

AEI Consultants Environmental & Engineering Services

February 28, 2011

AIR SPARGING PILOT TEST REPORT

Property Identification:

245 8th Street Oakland, CA 94607

AEI Project No. 116907 ACEH RO#0000202 RWQCB #01-1244

Prepared for:

Mr. Vic Lum Vic's Automotive 245 8th Street Oakland, CA 94607

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000

RECEIVED

10:57 am, Mar 21, 2011 Alameda County Environmental Health San Francisco HQ

Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence Regional Focus Local Solutions February 28, 2011

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Perjury Statement and Report Transmittal Air Sparging Pilot Test Report

245 8th Street Oakland, California 94607 AEI Project No. 116907 ACEH RO#0000202

Dear Mr. Wickham:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached report for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me at (510) 832-9014, or Mr. Ricky Bradford at AEI Consultants, (925) 746-6000 extension 148.

Sincerely,

Victor Lum Owner Vic's Automotive

RB/vl

Attachment

cc: Mr. Ricky Bradford, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION AND HISTORY	2
3.0 GEOLOGY AND HYDROLOGY	5
4.0 AIR SPARGE WELL INSTALLATION	6
4.1 Air Sparge Well Construction4.2 Air Sparge Well Development and Re-Development	
5.0 AIR SPARGING PILOT TEST OVERVIEW	6
 5.1 Pilot Test System Installation	7 7 8 8 8
6.0 PILOT TEST RESULTS	9
6.1 Injection Pressure / Flow Rate 6.2 Off-Gas Sampling and Mass Removal Rates 6.3 Transient Pressure Transducer Response 6.4 Soil Gas Monitoring	10 11
7.0 SUMMARY & RECOMMENDATIONS 1	3
8.0 REFERENCES 1	4
9.0 REPORT LIMITATIONS AND SIGNATURES 1	6

FIGURES

FIGURE 1	Site Location Map
FIGURE 2	Site Plan
FIGURE 3	HVDPE System Layout Plan
FIGURE 4	AIR SPARGE WELL LOCATIONS
FIGURE 5	AIR SPARGE WELL CONSTRUCTION DETAIL
FIGURE 6	AIR INJECTION PRESSURE OVER TIME (AS-1 & AS-3)
FIGURE 7	HYDROCARBON MASS REMOVAL RATES OVER TIME
FIGURE 8	TRANSIENT PRESSURE TRANSDUCER RESPONSE (SPARGE TEST AS-1)
FIGURE 9	TRANSIENT PRESSURE TRANSDUCER RESPONSE (SPARGE TEST AS-3)

TABLES

- TABLE 1Well Construction Details
- TABLE 2GROUNDWATER ANALYTICAL DATA SUMMARY
- TABLE 3GROUNDWATER ANALYTICAL DATA SUMMARY (SOIL BORINGS)
- TABLE 4SOIL ANALYTICAL DATA SUMMARY
- TABLE 5SOIL PHYSICAL PROPERTIES DATA SUMMARY
- TABLE 6Air Sparge Well Injection Pressure Over Time
- TABLE 7
 VAPOR ANALYTICAL & FIELD SCREENING DATA SUMMARY
- TABLE 8HVDPE Mass Removal Data Summary
- TABLE 9SOIL GAS FIELD SCREENING DATA SUMMARY
- TABLE 10Air Sparging System Data Summary

APPENDICES

APPENDIX AACPWA DRILLING PERMITAPPENDIX BAIR SPARGE WELL CONSTRUCTION LOGSAPPENDIX CLABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION

2500 Camino Diablo, Walnut Creek, CA 94597

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

February 28, 2011

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Air Sparging Pilot Test Report 245 8th Street Oakland, California 94607 AEI Project No. 116907

Dear Mr. Wickham:

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Mr. Victor Lum, owner and operator of Vic's Auto automotive repair and former fuel service station located at 245 8th Street in the City of Oakland, Alameda County, California (Figure 1). AEI has been retained by Mr. Lum to provide environmental engineering and consulting services relating to the release of gasoline fuel hydrocarbons from the former underground storage tank (UST) and fuel dispensing system on the subject property. The ongoing investigation and remediation of the release is being performed under the direction of Alameda County Environmental Health (ACEH) local oversight program.

On December 2, 2009, AEI and Mr. Lum met with ACEH staff to discuss the high vacuum dual phase extraction (HVDPE) remediation system status, results of the first rebound evaluation, and recommendations regarding future activities for the site. On February 9, 2009, AEI submitted a workplan to delineate the source zone and complete a performance evaluation and optimization of the HVDPE system. The workplan included a recommendation for an in situ air sparging pilot test contingent upon the results of the source zone investigation. The source zone delineation activities were completed in March 2010 and were reported in AEI's "Source Zone Delineation Report & Air Sparging Pilot Test Workplan", dated May 10, 2010. A significant residual hydrocarbon source was detected below the water table during the March 2010 investigation; therefore, AEI recommended implementing the air sparing pilot test. The pilot test was approved by ACEH in a letter dated May 24, 2010.

This report summarizes the field procedures and results of the air sparge well installation and pilot testing activities completed between July and November, 2010. As requested by ACEH, the nested soil gas probes were field screened more frequently for the first three hours of the initial sparge test and every 30 minutes thereafter.

AEI completed the following scope of work:

- Between June 30 and July 1, 2010, AEI installed four 2-inch diameter air sparge wells to a total depth of 30-feet below ground surface (bgs), screened from 28 to 30-feet bgs.
- On July 5, 2010, AEI developed the air sparge wells by surging and over-pumping with a submersible pump. At least three well volumes were removed.
- Between August and October, 2010, AEI setup a small, pilot-scale air sparging system and interlocked the controls with the existing HVDPE system.
- On September 7, 2010, AEI conducted an initial air injection pressure/flow rate test to determine the initial air injection pressure for comparison with the engineering estimates.
- On October 12, 2010, AEI re-developed the air sparge wells by surging and over-pumping with a submersible pump to remove accumulated fines from the well and sandpack and reduce the air injection backpressure. Six to nine well volumes were removed.
- In November 2010, AEI completed air injection pressure/flow rate tests and transient pressure transducer response test on AS-1 and AS-3 to evaluate the subsurface flow characteristics, performed off-gas sampling to monitor for increases in the mass removal rates and to estimate the saturated zone volatilization rates, and implemented rigorous soil gas sampling protocols to monitor for potential vapor migration into nearby residences.
- In December 2010, AEI monitored groundwater quality after approximately one month of continuous air sparging. Data from the fourth quarter, 2010 groundwater monitoring event was used for this evaluation.
- Between January and February 2011, AEI evaluated the field and analytical results in conjunction with the existing site conceptual site model, prepared data summary tables, graphs and figures, and prepared recommendations discussed at the end of this report regarding the use of air sparging technology at the site.

2.0 SITE DESCRIPTION AND HISTORY

The subject property (hereafter referred to as the "site" or "property") is located in a mixed commercial and residential area of Oakland. The site is a lot on the south corner of Alice Street and 8th Street, and is currently developed with a gasoline service station and automotive repair facility (Figure 2). The property covers approximately 9,375 square feet and is improved with an approximately 1,200 square foot building located centrally on the property with two bays used for automotive repair, two restrooms, and a cashier's office. The current UST hold, and the dispenser island, are located to the north of the building, along 8th Street. The former UST hold was located to the south of the building, along Alice Street. The remainder of the property is paved with asphalt and used for parking and staging vehicles for repairs.

