RECEIVED

2:31 pm, Nov 14, 2007

Alameda County Environmental Health

Third Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared by: Tait Environmental Management, Inc.

November 14, 2007

November 14, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SUBJECT: THIRD QUARTER 2007

GROUNDWATER MONITORING AND SAMPLING REPORT

MISSION VALLEY ROCK COMPANY

7999 ATHENOUR WAY, SUNOL, CALIFORNIA

Dear Mr. Wickham.

Please find enclosed Tait Environmental Management's *Third Quarter 2007 Groundwater Monitoring and Sampling Report* on the above referenced site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please don't hesitate to contact the undersigned at (925) 426-4170.

Sincerely,

Lee W. Cover

Environmental Manager

Hanson Aggregates Mid-Pacific, Inc.

cc: Bill Butler, Hanson Aggregates Mid-Pacific, Inc.

Lee Win

November 14, 2007

Third Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared for:

Mr. Lee Cover Hanson Aggregates Northern California 3000 Busch Rd., Pleasanton, CA 94566

Prepared by:

Michael Schenone Project Scientist

Reviewed by:

Paul N. McCarter, PG, CHG, REAII Senior Project Manager

Tait Environmental Management 701 North Parkcenter Drive Santa Ana, California 92705

Project No. EM-5009C

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	OBJECTIVE AND SCOPE OF WORK2
3.0	BACKGROUND2
4.0	SITE HYDROGEOLOGY2
5.0	GROUNDWATER MONITORING WELL PURGING AND SAMPLING3
6.0	LABORATORY ANALYSES4
7.0	SUMMARY OF ACTIVITIES AND FINDINGS5
8.0	QUALITY ASSURANCE/QUALITY CONTROL6
9.0	REFERENCES
10.0	LIMITATIONS7
FIGU	JRES
1. 2.	Site Vicinity Map
2. 3.	Site Plan Groundwater Contour Map (Shallow Zone) Third Quarter 2007
4.	Groundwater Contour Map (Deep Zone) Third Quarter 2007
5.	Groundwater Contour Map (Livermore Formation) Third Quarter 2007
6.	TPHg Concentrations in Groundwater (Shallow Zone) Third Quarter 2007
7.	TPHg Concentrations in Groundwater (Deep Zone) Third Quarter 2007
8. 9.	TPHg Concentrations in Groundwater (Livermore Formation) Third Quarter 2007 MTBE Concentrations in Groundwater (Shallow Zone) Third Quarter 2007
9. 10.	MTBE Concentrations in Groundwater (Shallow Zone) Third Quarter 2007 MTBE Concentrations in Groundwater (Deep Zone) Third Quarter 2007
11.	MTBE Concentrations in Groundwater (Deep 2016) Third Quarter 2007 MTBE Concentrations in Groundwater (Livermore Formation) Third Quarter 2007
12.	Benzene Concentrations in Groundwater (Shallow Zone) Third Quarter 2007
13.	Benzene Concentrations in Groundwater (Deep Zone) Third Quarter 2007
14.	Benzene Concentration is Groundwater (Livermore Formation) Third Quarter 2007

TABLES

- 1. Well Construction Details and Groundwater Elevation Data – Third Quarter 2007
- Historical Groundwater Gauging Data 2.
- Groundwater Analytical Results Third Quarter 2007 Historical Groundwater Analytical Results 3.
- 4.

APPENDICES

- A. Cross Sections
- Sampling Data Sheets B.
- C.
- Certificate of Disposal TEM Laboratory Report D.

Third Quarter 2007 Groundwater Monitoring and Sampling Report Mission Valley Rock Company Sunol, California

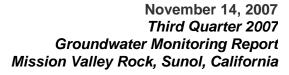
1.0 INTRODUCTION

This report summarizes the Third Quarter 2007 groundwater monitoring and sampling event conducted at the Mission Valley Rock Company (site) located at 7999 Athenour Way in Sunol, California (Figure 1). The wells were sampled as part of the Third Quarter 2007 groundwater monitoring and sampling program.

2.0 OBJECTIVE AND SCOPE OF WORK

The objective of the proposed scope of work was to monitor and sample the existing groundwater monitoring wells at the site (Figure 2).

The scope of work that Tait Environmental Management (TEM) developed to meet the objectives included the following tasks:


- Groundwater Monitoring & Sampling
- Laboratory Analyses
- Report Preparation
- Non-hazardous Waste Disposal

3.0 BACKGROUND

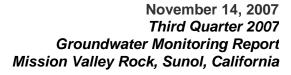
In May 1996, Tank Protect Engineering (TPE) removed one gasoline and two diesel underground storage tanks (USTs). During June 1998, three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed at the site. Quarterly groundwater monitoring continued from January 1999 through March 2000 (TEM, 2000).

In June 2000, TEM assumed the contract for environmental services at the site. In December 2002, eight soil borings (TB-1 through TB-8) were drilled and sampled at the site using a direct-push rig.

In January 2005, eight additional soil borings were advanced at the site using a hollow-stem auger drill rig. Six of the borings were converted to single-, double-, and triple-completion groundwater monitoring wells for a total of 12 wells (MW-2S, MW-2M, MW-2D, MW-4S, MW-4D, MW-5S, MW-52, MW-6S, MW-6D, MW-7S, MW-7D, MW-8). Shallow wells were designated with an "S" and deep wells were designated with a "D". Groundwater monitoring well MW-2 was abandoned. The work was performed in accordance with the Alameda County Environmental Health Services (ACEHS) directive of November 16, 2004, which requested the collection of depth-discrete groundwater samples from the site (ACEHS, 2004).

In April and May 2006, LFR, Inc. (LFR) installed, developed, sampled, and surveyed 12 additional wells (MW-9S, MW-9D, MW-9LF, MW-10S, MW-10D, MW-10LF, MW-11S, MW-11D, MW-11LF, MW-12S, MW-12D, and MW-12LF in four well clusters, which were located peripherally to the existing wells. The "LF" wells were screened in the Livermore Formation below the deep-zone wells.

The wells installed by LFR were surveyed and added to the groundwater monitoring and sampling schedule during the Second Quarter 2006. Data concerning the wells installed in April and May 2006 were provided to TEM by LFR. Quarterly groundwater monitoring and sampling have been conducted by TEM from the Fourth Quarter 2000 through the present.


In February 2007, LFR completed a site assessment to more completely characterize the lateral extent of the fuel hydrocarbons in groundwater in the areas north and south of well clusters MW-9 and MW-11, respectively, as well as the vertical extent of fuel hydrocarbons at deeper intervals than those currently screened in wells MW-9LF and MW-11LF (LFR, 2007). In its Site Assessment Report, dated April 10, 2007, LFR concluded, with subsequent ACEHS concurrence, that the lateral and vertical extent of the contamination in the groundwater has been sufficiently characterized in the area of the asphalt plant and that further investigation in this area is not necessary. The ACEH also concurred with LFR's recommendation of a pilot test for proposed air sparging as the primary remedial alternative. Additional data from that investigation was included in the First Quarter 2007 Groundwater Monitoring Report, and the contours present in this report reflect that data.

4.0 SITE HYDROGEOLOGY

The site is located within the Sunol Valley at an elevation of approximately 260 feet above mean sea level (USGS, 1989). The land surface at the site has been disturbed by excavation activities; however, the natural surface slopes at a gradient of approximately 35 feet per mile toward San Antonio Creek to the east-northeast. San Antonio Creek flow is toward the northwest.

Drilling and sampling activities at the site indicate that a discontinuous clay layer is present below the surficial gravels in the area west of the gravel road to depths of 10 to 15 feet below ground surface (bgs), with the exception of the area at MW-2S/2M/2D, where the clay layer extends to a depth of 25 feet bgs (TEM, 2005). This clay layer was not observed east of this area. Soils below the clay layer to the maximum depth explored (30 feet bgs) consist primarily of gravelly sand and sandy gravel mixtures. The top of the Livermore Formation is not well defined; however, the Livermore Formation appears to contain a higher percentage of fine-grained material, primarily silt, than the overlying higher permeability gravels. Cross sections showing the site hydrogeology, and the analytical results from soil samples collected during assessment activities and current groundwater analytical results are contained in Appendix A.

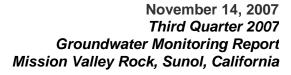
Groundwater levels are measured from the shallow-zone, deep-zone, and Livermore Formation wells. The levels are generally similar between the zones, and the groundwater zones appear to be generally hydraulically continuous.

Based on the Third Quarter 2007 groundwater monitoring data, the overall depth to groundwater at the site ranged from 4.77 feet bgs in well MW-4S to 9.71 feet bgs in well MW-12LF. Relative to the Second Quarter 2007 groundwater monitoring event, groundwater levels declined in all wells, except for well MW-9LF, where it increased by 1.94 feet. In general, groundwater levels have declined an average of 1.4 feet in the wells relative to the Second Quarter 2007 monitoring event (Tait, 2007).

Groundwater in the shallow-zone wells in the southern and western parts of the site is generally flowing in a southeasterly direction at an approximate gradient of 0.012 foot/foot (ft/ft). In the northeastern part of the site, this direction appears to be affected by a groundwater mound in the area of wells MW-4S and MW-10S (Figure 3). In this area, shallow-zone groundwater is flowing in a southwesterly direction away from the mound at a gradient of approximately 0.071 ft/ft.

Groundwater in the deep-zone wells is flowing in a general southeasterly direction at a gradient of approximately 0.017 ft/ft (Figure 4).

Groundwater in the Livermore Formation is flowing in a general easterly direction a gradient of approximately 0.014 ft/ft (Figure 5).


Vertical groundwater gradients have generally increased from the Second Quarter 2007 to the Third Quarter 2007 groundwater monitoring events.

The flow direction in the shallow-zone, deep-zone, and Livermore Formation flow regimes is opposite to the regional northwesterly groundwater flow direction in the Sunol Valley as reported by the ACEHS in their letter to Mission Valley Rock Company, dated November 3, 2005 (ACEHS, 2005). The variation from the regional trend may reflect local conditions, and the groundwater levels at the site may be affected by excavation and pumping operations related to aggregate extraction at the site. Groundwater flow in the Livermore Formation during the Third Quarter 2007 appears to correlate with earlier monitoring events prior to the Second Quarter 2007.

5.0 GROUNDWATER MONITORING WELL PURGING AND SAMPLING

On September 10, 2007, static groundwater levels were measured and recorded in the on-site groundwater monitoring wells using an electrical product/water interface meter. Water levels were measured relative to the top of the well casing (representing the wellhead survey point). Prior to use at each well, the meter was decontaminated with a mild detergent solution and two de-ionized water rinses. Groundwater gauging and elevation data for the Third Quarter 2007 event are summarized in Table 1. Historical groundwater elevation data are summarized in Table 2. Groundwater sampling data sheets are presented in Appendix B.

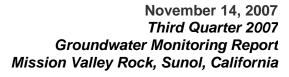
On September 10, 11, and 12, 2007, the groundwater monitoring wells were purged using low-flow (micro-purge) techniques. A portable Barant peristaltic low-flow pump was employed as

part of the Third Quarter 2007 groundwater monitoring and sampling event. Prior to the Third Quarter 2007, purging and sampling were completed using a submersible pump. However, analytical result from the equipment blank samples indicated that attempts at fully decontaminating the sampling equipment were not completely successful, particularly during the sampling of the wells with highest concentrations of hydrocarbons. Based on this, and as recommended in the Second Quarter 2007 Groundwater Monitoring Report (Tait, 2007), the sampling protocols were changed to low-flow purging techniques beginning with the current groundwater monitoring event.

The Barant peristallic pump is a portable pump that uses a rotating pump head and flexible tubing to create peristaltic pumping action. New 1/8-inch polyethylene tubing was used for each well, and the tubing was left in the well as dedicated tubing following sampling activities. The Barant pump does not come in contact with groundwater, and therefore, eliminates the need for decontamination. The tubing inlet was placed into the well approximately in the middle of the screened interval.

Groundwater samples were collected from 26 wells at the site. Samples were collected once field parameters had stabilized following three successful readings. Based on the sampling method employed, it was determined that equipment blank samples were no longer required. Groundwater samples were collected from the discharge end of the pump tubing at low-flow levels and transferred into laboratory-supplied containers. Care was taken to ensure that no headspace was present in the containers. Following sample collection, the samples were labeled, placed into an ice-chilled cooler (4°C), and transported under chain-of-custody protocols to SunStar Laboratories, Inc. (SunStar), a State-Certified laboratory (ELAP No. 2250) for chemical analysis.

Approximately 8 gallons of purged groundwater were pumped into a steel 55-gallon drum during the Third Quarter 2007 sampling event. Integrated Waste Management of Milpitas, California provided pick-up services for the drummed purge water generated by the sampling activities. The drum was transported and disposed as non-hazardous water at Seaport Refining & Environmental in Redwood City, California on July 02, 2007. The Certificate of Disposal is contained in Appendix C.

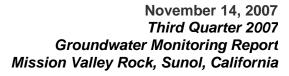

6.0 LABORATORY ANALYSES

The groundwater samples collected during the Third Quarter 2007 groundwater monitoring and sampling event were analyzed for the diesel and gasoline fractions of Total Petroleum Hydrocarbons (TPHd and TPHg, respectively) using EPA Method No. 8015M; for benzene, toluene, ethylbenzene, total xylenes (BTEX); and for methyl tertiary butyl ether (MTBE), and the other fuel oxygenates tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), disopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE) using EPA Method No. 8260B.

Contoured dissolved-phase TPHg concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 6, 7, and 8, respectively. Contoured dissolved-phase MTBE concentrations in the shallow zone, deep zone, and Livermore

Engineering • Environmental • Compliance • Construction
701 N. Parkcenter Drive • Santa Ana, California 92705 • 714-560-8200 • 714-560-8235 fax
San Diego • Concord • Rancho Cordova • Tempe • Loveland • Boise

www.tait.com

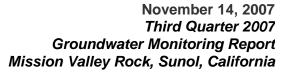


Formation zone are presented in Figures 9, 10, and 11, respectively. Contoured dissolved-phase benzene concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 12, 13, and 14, respectively.

7.0 SUMMARY OF ACTIVITIES AND FINDINGS

Based upon the data presented in this report, previous investigations, current regulatory guidelines, and the judgment of TEM, the following is a summary of activities and findings:

- Based on the depth to water measurements obtained by TEM, groundwater levels have declined an average of 1.4 feet this quarter relative to the corresponding Second Quarter 2007 groundwater levels.
- The groundwater flow direction for the shallow zone ranges from southeasterly to southwesterly at gradients ranging from 0.012 to 0.071 ft/ft, respectively.
- Groundwater in the deep zone is flowing toward the southeast at a gradient of about 0.017 ft/ft.
- Groundwater in the Livermore Formation is flowing in an easterly direction at a gradient of 0.014 ft/ft.
- The mounding effect in the area of wells MW-4S and MW-10s cannot be adequately
 explained by any specific mechanism and may be a combination of factors, including
 excavation and pumping operations related to aggregate extraction during the Third
 Quarter of 2007.
- Twenty-six groundwater samples were collected by TEM from the monitoring wells at the site, and they were delivered to SunStar for analysis.
- A maximum TPHd concentration of 21,000 micrograms per liter (μg/L) was detected in well MW-11D. Highest TPHd concentrations appear to be localized in deep-zone wells in the central and southern parts of the area extending from well MW-11D in the south to MW-9D in the north, as well as in the area of shallow zone wells MW-2S and MW-6S.
- A maximum TPHg concentration of 36,000 μg/L was detected in well MW-9D. Highest concentrations of TPHg appear to be localized in the deep-zone wells in the north-central part of the area, particularly in the vicinity of wells MW-7D and MW-9D, and in the vicinity of well MW-11D in the south-central part of the area (Figure 7).
- A maximum MTBE concentration of 190 μg/L was detected in well MW-11LF. MTBE is localized in the central and southern parts of the area in the vicinity of wells MW-2, MW-6, MW-10, and MW-11 (Figures 9, 10, and 11). MTBE is notably absent in well clusters MW-7 and MW-9 in the northern part of the area.



- A maximum benzene concentration of 990 μ g/L was detected in well MW-9D. Benzene tends to be localized in the deep-zone wells in the northern part of the area in the vicinity of wells MW-7D and MW-9D (Figure 13).
- Concentration trends of toluene, ethylbenzene, and total xylenes are similar to those of benzene.
- TBA was detected in wells MW-9D and MW-11LF at concentrations of 30 μg/L and 13 μg/L, respectively.
- MTBE and TBA were the only fuel oxygenates detected above their respective reporting limits during the Third Quarter 2007 groundwater monitoring event.
- In general, TPHg and BTEX tend to be localized in the groundwater in the northern part
 of the area, upgradient of the former USTs, whereas MTBE concentrations tend to be
 localized in the groundwater in the central and southern parts of the area, downgradient
 of the former USTs. Fluctuating groundwater conditions may have occurred at the site
 in the past, resulting in variable migration pathways for the fuel hydrocarbons in the
 groundwater.
- With some exceptions, notably the TPHd concentrations in the area of wells MW-2, MW-6, and MW-11, overall fuel hydrocarbon concentrations generally tended to be somewhat lower relative to the Second Quarter of 2007 levels.
- The concentrations of hydrocarbons in groundwater indicate that the deep zone is the most impacted zone at the site.

8.0 QUALITY ASSURANCE/QUALITY CONTROL

To increase the confidence levels in the data obtained and minimize the likelihood that judgments were made from potentially erroneous data, a quality assurance/quality control (QA/QC) program was implemented. QA refers to management of actions designed to maintain precision, accuracy, completeness, and representativeness of the data developed from the project. QC refers to accepted formal procedures and activities specifically designed for the purpose of collecting data that are intended to be reliable and consistent for the site conditions.

The program includes formal procedures for sampling, decontamination, instrument calibration, documentation of activities and calculations, and peer review. Routine QC procedures were performed by the laboratory and included daily calibration of instruments, percent surrogate recoveries and analysis of matrix spikes and matrix spike duplicates. The laboratory reported the results to be within acceptable percent recoveries with no results exceeding the laboratory-established control limits.

9.0 REFERENCES

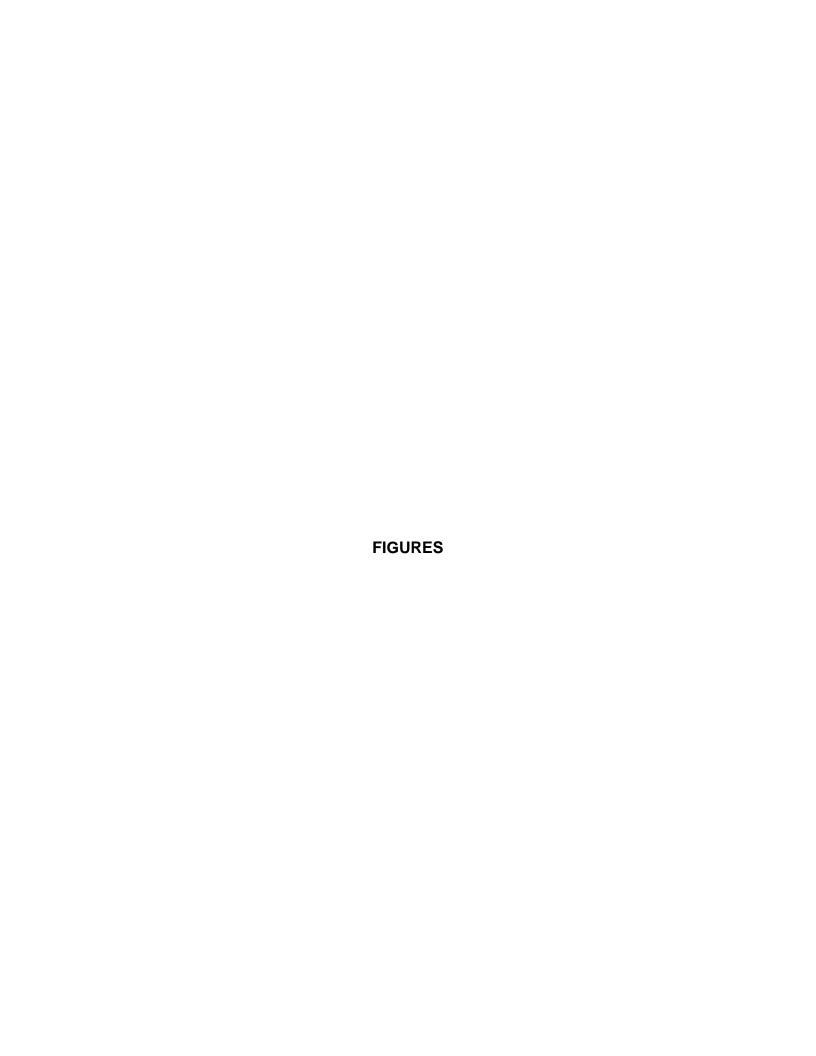
Alameda County Environmental Health Services, November 16, 2004, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

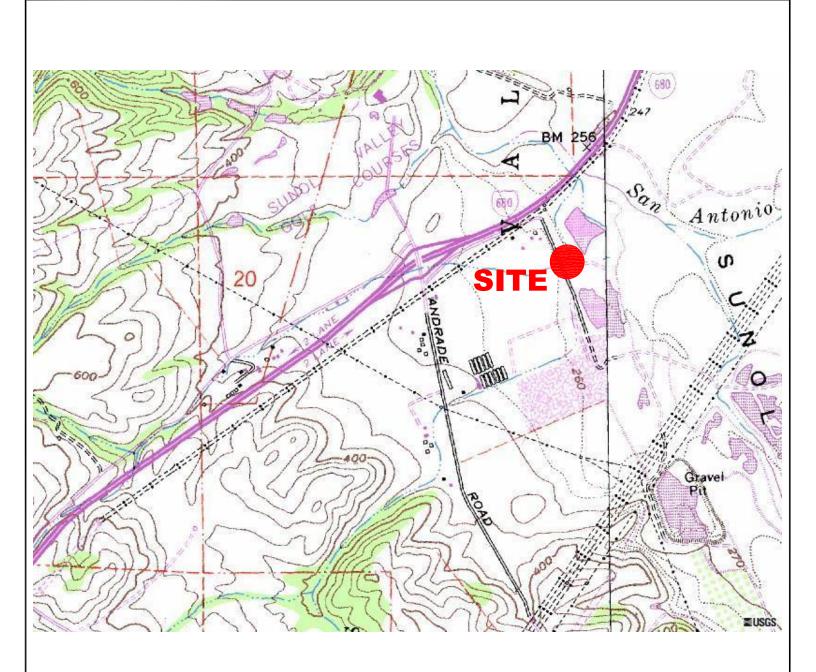
Alameda County Environmental Health Services, November 3, 2005, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

LFR, Inc., April 10, 2007, Site Assessment Report of Additional Lateral and Vertical Characterization and Plan for Interim Remediation at the Asphalt Plant, Hanson Aggregates Mission Valley Rock Facility, 7999 Athenour Way, Sunol, Alameda County, California.

Tait Environmental Management, July 28, 2000, Second Quarter Report, June 2000, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.

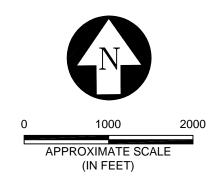
Tait Environmental Management, April 1, 2005, Site Assessment and First Quarter 2005 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.


Tait Environmental Management, August 3, 2007, Second Quarter 2007 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California.


U.S. Geological Survey (USGS), 1989, Fremont 7.5 Minute Topographic Quadrangle Map, 1:24,000.

10.0 LIMITATIONS

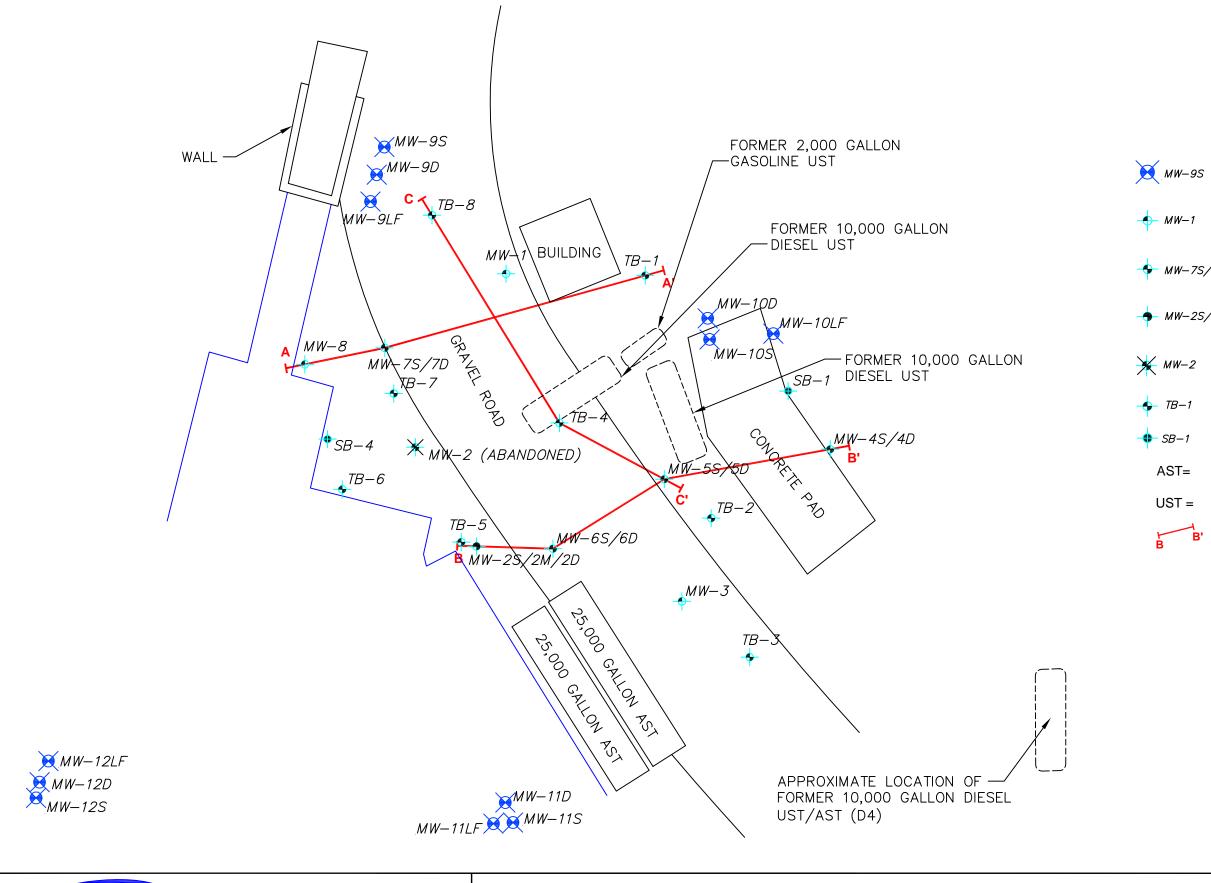
No investigation is considered thorough enough to exclude the presence of hazardous materials at a given site. Opinions and/or recommendations presented apply to site conditions existing at the time of the performance of services and TEM is unable to report on or accurately predict events which may impact the site following conduct of the described services, whether occurring naturally or caused by external forces. No responsibility is assumed by TEM for conditions it is not authorized to investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed. Services hereunder were performed in accordance with our agreement and understanding with, and solely for the use of, Mission Valley Rock. TEM is not responsible for the subsequent separation, detachment or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.


