RECEIVED

1:20 pm, May 11, 2007

Alameda County
Environmental Health

May 11, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SUBJECT: FIRST QUARTER 2007

GROUNDWATER MONITORING AND SAMPLING REPORT

MISSION VALLEY ROCK COMPANY

7999 ATHENOUR WAY, SUNOL, CALIFORNIA

Dear Mr. Wickham,

Please find enclosed Tait Environmental Management's First Quarter 2007 Groundwater Monitoring and Sampling Report on the above referenced site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions, please don't hesitate to contact the undersigned at (925) 426-4170.

Sincerely,

Lee W. Cover

Environmental Manager

Hanson Aggregates Mid-Pacific, Inc.

Lee W. L

cc: Bill Butler, Hanson Aggregates Mid-Pacific, Inc.

First Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared by: Tait Environmental Management, Inc.

May 11, 2007

First Quarter 2007 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared for:

Mr. Lee Cover Hanson Aggregates Northern California 3000 Busch Rd., Pleasanton, CA 94566

Prepared by:

Michael Schenone Project Scientist

Reviewed by:

Paul N. McCarter, PG, CHG, REAII Senior Project Manager

OF CALL

Tait Environmental Management

701 North Parkcenter Drive Santa Ana, California 92705

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	OBJECTIVE AND SCOPE OF WORK	2
3.0	BACKGROUND	2
4.0	SITE HYDROGEOLOGY	2
5.0	GROUNDWATER MONITORING WELL PURGING AND SAMPLING	3
6.0	LABORATORY ANALYSES	4
7.0	SUMMARY OF ACTIVITIES AND FINDINGS	5
8.0	QUALITY ASSURANCE/QUALITY CONTROL	6
9.0	REFERENCES	7
10.0	LIMITATIONS	7
FIGL	JRES	
1. 2. 3.	Site Vicinity Map Site Plan First Quarter 2007 Groundwater Contour Map (Shallow Zone)	
4. 5. 6. 7.	First Quarter 2007 Groundwater Contour Map (Deep Zone) First Quarter 2007Groundwater Contour Map (Livermore Formation) First Quarter 2007– TPHg Concentrations in Groundwater (Shallow Zone) First Quarter 2007– TPHg Concentrations in Groundwater (Deep Zone) First Quarter 2007– TPHg Concentrations in Groundwater (Livermore Formation)	
9. 10. 11.	First Quarter 2007– MTBE Concentrations in Groundwater (Shallow Zone) First Quarter 2007– MTBE Concentrations in Groundwater (Deep Zone) First Quarter 2007– MTBE Concentrations in Groundwater (Livermore Formation)	
12. 13. 14. 15. 16.	First Quarter 2007– Benzene Concentrations in Groundwater (Shallow Zone) First Quarter 2007– Benzene Concentrations in Groundwater (Deep Zone) First Quarter 2007– Benzene Concentration is Groundwater (Livermore Formation) First Quarter 2007– Area Wide TPHg Concentrations in Groundwater (Deep Zone) First Quarter 2007– Area Wide MTBE Concentrations in Groundwater (Deep Zone)	
16. 17.	First Quarter 2007 – Area Wide Benzene Concentrations in Groundwater (Deep Zone)	e)

TABLES

- Well Construction Details and Groundwater Elevation Data First Quarter 2007 1.
- 2. Historical Groundwater Gauging Data
- Groundwater Analytical Results First Quarter 2007
 Historical Groundwater Analytical Results
 Additional Investigation Analytical Results 3.
- 4.
- 5.

APPENDICES

- A. Cross Sections
- Sampling Data Sheets Certificate of Disposal B.
- C.
- TEM Laboratory Report D.
- LFR Laboratory Report E.

First Quarter 2007 Groundwater Monitoring and Sampling Report Mission Valley Rock Company Sunol, California

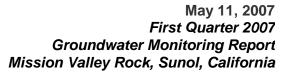
1.0 INTRODUCTION

This report summarizes the First Quarter 2007 groundwater monitoring and sampling event conducted at the Mission Valley Rock Company (site) located at 7999 Athenour Way in Sunol, California (Figure 1). The wells were sampled as part of the First Quarter 2007 groundwater monitoring and sampling program. In addition, groundwater data from membrane interface probe (MIP) and cone penetrometer (CPT) testing were provided by LFR, Inc. (LFR), and that information is also incorporated in this report.

2.0 OBJECTIVE AND SCOPE OF WORK

The objective of the proposed scope of work was to monitor and sample the existing groundwater monitoring wells at the site (Figure 2). An additional objective of this quarterly monitoring report is to combine the area-wide groundwater data provided by LFR with the groundwater information collected by Tait Environmental Management (TEM) to portray the overall extent of the impacted groundwater at the site.

The scope of work that TEM developed to meet the objectives included the following tasks:


- Groundwater Monitoring & Sampling
- Laboratory Analyses
- Report Preparation
- Non-hazardous Waste Disposal

3.0 BACKGROUND

In May 1996, Tank Protect Engineering (TPE) removed one gasoline and two diesel underground storage tanks (USTs). During June 1998, three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed at the site. Quarterly groundwater monitoring continued from January 1999 through March 2000 (TEM, 2000).

In June 2000, TEM assumed the contract for environmental services at the site. In December 2002, eight soil borings (TB-1 through TB-8) were drilled and sampled at the site using a direct-push rig.

In January 2005, eight additional soil borings were advanced at the site using a hollow-stem auger drill rig. Six of the borings were converted to single-, double-, and triple-completion groundwater monitoring wells for a total of 12 wells (MW-2S, MW-2M, MW-2D, MW-4S, MW-4D, MW-5S, MW-5S, MW-6S, MW-6D, MW-7S, MW-7D, MW-8). Shallow wells were designated with an "S" and deep wells were designated with a "D". Groundwater monitoring well MW-2 was abandoned. The work was performed in accordance with the Alameda County

Environmental Health Services (ACEHS) directive of November 16, 2004, which requested the collection of depth-discrete groundwater samples from the site (ACEHS, 2004).

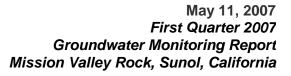
In April and May 2006, LFR, Inc. (LFR) installed, developed, sampled, and surveyed 12 additional wells (MW-9S, MW-9D, MW-9LF, MW-10S, MW-10D, MW-10LF, MW-11S, MW-11D, MW-11LF, MW-12S, MW-12D, and MW-12LF in four well clusters, which were located peripherally to the existing wells. The "LF" wells were screened in the Livermore Formation below the deep-zone wells.

The wells installed by LFR were surveyed and added to the groundwater monitoring and sampling schedule during the Second Quarter 2006. Data concerning the wells installed in April and May 2006 were provided to TEM by LFR. Quarterly groundwater monitoring and sampling have been conducted by TEM from the Fourth Quarter 2000 through the present.

In February 2007, LFR completed a site assessment to more completely characterize the lateral extent of the fuel hydrocarbons in groundwater in the areas north and south of well clusters MW-9 and MW-11, respectively, as well as the vertical extent of fuel hydrocarbons at deeper intervals than those currently screened in wells MW-9LF and MW-11LF (LFR, 2007).

4.0 SITE HYDROGEOLOGY

The site is located within the Sunol Valley at an elevation of approximately 260 feet above mean sea level (USGS, 1989). The land surface at the site has been disturbed by excavation activities; however, the natural surface slopes at a gradient of approximately 35 feet per mile toward San Antonio Creek to the east-northeast. San Antonio Creek flow is toward the northwest.


Drilling and sampling activities at the site indicate that a discontinuous clay layer is present below the surficial gravels to depths of 10 to 15 feet below ground surface (bgs), with the exception of the area at MW-2S/2M/2D, where the clay layer extends to a depth of 25 feet bgs (TEM, 2005). Soils below the clay layer to the maximum depth explored (30 feet bgs) consist primarily of gravelly sand and sandy gravel mixtures. The top of the Livermore Formation is not well defined; however, the Livermore Formation appears to contain a higher percentage of fine-grained material, primarily silt, than the overlying higher permeability gravels. Cross sections showing the site hydrogeology. The analytical results from soil samples collected during assessment activities and current groundwater analytical results are contained in Appendix A.

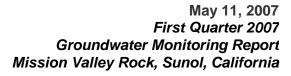
Groundwater levels are measured from the shallow-zone, deep-zone, and Livermore Formation wells. The levels are generally similar between the zones, and the groundwater zones appear to be generally hydraulically continuous.

Based on the First Quarter 2007 groundwater monitoring data, the overall depth to groundwater at the site ranged from 2.46 feet bgs in well MW-4S to 6.65 feet bgs in well MW-12LF. In general, groundwater levels have risen an average of 2.78 feet in the wells relative to the Fourth Quarter 2006 monitoring event.

Engineering • Environmental • Compliance • Construction
701 N. Parkcenter Drive • Santa Ana, California 92705 • 714-560-8200 • 714-560-8235 fax
San Diego • Concord • Rancho Cordova • Tempe • Loveland • Boise

www.tait.com

Groundwater in the shallow-zone wells in the southern part of the site is generally flowing in a southeasterly direction at an approximate gradient of 0.017 foot/foot (ft/ft). In other areas of the site, this direction appears to be affected by a groundwater mound centered on well MW-10S in the eastern part of the site (Figure 3). In the northern part of the site, shallow-zone groundwater is flowing toward the northwest away from this mound at a gradient of approximately 0.017 ft/ft. In the eastern part of the site, shallow-zone groundwater is flowing in a south-southeasterly direction away from the mound at a gradient of approximately 0.04 ft/ft.


Groundwater in the deep-zone wells is flowing in an east-southeasterly direction at a gradient of approximately 0.013 ft/ft (Figure 4). Groundwater in the Livermore Formation is flowing in an east-southeasterly direction at a gradient of approximately to 0.014 ft/ft (Figure 5). Mounding was not observed in the wells screened in the deep zone or in the wells screened in the Livermore Formation.

The flow direction in each of the flow regimes is opposite to the regional northwesterly groundwater flow direction in the Sunol Valley as reported by the ACEHS in their letter to Mission Valley Rock Company, dated November 3, 2005 (ACEHS, 2005). The variation from the regional trend may reflect local conditions, and the groundwater levels at the site may be affected by excavation and pumping operations related to aggregate extraction at the site. The redi-mix pond located west of the asphalt plant was pumped out during the summer of 2006, and the water level in the pond dropped approximately 10 feet during this time. The lowering of the water level in the redi-mix pond may have affected the wells located closest to it and had less effect on the furthest wells (MW-4 and MW-10). Also, Pond 1, which is located about 500 feet northeast of the asphalt plant was mucked out during the summer of 2006, and the water level dropped about two feet. Increased precipitation during the First Quarter 2007 may have affected the groundwater flow regime at the site; however, the resultant cumulative effects of these events are not clear.

5.0 GROUNDWATER MONITORING WELL PURGING AND SAMPLING

On February 26, 2007, static groundwater levels were measured and recorded in the on-site groundwater monitoring wells using an electrical product/water interface meter. Water levels were measured relative to the top of the well casing (representing the wellhead survey point). Prior to use at each well, the meter was decontaminated with a mild detergent solution and two de-ionized water rinses. Groundwater gauging and elevation data for the First Quarter 2007 event are summarized in Table 1. Historical groundwater elevation data are summarized in Table 2. Groundwater sampling data sheets are presented in Appendix B.

On February 26, 27, and 28, 2007, the groundwater monitoring wells were sampled using a two-stage 12-volt pump as part of the First Quarter 2007 groundwater monitoring and sampling event. The two-stage pump is a plastic submersible pump that connects to a 12-Volt battery. New dedicated ½-inch PVC tubing is used for each well. The two-stage pump is cleaned/scrubbed and allowed to run several minutes in an Alconox cleaning solution in between each well. The pump is then rinsed and allowed to run several minutes in fresh water,

and then de-ionized water is poured over and through the pump several times for the final rinse and allowed to air dry. The pump is installed into the well approximately in the middle of the screened interval.

During the First Quarter 2007 sampling event, Tait collected groundwater samples from 23 wells at the site. During its contemporaneous site assessment activities, LFR collected three groundwater samples from TEM wells, one each from wells MW-5D, MW-7D, and MW-12D, using low-flow (micropurge) techniques. Sample handling procedures and analytical results for these wells are contained in LFR's report on its field activities (LFR, 2007).

The samples collected by TEM were labeled, placed into an ice-chilled cooler (4°C), and transported under chain-of-custody protocols to SunStar Laboratories, Inc. (SunStar), a State-Certified laboratory (ELAP No. 2250) for chemical analysis. Approximately 181 gallons of purged groundwater were pumped into four steel 55-gallon drums during the sampling event. Groundwater samples were either collected from the discharge end of the pump at low-flow levels or sampled using disposable bailers and transferred into laboratory-supplied containers. Care was taken to ensure that no headspace was present in the containers.

Integrated Waste Management of Milpitas, California provided pick-up services for the drummed purge water generated by the monitoring activities. The drums were transported and disposed as non-hazardous water at Seaport Refining & Environmental in Redwood City, California on March 12, 2007. The Certificate of Disposal is contained in Appendix C.

6.0 LABORATORY ANALYSES

The groundwater samples collected by TEM during the First Quarter 2007 groundwater monitoring and sampling event were analyzed for the diesel and gasoline fractions of Total Petroleum Hydrocarbons (TPHd and TPHg, respectively) using EPA Method No. 8015M; for benzene, toluene, ethylbenzene, total xylenes (BTEX); and for methyl tertiary butyl ether (MTBE), and the other fuel oxygenates tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), di-isopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE) using EPA Method No. 8260B. In addition, LFR data from wells MW-5D, MW-7D, and MW-12D were incorporated with the TEM data. First Quarter 2007 groundwater analytical results are summarized in Table 3, and historical groundwater analytical results are presented in Table 4. The TEM laboratory report is contained in Appendix D, and the LFR laboratory report for wells MW-5D, MW-7D, and MW-12D, which was presented in LFR's assessment report (LFR, 2007), is contained in Appendix E.

Contoured dissolved-phase TPHg concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 6, 7, and 8, respectively. Contoured dissolved-phase MTBE concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 9, 10, and 11, respectively. Contoured dissolved-phase benzene concentrations in the shallow zone, deep zone, and Livermore Formation zone are presented in Figures 12, 13, and 14, respectively. In addition, area-wide isoconcentration

maps displaying combined LFR and TEM groundwater analytical data for the deep-zone wells were prepared for TPHg (Figure 15), MTBE (Figure 16), and benzene (Figure 17).

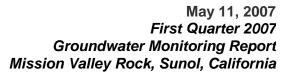
7.0 SUMMARY OF ACTIVITIES AND FINDINGS

Based upon the data presented in this report, previous investigations, current regulatory guidelines, and the judgment of TEM, the following is a summary of activities and findings:

- Based on the depth to water measurements obtained by TEM, groundwater levels have risen an average of 2.78 feet this quarter relative to the corresponding Fourth Quarter 2006 groundwater levels. The groundwater flow direction in all groundwater zones (shallow, deep, and Livermore Formation) is generally east-southeasterly to south-southeasterly at gradients ranging from 0.013 to 0.017 ft/ft. Shallow-zone groundwater in the northern part of the site was flowing in a northwesterly direction at a gradient of 0.017 ft/ft during the First Quarter 2007.
- The mounding effect at well MW-10S cannot be adequately explained by any specific mechanism and may be a combination of factors including the pump-out of the redi-mix pond west of the asphalt plant during the summer of 2006, the muck-out of Pond 1 northeast of the asphalt plant during the summer of 2006, and the increased rated of precipitation during the First Quarter 2007.
- Twenty-three groundwater samples were collected by TEM from the monitoring wells at the site, and they were delivered to SunStar for analysis.
- Groundwater samples from wells MW-5D, MW-7D, and MW-12D were collected by LFR during the groundwater monitoring event and submitted to SunStar for analysis.
- A maximum TPHd concentration of 13,000 micrograms per liter (μg/L) was detected in well MW-11D. Highest TPHd concentrations appear to be localized in the southern part of the area and the vicinity of MW-9D in the north.
- A maximum TPHg concentration of 210,000 μg/L was detected in well MW-9D. Highest concentrations of TPHg appear to be localized in the deep-zone wells in the north-central part of the area, particularly in the vicinity of wells MW-7D and MW-9D, and in the vicinity of well MW-11D in the south-central part of the area (Figure 7). Area-wide data indicate that the lateral extent of TPHg concentrations in the deep-zone wells have been defined in the area surrounding the asphalt plant (Figure 15).
- A maximum MTBE concentration of 110 μg/L was detected in well MW-11LF. MTBE is localized in the southern part of the area in the vicinity of wells MW-2, MW-6, and MW-11 (Figures 9, 10, and 11). MTBE is notably absent in well clusters MW-7 and MW-9 in the northern part of the area. Area-wide distribution of the lateral extent of MTBE concentrations in the deep-zone wells has been defined in the area surrounding the asphalt plant (Figure 16).

Engineering • Environmental • Compliance • Construction
701 N. Parkcenter Drive • Santa Ana, California 92705 • 714-560-8200 • 714-560-8235 fax
San Diego • Concord • Rancho Cordova • Tempe • Loveland • Boise

www.tait.com



- A maximum benzene concentration of 1,900 µg/L was detected in well MW-9D. Benzene tends to be localized in the northern part of the area in the vicinity of wells MW-7 and MW-9, although some lower level impacts were noted in well MW-11D (Figures 13 and 14). Area-wide distribution of the lateral extent of benzene concentrations in the deep- zone has been defined in the area surrounding the asphalt plant (Figure 17).
- Concentration trends of toluene, ethylbenzene, and total xylenes are similar to those of benzene.
- MTBE was the only fuel oxygenate detected above its respective reporting limit during the First Quarter 2007 groundwater monitoring event.
- In general, TPHg and BTEX tend to be localized in the groundwater in the northern part of the area, upgradient of the former USTs, whereas MTBE concentrations tend to be localized in the groundwater in the southern part of the area, downgradient of the former USTs. The data suggest the presence of more than one source for detected hydrocarbons in groundwater. Fluctuating groundwater conditions, as evidenced by the First Quarter 2007 shallow-zone gradient in the northern part of the site, may have occurred at the site in the past, resulting in variable migration pathways for the fuel hydrocarbons in the groundwater.
- Overall fuel hydrocarbon concentrations tend to be similar to the Fourth Quarter 2006 trends, although a significant decrease in concentrations levels was observed in well MW-7D during the First Quarter 2007 monitoring event.
- Based on the TEM and LFR data obtained during the First Quarter 2007 monitoring event, the lateral extent of hydrocarbons in groundwater appears to have been defined in the area surrounding the asphalt plant.

8.0 QUALITY ASSURANCE/QUALITY CONTROL

To increase the confidence levels in the data obtained and minimize the likelihood that judgments were made from potentially erroneous data, a quality assurance/quality control (QA/QC) program was implemented. QA refers to management of actions designed to maintain precision, accuracy, completeness, and representativeness of the data developed from the project. QC refers to accepted formal procedures and activities specifically designed for the purpose of collecting data that are intended to be reliable and consistent for the site conditions.

The program includes formal procedures for sampling, decontamination, instrument calibration, documentation of activities and calculations, and peer review. Routine QC procedures were performed by the laboratory and included daily calibration of instruments, percent surrogate recoveries and analysis of matrix spikes and matrix spike duplicates. The laboratory reported

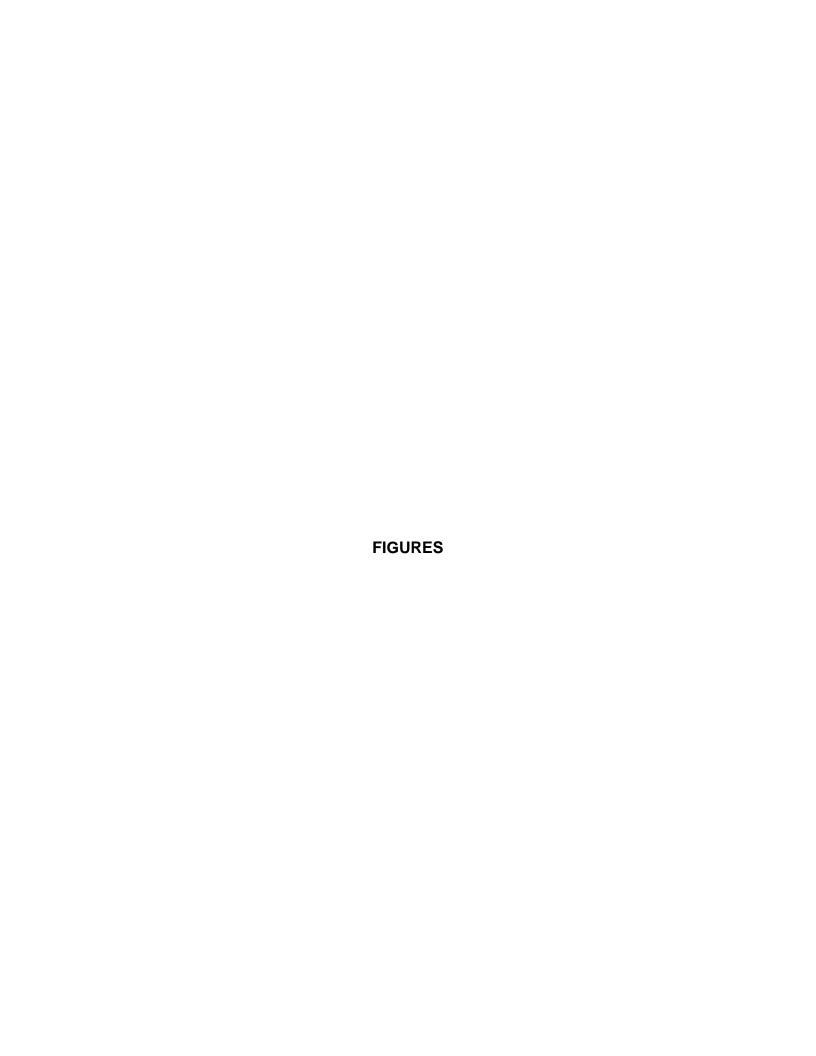
the results to be within acceptable percent recoveries with no results exceeding the laboratoryestablished control limits.

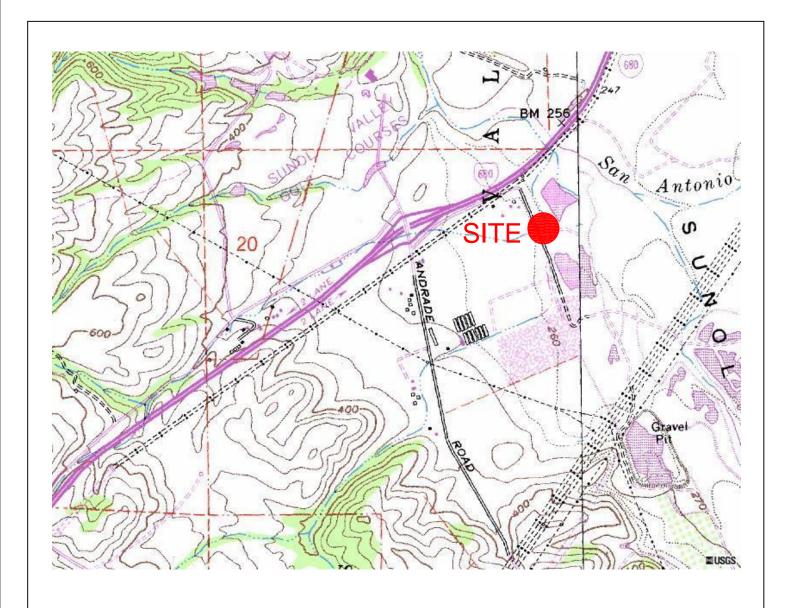
9.0 REFERENCES

Alameda County Environmental Health Services, November 16, 2004, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

Alameda County Environmental Health Services, November 3, 2005, *Fuel Leak Case No. RO0000207*, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

LFR, Inc., April 10, 2007, Site Assessment Report of Additional Lateral and Vertical Characterization and Plan for Interim Remediation at the Asphalt Plant, Hanson Aggregates Mission Valley Rock Facility, 7999 Athenour Way, Sunol, Alameda County, California.


Tait Environmental Management, July 28, 2000, Second Quarter Report, June 2000, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.

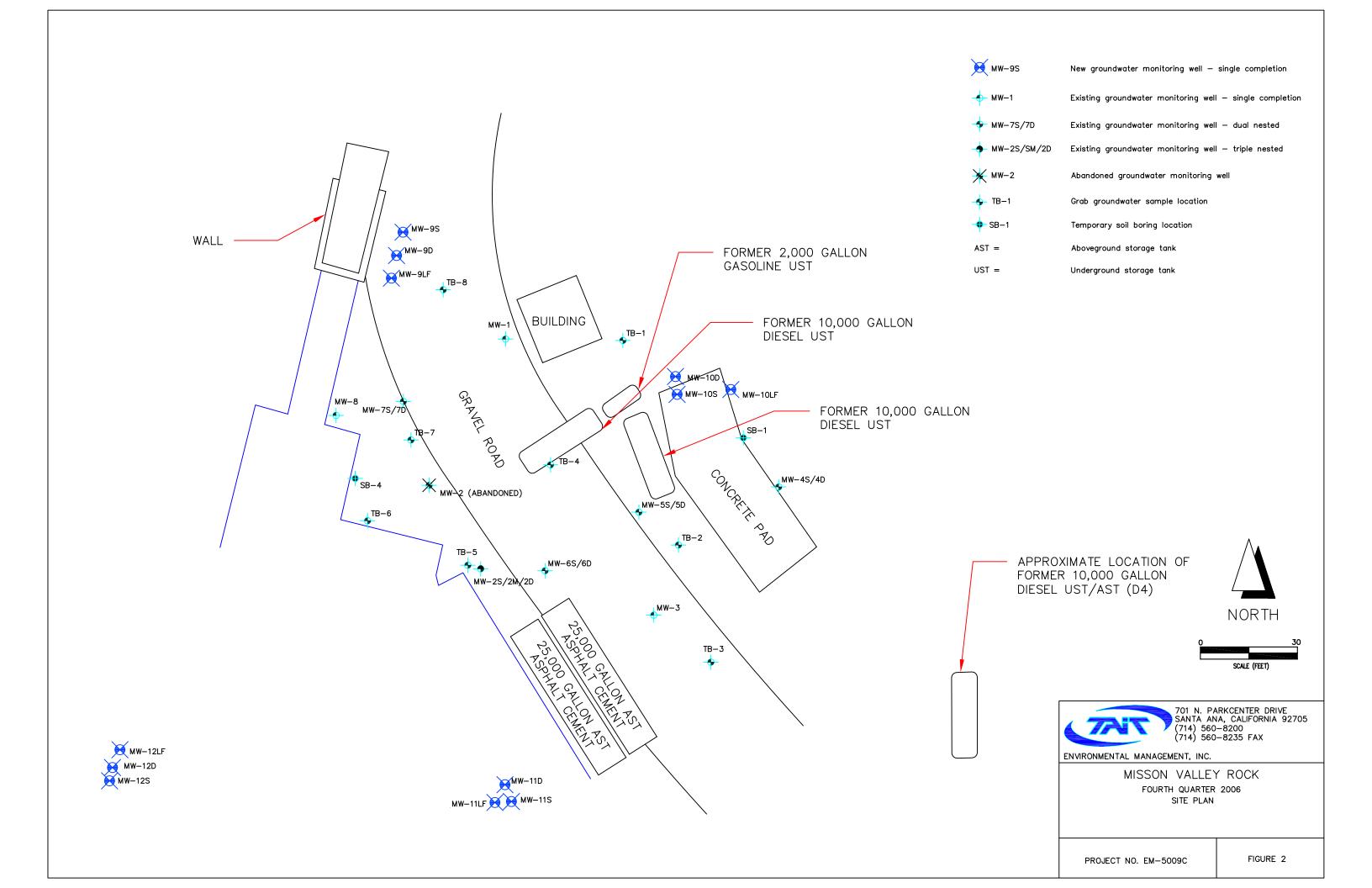

Tait Environmental Management, April 1, 2005, Site Assessment and First Quarter 2005 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.