• Between June 1993 and August 1994, AEI removed seven underground storage tanks (USTs) from the property. The tanks consisted of four 1,000-gallon gasoline tanks located

AEI Project No. 116907 February 28, 2011 Page 3 of 3

in the sidewalk along Alice Street, two 6,000-gallon gasoline tanks and one 250-gallon waste oil tank. Impacted soil was removed from beneath the former tank area. Groundwater was encountered beneath the former 6,000-gallon tanks. Light non-aqueous phase liquid (LNAPL) was observed on the water table beneath the southern tank. The excavated soil was transported to an appropriate disposal facility and the excavation was backfilled with clean fill material. A new tank system was installed just west of the dispenser island.

- In July 1995, two groundwater monitoring wells (MW-1 and MW-2) were installed onsite. Total petroleum hydrocarbons as gasoline (TPH-g) and benzene were detected in MW-2 at concentrations up to 210,000 μg/L and 720 μg/L, respectively during the first two monitoring episodes. Light non-aqueous phase liquid (LNAPL) or free phase gasoline was discovered in MW-1. The apparent LNAPL thickness in MW-1 ranged from 1.20 to 4.39 feet between December 1995 and March 1996.
- In August 1996, AEI advanced three soil borings (SB-1 through SB-3) onsite. TPH-g and benzene were detected in the groundwater samples from these borings at concentrations ranging from 120,000 to 140,000 µg/L, and from 12,000 to 19,000 µg/L, respectively. Methyl tertiary-butyl ether (MTBE) was also detected in all three samples at concentrations up to 27,000 µg/L. Although free phase product was not observed in the field, qualitative laboratory observations indicated an immiscible sheen was present in the samples.
- Manual bailing and pumping of LNAPL from MW-1 occurred intermittently from 1997 to 1998.
- In May 2001, two additional groundwater monitoring wells (MW-3 and MW-4) were installed onsite. In June of 2001, a free product recovery system was installed in MW-1. The free product recovery system removed several hundred gallons of LNAPL between 2001 and 2003.
- In April 2003, AEI advanced 12 additional soil borings (SB-4 to SB-15) onsite and offsite for the collection of soil, shallow groundwater, and soil vapor samples to further characterize the magnitude and lateral extent of the release.
- In January 2005, AEI installed six additional monitoring/extraction wells (MW-5, MW-6 and MW-7 were installed onsite and wells MW-10 to MW-12 were installed offsite at the 708 Alice Street property). Wells MW-8 and MW-9 were proposed for installation in the parking lane along 7th and Alice Streets; however, due to difficult insurance wording requirements imposed by the City of Oakland, these wells were not installed until March of 2008.
- From July 11 to July 27, 2005, a 16-day HVDPE pilot test was performed on wells MW-1, MW-2, MW-5, MW-6, and MW-7. Combined vapor influent flow rates ranged from approximately 170 to 190 standard cubic feet per minute (scfm) under a sustained vacuum of 16 to 17 inches of mercury (in-Hg). The average water flow rate was approximately 4.1 gallons per minute (gpm). A total of 80,740 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer under a short-term, limited-volume groundwater discharge permit from the East Bay Municipal Utilities District (EBMUD). Significant

AEI Project No. 116907 February 28, 2011 Page 4 of 4

drawdown and vacuum influence was observed at the vadose and saturated zone monitoring points. Approximately 5 pounds per day (lbs/day) of dissolved phase and 697 lbs/day of vapor phase hydrocarbons were recovered during the test. A total of 10,719 pounds or 1,716 gallons of gasoline was removed during this test. As a result, AEI recommended interim corrective action using HVDPE for 12 to 18 months using fixed equipment. Please refer to AEI's "HVDPE Event Report", dated December 14, 2005, for more information.

- In March 2006, the ACEH concurred with the implementation of HVDPE using fixed equipment and requested a system design, operations and maintenance, and monitoring plan. In this letter, the ACEH also requested soil vapor sampling to evaluate the potential for vapor intrusion due to the elevated concentrations of fuel hydrocarbons detected in the soil and groundwater onsite and offsite.
- In May 2006, a HVDPE system design, operations and maintenance, and monitoring plan and a separate soil gas investigation work plan were submitted to ACEH for review and comment. Please refer to AEI's "High Vacuum Dual Phase Extraction System Design, Operations, and Maintenance Plan," dated May 24, 2006 and "Soil Gas Investigation Work Plan", dated May 12, 2006, for more information.
- In November 2006, trenching and installation of the conveyance piping for HVDPE system was conducted. The system completion and delivery was scheduled for delivery during the first quarter, 2007; however, the system was not ready until in April 2007. The remaining infrastructure, such as the rotary phase converter, equipment, fence, and wellhead connections were installed in May of 2007 and the system was started up on June 26, 2007.
- On June 11, 2007, two 55-gallon drums, or approximately 100 gallons of water containing about 50% LNAPL, was removed from MW-1 and MW-6 by operating the HVDPE system in product skimming mode.
- In November 2007, additional HVDPE conveyance piping was installed above grade behind the onsite building to the rear of the property and the system was expanded to include monitoring/extraction wells MW-10, MW-11, and MW-12.
- In March 2008, wells (MW-8, MW-9 and MW-13) were installed. Elevated concentrations of TPH-g, BTEX, and MTBE were detected in samples collected from MW-9. Low to nonedetectable concentrations of TPH-g, BTEX, and MTBE were detected in MW-8 and MW-13. Elevated concentrations of MTBE were detected in MW-13.
- Between August 21 and 22, 2008, soil gas probes GP-3 and GP-4 were decommissioned by physical removal and three horizontal HVDPE conveyance piping laterals were installed to MW-10 through MW-12 so that these wells could continue to be used for dual phase extraction while the 708 Alice Street property was being developed.
- In July 2009, monitoring wells (MW-14, MW-15, and MW-16) were installed. MW-14 was
 installed in the parking lane along Alice Street approximately 80 feet southwest of MW-8.
 MW-15 and MW-16 were installed in the parking lane on the southwest side of 7th Street

AEI Project No. 116907 February 28, 2011 Page 5 of 5

> approximately 60 feet apart. The monitoring wells were developed by surging and overpumping on August 3, 2009. Elevated concentrations of TPH-g and BTEX were detected in samples collected from MW-14. MTBE was not detected in MW-14 at or above the laboratory reporting limit of 1.0 μ g/L. Lower concentrations of TPH-g, BTEX, and MTBE were detected in MW-15 and MW-16. Refer to AEI's "Monitoring Well Installation & Quarterly Site Monitoring Report (Third Quarter, 2009)", dated October 13, 2009, for more detailed information.

- On December 2, 2009, the property owner and AEI held a meeting with the ACEH to discuss the HVDPE remediation system status, results of the first rebound evaluation, and recommendations regarding future activities for the site.
- On March 17, 2010, AEI performed a source zone investigation by advancing four continuously cored soil borings (SB-16 to SB-19) to 30-feet bgs. Soil samples were collected from select depths and one discrete groundwater sample (SB-18W) was collected from boring SB-18 at 28 to 30 feet bgs. Based on the results of the analyses, a significant residual hydrocarbon source was identified below the water table. Relatively low concentrations of TPH-g and benzene were detected in discrete grab groundwater sample SB-18W. Further detail relating to the additional soil source investigation can be found in AEI's "Source Zone Delineation Report & Air Sparging Pilot Test Workplan", dated May 10, 2010.

3.0 GEOLOGY AND HYDROLOGY

The elevation of the site is approximately 27 to 29 feet above mean sea level (amsl). The site is flat; however, the topography of the area slopes gently to the southwest. The site is located between Lake Merritt and the Oakland Inner Harbor channel, approximately one-half mile from each. The near surface sediments are mapped as Holocene and Pleistocene Merritt Sand (Qms), which are further described as "fine-grained, well-sorted, well-drained, Aeolian sand deposits" (Helley and Graymer, 1997 and Graymer, 2000). Depth to the Franciscan Formation basement underlying the unconsolidated deposits is approximately 400 feet (Norfleet Consultants, 1998).