M:\TEM\9002\Active Projects\EM5009C-Hanson Aggregates (Formerly Mission Valley Rock Company)\Qtly GW Monitoring\GW Monitoring 3rd QTR 2007\MVR 3rd Qtr Report 2007.doc

NOTES:

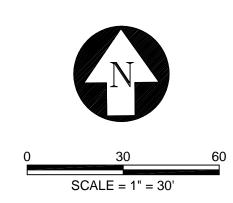
BASE MAP TAKEN FROM TERRASERVER.COM, UNITED STATES GEOLOGICAL SURVEY (USGS), FREEMONT QUADRANGLE, ALAMEDA COUNTY, CALIFORNIA. PRINTED JULY 1, 1989.

TAIT ENVIRONMENTAL MANAGEMENT, INC. 701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX


SITE VICINITY MAP

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA DRAWN BY: N.M.

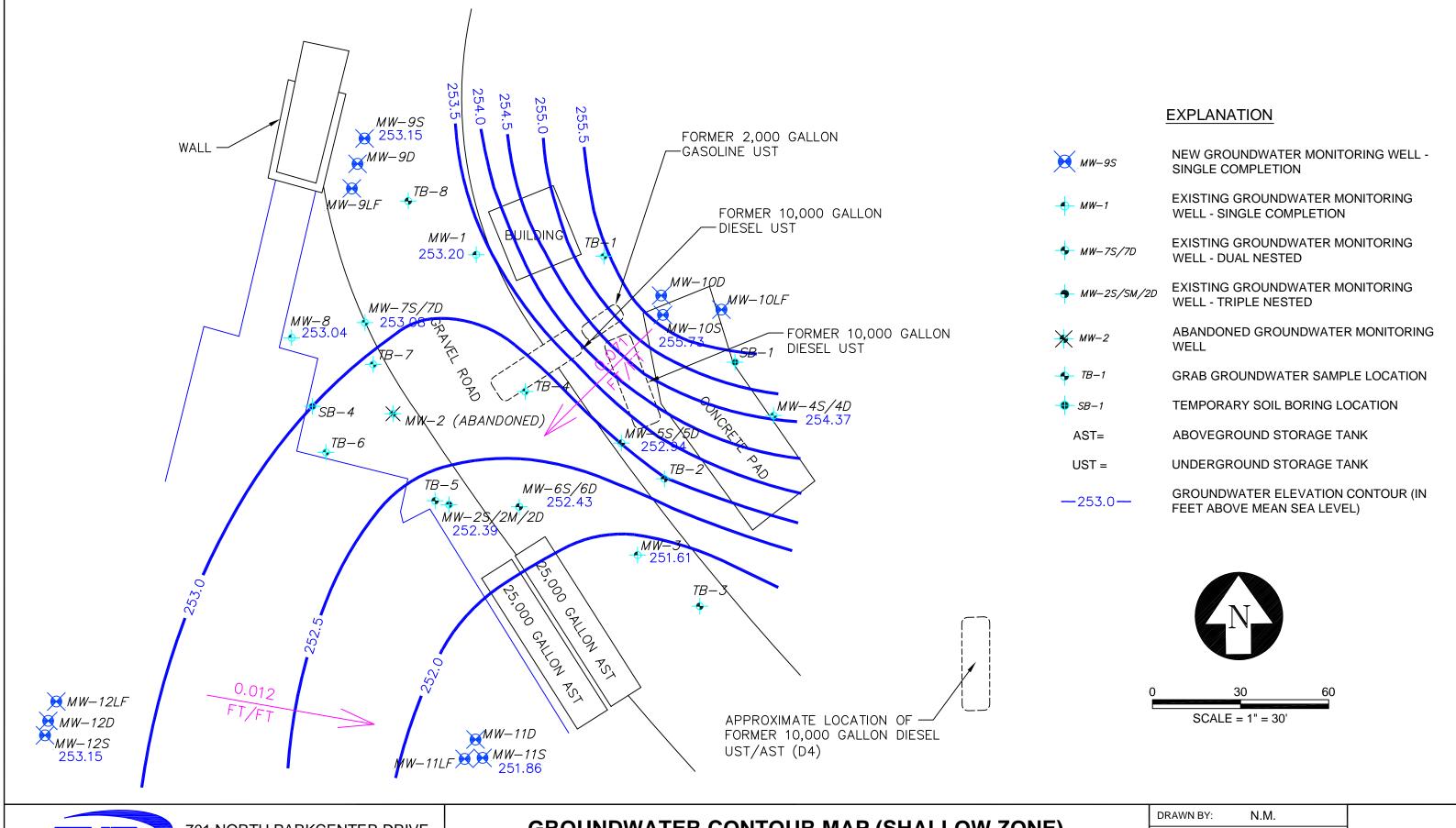
REVIEWED BY: P.M.


PROJECT: EM5009C

DATE: OCTOBER 2007

EXPLANATION

NEW GROUNDWATER MONITORING WELL -SINGLE COMPLETION **EXISTING GROUNDWATER MONITORING WELL - SINGLE COMPLETION** EXISTING GROUNDWATER MONITORING 💠 MW-7S/7D WELL - DUAL NESTED EXISTING GROUNDWATER MONITORING ♠ MW-2S/SM/2D **WELL - TRIPLE NESTED** ABANDONED GROUNDWATER MONITORING WELL **GRAB GROUNDWATER SAMPLE LOCATION** TEMPORARY SOIL BORING LOCATION ABOVEGROUND STORAGE TANK UNDERGROUND STORAGE TANK CROSS SECTION LOCATIONS (APPENDIX A)

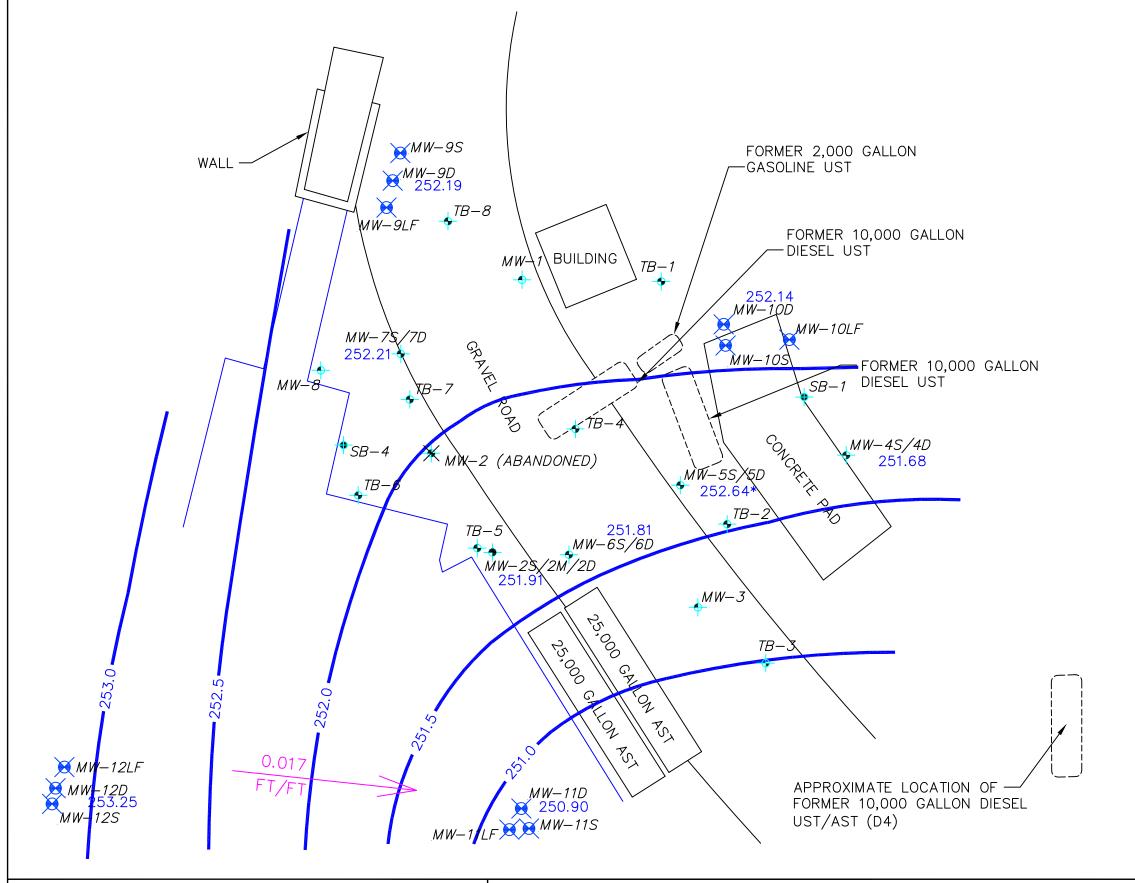

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

SITE PLAN

THIRD QUARTER 2007

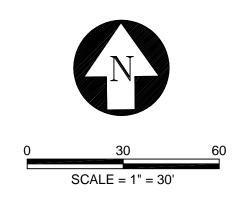
HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY:	P.M.
PROJECT:	EM5009C
DATE: OC	TOBER 2007



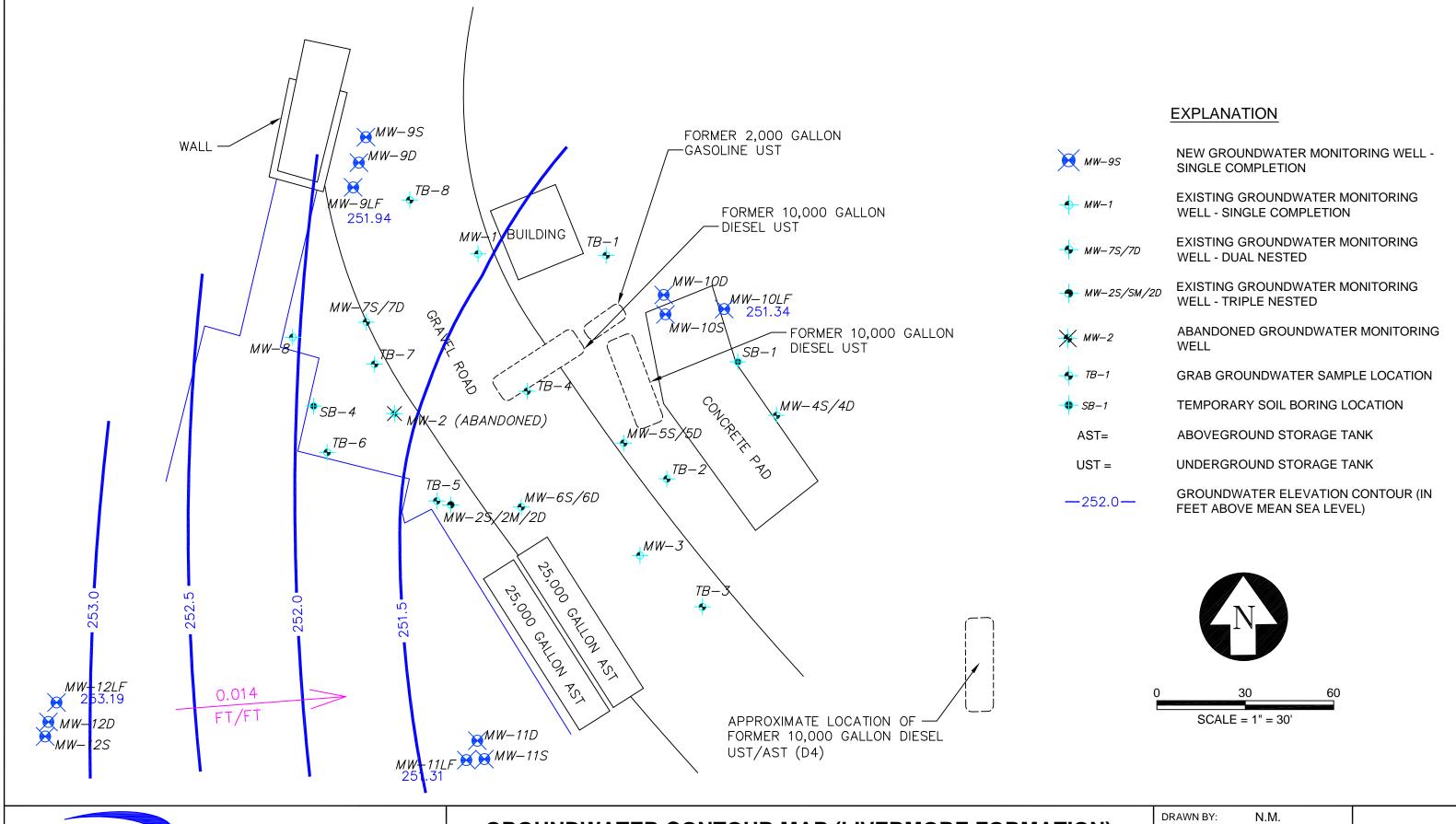
GROUNDWATER CONTOUR MAP (SHALLOW ZONE)


THIRD QUARTER 2007


HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY:	P.M.
PROJECT:	EM5009C
DATE: OC	TOBER 2007

EXPLANATION

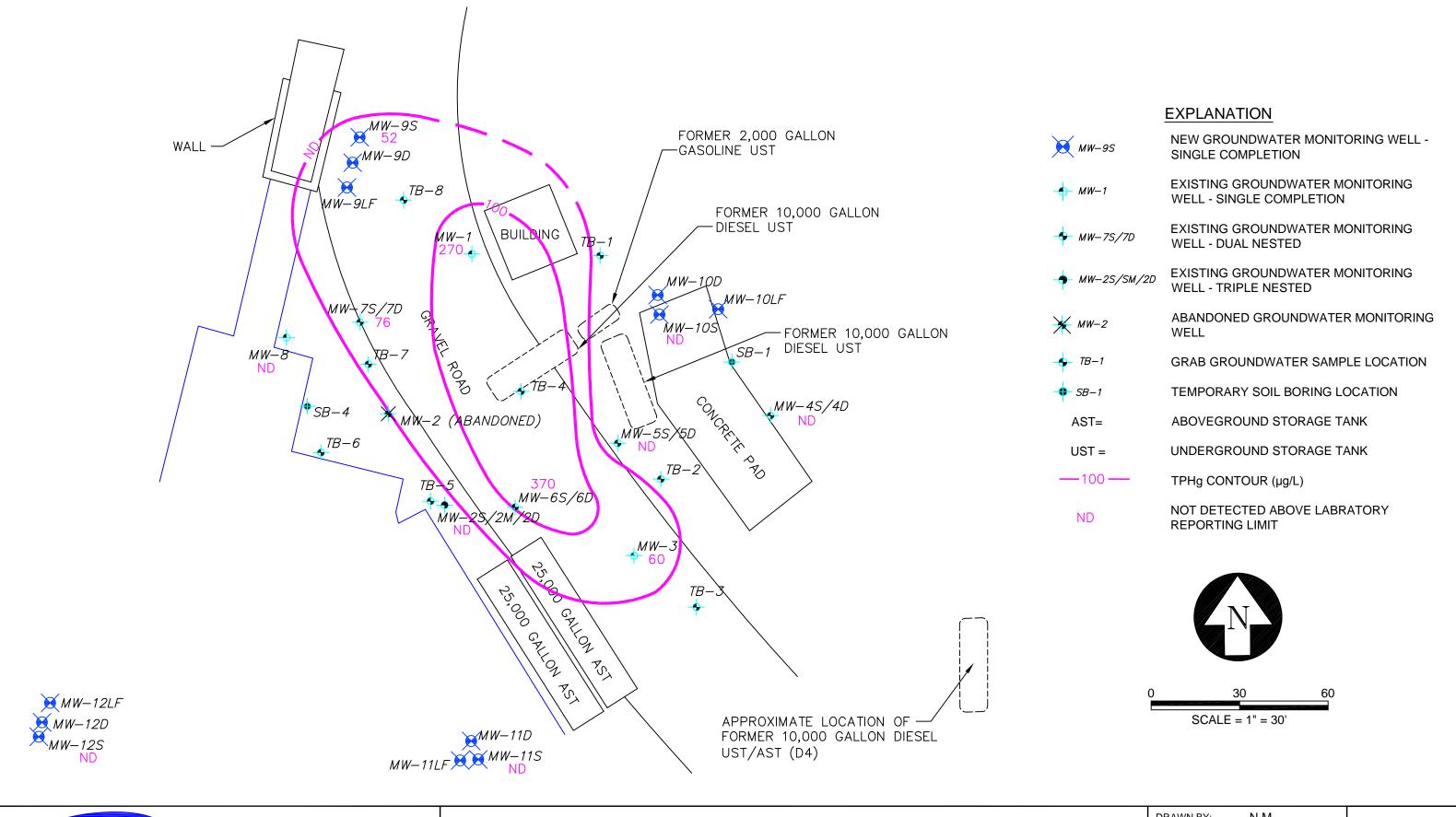

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

GROUNDWATER CONTOUR MAP (DEEP ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

	DRAWN BY:	N.M.
	REVIEWED BY:	P.M.
	PROJECT:	EM5009C
	DATE: OC	TOBER 2007
Γ		

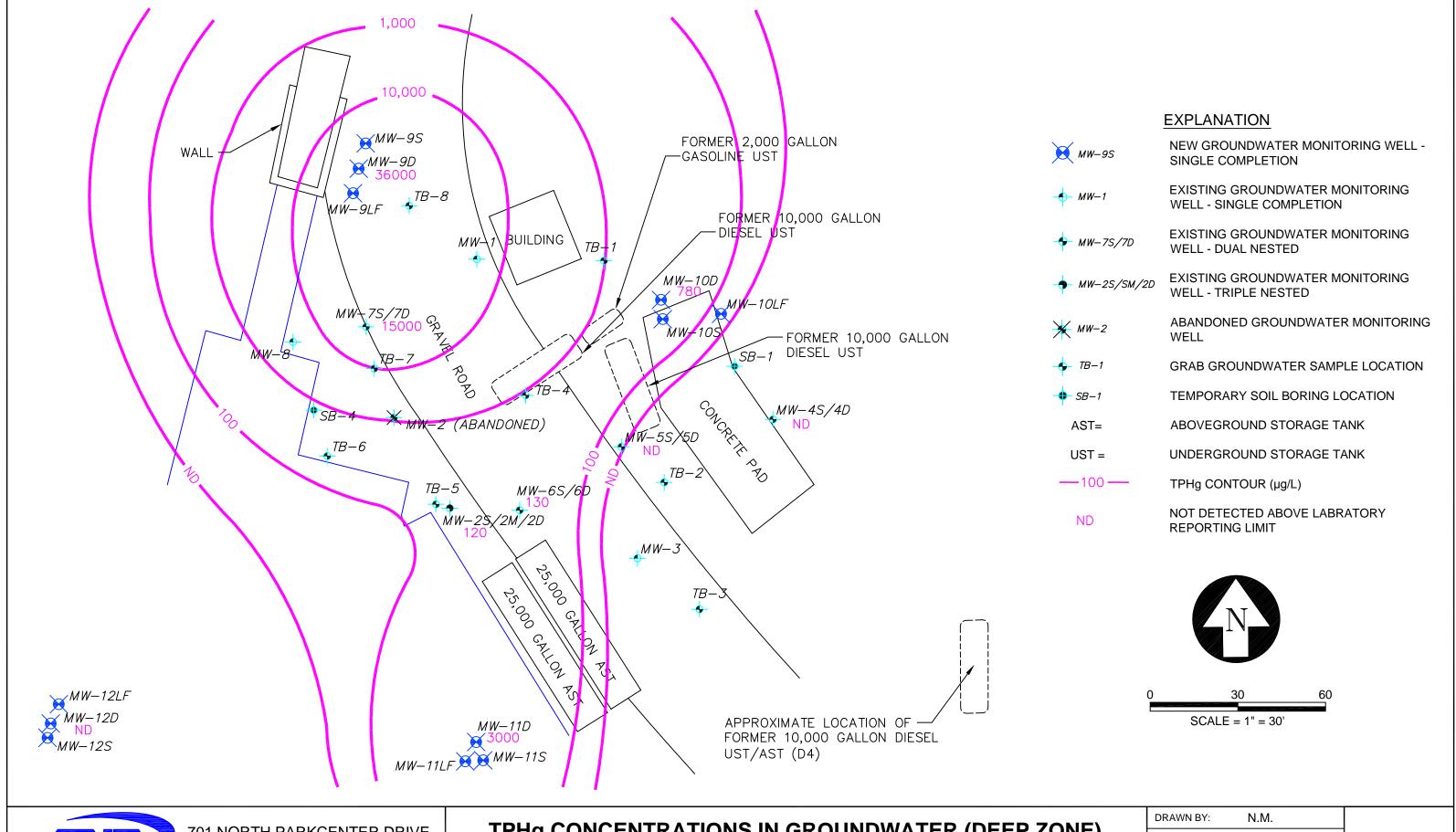


GROUNDWATER CONTOUR MAP (LIVERMORE FORMATION)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY	: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	

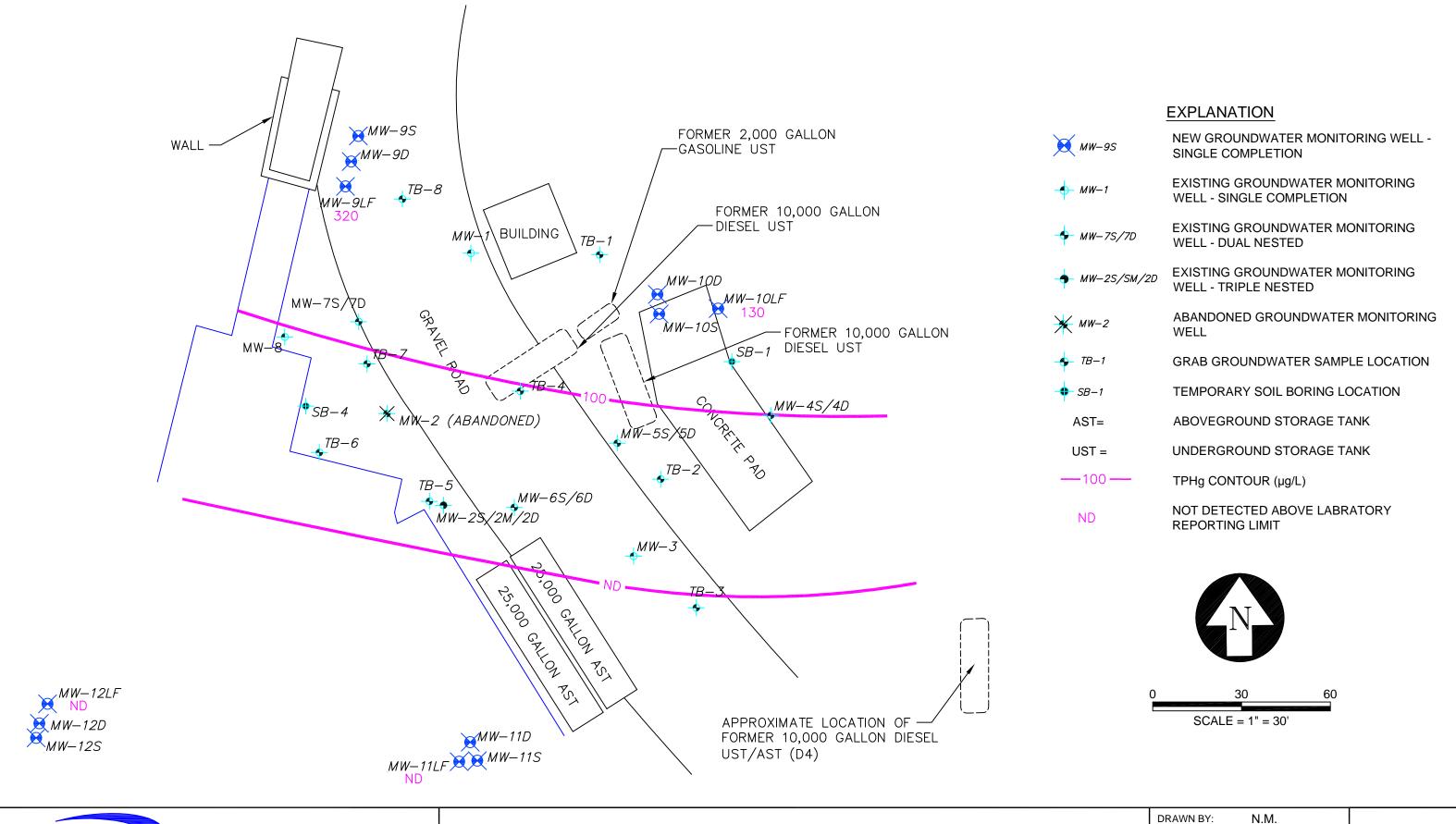


TPHg CONCENTRATIONS IN GROUNDWATER (SHALLOW ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY	′: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	,

