	and a d	- +	1000 wod	. l.	3
			$\downarrow i$:						┤ ``	****	. ~	المهار ولها فيا	1/ -	
Relinquished by: (signature)	Date / T	ime	Received to	y: (signature)			Dat	e / T	ime			tecei	ivea	gooa	conai	tion/col	a [<	-RR	FC.1	# (90 J	`}
											Tur	n ar	oun	d tim	e: 🖺	105	·						
Sample disposal Instructions:	Disposal @ \$2.00	each	Returr	to client		Pic	ckup		_		_					DAY		L					-

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record

Client: Tout Es	14 CYDY	ace value	\					Dat	e:	\ 2.	~ \ ·	٠ (U7	•			Pac	ie: 🔍		Of	<u> </u>		
Address: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				-1	_													ر څخک د					
Phone: (1) 70-4-																					500AC		
Project Manager: 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Carlotte Carlotte	2170 <u>00</u>			-	*		Bat	eh #	£;						93		COC					
Sample ID NW - 495 NW - 1015 MW - 1 NW - 915 NW - 115 MW - 100 NW - 100 NW - 100 NW - 70 NW - 70	Date Sampled	Time 1315 1346 1408 1430 1538 1600 1630 1630 1137 1200		Container Type	8260	+ OX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8270	8021 BTEX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				Laboratory ID #	Cor	nmen	ts/Pres	ervative		Containers
Relinquished by: (signature)	with the	me (4 ()77 ()00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y: (signature)		$I_{i_{\mathcal{L}}}$, t		-,N	Cha	ain ol				atainers Y/N/NA		Die	1.34	Notes	s en minum		
Relinquished by: (signature)	Date / Ti	me	Received b	ÿ∄(signature)		[Date	/ Ti	me				Se	als in	tact?	Y/N/NA		Present	r- ==	Eo	wall	,)	
Relinquished by: (signature)	Date / Ti	me	Received b	y: (signature)			Date	/ Ti	me				-			on/cold		1.5 E. 8	e E	\$ 7d	~ (70°	(7)	
Sample disposal Instructions: D	isposal @ \$2.00	each	Return	to client		Pick	kup _				ruil	11 (31 (Juiit	4 (11116	<u>ا حمل</u> .	DAY)		****				

APPENDIX C CERTIFICATE OF DISPOSAL

INTEGRATED WASTESTREAM MANAGEMENT, INC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1990 FAX: 408.433.9521

Mission Valley Rock Company

7999 Athenour Way Sunol, CA 94586

Generator Name:

Address:

CERTIFICATE OF DISPOSAL

Facility Name:

Address:

Mission Valley Rock

Sunol, CA 94586

7999 Athenour Way

Contact:	Mort Calvert	Facility Cont	act: Mike Schenone, TAIT Environmental
Phone:	925.862.2257	Phone:	916.858.1060
	IWM Job #:	97505-L	OW .
	Description of Waste:	1 Drum	of
	,	Non-Hazai	rdous
		Water	•
	Removal Date:	12/18/0	07
		SP181207-	MISC
	Ticket #.		
Transp	oorter Information	Disposa	l Facility Information
Name:		<u> </u>	
Address:	IWM, Inc. 1945 Concourse Drive	Address:	Seaport Refining & Environmental 700 Seaport Blvd
riddi Coo.	San Jose, CA 95131		Redwood City, CA 94063
Phone:	(408) 433-1990	Phone:	(650) 364-1024
			.÷
	, INC. CERTIFIES THAT THE ABOVE		
TRE	ATED AND DISPOSED AT THE DESI APPLICABLE FEDERAL, STA		
	·	,	CAL REGULATIONS.
	William T. DeLon Walliam 2. C	le Fre	12/18/07
	William B. Dallan F. ""		1 3 / 1 2 / 11 /