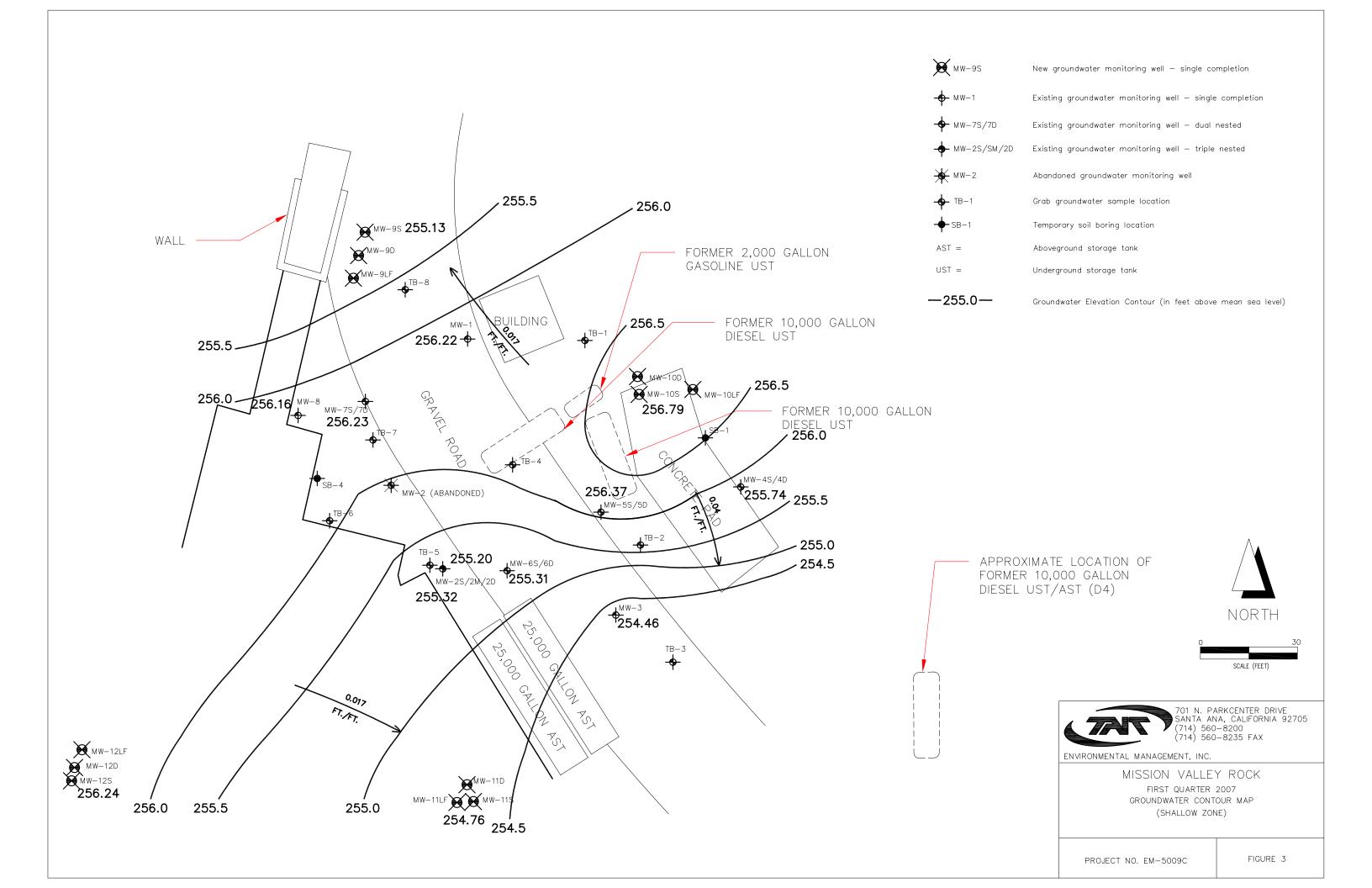
U.S. Geological Survey (USGS), 1989, Fremont 7.5 Minute Topographic Quadrangle Map, 1:24,000.

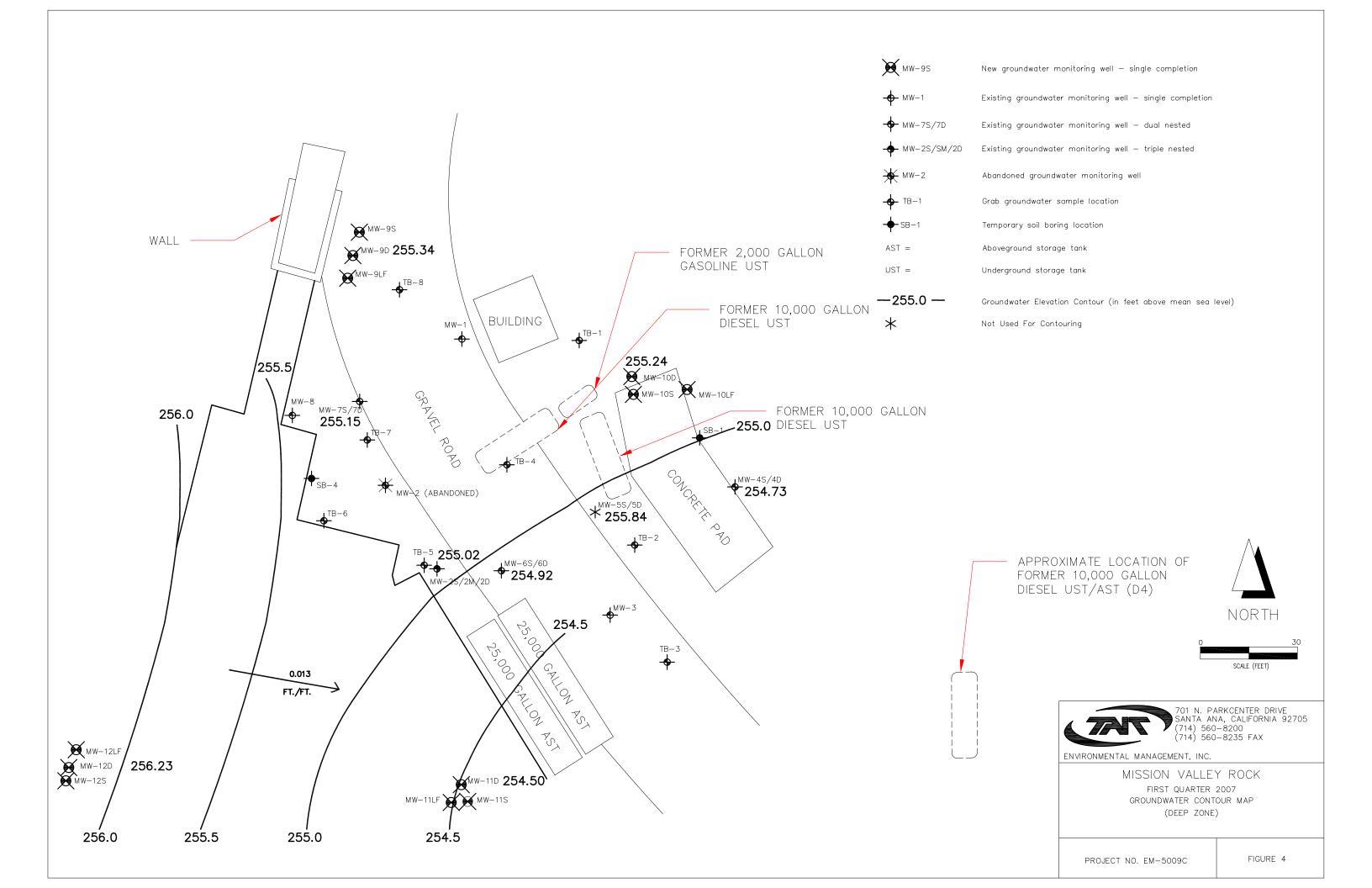
10.0 LIMITATIONS

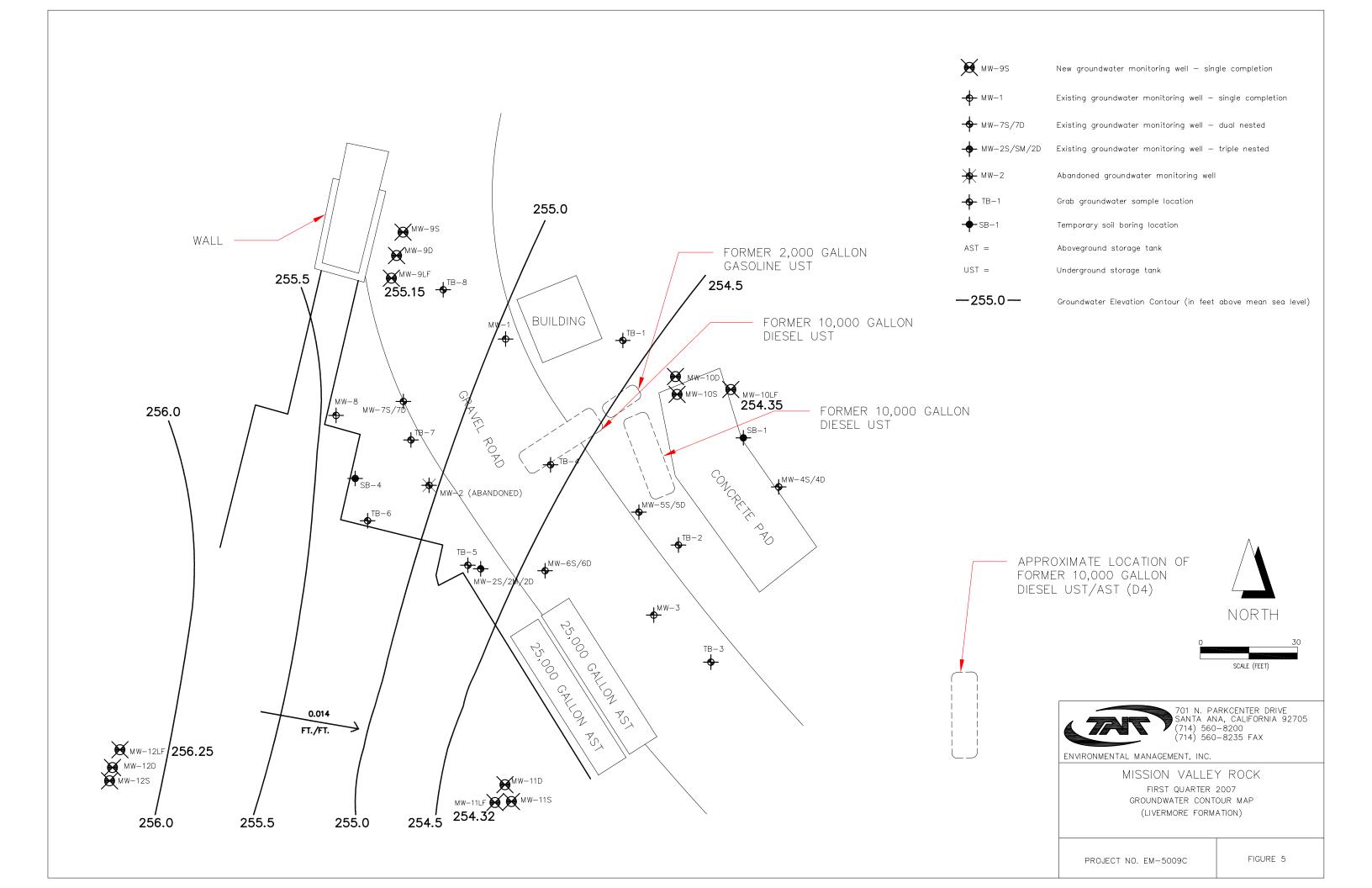
No investigation is considered thorough enough to exclude the presence of hazardous materials at a given site. Opinions and/or recommendations presented apply to site conditions existing at the time of the performance of services and TEM is unable to report on or accurately predict events which may impact the site following conduct of the described services, whether occurring naturally or caused by external forces. No responsibility is assumed by TEM for conditions it is not authorized to investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed. Services hereunder were performed in accordance with our agreement and understanding with, and solely for the use of, Mission Valley Rock. TEM is not responsible for the subsequent separation, detachment or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.

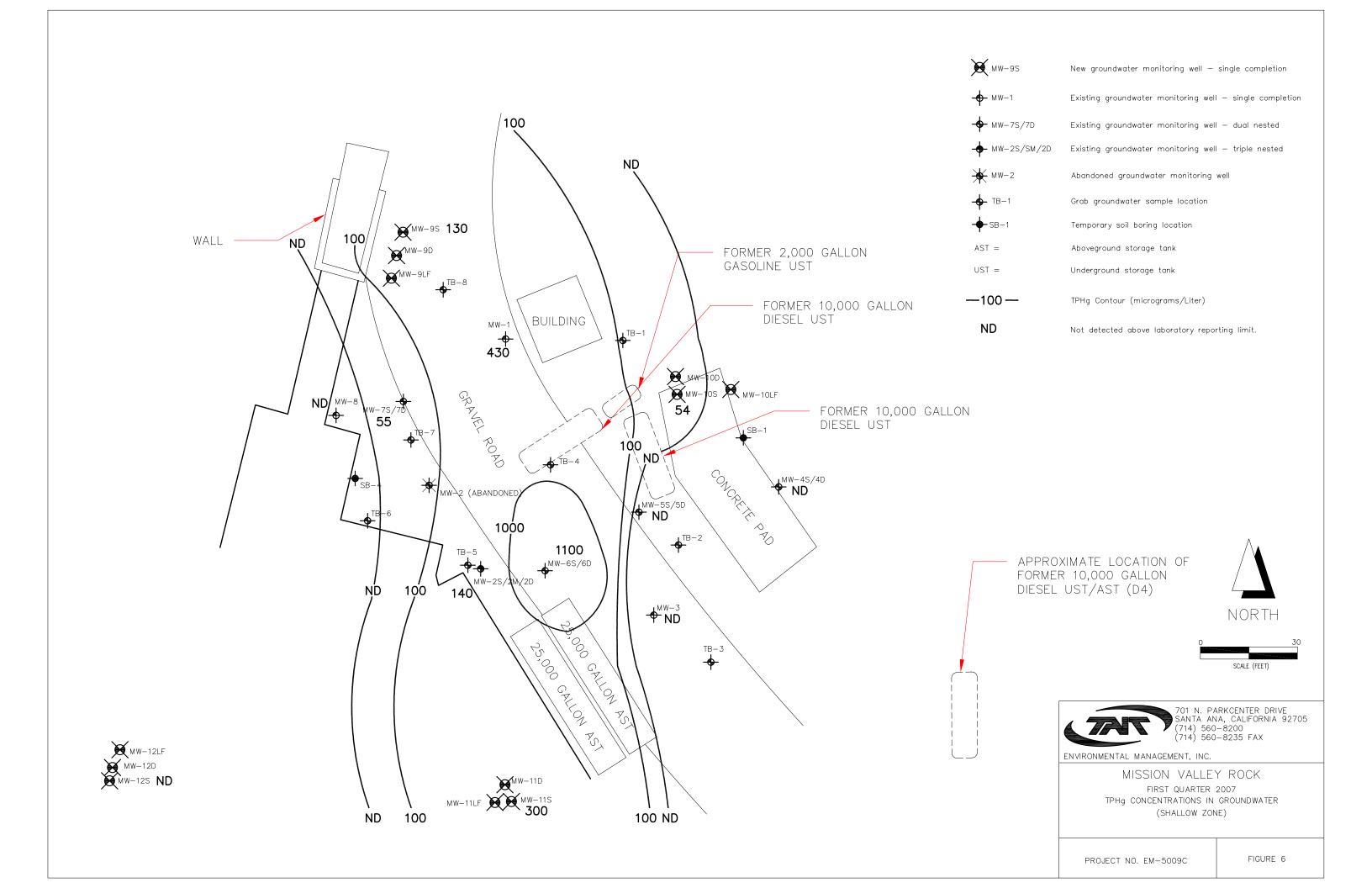
BASE MAP OBTAINED FROM TERRASERVER.COM, UNITED STATES GEOLOGICAL SURVEY (USGS), FREMONT QUADRANGLE, ALAMEDA COUNTY, CALIFORNIA. PRINTED JULY 1, 1989.

