RECEIVED

October 13, 2009

10:48 am, Oct 19, 2009

Alameda County Environmental Health

MONITORING WELL INSTALLATION & QUATERLY SITE MONITORING REPORT (THIRD QUARTER, 2009)

245 8th Street Oakland, California

AEI Project No. 116907 ACHCSA RO#00000202

Prepared For:

Vic's Automotive 245 8th Street Oakland, California 94607

Prepared By:

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, California 94597 (925) 944-2899

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION & BACKGROUND	1
3.0	GEOLOGY AND HYDROGEOLOGY	4
4.0	MONITORING WELL INSTALLATION	4
4.1 4.2 4.3 4.4 4.5 4.6	Permits and Clearances Health & Safety Meeting Monitoring Well Construction Drilling, Soil Description, Sampling, and Analyses Equipment Decontamination, Waste Storage, & Disposal Monitoring Well Development	4 5 5 6 6
5.0	HVDPE TECHNOLOGY AND PROCESS DESCRIPTION	6
5.1 5.2	Technology Overview Site, System, & Process Description	6 6
6.0	SUMMARY OF MONITORING ACTIVITIES	8
6.16.26.36.4	Quarterly Groundwater Monitoring Quarterly Soil Gas Monitoring for Vapor Intrusion Evaluation HVDPE System Process Monitoring 6.3.1 Routine Monitoring and Data Collection 6.3.2 Influent & Effluent Vapor Monitoring 6.3.3 Influent & Effluent Water Monitoring 6.3.4 Soil Gas Composition & Vacuum Influence Monitoring HVDPE System Operations & Maintenance 6.4.1 Routine Maintenance 6.4.3 System Modifications	8 9 9 .10 .11 .11 .11 .12 .12
7.0	RESULTS & CONCLUSIONS	13
7.1 7.2 7.3 7.4	Soil Sample Analytical DataApparent LNAPL Thickness, Groundwater Elevations, and Hydraulic GradientGroundwater Sample Analytical DataHVDPE System Process Monitoring7.4.1 Influent & Effluent Vapor Sample Analytical Data7.4.2 Influent & Effluent Water Sample Analytical Data7.4.3 Influent Well Vapor and Water Flow Rates7.4.4 Mass Removal Rates7.4.5 Soil Gas Composition and Vacuum Influence	.13 .13 .14 .15 .15 .17 .17 .18 .18 .19
8.0	SUMMARY & PLANNED ACTIVITIES	20
9.0	REFERENCES	23
10.	DREPORT LIMITATIONS AND SIGNATURES	24

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 SYSTEM LAYOUT PLAN
- FIGURE 4 GROUNDWATER ELEVATION CONTOURS (08/21/09)
- FIGURE 5 GROUNDWATER SAMPLE ANALYTICAL DATA (08/21/09)
- FIGURE 6 EXTRACTION WELL INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 7 COMBINED TPH-G INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 8 HYDROCARBON MASS REMOVAL RATES BASED ON LAB DATA
- FIGURE 9 CUMULATIVE HYDROCARBON MASS REMOVED BASED ON LAB DATA

TABLES

- TABLE 1
 GROUNDWATER ELEVATION DATA SUMMARY
- TABLE 2GROUNDWATER FLOW SUMMARY
- TABLE 3GROUNDWATER ANALYTICAL DATA SUMMARY
- TABLE 4SOIL ANALYTICAL DATA SUMMARY
- TABLE 5SOIL GAS ANALYTICAL DATA SUMMARY
- TABLE 6 HVDPE VAPOR ANALYTICAL & FIELD SCREENING DATA SUMMARY
- TABLE 7
 GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA SUMMARY
- TABLE 8 SOIL GAS FIELD DATA SCREENING SUMMARY: TVH, CH4, O2, CO2
- TABLE 9
 Wellhead Vacuum & Drop Tube Depth Data Summary
- TABLE 10
 HVDPE Performance & Mass Removal Data Summary
- TABLE 11
 THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 12
 AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 13 ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 14
 HVDPE PROCESS MONITORING SCHEDULE

APPENDICES

- APPENDIX A MONITORING WELL FIELD SAMPLING FORMS
- APPENDIX B SOIL GAS FIELD SAMPLING FORMS
- APPENDIX C LABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION
- APPENDIX D WELL INSTALLATION, ENCROACHMENT, & EXCAVATION PERMITS
- APPENDIX E BORING & WELL CONSTRUCTION LOGS
- APPENDIX F UPDATED MONITORING WELL SURVEY
- APPENDIX G CURRENT & PROPOSED GROUNDWATER MONITORING SCHEDULE

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Mr. Victor Lum, owner and operator of Vic's Auto automotive repair and fuel service station located at 245 8th Street in the City of Oakland, Alameda County, California (Figure 1). AEI has been retained by Mr. Lum to provide environmental engineering and consulting services related to the release of gasoline fuel hydrocarbons from the former underground storage tank (UST) and dispensing system on the property. The ongoing investigation and mitigation of the release is being performed under the direction of the Alameda County Health Care Services Agency (ACHCSA). This report has been prepared to document the field activities and results of groundwater monitoring for the Third Quarter, 2009 as well as the high vacuum dual phase extraction (HVDPE) system processing monitoring and operations and maintenance (O&M) activities for the months of July, August, and September. This report also documents and summarizes the methods and results of the installation, development, and first round of sampling of wells MW-14, MW-15, and MW-16. Finally, this report presents and summarizes the results of a rebound evaluation after the HVDPE system was shutdown for approximately three (3) months.

The HVDPE system was installed and started up in June of 2007. The main purposes for installing and operating a HVDPE system onsite as interim corrective action include:

- Hydrocarbon mass removal by performing continuous HVDPE using existing monitoring/extraction wells for the removal, recovery, and treatment of light non-aqueous phase liquid (LNAPL), soil gas, and groundwater from the vadose zone, capillary fringe, and shallow saturated zone in accordance with state and local air and water quality permit requirements.
- Performing continuous HVDPE at the source and along the southwestern property boundary to the mitigate the potential for vapor intrusion into nearby residences situated above and in close proximity to the LNAPL and groundwater plumes by maintaining a low negative pressure (i.e., high vacuum) in the subsurface relative to the building foundations.

2.0 SITE DESCRIPTION & BACKGROUND

The subject property (hereafter referred to as the "site" or "property") is located in a mixed commercial and residential area of Oakland. The site is a lot on the south corner of Alice Street and 8th Street, and is currently developed with a gasoline service station and automotive repair facility (Figure 2). The property covers approximately 9,375 square feet and is improved with an approximately 1,200 square foot building located centrally on the property with two bays used for automotive repair, two restrooms, and a cashier's office. The current UST hold and the dispenser island are located to the north of the building, along 8th Street. The former UST hold was located to the south of the building, along Alice Street. The remainder of the property is paved with asphalt and used for parking and staging vehicles for repairs.

• Between June of 1993 and August of 1994, AEI removed seven (7) underground storage tanks (USTs) from the property. The tanks consisted of four (4) 1,000-gallon gasoline tanks

located in the sidewalk along Alice Street, two (2) 6,000-gallon gasoline tanks and one (1) 250-gallon waste oil tank. Impacted soil was removed from beneath the former tank area. Groundwater was encountered beneath the former 6,000-gallon tanks. Light non-aqueous phase liquid (LNAPL) was observed on the water table beneath the southern tank. The excavated soil was transported to an appropriate disposal facility and the excavation was backfilled with clean fill material. A new tank system was installed just west of the dispenser island.

- In July of 1995, two (2) groundwater monitoring wells (MW-1 and MW-2) were installed onsite. Total petroleum hydrocarbons as gasoline (TPH-g) and benzene were detected in MW-2 at concentrations up to 210,000 µg/L and 720 µg/L, respectively during the first two monitoring episodes. Light non-aqueous phase liquid (LNAPL) or free phase gasoline was discovered in MW-1. The apparent LNAPL thickness in MW-1 ranged from 1.20 to 4.39 feet between December 1995 and March 1996.
- In August of 1996, AEI advanced three (3) soil borings (i.e., SB-1 through SB-3) onsite. TPH-g and benzene were detected in the groundwater samples from these borings at concentrations ranging from 120,000 to 140,000 μ g/L, and from 12,000 to 19,000 μ g/L, respectively. Methyl tertiary-butyl ether (MTBE) was also detected in all three samples at concentrations up to 27,000 μ g/L. Although free phase product was not observed in the field, qualitative laboratory observations indicated an immiscible sheen was present in the samples.
- Manual bailing and pumping of LNAPL from MW-1 occurred intermittently from 1997 to 1998.
- In May of 2001, two (2) additional groundwater monitoring wells (MW-3 and MW-4) were installed onsite. In June of 2001, a free product recovery system was installed in MW-1. The free product recovery system removed several hundred gallons of LNAPL between 2001 and 2003.
- In April of 2003, AEI advanced twelve (12) additional soil borings (SB-4 to SB-15) onsite and offsite for the collection of soil, shallow groundwater, and soil vapor samples to further characterize the magnitude and lateral extent of the release.
- In January of 2005, AEI installed six (6) additional monitoring/extraction wells (MW-5, MW-6 and MW-7 were installed onsite and wells MW-10 to MW-12 were installed offsite at the 708 Alice Street property). Wells MW-8 and MW-9 were proposed for installation in the parking lane along 7th and Alice Streets; however, due to difficult insurance wording requirements imposed by the City of Oakland, these wells were not installed until March of 2008.
- From July 11 to July 27, 2005, a 16-day HVDPE pilot test was performed on wells MW-1, MW-2, MW-5, MW-6, and MW-7. Combined vapor influent flow rates ranged from approximately 170 to 190 standard cubic feet per minute (scfm) under a sustained vacuum of

16 to 17 inches of mercury (in-Hg). The average water flow rate was approximately 4.1 gallons per minute (gpm). A total of 80,740 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer under a short-term, limited volume groundwater discharge permit from the East Bay Municipal Utilities District (EBMUD). Significant drawdown and pressure (i.e., vacuum) response was observed in the vadose and saturated zone monitoring points. Approximately 5 pounds per day (lbs/day) of dissolved phase and 697 lbs/day of vapor phase hydrocarbons were recovered during the test. A total of 10,719 pounds or 1,716 gallons of gasoline was removed during this test. Based on the encouraging results of this pilot test, AEI recommended interim corrective action using HVDPE for 12 to 18 months using fixed equipment. Please refer to AEI's "HVDPE Event Report", dated December 14, 2005, for more information.

- In March of 2006, the ACHSA concurred with the implementation of HVDPE using fixed equipment and requested a system design, operations and maintenance, and monitoring plan. In this letter, the ACHSA also requested soil vapor sampling to evaluate the potential for vapor intrusion due to the elevated concentrations of fuel hydrocarbons detected in the soil and groundwater onsite and offsite.
- In May of 2006, a HVDPE system design, operations and maintenance, and monitoring plan and a separate soil gas investigation work plan were submitted to ACHSA for review and comment. Please refer to AEI's "High Vacuum Dual Phase Extraction System Design, Operations, and Maintenance Plan," dated May 24, 2006 and "Soil Gas Investigation Work Plan", dated May 12, 2006, for more information.
- In November of 2006, trenching and installation of the conveyance piping for HVDPE system was conducted. The system completion and delivery was scheduled for 1st Quarter 2007; however, the system was delivered in April 2007. The remaining infrastructure, such as the rotary phase converter, equipment, fence, and wellhead connections were installed in May of 2007 and the system was started up on June 26, 2007.
- On June 11, 2007, two (2) 55-gallon drums, or approximately 100 gallons of water containing about 50% LNAPL, was removed from MW-1 and MW-6 by operating the HVDPE system in product skimming mode.
- In November of 2007, additional HVDPE conveyance piping was installed above grade behind the onsite building to the rear of the property and the system was expanded to include monitoring/extraction wells MW-10, MW-11, and MW-12.
- In March of 2008, wells (MW-8, MW-9 and MW-13) were installed. Elevated concentrations of TPH-g, BTEX, and MTBE were detected in samples collected from MW-9. Low to none-detectable concentrations of TPH-g, BTEX, and MTBE were detected in MW-8 and MW-13. Elevated concentrations of MTBE were detected in MW-13.
- Between August 21 and 22, 2008, soil gas probes GP-3 and GP-4 were decommissioned by physical removal and three (3) horizontal HVDPE conveyance piping laterals were installed

to MW-10, 11, and 12 so that these wells could continue to be used for dual phase extraction while the 708 Alice Street property was being developed.

3.0 GEOLOGY AND HYDROGEOLOGY

The elevation of the site is approximately 27 to 29 feet above mean sea level (amsl). The site is flat; however, the topography of the area slopes gently to the southwest. The site is located between Lake Merritt and the Oakland Inner Harbor channel, approximately one-half mile from each. The near surface sediments are mapped as Holocene and Pleistocene Merritt Sand (Qms), which are further described as "fine-grained, well-sorted, well-drained, Aeolian sand deposits" (Helley and Graymer, 1997 and Graymer, 2000). Depth to the Franciscan Formation basement underlying the unconsolidated deposits is approximately 400 feet (Norfleet Consultants, 1998).

Based on the logs of soil borings advanced on and offsite, the native soils generally consist of fine to medium grained sands with silt and clay present to at least 28 feet bgs, the deepest explored at the site. Typically, silty and clayey fine grained sand have been encountered to depths of 15 to 18 feet bgs. This is underlain by poorly graded, clean to slightly clayey and silty fine to medium sand. Both sand bodies represent a single hydro-geologic system. Sediments have been relatively uniform throughout the investigation area.

Groundwater depths have typically ranged from 13 to 17 feet bgs, corresponding to elevation of approximately 10 to 14 feet above mean sea level (msl). Annual groundwater levels fluctuate by approximately 3 to 4 feet. Groundwater has consistently flowed to the south, southeast, or southwest with a hydraulic gradient of approximately 0.010 ft/ft. Recent water levels have been affected by the groundwater extraction activities.

4.0 MONITORING WELL INSTALLATION

Three (3) monitoring wells (MW-14, MW-15, and MW-16) were installed to delineate the dissolved fuel hydrocarbon plume down-gradient of MW-8, MW-9 and MW-13. MW-15 and MW-16 were installed in a parking lane on the southwest side of 7th Street approximately 60-feet apart. MW-14 was installed in the parking lane along Alice Street, approximately 80-feet southwest of MW-8. The well locations are shown on Figure 2.

4.1 Permits and Clearances

Prior to construction, well installation permits (W2009-0648, W2009-0649, and W2009-0650) were obtained from the Alameda County Public Works Agency (ACPWA) and an encroachment permit (ENMI08241) and two (2) excavation permits (X0900880 & X0900881) were obtained from the City of Oakland. At least three (3) days prior to drilling, the work area was clearly identified with white marking paint and Underground Service Alert North (USAN) was notified to identify any subsurface utilities in the work area. Because the borings were cleared with a hand-auger to 5-feet bgs, a private utility locator was not contracted.

The well installation, encroachment, and excavation permits are included in Appendix D.

4.2 Health & Safety Meeting

Prior to drilling, a site safety meeting was held at a designated command post near the working area to review the Health and Safety Plan (HASP). Working hazards and emergency procedures were discussed at this meeting, including an explanation of the hazards of the known or suspected chemicals of interest as well as the location and route to the nearest hospital. All site personnel were in modified Level D personal protection equipment. A work area or "exclusion zone" was established with orange cones and/or barricades and warning tape to delineate the zone where hard hats and steel-toed shoes must be worn and where unauthorized personnel were not allowed. A site safety plan conforming to Part 1910.120 (i) (2) of 29 Code of Federal Regulations (CFR) was available on site at all times during the project.

4.3 Monitoring Well Construction

The wells were installed by Resonant Sonic International (RSI) Drilling (C-57 #802334) of Woodland, California under the direct supervision of an AEI project engineer and professional geologist. The borings for the wells were drilled using a truck-mounted direct-push/auger combo drilling rig. First, the borings were continuously sampled using direct-push technology to a depth of 24 to 25-feet bgs. Then, the borings were over-drilled with 8-inch nominal diameter hollow stem augers to install the monitoring wells to a depth of 22-feet bgs. The wells were constructed with standard 2-inch diameter schedule 40 polyvinyl chloride (PVC) well screen (0.010 slotted) and flush threaded riser. The wells were installed to a total depth of 22-feet bgs with the screen interval extending from 12 to 22 feet bgs, which is identical to MW-8 through MW-13. The annular space was filled with #2/12 Monterey sand to approximately 1-foot above the top of the well screen. At least 2-feet of hydrated bentonite chips were installed above the sandpack and the remainder of the borehole was sealed to approximately 0.5-feet bgs with Type II – IV Portland cement grout. The tops of the well casings were secured with expanding well caps. The wells were later labeled and tagged by an ACPWA inspector as required.

4.4 Drilling, Soil Description, Sampling, and Analyses

A standard 2.25-inch outside diameter Macro-Core® soil sampler was used to collect continuous soil core samples. The Macro-Core® was lined with PVC sample liners and driven in 4-foot pushes until reaching the target depth of approximately 24-feet bgs. After each push, the Macro-Core® was retrieved, core barrel disassembled, and PVC liner containing the sample was removed and transferred to the onsite AEI project engineer. The continuous soil core samples were described according to standard geological methods and the Unified Soil Classification System (USCS) using the "visual-manual procedure" (ASTM D2488) by noting color, moisture content, texture, and grain-size and distribution. Soil samples were collected and retained at a minimum of 4-foot intervals for field screening and possible chemical analyses. Select soil samples retained for possible analytical testing were sealed with Teflon® tape and plastic end caps, labeled with unique sample identifiers, entered on a chain of custody record, and placed in a pre-chilled cooler on wet ice pending transportation to the laboratory. Duplicate or soil sub-samples were placed into a durable 0.5-liter zipper locking bags. After allowing at least 30 minute for the samples to

equilibrate, the headspace was screened for the presence of organic vapors with a photo-ionization detector. Select samples were transported on the same day of collection under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644). Only soil samples from approximately 16-feet bgs (from the capillary zone) and 24-feet bgs (from the saturated zone) were submitted for analyses and all other samples were placed on hold at the laboratory. Selected soil samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

The boring logs and well construction diagrams are included in Appendix E. The soil analytical data is summarized in Table 4.

4.5 Equipment Decontamination, Waste Storage, & Disposal

The probe rods, Macro-Core® soil samplers, and hollow-stem augers were scrubbed and cleaned with an Alconox[®] detergent and rinsed with clean water between borings. Soil cuttings and other investigation-derived wastes (IDW) were stored in 55-gallon DOT-approved drums (sealed and labeled) pending the results of the sample analyses and arrangements for off-site disposal. The IDWs were handled and disposed in accordance with all applicable local, state, and federal regulations.

4.6 Monitoring Well Development

On August 3, 2009, the monitoring wells (MW-14, MW-15, and MW-16) were developed by surging and over-pumping to remove accumulated fines from inside the well casing and the surrounding sandpack.

5.0 HVDPE TECHNOLOGY AND PROCESS DESCRIPTION

5.1 Technology Overview

HVDPE is a proven and effective technology for a wide range of soil types and subsurface conditions. HVDPE is often also referred to as dual phase extraction (DPE), multi-phase extraction (MPE), two-phase extraction (TPE), and sometimes "bioslurping". There are several variations of this technology, but the majority of HVDPE systems use a water-sealed liquid-ring vacuum pump to simultaneously extract and recover LNAPL, groundwater, and soil gas through a single 1-inch diameter adjustable drop tube (also called a "stinger") sealed within a 2 to 4-inch diameter extraction well. The application of high vacuum enhances soil vapor extraction (SVE) by lowering the water table and creating dewatered zones and exposing previously saturated soils to airflow. The airflow through the subsurface supplies oxygen needed to enhance in-situ aerobic biodegradation of fuel hydrocarbons, which is analogous to bioventing technology.

5.2 Site, System, & Process Description

Light non-aqueous phase liquid (LNAPL), soil gas and groundwater are simultaneously extracted through a single 1-inch diameter drop tube currently installed in eight (8) monitoring/extracting

wells (MW-1, MW-2, MW-5 to MW-7, and MW-10 to MW-12) using two (2) 15 horsepower water-sealed liquid ring pumps piped in parallel. These pumps can generate flows up to 140 cubic feet per minute (cfm) each (i.e., 280 cfm combined capacity) and high vacuums of up to 28 in-Hg, but normally operate in the range of 18 to 22 in-Hg. The monitoring wellheads were modified for dual phase extraction by installing a 1-inch PVC ambient bleed air valve, two-hole cast iron wellhead pump seal, stinger and casing vacuum gauges, and 1-inch clear, flexible PVC stinger. The manifold and conveyance piping leading up to the manifold were constructed out of schedule 80 PVC. Recovered LNAPL, soil gas, and groundwater are separated by a knock-out tank. Because the LNAPL and other gasoline fuel hydrocarbons dissolved in the groundwater are volatilized under high vacuum (i.e., >20 in-Hg), an oil-water separator is not used. A progressive cavity pump transfers the groundwater from the knock-out tank to the top of the low-profile air stripping unit. Groundwater trickles-down through small holes in the air stripper trays, where nearly 99% of the remaining volatile fuel hydrocarbons are stripped from the groundwater. Groundwater is pumped from the air stripper reservoir to a single 1,000-pound activated carbon absorber, where its further treated and polished and then discharged to the onsite sanitary sewer under a wastewater discharge permit from the East Bay Municipal Utilities District (EBMUD).

The soil gas and off-gas from the air stripping unit is routed to a thermal/catalytic oxidizer operating in catalytic mode for direct thermal destruction. The catalytic oxidizer operates at 700 °F with a minimum destruction efficiency of 99% as required by permit. The treated off-gas is discharge through a stack located 15 feet above grade under a Bay Area Air Quality Management District (BAAQMD) air quality permit.

A Dwyer[®] Instruments (Model No. DS-300) averaging pitot tube combined with a dual-scale Magnehelic[®] differential pressure gauge is used to measure the well velocity and total velocity. The well velocity and total velocity are multiplied by the cross sectional area of the pipe (i.e., 0.0491 ft² for a 3-inch pipe) to obtain the actual flow rate. The difference between the well flow rate and total flow rate is the air stripper flow rate. All flow rates are corrected to standard temperature and pressure (i.e., 70°F and 1 atm or 29.92 in-Hg) using formulas provided by Dwyer[®]. The groundwater recovery volume is measured with a Neptune (Model T-10) cold water flow totalizer and recorded along with the equipment hour meter reading during each O&M visit. The flow totalizer and hour meter readings are used to estimate the average daily flow rate between sampling dates.

The field point names for the vapor influent sample ports are the monitoring well identification followed by the letter "S" (i.e., MW-1S, MW-2S, MW-5S to MW-7S, and MW-10S to MW-12S). These sample ports are labeled and located along a common a common manifold inside the fenced equipment enclosure. Control valves are installed on each line to regulate the vacuum and flow. Clear sections of pipe are also installed on each line to observe the flow patterns and process streams.

The field point names for the vapor influent samples ports before dilution air, after dilution air, and from the air stripping unit and the stack gas effluent sample port are: PRED, POST, AS, and STACK.

The field point names for the water influent sample ports for the combined influent, after the air stripper, after the first carbon absorber, and after the last carbon absorber at the effluent: INF, POST-AS, POST-C1, and EFF.

The four (4) nested soil gas probes used for collecting soil gas samples and vacuum measurements are as follows: GP-1-5', GP-1-10', GP-2-5', GP-2-10', GP-3-5', GP-3-10', to GP-4-5' and GP-4-10'. It should be noted that GP-3-5', GP-3-10', GP-4-5', and GP-4-10' were decommissioned between August 21 and 22, 2009 because the 708 Alice Street property was being developed.

The location of the sample ports for the extraction wells are shown on Figure 3. The soil gas probe locations are shown on both Figures 2 and 3.

6.0 SUMMARY OF MONITORING ACTIVITIES

6.1 Quarterly Groundwater Monitoring

The HVDPE system was shutdown on May 19, 2008 due to low hydrocarbon recovery and for a rebound evaluation approximately three (3) months prior to this groundwater monitoring event. On August 21, 2009, the water levels were measured and groundwater samples were collected from all the monitoring / dual phase extraction wells, except for MW-10 through MW-12. Measuring the depth to water and sampling MW-10 through MW-12 is no longer feasible because the wellheads were removed and the wells were buried beneath a new residential construction in August of 2008. The well locations are shown on Figure 2.

The well caps and stingers, where applicable, were removed and depths from the top of the well casings were measured with an electronic water level indicator prior to sampling. Wells with historic free product (i.e., MW-1, MW-6, and MW-7) were check with an oil-water interface meter. Wells with no measurable free product were purged of at least three well volumes of water with a submersible purge pump and sampled using disposable clear plastic bailers.

Temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured while purging the wells. The turbidity was visually noted. Once the temperature, pH, and specific conductivity stabilized after three consecutive readings, and following the recovery of the water level to at least 90% of the static level, a water sample was collected.

The groundwater samples were collected with disposable plastic bailers into 40-millileter (mL) volatile organic analysis (VOA) vials and capped so that no head space or air bubbles were present within the sample containers. Samples were entered onto a chain of custody record and placed in a pre-chilled cooler on wet ice pending transportation to the laboratory. The samples were delivered on the day of collection under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification #1644). A total of thirteen (13) groundwater samples were

analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B. In addition, due to the elevated reporting limits for MTBE by EPA Method SW8021B, the samples collected from MW-2, MW-5, MW-7, and MW-9 were tested for MTBE only by EPA Method SW8260B.

6.2 Quarterly Soil Gas Monitoring for Vapor Intrusion Evaluation

Per concurrence from the ACHCSA in a letter dated October 3, 2008, quarterly soil gas sampling has been temporarily suspended during the operation of the HVDPE system.

6.3 HVDPE System Process Monitoring

6.3.1 Routine Monitoring and Data Collection

An AEI project engineer monitored the system using the remote monitoring system via email daily from the office. The system was also monitored and checked by a senior field technician weekly to biweekly and as needed to respond to system shutdowns. A Daily Field Report and/or O&M Field Log were filled out during each site visit. Routine O&M visits ranged from approximately 2 to 4 hours per visit, depending upon the activities performed.

The following data was recorded on the Daily Field Report and/or O&M Field Log during each site visit:

- <u>HVDPE System</u>: current hour meter reading, PG&E meter reading (kilowatt-hours), system runtime (hours), system inlet vacuum (in-Hg), vacuum at the inlets of both liquid ring pumps (in-Hg), well velocity (fpm) and calculated well flow rate (cfm) by multiplying the well velocity by the cross-sectional area (ft^2) of a 3-inch pipe, control valve initial and final positioning (% open), and cooling fan(s) status (on/off).
- <u>HVDPE Wells:</u> the stinger vacuum (in-Hg), casing vacuum (in-Hg), and drop tube depth (ft toc) data were collected monthly or as needed.
- <u>Thermal/Catalytic Oxidizer</u>: propane level (%), preheat controller temperature (°F), exhaust controller temperature (°F), total velocity (fpm) and calculated total flow rate (cfm) by multiplying the total velocity and by the cross-sectional area (ft^2) of a 3-inch pipe.
- <u>Air Stripper</u>: variable frequency drive setting (Hz), outlet velocity (fpm) and calculated outlet flow rate (cfm) by subtracting the well flow rate from the total flow rate, air stripper tray backpressure (in-H2O), control valve positioning (% open).
- <u>Activated Carbon Absorbers</u>: inlet pressure (psig), outlet pressure (psig), flow totalizer reading (gallons), and whether or not the bag filter was change and/or carbon absorber backwashed.

6.3.2 Influent & Effluent Vapor Monitoring

The HVDPE system was restarted on August 31, 2009 and influent and effluent vapor samples were collected on August 31, September 10, 17, and 25, and October 2, 2009 to assess hydrocarbon rebound after shutting down the system for approximately three (3) months, to determine the hydrocarbon influent concentrations and recovery rates, and to establish the most efficient operating mode (either continuous or intermittent). Process vapor samples were not collected in June or July because the system was shutdown for the rebound evaluation.

The extraction well and other process sample ports were continuously purged and sampled with a Gast® (Model DOA-P707-FB) 1/3 horsepower diaphragm vacuum / pressure pump, capable of up to 1.1 cfm free airflow and vacuums up to 25.5 in-Hg, using the "side-stream" purging and sampling method as described in Downey, et al., 2004 and Hinchee, et al., 1996. A 2-liter water separator device was used to collect vapor samples from the dual-phase air-water influent process stream.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Eagle multigas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded on the field data sheets and a vapor sample was collected into 1-liter Tedlar® bag using the same sampling tee.

The Tedlar® bags were stored in a cardboard box and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification No. 1644) on the day of collection. The samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

6.3.3 Influent & Effluent Water Monitoring

Influent and effluent process water samples were collected on August 31, 2009. Process water samples were noted collected in June or July because the system was shutdown for the rebound evaluation.

The process water sample ports were purge of approximately 1-Liter of water prior to sample collection. Water was collected into three (3) 40-millileter (mL) volatile organic analysis (VOA) vials, or as required by the analysis, and capped so that no head space or air bubbles were present within the sample containers.

The water samples were placed in a pre-chilled cooler on wet ice pending transportation to the laboratory. The samples were delivered on the day of collection under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification #1644). Three

(3) samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

6.3.4 Soil Gas Composition & Vacuum Influence Monitoring

On October 2, 2009, the nested soil gas probes (GP-1 and GP-2) were screened in the field for TVH, CH4, O2, and CO2 and vacuum influence was measured. The soil gas probes were not screened nor was the vacuum influence measured in June and July because the system was shutdown for the rebound evaluation.

The vacuum influence was measured with a set of Magnehelic differential pressure gauges and recorded first. A 3/16-inch inside diameter clear vinyl or equivalent tubing was used to connect the Magnehelic[®] gage to the plug valve and soil gas probe. The following pressure ranges in inches of water were normally available: 0-0.2", 0-1", 0-5", 0-10", 0-20", 0-50", 0-100", and 0-150".

Then the soil gas probes were continuously purged and sampled with a Geotech (Model Geopump II) peristaltic pump, capable of vacuums up to 25 in-Hg, using the "side-stream" purging and sampling method as described in Downey, et al., 2004 and Hinchee, et al., 1996.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Instruments Eagle (Type 474-04) multi-gas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded on the field data sheets. Vapor samples were not collected into 1-liter tedlar bags for laboratory analysis.

6.4 HVDPE System Operations & Maintenance

6.4.1 Routine Maintenance

Routine maintenance performed during this quarter included:

- Performed visual inspections of all major system components, including checking for signs of leaks, physical wear, and/or damage during each site visit.
- Checked the cooling blower filter, dilution air inlet filter, and air stripper blower filter. No air filters were changed this quarter, but are likely to be changed during the next quarter.
- Checked the two (2) separator filter on Liquid Ring Pump #2 (LRP #2). The separator filters were not changed this quarter, but are likely to be changed during the next quarter, or as need based on visual inspection and/or the quality if the influent process water.

- Formerly considered a none-routine maintenance item, the aluminum fins on the air-cooled heat exchanger for LRP #2 were cleaned with compressed air during each O&M visit.
- No other routine maintenance was performed during this quarter.

6.4.2 Non-Routine Maintenance

Non-routine maintenance performed during this quarter included:

- On August 31, 2009, all the well casings were checked for cracks and wellhead seals were checked for leaks due to a loss of system vacuum, primarily when MW-1 was turned on. No cracked casings or wellhead leaks were identified at MW-2, MW-5, MW-7, MW-10, MW-11, or MW-12. A significant crack was discovered at MW-1 at least 1 to 2-feet below the ground surface; therefore, MW-1 was shutdown pending repair. MW-6 could not be inspected because a car was parked over top of the well box. Because a significant vacuum leak could be heard at the surface, MW-6 was also shutdown pending further inspection and/or possible repair.
- On September 8, 2009, the system shutdown due to a low gas pressure and/or veri-flame alarm. The low gas pressure alarm was inspected and cleared. The propane tank was found to be empty and the propane supplier was called to schedule a delivery. Based on the hour meter reading the system ran for approximately 4.6 days and shutdown on September 5, 2009.
- On September 8, 2009 the remote monitoring system was inspected and a blown fuse was identified. The fuse was replaced and the remote monitoring system started working.
- On September 10, 2009, the system was restated after approximately 437 gallons of propane was delivered.
- On September 15, 2009, the system shutdown due to a veri-flame alarm. The veri-flame alarm was cleared and the system was restarted that morning. However, the system shutdown again later that afternoon.
- On September 16, 2009, the veri-flame alarm was cleared and the system was restarted. The flame was visually observed and the flame signal strength was tested with a DC volt meter. Good flame signal strength is between 6 and 11 VDC; anything below 4 VDC is insufficient. The flame looked normal, but the flame signal strength was somewhat erratic. The pilot gas was increased slightly and the flame signal strength improved.
- No other none-routine maintenance was performed during this quarter.

6.4.3 System Modifications

System modifications completed during this quarter included:

- On August 31, 2009, the HVDPE system was restated after being shutdown for approximately three (3) months. Because relatively low concentrations of hydrocarbon were detected in the influent and/or leaks were at the wellheads, extraction wells MW-1, MW-6, and MW-12 were turned off.
- The system operation focused on extracting hydrocarbons from MW-2, MW-5, MW-7, MW-10, and MW-11 through the end of September.
- No other major system modifications were performed during this quarter.

7.0 RESULTS & CONCLUSIONS

7.1 Soil Sample Analytical Data

The analytical results for the soil samples collected during the installation of MW-14, MW-15, and MW-16 are summarized below:

- TPH-g and BTEX were not detected at or above the standard laboratory reporting limits in the soil samples analyzed from MW-14, MW-15, and MW-16 at approximately 16 and 24-feet bgs.
- MTBE was detected in MW-16-25' at a concentration of 0.24 mg/kg.
- The soil analytical data indicates that there is little to no soil contamination in capillary and saturated zones in the vicinity of MW-14, MW-15 and MW-16.

The soil analytical data is summarized in Table 4. The laboratory analytical report with chain of custody documentation and quality assurance/quality control documentation is included in Appendix C.

7.2 Apparent LNAPL Thickness, Groundwater Elevations, and Hydraulic Gradient

The results of the apparent LNAPL thickness measurements, groundwater elevations, and hydraulic gradient for this monitoring episode are summarized below:

- LNAPL was not encountered in any of the monitoring wells, although elevated concentrations of dissolved hydrocarbons, such as TPH-g, BTEX, and MTBE, remain onsite and offsite.
- LNAPL of any apparent measurable thickness (at or greater than 0.01 feet) has not been detected in MW-1, MW-6, and MW-7 since May of 2007.

- The groundwater elevations have been influenced onsite and offsite by the HVDPE groundwater extraction activities; however, recent monitoring data continues to indicate a southwest groundwater flow direction.
- Since the HVDPE system was shutdown for approximately three (3) months prior to this monitoring event, the groundwater elevation data was contoured. The last time the groundwater elevations were contoured was in May of 2007.
- The currently groundwater flow direction and hydraulic gradient is south-southwest at 0.010 ft/ft.
- The normal historical groundwater flow direction has been predominantly to the south with a hydraulic gradient of approximately 0.010 ft/ft.

The groundwater elevation data is summarized in Table 1 and groundwater elevation contours are shown on Figure 4. A summary of the average groundwater elevations and flow directions is presented in Table 2.

7.3 Groundwater Sample Analytical Data

The analytical results for the groundwater samples collected for this monitoring episode are summarized below:

- The highest concentration of TPH-g was detected in MW-1 at a concentration of 63,000 μ g/L. The second, third, and fourth highest concentrations of TPH-g were detected in MW-6, MW-9, and MW-7 at concentrations of 63,000 μ g/L, 48,000 μ g/L, and 28,000 μ g/L, respectively.
- The highest concentration of benzene was detected in MW-9 at a concentration of 15,000 μ g/L. The second, third, and fourth highest concentrations of benzene were detected in MW-7, MW-1, and MW-6 at concentrations of 6,200 μ g/L, 1,900 μ g/L, and 1,800 μ g/L, respectively.
- The highest and second highest concentrations of MTBE were detected in MW-9 and MW-7 at concentrations of $900\mu g/L$ and $390 \mu g/L$, respectively.
- Higher concentrations of TPH-g and BTEX were detected in source area wells MW-1, MW-6, MW-5, MW-7, and MW-9.
- Moderate concentrations of TPH-g were detected in MW-14.
- Lower concentrations of TPH-g were detected in MW-2, MW-4, MW-8, MW-13, MW-15, and MW-16.

- TPH-g, BTEX, and MTBE were not detected at or above the standard laboratory reporting limits in MW-3.
- The HVDPE system has significantly reduced (by at least one order of magnitude) the dissolved phase concentrations of hydrocarbons onsite and offsite as nearly 5,000 gallons of TPH-g and over 40,000,000 cubic feet of soil gas have been removed from the subsurface.
- However, recent groundwater monitoring and process vapor sampling data indicates that a significant residual source of hydrocarbons still exists in the soil in the vicinity of MW-1, MW-6, and MW-7. This residual source zone will continue to leach-out and degrade groundwater quality above the cleanup goals.
- It is unknown at this time if the elevated concentrations of TPH-g and BTEX in MW-9 will be reduced by operating the HVDPE system.

The groundwater analytical data is summarized in Table 3 and the current data is shown on Figure 5. Refer to Appendix A for the monitoring well field sampling forms. The laboratory analytical reports with chain of custody and quality assurance/quality control documentation is included in Appendix C.

7.4 HVDPE System Process Monitoring

7.4.1 Influent & Effluent Vapor Sample Analytical Data

On August 31, 2009, the HVDPE system was restarted after being shutdown for approximately three (3) months. Vapor samples were collected to evaluate the hydrocarbon rebound, to determine the hydrocarbon influent concentrations and recovery rates, and to establish the most efficient operating mode (either continuous or intermittent). The field screening results and analytical data are summarized below:

- The highest concentrations of TPH-g were detected in MW-2S, MW-5S, MW-7S, MW-10S, and MW-11S at concentrations of 1,800 ppmv, 1,300 ppmv, 1,900 ppmv, 1,700 ppmv, 1,000 ppmv, respectively. Likewise, the highest concentrations of TVH were detected in MW-2S, 5S, MW-7S, MW-10S, and MW-11S.
- Lower concentrations of TPH-g were detected in MW-1S, MW-6S, and MW-12S at concentrations of 39 ppmv, 330 ppmv, and 130 ppmv, respectively. Likewise, lower concentrations of TVH were detected in MW-1S, MW-6S, and MW-12S.
- The highest concentrations of CO2 were detected in MW-1S, MW-2S, MW-5S, MW-7S, and MW-11S at concentrations of 3.2%, 5.1%, 3.3%, 8.2%, and 3.5%, respectively, which indicates that biodegradation is occurring in the subsurface in the vicinity of these wells.

- No significant concentrations of methane greater than 0.5% were detected in any of the extraction wells.
- Only toluene and total xylenes were detected in the air stripper (AS) effluent vapor sample at concentrations of 0.096 and 0.24 ppmv, respectively.
- TPH-g and TVH were detected in the combined influent vapor sample (PRED) at concentrations of 870 and 400 ppmv, respectively.
- TPH-g, BTEX, and MTBE were not detected in the STACK sample at or above the laboratory reporting limits, except for a trace amount of toluene and total xylenes detected at concentrations of 0.069 ppmv and 0.35 ppmv, respectively.

On August 31, 2009, after the extraction wells were field screened for TVH, CH4, O2, and CO2 and vapor samples were collected, the wells with the lowest recovery (MW-1, MW-6, and MW-12) were turned off. The extraction wells were field screened and vapor samples were collected on a weekly basis for four (4) consecutive weeks to determine the hydrocarbon influent concentrations and recovery rates and to establish the most efficient operating mode (either continuous or intermittent). The field screening results and analytical data are summarized below:

- On September 10, 2009, approximately one (1) week after restarting the system, the concentrations of TPH-g and BTEX increased in nearly all of the extraction wells sampled, except MW-10S and MW-11S. TPH-g was detected in MW-2S, MW-5S, MW-7S, MW-10S, and MW-11S at concentrations of 2,000 ppmv, 1,800 ppmv, 3,100 ppmv, 1,600 ppmv, and 870 ppmv, respectively.
- On September 17, 2009, approximately two (2) weeks after restarting the system, the concentrations of TPH-g and BTEX increased in all of the extraction wells sampled. TPH-g was detected in MW-2S, MW-5S, MW-7S, MW-10S, and MW-11S at concentrations of 2,700 ppmv, 2,200 ppmv, 5,200 ppmv, 1,900 ppmv, and 890 ppmv, respectively.
- On September 25, 2009, approximately three (3) weeks after restarting the system, the concentrations of TPH-g and BTEX increased in nearly all of the extraction wells sampled, except MW-5S and MW-11S. TPH-g was detected in MW-2S, MW-5S, MW-7S, MW-10S, and MW-11S at concentrations of 2,900 ppmv, 2,100 ppmv, 5,500 ppmv, 2,400 ppmv, and 840 ppmv, respectively.
- On October 2, 2009, approximately three (3) weeks after restarting the system, the concentrations of TPH-g and BTEX stabilized and decreased in nearly all of the extraction wells sampled, except MW-11S. TPH-g was detected in MW-2S, MW-5S, MW-7S, MW-10S, and MW-11S at concentrations of 2,800 ppmv, 2,100 ppmv, 5,300 ppmv, 1,700 ppmv, and 880 ppmv, respectively.