Based on the logs of soil borings advanced on and offsite, the native soils generally consist of fine to medium grained sands with silt and clay present to at least 28 feet bgs, the deepest explored at the site. Typically, silty and clayey fine grained sand have been encountered to depths of 15 to 18 feet bgs. This is underlain by poorly graded, clean to slightly clayey and silty fine to medium sand. Both sand bodies represent a single hydro-geologic system. Sediments have been relatively uniform throughout the investigation area.

Groundwater depths have typically ranged from 13 to 17-feet bgs, corresponding to elevation of approximately 10 to 14-feet above mean sea level (msl). Annual groundwater levels fluctuate by approximately 3 to 4-feet. Groundwater has consistently flowed to the south, southeast, or southwest with a hydraulic gradient of approximately 0.010 ft/ft. Recent water levels have been affected by the groundwater extraction activities.

4.0 AIR SPARGE WELL INSTALLATION

Between June 30 and July 1, 2010, AEI four air sparge wells in the source zone. The wells were installed by PeneCore Drilling of Woodland, California (C-57 License #906899) using a track-mounted Geoprobe® 6610DT direct-push combo-rig with hollow stem auger capability. An AEI project geologist working under the direct supervision of an AEI licensed geologist provided oversight for the drilling and well installation activities. Soil sampling and analyses was not performed, because the source zone was adequately characterized during previous investigations.

4.1 Air Sparge Well Construction

The air sparge wells were installed approximately 15 to 20-feet apart as shown on Figure 4. As stated in the Workplan, the selected well spacing was based on a combination of AEI's experience at other sites with sandy, relatively homogenous target treatment zones and the "Standard Design Approach" discussed in the "Air Sparging Design Paradigm" (Leeson, et al., 2002). The sparge points were placed approximately 8-feet below the deepest soil contamination with the top of the screen at approximately 28-feet bgs. The total sparge well depth was approximately 30feet bgs. The wells were installed using 8-inch nominal diameter hollow stem augers. The wells were constructed using 2-inch diameter (Schedule 80) flush-threaded polyvinyl chloride (PVC) well casing and stainless steel sparge points. The sparge points were constructed out of 2-foot long sections of 0.010 slotted stainless steel well screen with a flush threaded top connection and welded bottom plate. The annular space was filled with #2/16 Monterey Sand to approximately 1-foot above the top of the well screen. At least 2-feet of hydrated bentonite chips were installed above the filter pack. The remainder of the borehole was sealed to approximately 0.5-feet bgs with Type II through IV Portland cement grout. The tops of the well casings were secured with expanding well plugs and the wellheads were completed flush to grade with 12-inch diameter traffic-rated well boxes. The air sparge well construction details are shown on Figure 5.

4.2 Air Sparge Well Development and Re-Development

On July 5, 2010, the newly installed air sparge wells were developed by surging and overpumping with a submersible pump to remove accumulated fines from the casing and stabilize the sand pack. The wells were developed until at least three well volumes of water were removed, or until the discharge water ran clear, and measurements of pH, conductivity, and temperature stabilized.

On September 7, 2010, AEI conducted an initial air injection pressure / flow rate test to determine the air injection backpressure. Because the observed backpressure exceeded the engineering estimates by 5 to 10 pounds per square inch (psi), AEI decided to re-develop all of the sparge wells prior to the pilot test.

On October 12, 2010, the air sparge wells were re-developed by surging and over-pumping to reduce the air injection backpressure. The wells were developed until six to nine well volumes of water were removed and measurements of pH, conductivity, and temperature stabilized.

5.0 AIR SPARGING PILOT TEST OVERVIEW

The air sparging pilot test was conducted from November 8 to 12, 2010. Air sparging was implemented because the site conditions were favorable (i.e., sandy, relatively homogenous aquifer), a significant residual hydrocarbon source was detected below the water table, and the

AEI Project No. 116907 February 28, 2011 Page 7 of 7

HVDPE system mass removal rates have declined considerably while the cost per pound or gallon of hydrocarbon removed and treated has increased significantly. The air sparging pilot test was conducted according to the standard methods and procedures outlined in Chapter 5 of the "Air Sparging Design Paradigm" (Leeson, et al. 2002). The following sections describe the specific elements of the test in more detail.

5.1 Pilot Test System Installation

The air sparging pilot test system was constructed, installed, and tested between August and October, 2010. The major system components are listed below:

- A refurbished Becker Pumps (Model 4.25DT) oil-less rotary vane compressor equipped with a pressure relief valve, a 10 micron inlet filter, vibration isolators, and variable frequency drive for controlling the pressure speed and flow rate. The compressor was capable of variable flow rates up to 18 cfm and a maximum pressure of 15 psig.
- One-inch diameter steel air distribution manifold equipped with Dwyer Instruments rotameters (0 to 20 cfm), control valves for each sparge well, a manifold pressure gauge (0 to 30 psig), and a vent valve with a filter silencer.
- One-inch diameter clear PVC air injection hose installed above grade and protected by recycled rubber bump strips.
- Air sparge wells (AS-1 to AS-4) with pressure gauges (0 to 30 psig) installed at each wellhead.

5.2 Injection Pressure / Flow Rate Test

Air injection pressure / flow rate tests were completed on AS-1 and AS-3. The sparge wells were tested individually and flow rate was held constant at 2 cubic feet per minute (cfm) for the duration of each test. The soil type in the target treatment zone is fine-grained sand with silt (SP-SM). Prior to the pilot test, the air sparging system operating pressures were estimated and used to size the pilot test equipment (compressor, air injection lines, pressure relief valve, etc.). The theoretical minimum injection pressure was the sum of hydrostatic pressure and the air entry pressures of the sand pack and formation. Based on soil type, the combined air entry pressure of the sand pack and formation was estimated at 1 to 2 pounds per square inch – gauge pressure (psig). The fracture pressure of the formation, which is the weight of the soil column plus the weight of water above the sparge point, was estimated at 20 psig. The estimated fracture pressure was not exceeded during the pilot test. A vent valve was slowly closed to increase the pressure to initiate flow and to maintain the desired system operating pressure and flow rate. The initial breakthrough pressure was recorded and the flow rate and pressure were recorded every 5 to 10 minutes until reaching stabilization. The injection pressure at both sparge wells stabilized in 1 to 2 hours after initiating sparging. The injection pressure/flow rate tests were completed in about 3 to 4 hours per test.

5.3 Off-Gas Sampling

Off-gas sampling was used to determine the volatilization rates from the saturated zone as the primary measure of air sparging performance. Off-gas samples were collected from MW-1, 2, 5, 6, and 7 and the combined influent (Sample ID "INF") for field screening and laboratory analysis

AEI Project No. 116907 February 28, 2011 Page 8 of 8

after the air injection pressure stabilized near the end of the injection pressure/flow rate test. Off-gas samples were collected into 1-liter tedlar bags using the diaphragm pressure/vacuum pump. The samples were field-screened for total volatile hydrocarbons (TVH), methane, oxygen, and carbon dioxide using the RKI Eagle multi-gas detector, then submitted for laboratory analyses. The samples were labeled with unique identifiers, entered onto the chain of custody record, and stored in a cardboard box out of direct sunlight pending transportation to the laboratory. The samples were transported under proper chain of custody protocol and within hold time to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification #1644) for analyses. The samples were analyzed for THP-g by EPA Method 8015C and BTEX and MTBE by EPA Method 8021B.