APPENDIX D TEM LABORATORY REPORT

26 December 2007

Michael Schenone Tait Environmental 701 N. Parkcenter Drive Santa Ana, CA 92705

RE: Mission Valley Rock

Enclosed are the results of analyses for samples received by the laboratory on 12/13/07 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Albert Vargas For John Shepler

aller Vargas

Laboratory Director

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4S	T701628-01	Water	12/10/07 12:24	12/13/07 09:00
MW-4D	T701628-02	Water	12/10/07 13:01	12/13/07 09:00
MW-5S	T701628-03	Water	12/10/07 13:58	12/13/07 09:00
MW-7S	T701628-04	Water	12/10/07 14:28	12/13/07 09:00
MW-8	T701628-05	Water	12/10/07 14:58	12/13/07 09:00
MW-11LF	T701628-06	Water	12/10/07 15:21	12/13/07 09:00
MW-12S	T701628-07	Water	12/10/07 15:44	12/13/07 09:00
MW-12D	T701628-08	Water	12/10/07 16:20	12/13/07 09:00
MW-12LF	T701628-09	Water	12/11/07 09:48	12/13/07 09:00
MW-5D	T701628-10	Water	12/11/07 10:12	12/13/07 09:00
MW-3	T701628-11	Water	12/11/07 10:41	12/13/07 09:00
MW-10S	T701628-12	Water	12/11/07 11:10	12/13/07 09:00
MW-2D	T701628-13	Water	12/11/07 11:37	12/13/07 09:00
MW-2M	T701628-14	Water	12/11/07 12:10	12/13/07 09:00
MW-9S	T701628-15	Water	12/11/07 12:46	12/13/07 09:00
MW-6S	T701628-16	Water	12/11/07 13:15	12/13/07 09:00
MW-10LF	T701628-17	Water	12/11/07 13:48	12/13/07 09:00
MW-1	T701628-18	Water	12/11/07 14:08	12/13/07 09:00
MW-9LF	T701628-19	Water	12/11/07 14:30	12/13/07 09:00
MW-2S	T701628-20	Water	12/11/07 15:00	12/13/07 09:00
MW-11S	T701628-21	Water	12/11/07 15:38	12/13/07 09:00
MW-10D	T701628-22	Water	12/11/07 16:05	12/13/07 09:00
MW-11D	T701628-23	Water	12/12/07 10:00	12/13/07 09:00
MW-6D	T701628-24	Water	12/12/07 10:30	12/13/07 09:00
MW-9D	T701628-25	Water	12/12/07 11:00	12/13/07 09:00
MW-7D	T701628-26	Water	12/12/07 11:37	12/13/07 09:00
MW-1T	T701628-27	Water	12/12/07 12:00	12/13/07 09:00

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Targas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-4S T701628-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		122 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/14/07	EPA 8015B	
Surrogate: p-Terphenyl		115 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EF	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	77.1	-110	"	"	"	"	·
Surrogate: Dibromofluoromethane		74.9 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		97.5 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

MW-4D T701628-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ies, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		125 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/14/07	EPA 8015B	
Surrogate: p-Terphenyl		117 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		75.5 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.0 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas For John Shepler, Laboratory Director

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

MW-5S T701628-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	140	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		115 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/14/07	EPA 8015B	
Surrogate: p-Terphenyl		104 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.6	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		74.2 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.1 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

alle Tagas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-7S T701628-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	170	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		122 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		120 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by EI	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.4 %	77.1-1	10	"	"	"	"	· ·
Surrogate: Dibromofluoromethane		75.9 %	66.3-1	11	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	90.9-1	05	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-8 T701628-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ies, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		124 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		97.8 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.4 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		78.8 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		98.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-11LF T701628-06 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ies, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	120	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		120 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		116 %	65-	135	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	86	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.8 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		97.5 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-12S T701628-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B	}							
C6-C12 (GRO)	120	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		122 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		117 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		78.4 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		97.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-12D T701628-08 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	140	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		120 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		117 %	65-	135	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.8 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		97.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-12LF T701628-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		119 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		106 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.1 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		81.5 %	66.3-	111	"	"	"	"	
Surrogate: Toluene-d8		95.9 %	90.9-	105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

MW-5D T701628-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	140	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		118 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		111 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.2	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		80.0 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.4 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas For John Shepler, Laboratory Director

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-3 T701628-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015B								
C6-C12 (GRO)	180	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		133 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		97.4 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	24	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.4 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		77.0 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		92.1 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-10S T701628-12 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		118 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		98.1 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.9 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.1 %	66.3-	111	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	90.9-	105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas For John Shepler, Laboratory Director

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-2D T701628-13 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	250	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		121 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbor	ns by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		96.6 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP.	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	22	5.0	"	5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		98.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayons

Tait Environmental 701 N. Parkcenter Drive

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-2M T701628-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	370	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		127 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		98.3 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	9.4	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		76.4 %	66.3	R-111	"	"	"	"	
Surrogate: Toluene-d8		96.8 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-9S T701628-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		126 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		100 %	65-	135	"	"	"	"	·
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		78.1 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		95.5 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Tait Environmental 701 N. Parkcenter Drive

Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-6S T701628-16 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015B	}							
C6-C12 (GRO)	680	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	-
Surrogate: 4-Bromofluorobenzene		120 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
Diesel Range Hydrocarbons	0.52	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	D-02
Surrogate: p-Terphenyl		95.6 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Benzene	1.3	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	12	0.50	"	"	"	"	"	"	
m,p-Xylene	1.1	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	28	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		76.9 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		95.9 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

Tait Environmental
701 N. Parkcenter Drive

Project: Mission Valley Rock Project Number: EM5009C

Santa Ana CA, 92705

Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-10LF T701628-17 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
·		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		129 %	65-135		"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		95.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.6	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		75.6 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		95.0 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas For John Shepler, Laboratory Director

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-1 T701628-18 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015B								
C6-C12 (GRO)	890	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		135 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		91.7 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	6.6	0.50	ug/l	1	7121313	12/13/07	12/14/07	EPA 8260B	
Toluene	0.54	0.50	"	"	"	"	"	"	
Ethylbenzene	0.50	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.9 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		75.5 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

aller Tayons

Project: Mission Valley Rock

Project Number: EM5009C

Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-9LF T701628-19 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	310	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		132 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		94.9 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/14/07	EPA 8260B	
Toluene	0.89	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	1.7	1.0	"	"	"	"	"	"	
o-Xylene	0.52	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	77.1	-110	"	"	"	"	·
Surrogate: Dibromofluoromethane		74.1 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		97.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas For John Shepler, Laboratory Director

Project: Mission Valley Rock

Project Number: EM5009C

Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-2S T701628-20 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121314	12/13/07	12/13/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		118 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015B								
Diesel Range Hydrocarbons	16	0.050	mg/l	1	7121315	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		127 %	65-	135	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121313	12/13/07	12/13/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	16	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.2 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		80.4 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		94.9 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vagas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-11S T701628-21 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		120 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 82601	В							
Benzene	ND	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.5	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.6 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		81.0 %	66.3-	111	"	"	"	"	
Surrogate: Toluene-d8		96.9 %	90.9-	105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vagas

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-10D T701628-22 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	borator	ies, Inc.		·			
Purgeable Petroleum Hydrocarboi	ns by EPA 8015B								
C6-C12 (GRO)	1300	50	ug/l	1	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		130 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		121 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	0.61	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.4 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.5 %	66.3-	111	"	"	"	"	
Surrogate: Toluene-d8		97.9 %	90.9-	105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Wargas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-11D T701628-23 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015B								
C6-C12 (GRO)	7700	50	ug/l	1	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		707 %	65-	135	"	"	"	"	S-02
Extractable Petroleum Hydrocarbo	ons by 8015B								
Diesel Range Hydrocarbons	48	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		120 %	65-	135	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	3.0	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	3.0	0.50	"	"	"	"	"	"	
Ethylbenzene	11	0.50	"	"	"	"	"	"	
m,p-Xylene	17	1.0	"	"	"	"	"	"	
o-Xylene	13	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	7.0	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		82.4 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		98.0 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-6D T701628-24 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarboi	ns by EPA 8015B								
C6-C12 (GRO)	250	50	ug/l	1	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		124 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		121 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	19	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		75.4 %	66.3-	111	"	"	"	"	
Surrogate: Toluene-d8		95.0 %	90.9-	105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tangas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-9D T701628-25 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ies, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015B								
C6-C12 (GRO)	57000	1200	ug/l	25	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		120 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015B								
Diesel Range Hydrocarbons	3.4	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	D-02
Surrogate: p-Terphenyl		101 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	880	25	ug/l	50	7121318	12/13/07	12/17/07	EPA 8260B	
Toluene	5800	250	"	500	"	"	12/18/07	"	
Ethylbenzene	2800	25	"	50	"	"	12/17/07	"	
m,p-Xylene	6900	500	"	500	"	"	12/18/07	"	
o-Xylene	2200	25	"	50	"	"	12/17/07	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	12/14/07	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		77.2 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.4 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		92.0 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-7D T701628-26 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B	}							
C6-C12 (GRO)	19000	1200	ug/l	25	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		121 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
Diesel Range Hydrocarbons	2.5	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	D-02
Surrogate: p-Terphenyl		117 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Benzene	64	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	160	12	"	25	"	"	12/14/07	"	
Ethylbenzene	1100	12	"	"	"	"	"	"	
m,p-Xylene	1800	25	"	"	"	"	"	"	
o-Xylene	200	12	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	12/14/07	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		72.6 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.5 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tayons