- The concentration of TPH-g detected in the combined influent vapor sample (PRED) increased from 400 ppmv to 1,700 ppmv after the first week, to 2,600 ppmv after the second week, and to 2,700 ppmv after the third week of operation. By the fourth week of operation the concentration of TPH-g decreased slightly to 2,400 ppmv. Overall, the concentration of TPH-g stabilized after the second week of operation and sustained at practically the same concentration after four (4) weeks of nearly continuous operation.
- The most significant increases in the concentration of TPH-g and BTEX were detected in MW-7S. The concentrations of TPH-g and BTEX increased by more than 60% after the first and second weeks of operation, but appeared to have almost stabilized by the third week of operation, when the concentrations of TPH-g and BTEX only increase by about 6%.
- Overall, the concentrations of TPH-g and BTEX increased in nearly all of the extraction wells, which may be attributed to the "dewatering effect" or the gradual lowering of the water table, which exposed previously saturated soils in the smear zone to airflow.
- The rebound evaluation and hydrocarbon recovery data suggests that a significant residual source of hydrocarbons is still present in the subsurface, particularly in the vicinity of MW-7. As already stated in Section 7.3, this residual source zone will continue to leach-out and degrade groundwater quality above the cleanup goals.

Influent and effluent vapor field screening and analytical data is summarized in Table 6. The laboratory analytical reports with chain of custody and quality assurance/quality control documentation are included in Appendix C.

7.4.2 Influent & Effluent Water Sample Analytical Data

The results of the influent and effluent water samples collected on August 31, 2009 are summarized below:

- TPH-g, benzene, toluene, ethylbenzene, and total xylenes were detected in the combined water influent sample (INF) at concentrations of 4,200 μ g/L, 110 μ g/L, 230 μ g/L, 41 μ g/L, and 640 μ g/L, respectively.
- TPH-g, benzene, toluene, ethylbenzene, and total xylenes were detected in the water effluent sample from the air stripper (POST-AS) at concentrations of 190 μ g/L, 5.4 μ g/L, 11 μ g/L, 2.1 μ g/L, and 29 μ g/L, respectively.
- The average air stripper removal efficiency for this quarter was approximately 99.4%.
- TPH-g and BTEX were not detected in the combined effluent water sampled (EFF) at or above the standard laboratory reporting limits.

The water influent/effluent sample analytical data is summarized in Table 7. The air stripping system performance data is summarized in Table 12. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

7.4.3 Influent Well Vapor and Water Flow Rates

The influent well vapor and water flow rates are summarized below:

- The total well influent vapor velocity ranged from approximately 1,100 to 2,000 feet per minute (fpm) and the total well influent vapor flow rate ranged from 54 to 98 standard cubic feet per minute (scfm).
- Average groundwater extraction rates ranged from 2,125 to 7,262 gallons per day or approximately 1.5 to 5 gallons per minute (gpm). The flow totalizer was found to be broken on September 10, 2009; therefore, the actual groundwater extraction rates were probably much higher.
- Approximately 54,540 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer between May 20, 2009 and October 2, 2009. The flow totalizer was found to be broken on September 10, 2009; therefore, the actual total volume of groundwater recovered, treated, and discharged to the sanitary sewer was probably much greater.
- A total of 1,520,090 gallons have been recovered and treated since startup in June of 2007.

The well vapor flow rates and water flow rates are summarized in Table 10 and Table 13, respectively.

7.4.4 Mass Removal Rates

Short-term and long-term vapor phase and dissolved phase mass removal rates in pounds per day (lbs/day) and gallons per day (gpd) were estimated using TPH-g concentrations based on lab data and the actual system runtime between sampling dates. The mass removal rates are summarized below:

- The vapor phase mass removal rates ranged from approximately 24 to 106 pounds per day (lbs/day) with an overall average of approximately 60 lbs/day during this reporting period. The vapor phase mass removal rates increased significantly after shutting down the system and allowing hydrocarbons in the subsurface to rebound for three (3) months. The average vapor phase mass removal rates increased by approximately 1,600 % when compared to the average recovery rate of approximately 3.5 lbs/day during the Second Quarter, 2009.
- Approximately 2,012 pounds or 335 gallons of gasoline in the vapor phase was recovered and treated between May 19 and October 2, 2009.

- Approximately 28,491 pounds or 4,749 gallons of vapor phase gasoline have been removed since startup in June of 2007.
- Although insignificant when compared with the vapor phase mass removal data, the dissolved phase mass removal rate on August 31, 2009 was approximately 0.25 lbs/day.
- Approximately 1.55 pounds or 0.25 gallons of gasoline in the dissolved phase was recovered and treated between May 20 and August 31, 2009.
- Approximately 143 pounds or 24 gallons of dissolved phase gasoline has been removed since startup.

The vapor phase mass removal rates with assumptions, unit conversions, and sample calculations are summarized in Table 10 and shown on Figure 8. The dissolve phase mass removal rates are presented in Table 13. A cumulative vapor phase mass removal graph is shown on Figure 9.

7.4.5 Soil Gas Composition and Vacuum Influence

The results of the TVH, CH4, O2, and CO2 field screening data and vacuum influence measurements collected on October 2, 2009 are summarized below:

- On May 1, 2009 water was detected in GP-1 and GP-2 at 10-feet bgs, but not at 5-feet bgs. Field screening and vacuum influence measurements were not collected from the soil gas probes at 10-feet bgs, except for a vacuum influence measurement from GP-2 at 10-feet bgs.
- Concentrations of total volatile hydrocarbons (TVH) were not detected in any of the soil gas probes at or above the detection limit of 5 ppmv.
- The concentrations of O2 in GP-1 and GP-2 at 5-feet bgs was 19.9% and 20.7%, respectively.
- The concentrations of CO2 in GP-1 and GP-2 at 5-feet bgs was 0.5% and 0.1%, respectively.
- Significant vacuum influence (i.e., greater than 0.1 inches of water Hinchee, R.E., et al., 1996 and others) was measured at 0.3 in-H2O in GP-2 at 10-feet bgs on April 21, 2009.

The soil gas field screening data and vacuum influence measurements are summarized in Table 8.

8.0 SUMMARY & PLANNED ACTIVITIES

This report presented the findings of the Third Quarter, 2009 groundwater monitoring event and included a discussion of the field activities and results of the HVDPE system operations and maintenance and process monitoring. Quarterly soil gas sampling for vapor intrusion has been temporarily suspended during the operation of the HVDPE system. This report also documented and summarized the methods and results of the installation, development, and first round of sampling of wells MW-14, MW-15, and MW-16. Finally, this report presented and summarized the results of a rebound evaluation after the HVDPE system was shutdown for approximately three (3) months.

The main results of this monitoring episode are summarized below:

- Monitoring wells MW-14, MW-15, and MW-16 were installed to define the down-gradient extent of the dissolved hydrocarbon plume. Based on the results of the first round of sampling, it appears that the plume has now been adequately delineated. Furthermore, the plume extends approximately 200 to 250-feet down-gradient from the release area, which is consistent with the California Lawrence Livermore National Lab (LLNL) Study in June of 1994, which concluded that 90% of benzene plumes were less than 260 feet long and were either stable or shrinking in size.
- The highest dissolved phase concentrations of TPH-g and BTEX were detected in MW-1, MW-6, MW-7, and MW-9.
- Moderate concentrations of TPH-g and BTEX were detected in MW-14.
- Lower concentrations of TPH-g and BTEX were detected in MW-2, MW-4, MW-8, MW-13, MW-15, and MW-16.
- TPH-g, BTEX, and MTBE were not detected at or above the standard laboratory reporting limits in MW-3.
- MTBE was not detected at or above the standard laboratory reporting limit in MW-4, MW-5, MW-6, MW-8, MW-13, and MW-14.
- The results of this groundwater monitoring event are generally consistent with previous episodes with a notable increase in groundwater table elevation, which can be attributed to shutting down the HVDPE system for three (3) months prior to this monitoring event.
- LNAPL of any apparent measurable thickness (greater than 0.01 feet) has not been detected since the HVDPE system was installed and started up in June of 2007. However, elevated dissolved phase concentrations of TPH-g and BTEX remain onsite and offsite.
- Significant increases in the overall concentrations of dissolved phase hydrocarbon in some of the onsite wells (most notably MW-1 and MW-7) are likely the result of shutting down the

HVDPE system for three (3) months and allowing the hydrocarbons to rebound prior to this monitoring event.

- The hydrocarbon influent concentrations (up to 5,500 ppmv) and recovery rates (up to 106 lbs/day) increased significantly during this quarter. As stated in Section 7.4.4, the average vapor phase mass removal rates increased by approximately 1,600 % when compared to the Second Quarter, 2009.
- The combined influent vapor concentrations of hydrocarbons (sustained at approximately 2,500 ppmv) are still within the range for catalytic oxidation, but may be too high for activated carbon to be a more cost-effective treatment option.
- Nearly ambient concentrations of oxygen indicate the HVDPE is fully oxygenating the soils in the vadose zone, which can support and enhance aerobic biodegradation of hydrocarbons in the subsurface.
- The CO2 detected in MW-1S, MW-2S, MW-5S, MW-7S, and MW-11S indicates that biodegradation in occurring in the subsurface onsite and offsite.

The following activities and system modifications are planned for the next quarter:

- Soil gas sampling has been temporarily suspended during the operation of the HVDPE system as approved by the ACHCSA in a letter dated October 3, 2008.
- The recently installed monitoring wells (MW-14, MW-15, and MW-16) and previously installed monitoring wells (MW-8, MW-9, and MW-13) will continue to be sampled quarterly and analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B. Due the elevated reporting limit for MTBE by EPA Method 8021B in certain monitoring wells, AEI recommends testing all wells with elevated reporting limits for MTBE by EPA Method 8260B during the next and subsequent groundwater monitoring events as needed.
- In accordance with the State Water Resource Control Board (SWRCB) Resolution No. 2009-0042, the ACHCSA issued a letter, dated July 24, 2009, requiring groundwater monitoring to be reduced from quarterly to semiannually unless site-specific conditions warrant otherwise. Because the site is currently in the remediation and to some extent the post-remediation monitoring phases and because recently installed monitoring wells MW-14, MW-15, and MW-16 should be monitored for at least one (1) hydrologic cycle, quarterly monitoring appears to be appropriate for the majority of the wells, except MW-3, MW-4, and MW-8. The current and proposed groundwater monitoring schedule is summarized in Appendix G. The proposed monitoring schedule will be implemented during the Fourth Quarter of 2009 unless the ACHSA recommends otherwise.

- Since the recently installed monitoring wells (MW-14, MW-14, and MW-16) and previously installed monitoring wells (MW-8, MW-9, and MW-13) have been surveyed, a new site plan and coordinates will be uploaded GeoTracker as required during the next quarter.
- Based on the results of the rebound evaluation, continue operation of the HVPDE system until the influent vapor concentrations and recovery rates decline to unproductive levels, including monthly O&M and process monitoring, evaluation and optimization of the system performance, and conducting air and water discharge compliance sampling and reporting as required by permit.
- Contact ACHCSA to discuss the advancement of several continuous soil borings within the source area and at the fringe of the source area to evaluate the significance, magnitude, and extent of a residual soil source that may delay reaching groundwater cleanup goals. Also discuss the current effectiveness of the HVDPE system and potential alternatives if a significant residual adsorbed phase fuel hydrocarbon source is identified.
- Continue to screen the soil gas probes for TVH, CH4, O2, and CO2 with the RKI Eagle gas detector on a quarterly and/or as needed rather than monthly basis. The soil gas probes will be screened according to the methods described in Downey, et al., 2004.

9.0 REFERENCES

Department of Toxic Substances Control (DTSC) & Los Angeles Regional Water Quality Control Board, 2003. "Advisory – Active Soil Gas Investigations", issued January 28, 2003.

Downey, D., Miller, R.N., and Dragoo, T., 2004. "Procedures for Conducting Bioventing Pilot Tests and Long-Term Monitoring of Bioventing Systems", prepared for the United States Air Force Center for Environmental Excellence by Parsons, Inc, Denver, Colorado.

DTSC, 2004. "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air", Interim-Final, California Environmental Protection Agency, Sacramento, California, issued December 15, 2004, revised February 7, 2005.

Graymer, R.W., 2000. "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California", U.S. Geologic Survey, Miscellaneous Field Studies MF2342, Online Version 1.0, includes 1 geologic map and 33 page pamphlet.

Helley, E.J. and Graymer, R.W., 1997. "Quaternary Geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: A Digital Database", U.S. Geological Survey, Open-File Report 97-97, includes 1 geologic map, 1 map explanation sheet, and 9 page discussion booklet.

Hinchee, R.E., et al., 1992. "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing", prepared for United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Miller, R.N., et al., 1995. "Test Plan and Technical Protocol for a Field Treatability Test for POL Free Product Recovery – Evaluating the Feasibility of Traditional and Bioslurping Technologies", prepared for the United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Norfleet Consultants, 1998. "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, California", prepared for the Friends of the San Francisco Estuary, P.O. Box 791, Oakland, California, and dated June 15, 1998.

Place, M.C., Coonfare, C.T., Chen, A., Hoeppel, R.E., and Rosansky, S.H., 2001. "Principles and Practices of Bioslurping", Battelle Press, Columbus, Ohio

United States Army Core of Engineers, 1999. "Multi-Phase Extraction Engineer Manual", EM 1110-1-4010, Washington, DC.

10.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices in the environmental engineering and geology fields that existed at the time and location of the work.

Should you have any questions or comments, or need any additional information, please contact Mr. Bradford (925) 944-2899, ext. 148 or Mr. McIntyre at (925) 944-2899, ext. 104.

Sincerely, AEI Consultants

Adrian M. Angel, GIT Project Geologist

Richard J. Bradford Project Engineer

John Sigg Senior Technician

REA

GE REG MCINTYRE PETER J

Peter J. McIntyre, PG, REA Senior Project Manager

Distribution List:

Mr. Victor Lum (1 hard copy) Vic's Automotive 245 8th Street Oakland, California 94607

Attn. Mr. Jerry Wickham (electronic) Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

SWRCB's GeoTracker Information System (electronic)

FIGURES

$\frac{1}{1} \frac{1}{1} = 25$	SB-14		• 5B-15
LEGEND	DRAFTED BY RJB 10-01-07 REVISED BY RJB 10-08-09	AEI CONS	ULTANTS
- MONITORING WELL	()	2500 CAMINO DIABLO, SU	ITE 200, WALNUT CREEK
 SOIL BORING (8/9/96) SOIL BORING (04/02 & 03/03) 	FORMER UST	SITE PLAN	
 SOIL GAS PROBE ABANDONED SOIL GAS PROBE 	LOCATION	245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 2 PROJECT NO. 116907

$\frac{1}{1}$ RESIDENTIAL $\frac{1}{25}$ SCALE: 1" = 25'	0 0			
LEGEND	D R	RAFTED BY RJB 10-01-07 EVISED BY RJB 10-08-09	AEI CONS	ULTANTS
- MONITORING WELL	HVDPE CONVEYANCE PIPING (~18 - 24" BGS)	2500 CAMINO DIABLO, SU	ITE 200, WALNUT CREEK
• SOIL BORING (8/9/96)	WATER DISCHARGE (~24" BGS)		SVSTMEIA	VOLIT PLAN
• SOIL BORING (04/02 & 03/03)	SANITARY SEWER (~36 - 48" BGS)	MONITORING STRUCTURE	SISINIC LA	
SOIL GAS PROBE	TEMPORARY POWER SERVICE (~24" BGS)		245 8TH STREET	FIGURE 3
ABANDONED SOIL GAS PROBE	PROPANE LINE (~18 - 24" BGS)		OAKLAND, CALIFORNIA	PROJECT NO. 116907

$ \begin{array}{c} & & & \\ & &$			
LEGEND	DRAFTED BY RJB 10-01-07 REVISED BY RJB 10-08-09	AEI CONS	ULTANTS
$ \Phi$ - Monitoring Well		2500 CAMINO DIABLO, SU	ITE 200, WALNUT CREEK
		GROUNDWATE	ER ELEVATION
(15.46) = feet above mean sea level	FORMER UST	CONTOURS (08/21/09)	
Contour Interval = 0.2 feet Contours plotted with Surfer V.7.0 nm = depth to water not measured	LOCATION	245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 4 PROJECT NO. 116907

MW-15 Ethylbenz Xylene	zene 2.2 13		
RESIDENTIAL MW-16 MW-16 MW-16 MW-16 MW-16 MTBE 20 Benzene 80 Toluene 110 Ethylbenzene 26 Xylene 130			
LEGEND	REVISED BY RJB 10-08-09	AEI CONS	ULTANTS
- HONITORING WELL		2500 CAMINO DIABLO, SU	JITE 200, WALNUT CREEK
All groundwater sample analytical data in micrograms per liter (ug/L) or ppb	FORMER UST	GROUNDWATER ANALYTICAL DATA (08/21/09)	
TPH-g = Total Petroleum Hydrocarbons as gasoline MTBE = Methyl tertiary-butyl ether NS/FP= not sampled / free product present	LOCATION	245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 5 PROJECT NO. 116907

FIGURE 6: EXTRACTION WELL INFLUENT CONCENTRATIONS OVER TIME

Vic's Auto, 245 8th Street, Oakland, California

FIGURE 7: COMBINED SYSTEM INFLUENT CONCENTRATIONS OVER TIME

Vic's Auto, 245 8th Street, Oakland, California

FIGURE 8: HYDROCARBON MASS REMOVAL RATES BASED ON LAB DATA

FIGURE 9: CUMULATIVE HYDROCARBON MASS REMOVED BASED ON LAB DATA

TABLES

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)	
	06/00/01	27.72	16.50	11.01	14.00	1.62	
$\mathbf{MW-1}$	06/29/01	27.73	16.52	11.21	14.89	1.63	
(8-28)	10/10/01	27.73	15.45	12.28	15.37	0.08	
	01/09/02	27.73	12.61	15.12	-	<0.01	
	04/24/02	27.73	7.75 15.55 14.50 -		-	<0.01	
	07/24/02	27.73	14.19 13.54 -		<0.01		
	11/05/02	27.73	14.85	12.88	-	<0.01	
	02/04/03	27.73	14.91	12.82	-	< 0.01	
	05/02/03	27.73	14.43	13.30	-	0.08	
	08/04/03	27.73	15.24	12.49	15.01	0.23	
	11/03/03	27.73	16.94	10.79	15.67	1.27	
	02/09/04	27.73	14.61	13.12	14.43	0.18	
	05/10/04	27.73	Obstructed	-	-	-	
	08/09/04	27.73	15.24	12.49	15.03	0.21	
	11/09/04	27.73	15.95	11.78	15.71	0.24	
	02/03/05	32.55	13.75	18.80	13.58	0.17	
	05/09/05	32.55	13.93	18.62	13.81	0.12	
	08/05/05	32.55	15.40	17.15	15.39	0.01	
	11/09/05	32.55	15.76	16.79	15.75	0.01	
	02/09/06	32.55	13.52	19.03	13.50	0.02	
	05/04/06	32.55	12.47	20.08	12.46	0.01	
	08/04/06	32.55	15.11	17.44	15.09	0.02	
	11/08/06	32.55	16.03	16.52	16.02	0.01	
	02/08/07	32.55	16.51	16.04	16.48	0.03	
	05/29/07	32.55	15.56	16.99	15.51	0.05	
	09/05/07	32.55	16.33	16.22	-	Sheen	
	12/12/07	32.55	17.62	14.93	-	Sheen	
	02/13/08	32.55	15.94	16.61	-	Sheen	
	05/15/08	32.55	16.64	15.91	-	-	
	08/05/08	32.55	16.99	15.56	-	-	
	11/07/08	32.55	17.40	15.15	-	-	
	02/05/09	32.55	16.89	15.66	-	-	
	05/05/09	32.55	15.69	16.86	-	-	
	08/21/09	32.55	17.09	15.46	-	-	

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-2	06/29/01	28.16	16.14	12.02	-	-
(8-28)	10/10/01	28.16	16.43	11.73	-	-
	01/09/02	28.16	13.50	14.66	-	-
	04/24/02	28.16	14.40	13.76	-	-
	07/24/02	28.16	14.91	13.25	-	-
	11/05/02	28.16	16.96	11.20	-	-
	02/04/03	28.16	15.42	12.74	-	-
	05/02/03	28.16	15.24	12.92	-	-
	08/04/03	28.16	15.98	12.18	-	-
	11/03/03	28.16	16.60	11.56	-	Sheen
	02/09/04	28.16	15.22	12.94	-	Sheen
	05/10/04	28.16	15.34	12.82	-	Sheen
	08/09/04	28.16	15.92	12.24	-	Sheen
	11/09/04	28.16	16.51	11.65	-	Sheen
	02/03/05	33.24	14.44	18.80	-	Sheen
	05/09/05	33.24	14.67	18.57	-	Sheen
	08/05/05	33.24	16.27	16.97	-	Sheen
	11/09/05	33.24	16.53	16.71	-	Sheen
	02/09/06	33.24	14.36	18.88	-	Sheen
	05/04/06	33.24	13.46	19.78	-	Sheen
	08/04/06	33.24	15.95	17.29	-	Sheen
	11/08/06	33.24	16.86	16.38	-	Sheen
	02/08/07	33.24	17.13	16.11	-	Sheen
	05/29/07	33.24	16.51	16.73	-	Sheen
	09/05/07	33.24	17.48	15.76	-	-
	12/12/07	33.24	18.72	14.52	-	-
	02/13/08	33.24	16.91	16.33	_	-
	05/15/08	33.24	17.67	15.57	-	-
	08/05/08	33.24	17.94	15.30	-	-
	11/07/08	33.24	18.79	14.45	-	-
	02/05/09	33.24	17.98	15.26	-	-
	05/05/09	33.24	17.52	15.72	-	-
	08/21/09	33.24	18.02	15.22	-	-
			2010			

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)	
MW-3	06/29/01	29.21	16.60	12.61	-	-	
(10-25)	10/10/01	29.21	16.92	12.29	-	-	
	01/09/02	29.21	14.20	15.01	-	-	
	04/24/02	29.21	15.07	14.14	-	-	
	07/24/02	29.21	16.40	12.81	-	-	
	11/05/02	29.21	16.47 12.74 -		-		
	02/04/03	29.21	16.92	12.29	-	-	
	05/02/03	29.21	15.45	13.76	-	-	
	08/04/03	29.21	16.46	12.75	-	-	
	11/03/03	29.21	17.15	12.06	-	-	
	02/09/04	29.21	15.78	13.43	-	-	
	05/10/04	29.21	15.77	13.44	-	-	
	08/09/04	29.21	16.45	12.76	-	-	
	11/09/04	29.21	17.26	11.95	-	-	
	02/03/05	34.25	15.92	18.33	-	-	
	05/09/05	34.25	15.03	19.22	-	-	
	08/05/05	34.25	16.59	17.66	-	-	
	11/09/05	34.25	16.82	17.43	-	-	
	02/09/06	34.25	14.65	19.60	-	-	
	05/04/06	34.25	13.61	20.64	-	-	
	08/04/06	34.25	16.28	17.97	-	-	
	11/08/06	34.25	17.28	16.97	-	-	
	02/08/07	34.25	17.68	16.57	-	-	
	05/29/07	34.25	17.37	16.88	-	-	
	09/05/07	34.25	18.53	15.72	-	-	
	12/12/07	34.25	19.61	14.64	-	-	
	02/13/08	34.25	18.12	16.13	-	-	
	05/15/08	34.25	18.64	15.61	-	-	
	08/05/08	34.25	18.88	15.37	-	-	
	11/07/08	34.25	19.60	14.65	-	-	
	02/05/09	34.25	19.02	15.23	-	-	
	05/05/09	34.25	17.78	16.47	-	-	
	08/21/09	34.25	19.24	15.01	-	-	

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Depth to Elevation (ft amsl) (ft)		Apparent LNAPL Thickness (ft)	
MW-4	06/29/01	29.38	17.71	11.67	-	-	
(10-25)	10/10/01	29.38	18.00	11.38	-	-	
	01/09/02	29.38	15.02	14.36	-	-	
	04/24/02	29.38	15.74	13.64	-	-	
	07/24/02	29.38	16.69	12.69	-	-	
	11/05/02	29.38	17.64	- 11.74		-	
	02/04/03	29.38	16.02	13.36	-	-	
	05/02/03	29.38	16.72	12.66	-	-	
	08/04/03	29.38	17.51	11.87	-	-	
	11/03/03	29.38	18.09	11.29	-	-	
	02/09/04	29.38	16.67	12.71	-	-	
	05/10/04	29.38	16.89	12.49	-	-	
	08/09/04	29.38	17.44	11.94	-	-	
	11/09/04	29.38	17.89	11.49	-	-	
	02/03/05	34.42	14.98	19.44	-	-	
	05/09/05	34.42	16.20	18.22	-	-	
	08/05/05	34.42	17.73	16.69	-	-	
	11/09/05	34.42	17.91	16.51	-	-	
	02/09/06	34.42	15.62	18.80	-	-	
	05/04/06	34.42	15.12	19.30	-	-	
	08/04/06	34.42	17.39	17.03	-	-	
	11/08/06	34.42	18.30	16.12	-	-	
	02/08/07	34.42	18.57	15.85	-	-	
	05/29/07	34.42	18.29	16.13	-	-	
	09/05/07	34.42	19.27	15.15	-	-	
	12/12/07	34.42	20.44	13.98	-	-	
	02/13/08	34.42	18.52	15.90	-	-	
	05/15/08	34.42	19.42	15.00	-	-	
	08/05/08	34.42	19.67	14.75	-	-	
	11/07/08	34.42	20.42	14.00	-	-	
	02/05/09	34.42	19.72	14.70	-	-	
	05/05/09	34.42	18.51	15.91	-	-	
	08/21/09	34.42	19.70	14.72	-	-	
	00,=1,02						

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)	
NAXY 5	02/02/05	22.22	14.02	10.10			
(12, 22)	02/03/03	33.33 33.33	14.25	19.10	-	-	
(12-22)	03/05/05	33.33	15.80	17.00	-	-	
	11/09/05	33.33	16.18	17.44	-	_	
	02/09/06	33.33	14.02	19 31	_	_	
	05/04/06	33 33	12.97	20.36	_	_	
	08/04/06	33 33	15.63	17 70	-	-	
	11/08/06	33.33	16.55	16.78	-	-	
	02/08/07	33.33	16.12	17.21	-	-	
	05/29/07	33.33	15.87	17.46	-	-	
	09/05/07	33.33	16.95	16.38	-	-	
	12/12/07	33.33	18.13	15.20	-	-	
	02/13/08	33.33	16.58	16.75	-	-	
	05/15/08	33.33	17.08	16.25	-	-	
	08/05/08	33.33	17.42	15.91	-	-	
	11/07/08	33.33	17.99	15.34	-	-	
	02/05/09	33.33	17.42	15.91	-	-	
	05/05/09	33.33	16.20	17.13	-	-	
	08/21/09	33.33	17.66	15.67	-	-	
MW-6	02/03/05	32.82	13.99	18.83	-	Sheen	
(12-22)	05/09/05	32.82	13.61	19.21	-	Sheen	
	08/05/05	32.82	15.50	17.32	15.13	0.37	
	11/09/05	32.82	15.87	16.95	15.50	0.37	
	02/09/06	32.82	13.93	18.89	13.22	0.71	
	05/04/06	32.82	12.88	19.94	12.13	0.75	
	08/04/06	32.82	15.22	17.60	14.81	0.41	
	11/08/06	32.82	16.16	16.66	15.78	0.38	
	02/08/07	32.82	15.48	17.34	15.14	0.34	
	05/29/07	32.82	15.35	17.47	15.04	0.31	
	09/05/07	32.82	15.55	17.27	-	-	
	12/12/07	32.82	17.22	15.60	-	Sheen	
	02/13/08	32.82	15.54	17.28	-	Sheen	
	05/15/08	32.82	16.25	16.57	-	-	
	08/05/08	32.82	16.48	16.34	-	-	
	11/07/08	32.82	17.33	15.49	-	-	
	02/05/09	32.82	16.53	16.29	-	-	
	05/05/09	52.82 32.82	15.46	1/.36	-	-	
	08/21/09	32.82	16.70	16.12	-	-	

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
				10.00		~
MW-7	02/03/05	33.07	14.17	18.90	-	Sheen
(12-22)	05/09/05	33.07	14.47	18.60	14.44	0.03
	08/05/05	33.07	16.07	17.00	16.02	0.05
	11/09/05	33.07	16.47	16.60	16.35	0.12
	02/09/06	33.07	14.18	18.89	14.11	0.07
	05/04/06	33.07	13.12	19.95	13.11	0.01
	08/04/06	33.07	15.74	17.33	-	Sheen
	11/08/06	33.07	16.59	16.48	-	Sheen
	02/08/07	33.07	16.23	16.84	-	Sheen
	05/29/07	33.07	16.13	16.94	-	Sheen
	09/05/07	33.07	16.40	16.67	-	Sheen
	12/12/07	33.07	18.02	15.05	-	Sheen
	02/13/08	33.07	16.27	16.80	-	Sheen
	05/15/08	33.07	17.01	16.06	-	-
	08/05/08	33.07	17.23	15.84	-	-
	11/07/08	33.07	18.18	14.89	-	-
	02/05/09	33.07	17.26	15.81	-	-
	05/05/09	33.07	16.13	16.94	-	-
	08/21/09	33.07	17.39	15.68	-	-
MW-8	05/15/08	31.73	16.47	15.26	-	-
(12-22)	08/05/08	31.73	16.88	14.85	-	-
	11/07/08	31.73	17.28	14.45	-	-
	02/05/09	31.73	16.78	14.95	-	-
	05/05/09	31.73	16.05	15.68	-	-
	08/21/09	31.73	17.05	14.68	-	-
MW-9	05/15/08	29.02	15.16	13.86	_	_
(12-22)	08/05/08	29.02	15.38	13.64	-	-
(12 22)	11/07/08	29.02	15.80	13.18	_	-
	02/05/09	29.02	15.31	13.64	_	_
	05/05/09	29.02	14 38	14 64	_	_
	08/21/09	29.02	15.41	13.61	-	-

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW 10	02/02/05	21.17	12.65	19.50		
(12, 22)	02/03/05	31.17 31.17	12.05	18.52	-	-
(12-22)	03/03/03	31.17	14.68	16.08	_	-
	11/09/05	31.17	14.00	16.23	_	_
	02/09/06	31.17	12.82	18.35	_	_
	05/04/06	31.17	12.02	19.06	-	-
	08/04/06	31.17	14.38	16.79	-	-
	11/08/06	31.17	15.32	15.85	-	-
	02/08/07	31.17	15.59	15.58	-	-
	05/29/07	99/07 31.17 15.27 15.90 -		-		
	09/05/07	31.17	16.25	14.92	-	-
	12/12/07	31.17	17.75	13.42	-	Sheen
	02/13/08	31.17	15.59	15.58	-	-
	05/15/08	31.17	16.40	14.77	-	-
	08/05/08	31.17	16.67	14.50	-	-
	11/07/08	31.17	nm	-	-	-
	02/05/09	31.17	nm	-	-	-
	05/05/09	31.17	nm	-	-	-
	08/21/09	31.17	nm	-	-	-
MW-11	02/03/05	31.78	13.39	18.39	-	Sheen
(12-22)	05/09/05	31.78	13.89	17.89	-	Sheen
	08/05/05	31.78	15.47	16.31	-	Sheen
	11/09/05	31.78	15.73	16.05	-	Sheen
	02/09/06	31.78	13.53	18.25	-	Sheen
	05/04/06	31.78	12.73	19.05	-	Sheen
	08/04/06	31.78	15.17	16.61	-	Sheen
	11/08/06	31.78	16.15	15.63	-	-
	02/08/07	31.78	16.36	15.42	-	Sheen
	05/29/07	31.78	16.06	15.72	-	Sheen
	09/05/07	31.78	17.03	14.75	-	Sheen
	12/12/07	31.78	18.68	13.10	-	-
	02/13/08	31.78	16.28	15.50	-	-
	05/15/08	31.78	17.12	14.66	-	-
	08/05/08	31.78	17.33	14.45	-	-
	11/07/08	31.78	nm	-	-	-
	02/05/09	31.78	nm	-	-	-
	05/05/09	31.78	nm	-	-	-
	08/21/09	31.78	nm	-	-	-

Well ID (screen interval)	Date Collected	Well ^{1,2,5} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-12 (12-22)	02/03/05 05/09/05 08/05/05 11/09/05 02/09/06 05/04/06 11/08/06 02/08/07 05/29/07 09/05/07 12/12/07 02/14/08 05/15/08 08/05/08 11/07/08	32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05 32.05	13.70 14.17 15.69 15.93 13.78 12.98 15.39 16.29 16.54 16.27 17.24 18.65 16.50 17.34 17.61	18.35 17.88 16.36 16.12 18.27 19.07 16.66 15.76 15.51 15.78 14.81 13.40 15.55 14.71 14.41		(ff) Sheen Sheen Sheen Sheen Sheen - - - - - - - - - - - - - - - - - -
MW-13	02/05/09 05/05/09 08/21/09 05/15/08	32.05 32.05 32.05 32.05 28.84 28.84	nm nm nm 14.87		- - -	-
(12-22)	03/03/03 11/07/08 02/05/09 05/05/09 08/21/09	28.84 28.84 28.84 28.84 28.84	15.10 15.61 15.09 14.09 15.11	13.74 13.23 13.75 14.75 13.73	- - - -	
MW-14 (12-22) MW-15 (12-22)	08/21/09 08/21/09	29.53 29.22	15.66 16.03	13.87 13.19	-	-
MW-16 (12-22)	08/21/09	28.87	15.61	13.26	-	-

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected (ft ams	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
---------------------------------	------------------------------	--	--	---------------------------	--

NOTES:

not applicable
ft = feet
ft amsl = feet above mean sea level
nm = not measured
LNAPL = light non-aqueous phase liquid

1) Monitoring well top of casing (TOC) elevations were resurveyed by Morrow Surveying on January 10, 2006 and February 7, 2006

2) Groudwater elevations for the February 3, 2005 and subsequent monitoring episodes use the new well survey data

3) Depth water is measured from the top of the well casing

4) When LNAPL is present at >0.10 ft, the groundwater elevations are assumed to be affected by the LNAPL

5) Monitoring well top of casing (TOC) elevations for MW-8, 9, 13, 14, 15 & 16 were surveyed by Morrow Surveying on September 30, 2009

TABLE 2: GROUNDWATER FLOW SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Episode #	Date	Average Groundwater Elevation ¹ (ft amsl)	Change from Previous Episode (ft)	Flow direction (gradient)
1	06/29/01	12.10	-	SSE (0.0074)
2	10/10/01	11.80	-0.30	SSE (0.0071)
3	01/09/02	14.68	2.88	SE (0.0054)
4	04/24/02	13.85	-0.83	SSW (0.005)
5	07/24/02	12.92	-0.93	NE (0.021)
6	11/05/02	11.89	-1.02	SW (0.019)
7	02/04/03	12.80	0.90	NNW (0.01)
8	05/02/03	13.11	0.32	SSE (0.01)
9	08/04/03	12.27	-0.85	SSE(0.007)
10	11/03/03	11.64	-0.63	SSE (0.006)
11	02/09/04	13.03	1.39	SSE (0.006)
12	05/10/04	12.92	-0.11	SSE (0.008)
13	08/09/04	12.31	-0.60	SSE (0.006)
14	11/09/04	11.70	-0.62	SSE (0.004)
15	02/03/05	18.75	-	W (0.007)
16	05/09/05	18.53	-0.22	S (0.010)
17	08/05/05	16.94	-1.59	S (0.010)
18	11/09/05	16.65	-0.28	S (0.010)
19	02/09/06	18.83	2.17	SSW (0.010)
20	05/04/06	19.72	0.90	SSW (0.012)
21	08/04/06	17.24	-2.48	SSW (0.010)
22	11/08/06	16.32	-0.93	SSW(0.0007)
23	02/08/07	16.25	-0.07	SSE (0.0009)
24	05/29/07	16.60	0.35	SSE (0.0009)
25*	09/05/07	15.77	-0.84	-
26*	12/12/07	14.38	-1.38	-
27*	02/13/08	16.24	1.86	-
28*	05/15/08	15.25	-1.00	-
29*	08/05/08	14.97	-0.27	-
30*	11/07/08	14.48	-0.49	-
31*	02/05/09	15.12	0.64	-
32*	05/05/09	16.15	1.03	-
33**	08/21/09	14.63	-1.51	SW (0.010)

NOTES:

- not applicable

ft = feet

ft amsl = feet above mean sea level

1) MW-2 to MW-4 only used for episodes 1 through 14; all wells used for episodes 15 and later

* Flow direction not calculated due to onsite operation of dual-phase extraction remediation system

**HVDPE System was shutdown for approximately three (3) months prior to sampling; therefore, groundwater elevation data was contoured. The groundwater elevation data and contours are shown on Figure 4.