5.4 Transient Pressure Transducer Response

During the air injection/flow rate tests, transient pressure response tests were performed (Leeson, et al., 2002 – Appendix E). Pressure transducers were used to log the groundwater pressure response at three inactive sparge wells during the air injection pressure/flow rate tests on AS-1 and AS-3. For example, while sparging into AS-1, transducers were deployed in AS-2, 3, and 4 and while sparging into AS-3, transducers were deployed into AS-1, 2, and 4. Prior to deployment, the site name and address, project number, altitude, logging interval, and an automatic future start time were programmed into the transducers. In order to record the baseline groundwater pressure, the transducers were deployed and started at least 30 minutes prior to initiating sparging. Then, after completing each test, the transducers were left in the well to log the groundwater pressure changes after shutdown. On the following day, the pressure transducers were retrieved and the data was downloaded and reviewed prior to the next test.

5.5 Monitoring & Controls for Vapor Migration

While measurable LNAPL and a significant mass of volatile hydrocarbons (more than 30,000 pounds or 5,000 gallons total) have been removed during the test, a significant residual hydrocarbon source remains in the target treatment zone. Because air sparging presented a potential risk for vapor intrusion into nearby occupied buildings, rigorous monitoring procedures and engineering controls were employed to immediately identify, continuously monitor, and control potential vapor migration. Near continuous monitoring of vapor concentrations at the vapor probes (GP-1 and GP-2) was used to provide early warning of potential adverse vapor migration.

5.5.1 Soil Gas Monitoring

The soil gas pressure and total volatile organic compounds (TVOCs) were measured at regular intervals in the vadose zone. Soil gas samples were collected from GP-1 and GP-2 at 5 and 10-feet bgs for field screening every 20 minutes for the first 3 hours and every 30 minutes thereafter until the end of the test. The soil gas samples were collected into 1-liter tedlar bags using a peristaltic pump and immediately screened using a photo-ionization detector (PID). The PID was equipped with a 10.6 electron volt (eV) lamp.

Typical monitoring scenarios and standard response actions observed during the test are summarized below:

- If positive pressure and elevated concentration of TVOCs were detected at 10-feet bgs, but not at 5-feet bgs, the sparge air flow rate, soil gas pressure, and vapor concentrations were monitored closely.
- If positive pressure was detected at 5 and 10-feet bgs and elevated concentrations of TVOCs were detected at 10-feet bgs, but not at 5-feet bgs, the sparge air flow rate was lowered for a period of time (2 to 4 hours), or until the concentrations of TVOCs at 10-feet bgs were stable or decreasing, and sparge air flow rate, soil gas pressure, and vapor concentrations were monitored closely.
- If positive pressure and elevated concentrations of TVOCs were detected at both 5 and 10feet bgs, the air sparging system was shutdown immediately and the soil gas pressure and vapor concentrations were monitored closely until the HVDPE system reduced the vapor concentrations to baseline levels.

5.5.2 Engineering Controls

The following engineering controls were employed during the test:

- The primary engineering control was continuous operation of the HVDPE system during the air sparging pilot test. The HVDPE system was operated for several days to several weeks to establish a vapor capture zone prior to the sparge test. The following onsite dual phase extraction wells were operated during the test: MW-1, 2, 5, 6, and 7.
- The second engineering control was to keep sparge air flow rates at a fraction (one-quarter to one-half) of dual phase extraction well flow rates. At the start of the test, when the highest emission rates are expected to occur, only one air sparge well was operated at time. The sparge air was introduced at a very low flow rate (approximately 2 cfm per well) as compared to the HVDPE system flow rate (15 to 20 cfm per well).
- The third and final engineering control was interlocking the logic relay controller for the air sparging system compressor with the HVDPE system. If HVDPE system shutdowns due to an alarm, such as low air flow or liquid ring pump failure, then the air sparging system compressor will also automatically shutdown.

6.0 PILOT TEST RESULTS

6.1 Injection Pressure / Flow Rate

The flow rate was held constant at 2 cfm and the injection pressure was measured at 5-minute intervals for over 120 minutes. The injection pressure was measured at the wellheads. The breakthrough pressure at AS-1 was 13 psig and the pressure stabilized at 5 psig within 60 minutes of initiating sparging. The breakthrough pressure at AS-3 was 14 psig and the pressure stabilized at 6.5 psig within 60 minutes initiating sparging. As expected, the behavior of AS-1 and AS-3 were nearly identical. The air injection pressure over time is summarized in Table 6 and plotted on Figure 6.

6.2 Off-Gas Sampling and Mass Removal Rates

After sparging into AS-1 for approximately 120 minutes, off-gas samples were collected from MW-1, 2, 5, 6, and 7 for field screening and laboratory analyses. The field screening and analytical results are summarized in the following table.

Monitoring Well ID	TVH (ppmv)	TPH-g (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Total Xylenes (ppmv)						
Baseline Sampling Results: AS-1 (11/08/10)												
MW-1	50	65	0.42	2.6	0.24	1.6						
MW-2	420	970	22	51	4.5	39						
MW-5	120	300	1.5	8.2	0.65	20						
MW-6	200	430	2.1	10	2.5	14						
MW-7	1,150	2,100	19	29	1.6	29						
INF	150	350	4.1	11	1.0	11						
	Po	ost-Sparge Test	Results: AS-	1 (11/08/10)								
MW-1	1,200	730	6.6	8.1	0.45	3.0						
MW-2	450	1,000	24	54	5.0	42						
MW-5	100	310	1.7	9.1	0.74	21						
MW-6	230	490	2.3	11	2.6	16						
MW-7	1,150	2,000	17	28	1.4	29						
INF	900	830	7.7	14	1.1	12						

Exhibit 6.2.1: Off-Gas Sampling Data (AS-1 Test)

TVH = total volatile hydrocarbons ppmv = parts per million by volume INF = combined influent sample

AEI Project No. 116907 February 28, 2011 Page 11 of 11

After sparging into AS-3 for 120 minutes, off-gas samples were collected from MW-1, 2, 5, 6, and 7 for field screening and laboratory analyses. The results are summarized in the following table.

Monitoring Well ID	TVH (ppmv)	TPH-g (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Total Xylenes (ppmv)						
Baseline Sampling Results: AS-3 (11/09/10)												
MW-1	30	91	0.95	2.6	0.22	1.9						
MW-2	500	990	22	51	5.0	40						
MW-5	110	300	1.4	7.8	0.84	19						
MW-6	230	500	2.4	12	2.8	17						
MW-7	1,500	2,100	21	32	1.5	30						
INF	250	330	4.0	9.8	0.82	10						
	Po	ost-Sparge Test	Results: AS	-3 (11/09/10)								
MW-1	1,650	360	2.3	3.4	0.21	2.0						
MW-2	600	1,000	24	57	5.5	45						
MW-5	110	340	1.9	9.2	1.0	24						
MW-6	1,450	710	2.7	12	2.4	15						
MW-7	>11,000	4,700	46	44	2.0	34						
INF	2,900	700	6.2	11	0.94	11						

Exhibit 6.2.2: Off-Gas Sampling Data (AS-3 Test)

TVH = total volatile hydrocarbons ppmv = parts per million by volume INF = combined influent sample

Mass removal rates were estimated before and after sparging using the combined TPH-g influent concentrations and the total well flow rate. The mass removal rates before, and 120 minutes after sparging into AS-1 and AS-3, are summarized below:

- After sparging into AS-1, the mass removal rate increased from approximately 7 pounds per day (lbs/day) to 16 lbs/day. Based on this data, the volatilization rate from the saturated zone while sparging into AS-1 was approximately 9 lbs/day.
- After sparging into AS-3, the mass removal rate increased from approximately 7 lbs/day to 14 lbs/day. Based on this data, the volatilization rate from the saturated zone while sparging into AS-3 was approximately 7 lbs/day.
- Overall, air sparging essentially doubled the HVPDE system mass removal rates during the pilot test.