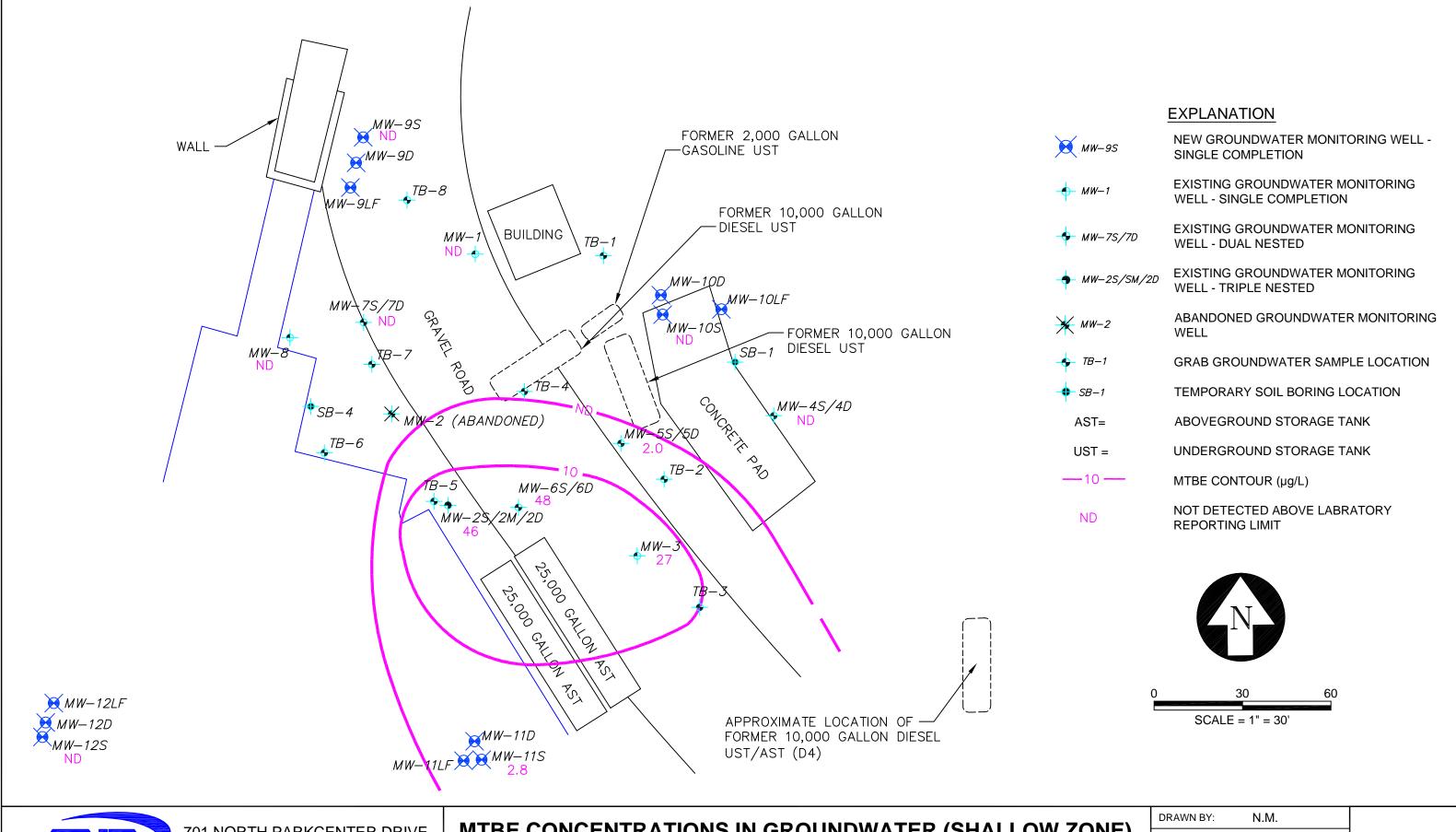


TPHg CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED BY	: P.M.
PROJECT:	EM5009C
DATE: O	CTOBER 2007



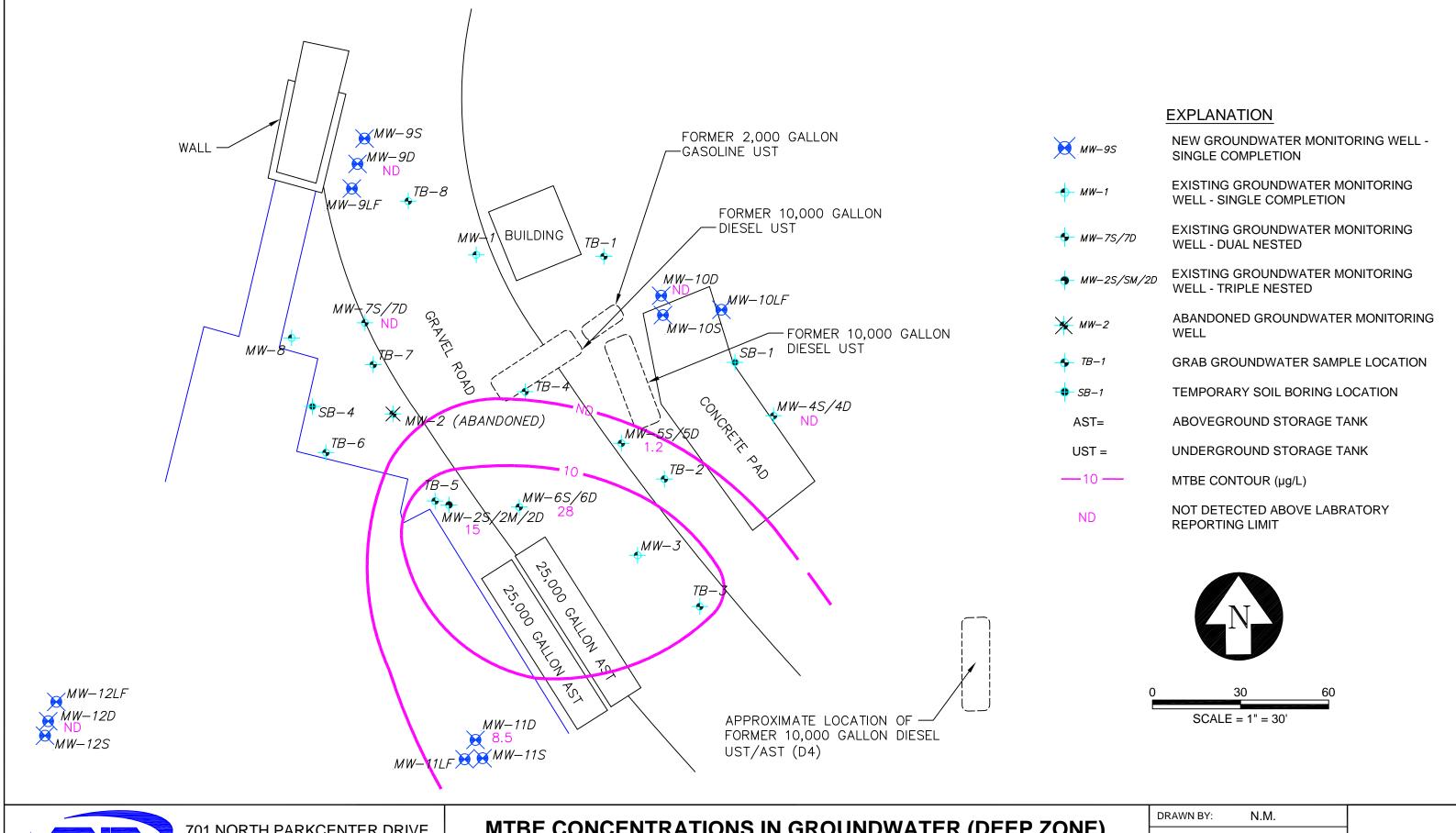
TPHg CONCENTRATIONS IN GROUNDWATER (LIVERMORE FORMATION)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

	DRAWN BY:	: N.M.	
1)	REVIEWED	BY: P.M.	
	PROJECT:	EM5009C	
	DATE:	OCTOBER 2007	

ENVIRONMENTAL MANAGEMENT, INC.


701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

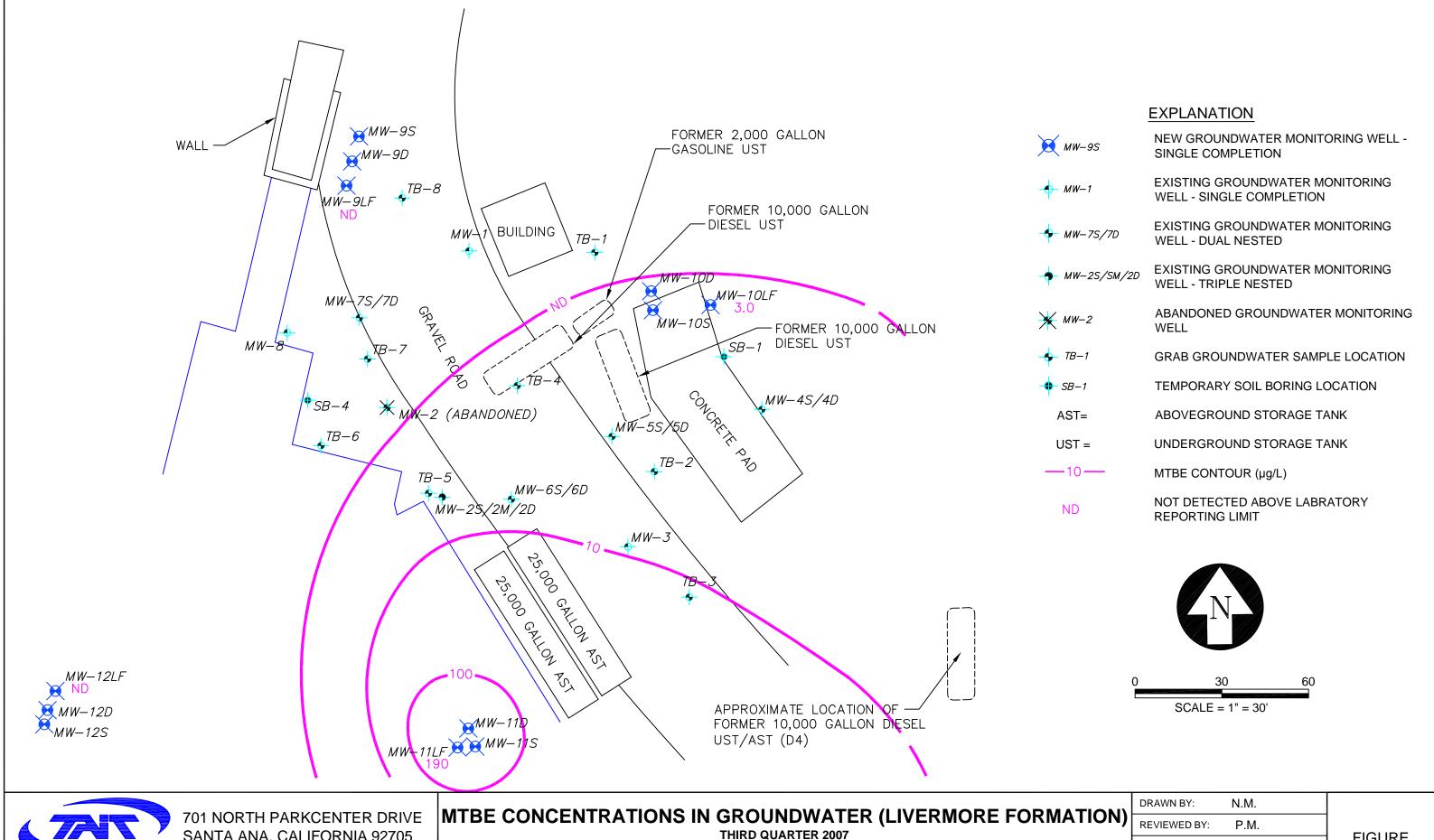
MTBE CONCENTRATIONS IN GROUNDWATER (SHALLOW ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY	′: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	

ENVIRONMENTAL MANAGEMENT, INC.


701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

MTBE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

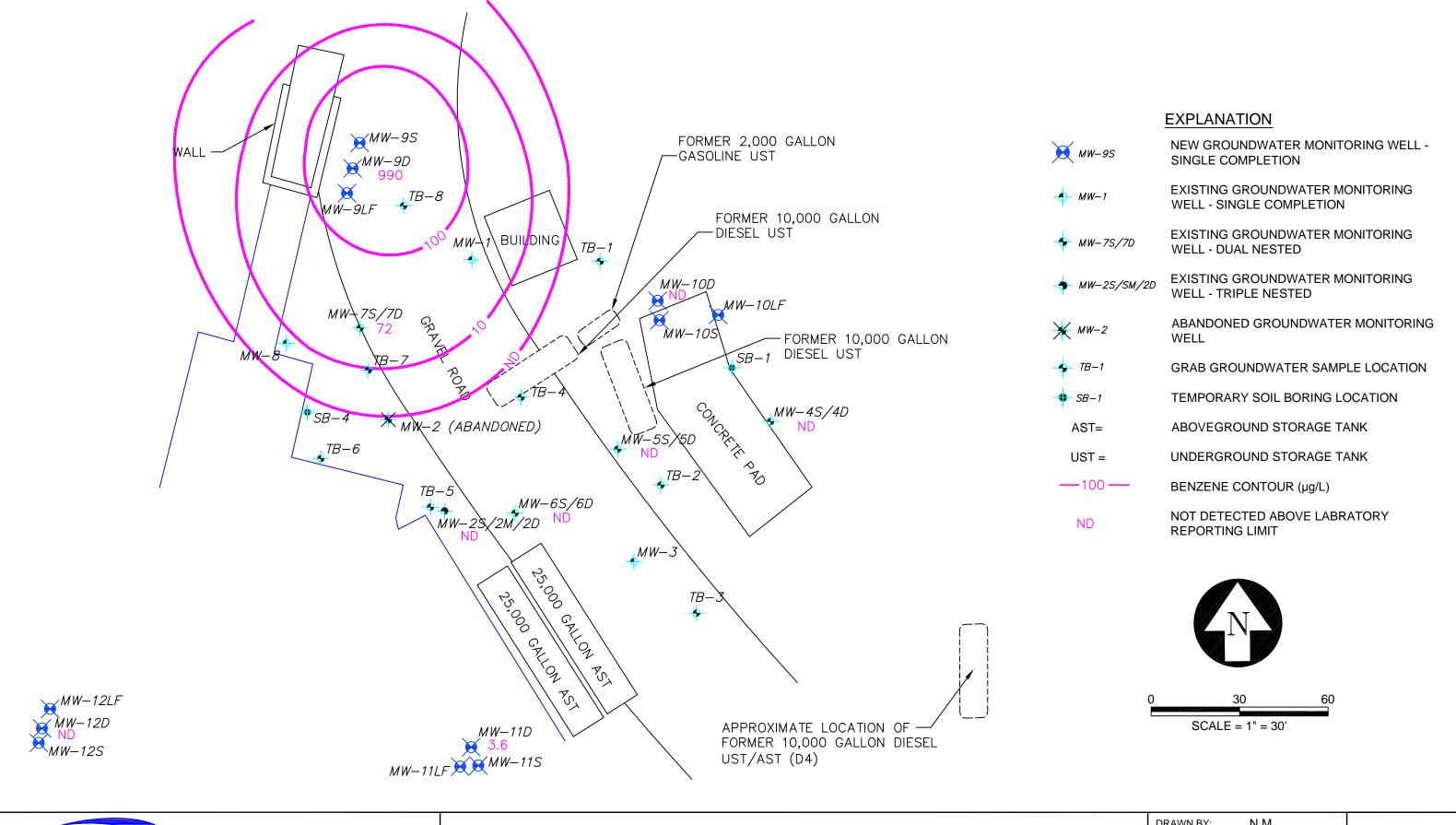
THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

1	DRAWN BY	:	N.M.	
1)	REVIEWED	BY:	P.M.	
	PROJECT:		EM5009C	
	DATE:	OC	TOBER 2007	

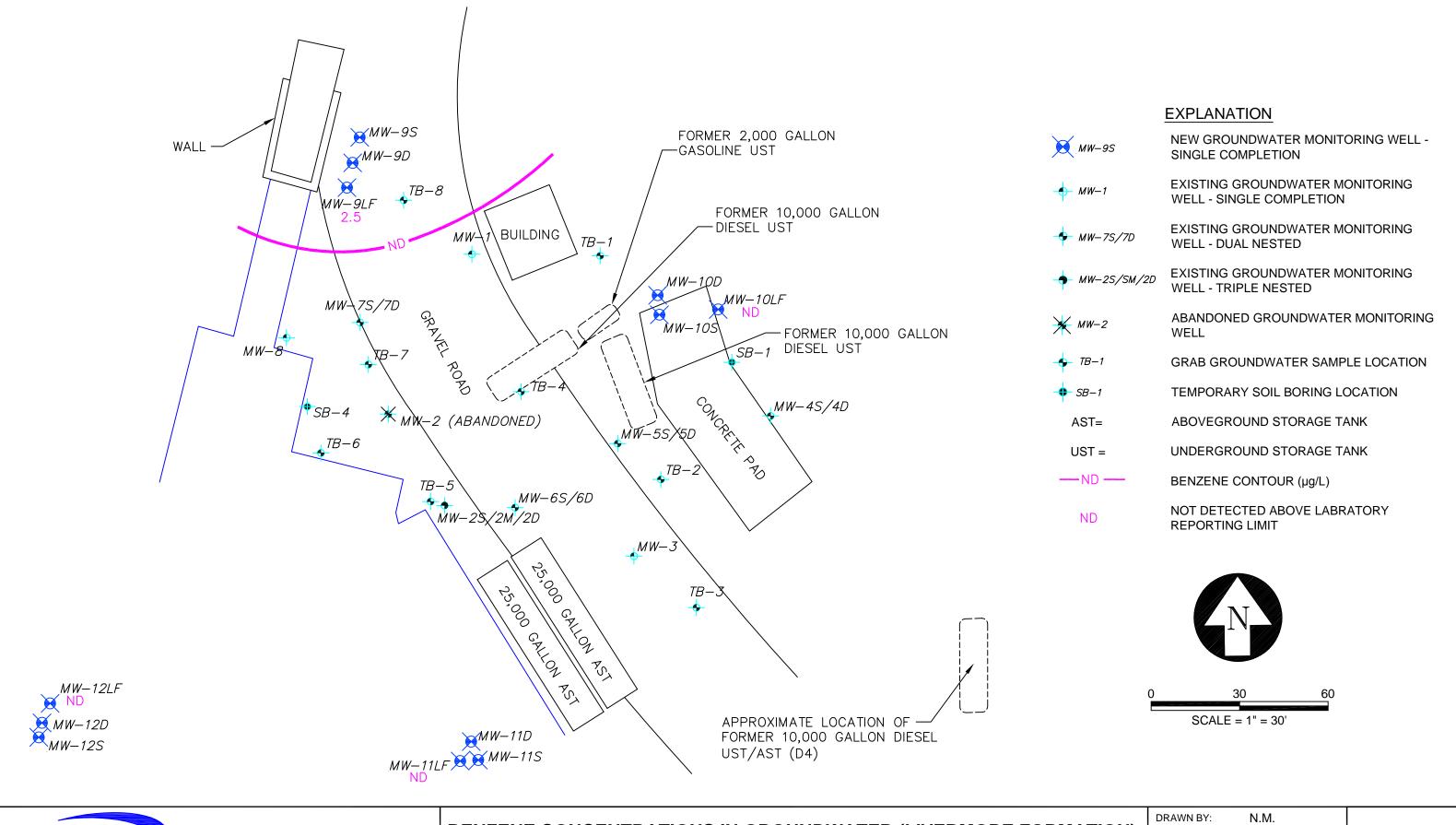


BENZENE CONCENTRATIONS IN GROUNDWATER (SHALLOW ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY	: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	



BENZENE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY:	N.M.	
REVIEWED B	Y: P.M.	
PROJECT:	EM5009C	
DATE: (OCTOBER 2007	

BENZENE CONCENTRATIONS IN GROUNDWATER (LIVERMORE FORMATION) THIRD QUARTER 2007

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.)
7999 ATHENOUR WAY, SUNOL, CALIFORNIA

DRAWN BY	: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	

Table 1 Well Construction Details and Groundwater Elevation Data Third Quarter 2007

Mission Valley Rock Company Sunol, California

Well ID	Casing Diameter (inches)	Depth to Water (feet below TOC)		Screened Interval (feet bgs)	Measuring Point Elevation (feet MSL)	Groundwater Elevation (feet MSL)
MW-1	2	5.48	17.78	5.0 - 20.0	258.68	253.20
MW-2S	2	6.45	8.71	3.0-8.0	258.84	252.39
MW-2M	2	6.88	12.29	14.0-19.0	258.99	252.11
MW-2D	2	7.00	29.54	25.0-30.0	258.91	251.91
MW-3	2	7.47	14.70	5.0-20.0	259.08	251.61
MW-4S	2	4.77	8.35	3.0-8.0	259.14	254.37
MW-4D	2	7.54	23.38	17.0-22.0	259.22	251.68
MW-5S	2	6.49	8.24	3.0-8.0	259.43	252.94
MW-5D	2	6.76	22.65	17.0-22.0	259.40	252.64
MW-6S	2	6.32	15.00	5.0-15.0	258.75	252.43
MW-6D	2	7.46	29.15	24.5-29.5	259.27	251.81
MW-7S	2	5.76	8.48	5.0-8.0	258.84	253.08
MW-7D	2	6.59	23.61	20.0-25.0	258.80	252.21
MW-8	2	5.80	15.34	5.0-15.0	258.84	253.04
MW-9S	2	5.26	12.20	5.3-12.3	258.41	253.15
MW-9D	2	6.67	24.28	18.9-23.9	258.86	252.19
MW-9LF	2	7.00	39.11	33.3-38.3	258.94	251.94
MW-10S	2	4.94	9.58	4.8-9.8	260.67	255.73
MW-10D	2	8.50	19.38	15.5-20.5	260.64	252.14
MW-10LF	2	9.24	39.90	34.4-39.4	260.58	251.34
MW-11S	2	7.10	9.43	4.8-9.8	258.96	251.86
MW-11D	2	8.08	20.50	15.3-20.3	258.98	250.90
MW-11LF	2	7.70	39.41	32.8-37.8	259.01	251.31
MW-12S	2	9.54	11.04	4.6-11.6	262.69	253.15
MW-12D	2	9.45	19.70	16.0-21.0	262.70	253.25
MW-12LF	2	9.71	39.50	33.7-38.7	262.90	253.19

Notes:

Screened intervals are approximated. Screened interval in wells is lower than the measured total depth due to silting in the bottom of wells.

The measurement point for the above wells is the north side of the top of casing.

Depth to water and total depth measurements taken by Tait Environmental Management, Inc. personnel on September 11, 2007.

Total depth and depth to water measurements taken by Tait Environmental Management from designated measurement point.

Groundwater Elevation = Measurement Point Elevation - Depth to Water.