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
NAXX7 1	06/00/01	1.(2)	10	10	16	10	10	10	
MW-1	06/29/01	1.63	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
(8-28)	10/10/01	0.08	ns/fp	ns/fp	ns/īp	ns/īp	ns/īp	ns/īp	-
	01/09/02	< 0.01	ns/īp	ns/fp	ns/fp	ns/īp	ns/īp	ns/īp	-
	04/24/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	0//24/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/05/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/04/03	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/02/03	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/03	0.23	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/03/03	1.27	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/04	0.18	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/10/04	Obstructed	-	-	-	-	-	-	-
	08/09/04	0.21	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/04	0.24	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/03/05	0.17	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	47,000	<500	4,200	11,000	1,100	6,400	-
	12/12/07	Sheen	80,000	<250	630	22,000	1,700	8,900	-
	02/13/08	Sheen	22,000	<250	750	4,100	340	3,200	-
	05/15/08	0.00	25,000	<600	580	9,200	970	4,200	-
	08/05/08	0.00	110,000	<1,000	730	22,000	1,700	8,200	-
	11/07/08	0.00	15,000	290	460	1,400	84	2,700	-
	02/05/09	0.00	42,000	<1,000	1,100	8,500	880	4,500	-
	05/05/09	0.00	44,000	<50*	1,300	6,500	1,300	6,800	-
	08/21/09	0.00	63,000	<50*	1,900	15,000	1,200	7,600	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-2	06/29/01	0.00	69,000	4,100/4,400*	7,200	6,100	1,500	7,000	-
(8-28)	10/10/01	0.00	87,000	14,000	22,000	12,000	2,700	9,100	-
	01/09/02	0.00	130,000	11,000	30,000	19,000	3,800	14,000	-
	04/24/02	Sheen	210,000	32,000	38,000	23,000	4,600	19,000	-
	07/24/02	Sheen	170,000	36,000	48,000	12,000	3,700	8,600	-
	11/05/02	Sheen	190,000	36,000	45,000	25,000	4,600	16,000	-
	02/04/03	Sheen	150,000	27,000	51,000	24,000	4,200	14,000	-
	05/02/03	Sheen	150,000	35,000	39,000	11,000	3,800	9,900	-
	08/04/03	Sheen	120,000	29,000	32,000	5,000	3,200	7,200	-
	11/03/03	Sheen	120,000	24,000	33,000	4,300	3,200	5,400	-
	02/09/04	Sheen	130,000	19,000	27,000	7,700	3,100	7,600	-
	05/10/04	Sheen	67,000	13,000	20,000	3,000	2,300	4,100	-
	08/09/04	Sheen	100,000	22,000	27,000	7,100	2,800	6,600	-
	11/09/04	Sheen	100,000	23,000	27,000	6,100	3,000	5,600	-
	02/03/05	Sheen	84,000	11,000	23,000	5,000	3,000	5,500	-
	05/09/05	Sheen	74,000	14,000	21,000	4,200	2,300	3,300	-
	07/27/05	Sheen	9,500	910	1,400	1,000	180	960	-
	08/05/05	Sheen	74,000	4,000	8,800	11,000	1,300	7,600	-
	11/09/05	Sheen	120,000	16,000	21,000	14,000	2,300	13,000	-
	02/09/06	Sheen	120,000	10,000	18,000	16,000	2,200	13,000	-
	05/04/06	Sheen	71,000	8,300	14,000	11,000	1,500	7,600	-
	08/04/06	Sheen	160,000	14,000	22,000	14,000	2,400	11,000	-
	11/08/06	Sheen	110,000	6,400	17,000	9,200	1,600	6,800	<dl< th=""></dl<>
	$02/08/07^{1}$	Sheen	68,000	5,400	11,000	7,800	1,500	7,700	-
	05/29/07	Sheen	49,000	4,800	7,600	4,400	940	4,600	-
	09/05/07	Sheen	25,000	1,000	3,300	3,400	490	2,800	-
	12/12/07	0.00	5,500	870	1,100	440	28	550	-
	02/13/08	0.00	5,700	250	440	290	43	1,000	-
	05/15/08	0.00	490	68	110	11	0.90	42	-
	08/05/08	0.00	520	<25	26	57	7.6	70	-
	11/07/08	0.00	680	72	110	38	3.1	75	-
	02/05/09	0.00	1,000	82	130	50	15	120	-
	05/05/09	0.00	570	8.6*	22	33	9.2	73	-
	08/21/09	0.00	660	<10	13	41	13	48	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-3	06/29/01	0.00	550	<5.0	<0.5	3.1	3.2	1.2	-
(10-25)	10/10/01	0.00	470	<5.0	0.77	5.3	3.3	5.9	-
	01/09/02	0.00	1,000	<5.0	0.90	7.6	7.8	25	-
	04/24/02	0.00	1,500	<5.0	0.64	7.2	12	14	-
	07/24/02	0.00	1,200	<5.0	10	17.0	11	25	-
	11/05/02	0.00	1,800	<25	33	43.0	18	31	-
	02/04/03	0.00	450	<5.0	< 0.5	5.0	<0.5	0.77	-
	05/02/03	0.00	340	<5.0	7.3	10.0	2.5	7.3	-
	08/04/03	0.00	170	<5.0	5.8	5.9	1.5	4.9	-
	11/03/03	0.00	54	<5.0	<0.5	<0.5	<0.5	<0.5	-
	02/09/04	0.00	190	<5.0	<0.5	3.6	<0.5	<0.5	-
	05/10/04	0.00	280	<5.0	<0.5	3.4	<0.5	<0.5	-
	08/09/04	0.00	290	<5.0	<0.5	3.8	<0.5	<0.5	-
	11/09/04	0.00	220	<5.0	< 0.5	4.0	<0.5	<0.5	-
	02/03/05	0.00	160	<5.0	13	30	3	21	-
	05/09/05	0.00	200	<5.0	<0.5	3.9	<0.5	<0.5	-
	08/05/05	0.00	<50	<5.0	<0.5	< 0.5	<0.5	<0.5	-
	11/09/05	0.00	130	<5.0	<0.5	2.3	<0.5	<0.5	-
	02/09/06	0.00	270	<5.0	<0.5	5.6	<0.5	<0.5	-
	05/04/06	0.00	220	<5.0	<0.5	4.3	<0.5	<0.5	-
	08/04/06	0.00	93	<5.0	<0.5	1.5	<0.5	<0.5	-
	11/08/06	0.00	160	<5.0	<0.5	2.9	<0.5	<0.5	<dl< td=""></dl<>
	$02/08/07^{1}$	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/29/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	09/05/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	12/12/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/13/08	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/15/08	0.00	<50	<5.0	0.99	< 0.5	< 0.5	0.68	-
	08/05/08	0.00	91	<5.0	2.0	8.0	1.3	8.0	-
	11/07/08	0.00	150	<5.0	0.70	6.5	1.3	26	-
	02/05/09	0.00	<50	<5.0	1.7	< 0.5	< 0.5	< 0.5	-
	05/05/09	0.00	<50	<5.0	< 0.5	0.76	< 0.5	< 0.5	-
	08/21/09	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-4	06/29/01	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
(10-25)	10/10/01	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	01/09/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	04/24/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	07/24/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	11/05/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	02/04/03	0.00	<50	<5.0	<0.5	< 0.5	<0.5	< 0.5	-
	05/02/03	0.00	500	10	68	71	18	65	-
	08/04/03	0.00	270	<5.0	30	29	9.2	32	-
	11/03/03	0.00	<50	<5.0	<0.5	< 0.5	<0.5	< 0.5	-
	02/09/04	0.00	<50	<5.0	<0.5	< 0.5	<0.5	< 0.5	-
	05/10/04	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	08/09/04	0.00	130	<5.0	14	13	5.3	17	-
	11/09/04	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	02/03/05	0.00	370	<5.0	<0.5	4.1	<0.5	0.64	-
	05/09/05	0.00	840	<5.0	50	180	21	110	-
	07/27/05	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	08/05/05	0.00	310	<5.0	7.5	57	10	53	-
	11/09/05	0.00	290	<5.0	12	61	8.8	49	-
	02/09/06	0.00	250	<5.0	9.9	42	7.5	45	-
	05/04/06	0.00	300	<5.0	37	76	7.8	42	-
	08/04/06	0.00	270	<5.0	7.3	33	5.6	32	-
	11/08/06	0.00	1,300	<5.0	75	230	31	160	<dl< th=""></dl<>
	02/08/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/29/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	09/05/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	12/12/07	0.00	<50	<5.0	< 0.5	<0.5	<0.5	< 0.5	-
	02/13/08	0.00	75	<5.0	2.4	8.3	1.2	14	-
	05/15/08	0.00	<50	<5.0	0.65	< 0.5	< 0.5	0.52	-
	08/05/08	0.00	76	<5.0	1.2	8.1	1.5	9.7	-
	11/07/08	0.00	100	<5.0	2.8	7.7	1.1	15	-
	02/05/09	0.00	140	<5.0	0.87	19	3.9	29	-
	05/05/09	0.00	85	<5.0	1.2	8.0	2.5	19	-
	08/21/09	0.00	390	<5.0	14	58	11	73	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW 5	02/02/05	0.00	78 000	<1.000	7.600	12 000	2 200	0.600	
(12-22)	02/03/03	0.00	78,000 60.000	<1,000	7,000 6,100	0 000	2,200	9,000	-
(12-22)	07/27/05	0.00 nm	120,000	1 100	10,100	19,000	2,000	13,000	_
	08/05/05	0.00	59,000	<500	4 100	10,000	1 200	6 600	_
	11/09/05	0.00	44.000	<500	3.300	7.400	1,100	4.900	_
	02/09/06	0.00	110.000	<500	10.000	22.000	2.400	13.000	-
	05/04/06	0.00	110,000	<250	11,000	22,000	2,900	15,000	-
	08/04/06	0.00	73,000	<500	4,700	8,600	1,700	7,600	-
	11/08/06	0.00	51,000	<500	3,700	7,200	1,400	6,700	<dl< th=""></dl<>
	02/08/07	0.00	67,000	<800	5,100	10,000	1,800	10,000	-
	05/29/07	0.00	86,000	<1000	6,200	12,000	2,000	11,000	-
	09/05/07	0.00	36,000	<350	2,100	4,000	560	4,600	-
	12/12/07	0.00	8,200	<100	160	56	290	1,200	-
	02/13/08	0.00	4,600	<50	77	440	41	1,300	-
	05/15/08	0.00	3,000	<10	59	330	47	670	-
	08/05/08	0.00	4,500	<50	64	490	46	1,100	-
	11/07/08	0.00	5,000	<17	66	400	29	1,200	-
	02/05/09	0.00	2,800	<0.5*	49	120	22	570	-
	05/05/09	0.00	12,000	<5.0*	360	1,300	250	2,000	-
	08/21/09	0.00	11,000	<1.0*	450	610	400	2,300	-
MW-6	02/03/05	Sheen	130,000	<1,000	2,400	33,000	2,400	15,000	-
(12-22)	05/09/05	Sheen	170,000	<4,000	11,000	43,000	3,100	16,000	-
	08/05/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.71	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.75	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.41	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.38	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.34	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.31	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	0.00	74,000	<750	870	7,000	2,400	12,000	-
	12/12/07	Sheen	12,000	<10	556	560	550	1,800	-
	02/13/08	Sheen	27,000	<250	700	4,900	620	5,300	<dl< th=""></dl<>
	05/15/08	0.00	25,000 33,000	<130 <350	410 480	2,500 5,500	1,000	<i>5</i> ,/00 6,800	-
	$11/07/08^2$	0.00	54,000	<5.0	400 610	7,000	1,400	8,000	_
	02/05/09	0.00	92,000	<50*	1 100	7,000 8,600	2,800	14 000	-
	05/05/09	0.00	58,000	<50*	560	4 300	2,000	13,000	-
	08/21/09	0.00	53,000	<5.0*	1,800	8,100	1,200	12,000	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	HVOC (µg/L)
		21		10.000	4.5.000				
MW-7	02/03/05	Sheen	220,000	18,000	45,000	44,000	3,500	18,000	-
(12-22)	05/09/05	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.07	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	Sheen	230,000	19,000	37,000	37,000	3,100	14,000	-
	11/08/06	Sheen	240,000	13,000	41,000	39,000	3,000	14,000	<dl< th=""></dl<>
	02/08/07	Sheen	230,000	15,000	41,000	37,000	3,700	20,000	-
	05/29/07	Sheen	ns/fp	ns/fp	ns/fp	ns/fp	ns/tp	ns/fp	-
	09/05/07	Sheen	14,000	<450	41	210	99	1,600	-
	12/12/07	Sheen	9,200	<500	1,100	870	66	1,100	-
	02/13/08	0.00	17,000	590	2,800	2,700	300	1,900	-
	05/15/08	0.00	10,000	230	1,700	1,900	200	950	-
	08/05/08	0.00	6,100	<150	1,100	1,100	120	740	-
	11/07/08	0.00	4,200	<50	580	570	44	400	-
	02/05/09	0.00	7,800	26*	1,100	810	190	690	-
	05/05/09	0.00	7,200	77*	1,200	1,200	150	860	-
	08/21/09	0.00	28,000	390*	6,200	3,200	450	3,100	-
MW-8	05/15/08	0.00	90	<5.0	0.62	2.4	<0.5	1.0	-
(12-22)	08/05/08	0.00	81	<5.0	0.66	7.2	1.2	9.1	-
× ,	11/07/08	0.00	430	<5.0	2.9	26	6.1	86	-
	02/05/09	0.00	<50	<5.0	0.98	1.3	< 0.5	< 0.5	-
	05/05/09	0.00	94	<5.0	0.91	7.1	2.2	17	-
	08/21/09	0.00	480	<5.0	30	100	17	130	-
MW-9	05/15/08	0.00	60,000	960	14,000	410	1,500	3,500	-
(12-22)	08/05/08	0.00	42,000	<1,200	13,000	400	1,800	4,800	-
	11/07/08 ²	0.00	53,000	400	13,000	350	1,800	3,100	-
	02/05/09	0.00	32,000	360*	11,000	310	1,600	2,700	-
	05/05/09	0.00	44,000	730*	14,000	520	1,900	3,400	-
	08/21/09	0.00	48,000	900*	15,000	550	2,000	3,300	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW 10	02/02/05	0.00	26.000	~500	4 700	7 200	660	2 400	
(12-22)	02/03/03	0.00	30,000 88,000	<1 500	4,700 6,900	20,000	2 300	9,400	-
(12 22)	08/05/05	0.00	88,000	<1,500	10,000	20,000	1 900	9,800	-
	11/09/05	0.00	63.000	<1.100	5.400	13.000	1,900	7.900	_
	02/09/06	0.00	100,000	<500	6,600	19,000	2,900	13,000	-
	05/04/06	0.00	100,000	<500	8,500	25,000	3,000	13,000	-
	08/04/06	0.00	190,000	<2,200	17,000	35,000	2,800	13,000	-
	11/08/06	0.00	57,000	<500	2,500	7,600	1,600	5,700	<dl< th=""></dl<>
	02/08/07	0.00	69,000	<1,000	4,400	14,000	2,200	8,800	-
	05/29/07	0.00	100,000	<1,000	5,300	19,000	2,600	12,000	-
	09/05/07	0.00	87,000	<1,000	6,100	20,000	2,400	12,000	-
	12/12/07	Sheen	4,700	<50	95	280	110	730	-
	02/13/08	0.00	4,500	<250	190	370	65	880	-
	05/15/08	0.00	4,800	<50	130	320	110	710	-
	08/05/08	0.00	3,500	<120	230	180	74	190	-
	$11/07/08^3$	-	-	-	-	-	-	-	-
	02/05/09	-	-	-	-	-	-	-	-
	05/05/09	-	-	-	-	-	-	-	-
	08/21/09	-	-	-	-	-	-	-	-
MW-11	02/03/05	Sheen	170.000	<3.000	23.000	35.000	3.100	16.000	-
(12-22)	05/09/05	Sheen	210,000	3,500	29,000	40,000	3,400	16,000	-
~ /	07/27/05	Sheen	220,000	2,500	26,000	37,000	3,200	18,000	-
	08/05/05	Sheen	210,000	<2,500	35,000	42,000	3,300	16,000	-
	11/09/05	Sheen	180,000	9,100	32,000	47,000	3,600	18,000	-
	02/09/06	Sheen	210,000	10,000	33,000	39,000	3,800	20,000	-
	05/04/06	Sheen	190,000	12,000	34,000	41,000	3,500	17,000	-
	08/04/06	Sheen	290,000	11,000	33,000	43,000	3,300	15,000	-
	11/08/06	0.00	240,000	14,000	34,000	44,000	3,300	16,000	<dl< th=""></dl<>
	02/08/07	0.00	230,000	19,000	43,000	44,000	3,900	20,000	-
	05/29/07	0.00	230,000	19,000	35,000	39,000	3,600	20,000	-
	09/05/07	0.00	200,000	19,000	34,000	36,000	3,700	23,000	-
	12/12/07	0.00	81,000	4,000	9,400 5,700	9,500	1,700	9,700	-
	02/13/08	0.00	36,000	4,200	5,700 2,800	4,000	560 120	5,300	-
	03/13/08	0.00	12,000	2,300 1 100	2,800 1,800	1,400	120 08	620	-
	11/07/003	0.00	12,000	1,100	1,000	/00	70	030	-
	11/07/08	-	-	-	-	-	-	-	-
	02/05/09	-	-	-	-	-	-	-	-
	03/03/09	-	-	-	-	-	-	-	-
	VO/21/V7	-	-	-	-	-	-	-	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
		~1	• • • • • • •	100.000		44.000	• 100		
MW-12	02/03/05	Sheen	250,000	100,000	52,000	41,000	3,400	15,000	-
(12-22)	05/09/05	Sheen	210,000	91,000	44,000	28,000	3,300	13,000	-
	08/05/05	Sheen	170,000	52,000	38,000	28,000	3,000	12,000	-
	11/09/05	Sheen	180,000	52,000	39,000	25,000	2,900	12,000	-
	02/09/06	Sheen	1/0,000	34,000	40,000	23,000	3,500	15,000	-
	05/04/06	Sheen	160,000	47,000	33,000	28,000	2,800	10,000	-
	08/04/06	Sheen	240,000	55,000	40,000	24,000	3,200	12,000	- (D)
	11/08/06	0.00	190,000	33,000	40,000	23,000	2,700	13,000	<dl< th=""></dl<>
	02/08/07	0.00	150,000	34,000	38,000	19,000	3,300	12,000	-
	05/29/07	0.00	150,000	30,000	30,000	15,000	3,100	13,000	-
	09/05/07	0.00	160,000	38,000	33,000	21,000	3,200	14,000	-
	12/12/07	0.00	58,000	6,700	10,000	/,100	1,200	4,900	-
	02/13/08	0.00	17,000	3,000	3,600	2,300	440	1,800	-
	05/15/08	0.00	/,800	1,900	2,000	500	130	640 200	-
	08/05/08	0.00	3,900	800	/30	130	61	200	-
	11/07/083	-	-	-	-	-	-	-	-
	02/05/09	-	-	-	-	-	-	-	-
	05/05/09	-	-	-	-	-	-	-	-
	08/21/09	-	-	-	-	-	-	-	-
MW-13	05/15/08	0.00	<250	6 700	18	<2.5	<25	<25	_
(12-22)	08/05/08	0.00	<250	3 400	<2.5	57	<2.5 <2.5	43	_
(12 22)	11/07/08	0.00	61	380	2.5	14	0.55	0.87	_
	02/05/09	0.00	<50	14	<0.5	<0.5	<0.55	<0.5	_
	05/05/09	0.00	<50	<5.0	0.53	3 2	11	7.5	_
	08/21/09	0.00	85	<5.0	2.0	10	2.2	13	-
MW-14 (12 - 22)	08/21/09	0.00	3,000	<1.0*	11	41	92	40	-
MW-15 (12 - 22)	08/21/09	0.00	190	23	23	15	6.6	25	-
MW-16 (12 - 22)	08/21/09	0.00	860	20	80	110	26	130	-

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
---------------------------------	-------------------	--	-----------------	----------------	-------------------	-------------------	-----------------------------	-------------------	----------------

NOTES:

not sampled/analyzed
ft = feet
ns/fp = not sampled / free product present
µg/L = micrograms per liter or parts per billion (ppb)
TPH-g by EPA Method SW8015Cm
BTEX & MTBE by EPA Method SW8021B

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

HVOC= halogenated volatile organic compounds (e.g., PCE, TCE, DCE, VC)

DL = detection limit

* = MTBE by EPA Method 8260

1) Analytical results for MW-2 and MW-3 reversed from lab data based on historical concentration trends observed

2) Groundwate sample re-analyzed for MTBE-only by EPA Method SW8260B

3) Wellheads removed and wells now located ~4' below grade beneath new residential construction; routine sampling is no longer possible

TABLE 4: SOIL ANALYTICAL DATA SUMMARY

Sample ID	Date Collected	Depth (ft bgs)	TPHg (mg/kg)	TOG (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)
MW-1 (6') MW-1 (11')	7/14/95 7/14/95	6 11	390 370	-	-	0.28 0.24	0.29 0.24	0.29 0.23	0.62 0.61
MW-2 (6') MW-2 (11')	7/14/95 7/14/95	6 11	ND 300	24 38	-	ND 0.30	ND 0.23	ND 0.24	ND 0.63
SB-1 (18') SB-1 (24')	8/18/96 8/18/96	18 24	9,100 30	-	47 0.20	57 0.37	580 1.4	190 0.52	1,000 2.5
SB-2 (24')	8/18/96	24	1.1	-	0.032	0.11	0.17	0.018	0.099
SB-3 (24')	8/18/96	24	16	-	4.7	1.6	2.5	0.21	0.95
MW-3 15' MW-3 20'	05/25/01 05/25/01	15 20	ND<1.0 ND<1.0	-	ND<0.05 ND<0.05	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005
MW-4 15' MW-4 20'	05/25/01 05/25/01	15 20	ND<1.0 ND<1.0	-	ND<0.05 ND<0.05	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005
SB-4 12' SB-4 15'	04/02/03 04/02/03	12 15	25 260	-	ND<0.5 ND<1.7	0.41 3.5	1.0 15	0.2 4.5	1.3 23
SB-5 11'	04/03/03	11	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-6 16'	04/02/03	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-7 12' SB-7 18'	04/02/03 04/02/03	12 18	700 4,900	-	ND<10 ND<25	6.0 65	25 260	9.3 77	50 400
SB-8 17'	04/02/03	17	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-9 16'	04/03/03	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-10 12'	04/03/03	12	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-11 12' SB-11 16'	04/03/03 04/03/03	12 16	1.4 2,700	-	ND<0.05 ND<30	0.12 29	0.10 170	0.026 49	0.066 250
SB-12 15'	04/02/03	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-13 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-14 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-15 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005

TABLE 4: SOIL ANALYTICAL DATA SUMMARY

Vic's Automotive, 245 8th Street, Oakland, California

Sample ID	Date Collected	Depth (ft bgs)	TPHg (mg/kg)	TOG (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)
MW-5 16'	01/11/05	16	100	-	ND<5.0	2.6	6.0	1.5	8.4
MW-5 20'	01/11/05	20	37		ND<0.50	2.6	5.6	0.91	4.6
MW-7 16'	01/11/05	16	19	-	2.9	3.3	3.5	0.4	1.9
MW-7 20.5'	01/11/05	20.5	340		ND<5.0	9.6	25	7.0	35
MW-6 20'	01/19/05	20	14	-	ND<0.25	0.099	4.1	0.33	1.7
MW-10 15.5'	01/20/05	15.5	840	-	ND<2.0	11	58	16	83
MW-11 15.5'	01/19/05	15.5	3,200	-	ND<10	35	320	85	430
MW-12 15.5'	01/19/05	15.5	13	-	8.5	2.5	2.8	0.22	1.1
MW-9-15'	03/17/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-9-20'	03/17/08	20	1.5		ND<0.05	0.37	0.0052	0.047	0.067
MW-13-15'	03/17/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-13-20'	03/17/08	20	ND<1.0		0.086	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-8-15'	03/18/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-8-20'	03/18/08	20	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-14-16'	07/28/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-14-23'	07/28/09	23	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-15-16'	07/27/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-15-24'	07/27/09	24	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-16-16'	07/27/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-16-25'	07/27/09	25	ND<1.0		0.24	ND<0.005	ND<0.005	ND<0.005	ND<0.005

NOTES:

ND = not detected at or above the laboratory reporting limit

mg/kg = milligrams per kilogram of soil

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

TOG = Total Oil and Grease

ESL - DW = Environmental Screening Levels for Residential Land Use

TABLE 5: SOIL GAS ANALYTICAL DATA SUMMARY

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (µg/m3)	Ethyl- benzene (μg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (µg/m3)
GP-1-5	08/04/06	5	331	<8.0	<7.1	<8.4	<97	<97	<17	17	23
GP-1-5D	08/04/06	5	551	<8.0	<7.1 <7.1	<8.4	<9.7 <9.7	<9.7 <9.7	<17	17	23
GP-1-5	11/08/06	5	1 100	<0.0 <4.6	<4.0	<4.8	<5.5	<5.5	<95	12	<12
GP-1-5	03/06/07*	5	-	-	-	-	-0.0	-5.5	-	-	-12
GP-1-5	05/17/07	5	457	<3.6	<3.2	<3.8	<4.4	<4.4	<7.6	14	<9.9
GP-1-5D ₁	05/17/07	5	-	<3.6	<3.2	<3.8	<4.4	<4.4	<7.6	14	<9.9
GP-1-5	12/12/07	5	<1,500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-1-5	02/14/08	5	<1,800	<48	<6.5	<7.7	<8.8	<27	<96	<14	<10,000
GP-1-5	05/08/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
GP-1-5	08/15/08	5	<1800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-1-5 ²	11/07/08	5	-	-	-	-	-	-	-	-	-
GP-1-10	08/04/06	10	493	<4.1	<3.6	<4.3	<5.0	<5.0	<8.6	20	<11
GP-1-10	11/08/06	10	950	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-1-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-1-10	05/17/07^	10	-	-	-	-	-	-	-	-	-
GP-1-10	12/12/07	10	<1,500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-1-10	02/14/08	10	<1,800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-1-10	05/08/08	10	<1,800	<7.3	< 6.5	<1.1	<8.8	<27	-	<14	<25
GP-1-10	08/15/08	10	<1,800	.3</td <td><6.5</td> <td><!--./</td--><td><8.8</td><td><27</td><td>-</td><td><14</td><td><10,000</td></td>	<6.5	./</td <td><8.8</td> <td><27</td> <td>-</td> <td><14</td> <td><10,000</td>	<8.8	<27	-	<14	<10,000
GP-1-10 ²	11/07/08	10	-	-	-	-	-	-	-	-	-
GP-2-5	08/04/06	5	493	<4.4	<3.9	6.9	<5.4	10	<9.3	600	<12
GP-2-5	11/08/06	5	1,100	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	240	<11
GP-2-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-2-5	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	<8.3	420	<11
GP-2-5	12/12/07	5	<1,500	<48	< 6.5	.7</td <td>< 8.8</td> <td><27</td> <td><96</td> <td><14</td> <td><25</td>	< 8.8	<27	<96	<14	<25
GP-2-5 GP-2-5	02/14/08	5	<1,800 <1,800	<48 <7.2	<0.5 <6.5	./</td <td><8.8 <9.9</td> <td><27 <27</td> <td><14</td> <td><14 <14</td> <td><10,000</td>	<8.8 <9.9	<27 <27	<14	<14 <14	<10,000
GP-2-5	03/08/08	5	<1,800	<7.3	<0.5 <6.5	<1.1 <7.7	~0.0 <8.8	<27 <27	-	~14 30	<10,000
GP_{-2-5}^{2}	11/07/08	5	<1,000	<1.5	-0.5	~7.7	~0.0	~27		57	<10,000
01-2-5	11/07/00	5	-	-	-	-	-	-	-	-	-
GP-2-10	08/04/06	10	352	<10	<9.0	18	<12	<12	<21	270	<28
GP-2-10	11/08/06	10	910	<3.9	<3.4	<4.1	<4.7	<4.7	<8.1	450	<11
GP-2-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-2-10	05/17/07	10	748	<3.8	<3.3	<3.9	<4.5	<4.5	<7.9	440	<10
GP-2-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-2-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-2-10	05/08/08	10	<1,800	<7.3	<6.5	<1.7	<8.8	<27	-	<14	<25
GP-2-10	08/15/08	10	<1,800	.3</td <td>< 0.5</td> <td><!--./</td--><td><8.8</td><td><27</td><td>-</td><td>48</td><td><10,000</td></td>	< 0.5	./</td <td><8.8</td> <td><27</td> <td>-</td> <td>48</td> <td><10,000</td>	<8.8	<27	-	48	<10,000
GP-2-10 ²	11/07/08	10	-	-	-	-	-	-	-	-	-

TABLE 5: SOIL GAS ANALYTICAL DATA SUMMARY

GP-3-5 080406 5 920 44.4 <3.9	Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (μg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (μg/m3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD 2.5	00/04/06	F	<240	-1.2	-2.7	-1.1	<5.0	<5.0	~9.9	-7.0	<11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP-3-5	08/04/06	5 5	<240	<4.2	< <u>5.</u> /	<4.4	< 2.0	<5.0 <5.2	<0.0	<7.9	<11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP-3-3 GP 2-5	11/08/00	5 5	930	\4.4	~ 3.9	~4.0	~ 3.2	<i>∽</i> 3.2	\9.1	~0.2	<u> ~12</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP 2 5	05/00/07*	5	- 597	<1.0	-2.5	- / 1	-19	-19	- 17	-75	<11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP 3 5D	05/17/07	5	582	<4.0	<3.5 <3.5	<4.1 11</td <td>~4.0 <1.8</td> <td>~4.0 <1.8</td> <td>-83</td> <td>-7.5</td> <td><11</td>	~4.0 <1.8	~4.0 <1.8	-83	-7.5	<11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CP_{25}	12/12/07	5		< <u>4.0</u>	~5.5	~4.1	~4.0	<4.0 <27	<0.5 <06	<14	<11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP-3-3 GP 2-5	12/12/07 02/14/08	5 5	<1200	~40 <19	<0.5	<1.1 <7.7	\0.0 ∕0.0	<27 <27	~90	<14 <14	<10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP 3 5	02/14/08	5	<1800	<40 <7.3	<0.5 <6.5	<1.1 <7.7	~0.0 <8.8	<27	-	<14 <14	<10,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GP 3 5	03/08/08	5	<1,800	<7.3	<0.5 <6.5	<1.1 <7.7	~0.0 <8.8	<27	-	<14 <14	<10,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CD 2 r^{1/2}$	00/15/08	5	<1,000	~7.5	<0.5	~1.1	~0.0	~27	-	×1 4	<10,000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-3-5"	11/0//08	5	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GP-3-10	08/04/06	10	564	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	11/08/06	10	1,800	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	<7.6	<11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	05/17/07	10	1,538	<4.1	<3.6	<4.3	<5.0	<5.0	18	<7.8	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10	05/08/08	10	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GP-3-10	08/15/08	10	<1,800	<7.3	<6.5	<1.1	<8.8	<27	-	<14	<10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-3-10 ^{1,2}	11/07/08	10	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	08/04/06	5	705	<4.4	5.4	<4.6	<5.4	<5.4	<9.3	<8.4	<12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5D ₁	08/04/06	5	599	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	11/08/06	5	540	<4	<3.5	<4.1	<4.8	<4.8	<8.3	<7.5	<11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$GP-4-5D_{f}$	11/08/06	5	610	<7.7	<6.8	<8.0	<9.2	<9.2	<16	<14	<21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	05/17/07	5	873	<4	<3.6	<4.2	<4.9	<4.9	15	<7.6	<11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-4-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$GP-4-5D_{f}$	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	<96	<14	<10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	05/08/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5	08/15/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-5 ^{1,2}	11/07/08	5	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-10	08/04/06	10	564	<4.1	6.1	17	5.7	16	12	<7.8	<11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-10D.	08/05/06	10	529	<3.8	4.2	18	<4.6	17	18	<7.2	<10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-10	11/08/06	10	900	<4.0	<3.5	4.1	<4.8	5.2	<8.3	<7.5	<11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-4-10D	11/08/06	10	880	<1.8	<1.6	<1.9	<2.2	<2.2	<3.8	<3.4	<4 9
GP-4-10 05/17/07^ 10 -	GP-4-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-4-10 12/12/07 10 1,600 <48 <6.5 <7.7 <8.8 <27 <96 <14 <25 GP-4-10 02/14/08 10 -	GP-4-10	05/17/07^	10	-	-	-	-	-	-	-	-	_
GP-4-10 02/14/08 10 -	GP-4-10	12/12/07	10	1.600	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-4-10 05/08/08 10 <1,800 <7.3 <6.5 <7.7 <8.8 <27 - <14 <25 GP-4-10 08/15/08 10 <1,800	GP-4-10	02/14/08	10	-,	-	-	-	-	-	-	-	-
GP-4-10 08/15/08 10 <1,800 <7.3 <6.5 <7.7 <8.8 <27 - <14 <10,000 GP-4-10 ^{1,2} 11/07/08 10 - <t< td=""><td>GP-4-10</td><td>05/08/08</td><td>10</td><td><1,800</td><td><7.3</td><td><6.5</td><td><7.7</td><td><8.8</td><td><27</td><td>-</td><td><14</td><td><25</td></t<>	GP-4-10	05/08/08	10	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
GP-4-10 ^{1.2} 11/07/08 10	GP-4-10	08/15/08	10	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<10,000
	GP-4-10 ^{1,2}	11/07/08	10	-	-	-	-	-	-	-	-	-

TABLE 5: SOIL GAS ANALYTICAL DATA SUMMARY

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (µg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (µg/m3)
NOTES:						•				•	•
- not sampled/ana	alyzed										
2-propanol (i.e., is	sopropyl alcohol) t	racer/leak cl	neck compound			TPH-g by mod	lified EPA Met	hod TO-3			
ft bgs = feet belov	v ground surface					BTEX, MTBE	, Ethanol, PCE	, 2-propanol by	modified EPA	Method TO-	15
$\mu g/m_3 = m_1 crogra$	ims per cubic mete	r 									
IPH-g = total peuMTBE = methyl t	ertiary butyl ether	ons as gasoni	ne								
PCE = tetrachloro	ethene										
ESLs = Environm	ental Screening Le	evels - for re	sidential land u	se							
CHHSLs = Califo	rnia Human Healtl	h Screening	Levels								
pp = CHHSL post	tponed	-									
* = Sampling not	possible due to sea	isonal wet so	oil conditions								
^ = No sample and	alysis due to preser	nce of free n	noisture in samp	ole tubing							
$D_f = after the prob$	e/sample ID indic	ates a duplic	ate sample coll	ected in the fiel	d						
$D_1 = after the prob$	e/sample ID indicate	ates a duplic	ate sample prep	ared and analy	zed by the lab						
1) On August 21, 2) Per concurrence	2008, GP-3 and G e from ACHCSA i	P-4 were dee n a letter dat	commissioned c ted October 3, 2	luring the instal	llation of the H' soil gas samplir	VDPE conveya ng has been tem	nce piping later porarily susper	als aded during ope	ration of the H	VDPE system	I

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-1S	08/10/07 09/28/07 10/17/07	1,2	100% OFF 100%	OFF OFF 100%	21 20 21	- - 0	- 0.0	20.9	- - 0.0	3,400 - 380	ND<14 - ND<14	68 - 26	210 - 58	30 - 5.7	160 - 46
	11/16/07 12/26/07		50% 50%	50% 50%	21 18	2,800 3,000	0.5 1.5	20.7 20.7	0.5 0.4	3,200 3,900	ND<14 ND<27	69 79	220 210	20 41	110 210
	01/22/08 02/07/08 03/18/08	4	100% OFF 100%	OFF OFF 100%	18 21.5 14.5	0 0	0.0 0.0 xx	19.7 20.9 20.9	0.3 0.0 0.0	660 - 140	ND<14 - ND<0.68	5.8 - 1.3	23 - 6.9	2.7 - 0.78	28 - 6.9
	04/30/08 05/29/08 06/26/08		OFF OFF OFF	OFF OFF OFF	18 19.5 23	50 - -	0 - -	20.9 - -	0.1 - -	520	3.3 - -	13 - -	38 - -	6.7 - -	53 - -
	07/30/08 09/30/08	7	OFF OFF	OFF 100%	17 16.5	310 5	0 0	18.3 20.9	1.1 0.4	- 65	0.71	- 0.44	- 2.2	- 0.65	- 12
	11/04/08 12/02/08 01/06/09		100% 100% 100%	100% 100% 100%	13 10 12	4,250 2,710 55	1.5 0.5 0	20.3 20.9	0.9 0.0	3,100 3,300 35	ND<180 ND<14 ND<0.68	63 57 3.6	140 150 5.6	14 12 0.22	120 110 1.8
	02/09/09 03/18/09 04/21/09		100% 100% 100%	100% 100% 100%	12 10 11	15 10 10	0 0 0	20.9 20.9 20.4	0.0 0.3 0.2	36 120 42	ND<0.68 ND<1.0 ND<0.68	4.7 1.8 0.56	6.7 9.6 2.3	0.35 0.69 0.29	3.1 4.2 1.9
	05/19/09 08/31/09		100% 100%	100% OFF	11.5 12	35 540	0 0	19.8 13.7	0.7 3.2	54 39	ND<0.68 ND<0.68	1.1 0.54	6.2 2.0	0.79 0.27	4.0 2.8
	09/10/09 09/17/09 09/25/09		OFF 100% OFF	OFF OFF OFF	15 14 13	- 30 -	-	- 20.9 -	0.2 -	- 51 -	ND<2.7	1.3	- 8.8 -	- 0.59 -	4.2
	10/02/09		OFF	OFF	14	-	-	-	-	-	-	-	-	-	-

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-2S	08/10/07		100%	100%	21	-	-	-	-	11,000	ND<110	280	770	81	360
	09/28/07	1	100%	100%	20	5,900	2.5	20.6	0.4	5,100	ND<35	110	310	46	260
	10/17/07		100%	100%	21	1,450	1.0	20.9	0.1	1,900	ND<20	59	120	12	73
	11/16/07		100%	100%	21	4,600	2.5	20.7	0.5	5,800	ND<27	120	340	40	200
	12/26/07		100%	100%	18	2,600	1.5	20.9	0.4	3,100	ND<27	84	230	37	190
	01/22/08		100%	100%	18	1,000	0.5	17.7	0.6	3,000	ND<14	61	190	24	180
	02/07/08	5	100%	100%	21.5	1,000	0.5	20.9	0.2	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	100	XX	20.9	0.6	1,400	2.3	17	51	13	81
	04/30/08		100%	OFF	18	190	0	20.7	0.5	1,900	ND<6.8	22	75	16	110
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08		OFF	OFF	23	-	-	-	-	-	-	-	-	-	-
	07/30/08	7	OFF	OFF	17	100	0.0	20.3	0.6	-	-	-	-	-	-
	09/30/08		OFF	100%	16.5	160	0.0	16.7	1.8	220	ND<0.68	0.44	3.1	1.0	17
	11/04/08		100%	100%	13	6,800	1.5	11.8	3.1	3,800	ND<14	78	170	18	150
	12/02/08		100%	100%	10	3,200	0.5	18.3	0.9	3,200	ND<14	66	170	14	130
	01/06/09		100%	100%	11	1,950	0.5	17.7	1.6	3,400	ND<30	69	150	13	95
	02/09/09		100%	100%	12	900	0	16.4	1.4	1,100	ND<10	25	53	4.9	49
	03/18/09		100%	100%	10	30	0	20.9	0	130	ND<0.68	1.1	5.6	0.43	2.6
	04/21/09		100%	100%	11	15	0	1/.1	1.4	130	ND<0.68	1.3	3.9	0.36	4.9
	05/19/09		100%	100%	11.5	190	0	12.0 9.5	3.3 E 1	460	ND<2.0	4.3	13	2.0	19 70
	08/31/09				12	980 1.700	0	0.5 15 2	5.1	1,800	ND<20	29 50	5/	8.0 6.4	79
	09/10/09		100%	100%	15 14	1,700	0.5	15.5	5.4 1.6	2,000	ND<15 ND<25	54 80	100	0,4	74 100
	09/17/09		100%	10070	14	2,400	0.5	19.0 20.0	1.0	2,700	ND<25	00 67	140	10	77
	10/02/09		100 /0	100%	13	2,300	0.5	20.0	1.2	2,900	ND~10	63	130	85	72
	10/02/09		100 /0	100 /0	17	2,000	0.0	20.2	1.1	2,000	110~10	05	130	0.5	14

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
N 511 - 50	00/10/07		1000/	1000/	21					5.4		0.60	2.7	0.60	2.7
MW-58	08/10/07	1	100%	100%	21	- 000	-		0.2	54 2 800	ND<0.68	0.60	2.7	0.60	3.7
	09/28/07	1	100%	100%	20	880	5.5 0.5	20.2	0.5	3,800	ND<00	70	130	19	120
	10/17/07		100%	100%	21	000 4.600	0.5	20.9	0.1	1,100	ND<14	21	30 170	5.5 21	30 170
	11/10/07		100% OFF	100% OFF	21 19	200	0.0	20.0	0.7	3,800	ND<110	04	170	21	170
	01/22/08		100%	100%	10	300	0.0	18.0	0.0	760	ND<0.08	33	3.7 16	2.4	14 28
	02/07/08	4	OFF	OFF	21.5	- 500	0.0	10.0	- 0.4	-	-	5.5	-	-	- 20
	03/18/08	•	100%	100%	14.5	0	xx	19.9	0.3	580	ND<2.7	3	24	4.2	39
	04/30/08		OFF	OFF	18	0	0.0	19.4	1.0	2.000	ND<10	18	56	5.7	63
	05/29/08		OFF	OFF	19.5	-	-	-	-	_,	_	-	-	_	-
	06/26/08		OFF	OFF	23	-	-	-	-	-	-	-	-	-	-
	07/30/08	7	OFF	50%	17	1,000	0.0	14.0	2.8	-	-	-	-	-	-
	09/30/08		OFF	100%	16.5	1,850	0.0	16.0	2.8	2,000	ND<14	27	61	6.2	87
	11/04/08		100%	100%	13	2,450	0.5	14.6	2.3	3,900	ND<27	30	100	6.1	150
	12/02/08		100%	100%	10	1,810	0.0	19.7	0.1	1,900	ND<27	ND<3.1	29	2.9	81
	01/06/09	8	100%	100%	11	1,350	0.0	17.3	0.3	-	-	-	-	-	-
	02/09/09		100%	100%	12	260	0.0	19.7	0.3	270	ND<4.5	2.4	7.5	0.90	23
	03/18/09		100%	100%	10	50	0.0	20.8	0.3	99	ND<2.0	2.1	6.0	0.76	6.2
	04/21/09		100%	100%	11	20	0.0	20.3	0.3	40	ND<1.0	1.1	4.0	0.51	4.4
	05/19/09		100%	100%	11.5	400	0.0	19.4	0.5	450	ND<3.0	1.7	6.8	0.71	5.6
	08/31/09		100%	100%	-	660	-	13.5	3.3	1,300	ND<10	9.6	21	3.0	54
	09/10/09		100%	100%	15	1,100	0.0	16.8	1.9	1,800	ND<6.8	18	49	4.0	110
	09/17/09		100%	100%	14	1,050	0.0	19.2	1.2	2,200	ND<6.8	19	66	6.6	160
	09/25/09		100%	100%	13	1,100	0.0	19.1	1.3	2,100	ND<2.7	11	44	5.9	110
	10/02/09		100%	100%	14	1,300	0.0	19.2	1.3	2,100	ND<2.7	9.4	35	4.9	100

