

Chevron

10:21 am, Aug 20, 2009

Alameda County Environmental Health **Stacie H. Frerichs** Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

<u>August 17, 2009</u> (date)

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility #_9-5542____

Address: 7007 San Ramon Road, Dublin, California_

I have reviewed the attached report titled <u>Site Conceptual Model and Additional Investigation Work</u> <u>Plan</u>_____ and dated <u>August 17, 2009</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

SHFrencho

Stacie H. Frerichs Project Manager

Enclosure: Report

SITE CONCEPTUAL MODEL AND ADDITIONAL INVESTIGATION WORK PLAN

Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California

Prepared For: Mr. Paresh Khatri Alameda County Environmental Health

> Prepared by: Conestoga-Rovers & Associates

2000 Opportunity Drive, Suite 110 Roseville, California U.S.A. 95678

Office: (916) 751-4100 Fax: (916) 751-4199

web: http://www.CRAworld.com

AUGUST 17, 2009 REF. NO. 611969 (4) This report is printed on recycled paper.

SITE CONCEPTUAL MODEL AND ADDITIONAL INVESTIGATION WORK PLAN

Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California

Prepared For: Mr. Paresh Khatri Alameda County Environmental Health

Brian P. Carey, P.G.

James P. Kiernan, P.E

Prepared by: Conestoga-Rovers & Associates

2000 Opportunity Drive, Suite 110 Roseville, California U.S.A. 95678

Office: (916) 751-4100 (916) 751-4199 Fax:

web: http://www.CRAworld.com

AUGUST 17, 2009 REF. NO. 611969 (4)

TABLE OF CONTENTS

1.0	INTRODUCTION					
	1.1	SITE DESCRIPTION AND BACKGROUND	1			
2.0	SITE CHARACTERISTICS4					
2.0	2.1	REGIONAL GEOLOGY AND HYDROGEOLOGY				
	2.2	SITE GEOLOGY AND HYDROGEOLOGY	4			
	2.3	NEARBY WELLS AND SENSITIVE RECEPTORS	5			
3.0	PREVIOU	6				
	3.1	OXYGEN INJECTION SUMMARY AND RESULTS				
4.0	CONSTITUENTS OF CONCERN IN SOIL AND GROUNDWATER					
	4.1	SOIL				
	4.2	GROUNDWATER				
5.0	PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION					
	5.1	RELEASE SOURCE AND VOLUME	14			
	5.2	POTENTIAL OFFSITE SOURCES				
	5.3	PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL	14			
	5.4	PETROLEUM HYDROCARBON DISTRIBUTION				
		IN GROUNDWATER	16			
	5.5	LIGHT NON-AQUEOUS PHASE LIQUID	19			
	5.6	STATUS OF WELL MW-5				
6.0	POTENTIAL EXPOSURE PATHWAYS					
	6.1	SOIL				
	6.2	GROUNDWATER				
	6.3	SURFACE WATER				
	6.4	VAPOR INTRUSION				
7.0	PROPOSE	22				
	7.1	PRE-FIELD ACTIVITIES				
	7.2	SOIL VAPOR QUALITY EVALUATION				
	7.3	SOIL AND WATER DISPOSAL				
	7.4	REPORTING	24			
8.0	CONCLUSIONS AND RECOMMENDATIONS					

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS-SECTION B-B'
- FIGURE 5 HISTORICAL TPHg AND BENZENE CONCENTRATIONS IN SOIL
- FIGURE 6 TPHg ISOCONCENTRATION MAP MARCH 18, 2009
- FIGURE 7 BENZENE ISOCONCENTRATION MAP MARCH 18, 2009

LIST OF TABLES (Following Text)

- TABLE 1WELL CONSTRUCTION DETAILS
- TABLE 2HISTORICAL SOIL SAMPLE ANALYTICAL RESULTS
- TABLE 3HISTORICAL GRAB-GROUNDWATER SAMPLE ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A ACEH LETTER DATED MAY 15, 2009
- APPENDIX B HISTORICAL BORING LOGS AND WELL CONSTRUCTION DIAGRAMS
- APPENDX C WELL SURVEY INFORMATION
- APPENDIX D OXYGEN INJECTION CONFIRMATION SAMPLE LABORATORY REPORTS
- APPENDIX E FIRST SEMI-ANNUAL 2009 GROUNDWATER MONITORING REPORT
- APPENDIX F STANDARD FIELD PROCEDURES

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this *Site Conceptual Model and Additional Investigation Work Plan* on behalf of Chevron Environmental Management Company (Chevron) for Chevron Service Station No 9-5542, located at 7007 San Ramon Road in Dublin, California. In a letter dated May 15, 2009, Alameda County Environmental Health (ACEH) requested preparation of a site conceptual model (SCM) to establish site conditions, identify potential receptors and potentially complete exposure pathways, and evaluate if any data gaps exist (Technical Comment No. 3). A work plan was also requested to further evaluate the extent of impacted soil in the area of the former gasoline underground storage tanks (USTs) (Technical Comment No. 1), the downgradient extent of impacted groundwater (Technical Comment No. 2), and any identified data gaps (Technical Comment No 3). A copy of the letter is presented in Appendix A.

The site description and background, the site characteristics, a summary of previous environmental work, an evaluation of potential exposure pathway and data gaps, and the proposed additional investigation to address the identified data gaps are presented in the following sections. Please note, however, that based on our review of the data the extent of impacted soil in the area of the former gasoline USTs and the downgradient extent of impacted groundwater appear to have been adequately defined, and therefore no additional work appears warranted to address Technical Comments No. 1 and 2 of the ACEH letter, as will be further discussed.

1.1 SITE DESCRIPTION AND BACKGROUND

The site is an active Chevron-branded service station located on the northeast corner of the intersection of San Ramon Road and Dublin Boulevard (Figure 1). Current station facilities include a station building, three 12,000-gallon gasoline USTs, and three dispenser islands. The property reportedly was first leased by Chevron in 1965 at which time the station was constructed. The original station facilities included a station building with two hydraulic hoists, two 10,000-gallon and one 4,000-gallon steel gasoline USTs on the northern side of the site, a 500-gallon steel used-oil UST to the east of the station building, and two dispenser islands on the western side of the site. In 1990, Chevron purchased the property and the station was demolished including the removal of the four USTs, product lines, and dispenser islands. The station was subsequently reconstructed into the current configuration. In 1998, the dispensers and product piping were upgraded. The property is currently owned by Mr. T.W. Johnson. Current and former site facilities are shown on Figure 2. Please note that the former UST locations

shown on previously submitted site plans were incorrect and have been updated based on a station construction plan dated 1964. The approximate former station building and dispenser island locations have also been added to Figure 2.

The site elevation is approximately 360 feet above mean seal level (msl), and local topography slopes gently to the east toward San Ramon Creek. Land use in the site vicinity is mixed commercial and residential. The site is bounded by San Ramon Road to the west, Dublin Boulevard to the south, and undeveloped land to the east and north. A former fuel release case (Unocal #5901 at 11976 Dublin Boulevard) was present on the northwest corner of the intersection of Dublin Boulevard and San Ramon Road; and an open fuel release case (Shell #13-5243 at 11989 Dublin Boulevard) is present on the southwest corner of the intersection of Dublin Boulevard and San Ramon Road.

Environmental investigation associated with the subject site has been ongoing since 1983. To date, 16 groundwater monitoring wells (#1 through #5, and MW-1 through MW-11) and two vacuum monitoring wells (VW-1 and VW-2) have been installed, and 10 exploratory borings (B-1 through B-4, SB-1 through SB-3, and CPT-1 through CPT-3) have been drilled, both on and offsite; and confirmation soil sampling has been performed during UST removal and upgrade activities. The well construction details are presented in Table 1. Wells #3 and MW-6 through MW-10 were later destroyed; wells MW-6 through MW-10 were destroyed with ACEH approval due to proposed development of the adjacent property. Well MW-5 located in the Dublin Boulevard right-of-way was paved over by the City of Dublin (City) in 1995; multiple attempts to re-locate the well (most recently in March 2009) have been unsuccessful and it is considered abandoned. Wells #1, #2, #4, and #5 reportedly were also destroyed sometime prior to 1990; however, no documentation regarding the destructions is available. Based on a recent site visit, wells VW-1 and VW-2 also appear to have been destroyed; however, no documentation is available.

Groundwater monitoring has been performed since 1990. Monitoring and sampling of wells MW-2 and MW-3 was discontinued in 1999; the remaining wells (MW-1, MW-4, and MW-11) are currently monitored and sampled on a semi-annual basis. Gauging of wells MW-2 and MW-3 was recently resumed to prepare groundwater potentiometric maps as requested by ACEH in the May 15, 2009 letter (Technical Comment No. 5). Remedial activities performed at the site have consisted of the over-excavation and offsite disposal of impacted soil (approximately 800 cubic yards), and groundwater oxygenation (via injection) to attempt to reduce petroleum hydrocarbon concentrations in the source area via enhanced biodegradation. A summary of the environmental work

performed at the site to date is presented in Section 3.0. The approximate well and boring locations are shown on Figure 2.

2.0 <u>SITE CHARACTERISTICS</u>

2.1 <u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>

The site is located in the north-central portion of the Livermore Valley, within the Coast Range Geomorphic Province, at the base of the eastern slope of the East Bay Hills. The Livermore Valley slopes gently to the west and is underlain by non-water-bearing rocks, and water-bearing rock and sediments. The non-water-bearing rocks are of marine origin and consist of sandstone, shale, and conglomerate of Eocene and Miocene age. These rocks are exposed at higher elevations surrounding Livermore Valley and are found at depths greater than 1,000 feet beneath the valley floor.

The Plio-Pleistocene age Livermore Formation overlaps the Tassajara Formation beneath the northern portion of the valley and is exposed over a broad region south of the valley. Sediments of this formation consist primarily of clayey gravel in a sandy clay matrix. Sedimentary units south of the valley dip gently north, are nearly level beneath the valley floor, and dip gently south beneath the north edge of the valley. The depth to the top of the Livermore Formation beneath the valley ranges from a few feet to greater than 40 feet.

Groundwater beneath the site is located within the Livermore Valley groundwater basin. The sediments and water-bearing units comprising the basin include valley fill materials, the Tassajara Formation, and the Livermore Formation. The basin is characterized by hydrogeologic discontinuities, and is segregated into sub-basins on the basis of localized faults. The Livermore Valley groundwater system is a multi-layered system with an unconfined aquifer overlying sequential partially-confined aquifers. Groundwater in the basin generally flows to the west.

2.2 SITE GEOLOGY AND HYDROGEOLOGY

Based on previous investigations, soil encountered beneath the site generally consists of interbedded layers of fine-grained soils (clays and silts) with varying amounts of clay, silt, sand, and gravel to the maximum depth of exploration (55 feet below grade [fbg]). Varying amounts of fill material, sand, and sandy gravel were also observed in some of the borings. Copies of the historical boring logs and well construction diagrams are presented in Appendix B.

Groundwater was encountered in the borings drilled at and in the vicinity of the site at depths of approximately 21 to 29 fbg. The depth to groundwater in the site wells has

ranged from approximately 17 to 30 feet below top of casing (TOC). The groundwater flow direction has generally been easterly. A groundwater flow direction rose diagram depicting radial gradient vectors is presented on Figure 2. Geologic cross-sections presenting soil encountered beneath the site and the historic range of groundwater elevations are presented on Figures 3 and 4.

2.3 <u>NEARBY WELLS AND SENSITIVE RECEPTORS</u>

In 1991, Sierra Environmental Services (SES) reviewed California Department of Water Resources (DWR) records to evaluate the presence of any water-supply wells within a ¹/₂-mile radius of the site. Twenty-four wells were identified within the search radius; however, 12 were monitoring wells, including four at the subject site. Only one domestic well was identified, located approximately 1/8 mile west-southwest (cross to upgradient) of the site. The remaining identified wells were municipal. Nine of these municipal wells to the east-northeast were identified as being potentially downgradient of the site; however, they were all located approximately ¹/₂ mile from the site.

In 2000, Delta Environmental Consultants, Inc. (Delta) contacted the owner of the previously identified domestic well and confirmed that it had been destroyed. Delta also contacted the owner of the nearest previously identified municipal well (Alameda County Flood Control and Water Conservation District [Zone 7]) and confirmed that this well had also been destroyed. According to Zone 7, no known active domestic or municipal water-supply wells were present within 2,000 feet of the site. The well survey information and figures (prepared by others) showing the approximate well locations are presented in Appendix C.

Drinking water for the City of Dublin is provided by Zone 7, which obtains the majority of its supply from the San Francisco Bay Delta via the State Water Project. As stated on the Zone 7 website, other sources include local rainfall runoff stored in Del Valle Reservoir and the groundwater basin. The nearest surface water body in the site vicinity is Dublin Creek, a concrete-lined and intermittent creek, located approximately 3,200 feet east-southeast of the site. Based on the distance from the site and/or the hydrogeologic position relative to the site, none of the identified wells or the surface water body appear likely to be impacted by hydrocarbons from the site.

3.0 PREVIOUS INVESTIGATION AND REMEDIATION SUMMARY

1983 *Tank Repair:* In 1983, a hole was discovered in the regular leaded tank and the tank was re-lined with fiberglass.

1983-1984 *Well Installation and Groundwater Monitoring:* In December 1983, Gettler-Ryan Inc. (G-R) installed five monitoring wells (#1 through #5) at the site to approximately 20 fbg. Initially, groundwater was not encountered in any of the wells. Two weeks following installation, approximately 6 inches of light non-aqueous phase liquid (LNAPL) (what appeared to be used-oil) was observed in well #3 located just downgradient of the used-oil UST. In January 1984, well #3 was drilled out and deepened to 35 fbg; LNAPL was not observed in the well at this time. The wells were monitored periodically from January through October 1984. In June 1984, approximately 0.02 feet of LNAPL was observed in Well #3. The LNAPL was bailed from the well, and there was no subsequent observation of LNAPL in this well. Details of the well installation were presented in G-R's letter dated December 20, 1983.

1984 UST System Repairs: In September 1984, a corroded section of product piping was replaced and cathodic protection was installed. In November 1984, the regular leaded product line failed a leak test and was subsequently repaired.

1990 Station Demolition: In February 1990, the station was remodeled including the removal of the existing USTs and product lines. Two 10,000-gallon and one 4,000-gallon steel gasoline USTs were removed from the site. Six soil samples were collected beneath the gasoline USTs at depths of 11 to 12 fbg and analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Elevated concentrations of TPHg (up to 5,000 milligrams per kilogram [mg/kg]) and BTEX (up to 780 mg/kg) were detected in several of the samples. Following collection of the initial samples, the gasoline UST excavation was deepened to approximately 15 to 16 fbg and six additional soil samples were collected from the excavation bottom in the approximate locations of the previous samples. Elevated concentrations of TPHg (up to 5,000 mg/kg) were detected in the three samples collected from the southeast portion of the excavation. Therefore, approximately the southeastern one-third of the excavation was deepened to approximately 22 fbg and three additional soil samples were collected from the excavation bottom. Elevated concentrations of TPHg (up to 3,100 mg/kg) and benzene (up to 60 mg/kg) were detected in two of the samples. Three soil samples were also collected from the southwest sidewall of the excavation at depths of 7.5 to 13.5 fbg; only low concentrations of TPHg (up to 18 mg/kg) and BTEX (up to 2.8 mg/kg) were detected in the samples.

Four soil samples (PL1 through PL4) were collected beneath the product piping at depths of 1.5 or 3 fbg and analyzed for TPHg and BTEX; only low concentrations of TPHg (up to 9 mg/kg) and BTEX (up to 1.2 mg/kg) were detected in the samples. A soil sample was also collected at 8 fbg beneath the used-oil UST and analyzed for TPHg, BTEX, total oil and grease (TOG), volatile organic compounds (VOCs), semi-VOCs, and 13 priority pollutant metals. Low concentrations of TPHg (0.55 mg/kg), BTEX (up to 0.49 mg/kg, and TOG (12 mg/kg) were detected in the sample; VOCs and semi-VOCs were not detected and the detected metals concentrations generally were consistent with natural background levels. The used-oil UST excavation was subsequently deepened to approximately 10.5 fbg and an additional soil sample collected from the excavation bottom and analyzed for the same constituents. Only xylenes (0.02 mg/kg), TOG (12 mg/kg), and metals were detected in the sample; the detected metals concentrations generally were consistent with background levels. The impacted soil generated during the work was disposed offsite. The site was then redeveloped into the current configuration including the installation of three 12,000-gallon, fiberglass USTs in a new tank pit to the south of the former USTs.

1990 Well Destruction and Installation: In March 1990, a remaining monitoring well (#3) that had been damaged during station redevelopment activities was destroyed and four new monitoring wells (MW-1 through MW-4) were installed at the site by Burlington Environmental, Inc. (Burlington). The wells were installed to depths of 35 or 37 fbg. A total of six soil samples were collected at various depths from the borings for wells MW-1 through MW-3 and analyzed for TPHg and BTEX. TPHg was only detected in the samples collected at 25 fbg (1,300 mg/kg) and 30 fbg (270 mg/kg) from boring MW-1, and at 25 fbg (51 mg/kg) from boring MW-3. Elevated concentrations of BTEX (benzene at 38 mg/kg) were also detected in the sample collected at 25 fbg from boring MW-1. Low concentrations of BTEX (up to 18 mg/kg) were detected in several of the other samples. Soil samples were collected at depths of 15, 20, and 25 fbg from boring MW-4 and analyzed for TPHg, TPH as diesel (TPHd), and the metals lead, chromium, cadmium, and zinc; which were not detected with the exception of lead (up to 41 mg/kg), chromium (up to 26 mg/kg), and zinc (up to 44 mg/kg). The sample collected at 25 fbg was also analyzed for TOG and BTEX; TOG was detected at 39 mg/kg and BTEX were detected up to 46 mg/kg. TPHg was detected in the initial groundwater samples collected from wells MW-1, MW-3, and MW-4 at concentrations of 46,000 micrograms per liter (μ g/L), 2,200 μ g/L, and 43,000 μ g/L, respectively. Benzene was detected in the initial groundwater samples collected from wells MW-1, MW-3, and MW-4 at concentrations of 8,400 μ g/L, 36 μ g/L, and 4,000 μ g/L, respectively. TOG was detected in the initial groundwater sample collected from well MW-4 at 18,00 μ g/L;

TPHd and metals were not detected. Details of the investigation were presented in Burlington's July 19, 1991 *Soil and Groundwater Investigation*.

1991 *Monitoring Well Installation:* In June 1991, three offsite monitoring wells (MW-5 through MW-7) were installed by SES to depths of 35 or 36 fbg. A soil sample was collected from each well boring at a depth of 26 or 28.5 fbg and analyzed for TPHg, BTEX, and lead. TPHg (5 mg/kg) and BTEX (up to 0.12 mg/kg) were only detected in the soil sample collected at 26 fbg from boring MW-6. Lead was not detected in any of the soil samples. TPHg (3,700 μ g/L) and benzene (50 μ g/L) were only detected in the initial groundwater sample collected from well MW-6. The initial samples collected for halogenated VOCs (HVOCs) and organic lead; which were not detected. Details of the investigation were presented in SES's *Subsurface Investigation Report*, dated July 22, 1991.

In December 1991, an additional offsite monitoring well (MW-8) was installed to 35 fbg by GeoStrategies, Inc. (GSI). A soil sample was collected at 20 fbg from the well boring and analyzed for TPHg and BTEX; which were not detected. The initial groundwater sample collected from the well also did not contain TPHg or BTEX. Details of the well installation were presented in GSI's *Well Installation Report*, dated January 16, 1992.

1992 *Well Installation:* In November 1992, Geraghty & Miller, Inc. (Geraghty & Miller) installed two vacuum monitoring wells (VW-1 and VW-2) and destroyed (overdrilled) and reinstalled existing well MW-1 in the same borehole to a depth of 50 fbg for groundwater extraction and the performance of a soil vapor extraction (SVE) pilot test at the site. Wells VW-1 and VW-2 were installed to depths of 31.5 fbg and 30 fbg, respectively. A total of 13 soil samples were collected at various depths from borings VW-1 and VW-2 and analyzed for TPHg and BTEX. TPHg was detected in several of the samples at concentrations ranging from 1 (VW-2 at 30 fbg) to 990 mg/kg (VW-1 at 24 fbg); BTEX (up to 99 mg/kg) were also detected in several of the samples. Details of the investigation were presented in Geraghty and Miller's *Letter Report for the Installation of Groundwater and Vapor-Extraction Well and Vacuum-Monitoring Wells*, dated January 5, 1993.

1994 *Exploratory Borings and Well Installation:* In June 1994, SES drilled two exploratory borings (B-1 and B-2) onsite and installed an additional offsite well (MW-9). Well MW-9 was installed to a depth of 34.5 fbg. A total of six soil samples were collected from borings B-1 and B-2 and analyzed for TPHg and BTEX; low concentrations of TPHg (up to 8 mg/kg) and BTEX (up to 0.83 mg/kg) were detected in several of the samples. An elevated concentration of TPHg (1,600 mg/kg) was detected

in the sample collected at 20.5 fbg from boring B-1. Soil samples were also collected at depths of 24.5 fbg and 33.5 fbg from boring MW-9 and analyzed for TPHg and BTEX; TPHg (57 mg/kg) was only detected in the shallower sample. Low concentrations of BTEX (up to 3.4 mg/kg) were detected in both samples. The initial groundwater sample collected from well MW-9 contained elevated concentrations of TPHg (12,000 μ g/L) and benzene (1,700 μ g/L). Details of the investigation were presented in SES's *Monitoring Well Installation*, dated September 20, 1994.

1995 *Exploratory Borings:* In July 1995, Groundwater Technology, Inc. (GTI) drilled three offsite exploratory borings (SB-1 through SB-3) to 27 fbg to the east-southeast of the site. A groundwater sample was collected from each of the borings and analyzed for TPHg and BTEX. TPHg was only detected in the samples collected from borings SB-1 (65,000 μ g/L) and SB-2 (2,900 μ g/L). Benzene was only detected in the sample collected from boring SB-1 (470 μ g/L). Concentrations of toluene (up to 200 μ g/L), ethylbenzene (up to 210 μ g/L), and xylenes (up to 2,100 μ g/L) were also detected in the samples. Details of the investigation were presented in GTI's *Environmental Assessment Report*, dated September 28, 1995.

1996 *Exploratory Borings and Well Installation:* In June 1996, G-R drilled two offsite exploratory borings (B-3 and B-4) to 30 fbg and installed an additional offsite well (MW-10) to 35 fbg. Soil samples collected at 18 fbg from boring B-3 and at 12 fbg from boring B-4 were analyzed for TPHg and BTEX; which were not detected. Groundwater samples were also collected from borings B-3 and B-4 and analyzed for TPHg and BTEX. TPHg (63,000 μ g/L), benzene (5,600 μ g/L), toluene (2,900 μ g/L), ethylbenzene (1,800 μ g/L), and xylenes (7,900 μ g/L) were only detected in the groundwater sample collected from boring B-3. The initial groundwater sample collected from well MW-10 did not contain TPHg or BTEX. Details of the investigation were presented in G-R's *Soil Boring and Well Installation Report*, dated August 29, 1996.

1998 *Product Piping and Dispenser Replacement:* In September 1998, G-R collected soil samples during product piping and dispenser replacement activities at the site. Six soil samples (P1 through P6) were collected at a depth of 3 fbg beneath each of the dispensers and analyzed for TPHg, BTEX, methyl tertiary butyl ether (MTBE), and total lead. None of the analytes were detected in any of the soil samples. Approximately 196 cubic yards of soil were removed and disposed offsite during the work. The details and results of the work were presented in G-R's *Soil Sampling During Product Dispenser and Piping Replacement*, dated November 10, 1998.

2006 Cone Penetrometer Test (CPT) Borings and Well Destructions: In January 2006, Cambria Environmental Technology, Inc. (Cambria; now CRA) drilled three offsite CPT borings (CPT-1 through CPT-3) to further evaluate groundwater quality downgradient of the site. Groundwater samples were collected at discrete depths from borings CPT-1 (46, 55, and 65 fbg), CPT-2 (52 and 63 fbg), and CPT-3 (42, 55, and 65 fbg) and analyzed for TPHg, BTEX, fuel oxygenates, 1,2-Dichloroethane (1,2-DCA), and ethylene dibromide (EDB). TPHg was only detected in the samples collected at 52 fbg $(1,000 \,\mu g/L)$ and 63 fbg $(170 \,\mu g/L)$ from boring CPT-2; low concentrations of ethylbenzene (up to $22 \,\mu g/L$) and xylenes (up to $120 \,\mu g/L$) were also detected in these samples. Benzene was only detected in the sample collected at 52 fbg from boring CPT-2 $(1 \mu g/L)$. The remaining analytes generally were not detected in any of the samples with the exception of a low concentration of 1,2-DCA ($3 \mu g/L$) in the sample collected at 42 fbg from boring CPT-3. Wells MW-6 through MW-10 were also destroyed at this The details of the investigation were presented in Cambria's Subsurface time. Investigation and Well Destruction Report, dated March 2, 2006.

2006 *Well Installation:* In November 2006, Cambria installed deeper offsite well MW-11 (screened from 45 to 55 fbg). No soil samples collected from the well boring were submitted for laboratory analysis. Details of the investigation were presented in Cambria's *Subsurface Investigation Report*, dated January 22, 2007.

The historical soil sample and groundwater sample analytical results are presented in Tables 2 and 3, respectively.

3.1 OXYGEN INJECTION SUMMARY AND RESULTS

In November 2007, CRA began bi-weekly oxygen injection into impacted wells MW-1 and MW-4 in an effort to decrease dissolved hydrocarbon concentrations in groundwater via enhanced biodegradation. The oxygen injection was performed as outlined in the September 6, 2007 *Revised Remediation Work Plan* prepared by CRA. A response to this document was never received from ACEH; therefore, consent was assumed and the work was initiated. During each event, approximately 125 cubic feet of oxygen was diffused into each well. Dissolved oxygen (DO) measurements were collected in each well before and after each event. CRA collected confirmation grab-groundwater samples (no-purge) from wells MW-1 and MW-4 prior to the first event, then once during December 2007 and February 2008 to evaluate the effectiveness of the oxygen injection. The samples were analyzed for TPHg, BTEX, and MTBE. Regular groundwater monitoring data was then used to evaluate the effectiveness. Injection into wells MW-1 and MW-4 was discontinued in March and May 2008, respectively.

The TPHg and benzene concentrations in wells MW-1 and MW-4 over the past 3 years (including both confirmation and semi-annual monitoring samples) are summarized in Table A below. Copies of the laboratory analytical reports from the CRA confirmation sampling events are presented in Appendix D.

TABLE A OXYGEN INJECTION RESULTS SUMMARY							
Well	Date	TPHg	Benzene				
VVEII	Dute	(µg/L)	(µg/L)				
MW-1	3/24/06	680	130				
	8/24/06	1,000	180				
	3/1/07	28,000	1,800				
	9/6/07	11,000	1,900				
Grab (begin O ₂							
injection)	11/28/07	2,900	660				
Grab	12/28/07	860	9				
Grab	2/20/08	<50	< 0.5				
(End O ₂ Injection							
3/5/08)	3/10/08	19,000	940				
	9/2/08	23,000	1,200				
	3/18/09	35,000	1,200				
MW-4	3/24/06	17,000	930				
11111-1	8/24/06	10,000	1,000				
	3/1/07	4,300	240				
	9/6/07	4,900	230				
Grab (begin O ₂	, ,						
injection)	11/28/07	5,800	240				
Grab	12/28/07	53	< 0.5				
Grab	2/20/08	<50	< 0.5				
(End O ₂ Injection	3/10/08	870	8				
5/15/08)	9/2/08	1,800	36				
	3/18/09	3,900	46				

< Not detected at or above stated laboratory reporting limit

Grab Grab-groundwater sample (no purge)

As shown above, the oxygen injection successfully reduced concentrations in the wells as TPHg and benzene were not detected in either of the wells during the February 2008 event. During the first month of injection, increased DO concentrations (up to 16.5 milligrams per liter [mg/L]) were measured in the wells prior to each event. However, following the first month, the measured DO concentrations prior to each event decreased to pre-injection levels (less than 1 mg/L). The lower DO concentrations possibly indicate that the oxygen was being rapidly utilized by the microorganisms to degrade the hydrocarbons, as evidenced by the rapid decline in concentrations.

However, as shown above concentrations significantly rebounded shortly after the injections ceased. In the case of MW-1, the sample (with purging) collected in March 2008 five days after the last injection event was significantly higher than the no-purge sample collected in February 2008. Based on these results, it appears that only the immediate area around each well was affected by the oxygen. Due to the predominantly fine-grained, low permeability soils at the site, and the low injection pressures utilized, the oxygen likely was not able to diffuse a significant distance away from the wells resulting in only a small area of influence around each well. As a result, concentrations rebounded rapidly as unaffected groundwater re-entered the wells; and have since increased back to pre-injection levels. Therefore, based on the results, it does not appear that limited oxygen injection into the existing wells is feasible as a long-term remedial alternative at the site.

4.0 <u>CONSTITUENTS OF CONCERN IN SOIL AND GROUNDWATER</u>

4.1 <u>SOIL</u>

Based on the historical data, the primary constituents of concern (COCs) in soil at the site are TPHg and BTEX. The majority of the soil samples collected to date were not analyzed for MTBE. However, MTBE was not detected in the six soil samples collected beneath the second-generation dispensers in 1998; and MTBE is no longer detected in wells MW-1 and MW-4, and has not been detected in well MW-11. Therefore, MTBE does not appear to be a primary COC in site soil.

Only a low concentration of TOG (12 mg/kg) was detected in the final confirmation soil sample collected from the used-oil UST excavation; TPHd, semi-VOCs, and VOCs were not detected and the detected metals concentrations generally were consistent with background levels. Additionally, TPHd was not detected in the soil samples collected from the boring for well MW-4 located downgradient of the former used-oil UST and the detected metals concentrations were consistent with background levels. Only a low concentration of TOG (39 mg/kg) was detected in the soil sample collected at 25 fbg from boring MW-4, and VOCs were not detected (except BTEX). Based on these results, the former used-oil UST does not appear to have significantly impacted soil quality at the site, and none of these constituents appear to be COCs in soil.

4.2 <u>GROUNDWATER</u>

Based on the historical data, the primary COCs in groundwater are TPHg, BTEX, and MTBE; although MTBE is no longer detected in wells MW-1 or MW-4, and has not been detected in well MW-11. Other constituents (remaining fuel oxygenates, 1,2-DCA, EDB, ethanol, HVOCs, TOG) either were not detected or were only detected at low concentrations and therefore do not appear to be COCs in groundwater.

5.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

5.1 <u>RELEASE SOURCE AND VOLUME</u>

Based on previous investigations and UST/piping removal confirmation sampling, the primary source of the released petroleum hydrocarbons at the site appears to be the first-generation gasoline USTs formerly located on the north side of the site. The volume of released product is unknown.

5.2 <u>POTENTIAL OFFSITE SOURCES</u>

There do not appear to be any offsite sources potentially contributing to the impacts at the site. The nearby former Unocal facility case was closed in 1996 by ACEH. Based on the available data at the time of closure, it did not appear as if impacted groundwater had migrated downgradient of the facility. Based on the most recent groundwater monitoring data at the nearby Shell facility (January 2009), none of the wells downgradient of the facility contain TPHg, benzene, or MTBE.

5.3 <u>PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL</u>

Since 1990, a total of 65 soil samples have been collected from excavations and borings to evaluate the horizontal and vertical extent of petroleum hydrocarbons in soil. Based on the analytical results, impacted soil is present in the area of the former first-generation gasoline USTs. Elevated concentrations of TPHg and benzene were detected in final confirmation soil samples #17 (1,300 mg/kg and 20 mg/kg, respectively) and #18 (3,100 mg/kg and 60 mg/kg, respectively) collected at 22 fbg from the bottom of the southeast portion of the gasoline UST excavation in 1990. The remaining final confirmation soil samples collected from the bottom and sidewalls of the gasoline UST excavation contained only low concentrations of TPHg (up to 190 mg/kg) and BTEX (benzene up to 3 mg/kg). Elevated concentrations of TPHg (1,300 mg/kg) and benzene (38 mg/kg) were also detected in the soil sample collected at 25 fbg from the boring for well MW-1 (located in the former gasoline UST pit) drilled in 1990; however, significantly lower concentrations of TPHg (270 mg/kg) and benzene (1 mg/kg) were detected in the deeper sample (30 fbg) collected from this boring.

Impacted soil is also present just downgradient of the former gasoline USTs. TPHg was detected at 1,600 mg/kg in the soil sample collected at 20.5 fbg from boring B-1 drilled in 1994; benzene was detected at 5.3 mg/kg. TPHg and benzene were detected at

990 mg/kg and 2.4 mg/kg, respectively, in the soil sample collected at 24 fbg from the boring for well VW-1 (located near boring B-1) drilled in 1992; however, a significantly lower concentration of TPHg (130 mg/kg) was detected in the sample collected at 31 fbg from this boring, and benzene was not detected. Similarly, TPHg and benzene were detected at 650 mg/kg and 2.7 mg/kg, respectively, in the soil sample collected at 25 fbg from the boring for well VW-2 drilled in 1992; however, significantly lower concentrations of TPHg (1 mg/kg) and benzene (0.07 mg/kg) were detected in the sample collected at 30 fbg from this boring.

Only low concentrations of TPHg (up to 9 mg/kg) and BTEX (up to 1.2 mg/kg) were detected in the soil samples collected beneath the first-generation dispensers/product piping in 1990; and TPHg, BTEX, and MTBE were not detected in the soil samples collected beneath the second-generation dispensers during upgrade work in 1998. Only low concentrations of TPHg and BTEX were detected in the soil samples collected from the remaining perimeter borings; and these constituents generally were not detected in the soil samples collected offsite with the exception of low concentrations of TPHg (up to 57 mg/kg) and BTEX (up to 3.4 mg/kg) in soil samples collected from the borings for downgradient wells MW-6 (26 fbg) and MW-9 (24.5 fbg) in 1991 and 1994, respectively. However, a deeper sample collected from boring MW-9 (33.5 fbg) contained only trace concentrations of benzene (0.038 mg/kg) and xylenes (0.008 mg/kg).

Based on the analytical results, the primary residual impact to site soil consists of TPHg and BTEX. The extent of the soil with elevated concentrations appears limited to the area of the former first-generation gasoline USTs and just downgradient. The approximate extent of soil with elevated concentrations of TPHg (greater than 100 mg/kg and benzene (greater than 5 mg/kg) is shown on Figures 3 and 4. In Technical Comment No. 1 of the May 15, 2009 letter, ACEH stated that the lateral and vertical extent of impacted soil in the former source area is undefined. However, based on the data the lateral extent of the impacted soil appears to have been adequately defined by the surrounding borings and wells and no further investigation appears warranted. With regards to the vertical extent of impacted soil, in the letter ACEH mistakenly identified the soil sample collected at 30 fbg from boring MW-1 as containing the elevated concentrations of TPHg and benzene (1,300 mg/kg and 38 mg/kg, respectively). As described above, it was the sample at 25 fbg that contained these concentrations while the sample collected at 30 fbg contained significantly lower concentrations. Additionally, based on the time since most of the samples were collected, concentrations likely have further decreased due to natural attenuation processes. Therefore, the vertical extent of impacted soil both in the former source area

also appears to have been adequately evaluated and no further investigation appears warranted.

The historical soil sample analytical results are presented in Table 2. The approximate boring and soil sample locations and the historical TPHg and benzene analytical results are presented on Figure 5.

5.4 PETROLEUM HYDROCARBON DISTRIBUTION IN GROUNDWATER

Groundwater monitoring has been performed at the site since 1990. As previously described, well MW-5 was paved over in 1995 and has not been sampled since that time; sampling of wells MW-2 and MW-3 was discontinued in 1999; and wells MW-6 through MW-10 were destroyed in 2006. Remaining wells MW-1, MW-4, and deeper well MW-11 are currently sampled on a semi-annual basis.

The highest concentrations of TPHg and BTEX have historically been detected in well MW-1 located in the former gasoline UST pit and well MW-4 located downgradient of the former USTs. Significant concentration fluctuations have been observed in well MW-1; and while the TPHg, toluene, ethylbenzene, and xylenes concentrations have remained relatively stable overall, the benzene concentrations have significantly decreased since the start of monitoring, but elevated concentrations remain. MTBE generally has not been detected in well MW-1 with the exception of a few events and has not been detected since 2000. Conversely, declining trends in TPHg and BTEX concentrations are evident in well MW-4 and concentrations have significantly decreased throughout the course of monitoring. Low to slightly elevated concentrations of MTBE have sporadically been detected in well MW-4; however, MTBE has not been detected in the last several years. TPHg and BTEX generally have not been detected in downgradient well MW-11 with the exception of low concentrations during a few events; MTBE has not been detected in well MW-11. A comparison of the maximum TPHg, benzene, and MTBE concentrations and the most recent concentrations in wells MW-1, MW-4, and MW-11 is presented in Table B below. A copy of the first semi-annual 2009 groundwater monitoring report is presented in Appendix E. Graphs of TPHg, benzene, and MTBE concentrations in wells MW-1 and MW-4 over time are included in the report in Appendix E.

TABLE B. SUMMARY OF MAXIMUM AND MOST RECEN GROUNDWATER CONCENTRATIONS (µg/L)											
	TPHg		Benzene		MTBE						
Well I.D.	Historical Maximum Concentrati on (date)	Most Recent Concentration (3/18/09)	Historical Maximum Concentration (date)	Most Recent Concentration (3/18/09)	Historical Maximum Concentration (date)	Most Recent Concentration (3/18/09)					
MW-1	190,000 6)	35,000	29,000 (6/8/95)	1,200	380 (9/30/96)	<3					
MW-4	94,000 (7/25/93)	3,900	18,000 (7/25/93)	46	250 (2/25/01)	<0.5					
MW-11	190 (12/29/00)	<50	0.8 (3/1/07)	<0.5	<0.5	<0.5					

< Not detected at or above stated laboratory reporting limit

Elevated concentrations of TPHg (4,700 μ g/L) and benzene (340 μ g/L) were detected in downgradient well MW-9 during third quarter 2005, the last event prior to its destruction in 2006; along with low concentrations of toluene (0.5 μ g/L), ethylbenzene $(9 \,\mu g/L)$, xylenes (6 $\mu g/L)$, and MTBE (0.9 $\mu g/L)$. However, consistent declining trends were evident in this well and concentrations had significantly decreased since the start of monitoring. Concentrations in crossgradient well MW-6 had also decreased and TPHg, BTEX, and MTBE were no longer detected at the time of its destruction. TPHg, BTEX, and MTBE also generally were not detected in downgradient wells MW-8 and MW-10 prior to their destruction. At the time sampling of upgradient well MW-2 and crossgradient well MW-3 was discontinued in 1999, only low concentrations of TPHg $(348 \ \mu g/L)$ and benzene $(0.98 \ \mu g/L)$ remained in MW-3 (MTBE was not detected), and TPHg, BTEX, and MTBE generally had not been detected in MW-2 throughout the course of monitoring. TPHg and BTEX generally had not been detected in crossgradient well MW-5 prior to it being paved over; and TPHg and BTEX generally were not detected in crossgradient well MW-7 prior to its destruction, and MTBE was not detected.

Elevated concentrations of TPHg (63,000 μ g/L) and BTEX (benzene at 5,600 μ g/L) were detected in the groundwater sample collected from downgradient boring B-3 drilled approximately 10 feet from well MW-4 in 1996. The concentrations were higher than those in the sample collected from well MW-4 two weeks later (see Appendix E); likely due to the presence of impacted sediment in the sample collected from the boring. TPHg and BTEX were not detected in the groundwater sample collected from crossgradient boring B-4. Elevated concentrations of TPHg (65,000 μ g/L) and benzene (470 μ g/L) were detected in the groundwater sample collected from downgradient

boring SB-1 in 1995. A significantly lower TPHg concentration (2,900 μ g/L) was detected in the groundwater sample collected from further downgradient boring SB-2 (benzene was not detected); and TPHg and BTEX generally were not detected in the groundwater sample collected from furthest downgradient boring SB-3 with the exception of a low concentration of toluene (3.1 μ g/L). Deeper groundwater samples collected at 52 fbg (TPHg at 1,000 μ g/L; benzene at 1 μ g/L) and 63 fbg (TPHg at 170 μ g/L; benzene not detected) from boring CPT-2 located adjacent to previous boring SB-1 indicated that the vertical extent of impacted groundwater had been adequately evaluated. TPHg, BTEX, fuel oxygenates, 1,2-DCA, and EDB generally were not detected in deeper groundwater samples collected from borings CPT-1 and CPT-3.

Based on the analytical results, impacted groundwater (TPHg and BTEX) is present beneath the site in the area of the former gasoline USTs (source area) and downgradient. Impacted groundwater also likely remains beneath the adjacent property to the east-northeast. While the benzene concentrations in source area well MW-1 have decreased, the TPHg, toluene, ethylbenzene, and xylenes concentrations have remained relatively stable overall. Conversely, concentrations in onsite downgradient well MW-4 have significantly decreased over time. As described in Section 3.1, limited oxygen injection into these wells failed to decrease concentrations except in the immediate area of the wells as concentrations rebounded quickly after the injection ceased. In Technical Comment No. 2 of the May 15, 2009 letter, ACEH stated that the downgradient extent of the plume is undefined. However, based on the analytical results and the predominant groundwater flow direction, the extent of impacted groundwater appears to have been adequately defined as evidenced by borings CPT-1, CPT-3, and SB-3, and wells MW-5, MW-10, MW-11, and MW-8; and no further investigation appears warranted.

Graphs of TPHg, benzene, and MTBE concentrations in wells MW-1 and MW-4 over time are included in the report in Appendix E. Iso-concentration maps of TPHg and benzene in groundwater are presented on Figures 6 and 7, respectively. The plume appears to be stable, and decreasing in size based on the data from wells MW-4 and MW-9.

It is noted that in the ACEH case closure letter dated June 27, 2005 for the nearby Dublin Retail Center at 7900 Dublin Boulevard, located approximately 400 feet east-southeast of the site at the southwest corner of the intersection of Dublin Boulevard and Regional Street, the detection of MTBE in groundwater (up to $160 \mu g/L$) at this facility was attributed to the subject site. The Dublin Retail Center property reportedly was occupied by an ARCO service station from 1975 to 1983. However, based on the analytical results in well MW-11 and borings CPT-2 and CPT-3, in which MTBE has not

been or was not detected, the subject site does not appear to be the source of the detected MTBE at the facility.

5.5 <u>LIGHT NON-AQUEOUS PHASE LIQUID</u>

As described in Section 3.0, approximately 6 inches of LNAPL (what appeared to be used-oil) was observed in well #3 two weeks following installation. In January 1984, well #3 was drilled out and deepened to 35 fbg, and LNAPL was not observed at this time. This well was monitored periodically from January through October 1984 and LNAPL generally was not observed during this time with the exception of June 1984, when approximately 0.0 feet were observed. The LNAPL was bailed from the well. Well #3 was destroyed in 1990. LNAPL has not been observed in any other of the site monitoring wells.

5.6 <u>STATUS OF WELL MW-5</u>

As previously discussed, well MW-5 was installed on the south side of Dublin Boulevard in 1991 and sampled quarterly until third quarter 1995, after which it was subsequently paved over by the City during road improvement activities. Several attempts have since been made to re-locate this well using both metal detection and ground-penetrating radar equipment, but have not been successful; most recently in March 2009. Therefore, this well is considered to be abandoned.