Tait Environmental 701 N. Parkcenter Drive

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705 Project Number: EM5009C Project Manager: Michael Schenone

Reported: 12/26/07 18:26

MW-1T T701628-27 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons l	y EPA 8015B	}							
C6-C12 (GRO)	ND	50	ug/l	1	7121317	12/13/07	12/14/07	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		128 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	7121319	12/13/07	12/15/07	EPA 8015B	
Surrogate: p-Terphenyl		130 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Benzene	ND	0.50	ug/l	1	7121318	12/13/07	12/14/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	77.1	-110	"	"	"	"	
Surrogate: Dibromofluoromethane		79.8 %	66.3	-111	"	"	"	"	
Surrogate: Toluene-d8		96.2 %	90.9	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

Purgeable Petroleum Hydrocarbons by EPA 8015B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7121314 - EPA 5030 GC										
Blank (7121314-BLK1)				Prepared	& Analyz	ed: 12/13/0	07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	240 ND	50	ug/l "	200		120	65-135			
LCS (7121314-BS1)				Prepared:	12/13/07	Analyzed	1: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	267 6350	50	ug/l "	200 5500		133 115	65-135 75-125			
Matrix Spike (7121314-MS1)	So	urce: T70162	8-02	Prepared:	12/13/07	Analyzed	: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	252 6870	50	ug/l "	200 5500	ND	126 125	65-135 65-135			
Matrix Spike Dup (7121314-MSD1)	So	urce: T70162	8-02	Prepared:	12/13/07	Analyzed	1: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	261 6790	50	ug/l "	200 5500	ND	131 123	65-135 65-135	1.20	20	
Batch 7121317 - EPA 5030 GC										
LCS (7121317-BS1)				Prepared:	12/13/07	Analyzed	1: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	264 6270	50	ug/l "	200 5500		132 114	65-135 75-125			
Matrix Spike (7121317-MS1)	So	urce: T70163	1-04	Prepared:	12/13/07	Analyzed	1: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	255 6850	50	ug/l "	200 5500	ND	127 125	65-135 65-135			
Matrix Spike Dup (7121317-MSD1)	So	urce: T70163	1-04	Prepared:	12/13/07	Analyzed	: 12/14/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	244 6380	50	ug/l "	200 5500	ND	122 116	65-135 65-135	7.05	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tayons

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

Extractable Petroleum Hydrocarbons by 8015B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7121315 - EPA 3510C GC										
Blank (7121315-BLK1)				Prepared:	12/13/07	Analyzed	: 12/14/07			
Surrogate: p-Terphenyl	4.46		mg/l	4.00		111	65-135			
Diesel Range Hydrocarbons	ND	0.050	"							
LCS (7121315-BS1)				Prepared:	12/13/07	Analyzed	: 12/14/07			
Surrogate: p-Terphenyl	4.76		mg/l	4.00		119	65-135			
Diesel Range Hydrocarbons	20.4	0.050	"	20.0		102	75-125			
Matrix Spike (7121315-MS1)	Sour	ce: T70162	8-01	Prepared:	12/13/07	Analyzed	: 12/15/07			
Surrogate: p-Terphenyl	4.12		mg/l	4.00		103	65-135			
Diesel Range Hydrocarbons	18.4	0.050	"	20.0	ND	92.0	75-125			
Matrix Spike Dup (7121315-MSD1)	Sour	ce: T70162	8-01	Prepared:	12/13/07	Analyzed	: 12/15/07			
Surrogate: p-Terphenyl	4.08		mg/l	4.00		102	65-135			
Diesel Range Hydrocarbons	18.0	0.050	"	20.0	ND	89.8	75-125	2.46	20	
Batch 7121319 - EPA 3510C GC										
Blank (7121319-BLK1)				Prepared:	12/13/07	Analyzed	: 12/15/07			
Surrogate: p-Terphenyl	3.93		mg/l	4.00		98.2	65-135			
Diesel Range Hydrocarbons	ND	0.050	"							
LCS (7121319-BS1)				Prepared:	12/13/07	Analyzed	: 12/15/07			
Surrogate: p-Terphenyl	3.94		mg/l	4.00		98.5	65-135			
Diesel Range Hydrocarbons	17.6	0.050	"	20.0		87.9	75-125			
Matrix Spike (7121319-MS1)	Sour	ce: T70162	1-01	Prepared:	12/13/07	Analyzed	: 12/15/07			
Surrogate: p-Terphenyl	4.00		mg/l	4.00		100	65-135			
Diesel Range Hydrocarbons	29.2	0.050	"	20.0	9.24	99.6	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alleer Vargas