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-6S	08/10/07		100%	100%	21	-	-	-	-	5,800	ND<30	69	280	24	140
	09/28/07	1	100%	100%	20	>11,000	8.0	19.7	0.5	6,800	ND<60	100	360	34	190
	10/17/07		100%	100%	21	1,350	0.5	20.9	0.1	1,700	ND<10	24	90	9.7	79
	11/16/07		100%	50%	21	6,300	4.5	19.2	1.0	6,400	ND<27	56	270	40	310
	12/26/07		100%	100%	18	4,600	2.5	18.5	1.3	4,200	ND<27	21	96	14	180
	01/22/08		50%	100%	18	1,050	0.5	15.6	1.0	1,900	ND<14	11	74	13	100
	02/07/08		-	-	21.5	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	15	XX	20.5	0.1	230	ND<1.4	1.2	9.2	2.4	16
	04/30/08		100%	100%	18	140	0.0	20.7	0.7	760	ND<6.8	3.5	18	3.2	36
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08		OFF	100%	23	210	0.0	19.8	0.4	400	ND<10	2	18	3.1	24
	07/30/08	7	100%	100%	17	270	0.0	20.2	0.7	460	ND<4.5	1.7	14	2.2	19
	09/30/08		OFF	100%	16.5	570	0.0	17.4	2.0	640	ND<14	7.7	42	3.7	31
	11/04/08		100%	100%	13	580	0.0	17.4	1.2	900	ND<2.7	4.6	21	4.6	46
	12/02/08		100%	100%	10	460	0.0	20.6	0.3	710	ND<14	3.2	13	1.4	30
	01/06/09		100%	100%	11	280	0.0	19.9	0.4	520	ND<14	4.1	17	2.3	32
	02/09/09		100%	100%	12	80	0.0	20.9	0.1	60	ND<0.68	1.4	3.4	0.49	8.2
	03/18/09		100%	100%	10	70	0.0	20.9	0.0	61	ND<3.0	1.3	1.7	0.38	4.0
	04/21/09		100%	100%	11	10	0.0	20.9	0.0	18	0.98	0.41	0.47	0.13	1.4
	05/19/09		100%	100%	11	-	-	-	-	20	ND<0.68	0.59	0.98	0.17	2.1
	08/31/09		100%	100%	12	170	0.0	18.9	0.9	330	ND<2.7	5.5	27	3.7	26
	09/10/09		OFF	OFF	15	-	-	-	-	-	-	-	-	-	-
	09/17/09		100%	OFF	14	560	0.0	19.6	0.3	370	ND<3.0	1.9	6.9	1.4	9.2
	09/25/09		OFF	OFF	13	-	-	-	-	-	-	-	-	-	-
	10/02/09		OFF	OFF	14	-	-	-	-	-	-	-	-	-	-

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-7S	08/10/07				21	-	-	-	-	19,000	ND<450	620	590	27	100
	09/28/07	1	100%	100%	20	11,000	19	20.0	0.5	13,000	ND<150	350	630	69	370
	10/17/07		100%	100%	21	0	0.0	20.9	0.0	390	ND<14	27	60	6	51
	11/16/07		100%	50%	21	10,000	8.0	20.5	0.4	7,700	ND<45	170	390	47	280
	12/26/07		100%	100%	18	5,500	3.0	20.4	0.5	4,700	ND<45	100	220	27	190
	01/22/08		100%	100%	18	2,050	1.0	18.2	0.4	3,900	ND<14	69	200	20	210
	02/07/08		-	-	21.5	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	390	XX	20.2	0.3	2,000	ND<5.0	25	81	11	78
	04/30/08		100%	100%	18	600	1.0	19.0	1.2	4,100	ND<14	66	150	15	150
	05/29/08		OFF	OFF	19.5	-	-	-		-	-	-	-	-	-
	06/26/08		OFF	100%	23	5,200	1.5	15.8	2.7	4,800	ND<30	56	71	4	110
	07/30/08	7	100%	100%	17	2,750	0.5	18.3	1.7	-	-	-	-	-	-
	09/30/08		OFF	100%	16.5	4,200	1.0	12.6	5.9	2,800	ND<30	57	72	4.2	110
	11/04/08		100%	100%	13	9,100	1.5	7.5	3.5	4,100	ND<14	53	87	4.3	130
	12/02/08		100%	100%	10	4,350	0.5	19.5	1.1	3,900	ND<27	44	89	4.1	110
	01/06/09		100%	100%	11	3,150	0.5	15.4	2.3	2,000	ND<4.5	19	43	3.0	77
	02/09/09		100%	100%	12	1,050	0.0	13.4	2.5	1,100	ND<10	19	21	1.8	34
	03/18/09		100%	100%	10	440	0.0	15.3	2.7	690	ND<14	28	22	1.9	17
	04/21/09		100%	100%	11	30	0.0	20.4	1.3	53	4.5	2.7	2.2	0.28	3.0
	05/19/09		100%	100%	11.5	490	0.0	9.2	5.2	890	ND<14	29	33	1.8	20
	08/31/09		100%	100%	12	1,450	0.0	9.3	8.2	1,900	ND<30	52	37	3.0	64
	09/10/09		100%	100%	15	3,800	0.0	10.6	4.2	3,100	ND<20	68	71	3.8	130
	09/17/09		100%	100%	14	7,000	2.0	18.8	1.8	5,200	ND<35	120	140	9.0	200
	09/25/09		100%	100%	15	7,600	2.0	18.8	1.0	5,500	ND<25	89	150	8.0	150
	10/02/09		100%	100%	14	8,050	2.0	18.8	1.0	5,300	ND<35	100	160	11	210

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-10S	11/21/07 12/26/07 01/22/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09 04/21/09 05/19/09 08/31/09 09/10/09 09/17/09	7	100% 100% 100% 100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%	19 18 16.5 - 14.5 18 18 23 17 16.5 13 10 11 12 10 11 11.5 12 15 14 13	>44,000 3,900 1,850 - 270 310 1,750 370 1,050 640 1,900 1,550 1,150 310 130 110 75 650 730 1,300 450	43.0 2.5 0.5 - xx 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.0 19.4 16.1 - 19.0 19.6 20.7 20.3 20.9 13.0 20.3 18.2 17.8 18.7 16.9 12.2 8.3 15.9 19.4 19.7	2.2 0.5 0.9 0.9 0.8 0.1 0.8 0.4 2.5 0.6 1.2 0.7 0.7 1.0 2.3 0.0 2.6 1.5 1.2	28,000 6,300 4,700 - 2,100 2,500 1,800 780 1,600 690 2,300 1,500 2,200 400 220 240 370 1,700 1,600 1,900 2,400	ND<68 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<15 ND<2.7 ND<10 ND<5.0 ND<5.0 ND<10 ND<10 ND<10 ND<10	300 55 38 - 13 11 13 4.1 16 10 36 26 31 5.6 8.9 4.4 4.9 18 29 40 37	800 350 230 - 73 76 47 15 50 29 89 73 64 12 7.7 5.7 7.7 22 63 82 81	63 64 49 - 31 33 17 4.9 9.5 5.1 8.1 8.4 6.7 1.1 1.4 0.98 1.2 4.4 5.3 7.2 81	230 300 310 - 190 230 120 38 95 53 120 71 64 21 10 9.6 13 67 75 85 72
	10/02/09		100%	100%	13	2,150	0.0	19.6	1.2	1,700	ND<10 ND<20	38	79	6.6	72 76

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-11S	11/21/07 12/26/07 01/22/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09 04/21/09 05/19/09 08/31/09 09/10/09 09/17/09 09/17/09	7	100% 50% 100% 100% 100% 100% 100% 100% 1	100% 100% 100% 100% 100% 100% 100% 100%	19 18 16.5 - 14.5 18 18 23 17 16.5 13 10 11 12 10 11 11.5 12 15 14 13 14	36,600 1,350 1,000 - 130 120 950 480 980 510 360 320 790 380 280 210 200 360 420 490 510 820	26.5 0.5 0.0 - xx 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.2 20.9 19.3 - 20.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9 16.5 20.9 16.5 20.9 16.5 20.9 18.9 17.6 17.3 16.9 15.5 9.1 17.7 20.6 20.6 20.6	2.2 0.2 0.2 0.3 0.3 0.1 0.3 0.2 1.4 0.2 0.6 0.8 1.2 1.2 1.5 3.5 1.5 0.7 0.5 0.5	20,000 3,400 3,000 - 1,700 600 1,800 940 1,600 490 820 1,400 1,200 500 400 460 80 1,000 870 890 840 880	ND<68 ND<75 ND<30 - ND<14 ND<5.0 ND<30 ND<15 ND<30 ND<10 ND<20 ND<35 ND<20 ND<35 ND<20 ND<3.0 ND<20 ND<3.0 ND<20 ND<3.0 ND<20 ND<30 ND<20 ND<30 ND<20 ND<30 ND<25 ND<30 ND<25 ND<30	240 50 81 - 26 6.7 24 12 22 11 22 23 29 14 48 32 5.1 36 38 27 19 22	640 220 190 - 66 23 47 28 50 22 21 57 53 18 18 20 3.2 17 32 39 31 40	63 50 39 - 26 5.9 18 8.4 13 3.8 5.2 6.3 5.7 2.3 3.4 3.3 0.58 3.7 5.7 4.1 2.6 3.9	240 230 230 - 150 49 120 57 100 40 57 73 56 28 20 31 6.7 63 68 63 33 55

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-12S	11/21/07		50%	50%	19	110	0.0	20.9	0.7	1 400	ND~100	87	51	10	40
11110-125	12/26/07		50%	50%	19	720	0.0	20.9	0.1	1,400	ND<45	27	100	10	40 74
	01/22/08		100%	100%	16.5	630	0.0	19.3	0.1	1,200	ND<45	14	50	84	65
	02/07/08		-	10070	-	-	-	-	-	-	-	-	- 50	-	-
	03/18/08		100%	100%	14.5	0	XX	20.9	0.0	460	ND<30	42	32	4.2	36
	04/30/08		100%	100%	18	65	0.0	20.9	0.2	390	5	8.8	17	3.9	30
	05/29/08		100%	100%	18	150	0.0	20.9	0.3	490	ND<10	14	23	4.4	30
	06/26/08		100%	100%	23	140	0.0	20.9	0.1	300	4.1	5.1	14	2.6	22
	07/30/08	7	100%	100%	17	240	0.0	20.9	0.3	450	ND<5.0	4.5	20	3.8	32
	09/30/08		100%	OFF	16.5	190	0.0	20.9	0.2	230	ND<5.0	3.9	12	2.2	28
	11/04/08		OFF	100%	13	140	0.0	18	0.8	260	ND<5.0	6.5	7.4	1.2	14
	12/02/08		100%	100%	10	150	0.0	20.5	0.6	660	ND<5.0	7.3	29	4.5	66
	01/06/09		100%	100%	11	380	0.0	20.3	0.4	490	ND<6.8	9.1	18	2.2	37
	02/09/09		100%	100%	12	70	0.0	20.1	0.3	110	ND<5.0	4.2	4.0	0.58	8.1
	03/18/09		100%	100%	10	25	0.0	20.9	0.2	98	ND<5.0	7.6	4.2	0.53	2.5
	04/21/09		100%	100%	11	30	0.0	20.6	0.5	40	3.4	6.5	2.1	0.41	2.0
	05/19/09		100%	100%	11.5	20	0.0	19.2	0.7	52	ND<3.0	4.7	1.8	0.47	3.5
	08/31/09		100%	OFF	12	20	-	16.0	1.4	130	ND<3.0	3.9	3.0	0.67	8.0
	09/10/09		OFF 1000/	OFF	15	-	-		-	-	- ND -2.0	-	-	-	-
	09/17/09		100% OFF	OFF	14	20	-	20.8	0.4	24	ND<2.0	1./	1.8	0.18	1.9
	09/25/09		OFF	OFF	13	-			-	-	-	-	-	-	-
	10/02/09		OFF	OFF	14	-	-	-	-	-	-	-	-	-	-

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
			10004	1000		0				100		1.0			10
AS	10/17/07		100%	100%	-	0	0.0	20.9	0.0	130	ND<1.4	4.3		1.4	12
	11/08/07		100%	100%	-	0	0.0	20.9	0.0	19	ND<0.68	0.60	1.8	0.18	3.2
	01/15/08		100%	100%	-	-	-	-	-	1,100	19 ND 45	31	100	1/	180
	01/31/08		100%	100%	-	-	-	20.0	-	69 21	ND<4.5	1.7	5.0	0.81	11
	02/07/08		100%	100%	-	0	0.0	20.9	0.0	51 21	1.4	0.47	1.5	0.21	4.1
	03/18/08		100%	100%	-	- 10	-	20.0	-	31	0.71 ND-0.68	0.00	1.0	0.34	5.2
	04/30/08		100%	100%	-	10 60	0.0	20.9	0.0	ND-70	ND<0.68	0.30 ND<0.077	1.4 ND<0.065	0.34 ND<0.057	4.1
	06/26/08		100%	100%		10	0.0	20.9	0.0	ND<7.0	0.97	0.89	2 5	0.54	63
	07/30/08	7	100%	100%	_	0	0.0	20.9	0.0	41	0.57 ND<14	0.81	2.5	0.24	0.5 4 2
	09/30/08	,	100%	100%	-	0	0.0	20.9	0.0	-	-	-	-	-	
	11/04/08		100%	100%	-	0	0.0	20.9	0.1	21	ND<0.68	0.38	0.91	0.13	2.6
	12/02/09		100%	100%	-	0	0.0	20.9	0.1	10	ND<0.68	ND<0.077	0.22	ND<0.057	0.79
	01/06/09		100%	100%	-	0	0.0	20.9	0.1	150	ND<1.5	1.9	6.9	1.1	22
	02/09/09		100%	100%	-	15	0.0	20.9	0.0	18	ND<0.68	0.28	0.57	0.078	1.5
	03/18/09		100%	100%	-	0	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	0.085	ND<0.057	0.15
	04/21/09		100%	100%	-	0	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	05/19/09		100%	100%	-	0	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	08/31/09		100%	100%	-	0	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	0.096	ND<0.057	0.24
	09/10/09		100%	100%	-	0	0.0	20.9	0.0	-	-	-	-	-	-
	09/17/09		100%	100%	-	0	0.0	20.9	0.0	-	-	-	-	-	-
	09/25/09		100%	100%	-	0	0.0	20.9	0.0	-	-	-	-	-	-
	10/02/09		100%	100%	-	0	0.0	20.9	0.0	7.3	ND<1.0	0.27	0.57	ND<0.057	0.93
Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
-------------------	----------------	-------	------------------------------	----------------------------	-------------------------------	---------------	------------	-----------	------------	-----------------	----------------	-------------------	-------------------	-----------------------------	-------------------
DDED	06/28/07				19.5										
PRED	06/28/07		-	-	18.5 21.5	- 10 750	-	-	-	- 6 600	- ND~90	180	340	30	190
	07/27/07		-	_	20	>11,000	-	-	-	11.000	ND<75	170	330	38	160
	08/01/07		-	-	19	6,000	9.1	18.5	1.1	5,500	ND<70	140	250	16	71
	08/10/07		-	-	21	-	-	-	-	7,700	ND<90	210	410	41	190
	09/28/07	1	-	-	20	5,700	3.5	20.7	0.3	4,000	ND<50	90	170	9.3	42
	10/17/07		-	-	21	9,050	-	-	-	5,100	ND<60	130	210	8.6	51
	11/08/07		-	-	21	0	0.0	20.9	0.0	4,000	ND<0.68	0.35	2.2	0.68	6.6
	11/16/07		-	-	21	3,050	2.0	20.7	0.4	3,700	ND<120	63	170	20	120
	11/16/07		-	-	21	6,100	4.5	20.3	0.7	6,000	ND<27	100	250	27	170
	11/21/07		-	-	19	12,000	13.5	19.4	1.2	2,500	ND<14	39	120	16	79
	12/04/07		-	-	20	10,500	9.5	18.8	0.9	7,900	ND<32	120	340	48	280
	12/26/07	2	-	-	18	3,650	2.0	20.9	0.5	4,100	ND<27	12	250	42	270
	01/08/08	5	-	-	10	- 710	-	20.0	0.3	-	- ND<14	- 20	- 80	-	- 100
	01/22/08		-	-	19	800	0.0	20.0	0.5	1,900	ND<14	29 34	100	13	100
	01/31/08		-	-	21	1.250	0.5	20.9	0.5	2,200	ND < 14	36	120	19	160
	02/07/08		-	-	21.5	700	0.0	20.9	0.4	2,000	ND<35	34	110	10	130
	03/18/08		-	-	14.5	160	XX	15.3	0.9	630	ND<3.0	7.0	25	5.6	38
	04/30/08		-	-	18	280	0.5	20.2	0.0	2,100	ND<5.0	20	63	16	120
	05/29/08		-	-	19.5	1,500	0.0	19.6	0.8	2,100	ND<10	21	45	18	120
	06/26/08		-	-	23	280	0.5	20.2	0.0	860	ND<5.0	11	27	6.5	50
	07/30/08	7	-	-	17	1,350	0.0	19.3	1.1	2,200	ND<6.8	24	62	10	90
	09/30/08		-	-	16.5	1,650	0.5	16.1	1.8	1,100	ND<10	20	42	8.2	78
	11/04/08		-	-	13	2,500	0.5	16.1	1.8	2,700	ND<10	31	77	9.3	130
	12/02/08		-	-	10	1,100	0.0	20.5	0.6	2,200	ND<5.0	27	80	8.7	130
	01/06/09		-	-	11	1,300	0.0	18.4	1.2	1,200	ND<80	21	58 21	5./ 2.1	/8 16
	02/09/09		-	-	12	60 60	0.0	20.8	1.5	1,200	ND < 10	17	51	5.1 1.2	40
	03/18/09		-		10	35	0.0	20.8	0.4	58	ND<0.08	3.2 1.9	35	0.44	7.1 3.7
	05/19/09		-	_	11 5	100	0.0	19.2	0.5	190	ND<2.7	3.4	73	0.44	8.0
	08/31/09		-		12	400	- -	13.8	26	870	ND<4.5	11	21	3	29
	09/10/09		-	-	15	1,650	0.5	15.9	2.5	1,700	ND<20	34	62	5.8	110
	09/17/09	8	-	-	14	1,950	0.5	19.4	1.4	2,600	ND<20	52	100	7.5	140
	09/17/09	9	-	-	7	520	0.0	20.3	0.5	-	-	-	-	-	-
	09/25/09		-	-	13	2,450	0.5	19.6	1.2	2,700	ND<6.8	36	80	6.6	91
	10/02/09		-	-	14	2,200	0.0	19.6	1.1	2,400	ND<20	43	85	8.3	110
				1											

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
POSTD	06/28/07 07/11/07 07/27/07 08/01/07 09/28/07 10/17/07 11/08/07 11/16/07 11/21/07 12/26/07 01/08/08 01/15/08 01/22/08 01/31/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09 04/21/09 05/19/09 08/31/09 09/10/09 09/17/09 09/25/09 10/02/09	6,7				10,000 3,550 4,550 5,200 4,800 6,750 4,500 1,300 4,150 8,600 6,500 2,000 1,200 45 280 470 120 75 55 630 55 - - - - - - - -	6.5 - 2.0 4.0 2.5 1.0 2.0 7.5 5.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0	18.2 - - 19.9 20.7 20.9 20.5 20.5 19.8 20.9 20.7 20.9 20.9 20.9 20.7 20.9 20.7 20.9 20.9 20.7 20.9 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7 20.9 20.7	1.4 - 0.5 0.3 0.0 0.4 0.4 0.4 0.8 0.6 0.3 0.0 0.0 0.1 0.0 0.4 0.2 0.2 0.2 - - - - - - - - - - - - -	3,800 1,400 3,400 2,500 5,300 4,800 1,800 2,000 3,600 5,500 3,400 1,300 1,700 620 1,100 770 690 310 700 500 620 - - - - - - - - - - - - - - - - - - -	ND<60 ND<14 ND<14 ND<27 ND<45 ND<60 ND<14 ND<15 ND<14 ND<25 ND<16 ND<14 ND<15 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<15 ND<10 - - - - - - - - - - - - - - - - - - -	120 36 56 59 130 100 41 42 58 75 44 26 23 11 14 12 10 3.9 7.6 5.4 7.8 - - - - - - - - - - - - -	160 82 120 140 290 210 110 100 190 210 120 96 79 39 50 38 37 12 23 12 25 - - - - - - - - - - - - -	22 12 15 17 37 23 14 12 25 28 22 15 13 6.6 8.4 6.9 6.6 3 5 4.1 5.4 - - - - - - - - - - - - - - - - - - -	$ \begin{array}{r} 110 \\ 67 \\ 70 \\ 95 \\ 180 \\ 120 \\ 100 \\ 88 \\ 180 \\ 130 \\ 120 \\ 100 \\ 83 \\ 44 \\ 65 \\ 62 \\ 58 \\ 20 \\ 42 \\ 29 \\ 45 \\ - \\ $

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
STACK	06/28/07 07/27/08 08/10/07 09/28/07 10/17/07 11/08/07 11/16/07 12/26/07 01/18/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09	7	-			0 - - 0 - - 0 - - 0 0 0 0 0 0 0 0 0 0 0	0.0 - 0.0 - 0.0 - 0.0 xx 0.0 0.0 0.0 0.0 0.0 0.0	12.3 - 14.0 - 14.8 - 19.0 18.0 17.7 17.7 17.9 17.0 16.1 15.7 17.7 17.7 16.1 18.3 18.3	5.4 - 4.5 - 4.8 - 1.7 1.9 2.0 2.5 1.9 1.8 2.0 2.9 2.3 2.3 2.6 2.0	ND<7.0 - ND<7.0 ND<7.0 21 ND<7.0 - ND<7.0 - ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 27 ND<7.0 S2 26 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0 ND<7.0	ND<0.68 - ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68 ND<0.68	ND<0.077 - ND<0.077 ND<0.077 ND<0.077 0.24 ND<0.077 - ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0.077 ND<0	ND<0.065 - ND<0.065 ND<0.065 1.5 ND<0.065 - ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 1.5 0.52 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0.065 ND<0	ND<0.057 - ND<0.057 ND<0.057 ND<0.057 ND<0.057 - ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057	ND<0.057 - ND<0.057 ND<0.057 ND<0.057 2.4 ND<0.057 - ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 A.4 1.9 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.057 ND<0.
	04/21/09 05/19/09 08/31/09 09/10/09 10/02/09				-	0 0 0 0	0.0 0.0 0.0 0.0 0.0	18.3 17.9 16.0 18.1 17.6	2.2 2.2 3.0 2.0 2.5	ND<7.0 ND<7.0 ND<7.0 - ND<7.0	ND<0.68 ND<0.68 ND<0.68 - ND<0.68	ND<0.077 ND<0.077 ND<0.077 - ND<0.077	ND<0.065 ND<0.065 0.069 - ND<0.065	ND<0.057 ND<0.057 ND<0.057 - ND<0.057	ND<0.057 ND<0.057 0.35 - ND<0.057
DL						5.0	0.1	0.1	0.1	7.0	0.68	0.077	0.065	0.057	0.057

Vic's Auto, 245 8th Street, Oakland, California

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
-------------------	----------------	-------	------------------------------	----------------------------	-------------------------------	---------------	------------	-----------	------------	-----------------	----------------	-------------------	-------------------	-----------------------------	-------------------

CO2 = carbon dioxide by infrared detection (0 to 20% by volume)

TVH, CH4, O2, and CO2 measured RKI Eagle gas detector

xx = methane sensor damaged; pending replacement

NOTES:

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

in-Hg = inches of mercury

ppmv = parts per million by volume

% = percent concentration by volume

PRED = pre-dilution sample port at combined inlet

POSTD = post-dilution sample part at thermal/catalytic oxidizer inlet

- not sampled/analyzed

1) Individual well water seperator trap used for the 1st time.

2) Vacuum leak detected at wellhead due to broken wellhead seal.

3) Pump failed, not strong enough to collect sample from PRED @ 18 in-Hg.

4) Opened 100% for field screening, turned OFF after screening, no lab sample collected.

5) Opened 100% for field screening, no lab sample collected.

6) Discontinued POSTD process sampling port starting in the 3rd Quarter, 2008 because it no longer provides any additional useful information.

7) HVDPE system shutdown most of the month of August for quarterly soil gas monitoring and pending repair of the rotary phase converter.

8) Field screened and sampled with MW-1S, MW-6S, and MW-12S OFF.

9) Field screened and sampled with MW-1S, MW-6S, and MW-12S ON. Note the significant loss of applied vacuum and decrease in the concentration of hydrocarbons.

10)

DL = detection limit for dilution factor of 1 TVH = total volatile hydrocarbons (calibrated w/ hexane) TPH-g by EPA Method 8015C CH4 = methane by infrared detection (0 to 100% by volume) BTEX & MTBE by EPA Method 8021B O2 = oxygen by electrochemical detection (0-40% by volume)

Sample ID	Sample Date	Notes	TOG (mg/L)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
INF	06/26/07 06/27/07 06/28/07 07/12/07 08/22/07 10/17/07 11/07/07 12/12/07 01/08/08 03/18/08 04/01/08 04/01/08 04/30/08 05/29/08 06/26/08 07/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09	1 2 3,4 5 7		20,000 25,000 28,000 8,300 16,000 25,000 21,000 75,000 12,000 4,100 2,400 8,600 13,000 7,600 9,400 6,100 9,400 8,300 7,800 11,000 2,000	ND<1,500 1,300 1,500 150 130 ND<250 ND<500 ND<250 320 480 60 170 310 260 220 270 380 150 ND<250 320 -	$1,400 \\ 2,300 \\ 2,300 \\ 660 \\ 610 \\ 990 \\ 730 \\ 1,200 \\ 260 \\ 150 \\ 37 \\ 150 \\ 140 \\ 130 \\ 160 \\ 240 \\ 320 \\ 140 \\ 160 \\ 250 \\ 96 \\ 86 \\ 86 \\ 86 \\ 86 \\ 86 \\ 86 \\ 86$	$\begin{array}{c} 2,300\\ 3,400\\ 4,800\\ 1,500\\ 2,000\\ 3,000\\ 2,600\\ 9,900\\ 1,100\\ 240\\ 140\\ 630\\ 470\\ 360\\ 510\\ 370\\ 800\\ 460\\ 460\\ 460\\ 660\\ 180\end{array}$	350 490 540 120 300 380 300 1,700 170 52 20 160 170 82 60 49 110 60 58 84 21	3,000 3,100 3,300 1,300 2,400 3,600 4,800 12,000 2,900 520 390 2,200 1,800 1,100 1,100 1,100 1,800 1,700 1,600 1,700 220
	04/21/09 05/19/09 08/31/09 10/02/09			590 1,100 4,200 -	- - -	31 53 110 -	41 99 230 -	9 15 41 -	100 190 640 -

TABLE 7: GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA SUMMARY

Sample ID	Sample Date	Notes	TOG (mg/L)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
POST-AS	06/26/07 06/27/07 06/28/07 07/12/07 08/22/07 10/17/07 12/12/07 01/08/08 03/18/08 04/01/08 04/01/08 04/30/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09 04/21/09 05/19/09	1 2 3,4 5 7		1,000 420 6,400 - 5,300 84 120 65,000 130 120 140 ND<50 100 70 130 94 ND<50 ND<50 ND<50 250 120 ND<50 57	92 45 570 - 100 12 41 ND<250 55 190 ND<5.0 11 20 27 16 15 27 6.3 28 37 -	19 7.8 610 - 610 0.90 0.71 210 0.85 2.5 5.6 0.56 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND	34 13 890 - 2,000 2.6 1.9 3,400 2.8 3.5 0.60 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 2 3	6.8 2.1 59 - 300 ND<0.5 ND<0.5 1,300 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	48 22 750 - 2,400 7 12 11,000 12 7.2 1.7 1.1 6.7 6.3 10 5 ND<0.5 1.5 0.77 28 6.9 ND<0.5 4.4
	03/19/09 08/31/09 10/02/09			190 -	-	5.4 -	2.5 11 -	2.1 -	4.4 29 -

TABLE 7: GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA SUMMARY

Sample ID	Sample Date	Notes	TOG (mg/L)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
POST-C1	06/26/07	1	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/22/07	2	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/17/07	3,4	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
EFF	06/26/07	1	ND<5.0	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/22/07	2	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/17/07	3,4	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/07/07		-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/12/07	5	-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/08/08		-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/18/08	6	ND<5.0	ND<50	50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/01/08		-	-	-	-	-	-	-
	04/30/08		ND<5.0	ND<50	30	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/29/08		-	ND<50	27	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/26/08		-	ND<50	37	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/30/08		-	ND<50	30	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/23/08		ND<5.0	-	-	-	-	-	-
	09/30/08		-	ND<50	18	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/04/08		-	ND<50	25	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/02/08		-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/06/09		-	ND<50	32	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	02/09/09		ND<5.0	ND<50	9.9	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/18/09	7	-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/21/09		ND<5.0	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/19/09		-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	U8/31/U9		-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/02/09		-	-	-	-	-	-	-
DL	-	-	5.0	50	5.0	0.5	0.5	0.5	0.5

TABLE 7: GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

- not sampled/analyzed

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

TOG = total oil and grease hydrocarbon

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

1) System startup and first dischrage to sanitary sewer

2) Bag filter (LCO8) pre-filter for sediment rremoval installed and started up on 08/17/07

3) 1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07

4) 200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07

5) On November 20, 2007, extraction wells MW-10, MW-11, and MW-12 were brought online

6) Metal analysis no longer required per email from EBMUD, dated January 31, 2008

7) On February 27, 2009, the carbon in the PV1000 carbon absorber was changed out by Siemens Water Technoligies

8)

9)

10)

DL = detection limit for dilution factor of 1

TOG by EPA Method 1664 HEM-SGT TPH-g by EPA Method 8015C BTEX & MTBE by EPA Method 8021B

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
CD 1 5	05/17/07	4	0.00		0.11	0.0	18.0	2.2
GP-1-5	05/17/07	4	0.00	-	0.11	0.0	18.0 18.6	2.2
	08/01/07		0.00		0.0	0.0	20.9	2.4
	08/10/07		0.40	-	0.0	0.0	20.9	0.0
	10/05/07		0.00		0.0	0.0	20.9	0.0
	11/07/07		0.00	1 50	0.0	0.0	20.9	0.0
	11/21/07		0.24	1.50	0.0	0.0	20.9	0.0
	03/28/08		<0.10	>50	0.0	xx	20.9	0.0
	04/30/08	5	0.00	<1.00	0.0	0.0	20.9	0.1
	08/15/08	Ũ	0.00	1.50	0.0	0.0	20.9	0.0
	11/11/08		0.20	1.10	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	1.00	0.0	0.0	19.7	0.8
	03/10/09		0.00	1.80	0.0	0.0	19.3	1.3
	02/09/09	8	0.00	1.00	0.0	0.0	19.7	0.8
	03/10/09		0.00	1.80	0.0	0.0	19.3	1.3
	04/21/09		0.00	1.50	0.0	0.0	19.5	0.7
	05/01/09		0.00	1.50	0.0	0.0	20.4	0.6
	08/31/09		-	-	-	-	-	-
	10/02/09		0.10	1.70	0.0	0.0	19.9	0.5
GP-1-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07		0.00	-	0.0	0.0	18.7	2.2
	08/01/07		0.44	-	0.0	0.0	20.9	0.0
	08/10/07		0.38	-	0.0		20.9	0.0
	10/05/07		0.00	-	0.0	0.0	20.9	0.3
	11/07/07		0.27	2.00	0.0	0.0	20.9	0.0
	11/21/07		0.59	1.50	0.0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	0.14	<1.00	0.0	0.0	20.9	0.1
	08/15/08		0.00	1.00	0.0	0.0	18.5	0.1
	11/11/08		0.19	1.20	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	1.20	10	0.0	19.8	0.7
	03/10/09		0.39	9.00	0.0	0.0	19.5	1.0
	02/09/09	8	0.00	1.20	10	0.0	19.8	0.7
	03/10/09		0.39	9.00	0.0	0.0	19.5	1.0
	04/21/09		0.10	6.00	0.0	0.0	19.8	0.5
	05/01/09	1	-	-	-	-	-	-
	08/31/09		-	-	-	-	-	-
	10/02/09	1	-	-	-	-	-	-

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
CP 2 5'	05/17/07	4	0.00		0.14	0.0	10.0	1.5
GI -2-3	06/12/07	4	0.00	-	0.14	0.0	19.0	1.5
	08/01/07		0.00	_	0.0	0.0	20.9	03
	08/10/07		0.04	-	0.0	0.0	20.9	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.1
	11/07/07		0.08	4.00	0.0	0.0	20.9	0.0
	11/21/07		0.04	1.50	0.0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	0.01	2.00	0.0	0.0	20.9	0.0
	08/15/08		0.00	3.00	0.0	0.0	20.9	0.0
	11/11/08		0.07	1.80	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	2.20	0.0	0.0	20.7	0.2
	03/10/09	1	-	-	-	-	-	-
	02/09/09	8	0.00	2.20	0.0	0.0	20.7	0.2
	03/10/09	1	-	-	-	-	-	-
	04/21/09		0.00	2.00	0.0	0.0	20.9	0.0
	05/01/09		0.00	2.00	0.0	0.0	20.9	0.2
	08/31/09		-	-	-	-	-	-
	10/02/09		0.05	2.20	0.0	0.0	20.7	0.1
GP-2-10'	05/17/07	4	0.00	-	0.18	0.0	18.0	1.5
	06/12/07	2	0.00	-	-	-	-	-
	08/01/07		0.08	-	0.0	0.0	20.8	0.5
	08/10/07		0.00	-	0.0	0.0	20.9	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.1
	11/07/07		< 0.10	24.0	0.0	0.0	20.9	0.0
	11/21/07		1.70	35.0	0.0		20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	3.50	2.00	0.0	0.0	20.9	0.0
	08/15/08		0.00	3.00	0.0	0.0	20.9	0.0
	11/11/08	0.1	1.80	2.00	0.0	0.0	20.9	0.0
	02/09/09	8,1	-	-	-	-	-	-
	03/10/09	1 8 1	-	-	-	-	-	-
	02/09/09	0,1 1	-	-	-	-	-	-
	04/21/09	1	0.50	3.00	0.0	0.0	20.9	0.0
	05/01/09	1	-	-	-	-	-	-
	08/31/09	·	-	-	-	-	-	-
	10/02/09	1	0.30	-	-	-	-	-

Vic's Auto,	245 81	h Street,	Oakland,	California
-------------	--------	-----------	----------	------------

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-3-5'	05/17/07	4	0.00	-	0.14	0.0	20.0	0.48
	06/12/07		0.00	-	0.0	0.0	20.9	0.4
	08/10/07		0.01	-	0.0	0.0	20.9	0.3
	10/05/07		0.00	-	0.0	0.0	20.9	0.2
	11/07/07		< 0.10	1.00	0.0	0.0	20.9	0.2
	11/21/07		0.05	1.00	0.0	0.0	20.9	0.0
	03/28/08		< 0.10	43.0	0.0	XX	20.5	0.1
	04/30/08	5	0.02	<1.00	0.0	0.0	20.9	0.1
	08/15/08		0.00	1.00	0.0	0.0	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-
GP-3-10'	05/17/07	4	0.00	-	0.37	0.0	2.4	3.4
	06/12/07		0.00	-	0.0	0.0	10.5	1.8
	08/10/07		0.16	-	0.0	0.0	16.8	2.2
	10/05/07		0.00	-	0.0	0.0	20.8	1.2
	11/07/07		0.30	55.0	0.0	0.0	20.9	0.5
	11/21/07		5.20	47.0	0.0	0.0	20.9	0.2
	03/28/08	3	1.00	>150	0.0	XX	20.0	0.0
	04/30/08	5	9.00	110	0.0	0.0	20.9	0.1
	08/15/08		0.00	50.0	-	-	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-

√ic's Auto, 1	245 8th	Street,	Oakland,	California
---------------	---------	---------	----------	------------

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
							• • •	. .
GP-4-5'	05/17/07	4	0.00	-	0.21	0.0	20.0	0.7
	06/12/07		0.00	-	0.0	0.0	20.8	0.6
	08/10/07		0.02	-	0.0	0.0	20.9	0.4
	10/05/07		0.00	-	0.0	0.0	20.9	0.5
	11/07/07		< 0.10	0.85	0.0	0.0	20.9	0.3
	11/21/07		0.00	0.50	0.0	0.0	20.9	0.0
	03/28/08		< 0.10	47.0	0.0	XX	20.0	0.0
	04/30/08	5	0.02	<1.00	0.0	0.0	20.9	0.2
	08/15/08		0.00	1.00	-	-	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-
GP-4-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07	2	0.00	-	-	-	-	-
	08/10/07	_	0.08	-	0.0	0.0	20.4	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.5
	11/07/07		< 0.1	80.0	0.0	0.0	20.9	0.3
	11/21/07		<0.1	>50.0	0.0	0.0	20.9	0.0
	03/28/08	23	<0.1	>150	0.0	xx	20.5	0.0
	04/30/08	1.5	0.20	>150	-	-	-	0.0
	08/15/08	1,5	0.00	>50.0	_	_	19.0	0.1
	11/11/08	67	0.00	-50.0	_	_	17.0	0.1
	11/11/00	0,7	-	-	-	-	-	-
DL	-	-	varies	varies	5.0	0.1	0.1	0.1

NOTES:

- not sampled/analyzed

in-H20 = inches of water

ppmv = parts per million by volume

% = percent concentration by volume

xx = methane sensor damaged; pending replacement

DL = detection limit for dilution factor of 1

TVH = total volatile hydrocarbons (calibrated w/ hexane)

CH4 = methane

O2 = oxygen

CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured w/ RKI Eagle gas detector

1) Soil gas sample collection not possible due to wet or saturated soil conditions

2) Moisture present within the sample tubing

3) High purge vacuum may indicate wet or saturated soil conditions

4) TPH-g by modified EPA Method TO-3 GC/FID and CH4, O2, and CO2 by modified method ASTM D-1946 GC/FID or GC/TCD

5) Soil gas probe screened for TVH, CH4, O2, and CO2 approximaltey one week prior to sampling for vapor intrusion evaluation

6) Nested soil gas probes GP-3 and GP-4 were abandoned on August 21, 2008 during the HVDPE conveyance lateral installation

7) GP-4 and possibly GP-3 will be re-installed once the construction activities at 708 Alice Street are completed

8) HVDPE system was shutdowwn on January 6, 2009, approximlatey one (1) month before screening GP-1 & GP-2

TABLE 9: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

Vic's Auto.	245 8t	h Street.	Oakland.	California
vic 5 / 1010,	245 00	n bucci,	Oukland,	Cumonna

		MW-1			MW-2			MW-5			MW-6			MW-7	
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)												
06/26/07	1.5	8.0	15.0	6.0	9.0	15.0	-	OFF	-	5.5	10.0	15.0	6.5	10.0	15.0
06/27/07	2.0	7.0	15.0	5.5	9.0	15.0	-	OFF	-	5.0	9.5	15.0	5.0	9.5	15.0
06/28/07	1.5	8.0	15.0	5.0	10.0	15.0	-	OFF	-	5.0	9.0	15.0	6.0	10.0	15.0
07/12/07	2.0	8.0	15.0	6.0	9.0	15.0	10.0	12.0	15.0	5.0	10.0	15.0	6.0	10.0	15.0
08/01/07	1.5	7.0	15.0	5.5	10.0	15.0	-	OFF	-	5.0	9.5	15.0	5.5	11.0	15.0
08/10/07	5.0	10.0	17.0	9.5	16.0	17.0	-	OFF	-	10.0	12.5	17.0	9.0	15.5	17.0
09/11/07	5.5	17.0	16.0	5.5	16.5	16.0	-	OFF	-	9.0	10.0	19.5	8.0	12.0	19.5
09/28/07	3.0	7.5	24.0	8.0	17.0	20.0	2.5	8.0	20.0	16.0	17.0	20.0	9.0	15.0	20.0
10/01/07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/21/07	3.0	10.0	25.0	11.0	15.0	21.0	n/a	OFF	-	12.0	12.0	20.0	0	BSTRUCTE	ED
12/26/07	-	OFF	-	0	BSTRUCTE	D	n/a	OFF	-	18.0	13.5	20.0	11.5	15.5	20.0
01/15/08	-	OFF	-	11.0	14.0	21.0	n/a	OFF	-	16.5	11.5	20.0	12.0	14.0	20.0
02/07/08	5.0	9.5	25.0	10.0	13.0	20.0	n/a	OFF	-	15.5	14.0	19.0	15.5	21.0	20.0
03/18/08	9.0	10.0	25.0	5.5	11.5	19.0	n/a	9.5	21.0	8.0	9.5	20.0	8.5	12.0	21.0
04/24/08	7.0	7.0	25.0	3.0	7.0	19.0	-	7.0	21.0	5.0	5.0	21.0	4.0	7.0	21.0
05/29/08	0.0	0.0	25.0	0.0	0.0	19.0	n/a	0.0	21.0	0.0	0.0	21.0	0.0	0.0	21.0
06/26/08	0.0	0.0	25.0	0.0	0.0	20.0	n/a	0.0	22.0	0.0	0.0	21.0	0.0	0.0	21.0
07/30/08	OFF	OFF	25.0	OFF	OFF	20.0	OFF	OFF	22.0	5.0	15.0	21.0	4.5	15.0	21.0
09/30/08	OFF	OFF	25.0	OFF	OFF	20.0	n/a	8.0	22.0	OFF	OFF	21.0	OFF	OFF	21.0
11/04/08	3.0	8.0	25.0	3.0	8.0	20.0	n/a	8.0	22.0	5.0	10.0	21.0	5.0	10.0	21.0
12/02/08	2.5	8.0	25.0	5.0	9.0	20.0	n/a	12.0	22.0	7.0	10.0	21.0	6.0	11.0	21.0
01/06/09	3.0	9.0	25.0	5.0	10.0	20.0	n/a	11.0	22.0	8.0	9.0	21.0	6.0	10.0	21.0
02/09/09	2.5	10.0	25.0	5.0	11.0	20.0	n/a	12.0	22.0	7.0	10.0	21.0	6.0	11.0	21.0
03/18/09	2.5	9.0	25.0	5.0	9.0	20.0	n/a	8.0	22.0	7.0	9.0	21.0	6.0	9.0	21.0
04/21/09	3.0	10.0	25.0	5.0	9.0	20.0	n/a	10.0	22.0	7.0	9.0	21.0	6.0	9.0	21.0
05/19/09	3.0	9.0	25.0	6.0	11.0	20.0	n/a	9.0	22.0	8.0	9.0	21.0	6.0	9.0	21.0
08/31/09	-	-	25.0	-	-	20.0	n/a	-	22.0	-	-	21.0	-	-	21.0
10/02/09	OFF	OFF	25.0	7.0	13.0	20.0	n/a	12.5	22.0	OFF	OFF	21.0	10.0	13.5	21.0