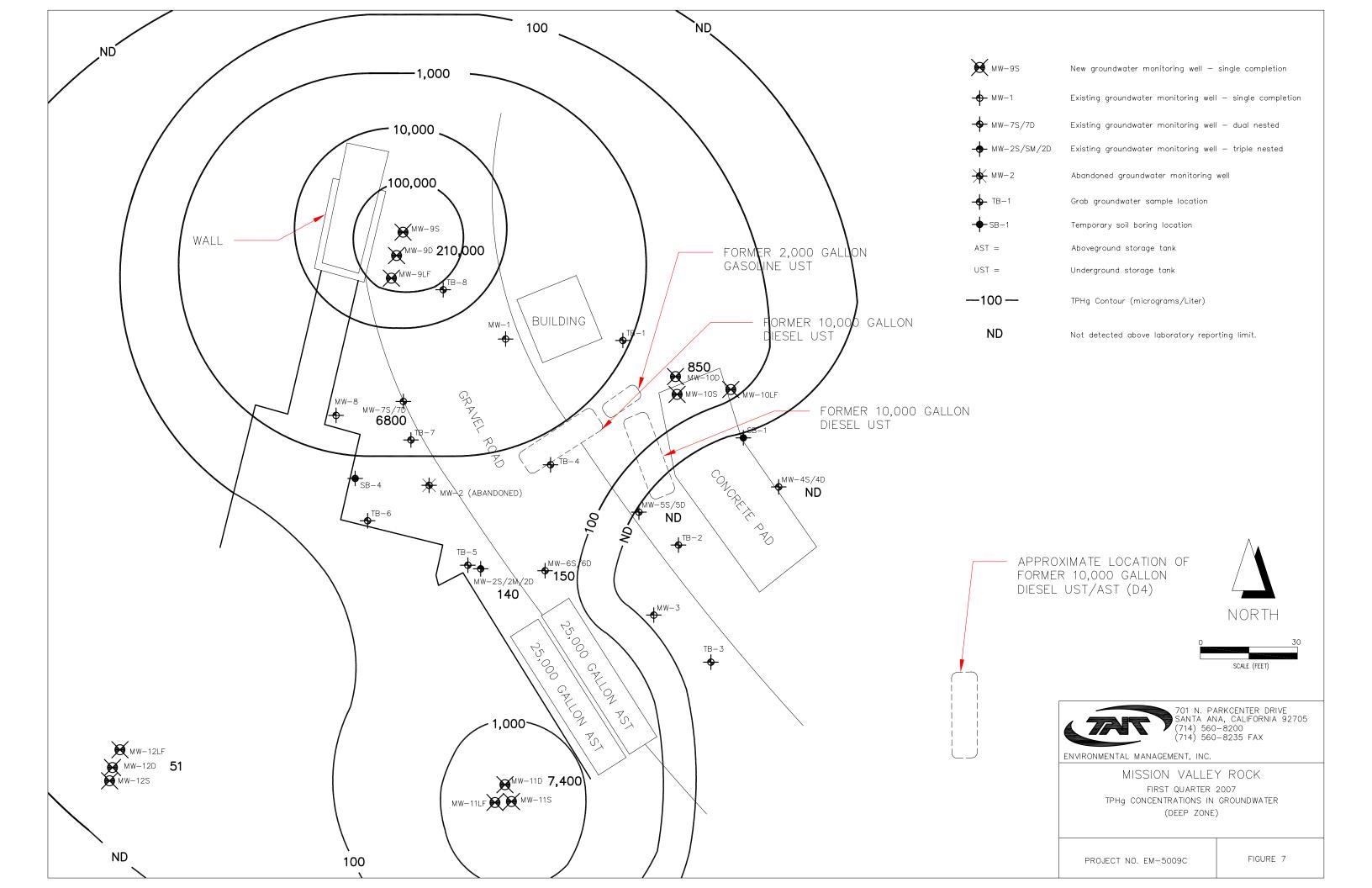


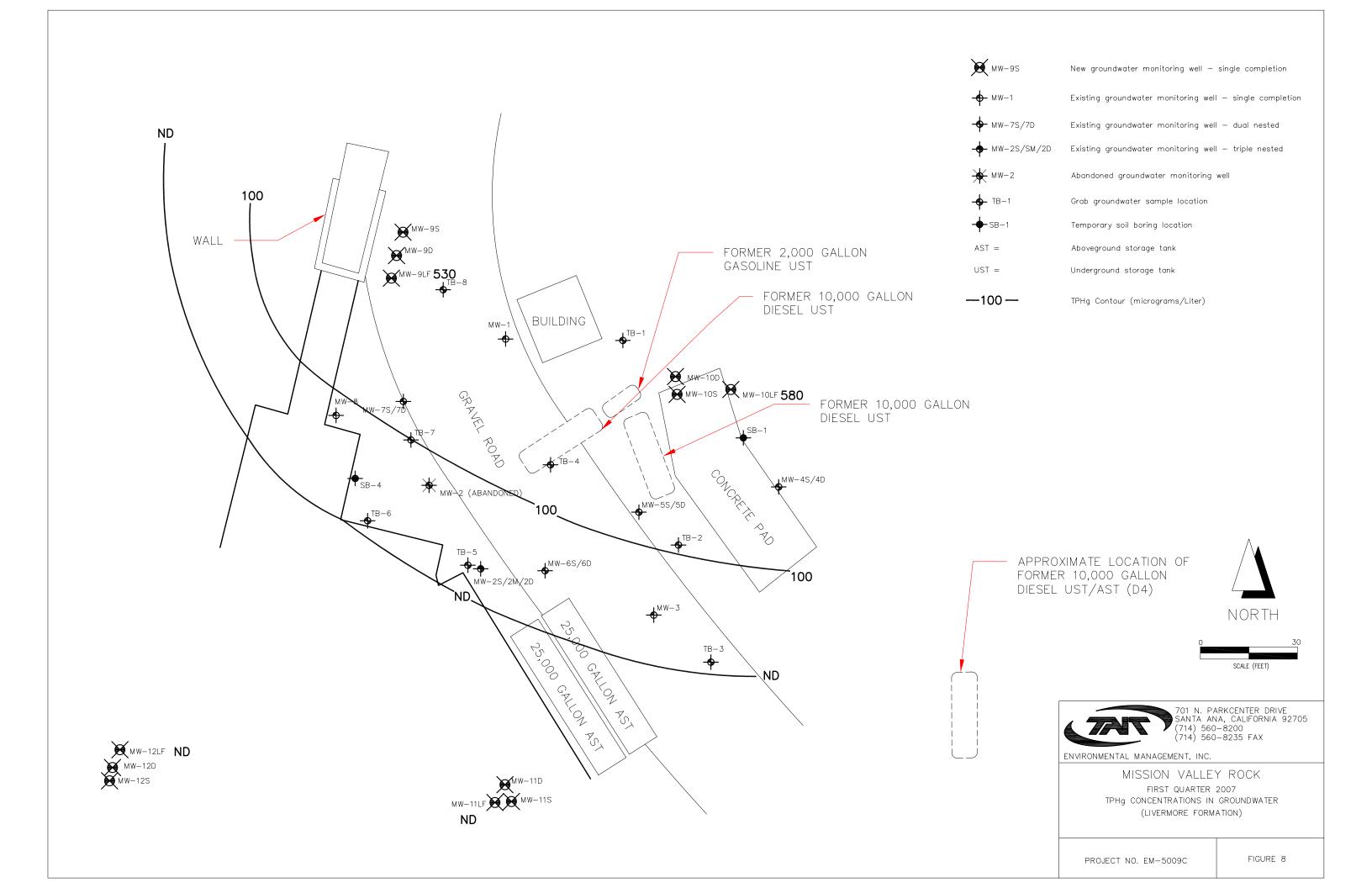

701 NORTH PARKCENTER DRIVE SANTA ANA, CA 92705 (714) 560-8200 (714) 560-8235 FAX

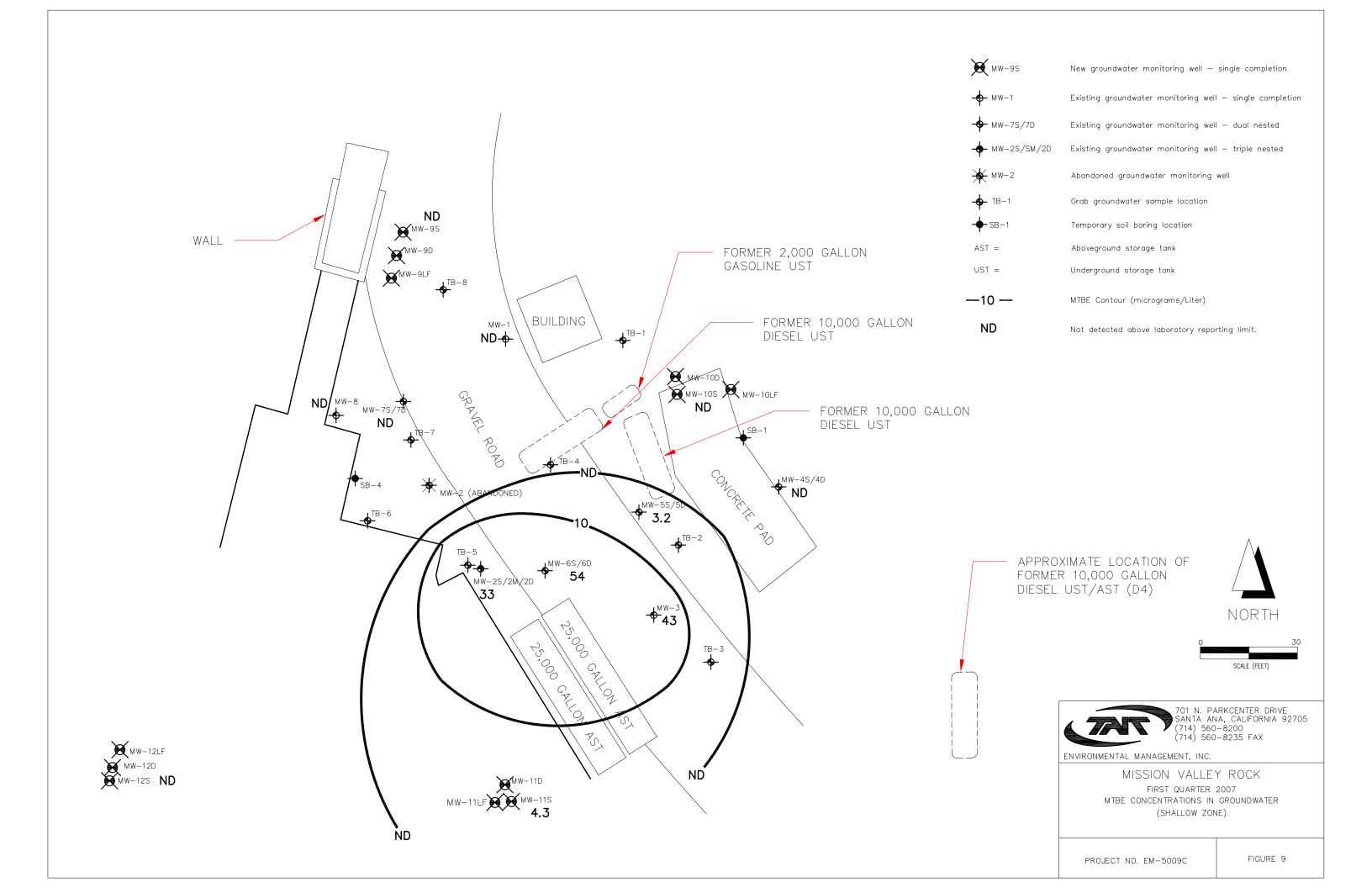

SITE VICINITY MAP MISSION VALLEY ROCK CO. 7999 ATHENOUR WAY SUNOL, CALIFORNIA

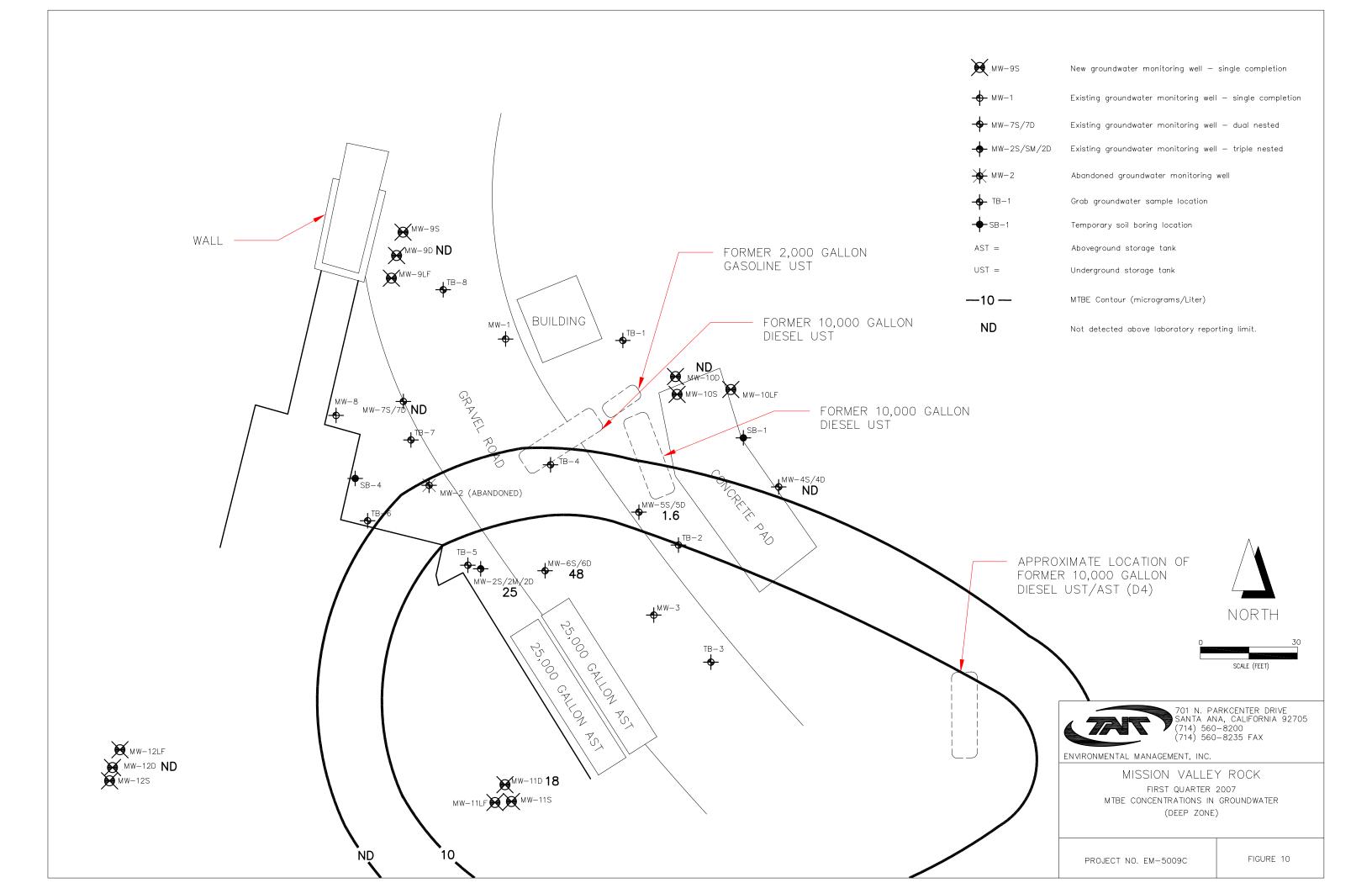

PROJECT NO. EM-5009A

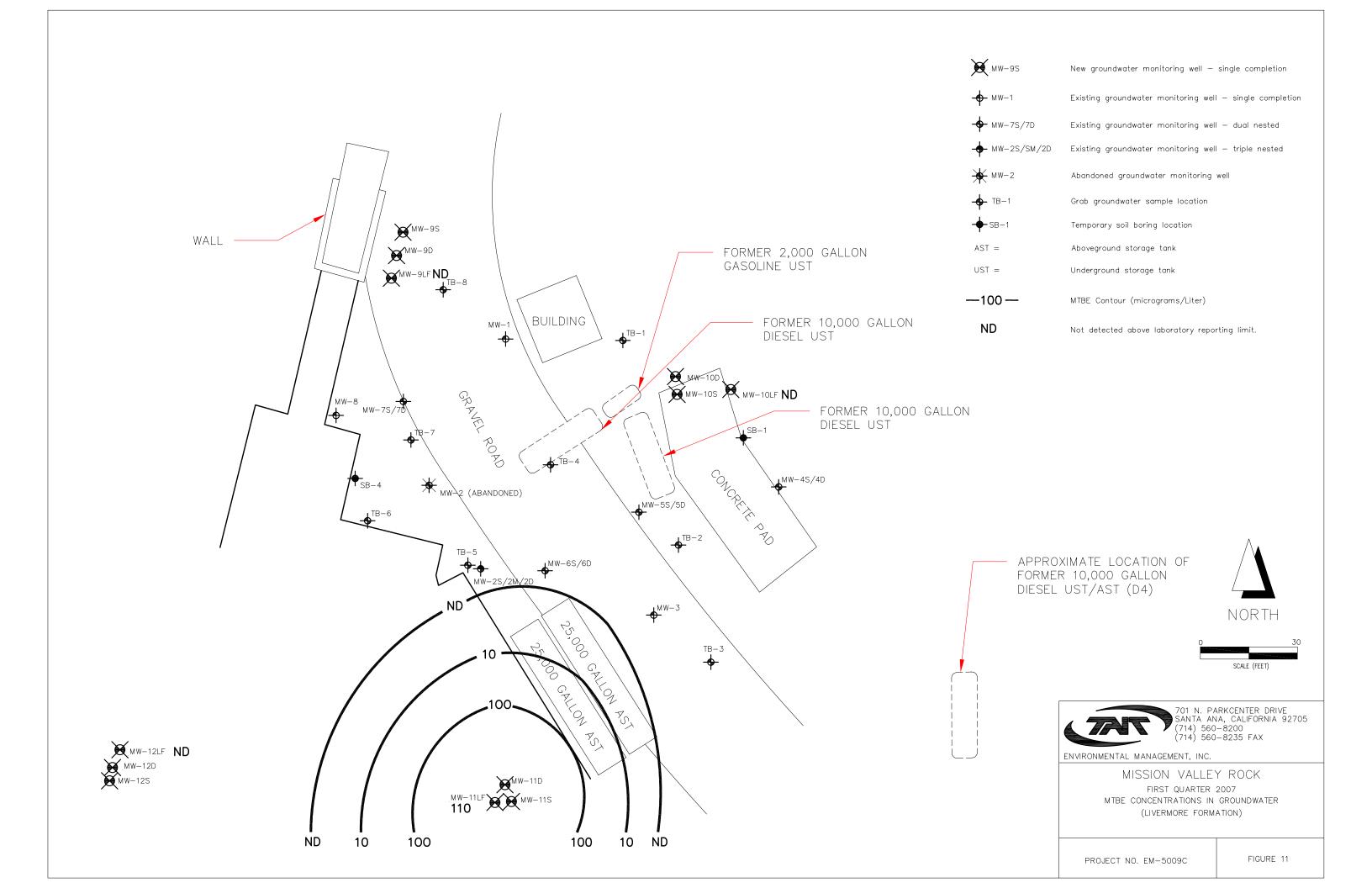

FIGURE 1

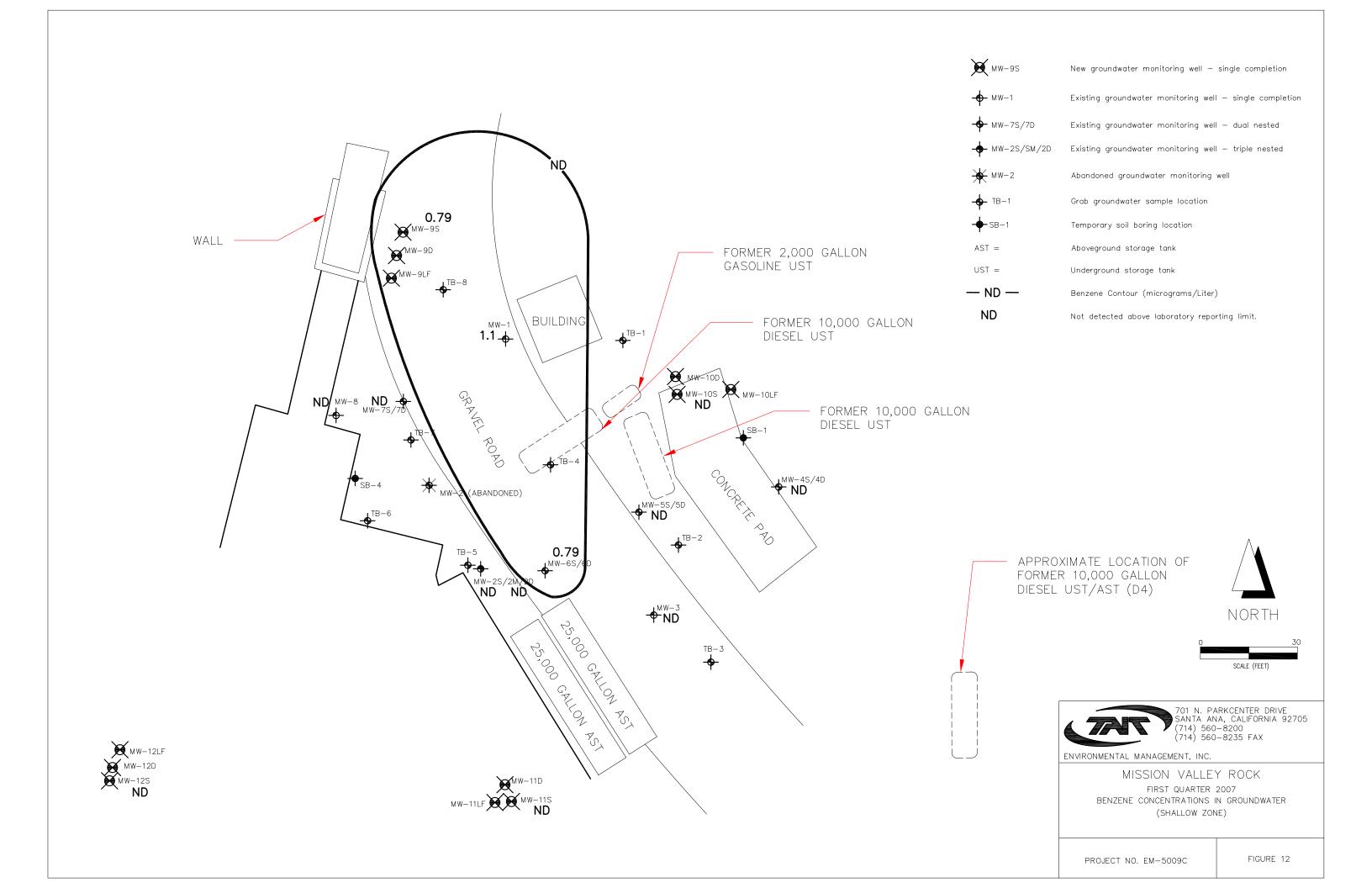


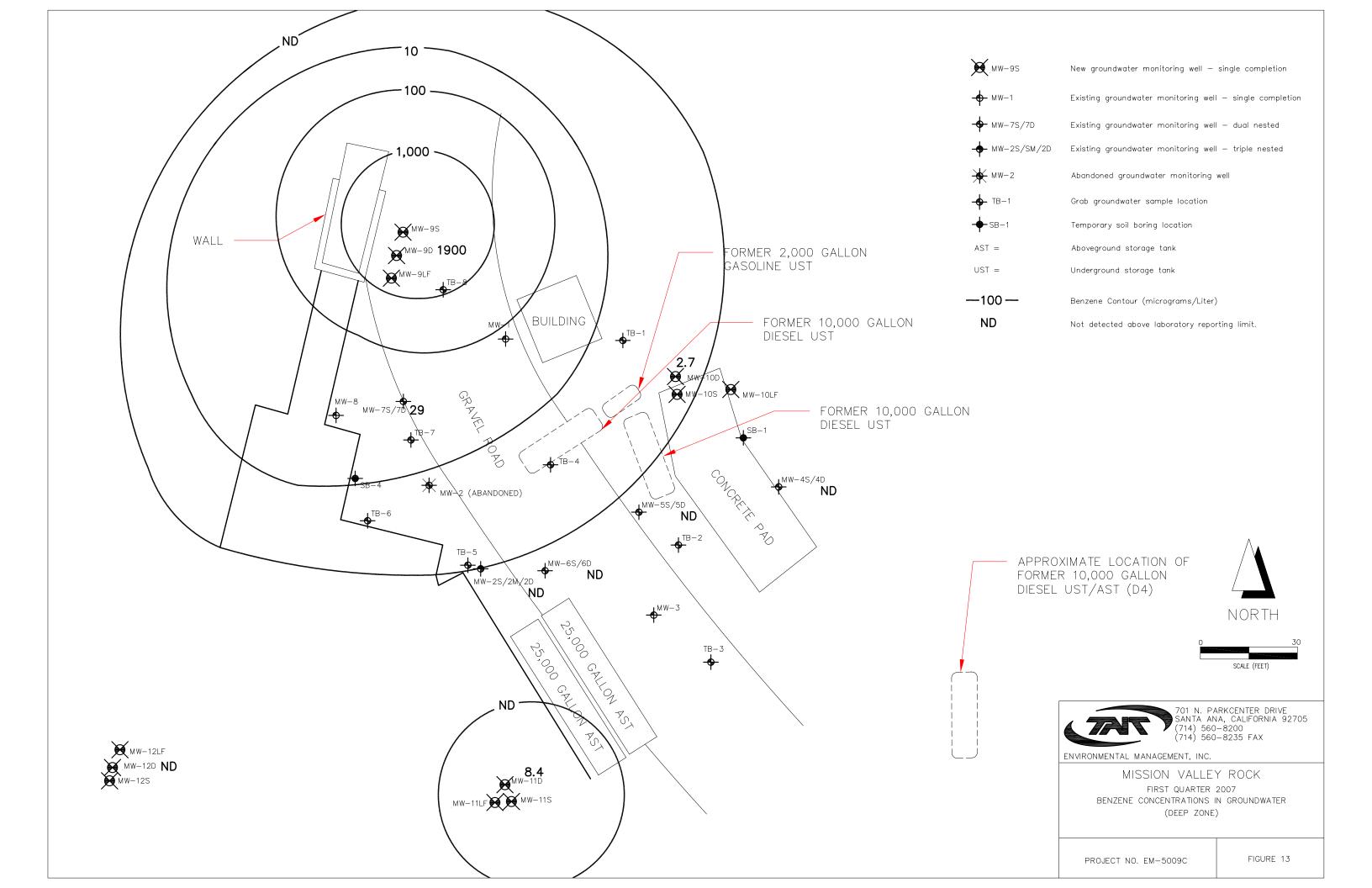


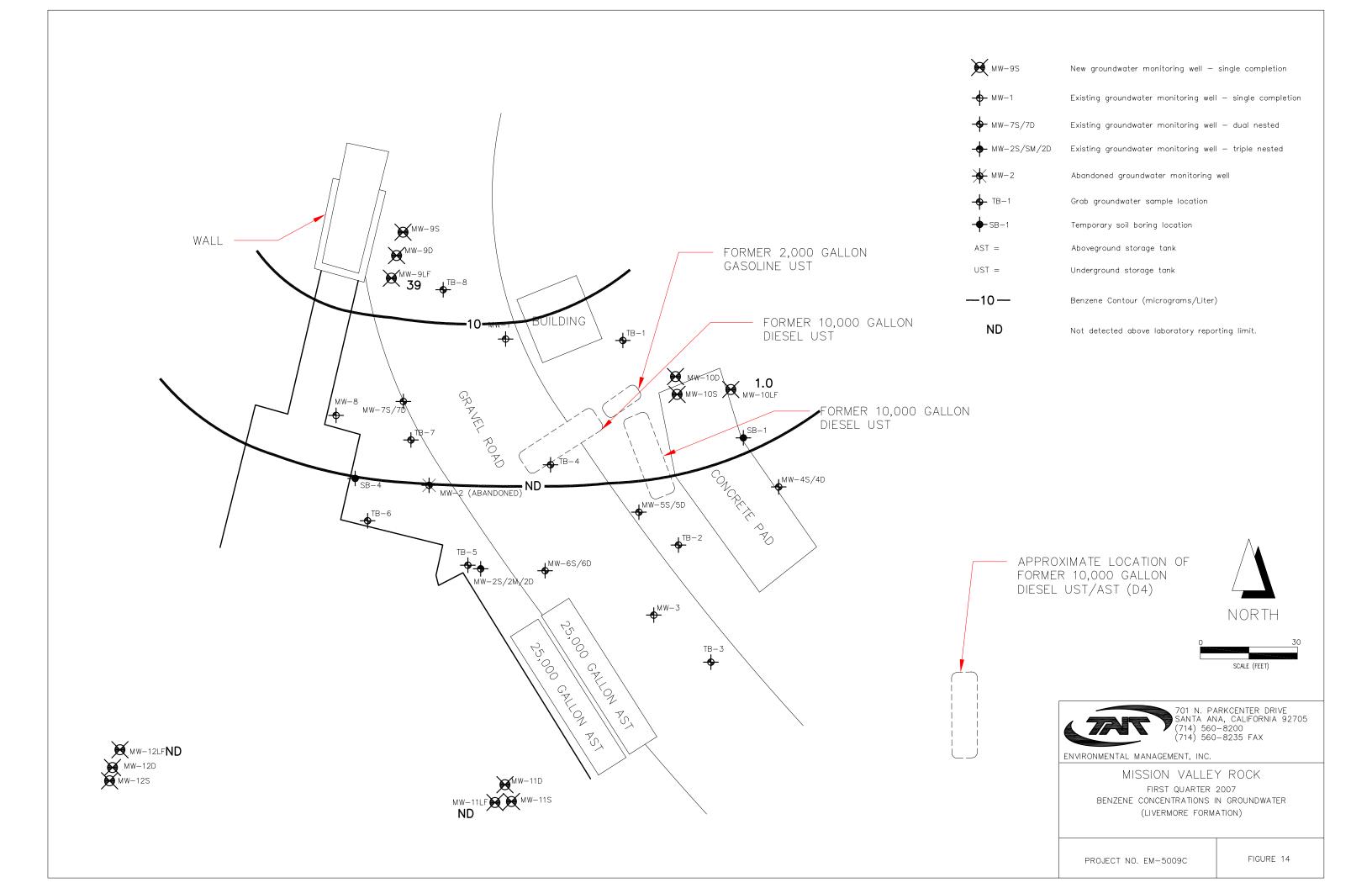


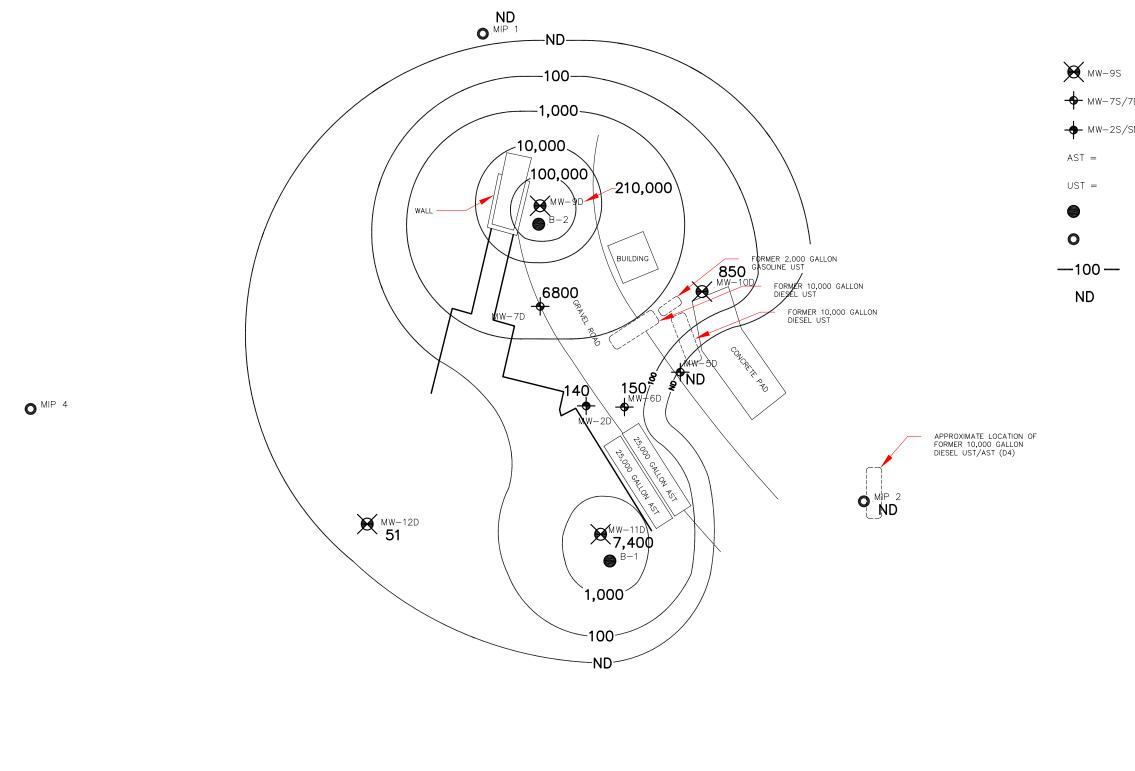












New groundwater monitoring well — single completion **→** MW-7S/7D Existing groundwater monitoring well — dual nested → MW-2S/SM/2D Existing groundwater monitoring well — triple nested Aboveground storage tank Underground storage tank

Not detected above laboratory reporting limit.

Soil Borings

MIP/CPT Borings

TPHg Contour (micrograms/Liter)

NORTH

O MIP 6 ND

NOTES:

DATA FOR MIP-1, MIP-2, MIP-3, MIP-5, MIP-6, B-1, AND B-2 PROVIDED BY LFR.

DATA FROM B-1 AND B-2 WERE NOT USED FOR CONTOURING
PURPOSES AS THESE SYMBOLS
WERE COLLECTED FROM A DEPTH
OF ABOUT 20 FEET LOWER THAN
CORRESPONDING WELLS MW-11LF AND MW-11LF RESPECTIVELY.

O.MIP 3

O: MIP 5 ND

701 N. PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

ENVIRONMENTAL MANAGEMENT, INC.

MISSION VALLEY ROCK

FIRST QUARTER 2007 AREA-WIDE TPHg CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

PROJECT NO. EM-5009C

FIGURE 15

ND MW-9D B-2 FORMER 2,000 GALLON GASOLINE UST ND G FORMER 10,000 GALLON DIESEL UST W-7D ND FORMER 10,000 GALLON DIESEL UST MW-4D ND 1.6 **→**^{MW-6D} **48** APPROXIMATE LOCATION OF FORMER 10,000 GALLON DIESEL UST/AST (D4) O MP 2 15 18 MW-110

MW-9S New groundwater monitoring well — single completion **→** MW-7S/7D Existing groundwater monitoring well — dual nested → MW-2S/SM/2D Existing groundwater monitoring well — triple nested AST =Aboveground storage tank

UST = Underground storage tank

MIP/CPT Borings

-10-MTBE Contour (micrograms/Liter)

Soil Borings

ND Not detected above laboratory reporting limit.

NORTH

701 N. PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

ENVIRONMENTAL MANAGEMENT, INC.

MISSION VALLEY ROCK

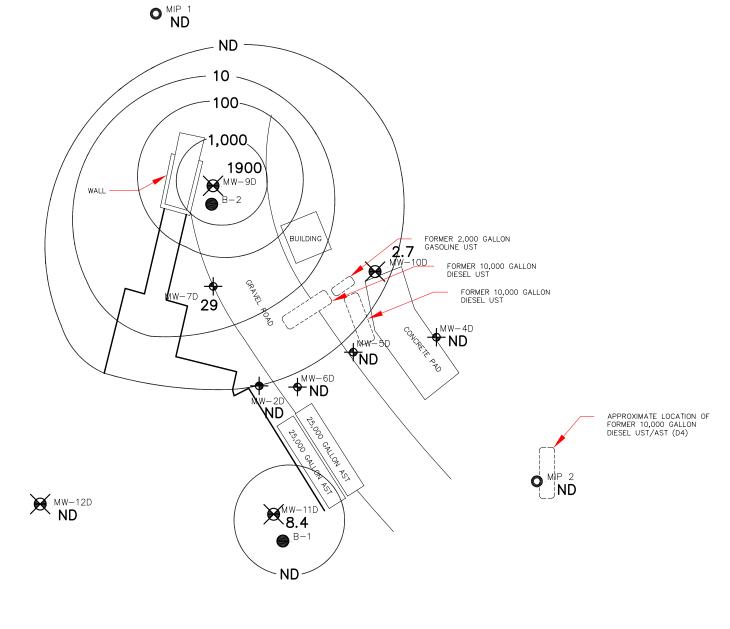
FIRST QUARTER 2007 AREA-WIDE MTBE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

PROJECT NO. EM-5009C

FIGURE 16

NOTE:

O.MIP 4


DATA FOR MIP-1, MIP-2, MIP-3, MIP-5, MIP-6, B-1, AND B-2 PROVIDED BY LFR.

O MIP 5 **3.4**

O.MIP 3

O MIP 6

MW-12D ND

O.MIP 4

NOTE:

DATA FOR MIP-1, MIP-2, MIP-3, MIP-5, MIP-6, B-1, AND B-2 PROVIDED BY LFR.

MW-9S New groundwater monitoring well — single completion → MW-7S/7D Existing groundwater monitoring well — dual nested → MW-2S/SM/2D Existing groundwater monitoring well — triple nested AST =Aboveground storage tank UST = Underground storage tank Soil Borings MIP/CPT Borings -10-Benzene Contour (micrograms/Liter) ND

Not detected above laboratory reporting limit.

701 N. PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560–8200 (714) 560–8235 FAX

ENVIRONMENTAL MANAGEMENT, INC.

MISSION VALLEY ROCK

FIRST QUARTER 2007 AREA-WIDE BENZENE CONCENTRATIONS IN GROUNDWATER (DEEP ZONE)

O:MIP 5 ND

O ND

O.MIP 3

PROJECT NO. EM-5009C

FIGURE 17

Table 1 Well Construction Details and Groundwater Elevation Data First Quarter 2007

Mission Valley Rock Company Sunol, California

Well ID	Casing Diameter (inches)	Depth to Water (feet below TOC)	Total Depth (feet below TOC)	Screened Interval (feet bgs)	Measuring Point Elevation (feet MSL)	Groundwater Elevation (feet MSL)
MW-1	2	2.46	17.78	5.0 - 20.0	258.68	256.22
MW-2S	2	3.52	8.71	3.0-8.0	258.84	255.32
MW-2M	2	3.79	12.29	14.0-19.0	258.99	255.20
MW-2D	2	3.89	29.54	25.0-30.0	258.91	255.02
MW-3	2	4.62	14.70	5.0-20.0	259.08	254.46
MW-4S	2	3.40	8.35	3.0-8.0	259.14	255.74
MW-4D	2	4.49	23.38	17.0-22.0	259.22	254.73
MW-5S	2	3.06	8.24	3.0-8.0	259.43	256.37
MW-5D	2	3.56	22.65	17.0-22.0	259.40	255.84
MW-6S	2	3.44	15.00	5.0-15.0	258.75	255.31
MW-6D	2	4.35	29.15	24.5-29.5	259.27	254.92
MW-7S	2	2.61	8.48	5.0-8.0	258.84	256.23
MW-7D	2	3.65	23.61	20.0-25.0	258.80	255.15
MW-8	2	2.68	15.30	5.0-15.0	258.84	256.16
MW-9S	2	3.28	12.20	5.3-12.3	258.41	255.13
MW-9D	2	3.52	24.28	18.9-23.9	258.86	255.34
MW-9LF	2	3.79	39.11	33.3-38.3	258.94	255.15
MW-10S	2	3.88	9.58	4.8-9.8	260.67	256.79
MW-10D	2	5.40	19.38	15.5-20.5	260.64	255.24
MW-10LF	2	6.23	39.90	34.4-39.4	260.58	254.35
MW-11S	2	4.20	9.43	4.8-9.8	258.96	254.76
MW-11D	2	4.48	20.50	15.3-20.3	258.98	254.50
MW-11LF	2	4.69	39.41	32.8-37.8	259.01	254.32
MW-12S	2	6.45	11.04	4.6-11.6	262.69	256.24
MW-12D	2	6.47	19.70	16.0-21.0	262.70	256.23
MW-12LF	2	6.65	39.50	33.7-38.7	262.90	256.25

Notes

Screened intervals are approximated. Screened interval in wells is lower than the measured total depth due to silting in the bottom of wells.

The measurement point for the above wells is the north side of the top of casing.

Depth to water and total depth measurements taken by Tait Environmental Management, Inc. personnel on February 26, 2007.

Total depth and depth to water measurements taken by Tait Environmental Management from designated measurement point.

Groundwater Elevation = Measurement Point Elevation - Depth to Water.