TOC = Top of Casing

bgs = Below Ground Surface

MSL = Mean Sea Level

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet
		06/23/98	1.32	255.19	ND
		01/05/99	2.28	254.23	ND
		03/29/99	1.88	254.63	ND
		06/10/99	3.35	253.16	ND
		09/17/99	3.66	252.85	ND
		12/27/99	2.94	253.57	ND
		03/22/00	2.72	253.79	Odor
		06/30/00	4.01	252.50	Slight Odor
		09/14/00	5.11	251.40	Slight Odor
		12/20/00	4.95	251.56	ND
	05054	03/22/01	2.28	254.23	ND
	256.51	06/27/01	3.60	252.91	ND
		09/21/01	6.50	250.01	ND
		12/27/01	1.29	255.22	ND
		03/29/02	2.91	253.60	ND
		06/13/02	3.95	252.56	ND
MW-1		09/27/02	5.18	251.33	ND
		12/03/02	3.90	252.61	ND
		03/31/03	1.40	255.11	ND
		06/27/03	2.65	253.86	ND
		09/19/03	4.67	251.84	ND
		12/22/03	4.60	251.91	ND
	258.68	01/17/05	3.41	255.27	ND
		05/04/05	1.20	257.48	ND
		08/12/05	4.52	254.16	ND ND
		12/12/05	6.44	252.24	ND ND
		03/02/06	0.71	252.24	ND ND
			2.47	256.21	ND ND
		06/12/06	6.13		ND ND
	-	09/05/06		252.55	ND ND
	-	12/04/06	5.42	253.26	
		02/26/07	2.46	256.22	ND ND
		06/11/07	4.10	254.58	ND ND
		09/11/07	5.48	253.20	ND
		06/23/98	1.72	254.98	0.005
		01/05/99	2.69	254.01	4.00
		03/29/99	2.50	254.20	ND
		06/10/99	4.00	252.70	Sheen
		09/17/99	4.54	252.16	0.50
		12/27/99	3.85	252.85	0.13
		03/22/00	3.20	253.50	0.03
		06/30/00	4.62	252.08	0.02
		09/14/00	5.95	250.75	>0.01
	[12/20/00	5.65	251.05	0.07
MW-2	256.7	03/22/01	3.21	253.49	0.10
	Ī	06/27/01	3.31	253.39	0.06
	Ī	09/21/01	7.08	249.62	0.34
	Ţ	12/27/01	2.18	254.52	0.26
	l t	03/29/02	3.40	253.30	0.90
		06/13/02	4.35	252.35	0.08
		09/27/02	5.54	251.16	ND
		12/03/02	4.30	252.40	ND
		03/31/03	1.78	254.92	ND
		06/27/03	3.10	253.60	ND ND

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		09/19/03	5.02	251.68	ND

			Sunol, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
MW-2	256.7	12/22/03	NM	NM	ND
IVI VV-Z	256.7	01/05/05		Abandoned	
		01/17/05	4.25	254.59	ND
		05/04/05	1.98	256.86	ND
		08/12/05	5.46	253.38	ND
		12/12/05	7.38	251.46	ND
		03/02/06	2.24	256.60	ND
MW-2S	258.84	06/12/06	3.08	255.76	ND
	Ì	09/05/06	7.01	251.83	ND
		12/04/06	6.40	252.44	ND
		02/26/07	3.52	255.32	ND
		06/11/07	4.93	253.91	ND
		09/11/07	6.45	252.39	ND
		01/17/05	4.68	254.31	ND
	ŀ	05/04/05	2.32	256.67	ND ND
	ŀ	08/12/05	5.77	253.22	ND ND
		12/12/05	7.78	251.21	ND
		03/02/06	2.10	256.89	ND ND
MW-2M	258.99	06/12/06	3.39	255.60	ND ND
IVI VV-ZIVI	250.99	09/05/06	7.36		
				251.63	ND ND
		12/04/06	6.89	252.10	ND ND
		02/26/07	3.79	255.20	ND
		06/11/07	5.30	253.69	ND
		09/11/07	6.88	252.11	ND
	258.91	01/17/05	4.75	254.16	ND
		05/04/05	2.38	256.53	ND
		08/12/05	5.90	253.01	ND
		12/12/05	7.85	251.06	ND
		03/02/06	2.16	256.75	ND
MW-2D		06/12/06	3.48	255.43	ND
		09/05/06	7.44	251.47	ND
		12/04/06	6.94	251.97	ND
		02/26/07	3.89	255.02	ND
		06/11/07	5.45	253.46	ND
		09/11/07	7.00	251.91	ND
		06/23/98	2.66	254.06	ND
		01/05/99	4.47	252.25	Slight Odor
		03/29/99	3.96	252.76	Sheen
		06/10/99	5.54	251.18	ND
		09/17/99	6.18	250.54	Sheen
		12/27/99	5.52	251.20	Odor
		03/22/00	4.61	252.11	Odor
		06/30/00	6.35	250.37	Very Slight Odor
	ł	09/14/00	7.30	249.42	Very Slight Odor
MW-3	256.72	12/20/00	7.29	249.43	ND
	200.12	03/22/01	4.73	251.99	ND ND
	ŀ	06/27/01	NM	251.99 NM	NM
	ŀ	09/21/01	7.89	248.83	ND
		12/27/01	3.77	252.95	ND
		03/29/02	5.12	251.60	ND
		06/13/02	6.52	250.20	ND ND
		09/27/02	7.28	249.44	ND ND
		12/03/02	6.40	250.32	ND

Sunoi, California						
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)	
		03/31/03	4.01	252.71	ND	
		06/27/03	5.13	251.59	ND	
	256.72	09/19/03	5.13	251.59	ND	
		12/22/03	7.20	249.52	ND	
		01/17/05	5.81	253.27	ND	
		05/04/05	3.50	255.58	ND	
		08/12/05	6.01	253.07	ND	
		12/12/05	8.45	250.63	ND	
MW-3		03/02/06	3.42	255.66	ND	
	259.08	06/12/06	4.15	254.93	ND	
		09/05/06	7.97	251.11	ND	
		12/04/06	7.30	251.78	ND	
		02/26/07	4.62	254.46	ND	
		06/11/07	6.11	252.97	ND	
		09/11/07	7.47	251.61	ND ND	
		01/17/05	4.62	254.52	ND ND	
		05/04/05	3.73	255.41	ND	
		08/12/05	3.45	255.69	ND ND	
		12/12/05	5.48	253.66	ND ND	
		03/02/06	3.10	256.04	ND ND	
MW-4S	259.14	06/12/06	4.10	255.04	ND ND	
14144-40	259.14	09/05/06	3.90	255.24	ND	
		12/04/06	4.05	255.09	ND	
		02/26/07	3.40	255.74	ND	
		06/11/07	4.75	254.39		
		09/10/07	4.77	254.37	ND ND	
		01/17/05	5.96	253.26	ND ND	
		05/04/05		255.29	ND ND	
	259.22	08/12/05	3.93 5.60	253.62	ND	
		12/12/05	8.50	250.72	ND ND	
		03/02/06	3.63	255.59	ND ND	
MW-4D		06/12/06	4.51	254.71		
19199-40		09/05/06	8.18	251.04	ND ND	
		12/04/06	7.95	251.04		
		02/26/07	4.49	254.73	ND ND	
		06/11/07 09/10/07	6.25 7.54	252.97 251.68	ND ND	
		09/10/07			ND ND	
		05/04/05	4.57	254.86		
		08/12/05	2.50 5.30	256.93 254.13	ND ND	
		12/12/05	7.68	254.13 251.75		
					ND ND	
MW-5S	259.43	03/02/06	1.42	258.01	ND ND	
INI WY-33	208.40	06/12/06 09/05/06	3.73	255.70	ND ND	
			7.02	252.41	ND ND	
		12/04/06 02/26/07	6.31	253.12	ND ND	
			3.06	256.37	ND ND	
		06/11/07	5.10	254.33	ND ND	
		09/10/07	6.49	252.94	ND ND	
		01/17/05	5.15	254.25	ND	
		05/04/05	2.75	256.65	ND ND	
BANA/ 50	050.40	08/12/05	5.60	253.80	ND ND	
MW-5D	259.40	12/12/05	7.92	251.48	ND ND	
		03/02/06	1.98	257.42	ND	

			Sunoi, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		06/12/06	3.64	255.76	ND
		09/05/06	7.30	252.10	ND ND
		12/04/06	6.69	252.71	ND ND
	<u> </u>	02/26/07	3.56	255.84	ND
MW-5D	259.40	06/11/07	5.39	254.01	ND ND
	-	09/11/07	6.76	252.64	ND ND
		01/17/05	4.30	254.45	ND ND
	-				
	-	05/04/05	1.96	256.79	ND ND
	-	08/12/05	5.17	253.58	ND NB
	-	12/12/05	7.48	251.27	ND ND
		03/02/06	1.95	256.80	ND
MW-6S	258.75	06/12/06	3.10	255.65	ND
		09/05/06	6.94	251.81	ND
		12/04/06	6.30	252.45	ND
		02/26/07	3.44	255.31	ND
		06/11/07	4.80	253.95	ND
		09/11/07	6.32	252.43	ND
		01/17/05	5.17	254.10	ND
		05/04/05	2.80	256.47	ND
		08/12/05	6.30	252.97	ND
		12/12/05	8.32	250.95	ND
		03/02/06	2.70	256.57	ND
MW-6D	259.27	06/12/06	4.05	255.22	ND
		09/05/06	7.90	251.37	ND
		12/04/06	7.37	251.90	ND
		02/26/07	4.35	254.92	ND
		06/11/07	5.93	253.34	ND
		09/11/07	7.46	251.81	Odor
		01/17/05	3.42	255.40	ND
		05/04/05	1.44	257.38	ND
	258.82	08/12/05	4.80	254.02	ND
	200.02	12/12/05	6.64	252.18	ND
		03/02/06	0.95	257.87	ND ND
MW-7S		06/12/06	2.55	256.29	ND
11111 70		09/05/06	6.30	252.54	ND ND
		12/04/06	5.60	253.24	ND ND
	258.84	02/26/07	2.61	256.23	ND ND
	-				
	-	06/11/07	4.32	254.52	ND ND
		09/10/07	5.76	253.08	ND ND
		01/17/05	5.50	252.57	ND ND
	050.05	05/04/05	1.45	256.62	ND NB
	258.07	08/12/05	4.70	253.37	ND
		12/12/05	7.40	250.67	ND
		03/02/06	5.10	252.97	Gasoline odor
MW-7D		06/12/06	3.66	255.14	Gasoline odor
191 99 -7 D		09/05/06	7.19	251.61	ND
	258.80	12/04/06	6.64	252.16	ND
	200.00	02/26/07	3.65	255.15	ND
		06/11/07	4.95	253.85	ND
		09/11/07	6.59	252.21	Odor
		01/17/05	3.45	255.39	ND
		05/04/05	1.25	257.59	ND
	258 84	08/12/05	4.92	253.92	ND

			Sunoi, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
IVIVV-U	200.0₹	12/12/05	6.67	252.17	ND
	-	03/02/06	0.78	258.06	ND
	•	06/12/06	2.44	256.40	ND ND
	-	09/05/06	6.45	252.39	ND ND
	-	12/04/06	5.80	253.04	ND ND
MW-8	258.84	02/26/07	2.68	256.16	ND ND
10100-0	230.04	06/11/07	4.32	254.52	ND
	-	09/10/07	5.80	253.04	ND ND
		06/12/06	2.14	256.27	ND ND
	-				
	-	09/05/06	5.92	252.49	ND ND
MW-9S	258.41	12/04/06	5.21	253.20	ND ND
		02/26/07	3.28	255.13	ND
		06/11/07	3.70	254.71	ND
		09/11/07	5.26	253.15	ND
	_	06/12/06	3.16	255.70	ND
	_	09/05/06	7.12	251.74	ND
MW-9D	258.86	12/04/06	6.58	252.28	ND
	200.00	02/26/07	3.52	255.34	Sheen
	_	06/11/07	5.19	253.67	Sheen
		09/11/07	6.67	252.19	Odor
		06/12/06	3.46	255.48	ND
		09/05/06	7.37	251.57	ND
MW-9LF	050.04	12/04/06	6.85	252.09	ND
MM-9LF	258.94	02/26/07	3.79	255.15	ND
		06/11/07	8.94	250.00	ND
	•	09/11/07	7.00	251.94	ND
		06/12/06	5.00	255.67	ND
	•	09/05/06	5.62	255.05	ND
		12/04/06	5.04	255.63	ND
MW-10S	260.67	02/26/07	3.88	256.79	ND
	-	06/11/07	4.84	255.83	ND
	-	09/11/07	4.94	255.73	ND ND
		06/12/06	5.42	255.22	ND ND
	-	09/05/06	8.92	251.72	ND ND
	-	12/04/06	8.18	252.46	ND ND
MW-10D	260.64	02/26/07	5.40	255.24	ND ND
	-	06/11/07	7.13	253.51	ND ND
	-				
		09/11/07	8.50	252.14	ND
		06/12/06	5.99	254.59	ND
		09/05/06	9.65	250.93	ND
MW-10LF	260.58	12/04/06	9.02	251.56	ND ND
		02/26/07	6.23	254.35	ND
		06/11/07	7.86	252.72	ND
		09/11/07	9.24	251.34	ND
		06/12/06	3.69	255.27	ND
		09/05/06	7.69	251.27	ND
MW-11S	258.96	12/04/06	7.28	251.68	ND
	200.00	02/26/07	4.20	254.76	ND
		06/11/07	5.72	253.24	ND
		09/11/07	7.10	251.86	ND
		06/12/06	3.70	255.28	ND
		09/05/06	8.50	250.48	ND
		12/04/06	7.65	251.33	ND

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
WIVV-11D	230.30	02/26/07	4.48	254.50	Sheen
		06/11/07	6.14	252.84	Sheen
		09/12/07	8.08	250.90	Sheen

Table 2 Historical Groundwater Gauging Data

Mission Valley Rock Company Sunol, California

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		06/12/06	3.90	255.11	ND
		09/05/06	7.84	251.17	ND
MW-11LF	259.01	12/04/06	7.75	251.26	ND
IVIVV-IILF	259.01	02/26/07	4.69	254.32	ND
		06/11/07	6.15	252.86	ND
		09/10/07	7.70	251.31	ND
		06/12/06	5.77	256.92	ND
		09/05/06	10.51	252.18	ND
MW-12S	262.69	12/04/06	10.00	252.69	ND
14144-123		02/26/07	6.45	256.24	ND
		06/11/07	7.95	254.74	ND
		09/10/07	9.54	253.15	ND
		06/12/06	5.69	257.01	ND
		09/05/06	10.40	252.30	ND
MW-12D	262.70	12/04/06	9.94	252.76	ND
IVIVV-12D	202.70	02/26/07	6.47	256.23	ND
		06/11/07	7.96	254.74	ND
		09/11/07	9.45	253.25	ND
		06/12/06	5.92	256.98	ND
		09/05/06	10.69	252.21	ND
MW-12LF	262.00	12/04/06	10.25	252.65	ND
	262.90	02/26/07	6.65	256.25	ND
		06/11/07	8.10	254.80	ND
		09/11/07	9.71	253.19	ND

Notes:

Depth to water and liquid phase hydrocarbon (LPH) thickness reported in feet below measurement point.

Groundwater elevations reported in feet above mean sea level (msl).

Adjusted groundwater elevation = Measurement Point Elevation - Depth to Water + (LPH Thickness x 0.75)

ND = Not Detected

TOC = Top of Casing

MSL = Mean Sea Level

LPH = Liquid-Phase Hydrocarbon

Table 3 Groundwater Analytical Results Third Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Tert-amyl methyl ether TAME (ug/L)	Tert-butyl alcohol (ug/L)	MTBE (ug/L)
MW-1	09/11/07	ND<500	270	0.80	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-2S	09/11/07	17000	ND<50	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<10	ND<50	46
MW-2M	09/11/07	4900	220	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	14
MW-2D	09/11/07	4600	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	15
MW-3	09/11/07	ND<500	60	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	27
MW-4S	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-4D	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-5S	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.0
MW-5D	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.2
MW-6S	09/11/07	930	370	ND<0.5	ND<0.5	1.3	ND<1.0	ND<2.0	ND<10	48
MW-6D	09/12/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	28
MW-7S	09/10/07	ND<500	76	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-7D	09/12/07	3500	15000	72	340	1300	1940	ND<2.0	ND<10	ND<1.0
MW-8	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9S	09/11/07	ND<500	52	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9D	09/12/07	4400	36000	990	5700	2800	4600	ND<2.0	30	ND<1.0
MW-9LF	09/11/07	ND<500	320	2.5	0.59	ND<0.5	1.94	ND<2.0	ND<10	ND<1.0
MW-10S	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10D	09/11/07	ND<500	780	ND<0.5	ND<0.5	1.7	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10LF	09/11/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	3.0
MW-11S	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.8

Table 3 Groundwater Analytical Results Third Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	Tert-amyl methyl ether TAME (ug/L)	Tert-butyl alcohol (ug/L)	MTBE (ug/L)
MW-11D	09/12/07	21000	3000	3.6	4.0	7.9	22	ND<2.0	ND<10	8.5
MW-11LF	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	13	190
MW-12S	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12D	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12LF	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

Notes:

Analyses for Total Petroleum Hydrocarbons as Gasoline and Diesel (TPHg and TPHd, respectively) were performed using EPA Method No. 8015M.

Analyses for benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl ether (MTBE), Tert-amyl methyl ether (TAME), and Tert-butyl alcolhol (TBA) were performed using EPA Method No. 8260B. Di-isoproppyl ether (DIPE), and Ethyl tert-butyl ther (ETBE) were not detected above laboratory detection limits.

Total xylene concentrations were determined by adding m,p-xylene and o-xylene from laboratory report.

ug/L = Micrograms per Liter

ND = Non-detect at or above corresponding laboratory reporting limit.

Table 4 Historical Groundwater Analytical Results Mission Valley Rock Company Sunol, California

					Surioi, Ca	illiottila				
				_				T		
Well	Date	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes (ug/L)	TAME	TBA	MTBE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	("9")	(ug/L)	(ug/L)	(ug/L)
	06/23/98	0.1	3,100	19	2.3	91	48	ND<2.0	ND<10	110
	10/01/98	0.1	2,300	3.1	4.2	5.0	15	ND<2.0	ND<10	ND<0.5
	01/05/99	350	ND<50	12	7.5	20	6.2	ND<2.0	ND<10	ND<5.0
	03/29/99	190	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	210	1,800	1.2	0.9	1.5	4.6	ND<2.0	ND<10	ND<0.5
	09/17/99	62	180	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	12/27/99	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	03/22/00	86	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/30/00	70	450	2.1	ND<0.5	2.1	1.4	ND<2.0	ND<10	7.6
	09/14/00	ND<50	850	5.4	ND<0.5	9.4	2.6	ND<2.0	ND<10	9.8
		ND<30	370	5.3	ND<0.5	2.7	ND<3.0	ND<2.0	ND<10	55
	12/20/00 03/22/01	ND<1,000	700	ND<1.0	ND<1.0	1.4	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/27/01	ND<1,000	170 730	ND<1.0	ND<1.0	1.2 7.6	ND<1.0 1.2	ND<2.0	ND<10 ND<10	ND<1.0 ND<1.0
	09/21/01	ND<1,000	500	1.4	ND<1.0			ND<2.0		
	12/27/01	1000		15 50	ND<1.0	27	5.5	ND<2.0	ND<10	ND<1.0
	03/29/02	12000 ND 41,000	29000	3.5	ND<25	960 42	290 7.9	ND<2.0	ND<10	ND<25
MW-1	06/13/02	ND<1,000 1400	1400 760	ND<1.0	ND<1.0	4.3	1.1	ND<2.0	ND<10 ND<10	ND<1.0 ND<1.0
	09/27/02	ND<1,000	1600	ND<1.0	ND<1.0 ND<1.0	ND<1.0	ND<1.0	ND<2.0 ND<2.0	ND<10	ND<1.0
	12/03/02					12				ND<1.0
	03/31/03	ND<1,000	620	1.2	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10 ND<10	
	06/27/03	ND<1,000	0.61	ND<1.0	ND<1.0		ND<1.0	ND<2.0		ND<1.0
	09/19/03 12/22/03	ND<1,000	1.2	ND<1.0	ND<1.0	6.4	ND<1.0	ND<2.0	ND<10	ND<1.0
		ND<1,000 ND<50	0.49	ND<1.0	ND<1.0		ND<1.0	ND<2.0	ND<10	ND<1.0
	01/17/05		63 1200	ND<0.5	ND<0.5	ND<0.5 8.5	ND<0.5 1.2	ND<2.0	ND<10	ND<1.0 ND<1.0
	05/04/05 08/12/05	ND<50 ND<50	410	ND<0.5 ND<0.5	ND<0.5 ND<0.5	2.4	ND<0.5	ND<2.0 ND<2.0	ND<10 ND<10	ND<1.0
		ND<50	750	3.8	ND<0.5	4.2		ND<2.0	ND<10	ND<1.0
	12/13/05 03/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<1.0 ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	96	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	920	ND<0.5	ND<0.5	5.3	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/05/06	ND<50	1200	1.4	ND<0.5	1.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/27/07	ND<500	430	1.1	ND<0.5	7.9	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	370	0.9	ND<0.5	17	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	270	0.80	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/23/98	12,000	2,500	0.68	ND<0.50	1.2	0.57	ND<2.0	ND<10	14
	10/01/98	4,300	ND<50	ND<0.5	ND<0.50	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	01/05/99	38,000	ND<5,000	ND<50	ND<50	51	190	ND<2.0	ND<10	ND<500
	03/29/99	580	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	4,500	24,000	38	27	41	98	ND<2.0	ND<10	ND<0.5
	09/17/99	24,000	1,400	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	27
	12/27/99	2,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	03/22/00	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/30/00	1,700	270	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	17
	09/14/00	5,800	130	ND<0.5	ND<0.5	ND<0.5	0.94	ND<2.0	ND<10	12
	12/20/00	19,000	1700	ND<50	ND<50	ND<50	ND<150	ND<2.0	ND<10	ND<250
	03/22/01	610000	3300	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	9
MW-2	06/27/01	8800	1800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	6.7
	09/21/01	530000	7000	ND<50	ND<1.0	ND<50	ND<50	ND<2.0	ND<10	ND<50
	12/27/01	27000	310	ND<1.0	ND<50	ND<1.0	ND<1.0	ND<2.0	ND<10	62
l	12/21/01	21000	310	וזטלו.ט	ואטלו.ט	ואטלו.0	ט.ו אטעו	INDSZ.U	ואטלוט	UZ

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

					Sunoi, Ca	illottila				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	03/29/02	65000	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	30
	06/13/02	130000	460	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	24
	09/27/02	480000	290	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	16
	12/03/02	61000	1800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	10
	03/31/03	5000	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	14
	06/27/03	8.1	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	20
	09/19/03	85	12	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	15
	12/22/03	- 55		112 11.0	112 11.0	NS	115 11.0	115 12.0	112 110	
	01/17/05					Abandone	rd			
	01/17/05	1100	730	ND<0.5	ND<0.5	1.0	3.5	ND<2.0	ND<10	50
	05/04/05	8200	190	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	44
	08/12/05	6100	120	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	77
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	26
	03/03/06	5900	160	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	21
MW-2S	06/13/06	8700	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	22
14144-23	09/06/06	11000	190	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	29
	12/05/06	18000	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	38
	02/28/07	6600	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	33
	02/26/07	3700	90	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	12	19
	09/11/07	17000	ND<50	ND<0.5 ND<2.5	ND<0.5 ND<2.5	ND<0.5	ND<1.0 ND<5.0	ND<2.0	ND<50	46
	09/11/07	4100	3300	6.5	1.7	89	82.2	ND<10	ND<10	38
									ND<10	
	05/04/05	ND<50	610	ND<0.5	ND<0.5	16	10.6	ND<2.0		32 56
	08/12/05	ND<50	460	ND<0.5	ND<0.5	2.5	1.2	ND<2.0	ND<10	
	12/12/05	ND<50	410	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	28
MW-2M	03/03/06	ND<50	290	ND<0.5	ND<0.5	0.5 ND<0.5	ND<1.0	ND<2.0	ND<10	17 ND<1.0
IVI VV-ZIVI	06/13/06	ND<50	130	ND<0.5 ND<0.5	ND<0.5		ND<1.0	ND<2.0	ND<10	22
	09/06/06	1900 6100	330		ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	37
	12/05/06	ND<500	340	ND<0.5 ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	25
	02/27/07		310		ND<0.5	0.65	ND<1.0	ND<2.0	ND<10	
	06/12/07	350	290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	14
	09/11/07	4900	220	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	14
	01/17/05	1800	1000	6.5	ND<0.5	80	71	ND<2.0	ND<10	62
	05/04/05	ND<50	250	ND<0.5	ND<0.5	4.6	1.6	ND<2.0	ND<10	72
	08/12/05	ND<50 ND<50	ND<50	ND<0.5	ND<0.5	2.8	1.1	ND<2.0	ND<10	51
	12/12/05		200	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	39
MW 2D	03/03/06	ND<50	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	38
MW-2D	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	36
	09/06/06	1700	230	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	27
	12/05/06	3000	150	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	37
	02/27/07	1100	140	ND<0.5	ND<0.5	0.63	1.1	ND<2.0	ND<10	25
	06/12/07	ND<500	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	19
	09/11/07	4600	120	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	15
	06/23/98	12,000	300 ND 50	0.80	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	150
	10/01/98	6400	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	01/05/99	5,600	ND<100	1.6	1.4	ND<1.0	ND<1.0	ND<2.0	ND<10	110
	03/29/99	150	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	06/10/99	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
	09/17/99	1,500	230	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	89
	12/27/99	58	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Table 4 Historical Groundwater Analytical Results Mission Valley Rock Company Sunol, California