NOTES:

in-Hg = inches of mercury (gauge pressure)

ft toc = dpeth in feet as measured from the top of the well casing

n/a = casing vacuum gauges not installed at this well

TABLE 9: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

		MW-10			MW-11			MW-12							
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)												
06/28/07	-	-	-	-	-	-	-	-	-						
07/12/07	-	-	-	-	-	-	-	-	-						
08/01/07	-	-	-	-	-	-	-	-	-						
08/10/07	-	-	-	-	-	-	-	-	-						
09/11/07	-	-	-	-	-	-	-	-	-						
09/28/07	-	-	-	-	-	-	-	-	-						
10/01/07	-	-	-	-	-	-	-	-	-						
11/21/07	n/a	13.0	18.0	n/a	11.0	19.0	n/a	14.0	19.0						
12/26/07	n/a	11.0	18.0	n/a	10.5	19.0	n/a	14.5	19.0						
01/15/08	n/a	10.0	18.0	n/a	9.0	19.0	n/a	12.0	19.0						
02/01/08	n/a	9.0	18.0	n/a	10.0	19.0	n/a	15.0	19.0						
03/18/08	n/a	7.5	18.0	n/a	9.0	19.0	n/a	9.0	20.5						
04/24/08	n/a	0.0	18.0	n/a	0.0	19.0	n/a	4.0	19.0						
05/29/08	n/a	11.0	20.0	n/a	14.0	20.0	n/a	13.0	20.0						
06/26/08	n/a	12.0	20.0	n/a	15.0	20.0	n/a	14.0	20.0						
07/30/08	n/a	10.0	20.0	n/a	13.0	20.0	n/a	12.0	20.0						
09/30/08	n/a	15.0	22.0	n/a	15.0	22.0	n/a	15.0	22.0						
11/04/08	n/a	10.0	22.0	n/a	15.0	22.0	n/a	15.0	22.0						
12/02/08	n/a	10.0	22.0	n/a	11.0	22.0	n/a	11.0	22.0						
01/06/09	n/a	10.0	22.0	n/a	11.0	22.0	n/a	11.0	22.0						
02/09/09	n/a	10.0	22.0	n/a	11.0	22.0	n/a	12.0	22.0						
3/18/09`	n/a	9.0	22.0	n/a	9.0	22.0	n/a	9.0	22.0						
04/21/09	n/a	10.0	22.0	n/a	9.0	22.0	n/a	10.0	22.0						
05/19/09	n/a	9.0	22.0	n/a	10.0	22.0	n/a	10.0	22.0						
08/31/09	n/a	-	22.0	n/a	-	22.0	n/a	-	22.0						
10/02/09	n/a	13.5	22.0	n/a	10.0	22.0	OFF	OFF	22.0						

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

in-Hg = inches of mercury (gauge pressure) ft toc = dpeth in feet as measured from the top of the well casing

n/a = casing vacuum gauges not installed at this well

TABLE 10: HVDPE PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Inlet Temp (°F)	Inlet Vac (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	PRED TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Total Mass Removed (pounds)	Total Mass Removed (gallons)
06/28/07	1 Storture			10				60	18	850	42			0	0
07/11/07	1 Startup	13	312	53	2	43	14%	60	22	1 725	42 85	6 600	224	402	67
07/27/07		16	384	103	2	-43 51	13%	60	20	1,720	83	11,000	368	1 180	197
08/01/07		5	120	160	2	57	47%	60	19	1,700	93	5,500	206	1,100	278
08/10/07	2.3	9	216	350	8	189	88%	60	22	1,800	88	7.700	273	3.820	637
09/28/07	4	49	1.176	896	23	546	46%	60	20	1.700	83	4.000	134	6.865	1.144
10/17/07		19	456	1,239	14	343	75%	60	21	1,100	54	5,100	110	8,446	1,408
11/08/07		22	528	1,709	20	470	89%	60	22	1,100	54	4,000	87	10,141	1,690
11/16/07		8	192	1,874	7	166	86%	60	21	1,100	54	6,000	130	11,038	1,840
11/21/07	5	5	120	1,994	5	120	100%	60	20.5	1,500	74	2,500	74	11,407	1,901
12/04/07		13	312	2,231	10	236	76%	60	20	1,150	56	7,900	179	13,168	2,195
12/26/07		22	528	2,566	14	335	63%	60	18	1,300	64	4,100	105	14,633	2,439
01/15/08		20	480	3,016	19	451	94%	60	19	1,200	59	1,900	45	15,476	2,579
01/22/08	6,7	7	168	3,064	2	48	29%	60	18	1,500	74	1,900	56	15,589	2,598
01/31/08		9	216	3,276	9	212	98%	60	20	1,250	61	2,200	54	16,067	2,678
02/07/08		7	168	3,443	7	167	99%	60	22	1,100	54	2,000	43	16,368	2,728
03/18/08	8,9	40	960	3,653	9	210	22%	60	15	1,400	69	630	17	16,520	2,753
04/01/08		14	336	3,952	12	299	89%	60	19	1,500	74	2,100	62	17,292	2,882
04/30/08		29	696	4,591	27	639	92%	60	19	1,900	93	2,100	79	19,383	3,231
05/29/08		29	696	4,978	16	387	56%	60	19.5	900	44	2,100	37	19,983	3,331
06/26/08		28	672	5,489	21	511	76%	60	23	1,200	59	860	20	20,416	3,403
07/30/08		34	816	6,184	29	694	85%	60	17	1,600	79	2,200	69	22,422	3,737
09/30/08		62	1,488	6,673	20	489	33%	60	9	2,000	98	1,100	43	23,304	3,884
11/04/08		35	840	7,062	16	389	46%	60	11	1,200	59	2,700	64	24,339	4,057
12/02/08		28	672	7,697	26	635	94%	60	10	1,200	59	2,200	52	25,715	4,286
01/06/09		35	840	8,298	25	601	72%	60	11	1,200	59	1,200	28	26,425	4,404
02/09/09		34	816	8,300	0.1	2	0%	60	12	1,200	59	1,200	28	26,427	4,405
03/18/09		37	888	8,320	0.8	20	2%	60	10	1,400	69	130	4	26,430	4,405
04/21/09		34	816	8,975	27.3	655	80%	60	11	1,400	69 (1	58	2	26,474	4,412
05/19/09		28	6/2 2.406	9,001	1.1	26	4%	60	10	1,250	61	190 970) 24	26,479	4,413
08/31/09		104	2,490	9,149	0.1	148	0%0 /60/	00 60	12	1,400	09 74	δ/U 1 700	24 50	20,020	4,438 1 176
09/10/09		10	240 168	9,200	4.0	151	4070 Q00%	60	15	1,300	/4 64	2 600	50 67	20,039 27 277	4,470
09/25/09		8	100	9 602	0.J 8	107	7070 100%	60	13	2,000	98	2,000	106	21,211	4,540
10/02/09		7	168	9,771	7	169	100%	60	13	1,100	54	2,400	52	28,491	4,749
		,	100	<i>>,,,</i> 1	,	107	100/0			1,100	~ ~	-, 100	~_	-0,7/1	.,,,
AVG	-	-	-	-	-	-	68%	60	14	1,460	72	2,054	60	-	-

TABLE 10: HVDPE PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Inlet Temp (°F)	Inlet Vac (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	PRED TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Total Mass Removed (pounds)	Total Mass Removed (gallons)
----------------	-------	-------------------------------	------------------------------	--------------------------	-----------------------------	----------------------------	--------------------------	-----------------------	-------------------------	---------------------------	------------------------	-------------------------	--------------------------------------	--------------------------------------	---------------------------------------

NOTES:

ppmv = parts per million by volume	hrs = hours	Flow = Velocity x Cross Sectional Area of the Pipe
TPH-g = total petroluem hydrocarbons as gasoline	- not analyzed/applicable	Cross Sectional Area of 3" Pipe = 0.0491 ft ²
TPH-g by EPA Method 8015C	fpm = feet per minute	Well Flow = Well Velocity * 0.0491
in-Hg = inches of mercury (gauge pressure)	scfm = standard cubic feet per minute	PRED = TPH-g influent concentration
1) System installed and started up on June 26, 2007	6) Propane delivery misse	d; system shutdown on 01/02/08
2) Propane delivery missed; system shutdown on 08/06/07	7) Propane delivery misse	d; system shutdown on 01/22/08
3) Propane delivery missed; system shutdown on 08/21/07	8) System shutdown most	t of February to evaluate free product recovery

4) System down between 09/11 and 09/24/08 due to electrical problems

5) System expanded; MW-10, MW-11 and MW-12 extraction added online

9) Catalyst module installed and started up in March 10)

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

MRR Estimate = (20,000*10^-6)*(50scfm)*(1440min/day)*(28.32L/ft^3)*(1mol/22.4L)*(100g/mol)*(1lb/454g) Negligible change in air density, constant concentration and average molecular weight 1 mole occupies 22.4 Liters at STP STP is 21°C and 1 atm 1ft^3 = 28.38 liters MWgas = 100 grams/mole (weathered gasoline) 1 lb = 454 grams1 day = 1440 minutes 1 gallon gas ~ 6 pounds

AVG = average values in red for the current reporting period

TABLE 11: THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Preheat Temp (°F)	Exhaust Temp (°F)	Total Velocity (fpm)	Total Flow (scfm)	POSTD TPH-g (ppmv)	STACK TPH-g (ppmv)	Abatement Efficiency (%)	TPH-g Destruction Rate (lbs/day)	Total TPH-g Destroyed (pounds)	Total TPH-g Destroyed (gallons)	Total TPH-g Destroyed (btu)
0.6/00/07				10	0.4	10		1.420	1.407	2.150	100	2 000	2.5	00.010/	1.61		11	1 222 026
06/28/07	1 Startup	- 12	- 212	10	0.4	10	-	1,430	1,427	2,150	106	3,800	3.5 2.5	99.91%	161	65	11	1,233,826
07/11/07		15	312	33 103	2	45	14%	1,478	1,392	2,625	129	1,400	3.5 3.5	99.75%	12	195	52 04	5,701,491 10,602,358
07/27/07		5	120	160	2	57	13% 47%	1,428	1,380	2,000	120	2 500	3.5	99.90%	174	890	148	16,092,338
08/10/07	23	9	216	350	8	189	88%	1,425	1,377	2,000	98	5 300	3.5	99.93%	209	2 535	422	48 204 535
09/28/07	4	49	1176	896	23	546	46%	1,471	1,438	3.000	147	4.800	3.5	99.93%	284	8,984	1.497	170.844.523
10/17/07		19	456	1.239	14	343	75%	1,409	1,365	2.400	118	1,800	3.5	99.81%	85	10.201	1,700	193,992,681
11/08/07		22	528	1,709	20	470	89%	1,412	1,342	2,000	98	2,000	21	98.95%	79	11,742	1,957	223,297,250
11/16/07		8	192	1,874	7	166	86%	1,408	1,347	2,000	98	3,600	3.5	99.90%	142	12,721	2,120	241,905,549
11/21/07	5	5	120	1,994	5	120	100%	1,412	1,308	2,400	118	5,500	3.5	99.94%	260	14,022	2,337	266,642,477
12/04/07		13	312	2,231	10	236	76%	1,416	1,312	2,050	101	1,300	3.5	99.73%	52	14,538	2,423	276,461,730
12/26/07		22	528	2,566	14	335	63%	1,408	1,352	2,200	108	1,700	3.5	99.79%	74	15,566	2,594	296,020,076
01/15/08		20	480	3,016	19	451	94%	1,411	1,357	2,100	103	620	3.5	99.44%	26	16,048	2,675	305,174,194
01/22/08	6,7	7	168	3,064	2	48	29%	1,407	1,348	2,400	118	1,100	3.5	99.68%	52	16,152	2,692	307,153,643
01/31/08		9	216	3,276	9	212	98%	1,348	1,267	2,150	106	770	3.5	99.55%	33	16,440	2,740	312,628,082
02/07/08		7	168	3,443	7	167	99%	1,409	1,333	2,000	98	690	3.5	99.49%	27	16,628	2,771	316,215,556
03/18/08	8,9	40	960	3,653	9	210	22%	705	794	2,300	113	310	3.5	98.87%	14	16,751	2,792	318,555,075
04/01/08		14	336	3,952	12	299	89%	703	751	3,100	152	500	3.5	99.30%	31	17,131	2,855	325,777,446
04/30/08		29	696	4,591	27	639	92%	709	792	2,700	133	700	3.5	99.50%	37	18,122	3,020	344,619,107
05/29/08		29	696	4,978	16	387	56%	703	769	1,800	88	500	3.5	99.30%	18	18,408	3,068	350,052,986
06/26/08		28	672	5,489	21	511	76%	802	841	2,500	123	620	3.5	99.44%	31	19,057	3,176	362,409,874
07/30/08	10	34	816	6,184	29	695	85%	705	797	2,800	137	-	3.5	-	-	-	-	-
09/30/08		62	1488	6,6/3	20	489	33%	759	855	3,200	157	-	3.5	-	-	-	-	-
11/04/08		35	840	7,062	16	389	46%	702	852	2,600	128	-	5.5	-	-	-	-	-
12/02/08		28 25	672 840	/,69/	20	601	94% 72%	704	812	2,100	103	-	52 26	-	-	-	-	-
01/00/09		24	040 916	0,290 8 200	23	2	12%	704	017 810	3,100	152	-	20	-	-	-	-	-
03/18/09		34	888	8,300	0.1	20	2%	701	780	3,100	132	-	3.5	-	-	-	-	-
04/21/09		34	816	8 975	27	655	80%	700	760	2,600	128		3.5	_			_	_
05/19/09		28	672	9,001	11	26	4%	704	700	2,000	137	_	3.5	_	_	_	_	_
08/31/09		104	2496	9,149	6.1	148	6%	702	832	3.100	152	-	3.5	-	-	-	-	-
09/10/09		10	240	9,260	4.6	111	46%	705	805	3.100	152	-	-	-	-	-	-	-
09/17/09		7	168	9,411	6.3	151	90%	707	807	2,500	123	-	-	-	-	-	-	-
09/25/09		8	192	9,602	8.0	192	100%	706	825	3,200	157	-	-	-	-	-	-	-
10/02/09		7	168	9,771	7.0	169	100%	706	777	2,800	137	-	3.5	-	-	-	-	-
AVG	-	-	-	-	-	-	68%	705	809	2,940	144	-	3.5	-	-	-	-	-

TABLE 11: THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Preheat Temp (°F)	Exhaust Temp (°F)	Total Velocity (fpm)	Total Flow (scfm)	POSTD TPH-g (ppmv)	STACK TPH-g (ppmv)	Abatement Efficiency (%)	TPH-g Destruction Rate (lbs/day)	Total TPH-g Destroyed (pounds)	Total TPH-g Destroyed (gallons)	Total TPH-g Destroyed (btu)
NOTES:														-				

Flow = Velocity x Cross Sectional Area of the Pipe

POSTD = TPH-g influent concentration (after dilution)

Cross Sectional Area of 3" Pipe = 0.0491 ft^2

10) Sampling POSTD was discontinued starting in the Third Quarter, 2008 monitoring and reporting period

AVG = average values in red for the current reporting period

Total Flow = Total Velocity * 0.0491

1 day = 1440 minutes

ppmv = parts per million by volume TPH-g = total petroluem hydrocarbons as gasoline TPH-g by EPA Method 8015C hrs = hours

1) System installed and started up on June 26, 2007 2) Propane delivery missed; system shutdown on 08/06/07 3) Propane delivery missed; system shutdown on 08/21/07 4) System down between 09/11 and 09/24/08 due to electrical problems 5) System expanded; MW-10, MW-11 and MW-12 extraction added online

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

MRR Estimate = (20,000*10^-6)*(50scfm)*(1440min/day)*(28.32L/ft^3)*(1mol/22.4L)*(100g/mol)*(1lb/454g) Negligible change in air density, constant concentration and average molecular weight 1 mole occupies 22.4 Liters at STP 1 ft^3 = 28.32 liters STP is 21°C and 1 atm MWgas = 100 grams/mole (weathered gasoline) 1 lb = 454 grams

- not analyzed/applicable

btu = british thermal units

1 gallon gas ~ 6 pounds

scfm = standard cubic feet per minute

fpm = feet per minute

1 gallon gas ~ 114,100 btu

6) Propane delivery missed; system shutdown on 01/02/08

7) Propane delivery missed; system shutdown on 01/22/08

9) Catalyst module installed and started up in March

8) System shutdown most of February to evaluate free product recovery

DL = detection limit 1/2 the DL was used for abatement efficiency calculations DL for TPH-g by EPA Method 8015C = 7.0 ppmv

TABLE 12: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Blower VFD (Hz)	Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent TPH-g Conc. (ppmv)	Influent TPH-g Conc. (µg/L)	Effluent TPH-g Conc. (µg/L)	Removal Efficiency (%)
06/26/07		0		45	25	2,600	129		20,000	1.000	05.0%
06/20/07	1	5	- 0.20	45	23	2,600	120	-	20,000	1,000	95.0%
06/27/08		5	0.20	45	23	2,000	128	-	25,000	420	98.5%
00/28/07		10	0.20	23 40	10	1,500	04	-	28,000	0,400	//.1%
07/05/07		-	-	40	20	2,300	115	-	-	-	-
07/11/07		-	-	40	20	2,300	115	-	-	-	-
07/11/07		- 70	-	20	5	900	44	-	- 200	-	-
07/12/07		70	3	20	5	900	44	-	8,300	-	-
07/12/07		70	0	15	4	000	29	-	8,300	-	-
07/27/07		-	-	20	0	900	44	-	-	-	-
08/01/07		-	-	20	0	900	44	-	-	-	-
08/10/07		-	-	10	2	200	10	-	-	-	-
08/07/07		-	-	15	3 10	000	29	-	-	-	-
08/21/07		-	-	20	18	900	44	-	-	-	-
08/22/07		530	19	15	5	600	29	-	16,000	5,300	66.9%
09/28/07		-	-	25 25	16	1,300	64	-	-	-	-
10/17/07		1,239	30	25 25	15	1,300	64	130	25,000	84	99.7%
10/23/07		-	-	25 20	15	1,300	64	-	-	-	-
10/25/07		-	-	20	15	900	44	-	-	-	-
11/07/07		1,709	20	20	16	900	44	-	21,000	120	99.4%
11/08/07		-	-	20	16	900	44	19	-	-	-
11/16/07		-	-	20	10	900	44	-	-	-	-
11/20/07		-	-	20	18	900	44	-	-	-	-
11/21/07		-	-	20	18.5	900	44	-	-	-	-
11/2//07		-	-	20	20	900	44	-	-	-	-
12/04/07		-	-	20	19	900	44	-	-	-	-
12/12/07	3	2,366	27	20	18	900	44		/5,000	65,000	13.3%
12/14/07		-	-	20	18	900	44	-	-	-	
12/25/07		-	-	20	20	900	44	-	-	-	-
12/20/07		-	- 10	20	20	900	44	-	-	-	-
01/08/08		2,815	19	20	19.5	900	44	-	12,000	130	98.9%
01/15/08		-	-	20	19.0	900	44	1,100	-	-	-
01/24/08		-	-	20	19.0	900	44	-	-	-	-
01/31/08		-	-	20	10.5	900	44	-	-	-	-
01/31/08		-	-	20	12.3	900	44	- 21	-	-	-
02/07/08		-	-	20	15	900	44	51	-	-	-
02/12/08		- 2 652	- 25	20	15	900	44	- 21	-	-	-
03/18/08		3,033	- 55	20	15	900	44	51	4,100	120	97.1%
03/28/08		- 2 052	12	20	10	900	44	-	- 2 400	-	0/ 20/
04/01/08		3,933 4 501	12	20	15	900	44	- 27	2,400	25	94.2% 00.7%
04/30/08	İ	4,391	27 16	20	13	900	44	5/ ND-70	0,000 12,000	20 100	99.7% 00.2%
05/29/08		4,9/8	10	20	20	900 1.200	44 64	ND .0</td <td>15,000</td> <td>70</td> <td>99.2% 00.1%</td>	15,000	70	99.2% 00.1%
00/20/08		J,489	21	20	20	1,300	04 50	44	7,000	/0	99.1%
07/30/08	l	0,184	29	30 20	1/.5	1,200	39 50	41	9,400 6 100	130	90.0%
09/30/08	4	0,0/3	20 16	30 20	19	1,200	39 50		0,100	94 ND -50	90.3% 00.7%
11/04/08	4	7,002	10 26	30 20	10	1,200	39 50	21 10	9,400	ND<50	99.7% 00.7%
12/02/08	5	1,097	20	30	1/	1,200	57	10	0,300	1ND<30	77.1%

TABLE 12: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Blower VFD (Hz)	Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent TPH-g Conc. (ppmv)	Influent TPH-g Conc. (µg/L)	Effluent TPH-g Conc. (µg/L)	Removal Efficiency (%)
01/06/00		8.208	25	20	17.5	1 200	50	150	7 800	ND .50	00.70
01/06/09	6	8,298	25	30	17.5	1,200	59	150	7,800	ND<50	99.7%
02/09/09		8,300	0.1	30	17	1,200	59	18	11,000	250	97.7%
03/18/09		8,320	1	30	17.5	1,200	59	ND<7.0	2,000	120	94.0%
04/21/09	7	8,975	27	30	17	1,200	59	ND<7.0	590	ND<50	95.8%
05/19/09		9,001	1	30	17	1,200	59	ND<7.0	1,100	57	94.8%
08/31/09	8	9,148	6	30	17.5	1,200	59	ND<7.0	4,200	ND<50	99.4%
09/10/09		9,260	5	30	17.5	1,200	59	-	-	-	-
09/17/09		9,411	6	30	17	1,200	59	-	-	-	-
09/25/09		9,602	8	30	17	1,200	59	-	-	-	-
10/02/09		9,771	7	30	17	1,200	59	-	-	-	-
AVG	-	-	-	30	17	1,200	59	ND<7.0	4,200	ND<50	99.4%

NOTES:

Hz = hertz (used to control flow rate)

in-H2O = inche of water

 $scfm = standard \ cubic \ feet \ per \ minute$

ppmv = parts per million by volume

 $\mu g/L = micrograms per Liter of water$

1) System started up and first discharge to the sanitary sewer

2) Air stripper cleaned due to high backpressure

3) Slug of free product may have been processed by air stripper

4) First time air stripper effluent was non-detect for TPH-g

5) Second time air stripper effluent was non-detect for TPH-g

AVG = average values in red for the current reporting period

6) Third time air stripper effluent was non-detect for TPH-g7) Fourth time air stripper effluent was non-detect for TPH-g8) Fifth time air stripper effluent was non-detect for TPH-g

TABLE 13: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (µg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
06/26/07		0		0							15	<1.0		N	N	1 000	25	07.50%			
06/27/07	1	5	0.2	780	780	2 969	161	2.60	-	-	1.5	<1.0	-	IN N	IN N	1,000	25	97.30%	- 0.0127	0.0026	-
06/28/07		10	0.2	1 300	780 520	2,570	101	2.09	-	-	1.5	<1.0	-	IN N	IN N	420 6.400	25	94.05%	0.0127	0.0020	0.00
07/03/07		13	0.2	1,300	500	3 166	132	2.20		-	1.5	<1.0		N	N	0,400	25	99.0170	0.1509	0.0502	0.01
07/09/07		25	0.2	4 310	2 510	5,100	215	3 59	_	_	2	<1.0	_	N	N	_					
07/10/07		28	0.1	5.000	690	5.224	213	3.63	-	-	3	<1.0	-	N	N	-	_	-	-	_	_
07/11/07		53	1.0	7,280	2.280	2.240	93	1.56	-	-	3	<1.0	-	N	N	-	-	-	-	-	-
07/12/07		70	0.7	7,400	120	162	7	0.11	-	-	5	<1.0	-	Y	Ν	-	-	-	-	-	-
07/27/07		103	1.4	8,580	1,180	860	35.8	0.60	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/30/07		121	0.7	9,200	620	844	35	0.59	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
08/01/07		160	1.6	13,400	4,200	2,560	107	1.78	-	-	5	<1.0	-	Y	Ν	-	-	-	-	-	-
08/07/07		279	4.9	14,470	1,070	217	9.0	0.15	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
08/17/07	2	445	6.9	25,000	10,530	1,522	63.4	1.06	2	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
08/21/07		506	2.6	33,000	8,000	3,135	131	2.18	7	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
08/22/07		530	1.0	34,110	1,110	1,110	46	0.77	2	2.5	2.5	<1.0	Ν	Ν	Ν	5,300	25	99.53%	0.0488	1.47	0.25
08/23/07		554	1.0	36,710	2,600	2,590	108	1.80	2	2.5	2.5	<1.0	N	N	Ν	-	-	-	-	-	-
08/27/07		648	3.9	45,800	9,090	2,311	96	1.60	10	>7	>7	-	Y	Y	Y	-	-	-	-	-	-
08/31/07		744	4.0	50,820	5,020	1,255	52	0.87	2	2.5	2.5	<1.0	N	Ν	Ν	-	-	-	-	-	-
09/05/07		862	4.9	57,100	6,280	1,277	53	0.89	10	2.5	2.5	<1.0	Y	N	N	-	-	-	-	-	-
09/24/07		896	1.4	65,360	8,260	6,004	250	4.17	10	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
10/01/07		1,088	8.0	99,000	33,640	4,205	175	2.92	15	>10	>10	2	Y	N	Y	-	-	-	-	-	-
10/17/07	3	1,239	6.3	140,710	41,710	6,609	275	4.59	11	4	4	2	N	N	N	84	25	70.24%	0.0032	1.52	0.25
10/23/07		1,384	6.0	173,260	32,550	5,389	225	3.74	24	7.5	7.5	2.5	N	N	N	-	-	-	-	-	-
10/25/07	4	1,395	0.5	175,600	2,340	4,918	205	3.42	>30/7.5	8/8	8/8	>5/>5	Y	N	N	-	-	-	-	-	-
11/07/07		1,709	13	223,380	47,780	3,661	153	2.54	14	14.5	14.5	OFFLINE	Y	N	N	120	25	79.17%	0.0029	1.59	0.26
11/08/07		1,730	0.9	227,190	3,810	4,354	181	3.02	16	16.5	16.5	OFFLINE	N	N	N	-	-	-	-	-	-
11/13/07		1,809	3.3	244,360	17,170	5,220	217.5	3.62	14	14.5	15	OFFLINE	N	N	N	-	-	-	-	-	-
11/10/07		1,8/4	2.7	259,600	15,240	3,300	232	3.8/	17	17.5	18	OFFLINE	IN N	IN N	IN N	-	-	-	-	-	-
11/20/07	5	1,969	3.9	279,190	19,590	4,985	208	5.40	19	19.5	20	OFFLINE	IN N	IN N	IN N	-	-	-	-	-	-
11/21/07		1,995	1.0	267,430	0,200 22,870	6,200	244	3.74 4.91	20.5	19.5	20	OFFLINE OFFLINE	IN V	IN N	IN N	-	-	-	-	-	-
11/27/07		2,107	4.7	320,320	7 720	7 504	200	5.21	20.5	21.J	10/60	OFFLINE	I V	v	IN N	-	-	-	-	-	-
12/04/07		2,131	1.0	328,040	27 780	6 763	282	J.21 4 70	18/4.5	175/75	175/75	OFFLINE OFFLINE	v I	v I	N	-	-	-	-	-	-
12/04/07		2,250	4.1 5.7	391 500	35 680	6 296	262	4.70	20/5	10/45	17.577.5 10/45	OFFLINE	Y	Y	N	65,000	25	99.96%	3 4067	92.55	15.42
12/12/07		2,300	0.6	395 260	3 760	6 670	202	4.63	11	40	4.5	OFFLINE	N	N	N			-		,2.55	
12/26/07		2,545	6.9	440,900	45 640	6,603	275	4 59	13	13.5	14	OFFLINE	N	N	N		_	_			_
12/20/07		2,515	0.2	0,200	-15,0-10	0,005	215	1.07	15	10.0	17	STILLUL	1,		1,						

TABLE 13: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (µg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
01/08/08		2,815	11	512,760	71,860	6,398	267	4.44	18.5	19	19	OFFLINE	OFFLINE	N	N	130	25	80.77%	0.0056	92.66	15.44
01/15/08		3,016	8.4	541,920	29,160	3,472	145	2.41	19	20	20	OFFLINE	OFFLINE	N	N	-	-	-	-	-	-
01/22/08		3,064	2.0	550,780	8,860	4,424	184	3.07	16.5/4	1//4	1//4	OFFLINE	OFFLINE	Y	N	-	-	-	-	-	-
01/31/08		3,276	8.8	608,890	58,110	6,580	274	4.57	16/8	10.5 / 8.5	10.5 / 8.5	OFFLINE	OFFLINE OFFLINE	Y N	N N	-	-	-	-	-	-
02/07/08		3,443	0.9	657,140	48,250	6,950 5.057	290	4.85	19	19.5	19.5	OFFLINE	OFFLINE OFFLINE	IN N	IN N	-	-	-	-	-	-
02/12/08		2,559	4.0	085,990	20,000	3,937	240	4.14	23.3	20	20	OFFLINE OFFLINE	OFFLINE OFFLINE	IN V	IN N	120		- 70.170/	-	02.02	15 47
03/18/08		3,035	3.9 8.2	760 730	29,490 45,250	5 400	220	3.22	10.5	17	17	OFFLINE OFFLINE	OFFLINE OFFLINE	I N	IN N	120	23	/9.1/%	0.0000	92.82	13.47
03/28/08		3,053	13	771 940	11 210	2 637	110	1.83	4	4.5	4.5	OFFLINE OFFLINE	OFFLINE OFFLINE	N	N	2 400	- 25	08.06%	0.0522	94.52	15 75
04/30/08		4 591	4.5 27	858 530	86 590	3 254	136	2.26	9.5	17.5	17.5	OFFLINE	OFFLINE OFFLINE	N	N	2,400	25	90.90%	0.0322	103.03	17.17
05/29/08		4 978	16	931 605	73 075	4 532	189	3.15	23	23.5	23.5	OFFLINE	OFFLINE	N	N	13,000	25	99.81%	0.2324	110.93	18.49
06/26/08		5 489	21	1 039 610	108.005	5.075	211	3.52	25	25.5	25.5	OFFLINE	OFFLINE	N	N	7 600	25	99.67%	0.3201	117 74	19.62
07/30/08		6 184	29	1,055,010	22,260	769	32	0.53	25	26.5	26.5	OFFLINE	OFFLINE	N	N	9 400	25	99.73%	0.0601	119.48	19.02
09/30/08		6.673	20	1.111.770	49,900	2.449	102	1.70	23	24.5	24.5	OFFLINE	OFFLINE	N	N	6.100	25	99.59%	0.1239	122.00	20.33
11/04/08		7.062	16	1.181.610	69.840	4,305	179	2.99	22	22.5	22.5	OFFLINE	OFFLINE	N	N	9,400	25	99.73%	0.3360	127.45	21.24
12/02/08		7.697	26	1.281.070	99,460	3,759	157	2.61	28	28.5	28.5	OFFLINE	OFFLINE	Ν	Ν	8,300	25	99.70%	0.2590	134.31	22.38
01/06/09		8,298	25	1,381,550	100,480	4,013	167	2.79	>30	>30	>30	OFFLINE	OFFLINE	Ν	Ν	7,800	25	99.68%	0.2598	140.81	23.47
02/09/09		8,300	0.1	1,381,550	0	0	0	0.00	-	-	-	OFFLINE	OFFLINE	Ν	Ν	11,000	25	99.77%	0.0000	140.81	23.47
03/18/09	6	8,320	0.8	1,385,760	4,210	5,002	208	3.47	5	5	5	OFFLINE	OFFLINE	Ν	Ν	2,000	25	98.75%	0.0823	140.88	23.48
04/21/09		8,975	27	1,462,030	76,270	2,795	116	1.94	5	5	5	OFFLINE	OFFLINE	Ν	Ν	590	25	95.76%	0.0132	141.24	23.54
05/19/09		9,001	1.1	1,465,550	3,520	3,253	136	2.26	5	5	5	OFFLINE	OFFLINE	Ν	Ν	1,100	25	97.73%	0.0291	141.27	23.55
08/31/09		9,149	6.1	1,510,210	44,660	7,262	303	5.04	8	8	8	OFFLINE	OFFLINE	Ν	Ν	4,200	25	99.40%	0.2525	142.82	23.80
09/10/09	7	9,260	4.6	1,520,040	9,830	2,125	89	1.48	-	-	-	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
09/17/09		9,411	6.3	1,520,040	0	0	0	0.00	-	-	-	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
09/25/09		9,602	8.0	1,520,090	50	6	0	0.00	-	-	-	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
10/02/09	8, 9	9,771	7.0	1,520,090	0	0	0	0.00	9	9	9	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
AVG	-	-	-	-	-	7,262	303	5.04	-	-	-	-	-	-	-	4,200	25	99.40%	0.2525	-	-

NOTES:

gpd = gallons per day gph = gallons per hour gpm = gallons per minute psig = pounds per square inch $\mu g/L$ = micrograms per Liter of water (ppb) lbs/day = pounds per day GAC = granular activated carbon Conc. = concentration

TPH-g = Total Petroleum Hydrocarbons as Gasoline TPH-g by EPA Method 8015C

1) System startup and first dischrage to sanitary sewer

2) Bag filter (LCO8) pre-filter for sediment removal installed and started up on 08/17/07

3) 1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07

4) 200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07

5) Extraction wells MW-10, MW-11, and MW-12 brought online 11/20/07

Minimum EBMUD wastewater discharge permit reporting requirements are: - monthly flow totalizer readings

- volume of groundwater treated during this reporting period

- total volume of groundwater treated to date

- description of any operationsl changes during this reporting period

$$\begin{split} Mass Removal Rate (lbs/day) &= (1 \text{ gal/min}*(1,000 \mu g/L - 25 \mu g/L)*(3.785 L/gallon)*(1440/min/day)*(2.2lbs/10^{9} \mu g) \\ Total Mass Removed (lbs) &= (1 \text{ gallon})*(1,000 \mu g/L - 25 \mu g/L)*(3.785 L/gallon)*(2.2lbs/10^{9} \mu g) \\ 1 \text{ gallon of gas} &= \sim 6 \text{ pounds} \\ 1/2 \text{ the DL was used for removal efficiency and mass removal calculations} \\ DL for THP-g by modified EPA Method 8015C &= 50 \mu g/L \\ AVG &= average values in red for the current reporting period \end{split}$$

*Bag filter inlet and outlet pressures are recorded before and after the bag filter is changed using the following convention: (pressure before / pressure after) **GAC inlet and outlet pressures are recorded before and after the vessel is backwashed using the following convention: (pressure before / pressure after)

6) On February 27, 2009, the carbon in the PV1000 carbon absorber was changed out by Siemens Water Technologies
7) The "gallons pumped / treated" and the "average flow rates" should have been much higher; flow totalizer could be broken
8) Confinmed that the Neptune (Model T-10) cold water flow totalizer was broken; flow totalizer will be replaced during the next O&M visit
9) Neptune (Model T-10) cold water flow totalizer was not working properly between 08/31/09 and 10/02/09.
10)

TABLE 14: HVDPE PROCESS MONITORING SCHEDULE

Field Point Name	Sample Port Description/Location	TPH-g (SW8015Cm)	BTEX &MTBE (SW8021B)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-1S MW-2S MW-5S MW-6S MW-7S MW-10S MW-11S MW-12S PRED POSTD AS STACK GP-1-5' GP-1-10' GP-2-5' GP-2-10' GP-3-5' GP-3-10'	Sample Port at DPE Manifold Sample Port at DPE Manifold Influent Vapor Sample Port Oxidizer Inlet Sample Port Stipper Outlet Vapor Sample Port Stack Gas Discharge Sample Port Stack Gas Discharge Sample Port Permanent Soil Gas Probe Permanent Soil Gas Probe	M M M M M M M M M - - - - - - - - - - -	M M M M M M M M M - - - - - - -	M M M M M M M M Q Q Q Q Q Q Q Q Q Q Q Q	M M M M M M M M M Q Q Q Q Q Q Q Q Q Q Q	M M M M M M M M M Q Q Q Q Q Q Q Q Q Q Q	M M M M M M M M M M Q Q Q Q Q Q Q Q Q Q
GP-4-5' GP-4-10' INF POST-AS POST-C1 EFF	Permanent Soil Gas Probe Permanent Soil Gas Probe Influent Water Sample Port Water Sample Port After Stripper Water Sample Port After C-1 Effluent Water Sample Port	- M M M M	- M M M M	Q Q - - -	Q Q - - -	Q Q - - -	Q Q - - -

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

W = weekly

- BW = bi-weekly
- $\mathbf{M} = \mathbf{monthly}$
- A = annual
- SA = semi-annual
- AN = as needed
- $\mathbf{SP} = \mathbf{sample \ port}$

HC = total volatile hydrocarbon

ppmv = parts per million by volume

% = percent concentration by volume

TVH = total volatile hydrocarbons (calibrated w/ hexane)

- CH4 = methane
- O2 = oxygen

CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured w/ RKI Eagle gas detector

*Additional water analysis for Total Oil and Grease Hydrocarbon by Method HEM-1664SGT required every 6 months by EBMUD permit **POSTD and STACK required every month by BAAQMD permit

***Soil gas sampling for vapor intrusion evaluation is conducted quarterly with routine groundwater monitoring events

APPENDIX A

MONITORING WELL FIELD SAMPLING FORMS

		Monitoring Well Number: MW-1							
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009					
Job Number:	116907		Name of Sampler:	A. Nieto					
Project Address:	245 8th Street, Oakland								
	MONITORIN	<u>G WELL DA</u>	TA						
Well Casing Diam	eter (2"/4"/6")	4							
Wellhead Condition	งท	ОК							
Elevation of Top o	f Casing (feet above msl)	32.55							
Depth of Well		28.00							
Depth to Water (fr	om top of casing)	17.09							

Depth to water (from top of casing)	17.09			
Depth to Free Product (from top of casing)	Not detected			
Water Elevation (feet above msl)	15.46			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	21.3			
Actual Volume Purged (gallons)	22.0			
Appearance of Purge Water	Initially brown, clears quickly			
Free Product Present?	Thickness (ft):			

GROUNDWATER SAMPLES										
Number of Sample	es/Container S	Size		Three (3) 40n	nL VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments			
7:15	1	18.84	876	0.45	6.41	-145.1	Clear			
	2	18.86	885	0.38	6.37	-153.9	""			
	3	18.85	886	0.35	6.39	-159.3	""			
	4	18.84	892	0.37	6.41	-168.6	""			
	5	18.84	843	0.42	6.43	-163.2	""			
	6	18.84	814	0.52	6.49	-161.1				
	10	18.88	683	0.81	6.48	-140.8	""			
	14	18.88	598	1.11	6.33	-106.8	""			
	18	18.86	619	1.25	6.31	-102.7				
7:46	22	18.87	532	1.38	6.23	-93.3	""			

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Moderate hydrocarbon and fetid odors noted.

Well dry after 10 gallons, recharge at 7:30.

Well dry after 18 gallons.

		Mor	nitoring Well Number:	MW-2				
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009				
Job Number:	116907		Name of Sampler: A. Nieto					
Project Address:	245 8th Street, Oakland							
MONITORING WELL DATA								
Well Casing Diame	eter (2"/4"/6")		2					
Wellhead Conditio	n	ОК						
Elevation of Top of	f Casing (feet above msl)		33.24					
Depth of Well			28.00					
Depth to Water (fro	om top of casing)	18.02						
Water Elevation (fe	eet above msl)	15.22						
Well Volumes Purg	ged	3						
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)	4.8						
Actual Volume Pur	ged (gallons)	6.0						
Appearance of Pur	rge Water	Initially dark brown, clears quickly						
	Free Product Present?	Thickness (ft):						

GROUNDWATER SAMPLES									
Number of Sample	es/Container S	Size		Three (3) 40mL VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments		
8:33	1	18.24	818	0.57	6.11	-79.9	Clear		
	2	18.29	722	0.39	6.11	-71.8	""		
	3	18.32	662	0.32	6.09	-62.1	""		
	4	18.35	621	0.33	6.06	-51.3	""		
	5	18.35	607	0.47	6.05	-47.2	""		
8:38	6	18.36	601	0.38	6.05	-45.5			

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon odors noted.