TOC = Top of Casing

bgs = Below Ground Surface

MSL = Mean Sea Level

			Sunoi, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		06/23/98	1.32	255.19	ND
		01/05/99	2.28	254.23	ND
		03/29/99	1.88	254.63	ND
		06/10/99	3.35	253.16	ND
		09/17/99	3.66	252.85	ND
	ŀ	12/27/99	2.94	253.57	ND
		03/22/00	2.72	253.79	Odor
		06/30/00	4.01	252.50	Slight Odor
		09/14/00	5.11	251.40	Slight Odor
		12/20/00	4.95	251.56	ND
	256.51	03/22/01	2.28	254.23	ND
	230.31	06/27/01	3.60	252.91	ND
		09/21/01	6.50	250.01	ND
		12/27/01	1.29	255.22	ND
		03/29/02	2.91	253.60	ND
MW-1		06/13/02	3.95	252.56	ND
		09/27/02	5.18	251.33	ND
		12/03/02	3.90	252.61	ND
		03/31/03	1.40	255.11	ND
		06/27/03	2.65	253.86	ND
		09/19/03	4.67	251.84	ND
		12/22/03	4.60	251.91	ND
		01/17/05	3.41	255.27	ND
		05/04/05	1.20	257.48	ND
		08/12/05	4.52	254.16	ND
		12/12/05	6.44	252.24	ND
	258.68	03/02/06	0.71	257.97	ND
		06/12/06	2.47	256.21	ND
		09/05/06	6.13	252.55	ND
		12/04/06	5.42	253.26	ND
		02/26/07	2.46	256.22	ND
		06/23/98	1.72	254.98	0.005
		01/05/99	2.69	254.01	4.00
		03/29/99	2.50	254.20	ND
		06/10/99	4.00	252.70	Sheen
		09/17/99	4.54	252.16	0.50
		12/27/99	3.85	252.85	0.13
		03/22/00	3.20	253.50	0.03
		06/30/00	4.62	252.08	0.02
		09/14/00	5.95	250.75	>0.01
		12/20/00	5.65	251.05	0.07
		03/22/01	3.21	253.49	0.10
MW-2	256.7	06/27/01	3.31	253.39	0.06
		09/21/01	7.08	249.62	0.34
		12/27/01	2.18	254.52	0.26
		03/29/02	3.40	253.30	0.90
		06/13/02	4.35	252.35	0.08
		09/27/02	5.54	251.16	ND
		12/03/02	4.30	252.40	ND
		03/31/03	1.78	254.92	ND
		06/27/03	3.10	253.60	ND
		09/19/03	5.02	251.68	ND
		12/22/03	NM	NM	ND
		01/05/05		Abandoned	

Surioi, California						
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)	
		01/17/05	4.25	254.59	ND	
		05/04/05	1.98	256.86	ND	
		08/12/05	5.46	253.38	ND	
		12/12/05	7.38	251.46	ND	
MW-2S	258.84	03/02/06	2.24	256.60	ND	
		06/12/06	3.08	255.76	ND	
		09/05/06	7.01	251.83	ND	
		12/04/06	6.40	252.44	ND	
		02/26/07	3.52	255.32	ND	
		01/17/05	4.68	254.31	ND	
		05/04/05	2.32	256.67	ND	
		08/12/05	5.77	253.22	ND	
		12/12/05	7.78	251.21	ND	
MW-2M	258.99	03/02/06	2.10	256.89	ND	
		06/12/06	3.39	255.60	ND	
		09/05/06	7.36	251.63	ND	
		12/04/06	6.89	252.10	ND	
		02/26/07	3.79	255.20	ND	
		01/17/05	4.75	254.16	ND	
	258.91	05/04/05	2.38	256.53	ND	
		08/12/05	5.90	253.01	ND	
		12/12/05	7.85	251.06	ND	
MW-2D		03/02/06	2.16	256.75	ND	
		06/12/06	3.48	255.43	ND	
		09/05/06	7.44	251.47	ND	
		12/04/06	6.94	251.97	ND	
		02/26/07	3.89	255.02	ND	

Sunoi, Camorna						
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)	
		06/23/98	2.66	254.06	ND	
		01/05/99	4.47	252.25	Slight Odor	
		03/29/99	3.96	252.76	Sheen	
		06/10/99	5.54	251.18	ND	
		09/17/99	6.18	250.54	Sheen	
		12/27/99	5.52	251.20	Odor	
		03/22/00	4.61	252.11	Odor	
		06/30/00	6.35	250.37	Very Slight Odor	
		09/14/00	7.30	249.42	Very Slight Odor	
		12/20/00	7.29	249.43	ND	
		03/22/01	4.73	251.99	ND	
	256.72	06/27/01	NM	NM	NM	
		09/21/01	7.89	248.83	ND	
		12/27/01	3.77	252.95	ND	
		03/29/02	5.12	251.60	ND ND	
MW-3		06/13/02	6.52	250.20	ND	
		09/27/02	7.28	249.44	ND	
		12/03/02	6.40	250.32	ND	
		03/31/03	4.01	252.71	ND	
		06/27/03	5.13	251.59	ND	
		09/19/03	5.13	251.59	ND	
		12/22/03	7.20	249.52	ND ND	
		01/17/05	5.81	253.27	ND ND	
		05/04/05	3.50	255.58	ND ND	
		08/12/05	6.01	253.07	ND ND	
	259.08	12/12/05	8.45	250.63	ND	
		03/02/06	3.42	255.66	ND	
	239.00	06/12/06	4.15	254.93	ND	
		09/05/06	7.97	251.11	ND	
		12/04/06	7.30	251.78	ND	
		02/26/07	4.62		ND	
		02/26/07	4.62	254.46 254.52	ND ND	
	S 259.14	05/04/05	3.73	255.41	ND ND	
		08/12/05	3.45	255.69	ND ND	
		12/12/05	5.48	253.66	ND	
MW-4S		03/02/06	3.10	253.66	ND ND	
14144-43		06/12/06	4.10	255.04		
					ND ND	
		09/05/06 12/04/06	3.90	255.24	ND ND	
			4.05	255.09		
	259.22	02/26/07	3.40	255.74	ND ND	
		01/17/05	5.96	253.26	ND ND	
		05/04/05 08/12/05	3.93 5.60	255.29 253.62	ND ND	
		12/12/05	8.50	253.62	ND ND	
MW-4D						
1V1 VV -4D		03/02/06	3.63	255.59	ND ND	
		06/12/06	4.51	254.71	ND ND	
		09/05/06	8.18	251.04	ND ND	
		12/04/06	7.95	251.27	ND ND	
		02/26/07	4.49	254.73	ND	

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		01/17/05	4.57	254.86	ND
		05/04/05	2.50	256.93	ND
		08/12/05	5.30	254.13	ND
		12/12/05	7.68	251.75	ND
MW-5S	259.43	03/02/06	1.42	258.01	ND
		06/12/06	3.73	255.70	ND
		09/05/06	7.02	252.41	ND
		12/04/06	6.31	253.12	ND
		02/26/07	3.06	256.37	ND
		01/17/05	5.15	254.25	ND
		05/04/05	2.75	256.65	ND
		08/12/05	5.60	253.80	ND
		12/12/05	7.92	251.48	ND
MW-5D	259.40	03/02/06	1.98	257.42	ND
		06/12/06	3.64	255.76	ND
		09/05/06	7.30	252.10	ND
		12/04/06	6.69	252.71	ND
		02/26/07	3.56	255.84	ND
		01/17/05	4.30	254.45	ND
		05/04/05	1.96	256.79	ND
		08/12/05	5.17	253.58	ND
		12/12/05	7.48	251.27	ND
MW-6S	258.75	03/02/06	1.95	256.80	ND
		06/12/06	3.10	255.65	ND
		09/05/06	6.94	251.81	ND
		12/04/06	6.30	252.45	ND
		02/26/07	3.44	255.31	ND
		01/17/05	5.17	254.10	ND
		05/04/05	2.80	256.47	ND
		08/12/05	6.30	252.97	ND
		12/12/05	8.32	250.95	ND
MW-6D	259.27	03/02/06	2.70	256.57	ND
		06/12/06	4.05	255.22	ND
		09/05/06	7.90	251.37	ND
		12/04/06	7.37	251.90	ND
		02/26/07	4.35	254.92	ND

Table 2 Historical Groundwater Gauging Data Mission Valley Rock Company Sunol, California

			Sunol, California		
Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		01/17/05	3.42	255.40	ND
		05/04/05	1.44	257.38	ND
	258.82	08/12/05	4.80	254.02	ND
		12/12/05	6.64	252.18	ND
MW-7S		03/02/06	0.95	257.87	ND
		06/12/06	2.55	256.29	ND
	258.84	09/05/06	6.30	252.54	ND
	230.04	12/04/06	5.60	253.24	ND
		02/26/07	2.61	256.23	ND
		01/17/05	5.50	252.57	ND
		05/04/05	1.45	256.62	ND
	258.07	08/12/05	4.70	253.37	ND
		12/12/05	7.40	250.67	ND
MW-7D		03/02/06	5.10	252.97	Gasoline odor
		06/12/06	3.66	255.14	Gasoline odor
	258.80	09/05/06	7.19	251.61	ND
	230.00	12/04/06	6.64	252.16	ND
		02/26/07	3.65	255.15	ND
		01/17/05	3.45	255.39	ND
		05/04/05	1.25	257.59	ND
		08/12/05	4.92	253.92	ND
		12/12/05	6.67	252.17	ND
MW-8	258.84	03/02/06	0.78	258.06	ND
		06/12/06	2.44	256.40	ND
		09/05/06	6.45	252.39	ND
		12/04/06	5.80	253.04	ND
		02/26/07	2.68	256.16	ND
		06/12/06	2.14	256.27	ND
MN4/ 00	050.44	09/05/06	5.92	252.49	ND
MW-9S	258.41	12/04/06	5.21	253.20	ND
		02/26/07	3.28	255.13	ND
		06/12/06	3.16	255.70	ND
MANA OD	050.00	09/05/06	7.12	251.74	ND
MW-9D	258.86	12/04/06	6.58	252.28	ND
		02/26/07	3.52	255.34	Sheen
		06/12/06	3.46	255.48	ND
B414/ OL E	050.04	09/05/06	7.37	251.57	ND
MW-9LF	258.94	12/04/06	6.85	252.09	ND
		02/26/07	3.79	255.15	ND
		06/12/06	5.00	255.67	ND
NUM 400	000.07	09/05/06	5.62	255.05	ND
MW-10S	260.67	12/04/06	5.04	255.63	ND
		02/26/07	3.88	256.79	ND
		06/12/06	5.42	255.22	ND
MM4 465	000.04	09/05/06	8.92	251.72	ND
MW-10D	260.64	12/04/06	8.18	252.46	ND
		02/26/07	5.40	255.24	ND
		06/12/06	5.99	254.59	ND
	000.50	09/05/06	9.65	250.93	ND
MW-10LF	260.58	12/04/06	9.02	251.56	ND
		02/26/07	6.23	254.35	ND
		06/12/06	3.69	255.27	ND
		09/05/06	7.69	251.27	ND ND
MW-11S	258.96	12/04/06	7.28	251.68	ND ND
	1	02/26/07	4.20	254.76	ND

Page 5 of 6

Table 2 Historical Groundwater Gauging Data

Mission Valley Rock Company Sunol, California

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		06/12/06	3.70	255.28	ND
MW-11D	258.98	09/05/06	8.50	250.48	ND
IVIVV-11D	230.90	12/04/06	7.65	251.33	ND
		02/26/07	4.48	254.50	Sheen
		06/12/06	3.90	255.11	ND
MW-11LF	259.01	09/05/06	7.84	251.17	ND
14144-1121	259.01	12/04/06	7.75	251.26	ND
		02/26/07	4.69	254.32	ND
		06/12/06	5.77	256.92	ND
MW-12S	262.69	09/05/06	10.51	252.18	ND
10100-125	202.00	12/04/06	10.00	252.69	ND
		02/26/07	6.45	256.24	ND
		06/12/06	5.69	257.01	ND
MW-12D	262.70	09/05/06	10.40	252.30	ND
10100-125	202.70	12/04/06	9.94	252.76	ND
		02/26/07	6.47	256.23	ND
		06/12/06	5.92	256.98	ND
MW-12LF	262.90	09/05/06	10.69	252.21	ND
14144-1261	202.90	12/04/06	10.25	252.65	ND
		02/26/07	6.65	256.25	ND

Notes:

Depth to water and liquid phase hydrocarbon (LPH) thickness reported in feet below measurement point.

Groundwater elevations reported in feet above mean sea level (msl).

Adjusted groundwater elevation = Measurement Point Elevation - Depth to Water + (LPH Thickness x 0.75)

ND = Not Detected

TOC = Top of Casing

MSL = Mean Sea Level

LPH = Liquid-Phase Hydrocarbon

Table 3 Groundwater Analytical Results First Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)
MW-1	2/27/2007	ND<500	430	1.1	ND<0.5	7.9	ND<1.0	ND<1.0
MW-2S	2/28/2007	6600	140	ND<0.5	ND<0.5	ND<0.5	ND<1.0	33
MW-2M	2/27/2007	ND<500	310	ND<0.5	ND<0.5	0.65	ND<1.0	25
MW-2D	2/27/2007	1100	140	ND<0.5	ND<0.5	0.63	1.1	25
MW-3	2/27/2007	56	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	43
MW-4S	2/26/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-4D	2/26/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-5S	2/26/2007	360	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	3.2
MW-5D	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	1.6
MW-6S	2/27/2007	3000	1100	0.79	ND<0.5	1.1	ND<1.0	54
MW-6D	2/27/2007	470	150	ND<0.5	ND<0.5	ND<0.5	ND<1.0	48
MW-7S	2/26/2007	ND<500	55	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-7D	2/28/2007	790	6800	29	51	460	491	ND<1.0
MW-8	2/26/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-9S	2/27/2007	ND<500	130	0.79	0.58	8.4	1.0	ND<1.0
MW-9D	2/28/2007	4500	210000	1900	6200	2400	9000	ND<1.0
MW-9LF	2/27/2007	ND<500	530	39	5.0	31	25.4	ND<1.0
MW-10S	2/26/2007	ND<500	54	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-10D	2/27/2007	200	850	2.7	0.90	28	2.3	ND<1.0
MW-10LF	2/27/2007	ND<500	580	1.0	1.1	0.51	3.6	ND<1.0

Table 3 Groundwater Analytical Results First Quarter 2007

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)
MW-11S	2/27/2007	540	300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	4.3
MW-11D	2/28/2007	13000	7400	8.4	16	17	54	18
MW-11LF	2/27/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	110
MW-12S	2/27/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-12D	2/28/2007	ND<500	51	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-12LF	2/26/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0

Notes:

Analyses for Total Petroleum Hydrocarbons as Gasoline and Diesel (TPHg and TPHd, respectively) were performed using EPA Method No. 8015M.

Analyses for benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl ether (MTBE), and Tert-butyl alcolhol (TBA) were performed using EPA Method No. 8260B.

Tert-amyl methyl ether (TAME), Di-isoproppyl ether (DIPE), and Ethyl tert-butyl ther (ETBE) were not detected above laboratory detection limits.

Total xylene concentrations were determined by adding m,p-xylene and o-xylene from laboratory report.

ug/L = Micrograms per Liter

ND = Non-detect at or above corresponding laboratory reporting limit.

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Tert-butyl Alcohol (ug/L)	Xylenes (ug/L)	MTBE (ug/L)
	06/23/98	0.1	3,100	19	2.3	91	ND<10	48	110
	10/01/98	0.1	2,300	3.1	4.2	5.0	ND<10	15	ND<0.5
	01/05/99	350	ND<50	12	7.5	20	ND<10	6.2	ND<5.0
	03/29/99	190	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/10/99	210	1,800	1.2	0.9	1.5	ND<10	4.6	ND<0.5
	09/17/99	62	180	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	12/27/99	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	03/22/00	86	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/30/00	70	450	2.1	ND<0.5	2.1	ND<10	1.4	7.6
	09/14/00	ND<50	850	5.4	ND<0.5	9.4	ND<10	2.6	9.8
	12/20/00	ND<1,000	370	5.3	ND<1.0	2.7	ND<10	ND<3.0	55
	03/22/01	ND<1,000	700	ND<1.0	ND<1.0	1.4	ND<10	ND<1.0	ND<1.0
	06/27/01	ND<1,000	170	ND<1.0	ND<1.0	1.2	ND<10	ND<1.0	ND<1.0
	09/21/01	ND<1,000	730	1.4	ND<1.0	7.6	ND<10	1.2	ND<1.0
	12/27/01	1000	500	15	ND<1.0	27	ND<10	5.5	ND<1.0
MW-1	03/29/02	12000	29000	50	ND<25	960	ND<10	290	ND<25
IVIVV-1	06/13/02	ND<1,000	1400	3.5	ND<1.0	42	ND<10	7.9	ND<1.0
	09/27/02	1400	760	ND<1.0	ND<1.0	4.3	ND<10	1.1	ND<1.0
	12/03/02	ND<1,000	1600	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	ND<1.0
	03/31/03	ND<1,000	620	1.2	ND<1.0	12	ND<10	ND<1.0	ND<1.0
	06/27/03	ND<1,000	0.61	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	ND<1.0
	09/19/03	ND<1,000	1.2	ND<1.0	ND<1.0	6.4	ND<10	ND<1.0	ND<1.0
	12/22/03	ND<1,000	0.49	ND<1.0	ND<1.0	3	ND<10	ND<1.0	ND<1.0
	01/17/05	ND<50	63	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	05/04/05	ND<50	1200	ND<0.5	ND<0.5	8.5	ND<10	1.2	ND<1.0
	08/12/05	ND<50	410	ND<0.5	ND<0.5	2.4	ND<10	ND<0.5	ND<1.0
	12/13/05	ND<50	750	3.8	ND<0.5	4.2	ND<10	ND<1.0	ND<1.0
	03/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/13/06	ND<50	96	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	09/06/06	ND<50	920	ND<0.5	ND<0.5	5.3	ND<10	ND<1.0	ND<1.0
	12/05/06	ND<50	1200	1.4	ND<0.5	1.5	ND<10	ND<1.0	ND<1.0
	02/27/07	ND<500	430	1.1	ND<0.5	7.9	ND<10	ND<1.0	ND<1.0

					l				
		TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Tert-butyl		MTBE
Well	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Alcohol (ug/L)	Xylenes (ug/L)	(ug/L)
		(*3* /	(*9. /	(*3. /		(*3.)	(*3* /		(*3. /
	06/23/98	12,000	2,500	0.68	ND<0.50	1.2	ND<10	0.57	14
	10/01/98	4,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	01/05/99	38,000	ND<5,000	ND<50	ND<50	51	ND<10	190	ND<500
	03/29/99	580	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/10/99	4,500	24,000	38	27	41	ND<10	98	ND<0.5
	09/17/99	24,000	1,400	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	27
	12/27/99	2,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	03/22/00	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/30/00	1,700	270	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	17
	09/14/00	5,800	130	ND<0.5	ND<0.5	ND<0.5	ND<10	0.94	12
	12/20/00	19,000	1700	ND<50	ND<50	ND<50	ND<10	ND<150	ND<250
MW-2	03/22/01	610000	3300	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	9
14144-2	06/27/01	8800	1800	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	6.7
	09/21/01	530000	7000	ND<50	ND<50	ND<50	ND<10	ND<50	ND<50
	12/27/01	27000	310	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	62
	03/29/02	65000	130	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	30
	06/13/02	130000	460	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	24
	09/27/02	480000	290	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	16
	12/03/02	61000	1800	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	10
	03/31/03	5000	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	14
	06/27/03	8.1	360	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	20
	09/19/03	85	12	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	15
	12/22/03					NS			
	01/17/05					Abandoned			
	01/17/05	1100	730	ND<0.5	ND<0.5	1.0	ND<10	3.5	50
	05/04/05	8200	190	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	44
	08/12/05	6100	120	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	77
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	26
MW-2S	03/03/06	5900	160	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	21
	06/13/06	8700	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	22
	09/06/06	11000	190	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	29
	12/05/06	18000	ND<50	ND<0.5	ND<50	ND<0.5	ND<10	ND<1.0	38
	02/28/07	6600	140	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	33
	01/17/05	4100	3300	6.5	1.7	89	ND<10	82.2	38
	05/04/05	ND<50	610	ND<0.5	ND<0.5	16	ND<10	10.6	32
	08/12/05	ND<50	460	ND<0.5	ND<0.5	2.5	ND<10	1.2	56
	12/12/05	ND<50	410	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	28
MW-2M	03/03/06	ND<50	290	ND<0.5	ND<0.5	0.5	ND<10	ND<1.0	17
	06/13/06	ND<50	130	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	09/06/06	1900	330	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	22
	12/05/06	6100	340	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	37
	02/27/07	ND<500	310	ND<0.5	ND<0.5	0.65	ND<10	ND<1.0	25

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Tert-butyl Alcohol (ug/L)	Xylenes (ug/L)	MTBE (ug/L)
	01/17/05	1800	1000	6.5	ND<0.5	80	ND<10	71	62
	05/04/05	ND<50	250	ND<0.5	ND<0.5	4.6	ND<10	1.6	72
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.8	ND<10	1.1	51
	12/12/05	ND<50	200	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	39
MW-2D	03/03/06	ND<50	140	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	38
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	36
	09/06/06	1700	230	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	27
	12/05/06	3000	150	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	37
	02/27/07	1100	140	ND<0.5	ND<0.5	0.63	ND<10	1.1	25
	06/23/98	12,000	300	0.80	ND<0.5	ND<0.5	ND<10	ND<0.5	150
	10/01/98	6400	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	01/05/99	5,600	ND<100	1.6	1.4	ND<1.0	ND<10	ND<1.0	110
	03/29/99	150	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/10/99	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	09/17/99	1,500	230	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	89
	12/27/99	58	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	03/22/00	94	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<0.5
	06/30/00	240	170	ND<0.5	0.52	ND<0.5	ND<10	ND<0.5	100
	09/14/00	850	170	0.81	ND<0.5	ND<0.5	ND<10	ND<0.5	68
	12/20/00	1600	230	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<3.0	80
	03/22/01	1100	140	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	83
	06/27/01	1100	0	112 11.0	112 11.0	NS	115 110	115 (110	- 55
	09/21/01	3800	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	45
	12/27/01	3100	340	1.4	1.1	10	ND<10	3.8	45
	03/29/02	1500	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	50
MW-3	06/13/02	ND<1000	160	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	36
	09/27/02	ND<1000	ND<1000	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	43
	12/03/02	ND<1000	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<10	ND<1.0	41
	03/31/03	ND<1000	ND<100	ND<2.5	ND<2.5	ND<2.5	ND<10	ND<2.5	92
	06/27/03	1200	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	93
	09/19/03	ND<1000	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	65
	12/22/03	5700	190	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	56
	01/17/05	ND<50	590	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	47
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	190
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	110
	12/13/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	75
	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	140
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	100
	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	67
	12/05/06	ND<50	82	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	39
	02/27/07	56	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	43
	02/27/07	ND<50	65	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.2	ND<10	5.8	ND<1.0
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-4S	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
40	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
		-							
	02/26/07	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0

					noi, Caillon	110			
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Tert-butyl Alcohol (ug/L)	Xylenes (ug/L)	MTBE (ug/L)
	01/17/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	08/12/05	ND<50	410	ND<0.5	2.2	10	ND<10	25.5	ND<1.0
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-4D	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	7.8
	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	01/17/05	ND<50	ND<50	ND<0.5	4.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	5.8
	12/12/05	ND<50	ND<50	3.4	1.3	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-5S	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	09/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	5.4
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	5.8
	2/26/2007	360	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	3.2
	01/17/05	ND<50	210	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	10
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	6.4
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-5D	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	4.7
	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	5.0
	09/05/06	ND<50	ND<50	ND<0.5	0.60	ND<0.5	ND<10	ND<1.0	5.3
	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	1.9
	02/28/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	1.6
	01/17/05	2800	1600	6.1	ND<0.5	3.6	ND<10	2.3	160
	05/04/05	ND<50	750	ND<0.5	ND<0.5	3.0	ND<10	ND<0.5	160
	08/12/05	1300	1100	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	410
	12/12/05	ND<50	1000	ND<0.5	ND<0.5	1.4	ND<10	ND<1.0	190
MW-6S	03/03/06	ND<50	940	ND<0.5	ND<0.5	4.9	ND<10	ND<1.0	60
	06/14/06	1300	650	ND<0.5	1.7	1.9	ND<10	2.0	ND<1.0
	09/06/06	2400	750	ND<0.5	ND<0.5	0.7	ND<10	0.5	200
	12/05/06	2600	1000	ND<0.5	ND<0.5	1.2	ND<10	ND<1.0	110
	02/27/07	3000	1100	0.79	ND<0.5	1.1	ND<10	ND<1.0	54
	01/17/05	2100	1200	10	ND<0.5	1.6	ND<10	2.2	180
	05/04/05	ND<50	360	2	ND<0.5	ND<0.5	ND<10	ND<0.5	360
	08/12/05	ND<50	480	2	ND<0.5	ND<0.5	ND<10	ND<0.5	270
MW 6D	12/12/05	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	92
MW-6D	03/03/06	ND<50	310	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	93
	06/14/06	ND<50	130	ND<0.5	3.0	1.1	ND<10	2.6	69
	09/06/06	ND<50	230	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	74
	12/06/06	1300	500	0.98	8.1	16 ND 40 5	ND<10	38.8	59
	02/27/07	470	150	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	48

					noi, Caillon				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Tert-butyl Alcohol (ug/L)	Xylenes (ug/L)	MTBE (ug/L)
	01/17/05	ND<50	12000	10	89	590	ND<10	1670	ND<1.0
	05/04/05	520	1600	ND<0.5	ND<0.5	31	ND<10	18.4	ND<1.0
	08/12/05	ND<50	660	ND<0.5	ND<0.5	5.5	ND<10	ND<0.5	ND<1.0
	12/12/05	ND<50	610	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-7S	03/03/06	ND<50	630	1.1	9	31	ND<10	78	ND<1.0
	06/14/06	ND<50	430	ND<0.5	ND<0.5	6.1	ND<10	14.5	ND<1.0
	09/07/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ľ	02/26/07	ND<500	55	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	01/17/05	ND<50	23000	350	1000	1800	ND<10	5200	ND<1.0
	05/04/05					NS			
	08/12/05	37	83000	550	2200	4400	ND<10	10600	ND<50
•	12/12/05	150000	1300000	640	3100	21000	ND<10	54800	ND<50
MW-7D	03/03/06	45000	71000	420	2400	4400	ND<10	11300	ND<1.0
•	06/14/06	ND<50	160000	310	2400	4500	ND<10	9800	ND<1.0
	09/07/06	22000	71000	360	8600	33000	ND<10	87000	ND<1.0
	12/06/06	12000	58000	160	1300	3900	ND<10	5800	ND<1.0
	02/28/07	790	6800	29	51	460	ND<10	491	ND<1.0
	01/17/05	ND<50	120	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
ľ	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
ľ	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	ND<1.0
ľ	12/12/05	830	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-8	03/03/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ľ	06/12/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
•	09/07/06	ND<50	ND<50	ND<0.5	3.3	ND<0.5	ND<10	5.5	ND<1.0
•	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
•	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	05/05/06	ND<50	1300	8.6	24	40	ND<10	29.8	ND<1.0
ľ	06/14/06	ND<50	330	ND<0.5	ND<0.5	3.0	ND<10	ND<1.0	ND<1.0
MW-9S	09/07/06	ND<50	240	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ľ	12/05/06	ND<50	190	ND<0.5	ND<0.5	0.76	ND<10	ND<1.0	ND<1.0
•	02/27/07	ND<500	130	0.79	0.58	8.4	ND<10	1.0	ND<1.0
	05/05/06	13	88000	5500	15000	4200	ND<10	15000	ND<1.0
•	06/14/06	ND<50	76000	3200	13000	2700	ND<10	9200	ND<1.0
MW-9D	09/07/06	5400	58000	1800	7400	2400	ND<10	8000	ND<1.0
•	12/06/06	9100	170000	1800	6700	3400	ND<10	7400	ND<1.0
•	02/28/07	4500	210000	1900	6200	2400	ND<10	9000	ND<1.0
	05/05/06	ND<50	5400	12	17	190	ND<10	150	ND<1.0
•	06/14/06	ND<50	1800	13	17	30	ND<10	36	ND<1.0
MW-9LF	09/07/06	ND<50	1100	58	23	31	ND<10	58	ND<1.0
•	12/05/06	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	31
ļ	02/27/07	ND<500	530	39	5	31	ND<10	25.4	ND<1.0
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ļ	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-10S	09/07/06	ND<50	93	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ļ	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ļ	02/26/07	ND<500	54	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0

Table 4 Historical Groundwater Analytical Results

Mission Valley Rock Company Sunol, California

					noi, Camon				
Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Tert-butyl Alcohol (ug/L)	Xylenes (ug/L)	MTBE (ug/L)
	05/05/06	ND<50	5900	24	9	260	ND<10	23	ND<1.0
	06/13/06	ND<50	2300	7.6	2.4	66	ND<10	6.6	ND<1.0
MW-10D	09/07/06	ND<50	2400	3.9	2.0	54	ND<10	11.89	ND<1.0
	12/06/06	ND<50	1600	2.5	1.0	28	ND<10	4	ND<1.0
	02/27/07	200	850	2.7	0.90	28	ND<10	2.3	ND<1.0
	05/05/06	ND<50	860	ND<0.5	11	ND<0.5	ND<10	4.6	ND<1.0
	06/13/06	ND<50	780	2.0	2.4	1.1	ND<10	4.2	ND<1.0
MW-10LF	09/07/06	ND<50	780	1.7	1.6	1.7	ND<10	7.8	ND<1.0
	12/05/06	190	610	0.5	0.56	ND<0.5	ND<10	1.5	3.7
	02/27/07	ND<500	580	1.0	1.1	0.51	ND<10	3.6	ND<1.0
	05/05/06	ND<50	11000	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	8.4
l	06/14/06	ND<50	730	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-11S	09/06/06	3300	1400	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<0.5	4.8
	12/06/06	1700	130	0.71	ND<0.5	0.64	ND<10	0.51	11
l	02/27/07	540	300	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	4.3
	05/05/06	ND<50	13000	20	20	26	ND<10	77	47
	06/14/06	18000	6500	12	4.4	11	ND<10	22	26
MW-11D	09/06/06	210000	33000	25	30	28	ND<10	97	31
	12/06/06	190000	2100	15	23	29	ND<10	101	19
	02/28/07	13000	7400	8.4	16	17	ND<10	54	18
	05/05/06	ND<50	1300	ND<0.5	ND<0.5	ND<0.5	ND<10	3	250
	06/14/06	1100	99	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	240
MW-11LF	09/06/06	5300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	160
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	240
	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	110
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-12S	09/07/06	ND<50	81	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	210	ND<1.0	ND<1.0
	02/27/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-12D	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	12/04/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	02/28/07	ND<500	51	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	05/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
	06/13/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
MW-12LF	09/06/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
[12/05/06	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0
ı	02/26/07	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<10	ND<1.0	ND<1.0

Notes:

Concentrations reported in micrograms per Liter (ug/L)

MTBE = Methyl-tert-Butyl Ether

ND = Not Detected at or above corresponding reporting limit

NS = Not Sampled

TPHd = Total Petroleum Hydrocarbons as Diesel

TPHd = Total Petroleum Hydrocarbons as Gasoline

NM: Not Measured

Table 5 Additional Investigation Analytical Results First Quarter 2007

Mission Valley Rock Company Sunol, California

Sample ID	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	m,p- Xylene (ug/L)	o-Xylene (ug/L)	MTBE (ug/L)	TBA (ug/L)	TAME (ug/L)	DIPE (ug/L)	ETBE (ug/L)
MIP-1 (20-22)	2/27/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<1.0	ND<10	ND<2.0	ND<2.0	ND<2.0
MIP-2 (23-26)	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	15	ND<10	ND<2.0	ND<2.0	ND<2.0
MIP-3 (32-39)	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<1.0	ND<10	ND<2.0	ND<2.0	ND<2.0
MIP-5 (17-20)	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	3.4	ND<10	ND<2.0	ND<2.0	ND<2.0
MIP-5 (27-30)	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<1.0	ND<10	ND<2.0	ND<2.0	ND<2.0
MIP-6 (18-21)	2/28/2007	ND<500	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<1.0	ND<10	ND<2.0	ND<2.0	ND<2.0
B-1 (60-65)	3/2/2007	ND<500	ND<50	0.75	0.59	ND<0.5	ND<1.0	ND<0.5	7.6	ND<10	ND<2.0	ND<2.0	ND<2.0
B-2 (55-60)	3/1/2007	ND<500	ND<50	ND<0.5	1.3	0.77	2.9	1.2	ND<1.0	ND<10	ND<2.0	ND<2.0	ND<2.0

Notes:

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel

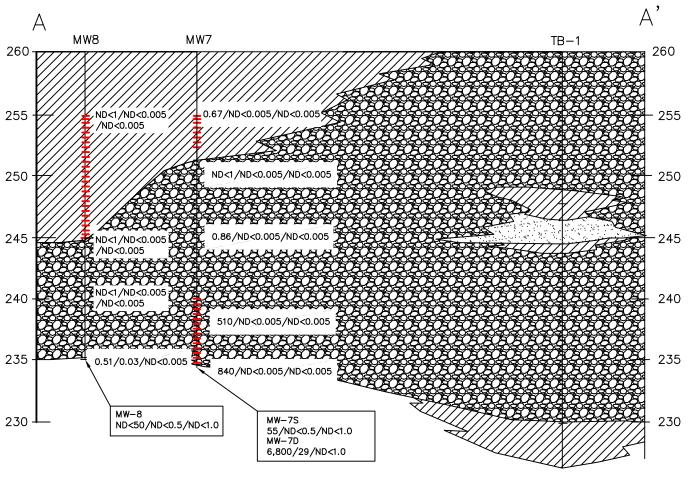
MTBE = methyl tert-butyl ether

TBA = tert-butyl alcohol

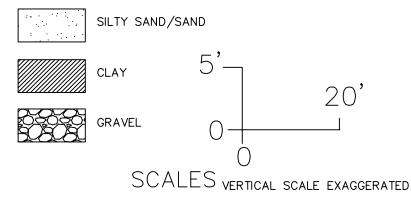
TAME = tert-amyl methyl ether

DIPE = di-isopropyl ether

ETBE = ethyl tert-butyl ether


ug/L = Micrograms per Liter

ND = Non-detect at or above corresponding laboratory reporting limit.