Mell Date TPHd											
06/30/00 240	Well	Date						Xylenes (ug/L)			
06/30/00 240		03/22/00	94	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<0.5
MBV-30 MSO			_								
12/20/00											
MW-3											
MW-3											
MW-3 MW-4			1100	140	ND<1.0	ND<1.0		ND<1.0	ND<2.0	ND<10	83
MW-3 MW-3 12/27/01 3100 340 1.4 1.1 10 3.8 ND-2.0 ND-1.0 ND-1.0 50 03/29/02 1500 ND-100 ND-1.0 ND		06/27/01					NS				
MW-3 MW-3 03/29/02 1500 ND-100 ND-100 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-10 50 06/13/02 ND-1000 ND-1000 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-10 36 06/13/02 ND-1000 ND-1000 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 43 12/03/02 ND-1000 ND-1000 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 43 12/03/02 ND-1000 ND-100 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 ND-1.0 ND-1.0 ND-1.0 ND-2.0 ND-1.0 ND		09/21/01	3800	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	45
MW-3 06/13/02 ND=1000 160 ND=1.0 ND=1.0 ND=1.0 ND=1.0 ND=2.0 ND=1.0 36		12/27/01	3100	340	1.4	1.1	10	3.8	ND<2.0	ND<10	45
MW-3		03/29/02	1500	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	50
09/27/102 ND-1000 ND-1000 ND-1.0 ND-2.0 ND-2.	B4347.0	06/13/02	ND<1000	160	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	36
120/30/2 ND<1000 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.0 ND<10 ND<100 ND<100 ND<2.0	IVIVV-3	09/27/02	ND<1000	ND<1000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<10	43
0331033 ND<1000 ND<100 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.0 ND<10 S2				ND<100	ND<1.0					ND<10	41
66 27/03 1200 ND-100 ND-20 ND-20 ND-20 ND-20 ND-20 ND-20 ND-10 93											
09/19/03 ND-1000 ND-20 ND-20 ND-20 ND-20 ND-20 ND-20 ND-10 S5											
12/22/03 5700 190 ND-2.0 ND-2.0 ND-2.0 ND-2.0 ND-2.0 ND-2.0 ND-2.0 ND-10 56											
01/17/05 ND-50 590 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-2.0 ND-10 47											
05/04/05 ND-50 ND-50 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-2.0 ND-10 110											
08/11/05 ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.0											
12/13/05 ND-50 ND-50 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-1.0 N											
MW-4S MW-4S MD-50 ND-50 ND-50 ND-0.5 ND-0.5											
06/12/06 ND<50 ND<50 ND<0.5											
MW-4S 09/06/06 ND-50 ND-50 ND-50 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-2.0 ND-10 67											
12/05/06											
MW-4S MW-4S MD-50 MD-					ND<0.5						
MW-4S MW-4S MD≤500 ND≤50 ND≤0.5 ND≤		12/05/06	ND<50	82	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	39
MW-4S My-50 My-		02/27/07	56	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	43
MW-4S 01/17/05 ND<50 65 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<2.0 ND<10 ND<1.0 06/04/05 ND<50		06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	45
MW-4S ND< 50		09/11/07	ND<500	60	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	27
MW-4S ND<50 ND<50 ND<0.5 ND<0.5 PR<0.5 ND<0.5 ND<0.5 <td></td> <td>01/17/05</td> <td>ND<50</td> <td>65</td> <td>ND<0.5</td> <td>ND<0.5</td> <td>ND<0.5</td> <td>ND<0.5</td> <td>ND<2.0</td> <td>ND<10</td> <td>ND<1.0</td>		01/17/05	ND<50	65	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
MW-4S ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0 MW-4S 03/03/06 ND<50		05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
MW-4S ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0 MW-4S 03/03/06 ND<50		08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.2	5.8	ND<2.0	ND<10	ND<1.0
MW-4S 03/03/06 ND<50 ND<50.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0 06/12/06 ND<50											
MW-4S 06/12/06 ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<1.0 ND<1.0 09/05/06 ND<50											
09/05/06	MW-4S										
12/04/06											
MW-4D ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0 06/11/07 ND<500											
MW-4D ND 1.0 ND ND 1.0											
MW-4D ND 1.0 ND ND ND 1.0 ND ND ND 1.0 ND ND 1.0 ND ND 1.0 ND 1.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
MW-4D ND ND ND ND ND ND ND ND 0.5 ND<0.5											
MW-4D ND ND ND ND ND ND ND ND<0.5											
MW-4D ND 410 ND 0.5 2.2 10 25.5 ND ND 10 ND 1.0											
MW-4D ND ND ND ND ND ND ND ND 1.0 ND ND ND 1.0 ND ND 1.0											
MW-4D 03/03/06 ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0 06/12/06 ND<50											
MW-4D 06/12/06 ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 7.8 09/05/06 ND<50											
09/05/06 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<1.0 ND<1.0 12/04/06 ND<50											
12/04/06 ND<50 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<1.0 ND<1.0 02/26/07 ND<500	MW-4D										
02/26/07 ND<500 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<2.0 ND<10 ND<1.0											
		12/04/06		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
06/11/07 ND-500 ND-50 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5		02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
0.1.20N 1.2.20N 6.0.20N 6.0.20N 6.0.20N 0.0.20N 0.0.20N 0.0.20N 0.0.1.1.00		06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
09/10/07 ND<500 ND<50 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<2.0 ND<10 ND<1.0		09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline
TAME: tert amyl methyl ether
TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Table 4 Historical Groundwater Analytical Results Mission Valley Rock Company Sunol, California

					Ourioi, Oc	illi Olli Ila				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	01/17/05	ND<50	ND<50	ND<0.5	4.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	5.8
	12/12/05	ND<50	ND<50	3.4	1.3	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-5S	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
WW-55	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5			ND<10	5.4
		ND<50	ND<50				ND<0.5	ND<2.0	ND<10	
	12/04/06			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0		5.8
	02/26/07	360	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	3.2
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	2.2
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.0
	01/17/05	ND<50	210	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	10
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	6.4
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.7
MW-5D	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	5.0
	09/05/06	ND<50	ND<50	ND<0.5	0.60	ND<0.5	ND<1.0	ND<2.0	ND<10	5.3
	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.9
	02/28/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.6
	06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.4
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	1.2
	01/17/05	2800	1600	6.1	ND<0.5	3.6	2.3	ND<2.0	ND<10	160
	05/04/05	ND<50	750	ND<0.5	ND<0.5	3.0	ND<0.5	ND<2.0	ND<10	160
	08/12/05	1300	1100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	410
	12/12/05	ND<50	1000	ND<0.5	ND<0.5	1.4	ND<1.0	ND<2.0	ND<10	190
	03/03/06	ND<50	940	ND<0.5	ND<0.5	4.9	ND<1.0	ND<2.0	ND<10	60
MW-6S	06/14/06	1300	650	ND<0.5	1.7	1.9	2.0	ND<2.0	ND<10	ND<1.0
	09/06/06	2400	750	ND<0.5	ND<0.5	0.7	0.5	ND<2.0	ND<10	200
	12/05/06	2600	1000	ND<0.5	ND<0.5	1.2	ND<1.0	ND<2.0	ND<10	110
	02/27/07	3000	1100	0.79	ND<0.5	1.1	ND<1.0	ND<2.0	ND<10	54
	06/12/07	490	1200	ND<0.5	ND<0.5	1.6	ND<1.0	ND<2.0	ND<10	47
	09/11/07	930	370	ND<0.5	ND<0.5	1.3	ND<1.0	ND<2.0	ND<10	48
	01/17/05	2100	1200	10	ND<0.5	1.6	2.2	ND<2.0	ND<10	180
	05/04/05	ND<50	360	2	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	360
	08/12/05	ND<50	480	2	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	270
	12/12/05	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	92
	03/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	93
MW-6D	06/14/06	ND<50	130	ND<0.5	3.0	1.1	2.6	ND<2.0	ND<10	69
	09/06/06	ND<50	230	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	74
	12/06/06	1300	500	0.98	8.1	16	38.8	ND<2.0	ND<10	59
	02/27/07	470	150	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	48
	06/13/07	ND<500	180	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	39
	09/12/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	28
	01/17/05	ND<50	12000	10	89	590	1670	ND<2.0	ND<10	ND<1.0
	05/04/05	520	1600	ND<0.5	ND<0.5	31	18.4	ND<2.0	ND<10	ND<1.0
	08/12/05	ND<50	660	ND<0.5	ND<0.5	5.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	12/12/05	ND<50	610	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	630	1.1	9	31	78	ND<2.0	ND<10	ND<1.0
l l	03/03/00	コカレイジひ	บงบ	1.1	9	J1	10	IND<2.U	ואט< וו	ואט< ו.ט

TPHd: diesel

TPHg: gasoline
TAME: tert amyl methyl ether
TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

					Surioi, Ca	illoitila				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
MW-7S	06/14/06	ND<50	430	ND<0.5	ND<0.5	6.1	14.5	ND<2.0	ND<10	ND<1.0
11111-70	09/07/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	55	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
-			64		ND<0.5					
-	06/11/07	ND<500	76	ND<0.5		ND<0.5	ND<1.0 ND<1.0	ND<2.0	ND<10	ND<1.0
	09/10/07 01/17/05	ND<500 ND<50	23000	ND<0.5 350	ND<0.5 1000	ND<0.5 1800	5200	ND<2.0 ND<2.0	ND<10 ND<10	ND<1.0
		IND<20	23000	330	1000	NS	5200	ND<2.0	ND<10	ND<1.0
	05/04/05 08/12/05	27	92000	EEO	2200		10000	ND 42.0	ND 410	ND 450
		37	83000	550	2200	4400	10600	ND<2.0	ND<10	ND<50
	12/12/05	150000	1300000	640	3100	21000	54800	ND<2.0	ND<10	ND<50
1414/ 7D	03/03/06	45000	71000	420	2400	4400	11300	ND<2.0	ND<10	ND<1.0
MW-7D	06/14/06	ND<50	160000	310	2400	4500	9800	ND<2.0	ND<10	ND<1.0
	09/07/06	22000	71000	360	8600	33000	87000	ND<2.0	ND<10	ND<1.0
	12/06/06	12000	58000	160	1300	3900	5800	ND<2.0	ND<10	ND<1.0
	02/28/07	790	6800	29	51	460	491	ND<2.0	ND<10	ND<1.0
	06/13/07	23000	100000	270	950	4000	950	ND<2.0	ND<10	ND<1.0
	09/12/07	3500	15000	72	340	1300	1940	ND<2.0	ND<10	ND<1.0
	01/17/05	ND<50	120	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.0	ND<10	ND<1.0
	12/12/05	830	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-8	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	ND<50	ND<0.5	3.3	ND<0.5	5.5	ND<2.0	ND<10	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	1300	8.6	24	40	29.8	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	330	ND<0.5	ND<0.5	3.0	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9S	12/05/06	ND<50	190	ND<0.5	ND<0.5	0.76	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/27/07	ND<500	130	0.79	0.58	8.4	1.0	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	210	0.76	ND<0.5	5.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	52	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	13	88000	5500	15000	4200	15000	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	76000	3200	13000	2700	9200	ND<2.0	ND<10	ND<1.0
l	09/07/06	5400	58000	1800	7400	2400	8000	ND<2.0	ND<10	ND<1.0
MW-9D	12/06/06	9100	170000	1800	6700	3400	7400	ND<2.0	ND<10	ND<1.0
	02/28/07	4500	210000	1900	6200	2400	9000	ND<2.0	ND<10	ND<1.0
	06/13/07	11000	42000	1600	5100	2600	2131	13	39	ND<1.0
	09/12/07	4400	36000	990	5700	2800	4600	ND<2.0	30	ND<1.0
	05/05/06	ND<50	5400	12	17	190	150	ND<2.0	ND<10	ND<1.0
	06/14/06	ND<50	1800	13	17	30	36	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	1100	58	23	31	58	ND<2.0	ND<10	ND<1.0
MW-9LF	12/05/06	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	31
52.	02/27/07	ND<500	530	39	5	31	25.4	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	280	14	0.92	3.8	4.5	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	320	2.5	0.59	ND<0.5	1.94	ND<2.0	ND<10	ND<1.0
	03/11/07	コカトシログ	320	۷.5	บ.วฮ	140くひ.3	1.34	IND<2.U	ואיט< וט	ואט< ו.ט

TPHd: diesel

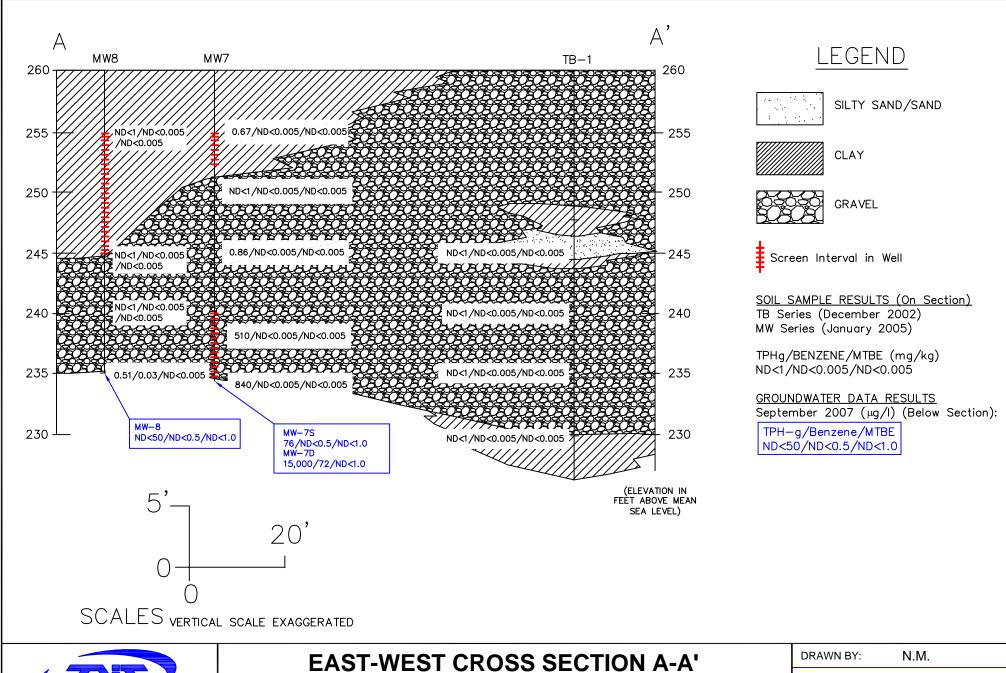
TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

Mission Valley Rock Company Sunol, California

					Surioi, Ca	illoitila				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	93	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-10S	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	54	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	5900	24	9	260	23	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	2300	7.6	2.4	66	6.6	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	2400	3.9	2.0	54	11.89	ND<2.0	ND<10	ND<1.0
MW-10D	12/06/06	ND<50	1600	2.5	1.0	28	4	ND<2.0	ND<10	ND<1.0
100	02/27/07	200	850	2.7	0.90	28	2.3	ND<2.0	ND<10	ND<1.0
	06/12/07	ND<500	830	1.0	ND<0.5	14	2.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	780	ND<0.5	ND<0.5	1.7	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	860	ND<0.5	11	ND<0.5	4.6	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	780	2.0	2.4	1.1	4.2	ND<2.0	ND<10	ND<1.0
-	09/07/06	ND<50	780	1.7	1.6	1.7	7.8	ND<2.0	ND<10	ND<1.0
MW-10LF	12/05/06	190	610	0.5	0.56	ND<0.5	1.5	ND<2.0	ND<10	3.7
INIAA-10FL	02/27/07	ND<500	580	1.0	1.1	0.51	3.6	ND<2.0	ND<10	ND<1.0
-	06/12/07	260	440	0.5	0.7	ND<0.5	2.5	ND<2.0	ND<10	2.0
-	09/11/07	ND<500	130	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	3.0
		ND<500								8.4
-	05/05/06 06/14/06	ND<50	11000	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	
			730 1400	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0 4.8
MW-11S	09/06/06	3300 1700	130	ND<0.5 0.71	ND<0.5	ND<0.5 0.64	ND<0.5	ND<2.0	ND<10	11
IVIVV-113	12/06/06				ND<0.5		0.51	ND<2.0	ND<10	
	02/27/07	540	300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.3
	06/12/07	ND<500	1800	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	4.3
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	2.8
	05/05/06	ND<50	13000	20	20	26	77	ND<2.0	ND<10	47
	06/14/06	18000	6500	12	4.4	11	22	ND<2.0	ND<10	26
MW 44D	09/06/06	210000	33000	25	30	28	97	ND<2.0	ND<10	31
MW-11D	12/06/06	190000	2100	15	23	29	101	ND<2.0	ND<10	19
	02/28/07	13000	7400	8.4	16	17	54	ND<2.0	ND<10	18
	06/13/07	6700	11000	6.2	7	13	39	ND<2.0	ND<10	15
	09/12/07	21000	3000	3.6	4.0	7.9	22	ND<2.0	ND<10	8.5
	05/05/06	ND<50	1300	ND<0.5	ND<0.5	ND<0.5	3	ND<2.0	ND<10	250
	06/14/06	1100	99	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	240
NNN 441 F	09/06/06	5300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	160
MW-11LF	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	240
	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	110
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	110
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	13	190
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/07/06	ND<50	81	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12S	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	210	ND<1.0
	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	19	ND<1.0
	09/10/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

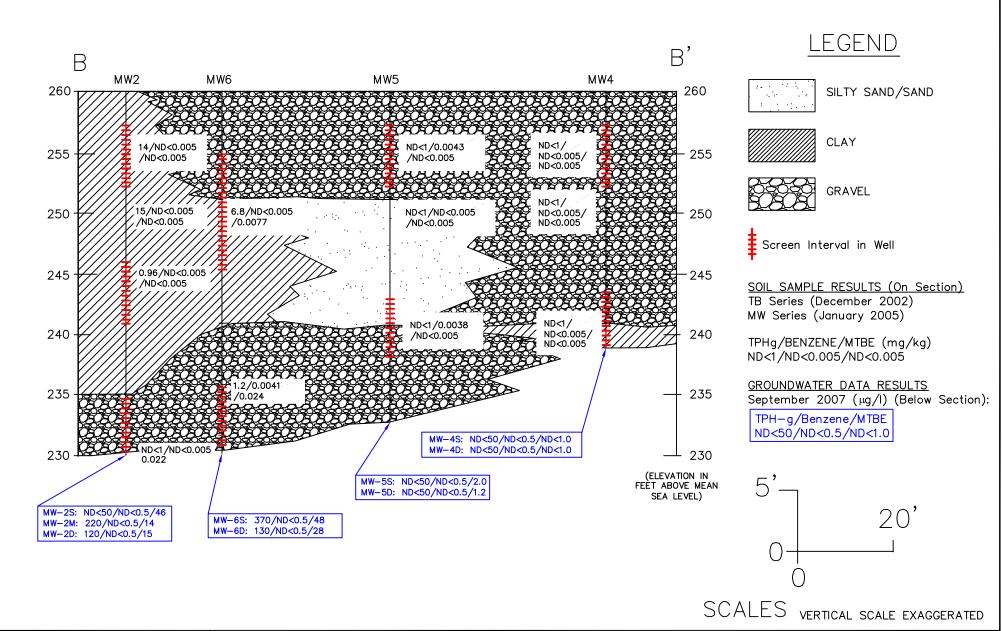

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TAME (ug/L)	TBA (ug/L)	MTBE (ug/L)
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12D	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/28/07	ND<500	51	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-12LF	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	06/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0
	09/11/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<10	ND<1.0

TPHd: diesel

TPHg: gasoline TAME: tert amyl methyl ether TBA: tert-butyl alcohol MTBE: methyl tert-butyl ether ug/L: micrograms per liter

APPENDIX A CROSS SECTIONS

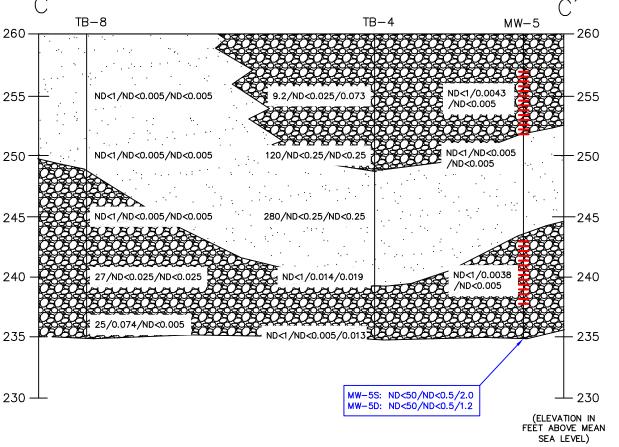


HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA DRAWN BY: N.M.

REVIEWED BY: P.M.

PROJECT: EM5009C

DATE: OCTOBER 2007


SANTA ANA, CALIFORNIA 92705

(714) 560-8200 (714) 560-8235 FAX **EAST-WEST CROSS SECTION B-B'**

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA

DRAWN BY:	N.M.
REVIEWED	BY: P.M.
PROJECT:	EM5009C
DATE:	OCTOBER 2007

LEGEND TB-8 TB-4MW-5

SILTY SAND/SAND

GRAVEL

Screen Interval in Well

SOIL SAMPLE RESULTS (On Section)

TB Series (December 2002) MW Series (January 2005)

TPHq/BENZENE/MTBE (mq/kg) ND<1/ND<0.005/ND<0.005

GROUNDWATER DATA RESULTS

September 2007 (µg/I) (Below Section):

TPH-q/Benzene/MTBE ND<50/ND<0.5/ND<1.0

SCALES

VERTICAL SCALE EXAGGERATED

(714) 560-8200 (714) 560-8235 FAX

NORTH-SOUTH CROSS SECTION C-C'

HANSON AGGREGATES (FORMALLY MISSION VALLEY ROCK CO.) 7999 ATHENOUR WAY SUNOL, CALIFORNIA

DRAWN BY	: N.M.	
REVIEWED	BY: P.M.	
PROJECT:	EM5009C	
DATE:	OCTOBER 2007	

APPENDIX B SAMPLING DATA SHEETS

Project N			on Valle						Date			-07					
Well Iden										pared By				епопе			
			MW-L						Wea	ther: \	HOT	r, D	RY	Sc	reen:		
micasurer	nent	Point D	escription	: TOC I	Vorth				Pum	ıp Intake	e:	7'		•			
Depth t LNAPi (ft-bm)	L	Statio	oth to C Water (ft-bmp)		Fotal D ft-bmp)	- 1	Wate Colum Heigh (ft)	n	LNAPL Thick (ft-bmp)	I .		ne (1) lume (ing mes	Above Screen Volume	Screer Volume
NA		4.7	7	8	35				NA							•	
Well Di	iame	ter (In)		Ga	lons/F	oot		Fie	ld Equipment	: Hori	iba,	2 sta (ge pur	np Low	- FLO	۵	
			0.75	(2)	4	6	Pur	ge Method:	2 st	age	pump) _	ow-F10	الم	· · · · · · · · · · · · · · · · · · ·	
0.75 2)	4 6	0.02	0.10	3 (0.65	1.47	We	li Condition:	<u>ر</u>	001	b .					
Time	Casing	g / Screen	Volume Purged (gallons)-	Flow (gp	m)	Water Level (ft-bmp)		Н	Temperature (°C)	Turbidity (NTU)		Conduc		Dissolved Oxygen	ORP (mV)	Obs	ervations
230			Ø ML	12-5 H	~/na	4.80	7.6	02	25.2	62.	4	0.4	. 9	(mg/L) 2.02	- 133	CIE	
232			250			4.80	7.5	82	24.3	છ.5	_	0.4		1.84	- 13b		<u> </u>
234			500			4.80	7.9	83	24.2	8.4		P. 0	18	1.34	- 146		
			750			4.80	7.5	P 6	24.2	8-1		0.4	18	1.32	-148		
238			1000	_₩		4.80	٠,٢	85	24.1	8.2		0.4	18	1.31	-150		
											_						
Purge Start Time		Purge End Time	(9)	e Flow		ed sed	Total C Volun Purg	nes	80% Recovery Water Leve Depth	54.0		ling	San Colle Tir	np le ction	Sam	ple Identifica	tion
230	1.	238	125+	AL M IN	1000	ML				ч.	80	>	12	40	Nw-		
Notes:	ch	مخدط	three	de-/v	5 e b /c	aced '	h od	-5				<u> </u>	- '''.		1400-	77	····

Project Name: Mission Valley Rock Date: 9-10-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW-4d Weather: HOT , Dey **Measurement Point Description: TOC North** Screen: Pump Intake: [9 ' Depth to Water Depth to Three (3) **Well Total Depth** LNAPL Column **LNAPL Thickness** Static Water Above One (1) Casing Casing Screen (ft-bmp) (ft-bmp) Height Level (ft-bmp) (ft-bmp) Screen Volume (gallons) Volumes Volume (ft) Volume (gailons) NA 7:54 23.38 NA Gallons/Foot Fleid Equipment: Weil Diameter (in) Horiba, 2-otage pump Low - Flow 0.75 (2) 6 Purge Method: 2 stage pump-Low - Flow 2 0.75 6 0.02 0.16 0.65 1.47 **Well Condition:** Cood Volume Water Flow Rate Time Casing / Screen Purged Dissolved Temperature Turbidity Level Conductivity рΗ -(apm)-ORP (gallons) Oxygen (°C) (NTU) (ft-bmp) (3/m) Observations (mV) (mg/L)1250 Ø 125 ML 7.55 94,194 7.92 23.1 7.9 0.34 いてる - 152 1252 clear. 250 7.55 7.86 22.0 7.2 0.30 1.42 1254 -152 500 7.55 7.84 21.B 7.0 0.29 1.60 - 153 1256 750 7.55 7.84 21.8 7.2 0.29 1.61 125B - 153 1000 7.55 7.83 21.8 7.0 0.29 1.60 -153 Purge Start 80% Purge End Average Flow Total Casing **Total Gallons** Water Level Time Sample Recovery Time Volumes --(gpm)-- --Purged--at Sampling Water Level Collection Sample Identification Purged Time (ft-bmp) Time Depth 125 ml 1250 1258 1000 MIN --7.55 1300 Notes: Mw-4d chased threads replaced botte