		Mor	itoring Well Number:	MW-3				
Project Name:	Vic's Automotive	Date of Sampling: 8/21/20						
Job Number:	116907	Name of Sampler:	A. Nieto					
Project Address:	245 8th Street, Oakland							
MONITORING WELL DATA								
Well Casing Diame	eter (2"/4"/6")		4					
Wellhead Conditio	n							
Elevation of Top o	f Casing (feet above msl)		34.25					
Depth of Well			25.00					
Depth to Water (fro	om top of casing)	19.24						
Water Elevation (fe	eet above msl)	15.01						
Well Volumes Purg	ged	3						
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)	11.2						
Actual Volume Pur	rged (gallons)	12.0						
Appearance of Pur	rge Water	Initially brown, clears quickly						
	Free Product Present?	? Thickness (ft):						

	GROUNDWATER SAMPLES									
Number of S	amples/Container S	Size		Three (3) 40mL VOAs						
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments			
6:37	1	19.08	452	1.26	5.90	6.0	Clear			
	2	19.18	438	1.15	5.96	-7.8	""			
	3	19.23	406	1.44	6.01	-17.4	""			
	4	19.28	384	1.52	6.05	-29.7	""			
	5	19.29	385	1.42	6.07	-36.9	""			
	6	19.31	397	1.17	6.11	-59.9	""			
	8	19.29	433	1.01	6.14	-76.5	""			
	10	19.27	459	0.89	6.14	-70.4	""			
6:46	12	19.26	454	0.95	6.13	-65.3				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No hydrocarbon odors noted.

		Mor	nitoring Well Number:	MW-4						
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009						
Job Number:	116907		Name of Sampler:	A. Nieto						
Project Address:	245 8th Street, Oakland									
	MONITORING WELL DATA									
Well Casing Diame	eter (2"/4"/6")	4								
Wellhead Condition	n	ОК		•						
Elevation of Top of	f Casing (feet above msl)	34.42								
Depth of Well		25.00								
Depth to Water (fro	om top of casing)	19.70								
Water Elevation (fe	eet above msl)	14.72								
Well Volumes Purg	ged		3							
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)	10.3								
Actual Volume Pur	ged (gallons)	11.0								

Clear

Thickness (ft):

	GROUNDWATER SAMPLES										
Number of Sampl	les/Container S	Size		Three (3) 40r	mL VOAs						
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments				
10:10	1	17.39	280	8.86	6.05	55.9	Clear				
	2	17.44	277	7.73	5.83	81.1					
	3	17.45	273	7.71	5.81	82.9					
	4	17.47	269	7.45	5.79	86.1	""				
	5	17.46	270	7.41	5.79	86.4					
	6	17.47	276	7.37	5.78	87.1	""				
	7	17.47	279	7.41	5.79	86.8					
	8	17.47	281	7.41	5.81	86.1					
	9	17.48	280	7.38	5.81	86.3					
10:20	11	17.48	277	7.19	5.85	83.4	""				

Free Product Present?

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No hydrocarbon odors noted.

Appearance of Purge Water

		Mor	nitoring Well Number:	MW-5					
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009					
Job Number:	116907		Name of Sampler: A. Nieto						
Project Address:	245 8th Street, Oakland								
•			•						
	MONITORING WELL DATA								
Well Casing Diame	eter (2"/4"/6")		4						
Wellhead Condition	n	ОК		•					
Elevation of Top of	f Casing (feet above msl)		33.33						
Depth of Well		22.00							
Depth to Water (fro	om top of casing)	17.66							
Water Elevation (fe	eet above msl)	15.67							
Well Volumes Purg	ged	3							
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)	8.5							
Actual Volume Pur	ged (gallons)	9.0							
Appearance of Pur	rge Water	Initially dark brown, clears before 1 gallon							
	Free Product Present?	Thickness (ft):							

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		Three (3) 40r	nL VOAs		
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
6:51	1	18.89	954	0.71	6.28	-166.2	Clear
	2	18.98	935	0.52	6.31	-168.8	""
	3	19.03	886	0.42	6.33	-166.1	""
	4	19.03	760	0.48	6.36	-157.6	""
	5	19.03	759	0.48	6.38	-157.3	""
	6	19.11	742	2.05	6.22	-117.2	""
	7	19.10	681	1.25	6.25	-116.7	""
	8	19.05	671	1.14	6.26	-116.9	""
	9	19.03	679	1.08	6.27	-117.4	""

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon odors noted.

		Mor	<mark>iitoring Well Number:</mark>	MW-6	
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009	
Job Number:	116907		Name of Sampler:	A. Nieto	
Project Address:	Project Address: 245 8th Street, Oakland				
MONITORING WELL DATA					
Well Casing Diame	eter (2"/4"/6")		4		
Wellhead Condition		ОК		•	
Elevation of Top of	f Casing (feet above msl)		32.82		
Depth of Well		22.00			
Depth to Water (from top of casing)			16.70		
Depth to Free Product (from top of casing)			Not detected		
Water Elevation (fe	eet above msl)		16.12		

Well Volumes Purged	3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	10.3		
Actual Volume Purged (gallons)	11.0		
Appearance of Purge Water	Initially light brown, clears after 1 gallon		
Free Product Present?	Thickness (ft):		

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		Three (3) 40mL VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
7:58	1	18.46	456	0.82	6.02	-81.8	Light brown
	2	18.63	448	0.48	5.96	-80.5	Clear
	3	18.66	433	0.51	5.96	-79.3	""
	4	18.66	416	0.51	5.97	-77.4	
	5	18.66	399	0.51	5.98	-75.0	""
	6	18.62	395	0.48	6.08	-80.2	
	7	18.62	396	0.40	6.13	-84.8	
	8	18.66	405	0.52	5.92	-59.0	
	9	18.65	398	0.42	5.93	-58.2	
	11	18.65	404	0.47	6.04	-66.2	""

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon and fetid odors noted.

		Mon	itoring Well Number:	MW-7		
Project Name:	Vic's Automotive	Date of Sampling:	8/10/2009			
Job Number:	116907	Name of Sampler:	A. Nieto			
Project Address:	245 8th Street, Oakland					
MONITORING WELL DATA						
Well Casing Diam	Well Casing Diameter (2"/4"/6")		4			
Wellhead Condition		ОК		▼		
Elevation of Top of Casing (feet above msl)			33.07			
Depth of Well		22.00				
Depth to Water (from top of casing)			17.39			
Depth to Free Product (from top of casing)			Not detected			
Water Elevation (f	eet above msl)		15.68			

Well Volumes Purged	3	
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	9.0	
Actual Volume Purged (gallons)	9.0	
Appearance of Purge Water	Initially light brown, clears quickly	
Free Product Present?	Thickness (ft):	
Free Product Present?	Thickness (ft):	

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size		Three (3) 40mL VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
8:42	1	18.39	743	0.67	5.91	-86.1	Clear
	2	18.42	769	0.46	5.95	-92.4	""
	3	18.43	807	0.39	6.09	-105.9	""
	4	18.42	808	0.38	6.13	-108.5	""
	5	18.39	807	0.38	6.15	-110.2	""
	6	18.41	807	0.37	6.17	-111.8	""
	7	18.53	741	0.53	6.06	-99.1	""
	8	18.52	755	0.52	6.07	-100.4	""
	9	18.52	751	0.53	6.09	-101.8	""

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Moderate hydrocarbon odors noted.

		Mon	itoring Well Number:	MW-8		
Project Name:	Vic's Automotive	Date of Sampling:	8/21/2009			
Job Number:	116907	Name of Sampler:	A. Nieto			
Project Address:	245 8th Street, Oakland					
MONITORING WELL DATA						
Well Casing Diam	Well Casing Diameter (2"/4"/6")		4''			
Wellhead Condition		ОК		•		
Elevation of Top of Casing (feet above msl)			33.00			
Depth of Well		22.00				
Depth to Water (from top of casing)		17.05				
Depth to Free Product (from top of casing)			Not detected			
Water Elevation (fe	eet above msl)		15.95			

3

9.6

10.0

Initially light brown, clears after 2 gallons. Light brown at 9

Appearance of Purge Water			gallons, clear after 9 gallons.				
	Free Product Present?				٦	Thickness (ft):	
		G	ROUNDWA	TER SAMPI	ES		
Number of Sam	ples/Container S	Size		Three (3) 40r	nL VOAs		
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
9:30	1	18.12	152	1.69	6.40	-3.4	Light brown
	2	18.22	148	1.41	6.20	21.9	Light brown
	3	18.25	142	1.15	6.08	12.2	Clear
	4	18.27	141	0.82	6.00	-1.9	""
	5	18.29	139	0.68	5.98	-14.8	
	6	18.29	139	0.63	5.99	-20.7	""
	7	18.30	140	0.61	6.03	-32.8	""
	8	18.3	140	1.65	6.33	-38.1	""
	9	18.37	135	1.67	6.07	-11.9	Light brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

1.01

6.21

-4.7

Clear

134

18.33

No hydrocarbon odors noted.

10

Well Volumes Purged

gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)

Actual Volume Purged (gallons)

Gallons Purged: formula valid only for casing sizes of 2" (.16

		Mor	nitoring Well Number:	MW-9		
Project Name:	Vic's Automotive	Date of Sampling:	8/21/2009			
Job Number:	116907	Name of Sampler:	A. Nieto			
Project Address:	245 8th Street, Oakland					
	MONITORIN	<u>G WELL DA</u>	ТА			
Well Casing Diam	eter (2"/4"/6")		2"			
Wellhead Conditio	in	OK		_		
Elevation of Top of Casing (feet above msl)			32.00			
Depth of Well			22.73			
Depth to Water (fro	om top of casing)		15.41			
Depth to Free Pro	duct (from top of casing)		Not detected			

Water Elevation (feet above msl)	16.59		
Well Volumes Purged	3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	3.5		
Actual Volume Purged (gallons)	5.0		
Appearance of Purge Water	Initially light green, clears after 1 gallon		
Free Product Present?	Thickness (ft):		

GROUNDWATER	SAMPLES
-------------	---------

Number of Samples/Container Size			Three (3) 40mL VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
11:25	1	19.62	412	0.57	6.23	-60.7	Light green
	2	19.76	429	0.35	6.21	-67.6	Clear
	3	19.69	450	0.32	6.21	-69.2	
	4	19.61	475	0.35	6.21	-71.3	
	5	19.55	518	0.45	6.19	-73.1	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon odors noted.

		Mor	nitoring Well Number:	MW-10	
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009	
Job Number:	116907	Name of Sampler:	A. Nieto		
Project Address:	245 8th Street, Oakland				
	MONITORIN	G WELL DA	TA		
Well Casing Diam	eter (2"/4"/6")		4		
Wellhead Condition	n	ОК		▼	
Elevation of Top o	f Casing (feet above msl)		31.17		
Depth of Well			22.00		
Depth to Water (fr	om top of casing)				

Deptil to Water (nom top of casing)		
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		
Actual Volume Purged (gallons)		
Appearance of Purge Water		
Free Product Present?	Thickness (ft):	

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Plumbed to HVDPE system from beaneath building slab as of August 2008 / Well not used for groundwater monitoring.

		Мо	nitoring Well Number:	MW-11	
Project Name:	Vic's Automotive	Date of Sampling:	8/21/2009		
Job Number:	116907	Name of Sampler:	A. Nieto		
Project Address:	Project Address: 245 8th Street, Oakland				
			-		
MONITORING WELL DATA					
Well Casing Diamo	eter (2"/4"/6")		4		
Wellhead Conditio	n	ОК		_	

Elevation of Top of Casing (feet above msl)	31.78	
Depth of Well	22.00	
Depth to Water (from top of casing)		
Water Elevation (feet above msl)		
Well Volumes Purged		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		
Actual Volume Purged (gallons)		
Appearance of Purge Water		
Free Product Present?	Thickness (ft):	

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Plumbed to HVDPE system from beaneath building slab as of August 2008 / Well not used for groundwater monitoring.

	Мог	nitoring Well Number:	MW-12		
Project Name:	Vic's Automotive	Date of Sampling:	8/21/2009		
Job Number:	116907	Name of Sampler:	A. Nieto		
Project Address:	245 8th Street, Oakland				

MONITORING WELL DATA Well Casing Diameter (2"/4"/6") 4 Wellhead Condition OK 7 Elevation of Top of Casing (feet above msl) 32.02 Depth of Well 22.00 Depth to Water (from top of casing) Water Elevation (feet above msl) Well Volumes Purged Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft) Actual Volume Purged (gallons) Appearance of Purge Water Free Product Present? Thickness (ft):

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Plumbed to HVDPE system from beaneath building slab as of August 2008 / Well not used for groundwater monitoring.

		Mor	nitoring Well Number:	MW-13		
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009		
Job Number:	116907		Name of Sampler:	A. Nieto		
Project Address:	245 8th Street, Oakland					
	MONITORING WELL DATA					
Well Casing Diam	eter (2"/4"/6")		2"			
Wellhead Condition	n	ОК		▼ [
Elevation of Top of	f Casing (feet above msl)		32.00			
Depth of Well		22.00				
Depth to Water (fr	om top of casing)	15.11				
Water Elevation (f	eet above msl)	16.89				
Well Volumes Pur	ged		3			
Gallons Purged: f	ormula valid only for casing sizes of 2" (.16		3.3			

gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	
Actual Volume Purged (gallons)	6.0
Appearance of Purge Water	Clear
Free Product Present?	Thickness (ft):

GROUNDWATER SAMPLES							
Number of Samples/Container Size				Three (3) 40mL VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
11:00	1	19.51	398	3.50	6.34	36.9	Clear
	2	19.66	408	3.33	6.19	49.4	""
	3	19.54	416	3.64	6.13	55.6	""
	4	19.41	417	3.09	6.12	55.3	""
	5	19.31	395	1.41	6.13	51.7	""
11:07	6	19.27	374	1.11	6.13	50.4	""

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No hydrocarbon odors noted.
AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

		Mon	<mark>iitoring Well Number:</mark>	MW-14							
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009							
Job Number:	116907		Name of Sampler:	A. Nieto							
Project Address:	245 8th Street, Oakland										
	MONITORIN	<u>G WELL DA</u>	TA								
Well Casing Diame	eter (2"/4"/6")		2"								
Wellhead Condition	n	OK									
Elevation of Top of	f Casing (feet above msl)	32.00									
Depth of Well		22.00									
Depth to Water (fro	om top of casing)		15.66								
Water Elevation (fe	eet above msl)		16.34								
Well Volumes Purg	ged	3									
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)		3.1								
Actual Volume Pur	ged (gallons)		4.0								
Appearance of Pur	rge Water	Initia	lly light green, light brown afte	r 2 gallons							
	Free Product Present?		Thickness (ft):								

		G	ROUNDWA	TER SAMPL	ES		
Number of Sample	es/Container S	Size		Three (3) 40n	nL VOAs		
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments
10:45	1	18.81	424	1.18	6.22	-28.0	Light green
	2	18.82	406	0.84	6.21	-22.0	light brown
	3	18.80	370	0.61	6.19	-8.6	
10:49	4	18.78	380	0.52	6.20	-23.5	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Slight hydrocarbon odors noted.

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

		Mon	<mark>iitoring Well Number:</mark>	MW-15
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009
Job Number:	116907		Name of Sampler:	A. Nieto
Project Address:	245 8th Street, Oakland			
	MONITORIN	G WELL DA	ТА	
Well Casing Diam	eter (2"/4"/6")		2"	
Wellhead Conditio	n	ОК		▼
Elevation of Top o	f Casing (feet above msl)		32.00	
Depth of Well			22.00	
Depth to Water (fr	om top of casing)		16.03	
Water Elevation (f	eet above msl)		15.97	
Well Volumes Pure	ged		3	
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 , and 6" (1.44 gal/ft)		2.9	

Actual Volume Purged (gallons)	5.0	
Appearance of Purge Water	Light brown	
Free Product Present?	Thickness (ft):	

		G	ROUNDWA	TER SAMPL	ES		
Number of Sample	es/Container S	Size		Three (3) 40n	nL VOAs		
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
11:48	1	19.42	725	2.40	6.65	-17.3	Light brown
	2	19.49	752	0.78	6.64	-10.6	
	3	19.44	724	0.44	6.60	-5.1	""
	4	19.37	695	0.36	6.51	4.4	""
11:54	5	19.36	692	0.35	6.47	7.6	""

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No hydrocarbon odors noted.

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

		Mor	nitoring Well Number:	MW-16								
Project Name:	Vic's Automotive		Date of Sampling:	8/21/2009								
Job Number:	116907		Name of Sampler:	A. Nieto								
Project Address:	245 8th Street, Oakland											
			•									
	MONITORIN	G WELL DA	ΤΑ									
Well Casing Diame	eter (2"/4"/6")		2"									
Wellhead Condition	n	ОК		▼								
Elevation of Top of	f Casing (feet above msl)	32.00										
Depth of Well			22.00									
Depth to Water (fro	om top of casing)		15.61									
Water Elevation (fe	eet above msl)		16.39									
Well Volumes Purg	ged		3									
Gallons Purged: fo gal/ft), 4" (.65 gal/ft),	ormula valid only for casing sizes of 2" (.16 and 6" (1.44 gal/ft)		3.1									
Actual Volume Pur	ged (gallons)	4.0										

		Free Proc	duct Present?			Thickness (ft):	
		G	ROUNDWA	TER SAMPI	_ES		
Number of Sample	es/Container S	Size		Three (3) 40n	nL VOAs		
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
12:20	1	19.47	1045	0.83	6.54	-4.9	Light brown
	2	19.70	1050	0.44	6.51	-6.4	""
	3	20.11	1054	3.23	6.72	-44.2	""
12:40	4	20.07	1058	1.87	6.63	-40.5	""

Light brown

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Slight hydrocarbon and fetid odors noted.

Appearance of Purge Water

APPENDIX B

SOIL GAS FIELD SAMPLING FORMS

NO SOIL GAS FIELD FORMS

QUARTERLY SOIL GAS SAMPLING HAS BEEN TEMPORARILY SUSPENED DURING OPERATION OF THE HVDPE SYSTEM

APPENDIX C

LABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION

McCampbell An	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	07/27/09-07/28/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	07/28/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	08/04/09
	Client P.O.: #WC081843		Date Completed:	07/30/09

WorkOrder: 0907727

August 04, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#116907; Vic's Automotive,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

_								_						_								0	-10	11	0	/	_			pae	6	105	2
		McCAM	PBELI	L ANAI	LYI	FICA	L IN	C.										(CI	IA	IN	OF	C	UST	O	DY	R	E	C)R	D		
		1538 Wille	ow Pass	Road, Pi	ttsbu	arg, C.	A 945	65						1	ΓUI	RN	AR	0	UN	DT	IM	Ð	1.4				1						A
	Telep	hone: (925) 252	-9262			F	ax: (925) 25	2-92	69			F	DF	Dea	nire	d?	R	Ve		No	F	PD	FP	24 H	R	12	IS H	R	7	2 HR	5 DAY
1	eport To: Ri	cky Bradford		F	P.O.	# WC	0819	47	2, 1					1	Dr	itty	unt	.u.,	An	alvsi	s Re	aue	st	10	I IN	equ			Ot	her	-	Com	ments
1	Company: AF	I Consultants					10																										
	25	00 Camino Diab	lo, Suite	200												IRS	B&I		eser														
	Wa	alnut Creek, CA	94597	F	C-Ma	ail: rbr	adfor	d@s	aeico	onsul	ltatn	s.con	n	(A)		the by	E&F		O3 pi									~			rved		
P	elephone: (9	25) 944-2899		F	ax:	(925)	944-2	895	5					0150		can-u	5201		HNG									260B			Icsel		
A	El Project N	0. 116907	ant Out	land C	roje	607	me: V	JC'	s At	iton	1011	ve		18%		el Clo	se (5	_	E w/									W82			r unp		
s	ampler Signa	ture:	AL.	7	1	1		-						V802		ca G	Grea	200.8	HDP									st (S		6	mbe		
F			SAM	PLING	T I	1	N	IAT	RE	x	M	IETH	OD	- S	(iii	Sili	il &	C/E2	m									get li	3)	1010	ter A		
			Grant	I	lers	iner					PR	ESER	VED	18	015C	1) w/	Om	E	e 25(als	s	0 tar	260F	(SW	1 Li		
	SAMPLE ID	FIELD POINT NAME	Date	Time	# of Contain	Type Conta	Water	Soll At-	Sludge	Other	Ice	HCI	Other Other	TPH-g & ME	TPH-d (SW8)	TRPH (E418.	Total Petroleu	*Total Lead (*For Lead Us							CAM 17 Meta	LUFT 5 Meta	HVOCs - 801	MTBE (SW8	**Flash Point	**For FP Use		
7	W-15-8'	MW+15	7/27/0	10905	1	BT		1			X											+	+			-						Ho	LD
r	W-15-12	L1		0810	1	BT	12	<			X																						1
N	W-15-16'	и		0320	1	BT		5			X			X																			
N	W-15-20	41		0840	1	BT	2				X			1													-						
N	W-15-24			0900	1	BT		$\langle $			X			X																			
r	1W-16-8'	MW-16		0930	1	BT	2	\langle			X			1																			
N	W-16-12	u		0940	1	BT	2	\langle			X																						
m	W-16-161	p		0950	1	BT		K.			X			X	1												_						
M	W-16-20'	и		1010	1	BT	P	$\langle $			X																						
~	W-16-25'	u	Y	1030	1	BI			_	-	X		-	¥	_						_		-				_					1	V
	coc cont	on bound	hext	page				+	+	-		+		t	-							+	+										
R	elinquished By:	An	Date:	Time:	Re	ceived	R	1	Id	0	0			t			101	1				_					v	OAS	0	&G		IETALS	OTHE
Ŕ	elinquished By:	Q 0	Date;	Time:	Re	ceived I	By:	_			(1	ICE GO HE/	DD O	CON	DI	TIO	N_	V		PR AP CO	ESEI PRO NTA	RVA PRL INE	TIO ATE RS	N_	/					I
R	elinquished By:		Date:	Time:	Re	ceived I	By:							1	DEC	HL	ORI	NA	TE	D IN	LAI	3	I	PERS	ERV	ED	IN	LAI	B		_		

-

	McCAM	PBELL	ANAI	Y	ICA	LIN	C.	-				-	Т			-		C	HA	IN	0	FC	TIS	T	DD	v	RF	ದ	DR	D	act L	-
	1538 Will	W Pace I	Road Pit	tehr	ra C	A 045	65							Т	JRN	IA	RO	U	ND	TIN	ME		Ę	j i	[ŝ		Ę	1			X
	1556 111		toau, I n	tabl	ug, cz	1 74.	0.5			-													RU	SH	24	HR		48 1	IR	7	2 HR	5 DAY
Telep	hone: (925) 252	-9262			ŀ	ax: (925)	252	-92	69			1	ED	F Re	qu	ired	? ₽	Y	es [] N	0	I	PDF	Req	uir	ed?	B	Yes	; [No	
Report To: Ri	ky Bradford		Р	.0.1	# WC	18 1 5	142	3					┝	-	_	-	_	A	naly	sis F	Requ	est	_	-	_	_	+	Ot	her	_	Comr	nents
Company: Al	I Consultants	la Culta	200	_											S		&F)	erv.														
25	Inut Creek CA	04507	200 F	Ma	il: che	adfor	lan	alcor	neul	tota				_	N IE		F/B	pres												P		
Telephone: (9	25) 944-2899	34371	F	-1V12	(925)	944-7	895	cicoi	isui	tatin	5.00		- 5		-		E&	0									(B)			erve		
AEI Project N	0. 116907		P	roie	ct Nar	ne: \	lic's	Au	tom	otiv	ve		108/	100	lean		552(HH/									3260			pres		
Project Locati	on: 245 8th Str	eet, Oak	and, CA	940	07	/	-						alc	017	o loi		ase (PEW									SW			er ur		
Sampler Signa	ture: 1h	N		1	6	P							- Nava	MON	ica (Gre 200.	E									ist (6	Amb		
		SAMI	PLING	rs	ers	N	IAT	RIX	1	M	ESE	HOD RVEI	D X IS	EA (o	SCm) w/Sil		Oil &	50 ml									arget	(0B)	W101	Liter /		
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containe	Type Contain	Water	Air	Sludge	Other	Ice	HCI	HNO ₃	TPH-0 & MRT	ILTI-g & MD	TPH-d (SW8015 TRPH (F418-1)	(manual manual	Total Petroleum *Total Lead (T)	*For Lead Use 2							CAM 17 Metals	LIFT 5 Metals	HVOCs - 8010 t	MTBE (SW826	**Flash Point (S	**For FP Use 1		
MW-14-81	MW-14	7/25/09	0740	i	GT		$\langle $			X			T	T		T															Ho	LD
MW-14-121	1	1	0745	1	OT		\langle			X																					Ho	LD
MW-14-16'			0750	1	BT		\langle			\times				<																	Ho	D
MW-14-201			0750	1	IST	6	<			\times			T	T																	He	LD
MW-14-221			0755	1	BT		<			X			Т	T		T															40	ID
MW-14-23	V	V	0300	1	BT		<			X													-								Ho	Ð
																-																
P. Autor P.		Data	Time	Per	abund P																											
Relinquished By:	Un	7(25/14 Date:	4:30 Time:	Ree	cived F	1	e	1	a	l	L	-		IC	E/t°							Р	RES	ERV	ATI	ON	VOAS	\$ 0)&G	N	IETALS	OTHE
Reinquisited by:		Dater	Time.	Rei	erreu E						_			G	OOD	SF	OND	AB	ON_SEN	T_	-	AC	PPF	CAIN	ERS	E		D				
Relinquished By:		Date:	Time:	Ree	eived E	ly:								D	ECH	LO	RIN	ATE	DI	N LA	B		PE	RSEI	RVE	D II	N LA	в_		-		

a har

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order	0907	727	Clie	entCode: A	EL				
		WaterTrax	WriteOn	EDF		Excel	l	Fax	V	Email	Hard	ICopy	🗌 Thir	dParty	□ J-	flag
Report to:							Bill to:					Req	uested	TAT:	5 c	days
AEI Consult 2500 Camir Walnut Cree (925) 283-600	ord ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: cc: PO: ; ProjectNo: ;	#WC081843 #116907; Vic's	Automotive	I		De AE 25 Wa dr	I Consi 00 Can alnut Cr 10ckel@	ockel ultants nino Dia reek, CA @aeicon	blo, Ste. # 94597 sultants.c	#200 com	Dat Dat	e Rece e Prin	ived: ted:	07/28/ 07/28/	2009 2009
					Γ				Requ	ested Te	sts (See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
0907727-003	MW-15-16'		Soil	7/27/2009 8:20		А	А									
0907727-005	MW-15-24'		Soil	7/27/2009 9:00		А										
0907727-008	MW-16-16'		Soil	7/27/2009 9:50		А										
0907727-010	MW-16-25'		Soil	7/27/2009 10:30		А										

А

А

Test Legend:

0907727-013

0907727-016

1	G-MBTEX_S
6	
11	

2	PREDF REPORT
7	
12	

Soil

Soil

7/28/2009 7:50

7/28/2009 8:00

MW-14-16'

MW-14-23'

3	
8	

4	
9	

5	T	 		
10		 		

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	and Time Received:	7/28/2009 4:33:35 PM
Project Name:	#116907; Vic's Automotive			Check	klist completed and r	eviewed by: Melissa Valles
WorkOrder N°:	0907727 Matrix <u>Soil</u>			Carrie	er: <u>Client Drop-In</u>	
	Chain	of Cu	stody (CO	OC) Informa	ation	
Chain of custody	present?	Yes	✓	No 🗆		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample labels?	Yes		No 🗌		
Sample IDs noted	by Client on COC?	Yes		No 🗆		
Date and Time of	collection noted by Client on COC?	Yes		No 🗆		
Sampler's name r	noted on COC?	Yes		No 🗆		
	<u>S</u>	ample	Receipt I	nformatior	<u>1</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗆		NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗆		
Samples in prope	er containers/bottles?	Yes	✓	No 🗆		
Sample containe	rs intact?	Yes	\checkmark	No 🗆		
Sufficient sample	e volume for indicated test?	Yes		No 🗌		
	Sample Prese	vatior	n and Hold	d Time (HT) Information	
All samples recei	ived within holding time?	Yes		No 🗌		
Container/Temp B	Blank temperature	Coole	r Temp:	6.4°C		NA 🗆
Water - VOA vial	ls have zero headspace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🔽
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
TTLC Metal - pH	acceptable upon receipt (pH<2)?	Yes		No 🗆		NA 🗹
Samples Receive	ed on Ice?	Yes	✓	No 🗆		
	(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, see comments below.					

Client contacted:

Date contacted:

Contacted by:

Comments:

Ĵ	McCampbe	ell An en Oualitv	alyti _{Counts"}	ical, Ir	<u>nc.</u>	Web	1534 Willow P : www.mccamp Telephone: 8	Pass Road, Pittsbur bell.com E-mail: 377-252-9262 Fa	g, CA 94565-17 main@mccamp x: 925-252-926	701 bell.com 9		
AEI C	Consultants			Client P	roject ID: #	#116907; Vic	e's	Date Sample	ed: 07/27	7/09-07/	28/09	
2500 0	Camino Diablo, Ste. #2	200		Automo	otive			Date Receiv	ed: 07/28	3/09		
				Client C	Contact: Rid	cky Bradford		Date Extract	ed: 07/28	8/09		
Walnu	ut Creek, CA 94597			Client P	P.O.: #WC0	81843		Date Analyz	xed: 07/29	9/09-07/	31/09	
Entre et	G	asoline I	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	k	h Ondern	0007727
Lab ID	Client ID	Matrix	ТР	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
003A	MW-15-16'	S		ND	ND	ND	ND	ND	ND	1	93	
005A	MW-15-24'	S]	ND	ND	ND	ND	ND	ND	1	88	
008A	MW-16-16'	S]	ND	ND	ND	ND	ND	ND	1	82	
010A	MW-16-25'	S]	ND	0.24	ND	ND	ND	ND	1	90	
013A	MW-14-16'	S]	ND	ND	ND	ND	ND	ND	1	90	
016A	MW-14-23'	s]	ND	ND	ND	ND	ND	ND	1	79	
Repor	rting Limit for DF =1:	W/		50	5.0	0.5	0.5	0.5	0.5		/T	
ND m abov	eans not detected at or ve the reporting limit	S	· · · · · · · · · · · · · · · · · · ·	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	<u> </u>

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 44814		WorkC	Order 09077	27
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 0907727-0)03A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND<8.0	0.60	104	108	4.45	108	101	6.11	70 - 130	20	70 - 130	20
MTBE	ND<1.0	0.10	114	113	1.61	106	105	0.872	70 - 130	20	70 - 130	20
Benzene	ND<0.10	0.10	94	92	2.19	82	83	1.21	70 - 130	20	70 - 130	20
Toluene	ND<0.10	0.10	93.2	95.8	2.82	82.7	81.9	0.941	70 - 130	20	70 - 130	20
Ethylbenzene	ND<0.10	0.10	92.9	90.7	2.38	81.7	81.3	0.494	70 - 130	20	70 - 130	20
Xylenes	ND<0.10	0.30	93.9	92	1.99	82.9	81.7	1.42	70 - 130	20	70 - 130	20
%SS:	90	0.10	101	100	1.18	88	80	9.62	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 44814 SUMMARY Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed

	Lab ID	Date Sampled		Date Analyzeu		Date Sampled		Date Analyzeu
ſ	0907727-003A	07/27/09 8:20 AM	07/28/09	07/29/09 11:37 PM	0907727-005A	07/27/09 9:00 AM	07/28/09	07/30/09 12:11 AM
	0907727-008A	07/27/09 9:50 AM	07/28/09	07/30/09 12:44 AM	0907727-010A	07/27/09 10:30 AM	07/28/09	07/31/09 1:55 PM
	0907727-013A	07/28/09 7:50 AM	07/28/09	07/30/09 1:51 AM	0907727-016A	07/28/09 8:00 AM	07/28/09	07/30/09 2:58 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

I ah ID

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's Auto	Date Sampled:	08/21/09
2500 Camino Diablo, Ste. #200	(Q3,2009)		Date Received:	08/21/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	08/27/09
	Client P.O.:		Date Completed:	08/27/09

WorkOrder: 0908546

August 27, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 13 analyzed samples from your project: #116907; Vic's Auto (Q3,2009),
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	Main	IDDEL			FICIA		NIC			_	C	7		C	2	STE	_	CII		NI OI		TIC	TO				pe	ge	1.4	2
	MCCAN	IPBELI	LANA	LY	TICA	LI	NC	•						-			_	CH	AL	NO	FC	US	TC	ענו	R	EC	OR	D	-	-
	1538 Wil	low Pass	Road, Pi	ttsb	urg, C.	A 94	1565	;						1	U	RN AR	01	UNL	1	IME		DUS	H	24 11	ID	15		1.		5 0
Telep	hone: (925) 25	2-9262			F	ax:	(92	5) 25	52-92	269				EI)F	Require	d?		Yes		0	PI	DFI	Requ	ired	? [Yes	. [No	5 DA
Report To: Ric	ky Bradford		I	Bill T	o: AE	IC	onsu	ltan	ts									Anal	ysis	Requ	est					(Other		Com	ments
Company: AE	I Consultants,	2500 Ca	mino Dia	blo,	Waln	ut C	reel	k, C.	A 94	597																			1	1
P.O. # WC081	852									_			-																	
Talanhanas (0)	25) 044 2900	-+ 140	k	C-Ma	uil: rbr	adfo	200	aeic	onsu	Itat	ns.co	m	-	B																
Project No: 11	25) 944-2899, e	ext. 148	I	roie	(945) oct Nat	944-	Vie	2 A	nto	(03	20	00)	-	8021																
Project Locatio	on: 245 8th Stre	eet. Oakla	nd. CA	9460	7	ne.	VIC	3 /1	uto	(Q5	, 20	())	1	15C/																
Sampler Signat	ture: MC	~ 1/	A	-									1	W80												(B)				
	/(SAM	PLING		LS		MA	TRI	х	N	MET	HOD		X (S)	0										0.000	8260				
	FIFLD		1	ners	aine					PR	LSE	RVE	-	BTE	0150										100	(SW				
SAMPLE ID	POINT			ntai	ont									& M	SW8											Only				
	NAME	Date	Time	ပို	be	ater	_	1	her		=	õ	her	-1-6 -1) p-F											BE				
				*	Ty	Ň	So	Ail S	0 J	le l	H	H	õ	TPI	Hd.L											IW				
MW-1	MW-1	8/2/09	0900	3	VOA	Χ				X	X		1	Х												T			DP	E Well
MW-2	MW-2	[1140	3	VOA	X				X	X			Х															DP	E Well
MW-3	MW-3	1	730	3	VOA	X				X	X		1	Χ																
MW-4	MW-4	1	1220	3	VOA	X				X	X		1	Х																
MW-5	MW-5		9,00	3	VOA	X				X	X		1	Х															DP	E Well
MW-6	MW-6		940	3	VOA	X				X	X			Χ															DP	E Well
MW-7	MW-7		1100	3	VOA	X	4			X	X			Х											2	2			DP	E Well
MW-8	MW-8	1	1020	3	VOA	X				X	X			X																
MW-9	MW-9		1315	3	VOA	X				X	X			Х											D	<				-
MW-10	MW-10	1	- <i>(</i> /	3	¥ Q A	X				X	X		1	X															Not S	Sample
MW-11	<u>MW-11</u>			3	¥0A	X				X	X			X															Not S	Sample
MW-12	MW-12			3	¥0A	X				X	X			X															Not S	Sample
MW-13	MW-13	1	1330	3	VOA	X				X	X		1	X																
Relinquished By:	1)	Date:	Time:	Rec	eived B	y: /	~	~	81	211	09	/	t	-	-							-	-	-	-			-		
mr 1	h	elulo	5:00	P	n	V	C	~	10	(S:0	200	n	14	CF	9.3	24	10 5	2		PL	FSF	RVA	TIO	VO/	IS	0&G	M	IETALS	OTHE
Relinquished By:		Date:	Time:	Rec	eived B	y:								G	0	OD CONE	DIT	ION	-	1	AF	PRO	PRI	ATE	T	1		-		
Polynaulched Der		Detai	Time	P	alurd D		_	_		_	_		_	H	E/	AD SPACE	EA	BSE	NT_	AR	M	DNTA	INE	ERS_	NI	AR	NA	-		
rectinquished By:		Date:	Time:	Rec	erved B	y:								U	E	CHLORIN	AI	EDI	L L	AD TV	1-	ERS	ER	ED	IN LA	AD_	1-	-		
				-			-	-	-	-	-		+	-	-	111112	-		-				-							

.