Previous correspondence from ACEH (dated between 2005 and 2007) requested that well MW-5 be re-located and sampled to evaluate if a release had occurred from the existing USTs. If well MW-5 could not be located, a replacement well was to be proposed. As previously mentioned, well MW-5 was unable to be re-located. However, based on the predominant groundwater flow direction (easterly), well MW-5 was located in the crossgradient direction from the USTs; and as expected, petroleum hydrocarbons generally were not detected in this well during the time it was monitored. If a release had occurred from the existing USTs, it likely would have been detected in the downgradient wells/borings. Therefore, the replacement of well MW-5 does not appear warranted at this time.

6.0 <u>POTENTIAL EXPOSURE PATHWAYS</u>

6.1 <u>SOIL</u>

As the site is generally capped with concrete and asphalt, potential exposure to subsurface impacted soil by the general public is essentially eliminated. Therefore, the only identified potential exposure pathway to impacted soil beneath the site is direct exposure by construction workers during trenching or excavating activities. Even then, the soil with elevated concentrations was located at depths greater than 20 feet, and therefore is unlikely to be disturbed.

6.2 <u>GROUNDWATER</u>

The extent of impacted groundwater appears to be adequately defined and no water supply wells appear to be located downgradient of the site. As discussed in Section 2.3, drinking water for the City of Dublin is provided by Zone 7, which obtains the majority of its supply from the San Francisco Bay Delta via the State Water Project. Based on the CPT boring results, deeper groundwater does not appear to be significantly impacted. Therefore, no complete groundwater ingestion pathways appear to exist and none are likely to exist in the foreseeable future. Based on the typical depth to groundwater of greater than 20 fbg, it is unlikely groundwater would be encountered during any trenching or excavation activities.

6.3 <u>SURFACE WATER</u>

The nearest surface water body is Dublin Creek, located approximately 3,200 feet downgradient of the site. In addition, the site is located in a developed area of Dublin. Based on this information, there is no apparent risk to surface waters or other ecological receptors from the site hydrocarbons.

6.4 <u>VAPOR INTRUSION</u>

Benzene is considered the primary COC in groundwater for potential vapor intrusion concerns as it is a known carcinogen. Based on the elevated benzene concentrations detected in well MW-1 located adjacent to the station building, potential vapor intrusion into the existing building appears to be a concern for site workers. As this concern has not been addressed, potential vapor intrusion into the site building constitutes a data gap and further investigation appears warranted.

With regards to potential vapor intrusion concerns for offsite receptors, although impacted groundwater likely remains beneath the adjacent property, the most recent benzene concentrations detected in well MW-4 (46 μ g/L) adjacent to the property line, and well MW-9 in 2005 ($340 \,\mu g/L$), are relatively low. Concentrations beneath the adjacent property likely have further decreased since 2005 as evidenced by the declining trends in well MW-9 prior to its destruction, and in well MW-4. These benzene concentrations do not exceed the groundwater environmental screening level (ESL) associated with potential vapor intrusion concerns at residential sites (most conservative) of 540 μ g/L; established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) in May 2008 (Table E-1). In addition, the ESLs conservatively assume a depth to groundwater of approximately 10 fbg whereas the depth to groundwater at the site is greater than 20 fbg; the ESLs also assume the subsurface consists of high permeability soils while the soils beneath the adjacent property are fine-grained, low permeability materials not conducive to the upward migration of vapors. Finally, this property is currently undeveloped so there are no potential receptors. Due to the market conditions, the property likely will remain undeveloped for some time. Based on this information, potential vapor intrusion for offsite receptors does not appear to be a significant concern, and no further investigation appears warranted.

7.0 PROPOSED ADDITIONAL INVESTIGATION

Based on the analytical results and site conditions, potential vapor intrusion into the site building appears to be the lone data gap that warrants additional investigation. To evaluate shallow soil vapor quality and potential vapor intrusion concerns, CRA proposes the installation and sampling of three soil vapor wells at the site. The proposed vapor well locations are shown on Figure 2. Details of the proposed investigation are presented in the following sections.

7.1 <u>PRE-FIELD ACTIVITIES</u>

Permits and Access Agreements: CRA will obtain all necessary permits and access agreements for the proposed vapor wells prior to beginning field operations. A minimum of 72 hours written notification will be given to ACEH before initiation of drilling activities.

Site Health and Safety Plan: CRA will prepare a site-specific health and safety plan (HASP) to inform site workers of known hazards and to provide health and safety guidance. The plan will be reviewed and signed by all site workers and visitors and will be kept onsite during field activities.

Underground Utility Location: The proposed well locations will be marked at least 48 hours prior to the start of drilling activities and Underground Service Alert (USA) will be notified to clear the proposed locations with local public utility companies. A private utility locator will also be retained to additionally clear the well locations of utility lines prior to drilling.

7.2 SOIL VAPOR QUALITY EVALUATION

To evaluate potential vapor intrusion concerns, three soil vapor wells will be installed and sampled adjacent to the site building.

Drilling: The three vapor well borings will be advanced to a total depth of approximately 6 fbg using a 3-inch diameter hand auger in accordance with Chevron and CRA safety protocols. The final locations and depths of the borings will be based on field conditions.

Soil Sampling and Laboratory Analysis: Soil samples will be continuously collected the entire length of each boring for logging and observation purposes. The soil encountered in the borings will be logged in accordance with the modified Unified Soil Classification System (USCS). Soil samples from each boring will be screened in the field for volatile organic vapors using a photo-ionization detector (PID). Samples that return PID readings of 100 parts per million by volume (ppmv) or greater, or those that have evidence of impact, may be retained for laboratory analysis. If no evidence of impact is observed in the borings, a soil sample collected from each boring between 5 and 6 fbg will be submitted for analysis. CRA's standard field procedures for hand auger borings are presented in Appendix F.

Soil samples retained for laboratory analysis will be collected in brass or stainless steel liners, capped using Teflon tape and plastic end caps, labeled, placed in an ice-chilled cooler, and transported under chain of custody to Lancaster Laboratories, Inc. (Lancaster) in Lancaster, Pennsylvania, for analysis. The soil samples will be analyzed for the following constituents:

- TPHg by EPA Method 8015
- BTEX and MTBE by EPA Method 8260B

Soil Vapor Well Installation: The three borings will be completed as soil vapor wells. The soil vapor wells will be constructed in general accordance with CRA's standard field procedures (Appendix F). One-quarter inch diameter Nylaflow® tubing will be fitted with a 6-inch-long section of 0.010-inch slotted, Schedule 40 PVC screen. The tubing and screen will be placed into each open borehole with the bottom of the screen at approximately 5.5 fbg. Washed No. 2/16 silica sand will be placed from 5 to 6 fbg to create a filter pack around the screen. A 3-inch layer of dry granular bentonite will be placed on top of the sand pack followed by hydrated bentonite powder (gel) to a few inches below the surface. The tubing exiting the bentonite will be capped, and well boxes with traffic-rated well vaults will be installed. A schematic diagram of the soil vapor well construction is presented on Figure A of Appendix F.

Soil Vapor Sampling and Laboratory Analysis: Soil vapor samples will be collected from the vapor wells in 1-liter SUMMA[™] canisters for laboratory analysis. The samples will be collected in general accordance with the Department of Toxic Substances Control (DTSC) *Advisory-Active Soil Gas Investigations* guidance document dated January 28, 2003. A generalized schematic of the soil vapor sampling apparatus is presented on Figure B of Appendix F. CRA's standard field procedures for soil vapor well installation and sampling are included in Appendix F. The samples will be

collected no sooner than 72 hours after well installation to allow adequate equilibration time.

At least one field duplicate sample per day will also be collected. In accordance with the DTSC guidance, leak testing will be performed during sampling. Helium will be used as a leak check compound to evaluate if significant ambient air is entering the SUMMATM canisters during sampling. Field application of helium will be accomplished through the use of a containment structure (i.e. a clear, large volume Rubbermaid[®] or Tupperware[®] storage container) placed inverted over the entire well and sampling apparatus.

The soil vapor samples will be kept at ambient temperature and submitted under chain-of-custody to Air Toxics Ltd. in Folsom, California, for analysis. The soil vapor samples will be analyzed for the following constituents:

- TPHg by EPA Method TO-3
- BTEX and MTBE by EPA Method TO-15
- Helium (leak check compound), oxygen (O₂), carbon dioxide (CO₂), and methane (CH₄) by ASTM D-1946

7.3 <u>SOIL AND WATER DISPOSAL</u>

Soil cuttings and decontamination rinsate generated during field activities will be temporarily stored onsite in 55-gallon steel drums and sampled for disposal purposes. Once profiled, the drums will be transported to a Chevron-approved facility for disposal.

7.4 <u>REPORTING</u>

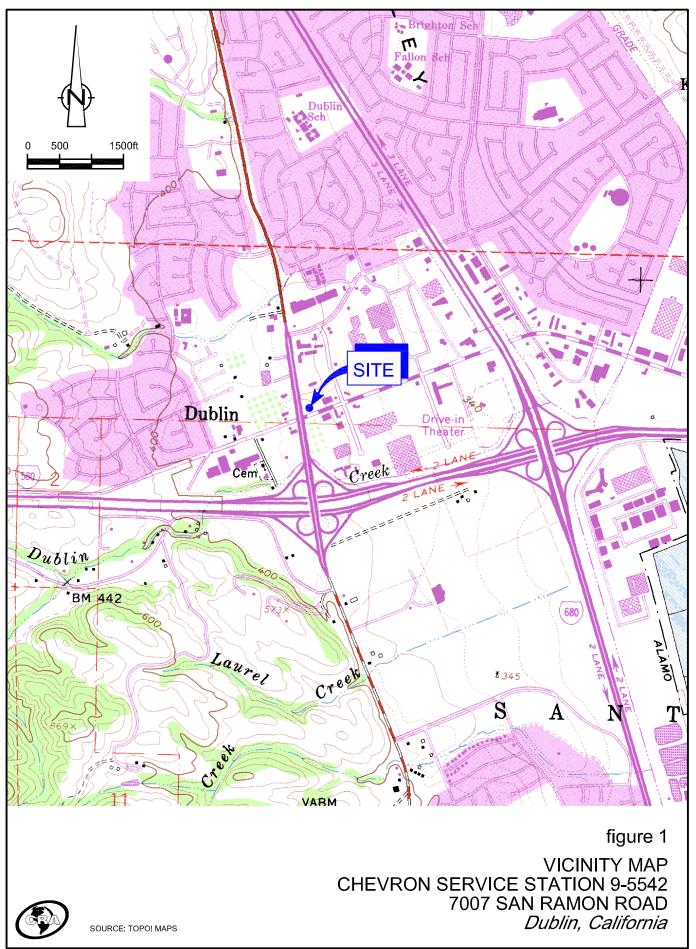
Following receipt of the analytical results, CRA will prepare a subsurface investigation report presenting the results of the investigation and summarizing our conclusions and recommendations. The report will include a description of field activities, a figure illustrating the boring locations, boring logs, tabulated soil and soil vapor analytical results, and copies of the analytical reports and chain-of-custody forms. Our conclusions and recommendations will be based on readily available information, observations of existing site conditions, and our interpretation of the analytical data.

8.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

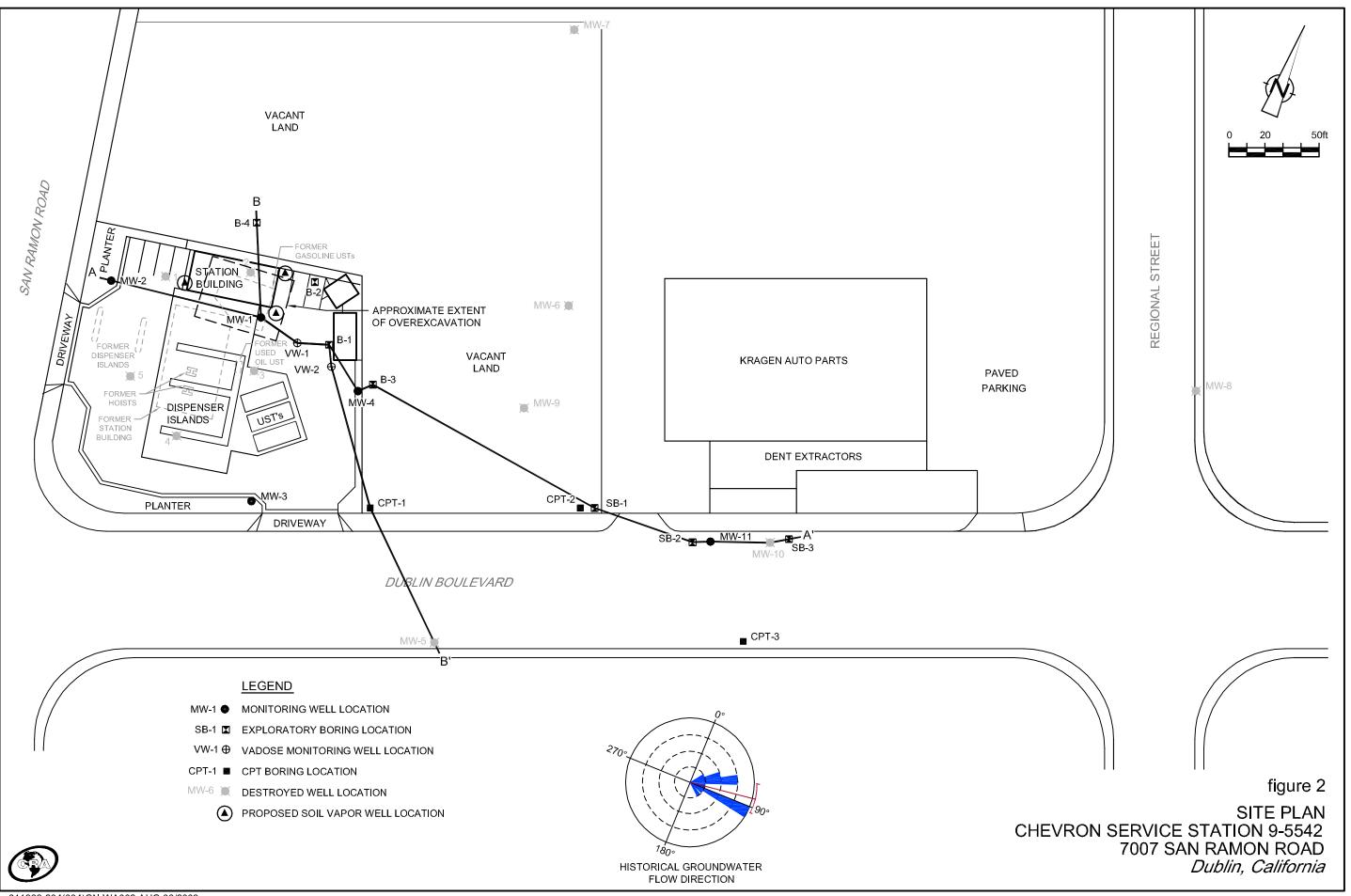
Preparation of a SCM to establish site conditions and evaluate if any data gaps exist was requested by ACEH in a letter dated May 15, 2009. This report presents a SCM for the site, an evaluation of potential data gaps, and CRA's proposed additional investigation to evaluate the identified remaining data gap (potential vapor intrusion into the site building). The ACEH letter also contained several technical comments (Nos. 1-5) that were addressed in this report or will be addressed at a later date. The following is a brief summary of the information presented/conclusions reached regarding each of the technical comments in the May 15, 2009 letter:

Technical Comment No. 1-Contaminant Source Area Characterization: ACEH indicated that their records did not include a report summarizing the February 1990 UST removal. As was communicated to ACEH by CRA via e-mail on May 21, 2009, a report titled *Multiple Event Sampling Report*, dated March 7, 1990, was prepared and submitted by Blaine Tech Services, Inc. that documented this work. This report is identified as SITE_SUM_R_1990-03-07.pdf in the online ACEH LOP document database for this site. An additional document identified as MISC_SAMP_R_1990-02-27.pdf in the database contains additional information regarding this work.

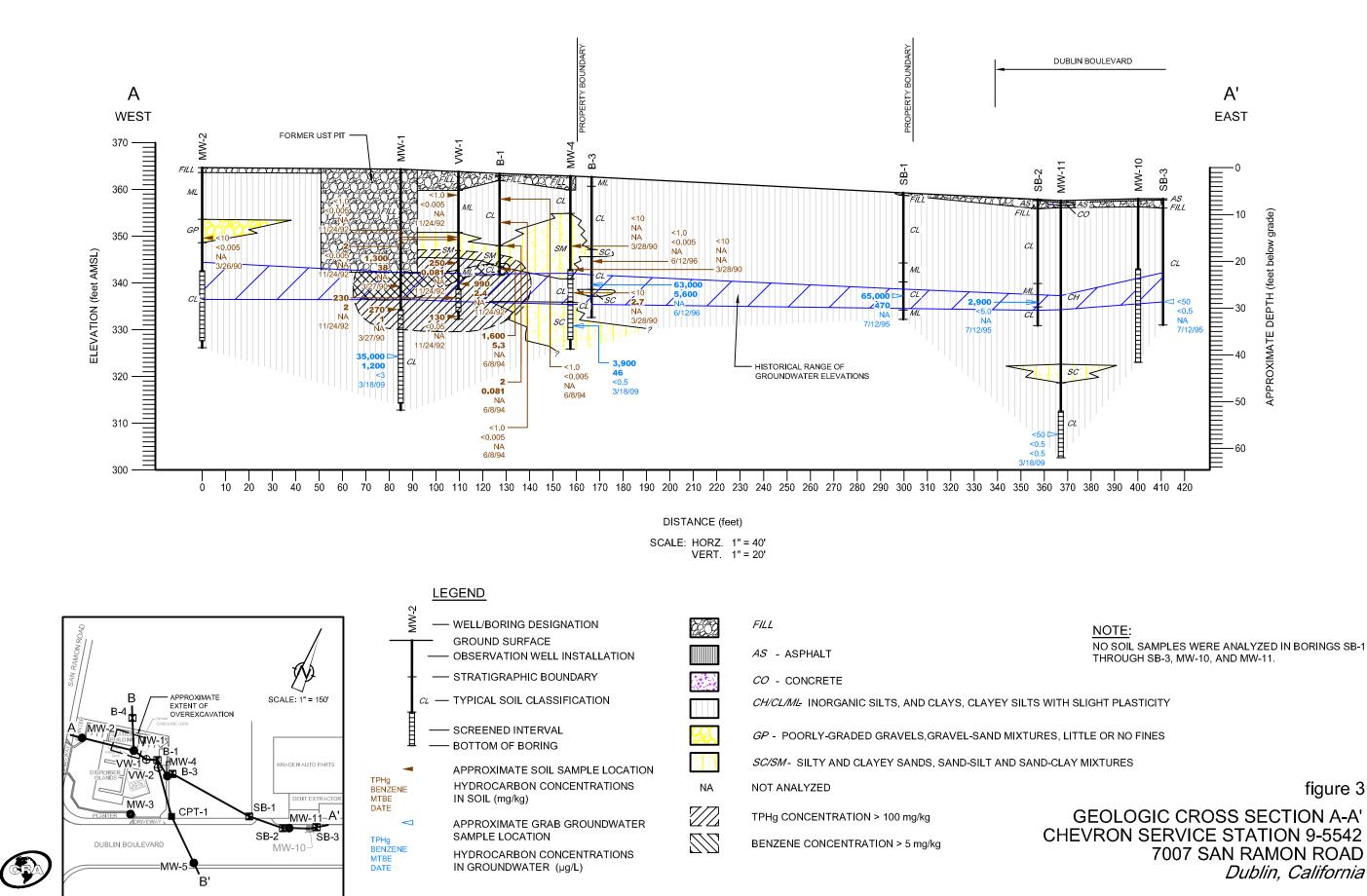
ACEH also referenced the analytical results of the soil sample collected from the boring for well MW-1 at 30 fbg as TPHg and benzene at 1,300 mg/kg and 38 mg/kg, respectively. However, these results were actually for the sample collected at 25 fbg; the sample at 30 fbg contained significantly lower concentrations. ACEH stated that "based on the soil sample analytical data, the vertical and lateral extent of soil contamination in the former source area is undefined". Based on our review of the data, the vertical and lateral extent of impacted soil in the former source area appears to have been adequately defined and no further investigation appears warranted.

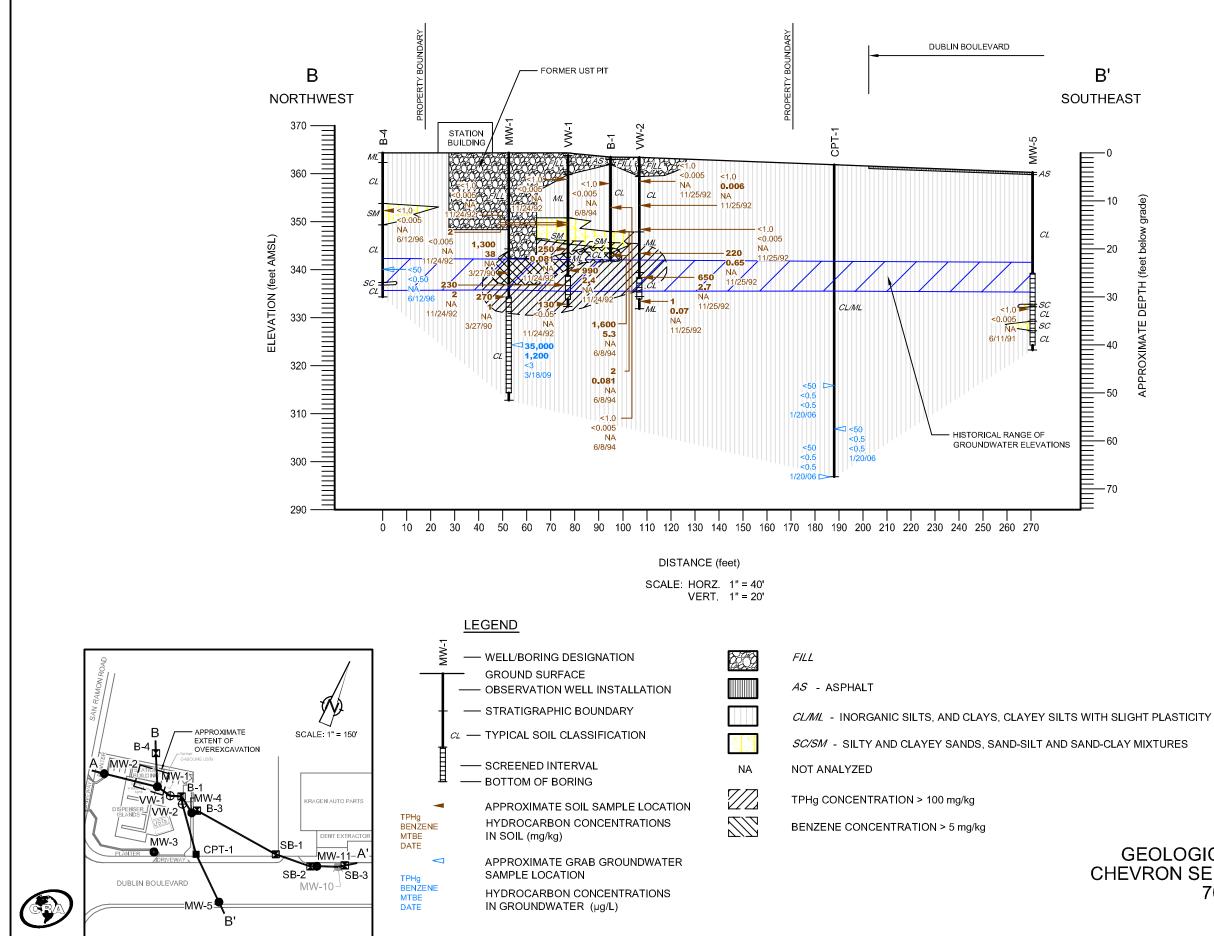

Technical Comment No. 2-Soil and Groundwater Characterization: ACEH stated that "based on the analytical data, the downgradient extent of the groundwater contaminant plume is undefined". However, based on the predominant groundwater flow direction and the analytical results of the downgradient wells and borings, the downgradient extent of the hydrocarbon plume appears to have been adequately defined and no further investigation appears warranted.

Technical Comment No. 3-Site Conceptual Model: This SCM for the site identified vapor intrusion into the site building as the only remaining data gap. To evaluate shallow soil vapor quality and potential vapor intrusion concerns, CRA proposes the installation and sampling of three soil vapor wells at the site.

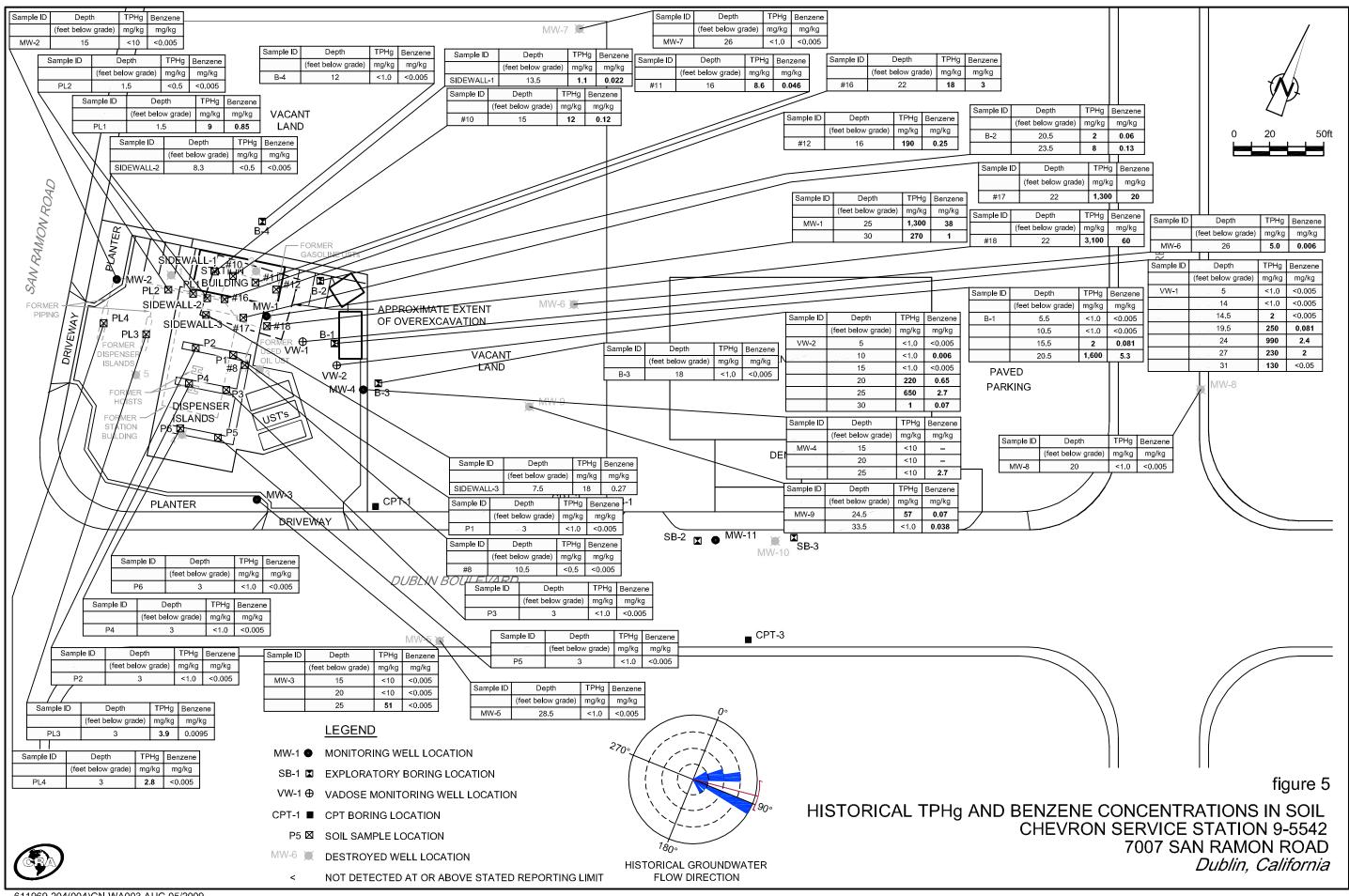

Technical Comment No **4**-*Feasibility Study/Corrective Action Plan:* ACEH stated that once assessment activities are complete, preparation of a Feasibility Study/Corrective Action Plan (FS/CAP) appears appropriate. CRA concurs that preparation of a FS/CAP may be warranted as the oxygen injection activities were unsuccessful in reducing source area groundwater concentrations. However, based on the evaluation of potential exposure pathways (Section 6.0), vapor intrusion into the site building was identified as the only potential complete pathway of concern. If the results of the proposed investigation indicate that there is no significant risk to human health via this pathway, preparation of a FS/CAP may not be warranted. Therefore, the need for a FS/CAP will be evaluated following completion of the proposed additional investigation.

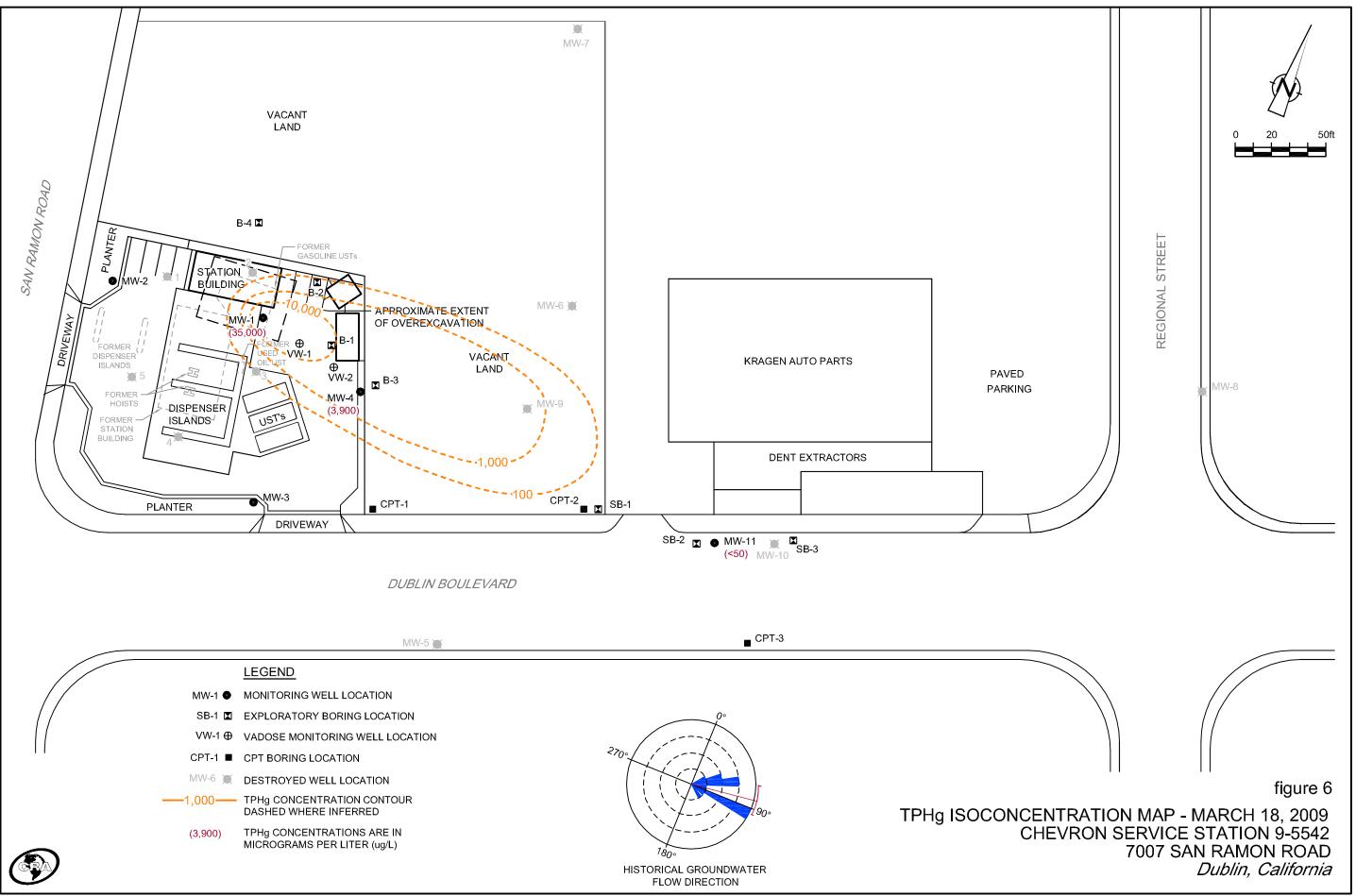
Technical Comment No. 5-Groundwater Monitoring Reports: ACEH requested that a figure that illustrates groundwater flow direction as well as a figure showing the analytical data with isoconcentration contours for chemicals of concern be included in all future groundwater monitoring reports. As previously mentioned, gauging of wells MW-2 and MW-3 will be resumed to prepare the potentiometric map. CRA will include these figures beginning with the second semi-annual 2009 groundwater monitoring report.


FIGURES

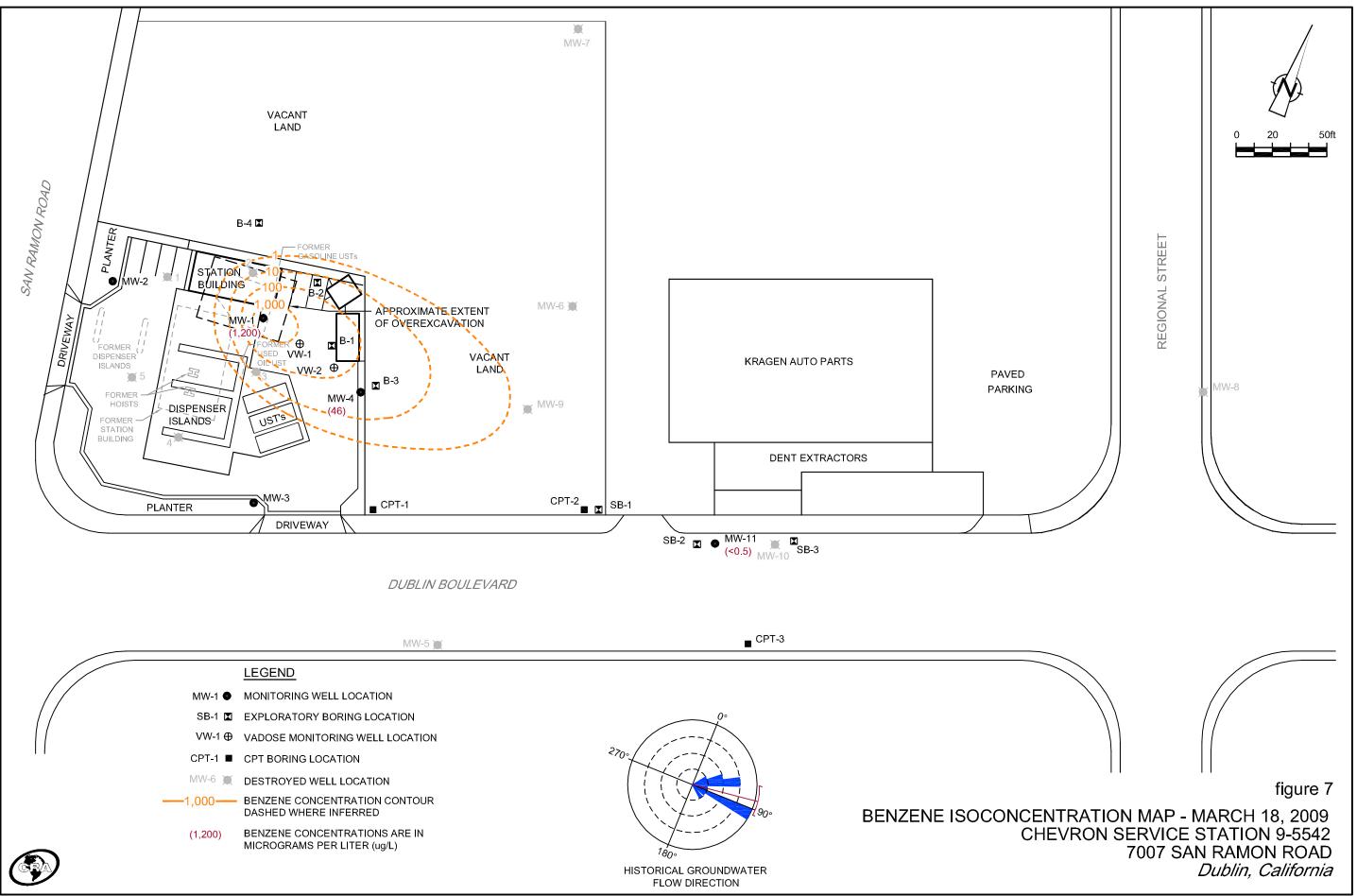

611969-2007(PRES001)GN-WA001 SEP 04/2007

611969-204(004)GN-WA002 AUG 03/2009


611969-204(004)GN-WA001 AUG 05/2009


611969-204(004)GN-WA001 AUG 05/2009

GEOLOGIC CROSS SECTION B-B' CHEVRON SERVICE STATION 9-5542 7007 SAN RAMON ROAD Dublin, California


figure 4

611969-204(004)GN-WA003 AUG 05/2009

611969-204(004)GN-WA004 AUG 05/2009

611969-204(004)GN-WA005 AUG 05/2009

TABLES

TABLE 1 WELL CONSTRUCTION DETAILS CHEVRON SERVICE STATION 9-5542 7007 SAN RAMON ROAD, DUBLIN, CALIFORNIA

		W	/ell	Sci	reen	Screen	Comments
Boring	Installation	Depth	Diameter	Тор	Bottom	Length	
ID	Date	(fbg)	(inches)	(fbg)	(fbg)	(feet)	
MW-1	03/27/90	36.5	2	21	36	15	
MW-1	11/25/92	51.5	4	30	50	20	Original MW-1 overdrilled to new depth
MW-2	03/26/90	37	2	22	37	15	0
MW-3	03/26/90	36.5	2	21	36	15	
MW-4	03/28/90	36.5	2	21	36	15	
MW-5	06/11/91	36	2	21	36	15	
MW-6	06/11/91	35	2	20	35	15	
MW-7	06/12/91	35	2	20	35	15	
MW-8	12/06/91	35	2	15	35	20	
VW-1	11/24/92	31.5	2	25	30	5	
VW-2	11/25/92	31.5	2	25	29.5	4.5	
MW-9	06/08/94	34.5	2	19	34.5	15.5	
MW-10	06/12/96	35	2	15	35	20	
MW-11	11/30/08	55	2	45	55	10	

fbg = feet below grade

TABLE 2 HISTORICAL SOIL SAMPLE ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-5542 7007 SAN RAMON ROAD, DUBLIN, CALIFORNIA

Boring/	Depth	Date	TPHg	TPHd	TOG	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Semi-VOCs	VOCs	Pb	Cd	Cr	Zn	Sb	As	Be	Си	Hg	Ni	Se	Ag	Tl
Sample ID	(fbg)	Sampled	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline UST a	and Produ	ct Line Remo	val																						
PL1	1.5	2/8/90	9	NA	NA	0.85	0.017	0.2	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL2	1.5	2/8/90	< 0.5	NA	NA	< 0.005	< 0.005	< 0.005	0.012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL3	3	2/8/90	3.9	NA	NA	0.0095	0.011	0.16	0.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL4	3	2/8/90	2.8	NA	NA	< 0.005	< 0.005	0.16	0.072	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#1	11.5	2/13/90	3,100	NA	NA	1.8	50	51	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#2	11.0	2/13/90	5,000	NA	NA	2	210	120	780	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#3	11	2/13/90	5.9	NA	NA	0.19	0.060	0.15	0.34	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#4	11.5	2/13/90	4,800	NA	NA	8.8	430	130	690	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#5	11	2/13/90	2.4	NA	NA	0.017	0.068	0.045	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#6	12	2/13/90	2,900	NA	NA	2.2	120	51	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#10	15	2/13/90	12	NA	NA	0.12	0.4	0.11	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#11	16	2/13/90	8.6	NA	NA	0.046	0.4	0.13	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#12	16	2/13/90	190	NA	NA	0.26	2.5	2.5	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#13	15.5	2/13/90	5,100	NA	NA	30	360	110	680	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#13	16	2/13/90	2,900	NA	NA	23	150	45	240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#16	22	2/13/90	18	NA	NA	3	5	0.5	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#17	22	2/14/90	1,300	NA	NA	20	98	33	160	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#17 #18	22			NA	NA	20 60	219	69	355	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
#10	22	2/14/90	3,100	INA	INA	00	219	09	333	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Sidewall-1	13.5	2/13/90	1.1	NA	NA	0.022	0.013	0.023	0.07	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sidewall-2	8.3	2/13/90	< 0.5	NA	NA	< 0.005	< 0.005	< 0.005	0.0068	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sidewall-3	7.5	2/13/90	18	NA	NA	0.27	0.89	0.4	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P1	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P2	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P3	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P4	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P5	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P6	3	9/16/98	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Used-Oil UST	Removal																								
#7	8	2/13/90	0.55	NA	12	0.0046	0.019	<0.005	0.49	NA	ND	NÐ	15	<3	8	19	<25	140	<1	21	0.02	23	<50	<5	25
#8	10.5	2/13/90	< 0.5	<10	12	< 0.005	< 0.005	< 0.005	0.02	NA	ND	ND	12	<3	5	17	<25	85	<1	16	< 0.02	16	<50	<5	20
Evaloratory Bo	ring																								
Exploratory Bo	-	6/8/04	~1.0	NT A	NT A	<0.00E	<0.00E		<0.00E	NT A	NTA	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A	NT A
B-1	5.5 10 5	6/8/94 6/8/94	<1.0	NA NA	NA NA	<0.005	<0.005	<0.005 <0.005	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	10.5 15 5	6/8/94	<1.0	NA	NA NA	< 0.005	< 0.005		< 0.005	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA
	15.5 20.5	6/8/94 6/8/94	2 1,600	NA NA	NA NA	0.081 5.3	0.19 72	0.02 23	0.13 120	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
B-2	20.5	6/8/94	2	NA	NA	0.06	0.026	0.031	0.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	23.5	6/8/94	8	NA	NA	0.13	0.037	0.12	0.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 2 HISTORICAL SOIL SAMPLE ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-5542 7007 SAN RAMON ROAD, DUBLIN, CALIFORNIA

Boring/	Depth	Date	TPHg	TPHd	TOG	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Semi-VOCs	VOCs	Pb	Cd	Cr	Zn	Sb	As	Be	Си	Hg	Ni	Se	Ag	Tl
Sample ID	(fbg)	Sampled	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg		mg/kg	o mg/kg		mg/kg		
B-4	12	6/12/96	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Monitoring an	d Remedia	l Wells																							
MW-1	25	3/27/90	1,300	NA	NA	38	150	34	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	3/27/90	270	NA	NA	1	4	4	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	15	3/26/90	<10	NA	NA	< 0.005	< 0.005	<0.005	< 0.015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	15	3/26/90	<10	NA	NA	< 0.005	< 0.005	<0.005	<0.015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	3/26/90	<10	NA	NA	< 0.005	0.01	0.01	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	25	3/26/90	51	NA	NA	< 0.005	0.02	0.05	0.28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N 4347 4	15	2/29/00	-10	-10	NT A	NT A	NT A	NT A	NTA	NTA	NT A	NT A	27	-2	26	20	NTA	NTA	NT A	NT A	NT A	NT A	NT A	NT A	NTA
MW-4	15 20	3/28/90 3/28/90	<10 <10	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	37 41	<3 <3	26 25	39 44	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	20 25	3/28/90	<10	<10	39	2.7	23	5.6	46	NA	NA	ND^1	26	<3	13	28	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	0/ 20/ 90	-10	10	05		_0	0.0	10	1111	14/1		20	.0	10	20	1111	14/1	1411	1411	1411	14/1	1411	1411	14/1
MW-5	28.5	6/11/91	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	<10	NA	NA	NA	NA	NA							
MW-6	26	6/11/91	5	NA	NA	0.006	0.006	0.06	0.12	NA	NA	NA	<10	NA	NA	NA	NA	NA							
MW-7	26	6/11/91	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	<10	NA	NA	NA	NA	NA							
MW-8	20	12/6/91	<1.0	NA	NA	< 0.005	< 0.005	<0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-9	24.5	6/8/94	57	NA	NA	0.07	0.11	0.58	3.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10100-9	33.5	6/9/94	<1.0	NA	NA	0.038	< 0.005	< 0.005	0.008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	00.0	0/ // / 1	-1.0	1111	1411	0.000	-0.000	-0.000	0.000	1111	14/1	1411	1411	1411	1411	1 11 1	1111	14/1	1411	1411	1411	14/1	1411	1411	14/1
VW-1	5	11/24/92	<1.0	NA	NA	< 0.005	0.006	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	14	11/24/92	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	14.5	11/24/92	2	NA	NA	< 0.005	0.058	0.029	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	19.5	11/24/92	250	NA	NA	0.081	5.6	3.4	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	24	11/24/92	990	NA	NA	2.4	60	15	99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	27	11/24/92	230	NA	NA	2	15	5.4	27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	31	11/24/92	130	NA	NA	< 0.05	0.73	1	3.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VW-2	5	11/25/92	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10	11/25/92	<1.0	NA	NA	0.006	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	15	11/25/92	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	0.009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	11/25/92	220	NA	NA	0.65	8.1	26	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	25	11/25/92	650	NA	NA	2.7	23	9	49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	30	11/25/92	1	NA	NA	0.07	0.01	0.012	0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: Crossed-out samples were collected from soil that was later over-excavated

Abbreviations and Methods:

TPHg and TPHd = Total petroleum hydrocarbons as gasoline and diesel, respectively, by EPA Method 8015.