Groundwater Sampling Data Sheet

Project N	o.: EM50	sion Valle 09C						Dat		-10-	-				
	tification:	MW-	55					Pro	pared By	: Mict	nael Sc	henone	·	······································	
Measure	ment Point	Descriptio	n: TOC N	orth					ther:	HOT	, De	1	Screen:	 	
Depth	1					107 4		Pun	np intake	: 8	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
LNAP (ft-bm	L Sta	epth to tic Water ol (ft-bmp)	Well To	otal D bmp)		Wate Colum Heigh (ft)	n	LNAPL Thic			(1) Casi • (gallo	ng C: ns) Vo	ree (3) asing lumes	Above Screen Volume	Screen Volume
NA	م)	٠٧٩	8.	24			-	NA					illons)		
Well Di	ameter (in)		Gali	ons/F	oot		Fi	eld Equipment	- Hori	bo 0 -	.			-	-
		0.75	(2)		4	6	t	urge Method:		ua, ∡ s ege pu		mp Lou		<u>د</u>	
0.75 2) 4	6 0.02	0.16	C	0.65	1.47		ell Condition:		eg Pa hili	inp_	۔ صما	Flow		
Time	Casing / Screen	Volume Purged (gallons)	Flow R		Water Level (ft-bmp)	pi	Н	Temperature (°C)	Turbidity (NTU)	Con	ductivity	Dissolved Oxygen	ORP	01-	
336		ø	32 ML	rus	4.53		43					(mg/L)	(mV)	Obs	ervations
340		152			6.54				43.1		25	1.64	-114	CIE	r. U
344		250			6.59			 	22.0	 	·25	1.47	- 115		
348 352		375			6.60	7.3	34		19.9		·24	1.40	- 111		
33 L		500	1		له.لوم	7.3	33	25.6	21.3	 	.24	1.39	- 11		
			<u> </u>							 _		1139	-110	<u> </u>	
ourge Start	_														
Time	Purge Er Time	-(9)	2m) -	otal G - Purg		Total Ca Volum Purge	les	g 80% Recovery Water Level Depth	at Sa	r Level mpling ft-bmp)	Colle	nple oction	Sam	ple Identificati	on
336	1352		dins 4	000	•••				ا. ق	<u> </u>	 -			ţ	
otes:	hased	three	ads /	Def	placed	d 4	<u> </u>	45	6.0		140	<u> </u>	MW-	55	

Project N					/ Rock	<u> </u>				Da	te:	9-	10-0	7			<u> </u>	
Project N Well Iden			9C							Pre	par	ed By:	Micha	el Sch	enone			
				<u>MM</u>						We	athe	91: - E	77 , t	rey.	\$	cr ee n:	····	
Measure	ment	Point L)esc	cription	: TOC	North		·		Pu	mp I	ntake:	8'		1		·····	
Depth LNAP (ft-bm	L	Stat		to Vater -bmp)		Total D	• (Wate Colum Heigh (ft)	m	LNAPL Thic		- 1	One (1) /olume		g Cas	e (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		5.	76		છે.'	48				NA	<u>-</u>			-		,	•	-
Well D	Hamet	ter (in)				llons/F	oot		Fi	eld Equipmer	nt:	Horib	a, 2 st a	ige pui	np Low	- 61	ره سک	
		<u> </u>		0.75	(2	<u> </u>	4	6	Pt	urge Method:			ge pum	-	-ow 4			
0.75 2		4 (6	0.02	0.1	6 (0.65	1.47	w	eli Condition:		(500	d				 .	
Time	Casing	g / Screen	F	/olume Purged pallons)	(gr	Rate om)	Water Level (ft-bmp	pi	Н	Temperature		urbidity (NTU)	Condi	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1418	ļ		- 	ø	38 N	MA	5.88	7.5	3	26.1	8	6.2	0.2	.5	4.73	-121	C 12	. A.D.
1422	 -		┼	50		·	5.88	7.5	5	22.2	5	8.2	0.2	4	1.48	-110		
1426			 -	00			5.92	7.5	ماذ	22.1	5	b.8	0.1	.3	با3،3	-112	1	
1430 1434	-		╌	150			5.97	7.5	ماد	22.1	5	5.4	0.2	3	1.35	-113		<u></u>
1727	ļ			•00	- ↓		5.99	7.5	57	22.1	5	4.4	0.2	.3	1.34	-114	- J	,
			-															
Purge Star Time	rt F	Ourge En Time	nd	(gp	·		Gallons rged	Total C Volun Purg	nes		y vel	at Sar	Level npling it-bmp)	Colle	nple ection	Sa	mple Identifica	tion
१५१८	\	434		38 ~	Mins	ဇစ	OML			_		5.9	19	1447	2	<u> </u>		
Notes:	MELI	L BOX	8	13708	J - F	417 6	3 -y L	OA-DE	> r	L - CO1	~~~	ACT	/F6	•		mw-	15	

Project Name: Mission Valley Rock 9-10-07 Date: Project No.: EM5009C Prepared By: Michael Schenone Well identification: MW-B Weather: Hot, Day Screen: **Measurement Point Description: TOC North** Pump Intake: 12' Water Three (3) Depth to Depth to Above Well Total Depth Column **LNAPL Thickness** One (1) Casing LNAPL Casing Static Water Screen Screen (ft-bmp) Helght (ft-bmp) Volume (gallons) (ft-bmp) Volumes Level (ft-bmp) Volume Volume (ft) (gallons) NA 5.80 15.34 NA Gallons/Foot Field Equipment: Horiba, 2 stage pump Low- Flow Well Diameter (in) 0.75 2 6 **Purge Method:** -2 stage pump cow -410w 0.75 4 6 0.02 0.16 0.65 1.47 **Well Condition:** (mood Volume Water Dissolved Flow Rate Temperature Turbidity Time Conductivity Casing / Screen Purged ORP Level На Oxygen (gpm) Observations (°C) (5/m) (NTU) (gallons) (tt-bmp) (mV)(mg/L)1458 125 ml Q mm 500 7.80 20.3 35·6 0.20 1.54 - 101 دلوصع 1500 250 5.80 7.78 20.1 38.9 0.19 1.48 -95 1502 500 5.80 7.76 20.1 40.1 0.19 1.46 0P-1504 750 5.80 7.78 20.1 41.4 1.45 0.19 ~ B0 1506 1000 5.82 7.78 1.44 20.1 40.2 0.19 - 77 80% **Total Casing** Purge Start Purge End Water Level Average Flow Sample Total Gallons Recovery Time Volumes Time at Sampling (apm)-Collection begru^q-Sample Identification Water Level Purged Time (ft-bmp) Time Depth 125 mc 1458 1506 10000 frica 5.82 1510 MW-B chased threads / replaced botts Notes:

	me: Missic		Rock					Date			0-07					
	.: EM5009												enone			
Well Identi		WW -				·····					10	LY	S-	creen:		
Measurem	ent Point De	scription	: TOC No	rth	·····		····	Pum	intai	(e:	<u>30'</u>		· · · · · · · · · · · · · · · · · · ·			
Depth to LNAPL (ft-bmp	Static	th to Water (ft-bmp)	Well To	tal Dep bmp)	oth (Water Column Height (ft)	ı İ.	NAPL Thick (ft-bmp)	ness	l	ne (1) lume (,	g Ca s) Volu	ee (3) sing umes lions)	Above Screen Volume	Screen Volume
NA	7.7	o	39.	41		_		NA					-	_	_	-
Well Dia	ameter (in)		Gallo	ns/Foo	t		Fleid	Equipment:	Нс	oriba	, 2 sta	ge pur	np. Lou	ب - د اصر	د.	
		0.75	2	4		6	Purge	Method:	2-(stage	pump	7 1	-ow -f	low		
0.75 2	4 6	0.02	0.16	0.6	5 1	.47	Well	Condition:	٠	700	7					
Time	Casing / Screen	Volume Purged (gallons)	Flow Ra)	Water Level (ft-bmp)	pŀ	-	remperature (°C)	Turbio (NTU	- 1	Condu		Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1523		ø	125 m		7.78	7.9	8	ما. 20	82.	,	0.1	ونا	1.59	-139	د/ه	EA-R
1525		250	1	I	7.78	7.9	7	20.8	76.	1	0.1	<u>ل</u>	1.50	- 141		
1527		500			7.78	7.9	ما	20.9	7 8 .	4	0.1	5	1.45	- 143	,	
1529		750			7.78	7.9	15	21.0	77.	ما	0.1	5	1.44	-144		
1533		1000	4		7.78	7.9	5	20.9	78.	1	0.1	5	1.43	- 145		
																
Purge Start Time	Purge End Time	(g	pm)	Fotal- Ga Purge	ed	Total Ca Volum Purga	nes	80% Recovery Water Leve Depth	, at	/ater L : Sam me (ft-		Colle	mple ection me	Sa	mple Identifica	ation
1523	1533	1524	min	1000	-1	_	···		_	7.7	8	15	10	Mw.	- リレド	w
Notes:	chase	d th	BARAS	/ v	zepla	ca O	Ø	-43								

Project Na	ame:	Missio	n Valley	Rock					Date		9-10	0-07					
Project No	o.: E	M5009	C						Ргер	ared B	y: Mi	ichael	Sch	enone			
Nell Ident	tifica	tion:	M.	W-12	5				Weat	her:	HOT	, De	1	Sc	reen:		
Measuren	nent l	Point De	scription	: TOC No	orth				Pum	o Intai	(e:	10.5					
Depth t LNAPL (ft-bmp	- Ì	Static	th to Water (ft-bmp)	Well To (ft-	tal D bmp)	7 1	Water Colum Helgh (ft)	n L	NAPL Thick (ft-bmp)	ness		ne (1) C ume (g	_	Cas b) Volu	e (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		9.5	4	11.0	>4		-		NA			-		_		\ =	•
Well Di	lamai	tor (in)		Gall	ons/F	oot		Field	Equipment	Н	oriba,	2 stag	e pun	np Low)- 6 /0	w .	
			0.75	2		4	6	Purg	e Method:	-2	stage	pump	• •	10w-f	low		
0.75 2	>	4 6	0.02	0.16	(0.65	1.47	Well	Condition:	6	d						
Time	Casing	g / Screen	Volume Purged (gallons)	Flow R (gpm	1)	Water Level (ft-bmp)		н	Temperature (°C)	Turbio (NTI		Conduc		Dissolved Oxygen (mg/L)	ORP (mV)		servations
1630			Ø	32 m	mv	9.71	7.5	5 1	22.3	99.	1	0.27	٤	4.39	-45	داد	-A-K_
634			125	<u> </u>		7.71	7.4	18	22.7	99.	ما	0.2	2_	4-19	- 21	1	
638			250			9.71	7.4	13	22.9	86.	2	0.2	2	4.14	- 19		
1642			375			9.72	7.	42	23.1	84.	5	0.2	2_	4.04	- 17		
رنه ۲۴			500	1		9.73	7.1	41	13 · 3	83	.1	0.2	2	4.01	ما۱ –		<u> </u>
																	
Purge Star Time	rt	Purge End Time	I	age Flow gpm)		Gallens irged		Casing mes ged	80% Recovery Water Leve Depth	ι a	Vater L t Samp me (ft-	oling	Colle	mple ection me	Sa	ample Identific	ation
1630	- 1	الهلاله		*/min		∞ ml		-	_		7.73	3	165	52	MW	-125	
Notes:	ch	ased	the	abs	1 +	ze pou	ed '	bet	ls			,					

Project	Nan	ie: N	lissic	n Valley	Rock					Date:	9-11	-67					
Project	No.:	EM	5009	С	····					Prepare	ed By: I	Michae	l Sch	enone			
Well Id				MW-						Weathe	Ti Com	ol , D1	24	Sc	r ee n:		
Heasu	reme	nt Po	nt De	scription	TOC N	orth				Pump I	ntake:	Ilo,	•	1			
Dept LNA (ft-b		- 1	Static	th to Water ft-bmp)		otal Depth -bmp)	Col He	nter umn ight ft)		Thickne ·bmp)		One (1) olume (-	Cas (S)	e (3) ling mes ons)	Above Screen Volume	Screen Volume
N.	A		9.4	5	19:	70	-			NA	-	_		-	-	#	•
Well	Diar	neter	(in)		Gall	ons/Foot		F	leid Equip	ment:	Horiba	a, 2 sta	g o pu n	np. Le	روع - حرا	مس	
			····/	0.75	2	4	6	P	urge Meth	od:	~2 stag	e pump	-	۔ ص	tlon	>	
0.75	<u>(2)</u>	4	6	0.02	0.16	0.65	1.47	W	Vell Condi	ion:	600	d					
Time	C	asing / S	creen	Volume Purged (gallons)	Flow F (gpn	late L	ater evel omp)	pН	Temper (°C	ature T	urbidity (NTU)	Condu	ctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
914				ø	250 ~	ر م	05 -	7-71	18.	1 (•7.5	0.1	7	ماما ، ا	121	داد	ሖዬ
916				506	ļ	9.	- 5م	7.63	ક ાક્ર-	۲ ر	02.4	0.1	ما	1.67	115	١	
918				1000		9.	- 5ما	أما - ٦	2 18.	† ;	8.8	0.1	4	۱.۱۰۱۵	112		
920				1500		٩.	65	7.60	18.	4 !	58.5	0.1	ص.	1.68	108		
922		<u>-</u>		2000	V	۹.	<u>ن</u> کی	7.40	0 18.	4 .	56.5	0.1	ר	1-69	106	J	
				······				 		·				<u></u>			
Purge S Time		f .	ge End Time		ge Flow pm)	Total Galle Purged	16- V	al Cas olume ourged	sing Red s Wate	00% covery or Level epth	Water at Sar Time (f		Colle	nple ection me	Sa	mple Identifica	tion
914			22	250	mu	2000		-			9.6	5	93	0			
Notes:	•	Cha	rece	s the	eads	recol	منفط	00	45								

Project N	lame:	Missio	n Valley	/ Rock				Date:	9-1	1-07					
Project N	lo.: I	EM50090	C					Prep	ared By:	·····	el Sche	none			
Well Iden	itifica	ıtlon:	MW-	-12LF				Weat	her: دصه	oc, D	· - -	Sc	reen:		
Measurer	ment	Point De	scription	: TOC Nor	/th			Pum	p Intake:	35′	-	1			
Depth t LNAPI (ft-bm	L		th to Water ft-bmp)	Well Tota (ft-ba	•	Wate Colum Helgi (ft)	mn jht	LNAPL Thicki (ft-bmp)		One (1) /olume (_	l	ing mes	Above Screen Volume	Screen Volume
NA		9.7	<i>1</i>	39.5	50	_		NA		-				*	
Well D	lame	eter (in)		Gallor	ns/Foot		Fle	eld Equipment:	Horib	a, 2 sta	go pum	المالية	-6101	<u>~</u>	
		10	0.75	2	4	6	Pu	ırge Method:	2 star	ge pum ț	p- \	ou-4	low		
0.75	\sum	4 6	0.02	0.16	0.65	1.47	We	ell Condition:	6	rood					
Time	Casin	ng / Screen	Volume Purged (gallons)	Flow Rat (gpm)	(ft-bn	vel	pН	Temperature (°C)	Turbidity (NTU)	Condu		Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1000			ø	250 ml	<u> </u>		ماما.	18.5	59.4	0.1	Ģ	1.98	71	د نوه	NE.
1002	 		500	11	9.9	2 7.	. 67	18-4	54.2	0.10	ما	1.92	70		
1004	<u> </u>		1000		9.93	2 7.	.67	18.3	55.5	0.10	م	1.89	69		
1006	<u> </u>		1500		9.9	12 7	.67	18.3	55.3	0.11	لم	1.91	80		
१००४	-		2000	V	9.9	3 7	· . 67	18.3	54.1	0.1	،لم	1.90	80	1	
	 												-		
Purge Start Time Purge End Average Flow (gpm) Total Gallons Purged Purged Sample Sample Volumes Purged Purged Sample Collection Time (ft-bmp) Time					ction	Sa	imple identifica	ition							
1000		8001	250	nin.	2000~				9.9	13	1012		MW	- 12LF	

Groundwater Sampling Data Sheet

Page 10 of 24

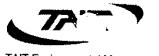
Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 5d Weather: HOT , DEM Screen: Pump Intake: (9' Measurement Point Description: TOC North Water Three (3) Depth to Depth to Above **Weil Total Depth** Column LNAPL Thickness One (1) Casing Casing Screen LNAPL Static Water Screen (ft-bmp) Height (ft-bmp) Volume (gailons) Volumes Volume (ft-bmp) Level (ft-bmp) Volume (ft) (gallons) NA (0.76) NA 22.65 Horiba, 2 stage pump Galions/Foot Field Equipment: Well Diameter (In) **(**2) 0.75 6 2 stage pump Low-flow Purge Method: 2 (soed 4 6 0.02 0.16 0.65 1.47 0.75 **Well Condition:** Volume Water Dissolved Flow Rate Conductivity Temperature Turbidity ORP Purged Time Casing / Screen Level рΗ Oxygen Observations (map) (°C) (5 m) (NTU) (mV) (gallons) (mg/L) (ft-bmp) 125 m 1036 Q 7.50 20.8 6.86 0.24 1.76 -91 20.4 clear min 0.30 1.57 1038 7.50 16.3 -115 250 6.86 20.9 1.55 1040 6.86 7.52 20.9 15.8 0.31 -119 500 1.52 7.53 15-1 0.32 20.9 6.89 -122 1042 750 14.9 1.50 0.33 -125 1044 7.54 6.91 20.9 1000 80% **Total Casing** Water Level Sample Purge Start Purge End Average Flow **Total Gallons** Recovery Volumes at Sampling Collection Sample Identification Time Time Puraed Water Level -(gpm)- Purged Time (ft-bmp) Time Depth 125 ml MW-5d 1047 1000001 4.91 1036 4401 min chased threads / replaced boths Notes:

Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW-3 Weather: Her , Dey Measurement Point Description: TOC North Screen: Pump Intake: 11/ Depth to Water Depth to Three (3) **Well Total Depth** LNAPL Column Static Water **LNAPL Thickness** Above One (1) Casing Casing (ft-bmp) (ft-bmp) Screen Level (ft-bmp) Height (ft-bmp) Screen Volume (gallons) Volumes Volume (ft) Volume (gallons) NA 7.47 14.70 NA Gallons/Foot Well Diameter (in) Field Equipment: Horiba, 2 stage pump Low- flow <u>(2</u>) 0.75 4 6 Purge Method: 2 stage pump Low-flow 0.75 (2['] 4 6 0.02 0.16 0.65 1.47 Well Condition: Good Volume Water Time Flow Rate Casing / Screen Purped Temperature Dissolved **Turbidity** Level Conductivity pΗ -(mage)-ORP (gallons) (°C) Oxygen (ft-bmp) (NTU) (5 m) Observations (mV) 1100 (mg/L)Ø 125 ml 7.62 **ماما.** 7 21.8 Long 198.0 0.33 1102 1.90 -139 250 cloudy 7.62 7.64 21.7 85.8 0.32 1.63 -141 1104 500 7.62 7.62 21.6 160.3 0.32 1-49 ~143 1106 756 7.62 7.61 21.5 162.4 0.31 1.48 -144 1108 1000 7.62 21.4 7.60 159.4 0.31 1.40 -144 **Purge Start** 80% Purge End Total Casing Average Flow Total Gallons Water Level Time Recovery Sample Volumes Time -(gpm)-Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 8011 1100 125 ml 1000ml 7.62 1113 **Notes:** chased threads MW-3 replaced batter

Project N	ame: Mis	slor	ı Valley	Rock					Date	9-1	1-07					•
Project N	o.: EM50	09C									Micha	el Sch	enone			
Well Iden	ification:		MW -	105						· · · · · · · · · · · · · · · · · · ·	et , t			reen:		
Measuren	ent Point	Des	cription	: TOC N	lorth					p Intake			· · · · · · · · · · · · · · · · · · ·			
Depth t LNAPL (ft-bm;	. Sta		n to Water t-bmp)	Well T	otal D t-bmp)	-	Water Columr Height (ft)	ı L	NAPL Thick (ft-bmp)		One (1) Volume	,		ing mes	Above Screen Volume	Screer Volume
NA	4	, ۹ د	1	9.	58				NA			•	_	-	-	•
Well Di	ameter (ir	.)		Gal	lons/F	oot		Field	Equipment:	Hori	ba, 2-ste	ige pur	mp o	~ C \	, w	··· ···
	anneter (n	•••	0.75	2)	4	6	Purg	e Method:	2 sta	age pum	p	ا۔ سم	كارصونا		
0.75 2) 4	6	0.02	0.16	. (0.65	1.47	Well	Condition:	(5-6	-d	-				
Time	Casing / Scree	ות	Volume Purged gallons)	Flow I (gpr	n)	Water Level (ft-bmp)	pН		Temperature (°C)	Turbidit (NTU)		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
135	····		ø	125 m	/ m -n	4.94	7.4	0	24.6	23.5	0.4	7	1.68	-86	حاد	AQ_
1137			150			4.95	7.4	0	24.5	10.1	0.4	.7	1.43	-79	1	
139			00			4.95	7.4		24.5	5. یا	0.5	1 7	1.32	-75		
1141		\ <u>-</u>	150			4.95	7.4		24.5	5.9	٥٠٠	17	1.29	-73		
1143		- 1	1000	ν		4.95	7.4	4	24.5	5.4	0.4	17	1.28	-71	4	
Purge Star Time	Purge Tim			ge Flow pm)~		Gallen s rged	Total Ca Volum Purge	es	80% Recovery Water Leve Depth	, at S	er Level ampling (ft-bmp)	Colle	mp le ection me	Sar	mple Identifica	tion
1135	1143		125	mi	100	o mi	-		-	7.	44	114-	7	HW-	105	
Notes:	chase	ا م	tha	ads	re	place	d bo	45	·		ii	1		4 4 4 -		*
				.0.05	(••	P COCCE	. . .	``\>	•							

Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 2d Weather: HOT, DRY Screen: **Measurement Point Description: TOC North** Pump Intake: 24' Water Three (3) Depth to Depth to Above **Well Total Depth** Column **LNAPL Thickness** One (1) Casing Casing LNAPL Screen Static Water Screen (ft-bmp) Height (ft-bmp) Volume (gailons) Volumes (ft-bmp) Volume Level (ft-bmp) Volume (ft) (galions) NA 29.54 7.00 NA Gallons/Foot **Field Equipment:** Horiba, 2-stage pump Law - Flow Weil Diameter (in) **(2**) 0.75 6 Purge Method: 2-stage pump Low - flow 2 0.75 6 0.02 0.16 0.65 1.47 Well Condition: Good Volume Water Dissolved Flow Rate Temperature Turbidity Conductivity Time Casing / Screen Purged ORP Level рΗ Oxygen (gpm) Observations (°C) (NTU) Sm) (gallons) (ft-bmp) (mV) (mg/L) 125 ml/mm Ø 1204 7.05 7.ს8 حا. 23 185.2 1.86 0.36 -121 Cloudy 250 1206 7.05 7.64 186.5 23.7 0.33 1.76 -124 1208 500 7.06 7.60 23.7 0.481 0.32 1.79 -127 1210 750 7.06 7.58 23.8 190.2 0.31 1.78 -130 1212 23.9 1000 7.010 7.57 185.7 0.30 1.77 -132 1214 7.56 1250 7.06 23.9 1813 0.29 1.75 - 134 80% Total Casing Water Level Purge Start Purge End Sample Average Flow Total Gallons Recovery Volumes at Sampling Time Time Collection (gpm) Purged Sample Identification Water Level Purged Time (ft-bmp) Time Depth 125 ~ 1204 PISI 1250 7.04 1219 MW- 2d replaced botts Notes: chared threeads

			n Valley	y Rock		·			Date	: 01-11	1-07					
Project N									Prep	ared By:	Micha	el Sch	enone			
Well Iden				-2M		····			West	ther: 🙌	OT , D	re.y	S	creen:		
Measurer	ment P	oint De	scription	: TOC N	orth				Pum	p intake	: 10'	<u> </u>	1			
Depth (LNAP) (ft-bm	L	Static	th to Water ft-bmp)	Well T	otal D -bmp)	epth (Water Colum Heigh (ft)	n L	NAPL Thick (ft-bmp)		One (1 Volume		g Car s) Volu	ee (3) sing imes lons)	Above Screen Volume	Screen Volume
NA		6 8	88	12.	29		_		NA						•	•
Well D	iamete	er (in)		Gall	ons/F	oot		Field	Equipment:	Hori	ba, 2 st a	age pur	np Low	- f- /0	ىب	
			0.75	(2)		4	6	Purg	e Method:	2 sta	ige pur	p	Low -	جرے س		
0.75 2) 4	6	0.02	0.16	C	0.65	.47	Weil	Condition:	(J-cx	sq.			······································		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Time	Casing	Screen	Volume Purged (gallons)	Flow F		Water Level (ft-bmp)	lq	H	Temperature (°C)	Turbidity (NTU)	Cond	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1230			ø	125 ml	man	6.98	7.1	15	24.2	40.5	0.7	<u>-7</u>	1.62	-144		al
232			250	1		6.98	7.1	48	23.1	31.8	0.3	27	1.68	-143	,	
1234			500			6.98	7.	49	22.8	20.5	0.	26	1.40	-145	- - - - - - - - -	·
1236			750			6.98	7.1	48	33:9	18.9	0.7	Lle	1.58	-145		
1238			1000			7.05	7.1	48	22.5	17.4	0.2	.5	1.55	-146		
1240			1250	V		7.08	7.4	17	22.4	18.3	0 · 2	.5	1.54	-147		
Purge Star Time	nt P	urge End Time		ge Flow		Ballons ged	Total C Volur Purg	nes	80% Recovery Water Leve Depth	at S	er Level ampling (ft-bmp)	Colle	mple ection me	Sar	mple Identifica	tion
1230	13	140		ml	152	repla	_	<u>-</u> -	-	7.	o 원	124	4	Mm		


				n Valley	Rock					Date:	9-1	1-07					
Project				C	**					Prepar	ed By:	Michae	l Sch	enone			
Well Ide	ntific	catio	n:	N	W - 9	15_		··		Weath	er: M c	st , be	.4	Sc	reen:	·	
Measure	men	t Pol	nt De	scription	: TOC I	Vorth	·			Pump	intake:	10'		ı			
Depth LNAI (ft-bn	PL	Static Water Level (ft-bmp) 5.24 Gameter (in) 0.75			Fotal D ft-bmp)	- 1	Water Column Height (ft)		L Thickne ft-bmp)		One (1) 'olume (•	g Cas (s) Volu	e (3) sing mes ons)	Above Screen Volume	Screen Volume	
NA			5.2	ما	/3	2.20	> .	_		NA		-	-			*	=
Well	Diam	eter	(in)		Ga	llons/F	oot	ı	Field Equ	pment:	Horib	a , 2 sta	g o pu r	np	2- 610	ىپ	
			····	0.75	(2)		4	6	Purge Me	thod:	2 sta	ge pum p)	Low -	Flow		
0.75 (<u> 2) </u>	4	6	0.02	0.1	6 (0.65	1.47	Well Con	lition:	(50	.od				·····	
Time	Cas	sing / So	reen	Volume Purged (gallons)	Flow (gp	em)	Water Level (ft-bmp)	рН		erature C	Turbidity (NTU)	Condu		Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
309				ø	125 0	Main	5.	7.28	3 22	8 1	55.3	0.3	0	1.70	-144	د او	~~
311				150			5.30	7.28	22.	0 1	59.1	0.3	3	1.40	-138	1	****
313				500			5.30	7.2	8 22.	0 '	58.4	0.3	5	1.60	-136		
1315				750			5.31	7.2	7 22	- \ 1	55.5	0.3	4	1.57	-134		
1317	-			1000	L	•	5-30	7.2	8 22	. 1	57.3	0.3	5	1.58	- 132	Ţ	
		 -				· · · · · · · · · · · · · · · · · · ·											
Purge Sta				Gallons rged	Total Car Volume Purge	es W	80% ecovery ater Level Depth	at Sa	r Level mpling ft-bmp)	Colle	mple ection me	Sa	nple Identifica	ition			
1309		13	17	152	in t	10	lmoc	_			5.	30	132]		-95	

Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone **Well Identification:** MW-65 Weather: HOT , DRY **Measurement Point Description: TOC North** Screen: Pump intake: 13' Depth to Water Depth to Three (3) **Well Total Depth** LNAPL Static Water Column LNAPL Thickness Above One (1) Casing Casing (ft-bmp) (ft-bmp) Level (ft-bmp) Screen Height (ft-bmp) Screen Volume (gailons) Volumes Volume (ft) Volume (gallons) NA 6.32 15.00 _ NA Gailons/Foot Well Diameter (in) Field Equipment: Horiba, 2 stage pump Cous - 4 Cous (2)0.75 4 6 Purge Method: 2 stage pump Low - flow 0.75 2 4 6 0.02 0.16 0.65 1.47 Weil Condition: (Sood Volume Water Time Casing / Screen Flow Rate Purged Temperature Turbidity Dissolved Conductivity Level pΗ (gpm) ORP (gallons) (°C) Oxygen (ft-bmp) (NTU) (5m) **Observations** 63ml min (mV)(mg/L) 1414 Ø 6.51 7.85 23.3 79.4 0.29 1.44 -167 1416 125 clear 6.53 7.77 22.8 91.6 0.29 1.42 8141 · 145 250 6.57 7.73 22.8 79.8 0.29 04:1 - 164 1420 375 6.60 7.71 22.7 75.5 1.39 0.29 1422 - 164 500 6.62 7.70 22.7 74.2 0.29 1.38 + 164 1424 625 6.63 7.69 22.7 73.8 0.29 1.37 - 165 Purge Start Purge End 80% Average Flow Total Casing Total Gallons Water Level Time Recovery Sample Time (gpm) Volumes Purged at Sampling Water Level Collection Purged Sample Identification Time (ft-bmp) Time Depth 1414 1424 63 ml 625ml 6.63 1429 Notes: chared thoeads replaced botts MW-65

		: Miss		valley	Rock					Date	: 9-1	1-07					
Project			9C							Prep	ared By:	Mich	ael Sch	enone			
Well Ide					107					Weat	her: Ho	77, 78	LY	Se	creen:	······································	
Measure	men	Point D	8 5C	ription:	TOC I	North				Pum	p Intake	: 35	,	ŧ			· · · · · · · · · · · · · · · · · · ·
Depth LNAF (ft-bn	rement Point Description: TOC No. 19					Fotal D ft-bmp)	1	Water Colum Heigh (ft)	n	LNAPL Thick (ft-bmp)		•) Casin (gallor	g Ca: (s) Volu	e (3) sing imes lons)	Above Screen Volume	Screer Volume
NA		۹.	24		39	1.90		_		NA		-	-	_	-	-	
Wall	DI	-4 /!>			Ga	llons/F	oot		Field	d Equipment:	Hori	ba. 2 st	age pur	mp Lec	<u> </u>	ســـــــــــــــــــــــــــــــــــــ	
wan	viami	acer (in)	Ī	0.75	(2	>	4	6	Purg	e Method:	***			_ow - \$			
0.75	2	4 (3	0.02	0.10	6 (0.65	1.47	Well	Condition:		rood					· · · · · · · · · · · · · · · · · · ·
Time	Casi	ng / Screen	P	urged	(gp	m)	Water Level (ft-bmp)	p	Н	Temperature (°C)	Turbidity (NTU)		fuctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations
1344				ø	1250	el person	9.30	7.8	8	21.5	24.1	0.	31	1.90	-156	دلو	
1346			2.	50			9.30	7.9	39	21.0	24,10	0.	30	1.72	-160		
348			5	00			9.30	7.9	88	21.2	22.8	٥.	29	ماما١٠	-161		
1350			7	·50			9.30	7.	88	20.9	23.7	0.	· · · · · · · · · · · · · · · · · · ·	1.43	- 162		
1352			10	000	Ţ	,	9.32	7.	88	20.8	21.2		-, 29	1.61	-164		
			-					_									
			<u></u>					ļ			· · · · · · · · · · · · · · · · · · ·		1				
Purge Sta Time	art	rt Purge End Average Flow Total Gal Time (gpm). Purge	autions.	Total C Volur Purg	nes	80% Recovery Water Leve Depth	at S	er Level ampling (ft-bmp)	Colle	mple ection me	Sa	mple identifica	ion				
344		1352		125	 1	1001	Dan !	_		_	۹.	32	135	8	8 1 1 1	- 10LF	<u></u>

			n Valley	Rock					Date	9-1	1-07					
Project N			C						Prep	ared By:	Micha	el Sch	enone			<u></u>
Nell Iden	·····		MW-							her: \	<u></u>	ደ ዣ	\$4	reen:		
leasuren	nent l	Point De	scription	TOC N	orth				Pum	intake:	14'		1			
Depth (LNAP) (ft-bm)	L	Static	th to Water ft-bmp)	Well To	rtal Do bmp)	epth	Water Colum Heigh (ft)	n L	.NAPL Thick (ft-bmp)	!	One (1) Volume	-	g Cas s) Volu	e (3) sing imes ons)	Above Screen Volume	Screen Volume
NA		5.48	3	۱٦.	78		_		NA			-	_		-	-
Well D	iamet	er (in)		Gall	ons/Fo	oot		Field	Equipment:	Horit	oa, 2 sta	ige pur	mp cou	- - 6 (au	٠	L
			0.75	2		4	6	Purg	e Method:	2 sta	ge pum	p \	ا ٤ ـ سو	سه		
0.75 2) (4 6	0.02	0.16	0	.65	1.47	Woll	Condition:	ه می	od					
Time	Casing	/ Screen	Volume Purged (gallons)	Flow R (gpm)	Water Level (ft-bmp)		Н	Temperature (°C)	Turbidity (NTU)	Condu	activity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
454			ø	125 ml/	min	5.60	7.0	60	23.5	29.2	0 - 7	-9	1.91	-162	داء	a e_
456			250			5.61	7.5	57	20.5	19.8	0.3	30	1.90	-159	1	
458			500			5.64	7.0	00	20.7	18.9	0.	31	1.88	-140		······································
300			750			حاما. 5	7.0	ρl	20.8	17.7	0.3	31	1.85	-158		
1502			1000	1		5.70	7.0	00	20.9	17.1	0.	32_	1.83	-157	1	
										····						
Purge Star Time	t F	Ourge End Time	1 '	ge Flow		lailons ged	Total C Volum Purg	nes	80% Recovery Water Leve Depth	at Sa	er Level ampling (ft-bmp)	Colle	mple ection me	Sar	nple Identifica	tion
1454	1	1502	Į	i		prace		-	-	5.	10	150	16	MW	-1	

Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 9LF Weather: HOT, DRY Screen: **Measurement Point Description: TOC North** Pump Intake: 35 Water Three (3) Depth to Depth to Above Well Total Depth Column **LNAPL Thickness** One (1) Casing Casing LNAPL Screen Static Water Screen (ft-bmp) Height (ft-bmp) Volume (gallons) **Volumes** Volume (ft-bmp) Level (ft-bmp) Volume (ft) (gallons) NA 7.00 11.95 NA Gallons/Foot Low - flow Field Equipment: Horiba, 2-stage pump Well Diameter (in) (2) 0.75 6 **Purge Method:** 2 stage pump Low-flow 0.75 2 4 6 0.02 0.16 0.65 1.47 Good Well Condition: Volume Water Dissolved Flow Rate Temperature Turbidity Conductivity Time ORP Casing / Screen Purged Level Ha Oxygen Observations (qpm) (°C) (NTU) (<u>S/m</u>) (gallons) (mV) (ft-bmp) (mg/L) 125ml Ø ما 15 ا 7.20 7.87 21.4 13.7 0.27 1.75 -162 حامعا 1518 250 7.20 20 .9 7.90 12.8 0.24 1.65 -162 15 20 500 7.20 7.87 11.9 20.7 1.50 0.23 ~ 162 1522 750 7.21 7.86 12.9 20.7 0.23 1.51 -163 1524 1000 7.86 7.21 12.3 20.7 0.23 1.50 -143 1526 1250 7.22 7.85 11.9 20.6 0.23 1.49 -163 80% **Total Casing** Purge Start Water Level Sample Purge End Average Flow Total Gallons Recovery Volumes Time at Sampling Collection Time (gpm) Purged Sample Identification Water Level Purged Time (ft-bmp) Time Depth 1250ml 1526 125ml 1516 7.22 1530 MW-9LF Notes:

Project Name: Mission Valley Rock 9-11-07 Date: Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 25 Weather: Hot , bey Screen: **Measurement Point Description: TOC North** Pump Intake: Water Depth to Depth to Three (3) **Well Total Depth** Above Column **LNAPL Thickness** LNAPL **Static Water** One (1) Casing Casing Screen (ft-bmp) Screen Height (ft-bmp) (ft-bmp) Level (ft-bmp) Volume (gailons) Volumes Volume Volume (ft) (gallons) NA 6.45 8.71 NA Gallons/Foot Field Equipment: Horiba, 2 stage pump cow -flow Well Diameter (in) 2 0.75 4 6 Low - flow Purge Method: 2 stage-pump 0.75 6 0.02 0.16 0.65 1.47 Well Condition: Good Volume Water Flow Rate Dissolved Time Casing / Screen Purged Temperature Turbidity Conductivity Level На ORP (gpm) Oxygen (°C) (gallons) (NTU) (3m) Observations (ft-bmp) (mV) (mg/L)62 ml/min 1546 Ø 6.55 7.81 23.1 ۹. ما 0.27 1.46 -158 clear 1548 125 6.58 7.69 23.3 8.3 0.22 1.34 -157 1550 250 6-64 7.65 23.3 8.9 0.22 1.35 -157 1552 375 6.69 7.63 23.4 9.4 0.22 1.33 157 1554 500 7.61 23.4 75.ما 9.7 0.22 1.34 -157 80% **Total Casing** Purge Start Purge End Average Flow Total Gallons Water Level Sample Recovery Time Volumes Time -(map)at Sampling Collection Purged Water Level Sample Identification Purged Time (ft-bmp) Time Depth 1546 1554 62 ml 500 1600 6.75 MW - 23 Notes: chased threads / replaced boths

Project Name: Mission Vailey Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW - 115 Weather: Hot, Dry Screen: **Measurement Point Description: TOC North** Pump Intake: a' Water Three (3) Depth to Depth to Above **Well Total Depth** Column LNAPL Thickness One (1) Casing LNAPL Static Water Casing Screen Screen (ft-bmp) Height (ft-bmp) Volume (gailons) (ft-bmp) Volumes Level (ft-bmp) Volume Volume (ft) (gallons) NA 7.10 9.43 NA Gallons/Foot **Field Equipment:** Horiba, 2 stage pump Low-flow Well Diameter (in) (2)0.75 6 2 stage pump سوس ہے اوس Purge Method: 2 0.75 6 0.02 0.16 0.65 1.47 600d Well Condition: Volume Water Flow Rate Dissolved Temperature Turbidity Conductivity Time Casing / Screen Puraed ORP Level Нα Oxygen (gpm) (°C) om) Observations (NTU) (gallons) (ft-bmp) (mV) (mg/L) (2 ml Q 1612 MIN 7.12 7.58 22.6 45.1 0.21 1.47 اما! ~ Jeag 1614 125 7.14 24.422.2 28.4 7.59 0.21 1.45 -141 1616 250 7.18 7.60 22.0 30.4 0.20 1.46 -163 4618 375 7.19 7.62 21.9 29.B 0.20 1.45 -163 1620 500 21.9 7.64 7.20 28.1 0.20 1.44 - 164 80% Total Casing Purge Start Water Level Purge End Sample Average Flow Total Gallons Recovery Volumes Time Time at Sampling -(gpm)-Collection Purged Sample Identification Water Level Purged Time (ft-bmp) Time Depth 62 ml 1612 1620 500~1 7.20 1624 MW-119 Notes: chased threads / replaced botts

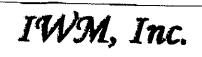
Project Name: Mission Valley Rock Date: 9-11-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW-101 Weather: Hor. Der Screen: **Measurement Point Description: TOC North** Pump intake: ربي' Water Depth to Three (3) Depth to **Well Total Depth** Above Column **LNAPL Thickness** LNAPL One (1) Casing Static Water Casing Screen Screen (ft-bmp) Height (ft-bmp) Volume (gallons) (ft-bmp) Level (ft-bmp) **Volumes** Volume Volume (ft) (gallons) NA B.50 19.38 NA Gallons/Foot Field Equipment: Horiba, 2-stage pump cow - Flow Well Diameter (in) 0.75 2 6 Purge Method: 2 stage pump cow - flow 0.75 2` 0.02 0.16 0.65 1.47 **Well Condition:** 6000 Volume Water Flow Rate Dissolved Time Casing / Screen Purged Temperature Turbidity Conductivity Level Нα ORP (apm) Oxygen (°C) Observations (gallons) (slm) (NTU) (ft-bmp) (mV) (mg/L)1636 ϕ 8.51 7.50 22:6 148.5 0.36 -184 1.68 Choudy 1438 250 7.57 8.51 22.0 78.3 0.38 1.61 - 18B رسمعي 1640 500 8.51 7.60 21.8 0.39 70.5 1.57 - 191 1642 750 8.51 7.68 21.8 69.5 0.43 1.40 - 197 ice 44 1000 8.51 7.81 24.8 64.7 PP. 0 1.36 -198 1646 1250 8.51 7.82 62.9 21.8 44.0 1.36 - 200 1648 1500 8.51 7.85 21.8 63.5 0.44 1.35 ~ 200 80% Purge Start Purge End Total Casing Average Flow Water Level **Total Gallons** Sample Recovery Time Time Volumes (gem) at Sampling Purged Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 125ml 1636 KeyB 1500ml h01-wm 8.51 1658 Notes: replaced boths

TAIT Environmental Management, Inc

Project N	lame:	Miss	ion Va	lley	Rock			*		Date:	C	7-12	2-07					
Project N	lo.: E	M500	9C							Prep:				l Sch	enone			
Well Iden	itifica	tion:	M	<u>~ ~ </u>	114					Weat			۲, ۲			r ce n:		
Measurer	ment l	Point D	евспрі	ilon:	TOC N	orth				Pump	o Intak		14.		1		·	
Depth LNAP (ft-bm	L	Stati	pth to ic Wate I (ft-bm)	į	Well To	otal Do t-bmp)	• 1	Water Columi Height (ft)	n I	LNAPL Thicks (ft-bmp)	ness	ì	ne (1) (lume (_	- 1	ing mes	Above Screen Volume	Screen Volume
NA		8.	०८		20.	50	,			NA			_			-	**	*
Well D	lamet	ter (in)			Gal	lons/Fo	oot		Fiel	ld Equipment:	Ho	oriba,	2-staç	je pur	mp Loe	5 - E-1	• w	
7	-		0).75	2		4	6	Pur	ge Method:	2 :	tage	pump	٠ ـ	ow - 41	سه		
0.75		4 6	6 0	0.02	0.16	, c	0.65	1.47	Wel	ll Condition:	ح)	000	4					
Time	Casing	g / Screen	Volun Purge (gallor	ed ns)	Flow F (gpn	m)	Water Level (ft-bmp)	pΗ	н	Temperature (°C)	Turbid (NTU		Conduc		Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1028	ļ		ø		125 m	min	8.10	8.0	,(19.4	80·°	1	0.17	,	2.11	-107	Clear	lodoe
10 30	-		250				8.10	7.89	8	19.3	79.9		0.17		1.85	-115		ee-
10 32	<u> </u>		500			<u> </u>	8.10	7.8	10	19.3	77.2		0.17	,	1.77	-121	1	
1634	-		750	,			8.11	7.7	}	19.4	74.9	1	0.17	,	1.74	-122		
1036	-		1000	>	T		B .((7.7	18	19.4	77.5	3	0-1	7	1.79	-124		
								_									-	
Purge Sta Time	rt I	Purge Er Time	1	verag (gp	ge Flow		Gallone rged	Total Ca Volun Purg	mes	80% Recovery Water Level Depth	at	ater Le Samp ne (ft-t	oling	Colle	mple ection me	Sa	mple Identifica	ition
1028		1034			201		00 ml	_		_	q	٤٠٠١		104	1	Mu	0-114	
Notes:	Cha	aged	. +4	181	ads	(44	eplad	ied \	00	HS								

Project Name: Mission Valley Rock Date: 9-12-07 Project No.: EM5009C Prepared By: Michael Schenone Well Identification: MW-6d Weather: Hor, Ory Screen: **Measurement Point Description: TOC North** Pump Intake: 24' Water Three (3) Depth to Depth to Above Well Total Depth Column **LNAPL Thickness** One (1) Casing Casing LNAPL Screen Static Water Screen (ft-bmp) Height (ft-bmp) Volume (galions) Volumes Volume (ft-bmp) Level (ft-bmp) Volume (ft) (gallons) NA 7.46 29.15 NA Gallons/Foot Horiba, 2-stage pump Low Flow **Field Equipment:** Well Diameter (in) (2)Low-flow 0.75 6 2 stage pump Purge Method: 0.75 2 6 0.02 0.16 0.65 1.47 (2000 Well Condition: Volume Water Dissolved Flow Rate Temperature Turbidity Conductivity Time Casing / Screen Purged ORP Level На Oxygen Observations (gpm) (°C) (NTU) (5m) (gallons) (mV) (ft-bmp) (mg/L)125 ml nin ď 1105 7.58 7.60 19.7 43.6 0.18 1.95 -137 clear lodge 1107 250 7.58 19.9 7.61 38.0 0.19 1.80 -138 P0/1 500 7.58 7.62 20.0 35.3 0.20 1.79 -138 1111 750 7.58 7.63 20.0 33.1 0.20 1.75 -139 1113 1000 7.58 7.64 34.9 1.72 20.1 0.20 -139 80% **Total Casing** Water Level Purge Start Purge End Sample Average Flow Total Gallons Recovery Volumes at Sampling Collection Time Time -(gpm) Sample Identification Purged Water Level Purged Time (ft-bmp) Time Depth 1105 じいろ 125ml 10000 7.58 1117 Mw-ud Notes: chased threeods replaced boths

TAIT Environmental Management, Inc


Project Na	ame:	Missic	n Valley	/ Rock				Date:	: 9-	12-07	1		,		1
Project No			C					Prep:	ared By	: Micha	el Scher	none			
Well Ident				N- 29						toT,D		Sc	reen:		
Measuren	nent '	Point De	scription	: TOC Nor	th			Pump) Intake	: 20'					
Depth t LNAPL (ft-bm;	L	Static	th to : Water (ft-bmp)	Well Tota (ft-b	•	Water Colum Heigh (ft)	nn L ht	LNAPL Thickr (ft-bmp)		` .) Casing (galions)	Three Casi Volur (galic	ilng mes	Above Screen Volume	Screen Volume
NA	··	ب ي	7	24.7	<u>L8</u>	_	<u>, </u>	NA				-			-
Well D	lame	ter (in)			ns/Foot		Field	d Equipment:	Hori	ba, 2-sta	ige bu mt	روس	- 410.	حت	· · · · · · · · · · · · · · · · · · ·
			0.75	2	4	6	Purg	je Method:	-2 str	age pum	PC	m - f	(-w		
0.75 (2	\int	4 6	0.02	0.16	0.65	1.47	Well	Condition:	G	ood,	neidi	5 new	GASK	*	
Time	Casin	ng / Screen	Volume Purged (gallons)	Flow Rate (gpm)	Leve (ft-brr	vel pi mp)	рΗ	Temperature (°C)	Turbidity (NTU)	y Condu	uctivity [Dissolved Oxygen (mg/L)	ORP (mV)		servations
1148			ø	125 ml	6.8	38 7.6	80	19.0	55.2	0.7	.7	2.01	-142	حلمع	- odoe
1150	 		250		6.9		•7	18.9	56.1	0.1	28	1.80	-143	1	···
1152			500		6.9	14 7.1	47	18.9	57.3	0.7	28	1.75	-144		
1154			750		(, . 9	17 7.	.67	18.9	56.2	0.2	28	1.74	-144		
1156			1000	1	7.0	12 7.1	.67	(8.9	54.8	0.7	28	1.73	- 145	1	/
	-								i			1			
Purge Star Time	rt	Purge End Time		age Flow To	otal Gallons Purged	Volui	Casing umes	80% Recovery Water Level	at S	ter Level Sampling e (ft-bmp)	Samp Collect	tion	Sar	mple Identifica	ation
	-	~ -						Depth			Time				
1148		1154			1000 ml	i i			7	.02	1159		mw-a	14	·····
Notes:	حا			reeds (-			ts (well be	o*)						

TAIT Environmental Management, Inc.