Analyses for Total Petroleum Hydrocarbons as Gasoline and Diesel (TPHg and TPHd, respectively) were performed using EPA Method No. 8015M.

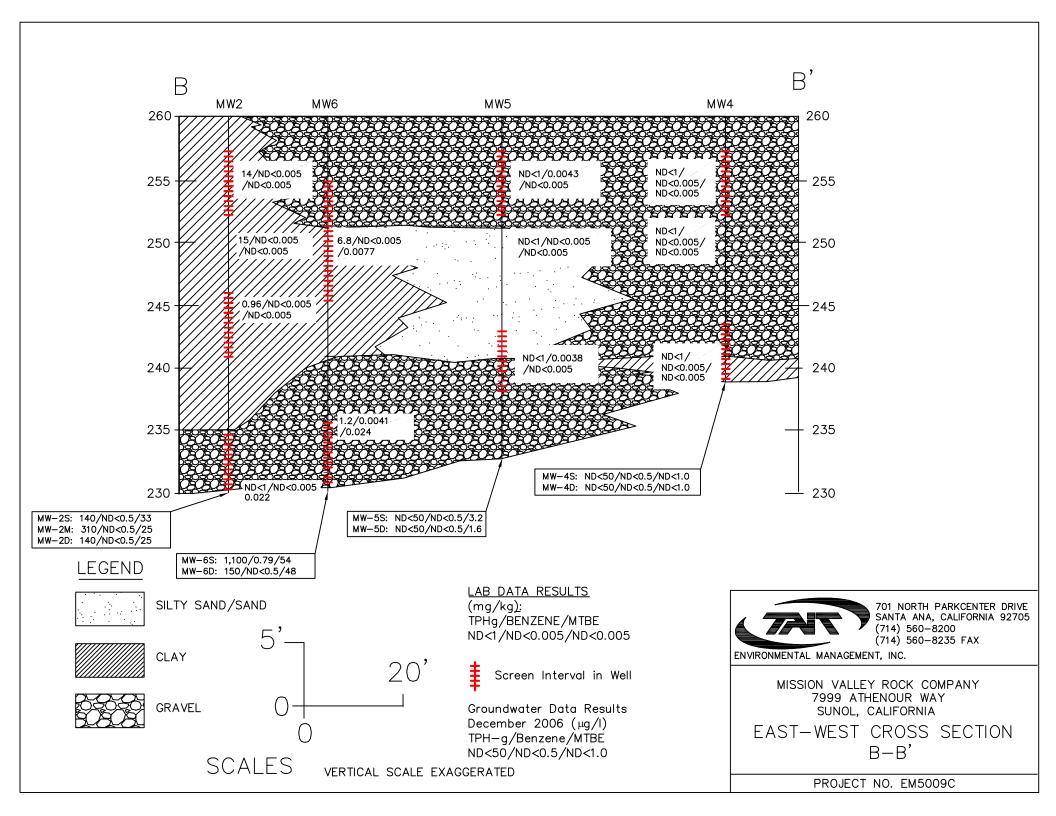
Analyses for benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl ether (MTBE), and Tert-butyl alcohol (TBA) were performed using EPA Method No. 8260B

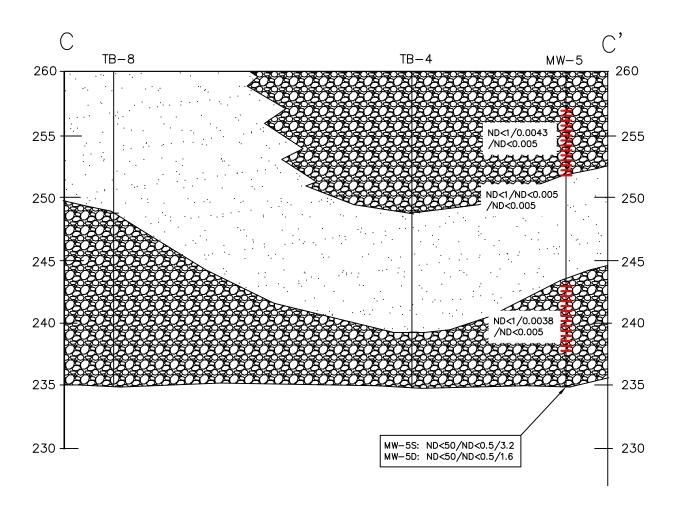
APPENDIX A CROSS SECTIONS

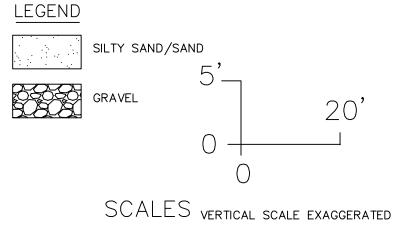
LAB DATA RESULTS (mg/kg): TPHg/BENZENE/MTBE ND<1/ND<0.005/ND<0.005

Screen Interval in Well

Groundwater Data Results December 2006 (µg/l) TPH-g/Benzene/MTBE ND<50/ND<0.5/ND<1.0


701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX


ENVIRONMENTAL MANAGEMENT, INC.


MISSION VALLEY ROCK COMPANY 7999 ATHENOUR WAY SUNOL, CALIFORNIA

EAST-WEST CROSS SECTION

PROJECT NO. EM5009C

LAB DATA RESULTS

(mg/kg): TPHg/BENZENE/MTBE ND<1/ND<0.005/ND<0.005

Screen Interval in Well

Groundwater Data Results
December 2006 (µg/l)
TPH-g/Benzene/MTBE
ND<50/ND<0.5/ND<1.0

701 NORTH PARKCENTER DRIVE SANTA ANA, CALIFORNIA 92705 (714) 560-8200 (714) 560-8235 FAX

ENVIRONMENTAL MANAGEMENT, INC.

MISSION VALLEY ROCK COMPANY 7999 ATHENOUR WAY SUNOL, CALIFORNIA

NORTH-SOUTH CROSS SECTION C-C'

PROJECT NO. EM5009C

APPENDIX B SAMPLING DATA SHEETS

Project	Name	Miss	ion Va	Mey "	120c	<u> </u>			Date	·	2 (c _e -						
Well Ide	-	tion:	5009 C							ared By							
			MW-			DORT					RAIN			Cr ee n:			
			- son peron	. ()	<i></i>	NOW !!			Pun	Pump Intake: 7							
Depti LNA (ft-bi	PL	Static	th to Water (ft-bmp)	Well T	otal I t-bmp		Water Column Helght (ft)	n	LNAPL Thick (ft-bmp	t t	One (1) Volume		g Car s) Volu	e (3) sing imes ions)	Above Screen Volume	Screei Volum	
ND		3.4	10	용.	35		1.95	-	120		0.7	9	2.3	8,			
Well:	Dlame	ter (in)		Gal	lons/F	oot		Flei	ld Equipment								
			0.75	/2		4	6	Pur	ge Mathod:	2	stag	e					
0.75	2	4 6	0.02	0.16		0.65	1.47	Wel	l Condition:		<u>-09</u>	,		· · · · · · · · · · · · · · · · · · ·	·		
Time	Casin	j / Soreen	Volume Purged (gallons)	Flow i		Water Level (ft-bmp)	pH	1	Temperature (°C)	Turbidity (NTU)	Condu	ıctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations	
120			0				ه. م	ı	13.1	32.6	0.2	.71	5.55	- 71		AQ_	
			1				6.9	5	13.7	24.7	0.	269	3.85	-79			
<u> </u>			2				6.9	9	14.1	19.3	0.7	7 عالم	1.68	- 84			
130	-		3	· · · · · · · · · · · · · · · · · · ·			7.13	3	14.3	17.5	0.7	202	1.13	- 85	, 1		
																	
Purge Sta	ort I						Total Ca	eina	80%	14/-4							
Time	uit 1	Purge End Time	Averag (gp			Gallons rged	Volum Purge	es	Recovery Water Leve Depth	at Sa	er Level ampling (ft-bmp)	San Colle Tir	,	San	nple Identificat	ion	
120	١	130	D.	3	3	3	3.70	7	4.39	3.5	52	1135	5	MW-	· 4 c		
iotes:						·			<u> </u>	i	<u> </u>			,	- Y		

Project Project Well Ide	No.:	EME	on Ua 2009 C		Lock.					red By:	-21e-	` S				
			MW - scription	<u> </u>					Weath	er: Intake:	2011		S	creen:		
Depti LNA (ft-br	ı to PL	Dep Static	th to Water ft-bmp)	Well To	otal Dept -bmp)	h C	Water column Helght (ft)		•	085	(9 ′ One (1) /olume (Casing	g Car s) Vok	e (3) sing imes lons)	Above Screen Volume	Screen Volume
170		ч. ц	٩	23.	38	15	P8-8	2	D		3.0	2_	9.0	عاد	-	
Well I	Dlame	ter (in)		Gall	ons/Foot		;	Fleid Equip	ment:							1
			0.75	2	4		6 1	Purge Meth	od:	2	stag	e				
0.75	2	4 6	0.02	0.16	0.65	1,	.47	Neil Condit	ion:	ح)	<u>~~</u> @	5				
Time	Casin	g / Soreen	Volume Purged (gallons)	Flow R (gpm	ate	Vater .evel -bmp)	pН	Temper		rurbidity (NTU)	Condu	ctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
200			0			······································	6.9	1 12.7		19.9	6.2	.85	7.64	138	١١)	CAL.
-			3				7.07	12.0	١	5.8	0.7	-97	78،ع	58	1	
	-		حا				7.05	12.0	1	5.4	03	09	5.23	- 23		
216			٩				7.00	0 13.	1	7.حا	6.	321	4.14	-38		/
Purge Sta Time	art f	Purge End Time	Averag		Total Gallo Purged	ns T	otal Cas Volume Purged	Rec S Wate	0% overy r Level	at Sa	r Level mpling ft-bmp)	Sam Colle Tin	ction	San	nple Identifica	tion
1200	1	216	0.5	ماد	9.06	>	3	8	. ユヿ	4.9	32	122	.0	MW-	чД	
Notes:								1			-					

Project N		<u> </u>	ion Uc	<u>uu y</u>	V-00	· V				Date		2-26	-07				
Well Iden		EM	5009 C			· <u> </u>					ared By	y: M	2 ~				
				<u>- 75</u>						Weat		RAIL	<u> </u>	\$	creen:		······································
	1	OHIL D	esculption	#	<u>ک ۲</u>	7007	+1			Pum	p intak	e: 7					
Depth t LNAPL (ft-bm)	-	Stati	pth to c Water (ft-bmp)		rotal (it-bmp	Depth o)	Wate Colur Helg (ft)	mn ht	1	- Thick it-bmp)	ness	One (1 Volume	l) Casin (gallo:	g Car is) Vok	e (3) sing mes lons)	Above Screen Volume	Screen Volume
NO		2	ا م	8	94.	,	5.8	7		70		<u>ص ۹</u>	Ч	2.8			
Well Di	amete	er (in)		Ga	llons/	Foot		F	eld Equ	pmenti	1	Haa.	<u></u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	0.75 2 4 2 4 6 0.02 0.16 0.65					4	6	P	urge Me	hod:		2 s-1	≥ ,	2 =	rage		*
0.75 2) 4	6	0.02	0.10		0.65	1.47	W	ell Cond	ltion		(500					
Time	Casing /	Screen	Volume Purged (gallons)	Flow (gp		0.65 1.47		рН		prature C)	Turbidit (NTU)	ty Cond	fuctivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
1245			0					70	13.0	0	73ع	0.2	.u.5	(mg/L)	-52		1
							le.	٦5	13.	જ	365	0	238	2.14	-72		a 3
1252			2	ļ				80	13	۹	168	6.7	.40	1.72	- 77		
1000			_ 3			 	٠٠	84	14.	0	92	0.1	246	1.33	-81		
			 						 								
Purge Start Time	Pu	irge End Time		ge Flow pm)		Gallons irged	Total (Volu Pur		We	80% covery er Level Depth	at S	ter Level Sampling (ft-bmp)	Colle	nple ection me	San	nple Identifica	tion
1245	1	252	0.	43	3	3	3.	. 2_	3	.78	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	רד	125	= +-	nw-		

Project No	mei Miss	ton Co	ucy 1	<u> </u>	<u>v</u>			Date		2 - 2 (4	-07				
Well identi		3009 C							ared B	y: M	2 Z			······································	
	ent Point D	<u> </u>	<u>3 - 8</u>						theri	DAIN			Screen:		
	Size I Office D	escription	770	C Y	700T1	(\		Pum	p intak	(e: /3	,′				·
Depth to LNAPL (ft-bmp)	Static	oth to Water (ft-bmp)	Well To	otal D -bmp)	•	Wate Colum Helgi (ft)	חו	LNAPL Thick (ft-bmp)		One (*	l) Casin (gallor	ns) Ca	ee (3) ising times ilons)	Above Screen Volume	Screen Volume
ND	2.0	80	15.	34	1	2. له ز	ء	ND		2.0	3		3°	-	Prince
Well Dia	meter (in)		Gall	ons/F	oot		Fie	ld Equipment	· L	Joan	<i>ا</i> م	2 5	<u> </u>		
	, , ,	0.75	2		4	6	Pun	rge Method:	<u>_</u>	254			rage		
0.75 2	4 6	0,02	0.16	<u> </u>	0.65	1.47	We	II Conditions	······································	Coc					
Time c	Desling / Screen	Volume Purged (gallons)	Flow R (gpm		Water Level (ft-bmp)	p	Н	Temperature (°C)	Turbidi (NTU)		ductivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1310		0				٦.:	20	14.9	79	01	18	0.18	-40	GIE	<u> </u>
 		2				7.1	14	14.9	७५	n .	141	0.11	- 32	~	
<u> </u>		4				7.0	5	14.9	16	0.		0.08	-7	 	
320		<u></u> <u></u>				7.0	24	14.9	15	0.	141	0.03	(p	1 1	
Purge Start Time	Purge End Time	,	je Flow om)	Total G Pur	24110119	Total C Volur Purg	nes	80% Recovery Water Level Depth	at S	iter Level Sampling e (ft-bmp)	Colle	mple ection me	San	nple Identifical	ion
lotes:	1320	0.	6)، و)	8	3		5.21	2.	82	132	4	MW-	 ର	

Project N Project N	0.1	<u>~1,755</u> F \4 6	5009 C	nuy	W-0	د بد			Dat			<u>2 (a-</u>					
Well Iden		on:	1004 C							pared	_ <u>=</u>		<u>z </u>				
Measuren			Scription							others		مراب			icreen:		
		******		. 10		30et			Pur	np Inta	ker	<u>හ ′</u>					
Depth t LNAPi (ft-bm)		Static	th to Water (ft-bmp)		rotal t-bmp	Depth p)	Wat Colu Heig (ft	mn Jht	LNAPL Thic) Casi: (gallo	ng Ca ns) Voi	ee (3) ising umes ilons)	Above Screen Volume	Screen Volume
ND		3.9	85	9	.5e	3	5.70	>	ND	-	(P.C	1		74	****	
Well Di	emeter	' (in)		Ga	lons/	Foot		FI	eld Equipmen	tı	<u> </u>		· · ·				<u> </u>
	- 	, ,	0.75	2		4	6	Pt	urge Method:				ba dae		sha ge	<u></u>	
0.75 2) 4	6	0.02	0.10		0.65	1.47	W	eli Condition:			<u> </u>	. (5	· · · · · · · · · · · · · · · · · · ·		"
Time	Cealing / S	creen	Volume Purged (gallons)	Flow (gp		Wate Leve (ft-br	i	pΗ	Temperature (°C)	Turbic		Cond (uctivity)	Dissolved Oxygen	ORP (mV)	Obs	ervations
1418			0			- [.17	13.0	310		0.1	<u>-7</u>	(mg/L) 2.20	- 124		
			_ (7	11	13.2	220						ره اے	<u>, </u>
			2					09	13.3	 		0.1		1.29	-128	 	451
1428			3			1		09		147		0.1		0.68	-127		
						 		<u> </u>	13.3	117		0.1	76	0.35	-126	$\frac{1}{1}$	
									 								
	" 			· · · · · · · · · · · · · · · · · · ·													
Purge Start Time		ge End ime	Averag (gp	e Flow em)		Gailons irged		Casin imes ged	80% Recovery Water Leve	at at	ater L Samp ne (ft-l	oling	Colle	mple ection me	Sam	ple Identificat	ion
1418	14.	१८	0.	3	3	3	3.	3	5.02	3	97)	143	,4	NA SAF	- 105	
Notes:		STATE OF THE PARTY.					·							<u> </u>	10100	- 105	

Project Name: Mission Valley Rock Date: 2-26-07 Project No.: EM 5009 C Prepared By: MJS Weil Identification: MW - 12 LF Barn Weathen **Measurement Point Descriptions** Screen TOC NORTH Pump Intake: 32 Depth to Water Depth to Three (3) **Well Total Depth** LNAPL Column Above Static Water **LNAPL Thickness** One (1) Casing Casing Screen (ft-bmp) Height (ft-bmp) Screen Level (ft-bmp) (ft-bmp) Volume (gallons) **Volumes** Volume (ft) Volume (gallons) ND 6.65 39.50 32.85 ND 5.26 15.77 ----Gallons/Foot Field Equipment: Well Diameter (in) Hoerba 0.75 2 4 6 Purge Methodi 0.75 2 4 6 0.02 0.16 0.65 1.47 **Well Conditions** Good Volume Weter Flow Rate Time Casing / Screen Dissolved Purged Temperature Turbidity Conductivity Level рΗ ORP (gpm) (°C) Oxygen (gallons) (NTU) Observations (ft-bmp) (mV) (mg/L)1500 0 6.96 13.3 5.4 0.153 2.56 - 5 LIEAQ. 6.98 13.8 ჳ.ფ 0.152 4 3.09 8 6.92 14.4 6.9 0.151 2.93 5 12 88.2 15.2 5.8 0.148 Ч 1.666 1512 16 6.90 15.9 51.7 0.142 Ч 0.69 80% Purge Start Purge End Total Casing Average Flow Total Gallons Water Level Sample Recovery Time Time Volumes (gpm) Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 1500 1512 1.33 10 3.04 13.27 7.55 1520 MW-12LF Notes:

ft-bmp = feet below measuring point

C:\Documents and Settings\MSchenone.TAITSAMAIL\Desktop\Well Sampling Field Data Sheet.doc

Project N	ame: M	1551	on Va	lley	R-00	.K			Date	=	2-26-	07				
Project No	o.: E	M 5	<u>009 C</u>						Prep	ared B						······································
Well ident			MW-	<u>5s</u>					Wea	theri	Dain	•		creen:		
Measuren	ent Poir	nt Des	cription	TO	<u>ت ر</u>	PAKBO			Pum	p Intal	(e: "7 [']					, ,,
Depth t LNAPL (ft-bmp	. S1		h to Water t-bmp)	Well 1 (f	rotal E t-bmp	- ,	Wate Colum Heigh (ft)	in I	LNAPL Thick (ft-bmp)		One (1 Volume		g Ca	ee (3) Ising umes Iions)	Above Screen Volume	Screer Volume
20	3	3.01	٥	8	. 24		5.18	>	ND		Ð.9	63	2.4	49		
Well Di	ameter (in)		Gal	ions/F	oot		Field	d Equipment							
			0.75	2		4	6	Purg	je Method:	<u> </u>	sta			·		
0.75 (2) 4	6	0.02	0.16	5	0.65	1.47	Well	Condition:	(rood	8 -				
Time	Casing / Sore	een	Volume Purged (gallons)	Flow (gpi		Water Level (ft-bmp)	pl	1	Temperature (°C)	Turbid (NTU		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
550			0		······		6.8	38	14.6	558	5.2	-31	0.79	-76	Clo	ody.
-			1	····			8.ما	59	14.4	222	. 0.3	226	1.03	- 54		
558					-cne	used do		Dev)	Speo.	× 1.8	8	rllons.			
Purge Start Time	Purge Tin		Averag (gp		Total Pu	Gallons rged	Total C Volun Purg	nes	80% Recovery Water Level Depth	at	ater Level Sampling e (ft-bmp)	Colle	nple ection me	Sai	mple Identifica	tion
1550	155	8	0.2	.3	1 . 8	3	2.1	7	4.14	4	. 10	160	8	MW-	55	
Notes:																

Dania		MIS	510	on Va	Mey 4	VLO	<u>: </u>			D	ate:	2 -	27 -0	7				
LIDIOCE	MO	E F	15	009 C		<u>.</u>				Pi	repar	ed By:	M	<u> </u>				
Weil Ide				-NN	<u> </u>	1 r				W	eath	•п 2			5	creen:		
moasur	ome	nt Point	Des	cription		ر ب2<	<u>ಎಂಬ</u>	T4-4		P	ump	Intake:	32′				·	
Depti LNA (ft-br	PL	Sta	tic '	h to Water I-bmp)		Total ft-bmj	Depth)	Wat Colu Helg (ft	mn ght	LNAPL Th			One (1) olume		g Ca s) Vol	sing umes lions)	Above Screen Volume	Screer Volume
ND		Ч.	69		39	١. ٤	\	34.7	12	Q14			5.5L	,	الم. ا	۵7	·	
Well I	Dian	neter (in	· · · ·		G.	lions/	Foot		F	ield Equipme	enti	17						<u> </u>
			,	0.75	2		4	6	P	urge Method	it		<u>,0671</u>	<u> </u>	, 2 =	Hage		·
0.75	2	4	6	0.02	0.1	6	0.65	1.47	W	/ell Condition	ns		5000	280				
Time	Ca	4 6 0.02 0.16 0.65 Casing / Screen Purged (gallons) Flow Rate (gpm) Wat Lev (ft-bridge)		el	рΗ	Temperatur (°C)	- 1	urbidity (NTU)	Condu		Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations				
34°	-			0				7.	40	10.7	2	2.6	0.11	02	ر. الع. له . ال	126	c\e	
			_	4			<u> </u>	7.	. 28	12.5	Ţ	1.8	0.19	57	5.47	- 39		
+	+-	<u></u>	\perp	8			<u> </u>	7	. 19	14.0	u	13.8	0.19	52	3.16	- 85		,
\downarrow	-	···	-	12				7	.15	15.7	1	52.4	0.1	46	1.16	- 105		·4~
			-	١١٥				7	. 12	16.2	1'	97.8	٠. د	51	0.55	-110	1	
854	-		-	17	<u> </u>		<u> </u>	_ 7	-11	16.4	_ 2	.11.7	υ.ι	52	0.40	- (11	7	
Purge Sta Time	ert	Purge E Time		Averag (gp			Gallons irged	}	Casi umes	Recove	ery evel	Water at San Time (ft	ipling	Colle	nple ction ne	San	nple Identificat	ion
840		85	ł	1.2	. \	1.	7	3.0	٥١٥	11.10	3	5.79	8	85	7.	A A > A >	· 11 LF	

Project N		<u>M155</u>	ion U	alley	K-00	بد)ate:	2_	-27-	70				
Well Ider		EME	5009								ed By:	Mo	Z S				
Massure	mant D	on:	<u>_ WW</u>	1-3	<u>.</u>					Neathe	HT (Rain			Screen:	···	
Measure	INDITE P	OIUX DI	racriptio:	7.5	کر /	2007	44			ump i	ntake:	11			·		*····
Depth LNAP (ft-bm	L	Static	th to Water (ft-bmp)	6	Total ft-bmp	•	Wate Colum Heigh (ft)	ın	LNAPL T		}	One (1) /olume		g (is) V	hree (3) Casing olumes (alions)	Above Screen Volume	Volume
ND		4.6	2 *	14	٥٦٠.		10.08	3	ND			ا ها. ا	·		.84	_	
Well D	lamete	r (in)		Ga	llons/	Foot	<u>' </u>	Flei	id Equipm	enti	4	\-		\bigcirc \in \cup	~ ~ ~	1	
			0.75	2		4	6	Pur	ge Metho	dı		Sta			rage	··· -	
0.75 (2	4	6	0.02	0.1	6/	0.65	1.47	Wel	ll Conditio	His		7000	. ب				
Time	Casing /	Screen	Volume Purged (gallons)		Rate om)	Wate Leve (ft-bm	el p	Н	Temperato (°C)		urbidity (NTU)	Condi	uctivity	Dissolve Oxyger (mg/L)	ORF	, ,	Observations
924			0				٠. ص	73	18.0	٥	VER	0.7	-85	1.11	-10	3 No	nky
			2				- ما	75	18.2		1	0.	288	0.8	7 - 10		
V			4				<i>\(\mathcal{G}\).</i>	79	17.2			 	404	٥٠١١٤	•	<u> </u>	
739			6				۶. ها	<u>`</u>	16.4		-						<u> </u>
									10.7		1	0.	870	0.11	-13	0	<u> </u>
Purge Star Time		rge End Time		ge Flow pm)		Gallons irged	Total C Volun Purg	nes	80% Recov Water L	∕ery .e∨el	Water at Sar Time (f	npling	Colle	nple ection ne	S	ample Identif	ication
924 Notes:	1	39		4	J	-	3.7	3	عا، و)	٠4	5.4	2	94	5	NW	- 3	
zrooni	* D	neta new e	س.لما	ہے۔ اب	reas	ling	wat	2/ ten	27/07	bo	x -	لمع س	ater	^ر س، ب	اهدر ک	ook bo	Jow

Project N Project N Well Iden	0.;	ミルミ	2009 C		2-00	<u>.</u>				pared B		Z S				
			<u> </u>	25					*- ·~	then	Rain		34	cr e en:	,	
Measuren Depth t LNAPI (ft-bm)	to -	Dept Static	th to Water ft-bmp)	Well T		epth	Water Column Heigh	ın	LNAPL Thic		One (1) Volume) Casin	g Car s) Volu	e (3) sing mes	Above Screen Volume	Screen Volume
ND		ن ، ت	15	11.	04		(ft) 4.59	+	ND		0.7	3	(gal)	ons)	-	
Weil Di	ameter	(In)		Gal	ons/F	oot		Fie	id Equipmen	t a				<u> </u>		
			0.75	2		4	6	Pur	ge Method:		2 sta	ما ا				·
0.75 2) 4	6	0.02	0.16	/ (0.65	1.47	Wel	ll Condition:		(Jood	$\langle \rangle$			· 	<u></u>
Time	Casing / Screen Volume Purged (gallons) Flow Rate Levi (ft-bn					Water Level (ft-bmp	pl	H	Temperature (°C)	Turbidi (NTU		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
8001			0		·		7.3	7	18.5	G3.8	s 0.	عا ۷	4.18	22	CIE	AL
							7. 2	22_	18.0	58.4	١ ٥.	224	3.88	47	T	/
014			2		WEL	- WE	17 T	224	e 1.5	gallor	<u>.</u>					
			3				-	-1				-				
Purge Start Time						Total C Volun Purg	nes	80% Recovery Water Leve Depth	at S	iter Level Sampling e (ft-bmp)	Colle	nple ection ne	Sar	nple Identificat	ion	
8001	10	14	0.	25	١.٠	5	2.0	5	7.36	7	.33	10	25	MW-	125	
Notes:	742	NPIES	colle	CTED ()S(H)	5 han	D bac	(EB	•			<u> </u>				