TOG = Total oil and grease

MTBE = Methyl tertiary butyl ether.

VOCs = Volatile organic compounds

Semi-VOCs = Semi volatile organic compounds

mg/kg = milligrams per kilogram.

NA = Not analyzed

< = Not detected at or above stated laboratory reporting limit

ND = Not detected; reporting limits vary 1 VOCs not detected except BTEX

TABLE 3 HISTORICAL GRAB-GROUNDWATER SAMPLE ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-5542 7007 SAN RAMON ROAD, DUBLIN, CALIFORNIA

Boring	Sample Depth (fbg)	Date	TPHg µg/L	Benzene µg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes µg/L	MTBE μg/L	DIPE µg/L	ETBE µg/L	TAME μg/L	TBA µg/L	1,2-DCA μg/L	EDB µg/L
SB-1	_	7/12/95	65,000	470	200	210	2,100	NA	NA	NA	NA	NA	NA	NA
SB-2		7/12/95	2,900	<5.0	<5.0	72	52	NA	NA	NA	NA	NA	NA	NA
SB-3	-	7/12/95	<50	<0.5	3.1	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA
B-3	-	6/12/96	63,000	5,600	2,900	1,800	7,900	NA	NA	NA	NA	NA	NA	NA
B-4		6/12/96	<50	<0.50	<0.50	<0.50	<0.50	NA	NA	NA	NA	NA	NA	NA
CPT-1	46	1/20/06	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
	55	1/20/06	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
	65	1/20/06	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
CPT-2	52	1/20/06	1,000	1	<0.5	22	120	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
	63	1/20/06	170	<0.5	<0.5	1	2	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
CPT-3	42	1/17/06	<50	<3	<3	<3	<3	<3	<3	<3	<3	<25	3	<3
	55	1/17/06	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5
	65	1/17/06	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5

Abbreviations/Notes

TPHg = total petroleum hydrocarbons as gasoline by EPA Method 8015

BTEX = benzene, toluene, ethylbenzene and xylenes by EPA Method 8260B

MTBE = methyl tertiary butyl ether by EPA Method 8260B

DIPE = di-isopropyl ether by EPA Method 8260B

ETBE = ethyl tertiary butyl ether by EPA Method 8260B

TAME = tertiary amyl methyl ether by EPA Method 8260B

TBA = tertiary butyl alcohol by EPA Method 8260B

1,2-DCA = 1,2-dichloroethane by EPA Method 8260B

EDB = 1,2-dibromoethane by EPA Method 8260B

<x.xx = not detected at or above stated laboratory reporting limit

fbg = feet below grade

ug/L = micrograms per liter

NA = Not analyzed

APPENDIX A

ACEH LETTER DATED MAY 15, 2009

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

611969

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 15, 2009

Stacie H. Frerichs Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583

DAVID J. KEARS, Agency Director

MAY 2 8 1009

T.W. Johnson 7007 San Ramon Road Dublin, CA 94568-3239

Subject: Fuel Leak Case No. RO0000206 and GeoTracker Global ID T0600100354, Chevron #9-5542, 7007 San Ramon Road, Dublin, CA 94568

Dear Ms. Frerichs and Mr. Johnson:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the recently submitted document entitled, "Subsurface Investigation Report," dated January 22, 2009, which was received on July 27, 2007 and prepared by Cambria Environmental Technology, Inc. for the subject site. Cambria installed monitoring well MW-11 offsite to assess hydrocarbon concentrations detected in the deeper water-bearing zone and proposed oxygen injection into groundwater monitoring well MW-4.

ACEH is concerned that oxygen injection in groundwater monitoring well MW-4 may have little effect in remediating the significantly elevated concentration detected in groundwater monitoring well MW-1, which detected TPH-g and benzene at concentrations of 35,000 µg/L and 1,200 µg/L, respectively, collected on March 18, 2009.

We request that you address the following technical comments and send us the technical reports requested below.

TECHNICAL COMMENTS

1. <u>Contaminant Source Area Characterization</u> – Based on our records, two 10,000-gallon, one 4,000-gallon, and one 500-gallon underground storage tank (UST) were removed from the site in February 1990. However, our file does not include a tank removal report. In March 1990, four borings, which were converted to groundwater monitoring well MW-1 through MW-4, were installed at the site. Soil sample analytical results detected TPH-g and benzene at concentrations of 1,300 mg/kg and 38 mg/kg, respectively, in a soil sample collected at 30 feet below the ground surface (bgs) from boring MW-1. Based on the soil sample analytical data, the vertical and lateral extent of soil contamination in the former source area is undefined. Please propose a scope of work to address the above-mentioned concerns and submit a work plan due by the date specified below.

. . .

- 2. Soil and Groundwater Characterization As mentioned above, groundwater sample analytical results detected TPH-g and benzene at significantly elevated concentrations of 35,000 µg/L and 1,200 µg/L, respectively, collected on March 18, 2009 from groundwater monitoring well MW-1 located within the former UST pit. Down-gradient groundwater monitoring well MW-4 detected TPH-g and benzene at concentrations of 3,900 µg/L and 46 µg/L, respectively. TPH-g and benzene were also detected in former groundwater monitoring well MW-9 located further down-gradient at concentrations of 4,700 µg/L and 340 µg/L, respectively, collected on September 2, 2005. Based on the analytical data, the down-gradient extent of the groundwater contaminant plume is undefined. Please propose a scope of work to address the above-mentioned concerns and submit a work plan due by the date specified below.
- 3. <u>Site Conceptual Model</u> To date, no active remediation has been initiated at the site. At this juncture, it may be advantageous to develop a site conceptual model (SCM), which synthesizes all the analytical data and evaluates all potential exposure pathways and potential receptors that may exist at the site, including identifying or developing site cleanup objectives and goals in accordance with the San Francisco Regional Water Quality Control Board Basin Plan and appropriate ESL guidance for all COCs and for the appropriate groundwater designation. Please note that soil cleanup levels should ultimately (within a reasonable timeframe) achieve water quality objectives (cleanup goals) for groundwater in accordance with San Francisco Regional Water Quality Control Board Basin Plan. Please propose appropriate cleanup levels and cleanup goals in accordance with 23 CCR Section 2725, 2726, and 2727 in the SCM. At a minimum, the SCM should include:
 - Local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.) extent of contamination, direction and rate of groundwater flow, potential preferential pathways, and locations of receptors;
 - (2) Geologic cross section maps that illustrate subsurface features, man-made conduits, and lateral and vertical extent of contamination;
 - (3) Plots of chemical concentrations versus time;
 - (4) Plots of chemical concentrations versus distance from the source;
 - (5) Summary tables of chemical concentrations in different media (i.e. soil, groundwater, and soil vapor); and
 - (6) Well logs, boring logs, and well survey maps;
 - (7) Discussion of likely contaminant fate and transport.

If data gaps (i.e. potential contaminant volatilization to indoor air or soil and groundwater plume definition, etc.) are identified in the SCM, please include a proposed scope of work to address those data gaps in the work plan due by the date specified below. Please note that the work plan must address all technical comments presented in this correspondence and all data gaps identified in the SCM.

Ms. Frerichs and Mr. Johnson RO0000206 May 15, 2009, Page 3

- 4. Feasibility Study/Corrective Action Plan Once the contaminant source areas and the down-gradient extent of contamination are adequately characterized, a Feasibility Study/Corrective Action Plan (FS/CAP) prepared in accordance with Title 23, California Code of Regulations, Section 2725 appears appropriate. The FS/CAP must evaluate at least two viable alternatives for remedying or mitigating the actual or potential adverse effects of the unauthorized release(s) besides the "no action" and "monitored natural attenuation" remedial alternatives. Each alternative shall be evaluated for cost-effectiveness and the Responsible Party must propose the most cost-effective corrective action. The FS/CAP will be due following the SCM and site characterization completion.
- 5. <u>Groundwater Monitoring Reports</u> In future groundwater monitoring reports, please include a figure that illustrates groundwater flow direction as well as a figure that posts the analytical data, which includes iso-concentration contours for chemicals of concern.

REQUEST FOR INFORMATION

ACEH's case file for the subject site contains the following electronic reports as listed on our website (<u>http://www.acgov.org/aceh/lop/ust.htm</u>). You are requested to submit copies of all other reports related to environmental investigations for this property (including Phase II reports and the UST Removal report) by **June 15, 2009**.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- July 14, 2009 Site Conceptual Model with Soil and Water Investigation Work Plan
- Due within 30 Days of Sampling Quarterly Monitoring Report (3rd Quarter 2009)
- **Due within 30 Days of Sampling** Quarterly Monitoring Report (1st Quarter 2010)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used

Ms. Frerichs and Mr. Johnson RO0000206 May 15, 2009, Page 4

for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Ms. Frerichs and Mr. Johnson RO0000206 May 15, 2009, Page 5

Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

Donna L. Drogos, PE Supervising Hazardous Materials Specialist

· . :

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

 cc: Douglass Lee, Gettler Ryan, Inc. 6747 Sierra Court, Suite J, Dublin, CA 94568
 David Herzog, Conestoga Rovers & Associates, 2000 Opportunity Drive., Suite 100, Roseville, CA 95678
 Cheryl Dizon (QIC 8021), Zone 7 Water Agency, 100 North Canyons Pkwy, Livermore, CA 94551
 Donna Drogos, ACEH
 Paresh Khatri, ACEH
 GeoTracker
 File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005
Oversight Programs	REVISION DATE: March 27, 2009
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - Or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

HISTORICAL BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

Gettler - Ryan Inc.____

YELL BORING LOG

COMPANY:	CHEVRON U	.S.A. # 5542 JOB NO: OR - 5108
		RAMON VALLEY BLUD DATE: 12-19.83
	DUBLIN,	
DEPTH	SAMPLE NO.	SOIL DESCRIPTION
0 <u>ft.</u>		
<u> </u>		A.C. PAVING
-8"		AGGREGATE
		DARK BROWN CLAY W/FILL
-6'		DARK BROWN SILTY CLAY
/4'		BROWN SILTY CLAY
— <i>16</i> '—		BROWN CLAY W/GRAVEL - DAMP VAPOR
		GRAY SILTY CLAY - MOIST
<u> </u>	· · · · · ·	
• •+		
<u> </u>		
·····		<u> </u>
	· ·	
<u> </u>	·	· · · · · · · · · · · · · · · · · · ·
·		
	1	