											0	20	7()	8	54	6														P	une i	ef.	2
	McCAN	IPBELI	L ANA	LYI	TICA	LI	NC.	8										C	H		N)F	CI	JS'	тс	D	YI	RE	C	OR	D	-		
	1538 Will	low Pass	Road, Pi	ttsbi	irg, C	A 94	565								ΓUI	RN A	R	U	ND	TI	MI	Ξ				Ę	1		Ę	3				h
Telep	hone: (925) 25	2-9262			F	ax:	(925) 25	2-92	269				F	DF	Deau	ired	2 1	αv	0.E		No	F	USI	H	24	HR	12	48 1	HR	е Г	72 HR	5 D	AY
Report To: Ric	cky Bradford		H	Sill T	o: AE	ICo	nsu	ltan	ts		_				Dr	Requ	neu	A	naly	sis	Rec	lues	t	11		req	une	T	0	ther		Con	ment	s
Company: AE	I Consultants,	2500 Ca	mino Dia	blo,	Waln	ut C	reek	, C.	A 94	597	7			F	T				T		Τ	T	Τ	T				\square			T			-
P.O. # WC081	852																																	
			F	Z-Ma	il: <u>rbr</u>	adfo	rd(@)	aeic	onsu	Itati	ns.c	om	_	<u>_</u>																				
Telephone: (92	25) 944-2899, e	xt. 148	F	ax:	(925)	944-	289	5					_	0211																				
Project No: 11	6907		/ F	roje	ct Nai	me:	Vic'	s A	uto	(Q3	, 20)09)	_	SC/8																				
Project Locatio	on: 245 87 Stre	et, Oakla	nd CA	9460	7								-	801														-	6					
Sampler Signa	ture: // ~		n	_		Γ.					MET	CHO	D	(SW														260B						
		SAM	PLING	ers	ners		MAT	RI	x	PR	ESI	ERV	ED	TEX	5C)													W8						
	FIELD			aine	ntaí									MB1	V801													dy (S						
SAMPLE ID	NAME	Date	Time	Ont	Co	1			50 1			-		8	I (SV													ő						
		Dutt		of	ype	Vate	lio .	1	the	2	Ū	N	the	PH-g-Hd	P-H-d													TBE						
				#	T	2	00 -	4 0	0	F	H	=	0	F	F				_	-		_						Z						
MW-14	MW-14	8/2/19	1300	3	VOA	X				X	X	:		X																				
MW-15	MW-15	1	1345	3	VOA	X				X	X			X																				
MW-16	MW-16	1	1400	3	VOA	Х				X	X			X																				
					1															T														
								1												t														_
								+	1											t	-	1												
							-	+	+	\vdash			1				+	-	+	+	+	+	+	1	-	-	-			-				
								+	-	\vdash			-	-	-		+	-		+	-	-	-	-				\vdash	\vdash	-				_
	4			-			-	+	+	-	-		-	-	-		+	-	-	-	-	+	-	-	-				-	-				
Relinquished Bu-	4 /	Date	Time	Rec	eived B	W:				212	21	09	+	-																				_
A II	h	Plailie	C-20	a	IN/	11	5	_	_	1 ke	3	en	n			0	5		20								V	OAS	le	0&G		IETALS	оті	IER
Relinquished By:		Date:	Time:	Rec	eived B	y:		-		0.	0	Y	V		ICE	/1º 7	.0	Ye	2		1		PRI	SE	RVA	TIC	ON_							
							*								HEA	D SP	ACE	AB	SEN	T	F		CO	NTA	INF	RS	1							
Relinquished By:		Date:	Time:	Rec	eived B	y:		-		-	-			1	DEC	HLO	RIN	ATE	DI	N L	AB	M	P	ERS	ER	VED	IN	LA	BW	M	3			
																		•																

•

WaterTrax

Email:

CC:

PO:

WriteOn

#WC081852

ProjectNo: #116907; Vic's Auto (Q3,2009)

rbradford@aeiconsultants.com

EDF

Report to:

Ricky Bradford

AEI Consultants

(925) 283-6000

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

2500 Camino Diablo, Ste. #200

FAX (925) 944-2895

Walnut Creek, CA 94597

CHAIN-OF-CUSTODY RECORD

WorkOrder: 0908546 ClientCode: AEL Excel Fax Email HardCopy ThirdParty J-flag Bill to: **Requested TAT:** 5 days Denise Mockel **AEI** Consultants Date Received: 08/21/2009 2500 Camino Diablo, Ste. #200 Date Printed: Walnut Creek, CA 94597 08/21/2009

dmockel@aeiconsultants.com

								Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0908546-001	MW-1	Water	8/21/2009 9:00		А	В	А									
0908546-002	MW-2	Water	8/21/2009 11:40		А											
0908546-003	MW-3	Water	8/21/2009 7:30		А											
0908546-004	MW-4	Water	8/21/2009 12:20		А											
0908546-005	MW-5	Water	8/21/2009 8:10		А											
0908546-006	MW-6	Water	8/21/2009 9:40		А	В										
0908546-007	MW-7	Water	8/21/2009 11:00		А	В										
0908546-008	MW-8	Water	8/21/2009 10:20		А											
0908546-009	MW-9	Water	8/21/2009 13:15		А	В										
0908546-010	MW-13	Water	8/21/2009 13:30		А											
0908546-011	MW-14	Water	8/21/2009 13:00		А											
0908546-012	MW-15	Water	8/21/2009 13:45		А											
0908546-013	MW-16	Water	8/21/2009 14:00		А											

Test Legend:

1 G-MBTEX_W	2 MTBE
6	7
11	12

3	PREDF REPORT
8	

4	
9	

5				
10				

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense. Page 1 of 1

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	8/21/2009	5:49:04 PM	
Project Name:	#116907; Vic's A	uto (Q3,2009)			Check	list completed and r	eviewed by:	Samantha Arbuckle	
WorkOrder N°:	0908546	Matrix <u>Water</u>			Carrier	r: <u>Client Drop-In</u>			
		<u>Cha</u>	<u>ain of Cu</u>	stody (C	OC) Informa	tion			
Chain of custody	present?		Yes	\checkmark	No 🗆				
Chain of custody	signed when relinqui	shed and received?	? Yes	✓	No 🗆				
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌				
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆				
Date and Time of	collection noted by Cli	ent on COC?	Yes	\checkmark	No 🗆				
Sampler's name r	noted on COC?		Yes	✓	No 🗆				
Sample Receipt Information									
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽		
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗆				
Samples in prope	er containers/bottles?		Yes	✓	No 🗆				
Sample containe	rs intact?		Yes	\checkmark	No 🗆				
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pres	servatio	n and Ho	old Time (HT)	Information			
All samples recei	ved within holding time	e?	Yes	✓	No 🗌				
Container/Temp E	Blank temperature		Coole	er Temp:	9.2°C		NA 🗆		
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted		
Sample labels ch	necked for correct pres	servation?	Yes	\checkmark	No 🗌				
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹		
Samples Receive	ed on Ice?		Yes	✓	No 🗆				
		(Ice T	ype: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments belov	<i>v.</i>						

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analytical, Inc. "When Ouality Counts"				<u>nc.</u>	Web	1534 Willow P : www.mccampl Telephone: 8	ass Road, Pittsbur bell.com E-mail 77-252-9262 Fa	g, CA 94565-1 : main@mccamp x: 925-252-926	701 bell.com 9		
AEI C	Consultants			Client P	roject ID: 7	#116907; Vio	c's Auto	Date Sample	ed: 08/21	/09		
2500 0	Camino Diablo, Ste. #2	200		(Q3,200	7)			Date Receiv	ed: 08/21	/09		
				Client C	Contact: Rid	ky Bradford Date Extracted: 08/24/09-08/26/09						
Walnut Creek, CA 94597 Client P.O.:								Date Analyz	zed: 08/24	/09-08/	26/09	
Extractio	Gon method: SW5030B	asoline]	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	* Wor	k Order:	0908546
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	W	63	,000	ND<1000	1900	15,000	1200	7600	200	100	d1
002A	MW-2	W	6	560	ND<10	13	41	13	48	1	108	d1
003A	MW-3	w]	ND	ND	ND	ND	ND	ND	1	95	
004A	MW-4	w		390	ND	14	58	11	73	1	102	d1,b1
005A	MW-5	w	11	,000	ND<150	450	610	400	2300	10	111	d1
006A	MW-6	w	53,000		ND<1000	1800	8100	1200	12,000	200	91	d1
007A	MW-7	w	28	,000	ND<1000	6200	3200	450	3100	100	106	d1
008A	MW-8	w	2	180	ND	30	100	17	130	1	121	d1
009A	MW-9	w	48	,000	ND<3500	15,000	550	2000	3300	20	114	d1
010A	MW-13	w		85	ND	2.0	10	2.2	13	1	104	d1
011A	MW-14	W	3	000	ND<17	11	41	92	40	3.3	119	d1
012A	MW-15	w	1	90	23	23	15	6.6	25	1	101	d1,b1
013A	MW-16	W	8	360	20	80	110	26	130	1	105	d1
Repo	rting Limit for DF =1;	w		50	5.0	0.5	0.5	0.5	0.5		μg/I	
ND m abov	eans not detected at or ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sedimentd1) weakly modified or unmodified gasoline is significant

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consulta	ants	Client Project ID:	#116907; Vic's Auto	Date Sample	ed: 08	/21/09		
2500 Camino	Diablo, Ste. #200	(23,2007)		Date Receive	ed: 08	/21/09		
		Client Contact: R	Ricky Bradford	Date Extract	ed: 08	/25/09-0	8/26/09	
Walnut Creek	x, CA 94597	Client P.O.:		Date Analyz	ed 08	/25/09-0	8/26/09	
Extraction method	SW5030B	Methyl tert	-Butyl Ether*		Wo	rk Order:	0908546	
Lab ID Client ID Matrix			Methyl-t-butyl ether (MTBE)	DF	% SS	Comments	
001B	MW-1	W	ND<50		100	81	a3	
006B	MW-6	W	ND<5.0		10	79	a3	
007B	MW-7	W	390		20	77		
009B	MW-9	W	900		50	80		
Re	porting Limit for DF =1;	W	0.5			μg/L		
ND a	be means not detected at or bove the reporting limit	S	NA			NA		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 45313 WorkOrder: 0908546 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0908546-003A MS MSD MS-MSD LCS LCSD LCS-LCSD Spiked Sample Acceptance Criteria (%) Analyte MS / MSD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD RPD TPH(btex) ND 98.2 97.8 0.472 97.4 16.2 70 - 130 70 - 130 60 115 20 20 10 MTBE ND 115 122 6.42 120 118 70 - 130 2.0 70 - 130 20 1.61 Benzene ND 10 114 118 2.73 112 114 1.74 70 - 130 20 70 - 130 20 Toluene ND 10 101 105 4.06 99.7 101 1.01 70 - 130 2.0 70 - 13020 Ethylbenzene ND 10 101 103 2.16 99.4 101 1.93 70 - 130 20 70 - 130 20 Xylenes ND 30 114 119 4.10 112 115 2.27 70 - 130 2.0 70 - 130 20 20 %SS: 95 10 104 106 1.56 103 102 1.56 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

	BATCH 45313 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
0908546-001A	08/21/09 9:00 AM	08/26/09	08/26/09 1:19 AM	0908546-002A	08/21/09 11:40 AM	08/25/09	08/25/09 7:16 PM			
0908546-003A	08/21/09 7:30 AM	08/25/09	08/25/09 8:17 PM	0908546-004A	08/21/09 12:20 PM	08/24/09	08/24/09 10:21 PM			
0908546-005A	08/21/09 8:10 AM	08/25/09	08/25/09 2:10 AM	0908546-006A	08/21/09 9:40 AM	08/26/09	08/26/09 2:18 AM			
0908546-007A	08/21/09 11:00 AM	08/26/09	08/26/09 3:17 AM	0908546-008A	08/21/09 10:20 AM	08/25/09	08/25/09 9:48 PM			
0908546-009A	08/21/09 1:15 PM	08/25/09	08/25/09 4:08 AM	0908546-009A	08/21/09 1:15 PM	08/26/09	08/26/09 3:47 AM			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 45333 WorkOrder: 0908546 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0908578-001A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD RPD TPH(btex) 107 113 5.98 93.8 14.5 70 - 130 70 - 130 ND 60 108 20 20 10 105 MTBE ND 110 4.85 114 120 5.70 70 - 130 2.0 70 - 130 20 Benzene ND 10 105 108 2.51 110 113 2.73 70 - 130 20 70 - 130 20 Toluene ND 10 93.4 94.5 1.19 99.2 99.8 0.584 70 - 130 20 70 - 13020 Ethylbenzene ND 10 94.5 94.8 0.251 99.5 100 0.464 70 - 130 20 70 - 130 20 Xylenes ND 30 107 108 1.43 112 112 0 70 - 130 2.0 70 - 130 20 20 %SS: 98 10 104 101 2.81 104 102 2.10 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45333 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908546-010A	08/21/09 1:30 PM	08/25/09	08/25/09 4:48 AM	0908546-011A	08/21/09 1:00 PM	08/25/09	08/25/09 6:10 PM
0908546-012A	08/21/09 1:45 PM	08/24/09	08/24/09 9:16 PM	0908546-013A	08/21/09 2:00 PM	08/25/09	08/25/09 6:45 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	V.O. Sample Matrix: Water QC Matrix: Water						BatchID: 45329 Wo			WorkC	order 09085	46
EPA Method SW8260B Extraction SW5030B								5	Spiked Sar	nple ID	: 0908593-0	30C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Methyl-t-butyl ether (MTBE)	ND	10	110	106	3.43	111	104	5.89	70 - 130	30	70 - 130	30
%SS1:	93	25	79	78	0.409	78	78	0	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 45329 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908546-001B	08/21/09 9:00 AM	08/25/09	08/25/09 4:25 AM	0908546-006B	08/21/09 9:40 AM	08/25/09	08/25/09 5:08 AM
0908546-007B	08/21/09 11:00 AM	08/26/09	08/26/09 3:41 AM	0908546-009B	08/21/09 1:15 PM	08/26/09	08/26/09 4:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell An "When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	08/31/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	08/31/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	09/08/09
	Client P.O.: #WC08		Date Completed:	09/08/09

WorkOrder: 0908765

September 08, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Γ		McCA	AMPBEL	L ANA	LY	TICA	LI	NC						T				C	HA	IN	0	FO	CU	ST	0	DY	R	EC	0	RI)		
		1538 V	Villow Pass	Road, H	Pittsl	burg. C	A 94	4565	5					1	FUR	N A	R	OUN	D	TIN	ME			ũ			-					i i	K
l	Telephone: (0	25) 252-026	,						For	. (01	5) 1	52 0	260									5 6	RI	USH	2	4 HI	R	48	8 HF	٤	72 F	R	5 D
	Demont Ter D:	23) 232-920	۵ ۲		D/II	To AT	TO		ras	. (94	.5) 2	54-5	209	E	DF F	Requ	irec	? K	<u>1 Y</u>	es [0		PDF	Re	qui	red	?	<u>AY</u>	es		0	
	Company: Al	CKy Draultor	u ate 2500 Ce	mino Di	Bill	Waln	nt C	ree		A O	1507	,		+		-		AI	nalys	SIS F	cequ	lest				_	+	_	Othe	er	+c	omm	ient
ŀ	P.O.#WC08	of Consultan	113, 2300 02	unno Di	abio	, wain	uic	ree	A, C	A 74	1391			- In																			
ŀ	1101111000				E-M	fail: rbr	adfo	orda	Daei	onsi	ltat	ns.co	m	10			_															50	
ŀ	Telephone: (92	25) 746-6000			Fax	: (925)	746-	609	9	onse	atat	liaico	m	015(100	5															idin	
ľ	AEI Project N	0. 116907			Proi	iect Na	me:	Vic	c's A	uto	mot	ive		0+ 8			EM-	HCI														Rea	
ľ	Project Locati	on: 245 8th S	treet, Oakl	and, Cal	ifor	nia 946	07							802				(M)														er	
	Sampler Signa	ture: 🔾	phist	XX										602		1210	ĕ.	Ders														aliz	
		. ()	SAMP	LING	90	sus		MA	TR	IX	PE	METH	IOD	Gas			Se HC	cr Am														Tot	
		FIELD			iner	aine					1			Has			Crea	1														low	
	SAMPLE ID	POINT			onta	ont								LTP		9	11 00	2														H	
		NAME	Date	Time	2 S	be	tter	_		dg		-	o s	X			al C	e two														OLC	
					0 #	Tyl	M	Soi	Air	of Sta	Ice	HC		BIB		L.	101	10st													× 1	Rec	
	INF	INF	8-31-51	1310	3	VOA	X				x	x	+	x				-	+					-	+	+	+	+	+	+	+		
	POST-AS	POST-AS	1	1300	3	VOA	X				X	X		x			1		1					-	-	-	t	+		+	+		
	EFF	EFF	*	1250	5	VOA	x				x	x		x			x										T						
				1-0						_			-				_	_	_			_	_	_	_		+		_				
																	_																
																											Т						
																											t		1	1			
										-	\vdash						-				-	-	-	-	-	-	+		-	+	+		
									-	-	\vdash		+	+			+	-			-	-	-		-	-	+	+	+	+	+		
-									-		-		-				-	-	-		-	-	-		+		+	+	+	+	+		-
								-	-	-			-				-	-			-	-	-	-	-		+	+	+	+	+	_	
	Palinguithed Pu		Deter	Time	D	der d D				_	1.	-+-	-0	-										-									
	AMG	elinquished By: Date: Date: Date: Time: Received By: Date: Date: Time: Received By: Control (Sol) Date: Time: Received By: Control (Sol) Control (Sol) Cont					1/2	2%						٦Ð	C							vo		0.00	- 1	MET		OT					
	Relinquished By						2.1	50	-	CE/t	YE	35	0.0	1			Р	RES	SERV	VAT	ION	1_	no	Uart	1	ALETA	110	011					
	U.S.								1 9	GOO	D CO	OND	ITIO	N_	1	1	A	PPI	ROPI	RIA	TE	J											
								HEAD SPACE ABSENT CONTAINERS																									
									DECHLORINATED IN LAB PERSERVED IN LAB																								

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 090876	5 Client	Code: AEL		
	WaterTrax	K WriteOn	✓ EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	I to:		Rec	quested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeico	onsultants.com		Denise Moc	kel			
AEI Consultants	CC:				AEI Consulta	ants	_		
2500 Camino Diablo, Ste. #200	PO:	#WC08			2500 Camin	o Diablo, Ste. #20	$D_0 Da$	te Received:	08/31/2009
Walnut Creek, CA 94597	ProjectNo:	#116907; Vic's A	utomotive		Walnut Cree	ek, CA 94597	Da	te Printed:	08/31/2009
(925) 283-6000 FAX (925) 944-2895					dmockel@a	eiconsultants.com	ı		

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			_					_								
0908765-001	INF	Water	8/31/2009 13:10			Α	А									
0908765-002	Post-As	Water	8/31/2009 13:00			А										
0908765-003	EFF	Water	8/31/2009 12:50		В	А										

Test Legend:

1	1664A_SG_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	8/31/2009	3:57:25 PM
Project Name:	#116907; Vic's A	utomotive			Check	list completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0908765	Matrix <u>Water</u>			Carrier	:: <u>Client Drop-In</u>		
		<u>Ch</u>	ain of Cu	stody (C	COC) Informa	tion		
Chain of custody	present?		Yes	\checkmark	No 🗆			
Chain of custody	signed when relinqui	shed and received	? Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pre	servatio	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	6.2°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice T	ype: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments belo	W.					

Client contacted:

Date contacted:

Contacted by:

Comments:

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pitts bell.com E-1 377-252-9262	sburg, CA nail: main Fax: 92:	94565-1701 @mccampbel 5-252-9269	l.com		
AEI Consulta	ants	Client Project ID:	#116907; Vic's	Date Sam	pled:	08/31/09			
2500 Camino	Diablo, Ste. #200	Automotive		Date Rec	eived:	08/31/09			
		Client Contact: R	Client Contact: Ricky Bradford Date Extracted: 0						
Walnut Creek	с, CA 94597	Client P.O.: #WC	09/01/09						
	Hexane	Extractable Materi	al with Silica Gel Clean	Up*			00007-55		
Extraction method	Client ID	Matrix	HEMSCT		DE	Work Order:	Commonts		
		Maurx	HEMSOT		DF	70 55	Comments		
0908765-003B	EFF	W	ND		1	N/A			

Reporting Limit for $DF = 1$;	W	5.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampbo	ell An en Ouality	alyti	ical, Ir	<u>nc.</u>	Web	1534 Willow F : www.mccamp Telephone: 8	Pass Road, Pittsbur bell.com E-mail: 377-252-9262 Fa	g, CA 94565-1 : main@mccamp ax: 925-252-926	701 bell.com 9						
AEI C	Consultants			Client P	roject ID: #	#116907; Vic	c's	Date Sample	ed: 08/31	1/09						
2500 0	Camino Diablo, Ste. #2	200		Automo	otive			Date Receiv	ed: 08/31	1/09						
				Client C	Contact: Rid	icky Bradford Date Extracted: 09/01/09-09/08/09										
Walnu	ut Creek, CA 94597			Client P	P.O.: #WC0	08 Date Analyzed: 09/01/09-09/08/09										
Extracti	G	asoline l	Range ((C6-C12)	Volatile Hy	Iver Order 0008765										
Lab ID	Client ID	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments					
001A	INF	W 420		200		110	230	41	640	20	102	d1				
002A	Post-As	w	1	190		5.4	11	2.1	29	1	109	d1				
003A	EFF	w	W ND			ND	ND	ND	ND	1	103					
<u> </u>		<u> </u>			1	<u> </u>		1		<u> </u>						
Report ND m	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/L					
abo	ve the reporting limit	5		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g				

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E1664A

W.O. Sample Matrix: Water		BatchID: 45418 WorkOrder 09087										
EPA Method E1664A			5	Spiked San	nple ID	: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
	mg/L mg/L		% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
HEMSGT	N/A	20.83	N/A	N/A	N/A	109	107	1.95	N/A	N/A	70 - 130	30
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45418 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908765-003B	08/31/09 12:50 PM	08/31/09	09/01/09 3:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate therefore unable to comply with method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 45489 WorkOrder 0908765 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0908741-004A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 116 120 3.37 70 - 130 70 - 130 60 114 1.83 116 20 20 MTBE 10 ND 118 116 1.95 117 115 0.991 70 - 130 2.0 70 - 130 20 Benzene ND 10 106 104 1.80 107 108 1.46 70 - 130 20 70 - 130 20 96 Toluene ND 10 93.5 93.5 0 98 2.02 70 - 130 20 70 - 13020 Ethylbenzene ND 10 94.6 94.4 0.298 97.1 98.3 1.26 70 - 130 20 70 - 130 20 Xylenes ND 30 107 108 0.722 110 112 1.18 70 - 130 2.0 70 - 130 20 20 %SS: 98 10 100 100 0 101 102 0.865 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45489 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908765-001A	08/31/09 1:10 PM	09/01/09	09/01/09 9:56 PM	0908765-002A	08/31/09 1:00 PM	09/08/09	09/08/09 2:13 PM
0908765-003A	08/31/09 12:50 PM	09/01/09	09/01/09 7:16 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality"	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled: 08/31/09						
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	08/31/09					
Walnut Creek, CA 94597	Client Contact: Ricky Bra	adford	Date Reported:	09/04/09					
	Client P.O.: #WC081854		Date Completed:	09/04/09					

WorkOrder: 0908769

September 04, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

											Ò	0	10)8	3=	7(0	9	1																
	McCAN	IPBELI	L ANA	LYI	ΓICA	LI	IN	с.									3			CI	IA	IN	0	F	CL	JS	ГО	D	Y	RE	C	OR	D		~
	1538 Wil	low Pass	Road, Pi	ttsbu	arg, C	A 9	456	5							T	U	RN	Al	RO	UN	D	ΓI	ME					Ę			[ב	1		A
Telephone: (9	25) 252-9262							Fa	x: (9	25) 25	52-9	26	9	E	DF	Reg	uir	ed?		Ye	s [No	R	USI PD	I FF	24 Reg	HR uire	ed?	48	HR IYes	72	HR No	5 DAY
Report To: Rie	cky Bradford		Ē	Bill T	o: AE	IC	ons	ult	ants											An	alys	sis F	Req	uest				_		T	0	ther	T	Com	nents
Company: AF	I Consultants,	2500 Ca	mino Dia	blo,	Waln	ut (Cree	ek,	CA	945	97				(1)		F)													Г	Τ		Т		
P.O.#WC0818	54														ITBI		/B&													8	6			2	
E-Mail: rbradford@aeiconsultatns.com									m	-	C)/IV		E&F	0							8310					8260	£			da	A				
Telephone: (9)	25) 746-6000		ŀ	ax:	(925)	746	-60	99						-	8015		520	418.							102					¥d:				0.01	udo
AEI Project N	0. 116907	at Calila	t Call	roje	ect Na	me:	VI	c's .	Auto	ome	otiv	e		-	+ 02		se (5	ns (4		020)		X			/ 82			6		- A				lut	1 pr
Project Locate	on: 245 8 Stre	et, Oakia	ind, Call	iorn	la 940	07								-	2/800		Ireas	arbo		./ 80		ONL			625			6010		(ist	1090	-		oute	al
Sampler Signa	ture: 7	I SAM	DUNC		~	Г	м	ATI	DIV		M	ETI	101	D	s (60)	5)	1&0	/droc		A 602		B's (260		EPA			39.2/		get li	DA 8			tau	l/gu
		SAM	PLING	ers	ner	⊢	IVLA	411	CIA .	-	PR	ESE	RV	ED	IS Ga	(801	n Oi	h Hy	0	(EP/		0 PC	0/8		sby	s	10	21/2		0 tar	w E	2		uou	ŧ
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Contain	Type Contai	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO ₃	Other	BTEX & TPH a	TPH as Diesel	Total Petroleur	Total Petroleur	EPA 601 / 801	BTEX ONLY	EPA 608 / 808	EPA 608 / 808	EPA 624 / 824	EPA 625 / 827	PAH's / PNA's	CAM-17 Metal	LUFT 5 Metals	Lead (7240/74)	RCI	HVOCs - (801	MTRF Only 1	In and		*Plases	in bo
MW-1S	MW-1S	8-31-09	1400	1	TB	T		X		1					x															T	T		\top	X	
MW-2S	MW-2S		1150	1	TB			X							х																				X
MW-5S	MW-5S		1200	1	TB			X							X																				X
MW-6S	MW-6S		1215	1	TB			X							ж																				x
MW-7S	MW-7S		1410	1	TB	Γ		X		Т					х																				X
MW-10S	MW-10S		1240	1	TB			X		1					х															t					X
MW-11S	MW-11S		1250	1	TB	T		X		1					X																T				X
MW-12S	MW-12S		1300	1	TB	F		X		1				1	х														1	t	T				x
POSTD	POSTD		-			t				1																+	-			t			1	Not S	ampled
PRED	PRED		1315	1	TB			X		1					х																				x
AS	AS	N	1320	1	TB			X							X																T				X
STACK	STACK	A	1420	1	ТВ	T		X		1				1	х															T	1				X
Reinquished By:	'n-	Date:	Time: 8-31-01	Rec		sy:	1			-	8	315	1	6	75	CE	, No.			P	-	-			PDF	SFI	2VA	TI	N	OA!	s	0&G	ME	TALS	OTHER
Relinquished By:	1	Date:	Time:	Rec	cived B	iy:									C I	GOC		PA	DI CE	TIO	N_ EN1	1	L	las	APP	RO	PRI	AT	E	4		ha			
Relinquished By:		Date:	Time:	Rec	eived B	iy:									I	DEC	HL	OR	INA	TEI) IN	LA	B T	14	TPI	RS	ERV	VED	IN	LA	B <u>∛</u>	AB			

é

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	: 09087	69	C	ClientC	ode: A	EL				
		WaterTrax	WriteOr	n 🔽 EDF		Excel		Fax		Email		Har	dCopy	🗌 Thi	rdParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Ricky Bradfo AEI Consulta	rd ants	Email: cc:	rbradford@ae	eiconsultants.com			De Ae	enise Mo El Consu	ckel Itants			_	Dat	to Door	inad.	08/31	/2000
2500 Camin Walnut Cree (925) 283-600	o Diablo, Ste. #200 k, CA 94597 0 FAX (925) 944-2895	PO: ProjectNo:	#WC081854 #116907; Vic'	s Automotive			25 W dr	500 Cam alnut Cre nockel@	no Dia eek, CA aeicon	blo, Sto 94597 sultant	e. #20(, s.com)	Dat	te Rece te Prin	ted:	08/31/	2009 '2009
									Requ	ested	Tests	(See le	gend b	pelow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0908769-001	MW-1S		Air	8/31/2009 14:00		А	А								T	Τ	
0908769-002	MW-2S		Air	8/31/2009 11:50		Α											
0908769-003	MW-5S		Air	8/31/2009 12:00		Α											
0908769-004	MW-6S		Air	8/31/2009 12:15		А	1										
0908769-005	MW-7S		Air	8/31/2009 14:10		А	1										
0908769-006	MW-10S		Air	8/31/2009 12:40		А	1										
0908769-007	MW-11S		Air	8/31/2009 12:50		А	1										
0908769-008	MW-12S		Air	8/31/2009 13:00		А	1										
0908769-009	PRED		Air	8/31/2009 13:15		Α											
0908769-010	AS		Air	8/31/2009 13:20		А									1		1

А

Test Legend:

0908769-011

1 G-MBTEX_AIR	2 PREDF REPORT
6	7
11	12

STACK

3	
8	

8/31/2009 14:20

Air

4	
9	

5			
10			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Samantha Arbuckle

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	ind Time Received:	8/31/2009	6:01:54 PM
Project Name:	#116907; Vic's A	utomotive			Check	list completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0908769	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Cha</u>	in of Cu	istody (CO	C) Informa	tion		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes		No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name i	noted on COC?		Yes	✓	No 🗆			
			Sample	Receipt In	formation	L		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Pres	ervatio	n and Hold	Time (HT)	Information		
All samples recei	ived within holding tim	e?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials submi	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

Ĵ	McCampbe	ell An en Oualitv	alyti	ical, Ir	<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI C	Consultants			Client P	roject ID: #	‡116907; Vic	e's	Date Sample	ed: 08/31	1/09						
2500	Camino Diablo, Ste. #2	200		Automo	ouve			Date Receiv	ed: 08/31	1/09						
		_ **		Client C	Contact: Ric	cky Bradford	l	Date Extract	ed: 09/01	1/09-09/	03/09					
Walnu	at Creek, CA 94597			Client P	2.O.: #WC08	81854		Date Analyz	xed: 09/01	1/09-09/	03/09					
Extracti	Gan mathadi SW5020P	asoline l	Range (C6-C12)	Volatile Hy	drocarbons as Gasoline with BTEX and MTBE*										
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments				
001A	MW-1S	А	1	40	ND	1.8	7.8	1.2	12	1	100	d1				
002A	MW-2S	А	6	400	ND<60	94	220	38	350	4	114	d1				
003A	MW-5S	А	4	500	ND<45	31	79	13	240	6.7	106	d1				
004A	MW-6S	А	1	200	ND<10	18	100	16	110	4	106	d1				
005A	MW-7S	А	6	800	ND<110	170	140	13	280	10	101	d1				
006A	MW-10S	А	6	100	ND<45	57	83	20	300	4	92	d1				
007A	MW-11S	Α	3	600	ND<160	120	65	16	280	10	98	d1				
008A	MW-12S	Α	2	170	ND<10	13	11	2.9	35	1	114	d1				
009A	PRED	Α	3	100	ND<17	37	79	13	130	6.7	110	d1				
010A	AS	А]	ND	ND	ND	0.37	ND	1.1	1	94					
011A	STACK	А]	ND	ND	ND	0.26	ND	1.5	1	94					
Repo	rting Limit for DF =1;	А		25	2.5	0.25	0.25	0.25	0.25		μg/I					
abov	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant
	<u>McCam</u>	bell	Analyti ality Counts"	cal, Inc.	,	1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsbur pbell.com E-mail 877-252-9262 Fa	g, CA 94565-170 main@mccampbe x: 925-252-9269	1 ll.com		
AEI C	Consultants			Client Project ID	b : #116907;	Vic's	Date Sample	d: 08/31/0	9		
2500	Camino Diablo. St	e. #200		Automotive			Date Receiv	ed: 08/31/0	9		
	,,,,,,			Client Contact:	Ricky Bradf	ord	Date Extract	ed: 09/01/0	9-09/03	3/09	
Walnu	ıt Creek, CA 9459	7		Client P.O.: #W	/C081854		Date Analyz	ed: 09/01/0	9-09/03	3/09	
	Ga	asoline F	Range (C6-0	C12) Volatile Hyd	lrocarbons as	s Gasoline wit	h MTBE and 1	BTEX in ppn	ıv*		00007.00
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xvlenes	DF	% SS	Comments
001A	MW-1S	A	39	ND	0.54	2.0	0.27	2.8	1	100	d1
002A	MW-2S	А	1800	ND<20	29	57	8.6	79	4	114	d1
003A	MW-5S	А	1300	ND<10	9.6	21	3.0	54	6.7	106	d1
004A	MW-6S	А	330	ND<2.7	5.5	27	3.7	26	4	106	d1
005A	MW-7S	А	1900	ND<30	52	37	3.0	64	10	101	d1
006A	MW-10S	А	1700	ND<10	18	22	4.4	67	4	92	d1
007A	MW-11S	А	1000	ND<20	36	17	3.7	63	10	98	d1
008A	MW-12S	А	130	ND<3.0	3.9	3.0	0.67	8.0	1	114	d1
009A	PRED	А	870	ND<4.5	11	21	3.0	29	6.7	110	d1
010A	AS	А	ND	ND	ND	0.096	ND	0.24	1	94	
011A	STACK	А	ND	ND	ND	0.069	ND	0.35	1	94	
											ļ

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water		BatchID: 45489 WorkOrder: 0908769							
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					S	Spiked Sar	nple ID	: 0908741-0	004A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1	
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btexf	ND	60	114	116	1.83	120	116	3.37	70 - 130	20	70 - 130	20	
MTBE	ND	10	118	116	1.95	117	115	0.991	70 - 130	20	70 - 130	20	
Benzene	ND	10	106	104	1.80	107	108	1.46	70 - 130	20	70 - 130	20	
Toluene	ND	10	93.5	93.5	0	96	98	2.02	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	94.6	94.4	0.298	97.1	98.3	1.26	70 - 130	20	70 - 130	20	
Xylenes	ND	30	107	108	0.722	110	112	1.18	70 - 130	20	70 - 130	20	
%SS:	98	10	100	100	0	101	102	0.865	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:				

			BATCH 45489 SU	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908769-001A	08/31/09 2:00 PM	09/01/09	09/01/09 4:55 PM	0908769-001A	08/31/09 2:00 PM	09/01/09	09/01/09 4:55 PM
0908769-002A	08/31/09 11:50 AM	09/01/09	09/01/09 5:25 PM	0908769-002A	08/31/09 11:50 AM	09/01/09	09/01/09 5:25 PM
0908769-003A	08/31/09 12:00 PM	09/02/09	09/02/09 6:21 PM	0908769-003A	08/31/09 12:00 PM	09/02/09	09/02/09 6:21 PM
0908769-004A	08/31/09 12:15 PM	09/01/09	09/01/09 5:55 PM	0908769-004A	08/31/09 12:15 PM	09/01/09	09/01/09 5:55 PM
0908769-005A	08/31/09 2:10 PM	09/01/09	09/01/09 6:55 PM	0908769-005A	08/31/09 2:10 PM	09/01/09	09/01/09 6:55 PM
0908769-006A	08/31/09 12:40 PM	09/01/09	09/01/09 7:25 PM	0908769-006A	08/31/09 12:40 PM	09/01/09	09/01/09 7:25 PM
0908769-007A	08/31/09 12:50 PM	09/02/09	09/02/09 5:19 PM	0908769-007A	08/31/09 12:50 PM	09/02/09	09/02/09 5:19 PM
0908769-008A	08/31/09 1:00 PM	09/02/09	09/02/09 7:52 PM	0908769-008A	08/31/09 1:00 PM	09/02/09	09/02/09 7:52 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 45509	WorkOrder: 0908769					
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 0908780-0	01A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex [£]	ND	60	114	120	5.27	113	96.7	15.8	70 - 130	20	70 - 130	20		
MTBE	ND	10	110	116	5.74	109	116	6.22	70 - 130	20	70 - 130	20		
Benzene	ND	10	106	105	0.843	104	105	1.61	70 - 130	20	70 - 130	20		
Toluene	ND	10	96.1	95.8	0.326	94.7	94.3	0.335	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	97.4	94.6	2.86	95.2	95.1	0.107	70 - 130	20	70 - 130	20		
Xylenes	ND	30	110	107	2.74	109	108	1.15	70 - 130	20	70 - 130	20		
%SS:	98	10	100	99	1.12	101	101	0	70 - 130	20	70 - 130	20		
All target compounds in the Method B NONE	lank of this o	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 45509 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0908769-009A	08/31/09 1:15 PM	I 09/03/09	09/03/09 1:58 PM	0908769-009A	08/31/09 1:15 PM	09/03/09	09/03/09 1:58 PM
0908769-010A	08/31/09 1:20 PM	09/02/09	09/02/09 6:51 PM	0908769-010A	08/31/09 1:20 PM	09/02/09	09/02/09 6:51 PM
0908769-011A	08/31/09 2:20 PM	09/02/09	09/02/09 7:21 PM	0908769-011A	08/31/09 2:20 PM	09/02/09	09/02/09 7:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, C campbell.com E-mail: ma one: 877-252-9262 Fax: 9	CA 94565-1701 in@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	09/10/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	09/10/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	09/17/09
Wallat Creek, Cri 91897	Client P.O.: #WC081934		Date Completed:	09/11/09

WorkOrder: 0909287

September 17, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#116907; Vic's Automotive,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAM	PBELI	ANA	LYI	TICA	LI	NC												CH	IA	IN	0	F	CU	ST	ro	D	Y R	E	C	DR	D		
	1538 Wille	ow Pass	Road, Pi	ttsbu	irg, C.	A 94	1565	8						T	UF	N	AR	0	UN	D	ΓIN	Æ						h)			
Telephone: (0)	25) 252 0262		,		a,			Far	(02	5) 7	252-0	026	。					10	_		_	_		R	USH	I.	24 H	IR		48 H	IR	7	2 HR	5 DAY
Telephone: (9.	25) 252-9202			211.77	T	IC		r ax.	(94	5) 2	404°)	740	-	E	DFI	Req	uire	d?		Ye	S L		0	_	PD	FF	tequ	tire	d?		Yes		No	
Report To: Ric	ky Bradford	2500 Car	l Dia	SIII 1	0: AL		onsu	Itan	LS A. O.4	507	7			-					An	arys	IS R	equ	lest					-		01	ner	_	Com	ments
Company: AE	A Consultants, A	2500 Cai	nino Dia	D10,	waint	at c	reer	<u>, .</u>	4 94	391	/		-	BE		&F)																		
1.0.# WC0019.	J-4		F	-Ma	il: rhr	adfo	rda	aeic	onsu	Itat	ns co	m	-	/MT		EF/B								10		-			60B				2	818
Telephone: (9)	25) 746-6000		F	ax:	(925)	746	-609	9	01150	Itat	115444	/111		(3SC)) E&	Ē							/ 83					A 82			22		
AEI Project No	0. 116907		F	roje	ct Nar	ne:	Vic?	s.AI	iton	oti	ve			+ 80		552((418		-					270					EP				:	pp
Project Locatio	on: 245 8th Stree	et, Oakla	nd, Cali	forni	ia 9460)7								020		ase (oons		8020		ILY			5/8			(0)		(pa	B		2	-	hud
Sampler Signa	ture: 90W	nd	GGL											02/8		Gre	ocart		02/		NOS	_		A 62			2/60		list	826				/L a
	0	* SAMI	PLING	s	sus		MA	TRI	х	PE	MET	HO	D ED	Jas (6	015)	Oil &	Hydro		PA 6(PCB's	8260		y EP.			239.		larget	EPA				in ug
	FIELD			iner	aine					1				I as (cl (8	III	m	010	Y (E)80	1080 H	240 /	013	V's b	tals	als	421		010	by				pot
SAMPLE ID	POINT			nta	out									TPF	Dics	trole	trole	1/8(NC	8 / 8(8 / 8(1/8	5/8	PN	7 Me	Mct	40/2		- (8)	Only				in
	NAME	Date	Time	2°	De C	tter	-		her		-	°°	ler	X &	I as	II Pe	al Pe	09	X	V 608	V 608	V 624	A 625	Ps/	M-1	T.5	d (72		OCs	BE				F
				0 #	Tyl	W	Soi	Air	OE	Ice	H	HN	3	BTF	TPF	Tot	Tot	EP	BTI	EP/	EP/	EP/	EP/	PAI	CAI	EUI	Lea	RCI	HV	MT				
MW-2S	MW-2S	9.10.09	0950	1	ТВ			X		t			1	х																				X
MW-5S	MW-5S	1	1005	1	TB			X		t				X																				X
MW-7S	MW-7S		1020	1	ТВ			x		t				X																				X
MW-10S	MW-10S		1025	1	ТВ			x	-	t			+	x			-																_	x
MW-115	MW-115		1050	1	TB		-	x	-	\vdash		-	+	x			-	-					-						-					x
PorD	Ppcb	1	1105	1	TO		-	V	+	⊢		-	-	V			-	+	_			-												
Thev	TILED	Y	1105	++	12		-	4	-	\vdash		-	+	r	-	-	-																	
				-			-	-	-	⊢		-	+	_	-	_	-	-			_							-		_		-		
							-	_	-	⊢		-	-		_	-	-	-			_		_					_		_		_		
							_	_	-	⊢		_	-		_	_	_	_										_						
								_				_	_	_	_	_	_	_	_	_	_		_											
										-																								
												-																						
Relinquished By:	have	Date: 9-10-09	Time: 1300	Rec	eived B	y:	ar	1	7-	2	5				0.0		10	٨			/							ve	DAS	0	&G	M	ETALS	OTHER
Relinquished By:		Date:	Time:	Rec	eived B	y:							٦	1	GO0	D C	ON	DI	101	N		-	A	APP	ROI	PRI	ATE	N_	7			1		
Relinquished By:		Date:	Time:	Rec	eived B	y:		-		_		-	\neg	E	IEA DEC	D SI	PAC	NA	ABS	ENT		B	. (PE	RSI	INE ERV	RS_	INI	LAI	3		_		
						455																												

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order	0909	287	Cli	entCode: A	EL			
		WaterTrax	WriteOn	EDF		Excel		Fax		🖊 Email	Hard	lCopy	ThirdPa	ty	J-flag
Report to: Ricky Bradfo	ord	Email: ı	rbradford@ae	eiconsultants.com			Bill to: De	nise M	ockel			Req	uested TA ⁻	Г: !	5 days
AEI Consult 2500 Camir Walnut Cree (925) 283-600	ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	cc: PO: ; ProjectNo: ;	#WC081934 #116907; Vic's	s Automotive			AE 25 Wa dm	I Cons 00 Can alnut Ci iockel@	ultants hino Dia reek, CA @aeicor	iblo, Ste. A 94597 Isultants.	#200 com	Dat Dat	e Received e Printed:	ł: 09/1 09/1	0/2009 0/2009
							-	-	Requ	uested To	ests (See leg	gend b	elow)		-
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9 1	0 11	12
0909287-001	MW-2S		Air	9/10/2009 9:50		А									
0909287-002	MW-5S		Air	9/10/2009 10:05		А									
0909287-003	MW-7S		Air	9/10/2009 10:20		A									
0909287-004	MW-10S		Air	9/10/2009 10:35		A									

А

А

Test Legend:

0909287-005

0909287-006

1	G-MBTEX_AIR	2
6		7
11		12

3	
8	

4 9

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

MW-11S

PRED

Air

Air

9/10/2009 10:50

9/10/2009 11:05

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	9/10/2009	1:36:14 PM
Project Name:	#116907; Vic's A	utomotive			Checl	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0909287	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗌			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes		No 🗆			
		<u>Si</u>	ample	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Preser	vatio	n and Hold [·]	Time (HT	<u>) Information</u>		
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes		No			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" E-mail: main@mccampbell.com											
AEI C	Consultants			Client P	roject ID: #	#116907; Vie	c's	Date Sample	ed: 09/10)/09		
2500	Camino Diablo. Ste. #	200		Automo	otive			Date Receiv	ed: 09/10)/09		
				Client C	Contact: Ri	cky Bradford	l	Date Extract	ed: 09/10)/09-09/	11/09	
Walnu	ıt Creek, CA 94597			Client P	P.O.: #WC0	81934		Date Analyz	xed: 09/10)/09-09/	/11/09	
	G	asoline I	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [;]	*		
Extracti	on method: SW5030B		TI		Analy	rtical methods:	SW8021B/8015	5Bm	V 1	Wor	k Order:	0909287
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-2S	Α	7	200	ND<50	170	390	28	330	10	83	d1
002A	MW-5S	А	6	300	ND<25	59	190	18	510	10	89	d1
003A	MW-7S	А	11	,000	ND<60	220	270	17	550	6.7	91	d1
004A	MW-10S	А	5	700	ND<30	94	240	23	330	4	94	d1
005A	MW-11S	А	3	100	ND<90	120	120	25	300	4	108	d1
006A	PRED	А	6	000	ND<80	110	240	25	490	4	116	d1
	<u> </u>					1				<u> </u>	l	
Repo ND m	rting Limit for DF =1; eans not detected at or	A		25	2.5	0.25	0.25	0.25	0.25		μg/I	
abo	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/l	Хg
* water	and vapor samples are re	eported in	μg/L, so	oil/sludge/s	solid samples	in mg/kg, wip	e samples in	µg/wipe, produc	t/oil/non-aque	eous liqu	id sample	es in mg/L.
# clutte	ered chromatogram; sam	ple peak c	oelutes	with surro	gate peak.							