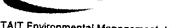
Project Name: Mission Valley Rock Date: 2-27-07 **Project No.1** EM 5009 C Prepared By: MIS Well Identification: MW-95 Weathers Screen: **Measurement Point Description:** TOC WORTH Pump Intake: 10' Depth to Water Depth to Three (3) **Well Total Depth** Above LNAPL Column Static Water LNAPL Thickness One (1) Casing Casing Screen (ft-bmp) Screen (ft-bmp) Height (ft-bmp) Volume (galions) Level (ft-bmp) Volumes Volume Volume (ft) (galions) 3.28 ND 8.92 12.20 1.43 ND 4.28 Gallons/Foot Field Equipment: Well Diameter (in) HORLDA 0.75 2 4 6 **Purge Method:** stage (2)0.75 6 0.02 0.16 0.65 1.47 Well Conditions (500d Volume Water Flow Rate Time Casing / Screen Dissolved Temperature Purged Turbidity Conductivity Level pΗ ORP (gpm) Oxygen (°C) (gallons) Observations (NTU) (ft-bmp) (mV) (mg/L)1033 0 7.20 13.1 134.0 0.390 31 6.82 Cloudy 2 7.06 99.7 13.4 0.390 5.52 24 ¥ 6.89 13.9 42.1 5 0.423 2.12 CLEAR 1040 0 6.87 14.1 30.5 0.441 0.97 -6 80% Purge Start Purge End Total Casing Average Flow Total Gallons Water Level Sample Recovery Time Time Volumes (gpm) Purged at Sampling Collection Water Level Sample Identification Purged Time (ft-bmp) Time Depth 1033 1040 08.0 (a 4.2 5.06 2.36 1043 MW-95 Notes: * WATER LEVEL MUCH HIGHER TODAY (DURING SAMPLING 2-27-07) HEAVY RAIN LAST NIGHT & YESTERDAY

Project I		1.1.0.2	on Vo	<i>clley</i>	R.00	يلا			Date	H 2	2-27-	07				
Project I		EM :	700d C						Prep	ared B		<u>z </u>				
Well Ide			MW	-9L	Ē				Wea	then	Qain		S	creen:		· · · · · · · · · · · · · · · · · · ·
Heasure	ment	Point De	scription	" TO	ر پ	-	r 4-4		Pum		e: 34'					
Depth LNAP (ft-bm	L	Static	th to Water (ft-bmp)	1	Fotal it-bmp	Depth o)	Wate Colum Heigh (ft)	חו	LNAPL Thick (ft-bmp)		One (1 Volume) Casin (gallor	g Car is) Vok	e (3) sing mes	Above Screen Volume	Screen Volume
20		3.7	9	39			35.3	2	ND		5.6	5	160.	35	ا سیجہ	
Well D)lamei	er (In)		Ga	ilons/	Foot		Fle	ld Equipment		1					
	0.75 2 4 2 4 6 0.02 0.16 0.65						6	Pur	ge Method:		2.5		. 2 =	nog		***************************************
0.75 (2	Casing / Screen Purped Flow Rate				0.65	1.47	We	l Conditions		(900)						
Time	Casing	/ Screen	Purged (gallons)	Flow (gp		Wate Leve (ft-bm	ol p	Н	Temperature (°C)	Turbidi (NTU	ty Cond	luctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations
105			<u>0</u>	<u></u>	····	<u> </u>	7.0	5	15.4	37.7	2 0.3	215	0.52	-73	こしき	4n_
-			<u> </u>	 		<u> </u>	7.0	29	15.8	17.0	0.	218	0.09	- 73		
	ļ		8	ļ	·····		7.0		16.8	92.2	. 0.	222	0.20	-122		
\downarrow			12	ļ			7.0		17.9	69.2	0.1	220	0.27	- 104		
128			16				7.1		17.9	40.1	0.5	221	0.42	-107		
120			<u> </u>				7. !	12	18.0	29.2	0.2	-20	0.31	-103	J	
Purge Sta Time	rt F	urge End Time		ge Flow pm)		Gallons irged	Total C Volur Purg	nes	80% Recovery Water Leve Depth	at 8	ter Level Sampling e (ft-bmp)	Colle	mple ection me	San	nple Identificat	ion
1105	\	128	0.	74	ľ	7	3.0) (10.85	9	10	1133	>	MW-	915	

Project N Project N	C: F:	<u>551</u>	on Va	icey.	V.O	دلا			Dat		27-0	7				
Well Iden			009 C				·			pared B	y: ト	122				
Measuren	nent Poin	t De	MW -	10	<u></u>					ther	Rain			creen:		
				, , ,	م بحد	2007			Pun	np Intak	(e: 34)					
Depth (LNAPI (ft-bm)	- St	atic	th to Water (t-bmp)		Total ft-bm	D epth p)	Wate Colu Heig (ft)	mn ht	LNAPL Thic (ft-bmp			1) Casi e (galio	ng Ca ns) Vok	sing umes ions)	Above Screen Volume	Scr een Volume
ND	4	2 · 2	.3	_3°	۹.۹	0	33.6	7	ND		5.:	39	16.		<u> </u>	
Well Di	ameter (i	n)		Ga	ilons/	Foot		F	ield Equipment	# <i> </i>	ł		2 64			
···			0.75	2		4	6	P	urge Methodi					<u> </u>		
0.75 2) 4	6	0.02	0.1	6	0.65	1.47	W	fell Conditions		(od bo			· · · · · · · · · · · · · · · · · · ·	
Time	Casing / Screen Purged Flow Rate (gpm)		Wate Leve (ft-bm) l	рΗ	Temperature (°C)	Turbidi (NTU		ductivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations			
1155	····						٦,	12	18.6	3.0	٥.	275	2.86	-123	حاء	AIL
-	·		ц		··- <u></u>		7.	09	18.3	له ٠٥	0.	334	1.21	-125	1	
\rightarrow	·	_ _	8			<u> </u>	7.	11	17.9	12.0	0.	855	0.05	- 133		
212	 .		12	· · · · · · · · · · · · · · · · · · ·	 -	-		12	17.9	14.4	, 0.	918	0.02	- 135		
<u> </u>	······································	-	16			 	7.	12	17.8	14.0	0.	947	0.01	-137	1	
			-	·												
Purge Start Time	Purge Tim		Averag (gp		Total Pu	Gallons	Total (Volu Pur		Recovery	ats	ter Level Sampling e (ft-bmp)	Coll	mple ection	San	nple Identificat	ion
1155	1212	_	0.9	5	اله	. 2	3		12.96		39	121	5			
Notes:		1212 0.95 16.2			<u> </u>			٠ ب	- 1	1 1 4	·	-WM	10 rt			

Project N	ame: Mis.	5009	may ke	7 C. W			Date		2-27.					
Well Iden	tification	1 4		·				pared By		<u>z </u>				
Measuren	nent Point I	Description	¥	*				ther	Pain			creen:		
	ľ		100	MORTI		-	Pum	ıp intak	e: 14	, 				
Depth t LNAPt (ft-bm)	- Stat	epth to ic Water i (ft-bmp)	Well Tota (ft-bi	-	Wate Colum Heig (ft)	nn ht	LNAPL Thici (ft-bmp		One (1 Volume	i) Casin (gallo:	g Ca is) Vok	sing umes ions)	Above Screen Volume	Screen Volume
ND	2.	46	٦. ٦٠	8	15.3	2	ND		24	5	7.3	55		
Well Di	ameter (in)		Gallon	s/Foot	•	Fle	id Equipment	3 \'	<u></u>		<u> </u>			<u> </u>
	<u> </u>	0.75	2	4	6	Pu	rge Method:		to ent			rage		
0.75 2) 4	0.02	0.16	0.65	1.47	We	il Condition:		2 <u>s</u>		<u>e</u>			
Time	Casing / Screen	Volume Purged (gallons)	Flow Rate (gpm)	Wate Leve (ft-brr	el p	рΗ	Temperature (°C)	Turbidit (NTU)	y Cond	uctivity	Dissolved Oxygen	ORP (mV)	Obs	ervations
231		0			7.	۱7	15.7	638	0.5	344	(mg/L)	-89		
1		2			7.	14	15.6	372	<u>-</u>	347	2.42	-91	Clou	55
\downarrow	<u></u>	4			7.	10	15.2	74.7	2 0.	344	1.43	-102	CIE	3n-
241		<u></u>			7.	08	15.1	55.7		342	0.74	-105	1	
- '	······································	8		_	7-	<u>08</u>	15.0	45.5	0.3	342	0.55	-1010	Ţ	
Purge Start Time	me Time (gp			al Gallons Purged	Total (Volu Pur	mes	80% Recovery Water Level Depth	atS	ter Level Sampling (ft-bmp)	Colle	nple ection	San	ple Identificat	ion
1231	1241	_ 0	8	8	3.2	27	5.52	2	92	124	5	MW -		

me: Missi I EME	2009 C						Date	M2		7 - 0	. 7				
Maatiam.	, , , , , , , , , , , , , , , , , , , 							ared By		<u> </u>	`	·	·		
	MW.	- 10	d					ther		<u> </u>			creen:		
ent Point De	scription	10	CN	20621	- \			p Intak					OI BUIL		
Static	Water			- ,		าก	LNAPL Thici	(ness	One	(1) C:	_	Ca) Vol	sing um e s	Above Screen Volume	Screen Volume
5.4	0.	19	· 38	٥	13.98	6	ND		2.5	24	· · · · · · · · · · · · · · · · · · ·	. م)	7 (
meter (in)		Gal	llons/F	oot		Fie	id Equipment	. \	`	1					
	0.75	2		4	6	Pu	rge Methodi	<u>_</u>					مهد		<u></u>
4 6	0.02	0.16		0.65	1.47	We	ii Condition:				}* -	·			
selng / Screen	Volume Flow Rate Purged (gpm)		Level	i p	Н	Temperature (°C)			onductiv	rity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	servations	
	0				7.	39	14.5	88.9	5 0	.38	6	4.37	-133	, <17	EAR
	2				7.	36	14.8	62.5	- 0	. 39	3	298			
					7.	35	15.3	32.5	5 0	. 38	9	1.68			
				ļ	7.	29	15.5	39.7	L 0	. 39	4	1.20	-15	2	
	8				7 2	حا2	15.7	79.8	3 c) 40	1	0.58	-150	1	
	<u> </u>	<u> </u>			_				_	·· ·					
Purge End Time					Volur	nes "	' Recovery	at S	Sampling	g	Collec	tion	Sa	mple Identifica	ition
1315	0.5	3	.8	3	3.5	7	8.20	ره)	40	1	310	1 .	43N1 =	107	
	Static Level (5.4 meter (in) 4 6 saing / Screen Purge End Time	Static Water Level (ft-bmp)	Static Water Level (ft-bmp)	Static Water Level (ft-bmp) Column Height (ft) 5.40	Static Water Level (ff-bmp) Column Height (ff-bmp) Column Height (ff)	Static Water Level (ff-bmp) Column Height (ff-bmp) (ff-bmp) Column Height (ff-bmp) (ff-bmp)	Static Water Level (ft-bmp) Well Total Depth (ft-bmp) Column Height (ft) Height (ft) Column Height (ft) Height (ft)	Static Water Level (ft-bmp) Well Total Depth (ft) Column Height (ft) (ft-bmp) Column Height (ft) (ft-bmp) (ft-bmp) Column Height (ft) (ft-bmp) Column Height (ft) (ft-bmp) Column Height (ft) Column (ft-bmp) Column Height (ft) Column Co	Static Water Level (ft-bmp) Well Total Depth (ft-bmp) Height (ft) Column Colum	Static Water Level (ft-bmp) Column Height (ft) Column Column	Static Water Level (ft-bmp) Well Total Depth (ft-bmp) Column Height (ft) Column Height (ft) Column Casing Volume (gallons) Casing Volumes (gallons)	Static Water Level (fft-bmp) Column Height (fft-bmp) Column Height (fft-bmp) Column Casing Volume (gallons) Casing Volume (gallons			


Project N			on Ua	luy	1200	<u> </u>			Date) ;	2-27	7-07						
Project N		EM5	009 C	ر					Prop	ared B		\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>				······································		
Well Iden			MW-	<u>رہ ک</u>	\				Wea	then	Par			creen:				
Measurer	nent Po	int Des	cription	70	ر ٢	JOBER	A		Pum	p intai						·		
Depth to LNAPL Static I Level (ft-bmp) 4.35		Water	184 8-		otal Depth t-bmp)		r un ut	LNAPL Thici (ft-bmp			1) Casir e (gallo	ns) Ca	sing umes lions)	Above Screen Volume	Screen Volume			
		4.39	5 29		.15		24.80		ND		3.9	17	11.0	10				
Well D	Ismate	(in)	Ga	llons/	Foot		Fie	ld Equipment										
			0.75	2	2 4		6 P		ge Method:	- 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -				atag	<u>e.</u>			
0.75 2) 4	6	0.02	0.10	3)	0.65	1.47	We	ii Conditions	·		dag						
Time Casing / Screen		Screen	Volume Flow Rate (gailons) (gpm)			Leve	Water Level pl- (ft-bmp)		Temperature (°C)	Turbid (NTU	ity Con	ductivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations		
Hop			0				7.1	6	13.4	11.2	- 0-	250	5.41	-117	(1)	<u></u> ♣ ∩		
1	T.**********		4				7.1	0	14.5	19.0	0	.243	0.54	-122				
$\overline{\psi}$			8				7.0	12	13.9	9.	٥.	224	0.02	-133				
1412			12				7.02		18.2	20.1	0.224		0.02 -13		0			
				·														
												·····						
Purge Start Time	.			e Flow Total Gallon Purged			Total Ca Volum Purge		80% Recovery Water Leve Depth	ı at	ater Level Sampling le (ft-bmp)	Coll	mple ection me	Sample Identification				
1400	1	412	\.,	١.٥)	3.0	2_	9.31	5	.18 141		8	nw-cod				
lotes:											. , .		<u> </u>	MW -	60			

Project No.: Well Identificat Measurement P Depth to LNAPL (ft-bmp) Well Diamete	Point Des Dept Static I Level (f	h to Water t-bmp)	Well Tot	NOC al Depth emp)	Wat Colu Heig	man	Wes	pared By ther: (p Intake	2 ain	7 S		creen:			
Depth to LNAPL (ft-bmp) Well Diameter	Point Des Depti Static I Level (fi	h to Water t-bmp)	Well Tot	al Depth mp)	Wat Colu Heig	man	Wes Pun	then (2 ain						
Depth to LNAPL (ft-bmp) NO Well Diamete	Depti Static (Level (f	h to Water t-bmp)	Well Tol	al Depth mp)	Wat Colu Heig	man	Pun	p Intake							
LNAPL (ft-bmp)	Static I Level (f	Water t-bmp)	(ft-1	mp)	Colu Heig	man			<u></u>		The	ee (3)			
Well Diamete	······································		4.4		(ft)	' '	(ft-bmp		One (1) Casin Volume (gallon		(Ca (Voi	sing umes ilons)	Above Screen Volume	Screen Volume	
	er (In)		9.43		5~23	3	ND		O . ह	0.84		51	•		
	o- ()	Well Diameter (in)				Flei	id Equipment	3 11							
0.75 723 4			2	2 4		Pur	ye Method:	odi 2 stage							
7	6	0.02	0.16	0.65	1.47	Wei	il Conditions		600	رے					
Time Casing / Screen		Volume Purged gallons)	Flow Ra (gpm)	e Wa Lev (ft-b	/el	рΗ	Temperature (°C)	Turbidity (NTU)		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations	
444		0			7.	೦5	14.7	413	0.1	8 4	4.30	-105	<u> </u>	<u></u>	
		(. ما	99	14.9	202	0.1		2.90	-108	1		
1111		2			6 .	97	15.0	103	1.0	79	1.99	-105	c\EA	~~~	
1446		3			6.	96	15.1	58.2	0.1	77	1.35	-110	1 7		
		**													
											·				
Purge Start Purge En Time Time			ge Flow Total Gailons pm) Purged		Volu	Casing imes ged	80% Recovery Water Leve Depth	Water Level at Sampling Time (ft-bmp)		Sample Collection Time		Sam	nple Identificati	ion	
IU40 I	446		5.5	3	3.5	57	5.25	4.2	25	1450		MW - 1/5			

Project	t Nan		1122	ion Vo	ucy.	V-0	ديد				Date: 2-27-07									
Well Id			<u>, ~ (</u>	5009 C							Prepared By: M35 Weather: Qain Screen:									
				MW -																
				-aci ibrioi	# T.C	٠ ـ ١	700	+1		Pun	ip Intal	(e: 2 L	1 (
Depth to LNAPL (ft-bmp)		Depth to Static Water Level (ft-bmp)		Well Total Depth (ft-bmp)			Column Height (ft)		LNAPL Thick			One (1) Casing Volume (gallons)		Three Casin Volum (gallor	es	Above Screen Volume	Screen Volume			
		3	3.89		29	29.54		25.0	5م	ND		4.10		12.31		1				
Well	Dian	neter (ln)		Ga	llons/	Foot		Fic	oid Equipment		\ \ \		<u></u>		<u> </u>		<u> </u>		
		0.75		2 4		4	6		irge Method:	····	Hoe	D A		5	عهد	<u> </u>				
0.75	2	4	6	0.02	0.1	3/	0.65	1.47	W	eli Conditions		ک د مع	$\overline{}$					· · · · · · · · · · · · · · · · · · ·		
Time	Ce	sing / Scr	ee n	Volume Purged (gallons)	Flow (gr		Wate Leve (ft-brr	el ;	рΗ	Temperature (°C)	Turbidi (NTU	ty Con	ductivity	Dissolv Oxyge	en	ORP (mV)	Obs	ervations		
1515				0			+	(g. 8	 2 7	15.0	10.2		/	(mg/l						
				Ч				ن			<u>-</u>		304	4.89		-95				
\perp				8			+	<u> </u>		17.7	ما 5		273	0.70		-121				
525				12			 	·—-			4.8	- 	308	0.01		133				
							 	6.9	10	17.8	4.3	0.	351	0.07	<u> </u>	- (35				
							 	- 			·									
																				
Purge St Time				ge Flow Total Gallons om) Purged		Total (Volu Pur	mes	80% Recovery Water Leve Depth	at S	Water Level at Sampling Time (ft-bmp)		mple ection ime	Sample Identification							
1515	-	152	15	١.٦	_	12	.31	3	··	9.02	ш	29	15	30			- h			
Votes:			***************************************		<u>-</u>					1.02		- I	117.		M	N- a	2d)			

Project	No.1	EM	5009 C	3	W-0					Date: 2-27-07									
Well Ide	entifica	rtion:	MW-							Prepared By: MJS Weather: Kain Screen:									
Measur	ement	Point D	escription		· ^ \	3007													
Depth to Depth to					<u> </u>	JOBT.	Wat	-	Pt	Pump Intake: 12"									
LNAPL (ft-bmp)		Static Water Level (ft-bmp)		Well Total Depth (ft-bmp)			! !		LNAPL Thi	.		One (1) Casing Volume (galions)		ns) \	hree (3) Casing Jokumes gallons)	Above Screen Volume	Screen Volume		
		3.1	44	15.€		20		مان	ND			1.85			5.55	•			
Well	Diame	ter (In)		Ga	llons/	Foot	<u> </u>	F	leid Equipme	<u></u>									
((111)	0.75		2		4 6		urge Methodi		<u>+</u> -	> <u>e.</u>	PA	/ 2 s	Hage				
0.75	2	4 6	0.02	0.1	6	0.65	1.47		ieli Condition			<u>y s</u>	dag	کو_ _	7	···			
Time Casing / So		Volume Purged (gallons)		Flow Rate (gpm)		Water Level (ft-bmp)		pН	Temperature	ture Turbidi		Conductivity		Dissolvi Oxyge	ORP		ervations		
1554			0			(NE DATE		A2	15.1	124			/	(mg/L	(mv)				
			2		<u>.</u>	 		86	15.4	77.		0.7		5,02					
₩	ļ		4			<u> </u>	۱۰ یا		15.7	102			- 4 ! 2 8 7	2.70					
4001	<u> </u>		6				6.		15.8	164		0.1		0.05					
	-		<u>-</u>							1			301	0.03	-139				
 .	 									-		-		- <u></u>					
																	····		
Purge Start Purge End Time		ļQ	ge Flow Total Gallons om) Purged			Total Cas Volume Purged		Recover Water Lev Depth	Level Wa				nple ection me	Sa	Sample Identification				
1554	1	604	0.0	9 6		3.24		4	5.75	2	.73	,	161	2					
Notes:				<u>-</u> <u>-</u> <u>-</u>			<u> </u>			د ا			141	-	MW-	95			

Project No	me: Miss	ion Va	lley	V-oc	<u></u>			Date	<u>, 2</u>	-27-0	7							
Well Ident		<u>5009 C</u>						Prep	Prepared By: MJS									
		MW - 2	м					Wea	then	Rain		S	creen:					
Middaul Mil	ent Point Do	escription	: 70	<u> </u>	DETH			Pum	Pump Intake: Q /									
LNAPL Static (ft-bmp) Level (oth to Water (ft-bmp)		Well Total Depth (ft-bmp)			r in it	LNAPL Thick (ft-bmp)	i i	One (1) Casing Volume (galions)		g Ca s) Vol	e (3) sing imes lons)	Above Screen Volume	Screen Volume			
		3.79		12.29		8.50		ND		1.36		4.						
Well Dia	meter (In)	Gal	ions/F	oot		Field	eld Equipment:											
	0.75				6 Pu		je Method:	2	sta	معہ		·	·					
0.75 2	4 6	0.02	0.16		0.65	1.47	Well	Condition:				ood						
Time	Casing / Screen	9011) F(1(1H()		Rate m)	Water Level (ft-bmp)	р	Н	Temperature (°C)	Turbidity (NTU)		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations			
1630		0				7.0	3	13.8	OVER	0-	237	3.54	-117	Nue	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		1				(s.º	99	15.0	352	0.	217	2.22	-127	Clo				
		2				۹۰۰۹۰		15.4	125	0 -	227	1.31	-129	clear				
. 30						6.97		15.5	67.8	6.	214	0.51 -129						
638		Ч				٠.٠	96	15.6	523	0.	201	0.48	- 131					
														-				
Purge Start Time			e Flow	Total Gallons Purged		Total Casing Volumes Purged		80% Recovery Water Level Depth	at Sa	er Level ampling (ft-bmp)	Colle	nple oction ne	Sample Identification					
1630 1638 Notes:		0.5 4.08		80	3		5.49			1645		MW-2M						

r rojact it	ame: Miss o.: EM tification:	<u>5009 C</u>		OCK				pared By		Z S '				
	nent Point D	escription	- 25 " Tox	NORT	-1.1				امرو	14/V	vet s	cr ee n:		
Depth (LNAPI (ft-bm)	o De Stati	pth to Water (ft-bmp)	Well To	al Depth	Wate Colum Helgi (ft)	tn	LNAPL Thic	E .	One (1 Volume		ns) Vol	sing umes	Above Screen Volume	Screer Volume
ND	3.5	2	8.7	1	5-19	***	ND		0.8	 ろ	2.		-	
Well Di	ameter (in)		Gallo	n#/Foot		Field	d Equipment	: 1)						
		0.75	2	4	6	Purş	je Method:		- C	-	2 510	ge_		
0.75	4 6	0.02	0.16	0.65	1,47	Well	Condition:		<u>2 4</u>	48	<u> </u>			
Time	Casing / Screen	Volume Purged (gallons)	Flow Rat (gpm)	e Wate Leve (ft-brr	el p	H	Temperature (°C)	Turbidity (NTU)		uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations
945		0			7.0	5	11.3	57.5	0.2	71	5.79	-102	()=	EAR
1					7.0	02	11.9	45.0	0.2	65	3.12	-107		
<u> </u>		2		-	6.9	5	12.6	ו, רך	0.2	62	2.68	-109		
100		¥2.°	75		<u>(6.9</u>	2	12.9	91.8	0.2	45	2.17	-107	1	/
Purge Start Time	Purge End Time	Averag (gp		ital Gallons Purged	Total Co Volum Purg	nes .	80% Recovery Water Leve Depth	, ∣atSa	er Level ampling (ft-bmp)	Colle	nple ection ne	Sam	nple Identificati	ion
945	1001	0.1	9	2.75	3.3	١	4.56	4.4	10	101	3	MW -	20	
lotes:	DTW =	3.12 0	2-28	-07 /	WEL	L V	1	24 @	2.7		allons	. –	4-7	

Project I	Name;	Miss	on Vo	illey !	Roc	<u></u>			Date	# 2	-28-	70	,			
Nell Ide		EME	5009 C							ared By		7 S				
			<u>ww</u>	- 90						ther c		/\/\	€T \$	Cfeen:		
n-mouse	AHOHL	POINT DE	scription	* TC	<u>>C 1</u>	JOETI	H	·	Pum	p intak	: 18	/				
Depth LNAF (ft-bm	L	Static	th to Water (ft-bmp)	Well 1	rotal t t-bmp	- 1	Wate Colum Heigh (ft)	ın	LNAPL Thick (ft-bmp)		One (* Volum	i) Casin (gallor	g Ca is) Vok	e (3) sing ames ions)	Above Screen Volume	Screen Volume
ND		3,5	2.	24	. <u>7</u> 8	>	20.70	م	ND		3.3	2_	9.0		-	
Well 5	Diame	ter (In)		Ga	ions/i	Foot		Fie	ld Equipment	• \	toe	L .	<u> </u>	\ 0		
			0.75	2		4	6	Pui	rge Method:		١٥٧. کي ي	_		Hage	<u>*</u>	
0.75		4 6	0.02	0.16		0.65	1.47	We	ii Conditions	•••••	(500	1				
Time	Casing	j / Screen	Volume Purged (gallons)	Flow (gp		Wate Leve (ft-bm)	ام آ	Н	Temperature (°C)	Turbidit (NTU)		luctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1040			0				ري . د	19	19.5	78.0	0	304	2.92	-112	CIE	A-Q_
-			2			ļ	6.0		19.1	85.3	٥.	3 07	2.31	-115	1	
			ا ل	<u> </u>		ļ	6.9		181	112.8	2 0 . 2	282	0.47	-135		
\downarrow	 		- 				6.7		17.7	100.2	0.	292	0.02	-143		
100			16		···		٠.٠		17.6	119.8		297	0.02	-142	V	
							6.7	Ι (φ	17.5	178.8	0.	290	0.11	- 140	Clou	dy
Purge Sta Time	rt F	Purge End Time		je Flow om)		Gallons rged	Total C Volur Purg	nes ັ	80% Recovery Water Leve Depth	at S	er Level ampling (ft-bmp)	Colle	mple ection me	Sam	ple Identificat	ion
1040		1100	0	5	lo	>	3.0	1	7.67	5.	Σ1	110	9	MW - 9	2 1	

Well Iden	itification:	5009 C	1114				Date: Prepar	ed By:		22				,,
Measure	ment Point i	Description		12004	-		Weath	رے intake:	2007	<u>/w</u>	<u> </u>	3creen:		
Depth LNAP (ft-bm	L Stat	opth to Ic Water I (ft-bmp)	Well Total (ft-bm		Water Column Height (ft)	1 LNAPL	Thickne	986	One (1) Casir (gallo	ig Ca is) Vol	ee (3) Ising Iumes Ilons)	Above Screen Volume	Screen Volume
ND	Ч	84.	20.5	0	16.02	- 12	Ø		25	5 lp	7.0	۰9		-
Well Di	lameter (in)		Gallons	/Foot		Field Equi	ment:							
· C		0.75	2	4	6	Purge Met	od:	2	sta	0 & A				······································
0.75) 4	0.02	0.16	0.65	1.47	Well Condi	tion:		1 000	\circ				
Time	Casing / Screen	Volume Purged (gallons)	Flow Rate (gpm)	Water Level (ft-bmp)	pН	Temper		urbidity NTU)	Cond	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1125		0			6.7	7 19.	5 0	VER	0.1	(b2_	2.48	-97	MUR	KU
	<u>,</u>	<u> 2</u> 4			۲.ما			 	ο.	انها	2.12	- 99		-)
		ره			ا ال					159	08-0	-104		
135		8			له.ره		φ			167	0.02	-110		
						J (1.	2 8	.5B	9.	170	0.11	-113	1 1	
							004							
Purge Start Time	Purge En Time	d Averag	,	Gallons irged	Total Cas Volume Purge	Red Wate	0% overy r Level	Water at Sam Time (ft	pling		nple ection ne	Sam	ple Identificat	ion
1125	1135	0	8	8	3.13		68	5.3	3	114	10	MW-1	19	-
Notes:	ma	= 4·30	© 2-	28-07			· · · · · · · · · · · · · · · · · · ·					<u>,</u>		

	et Missic	on Va	Mey Re	ء دلاس			Date:					
roject No.:	EM5	<u>009 C</u>	·				Prepared E	ly: Mo	Z S			· / · · · · · · · · · · · · · · · · · ·
Well Identific							Weather			8сге	en:	
deasuremen	t Point Des	cription	TOC	MORT	++		Pump Inta	ke:				
Depth to LNAPL (ft-bmp)	Dept Static (Level (f	Water	Well Tota (ft-b	-	Water Colum Heigh (ft)	n LNAPL	. Thickness t-bmp)	}) Casing (gallons)	Three (3 Casing Volume (gallons	Scree Scree	n Screen
ND	3.5	6	22. 6	>5							-	
Well Diam	eter (in)		Gallon	s/Foot		Field Equi	oment:	Hoer	A 5	2 5400	. 0	
		0.75	2	4	6	Purge Met	hodi) -		2 stag	2	
0.75 2	4 6	0.02	0.16	0.65	1.47	Well Cond	tion	و ک				
Time Cas	ling / Screen	Volume Purged (gallons)	Flow Rate (gpm)	Wat Lev (ft-bn	el pl	Tempe		dity Condi	uctivity Di		ORP (mV)	Observations
												 /
		-,										
· ·											-	
Purge Start Time	Purge End Time		ge Flow Toom)	tal Gallons Purged	Total C Volun Purg	nes Re ed Wat	er level at	ater Level Sampling ne (ft-bmp)	Sample Collectio Time		Sample Iden	tification

Project N	ame:	Miss	ion Vo	elley R	ock.			Date:						···	
Project N	O.I	EM	5009 C	,				Prepa	red By:		S				
Well Iden			· PUNU		٩	· · · · · · · · · · · · · · · · · · ·		Weat	1011			Scr	een:		
Measuren	nent	Point D	escription	# TOC	NORTH			Pump	Intake	t		····			
Depth (LNAPi (ft-bm)	L	Static	pth to c Water (ft-bmp)		tal Depth Omp)	Wate Colum Heigh (ft)	n LNA	APL Thicki (ft-bmp)		One (1) Volume (_	Three Casin Volum (gallor	ig es	Above Screen Volume	Screen Volume
ND		3.0	5ء	23.	اها										
Well D	lamei	ter (In)		Gaile	ns/Foot		Field Ed	ıul pment:	14	oe.b		2 et	008		
			0.75	2	4	6	Purge N	lethodi	2	shag	د ف		0)	
0.75 2		4 6	0.02	0.16	0.65	1,47	Well Co	nditions	_	Dood	ر_				
Time	Casing	g / Screen	Volume Purged (galions)	Flow Re (gpm)	1 0	/el p	H ^{Ter}	nperature (°C)	Turbidity (NTU)	Condu	Ctivity	ssolved xygen mg/L)	ORP (mV)	Obs	ervations
									·····	<u> </u>					
												_			
												_	-,		
Purge Star Time	rt I	Purge En Time		age Flow gpm)	Total Gallon: Purged	Total C Volu Pur	mes	80% Recovery Water Level Depth	at S	er Level ampling (ft-bmp)	Sample Collection Time		Sar	mple Identifica	ition
Notes:															
140 1182 :		× 70	conc	Auct c	ground	اسملت	~ €0	mbur	3						

Project I	Ma .	. 10/1/23	non Va	elle y	V-0	دلا			Date	•					· · · · · · · · · · · · · · · · · · ·	
Well Ide			5009 C		. 105					ared B	m M	Z S				
			escription						Wea					Screen:		
		· Ollite	escription	77	×.	NO07	++		Pum	p Intak	e:					
Depth LNAF (ft-bm	·L	Stati	pth to c Water (ft-bmp)		Total It-bm _l	Depth P)	Wate Colum Heigi (ft)	nn nt	LNAPL Thick (ft-bmp)		One (1 Volume) Casing (gallon:	Ca S) Vo	ree (3) using tumes ilons)	Above Screen Volume	Screen Volume
ND		ص)	.47	19	.70						 , <u>.</u> .		(ya	iions)	· · · · · · · · · · · · · · · · · · ·	
Well D	lame	ter (in)		Ga	llons/	Foot		Fle	old Equipment				$\overline{}$			
		· · ·	0.75	2	"	4	6	Pu	rge Method:) ~ (¥ 5	25	age)	
0.75 (2		4 6	0.02	0.1	3)	0.65	1.47	We	ell Condition:		(2000) 5 (21)	r Se		·		
Time	Casing	g / Screen	Volume Purged (gallons)	Flow (gp		Wate Leve (ft-bm)	р	Н	Temperature (°C)	Turbidit (NTU)	y Cond	uctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
		 .														
						 										