FOREMAN: DAVID BYRON SHEET: 1 OF 1

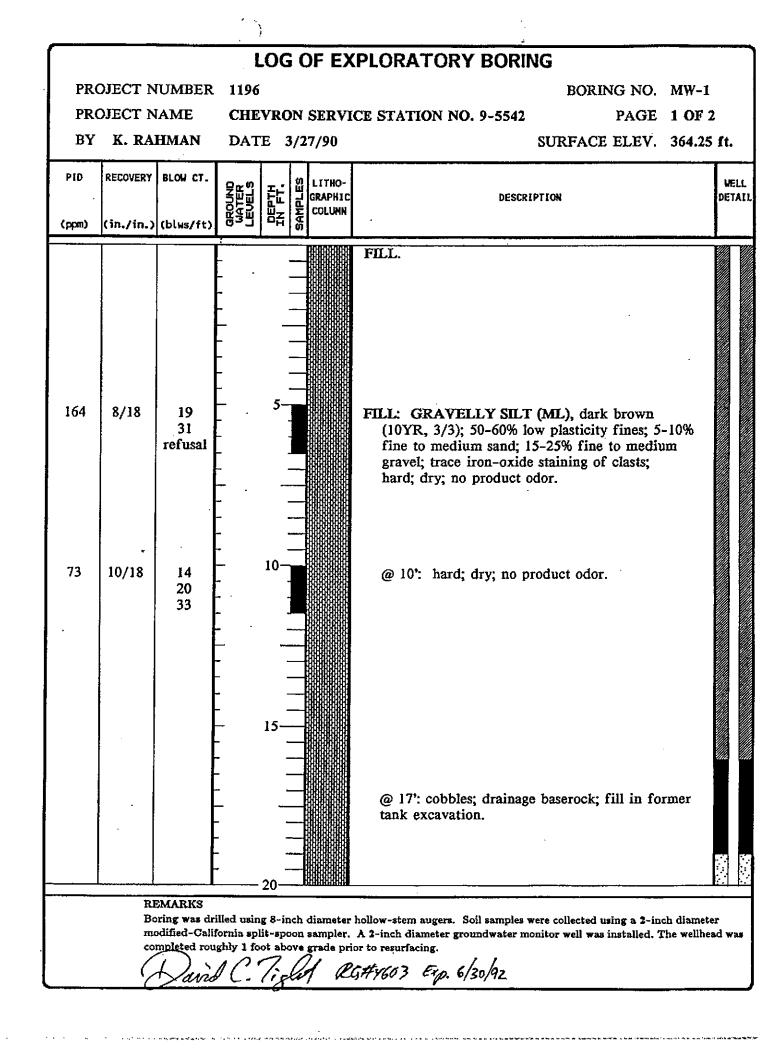
ettier - Ry	an inc	ERAL CONTRACTORS	YEL⊥⊦ BO	RING LOG
COMPANY:	CHEVRON U.	S.A. # 554	JOB NO:	OR - 5108
	7007 SAN K			
	DUBLIN, O		WELL #:	
DEPTH	SAMPLE NO.	· · · · · · · · · · · · · · · · · · ·	SOIL DESCRIPTI	DN
0 <u>ft.</u>				
		A.C. PAU	· 16	
-		AGGREGA		· · · · · · · · · · · · · · · · ·
-6"				1. I. F.
-5'		DARK DROU	IN SIETY CLA	y write
-8'		Decens Jr	LTY CLAY	
— <i>14[·]</i> —			N SILTY CLAY	
- <i>16</i> [·]) SILTY CLAY	
-20:	·····	BROWN SA	NOY CLAY -	MOIST
			· · · · · · · · · · · · · · · · · · ·	
		``````````````````````````````````````		
				·
			•	· · · · · · · · · · · · · · · · · · ·
<b></b>	·	······································		
	· · · · · ·			······
+			<u> </u>	
·				· · · · · · · · · · · · · · · · · · ·
			·	
			,	

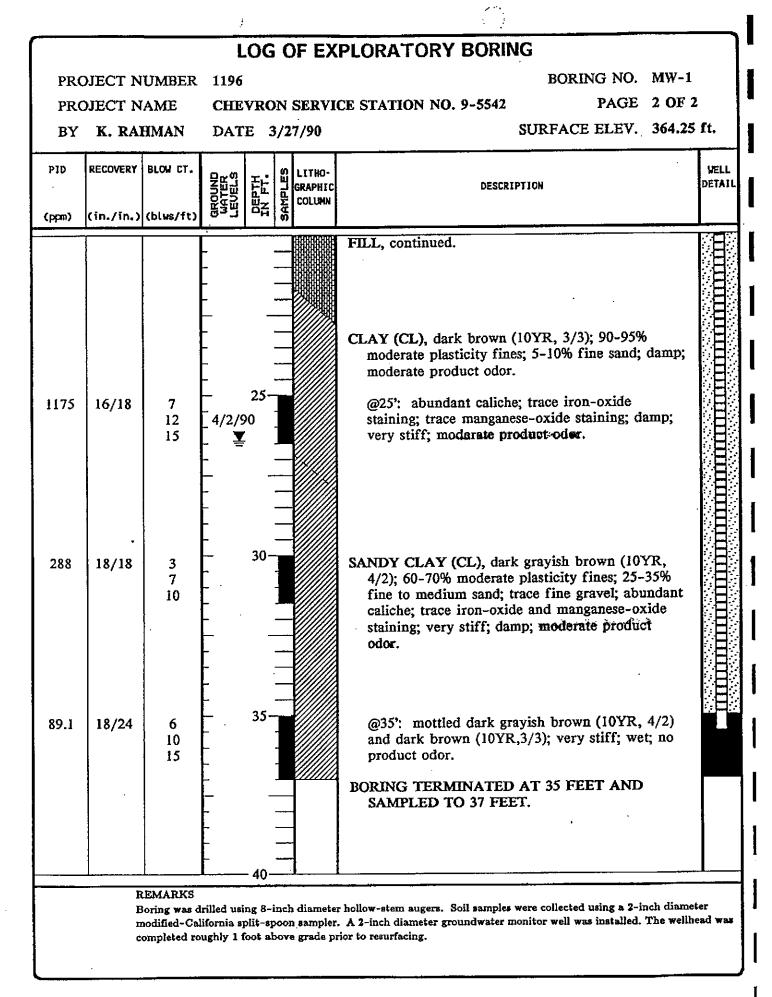
FOREMAN: DAVID BYRON SHEET: 1 OF 1

**.** .

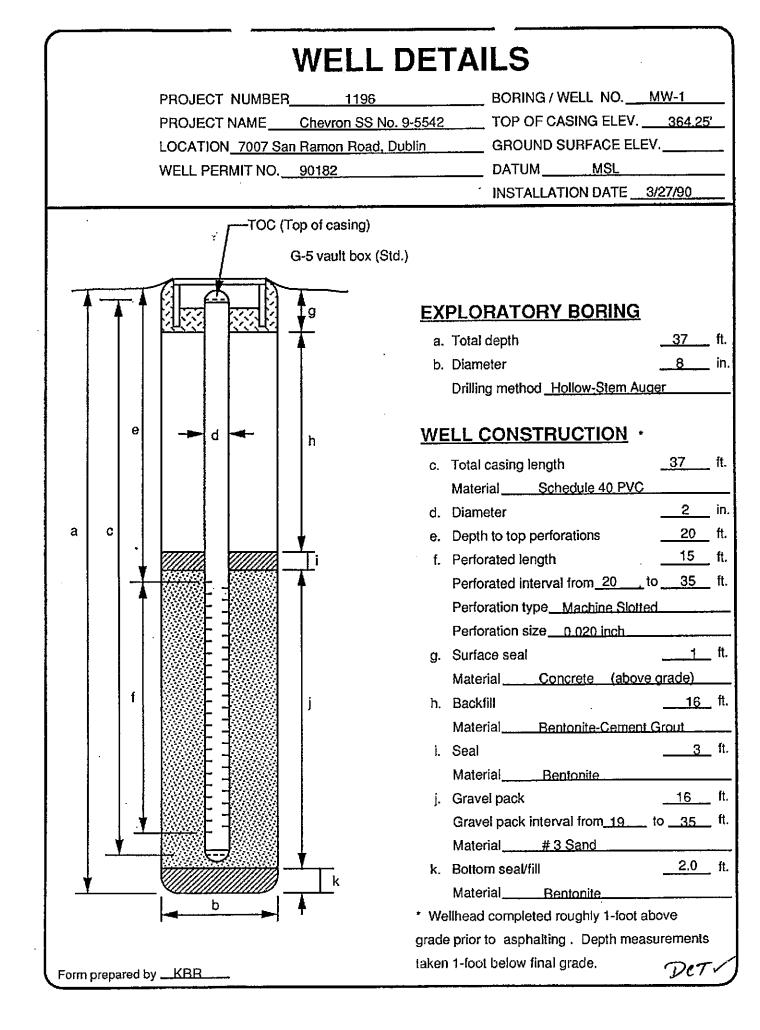
COMPANY:	CHEVRON U	.S.A. # 5542	JOB NO:OR - 5102
		RAMON VALLEY BLV	
	DUBLIN,		WELL #: <b>3</b>
DEPTH	SAMPLE NO.	soit	DESCRIPTION
0 <u>ft.</u>	· · · · · · · · · · · · · · · · · · ·		
-2 "		A.C. PAVING	
_8"	•	AGGREGATE	· · ·
3'		CLEAN FILL	
-8:		BROWN CLAYEY	SILT W/GRAVEL
- 14'		BROWN SILTY CL	Ay - DRy
-20		BROWN SILTY	
-20			
		· · · · · · · · · · · · · · · · · · ·	· · ·
	· · · · ·		•
			· · · · · · · · · · · · · · · · · · ·
			·
			· · · · · · · · · · · · · · · · · · ·
	·		
			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	• •
			,

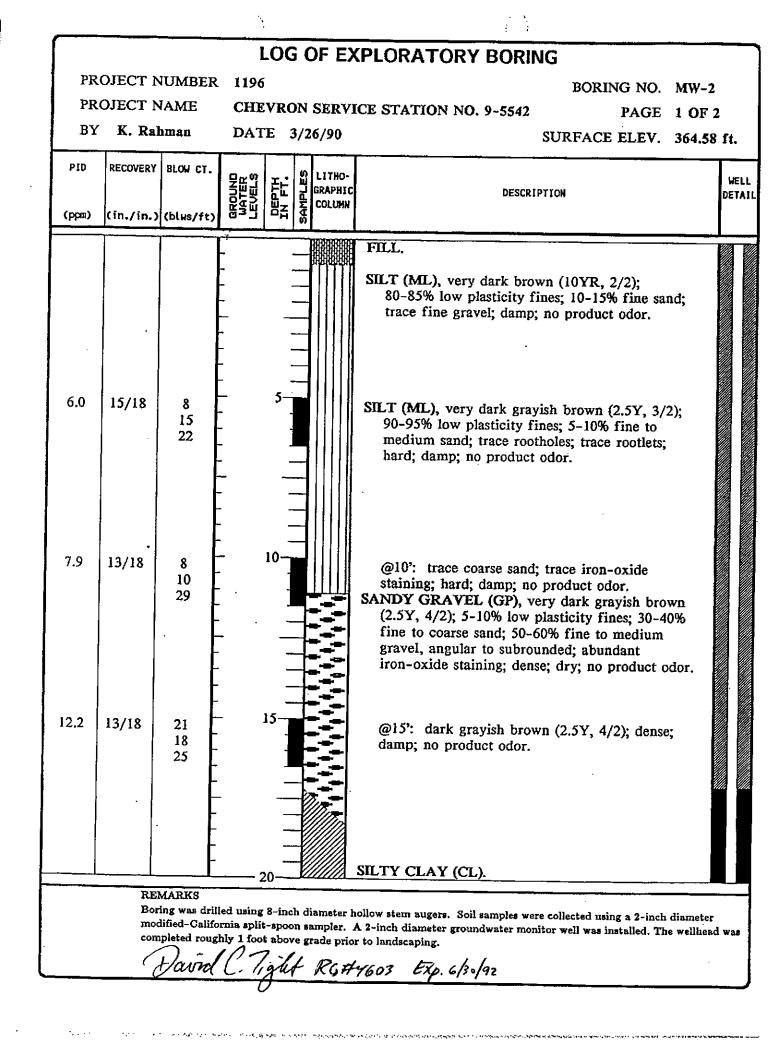
Gellier - Ry	an Inc	NEBAL CONTRACTORS	ELL BORING LOG
		-	JOB NO: OR - 5108
	<u> </u>		DATE: 12-19.83
CITY:	DUBLIN,	Cn	WELL #:4
DEPTH.	SAMPLE NO.	S	OIL DESCRIPTION
<u> </u>	· · · · · · · · · · · · · · · · · · ·		
_/"	<u> </u>	A.C. PAVING	
-6"	÷ .	AGGREGATE	:
		DARK BROWN SI	TY CLAY W/GRAVEL
8'		· · · · · · · · · · · · · · · · · · ·	(LAY - DRY
//		BROWN SILTY	CLAY - DAMP
		DARK BROWN SILT	y CLAY W/GRAVEL - DAMP
17:		GRAY SILTY C	LAY - DAMP
Zo'		GRAY SANDY	CLAY - MOIST
		· · · · · · · · · · · · · · · · · · ·	·
		·····	
	·	•	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
·			
		· · · · · · · · · · · · · · · · · · ·	
·			

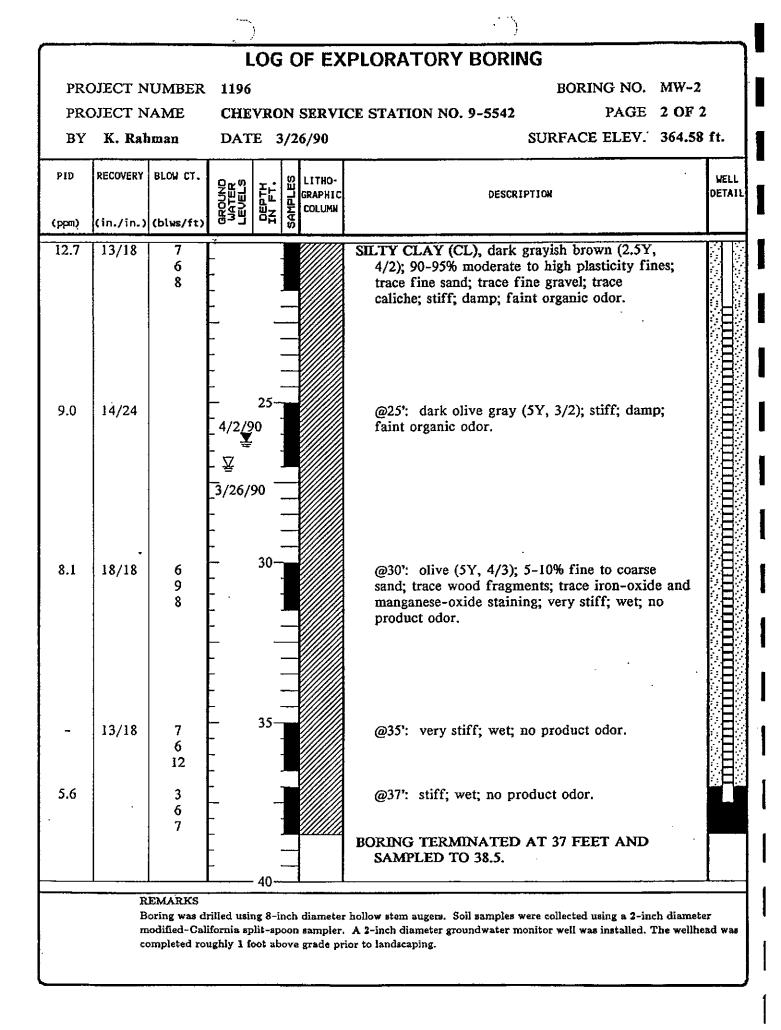

. .


FOREMAN: DAVID BYRON SHEET: 1 OF 1

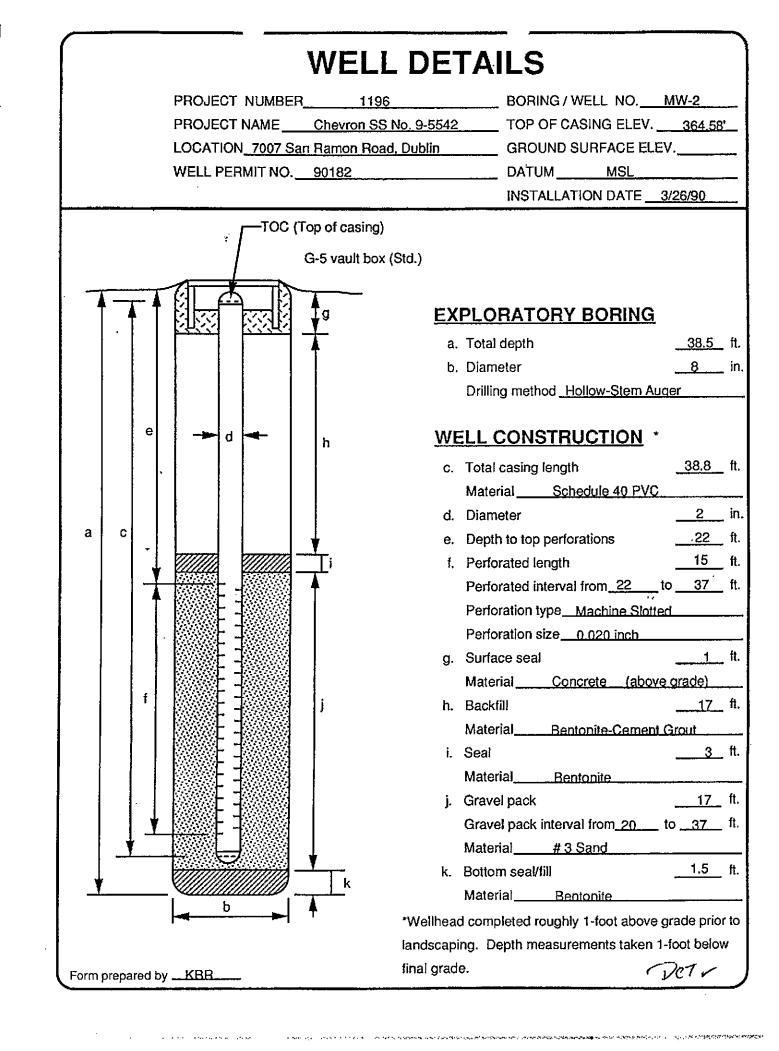
.

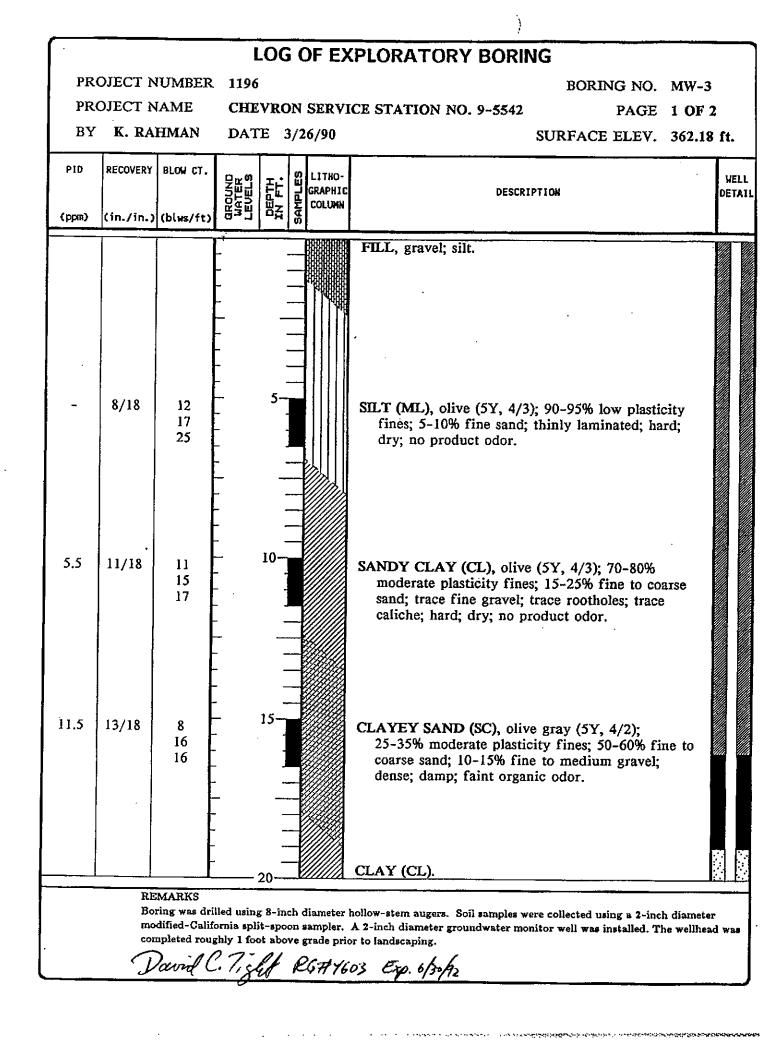

ottlør – Ry	an Inc( )	ERAL CONTRACTORS	YELL BOF	RING LOG
COMPANY:	CHEVRON U.	S.A. # 554	2 JOB NO:_	OR - 5108
	7007 SAN K			
	DUBLIN, O			
DEPTH	SAMPLE NO.	<u></u>	SOIL DESCRIPTIC	<u> </u>
-0 ft.		<u></u>		
		A.C. PAVIN	6	
<u> </u>	• .	AGGRE GATE		•••••
-6"			SILTY CLAY U	SFILL
		DARK ROOMA	SILTY CLAY	<b></b>
-5'			ry CLAY	
/3'	······································	GROWN SUTU	CLAY W/SA	
-16'		•	-	•
20'	· · ·	CIKHY SILT	y CLAY	<u> </u>
	· · · · · · · · · · · · · · · · · · ·			· · · · · ·
		· · · · · · · · · · · · · · · · · · ·		
<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u></u>	·
				· · · · · · · · · · · · · · · · · · ·
		· · ·		<del>.</del>
				·
				<u></u>
			<u>j</u>	,,, <u></u> _,
		<u></u>	<u>,                                    </u>	
	· ·		/ · · · · · · · · · · · · · · · · · · ·	
				,
FOREMAN:	DAVID BYR	20N	SHEET:	OF

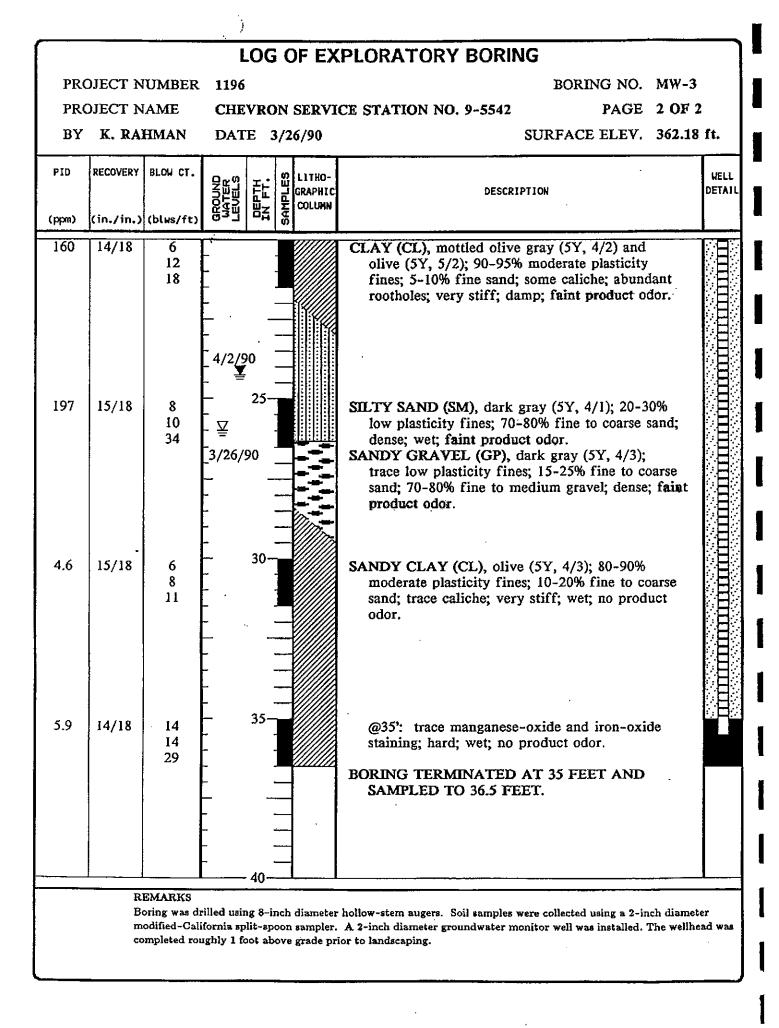

•

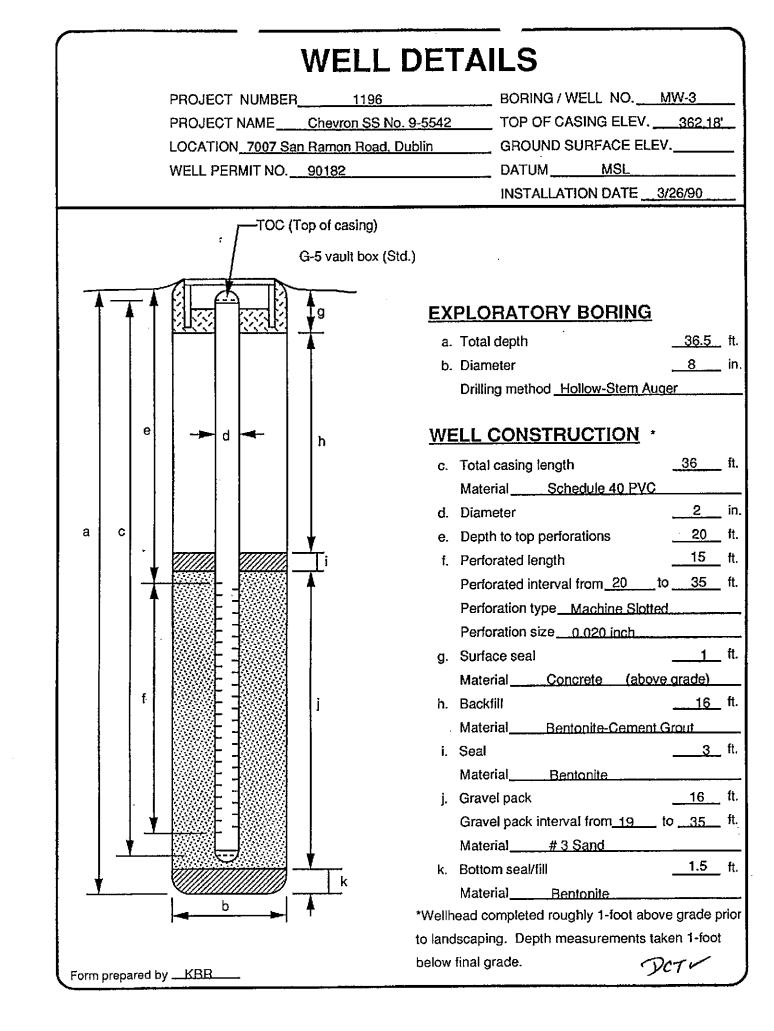


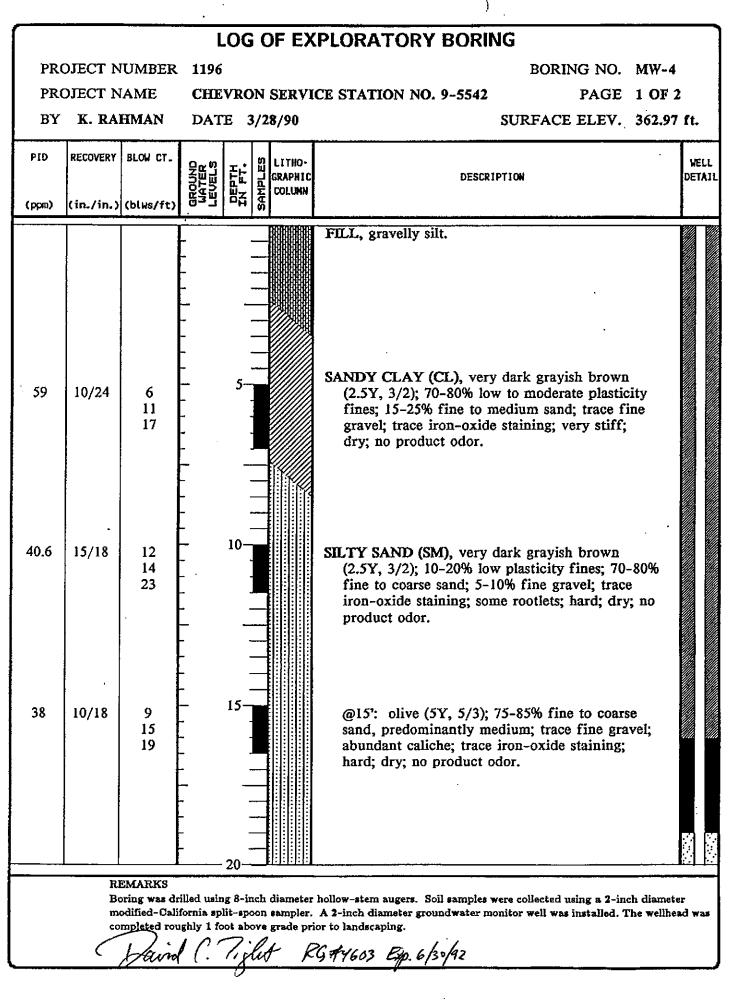


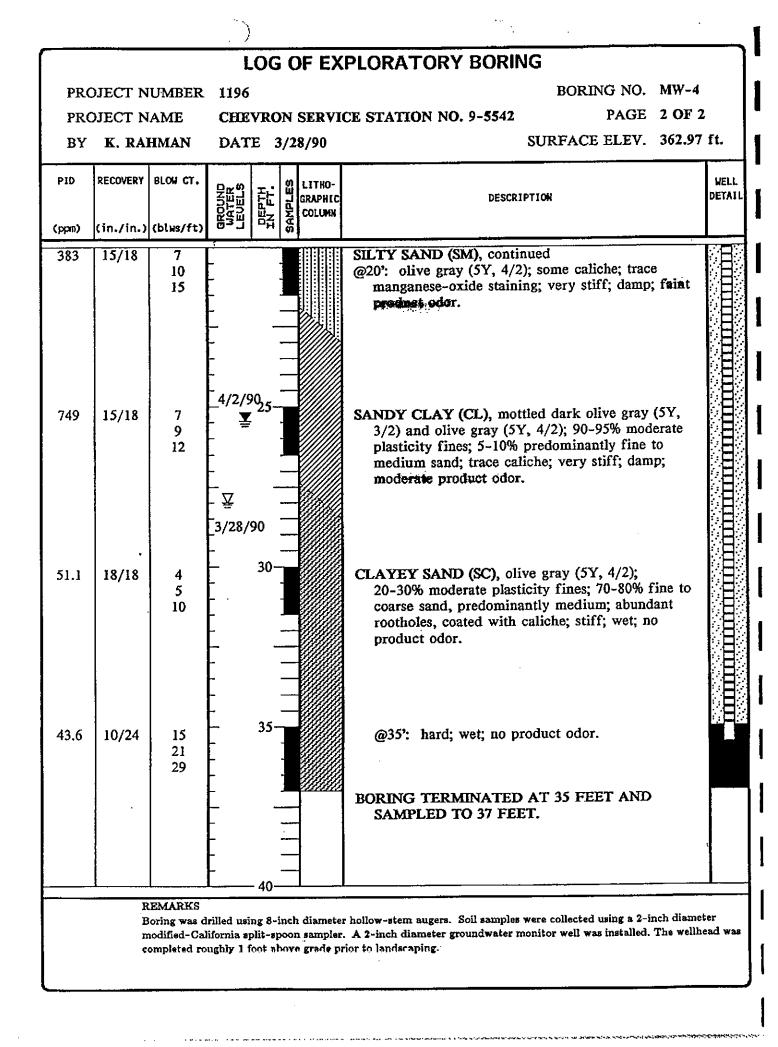


and a second second



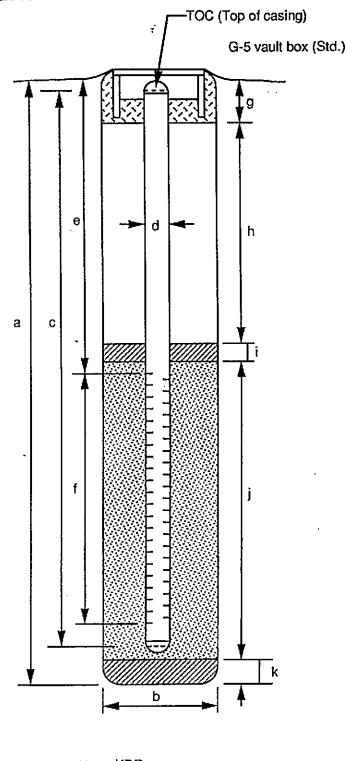


an and an end of the second and a second and a second second second second second second second second second s












# WELL DETAILS

P	ROJECT NUMBER	1196
Р	ROJECT NAME	Chevron SS No. 9-5542
		Ramon Road, Dublin
	ELL PERMIT NO.	

BORING / WELL NO. <u>MW-4</u> TOP OF CASING ELEV. <u>362.97'</u> GROUND SURFACE ELEV. DATUM <u>MSL</u> INSTALLATION DATE <u>3/28/90</u>

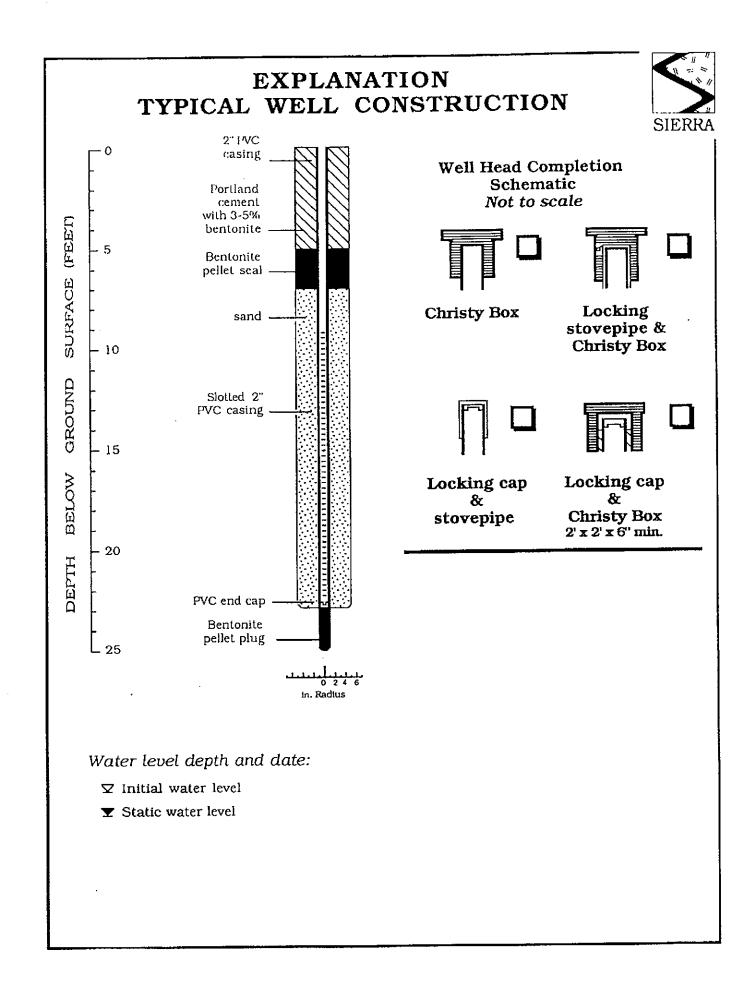


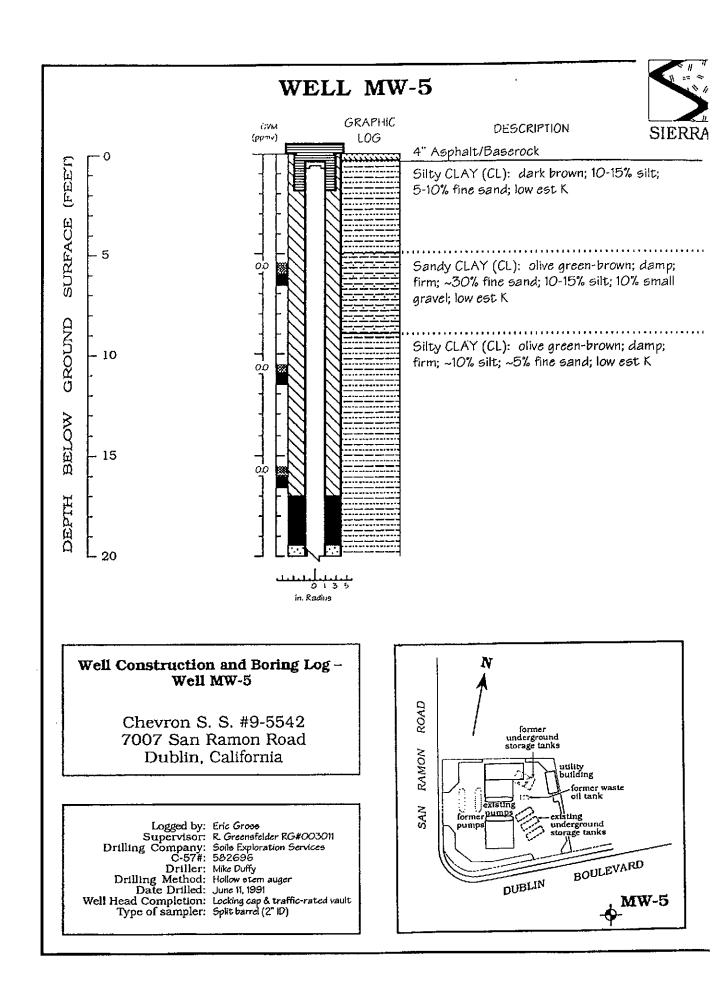
# EXPLORATORY BORING

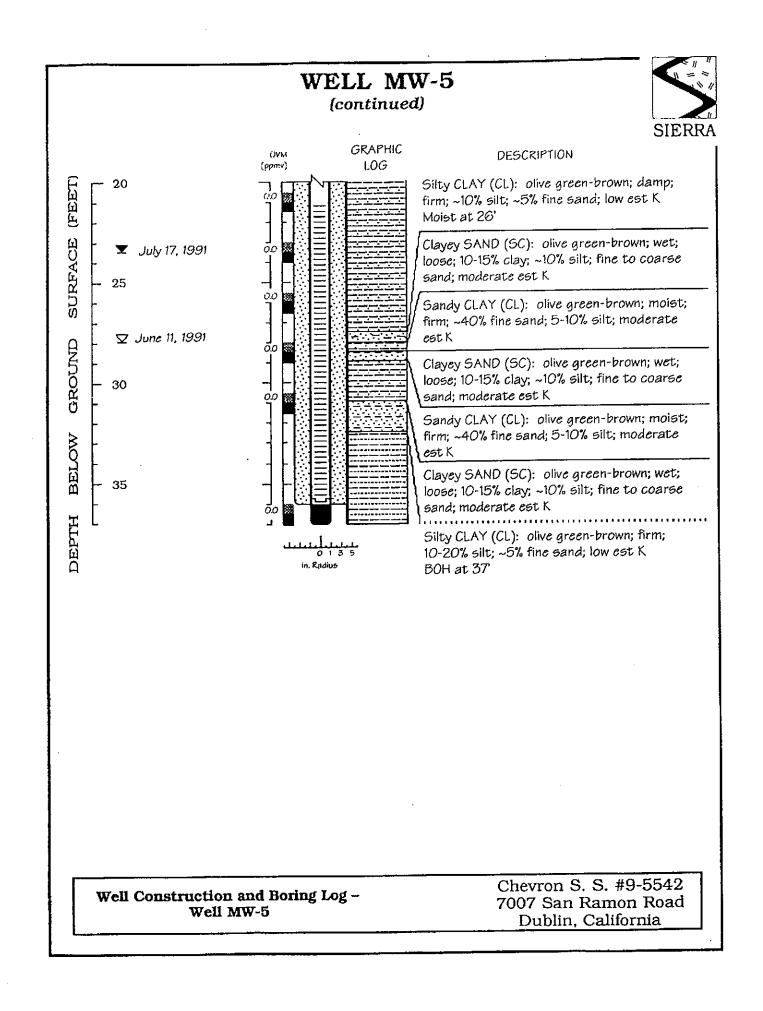
- - Drilling method Hollow-Stem Auger

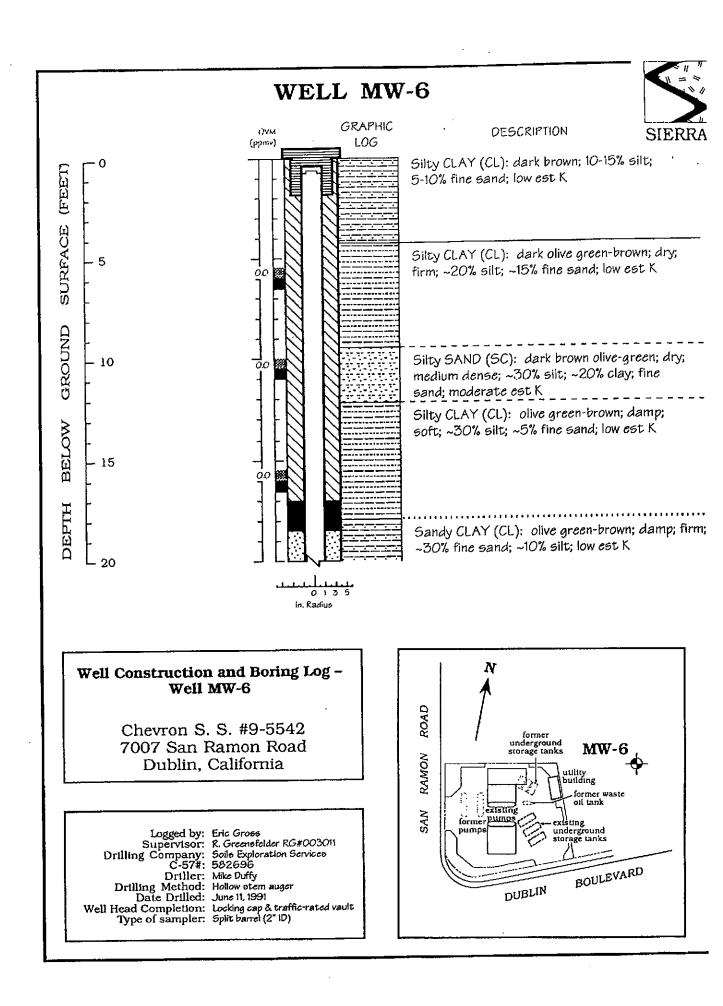
# WELL CONSTRUCTION +

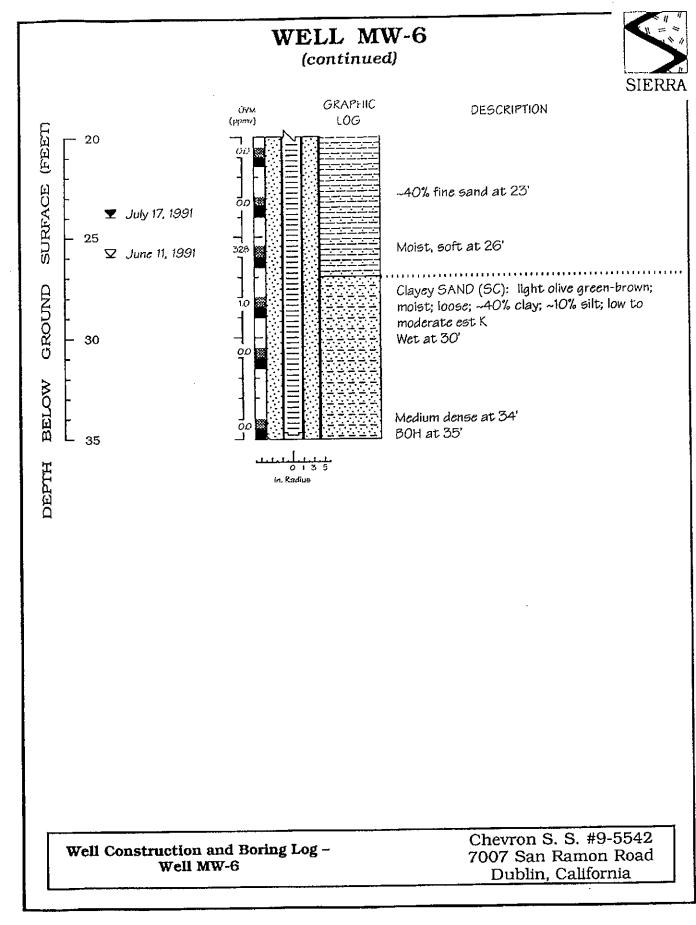
- <u>36</u>ft. c. Total casing length Material Schedule 40 PVC 2 in. d. Diameter 20 e. Depth to top perforations ft. 15 ft. f. Perforated length Perforated interval from 20 35 ft. to Perforation type Machine Slotted Perforation size 0.020 inch ft. g. Surface seal Material Concrete (above grade) 16 ft. h. Backfill Material Bentonite-Cement Grout <u>3</u> ft. i. Seal Bentonite Material 16 ft. j. Gravel pack
- Gravel pack interval from <u>19</u> to <u>35</u> ft. Material <u>#3.Sand</u>
- k. Bottom seal/fill _____ ft Material _____ Bentonite

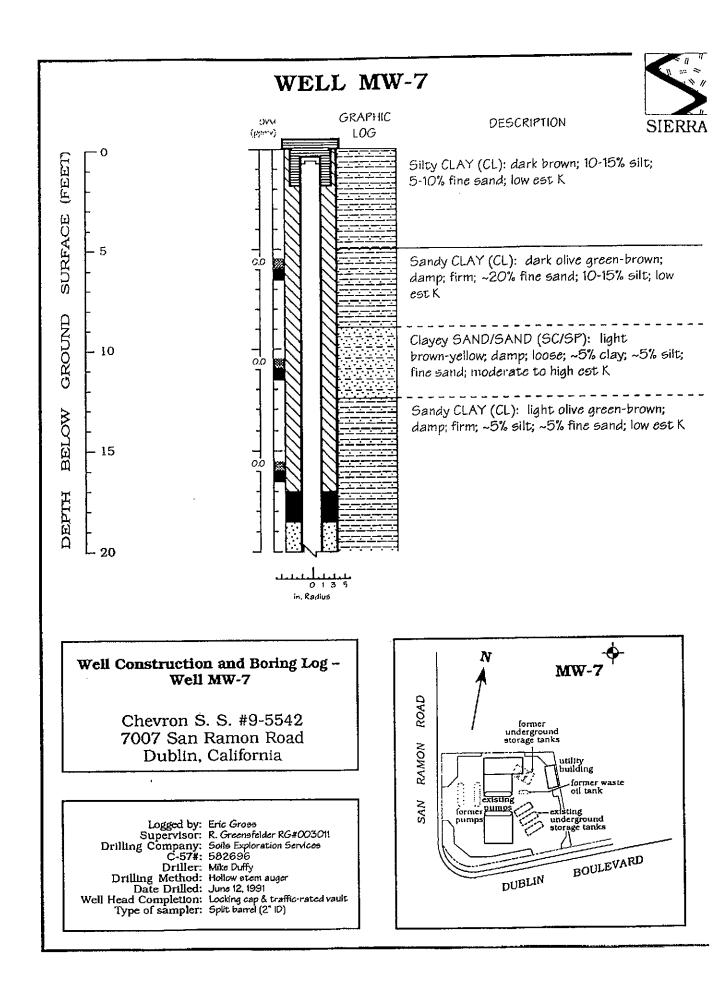

* Wellhead completed roughly 1-foot above grade prior to landscaping. Depth measurements taken 1-foot below final grade.

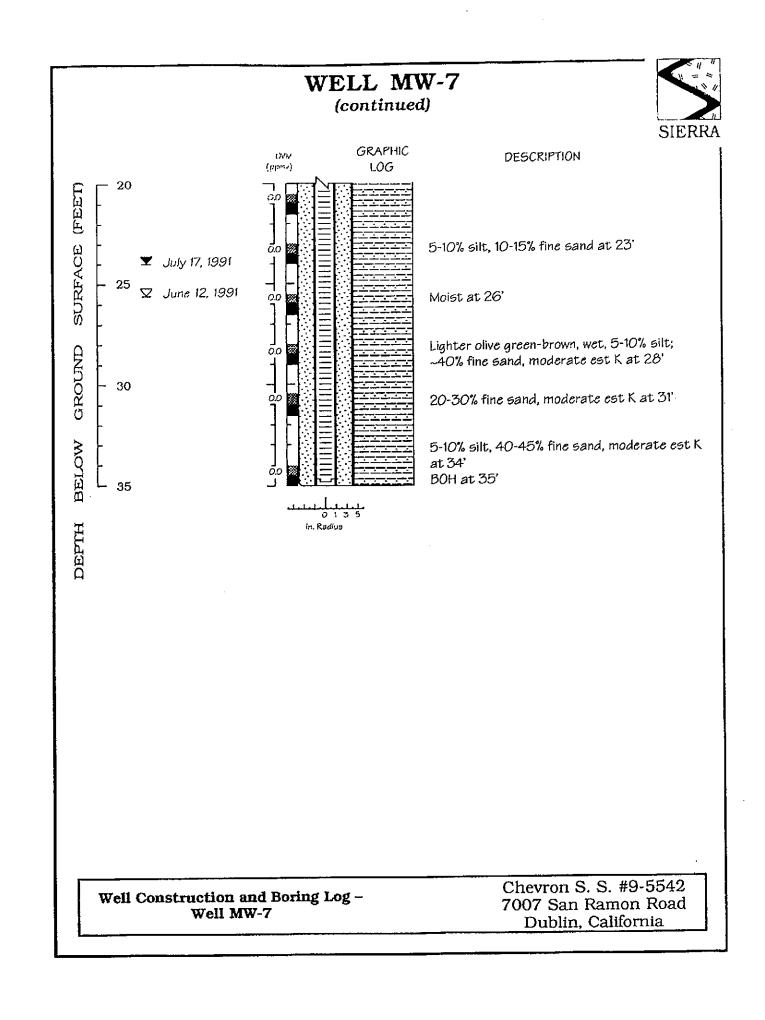

Form prepared by ____KBB____





# EXPLANATION FOR SES BORING LOGS CLAY GRAVEL Sandy CLAY Sandy GRAVEL Silty CLAY/Clayey SILT Silty GRAVEL Organics Clayey GRAVEL -0-0-0-0-0-0-Hard Rock SAND Slough Silty SAND/Sandy SILT Asphalt Clayey SAND Concrete SILT ...... ---- Contact between sedimentary or K = Field estimation of soillithologic units: dotted where approximate, dashed where hydraulic conductivity uncertain Drive sample interval Initial water level measured during $\mathbf{\nabla}$ Drive sample collected drilling (date in italics) for possible chemical analysis Static water level, measured after well T. development (date in italics) Note: Solls are logged using ASTM D2487 Soil Classification System


	P	RIMA	RY DIVISI	ONS	i				SEC	ONDAR	<b>DIVISION</b>	S			
	·	G	RAVELS		CLEAN		GW	Well gra	ded gravels, gr	avel-sand mi	ctures, little or no f	ines.			
ILS ILS	l ls size		e than half of	(Les	GRAVEL s than 5%		GP	Poorly g	raded gravels,	gravel-sand i	nixtures, little or n	o fines.			
0 \$ 0	terial ieve :	1	se fraction is han No, 4 sieve	<u>,</u>	GRAVE	́	GM	Silty gra	vels, gravel-sa	nd-silt mixure	s, non-plastic fines	3.			
INEC	of material Is 200 sieve size	, an gor			WITH FIN		GC	Clayey g	javels, gravel-s	and-clay mix	ures, plastic fines.				
COARSE GRAINED SOILS	More than half of material Is arger than No. 200 sieve size		SANDS		CLEAN		SW	Well gra	ded sands, gra	velly sands, I	ittle or no fines				
3SE	More than half arger than No.	Mor	e than half of	(Les	SANDS (Less than 5% fine		SP	Poorly g	raded sands or	gravelly san	ds, little or no fines	3.			
OAF	More arger	coarse fraction is smaller than			SAND		SM	Silty sands, sand-silt mixtures, non-plastic fines.							
No. 4 sieve WITH FINES SC Clayey sands, sand-clay mixtures, plas							lastic fines.								
<u>س</u>	is size		SILTS AN	D CL/	AYS	,	ML	Inorganic silts and very fine sands, rock flow, silty or clayey fine sands or clayey silts with slight plasticity.							
SOL	of måterial is 200 sleve size		Liquid				CL	inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.							
СШ Ш	of ms 200 (		less tha	in 50%			OL	Organic silts and organic silty clays of low plasticty.							
RAIN	half n No.		SILTS AN	D CL/	AYS		мн	Inorganic silts, micaceous or diatomaceous fine sand or silty soils, elastic silts							
FINE GRAINED SOILS	More than half of material is maller than No. 200 sleve siz	Liquid limit is					СН	Inorganic clays of high plasticity, fat clays.							
E N	Jin of the second secon							Organic	clays of mediu	m to high pla	sticity, organic silts	S.			
		HLY	ORGANIC	SOIL	S	<b>_</b>	P۱	Peat and	d other highly o	rganic soils.					
			U.s	6. STA 4	NDARD			F TER	CLEAF		SIEVE OPENIN 3"	I <b>GS</b> 12"			
SILI	rs and c	LAYS	FINE		SA			OARSE	GR		COBBLES	BOULDER			
								IZES			1	<u> </u>			
SAN	IDS & GR/	VELS	Std. Pen BLOWS/FT ¹	2" IC BLOW		SIL	TS & C	LAYS	POCKET PENETROMET	ER ²	Std. Pen BLOWS/FT ¹	2° ID SS BLOWS/FT			
,	VERY LOO	SE	0 - 4	0 -	7	V V	ERY SC	OFT	0 - 250		0 - 2	0 - 3			
·	LOOSE		4 - 10	7 -	16		SOFT		250 - 500		2 • 4	3 - 6			
М	EDIUM DEI	NSE	10 - 30	16 -	50		FIRM		500 - 1,00		4 - 8	6 - 13			
	DENSE 30 - 50 50 - 83						STIFF		1,000 - 2,0		8 - 16	13 - 26 26 53			
1	VERY DEN	SE	OVER 50	OVEP	83	V	ERY ST Hard		2,000 - 4,0 OVER 4,00		16 - 32 OVER 32	26 - 53 OVER 53			
	RE	LATI	/E DENSIT	Y				İ		ISTENC		Correction Factor ~ .6			
1.,	nher of bl	ows of	140-pound ha	mmer	falling 3	0 inch	ies to c	irive a 2-	inch O.D. (1-	-3/8 inch I.i	D.) split spoon (	ASTM D-1580			

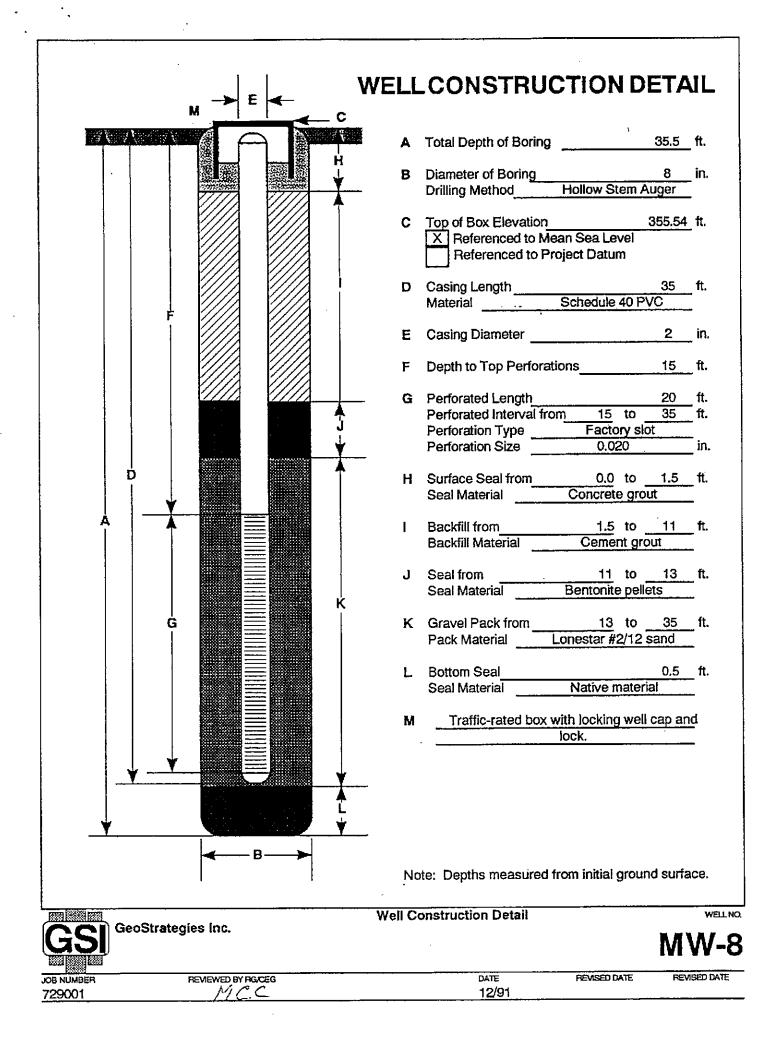










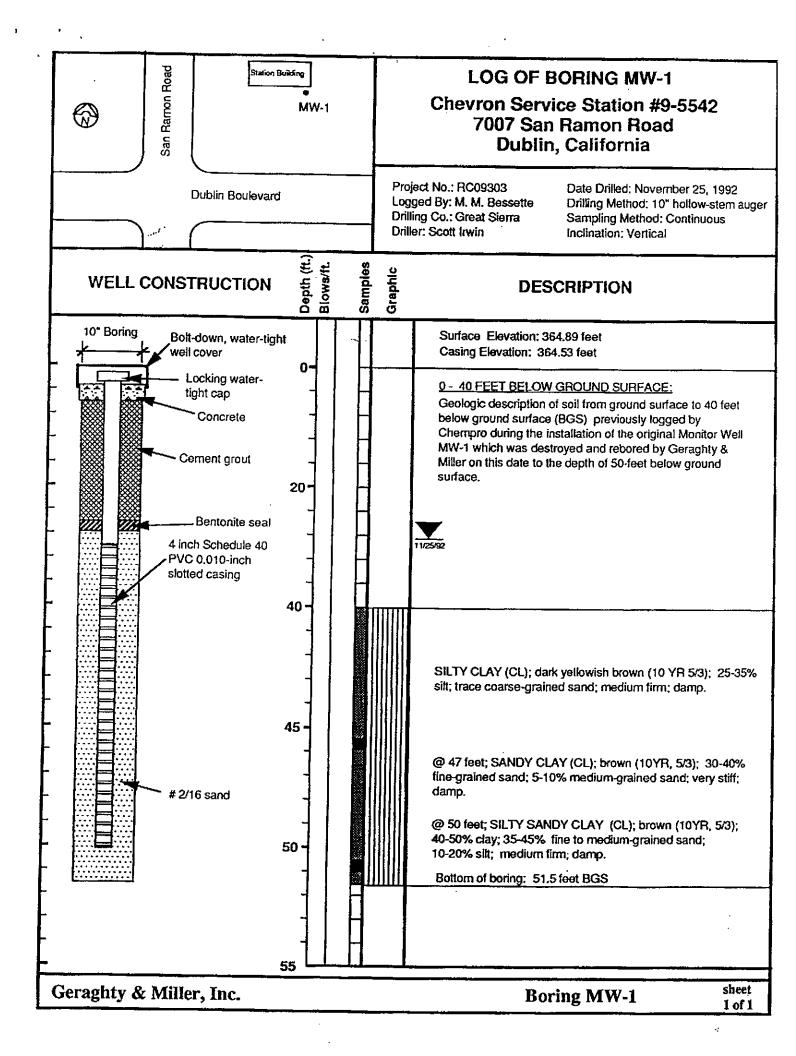

Usee Plate 2)         Losewic:         TOO' San Parmon Pload         Drillion:         Differ:         Hazmat         Differ:         Differ:	id location	n of bo	ning:						Project No.:	729001	Dete:	12/6/91	- Boring N
Covi:         Dublin, California         Bit           Defining method:         Hollow Stem Auger         Top of Box Devision:         255.54         Datum:         MSL           Defining method:         8-Inches         Top of Box Devision:         255.54         Datum:         MSL           Defining method:         8-Inches         Top of Box Devision:         255.54         Datum:         MSL           Defining method:         8-Inches         Top of Box Devision:         255.54         Datum:         MSL           Provide String method:         8-Inches         Top of Box Devision:         255.54         Datum:         MSL           Provide String method:         8-Inches         Top of Box Devision:         255.54         Datum:         MSL           Provide String method:         1         Inches         String method:         For of Box Devision:         255.54         Datum:         MSL           Provide String method:         1         Inches         String method:         String method:<					-1				Client:			1140. 0044.	MW-
Driling method:         Hollow Stem Auger         Top of Box Bevalori         25:54         Datum: MSL           View diameter:         8-Inches         Top of Box Bevalori         25:54         Datum: MSL           E         1         1         Top of Box Bevalori         25:54         Datum: MSL           E         1         2         1         1         Description         2           Concrete Sidewalk - 6 inches         3         1         Description         Concrete Sidewalk - 6 inches           SILTY CLAY (CL) - very dark gray (10YR 2/1), m         stiff, moist; low plasticity; trace fine sand; roots,         5         5         5           0         19         S&H         6.5         7         1         5         5           0         19         S&H         6.5         7         1         5         5           0         19         S&H         10         1         1         1         1           0         15         11         11         1         1         1         1           0         15         14         12         1         1         1         1           0         15         14         15         16			(Se	e Piate :	2)				and the second sec				Sheet 1
Defining method:         Hollow Stem Auger           Sinches         Top of Box Bevalor:         355,54         Datum: MSL           2 B         Sinches         Top of Box Bevalor:         355,54         Datum: MSL           2 B         Sinches         Top of Box Bevalor:         355,54         Datum: MSL           2 B         Sinches         Top of Box Bevalor:         355,54         Detum: MSL           2 B         Sinches         Sinches         Sinches         Sinches           2 B         Sinches         Sinches         Sinches         Sinches           2 B         Sinches         Sinches         Sinches         Sinches           2 Concrete Sidewalk - 6         Sinches         Sinches         Sinches           3 B         Sinches         Sinches         Sinches         Sinches           3 B         Sinches         Sinches         Sinches         Sinches           3 B         Sinches         Sinches         Sinches         Sinches           4         Sinches         Sinches         Sinches         Sinches           5         Sand from fine to 30% coarse; trace fine subro         Sinches         Sinches           6         Sinches         Sinches         Sinche											Driller:	Hazmat	of _2
Top of tios: Example:         Enches         Top of tios: Example:         Description           P g         1         1         11:30         1           P g         1         1         1         1:30         1           P g         1         1         1         1         1         1:30           P g         1         1         1         1         1:30         1           P g         1         1         1         1:30         1         1:30           P g         1         1         1         1:30         1:30         1:30           P g         1         1         1:30         1:30         1:30         1:30         1:30           P g         1:3         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30         1:30													
Note diameter:         8-Inches         Top of Box Exerator:         355,54         Data         Data           2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         <	rilling meti	hod:	-Iollow S	tem Aug	jer				1			Deturns Ad	0
g g g g g g g g g g g g g g g g g g g	oie diamet	_									55.54	Datum. M	<u></u>
Concrete Sidewalk - 6 inches           1         2           2         SILTY CLAY (CL) - very dark gray (10YR 2/1), m stiff, moist; low plasticity; trace fine sand; roots, 3           3         4           3         5           4         5           5         SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; trace fine sand; roots, 7           0         19           0         19           0         19           0         19           0         15           0         15           0         15           10         11           11         12           12         13           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14         11           15         16           16         17           17         18           18         SILTY CLAY (CL) - olive gray (5Y 4/2), very still tow to medium plasticity; trace fine sand.           19         19		5			2		_	50					
Concrete Sidewalk - 6 inches           1         2           2         3           3         3           4         3           3         4           3         5           5         SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; trace fine sand; roots.           0         19           2         8           2         8           3         2           3         2           3         3           3         3           3         5           5         SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; 30% fine sand; roots.           0         19         S&H           3         7           3         7           3         7           3         7           4         9           5         5           6         11           12         12           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14         14           15         16           16         17           17         18		l b b b	o edu	ampi umbe	pth (	ampi	Vell Detai						
Concrete Sidewalk - 6 inches           1         2           2         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3           3         3		Dia 2	F-03	ωz	ð	<i>•</i>		8 E					
SILTY CLAY (CL) - very dark gray (10YR 27), minor silt; iow plasticity; trace fine sand; roots,           3         3           4         5           5         5           6         7           1         4           1         5           1         5           1         5           1         5           1         5           1         5           1         5           1         5           1         6           1         6           1         7           1         8           1         8           1         10           1         11           1         12           1         13           1         14           11         14           12         15           13         14           14         15           15         16           16         11           17         18           18         19           19         11           19         11 <t< td=""><td></td><td></td><td><u> </u></td><td></td><td>1</td><td></td><td></td><td></td><td>Concre</td><td>ete Sidewall</td><td>- 6 inches</td><td></td><td></td></t<>			<u> </u>		1				Concre	ete Sidewall	- 6 inches		
2         stift, moist; low plasticity; trace fine sand; roots,           3         4           4         5           5         SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; 30% fine sand; roots,           0         19           2         8           2         8           3         7           3         7           3         7           4         7           5         7           6         7           10         8           2         9           COLOR CHANGE to dark gray (7.5YR 4/0), sand from fine to 30% coarse; trace fine subrou fine to 30% coarse; trace f					1			V/		<u> </u>	and doubt of	OU (10VP 2)	1) modium
3       3         4       5         5       5         0       19         2       6         19       S&H         6       7         19       S&H         19       S&H         19       S&H         10       11         11       11         12       11         13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         14       11         14       11         15       15         16       17         17       18         19       11         11       12         12       13         14       14         15       16         16       17         18       19         19       19         19       19         19       19         19       19								YZ		CLAY (CL)	- very uark gi	tine sand r	nots voids
4         5         0       19       S&H       6.5         7       7       7         8       9       COLOR CHANGE to dark gray (7.5YR 4/0).         0       15       S&H       10         10       10       11       12         11       12       11       12         12       13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; minor silt; calcareous stringers.         14       14       plasticity; minor silt; calcareous stringers.         15       15       16         17       18       11         18       11       12         19       18       11         19       18       11         19       19       19         19       19       19         19       19       19         19       19       19					2	$\square$			$\int \frac{\sin \pi}{2}$	IDISL, IOW PIE	Sticity, date	inte outley to	
4         5         0       19       S&H       6         0       19       S&H       6.5         7       8       7         0       19       S&H       0.5         10       0       15       S&H       10         11       12       11       12       13         12       13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; minor silt; calcareous stringers.         14       14       plasticity; minor silt; calcareous stringers.         15       16       17         18       18       SiLTY CLAY (CL) - olive gray (5Y 4/2), very strilow to medium plasticity; trace fine sand.         19       19       10         19       19       10								$\langle / / \rangle$	]				
SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; 30% fine sand; roots.           0         19         S&H         6.5           0         19         S&H         10           0         15         S&H         10           0         15         S&H         10.5           11         12					13	┝╍╍┤		VI	; <del> </del>				······
SANDY SILT (ML) - dark yellow brown (10YR 4/ moist; low plasticity; 30% fine sand; roots.           0         19         S&H         6.5           0         19         S&H         10           0         15         S&H         10           10         11         11         12           11         12         13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         plasticity; minor silt; calcareous stringers.           14         14         plasticity; minor silt; calcareous stringers.           0         51         S&H         15           16         17         18         SiLTY CLAY (CL) - olive gray (5Y 4/2), very strillow to medium plasticity; trace fine sand.           19         19         19         10         10	<u> </u>				4			KA	<b> </b>				
MW-8         6         SANDY SILT (ML) - dark yellow brown (10YH 4/ moist; low plasticity; 30% fine sand; roots.           0         19         S&H         6.5           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           0         15         S&H         10           -         -         -         -           -         -         12         -           -         -         12         -           -         -         12         -           -         -         12         -           -         -         14         -           -         - <td< td=""><td></td><td></td><td>\</td><td> </td><td>1</td><td>$\vdash$</td><td></td><td> 1  </td><td></td><td></td><td></td><td>·</td><td></td></td<>			\		1	$\vdash$		1				·	
MW-8-         6         SANDY SILT (ML) - dark yellow brown (10YH 4/ moist; low plasticity; 30% fine sand; roots.           0         19         S&H         6.5           7         7         8           9         9         COLOR CHANGE to dark gray (7.5YR 4/0), sand from fine to 30% coarse; trace fine subrou           0         15         S&H         10           12         11         12           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14         14           15         15           0         51         S&H           18         17           18         SILTY CLAY (CL) - olive gray (5Y 4/2), very str           19         19           0         27           28 H         20		~~~~			5								(D) (14)
0       19       S&H       6.5       7         1       1       8       10       10       10         1       10       10       10       10       10         0       15       S&H       10.5       11       11         1       11       12       13       12       13         1       12       13       14       14       14       14         1       14       14       14       15       15       15         0       51       S&H       15.5       16       17       18       SilLTY CLAY (CL) - olive gray (5Y 4/2), very strillow to medium plasticity; trace fine sand.         0       27       S&H       20       20       19       10		<u> </u>			1		}		SAND	Y SILT (ML)	- dark yellow	v brown (10)	(H 4/4), sti
Number         Numer         Numer         Numer <td></td> <td></td> <td>{</td> <td>MW-8-</td> <td>6</td> <td></td> <td>1</td> <td></td> <td>moist;</td> <td>; low plastici</td> <td>ty; 30% fine s</td> <td>sand; roots.</td> <td></td>			{	MW-8-	6		1		moist;	; low plastici	ty; 30% fine s	sand; roots.	
8         9           0         15         S&H         10           12         11         12           13         12         13           14         14         14           15         S&H         15           14         14         14           15         S&H         15           16         17         16           17         18         SiLTY CLAY (CL) - olive gray (5Y 4/2), very str           19         19         19           0         27         S&H         20	0	19	S&H	6.5	]		]					· · · · · · · · · · · · · · · · · · ·	
9         COLOR CHANGE to dark gray (7.5YR 4/0).           0         15         S&H         10.5           11         12					7	Ļ	1				·		<del>_</del>
9         COLOR CHANGE to dark gray (7.5YR 4/0).           0         15         S&H         10           11         11         sand from fine to 30% coarse; trace fine subrou           12         11         sand from fine to 30% coarse; trace fine subrou           13         12         sand from fine to 30% coarse; trace fine subrou           13         12         sand from fine to 30% coarse; trace fine subrou           14         12         sand from fine to 30% coarse; trace fine subrou           15         11         sand from fine to 30% coarse; trace fine subrou           14         12         sand from fine to 30% coarse; trace fine subrou           14         12         sand from fine to 30% coarse; trace fine subrou           14         12         sand from fine to 30% coarse; trace fine subrou           15         14         plasticity; minor silt; calcareous stringers.           14         14         plasticity; minor silt; calcareous stringers.           15         16         17           18         SILTY CLAY (CL) - olive gray (5Y 4/2), very strilow to medium plasticity; trace fine sand.           19         20         20				ļ					{	·			
Color CHANGE to dark gray (7.5YR 4/0).           0         15         S&H         10.5           11         11         sand from fine to 30% coarse; trace fine subrou           11         11         sand from fine to 30% coarse; trace fine subrou           12         11         sand from fine to 30% coarse; trace fine subrou           13         12         sand from fine to 30% coarse; trace fine subrou           14         12         sand from fine to 30% coarse; trace fine subrou           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14         plasticity; minor silt; calcareous stringers.           0         51         S&H 15.5           16         17           18         SILTY CLAY (CL) - olive gray (5Y 4/2), very stringer sand.           19         19           0         27           0         27           19         20					8	<b> </b>	-		[				
Color CHANGE to dark gray (7.5YR 4/0).           0         15         S&H         10.5           11         11         11         11           12         11         12         13           13         CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         plasticity; minor silt; calcareous stringers.           14         14         plasticity; minor silt; calcareous stringers.           0         51         S&H         16           17         18         SILTY CLAY (CL) - olive gray (5Y 4/2), very strilow to medium plasticity; trace fine sand.           19         19         19           0         27         S&H         20			<u> </u>		4		-				<u> </u>		
MW-8-         10           0         15         S&H         10.5           11         11         11           12         12         11           13         12         13           14         14         plasticity; minor silt; calcareous stringers.           0         51         S&H         15.5           0         51         S&H         15.5           16         17         18           18         SiLTY CLAY (CL) - olive gray (5Y 4/2), very strilow to medium plasticity; trace fine sand.           19         19           0         27         S&H         20			[ <del> </del>	<u> </u>	- 9				COLC	OR CHANGE	to dark gray	(7.5YR 4/0)	),
0       15       S&H       10.5         11       12         12       13         13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         14       plasticity; minor silt; calcareous stringers.         0       51         15       16         17       18         18       SilLTY CLAY (CL) - olive gray (5Y 4/2), very strilow to medium plasticity; trace fine sand.         19       20         0       27       S&H       20				MW-8	10		1		sand	from fine to	30% coarse;	trace fine si	ubround gi
11       11         12       12         13       12         14       13         14       14         14       14         15       14         14       15         15       16         17       16         18       SILTY CLAY (CL) - olive gray (5Y 4/2), very str         18       SILTY CLAY (CL) - olive gray (5Y 4/2), very str         19       19         19       19         17       19         18       19         19       19         18       20         19       19         19       19         19       19         19       19         19       19         10       27         S&H       20         20       20		15	S&H	and the second sec	-1		1						
13       13         13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         14       plasticity; minor silt; calcareous stringers.         0       51         0       51         16       17         18       SiLTY CLAY (CL) - olive gray (5Y 4/2), very stril         18       19         0       27         0       27         S&H       20         Pemarks:       20			+		11		]					<u> </u>	