Tait EnvironmentalProject: Mission Valley Rock701 N. Parkcenter DriveProject Number: EM5009CReported:Santa Ana CA, 92705Project Manager: Michael Schenone12/26/07 18:26

Extractable Petroleum Hydrocarbons by 8015B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7121319 - EPA 3510C GC

Matrix Spike Dup (7121319-MSD1)	Sour	ce: T70162	1-01	Prepared:	12/13/07	Analyze	d: 12/15/07			
Surrogate: p-Terphenyl	4.92		mg/l	4.00		123	65-135			
Diesel Range Hydrocarbons	29.8	0.050	"	20.0	9.24	103	75-125	2.32	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7121313 - EPA 5030 GCMS										
Blank (7121313-BLK1)				Prepared	& Analyze	ed: 12/13/0)7			

Blank (/121313-BLK1)				Prepared & Ar	iaryzed: 12/13/	07			
Surrogate: 4-Bromofluorobenzene	7.88		ug/l	8.00	98.5	77.1-110			
Surrogate: Dibromofluoromethane	6.31		"	8.00	78.9	66.3-111			
Surrogate: Toluene-d8	7.77		"	8.00	97.1	90.9-105			
Benzene	ND	0.50	"						
Toluene	ND	0.50	"						
Ethylbenzene	ND	0.50	"						
m,p-Xylene	ND	1.0	"						
o-Xylene	ND	0.50	"						
Tert-amyl methyl ether	ND	2.0	"						
Tert-butyl alcohol	ND	10	"						
Di-isopropyl ether	ND	2.0	"						
Ethyl tert-butyl ether	ND	2.0	"						
Methyl tert-butyl ether	ND	1.0	"						
LCS (7121313-BS1)				Prepared: 12/1	3/07 Analyze	d: 12/14/07			
Surrogate: 4-Bromofluorobenzene	7.73		ug/l	8.00	96.6	77.1-110			
Surrogate: Dibromofluoromethane	6.12		"	8.00	76.5	66.3-111			
Surrogate: Toluene-d8	7.81		"	8.00	97.6	90.9-105			
Benzene	19.2	0.50	"	20.0	95.8	75-125			
Toluene	19.6	0.50	"	20.0	98.2	75-125			
LCS Dup (7121313-BSD1)				Prepared: 12/1	3/07 Analyze	d: 12/14/07			
Surrogate: 4-Bromofluorobenzene	7.59		ug/l	8.00	94.9	77.1-110			
Surrogate: Dibromofluoromethane	6.21		"	8.00	77.6	66.3-111			
Surrogate: Toluene-d8	7.81		"	8.00	97.6	90.9-105			
Benzene	19.4	0.50	"	20.0	97.2	75-125	1.55	20	
T.1									
Toluene	19.9	0.50	"	20.0	99.6	75-125	1.47	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayons

Project: Mission Valley Rock

Spike

Source

%REC

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 12/26/07 18:26

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7121318 - EPA 5030 GCMS										
Blank (7121318-BLK1)				Prepared:	12/13/07	' Analyze	d: 12/14/07			
Surrogate: 4-Bromofluorobenzene	7.53		ug/l	8.00		94.1	77.1-110			
Surrogate: Dibromofluoromethane	6.11		"	8.00		76.4	66.3-111			
Surrogate: Toluene-d8	7.65		"	8.00		95.6	90.9-105			
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
LCS (7121318-BS1)				Prepared:	12/13/07	Analyze	d: 12/14/07			
Surrogate: 4-Bromofluorobenzene	8.01		ug/l	8.00		100	77.1-110			
Surrogate: Dibromofluoromethane	6.34		"	8.00		79.2	66.3-111			
Surrogate: Toluene-d8	7.78		"	8.00		97.2	90.9-105			
Benzene	18.7	0.50	"	20.0		93.3	75-125			
Toluene	19.6	0.50	"	20.0		98.2	75-125			
Matrix Spike (7121318-MS1)	So	urce: T70163	31-05	Prepared:	12/13/07	' Analyze	d: 12/14/07			
Surrogate: 4-Bromofluorobenzene	7.84		ug/l	8.00		98.0	77.1-110			
Surrogate: Dibromofluoromethane	6.11		"	8.00		76.4	66.3-111			
Surrogate: Toluene-d8	7.87		"	8.00		98.4	90.9-105			
Benzene	16.6	0.50	"	20.0	ND	82.8	75-125			
Toluene	17.2	0.50	"	20.0	ND	86.2	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Vargas