	: Missio	······································	у коск				Date	: १	-15 -0.	7				
Project No.:							Prep	ared B	y: Micha	ael Sch	enone			
Well Identifica			<u>-7d</u>	····	···		Wea	ther: 1	HET .	Dry.	S	creen:	······································	
Measurement	Point Des	scription	: TOC N	orth			Pum	p intak	e: 20	,	ı			
Depth to LNAPL (ft-bmp)	Dept Static Level (f	Water	ŧ	otal Depth -bmp)	Wate Colun Heigi (ft)	nn I ht	LNAPL Thick (ft-bmp)		One (1 Volume) Casing (gallon	g Ca s) Vol	sing umes	Above Screen Volume	Screer Volume
NA	5- ی	٩	23	اما	_		NA		-	_	-		•	
Well Diame	ter (in)		Gall	ons/Foot		Field	l Equipment:	Но	riba, 2 st	age pur	np L.	ا ۔ 4 ۔	رس رس	<u> </u>
		0.75	2	4	6	Purg	e Method:		tage pun		Low			
0.75 (2)	4 6	0.02	0.16	0.65	1.47	Weli	Condition:	re 115	pood	/ 0			orover	
Time Casin	g/Screen	Volume Purged (gallons)	Flow Flow gpm	ı) Lev (ft-br	el p	Н	Temperature (°C)	Turbidi (NTU)		luctivity	Dissolved Oxygen (mg/L)	ORP (mV)		ervations
215		ø	125 m	6.7	s 7.º	77	19.7	54.9	0.	23	7.90	-195	clear	-/odos
217		250		6.8	8 . 7.	80	19.7	56.6	0.	21	7.73	-199	1	
219		500		8. ي	9 7.	83	19.8	57.9	0.	21	7.52	- 202		
721		750	ļ	9. ی		84	19.7	59.6	0.	20	7.48	-203		
1213		1000	<u> </u>	6.9	8 7.	84	19.7	58.2	- 0.	20	7-47	- 204	J	/
Purge Start Time	Purge End Time	(gr	pm)	Total Gallons Purged	Total C Volu Purç	mes	80% Recovery Water Level Depth	at S	iter Level Sampling e (ft-bmp)	San Colle Tin	ction	Sar	nple Identifica	tion
1	1223	125	imi	10000	_		_	10	.98	1228		mw-		

APPENDIX C CERTIFICATE OF DISPOSAL

NTEGRATED WASTESTREAM MANAGEMENT, NC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1990 FAX: 408.433.9521

CERTIFICATE OF DISPOSAL

Generator Name:	Mission Valley Rock Company	Facility Name:	Mission Valley Beat
	7999 Athenour Way	-	Mission Valley Rock
	Sunol, CA 94586	_	7999 Athenour Way Sunol, CA 94586
Contact:	Mort Calvert		Mike Schenone, TAIT Environmental
Phone:	925.862.2257	Phone:	916.858.1060

Transp	orter Information	Dispos	sal Facility Information
Name:	IWM, Inc.	Name;	Scaport Refining & Environmental
Address:	1945 Concourse Drive	Address:	700 Seaport Blvd
	San Jose, CA 95131		Redwood City, CA 94063
Phone:	(408) 433-1990	Phone:	(650) 364-1024

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. Dallar Welleger d.	
William 1. DeLon	10/4/07
Authorized Representative (Print Name and Signature)	Date
	Date

APPENDIX D TEM LABORATORY REPORT

20 September 2007

Michael Schenone Tait Environmental -- Rancho Cordova 11280 Trade Center Drive Rancho Cordova, CA 95742

RE: Mission Valley Rock

aller Vargas

Enclosed are the results of analyses for samples received by the laboratory on 09/14/07 10:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Albert Vargas

Project Coordinator

Tait Environmental -- Rancho Cordova 11280 Trade Center Drive

Project Number: EM5009C

Project: Mission Valley Rock

Rancho Cordova CA, 95742 Project Manager: Michael Schenone

Reported: 09/20/07 17:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-10LF	T701180-01	Water	09/11/07 13:58	09/14/07 10:30
MW-6S	T701180-02	Water	09/11/07 14:29	09/14/07 10:30
MW-1	T701180-03	Water	09/11/07 15:06	09/14/07 10:30
MW-9LF	T701180-04	Water	09/11/07 15:30	09/14/07 10:30
MW-2S	T701180-05	Water	09/11/07 16:00	09/14/07 10:30
MW-11S	T701180-06	Water	09/11/07 16:24	09/14/07 10:30
MW-10D	T701180-07	Water	09/11/07 16:58	09/14/07 10:30
MW-11D	T701180-08	Water	09/12/07 10:41	09/14/07 10:30
MW-6D	T701180-09	Water	09/12/07 11:17	09/14/07 10:30
MW-9D	T701180-10	Water	09/12/07 11:59	09/14/07 10:30
MW-7D	T701180-11	Water	09/12/07 12:28	09/14/07 10:30
MW-4S	T701180-12	Water	09/10/07 12:40	09/14/07 10:30
MW-4D	T701180-13	Water	09/10/07 13:00	09/14/07 10:30
MW-5S	T701180-14	Water	09/10/07 14:00	09/14/07 10:30
MW-7S	T701180-15	Water	09/10/07 14:42	09/14/07 10:30
MW-8	T701180-16	Water	09/10/07 15:10	09/14/07 10:30
MW-11LF	T701180-17	Water	09/10/07 15:40	09/14/07 10:30
MW-12S	T701180-18	Water	09/10/07 16:52	09/14/07 10:30
MW-12D	T701180-19	Water	09/11/07 09:30	09/14/07 10:30
MW-12LF	T701180-20	Water	09/11/07 10:12	09/14/07 10:30
MW-5D	T701180-21	Water	09/11/07 10:47	09/14/07 10:30
MW-3	T701180-22	Water	09/11/07 11:13	09/14/07 10:30
MW-10S	T701180-23	Water	09/11/07 11:47	09/14/07 10:30
MW-2D	T701180-24	Water	09/11/07 12:19	09/14/07 10:30
MW-2M	T701180-25	Water	09/11/07 12:44	09/14/07 10:30
MW-9S	T701180-26	Water	09/11/07 13:21	09/14/07 10:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-10LF T701180-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m	1							
C6-C12 (GRO)	130	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.7 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		119 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EF	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	3.0	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.0 %	84-	118	"	"	"	"	
Surrogate: Dibromofluoromethane		86.9 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	85-	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-6S T701180-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m	1							
C6-C12 (GRO)	370	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		94.1 %	65-1	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	0.93	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		107 %	65-1	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	1.3	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	48	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	84-1	118	"	"	"	"	
Surrogate: Dibromofluoromethane		85.8 %	66-1	124	"	"	"	"	
Surrogate: Toluene-d8		98.5 %	85-1	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Varyas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-1 T701180-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 8015m								
C6-C12 (GRO)	270	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.6 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		109 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EF	A Method 8260	В							
Benzene	0.80	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		83.4 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		99.6 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas, Project Coordinator

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C

Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-9LF T701180-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.		-			
Purgeable Petroleum Hydrocarbons	by EPA 8015m	ı							
C6-C12 (GRO)	320	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		89.4 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		109 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	2.5	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	0.59	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	1.3	1.0	"	"	"	"	"	"	
o-Xylene	0.64	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.9 %	84-	118	"	"	"	"	
Surrogate: Dibromofluoromethane		83.1 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		98.6 %	85-	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-2S T701180-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m	1							
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.9 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	17	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		108 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	2.5	ug/l	5	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	2.5	"	"	"	"	"	"	
Ethylbenzene	ND	2.5	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	2.5	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	10	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	10	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	10	"	"	"	"	"	"	
Methyl tert-butyl ether	46	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		100 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-11S T701180-06 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		90.0 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		104 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260I	3							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	84-11	8	"	"	"	"	
Surrogate: Dibromofluoromethane		82.1 %	66-12	4	"	"	"	"	
Surrogate: Toluene-d8		99.0 %	85-11	5	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alle Vagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

MW-10D T701180-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m	1							
C6-C12 (GRO)	780	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		85.0 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		109 %	65-13	35	"	"	"	"	
Volatile Organic Compounds by EP.	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	1.7	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	84-11	18	"	"	"	"	
Surrogate: Dibromofluoromethane		81.9 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	85-11	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-11D T701180-08 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by	EPA 8015r	n							
C6-C12 (GRO)	3000	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		404 %	65-1	135	"	"	"	"	S-02
Extractable Petroleum Hydrocarbons b	y 8015m								
Diesel Range Hydrocarbons	21	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		116 %	65-1	135	"	"	"	"	
Volatile Organic Compounds by EPA M	1ethod 8260)B							
Benzene	3.6	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	4.0	0.50	"	"	"	"	"	"	
Ethylbenzene	7.9	0.50	"	"	"	"	"	"	
m,p-Xylene	12	1.0	"	"	"	"	"	"	
o-Xylene	10	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	8.5	1.0	"	"	"	"	"	n .	
Surrogate: 4-Bromofluorobenzene		106 %	84-1	118	"	"	"	"	
Surrogate: Dibromofluoromethane		82.2 %	66-1	124	"	"	"	"	
Surrogate: Toluene-d8		99.8 %	85-1	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-6D T701180-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m								
C6-C12 (GRO)	130	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		89.8 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		105 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	28	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		80.6 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		98.0 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-9D T701180-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m	1							
C6-C12 (GRO)	36000	250	ug/l	5	7091706	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		94.2 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	4.4	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		115 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	990	12	ug/l	25	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	5700	120	"	250	"	"	09/18/07	"	
Ethylbenzene	2800	120	"	"	"	"	09/18/07	"	
m,p-Xylene	2800	25	"	25	"	"	09/18/07	"	
o-Xylene	1800	12	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	09/18/07	"	
Tert-butyl alcohol	30	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	84-	118	"	"	"	"	
Surrogate: Dibromofluoromethane		76.6 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		102 %	85-	115	"	"	09/18/07	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas, Project Coordinator

aller Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-7D T701180-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m	1							
C6-C12 (GRO)	15000	250	ug/l	5	7091706	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		77.7 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015m								
Diesel Range Hydrocarbons	3.5	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		109 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EF	PA Method 8260	В							
Benzene	72	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	340	12	"	25	"	"	09/18/07	"	
Ethylbenzene	1300	12	"	"	"	"	"	"	
m,p-Xylene	1600	25	"	"	"	"	"	"	
o-Xylene	340	12	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	09/18/07	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.2 %	84-	118	"	"	"	"	
Surrogate: Dibromofluoromethane		72.6 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		108 %	85-	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Albert Vargas, Project Coordinator

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-4S T701180-12 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbor	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		87.6 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		105 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		84.5 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		97.9 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-4D T701180-13 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		93.8 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		114 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.4 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		77.1 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-5S T701180-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m	l							
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		83.3 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		116 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by EI	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.0	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		84.0 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.6 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-7S T701180-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	76	50	ug/l	1	7091706	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		83.2 %	65-1	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		127 %	65-1	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	84-1	118	"	"	"	"	
Surrogate: Dibromofluoromethane		78.8 %	66-1	124	"	"	"	"	
Surrogate: Toluene-d8		98.4 %	85-1	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-8 T701180-16 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.7 %	65-13	25	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		128 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	3							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.1 %	84-11	8	"	"	"	"	
Surrogate: Dibromofluoromethane		85.2 %	66-12	4	"	"	"	"	
Surrogate: Toluene-d8		99.2 %	85-11	5	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

MW-11LF T701180-17 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.5 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		135 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 82601	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	13	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	190	25	"	25	"	"	09/18/07	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	84-	118	"	"	09/17/07	"	
Surrogate: Dibromofluoromethane		85.5 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		98.5 %	85-	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-12S T701180-18 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		83.4 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		123 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	**	"	"	"	"	"	
m,p-Xylene	ND	1.0	**	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.4 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		86.9 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.4 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-12D T701180-19 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.7 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		116 %	65-13	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		88.6 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.1 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

MW-12LF T701180-20 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbor	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091706	09/17/07	09/17/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		82.4 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091404	09/14/07	09/17/07	EPA 8015m	
Surrogate: p-Terphenyl		122 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091708	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	**	"	"	"	"	"	
m,p-Xylene	ND	1.0	**	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		89.4 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		98.1 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-5D T701180-21 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.2 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		117 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.2	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.8 %	84-	118	"	"	"	"	
Surrogate: Dibromofluoromethane		88.9 %	66-	124	"	"	"	"	
Surrogate: Toluene-d8		95.4 %	85-	115	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alleen Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-3 T701180-22 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Purgeable Petroleum Hydrocarbon	s by EPA 8015m	<u>l</u>							
C6-C12 (GRO)	60	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		87.0 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		110 %	65-13	25	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	27	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.9 %	84-11	8	"	"	"	"	
Surrogate: Dibromofluoromethane		88.9 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		97.0 %	85-11	5	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-10S T701180-23 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015m	l							
C6-C12 (GRO)	ND	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		82.4 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		105 %	65-13	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/17/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.9 %	84-1	18	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		87.1 %	66-12	24	"	"	"	"	
Surrogate: Toluene-d8		96.1 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alle Vagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-2D T701180-24 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 8015m								
C6-C12 (GRO)	120	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		85.2 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015m								
Diesel Range Hydrocarbons	4.6	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		103 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	15	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.1 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		92.0 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		97.5 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

MW-2M T701180-25 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons by	EPA 8015n	1							
C6-C12 (GRO)	220	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		89.8 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbons l	by 8015m								
Diesel Range Hydrocarbons	4.9	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	D-02
Surrogate: p-Terphenyl		110 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	B							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	14	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	84-1	18	"	"	"	"	
Surrogate: Dibromofluoromethane		89.2 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		99.5 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayos

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 09/20/07 17:00

MW-9S T701180-26 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 8015m	1							
C6-C12 (GRO)	52	50	ug/l	1	7091707	09/17/07	09/18/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		78.4 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015m								
Diesel Range Hydrocarbons	ND	0.50	mg/l	1	7091403	09/14/07	09/15/07	EPA 8015m	
Surrogate: p-Terphenyl		109 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	0.50	ug/l	1	7091709	09/17/07	09/18/07	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.0 %	84-1	18	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		86.2 %	66-1	24	"	"	"	"	
Surrogate: Toluene-d8		97.0 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7091706 - EPA 5030 GC										
Blank (7091706-BLK1)				Prepared	& Analyze	ed: 09/17/	07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	<i>161</i> ND	50	ug/l "	200		80.5	65-135			
LCS (7091706-BS1)				Prepared:	09/17/07	Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	239 5510	50	ug/l "	200 5500		120 100	65-135 75-125			
Matrix Spike (7091706-MS1)	Sou	ırce: T70118	0-20	Prepared:	09/17/07	Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	208 5010	50	ug/l "	200 5500	ND	<i>104</i> 91.1	65-135 65-135			
Matrix Spike Dup (7091706-MSD1)	Sou	urce: T 7 0118	0-20	Prepared: 09/17/07 Analyzed: 09/18/07						
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	203 5230	50	ug/l "	200 5500	ND	<i>101</i> 95.1	<i>65-135</i> 65-135	4.30	20	
Batch 7091707 - EPA 5030 GC										
Blank (7091707-BLK1)				Prepared:	09/17/07	Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	160 ND	50	ug/l "	200		80.0	65-135			
LCS (7091707-BS1)				Prepared:	09/17/07	Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	234 5160	50	ug/l "	200 5500		117 93.9	65-135 75-125			
LCS Dup (7091707-BSD1)				Prepared:	09/17/07	Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	231 5340	50	ug/l "	200 5500		115 97.0	65-135 75-125	3.31	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

Extractable Petroleum Hydrocarbons by 8015m - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7091403 - EPA 3510C GC										
Blank (7091403-BLK1)				Prepared:	09/14/07	Analyzed	: 09/15/07			
Surrogate: p-Terphenyl	4.57		mg/l	4.00		114	65-135			
Diesel Range Hydrocarbons	ND	0.50	"							
LCS (7091403-BS1)				Prepared:	09/14/07	Analyzed	: 09/15/07			
Surrogate: p-Terphenyl	4.36		mg/l	4.00		109	65-135			
Diesel Range Hydrocarbons	19.2	0.50	"	20.0		96.2	75-125			
Matrix Spike (7091403-MS1)	Sou	rce: T 7 0118	0-21	Prepared:	09/14/07	Analyzed	: 09/15/07			
Surrogate: p-Terphenyl	4.27		mg/l	4.00		107	65-135			
Diesel Range Hydrocarbons	19.9	0.50	"	20.0	ND	99.4	75-125			
Matrix Spike Dup (7091403-MSD1)	Sou	rce: T 7 0118	0-21	Prepared:	09/14/07	Analyzed	: 09/15/07			
Surrogate: p-Terphenyl	4.41		mg/l	4.00		110	65-135			
Diesel Range Hydrocarbons	20.2	0.50	"	20.0	ND	101	75-125	1.80	20	
Batch 7091404 - EPA 3510C GC										
Blank (7091404-BLK1)				Prepared:	09/14/07	Analyzed	: 09/15/07			
Surrogate: p-Terphenyl	4.28		mg/l	4.00		107	65-135			
Diesel Range Hydrocarbons	ND	0.50	"							
LCS (7091404-BS1)				Prepared:	09/14/07	Analyzed	: 09/17/07			
Surrogate: p-Terphenyl	4.82		mg/l	4.00		120	65-135			
Diesel Range Hydrocarbons	17.7	0.50	"	20.0		88.5	75-125			
Matrix Spike (7091404-MS1)	Sou	rce: T 7 0118	0-03	Prepared:	09/14/07	Analyzed	: 09/17/07			
Surrogate: p-Terphenyl	4.73		mg/l	4.00		118	65-135			
Diesel Range Hydrocarbons	18.1	0.50	"	20.0	ND	90.6	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

Extractable Petroleum Hydrocarbons by 8015m - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7091404 - EPA 3510C GC

Matrix Spike Dup (7091404-MSD1)	Source	e: T701180-03	Prepared	: 09/14/07	7 Analyze	d: 09/18/07			
Surrogate: p-Terphenyl	5.11	mg.	1 4.00		128	65-135			
Diesel Range Hydrocarbons	18.6	0.50 "	20.0	ND	93.1	75-125	2.70	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742

Analyte

Project: Mission Valley Rock

Spike

Level

8.00

20.0

20.0

ND

ND

Source

Result

%REC

98.6

90.7

94.3

85-115

75-125

75-125

%REC

Limits

RPD

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

RPD

Limit

Notes

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Reporting

Limit

Result

7.89

18.1

18.9

0.50

0.50

Blank (7091708-BLK1)		Prepared & Analyzed: 09/17/07												
Surrogate: 4-Bromofluorobenzene	7.46		ug/l	8.00	93.2	84-118								
Surrogate: Dibromofluoromethane	6.67		"	8.00	83.4	66-124								
Surrogate: Toluene-d8	7.90		"	8.00	98.8	85-115								
Benzene	ND	0.50	"											
Toluene	ND	0.50	"											
Ethylbenzene	ND	0.50	"											
m,p-Xylene	ND	1.0	"											
o-Xylene	ND	0.50	"											
Tert-amyl methyl ether	ND	2.0	"											
Tert-butyl alcohol	ND	10	"											
Di-isopropyl ether	ND	2.0	"											
Ethyl tert-butyl ether	ND	2.0	"											
Methyl tert-butyl ether	ND	1.0	"											
LCS (7091708-BS1)				Prepared: 09/1	7/07 Analyzed	1: 09/18/07								
Surrogate: 4-Bromofluorobenzene	7.48		ug/l	8.00	93.5	84-118								
Surrogate: Dibromofluoromethane	6.29		"	8.00	78.6	66-124								
Surrogate: Toluene-d8	8.04		"	8.00	100	85-115								
Benzene	19.1	0.50	"	20.0	95.4	75-125								
Toluene	19.7	0.50	"	20.0	98.4	75-125								
Matrix Spike (7091708-MS1)	Sour	ce: T70118	0-18	Prepared: 09/1	7/07 Analyzed	1: 09/18/07								
Surrogate: 4-Bromofluorobenzene	7.56		ug/l	8.00	94.5	84-118								
Surrogate: Dibromofluoromethane	6.35		"	8.00	79.4	66-124								

SunStar Laboratories, Inc.

 $Surrogate:\ Toluene-d8$

Benzene

Toluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allen Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7091708 - EPA 5030 GCMS										
Matrix Spike Dup (7091708-MSD1)	Sou	rce: T70118	0-18	Prepared:	09/17/07					
Surrogate: 4-Bromofluorobenzene	7.49		ug/l	8.00		93.6	84-118			
Surrogate: Dibromofluoromethane	6.45		"	8.00		80.6	66-124			
Surrogate: Toluene-d8	8.01		"	8.00		100	85-115			
Benzene	19.3	0.50	"	20.0	ND	96.6	75-125	6.35	20	
Toluene	19.9	0.50	"	20.0	ND	99.6	75-125	5.42	20	
Batch 7091709 - EPA 5030 GCMS										
Blank (7091709-BLK1)				Prepared	& Analyz	ed: 09/17/0	07			
Surrogate: 4-Bromofluorobenzene	6.89		ug/l	8.00		86.1	84-118			
Surrogate: Dibromofluoromethane	6.65		"	8.00		83.1	66-124			
Surrogate: Toluene-d8	7.29		"	8.00		91.1	85-115			
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
LCS (7091709-BS1)				Prepared:	09/17/07	Analyzed	: 09/18/07			
Surrogate: 4-Bromofluorobenzene	6.61		ug/l	8.00		82.6	84-118			S-G
Surrogate: Dibromofluoromethane	6.81		"	8.00		85.1	66-124			
Surrogate: Toluene-d8	7.59		"	8.00		94.9	85-115			
Benzene	17.6	0.50	"	20.0		88.2	75-125			
Toluene	16.9	0.50	"	20.0		84.7	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Targas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 09/20/07 17:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7091709 - EPA 5030 GCMS

LCS Dup (7091709-BSD1)				Prepared: 09/1	7/07 Analyzed	1: 09/18/07			
Surrogate: 4-Bromofluorobenzene	6.69		ug/l	8.00	83.6	84-118			S-GC
Surrogate: Dibromofluoromethane	6.83		"	8.00	85.4	66-124			
Surrogate: Toluene-d8	7.60		"	8.00	95.0	85-115			
Benzene	19.5	0.50	"	20.0	97.3	75-125	9.81	20	
Toluene	19.2	0.50	"	20.0	96.0	75-125	12.5	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Wargas

Tait Environmental -- Rancho CordovaProject: Mission Valley Rock11280 Trade Center DriveProject Number: EM5009CReported:Rancho Cordova CA, 95742Project Manager: Michael Schenone09/20/07 17:00

Notes and Definitions

S-GC	Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
D-02	Hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Wargas

5307565698

Labs

Sunstar

Hannell

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record

Client: Tout Erwiremmental								Date: C1-13-07 Page: \											
Address: 11260 T	Address: 11260 Trade Conter Dawes								Project Name: Nesson Calley Pork									6	
Phone: Citto "71.41-17	7.20	V 1624 V.		<u> </u>	-		Pro	oject	Nan	ne:_j	$\overline{\overline{C}}$	155	>1C.1.	· 00	May	V-cick-			
Phone: (\to 7\to 4-1) Project Manager: \to 1	The state of the s	_rax: <u>"\</u>	11.62 3531	S-1011	_		Co	llect	or: <u> </u>	<u>L.L.</u>		ch	:E"-4" "4E	·	:_ Cile	nt Project #:	Divis	5009	ر س
Project Manager: N	Ke- we	r Corn	15 CD.		,		Ba	itch #	t:	T	70	118	٥						
																COC 7	2602	<u>)</u>	
	T	T	7	1 1	Т	T-	7							т					
			Í		İ			1			ļ			- 1	-	1			
														-					
						_	_		_		<u>.</u>	<u>s</u>	_ _		{				_ _
		1				≥				اا	8015M Ext./Carbon Chain	Metafs	1 1		ı	STD	TA.	r	
	1				ł			ÌΙ			Ĕ	2				OID.	17	•	ျှ
						×		<u> </u>	8015M (gasoline)		호 :	11te 22	1_	, .	¥±			l	containers
							1		<u>8</u>	8015M (diesel)	۷į	≣			₽				<u>- ∰ </u>
	Ì				8260	ŏ @	8270	8021 BTEX	8	ناق	វិ 🗄	000//000			چ]			2
			Sample	Container		+ 8		<u>m</u>	₹	ا چ	Ž	₹		}	Į į				#
Sample ID	Date Sampled	Time	Type	Type	8	98 98	270	8	8	älä		5		İ	Laboratory	_			큘
MW-45	76-01-17		GRAP	VCA		" "	 **	- m	.	- 1	œ (<u>- -</u>				Commen	ts/Prese	rvative	V: Total # of
MW- 4d	1	1300	i i	1			-	-	⇉	\Rightarrow					13				5
MW-55		1400	1			×	*		$\widehat{\mathbf{x}}$	-	+	_							4
MW - 75		1442	 						\	}	-	-			14		·		
MW-83		1510				- Íx	1	 	×	쥤		~+	+		15				
MW-IILF		1540				$-\infty$	1		Σď.	<	\dashv	\dashv	~		17				+H
MW-125	V	1652				×	1		Z)	2			+	_	18				
MW-12d	9-11-07	950				×	1	-	X			+	+		14				+H
MW-12LF	1	1012				X			X)	-	十	_	1	 	20			···········	++
MW-5d		1047				$\overline{}$		1.	X >	-	┪		1		21				++
<u> </u>		1113				×			X						22				++1
MW - 105		1147				$ \times$			7	-					23				+++
Mw - 2d		<u>1219</u>				×		-		7					24				++1
MW-214	 	1244				><			\times						25	•	V.,		++
Relinquished by: (signature)		1321	<u> </u>	V	1		<u> </u>			7					26				1
A A A A	Date (Ti	r <u>e</u>	1 1 . ~	(*) (gignature)	تُو		e / Ti		.			Tota	l # of co	ntainers			Notes		
Michael-Schenare 9.13.07 / 18						7/17	19	1/5	1	Chain	of C	ueto	du caste	Y/N/NA					
Relinquished by: (signature)	nquished by: (signature) Date / Time Received by: (signature)/						e / Ti	<u> </u>	┨`	J. 14.11				Y/N/NA	-				
		//	'	U						_					1	ED.	.		
Relinquished by: (signature)	Date / Tir	ne r	Received h	/: (signature)		D-4	e / Ti		\dashv	Rec	eive	d goo	d condi	tion/cold	'L				
((((((((((((((((((((Da.07 111		. Icceived by	, (signature)		Dai	E / 11							Ì	T0600102092				
Sample disposal Instructions: Disposal @ \$2.00 each Return to client									т	urn a	arou	nd t	me: N	DEMA	L	LOMOQU	030	92	
Sample disposal instructions: Di	sposal @ \$2.00 e	ach	Return	to client		Pickup													

Pickup ____

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

Chain of Custody Record

Address: 11280 Trada Center Dave										Da	te:	9	-13	3-	07			_ Pag	e: _2_ _	Of	<u> </u>		
							_			Pro	ject	Nar	me:_	2	رزج	solor	. U	سالم	4 200	-K			
Phone (916) 764-17	139		Fax: (9)	(W) 4	359	1101-6	_			Со	llect	or:_1	M	<u>. <</u>	کد	heno	7-2-	_ Clier	ft Project #	EN	500	ا ک	,
Project Manager: Wile Schenore								•		Bat	tch #	#:	7	70	118	0		_	COC	726	09		
Sample ID	Date \$	Sampled	Time	Samp Typo		Container Type	8260	8260 + OXY	8260 BTEX, OXY only	8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals			Laboratory ID #).	eservative		Total # of containers
NW-10LF		\- 07	1358	GRAN	$\overline{}$	VOK	Ιω.	1 00	Ÿ	ω.	ω	$\ddot{\mathbb{X}}$	ヹ	3	w			ÐM		1101113/1 10	SCIVALIVE	-+	5
MW - 65	ſ		1429	1		1			X			X	X					od					
MW-1		1	1500						×			X	X					03					T
MW-9LF			1530						>			X	X					04					T
MW-25			1600				T^{-}	ļ	X			X	X					05					1
MW-115			1624					T	X			X	X					06					1
MW-10d	- 1	V	1658						X			X	X					07					1
MW-11d	9-1	2-07	1041						X			X	X					080					T
MW-lod	1		1117						X			X	×					69					\top
NW-9d			1159						X			X	X					10					1
MW - 7d	J	<i>y</i>	1228	V		V			×			X	X					11					V
									ļ														
Relinquished by: (signature)	7700 60	Date / Ti	me 15 3-07	{ \	ed by	: (signature)	<u> </u> }	<u>-</u>	Dat	e/T	ime / <i>4/</i>		Chr	ain of		otal # of cor stody seals				Not	es		
Relinquished by: (signature)	ناك	Date / Ti	me			(signature)) A	7	Pat	ėį/T	ime				Se	eals intact? good conditi	Y/N/NA		E	DF #			
Relinquished by: (signature)		Date / Ti	me			: (signature)		·	Dat	e/i	ime					d time: <u>N</u> C			70	600l	0200	12	
Sample disposal Instructions: D	isposal	@ \$2.00	each	Re	eturn t	o client		Р	ickup		_							•					