13       13         13       CLAY (CL) - olive gray (5Y 4/2), hard, moist; m         14       plasticity; minor silt; calcareous stringers.         0       51         0       51         16       17         18       SiLTY CLAY (CL) - olive gray (5Y 4/2), very stril         18       19         0       27         0       27         S&H       20         Pemarks:       20							]					. <u> </u>	<u> </u>
CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14           14           14           14           15           0           51           51           15           16           17           18           18           19           19           19           19           19           19           19           19           19           19           19           19					12	2							
CLAY (CL) - olive gray (5Y 4/2), hard, moist; m           14           14           14           14           15           0           51           51           15           16           17           18           18           19           19           19           19           19           19           19           19           19           19           19           19			1	<u> </u>	- I	.	4		/	<u> </u>	· · ·		
14         plasticity; minor silt; calcareous stringers.           0         51         S&H         15           15         16         17           17         18         SILTY CLAY (CL) - olive gray (5Y 4/2), very stir low to medium plasticity; trace fine sand.           0         27         S&H         20			1	<u> </u>	-13	۶ 	4	1/		(CL) - Olive	arav (5Y 4/2	2), hard, moi	st; mediun
MW-8-         15           0         51         S&H         15.5           16         16         17           17         18         SILTY CLAY (CL) - olive gray (5Y 4/2), very stir           18         19         19           0         27         S&H         20           Permarks:         20         20         17			<u> .</u>		- 1/	. <del>  _</del>	-1		plasti	icity: minor s	silt; calcareou	is stringers.	
0         51         S&H         15.5           16         17           17         17           18         18           19         19           0         27         S&H         20           Permarks:         10         10		<u> </u>	<u></u>		-  '`		L I	V/			<u>.</u>	······································	
0         51         S&H         15.5           16         17           17         17           18         SILTY CLAY (CL) - olive gray (5Y 4/2), very str           18         18           19         19           0         27           S&H         20           Permarks:         10	<del>_</del>		<u>.</u>	MW-8	- 1:	5	-		/				
16         17         17         18         18         18         19         0       27         S&H       20         Permarks:	0	51	S&H				1	1//					
18       18         18       18         19       19         0       27       S&H       20         Permarks:       10			1		_	3 🚺	1	1//	1			<u></u>	
18       18         18       18         19       19         0       27       S&H       20         Permarks:       20			1						/				
Image: low to medium plasticity; trace fine sand.       0     27       S&H     20       Permarks:					_ 1;	7 🔔	-		/	. <u></u>			
Image: Description of the second s				<u> </u>	4	_			<u><u>c</u>ii<del>,</del></u>		) - olive orav	(5Y 4/2), ve	ry stiff. mo
0         27         S&H         20         20           Bemarks:		- <u>-</u>		<u></u>		<b> </b> ۲	-	1/1	Inw 1	o medium n	asticity: trac	e fine sand.	
0 27 S&H 20 20			<u>!</u>			a 🖢	-{	- V/		<u></u>		<u></u>	
0 27 S&H 20 20 Bemarks:				MW-9		╵∎	-	V	/				
Remarks:		27	S&H		i	o 📕	-						
i statu statu statu statu	Remarks:				•		· · · · · · · · · · · · · · · · · · ·						
* Converted to equivalent Standard Penetration blows/ft.		* Con	verted to	o equiva	lent	Stan	dard P	enetrati	on blows/ft.				B
Log of Boring			eoStrate	aies Ind	5.			Log	or Boring				
GSI	GS	51 (		3.00 11									MV

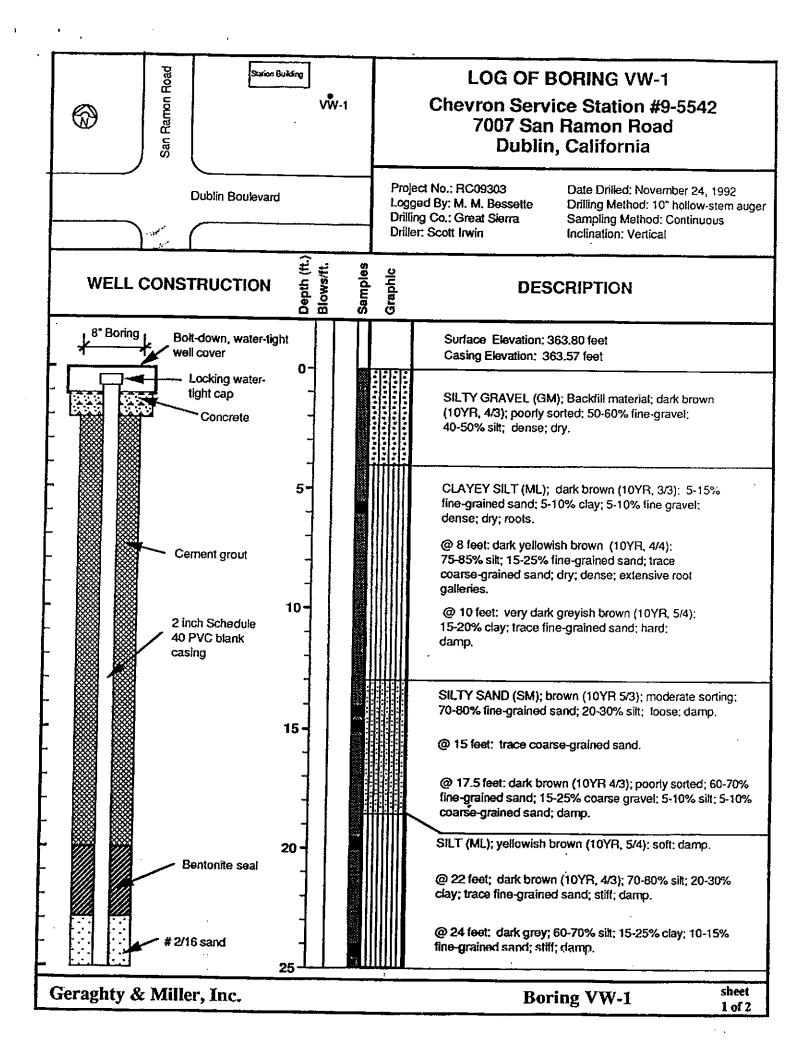
Field loc	ation of I	boning:				<u></u>		Project No.:		Dete:	12/6/91	Boring h
								Client:		vice Station	1 No. 5542	- MW-
		(5	See Plate	: Z)				Location:		lamon Road	<u> </u>	
								City:	Dublin, Cali	fomia		Sheet
								Logged by:		Driller:	Hazmat	o
								Casing insta	liation data:			
	method;		Stem Au	ger		<u> </u>		Top of Box I	Tierretiens		Detum:	
ole dia		8-inche	<u>s</u>	; ·· r		;				1	Dettum:	
_	1 1	5.5		2	*	_	<b>₽</b> 8	Water Level		·		
0 (m 1 dg	N SWE	Type of Sample	Sample Number	("W Wood	Sample	Velt	60	Time Date				
-0	Blows/h.* or Pressure (pel)	F3	0 X	۱Å	đ		Solt Group Symbol (USCS)	Lave	1	Description	1	<u></u>
	1 -	1		<del>! . }</del>		1	1/					<u> </u>
	+	-	· ·	21		1	V//		<u></u>			
	1		<u> </u>	┤┻╵┝		]	Y//					
				22		1	Y///	1	· ·			
	1			1 - 1		į.	X///	ł				
	<u> </u> .	1		23			X///	1		· ·		
	1		1	1 ľ		Ā	V//	10% m	edium sand,	saturated at	23 ft.	
				24		]	V//					
•						]	V//		A			
			MW-8-	25		]	Y//	Į				
0	53	S&H	25,5	<u> </u>		1	Y///	Į	,			
	l			26		1	X///	<b> </b>				
	1		<u> </u>			1	X///	1				
	ļ	·   · · · · -		27		4	1///	1				
	1	_				-	V//	]				
		·   · · · · · · · · · · · · · · · · · ·		28	_	-	V//	J				
	1		4	29		-	V//	Į			·	
						1	$\langle / / \rangle$	<u>∤</u>		·		-
	<u>;</u>		MW-8-	30		1	X///	┫━━━━━━				
0	23	S&H	30,5	1		1	1///	<u> </u>				
	1	+	1	31		1	V//	]				
			1	] [		]	V//				<u> </u>	
				] 32 [			$\langle / / \rangle$					
			1	] [		]	Y//					
				33		1	X///					
		ļ	ļ	] [		-	X///	1				
		<u> </u>	<u> </u>	34	_		1///	1				,
	ļ		1.0.4.0			4	V//		of sand 1-2 i	nches thick i	intertingered	with clay
~		0011	MW-8-	35		-	V//	and cla	ayey sand.			
0	15	S&H	35.5	36		4	γZZ	+				
		- <u> </u>	+			{		Rottor	n of Boring at	355 ft		
	<u> </u>		+	37		-	1	12/6/9		00.0 12		
				"		1		12013	•	<u></u>		
		+	+	38		1		<u> </u>				
	1	1	1			1		h				
		+	<u>i</u>	39		1				·····	· · ·	
	1		1	1 1		1	ł	· · · · · · ·				
				40		1					······	<u> </u>
emerks												
							Log of	Boring		· · · · · · · · · · · · · · · · · · ·		BOR
20	Ce) Ge	oStrateg	gies Inc.				-	-				
												MW
<u>س</u>						. <u> </u>						
B NUMBE 29001	ER		REVIEWED	BY RGC	ΈG				DATE 12/91	REV	ISED DATE	REVISED

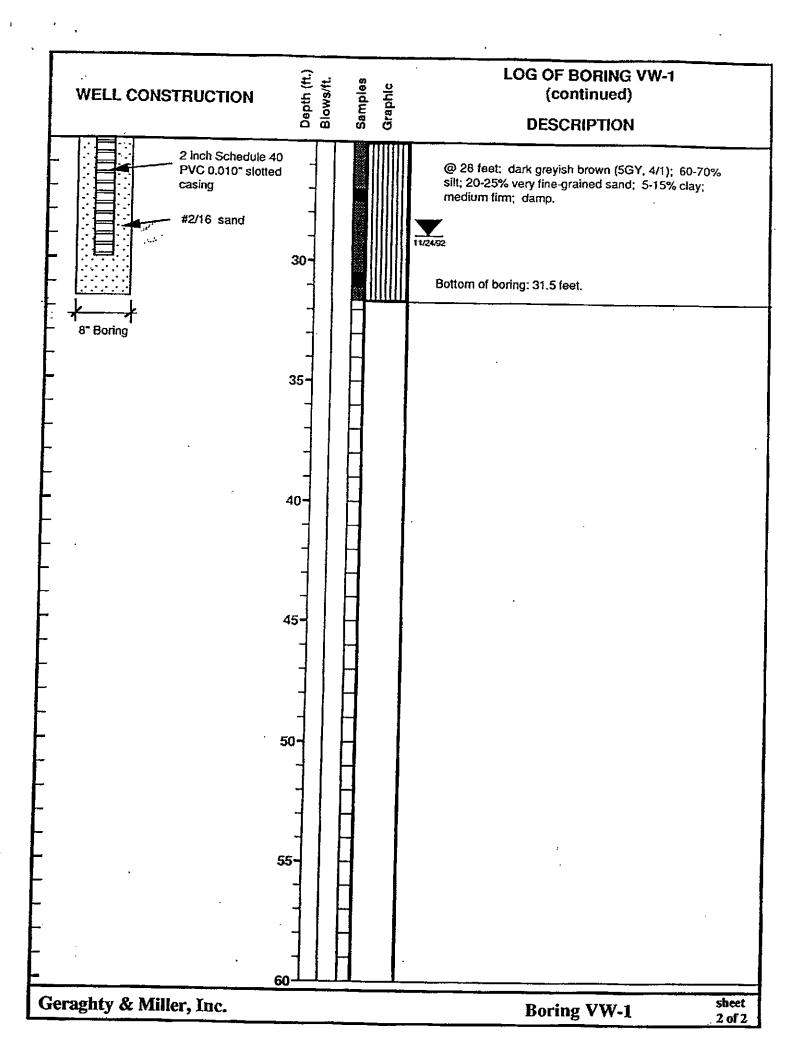
-

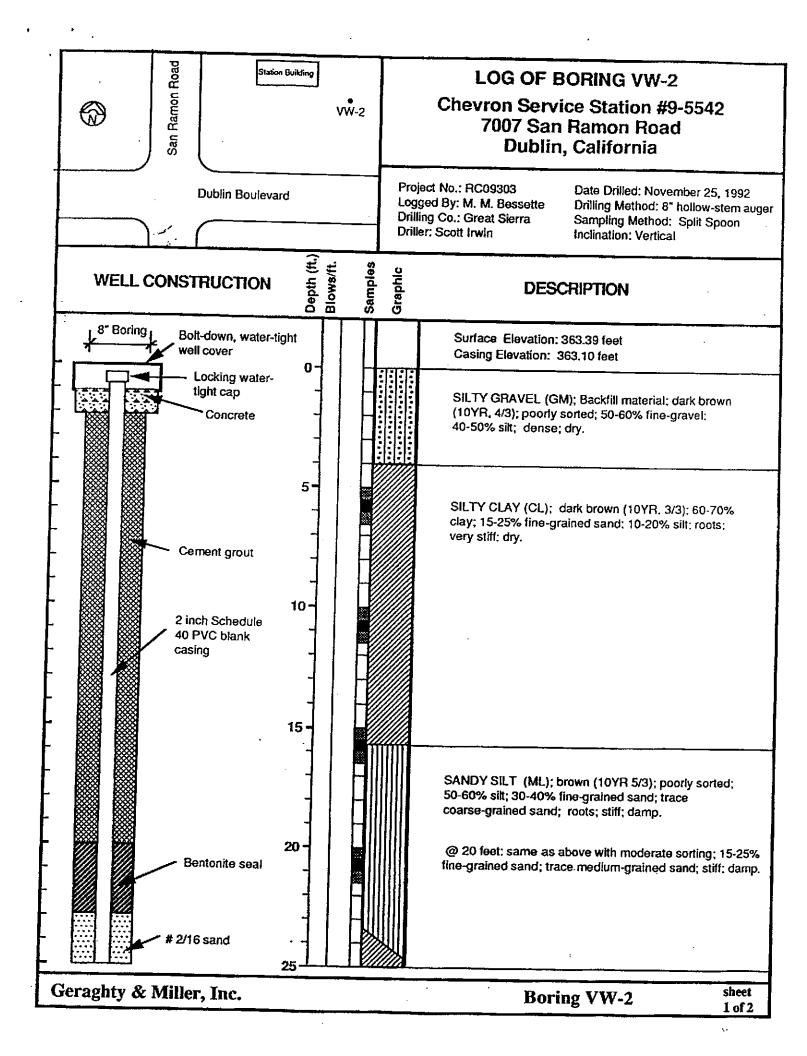


	·····			<u> </u>	OG SYMBOLS SYSTEM - ASTM D2488	
	MAJOR DIVIS		SYN	IBOL/ APHIC	DESCRIPTIONS	
6	GRAVELS	Clean gravels with little or no	GW		Well Graded Gravels, Gravel - Sand Mixtures	
LS D0 siev	(More than 50% of coarse fraction	fines	GP		Poorly Graded Gravels, Gravels - Sand Mixtures	
COARSE GRAINED SOILS (>50% by weight larger than #200 sieve)	is larger than the #4 sieve size.)	Gravels with over 12% fines	GM		Silty Gravels, Poorly Graded Gravel - Sand - Silt Mixtures	
GRAINED t larger thar		over 12% lines	GC		Clayey Gravels, Poorty Graded Gravel - Sand - Clay Mixtures	
COARSE G	SANDS	Clean sands with little or no	sw		Well Graded Sands. Gravelly Sands	
COA % by v	(More than 50% of coarse fraction	fines	SP		Poorly Graded Sands, Gravelly Sands	
(>50	is smaller than #4 sieve size.)	Sands with over 12% lines	SM		Silty Sands, Poorty Graded Sand - Silt Mixtures	
			SC		Clayey Sands, Poorly Graded Sand - Clay Mixtures	
S tieve)	. SILTS AN	CLAYS	ML	ЩЩ	Inorganic Silts and Very Fine Sands. Silty or Clayey Fine Sands	
) SOILS #200 sie	(liquid limit le	ss than 50)	CL		Inorganic Clays of Low to Medium Plasticity: Gravelly, Sandy or Silty Clays; Lean Clays	
FINE GRAINED SOILS (>50% smaller than #200 siave)			OL		Organic Clays and Organic Silty Clays of Low Plasticity	
PINE GF	SILTS AN	CLAYS	MH		Inorganic Silts, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silts	
	(liquid limit gre	ater than 50)	СН		Inorganic Clays of High Plasticity, Fat Clays	
	<u> </u>		ОН		Organic Clays of Medium to High Plasticity. Organic Silts	
	HIGHLY ORGANIC	SOILS	Pt		Peat and other Highly Organic Soils	
	bilized water level ( ter level encounten				Asphaltic Concrete	
Sha	ided interval repres	ents soil sample			Portland Cernent Concrete	
Biad	ckened interval indi tiple prepared for la	Cates portion of			Cement Grout	
India	cates no recovery c	of sample	Pli	D PI	noto-ionization detector readings (ppmv)	
Mon	itoring well		FID Flame-ionization detector readings (ppmv)			
Soil	boring		EXP Gastech explosimeter readings (pp			


.


Geraghty & Miller, Inc.

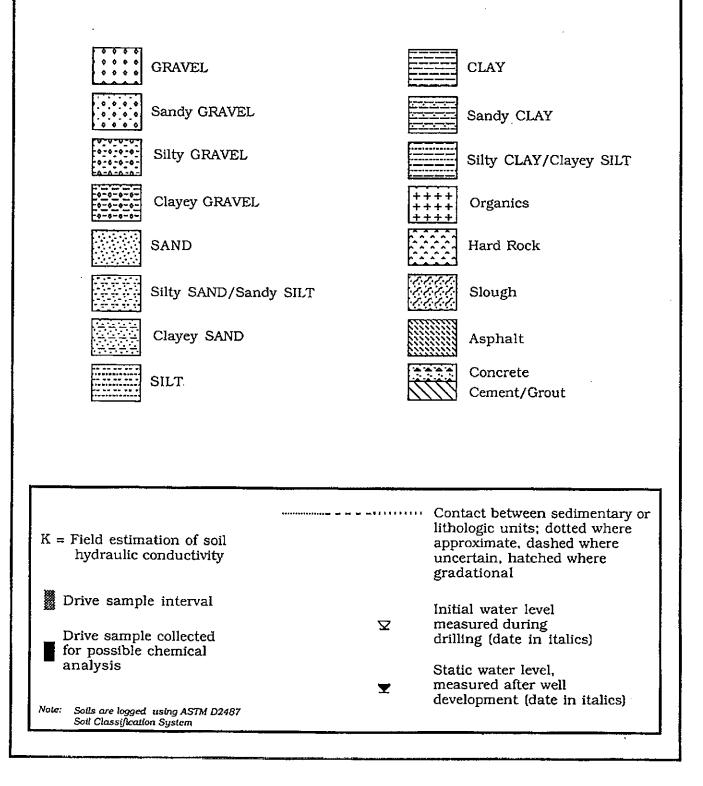

۰.

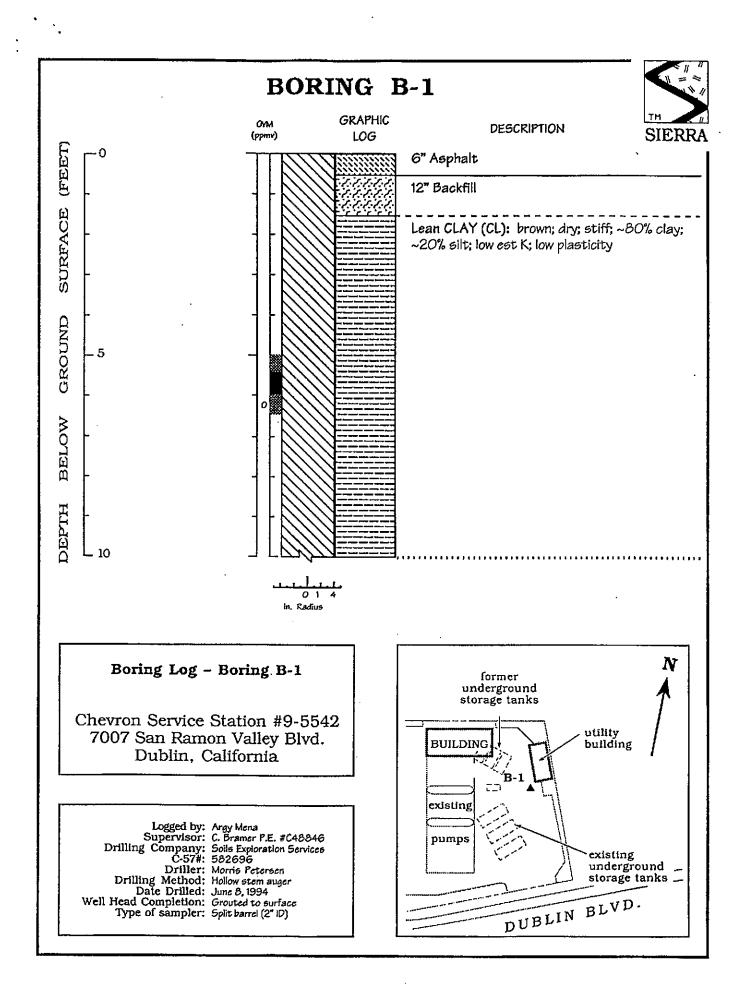

# Key to Boring Log

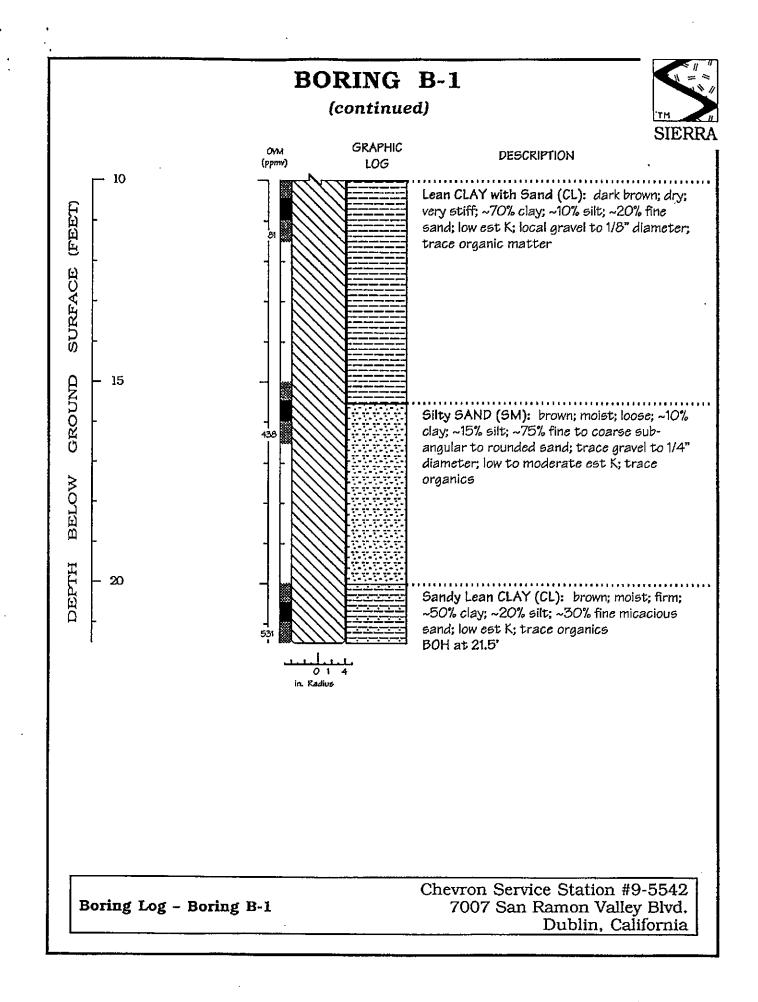
...

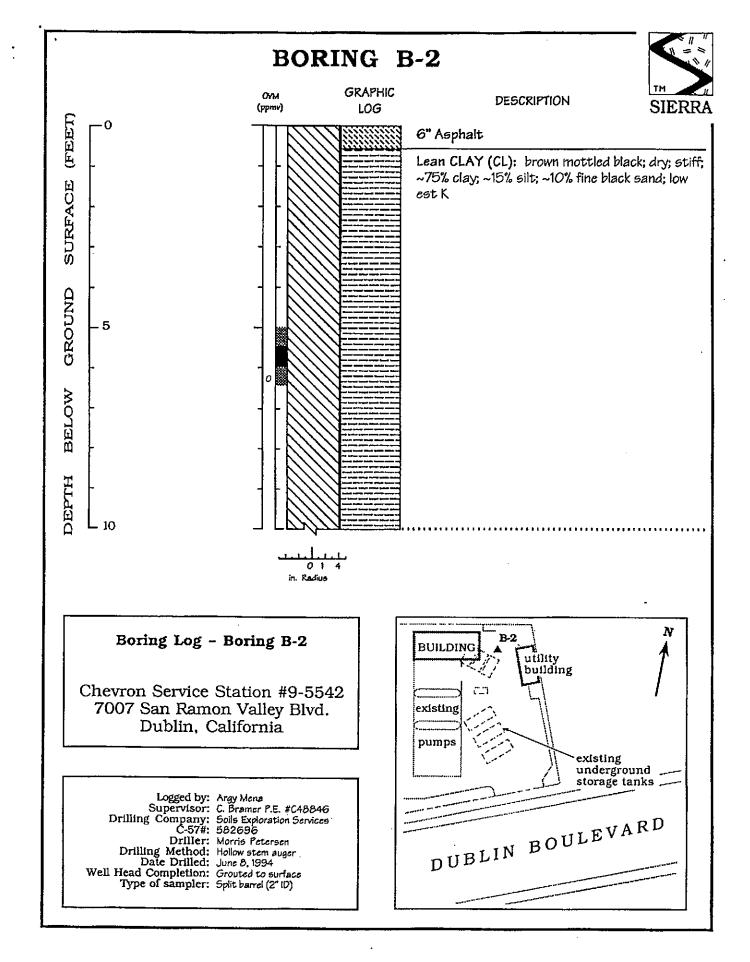




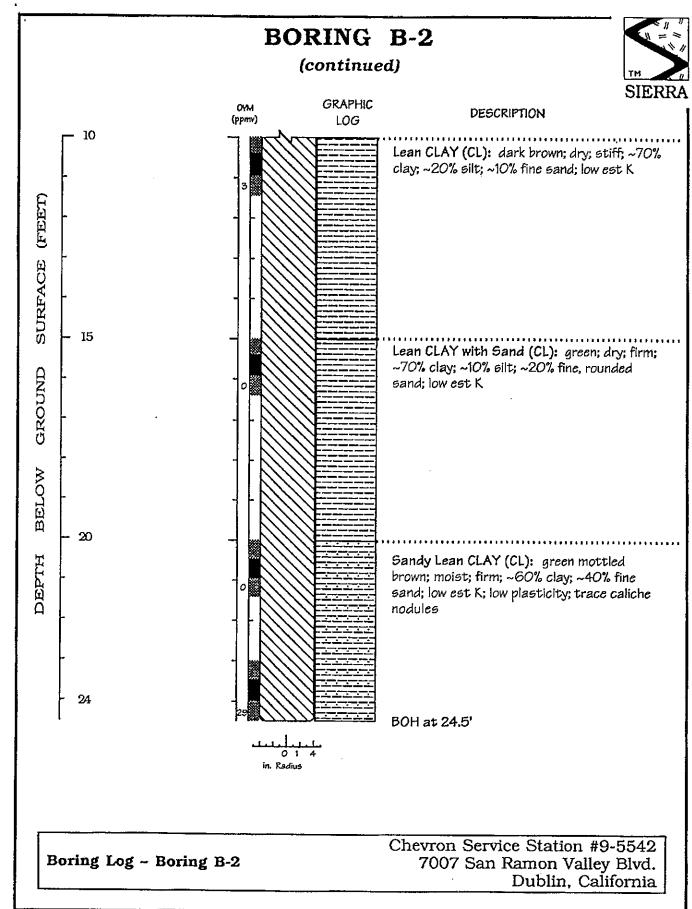


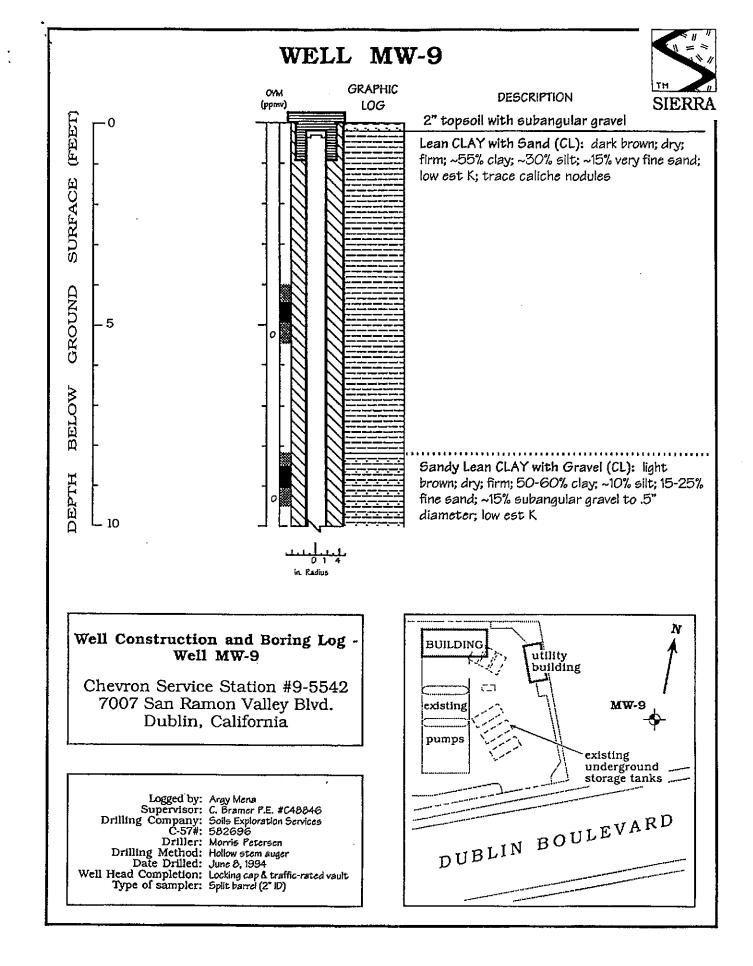




# EXPLANATION FOR SES BORING LOGS









.









	5					Drilling Log	
	¥¦G	ROUN	NDWA	ATER			Soil Boring SB-1
	] T	ECH	NOLC	DGY			
						Owner <u>Chevron U.S.A. Products Company</u>	See Site Map For Boring Location
Location	7007	San Ra	amon R	load, Di	ublin,	CA Proj. No. 02070 0156	
Surface	Elev		To	ital Hole	e Dej	oth <u>27 ft.</u> Diameter <u>2 in.</u>	COMMENTS:
•	-					itial <u>21.8 ft.</u> Static	
						Type/Size	Collected "GRAB" groundwater samples.
						Rig/Core <u>Geoprobe/Polytube HDP</u> Geoprobe	
Drill Co. 2 Defilier Mi	ike Cro	cker	1.0	ме ару В	tnog rian	<u>McAloon</u> Date <u>07/12/95</u> Permit # <u>95361</u>	
	<u> </u>			11		License No. <u>RG#4422</u>	
			X Recovery	<u>0</u>	ass.	Descripti	on [\]
Depth (ft.)		ample		Graphic Log	Ga	, ,	
l ă∽	ا م ع		×ŭ 50C	0 2	uscs	(Color, Texture, S	
		S D	Б ж		ŝ	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
2 -		ļ					
-			•				
- 0 -				man	Gм	Silty GRAVEL (40,60): backfill.	
				177			
2						Silty CLAY (40,60): brown, dry, no hydrocar	Don odor.
- 2 -					CL	·	
- 4 -							
•						Gravelly silty CLAY (10,30,60): brown, dry to	o damp, no hydrocarbon odor.
			Г	$\langle / /$			
- 6 -	i .						
	0	SB-1 -7.0'			CL		
- 8 -		-7.0					
				$\langle / / \rangle$			
					$\vdash$	Silty CLAY (40,60): brown, with white mottlin	n, dry to damp, no
- 10 -			-			hydrocarbon odor.	g,,
–			1				
	0	SB-I		$V/\Lambda$			
- 12 -		-12.0'	-		CL		
- 14 -				$\langle / \rangle$			
			찌			Clayey sandy SILT (20,30,50): brown gradir	on to silty CLAY (30.70): brown
- 16 -			H			damp, no hydrocarbon odor.	ig to sirty CERT (SO, TO). Drown,
	0	SB-1	ľ	HH			
┝╶╺╢		-17.0	- 1	WW	HL/CL		
- 18 -							
~~						Sandy silly CLAY (10,30,60): olive-gray with	
- 20 -			Ц	$\langle / / \rangle$		rust-brown rootlet cast, damp, no hydrocart	Jun daur.
				$\langle / \rangle$			
- 22 -	0	SB-1		$\langle / \rangle$	CL	Encountered Water (Drillers Call)	
		-22.0'		$\langle / / \rangle$		· · ·	
- <b>-</b>				$\langle / / \rangle$			
- 24				YZĄ	$\square$		
				<u>ا _ ا</u>	I. I		

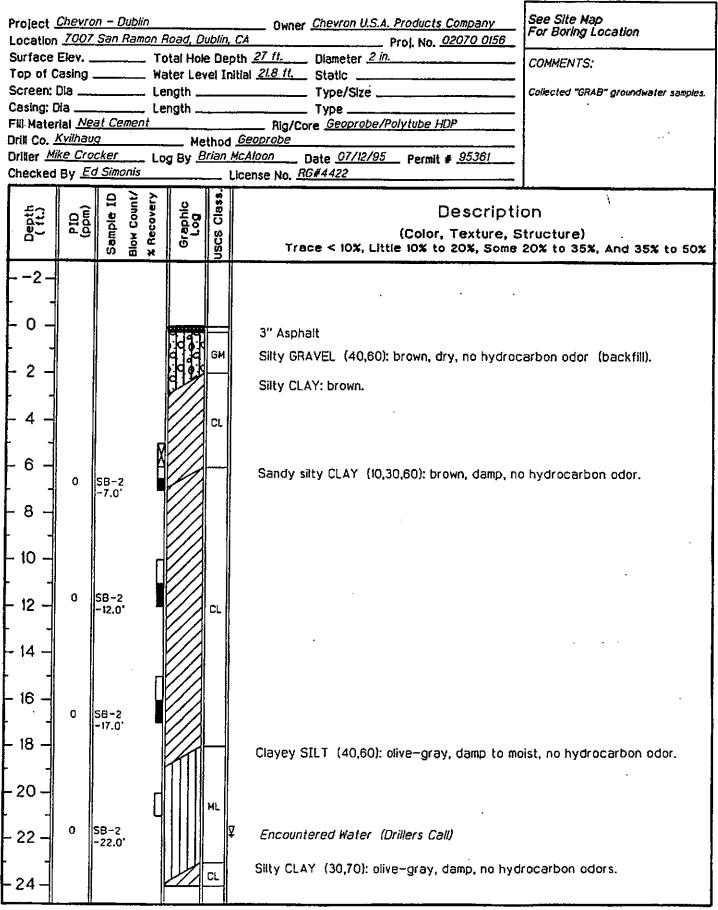
08/22/1995 lithlog-mar93

`**.** 

•



## Drilling Log


Soil Boring SB-1

Project <u>C</u> Location	hevroi 7007	n – D San F	ublin Ramo	n Re	oad, Di	ıblin,	Owner <u>Chevron U.S.A. Products Company</u> CA Proj. No. <u>02070 0156</u>
Depth (ft.)	PIO (mqq)	Sample ID	Blow Count/	A Necovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - - 26 - - 28 - - 30 - - 32 - - 34 - - 36 - - 38 - - 40 - - 42 - - 44 - - 46 - - 48 - - 50 - - 52 - - 52 -	60 80	<del></del> 5В-1 -27.0				ISD  C) ₩	Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% Sandy clayey SILT (20,30,50): olive-gray grading to clayey SILT (40,80): damp to moist, strong hydrocarbon odor. End of Boring. Backfilled with neat cement 07/12/95.
- 56 -							



#### Drilling Log



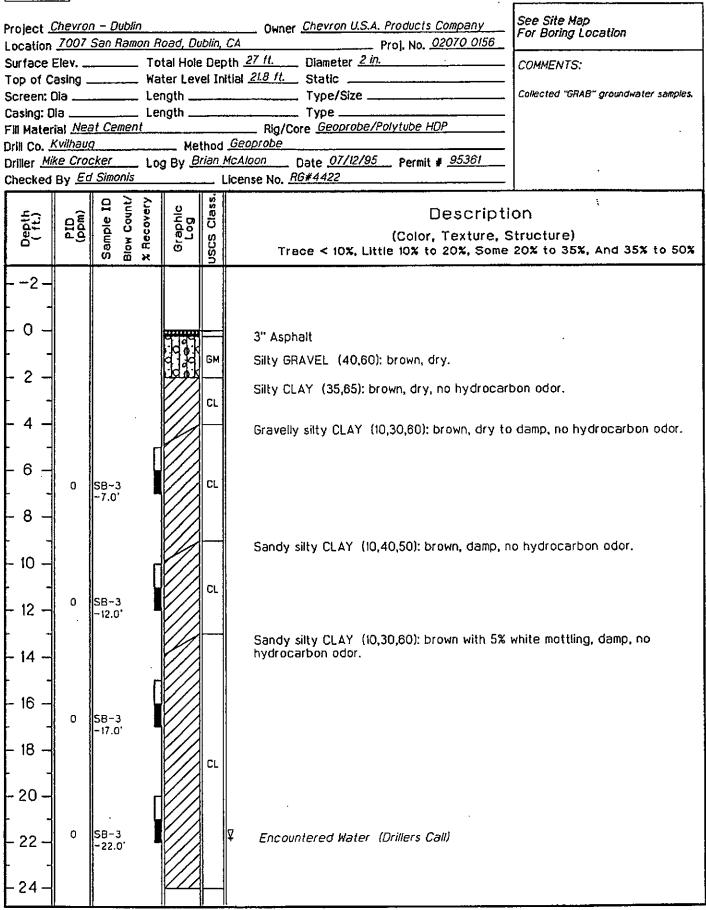


08/22/1995 lithlog-mar93



-

4


## **Drilling Log**

Project (	Chevro. 7007	n – D San F	ublin Ramon	Road, [	ublin,	CA Owner <u>Chevron U.S.A. Products Company</u> CA Proj. No. <u>02070 0155</u>
Depth (ft.)	PIO (ppm)	Sample ID	Blow Count/ X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -				///		Silty CLAY (cont)
- 26 -	2	58-2			CL	
- 28 -		58-2 -27.0	•			End of Boring. Backfilled with neat cement 07/12/95.
- 30 -						
- 32		-				
- 34						· ·
- 36 -						
$\mathbf{F}$						
- 38 -						
- 40		•				
- 42 -						
-44-						
- 46 -						
- 48						
- 50						
- 52						
- 54 -						
- 56 -						

GROUNDWATER

### Drilling Log

### Soil Boring SB-3



08/22/1995 lithlog-mar93



,

### Drilling Log

Project <u>(</u> Location	<u></u>	n – Di San F	ublin Ramor	Road	d, Du	blin,	Owner <u>Chevron U.S.A. Products Company</u> CA Proj. No. <u>02070 0156</u>
Depth (ft.)	PID (ppm)	1	Blow Count/			uscs Class.	Description (Color, Texture, Structure) [:] Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -							Sandy silty CLAY (20,20,60): brown, damp to moist, no hydrocarbon odor.
- 26 -	0	58-3 -27.0	ן זי			CL	End of Boring, Backfilled with neat cement 07/12/95.
- 28 -				r			
- 30 -				ŗ			
- 32 -							
- 34 –						-	
- 36 -							
- 38							
-40-							
- 42 -							
-44-							
- 46 -							
- 48 -							
- 50 -							
- 52 -							· ·
- 54 -							
- 56 -							

		SIONS			TYPICAL NAMES
ЧE		CLEAN GRAVELS	GW	نو ۲۰۰۰ ۲۰۰۶	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIEVE	GRAVELS	WITH LITTLE OR NO FINES	GP		POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
D SOILS THAN NC	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
GRAINE OARSER		OVER 15% FINES	GC	× × ×	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO.		CLEAN SANDS WITH LITTLE	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
E THAN F	SANDS	OR NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL LITTLE OR NO FINES
MOM	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	SC		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE		ND CLAYS 50% OR LESS	CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED SO LER THAN	•	-	OL		ORGANIC SILTS OF CLAYS OF LOW PLASTICITY
IE-GRAI VLF IS FIN			мн		INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
THAN H		ND CLAYS - EATER THAN 50%	сн		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			он		ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLYOR	GANIC SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS
			-	1	· ·
		• •			-
LL	- Liquid Limit (	(			<ul> <li>'Undisturbed' Sample</li> <li>Bulk or Classification Sample</li> </ul>
PI	- Plastic Index	•			<ul> <li>First Encountered Ground Water Level</li> </ul>
PID	- Volatile Vapo	• •			- Piezometric Ground Water Level
MA	- Particle Size			+	
2.5 YR 6	Munselt Soil	Color Charts (1975 Ed	ition)	Pe	netration - Sample drive hammer weight - 140 pound failing 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

Unified Soil Classification - ASTM D 2488-85 , and Key to Test Data

.

		Ge	ettler-	Ry	an,	Inc.			Log of Boring B-3				
PRO	JECT:	Che	vron SS#	9-8	542				LOCATION: 7007 San Ramon Road, Dublin, CA				
G-R	PROJE	ECT N	0.: 529	0.01					SURFACE ELEVATION: feet M	ISL			
DAT	E STA	RTED	: 06/12/	'96				<u> </u>	WL (ft. bgs): 23.3 DATE: 06/12/9	06 TIME: 14:30			
DAT	E FIN	ISHED	): 06/12,	/96					WL (ft. bgs): DATE:	TIME:			
DRIL	LING	METH	0D: 6 in	. Ho	llow S	tem A	uger		TOTAL DEPTH: 30 Feet				
DRIL	LING	COMP	ANY: Ba	iy A	rea Ex	(plora)	tion, .	Inc.	GEOLOGIST: <i>B. Sieminski</i>				
DEPTH feet	(mqq) UIA	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GE	OLOGIC DESCRIPTION	REMARKS			
						ML		GRAVELLY SILT 50% silt, 30% find	(ML) – brown (7.5YR 5/2), damp; 9 gravel, 20% fine to coarse sand.				
						CL		CLAY WITH SAN 4/2), damp, low p coarse sand, tra	) (CL) – dark grayish brown (2.5Y blasticity; 85% clay, 15% fine to ce fine gravel.	cement with 2% bentonit			
	0		B3-0										
-10-	0		B3-10			ĊL		SANDY CLAY (C moist, low plastic sand, 5% fine gra	L) – dark grayish brown (2.5Y 4/2), ity : 65% clay, 30% fine to coarse avel.				
-	0		83-12 83-14										
15-	Ģ		00-14							-			
	0		B3-18			SC			SC) – dark grayish brown (2.5Y fine sand , 40% clay.				
-	0		B3-18			CL.		<ul> <li>(5Y 8/i) and bro</li> </ul>	) (CL) – olive (5Y4/3) with white wn (10 YR 5/3) mottling, moist, low lay, 15% fine to coarse sand.				
20-	0 320		B3-20 B3-22										
	980		83-24				¥	Becomes satura	ted at 23.3 feet.				
25-	•					SC		CLAYEY SAND ( sationated; 80%	SC) – dark greenish gray (5GY 4/I), ine sand, 40% clay; predect ador:				
ہے. ہے ا	1050 370		B3-26 B3-28			CL		saturated, low p	L) – dark greenish gray (56Y 4/1), lasticity; 60% fine to coarse sand, fine gravel; product odor.				
[ مدا	760		B3-29.5					Color changes t (5Y 8/1), sand c	o olive (5Y 4/3) with white mottling lecreases to 30%, becomes moist.				
30								Bottom of boring	g at 30 feet, 08/12/96.				
								(* = not applica 5-foot core bai	able – sampling performed using rel.)				

		Ge	ettler-	Ry	an,	Inc.		Log of Boring B-4
PRO	JECT:	Che	vron 55#	9-5	5542			LOCATION: 7007 San Ramon Road, Dublin, CA
G-R	PROJ	ECT N	0.: 529	0.01	1			SURFACE ELEVATION: feet MSL
DAT	E STA	RTED	: 06/12/	/96		-		WL (ft. bgs): 24.5 DATE: 06/12/96 TIME: 16:10
DAT	EFIN	ISHEC	): 08/12	/96			, <u>_</u>	WL (ft. bgs): DATE: TIME:
DRIL	LING	METH	0D: 6 in	. Ho	llow S	Stem A	uger	TOTAL DEPTH: 30 Feet
DRIL	LING	COMP.	ANY: Ba	y A	rea E	xplorat	tion, Inc.	GEOLOGIST: <i>B. Sieminski</i>
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		EOLOGIC DESCRIPTION REMARKS
-				-		ML	GRAVELLY SIL damp, low plast fine to coarse	
- 5-						CL	SANDY CLAY ( damp, low plast sand.	CL) - dark grayish brown (2.5Y 4/2), icity; 70% clay, 30% fine to coarse
	0		<b>B4-6</b>	-				
- 	0		84-10	-				
	0		B4-12			SM	SILTY SAND W (2.5Y 5/4), dar 20% fine grave	TH GRAVEL (SM) — light olive brown np; 50% fine to coarse sand, 30% silt,
15— - - 20—	0		B4-18			CL	plasticity; 90%	ive gray (5Y 4/2), moist, low clay, 10% fine sand; soll description le B4–18 collected from drill cuttings.
- - -	0		B4-24			CL	moist, low to mo fine sand; 0-55 on sample B4- ♀ sampler.	CL) – dark greenish gray (5GY 4/1), edium plasticity; 55–70% clay, 30–40% 4 fine gravel; soil description based 24 recovered using a split spoon
25-	0		B4-26				Becomes satur	ated at 24.5 feet.
]	0		B4-27					
-	0		B4-28			SC CL	CLAYEY SAND saturated; 60% fine gravel.	(SC) - light olive brown (2.5Y 5/4), fine to coarse sand, 30% clay, 10%
30-	0		84-29.5				SANDY CLAY ( saturated, low coarse sand, 10	CL) — olive brown (2.5Y 4/2), plasticity; 50% clay, 40% fine to 0% fine gravel; color changes to olive at 29 feet; sand increases to 50% ,
-				.	·		Bottom of bori	ng at 30 feet, 06/12/98.
35–							(¥ ≈ not applie 5-foot core ba	able - sampling performed using

•

	<u>`</u>		Ge	ettler-	Ry	an,	Inc.		Log of Boring MW-10					
G-R PROJECT NO. : 5200.01       SURFACE ELEVATION: feet MSL         DATE STARTED: 00/12/00       HL (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HL (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HL (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HL (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HL (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         DATE FINISHED: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         DATE: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         DATE: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         INTEL: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         INTE: 00/12/00       HD (H, bap: 210       DATE: 00/12/00         INTE: 00/12/00       HD (H, bap: 210       HD (H, bap: 210         INTE: 00/12/00       HD (H, bap: 210       HD (H, bap: 210         INTE: 00/12/00       HD (H, bap: 210       HD (H, bap: 210         INTE: 00/12/00       HD (H, bap: 210       HD (H, bap: 210         INTE: 00/12/00       HD (H, bap: 210       HD (H, bap: 210	PRO	JECT:	Che	vron SS#	9-5	542			LOCATION: 7007 San Ramon Road, Dublin, CA					
DATE STARTED:     08/12/06     HL (ft.bgs):     210     DATE     TIME:       DATE     FINISHED:     06/12/06     HL (ft.bgs):     DATE     TIME:       DRILING     ML (ft.bgs):     210     DATE     ML (ft.bgs):       DRING     DATE     DATE     DATE     ML (ft.bgs):														
DATE FINISHED:         08/12/96         HL (ft.bgp):         DATE:         TIME:           DRILLING METHOD:         8 in. Indice Stem Auger         TOTAL DEPTH:         35 Freet         DRILLING METHOD:         New Exploration, Inc.         GEOLOGIST:         8.5 Freet           DRILLING CHARNY:         Bay Area         Bay Stem Auger         GEOLOGIC DESCRIPTION         WELL DIAGRAM           Well biological approximately in the sample book of the sample b									WL (ft. bgs): 21.0 DATE: 06/12/96	TIME: 12:50				
DRILLING OMETHOD:         8 in. Hollow Stem Auger         TOTAL DEPTH:         35 Feet           DRILLING COMPANY:         Bay Area Exploration, Inc.         GEOLOGIST:         6. Seminski           v         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TIME:</td></td<>										TIME:				
DRILLING COMPANY:         Bay Area Exploration, Inc.         GEOLOGIST:         6. Stemmski           Image: State of the st						llow S	Stem A	uger						
Human         Hell DIABRAM           Human </td <td></td>														
30-         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		(mqq)	*				CLASS		<u> </u>	WELL DIAGRAM				
		Id	B	6		15	S		s not sampled because it was nately 5 feet from boring SB-3.	(0.01 inch)				
	35—							Bottom of boring	g at 35 teet, 06/12/96.	Page 1 of 1				

i age ł

### **Boring/Well Log Legend**

#### KEY TO SYMBOLS/ABBREVIATIONS

₽	First encountered groundwater		Defi	inite contact line	
¥.	Static groundwater		Infe	rred or gradational contact line	
ł	Soils logged by hand-auger or air-knife cuttings	PID =		ionization detector or organic vapor meter g in parts per million (ppm)	
<u>(</u>	Soils logged by drill cuttings or disturbed sample	fbg = Feet below grade			
0	Undisturbed soil sample interval	Blow C	ounts =	Number of blows required to drive a	
	Soil sample retained for submittal to analytical laboratory			California-modified split-spoon sampler using a 140-pound hammer falling freely 30 inches, recorded per 6-inch interval of a total 18-inch sample interval	
<u>0</u>	No recovery within interval	msl = j	Mean se	·	
[um]	Hydropunch screen interval	Soils la	gged acc	cording to the USCS.	

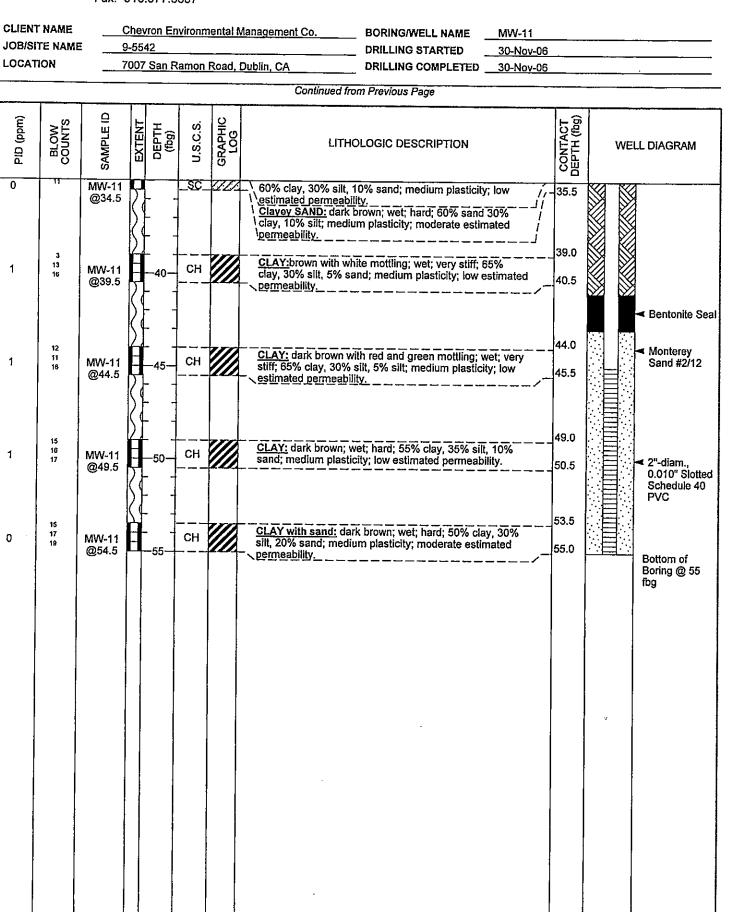
#### UNIFIED SOILS CLASSIFICATION SYSTEM (USCS) SUMMARY

Major Divisions			Graphic	Group Symbol	Typical Description
Coarse-Grained Soils (>50% Sands and/or Gravels)	Gravel and Gravelly Soils	Clean Gravels (≤5% fines)		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
				GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
		Gravels with Fines (≥15% fines)	200	GM	Silty gravels, gravel-sand-silt mixtures
			I L	GC	Clayey gravels, gravel-sand-clay mixtures
	Sand and Sandy Soils	Clean Sands (≤5% fines)		SW	Well-graded sands, gravelly sands, little or no fines
				SP	Poorly-graded sands, gravelly sand, little or no fines
		Sands with Fines (≥15% fines)		SM	Silty sands, sand-silt mixtures
				SC	Clayey sands, sand-clay mixtures
Fine-Grained Soils (>50% Silts and/or Clays)	Silts and Clays			ML	Inorganic silts, very fine sands, silty or clayey fine sands, clayey silts with slight plasticity
				CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
				OL	Organic silts and organic silty clays of low plasticity
	Silts and Clays			MH	Inorganic silts, micaceous or diatomaceous fine sand or silty soils
				СН	Inorganic clays of high plasticity
				он	Organic clays of medium to high plasticity, organic silts
Highly Organic Soils			<u>04 04 04</u> 2 <u>24 04 0</u> 4 36 34 34	PT	Peat, humus, swamp soils with high organic contents

CAMBRIA

£

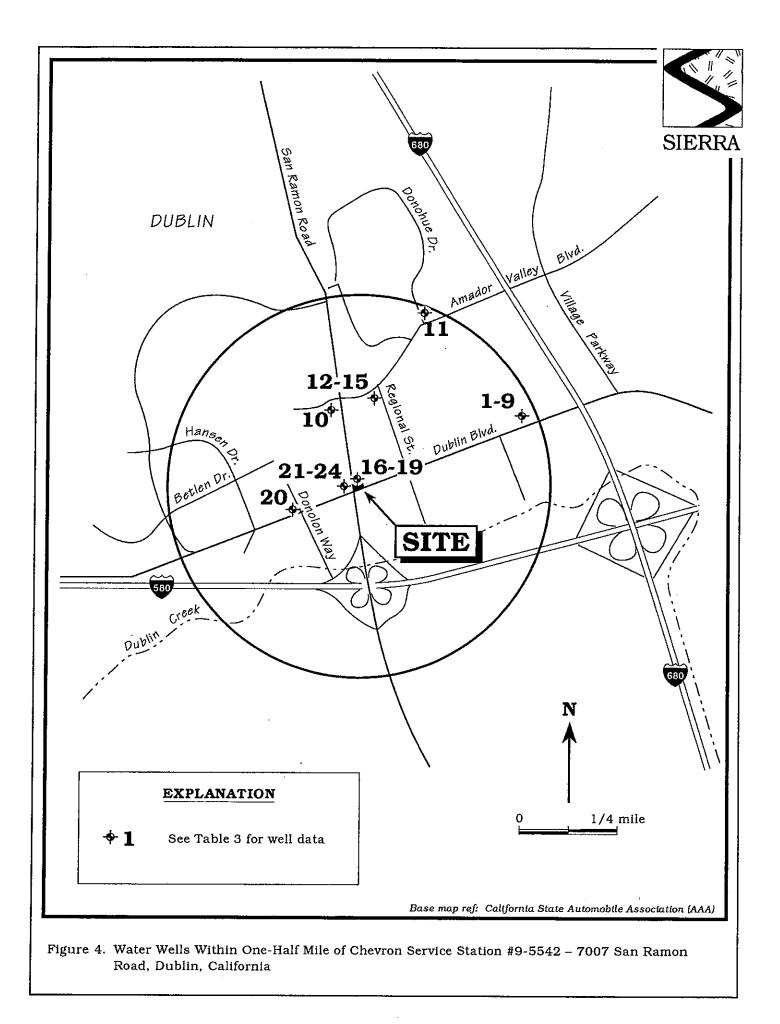
Cambria Environmental Technology, Inc. BORING/WELL LOG 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687 MW-11 CLIENT NAME Chevron Environmental Management Co. BORING/WELL NAME 30-Nov-06 JOB/SITE NAME 9-5542 DRILLING STARTED 30-Nov-06 DRILLING COMPLETED 7007 San Ramon Road, Dublin, CA LOCATION PROJECT NUMBER 61H-1969 WELL DEVELOPMENT DATE (YIELD) 29-Dec-06 347.62 ft above msl DRILLER Test America, d.b.A West Hazmat **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION 357.39 ft above msl DRILLING METHOD Hollow-stem auger BORING DIAMETER 8" SCREENED INTERVAL 45 to 55 fbg J. Bostick DEPTH TO WATER (First Encountered) _ 29.0 fbg (30-Nov-06) LOGGED BY V D. Herzog, PG# 7211 **DEPTH TO WATER (Static) REVIEWED BY** NA REMARKS Cleared to 8 fbg using a combination of handauger and airknife CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG (mqq) BLOW U.S.C.S. DEPTH (fbg) EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION P Asphalt 0.5 1.0 Concrete Concrete 2.0 CLAY: dark brown; dry; 90% clay, 10% silt; high CH 3.0 plasticity; low estimated permeability. 8.5 14 15 CLAY: dark brown; dry; 60% clay, 35% silt, 5% sand; СН 1 MW-11 high plasticity; low estimated permeability. 10.0 16 @9 14.0 13 CLAY: dark brown with white mottling; dry; hard; 70% 15 17 CH 1 MW-11 clay, 30% silt; high plasticity; low estimated permeability. 15 15.5 @14.5 19.0 7 CLAY; dark brown; moist; very stiff; 75% clay, 25% silt; 9 13 CH MW-11 1 high plasticity; low estimated permeability. 20 20.5 @19.5 Portland Type 1/11 2" diam., Schedule 40 24.0 PVC Sandy CLAY: gray and green; moist; very stiff; fine grained sand; 50% clay, 30% sand; 20% silt; moderate plasticity; moderate estimated permeability. 7 9 CH 7 MW-11 25.5 11 @24.5 29.0 ν 9 29.5 @ 29 fbg: No Recovery; saturated. CLAY: brown; wet; 60% clay, 30% silt, 10% sand; 10 MW11-1 CH 30 30.5 12 @29.5 moderate plasticity; low estimated permeability. 34.0 7 CLAY: dark brown with gray mottling; wet; very stiff; СН 35.0 9


MELL LOG (PID) R:19-5542-11GINT19-5542.GPJ DEFAULT.GDT 1/11/07

PAGE 1 OF 2

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687

WELL LOG (PID) R:19-5542-1/GINT19-5542 GPJ DEFAULT.GDT 1/11/07


## **BORING/WELL LOG**



PAGE 2 OF 2

APPENDIX C

WELL SURVEY INFORMATION

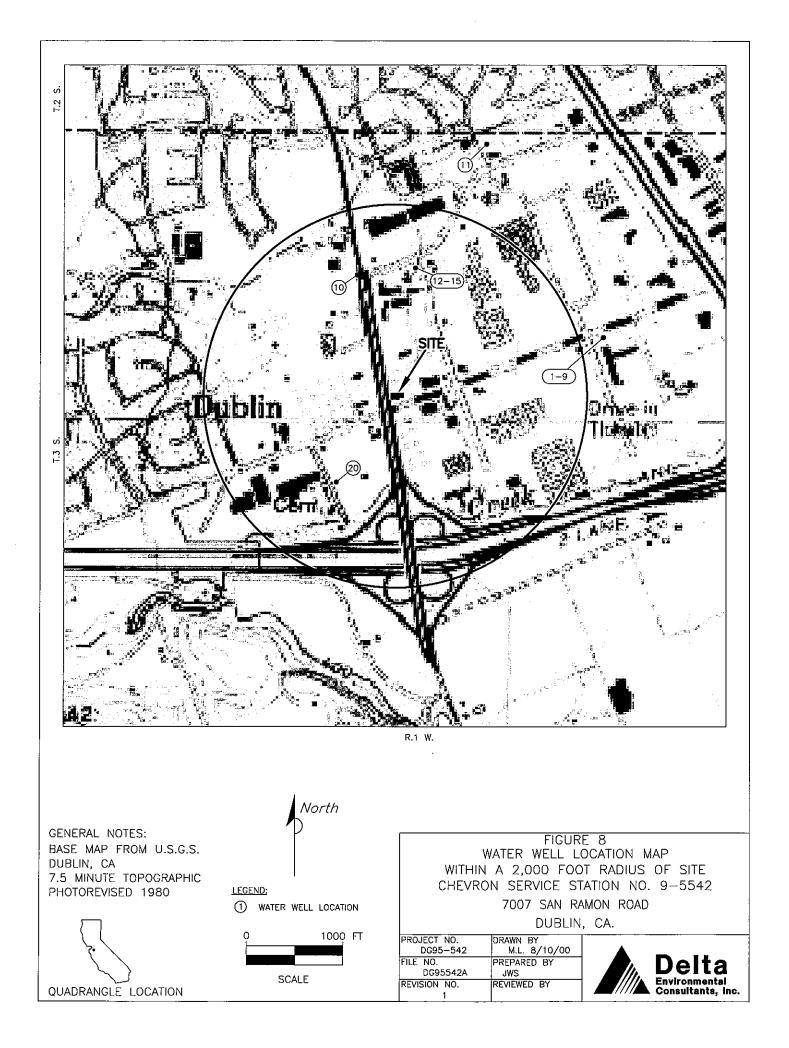




Map Ref	Well Owner	Well Owner's Address	Well Location*	Well Use
1-9	A.D. Selditch & Assoc Inc.	6267E Joaquin Manela Ave. Newark, California	Montgomery Ward 6900 Amador Plaza Rd. (7575 Dublin Blvd.)	М
10	Zone 7 Water Agency	5997 Parkside Dr. Pleasanton, California	SW corner of San Ramon Rd. Amador Valley Blvd.	М
11	Dougherty Regional Fire Authority	9399 Firecrest Ln San Ramon, California	7494 Donohue Dr., Dublin	М
12-15	Texaco		7840 Amador Valley Rd. Dublin	Mon
16-19	Chevron USA	P.O. Box 5004 San Ramon, California	7007 San Ramon Rd. (San Ramon & Dublin Blvd.)	Mon
20	Dublin Historical	Donolan Way Dublin, California	same ?	D
21-24**	Unocal	Unocal Corporation 2000 Crow Canyon Place San Ramon, California	11976 Dublin Boulevard Dublin, California	Mon

## Table 3. Water Wells Within One-Half Mile of Chevron Service Station #9-5542, 7007 San Ramon Road, Dublin, California

EXPLANATIONS:


D = Domestic I = Irrigation M = Municipal

Mon = Monitoring

NOTES:

Well locations are shown on Figure 4 (Appendix A)
** These wells were identified during the area business survey

21400T.WW



## TABLE 4

# WATER WELLS WITHIN A 2,000 FOOT RADIUS

# Chevron Station No. 9-5542 7007San Ramon Road Dublin, California

NUMBER	WELL TYPE	WELL OWNER	OWNER ADDRESS	WELL STATUS	WELL ID
19	Municipal	A.D. Selditch & Associates, Inc.	6267E Joaquin Manela Avenue Newark, Ca.	Unknown	
10	Municipal	Zone-7	5997 Parkside Drive Pleasanton, Ca.	Destroyed	3S/1W-2A1
11	Municipal	Dougherty Regional Fire Authority	9399 Firecrest Lane San Ramon, Ca.	Unknown	
12 15	Monitoring	Техасо	7540 Amador Valley Road Dublin, Ca.	Active	
16-19	Monitoring	Chevron Products Company	P.O. Box 5004 San Ramon, Ca.	Active	
20	Domestic	Dublin Heritage Center	6600 Donolan Way Dublin, Ca.	Destroyed	3S/1W-2K6
21 24	Monitoring	Unocal	2000 Crow Canyon Place San Ramon, Ca.	Active	

.

.

APPENDIX D

OXYGEN INJECTION CONFIRMATION SAMPLE LABORATORY REPORTS





### ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 1067782. Samples arrived at the laboratory on Saturday, December 01, 2007. The PO# for this group is 0015002175 and the release number is MTI.

<u>Client Description</u> MW-4-W-071128 Grab Water MW-1-W-071128 Grab Water Lancaster Labs Number 5225561 5225562

ELECTRONIC CRA COPY TO Attn: Brian Carey





Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Jus And

Marla S. Lord Senior Specialist



# Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5225561

 MW-4-W-071128
 Grab
 Water

 Facility#
 95542
 MTI#
 61H-1965
 CETK

 7007
 San
 Ramon
 Rd-Dublin
 T0600100354
 MW-4

 Collected:
 11/28/2007
 12:05
 by JB