Tait EnvironmentalProject: Mission Valley Rock701 N. Parkcenter DriveProject Number: EM5009CReported:Santa Ana CA, 92705Project Manager: Michael Schenone12/26/07 18:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7121318 - EPA 5030 GCMS

Matrix Spike Dup (7121318-MSD1)	Sourc	Source: T701631-05				Analyze				
Surrogate: 4-Bromofluorobenzene	7.86		ug/l	8.00		98.2	77.1-110			
Surrogate: Dibromofluoromethane	6.07		"	8.00		75.9	66.3-111			
Surrogate: Toluene-d8	7.94		"	8.00		99.2	90.9-105			
Benzene	18.7	0.50	"	20.0	ND	93.4	75-125	12.1	20	
Toluene	19.1	0.50	"	20.0	ND	95.4	75-125	10.0	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Vargas

Tait Environmental	Project: Mission Valley Rock	
701 N. Parkcenter Drive	Project Number: EM5009C	Reported:
Santa Ana CA, 92705	Project Manager: Michael Schenone	12/26/07 18:26

Notes and Definitions

S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
D-02	Hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

aller Wargas

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

T701628

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record

Client: Tart Environmental Address: 11280 Trade Center Dever Phone: (914) 764-1239 Fax: (916) 858-1011 Project Manager: Wike Schenere									Date: 12-12-07 Page: Of 2 Project Name: Mission Valley Rock Collector: Wike Schenore Client Project #: EMSCO Batch #: TOLOOLO2092 CCC 72713													5009			
·					mple	Container	09	8260 + OXY	8260 BTEX, OXY only	8270	21 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals			1 4 4 1 4 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1	aboratory ID #						V Total # of containers
Sample ID		Sampled			/pe	Туре	82	82	82	82	80	80	80	8	09				↓	Com	men	ts/Pre	servative	,	鱼
MW-45	12-1	0-07	1224	Go	AR	VOA			\geq			X	$\langle X \rangle$						OL						<u>5</u>
MW-49	+		1301			-		_	X			$\ddot{\diamond}$	$\overset{\bullet}{\circ}$			_	_		OŠ					\rightarrow	╀
MW-55			1358	1			-	<u> </u>	>			\boldsymbol{X}	X				+		03						╀
MW-75	+	1	1428	1			+		\approx			X	\diamond				_		ÓΛ.	ļ					+
<u>MW-8</u>	+		1428						X			Š	\Diamond				-		05	<u> </u>					╀
MW-IILF	+	1	1521	┤┤					$\langle \mathcal{S} \rangle$			$\boldsymbol{\mathcal{S}}$	ð				-		06						+
MW - 125	+ ,	 	1544			-	+		X	_		\times	\Rightarrow				_		07						1
MW-12d	1, 2	V 07	1620				_		X			\times	X				+-		08						╄
MM - 15 FE	12-1	11-07	948			1	+	<u> </u>	$\langle \times \rangle$			$\langle X \rangle$							OΨ						╄
<u> MW - 5d</u>	 		1015				-		X			$\langle X \rangle$	X				+		10					+	1
MW-3			1041				+	_	X			\boldsymbol{X}	\sim						11						4
MW-105			1110	\vdash				_	$\langle \rangle$			$\langle X \rangle$	X			_	+		12					\longrightarrow	1
MW-2d	+		1137				-	_	$\langle \cdot \rangle$			$\langle \mathcal{S} $	\Rightarrow				_		13						+
MW-2M	- !		1210	1				<u> </u>	X			\sim	$\stackrel{\mathcal{S}}{\hookrightarrow}$				-		14						4
MW-95		Pote (Ti	1246			2/6			بحيا	e / T		$oldsymbol{X}$	<u>×</u>						15						V
Relinquished by: (signature)	l	Date / Ti	me - わて	Hece	yea by	Signature 9)	í								otal # o						Note	_		
Michael Lche/ Relinquished by: (signature)	none	160	0	4	12/1	1911	1	41	21	57	16	(S)	Cha	ain of	f Cus	tody seals inta	eals Y	N/M7	IN/A	Die	حما	re	tood	ana	
Relinquished by: (signature)		Date / Ti	me	Rece	ived by	y: (signature))		Date	e / T	ime				Se	als inta	act? Y	N/N/A	NIA	Die	+	= 5	~ 110	1.)	J
650				Kn	m)	Munh	· 1	2//	3/1	7	\wedge^{0}	101	ን _B	eceiv	ved c	jood co	nditio	n/cold	7.4			J	~~ <u>~</u>	/ —	
Relinquished by: (signature)	I	Date / Ti	me			y: (signature)	<u>- '</u>	71	Date	e/T	ime	, _ \	٠٠,	55011		, , , , , , , , , , , , , , , , , , , ,	,	., 55,0		See	E	DF	T) #	(90°	j
													Tur	n ar	n	i time:	571	05					•	,	
Sample disposal Instructions: [Disposal	@ \$2.00 e	each	I	Return	to client		Pic					ı arı	ıı art	Juill	a conte		W/							