The hydrocarbon mass removal rates are presented in Table 7.

6.3 Transient Pressure Transducer Response

Graphs of the pressure transducer response at the inactive sparge wells used for monitoring groundwater pressure changes were created for each active air sparge well. The behaviors of the pressure response graphs were all nearly identical for both AS-1 and AS-3. This was expected

AEI Project No. 116907 February 28, 2011 Page 12 of 12

since the target treatment zone is sandy and relatively uniform. In addition, the highest pressure response was measured at the monitoring points closest to the active sparge well. Accordingly, the lowest pressure response was measured at the monitoring point furthest from the active sparge well.

The first area of the graph (before time = 0) shows the baseline pressure response prior to initiating sparging. The next area of the graph shows the pressure buildup as air was being injected into the saturated zone. The peak of the first hump indicates the maximum pressure response and point at which breakthrough occurred at the sparge well. This is also an indicator of the relative soil permeability but also depends on the air injection flow rate. In other words, lower, shorter-duration pressure responses on the order of inches are typically observed in higher permeability soils, such as gravels and sands, and higher, longer-duration pressure responses on the order of feet are observed in lower permeability soils, such as clays and silts. The next area of the graph shows the pressure response declining back towards the baseline pressure which is the point at which the air distribution in the subsurface reached near steady state conditions. The last area of the graph shows the time for the pressure response to return to near baseline conditions and can be used to evaluate the significance of trapped air, presence of confining layers, and potential for lateral spreading of LNAPL and/or dissolve-phase contaminants and adverse vapor migration.

Overall, the pressure responses measured at the monitoring wells demonstrated that air was not being trapped in the subsurface. In addition, the data indicated that lateral spreading of contaminants and adverse vapor migration was not very likely to occur. The transient pressure response graphs during air sparing startup and shutdown are included in Figures 8 and 9.

6.4 Soil Gas Monitoring

The nested soil gas probes (GP-1 and GP-2) at 5-feet and 10-feet bgs were monitored every 20 minutes for the duration of the test. No discernable soil gas pressure changes were observed during the test. The PID field-screening results are summarized below and all of the data is shown in Table 9.

On November 8, 2010, the background PID reading on a sample of ambient air was 0.2 ppmv and ambient air pumped into new 1-liter tedlar bags using new tubing was 0.5 ppmv.

- The baseline PID reading from GP-1 at 5-feet bgs was 0.6 ppmv and the other readings ranged from 0.4 ppmv to 0.6 ppmv.
- The baseline PID reading from GP-1 at 10-feet bgs was 0.6 ppmv and the other readings were 0.6 ppmv.
- The baseline PID reading from GP-2 at 5-feet bgs was 0.7 ppmv and the other readings ranged from 0.6 ppmv to 1.1 ppmv.
- The baseline PID reading from GP-2 at 10-feet bgs was 0.9 ppmv and the other readings ranged from 1.2 ppmv to 3.7 ppmv.

AEI Project No. 116907 February 28, 2011 Page 13 of 13

On November 9, 2010, the background PID reading on a sample of ambient air was 1.1 ppmv and ambient air pumped into new 1-liter tedlar bags using new tubing ranged from 1.0 ppmv to 1.3 ppmv.

- The baseline PID reading from GP-1 at 5-feet bgs was 1.5 ppmv and the other readings ranged from 0.7 ppmv to 0.9 ppmv.
- The baseline PID reading from GP-1 at 10-feet bgs was 1.7 ppmv and the other readings ranged from 0.8 ppmv to 1.0 ppmv.
- The baseline PID reading from GP-2 at 5-feet bgs was 2.1 ppmv and the other readings ranged from 0.6 ppmv to 1.2 ppmv.
- The baseline PID reading from GP-2 at 10-feet bgs was 5.5 ppmv and the other readings ranged from 2.7 to 5.6 ppmv.

7.0 SUMMARY & RECOMMENDATIONS

AEI installed four air sparge wells (AS-1 to AS-4), refurbished and constructed a pilot-scale air sparging system, and performed an air sparging pilot test between June and November, 2010. Air sparging was successful at increasing the off-gas vapor concentrations and overall hydrocarbon removal from the source zone. Based on the review of the data, AEI has the following recommendations:

- Continue cycled operation of the pilot-scale air sparging system in conjunction with the HVDPE system. The air sparging system will be operated on two sparge wells (e.g., AS-1 and AS-3) at a time, then manually switched over to the other two sparge wells (e.g., AS-2 and AS-4) every two weeks. Research and practical experience indicates that cycling over a period of weeks can reduce the potential for rebound to occur after the end of active operation.
- Continue optimizing the HVDPE system on a monthly basis and switch from catalytic oxidization to activated carbon for off-gas treatment, once the combined influent vapor concentration stabilize at 500 to 1000 ppmv. This will significantly reduce the long term operating costs.
- Continue quarterly monitoring of selected key wells (i.e., MW-1, 2, 5, 6, 7, and 9) and semiannual to annual monitoring for all other onsite and offsite wells.
- Schedule meeting with ACEH to review the site remediation progress and develop a low-risk closure strategy.

AEI Project No. 116907 February 28, 2011 Page 14 of 14

8.0 **REFERENCES**

Ahlfeld, D.P., A. Dahmani, and W. Ji, 1994. "A Conceptual Model of Field Behavior of Air Sparging and Its Implications for Application". *Groundwater Monitoring and Remediation 14*, No. 4: 132 – 139.

Davis, R., 2005. "Making Sense of Subsurface Vapor Attenuation in Petroleum Hydrocarbon Sources". *LUSTLine Bulletin 49.* March 2005.

Davis, R., 2006. "Vapor Attenuation in the Subsurface from Petroleum Hydrocarbon Sources: An Update and Discussion on the Ramifications of the Vapor-Intrusion Risk Pathway". *LUST Line Bulletin 52.* May 2006.

Fields, K., J. Gibbs, W. Condit, A. Leeson, and G. Wickramanayake, 2002. "Air Sparging: A Project Manager's Guide". Battelle Press, Columbus, OH.

Graymer, R.W., 2000. "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California". U.S. Geologic Survey Miscellaneous Field Studies MF2342, Online Version 1.0., includes 1 geologic map and 33 page pamphlet.

Helley, E.J. and R.W. Graymer, 1997. "Quaternary Geology of Alameda County, and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California: A Digital Database". U.S. Geological Survey, Open-File Report 97-97, includes 1 geologic map, 1 map explanation sheet, and 9 page discussion booklet.

Hinchee, R.E., 1994. "Air Sparging for Site Remediation". CRC Press, Boca Raton, FL.

Ji, W., A. Dahmani, D. Ahlfeld, J.D. Lin, and E. Hill, 1993. "Laboratory Study of Air Sparging: Air Flow Visualization". *Groundwater Monitoring and Remediation 13*, No. 4: 115 – 126.

Johnson, P.C., C.C. Stanley, M.W. Kemblowski, D.L. Byers, and J.D. Colthart, 1990. "A Practical Approach to the Design, Operation, and Monitoring of In Situ Soil-Venting Systems". *Groundwater Monitoring and Remediation 10*, No. 2: 159 – 177.

Johnson, R.L., P.C. Johnson, D.B McWhorter, R.E. Hinchee, and I. Goodman, 1993. "An Overview of In-Situ Air Sparging". *Groundwater Monitoring and Remediation 13*, No. 4: 127 – 135.