Submitted: 12/01/2007 10:10 Reported: 12/13/2007 at 08:32 Discard: 01/13/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

SANM4 I 5e w

1 51 "				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	5,800.	250.	ug/l	5
	The reported concentration of T gasoline constituents eluting p start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	0.5	0.5	ug/l	1
05401	Benzene	71-43-2	240.	3.	ug/l	5
05407	Toluene	108-88-3	22.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	340.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	1,100.	3.	ug/l	5

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle										
CAT		_		Analysis		Dilution				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor				
01728	TPH-GRO - Waters	SW-846 8015B modified	l 1	12/06/2007 10:14	Steven A Skiles	5				
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	12/07/2007 15:29	Ginelle L Feister	1				
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	12/07/2007 15:52	Ginelle L Feister	5				
01146	GC VOA Water Prep	SW-846 5030B	1	12/06/2007 10:14	Steven A Skiles	5				
01163	GC/MS VOA Water Prep	SW-846 5030B	1	12/07/2007 15:29	Ginelle L Feister	1				
01163	GC/MS VOA Water Prep	SW-846 5030B	2	12/07/2007 15:52	Ginelle L Feister	5				



# Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5225562

 MW-1-W-071128
 Grab
 Water

 Facility#
 95542
 MTI#
 61H-1965
 CETK

 7007
 San
 Ramon
 Rd-Dublin
 T0600100354
 MW-1

 Collected:
 11/28/2007
 13:50
 by JB

Submitted: 12/01/2007 10:10 Reported: 12/13/2007 at 08:32 Discard: 01/13/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

SANM1 I 5E w

L 315 W				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	2,900.	250.	ug/l	5
	The reported concentration of TP gasoline constituents eluting pr start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	660.	3.	ug/l	5
05407	Toluene	108-88-3	39.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	94.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	310.	0.5	ug/l	1

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle										
CAT		-		Analysis		Dilution				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor				
01728	TPH-GRO - Waters	SW-846 8015B modified	l 1	12/06/2007 10:44	Steven A Skiles	5				
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	12/07/2007 16:15	Ginelle L Feister	1				
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	12/07/2007 16:38	Ginelle L Feister	5				
01146	GC VOA Water Prep	SW-846 5030B	1	12/06/2007 10:44	Steven A Skiles	5				
01163	GC/MS VOA Water Prep	SW-846 5030B	1	12/07/2007 16:15	Ginelle L Feister	1				
01163	GC/MS VOA Water Prep	SW-846 5030B	2	12/07/2007 16:38	Ginelle L Feister	5				





Page 1 of 2

# Quality Control Summary

Client Name: Chevron c/o CRA Reported: 12/13/07 at 08:32 AM Group Number: 1067782

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

## Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 07339B08A TPH-GRO - Waters	Sample n N.D.	umber(s): 50.	5225561-52 ug/l	25562 112	99	75-135	12	30
Batch number: D073412AA	Sample n	umber(s):	5225561-52	25562				
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	99		73-119		
Benzene	N.D.	0.5	ug/l	103		78-119		
Toluene	N.D.	0.5	ug/l	109		85-115		
Ethylbenzene	N.D.	0.5	ug/l	108		82-119		
Xylene (Total)	N.D.	0.5	ug/l	107		83-113		

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 07339B08A TPH-GRO - Waters	Sample 126	number(s)	: 5225561 63-154	-522556	52 UNSP	K: P226075			
Batch number: D073412AA	Sample	number(s)	: 5225561	-522556	52 UNSP	K: P226060			
Methyl Tertiary Butyl Ether	106	105	69-127	1	30				
Benzene	113	114	83-128	1	30				
Toluene	121	121	83-127	0	30				
Ethylbenzene	120	118	82-129	2	30				
Xylene (Total)	119	117	82-130	2	30				

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis	Name:	TPH-GRO	-	Waters
Batch num	mber: (	07339B082	A	
	Tr	ifluorot	ol	uene-F

 5225561
 96

 5225562
 92

 Blank
 85

 LCS
 89

 LCSD
 90

 MS
 91

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





Page 2 of 2

# Quality Control Summary

Group Number: 1067782

Client Name: Chevron c/o CRA Reported: 12/13/07 at 08:32 AM

Surrogate Quality Control

Limits: 63-135

Ducon num	Der: D073412AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5225561	91	91	102	108
5225562	92	91	103	103
Blank	100	96	105	104
LCS	92	90	98	106
MS	96	96	104	110
MSD	96	97	102	110
Limits:	80-116	77-113	80-113	78-113

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

# Chevron California Region Analysis Request/Chain of Custody

Lancaster Where quality is a	Labor	atories					A	cct. #	<u>11</u> °	19-	7	Sam	For ple #	Lanca 52	ster i 25	Labor Ste	atorie <u>  - (</u>	es use	e only	y SCR#:		
•••••••••••••••••••••••••••••••••••••••		下井(1)	1916			3		n at Ray			·		Ana	lyses	Req	uest	ed			Group	+100	07782
Facility #: Chedie							:						Pre	serva	ion	Code	es.			Preservat		
Site Address: 7007				1. Dublin	. CA		- - -					<u> </u>	-	┥┦		-				<b>i</b>	T = Thios B = NaOl	
	Chevron PM: T. Bauhs Lead Consultant: CRA								ŝ			Jean									O = Othe	
Consultant/Office:	2A / 1	Rosevi	lle	-	•				uner			Ger								J value reporti	-	
Consultant Prj. Mgr.:	8.0	arcy						a na taka a	onte	0 8021		Silica Gel Cleanup								Must meet low possible for 82		
Consultant Phone #:						187			of C	8260 [	GRO	2   2				İ				8021 MTBE Cont	firmation	
Sampler: <u>J. Bos</u>								Ð	nber	1 ^w 1	0 0		nates	] 7421						Confirm highes	•.	60
Service Order #:				n SAR:			Image: State of the state sta						•	et hit								
Field Point Name	Matrix	Repeat Sample	Top	Year Month Day		New Field Pt	Grab	щ С	<b>Fotal</b>	JEX.	HH 80	260 ft	Ĭ	ead 7						Run oxy	-	
MW-4	W			071128	1205		X		4	×	<u>+</u>	- 100	<u>'</u>	┨╝┼				-		Comments / R	emarks	·
MW-1	W	-	-	071128	1330		X		4	×	¥									1		
								<u>,</u>						$\downarrow$ $\downarrow$								
		·····		· · · · · · · · · · · · · · · · · · ·			1							++								
		· · · ·		· · · · ·		·······	+															
								*										·				
· · · · · · · · · · · · · · · · · · ·		nang ing parang sa											_		_							-
		<u> </u>																-	-			
	· · ·		· · ·	·									+	+ +				+	-			
					····		-										-	1				
Turnaround Time Req	uested (	(TAT) (plea	ase circl	e)	Relinquished		/					Dai 11- <i>2</i> 1	· ·	Time	R	leceiv	ed by				Date	Time
TAT	72 hour		8 hour	F	Relinquished	i by:	~	1				Da		Time	R	leceiv	ed by				Date	Time
24 hour	4 day	5	day		<u> </u>				_				_		+_				~			
Data Package Options	(please o	circle if requ	uired)		Relinguished	i by:						Dai	e	Time	R	leceiv	edby				Date	Time
QC Summary         Type I – Full           Type VI (Raw Data)         Coelt Deliverable not needed				by Com	nercia	al Car	rier:			<u>t</u>	1		R	eceiv	ed by		 	( /	Date	Time		
WIP (RWQCB)					UPS	edEx	>		her_							$\mathbf{H}$	<u>At</u>	je	N	attore	12/1/07	10:10
Disk					Temperature	Upon Re	ceipt		3.4	c	°				С	•	•	ls Inta		les No		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. 3460 Rev. 10/04/01

# Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s) milliter(s)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
ml m3	milliliter(s) cubic meter(s)	ul fib >5 um/ml	microliter(s) fibers greater than 5 microns in length per ml
			-

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

**Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

## **Organic Qualifiers**

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

# **Inorganic Qualifiers**

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.





#### ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 1071696. Samples arrived at the laboratory on Thursday, January 03, 2008. The PO# for this group is 0015002175 and the release number is MTI.

<u>Client Description</u> MW-1-W-071228 Grab Water MW-4-W-071228 Grab Water Lancaster Labs Number 5248489 5248490

ELECTRONIC CRA COPY TO Attn: Brian Carey

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

dirictin Palles

Christine Dulaney Senior Specialist





Page 1 of 1

Lancaster Laboratories Sample No. WW5248489

Group No. 1071696

MW-1-W-071228 Grab Water Facility# 95542 MTI# 611965 CETK 7007 San Ramon Rd-Dublin T0600100354 MW-1 Collected:12/28/2007 09:10 by BS

Submitted: 01/03/2008 09:50 Reported: 01/11/2008 at 15:01 Discard: 02/11/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### RAMM1

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	860.	50.	ug/l	1
	The reported concentration of T gasoline constituents eluting p start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	9.	0.5	ug/l	1
05407	Toluene	108-88-3	150.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	36.	0.5	ug/l	1
	Preservation requirements were analysis did not have a pH < 2 volatile nature of the analytes	at the time of	analysis. Due t	o the		

volatile nature of the analytes, it is not appropriate for the laboratory to adjust the pH at the time of sample receipt. The pH of this sample was pH = 6.

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	SW-846 8015B modified	1	01/06/2008 22:00	Martha L Seidel	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	01/09/2008 14:01	Ginelle L Feister	1
01146	GC VOA Water Prep	SW-846 5030B	1	01/06/2008 22:00	Martha L Seidel	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	01/09/2008 14:01	Ginelle L Feister	1





Page 1 of 1

Lancaster Laboratories Sample No. WW5248490

Group No. 1071696

MW-4-W-071228 Grab Water Facility# 95542 MTI# 611965 CETK 7007 San Ramon Rd-Dublin T0600100354 MW-4 Collected:12/28/2007 09:40 by BS

Submitted: 01/03/2008 09:50 Reported: 01/11/2008 at 15:01 Discard: 02/11/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### RAMM4

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	53.	50.	ug/l	1
	The reported concentration of T gasoline constituents eluting p start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	SW-846 8015B modified	l 1	01/06/2008 22:22	Martha L Seidel	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	01/09/2008 14:22	Ginelle L Feister	1
01146	GC VOA Water Prep	SW-846 5030B	1	01/06/2008 22:22	Martha L Seidel	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	01/09/2008 14:22	Ginelle L Feister	1





Page 1 of 2

# Quality Control Summary

Client Name: Chevron c/o CRA Reported: 01/11/08 at 03:01 PM Group Number: 1071696

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

### Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	<u>RPD Max</u>
Batch number: 08005A53B TPH-GRO - Waters	Sample n N.D.	umber(s): 50.	5248489-52 ug/l	48490 102	102	75-135	0	30
Batch number: Z080091AA	Sample n	umber(s):	5248489-52	48490				
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	86	86	73-119	1	30
Benzene	N.D.	0.5	ug/l	87	86	78-119	1	30
Toluene	N.D.	0.5	ug/l	87	87	85-115	0	30
Ethylbenzene	N.D.	0.5	ug/l	86	85	82-119	1	30
Xylene (Total)	N.D.	0.5	ug/l	88	87	83-113	2	30

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08005A53B TPH-GRO - Waters	Sample : 159*	number(s)	: 5248489 63-154	-524849	0 UNSPI	K: P248461			
Batch number: Z080091AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample : -143* 98 98 96 97	number(s)	: 5248489 69-127 83-128 83-127 82-129 82-130	-524849	0 UNSPI	K: P248590			

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO - Waters Batch number: 08005A53B Trifluorotoluene-F

 5248489
 78

 5248490
 81

 Blank
 79

 LCS
 83

 LCSD
 83

 MS
 88

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





Page 2 of 2

# Quality Control Summary

Group Number: 1071696

Client Name: Chevron c/o CRA Reported: 01/11/08 at 03:01 PM

Surrogate Quality Control

Batti IIuliu	per: Z080091AA		<b>T</b> 1 10	
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5248489	94	90	93	84
5248490	94	91	93	83
Blank	94	92	93	83
LCS	94	92	92	84
LCSD	93	93	92	84
MS	95	94	93	85

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

# Chevron California Region Analysis Request/Chain of Custody

Lancaste Where quality is	r Labor	atories					Ac	;ct. #:	110	19-	7	_ Sa			ancas 524						-	SCR#:		
	mT=										•		A	naly	ses F	Req	uest	ed			ר)	(Group#1	0110	96
Facility #: Chevr											г		F	res	ervati	on	Code	es				Preservat		
Site Address:	<u>2 5 </u>	an Zar	nan	ed Dublin	1							anup											<b>T =</b> Thiosı B = NaOH O = Other	1
Chevron PM: +	Sauls		Lead C	onsultant: <u>C</u> K#	т				ers			Silica Gel Cleanup										🗍 J value reporti	ng needed	
Consultant/Office:									of Containers	8260 🕅 8021 🗆		ilica G									:	Must meet low possible for 82		
Consultant Prj. Mgr.: Consultant Phone #:	<u> </u>	ren		······					S	N N												F		
Consultant Phone #:	916-6	<u>-341</u>	7	Fax#: <u>916-6</u>	<u>- 7- 36</u>	87	l		erol	8260	TPH 8015 MOD GRO	TPH 8015 MOD DRO		8	7421							8021 MTBE Conf		60
Sampler: <u>B. S</u>		<u>~#</u>		ana <u>1</u> , 1				site	Total Number	盟	B	QW	car	Oxygenates								Confirm all hits		
Service Order #:				n SAR:	Time	New	<u>۾</u>	Composite	al N	BTEX + MTBE	8015	8015	8260 full scan	ð	ead 7420							🗌 Run oxy'		
Field Point Name	Matrix	Repeat Sample	Top Depth	Year Month Day	Collected		Grab		Tot			H	8260		Leac							Run oxy		5
mw~	Ŵ	~	-	07-12-28	910	<b>_</b>	1 ×		4	X		ļ	ļ	ļ		_		_				Comments / R	emarks	
Y					940		X		4	X	X	-	-		$\left  \right $	_		+	-+	-				
			ļ				-		[	╞┈						+		-+						
			ł				-			$\vdash$														·
							1	1		<b> </b>									$\rightarrow$					
							-	_	<b> </b>	ļ	_													
					<u>.</u>					┢	+	-		<u> </u>	+				_					
							-		-	+	+	+	+						1					
						1	1						1					-						
																				_			,	<u> </u>
Turnaround Time F	Requested	(TAT) (ple	ase circ	le)	Relinquishe	<u> </u>		1				1/	Date 12/0		Time <u>KOD</u>		Recei	el	- 13				Date 1/1/04	
STO PAT 24 hour	72 hou 4 day		48 hour 5 day	0	Relinquishe	d by	_						Date	•	Time		Recei	ved	by:				Date	Time
Data Package Opti		circle if rea	uired)		Relinquishe	d by:	_			-		-	Date	*	Time		Recei	ved	by:				Date	Time
QC Summary	Type I – F				Dolinguist	d by Ome	more		mior					1			Recei	ved	hv [.]				Date	Time
Type VI (Raw Data) WIP (RWQCB)	Coelt D		ot neede	ed	Relinquishe UPS		nerc		ther							1				<u>V</u> t	£_	Reed	1/3/08	
Disk					Temperatur	re Upon Re	eceip	t_2	lo		C°					ľ	Custo	dy S	eals	Inta	ct?	Yes No		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

# Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s) milliter(s)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
ml m3	milliliter(s) cubic meter(s)	ul fib >5 um/ml	microliter(s) fibers greater than 5 microns in length per ml
			-

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

**Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

## **Organic Qualifiers**

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

# **Inorganic Qualifiers**

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.





#### ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 1078592. Samples arrived at the laboratory on Friday, February 22, 2008. The PO# for this group is 0015002175 and the release number is MTI.

<u>Client Description</u> MW-4-W-080220 Grab Water MW-1-W-080220 Grab Water Lancaster Labs Number 5286131 5286132

ELECTRONIC CRA COPY TO Attn: Brian Carey

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

dirictin Palles

Christine Dulaney Senior Specialist





Page 1 of 1

Lancaster Laboratories Sample No. WW5286131

Group No. 1078592

MW-4-W-080220 Grab WaterFacility# 95542 MTI# 611965 CETK7007 San Ramon-Dublin T0600100354 MW-4Collected:02/20/2008 14:00 by JB

Submitted: 02/22/2008 10:25 Reported: 02/28/2008 at 14:20 Discard: 03/30/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### DUMW4

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of T gasoline constituents eluting p start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	SW-846 8015B modified	l 1	02/25/2008 22:27	Steven A Skiles	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	02/26/2008 18:33	Ginelle L Feister	1
01146	GC VOA Water Prep	SW-846 5030B	1	02/25/2008 22:27	Steven A Skiles	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	02/26/2008 18:33	Ginelle L Feister	1





Page 1 of 1

Lancaster Laboratories Sample No. WW5286132

Group No. 1078592

MW-1-W-080220 Grab WaterFacility# 95542 MTI# 611965 CETK7007 San Ramon-Dublin T0600100354 MW-1Collected:02/20/2008 15:20 by JB

Submitted: 02/22/2008 10:25 Reported: 02/28/2008 at 14:20 Discard: 03/30/2008 Account Number: 11997

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### DUMW1

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of T gasoline constituents eluting p start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	SW-846 8015B modified	ł 1	02/25/2008 22:56	Steven A Skiles	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	02/26/2008 18:58	Ginelle L Feister	1
01146	GC VOA Water Prep	SW-846 5030B	1	02/25/2008 22:56	Steven A Skiles	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	02/26/2008 18:58	Ginelle L Feister	1





Page 1 of 2

# Quality Control Summary

Client Name: Chevron c/o CRA Reported: 02/28/08 at 02:20 PM Group Number: 1078592

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

### Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 08056A08A TPH-GRO - Waters	Sample nu N.D.	umber(s): 50.	5286131-52 ug/l	86132 91	100	75-135	10	30
Batch number: Z080572AA	Sample nu	umber(s):	5286131-52	86132				
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	93		73-119		
Benzene	N.D.	0.5	ug/l	89		78-119		
Toluene	N.D.	0.5	ug/l	89		85-115		
Ethylbenzene	N.D.	0.5	ug/l	88		82-119		
Xylene (Total)	N.D.	0.5	ug/l	88		83-113		

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08056A08A TPH-GRO - Waters	Sample 118	number(s)	: 5286131 63-154	-528613	32 UNSP	K: P286050			
Batch number: Z080572AA	Sample	number(s)	: 5286131	-528613	32 UNSP	K: P284837			
Methyl Tertiary Butyl Ether	97	97	69-127	0	30				
Benzene	98	97	83-128	1	30				
Toluene	99	98	83-127	1	30				
Ethylbenzene	102	101	82-129	1	30				
Xylene (Total)	113	108	82-130	1	30				

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis	Name:	TPH-GRO	-	Waters
Batch nu	mber:	08056A082	Ł	
	Tr	ifluorot	ol	uene-F

 5286131
 87

 5286132
 84

 Blank
 83

 LCS
 91

 LCSD
 92

 MS
 85

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





Page 2 of 2

# Quality Control Summary

Group Number: 1078592

Client Name: Chevron c/o CRA Reported: 02/28/08 at 02:20 PM

Surrogate Quality Control

Datti IIuliu	per: Z080572AA Dibromofluoromethane	1 0 Dichlemethers d4	Toluene-d8	4-Bromofluorobenzen
	Dibromoliuoromethane	1,2-Dichloroethane-d4	Toruene-d8	4-Bromolluorobenzene
5286131	93	92	91	88
5286132	95	92	92	88
Blank	92	92	91	88
LCS	93	92	90	90
MS	94	93	91	91
MSD	94	93	92	91

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

# Chevron California Region Analysis Request/Chain of Custody

Where quality is a							A	cct. #	: <u> </u>	191 	97	7_ s			ancas 5				es use	only 3ス	/ scr#:   Grp#10"	2427	
		6190	5	· · · · · · · · · · · · · · · · · · ·					,														
Facility #: <u>9-55</u>	42					<u> </u>			l		<u>,</u>	<b></b>	F	Pres	ervat	ion (		s T	<b>—</b>	1	Preservat H = HCl	tive Code T = Thiosi	
Site Address: 7007	San 1	Ramon	KI	Dublin	· · · · · ·							9										B = NaOH	
Chevron PM:	Sauks		Lead C	onsultant:	PA				_ v			Clean									$\mathbf{S} = \mathbf{H}_2 \mathbf{SO}_4$	O = Other	
Consultant/Office:	RALI	losevil	11	-	-				iner			Gel									J value reporti	-	
Consultant Prj. Mgr.: _			•						onta	, 802		Silica Gel Cleanup									Must meet low possible for 82		
Consultant Phone #: 9			7	Fax #: 916 4	17 36	87			Total Number of Containers	8260 🔀 8021 🗆											8021 MTBE Cont	firmation	
Sampler: J. Ba	stil							0	ber		g	TPH 8015 MOD DRO		ates	Lead 7420 🔲 7421						Confirm highes	st hit by 826	50
Service Order #:			_ No	n SAR:				osit	Nun	MTBI	15 MC	15 MC	lscan	Oxygenates	8						Confirm all hits	-	
Field		Repeat	Тор		Time	New	Grab	Composite	otal	BTEX + MTBE	TPH 8015 MOD	.08 H	8260 full scan		ad 74						☐ Run oxy' ☐ Run oxy'		
Point Name MW- 4	Matrix W	Sample	Depth	Year Month Day		Field Pt.	년 지	<u>o</u>	F 4		Ë ≁	11	82		<u>۹</u>	_	+		-	-	Comments / R		
Mut-1	W	-		2008 02 2.0 2008 02 20	1400	· · · · · · · · · · · · · · · · · · ·	₩	<u> </u>	4	X	X							_		-	Comments / R	emarks	
town t		·		7000 07 70	1920		ſ	<u>  ·</u>	17				· ·					+		+			
				· · · · · · · · · · · · · · · · · · ·	····																1		
																			_				
																			_				
·				- · · · · · · · · · · · · · · · · · · ·												_				_			
							-	<u> </u>								-							
· · · · · · · · · · · · · · · · · · ·																-							
								1															
Turnaround Time Rec	•	• • •		3)	Relinquished	BU	/						Date		Time	R	eceive	ed by	:			Date	Time
STD. TAT 24 hour	72 hour 4 day		8 hour day		Relinquished	d by:							Date	+	Time	R	eceive	ed by	:			Date	Time
Data Package Options		-	uired)		Relinquished	d by:	_						Date		Time	R	eceive	ed by	/			Date	Time
	ype I – Fu 1Coelt De	ill liverable no	t neede	- <b>I</b>	Relinquished	d by Comin	ercia	al Ca	rrier:					<u> </u>		R	ereive	d by	14	Ń		Date	Time
WIP (RWQCB)				·	UPS	edEx	_		ther_								[		$\square$	4	2	2.22.02	1025
Disk					Temperature	e Upon Red	ceipt	_2	.2		°					1	ustody	/ Sea	is Inte	k?	Yes No		
																¥				-	f	<u>.                                    </u>	

3460 Rev. 10/04/01

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

# Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s) milliter(s)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
ml m3	milliliter(s) cubic meter(s)	ul fib >5 um/ml	microliter(s) fibers greater than 5 microns in length per ml
			-

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

**Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

## **Organic Qualifiers**

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

# **Inorganic Qualifiers**

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- **N** Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX E

# FIRST SEMI-ANNUAL 2009 GROUNDWATER MONITORING REPORT



# TRANSMITTAL

April 20, 2009 G-R #385290

TO: Mr. James Kiernan Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, California 95678

FROM:	Deanna L. Harding	RE:	<b>Chevron Service Station</b>
	Project Coordinator		#9-5542 (MTI)
	Gettler-Ryan Inc.		7007 San Ramon Road
	6747 Sierra Court, Suite J		Dublin, California
	Dublin, California 94568		이 집에 가장 감독하는 것이 같아.

# WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	April 14, 2009	Groundwater Monitoring and Sampling Report First Semi-Annual Event of March 18, 2009

# COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your use</u> and distribution to the following:

Ms. Stacie H. Frerichs, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3596, San Ramon, CA 94583

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *May 4, 2009*, at which time this final report will be distributed to the following:

 cc: Ms. Mary Diamond, Sees Candy Shops, Inc., 3423 South La Cienega Blvd., Los Angeles, CA 90016
 Mr. Steven Plunkett, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577 (No Hard Copy-UPLOAD TO ALAMEDA CO.)

Enclosures

trans/9-5542-SHF



Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

April 20, 2009 (date)

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility  $\# \frac{9-5542}{2}$ 

Address: 7007 San Ramon ROad, Dublin, California

have reviewed the attached routine groundwater monitoring report dated April 20, 2009

l agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

irencho

Stacie H. Frerichs Project Manager

Enclosure: Report

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron	#9-5542					Job #	385290			
Site Address:	7007 Sa	n Ramon V	Valley Rd			•	Event Date:	र	18/09		
City:	Dublin, (	CA					Sampler:		18109 KE		
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	<b>Grout Seal</b> (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y / N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
ma-1	qK	QK	OK	OK	OK	ak	QK	5	И	BoxertLorgrear/8/3	
ma-sf		V		26>					$\mathbf{V}$	morrisson/s/2	
mu-1(	Y	m	¥.	oK	V	¥	$\checkmark$	$\boldsymbol{\chi}$ .	4	Emcol82	
						•					
										( <b>4</b> )	
				1							
			П = т.,								
				1							

Comments



April 14, 2009 G-R Job #385290

Ms. Stacie Hartung-Frerichs Chevron Environmental Management Company P.O. Box 6012, Room K2200 San Ramon, CA 94583

RE: First Semi-Annual Event of March 18, 2009 Groundwater Monitoring & Sampling Report Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California

Dear Ms. Hartung-Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Groundwater Elevation Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely, Cheryf & Hansen

FOR-Deanna L. Harding

Project Coordinator

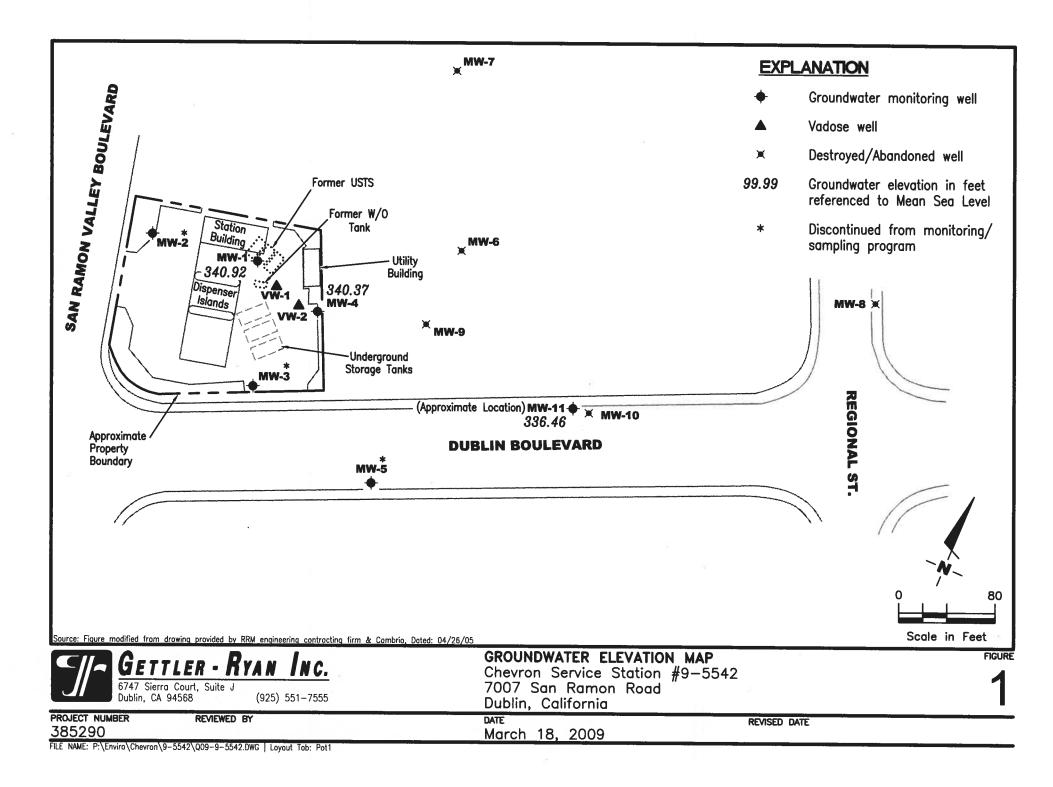

Douglas I. Lee Senior Geologist, P.G. No. 6882

Figure 1: Groundwater Elevation Map

Table 1:Groundwater Monitoring Data and Analytical ResultsTable 2:Groundwater Analytical Results – Oxygenate CompoundsAttachments:Standard Operating Procedure - Groundwater Sampling<br/>Field Data Sheets<br/>Chain of Custody Document and Laboratory Analytical Reports



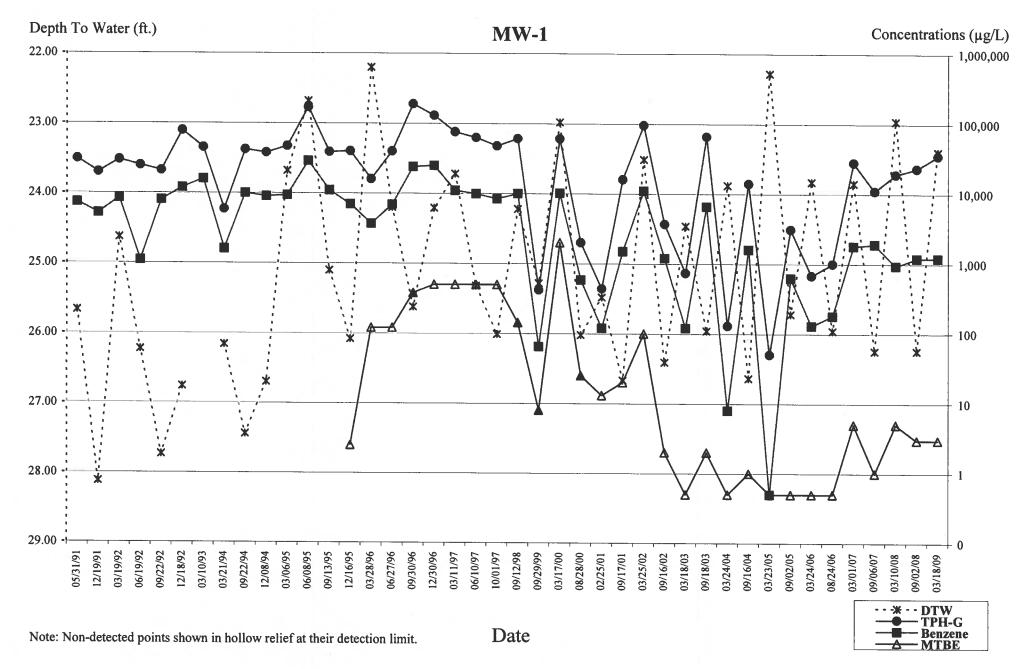
6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7888 3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317 1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94954 • (707) 789-3255 • Fax (707) 789-3218



# Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-5542

7007 San Ramon Road

#### Dublin, California


WELL ID	<b>)</b> /	TOC*	GWE	DTW	TPH-GRO	В	<u>Dublin, Cal</u> T	<b>E</b>	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE		(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1														
4/3-4/90		363.98			46,000	8,400	7,400	860	5,600				1.04	
4/3-4/90	(D)	363.98			43,000	8,400	7,200	840	5,200				1.1	
05/31/91	. ,	363.98	338.31	25.67	31,000	7,400	2,500	630	2,100			2.0		ND ³
05/31/91		363.98							_,		<5000			
06/21/91		363.98	337.75	26.23					a					
07/17/91		363.98	337.45	26.53										
09/20/91		363.98			31,000	3,000	2,800	610	3,100			0.6		ND ³
10/04/91		363.98	336.08	27.90										
12/19/91		363.98	335.86	28.12	20,000	5,200	1,700	560	2,000			3.3		ND ³
03/19/92		363.98	339.35	24.63	30,000	8,500	3,600	590	2,400			2.7		ND ³
06/19/92		364.32	338.09	26.23	25,000	1,100	2,000	520	1,800					
09/22/92		364.32	336.59	27.73	21,000	8,000	3,500	670	2,900					
12/18/92		364.32	337.56	26.76	79,000	12,000	12,000	1,600	8,500					
03/10/93 ¹		364.32			45,000	16,000	14,000	1,100	5,500					
03/22/93 ²		364.32												
06/14/93 ²		364.32												
07/25/93 ²		364.32												
09/23/93 ²		364.32												
03/21/94		364.32	338.16	26.16	5,900	1,600	560	140	330					
07/06/94		364.32	337.12	27.20										
08/26/94		364.32			20,000	5,300	4,900	610	2,900					
09/22/94		364.32	336.88	27.44	42,000	10,000	8,300	1,000	4,900					
12/08/94		364.32	337.62	26.70	38,000	9,000	7,700	830	3,800					
03/06/95		364.32	340.64	23.68	47,000	9,400	7,100	750	3,400					
06/08/95		364.32	341.64	22.68	170,000	29,000	29,000	2,600	13,000					
09/13/95		364.32	339.22	25.10	39,000	11,000	10,000	1,100	4,900					
12/16/95		364.32	338.24	26.08	40,000	7,000	6,300	570	2,500	<2.5				
03/28/96		364.32	342.12	22.20	16,000	3,700	3,200	330	1,500	<120				
06/27/96		364.32	340.12	24.20	40,000	6,900	8,700	830	4,000	<120				
09/30/96		364.32	338.70	25.62	190,000	24,000	31,000	2,900	14,000	380				
12/30/96		364.32	340.11	24.21	130,000	25,000	32,000	2,900	15,000	<500				
03/11/97		364.32	340.60	23.72	76,000	11,000	13,000	1,000	6,500	<500				
06/10/97		364.32	339.00	25.32	63,000	9,900	15,000	1,400	7,000	<500				
10/01/97		364.32	338.31	26.01	48,000	8,400	12,000	1,200	5,700	<500				
12/17/97		364.32												
03/29/98		364.32	DISCONTINU	JED										

# Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-5542

7007 San Ramon Road

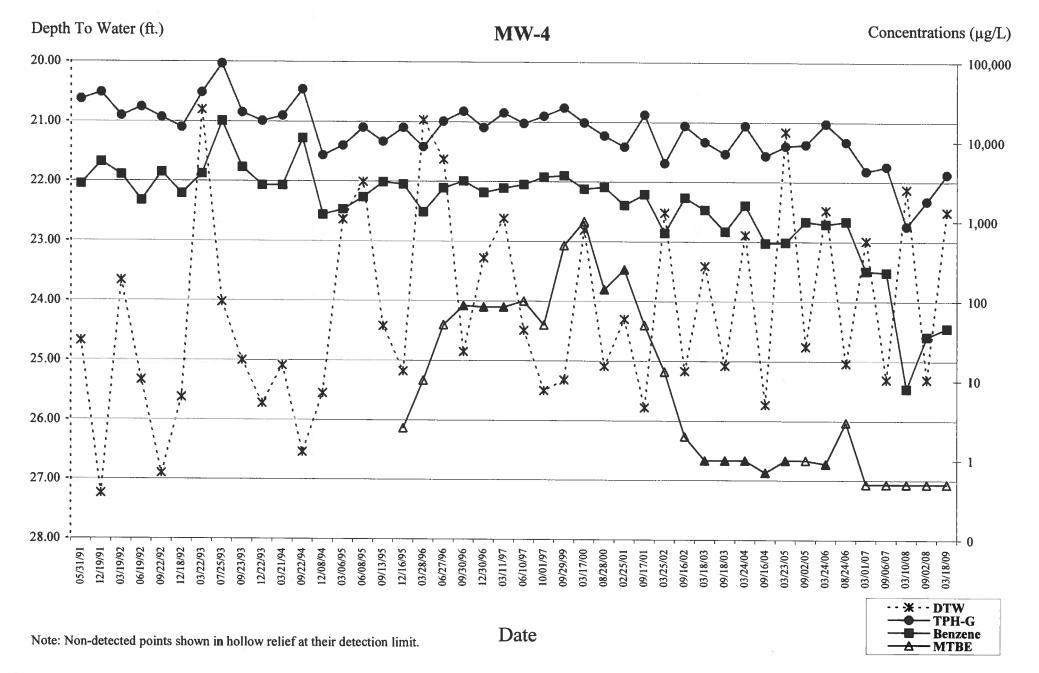
					]	<u>Dublin, Cali</u>	fornia						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)													
09/12/985	364.32	340.10	24.22	61,000	10,000	13,000	1,700	7,600	<125/1436				
09/29/99 ⁴	364.32	339.04	25.28	423	65	48.8	12.4	43.7	8.0		<2.0	<2.0	
03/17/00	364.32	341.34	22.98	61,200	10,200	15,300	1890	8540	<2000				
08/28/00	364.32	338.30	26.02	2,000 ¹⁵	590	470	110	390	25				
02/25/01	364.32	338.84	25.48	440 ¹⁵	120	33	8.5	260	<13				
09/17/01	364.32	337.65	26.67	16,000	1,500	1,900	340	1,400	<20				
03/25/02	364.32	340.81	23.51	96,000	11,000	21,000	2,500	12,000	<100				
09/16/02 ⁵	364.32	337.91	26.41	3,700	1,200	52	140	92	6.9/<2 ⁶		<2	<2	