			· · · ·			 										
Purge Star Time	t F	ourge End Time		je Flow om)	Total Pu	Gallons irged	Total C Volun Purg	nes	80% Recovery Water Level Depth	at S	er Level ampling (ft-bmp)	Sam Collec Tim	tion	Sar	nple Identificat	ion
lotes:	LÆ	R +	o cor	مطرد	+ 6	groor	d wa	tr	2 samp	lina	2					

APPENDIX C CERTIFICATE OF DISPOSAL

Generator Name:

Mission Valley Rock

INTEGRATED WASTESTREAM MANAGEMENT, INC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1999 FAX: 408.433.9521

CERTIFICATE OF DISPOSAL

Facility Name:

3/12/07

SP120307-MISC

Mission Valley Rock Co.

Address:	7999 Athenour Way	Address:	7999 Athenour Way
	Sunol, CA	_	Sunol, CA
Contact:	Mort Calvert	Facility Contact:	Mike Schenone, TAIT Environmental
Phone:	925-862-2257	Phone:	916-858-1090
	IWM Job#:	96717-DE	
	Description of Waste:	5 Drums of	
		Non-Hazardou	ıs
		Water	

Removal Date:

Ticket #:

Transp	orter Information	Dispos	sal Facility Information
Name:	IWM, Inc.	Name;	Seaport Refining & Environmental
Address:	950 Ames Avenuc	Address:	700 Seaport Blvd
	Milpitas, CA 95035		Redwood City, CA 94063
Phone:	(408)942-8940	Phone:	(650) 364-1024

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. DeLon William 2	3/12/07
Authorized Representative (Print Name and Signature)	Date

APPENDIX D TEM LABORATORY REPORT

05 April 2007

Michael Schenone Tait Environmental -- Rancho Cordova 11280 Trade Center Drive Rancho Cordova, CA 95742

RE: Mission Valley Rock

Enclosed are the results of analyses for samples received by the laboratory on 03/02/07 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Albert Vargas For Maria Bonifacio

allee Wargas

Project Coordinator

Tait Environmental -- Rancho Cordova 11280 Trade Center Drive

Rancho Cordova CA, 95742

Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4S	T700258-01	Water	02/26/07 11:35	03/02/07 09:00
MW-4D	T700258-02	Water	02/26/07 12:20	03/02/07 09:00
MW-7S	T700258-03	Water	02/26/07 12:55	03/02/07 09:00
MW-8	T700258-04	Water	02/26/07 13:24	03/02/07 09:00
MW-10S	T700258-05	Water	02/26/07 14:34	03/02/07 09:00
MW-12LF	T700258-06	Water	02/26/07 15:20	03/02/07 09:00
MW-5S	T700258-07	Water	02/26/07 16:08	03/02/07 09:00
EQ BLANK 1	T700258-08	Water	02/26/07 00:00	03/02/07 09:00
MW-11LF	T700258-09	Water	02/27/07 08:58	03/02/07 09:00
MW-3	T700258-10	Water	02/27/07 09:45	03/02/07 09:00
MW-12S	T700258-11	Water	02/27/07 10:25	03/02/07 09:00
MW-9S	T700258-12	Water	02/27/07 10:43	03/02/07 09:00
MW-9LF	T700258-13	Water	02/27/07 11:33	03/02/07 09:00
MW-10LF	T700258-14	Water	02/27/07 12:15	03/02/07 09:00
MW-1	T700258-15	Water	02/27/07 12:45	03/02/07 09:00
MW-10D	T700258-16	Water	02/27/07 13:19	03/02/07 09:00
MW-6D	T700258-17	Water	02/27/07 14:18	03/02/07 09:00
MW-11S	T700258-18	Water	02/27/07 14:50	03/02/07 09:00
MW-2D	T700258-19	Water	02/27/07 15:30	03/02/07 09:00
MW-6S	T700258-20	Water	02/27/07 16:12	03/02/07 09:00
MW-2M	T700258-21	Water	02/27/07 16:45	03/02/07 09:00
EQ BLANK 2	T700258-22	Water	02/27/07 00:00	03/02/07 09:00
MW-2S	T700258-23	Water	02/28/07 10:13	03/02/07 09:00
MW-9D	T700258-24	Water	02/28/07 11:05	03/02/07 09:00
MW-11D	T700258-25	Water	02/28/07 11:40	03/02/07 09:00
EQ BLANK 3	T700258-26	Water	02/28/07 00:00	03/02/07 09:00

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tayon

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-4S T700258-01(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 80	15m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			85.4 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015n	1								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/05/07	EPA 8015m	
Surrogate: p-Terphenyl			104 %	65-	135	"	"	"	"	
Volatile Organic Compounds by	EPA Method 8	3260B								
Methyl tert-butyl ether	ND		1.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			103 %	88.8	-117	"	"	"	"	
Surrogate: Dibromofluoromethane			84.9 %	78.6	-135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96.4 %	83.5	-119	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-4D T700258-02(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			84.4 %	65-13	25	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			115 %	65-13	25	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Benzene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	n	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			96.1 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			81.9 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.9 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-7S T700258-03(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 802	15m								
C6-C12 (GRO)	55		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			87.4 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m	1								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/05/07	EPA 8015m	
Surrogate: p-Terphenyl			102 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 8	260B								
Ethylbenzene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Benzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	_		101 %	83.5-	119	"	"	"	"	
Surrogate: Toluene-d8			97.6 %	88.8-	117	"	"	"	"	
Surrogate: Dibromofluoromethane			80.2 %	78.6-	135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-8 T700258-04(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratories	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			89.0 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/05/07	EPA 8015m	
Surrogate: p-Terphenyl			108 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Ethyl tert-butyl ether	ND		2.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	II .	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			95.1 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			82.6 %	78.6-1.	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96.4 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-10S T700258-05(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 8015	5m								
C6-C12 (GRO)	54		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			88.0 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			108 %	65-13	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
m,p-Xylene	ND		1.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.1 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			84.6 %	78.6-1	35	"	"	"	"	
Surrogate: Toluene-d8			95.9 %	88.8-1	17	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allen Targas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-12LF T700258-06(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorio	es, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	15m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			89.8 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m	Į.								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			83.5 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
Tert-butyl alcohol	ND		10	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			80.0 %	78.6-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.8 %	83.5-	119	"	"	"	"	
Surrogate: Toluene-d8			96.2 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-5S T700258-07(Water)

					- /					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			80.8 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	0.36	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	_
Surrogate: p-Terphenyl			86.8 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Toluene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	3.2		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Surrogate: Toluene-d8			99.2 %	88.8-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.8 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			86.6 %	78.6-1	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

EQ BLANK 1 T700258-08(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			86.6 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			125 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Ethylbenzene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Benzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Surrogate: Toluene-d8			106 %	88.8-	17	"	"	"	"	
Surrogate: Dibromofluoromethane			83.0 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95.9 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-11LF T700258-09(Water)

Al.4.	Damile	MDI	Reporting	T Inite	Dilution	Datah	D	A. n. a. la	Matha d	Natar
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratories	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			89.8 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			108 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Tert-butyl alcohol	ND		10	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	110		1.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.1 %	83.5-1	19	"	"	"	"	
Surrogate: Toluene-d8			99.6 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			85.9 %	78.6-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-3 T700258-10(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 80	15m								
C6-C12 (GRO)	56		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			91.8 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015n	1								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			86.5 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 8	3260B								
Toluene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	43		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			98.2 %	88.8-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96.9 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			83.4 %	78.6-1	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-12S T700258-11(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratories	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			86.8 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			111 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Ethylbenzene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Benzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.2 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			86.0 %	78.6-1.	35	"	"	"	"	
Surrogate: Toluene-d8			102 %	88.8-1	17	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-9S T700258-12(Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	130		50	ug/l	1	7030216	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			92.8 %	65-13	25	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			104 %	65-13	25	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
m,p-Xylene	1.0		1.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
Toluene	0.58		0.50	"	"	"	"	"	"	
Ethylbenzene	8.4		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	0.79		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			97.6 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			91.5 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			94.9 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-9LF T700258-13(Water)

	- 1		Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015	5m								
C6-C12 (GRO)	530		50	ug/l	1	7030216	03/02/07	03/02/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			95.4 %	65-13	25	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			86.2 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by 1	EPA Method 82	60B								
Methyl tert-butyl ether	ND		1.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	6.4		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
m,p-Xylene	19		1.0	"	"	"	"	"	"	
Ethylbenzene	31		0.50	"	"	"	"	"	"	
Benzene	39		0.50	"	"	"	"	"	"	
Toluene	5.0		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			86.9 %	78.6-1	35	"	"	"	"	
Surrogate: Toluene-d8			97.2 %	88.8-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			102 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-10LF T700258-14(Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	580		50	ug/l	1	7030216	03/02/07	03/03/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			91.8 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			110 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Ethyl tert-butyl ether	ND		2.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Ethylbenzene	0.51		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
m,p-Xylene	3.6		1.0	"	"	"	"	"	"	
Toluene	1.1		0.50	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Benzene	1.0		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			101 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			95.0 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			99.0 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allen Targas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-1 T700258-15(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	15m								
C6-C12 (GRO)	430		50	ug/l	1	7030216	03/02/07	03/03/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			84.6 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl		·	114 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 8	260B								
o-Xylene	ND		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	1.1		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	7.9		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			99.6 %	88.8-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			93.1 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane			83.0 %	78.6-	135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-10D T700258-16(Water)

			Reporting		•					
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801:	5m								
C6-C12 (GRO)	850		50	ug/l	1	7030216	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			94.8 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	0.20	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			110 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Benzene	2.7		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	0.90		0.50	"	"	"	"	"	"	
m,p-Xylene	2.3		1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	28		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	n .	"	"	"	"	n .	
Surrogate: Dibromofluoromethane			94.4 %	78.6-1	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			103 %	83.5-1	119	"	"	"	"	
Surrogate: Toluene-d8			101 %	88.8-1	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-6D T700258-17(Water)

				•						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	150		50	ug/l	1	7030216	03/02/07	03/06/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			95.8 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	0.47	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			93.8 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
m,p-Xylene	ND		1.0	ug/l	1	7030214	03/02/07	03/03/07	EPA 8260B	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	48		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			101 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			82.9 %	78.6-1	35	"	"	"	"	
Surrogate: Toluene-d8			99.2 %	88.8-1	17	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-11S T700258-18(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratories	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	300		50	ug/l	1	7030216	03/02/07	03/03/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			92.0 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	0.54	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			107 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
Tert-amyl methyl ether	ND		2.0	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	4.3		1.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Surrogate: Toluene-d8			98.0 %	88.8-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			106 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane			85.8 %	78.6-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-2D T700258-19(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	<u>aboratori</u>	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	15m								
C6-C12 (GRO)	140		50	ug/l	1	7030216	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			94.8 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	1.1	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl		·	103 %	65-	135	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
m,p-Xylene	1.1		1.0	ug/l	1	7030214	03/02/07	03/03/07	EPA 8260B	
Methyl tert-butyl ether	25		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Ethylbenzene	0.63		0.50	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	n .	
Surrogate: Toluene-d8			100 %	88.8	-117	"	"	"	"	
Surrogate: Dibromofluoromethane			86.8 %	78.6	-135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			100 %	83.5	-119	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-6S T700258-20(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	1100		50	ug/l	1	7030216	03/02/07	03/03/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			91.4 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	3.0	0.098	0.50	mg/l	1	7030208	03/02/07	03/07/07	EPA 8015m	
Surrogate: p-Terphenyl			109 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
Benzene	0.79		0.50	ug/l	1	7030214	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	1.1		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	54		1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			105 %	88.8-	117	"	"	"	"	
Surrogate: Dibromofluoromethane			90.8 %	78.6-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			114 %	83.5-	119	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-2M T700258-21(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 801	5m								
C6-C12 (GRO)	310		50	ug/l	1	7030217	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			101 %	65-13	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			108 %	65-13	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
Tert-butyl alcohol	ND		10	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Benzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Toluene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	0.65		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	25		1.0	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			103 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			106 %	83.5-1	19	"	"	"	"	
Surrogate: Toluene-d8			107 %	88.8-1	17	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

EQ BLANK 2 T700258-22(Water)

Analyta	Result	MDL	Reporting Limit	Units	Dilution	Batch	Dranara	Anolyzed	Method	Note:
Analyte	Resuit	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratories	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	ND		50	ug/l	1	7030217	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			106 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			115 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Methyl tert-butyl ether	ND		1.0	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Toluene	ND		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			106 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			98.6 %	78.6-1.	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			102 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayons

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C

Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-2S T700258-23(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	es, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	140		50	ug/l	1	7030217	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			94.4 %	65-1.	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	6.6	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			100 %	65-1.	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	260B								
Toluene	ND		0.50	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	ND		0.50	"	"	"	"	"	"	
Methyl tert-butyl ether	33		1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	ND		0.50	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
m,p-Xylene	ND		1.0	"	"	"	"	"	II .	
Surrogate: Toluene-d8			106 %	88.8-	117	"	"	"	"	
Surrogate: Dibromofluoromethane			108 %	78.6-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			104 %	83.5-	119	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-9D T700258-24(Water)

				(,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydroca	rbons by EPA 80	015m								
C6-C12 (GRO)	210000		5000	ug/l	100	7030217	03/02/07	03/06/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			113 %	65-	-135	"	"	"	"	
Extractable Petroleum Hydroc	arbons by 80151	n								
Diesel Range Hydrocarbons	4.5	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	D-0
Surrogate: p-Terphenyl			77.8 %	65-	-135	"	"	"	"	
Volatile Organic Compounds b	y EPA Method	8260B								
Tert-amyl methyl ether	ND		2.0	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Toluene	6200		50	"	100	"	"	03/07/07	"	
Methyl tert-butyl ether	ND		1.0	"	1	"	"	03/06/07	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	2100		12	"	25	"	"	03/07/07	"	
Benzene	1900		12	"	"	"	"	"	"	
m,p-Xylene	6900		100	"	100	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	1	"	"	03/06/07	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	2400		12	"	25	"	"	03/07/07	n .	
Surrogate: Toluene-d8			103 %	88.8	B-117	"	"	03/06/07	"	
Surrogate: 4-Bromofluorobenzene			99.4 %	83.5	5-119	"	"	"	"	
Surrogate: Dibromofluoromethane			90.4 %	78. <i>6</i>	5-135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tayons

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

MW-11D T700258-25(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorio	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 8015	5m								
C6-C12 (GRO)	7400		50	ug/l	1	7030217	03/02/07	03/05/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			135 %	65-1	35	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	13	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			107 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Di-isopropyl ether	ND		2.0	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Ethylbenzene	17		0.50	"	"	"	"	"	"	
m,p-Xylene	30		1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	18		1.0	"	"	"	"	"	"	
o-Xylene	24		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	8.4		0.50	"	"	"	"	"	"	
Toluene	16		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
Surrogate: Toluene-d8			108 %	88.8-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			119 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane			100 %	78.6-	135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone

Reported: 04/05/07 10:42

EQ BLANK 3 T700258-26(Water)

			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 801	5m								
C6-C12 (GRO)	94		50	ug/l	1	7030217	03/02/07	03/06/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			103 %	65-13	5	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030209	03/02/07	03/06/07	EPA 8015m	
Surrogate: p-Terphenyl			134 %	65-13	5	"	"	"	"	
Volatile Organic Compounds by	EPA Method 82	60B								
Methyl tert-butyl ether	ND		1.0	ug/l	1	7030215	03/02/07	03/06/07	EPA 8260B	
Toluene	1.3		0.50	"	"	"	"	"	"	
Tert-butyl alcohol	ND		10	"	"	"	"	"	"	
o-Xylene	0.91		0.50	"	"	"	"	"	"	
m,p-Xylene	2.8		1.0	"	"	"	"	"	"	
Ethylbenzene	1.1		0.50	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND		2.0	"	"	"	"	"	"	
Di-isopropyl ether	ND		2.0	"	"	"	"	"	"	
Benzene	ND		0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND		2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8			109 %	88.8-1	17	"	"	"	"	
Surrogate: Dibromofluoromethane			96.4 %	78.6-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			104 %	83.5-1	19	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030216 - EPA 5030 GC											
Blank (7030216-BLK1)					Prepared	& Analyz	ed: 03/02/	07			
Surrogate: 4-Bromofluorobenzene	36.9			ug/l	50.0		73.8	65-135			
C6-C12 (GRO)	ND		50	"							
LCS (7030216-BS1)					Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	44.4			ug/l	50.0		88.8	65-135			
C6-C12 (GRO)	5410		50	"	5500		98.4	75-125			
Matrix Spike (7030216-MS1)		Source	T700258-	20	Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	54.0			ug/l	50.0		108	65-135			
C6-C12 (GRO)	6500		50	"	5500	1100	98.2	65-135			
Matrix Spike Dup (7030216-MSD1)		Source	: T700258-	20	Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	54.9			ug/l	50.0		110	65-135			
C6-C12 (GRO)	6600		50	"	5500	1100	100	65-135	1.53	20	
Batch 7030217 - EPA 5030 GC											
Blank (7030217-BLK1)					Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	40.3			ug/l	50.0		80.6	65-135			
C6-C12 (GRO)	ND		50	"							
LCS (7030217-BS1)					Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	46.9			ug/l	50.0		93.8	65-135			
C6-C12 (GRO)	5270		50	"	5500		95.8	75-125			
Matrix Spike (7030217-MS1)		Source	т700258-	26	Prepared:	03/02/07	Analyzed	1: 03/05/07			
Surrogate: 4-Bromofluorobenzene	52.3			ug/l	50.0		105	65-135			
C6-C12 (GRO)	5270		50	"	5500	94	94.1	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Wargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7030217 - EPA 5030 GC

Matrix Spike Dup (7030217-MSD1)		Source: T700258-26	5	Prepared:	03/02/07	Analyzed	d: 03/05/07			
Surrogate: 4-Bromofluorobenzene	53.7	ı	ug/l	50.0		107	65-135			
C6-C12 (GRO)	5480	50	"	5500	94	97.9	65-135	3.91	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

Extractable Petroleum Hydrocarbons by 8015m - Quality Control SunStar Laboratories, Inc.

A	Damile	MDI	Reporting	I India	Spike	Source	0/DEC	%REC	DDD	RPD	Natas
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7030208 - EPA 3510C GC											
Blank (7030208-BLK1)					Prepared:	03/02/07	Analyzed	: 03/05/07			
Surrogate: p-Terphenyl	3.47			mg/l	4.00		86.8	65-135			
Diesel Range Hydrocarbons	ND	0.098	0.50	"							
LCS (7030208-BS1)					Prepared:	03/02/07	Analyzed	: 03/07/07			
Surrogate: p-Terphenyl	4.86			mg/l	4.00		122	65-135			
Diesel Range Hydrocarbons	19.9	0.098	0.50	"	20.0		99.5	75-125			
Matrix Spike (7030208-MS1)		Source	: T700258-	01	Prepared:	03/02/07	Analyzed	: 03/07/07			
Surrogate: p-Terphenyl	4.65			mg/l	4.00		116	65-135			
Diesel Range Hydrocarbons	19.0	0.098	0.50	"	20.0	ND	95.0	75-125			
Matrix Spike Dup (7030208-MSD1)		Source	: T700258-	01	Prepared:	03/02/07	Analyzed	: 03/07/07			
Surrogate: p-Terphenyl	3.89			mg/l	4.00		97.2	65-135			
Diesel Range Hydrocarbons	17.9	0.098	0.50	"	20.0	ND	89.5	75-125	5.96	20	
Batch 7030209 - EPA 3510C GC											
Blank (7030209-BLK1)					Prepared:	03/02/07	Analyzed	: 03/06/07			
Surrogate: p-Terphenyl	4.69			mg/l	4.00		117	65-135			
Diesel Range Hydrocarbons	ND	0.098	0.50	"							
LCS (7030209-BS1)					Prepared:	03/02/07	Analyzed	: 03/06/07			
Surrogate: p-Terphenyl	2.68			mg/l	4.00		67.0	65-135			
Diesel Range Hydrocarbons	16.1	0.098	0.50	"	20.0		80.5	75-125			
Matrix Spike (7030209-MS1)		Source	т700258-	21	Prepared:	03/02/07	Analyzed	: 03/06/07			
Surrogate: p-Terphenyl	4.48			mg/l	4.00		112	65-135			
Diesel Range Hydrocarbons	25.7	0.098	0.50	"	20.0	ND	128	75-125			QM-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allen Tangas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

Extractable Petroleum Hydrocarbons by 8015m - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7030209 - EPA 3510C GC

Matrix Spike Dup (7030209-MSD1)		Source:	Т700258-21	Prepared:	03/02/07	Analyze	d: 03/06/07			
Surrogate: p-Terphenyl	4.85		mg/l	4.00		121	65-135			
Diesel Range Hydrocarbons	19.2	0.098	0.50 "	20.0	ND	96.0	75-125	29.0	20	OM-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Targas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Spike

Source

%REC

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Reporting

		Reporting		Spike	Source		/OKEC		KFD	
Analyte	Result	MDL Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7030214 - EPA 5030 GC	MS									
Blank (7030214-BLK1)				Prepared:	03/02/07	Analyzed	d: 03/06/07			
Surrogate: Toluene-d8	7.63		ug/l	8.00		95.4	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.88		"	8.00		98.5	83.5-119			
Surrogate: Dibromofluoromethane	6.78		"	8.00		84.8	78.6-135			
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
LCS (7030214-BS1)				Prepared:	03/02/07	Analyzed	d: 03/03/07			
Surrogate: Toluene-d8	7.97		ug/l	8.00		99.6	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.36		"	8.00		92.0	83.5-119			
Surrogate: Dibromofluoromethane	7.92		"	8.00		99.0	78.6-135			
Benzene	17.3	0.50	"	20.0		86.5	75-125			
Γoluene	17.0	0.50	"	20.0		85.0	75-125			
Matrix Spike (7030214-MS1)		Source: T700258	-07	Prepared:	03/02/07	Analyzed	d: 03/03/07			
Surrogate: Toluene-d8	7.99		ug/l	8.00		99.9	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.48		"	8.00		93.5	83.5-119			
Surrogate: Dibromofluoromethane	7.44		"	8.00		93.0	78.6-135			
Benzene	17.3	0.50	"	20.0	ND	86.5	75-125			
Γoluene	17.4	0.50	"	20.0	ND	87.0	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Tagas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Spike

Source

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Reporting

Analyte	Result	MDL Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7030214 - EPA 5030 GC	MS									
Matrix Spike Dup (7030214-MSD	1)	Source: T700258-	-07	Prepared:	03/02/07	Analyzed	1: 03/03/07			
Surrogate: Toluene-d8	7.66		ug/l	8.00		95.8	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.52		"	8.00		94.0	83.5-119			
Surrogate: Dibromofluoromethane	7.76		"	8.00		97.0	78.6-135			
Benzene	17.4	0.50	"	20.0	ND	87.0	75-125	0.576	20	
Toluene	17.2	0.50	"	20.0	ND	86.0	75-125	1.16	20	
Batch 7030215 - EPA 5030 GC	EMS									
Blank (7030215-BLK1)				Prepared:	03/02/07	Analyzed	1: 03/06/07			
Surrogate: Toluene-d8	8.67		ug/l	8.00		108	88.8-117			
Surrogate: 4-Bromofluorobenzene	8.53		"	8.00		107	83.5-119			
Surrogate: Dibromofluoromethane	9.68		"	8.00		121	78.6-135			
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
LCS (7030215-BS1)				Prepared:	03/02/07	Analyzed	d: 03/07/07			
Surrogate: Toluene-d8	8.20		ug/l	8.00		102	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.65		"	8.00		95.6	83.5-119			
Surrogate: Dibromofluoromethane	7.07		"	8.00		88.4	78.6-135			
Benzene	20.4	0.50	"	20.0		102	75-125			
Toluene	22.4	0.50	"	20.0		112	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

aller Vargas

11280 Trade Center Drive Rancho Cordova CA, 95742 Project: Mission Valley Rock

Project Number: EM5009C Project Manager: Michael Schenone **Reported:** 04/05/07 10:42

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Dotah	70202	15	TD A	5020	GCMS
Katch	70.507	- C.	H.PA	20.30	CTUNIS

Matrix Spike (7030215-MS1)		Source: T700258-	22	Prepared:	03/02/07	Analyze	d: 03/07/07			
Surrogate: Toluene-d8	8.16		ug/l	8.00		102	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.88		"	8.00		98.5	83.5-119			
Surrogate: Dibromofluoromethane	7.72		"	8.00		96.5	78.6-135			
Benzene	20.0	0.50	"	20.0	ND	100	75-125			
Toluene	19.8	0.50	"	20.0	0.15	98.2	75-125			
Matrix Spike Dup (7030215-MSD1)		Source: T700258-	22	Prepared:	03/02/07	Analyze	d: 03/06/07			
Surrogate: Toluene-d8	8.71		ug/l	8.00		109	88.8-117			
Surrogate: 4-Bromofluorobenzene	8.58		"	8.00		107	83.5-119			
Surrogate: Dibromofluoromethane	7.44		"	8.00		93.0	78.6-135			
Benzene	20.4	0.50	"	20.0	ND	102	75-125	1.98	20	
Toluene	22.4	0.50	"	20.0	0.15	111	75-125	12.3	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tagas

Tait Environmental -- Rancho Cordova Project: Mission Valley Rock

11280 Trade Center DriveProject Number: EM5009CReported:Rancho Cordova CA, 95742Project Manager: Michael Schenone04/05/07 10:42