Leeson, A., P.C. Johnson, R.L. Johnson, C.M. Vogel, R.E. Hinchee, M. Marley, T. Peargin, C.L. Bruce, I.L. Amerson, C.T. Coonfare, R.D. Gillespie, and D.B. McWhorter, 2002. "Air Sparging Design Paradigm". Prepared by Battelle, Columbus, OH.

Norfleet Consultants, 1998. "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, California". Prepared for the Friends of the San Francisco Estuary, P.O. Box 791, Oakland, California, and dated June 15, 1998.

AEI Project No. 116907 February 28, 2011 Page 15 of 15

Suthersan, S.S., 1997. "Remediation Engineering Design Concepts". Chapter 3: Soil Vapor Extraction. CRC Press. Boca Raton, FL.

United States Army Corps of Engineers (USACE), 1999. "Multi-Phase Extraction Engineer Manual: EM 1110-1-4010". Washington, DC.

United States Army Corps of Engineers (USACE), 2002. "Soil Vapor Extraction & Bioventing. Engineer Manual: EM 1110-1-4001". Washington, DC.

United States Army Corps of Engineers (USACE), 1997. "In-Situ Air Sparging. Engineer Manual: EM 1110-1-4005". Washington, D.C.

United States Army Corps of Engineers (USACE), 2008. "In-Situ Air Sparging. Engineer Manual: EM 1110-1-4005". Washington, D.C.

United States Environmental Protection Agency (USEPA), 1994. "How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers". Chapter 7: Air Sparging. EPA/540-R-04-002.

AEI Project No. 116907 February 28, 2011 Page 16 of 16

9.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses and observations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work and were performed under the direction of appropriate California-licensed professionals. Should you have any questions regarding this report, we can be reached at (925) 746-6000.