T701628

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record

Client: Tart En Address: 1780 Tv Phone: (910) 7004- Project Manager: Mike		Date: 12-12-07 Page: 2 O Project Name: Wissian Valley Rock Collector: Wike Schenore Client Project #: EN Batch #: Tolopologog CGC 727													Soo		ı								
		e Samplec		T	mple ype	Container Type	8260	8260 + OXY	8260 BTEX, OXY only	8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals	į			Laboratory ID #		mme	nts/Pr	eservatiy	/e	√ Total # of containers
MW-495 MW-10LF	12-	11-07	1315	20	SA	401	-	7	\triangleright			X	X		-	_	+	-	16	_		_			5
MW-I	ļ —	 -	1408						\bigcirc	_		Ŏ	♦	\vdash		∤-		+				_			+
MW-9LF			1430						Ż			\Diamond	文		\dashv	- -			18			_			+
NW-25			1500									X	Ź		\neg				20			_			\top
MW-115			1538	 								X	\bigtriangledown		_		_	+	21	1		_			
MM-109		4	1605			 			Q			\Diamond	\Diamond	H		$\neg +$	+		722	1		_		_	
MW-119	12-	12-07	1000						Q		\vdash	\Diamond	\Diamond			_	\dashv	1	23					_	
MW-LOD		1	1030						\bigotimes			∇	\Diamond				\dashv	+	aч	<u> </u>					
MW-90			1100						\bigtriangledown		-	C	\bigtriangledown				\top	1	733	-					
MW-7d			1137									Ø	\Diamond			_	\dashv	1	26						V
MW-17		1 -	1200	7	/	_ V			X			X	$\dot{\mathbf{x}}$						3	7					3
										_		_						}	 						
Relinquished by: (signature)	<u> </u>	Data / Ti				1/7													T						
Michael Schen	σ / 4	16	00	Hece	ived by	y: (signature)	12	1/12	Date ک	9 / Ti □	ime 16°.	00	Cha	ain of	To Cus	tal# tody s	of con seals `	tainers Y/N/ ©	150 11/1	Die Imil	Se	No No No	tes Poen	INC	
Relinquished by: (signature)		Date / Ti	me	Rege	ived by	(signature)			Date	e / Ti	ime				Se	als in	tact?	Y/N/ N /	17/1	1 imi	/ − =	- 5	مبدة	$\mathcal{K}^{\mathcal{F}}$	
<u>GSO</u>				179	men	Bullo	1		12/	3/	17	4	OD:	eceiv	red n	ood d	onditi	on/cold	7.4						
Relinquished by: (signature)		Date / Ti	me	Rece	ived by	(signature)	-		Date	7Ti	me	7			9				لـنـــــ	ੋਂ 5 € '	E	E DF	# (708)
			ļ						, **				Tur	n arc	յլլոչ	i time	:51	05	,	1					
Sample disposal Instructions: Di	sposa	al @ \$2.00 e	each		Return	to client		Pic	kup	_								DAY				_			