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

	McCam	bell "When Ou	Analyti ality Counts"	cal, Inc.	,	1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsbur pbell.com E-mail: 877-252-9262 Fa	g, CA 94565-170 main@mccampbe x: 925-252-9269	1 ll.com		
AEI C	Consultants			Client Project II	D: #116907;	Vic's	Date Sample	ed: 09/10/0	9		
2500	Camino Diablo, Ste	e. #200		Automotive			Date Receiv	ed: 09/10/0	9		
	,			Client Contact:	Ricky Bradf	ord	Date Extract	ed: 09/10/0	9-09/11	1/09	
Walnu	ut Creek, CA 9459	7		Client P.O.: #W	VC081934		Date Analyz	xed: 09/10/0	9-09/11	1/09	
Extracti	Ga Gan mathad: SW5020E	soline F	Range (C6-0	C12) Volatile Hyd	drocarbons as	Gasoline wit	th MTBE and	BTEX in ppn	1V*	k Ordori	0000287
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-2S	A	2000	ND<15	52	100	6.4	74	10	83	d1
002A	MW-5S	А	1800	ND<6.8	18	49	4.0	110	10	89	d1
003A	MW-7S	А	3100	ND<20	68	71	3.8	130	6.7	91	d1
004A	MW-10S	А	1600	ND<10	29	63	5.3	75	4	94	d1
005A	MW-11S	А	870	ND<30	38	32	5.7	68	4	108	d1
006A	PRED	А	1700	ND<20	34	62	5.8	110	4	116	d1

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

A _ QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air	QC Matrix: Water BatchID: 45741 WorkOrder 0909287											
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909265-0	003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	101	96.1	4.49	105	107	1.31	70 - 130	20	70 - 130	20
MTBE	ND	10	118	113	4.40	96.6	103	6.28	70 - 130	20	70 - 130	20
Benzene	ND	10	111	107	3.70	96.3	95.3	1.06	70 - 130	20	70 - 130	20
Toluene	ND	10	100	96.8	3.18	96.3	95.6	0.667	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	99.2	96.1	3.09	94.7	95	0.376	70 - 130	20	70 - 130	20
Xylenes	ND	30	113	111	2.20	97.1	97.7	0.612	70 - 130	20	70 - 130	20
%SS:	100	10	100	100	0	98	96	1.11	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			<u>BATCH 45741 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909287-001A	09/10/09 9:50 AM	09/10/09	09/10/09 9:26 PM	0909287-001A	09/10/09 9:50 AM	09/10/09	09/10/09 9:26 PM
0909287-002A	09/10/09 10:05 AM	09/10/09	09/10/09 9:57 PM	0909287-002A	09/10/09 10:05 AM	09/10/09	09/10/09 9:57 PM
0909287-003A	09/10/09 10:20 AM	09/10/09	09/10/09 11:28 PM	0909287-003A	09/10/09 10:20 AM	09/10/09	09/10/09 11:28 PM
0909287-004A	09/10/09 10:35 AM	09/10/09	09/10/09 11:59 PM	0909287-004A	09/10/09 10:35 AM	09/10/09	09/10/09 11:59 PM
0909287-005A	09/10/09 10:50 AM	09/11/09	09/11/09 12:29 AM	0909287-005A	09/10/09 10:50 AM	09/11/09	09/11/09 12:29 AM
0909287-006A	09/10/09 11:05 AM	09/11/09	09/11/09 1:30 AM	0909287-006A	09/10/09 11:05 AM	09/11/09	09/11/09 1:30 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	09/17/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	09/17/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	09/23/09
	Client P.O.: #WC081952		Date Completed:	09/18/09

WorkOrder: 0909494

September 23, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAM	PBELL	ANAL	Y	ICA	LI	NC												CI	IA	IN	0	F	CU	ST	r o	DY	/ F	RE	CC	DR	D		
	1538 Willo	w Pass I	Road, Pit	tsbu	rg, C	4 94	1565	5						T	U	RN	AR	0	UN	D	LIV	1E						h						À
Telephone: (0)	25) 252 0262		, , , , , , , , , , , , , , , , , , , ,		- 67			Fay	. (97	5)	252	.926	0	E	DEI	0		19	X	V				R	USH	E D	24 H	IR	49	18 H	R	7	2 HR	5 DAY
Telephone: (9)	25) 252-9202		D	ш т	o: AF	IC	onei	lta	nte	,	404	720	_	E	DF	Req	uire	a :	An	Ye	is R	- D	0 lest	_	PD	r R	equ	ire			her		Com	ments
Company: AF	Consultants	2500 Can	nino Dial	blo	Walnı		ree	k. C	A 94	159	7		-			~			Alle	arys	15 1	equ	icst							00		_	Com	mento
P.O.#WC0819	52	2000 Can		010,	TT diffe	at c	100	n, c	11.7					TBE		B&F													_					-
			E	-Ma	il: rbr	adfo	ord@	acio	consu	ilta	tns.c	:om		LINU(C		&F/I								310					2601					v
Telephone: (92	25) 746-6000		F	ax:	(925)	746	-609	99						0150		20 E	18.1)							0/8					PA 8					pm
AEI Project No	o. 116907		Р	roje	ct Nar	ne:	Vic	's A	uton	not	tive	_	_	8+0		s (55	IS (4		50)		>			827			_		by E					d b
Project Location	on: 245 8th Stree	t, Oakla	nd, Calif	orni	ia 9460	97				_			_	/802		reas	urbor		/ 800		NIC			625			5010		st)	260B				ana
Sampler Signa	ture: ADIV	11319	<u>R</u>			_	Sec. 2				ME	гно	D	(602	6	& G	droci		602		B's (09		Ada			9.2/(get li	A 8.				I/dr
	0	SAMP	LING	rs	lers	L	MA	TR	IX	Р	PRES	ERV	ED	Gas	801	lio	Hy	_	EPA	_	PC)/82		by I	- 20		1/23		0 tary	y EF				thu
	FIELD			aine	Itair									PH at	esel (leun	leun	8010	LY (808(808(824(827(NA's	fetal	etals	0/742		(801	uly b				ase 1 bo
SAMPLE ID	POINT	Date	Time	out	Col	1			20 1				-	& T	s Di	Petro	Petro	01/	NO	08/	808	524 /	25/	s / Pl	171	5 M	724(2	Ō				in in
	THE REAL	Date	Thire	ofC	ype	Vate	oil	-1	lud		e D	N	the	TEX	PH a	otal	otal	PA 6	TEX	PA (PA (PA 6	PA (AH's	AM	UFT	cad (CI	N	TBI			1	
				*	F	2	S	~	SC	1	- F	1	0	m	F	F	F	ш	-	ш	ш	ш	ш	Р	0	Н	Т	×	-	~				
MW-2S	MW-2S	9-17-09	0800	1	TB			X	_	+	_			X																				X
MW-5S	MW-5S		0815	1	TB			Х						X																				X
MW-7S	MW-7S		0830	1	TB			Х						X																				X
MW-10S	MW-10S		0845	1	TB			х						X																				X
MW-11S	MW-11S	1	0900	1	TB			х						X																				Х
PRED	PRED	+	0915	2	TB			X						X																				X
	MW-15		0945	(TB			X						X																				×
	MW-65		1000	1	TB			X		Т				X																				x
	MW-125	¥	1015	1	TB	Γ		X		Τ				X																			1	X
										Т																								
										T																								
										T																								
						t				t		-																						
Relinquished By:	0	Date:	Time:	Re	ceived E	By:	1	7	-			-				-				-	-	-		-		-			_	,		7		
90m	SIGA	9-17-09	1315		la	e	1,		Y	-				8	ICE	140								PDE	CEL	DV/A	TIC	V	OAS	0	&G	N	IETALS	OTHER
Relinquished By:	0.0	Date:	Time:	Re	eeived E	By:		T							GO	OD	CON	DI	TIO	N		_		APP	RO	PRI	ATI	E	-	_				
													_		HE	DS	SPA	CE	ABS	SEN	T	D	- (CON	TA	INE	RS	IN	TA	D				
Relinquished By:		Date:	Time:	Re	ceived E	By:									DEC	HL	OR	uNA	TE	U IN	LA	в_		P	LKS	EK	YED	IN	LA	D				
1		1												1																				

1534 Willow Pass Rd Pitteburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	252-9262					Work(Order:	09094	94	C	lientCo	de: A	EL				
		WaterTrax	WriteOr	n 🖌 EDF		Excel	Ľ	Fax		Email		Hard	Сору	Thir	dParty	🗌 J-	flag
Report to:						I	Bill to:						Req	uested	TAT:	5	days
Ricky Bradf AEI Consult 2500 Camir Walnut Cre (925) 283-60	ord tants no Diablo, Ste. #200 ek, CA 94597 000 FAX (925) 944-2895	Email: r cc: PO: # ProjectNo: #	bradford@ae #WC081952 #116907; Vic'	eiconsultants.com s Automotive	1		Der AEI 250 Wal dmo	nise Mo Consu 0 Cam Inut Cre ockel@	ockel Itants ino Dia eek, CA aeicor	blo, Ste v 94597 sultants	e. #200 s.com		Dat Dat	e Rece e Print	ived: ted:	09/17/ 09/17/	2009 2009
									Requ	lested 1	Fests (See leg	end b	elow)	r		r
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909494-001	MW-2S		Air	9/17/2009 8:00		А	А									T	
0909494-002	MW-5S		Air	9/17/2009 8:15		А											
0909494-003	MW-7S		Air	9/17/2009 8:30		А											
0909494-004	MW-10S		Air	9/17/2009 8:45		А											
0909494-005	MW-11S		Air	9/17/2009 9:00		А											
0909494-006	PRED		Air	9/17/2009 9:15		А											
0909494-007	MW-1S		Air	9/17/2009 9:45		Α											

9/17/2009 10:00

9/17/2009 10:15

Test Legend:

0909494-008

0909494-009

1	G-MBTEX_AIR	2	PRED
6		7	
11		12	

PREDF REPORT	3
	8

Air

Air

3	
8	

А

А

4	
9	

5					
10					

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

MW-6S

MW-12S

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date	and Time Received:	9/17/2009	1:27:06 PM
Project Name:	#116907; Vic's A	utomotive			Chec	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0909494	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chair</u>	of Cu	stody (COC) Inform	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample l	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes		No 🗆			
Sampler's name i	noted on COC?		Yes		No 🗆			
		<u>S</u>	ample	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good conc	dition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold ⁻	<u>Time (HT</u>) Information		
All samples recei	ived within holding tim	ie?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ice / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes	\checkmark	No			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🔽			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

Ĵ	AEI Consultants					Web	1534 Willow P : www.mccamp Telephone: 8	ass Road, Pittsbur bell.com E-mail: 77-252-9262 Fa	g, CA 94565-17 main@mccamp x: 925-252-926	701 bell.com 9		
AEI C	Consultants			Client P	roject ID: #	‡116907; Vic	's	Date Sample	ed: 09/17	7/09		
2500	Camino Diablo, Ste. #2	200		Automo	buve			Date Receiv	ed: 09/17	7/09		
				Client C	Contact: Rid	cky Bradford		Date Extract	ed: 09/17	7/09		
Walnu	ut Creek, CA 94597			Client P	P.O.: #WC03	81952		Date Analyz	xed: 09/17	7/09		
Extracti	G	asoline F	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	* Wor	k Order:	0909494
Lab ID	Client ID	Matrix	TP	'H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-2S	Α	9	700	ND<90	260	550	48	450	10	82	d1
002A	MW-5S	А	8	000	ND<25	60	250	29	700	10	112	d1
003A	MW-7S	А	19	,000	ND<140	370	550	40	860	10	114	d1
004A	MW-10S	А	6	800	ND<60	130	310	32	380	6.7	101	d1
005A	005A MW-11S A				ND<90	87	150	18	280	2	89	d1
006A	006A PRED A				ND<60	170	400	33	600	4	122	d1
007A	MW-1S	Α	1	80	ND<10	4.3	34	2.6	19	4	95	d1
008A	MW-6S	А	1	300	ND<10	6.3	27	6.0	41	1	113	d1
009A	MW-12S	А		86	ND<7.0	5.4	6.8	0.77	8.3	1	107	d1
Repo ND m	rting Limit for DF =1; eans not detected at or	A		25	2.5	0.25	0.25	0.25	0.25		μg/I	
abo	ve the reporting limit	S]	1.0 0.05 0.005 0.005 0.005 0.005							mg/k	<u>í</u> g

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc. "When Ouality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI C	Consultants			Client Project II	D: #116907;	Vic's	Date Sample	d: 09/17/0	9			
2500	Camino Diablo, Ste	e. #200		Automotive			Date Receiv	ed: 09/17/0	9			
	,			Client Contact:	Ricky Bradf	ord	Date Extract	ed: 09/17/0	9			
Walnu	ut Creek, CA 9459	7		Client P.O.: #W	VC081952		Date Analyz	ed: 09/17/0	9			
Extract	Ga	asoline F	Range (C6-0	C12) Volatile Hyd	drocarbons as	s Gasoline wit	h MTBE and 1	BTEX in ppn	1V*	k Ordori	0000404	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-2S	А	2700	ND<25	80	140	11	100	10	82	d1	
002A	MW-5S	А	2200	ND<6.8	19	66	6.6	160	10	112	d1	
003A	MW-7S	А	5200	ND<35	120	140	9.0	200	10	114	d1	
004A	MW-10S	А	1900	ND<15	40	82	7.2	85	6.7	101	d1	
005A	MW-11S	А	890	ND<25	27	39	4.1	63	2	89	d1	
006A	PRED	А	2600	ND<20	52	100	7.5	140	4	122	d1	
007A	MW-1S	А	51	ND<2.7	1.3	8.8	0.59	4.2	4	95	d1	
008A	MW-6S	А	370	ND<3.0	1.9	6.9	1.4	9.2	1	113	d1	
009A	MW-12S	А	24	ND<2.0	1.7	1.8	0.18	1.9	1	107	d1	
		-										

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 45892		WorkOrder: 0909494			
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked Sar	nple ID	: 0909486-0	07A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1	
, mayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex) [£]	ND	60	98.9	98.8	0.112	110	99.3	9.76	70 - 130	20	70 - 130	20	
MTBE	ND	10	96.8	95.7	1.18	108	106	1.30	70 - 130	20	70 - 130	20	
Benzene	ND	10	95.2	95.3	0.0370	102	102	0	70 - 130	20	70 - 130	20	
Toluene	ND	10	95.3	95.4	0.182	103	102	0.540	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	93.7	94.7	1.01	101	101	0	70 - 130	20	70 - 130	20	
Xylenes	ND	30	100	102	2.12	109	110	0.531	70 - 130	20	70 - 130	20	
%SS:	94	10	95	93	1.47	96	94	1.56	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

	BATCH 45892 SUMMARY													
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed							
0909494-001A	09/17/09 8:00 AM	09/17/09	09/17/09 6:59 PM	0909494-002A	09/17/09 8:15 AM	09/17/09	09/17/09 7:30 PM							
0909494-003A	09/17/09 8:30 AM	09/17/09	09/17/09 8:00 PM	0909494-004A	09/17/09 8:45 AM	09/17/09	09/17/09 8:30 PM							
0909494-005A	09/17/09 9:00 AM	09/17/09	09/17/09 9:01 PM	0909494-006A	09/17/09 9:15 AM	09/17/09	09/17/09 9:31 PM							
0909494-007A	09/17/09 9:45 AM	09/17/09	09/17/09 10:02 PM	0909494-008A	09/17/09 10:00 AM	09/17/09	09/17/09 10:32 PM							
0909494-009A	09/17/09 10:15 AM	09/17/09	09/17/09 11:34 PM											

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, C campbell.com E-mail: ma one: 877-252-9262 Fax: 9	CA 94565-1701 nin@mccampbell.com 025-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	10/02/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	10/02/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	10/07/09
	Client P.O.: #WC081989		Date Completed:	10/05/09

WorkOrder: 0910040

October 07, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 8 analyzed samples from your project: **#116907; Vic's Automotive,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			C	9	10	0	4	4))																									
	McCAN	IPBEL	L ANA	LY	ГІСА	L	IN	c.						Τ						CI	IA	IN	0	F	CL	JS	ГС	D	Y I	RE	C	OR	D		
	1538 Wil	low Pass	Road, Pi	ttsb	urg, C	A 9	456	5							1	TUI	RN	AI	20	UN	D	TI	ME					Ę	3		Ę	3			囱
Telephone: (9	25) 252-9262							Fa	x: ((92:	5) 2	252-	9269		E	DF	Rec	mir	ed?	×	Y	25	-	NO.	R	USI	H DF I	24 260	HR uire	d?	48 1	HR	7	2 HR	5 DAY
Report To: Ri	cky Bradford		F	Bill T	o: AE	IC	ons	sulta	ants	s				1						An	aly	sis I	Req	uest						Ī	0	ther	-	Com	ments
Company: Al	EI Consultants,	2500 Ca	mino Dia	blo,	Waln	ut (Cre	ek, (CA	94	597	7					E																		4.2.
P.O.#WC0819	89													-	MTBI		=/B&													8					13
Talanhana. (0	25) 746 6000		H	C-Ma	(025)	adf	ord	aae	icor	nsu	ltat	ns.c	om	-	SC)/I		E&F	=							831(826					l ua
AEI Project N	a 116907		r F	ax:	(945) ect Nai	/40 me	Via	c's /	Ant	om	oti	ve		-	801		5520	418.		_					270 /					EPA					ppn
Project Locati	on: 245 8th Stre	et, Oakl	and, Cali	forn	ia 946	07		c 0 1	iut	- Unit	iou	10		1	020+		ase (ons		9020		LY			5/8			6		by (B			-	ind
Sampler Signa	ture: Solv	n Sic	Var												902/8		Gre	ocarb		02/8		s ON			A 62			2/601		list	826(Lau /La
	0.	SAM	FLING	20	ers		M	ATE	ax	(PF	MET	HOD	D	Gas (6	015)	Oil &	Hydr		PA 6(PCB'	8260		y EP.			/239.		target	EPA				epor h ug
	FIELD			iner	taine	F					1			٦	H as	sel (8	uma	uma	010	Y (E	080	080	240	270	A's b	stals	als	7421		010	y by				bot
SAMPLE ID	POINT			onta	Con	١.			e						& TP	Dice	etrol	etrol	11/8	ONL	8/8	8/8	4/8	5/8	/PN	7 M	5 Me	240/		8 - (8	Onl				in i
	NAME	Date	Time	ofC	vpe	ate	11	1	gpn	thei		U	NO		EX (H as	tal P	tal P	A 6(TEX	A 60	A 60	A 62	A 62	vH's	I-W	FT	ad ()	B	00	TBE				Ē.
				#	Ë.	12	Š	V	S	0	1	H	H	2	B	E.	To	To	E	B	Ē	Ē	E	固	ΡA	0	E	Le	RC	Ŧ	Σ				
MW-2S	MW-2S	10-2-09	0830	1	TB			X							х																				Х
MW-5S	MW-5S		6845	1	TB			X							Х																				Х
MW-7S	MW-7S		6900	1	TB			X							х																				Х
MW-10S	MW-10S		0915	1	TB			X							х																				Х
MW-11S	MW-115		0930	1	TB			X	,						х																				Х
AS	AS		0945	1	TB			X							х																				Х
PRED	PRED		1000	1	TB			X							х																				X
STACK	STACK	1	1015	1	TB			X							х																				Х
																_																			
																			4																
Relinquished By		Date:	Time:	Rec	eived B	y:			/	1	1		/	Т			c		V										84		1	31112	1	1	1000 000 000 000 000 000 000 000 000 00
20m 2	190x	10-2-04	1290	1	14	M	Ø	-	1	/		0		4	I	CE/	to	C	A				1	1	PRE	SEI	RVA	TIC	ON V	OAS	0	0&G	M	ETALS	OTHER
Kennquished By:	00	Date:	Time:	Rec	eived B	y:									0	500	DO	CON	DI	TIO	N	~	-	1	APP	RO	PRI	ATI	E		/		_		
Relinquished By:		Date:	Time:	Rec	eived B	v:								-	I	HEA DEC	D S HL	ORI	NA	ABS	EN DIN	LA	B	. (PI	ERS	ER	VED	IN	LAI	в				
in the system of					arrea b																	_	_												

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					Work	Order	0910	040	C	ClientCo	ode: AE	L				
		WaterTrax	writeOr	EDF		Excel	[Fax	V	e Email	[HardC	ору	Third	dParty		flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Ricky Bradfo AEI Consult 2500 Camin Walnut Cree (925) 283-600	ord ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: cc: PO: ProjectNo:	rbradford@ae #WC081989 #116907; Vic'	eiconsultants.com s Automotive	1		De AE 250 Wa dm	nise Mo I Consi 00 Carr alnut Cr lockel@	ockel ultants nino Dial eek, CA aeicon:	blo, Ste 94597 sultants	e. #200 s.com		Dat Dat	e Recei e Print	ived: ted:	10/02/ 10/08/	'2009 '2009
									Requ	ested ⁻	Tests (See lege	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0910040-001	MW-2S		Air	10/2/2009 8:30		А	Α										
0910040-002	MW-5S		Air	10/2/2009 8:45		А											
0910040-003	MW-7S		Air	10/2/2009 9:00		А											
0910040-004	MW-10S		Air	10/2/2009 9:15		А											
0910040-005	MW-11S		Air	10/2/2009 9:30		А											
0910040-006	AS		Air	10/2/2009 9:45		А											

Test Legend:

0910040-007

0910040-008

1	G-MBTEX_AIR	2	PREDF
6		7	
11		12	

2	PREDF REPORT	
,		
2		

Air

Air

10/2/2009 10:00

10/2/2009 10:15

3	
8	

А

А

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A contain testgroup.

PRED

STACK

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	10/2/2009	12:42:22 PM		
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and r	eviewed by:	Maria Venegas		
WorkOrder N°:	0910040	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>				
		Chain	of Cu	stody (COC	<u>) Informa</u>	ation				
Chain of custody	v present?		Yes	\checkmark	No 🗆					
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆					
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌					
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆					
Date and Time of	collection noted by Cli	ent on COC?	Yes	\checkmark	No 🗆					
Sampler's name i	noted on COC?		Yes		No 🗆					
Sample Receipt Information										
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽			
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆					
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆					
Sample containe	ers intact?		Yes	\checkmark	No 🗆					
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌					
		Sample Prese	rvatio	n and Hold 1	<u>Гіте (HT</u>) Information				
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌					
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹			
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹			
Sample labels ch	necked for correct pres	servation?	Yes	\checkmark	No 🗌					
Metal - pH accep	table upon receipt (pH	I<2)?	Yes		No 🗆		NA 🗹			
Samples Receive	ed on Ice?		Yes		No 🗹					

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI C	Consultants			Client P	roject ID: #	#116907; Vic's Date Sampled: 10/02/09						
2500 Camino Diablo, Ste. #200					otive			Date Receiv	ed: 10/02	2/09		
	,			Client C	Contact: Ric	cky Bradford	l	Date Extract	ed: 10/02	2/09-10/	03/09	
Walnu	ut Creek, CA 94597			Client P	.O.: #WC08	81989		Date Analyz	ed: 10/02	2/09-10/	03/09	
Extracti	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*											
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-2S	А	10	,000	ND<35	210	510	38	320	6.7	95	d1
002A	MW-5S	А	7.	500	ND<10	31	140	21	460	4	107	d1
003A	MW-7S	А	19	,000	ND<130	330	610	49	900	6.7	80	d1
004A	MW-10S	А	6	200	ND<60	120	300	29	330	4	113	d1
005A	MW-11S	А	3	200	ND<50	70	150	17	240	4	110	d1
006A	AS	А		26	ND<5.0	0.89	2.2	ND	4.1	1	109	d1
007A	PRED	Α	8	500	ND<75	140	330	37	500	4	101	d1
008A	STACK	А	1	ND	ND	ND	ND	ND	ND	1	106	
Report ND m	rting Limit for DF =1; eans not detected at or	А		25	2.5	0.25	0.25	0.25	0.25		μg/I	
abo	ve the reporting limit	S]	1.0	0.05	0.005	0.005	0.005	0.005		mg/ŀ	Кg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

	🕈 <u>McCam</u> j	pbell	Analyti ality Counts"	<u>cal, Inc.</u>		1534 Willow Web: www.mccamp Telephone:	Pass Road, Pittsbur pbell.com E-mail 877-252-9262 Fa	g, CA 94565-170 : main@mccampbe ux: 925-252-9269	1 ell.com		
AEI C	Consultants			Client Project ID	: #116907;	Vic's	Date Sample	ed: 10/02/0	9		
2500	Camino Diablo, St	e. #200		Automotive			Date Receiv	red: 10/02/09	9		
				Client Contact:	Ricky Bradf	ord	Date Extract	ted: 10/02/0	9-10/03	3/09	
Walnu	ıt Creek, CA 9459	7		Client P.O.: #W	C081989		Date Analyz	zed: 10/02/0	9-10/03	3/09	
_	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*										
Extract	Client ID	Matrix	TPH(g)	AI	Benzene	S: SW8021B/80	Ethylbenzene	Xvlenes	Wor	k Order: % SS	0910040 Comments
001 A	MW-2S	Δ	2800	ND<10	63	130	8.5	72	67	95	d1
002A	MW-5S	A	2100	ND<2.7	9.4	35	4.9	100	4	107	d1
003A	MW-7S	А	5300	ND<35	100	160	11	210	6.7	80	d1
004A	MW-10S	А	1700	ND<20	38	79	6.6	76	4	113	d1
005A	MW-11S	А	880	ND<15	22	40	3.9	55	4	110	d1
006A	AS	А	7.3	ND<1.0	0.27	0.57	ND	0.93	1	109	d1
007A	PRED	А	2400	ND<20	43	85	8.3	110	4	101	d1
008A	STACK	А	ND	ND	ND	ND	ND	ND	1	106	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Wat			x: Water		BatchID: 46201 WorkOrde				order: 09100	40		
EPA Method SW8021B/8015Bm Extraction SW5030B								s	Spiked Sar	nple ID:	: 0910034-0	04A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, include	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	118	124	5.20	109	113	4.26	70 - 130	20	70 - 130	20
MTBE	ND	10	124	120	3.12	102	105	2.58	70 - 130	20	70 - 130	20
Benzene	ND	10	115	116	0.669	104	102	1.98	70 - 130	20	70 - 130	20
Toluene	ND	10	102	107	4.96	102	101	1.25	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	102	103	1.25	102	102	0	70 - 130	20	70 - 130	20
Xylenes	ND	30	115	117	1.48	105	105	0	70 - 130	20	70 - 130	20
%SS:	105	10	101	105	4.06	101	96	4.51	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

	BATCH 46201 SUMMARY								
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
0910040-001A	10/02/09 8:30 AM	10/02/09	10/02/09 4:09 PM	0910040-001A	10/02/09 8:30 AM	10/02/09	10/02/09 4:09 PM		
0910040-002A	10/02/09 8:45 AM	10/02/09	10/02/09 4:39 PM	0910040-002A	10/02/09 8:45 AM	10/02/09	10/02/09 4:39 PM		
0910040-003A	10/02/09 9:00 AM	10/02/09	10/02/09 5:15 PM	0910040-003A	10/02/09 9:00 AM	10/02/09	10/02/09 5:15 PM		
0910040-004A	10/02/09 9:15 AM	10/03/09	10/03/09 4:24 AM	0910040-004A	10/02/09 9:15 AM	10/03/09	10/03/09 4:24 AM		
0910040-005A	10/02/09 9:30 AM	10/02/09	10/02/09 4:42 PM	0910040-005A	10/02/09 9:30 AM	10/02/09	10/02/09 4:42 PM		
0910040-006A	10/02/09 9:45 AM	10/02/09	10/02/09 9:11 PM	0910040-006A	10/02/09 9:45 AM	10/02/09	10/02/09 9:11 PM		
0910040-007A	10/02/09 10:00 AM	10/02/09	10/02/09 10:19 PM	0910040-007A	10/02/09 10:00 AM	10/02/09	10/02/09 10:19 PM		
0910040-008A	10/02/09 10:15 AM	10/02/09	10/02/09 2:26 PM	0910040-008A	10/02/09 10:15 AM	10/02/09	10/02/09 2:26 PM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

APPENDIX D

WELL INSTALLATION, ENCRAOCHMENT, & EXCAVATION PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939 PUBLIC WORKS Application Approved on: 07/16/2009 By jamesy Permit Numbers: W2009-0648 to W2009-0650 Permits Valid from 07/27/2009 to 07/28/2009 Application Id: 1247699353075 City of Project Site:Oakland Site Location: 245 8th Street **Project Start Date:** 07/27/2009 Completion Date:07/28/2009 Assigned Inspector: Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org Phone: 925-746-6000 x148 Applicant: All Environmental, Inc. - Ricky Bradford 2500 Camino Diablo, Walnut Creek, CA 94597 **Property Owner:** Victor Lum Phone: --245 8th Street, Oakland, CA 94607 ** same as Property Owner ** Client: Phone: 925-746-6000 x148 Contact: Ricky Bradford Cell: 510-375-2314 Total Due: \$1191.00 Receipt Number: WR2009-0259 **Total Amount Paid:** \$1191.00

Payer Name : Peter J McIntyre

Paid By: VISA

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells Driller: RSI Drilling - Lic #: 802334 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2009- 0648	07/16/2009	10/25/2009	MW-14	8.00 in.	2.00 in.	15.00 ft	25.00 ft
W2009- 0649	07/16/2009	10/25/2009	MW-15	8.00 in.	2.00 in.	15.00 ft	25.00 ft
W2009- 0650	07/16/2009	10/25/2009	MW-16	8.00 in.	2.00 in.	15.00 ft	25.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Work Total: \$1191.00

PAID IN FULL

Alameda County Public Works Agency - Water Resources Well Permit

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (<u>www.acgov.org/pwa/wells/index.shtml</u>) for links to additional forms.

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

Permit No. X0900)880 Parcel #	: 001 -0179-013-00	Page 2 of 2
Project Address:	245 8TH ST	C	

Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender

Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____ POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

⁸⁰ I hereby affirm that the intended occupancy [] WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

 Permit No.
 X0900881
 Parcel #:
 001 -0179-013-00
 Page 2 of 2

 Project Address:
 245 8TH ST
 Page 2 of 2

Licensed Contractors' Declaration

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender

Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER: _____ POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code. I shall forthwith comply with those provisions.

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

Hazardous Materials Declaration

I hereby affirm that the intended occupancy [1 WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by this permit.

ADDRESS

APPENDIX E

BORING & WELL CONSTRUCTION LOGS
Project: Vic's Automotive Project Location: 245 8th Street, Oakland, California Project Number: 116907

Log of Boring MW-14

Sheet 1 of 1

Date(s) Drilled July 28, 2009	Logged By Ricky Bradford	Checked By Peter McIntyre		
Drilling	Drill Bit	Total Depth		
Method Hollow Stem Auger	Size/Type 8 inch	of Borehole 25 feet bgs		
Drill Rig	Drilling	Approximate		
Type CME 75	Contractor RSI	Surface Elevation 35 feet MSL		
Groundwater Level 14 feet ATD, 15 feet after 1	Sampling	Hammer		
and Date Measured hour	Method(s) Tube	Data		
Borehole Backfill Well Completion	Location Parking Lane Along 7th Street Southwest of the Subject Property			

	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
	_	0			Asphalt		Asphalt concrete overburden.			
	33	_			Other		Baserock and fine-grained backfill sand from approx. 1 to 2-feet bgs.			
	-	-			SC/SM		Fine-grained sand w/ silt and clay (SM-SC). Merritt Sand. 10YR 4/4 dark yellowish brown. Homogeneous. Moist starting at 5' bgs. Loose. No hydrocarbon odor.			
	-	5								- Cement Grout
	28	-	\times	MW-14-8'				1.77	-	-2" SCH40 PVC Blank Well Casing
tpl]	-	10—								- 3/8 Bentonite Chips
probe well 20.	23	-	\times	MW-14-12'			V increasing in moisture	1.79		
gs [AEI geol	-	- 15					→ wet, color change to dark greenish gray (GLEY 1 4/6GY) (ATD) — (after 1 hour) —			2" SCH40 PVC 0.010
-14 to MW-16.b	 18	-	\times	MW-14-16'				2.12		# 2/12 Monterey Sand
orms/MW-	-	_		MM/ 4.4 001				4.00		
cs DWR I	-	20	\bigcap	14-20				4.09		
<pre>ctop/Vi</pre>	13—	-	\ge	MW-14-22'				2.84		
s\aangel\Desl	-	-	\times	MW-14-23'			$^{-}$ color change to dark yellowish brown (10YR 4/4)	1.87		
its and Setting:	- - 8	25					Bottom of Boring at 25 feet bgs			
C:\Documer	.									Figure

Project: Vic's Automotive Project Location: 245 8th Street, Oakland, California Project Number: 116907

Log of Boring MW-15

Sheet 1 of 1

Date(s) Drilled March 17, 2008	Logged By Ricky Bradford	Checked By Peter McIntyre		
Drilling	Drill Bit	Total Depth		
Method Hollow Stem Auger	Size/Type 8 inch	of Borehole 24 feet bgs		
Drill Rig	Drilling	Approximate		
Type CME 75	Contractor RSI	Surface Elevation 35 feet MSL		
Groundwater Level 14 feet ATD, 15.2 feet after	Sampling	Hammer		
and Date Measured 30 mins	Method(s) Tube	Data		
Borehole Backfill Well Completion	Location Parking Lane Along 7th Street Southwest of the Subject Property			

	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
		U			Other		Asphalt concrete overburden			
	- 33— -	-			SC/SM		Fine-grained sand w/ silt and clay (SM-SC). Loose. Poorly graded, medium dense. Homogenous. Merritt Sand. Light brown. Homogeneous. Moist starting at 5' bgs. No hc odor.			
	-	5 —					V color change to dark yellowish brown (10YR 4/4)			Cement Grout
	28 — –	-		MW-15-8'			 	0		2" SCH40 PVC Blank Well Casing
tpl]	-	10	-					-		- 3/8 Bentonite Chips
oprobe well 20.1	23	-	\times	MW-15-12'			✓ increasing in moisture	0		
El ge	-	-					$\overline{}$ wet, color change to dark greenish gray (GLEY 1 4/5GY) (ATD) $\stackrel{\frown}{=}$			
bgs [A	-	15								2" SCH40 PVC 0.010 Slotted Well Screen
1W-14 to MW-16.	 18	-		WWV-15-16			✓ color change to dark yellowish brown (10YR 4/4)			# 2/12 Monterey Sand
Vics DWR forms/N	-	- 20—	\times	MW-15-20'			 	0		
angel\Desktop\	13— –	-		MW-15-24'						
tts and Settings∖∉	- -	25— -					Bottom of Boring at 24 feet bgs			
C:\Documer	o									Figure

Project: Vic's Automotive Project Location: 245 8th Street, Oakland, California Project Number: 116907

Log of Boring MW-16

Sheet 1 of 1

Date(s) Drilled July 28, 2009	Logged By Ricky Bradford	Checked By Peter McIntyre		
Drilling	Drill Bit	Total Depth		
Method Hollow Stem Auger	Size/Type 10 inch	of Borehole 25 feet bgs		
Drill Rig	Drilling	Approximate		
Type CME 75	Contractor RSI	Surface Elevation 35 feet MSL		
Groundwater Level 14 feet ATD, 16.62 feet	Sampling	Hammer		
and Date Measured after 1 hr	Method(s) Tube	Data		
Borehole Backfill Well Completion	Location Parking Lane Along Alice Street Southwest of the Subject Property			

	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
is and Settings\aange\Desktop\Vics DWR forms\MW-14 to MW-16.bgs [AEI geoprobe well 20.tpl]		0		MW-16-12' MW-16-16' MW-16-20'	Other SC/SM		Asphalt concrete overburden Fine-grained sand w/ silt and clay (SM-SC). Merritt Sand. dark yellowish brown (10YR 4/4). Silt and clay <10%. Homogeneous. Becoming moist at 5' bgs. No hydrocarbon odor.	<1 1.64 <1		- Cement Grout - 4" SCH40 PVC Blank Well Casing - 3/8 Bentonite Chips - 4" SCH40 PVC 0.010 Slotted Well Screen - # 2/12 Monterey Sand
C:\Document	8				I	. L				Figure

APPENDIX F

MONITORING WELL SURVEY

Monitoring Well Exhibit Prepared For: **AEI Consultants**

DESCRIPTION	NORTHING	EASTING EL	EV (PVC)	ELEV
MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-12 MW-13 MW-15 MW-16	2117872.1 2117844.7 2117923.6 2117893.4 2117805.2 2117857.4 2117857.4 21177857.4 21177857.4 2117785.0 2117789.0 2117790.4 2117713.7 2117782.3 2117685.3 2117685.3	6050571.5 6050605.0 6050601.0 6050585.2 6050585.4 6050585.4 6050530.3 6050534.3 6050534.3 6050546.8 6050575.7 6050548.6 6050549.7 6050549.3 6050533.1	32.55 33.24 34.25 34.42 33.33 32.82 33.07 31.73 29.02 31.17 31.78 32.05 28.84 29.53 29.22 28.87	
DESCRIPTION	LATITUDE	LONGITUDE		
MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-10 MW-11 MW-12 MW-13 MW-13 MW-14 MW-16	37.7980266 37.7978530 37.7978467 37.7980858 37.7980858 37.7980858 37.7979789 37.7979789 37.7979839 37.7976462 37.7976577 37.7978023 37.7975904 37.79775904 37.79775087 37.7974380	-122.269018 -122.268919 -122.268919 -122.2689727 -122.268968 -122.269968 -122.269142 -122.269142 -122.2690868 -122.2690868 -122.2690868 -122.269267 -122.269267 -122.2692345 -122.2691366	1 4 2 6 1 5 9 9 7 7 7 7 2 2 8 9 9 9 3	

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2000.35.

COORDINATE DATUM IS NAD 83(CORS).

DATUM ELLIPSOID IS GRS80.

REFERENCE GEOID IS GEOID99.

CORS STATIONS USED WERE TIBB AND DIAB.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.

/ (BOX)

33.06 33.75 34.60 34.75 33.77 32.40 33.42 31.92 29.30 31.59 32.11 32.40 29.12 29.93 29.42 29.94

APPENDIX G

CURRENT & PROPOSED GROUNDWATER MONITORING SCHEDULE

APPENDIX E: CURRENT & PROPOSED GROUNDWATER MONITORING SCHEDULE

Vic's Auto, 245 8th Street, Oakland, California

		CURRENT	MONITORING S	CHEDULE	PROPOSED MONITORING SCHEDULE			
Field Point Name	Well Type / Use (Screen Interval)	TPH-g (SW8015C)	MBTEX (SW8021B)	MTBE Only (SW8260B)	TPH-g (SW8015C)	MBTEX (SW8021B)	MTBE Only (SW8260B)	
*MW-1 *MW-2 MW-3 MW-4 *MW-5 *MW-5 *MW-6 *MW-7 MW-6 *MW-7 MW-8 MW-9 MW-10 MW-10 MW-11 MW-12	 4" Monitoring / Extraction Well (8 to 28) 2" Monitoring / Extraction Well (8 to 28) 2" Monitoring Well (10 to 25) 2" Monitoring Well (10 to 25) 4" Monitoring / Extraction Well (12 to 22) 4" Monitoring / Extraction Well (12 to 22) 4" Monitoring Well (12 to 22) 4" Monitoring Well (12 to 22) 2" Monitoring Well (12 to 22) 2" Monitoring Well (12 to 22) 4" Monitoring / Extraction Well (12 to 22) 	Q Q Q Q Q Q Q Q Wellheads Wellheads Wellheads	Q Q Q Q Q Q Q Q removed and active ex removed and active ex removed and active ex	AN AN AN AN AN AN AN AN AN xtraction wells burried xtraction wells burried	Q Q A (Q4) A (Q4) Q Q Q A (Q4) Q beneath new residenti beneath new residenti beneath new residenti	Q Q A (Q4) A (Q4) Q Q Q A (Q4) Q al construction in Aug al construction in Aug al construction in Aug	AN AN AN AN AN AN AN AN ust of 2008 ust of 2008 ust of 2008	
MW-13	2" Monitoring Well (12 to 22)	Q	Q	AN	Q	Q	AN	
**MW-14	New 2" Monitoring Well (12 to 22)	Q	Q	AN	Q	Q	AN	
**MW-15	New 2" Monitoring Well (12 to 22)	Q	Q	AN	Q	Q	AN	
**MW-16	New 2" Monitoring Well (12 to 22)	Q	Q	AN	Q	Q	AN	

NOTES:

*For remediation progress monitoring, the onsite monitoring / extraction wells (MW-1, 2, 5, 6, & 7) will be sampled quarterly only if the HVDPE system is not operating **New monitoring wells, which were installed in July of 2009, have not been sampled and should be monitored quarterly for at the first year or one (1) hydrologic cycle

Q = Quarterly SA = Semi-Annual A = Annual AN = As Needed

A follwed by (Q4) means that annual sampling will occur in the Fourth Quarter