03/18/03	364.32	339.86	24.46	740	120	43	25	70	<2.5/<0.5 ⁶				
09/18/03 ¹⁶	364.32	338.36	25.96	66,000	6,600	12,000	1,500	6,900	<2				
03/24/04 ¹⁶	364.32	340.44	23.88	130	8	2	2	4	<0.5				
09/16/04 ¹⁶	364.32	337.68	26.64	14,000	1,600	2,200	500	2,000	<1				
03/23/05 ¹⁶	364.32	342.04	22.28	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5				
09/02/05 ¹⁶	364.32	338.60	25.72	3,100	630	60	110	160	<0.5				
03/24/06 ¹⁶	364.32	340.49	23.83	680	130	0.7	15	16	<0.5				
08/24/06 ¹⁶	364.32	338.36	25.96	1,000	180	8	20	41	<0.5				
03/01/07 ¹⁶	364.32	340.47	23.85	28,000	1,800	3,800	710	3,100	<5				
09/06/07 ¹⁶	364.32	338.07	26.25	11,000	1,900	46	410	960	<1				
03/10/08 ¹⁶	364.32	341.36	22.96	19,000	940	3,800	590	3,000	<5				
09/02/08 ¹⁶	364.32	338.07	26.25	23,000	1,200	4,300	840	4,100	<3				
03/18/09 ¹⁶	364.32	340.92	23.40	35,000	1,200	6,400	1,400	5,800	<3				

# Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California



**2A** 

7007 San Ramon Road


DATE         01           MW-4         4/3-4/90         362           4/3-4/90         362         05/31/91         362           05/31/91         362         05/31/91         362           05/31/91         362         05/31/91         362           06/21/91         362         07/17/91         362           07/17/91         362         09/20/91         362           10/04/91         362         03/19/92         363           03/19/92         363         09/22/92         363           12/18/92         363         03/22/93         363	<b>OC</b> * <u>1</u> .) 52.70 (2.70	GWE (msl)	DTW (fl.)	TPH-GRO (µg/L)	В (µg/L)	Т	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
MW-4           4/3-4/90         362           4/3-4/90         362           05/31/91         362           05/31/91         362           05/31/91         362           06/21/91         362           09/20/91         362           10/04/91         362           03/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	(msl)	(JL)	(µg/L)	. fna/								
4/3-4/90       362         4/3-4/90       362         05/31/91       362         05/31/91       362         06/21/91       362         07/17/91       362         09/20/91       362         10/04/91       362         03/19/92       363         09/22/92       363         12/18/92       363         03/22/93       363				ستساع استعادتهم والمتبال المتعاد المتعاد		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
4/3-4/90       362         05/31/91       362         05/31/91       362         06/21/91       362         07/17/91       362         09/20/91       362         10/04/91       362         03/19/92       362         06/19/92       363         09/22/92       363         12/18/92       363         03/22/93       363													
05/31/91         362           05/31/91         362           05/31/91         362           06/21/91         362           07/17/91         362           09/20/91         362           10/04/91         362           03/19/92         362           06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	0 70			43,000	4,000	5,000	790	5,500		18,000		< 0.02	
05/31/91         362           06/21/91         362           07/17/91         362           09/20/91         362           10/04/91         362           12/19/91         362           03/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	02.70				6,000	8,200	1,500					-0.02	
06/21/91         362           07/17/91         362           09/20/91         362           10/04/91         362           12/19/91         362           03/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	338.03	24.67	34,000	2,900	2,900	680	3,300			<0.5		ND ³
06/21/91         362           07/17/91         362           09/20/91         362           10/04/91         362           12/19/91         362           03/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70			<5000			-						
07/17/91         362           09/20/91         362           10/04/91         362           12/19/91         362           03/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	337.39	25.31										
09/20/91         362           10/04/91         362           12/19/91         362           03/19/92         362           06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	336.97	25.73										
10/04/91         362           12/19/91         362           03/19/92         362           06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70			37,000	4,000	3,200	580	3,000			9.2		ND ³
12/19/91         362           03/19/92         363           06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	335.62	27.08										
03/19/92         362           06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	335.46	27.24	41,000	5,500	4,900	1,000	4,400			17		ND ³
06/19/92         363           09/22/92         363           12/18/92         363           03/22/93         363	52.70	339.04	23.66	21,000	3,800	2,900	500	3,200			15		ND ⁸
09/22/9236312/18/9236303/22/93363	53.07	337.74	25.33	27,000	1,800	1,600	570	1,900		<5000			
12/18/9236303/22/93363	53.07	336.17	26.90	20,000	4,100	2,700	670	3,200		<5000			
03/22/93 363	53.07	337.45	25.62	15,000	2,200	2,000	370	1,600		<5000			
	53.07	342.27	20.80	41,000	3,900	5,100	840	4,500		5000			
	53.07	337.34	25.73										
07/25/93 363	53.07	339.05	24.02	94,000	18,000	30,000	2,400	14,000		<5000			
	53.07	338.07	25.00	23,000	4,700	2,000	900	4,600		<5000			
	53.07	337.35	25.72	18,000	2,800	1,300	420	1,700		<5000			
	53.07	337.98	25.09	21,000	2,800	1,700	540	-1,900		<5000 <5000			
	53.07			25,000	4,000	2,600	960	3,300		<5000			
	53.07	336.96	26.11							<5000			
	53.07	336.53	26.54	45,000	11,000	8,800	1,000	5,100		<5000			
	53.07	337.52	25.55	6700	1,200	720	34	1,100		<5000 <5000			
	53.07	340.43	22.64	8900	1,400	540	350	940		~5000			
	53.07	341.06	22.01	15,000	2,000	1,500	400	1,500					
	53.07	338.65	24.42	10,000 ¹⁰	3,100	670	500	1,300					
	53.07	337.89	25.18	15,000	2,900	960	420	1,400	<2.5				
	53.07	342.10	20.97	8600	1,300	920	330	1,200	<10				
	53.07	341.44	21.63	18,000	2,600	1,500	740	2,400	<50				
	53.07	338.22	24.85	24,000	3,200	1,200	710	2,400	87				
	53.07	339.79	23.28	15,000	2,300	1,200	600	2,200 1,900	87 84				
	53.07	340.45	22.62	23,000	2,500	920	780	1,900 2,200	84 84				
	53.07	338.58	24.49	17,000	2,000	920 790	750	2,200 1,700	84 <100				
	3.07	337.57	25.50	21,000	2,900 3,600	1,400	1,300	1,700 2,700					
	3.07			21,000	5,000	1,400	1,300		<50				
03/29/98 363			JED										

7007 San Ramon Road

#### Dublin, California

						Duolin, Cal							
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fl.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4 (cont)													
09/29/99 ¹¹	363.07	337.75	25.32	26,700	3,770	844	1,290	2,970	<500		<40	<40	
03/17/00	363.07	340.26	22.81	17,400	2,560	942	688	1,980	<1000				
08/28/00	363.07	337.98	25.09	12,000 ¹⁵	2,700	220	530	750	140				
02/25/01	363.07	338.77	24.30	<b>8</b> ,700 ¹⁵	1,600	400	600	1,500	250				
09/17/01	363.07	337.29	25.78	22,000	2,200	620	860	2,400	<50				
03/25/02	363.07	340.55	22.52	5,400	720	53	230	390	<13				
09/16/02 ⁵	363.07	337.90	25.17	16,000	2,000	180	630	1,800	39/<2 ⁶		<2	<2	
03/18/03	363.07	339.66	23.41	10,000	1,400	110	490	1,100	<13/1 ⁶				
09/18/03 ¹⁶	363.07	337.99	25.08	7,100	750	61	240	560	1				
03/24/04 ¹⁶	363.07	340.18	22.89	16,000	1,600	170	720	2,000	1				
09/16/04 ¹⁶	363.07	337.34	25.73	6,700	540	160	250	1,000	0.7				
03/23/05 ¹⁶	363.07	341.91	21.16	8,900	550	75	470	1,500	1				
09/02/05 ¹⁶	363.07	338.31	24.76	9,300	1,000	41	440	840	<1				
03/24/06 ¹⁶	363.07	340.59	22.48	17,000	930	120	800	2,700	0.9				
08/24/06 ¹⁶	363.07	338.03	25.04	10,000	1,000	29	350	590	<3				
03/01/07 ¹⁶	362.88	339.89	22.99	4,300	240	25	130	460	<0.5				
09/06/07 ¹⁶	362.88	337.57	25.31	4,900	230	11	170	420	<0.5				
03/10/08 ¹⁶	362.88	340.75	22.13	870	8	0.7	8	32	<0.5				
09/02/08 ¹⁶	362.88	337.57	25.31	1,800	36	2	72	160	<0.5				
03/18/09 ¹⁶	362.88	340.37	22.51	3,900	46	4	190	450	<0.5	-			

# Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California



**4A** 

7007 San Ramon Road

						Dublin, Cal	ifornia						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	Т	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(ji.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11								1.10			1515-6223012425-6366		
12/29/0617	357.39	335.25	22.14	190	<0.5	0.6	6	0.6	<0.5				
03/01/0716	357.39	334.89	22.50	<50	0.8	2	0.7	3	<0.5				172
09/06/0716	357.39	333.99	23.40	<50	<0.5	< 0.5	<0.5	<0.5	<0.5				
03/10/0816	357.39	335.83	21.56	<50	<0.5	<0.5	<0.5	0.8	<0.5				
09/02/0816	357.39	333.73	23.66	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
03/18/0916	357.39	336.46	20.93	<50	<0.5	0.5	<0.5	<0.5	<0.5		-		-
MW-9													
07/06/94 ¹³	361.23	336.08	25.15										
08/26/94	361.23			12,000	1,700	240	410	1,400	()				
09/22/94	361.23	335.49	25.74	10,000	1,900	290	320	1,200				2	
12/08/94	361.23	336.39	24.84	18,000	2,400	780	450	4,600					
03/06/95	361.23	339.40	21.83	6,100	1,400	260	420	1,500					6 <del>1111</del>
06/08/95	361.23	339.94	21.29	14,000	2,100	220	540	1,700					
09/13/95	361.23	337.85	23.65	11,000	1,900	120	490	1,400					
12/16/95	361.23	336.91	24.32	16,000	1,900	<0.5	680	1,200	<2.5				
03/28/96	361.23	340.78	20.45	960	120	5.9	33	70	18				
06/27/96	361.23	338.39	22.84	10,000	1,200	46	340	1,000	66				
09/30/96	361.59	337.47	24.12	15,000	1,300	36	390	950	100				
12/30/96	361.59	338.95	22.64	12,000	1,200	54	470	1,300	100				
03/11/97	361.59	339.50	22.09	13,000	850	37	310	930	63				
06/10/97	361.59	337.81	23.78	9,000	800	7.7	220	360	86				
10/01/97	361.59	338.06	23.53	7,000	770	13	270	540	99				
12/17/97	361.59												
03/29/98	361.59	341.11	20.48	4,900	400	850	160	720	170				
09/12/98	361.59	338.86	22.73	7,400	900	6.6	150	440	68				
03/26/99	361.59	339.34	22.25	3,490	441	10.7	121	135	33.6				
09/29/99	361.59	337.67	23.92	3,820	455	<20	66.5	46.6	<200		<2.0	<2.0	
03/17/00	361.59	340.20	21.39	4,680	510	<10	146	528	<100			-2.0	
08/28/00	361.59	UNABLE TO	LOCATE										
02/25/01	361.59	UNABLE TO	LOCATE										
09/17/01	361.59	336.69	24.90	7,700	540	2.7	89	81	<20				
03/25/02	361.59	339.78	21.81	8,000	730	4.4	120	380	<13				
09/16/02	361.59	336.97	24.62	4,400	420	<5.0	25	29	19				
03/18/03	361.59	339.08	22.51	3,600	510	<2.0	16	10	<10/16				

7007 San Ramon Road

#### Dublin, California

			ala da <u>da a a co</u> ra d			Dublin, Cal							
WELL ID/	TOC*	GWE	DTW	TPH-GRO	В	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9 (cont)													
09/18/03 ¹⁶	361.59	337.34	24.25	5,300	530	0.8	32	29	1				
03/24/04 ¹⁶	361.59	339.35	22.24	4,500	290	0.6	17	31	0.9				
09/16/04 ¹⁶	361.59	336.66	24.93	4,000	400	5	11	10	<1				
03/23/0516	361.59	341.11	20.48	5,100	190	0.6	21	29	1				
09/02/05 ¹⁶	361.59	337.53	24.06	4,700	340	0.5	9	6	0.9				
03/24/06	361.59	INACCESSIE		BLY DESTRO									
DESTROYED	- 2006												
MW-10													
06/27/96	358.02		20.74	<50	<0.5	<0.5	< 0.5	<0.5	<5.0				
09/30/96	358.02	335.99	22.03	<50	< 0.5	<0.5	<0.5	<0.5	<5.0				
12/30/96	358.02	337.46	20.56	<50	< 0.5	<0.5	< 0.5	<0.5	<5.0				
03/11/97	358.02	338.09	19.93	<50	< 0.5	<0.5	<0.5	<0.5	7.0				
06/10/97	358.02	336.37	21.65	<50	< 0.5	<0.5	<0.5	< 0.5	5.3				
10/01/97	358.02	335.50	22.52	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
12/17/97	358.02												
03/29/98	358.02	340.55	17.47	<50	< 0.5	<0.5	< 0.5	< 0.5	4.3				
09/12/98	358.02	337.39	20.63	<50	<0.5	<0.5	<0.5	< 0.5	3.8				
03/26/99	358.02	337.98	20.04	<50	< 0.5	<0.5	<0.5	< 0.5	4.15				
09/29/99	358.02	336.30	21.72	5,020	547	<10	79.6	49.5	<100				
03/17/00	358.02	338.67	19.35	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
08/28/00	358.02	335.88	22.14	<50	< 0.50	<0.50	< 0.50	<0.50	<2.5				
02/25/01	358.02	INACCESSIE	BLE										
09/17/01	358.02	335.41	22.61	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5			-	
03/25/02	358.02	338.64	19.38	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5				
09/16/02	358.02	335.68	22.34	<50	< 0.50	< 0.50	< 0.50	<1.5	3.1				
03/18/03	358.02	338.11	19.91	<50	< 0.50	<0.50	< 0.50	<1.5	<2.5/26				
<b>09/18/03</b> ¹⁶	358.02	336.10	21.92	<50	<0.5	<0.5	<0.5	<0.5	2				-
03/24/04 ¹⁶	358.02	338.18	19.84	<50	<0.5	<0.5	< 0.5	<0.5	0.5				
09/16/04 ¹⁶	358.02	335.39	22.63	<50	<0.5	< 0.5	< 0.5	<0.5	0.9				
03/23/05 ¹⁶	358.02	339.73	18.29	<50	<0.5	<0.5	<0.5	<0.5	0.7				
09/02/05 ¹⁶	358.02	336.30	21.72	<50	<0.5	<0.5	<0.5	<0.5	0.8				
03/24/06	358.02			BLY DESTRO									
DESTROVED													

DESTROYED - 2006

#### 7007 San Ramon Road Dublin, California

						Dublin, Cal	the second second second second second second second second second second second second second second second s						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2													
4/3-4/90	364.19			<50	<0.3	< 0.3	< 0.3	<0.6				<0.02	
05/31/91	364.19	338.68	25.51	100	3.1	4.2	0.7	2.0			<0.5	-0.02	ND ³
05/31/91	364.19									<5000			
06/21/91	364.19	338.06	26.13										
07/17/91	364.19	337.73	26.46										
09/20/91	364.19			68	1.3	1.6	0.8	3.0					
10/04/91	364.19	336.40	27.79										
12/19/91	364.19	336.13	28.06	<50	0.6	1.2	0.8	2.5					
03/19/92	364.19	339.73	24.46	<50	2.5	2.0	1.1	2.4					
06/19/92	364.64	338.54	26.10	<50	<0.5	0.6	0.7	1.2					
09/22/92	364.64	337.04	27.60	200	16	42	6.1	32					
12/18/92	364.64	338.32	26.32	<50	< 0.5	<0.5	<0.5	< 0.5					
03/22/93	364.64	343.29	21.39	<50	< 0.5	<0.5	<0.5	< 0.5					
06/14/93	364.64	339.49	25.15										
07/25/93	364.64	340.12	24.52	<50	<0.5	<0.5	<0.5	<0.5					
09/23/93	364.64	339.01	25.63	72	12	4.0	6.0	8.0					
12/22/93	364.64	338.30	26.34	1,600	25	<0.5	3.8	4.8					
03/21/94	364.64	338.81	25.83	<50	0.7	3.3	< 0.5	1.9					
06/29/94	364.64			52	0.8	0.9	0.8	1.9					
07/06/94	364.64	337.94	26.70										
09/22/94	364.64	337.82	26.82	<50	0.7	<0.5	<0.5	0.6					
12/08/94	364.64	338.36	26.28	<50	<0.5	< 0.5	< 0.5	<0.5					
03/06/95	364.64	341.37	23.27	<50	<0.5	< 0.5	< 0.5	<0.5					
06/08/95	364.64	342.26	22.38	<50	<0.5	< 0.5	< 0.5	<0.5					
09/13/95	364.64	339.95	24.95	<50	<0.5	0.8	< 0.5	0.8					
12/16/95	364.64	338.86	25.78	<50	<0.5	<0.5	< 0.5	<0.5	<2.5				
03/28/96	364.64	343.30	21.34	<50	0.8	5.6	1.0	6.2	<5.0				
06/27/96	364.64	340.65	23.99	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
09/30/96	364.64	339.50	25.14	<50	<0.5	<0.5	< 0.5	<0.5	<5.0				
12/30/96	364.64	341.03	23.61	<50	<0.5	< 0.5	<0.5	<0.5	<5.0				
03/11/97	364.64	341.47	23.17	<50	<0.5	< 0.5	<0.5	<0.5	<5.0				
06/10/97	364.64	339.92	24.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
10/01/97	364.64	338.79	25.85	<50	1.0	1.2	<0.5	<0.5 1.7	<5.0				
12/17/97	364.64	339.66	24.98	<50	<0.5	<0.5	<0.5	<0.5	<2.5				
03/29/98	364.64	344.30	20.34	110	20	12	4.3	<0.3 14	<b>5.4</b>				
		0.1120	20.24		20	14	ч.Ј	14	5.4				

7

7007 San Ramon Road

						Dublin, Cal	ifornia						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fl.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)													
09/12/98	364.64	341.05	23.59	<50	<0.5	<0.5	<0.5	<0.5	<2.5				
03/26/99	364.64	341.30	23.34	<50	<0.5	<0.5	<0.5	< 0.5	<2.0				
09/29/99	364.64	339.63	25.01	<50	< 0.5	<0.5	<0.5	<0.5	<5.0				
NOT MONITC	RED/SAMPI	LED							210				
MW-3													
4/3-4/90	361.92			2,200	36	5.0	6.0	17				< 0.02	
05/31/91	361.92	338.72	23.20	2,200	130	11	31	78			19	-0.02	ND ³
05/31/91	361.92									<5000			
06/21/91	361.92	337.79	24.13										
07/17/91	361.92	337.73	24.59										
09/20/91	361.92	335.94	25.98	2,200	190	6.0	24	32					
12/19/91	361.92	335.68	26.24	640	73	27	17	56					
03/19/92	361.92	339.46	22.46	4,500	1,000	15	91	240					
06/19/92	362.26	337.94	24.32	1,100	89	3.3	9.1	13					
09/22/92	362.26	336.42	25.84	1,400	81	51	15	49					
12/18/92	362.26	337.86	24.40	1,100	2.0	1.1	53	38					
03/22/93	362.26	342.54	19.72	1,600	96	9.0	14	91					
06/14/93	362.26	338.74	23.52										
07/25/93	362.26	339.05	23.21	1,200	19	6.0	2.0	5.0					
09/23/93	362.26	338.24	24.02	1,500	35	< 0.5	5.0	13					
12/22/93	362.26	337.59	24.67	1,500	26	< 0.5	3.9	4.9					
03/21/94	362.26	338.21	24.05	1,400	22	14	1.1	5.3					
06/29/94	362.26			1,700	90	6.1	20	81					
07/06/94	362.26	337.18	25.08										
09/22/94	362.26	337.48	24.78	2,600	72	7.6	110	370					
12/08/94	362.26	337.91	24.35	2,700	32	<0.5	100	140					
03/06/95	362.26	340.79	21.47	1,000	4.0	9.9	8.8	7.7					
06/08/95	362.26	341.27	20.99	1,500	13	3.2	12	17					
09/13/95	362.26	338.75	23.51	2,100	12	79	76	420					
12/16/95	362.26	338.26	24.00	650	<0.5	<0.5	4.4	6.5	12				
03/28/96	362.26	342.36	19.90	1,500	4.3	6.5	60	100	15				
06/27/96	362.26	340.28	21.98	1,200	<0.5	<0.5	1.9	2.0	13				
09/30/96	362.26	338.44	23.82	620	<0.5	<0.5	<0.5	0.8	10				
12/30/96	362.26	339.96	22.30	1,200	0.6	<0.5	0.6	0.7	12				

7007 San Ramon Road

#### Dublin, California

						<u>Dublin, Cali</u>							
WELL ID/	TOC*	GWE	DTW	TPH-GRO	В	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(JL)	(msl)	(JL)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3 (cont)													
03/11/97	362.26	340.75	21.51	1,400	<0.5	3.1	<0.5	0.7	32				
06/10/97	362.26	338.66	23.60	1,400	1.8	4.8	0.8	1.1	18				
10/01/97	362.26	337.53	24.73	1,100	0.6	2.2	1.0	1.3	7.8				
12/17/97	362.26	338.99	23.27	450 ⁷	7.9	1.2	<1.0	1.5	11				
03/29/98	362.26	342.01	20.25	890	0.84	1.4	1.3	0.68	100				
09/12/98	362.26	340.38	21.88	740 ⁷	<0.5	< 0.5	<0.5	< 0.5	5.4				
03/26/99	362.26	339.83	22.43	661	<0.5	34.9	0.848	1.36	5.68				
09/29/99	362.26	338.63	23.63	348	0.975	0.58	<0.5	0.618	<5.0				
NOT MONITO	ORED/SAMPI	LED											
MW-5													
06/21/91	359.95	336.78	23.17	<50	<0.5	<0.5	<0.5	<0.5					
06/21/91	359.95										<0.5		ND ³
07/17/91	359.95	336.27	23.68										
09/20/91	359.95			170 ⁷	0.8	0.9	< 0.5	1.5					
10/04/91	359.95	334.75	25.20										
12/19/91	359.95	334.75	25.20	<50	0.7	0.7	< 0.5	1.4					
03/19/92	359.95	338.74	21.21	<50	< 0.5	<0.5	< 0.5	<0.5					
06/19/92	360.28	336.86	23.42	<50	< 0.5	< 0.5	<0.5	<0.5					
09/22/92	360.28	335.31	24.97	150	13	34	5.0	26					
12/18/92	360.28	336.76	23.52	<50	<0.5	<0.5	<0.5	<0.5					
03/10/93	360.28			<50	<0.5	<0.5	<0.5	< 0.5					
03/22/93	360.28	341.18	19.10										
06/14/93	360.28	337.57	22.71										
07/25/93	360.28	338.29	21.99	<50	<0.5	<0.5	<0.5	<0.5					
09/23/93	360.28	336.80	23.48	<50	3.0	1.0	1.0	2.0					
12/22/93	360.28	336.30	23.98	<50	<0.5	<0.5	< 0.5	< 0.5					
03/21/94	360.28	337.10	23.18	<50	2.4	1.4	< 0.5	2.0					
06/29/94	360.28			<50	<0.5	<0.5	< 0.5	1.0					
07/06/94	360.28	335.87	24.41										
09/22/94	360.28	335.50	24.78	<50	<0.5	<0.5	<0.5	<0.5					
12/08/94	360.28	336.86	23.42	<50	< 0.5	<0.5	<0.5	<0.5					
03/06/95	360.28	339.63	20.65	67	1.9	2.5	4.7	19					
06/08/95	360.28	339.52	20.76	<50	<0.5	<0.5	<0.5	<0.5					
09/13/95	360.28	337.12	23.16	<50	<0.5	<0.5	<0.5	<0.5					
				20		-0.5	·v.J	-0.5					

Chevron Service Station #9-5542

#### 7007 San Ramon Road Dublin, California

WELL ID/	TOC*	GWE	DTW	TPH-GRO	В	T	E	x	МТВЕ	TOG	1,2-DCA	EDB	HVOCs
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-5 (cont)										<u></u>	<u></u>	<u></u>	<u> </u>
12/16/95	360.28	INACCESSIB	LE -PAVED	OVER									
03/28/96	360.28	INACCESSIB											
06/27/96	360.28	INACCESSIB	LE -PAVED	OVER									
09/30/96	360.28	INACCESSIB	LE -PAVED	OVER									
12/30/96	360.28	INACCESSIB	LE -PAVEL	OVER									
03/11/97	360.28	INACCESSIB	LE -PAVED	OVER						-2			
06/10/97	360.28	INACCESSIB	LE -PAVED	OVER									
10/01/97	360.28	INACCESSIB	LE -PAVED	OVER									
12/17/97	360.28	DISCONTINU	JED										
03/26/99	360.28	INACCESSIB	LE -PAVED	OVER									
NOT MONITOR	RED/SAMF	PLED											
MW-6													
06/21/91	360.22	336.67	23.55	3,700	50	2.6	150	340					
06/21/91	360.22										< 0.5		ND ³
07/17/91	360.22	336.22	24.00				**						
09/20/91	360.22			3,200	28	<0.5	140	100					
10/04/91	360.22	334.93	25.29										
12/19/91	360.22	334.88	25.34	380	2.7	4.0	15	10					
03/19/92	360.22	338.17	22.05	3,400	57	4.5	330	360					
06/19/92	360.58	337.06	23.52	980	11	4.2	57	38					
09/22/92	360.58	334.98	25.60	1,100	22	41	77	58					
12/18/92	360.58	336.40	24.18	1,900	3.2	1.3	58	47					
03/10/93	360.58			1,400	30	9.0	8.0	22					
03/22/93	360.58	341.22	19.36										
06/14/93	360.58	337.10	23.48										
07/25/93	360.58	338.28	22.30	83 ¹²	<0.5	<0.5	<0.5	<0.5					
09/23/93	360.58	337.38	23.20	200	6.0	2.0	3.0	3.0					
12/22/93	360.58	336.67	23.91	130	<0.5	1.8	1.2	1.5					
03/21/94	360.58	337.31	23.27	290	3.0	10	1.6	4.7					
06/29/94	360.58			300	0.6	1.2	2.4	4.6					
07/06/94	360.58	336.31	24.27										
09/22/94	360.58	335.74	24.84	2,300	58	3.6	100	290					
12/08/94	360.58	336.73	23.85	<50	<0.5	<0.5	<0.5	0.9					
03/06/95	360.58	339.67	20.91	360	2.0	3.6	0.9	2.3					

### Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-5542

### 7007 San Ramon Road

						Dublin, Cali	fornia						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6 (cont)													
06/08/95	360.58	340.40	20.18	230	< 0.5	< 0.5	1.0	1.6					
09/13/95	360.58	337.05	23.53	88	< 0.5	< 0.5	< 0.5	1.1					
12/16/95	360.58	337.20	23.38	<50	< 0.5	<0.5	<0.5	<0.5	7.3				
03/28/96	360.58	341.21	19.37	130	<0.5	< 0.5	<0.5	<0.5	9.2				
06/27/96	360.58	338.92	21.66	<50	< 0.5	< 0.5	<0.5	< 0.5	5.7				
09/30/96	360.58	337.52	23.06	50	<0.5	<0.5	<0.5	<0.5	6.3				
12/30/96	360.58	339.12	21.46	90	< 0.5	<0.5	<0.5	<0.5	5.5				
03/11/97	360.58	339.67	20.91	80	<0.5	<0.5	<0.5	< 0.5	<5.0				
06/10/97	360.58	337.93	22.65	<50	1.6	2.3	< 0.5	1.2	<5.0				
10/01/97	360.58	336.95	23.63	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
12/17/97	360.58	337.81	22.77	92	0.98	<0.5	0.72	1.6	2.7				
03/29/98	360.58	342.24	18.34	95 ⁷	< 0.5	<0.5	<0.5	< 0.5	3.0				
09/12/98	360.58	338.90	21.68	<50	< 0.5	<0.5	< 0.5	<0.5	<2.5				
03/26/99	360.58	339.42	21.16	<50	<0.5	<0.5	<0.5	<0.5	<2.0				
09/29/99	360.58	337.73	22.85	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
DESTROYED	- 2006												
						3.C							
<b>MW-7</b>													
06/21/91	360.63	337.18	23.45	<50	<0.5	<0.5	< 0.5	< 0.5					
06/21/91	360.63										<0.5		ND ³
07/17/91	360.63	336.73	23.90										
09/20/91	360.63			69	4.4	3.3	1.2	3.9					
10/04/91	360.63	335.60	25.03										
12/19/91	360.63	335.53	25.10	<50	0.9	2.8	1.7	5.9					
03/19/92	360.63	337.89	22.74	<50	1.1	0.6	0.9	2.5					
06/19/92	360.99	INACCESSIE	BLE										
09/22/92	360.99	INACCESSIE	BLE										
12/18/92	360.99	INACCESSIE	BLE										
03/22/93	360.99	INACCESSIE	BLE										
06/14/93	360.99	INACCESSIB	BLE										
07/25/93	360.99	INACCESSIB	BLE										
12/23/93 ¹	361.68	338.01	23.67	<50	0.9	0.5	<0.5	<0.5					
03/21/94	361.68	337.55	24.13	<50	0.5	1.1	<0.5	1.4					
06/29/94	361.68			<50	<0.5	<0.5	<0.5	<0.5					
07/06/94	361.68	335.23	26.45										

7007 San Ramon Road

#### Dublin California

F						Dublin, Cal							
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)													
09/22/94	361.68	334.28	27.40	11,000	1,900	230	310	970					
12/08/94	361.68	335.45	26.23	<50	<0.5	<0.5	< 0.5	<0.5					
03/06/95	361.68	338.49	23.19	<50	<0.5	<0.5	<0.5	<0.5					
06/08/95	361.68	339.54	22.14	<50	<0.5	<0.5	< 0.5	<0.5					
09/13/95	361.68	337.13	24.55	<50	< 0.5	<0.5	<0.5	<0.5					
12/16/95	361.68	335.94	25.74	<50	<0.5	<0.5	<0.5	<0.5	<2.5				
03/28/96	361.68	339.96	21.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0				
06/27/96	361.68	338.18	23.50	<50	<0.5	<0.5	<0.5	< 0.5	<5.0				
09/30/96	361.68	336.48	25.20	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0				
12/30/96	361.68	337.80	23.88	<50	<0.5	< 0.5	<0.5	<0.5	<5.0				
03/11/97	361.68	338.69	22.99	<50	<0.5	<0.5	< 0.5	< 0.5	<5.0				
06/10/97	361.68	336.98	24.70	<50	<0.5	<0.5	< 0.5	<0.5	<5.0				
10/01/97	361.68	335.98	25.70	<50	<0.5	<0.5	< 0.5	<0.5	<5.0				
DESTROYED						010	0.0	-010	-510				
<b>MW-8</b>													
12/12/91	354.89		22.54	<50	< 0.5	<0.5	<0.5	<0.5					
06/19/92	354.89	334.42	20.47	<50	1.2	1.4	0.5	2.9					
09/22/92	354.89	325.09	29.80	180	17	42	6.0	31					
12/18/92	354.89	333.71	21.18	<50	<0.5	<0.5	<0.5	<0.5					
03/10/93	354.89			<50	0.8	2.0	<0.5	2.0					
03/22/93	354.89	337.98	16.91										
06/14/93	354.89	330.59	24.30										
07/25/93	354.89	331.12	23.77	<50	<0.5	<0.5	<0.5	<0.5					
09/23/93	354.89	334.49	20.40	<50	1.0	0.9	0.7	1.0					
12/22/93	354.89	333.97	20.92	<50	<0.5	<0.5	<0.5	<0.5					
03/21/94	354.89	334.70	20.19	<50	0.9	1.5	< 0.5	2.0					
06/29/94	354.89			<50	<0.5	<0.5	< 0.5	0.8					
07/06/94	354.89	333.84	21.05										
09/22/94	354.89	333.05	21.84	9,600	1,600	180	260	840					
10/14/94	354.89	333.05	21.84	<50	<0.5	<0.5	< 0.5	<0.5					
12/08/94	354.89	334.18	20.71	<50	<0.5	<0.5	<0.5	<0.5					
03/06/95	354.89	336.78	18.11	<50	<0.5	<0.5	<0.5	<0.5					
06/08/95	354.89	337.10	17.79	<50	<0.5	<0.5	<0.5	<0.5 <0.5					
09/13/95	354.89	335.09	19.80	<50	<0.5	<0.5	<0.5	<0.5					
· · • •			. 2.00	-20	-0.5	-0.5	-0.5	~0.5					

#### Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-5542

### 7007 San Ramon Road

						Dublin, Cal	ifornia						
WELL ID/	TOC*	GWE	DTW	TPH-GRO	B	Т	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
DATE	(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8 (cont)													
12/16/95	354.89	334.43	20.46	<50	<0.5	<0.5	<0.5	<0.5	<2.5				
03/28/96	354.89	339.47	15.42	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
06/27/96	354.89	335.81	19.08	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
09/30/96	360.58	340.28	20.30	<50	<0.5	< 0.5	< 0.5	0.6	<5.0				
12/30/96	360.58	341.55	19.03	<50	<0.5	<0.5	<0.5	< 0.5	<5.0				
03/11/97	360.58	342.17	18.41	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
06/10/97	360.58	340.67	19.91	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
10/01/97	360.58	339.87	20.71	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0				
DESTROYED							010	010	.5.0				
BAILER BLA	NK												
05/31/91				<50	<0.5	<0.5	<0.5	<0.5					
06/21/91				<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5					
09/20/91				<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5					
12/19/91				<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.3 <0.5					
03/19/92				<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.3 <0.5					
06/19/92				<50 <50	<0.5 <0.5	<0.3 <0.5	<0.3 <0.5	<0.5 <0.5					
09/22/92		·		<50 <50	<0.5 <0.5	<0.3 <0.5	<0.5 <0.5						
12/21/92				<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.8					
03/10/93				<50	<0.3 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5					
05/10/75				<30	<0.5	<0.5	<0.5	<0.5					
TRIP BLANK													
03/22/93				<50	<0.5	<0.5	<0.5	0.6					
07/25/93				<50	<0.5	<0.5	<0.5	<0.5					
09/23/93				<50	<0.5	<0.5	<0.5	<0.5					
12/22/93				<50	<0.5	<0.5	<0.5	<0.5					
03/21/94				<50	<0.5	<0.5	< 0.5	<0.5					
05/31/91				<50	<0.5	<0.5	<0.5	<0.5					
06/21/91				<50	<0.5	<0.5	<0.5	< 0.5					
09/20/91				<50	<0.5	<0.5	<0.5	< 0.5					
12/19/91				<50	<0.5	<0.5	<0.5	< 0.5					
03/19/92				<50	<0.5	<0.5	<0.5	< 0.5					
06/19/92				<50	<0.5	< 0.5	< 0.5	< 0.5					
09/22/92				92 ¹⁴	<0.5	<0.5	<0.5	<0.5					
12/18/92				<50	<0.5	< 0.5	< 0.5	<0.5					
								.0.0					

7007 San Ramon Road

#### Dublin, California

WELL ID/	TOC*	GWE	DTW			<u>Dublin, Cal</u> i							
DATE	10C (fl.)	GWE (msl)		TPH-GRO	В	T	E	X	MTBE	TOG	1,2-DCA	EDB	HVOCs
		( <i>msy</i> )	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TRIP BLANK	(cont)												
03/10/93				<50	<0.5	<0.5	<0.5	<0.5					
03/22/93				<50	<0.5	< 0.5	<0.5	< 0.5					
07/25/93				<50	<0.5	<0.5	<0.5	< 0.5					
09/23/93				<50	<0.5	< 0.5	<0.5	< 0.5					
12/22/93				<50	< 0.5	< 0.5	<0.5	< 0.5					
03/21/94				<50	< 0.5	<0.5	<0.5	<0.5					
06/29/94				<50	<0.5	<0.5	<0.5	< 0.5					
07/01/94				<50	<0.5	<0.5	<0.5	< 0.5					
07/06/94				<50	<0.5	<0.5	< 0.5	< 0.5					
09/22/94				<50	<0.5	< 0.5	< 0.5	< 0.5					
12/08/94				<50	< 0.5	<0.5	<0.5	< 0.5					
03/06/95				<50	< 0.5	< 0.5	<0.5	< 0.5					
06/08/95				<50	< 0.5	< 0.5	<0.5	< 0.5					
09/13/95				<50	< 0.5	<0.5	<0.5	< 0.5					
12/16/95				<50	<0.5	<0.5	< 0.5	< 0.5	<2.5				
03/28/96				<50	<0.5	<0.5	<0.5	< 0.5	<5.0				
06/27/96				<50	<0.5	<0.5	< 0.5	< 0.5	<5.0				
09/30/96				<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
12/30/96				<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0				
03/11/97				<50	<0.5	<0.5	< 0.5	< 0.5	<5.0				
06/10/97				<50	<0.5	< 0.5	< 0.5	<0.5	<5.0				
10/01/97				<50	< 0.5	< 0.5	<0.5	<0.5	<5.0				
12/17/97				<50	<0.5	< 0.5	<0.5	<0.5	<2.5				