Notes and Definitions

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

J Detected but below the Standard Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

allee Tayas

Chain of Custody Record

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

8920966

	12/ 2012 20	X	74-S					-		dnyc	рiЧ			to client	Refurn	эвср ——	oosal @ \$2.00 e	Sample disposal Instructions: Disp
	all and and		time: <u>STANDA</u>	punc	u sta	Tur												
10	TAT .QTS							əwi	1/8	Date		1	ature)	y: (sign:	Received by	əu	TiT \ Date	Relinquished by: (signature)
+	\neg TAT GT2 $^\circ$	00%	od condition/cold	ob pə/	riəsə	Я	P	2	•	1	-0×	2	21	h/no	non /	1		9913
	•	2 · ~	AN/WS tostni al				L	λ ime	جمر 1/3	Date		,	/ eun	iù fine λ : Λ	Paceived B	əu	iT ∫ Date ∫ Tir	Relinquished by: (signature)
	Provide EDF		AN/N/Seal		o uit	СЪ					201		- ll	Viel	mel	Lo	1-1-5	Mechan Schons
	setoN	SL	al # of containers				_ ا	-9wi	h	ם אוני מוני	"/	7	(ainia	United the	Received by	انڪ انڪ	iT \ etsC	Relinquished by: (signature)
	201014	_	ozodiotaco to # le	1		\overline{V}		T	Ι/(No.		Ι	(Oziite	uoi	d boylood	SHZI	, <u>i</u> , oto(1-WM
1		91 71		+	٠,	$\langle \cdot \rangle$	$\langle \cdot \rangle$			 			1	`	1	5121	1 1	WM-107E
H		S-1		+		×	文		-	攵		t				2511		71P-WM
H		21				文	攵			\propto						EHOI		2P-WM
\Box	4 A 14 15 A	11		1		X	X			X						5201		251-WM
		(\$)				X	X			X						Shb		E-WM
		30				X	X			X						828	10 15 50	NM-117F
П		-80				X	X			X								EO BANKT
\Box		۵				X	X			X						8091		22 - WM
		90				X	X			X				<u> </u>		1250		MW - 12 LF
		50				X	\boxtimes			\times				<u> </u>		トのナ 1		501- MM
		ho				X	X			X				<u> </u>		HZE1	<u> </u>	8-WW
		٤٥				X	X			X				<u> </u>		5521		SL-MW
\perp		Za				X	X			X		<u> </u>		1	1	1220	1 1	PH-MW
5		10				X	\boxtimes			X		L		101	SYTAW	2511	Tops/se	
Total # of containers	Comments/Preservative	Laboratory ID #		6010/7000 Title 22 Metals	8015M Ext./Carbon Chain	8015M (diesel)	8015M (gasoline)	8021 BTEX	8270	8260 BTEX, OXY only	8260 + OXY	8260	l .	stnoO qYT	Sample	əmiT	ste, Sample	G Gl algentia
	1 Project #: EN 5000 COC 72600	Slier	2020	ملح	5	-Υ	⊿ :10	lecto ch- #	လျ	-						Discous Fax:	Centre	Address: 11280 Trade Phone: Pur July -1239 Project Manager: ハバンと
									Dat					د	LNEWELL	DANALL	JATU3110	Client: TAIT ENVION

Chain of Custody Record

SunStar Laboratories, Inc. 3002 Dow Ave., Ste. 212 Tustin, CA 92780 714-505-4010

852anLD

		+	₩	€ .					_		ckup	Ыq		ţu	eilo of	Return	esch	<u>» \$2.00 ر</u>) Issoasi(Sample disposal Instructions: D
<u></u>	Whou hours	100	AQUA7	ime: S	ı pund	n sto	Tur													
G									əmi	1/€	Date		1	luature)	y: (sig	Received by	əw	iT \ etsC	J _	Relinquished by: (signature)
 	TAT .QTS	0.7	bloo\noi	ipuoo po	oo6 pə	viəɔə	В	9				7	Br	7/0	$\sqrt{2}$	20/11	1 -		95	36
			AN/NØ	s intact?	Seals) Wille	ت)ر ۱/€	oteO -£		,	luature)	bis)/	A beviece	əω	niT \ ətsC		Relinquished by: (signature)
	Provide EDF		AN/NW			to nis	сь					10		- 2	W.	Mms	7	0-1-5	- 2M	Michael Schus
	Notes	دد	erenistn					_	/در الله	16	Date •			مة (aunieul	6ıs). (Received by		ni / ete	п	Relinquished by: (signature)
	201014	122		T T	Ť				1	<u> </u>				(0)						
	- 	1	 	+	<u> </u>															
												-							_	EO BIYING S
1		92	<u> </u>	\perp	_ _		$\langle \rangle$	$\stackrel{\sim}{>}$		_	X				<u> </u>	1	0111		\longrightarrow	B11 - WM
H		52		++		<u> </u>	\Diamond	\Diamond			X	-	-			-	5011		+	PP-WN
\mathbb{H}	100° y	12	├	+-+-	-		\Diamond	\Diamond			\Diamond				-	 	2101	TO 8	770	52-MM
+	·	22	\vdash	+-		╁	₩.	KZ											<u>~ </u>	EQ BIANK S
H		12			_		文	\Rightarrow			X						2201			Mr - 2M
\Box		C2					X	X			X						21011			20 - WM
		الإ					X	X			X				<u> </u>		0851		\longmapsto	511 - WM
		(2)				<u> </u>	Ķ	X		<u> </u>	>					ļ	81H1		\longrightarrow	62-WM
		14				<u> </u>	X	$\langle \rangle$						40		DETAW	6151		+120	P01 - MM
υT	Comments/Preservative	91	-	+	 6	8	증	즗	8	00	 	8	00	y Ar		Type	9miT	ampled		Sample ID
Total # of containers	evite/geserQ\strommoQ	Laboratory			6010/7000	8015M	8015M (diesel)	8015M (gasoline)	8021	8270	8260	+ 0928	8260	ıtainer	_	Sample		'	٠ - ١	_, _
#		rat			70		Ž	Z	втех		ᄪ	+								
၂၄						Ext./Carbon Chain	dieg	gas	X		втех,	ОХҮ								
M		Ū,			Title	Ca	<u>ĕ</u>	음 i			OXY	`								
l ine		1			22	g		e)												
Š						ΙŌ		ļ			only									I
					Metals	lain													ĺ	I
						_														I
										i										
			<u> </u>					L	<u> </u>	<u> </u>	<u>L</u>					<u> </u>	l			
	coc \\ \frac{1501}{1001}									ED									 -	
				605													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	مكحه	5	Project Manager: M K.
	Project #: EMSOOGC	Cherd		~~~	حكمو	S		\underline{A} :10	otoel	Coll			•							Phone: 916 コロル
	Lag	روب	1/20	401	551	\sim	_:əu	Nan	toe	Pro				•••						Address: 11280 Tr
	- 6 10 -6								:ə	Dat				777	<u></u> ≥₩	> DY NA	N 1247	とい	<u>aon</u> ,	Client: TAT ENV

APPENDIX E LFR LABORATORY REPORT

SunStar Laboratories, Inc.

04 April 2007

James Gonzales LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827

RE: Hanson Aggregates

Enclosed are the results of analyses for samples received by the laboratory on 03/01/07 08:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio

Project Coordinator

Project: Hanson Aggregates
Project Number: 001-09480-02
Project Manager: James Gonzales

Reported: 04/04/07 11:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-12D	T700248-01	Water	02/28/07 11:25	03/01/07 08:45
MW-5D	T700248-02	Water	02/28/07 13:50	03/01/07 08:45
MW-7D	T700248-03	Water	02/28/07 15:45	03/01/07 08:45

SunStar Laboratories, Inc.

Project: Hanson Aggregates

Project Number: 001-09480-02 Project Manager: James Gonzales **Reported:** 04/04/07 11:24

MW-12D T700248-01(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aboratorie	es, Inc.					
Extractable Petroleum Hydroca	rbons by 8015r	n								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030107	03/01/07	03/02/07	EPA 8015m	
Surrogate: p-Terphenyl			127 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by	EPA Method 8	8260B								
o-Xylene	ND		0.50	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
Toluene	ND		0.50	н	11	11	н	11	"	
Tert-amyl methyl ether	ND		2.0	n	If	ır	11	11	Ħ	
Methyl tert-butyl ether	ND		1.0	11	11		#1	11	n	
m,p-Xylene	ND		1.0	0	It	it.	n	11	II .	
Ethylbenzene	ND		0.50	0	ıı	H	11	11	n	
Ethyl tert-butyl ether	ND		2.0	n	It	ır	11	11	n	
Tert-butyl alcohol	ND		10	u	н	и	u ·	O.	H	
Di-isopropyl ether	ND		2.0	н	n	11	If	н	и	
Surrogate: Toluene-d8			97.4 %	88.8-	117	"	"	"	"	
Surrogate: Dibromofluoromethane			80.6 %	78.6-	135	"	"	"	"	
Conventional Chemistry Parame	eters by APHA	/EPA Metho	ods							
Hexavalent Chromium	ND		0.025	mg/l	1	7030105	03/01/07	03/01/07	EPA 7196A	
Anions by EPA Method 300.0										
Bromide	ND		0.500	mg/l	1	7030118	03/01/07	03/05/07	EPA 300.0	
Sulfate as SO4	71.8		0.500	II.	"	11	11	11	IDI 71 300.0	
Nitrate as NO3	ND		0.500	и	II.	**	11	11	11	
RSK-175										
Methane	3.6		1.0	ug/i	ı	7030504	03/05/07	03/06/07	RSK-175	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02
Project Manager: James Gonzales

Reported: 04/04/07 11:24

MW-12D T700248-01(Water)

Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
								Withou	710103
		<u>TestAmer</u>	<u>ica - Irvi</u>	ne, CA					
ND		2.0	mg/l	1	7C01074	03/01/07	03/06/07	EPA 405.1	
ND		20	19	11	7C06120	03/06/07	03/07/07	EPA 410.4	
		SunStar La	aboratori	es, Inc.					
ons by EPA 8015m	ì								
51		50	ug/l	1	7030108	03/01/07	03/01/07	EPA 8015m	
		96.4 %	65-	135	"	"	"	"	
Methods									
ND		50	ug/l	1	7030117	03/01/07	03/06/07	EPA 6010B	
EPA Method 8260	В								
ND		0.50	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	<u></u>
	ND ND ons by EPA 8015m 51 Methods ND EPA Method 8260	ND ND ons by EPA 8015m 51 Methods ND EPA Method 8260B	ND 2.0 ND 20 SunStar Late	ND 2.0 mg/l ND 2.0 mg/l ND 20 " SunStar Laboratori SunStar Laborato	ND 2.0 mg/l 1 ND 20 " " ND SunStar Laboratories, Inc.	ND 2.0 mg/l 1 7C01074 ND 20 " " 7C06120 SunStar Laboratories, Inc. Sins by EPA 8015m 50 ug/l 1 7030108 96.4% 65-135 " Methods ND 50 ug/l 1 7030117 EPA Method 8260B EPA Method 8260B EPA Method 8260B Consideration Cons	ND	ND 2.0 mg/l 1 7C01074 03/01/07 03/06/07 ND 2.0 mg/l 1 7C06120 03/06/07 03/06/07 ND 20 " " 7C06120 03/06/07 03/07/07 SunStar Laboratories, Inc. Ins by EPA 8015m 50 ug/l 1 7030108 03/01/07 03/01/07 96.4% 65-135 " " " Methods ND 50 ug/l 1 7030117 03/01/07 03/06/07 EPA Method 8260B ND SunStar Laboratories ND SunStar Laboratories ND SunStar Laboratories ND SunStar Laboratories ND ND ND ND ND ND ND N	Result MDL Limit Units Dilution Batch Prepared Analyzed Method

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

MW-5D T700248-02(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aborator	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 80	15m								
C6-C12 (GRO)	ND		50	ug/l	1	7030108	03/01/07	03/01/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			82.8 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocai	rbons by 8015m	1								
Diesel Range Hydrocarbons	ND	0.098	0.50	mg/l	1	7030107	03/01/07	03/02/07	EPA 8015m	
Surrogate: p-Terphenyl			107 %	65-	135	"	"	"	"	
Metals by EPA 6000/7000 Series	Methods									
Chromium	ND		50	ug/l	1	7030117	03/01/07	03/06/07	EPA 6010B	
Volatile Organic Compounds by	EPA Method 8	3260B								
Ethyl tert-butyl ether	ND		2.0	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
Di-isopropyl ether	ND		2.0	If	11	11	н	11	Ð	
Benzene	ND		0.50	If	11	11	u	tl	n	
Methyl tert-butyl ether	1.6		1.0	If	11	If	H	н	11	
Surrogate: Dibromofluoromethane			83.6 %	78.6	-135	"	"	n	"	
Surrogate: 4-Bromofluorobenzene			100 %	83.5	-119	"	"	"	"	
Anions by EPA Method 300.0										
Bromide	3.09		0.500	mg/l	1	7030118	03/01/07	03/05/07	EPA 300.0	
Sulfate as SO4	33.8		0.500	u u	11	II.	II	н	11	
Nitrate as NO3	ND		0.500	lt .	n	11	н	н	u	
			TestAmer	<u>ica - Irvi</u>	ne, CA					
INORGANICS										
Chromium VI	ND		0.0010	mg/l	ı	7C01049	03/01/07	03/01/07	EPA 7199	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MATA.

Project: Hanson Aggregates Project Number: 001-09480-02 Project Manager: James Gonzales

Reported: 04/04/07 11:24

MW-5D T700248-02(Water)

			D '							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds b	y EPA Method 8	8260B								
Ethylbenzene	ND		0.50	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
m,p-Xylene	ND		1.0	"	11	11	H	#1	11	
			<u>TestAmer</u>	<u>ica - Irvi</u>	ne, CA					
INORGANICS										
Biochemical Oxygen Demand	2.2		2.0	mg/l	1	7C01074	03/01/07	03/06/07	EPA 405.1	
Chemical Oxygen Demand	51		20	H	"	7C06120	03/06/07	03/07/07	EPA 410.4	
			SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds b	y EPA Method 8	8260B								
Toluene	ND		0.50	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
Tert-butyl alcohol	ND		10	н	0	II .	9	11	и	
Tert-amyl methyl ether	ND		2.0	H	n	n	u	11	н	
o-Xylene	ND		0.50	н	11	ıı	u	If	н	
Surrogate: Toluene-d8			95.0 %	88.8	-117	"	n	"	"	
RSK-175										
Methane	426		1.0	ug/l	1	7030504	03/05/07	03/06/07	RSK-175	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MATH

Project: Hanson Aggregates Project Number: 001-09480-02 Project Manager: James Gonzales

Reported: 04/04/07 11:24

MW-7D T700248-03(Water)

				00(11						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	aborator	ies, Inc.					
Volatile Organic Compounds by	EPA Method 82	60B								
Toluene	51		0.50	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
m,p-Xylene	440		5.0	"	5	9	If	03/05/07	"	
			TestAmer	<u>ica - Irvi</u>	ne, CA					
INORGANICS										
Chromium VI	ND		0.0010	mg/l	1	7C01049	03/01/07	03/01/07	EPA 7199	
			SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	EPA Method 820	60B								
Methyl tert-butyl ether	ND		1.0	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
o-Xylene	51		0.50	11	H.	11	lf .	и	tt.	
Tert-butyl alcohol	ND		10	и	It	н	lf .	п	11	
Ethylbenzene	460		2.5	н	5	н	н	03/05/07	н	
Surrogate: Toluene-d8			95.8 %	88.8	-117	"	"	03/03/07	"	
Surrogate: 4-Bromofluorobenzene			106 %	83.5	-119	"	"	"	"	
			<u>TestAmer</u>	<u>ica - Irvi</u>	ne, CA					
INORGANICS										
Biochemical Oxygen Demand	5.4		2.0	mg/l	1	7C01074	03/01/07	03/06/07	EPA 405.1	
			SunStar L	aborator	es, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 8015	5m								
C6-C12 (GRO)	6800		50	ug/l	1	7030108	03/01/07	03/01/07	EPA 8015m	
Surrogate: 4-Bromofluorobenzene			99.4 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocar	bons by 8015m									
Diesel Range Hydrocarbons	0.79	0.098	0.50	mg/l	1	7030107	03/01/07	03/02/07	EPA 8015m	D-
Surrogate: p-Terphenyl			114%	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mospi.

Project: Hanson Aggregates
Project Number: 001-09480-02
Project Manager: James Gonzales

Reported: 04/04/07 11:24

MW-7D T700248-03(Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
							Tioparea	7 tharyzed	Wichiod	ivoics
			SunStar L	<u>aborator</u>	ies, Inc.					
Metals by EPA 6000/7000 Ser	ies Methods									
Chromium	ND		50	ug/l	1	7030117	03/01/07	03/06/07	EPA 6010B	
Volatile Organic Compounds	by EPA Method 8	8260B								
Tert-amyl methyl ether	ND		2.0	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	
Ethyl tert-butyl ether	ND		2.0	n	11	11	н	11	н	
Benzene	29		0.50	11	11	D	11	9	н	
Surrogate: Dibromofluoromethane			103 %	78.6	-135	"	"	03/05/07	n	
Anions by EPA Method 300.0										
Sulfate as SO4	12.5		0.500	mg/l	1	7030118	03/01/07	03/05/07	EPA 300.0	
Bromide	ND		0.500	11	11	11	11	u	11	
Nitrate as NO3	ND		0.500	lt .	11	tt .	11	н	11	
RSK-175										
Methane	3510		6.0	ug/l	6	7030504	03/05/07	03/06/07	RSK-175	
			<u>TestAmer</u>	ica - Irvi	ne, CA					
INORGANICS										
Chemical Oxygen Demand	35		20	mg/l	1	7C06120	03/06/07	03/07/07	EPA 410.4	
			SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds	by EPA Method 8	3260B								
Di-isopropyl ether	ND		2.0	ug/l	1	7030106	03/01/07	03/03/07	EPA 8260B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maria Bonifacio, Project Coordinator

Project: Hanson Aggregates

Project Number: 001-09480-02 Project Manager: James Gonzales

Reported: 04/04/07 11:24

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Re MDL	eporting	Linita	Spike	Source	A/DEC	%REC	DDD	RPD	
Amaryte	Kesuit	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7030108 - EPA 5030 GC		·									
Blank (7030108-BLK1)					Prepared	& Analyze	ed: 03/01/	07			
Surrogate: 4-Bromofluorobenzene	46.5			ug/l	50.0		93.0	65-135			
C6-C12 (GRO)	ND		50	11							
LCS (7030108-BS1)					Prepared	& Analyze	ed: 03/01/	07			
Surrogate: 4-Bromofluorobenzene	46.8			ug/l	50.0		93.6	65-135			
C6-C12 (GRO)	5320		50	11	5500		96.7	75-125			
Matrix Spike (7030108-MS1)		Source: T	700250-	01	Prepared	& Analyze	ed: 03/01/	07	·		
Surrogate: 4-Bromofluorobenzene	44.0			ug/l	50.0		88.0	65-135		***	· · · · · · · · · · · · · · · · · · ·
C6-C12 (GRO)	5760		50	If	5500	ND	105	65-135			
Matrix Spike Dup (7030108-MSD1)	-	Source: T	700250-	01	Prepared	& Analyze	ed: 03/01/	07			
Surrogate: 4-Bromofluorobenzene	45.0			ug/l	50.0	, , , , , , , , , , , , , , , , , , , ,	90.0	65-135			
C6-C12 (GRO)	5800		50	н	5500	ND	105	65-135	0.692	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

Extractable Petroleum Hydrocarbons by 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030107 - EPA 3510C GC											
Blank (7030107-BLK1)					Prepared:	03/01/07	Analyzed	: 03/02/07			
Surrogate: p-Terphenyl	3.63			mg/l	4.00		90.8	65-135			
Diesel Range Hydrocarbons	ND	0.098	0.50	0							
LCS (7030107-BS1)			<u></u>		Prepared:	03/01/07	Analyzed	: 03/02/07			
Surrogate: p-Terphenyl	4.63			mg/l	4.00		116	65-135	VI		
Diesel Range Hydrocarbons	16.8	0.098	0.50	н	20.0		84.0	75-125			
Matrix Spike (7030107-MS1)		Source	T700248-	03	Prepared:	03/01/07	Analyzed	: 03/02/07			
Surrogate: p-Terphenyl	4.56			mg/l	4.00		114	65-135			
Diesel Range Hydrocarbons	18.0	0.098	0.50	11	20.0	0.79	86.0	75-125			
Matrix Spike Dup (7030107-MSD1)		Source	T700248-	03	Prepared:	03/01/07	Analyzed	: 03/02/07			
Surrogate: p-Terphenyl	4.80			mg/l	4.00		120	65-135			
Diesel Range Hydrocarbons	18.2	0.098	0.50	11	20.0	0.79	87.0	75-125	1.10	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

Metals by EPA 6000/7000 Series Methods - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030117 - EPA 3010A											
Blank (7030117-BLK1)					Prepared:	03/01/07	Analyzed	: 03/06/07			
Chromium	ND		50	ug/l							
LCS (7030117-BS1)				·	Prepared:	03/01/07	Analyzed	: 03/06/07			
Chromium	834		50	ug/l	1050		79.4	75-125			
Matrix Spike (7030117-MS1)		Source	: T700248-	01	Prepared:	03/01/07	Analyzed	: 03/06/07			
Chromium	946		50	ug/l	1050	ND	90.1	75-125			
Matrix Spike Dup (7030117-MSD1)		Source	: Т700248-	01	Prepared:	03/01/07	Analyzed	: 03/06/07			
Chromium	929		50	ug/l	1050	ND	88.5	75-125	1.81	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates Project Number: 001-09480-02

Project Number: 001-09480-02 Reported:
Project Manager: James Gonzales 04/04/07 11:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030106 - EPA 5030 GC	MS										
Blank (7030106-BLK1)					Prepared:	03/01/07	Analyze	d: 03/03/07		·	
Surrogate: Toluene-d8	7.79			ug/l	8.00		97.4	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.60			"	8.00		95.0	83.5-119			
Surrogate: Dibromofluoromethane	6.48			"	8.00		81.0	78.6-135			
Benzene	ND		0.50	**							
Toluene	ND		0.50	lf .							
Ethylbenzene	ND		0.50	11							
m,p-Xylene	ND		1.0	н							
o-Xylene	ND		0.50	н							
Tert-amyl methyl ether	ND		2.0	11							
Tert-butyl alcohol	ND		10	H							
Di-isopropyl ether	ND		2.0	11							
Ethyl tert-butyl ether	ND		2.0	11							
Methyl tert-butyl ether	ND		1.0	tt.							
LCS (7030106-BS1)					Prepared:	03/01/07	Analyzed	i: 03/03/07			
Surrogate: Toluene-d8	7.77			ug/l	8.00		97.1	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.53			"	8.00		94.1	83.5-119			
Surrogate: Dibromofluoromethane	6.59			"	8.00		82.4	78.6-135			
Benzene	17.4		0.50	11	20.0		87.0	75-125			
Toluene	16.6		0.50	11	20.0		83.0	75-125			
Matrix Spike (7030106-MS1)		Source	: T700246-	04	Prepared:	03/01/07	Analyzed	1: 03/03/07			
Surrogate: Toluene-d8	7.84			ug/l	8.00		98.0	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.38			"	8.00		92.2	83.5-119			
Surrogate: Dibromofluoromethane	6.15			"	8.00		76.9	78.6-135			S-GC
Benzene	18.6		0.50	11	20.0	ND	93.0	75-125			
Toluene	19.3		0.50	11	20.0	ND	96.5	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lapi.

Project: Hanson Aggregates

Project Number: 001-09480-02 Project Manager: James Gonzales

Reported: 04/04/07 11:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte Result	MDL	Reporting	Linite	Spike	Source	9/DEC	%REC	nnn	RPD	
Analyte Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7030106 - EPA 5030 GCMS

Matrix Spike Dup (7030106-MSD1)		Source: T700246-04	Prepared:	: 03/01/07	Analyze				
Surrogate: Toluene-d8	7.76	ug/l	8.00		97.0	88.8-117	***		
Surrogate: 4-Bromofluorobenzene	7.30	"	8.00		91.2	83.5-119			
Surrogate: Dibromofluoromethane	6.63	"	8.00		82.9	78.6-135			
Benzene	19.0	0.50 "	20.0	ND	95.0	75-125	2.13	20	
Toluene	17.7	0.50 "	20.0	ND	88.5	75-125	8.65	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030105 - General Prepara	tion										
Blank (7030105-BLK1)					Prepared a	& Analyze	ed: 03/01/0	07			
Hexavalent Chromium	ND		0.025	mg/l							-
LCS (7030105-BS1)					Prepared a	& Analyze	ed: 03/01/0	07			
Hexavalent Chromium	0.218		0.025	mg/l	0.200		109	85-115			
Matrix Spike (7030105-MS1)		Source	: T700248-	01	Prepared a	& Analyze	ed: 03/01/0	07			
Hexavalent Chromium	0.218		0.025	mg/l	0.200	ND	109	85-115			
Matrix Spike Dup (7030105-MSD1)		Source	Source: T700248-01			& Analyze	ed: 03/01/0	07			
Hexavalent Chromium	0.238		0.025	mg/l	0.200	ND	119	85-115	8.77	20	QM-07

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporti MDL Lin	_	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030118 - General Prepara	tion									
Blank (7030118-BLK1)				Prepared:	: 03/01/07	Analyzed	1: 03/05/07			
Sulfate as SO4	ND	0.50	00 mg/l					****		
Bromide	ND	0.50	00 "							
Nitrate as NO3	ND	0.50	00 "							
LCS (7030118-BS1)				Prepared:	: 03/01/07	Analyzed	I: 03/05/07			
Sulfate as SO4	108	0.50	00 mg/l	100		108	80-120			
Nitrate as NO3	107	0.50	" 00	100		107	80-120			
Matrix Spike (7030118-MS1)		Source: T7002	<u>18-01</u>	Prepared: 03/01/07 Analyzed: 03/05/07						
Sulfate as SO4	177	0.50	0 mg/l	100	71.8	105	80-120			
Nitrate as NO3	109	0.50	00 "	100	ND	109	80-120			
Matrix Spike Dup (7030118-MSD1)		Source: T7002	18-01	Prepared:	Prepared: 03/01/07 Analyzed: 03/05/07					
Sulfate as SO4	176	0.50	0 mg/l	100	71.8	104	80-120	0.567	20	
Nitrate as NO3	96.2	0.50	0 "	100	ND	96.2	80-120	12.5	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02

Project Manager: James Gonzales

Reported: 04/04/07 11:24

RSK-175 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030504 - EPA 3810m	Headspace										
Blank (7030504-BLK1)					Prepared:	03/05/07	Analyzed	: 03/06/07			
Methane	ND		1.0	ug/l							
LCS (7030504-BS1)					Prepared:	03/05/07	Analyzed	: 03/06/07			
Methane	104			ug/l	120		86.7	75-125		J. N.	
LCS Dup (7030504-BSD1)					Prepared:	03/05/07	Analyzed	: 03/06/07			
Methane	103			ug/l	120		85.8	75-125	0.966	20	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02
Project Manager: James Gonzales

Reported: 04/04/07 11:24

INORGANICS - Quality Control TestAmerica - Irvine, CA

Analyte	Result	Rep MDL	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7C01049 - General Prep											
Blank (7C01049-BLK1)					Prepared &	& Analyze	d: 03/01/0	07			
Chromium VI	ND	(0.0010	mg/l							-
LCS (7C01049-BS1)					Prepared &	& Analyze	d: 03/01/0	07			
Chromium VI	0.0498	(0.0010	mg/l	0.0500		100	90-110			120 110 2
Matrix Spike (7C01049-MS1)		Source: IQ	B3127-	05	Prepared &	& Analyze	d: 03/01/0)7			
Chromium VI	0.583		0.010	mg/l	0.500	0.11	95	80-115		· "	
Matrix Spike Dup (7C01049-MSD	1)	Source: IQ	B3127-	05	Prepared &	& Analyze	d: 03/01/0)7			
Chromium VI	0.584		0.010	mg/l	0.500	0.11	95	80-115	0.2	15	
Batch 7C01074 - General Prep											
Blank (7C01074-BLK1)				,	Prepared:	03/01/07	Analyzed	: 03/06/07			
Biochemical Oxygen Demand	ND		2.0	mg/l				. 05,00,07			
LCS (7C01074-BS1)					Prepared:	03/01/07	Analyzed	· 03/06/07			
Biochemical Oxygen Demand	191		100	mg/l	198		96	85-115	701	· · · · · · · · · · · · · · · · · · ·	
LCS Dup (7C01074-BSD1)					Prepared:	03/01/07	Analyzed	. 03/06/07			
Biochemical Oxygen Demand	192		100	mg/l	198	00/01/01	97	85-115	0.5	20	
Batch 7C06120 - General Prep											
Blank (7C06120-BLK1)					Prepared:	03/06/07	Analyzed	. 03/07/07			
Chemical Oxygen Demand	ND		20	mg/l	. repared.	<u> </u>	zmaryzeu	. 03/07/07			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Hanson Aggregates Project Number: 001-09480-02 Project Manager: James Gonzales

Reported: 04/04/07 11:24

INORGANICS - Quality Control TestAmerica - Irvine, CA

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7C06120 - General Prep											
LCS (7C06120-BS1)					Prepared:	03/06/07	Analyzed	: 03/07/07			
Chemical Oxygen Demand	500		20	mg/l	500		100	90-110			
Matrix Spike (7C06120-MS1)		Source:	IQC0151	-01	Prepared:	03/06/07	Analyzed	: 03/07/07			
Chemical Oxygen Demand	514		20	mg/l	500	ND	103	70-120			
Matrix Spike Dup (7C06120-MSD1)		Source:	IQC0151	-01	Prepared:	03/06/07	Analyzed	: 03/07/07			
Chemical Oxygen Demand	505		20	mg/l	500	ND	101	70-120	2	15	

SunStar Laboratories, Inc.

Project: Hanson Aggregates
Project Number: 001-09480-02
Project Manager: James Gonzales

Reported: 04/04/07 11:24

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.