03/29/98				<50	< 0.5	< 0.5	<0.5	<0.5	<2.5				
09/12/98				<50	< 0.5	<0.5	<0.5	<0.5	<2.5				
03/26/99				<50	<0.5	< 0.5	<0.5	< 0.5	<2.0				
09/29/99				<50	<0.5	< 0.5	<0.5	< 0.5	<5.0				
08/28/00				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5				
02/25/01				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5				
09/17/01				<50	< 0.50	< 0.50	<0.50	<1.5	<2.5 <2.5				
03/25/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5				
09/16/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5				
03/18/03				<50	<0.50	<0.50	<0.50	<1.5	<2.5				
09/18/03 ¹⁶				<50	<0.50	<0.50	<0.5	<0.5	<0.5				
03/24/04 ¹⁶				<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5				
		-		~50	~0.5	<b>~0.</b> 5	~0.5	~0.5	-0.5				

7007 San Ramon Road

#### Dublin, California

TOC*	GWE	DTW	TPH-GRO	<b>B</b>	Т	E	x	MTBE	TOG	1,2-DCA	EDB	HVOCs
(fi.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
cont)												L19_79_000
			<50	<0.5	<0.5	<0.5	<0.5	<0.5				
	S. <del></del> .		<50	<0.5								
			<50	<0.5								
			<50	<0.5								
	1. <b></b> /		<50									
								0.0				<u> </u>
			<50	<0.5	<0.5	<0.5	<0.5	<0.5		10 <b></b> 5		
				<0.5								
				<0.5								
			<50	<0.5	<0.5	<0.5	<0.5	<0.5				
	(ft.) cont)          -	(ft.) (msl) cont)           	(fL)     (msl)     (fL)       cont)	(ft.)         (msl)         (ft.)         (μg/L)           cont)           <50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

#### **EXPLANATIONS:**

Groundwater monitoring and laboratory analytical results prior to August 28, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing	B = Benzene	EDB = Ethylene dibromide
(ft.) = Feet	T = Toluene	HVOCs = Halogenated Volatile Organic Compounds
GWE = Groundwater Elevation	E = Ethylbenzene	= Not Measured/Not Analyzed
(msl) = Mean sea level	X = Xylenes	(D) = Duplicate
DTW = Depth to Water	MTBE = Methyl tertiary butyl ether	$(\mu g/L) =$ Micrograms per liter
TPH = Total Petroleum Hydrocarbons	TOG = Total Oil and Grease	(ppb) = Parts per billion
GRO = Gasoline Range Organics	1,2-DCA = $1,2$ -Dichloroethane	QA = Quality Assurance/Trip Blank

* TOC elevations for MW-1, MW-4 and MW-11 were surveyed on January 3, 2007, by Virgil Chaves Land Surveying. The benchmark for this survey was a bronze disk established by the USGS, located under a manhole cover in the left turn lane in front of Mervyn's on Dublin Blvd. Benchmark Elevation = 347.622 feet (NGVD 29).

¹ TOC elevation surveyed by Ron Miller, PE #15816, on January 13, 1994.

² Monitoring well part of remediation system.

³ All other HVOCs were not detected at detection limits ranging from 0.5 to 1 ppb.

⁴ Sample analyzed for Volatile Organic Compounds (VOCs) by EPA method 8260. MTBE was detected at 10.1 ppb, and all other VOCs were ND ranging from <2.0 to <1000 ppb.</p>

⁵ Oxygenate compounds were not detected.

⁶ MTBE by EPA Method 8260.

- ⁷ Chromatogram pattern indicated an unidentified hydrocarbon.
- ⁸ Chloroform and Bromodichloromethane were detected at 1.3 and 0.9 ppb, respectively. Other HVOCs were not detected at detection limits ranging from 0.5 to 1 ppb.
- ⁹ TPH-GRO and BTEX results are estimated concentrations. Due to laboratory error, sample was analyzed past the recommended holding time. (GTEL).

¹⁰ Laboratory report indicates uncategorized compound is not included in gasoline concentration.

Sampled analyzed for VOCs by EPA method 8260, all other results were ND ranging from <40 to <20,000 ppb.

¹² Uncategorized compound not included in gasoline total.

- ¹³ Monitoring well surveyed by Ron Miller, PE #15816, on July 5, 1994.
- ¹⁴ Gasoline range concentration reported. The chromatogram shows only a single peak in the gasoline range.
- ¹⁵ Laboratory report indicates gasoline C6-C12.
- ¹⁶ BTEX and MTBE by EPA Method 8260.
- ¹⁷ Well development attempted; well dewatered.

## Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-5542

7007 San Ramon Road

Dublin, California											
WELL ID	DATE	ETHANOL	ТВА	MTBE	DIPE	ETBE	TAME				
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)				
MW-1	03/18/03	<50	<5	<0.5	<0.5	<0.5	<0.5				
	09/18/03	<200	24 24	<2							
	03/24/04	<50		<0.5		. <b></b> (					
	09/16/04	<130		<1							
	03/23/05	<50		<0.5							
	09/02/05	<50	<u>.</u>	<0.5							
	03/24/06	<50	÷.	<0.5		3 <b></b>					
	08/24/06	<50		<0.5							
	03/01/07	<500		<5							
	09/06/07	<130		<1							
	03/10/08	<500		<5							
	09/02/08	<250		<3		5 <b>44</b> 7	( <b></b> )				
	03/18/09	<250		<3		_	1. <del></del> 1				
MW-4	09/18/03	<50		1							
	03/24/04	<100		1	<del></del>	1 <del>22</del> -1					
	09/16/04	<50	<del></del>	0.7							
	03/23/05	<50	<del></del>	1							
	09/02/05	<100		<1							
	03/24/06	<50		0.9							
	08/24/06	<250		<3							
	03/01/07	<50		<0.5							
	09/06/07	<50		<0.5							
	03/10/08	<50		<0.5	2000	5 <b></b>	5 <b></b> -				
	09/02/08	<50		<0.5							
	03/18/09	<50	-	<0.5		-	-				
MW-11	12/20/06	-50									
IVI VV - I I	12/29/06	<50	0.552	<0.5			3 <b></b> 1				
	03/01/07	<50	. <del></del>	<0.5		0140					
	09/06/07	<50	2. <del></del> 2	<0.5							
	03/10/08	<50	Y <b>22</b> 7	<0.5		-	3 <b></b> 2				
	09/02/08	<50		<0.5							
	03/18/09	<50	() <del></del> ) (	<0.5	-						

### Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-5542

7007 San Ramon Road

vell id	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2	03/18/03	<100	<10	1	<1	<1	<1
4W-9	03/18/03	<50	<5	1	<0.5	<0.5	<0.5
	09/18/03	<50	8 <b>-7-2</b> 93	1			
	03/24/04	<50	i. <del></del> 10	0.9		122	
	09/16/04	<100	13 <u>-111</u> 70	<1			5 <b></b>
	03/23/05	<50	<50 1				
	09/02/05	<50		0.9			
	03/24/06	INACCESSIBLE/POSS	IBLY DESTROYED				
	DESTROYED - 20	006					
IW-10	03/18/03	<50	<5	2	<0.5	<0.5	<0.5
	09/18/03	<50		2			
	03/24/04	<50		0.5			
	09/16/04	<50	3 <del>57</del> /	0.9			
	03/23/05	<50		0.7	-	22	
	09/02/05	<50		0.8			
	03/24/06	INACCESSIBLE/POSS	IBLY DESTROYED				
	DESTROYED - 20	006					

# Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-5542 7007 San Ramon Road Dublin, California

#### **EXPLANATIONS:**

#### TBA = t-Butyl alcohol MTBE = Methyl Tertiary Butyl Ether DIPE = di-Isopropyl ether ETBE = Ethyl t-butyl ether TAME = t-Amyl methyl ether $(\mu g/L)$ = Micrograms per liter (D) = Duplicate -- = Not Analyzed

#### **ANALYTICAL METHOD:**

EPA Method 8260 for Oxygenate Compounds

#### STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.



#### WELL MONITORING/SAMPLING **FIELD DATA SHEET**

Client/Facility#:	Chevron #9-5542	Job Number:	385290	
Site Address:	7007 San Ramon Valley	Rd Event Date:	3/18/09	 (inclusive)
City:	Dublin, CA	Sampler:	KE	
Well ID	MW- i	Date Monitored:	3/18/09	
Well Diameter Total Depth	2/2 in. 47, 51 ft.	Volume 3/4"= 0.0 Factor (VF) 4"= 0.6	2 1"= 0.04 2"= 0.17 3"= 0.3	
Depth to Water		if water column is less then 0.50	D ft.	
Depth to Water	w/ 80% Recharge [(Height of Water (		Estimated Purge Volume: <u>48</u>	gal. (2400 hrs)
Purge Equipment:		ng Equipment:	Time Completed:	(2400 hrs)
Disposable Bailer Stainless Steel Baile		ble Bailer	Depth to Water:	
Stack Pump	Discrete	Bailer	Hydrocarbon Thickness: Visual Confirmation/Description	tt
Suction Pump	Peristal	· · · · · · · · · · · · · · · · · · ·	Skimmer / Absorbant Sock (cir	
Grundfos Peristaltic Pump		idder Pump	Amt Removed from Skimmer:	
QED Bladder Pump	Other		Amt Removed from Well:	gal
Other:			Water Removed: Product Transferred to:	
Start Time (purge	): 0900.	Weather Conditions:	Foggy	
Sample Time/Da	te: 0925 1318109	Water Color: Cleav	Odor NN Stypre	1
Approx. Flow Rat		Sediment Description:	Clear	/
Did well de-water	? If yes, Time:	Volume:	gal. DTW @ Sampling:	7.96
Time (2400 hr.)		noductivity Temperature	D.O. ORP (mg/L) (mV)	
0.905	15 6.90	1176 17.8		
0910	20030 6.83	12.04 18.7		8 1
0416	<u>48444</u> 10.710	217 19.0		

	LABORATORY INFORMATION												
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES								
MW- (	C x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/ ETHANOL (8260)								
					1. I I I I I I I I I I I I I I I I I I I								
					>								

#### COMMENTS:

Add/Replaced Bolt: _____



#### WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Chevron		Job Number:	385290	-
	Ramon Valley Rd	Event Date:	3/18/09	(inclusive)
City: <b>Dublin, C</b>	Α	Sampler:	<u>KE</u>	_
Well Diameter2/4Total Depth35.93Depth to Water22.5113.42	in.     Volur       ft.     Factor       ft.     Check if water colunt	or (VF) 4"= 0.6 nn is less then 0.50 x3 case volume = + DTW]: 25.19	56         5"= 1.02         6"= 1.50         12"= 5.8           0 ft.         Estimated Purge Volume:         6.8           Time Started:	gal. (2400 hrs) ft ft ft ft ft ft ft ft ft
Start Time (purge): Sample Time/Date: Approx. Flow Rate: Did well de-water? 1000000000000000000000000000000000000	gpm. Sediment Do	escription:	Foggy         Odor:       N         Odor:       Odor:         D.O.       ORP         (mg/L)       (mV)	x 83
	LABORATORY IN		•	
SAMPLE ID (#) CONTAINE		LABORATORY	ANALYSES	
MW- 4 63 X VO3	vial YES HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260) ETHANOL (8260)	

			ETHANOL (8260)
· · · · · · · · · · · · · · · · · · ·		 	

#### COMMENTS:

-

Ø

Add/Replaced Bolt:



#### WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #9-5542		Job Number:		
Site Address:	7007 San Ramon	Valley Rd	Event Date:	2/18/09	(inclusive)
City:	Dublin, CA		Sampler:	KE	······································
Well ID Well Diameter Total Depth Depth to Water	MW- 11 2 4 in. 55.45 ft. 2043 ft. 34.52 xVF w/ 80% Recharge [(Heig)	Volum Factor Check if water colum	Date Monitored:           10         3/4"= 0.02           (VF)         4"= 0.60           n is less then 0.50           x3 case volume =	5 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 17. Time Started:	gal. (2400 hrs) ft ft tion: ft tion: ft tion: ft
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.)	b): $1015$ te: $1225 / 3 18$ te: 2 gpm.	Sediment De Time: <u>1019</u> Volur Conductivity	<u>Cleav</u>	D.O. ORP	ar 56.75
1018 1021 1624	$\begin{array}{c} 6 \\ 7.1 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	(µmhos/cm (µS) 4 849	20,4	(mg/L) (mV)	
		LABORATORY IN	FORMATION		
SAMPLE ID MW-](	(#) CONTAINER REFI	RIG. PRESERV. TYPE	LABORATORY LANCASTER	ANALYSES TPH-GRO(8015)/BTEX+MTBE(820 ETHANOL (8260)	60)/
COMMENTS:	Slow slow	N recho	v qe	reaited 2	h-3
Add/Replaced L		Add/Replaced Plug:	.S.(	Add/Replaced Bolt:	

Che	evron Calil	for	nia	Re	gi	on	A	าส	lvsi	s R	e	JUE	əst	·/C	Chain of	Cu	stody
Lancaster Laboratories Ø3189						209	•		For Lar	caste	r Lai	orato	ries u	199 01			
	CRA MTIF	Proje	ct#	6tH-1	196			Ал	alyses	s Rec	ues	ed			(map# )	134	2030
Facility #:	T0600100354		Matri	ix				Pr	eserv			es			Preservatin	-	-
Site Address: 7007 SAN RAMON ROAD, DUBLIN,	CA				ł	H			- <del>  .</del>	┝╌╢	Ь	+			H=HCI T	= Thios	ulfate
Chevron PM: ^{MTI} Lead Consultant ^C RAKJ Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568				$T^{\dagger}$			Cleanup				2					= NaO	
Consultant/Office: G-R, Inc., 6747 Sierra Court, Suit	e J, Dublin, CA 945	568	elda e	2	ners		8				0				J value reporting		
Consultant Prj. Mgr., Deanna L. Harding (deanna@	grinc.com)		Potable	ž	Containers	<b>12</b> 48021	SHCB SHCB				2				Must meet lower possible for 826	st detecti	on limits
Consultant Phone #:925-551-7555	: 925-551-7899			┦┃	9				pou	Method	er.				8021 MTBE Confin	-	Unds
sampler:hyle Erbland		0			be	8260 D GRO	HO O		Oxygenates .ead Method	P We	5				Confirm highest		60
		losit.		₹	<b>P</b>	+ MTBE 015 MOD	5 MO	scan	xyger ad	dLea	76				Confirm all hits t	oy 8260	
Sample Identification Date		Composite	Soil Water		Total Number	BTEX + MTBE TPH 8015 MOD	TPH 8015 MOD DHO	8260 full scan	Total Lead	Dissolved Lead	LT T				Runoxy's	on highe	st hit
CM 3/18/			<u> </u>	카	턁			-8	₽	đ	+	-		┝╌╏	Run oxy's		5
mu-1	0925 X		X		6		$\frac{1}{1}$		+-		★	+	+	┝─┨	Comments / Rei	marks	
	0835 X		X		6	XX			-1-1		X			$\left  \right $			
mu-11 V	1225 X		X		6	××			i.	Ē	~						
					4		$\left  \right $		_								
		$\left  \right $		++			╉╌┨			~							
		┝─┢		╂╌╂╸	$\rightarrow$		┽╌┦		╶┼╌┨			+-					
				+			$\uparrow$			-	-	+	$\vdash$				
							$\square$					+					
				╁╌╂			┼╌┼										
				┼╌┼			┟╴╽		-								
Turnaround Time Requested (TAT) (please circle)	Relinquisper	194°, 1	10	<u> </u>				ate	Time	Re	ceive	d by				Date	Time ,
(STD. TAT) 72 hour 48 hour	Dellasished	hl	-2L						Time 1429	10	<u>.</u>	A.	les	en	- 1814A	ngy	426
24 hour 4 day 5 day	Relinquished	la	an			18	MAR	ate 9	Time	Re	ceive FE	d by:	y v			Date	Time
Data Package Options (please circle if required)	Relinquished	by: C				-12.5	_	ate	Time		ceive			·		Date	Time
C Summary Type I - Full  Type VI (Raw Data)  Coelt Deliverable not neede EDF/EDD  Relinquished by				al Carri	ier:					16		byl		1			
WIP (RWQCB)	UPS	F			ther_					( ^{ne}	Jaivel	lih	11	K			Time 1410
Disk	Temperature	Upon	Receipt		h	0-31	T		C°	Cut	story	Seals		)	Yeqs No	wur	

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.



**Analysis Report** 

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

SRECEIVED MAR 27 2009 GETTLER-RYAN INC. GENIERAL CONTRACTORS GENERAL CONTRACTORS 916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 1136805. Samples arrived at the laboratory on Thursday, March 19, 2009. The PO# for this group is 95542 and the release number is MTI.

**Client Description** QA-T-090318 NA Water MW-1-W-090318 Grab Water MW-4-W-090318 Grab Water MW-11-W-090318 Grab Water

ELECTRONIC Gettler-Ryan, Inc. COPY TO

Lancaster Labs Number 5626165 5626166 5626167 5626168

Attn: Cheryl Hansen





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Barbon & Reedy

Barbara F. Reedy Senior Specialist





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • WWW.lancasterlabs.com

Page 1 of 1

#### Lancaster Laboratories Sample No. WW5626165

QA-T-090318 NA Water Facility# 95542 Job# 385290 MTI# 61H-1969 GRD 7007 San Ramon-Dublin T0600100354 QA Collected:03/18/2009

Submitted: 03/19/2009 09:10 Reported: 03/27/2009 at 13:07 Discard: 04/27/2009

#### Chevron c/o CRA Suite 110

Account Number: 12099

Group No. 1136805

2000 Opportunity Drive Roseville CA 95678

#### DUBQA

CAT

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	ug/l	1
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/1	1
05407	Toluene	108-88-3	N.D.	0.5	ug/1	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	uq/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

COR L				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	03/24/2009 17:30	Carrie E Youtzy	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	03/24/2009 06:31	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/24/2009 17:30	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2009 06:31	Michael A Ziegler	1





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • WWW.lancasterlabs.com

Page 1 of 1

#### Lancaster Laboratories Sample No. WW5626166

 MW-1-W-090318
 Grab
 Water

 Facility#
 95542
 Job#
 385290
 MTI#
 61H-1969
 GRD

 7007
 San
 Ramon-Dublin
 T0600100354
 MW-1

 Collected:
 03/18/2009
 09:25
 by KE

Submitted: 03/19/2009 09:10 Reported: 03/27/2009 at 13:07 Discard: 04/27/2009 Account Number: 12099

Group No. 1136805

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### DUBM1

~~

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO N. CA water C6-C12	n.a.	35,000	1,000	ug/l	20
06067	BTEX, MTBE, ETOH					
01587	Ethanol	64-17-5	N.D.	250	ug/l	5
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	3	ug/l	5
05401	Benzene	71-43-2	1,200	25	ug/l	50
05407	Toluene	108-88-3	6,400	25	ug/l	50
05415	Ethylbenzene	100-41-4	1,400	25	ug/l	50
06310	Xylene (Total)	1330-20-7	5,800	25	ug/l	50

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	03/24/2009 18:31	Carrie E Youtzy	20
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	03/24/2009 03:49	Michael A Ziegler	5
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	03/24/2009 04:14	Michael A Ziegler	50
01146	GC VOA Water Prep	SW-846 5030B	1	03/24/2009 18:31	Carrie E Youtzy	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2009 03:49	Michael A Ziegler	5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	03/24/2009 04:14	Michael A Ziegler	50





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fax: 717-656-2681 + WWW.lancasterlabs.com

Page 1 of 1

### Lancaster Laboratories Sample No. WW5626167

 MW-4-W-090318
 Grab
 Water

 Facility#
 95542
 Job#
 385290
 MTI#
 61H-1969
 GRD

 7007
 San
 Ramon-Dublin
 T0600100354
 MW-4

 Collected:
 03/18/2009
 08:35
 by KE

Submitted: 03/19/2009 09:10 Reported: 03/27/2009 at 13:07 Discard: 04/27/2009 Group No. 1136805

Account Number: 12099

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

#### DUBM4

CAT

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO N. CA water C6-C12	n.a.	3,900	50	ug/l	1
06067	BTEX, MTBE, ETOH					
01587	Ethanol	64-17-5	N.D.	50	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	46	0.5	ug/l	1
05407	Toluene	108-88-3	4	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	190	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	450	0.5	ug/l	1

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAI				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	03/24/2009 19:01	Carrie E Youtzy	1
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	03/24/2009 04:38	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/24/2009 19:01	Carrie E Youtzy	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2009 04:38	Michael A Ziegler	1



**Analysis Report** 

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • WWW.lancasterlabs.com

Page 1 of 1

#### Lancaster Laboratories Sample No. WW5626168 Group No. 1136805 MW-11-W-090318 Grab Water Facility# 95542 Job# 385290 MTI# 61H-1969 GRD 7007 San Ramon-Dublin T0600100354 MW-11 Collected:03/18/2009 12:25 by KE Account Number: 12099

Submitted: 03/19/2009 09:10 Reported: 03/27/2009 at 13:07 Discard: 04/27/2009

Chevron c/o CRA Suite 110 2000 Opportunity Drive

Roseville CA 95678

DUB11

<b>CAT</b> <b>No.</b> 01728	<b>Analysis Name</b> TPH-GRO N. CA water C6-C12	CAS Number n.a.	As Received Result N.D.	As Received Method Detection Limit 50	<b>Units</b> ug/l	Dilution Factor 1
06067	BTEX, MTBE, ETOH				5.	-
01587 02010 05401 05407 05415 06310	Ethanol Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	64-17-5 1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	N.D. N.D. N.D. 0.5 N.D. N.D.	50 0.5 0.5 0.5 0.5 0.5	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	1 1 1 1 1

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			01120.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	03/23/2009 23:57	Marie D John	1
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	03/24/2009 05:28	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/23/2009 23:57	Marie D John	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2009 05:28	Michael A Ziegler	1





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

#### Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/27/09 at 01:07 PM

Group Number: 1136805

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

#### Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD Limits	<u>RPD</u>	RPD Max
Batch number: 09082A15A TPH-GRO N. CA water C6-C12	Sample N.D.	number(s): 50.	5626168 ug/l	127	127	75-135	0	30
Batch number: 09083A15A TPH-GRO N. CA water C6-C12	Sample N.D.	number(s): 50.	5626165-56 ug/l	26167 127	118	75-135	7	30
Batch number: 2090823AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample : N.D. N.D. N.D. N.D. N.D. N.D.	number(s): 0.5 0.5 0.5 0.5 0.5	5626165 ug/l ug/l ug/l ug/l ug/l	101 98 107 106 104		78-117 80-116 80-115 80-113 81-114		
Batch number: Z090824AA Ethanol Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample n N.D. N.D. N.D. N.D. N.D. N.D. N.D.	number(s): 50. 0.5 0.5 0.5 0.5 0.5	5626166-56 ug/l ug/l ug/l ug/l ug/l ug/l	26168 97 100 98 105 104 102		40-158 78-117 80-116 80-115 80-113 81-114		

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 09082A15A TPH-GRO N. CA water C6-C12	Sample 118	number(s)	: 5626168 63-154	UNSPK:	P6261	71			
Batch number: 09083A15A TPH-GRO N. CA water C6-C12	Sample 145	number(s)	: 5626165 63-154	-562616	7 UNSPI	K: P626404			
Batch number: Z090823AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample 109 107 116 115 113	number(s) 109 107 114 114 113	: 5626165 72-126 80-126 80-125 77-125 79-125	UNSPK: 1 0 2 1 0	P62504 30 30 30 30 30 30	40			
Batch number: Z090824AA Ethanol	Sample 82	number(s) 93	: 5626166 37-164	-562616 12	8 UNSPF 30	(: P626269			

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





91

78-113

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

#### Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/27/09 at 01:07 PM

Group Number: 1136805

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Methyl Tertiary Butyl Ether	MS <u>%REC</u> 103	MSD <u>%REC</u> 101	MS/MSD Limits 72-126	<u>RPD</u> 1	<b>RPD</b> <u>MAX</u> 30	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP RPD	Dup RPD <u>Max</u>
Benzene	106	104	80-126	2	30				
Toluene	113	109	80-125	4	30				
Ethylbenzene	113	110	77-125	3	30				
Xylene (Total)	109	106	79-125	3	30				

#### Surrogate Quality Control

98

80-113

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 09082A15A Trifluorotoluene-F

5626168	102			
Blank	111			
LCS	110			
LCSD	111			
MS	114			
Limits:	63-135	······································	<u> </u>	
Analysis 1	Name: TPH-GRO N. CA water	C6-C12		
Batch num	per: 09083A15A			
	Trifluorotoluene-F			
5626165	110	·····		
5626166	114			
5626167	135			
Blank	111			
LCS	115			
LCSD	111			
MS	97			
Limits:	63-135			
Analysis N	Jame: BTEX+MTBE by 8260B			
Batch num	er: Z090823AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5626165	89	89	99	88
Blank	86	86	99	87
LCS	86	88	98	91
MS	85	86	98	92

Analysis Name: BTEX, MTBE, ETOH

80-116

*- Outside of specification

86

MSD

Limits:

(1) The result for one or both determinations was less than five times the LOQ.

86

77-113

(2) The unspiked result was more than four times the spike added.





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • Www.lancasterlabs.com

Page 3 of 3

#### Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/27/09 at 01:07 PM Group Number: 1136805

Surrogate Quality Control

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5626166	92	92	111	100
5626167	91	91	112	100
5626168	93	94	110	96
Blank	91	94	109	95
LCS	92	95	108	98
MS	92	94	108	99
MSD	90	95	108	98
Limits:	80-116	77-113	80-113	78-113

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

#### Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g uq	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s)	BMQL MPN CP Units NTU F Ib. kg mg	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

**ppm** parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

**Dry weight** basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

#### **Organic Qualifiers**

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

#### **Inorganic Qualifiers**

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
  - * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX F

STANDARD FIELD PROCEDURES

#### STANDARD FIELD PROCEDURES FOR HAND-AUGER SOIL BORINGS

This document describes Conestoga-Rovers & Associates standard field methods for drilling and sampling soil borings using a hand-auger. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

#### Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality and to submit samples for chemical analysis.

#### Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Professional Geologist (PG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color,
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

#### Soil Boring and Sampling

Hand-auger borings are typically drilled using a hand-held bucket auger to remove soil to the desired sampling depth. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the augered hole. The vertical location of each soil sample is determined using a tape measure. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Augering and sampling equipment is steam-cleaned prior to drilling and between borings to prevent crosscontamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPAapproved detergent.

#### Sample Storage, Handling and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

#### **Field Screening**

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

#### Water Sampling

Water samples, if they are collected from the boring, are collected from the open borehole using bailers. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

#### **Duplicates and Blanks**

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

#### Grouting

The borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

#### Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

I:\misc\Templates\SOPs\Hand Auger Borings.doc

### STANDARD FIELD PROCEDURES FOR SOIL VAPOR PROBE INSTALLATION AND SAMPLING

#### **VAPOR POINT METHODS**

This document describes Conestoga-Rovers & Associates' standard field methods for soil vapor sampling. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

#### Objectives

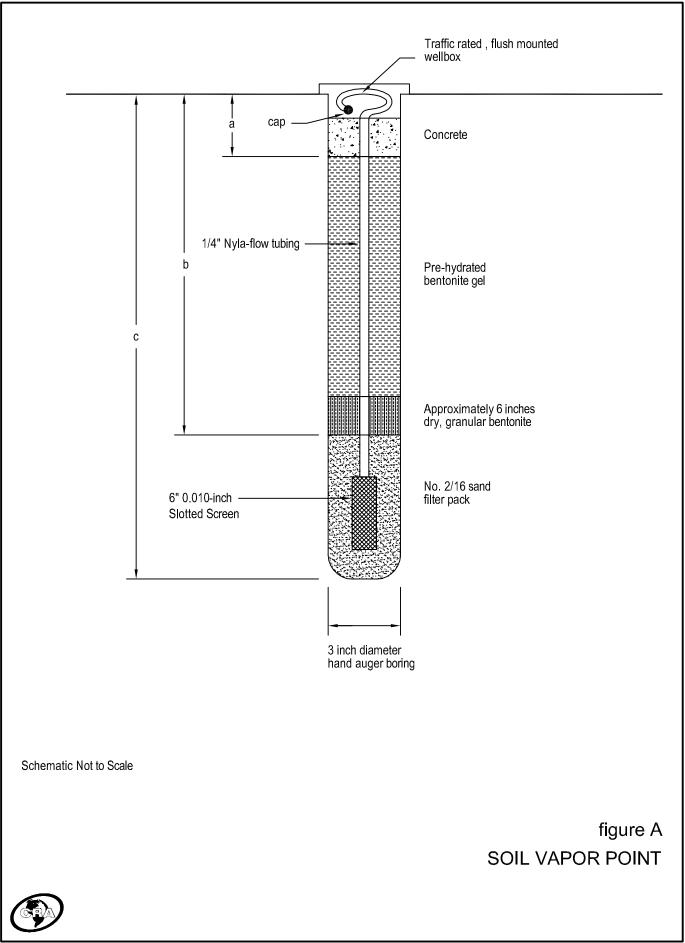
Soil vapor samples are collected and analyzed to assess whether vapor-phase subsurface contaminants pose a threat to human health or the environment.

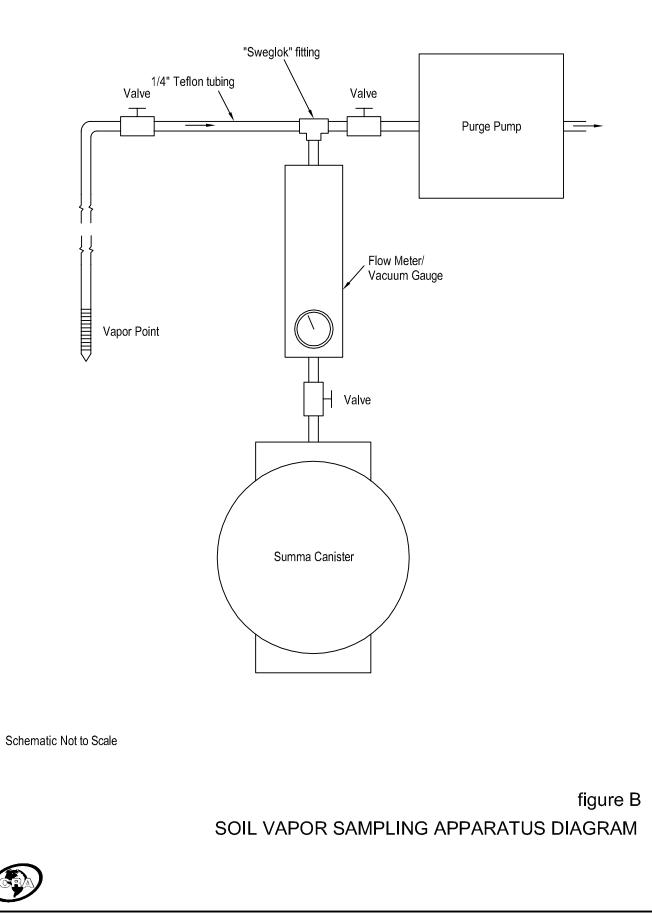
#### **Shallow Soil Vapor Point Installation**

The shallow soil vapor point method for soil vapor sampling utilizes a hand auger or drill rig to advance a boring for the installation of a soil vapor sampling point. Once the boring is hand augered to the final depth, a probe, connected with Swagelok fittings to nylon or Teflon tubing of ¼-inch outer-diameter, is placed within 12-inches of number 2/16 filter sand (Figure A). A 12-inch layer of dry granular bentonite is placed on top of the filter pack. Pre-hydrated granular bentonite is then poured to fill the borehole. The tube is coiled and placed within a wellbox finished flush to the surface. Soil vapor samples will be collected no sooner than 48 hours after installation of the soil vapor points to allow adequate time for representative soil vapors to accumulate. Soil vapor sample collection will not be scheduled until after a minimum of three consecutive precipitation-free days and irrigation onsite has ceased. Figure B shows the soil vapor sampling apparatus. A measured volume of air will be purged from the tubing using a different Summa purge canister. Immediately after purging, soil vapor samples will be collected using the appropriate size Summa canister with attached flow regulator and sediment filter. The soil vapor points will be preserved until they are no longer needed for risk evaluation purposes. At that time, they will be destroyed by extracting the tubing, hand augering to remove the sand and bentonite, and backfilling the boring with neat cement. The boring will be patched with asphalt or concrete, as appropriate.

#### **Sampling of Soil Vapor Points**

Samples will be collected using a SUMMATM canister connected to sampling tubing at each vapor point. Prior to collecting soil vapor samples, the initial vacuum of the canisters is measured and recorded on the chain-of-custody. The vacuum of the SUMMATM canister is used to draw the soil vapor through the flow controller until a negative pressure of approximately 5-inches of Hg is observed on the vacuum gauge and recorded on


the chain-of-custody. The flow controllers should be set to 100-200 ml/minute. Field duplicates should be collected for every day of sampling and/or for every 10 samples collected.


Prior to sample collection, stagnant air in the sampling apparatus should be removed by purging approximately 3 purge volumes. The purge volume is defined as the amount of air within the probe and tubing.

In accordance with the DTSC Advisory-Active Soil Gas Investigations guidance document, dated January 28, 2003, leak testing needs to be performed during sampling. Helium is recommended, although shaving cream is acceptable.

#### Vapor Sample Storage, Handling, and Transport

Samples are stored and transported under chain-of-custody to a state-certified analytic laboratory. Samples should never be cooled due to the possibility of condensation within the canister.





611783-799(PRES001)GN-WA001 OCT 16/2007