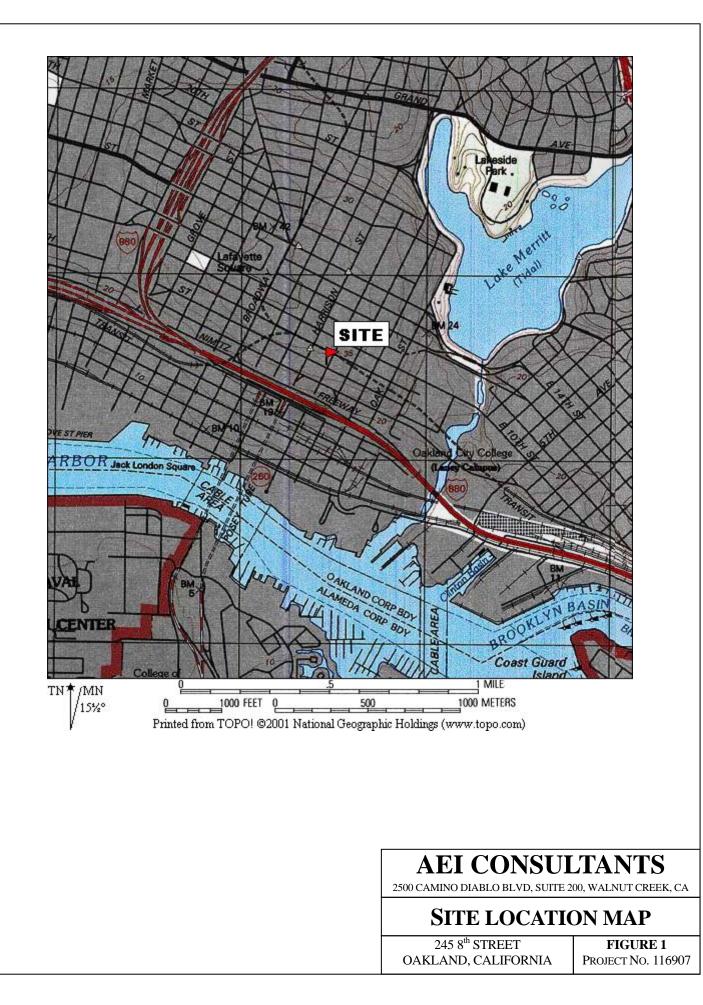
MCINTYRE

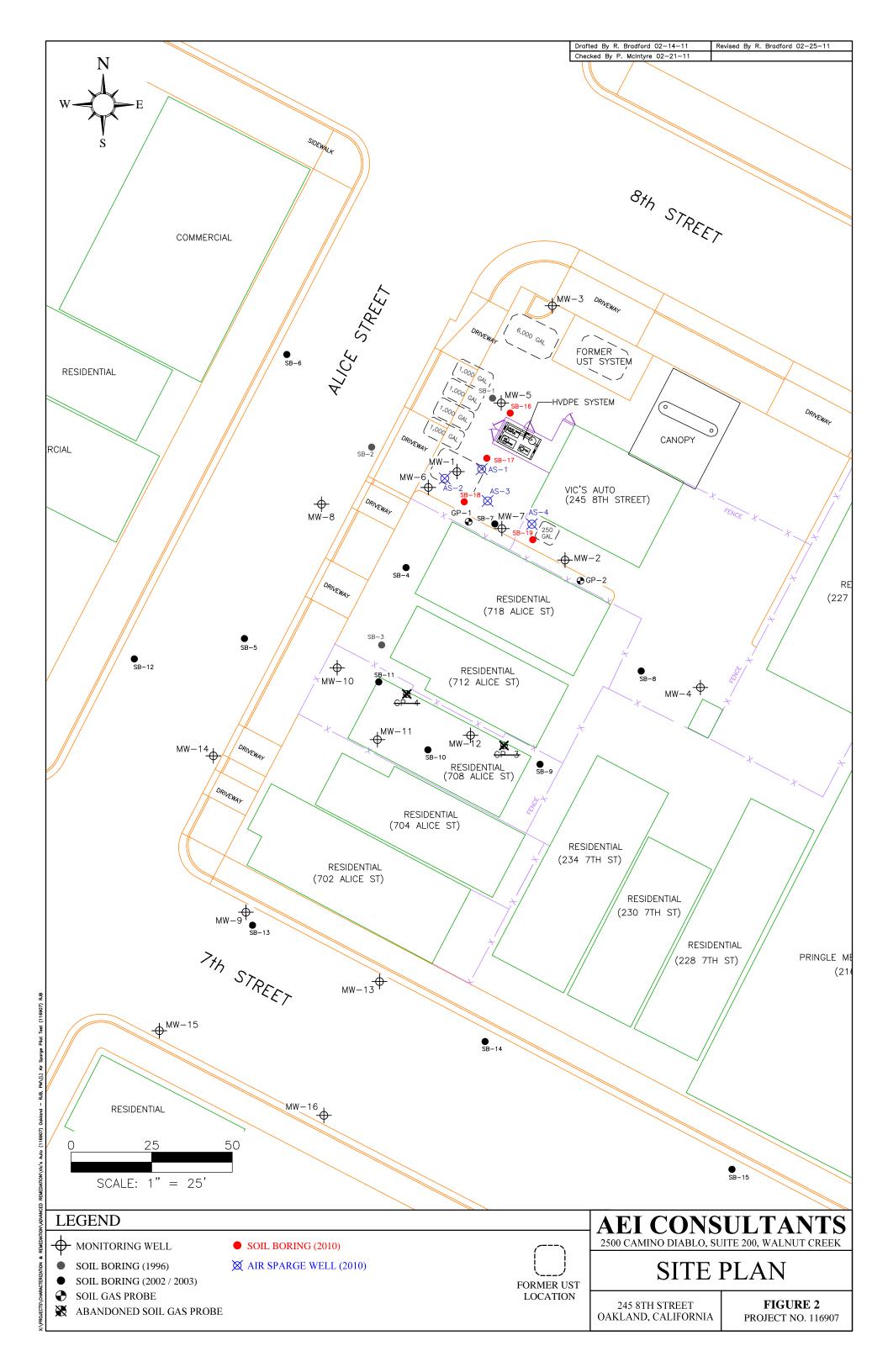
Sincerely, AEI Consultants

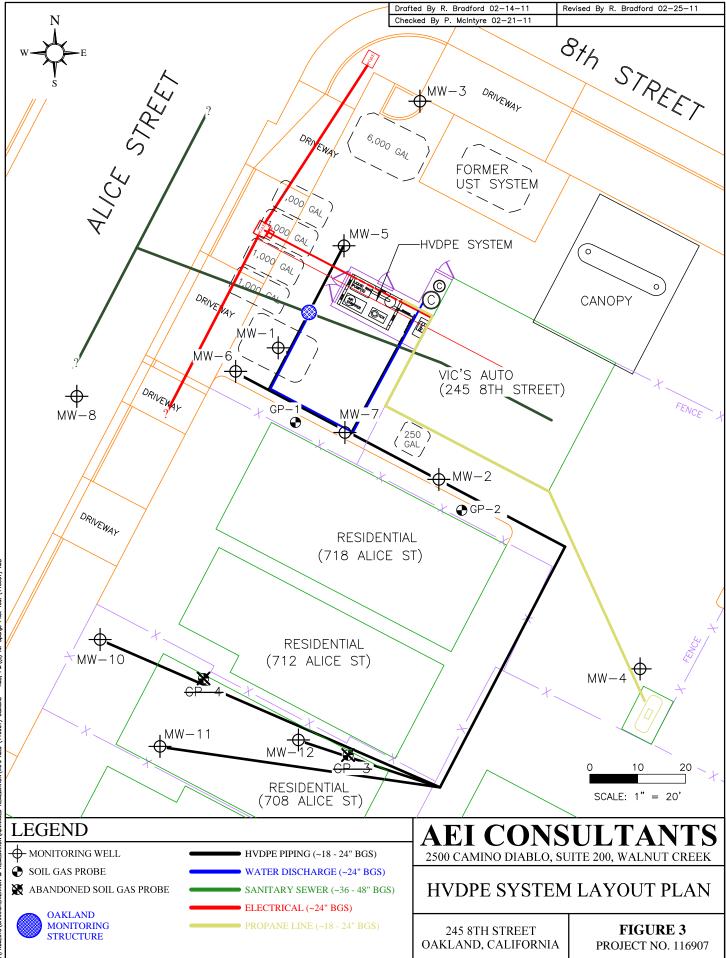
Ricky Bradford Project Engineer ERED Peter McIntvre, PG

Stephen Lao Project Manager

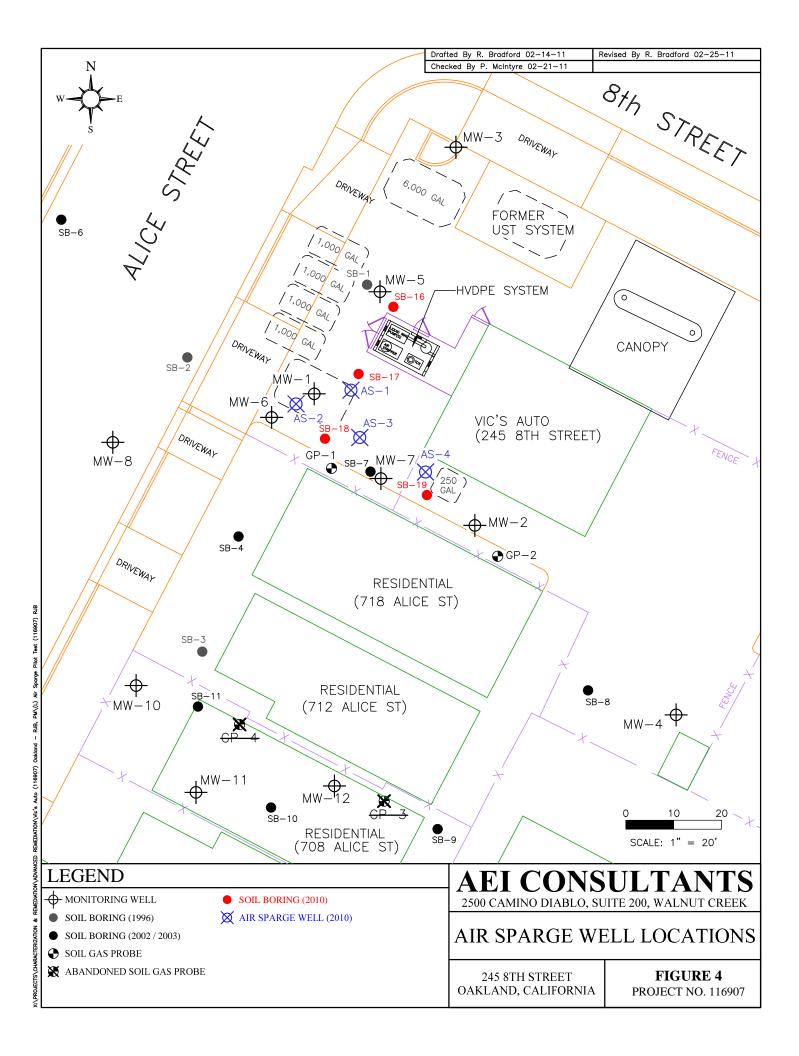
Peter McIntyre, PG Senior Project Manager

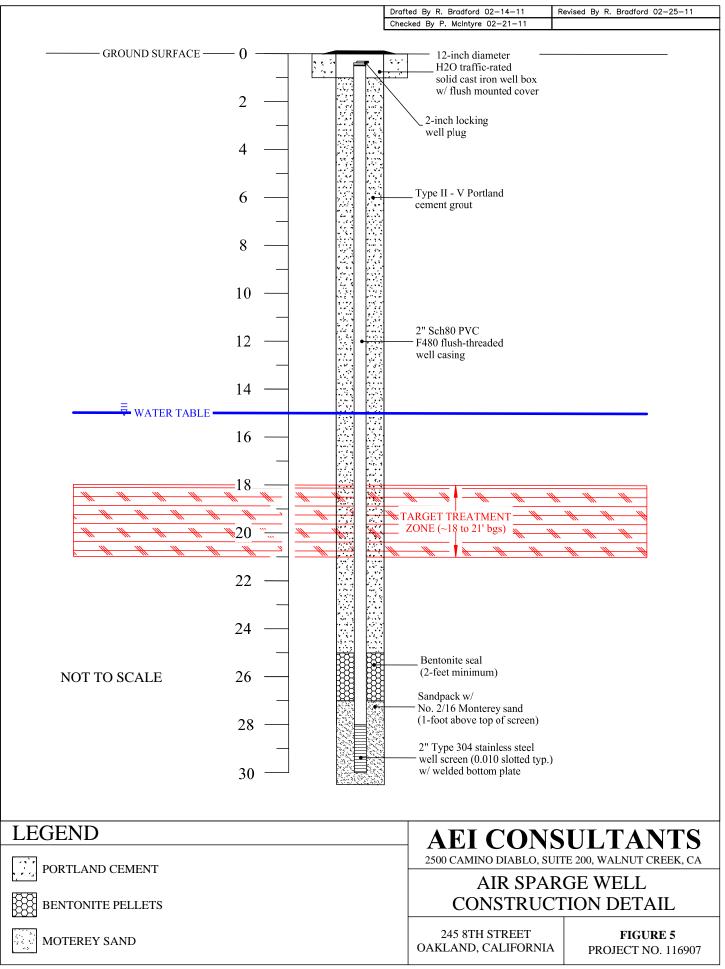

Distribution List:

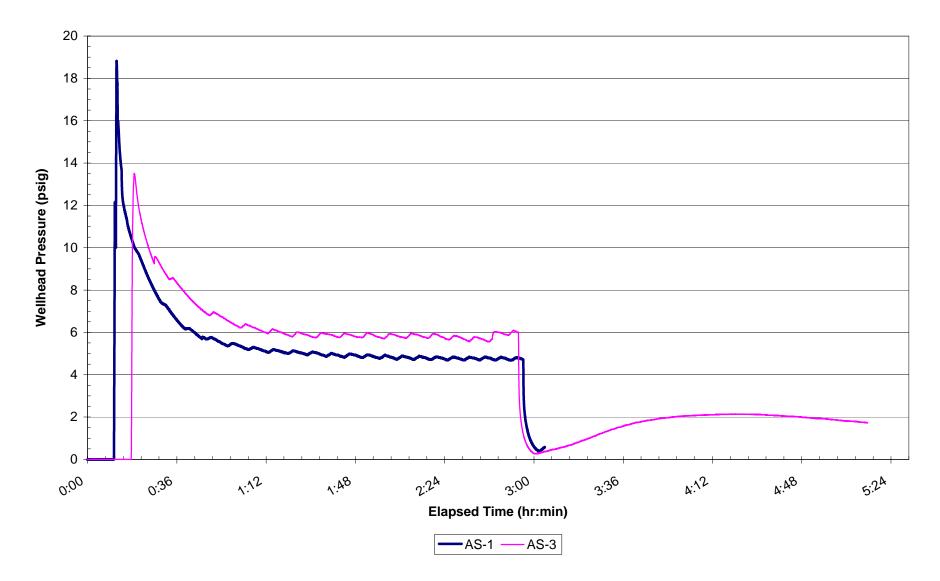

Mr. Victor Lum Vic's Automotive 245 8th Street Oakland, California 94607

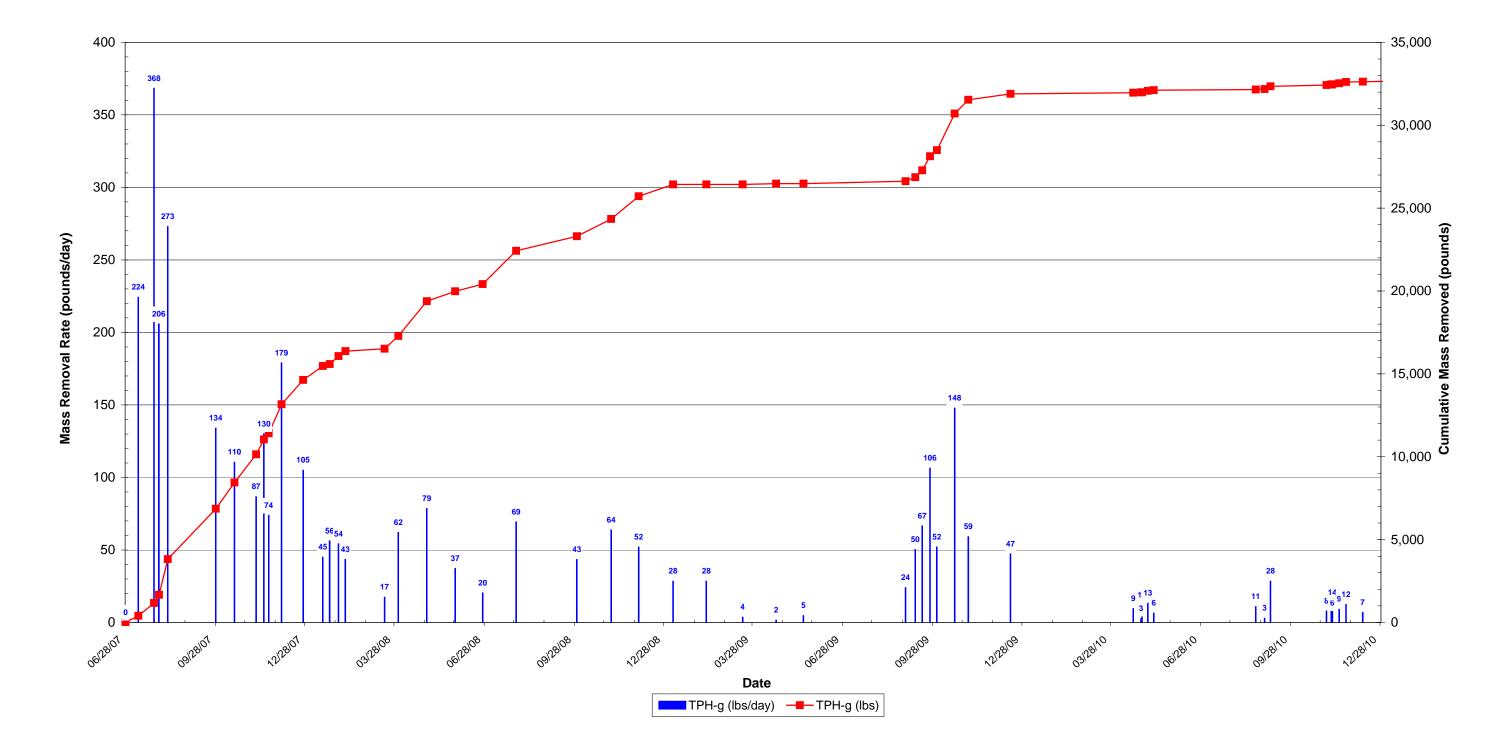

Mr. Jerry Wickham (electronic-ftp) Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

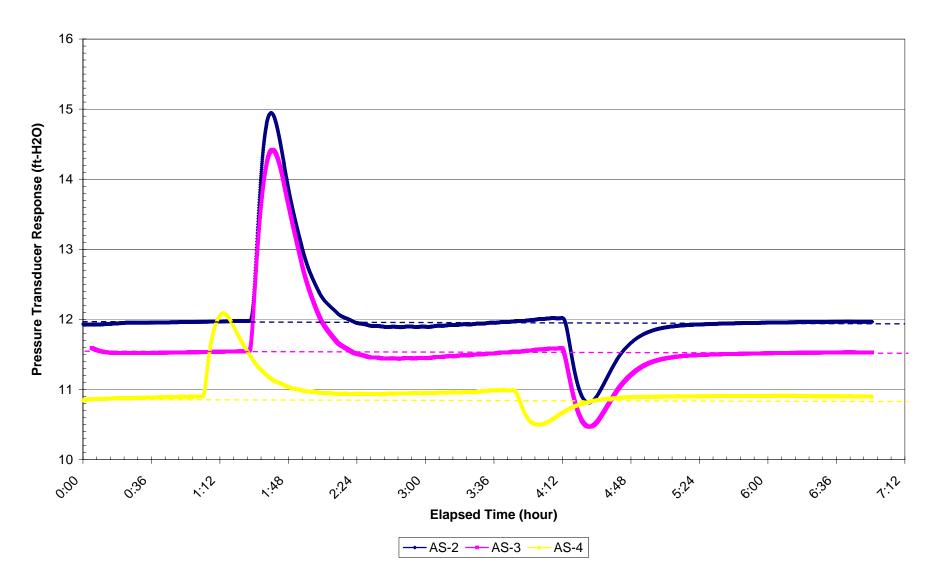
GeoTracker (electronic)


FIGURES






X:/PROJECTS/CHARACTERIZATION & REMEDIATION/ADVACED REMEDIATION/NG'S AUTO (116907) Octored - RJB, PM/(L) AIr Sporge Fliot Test (116907) RJB


FIGURE 6: AIR INJECTION PRESSURE OVER TIME (AS-1 & AS-3)

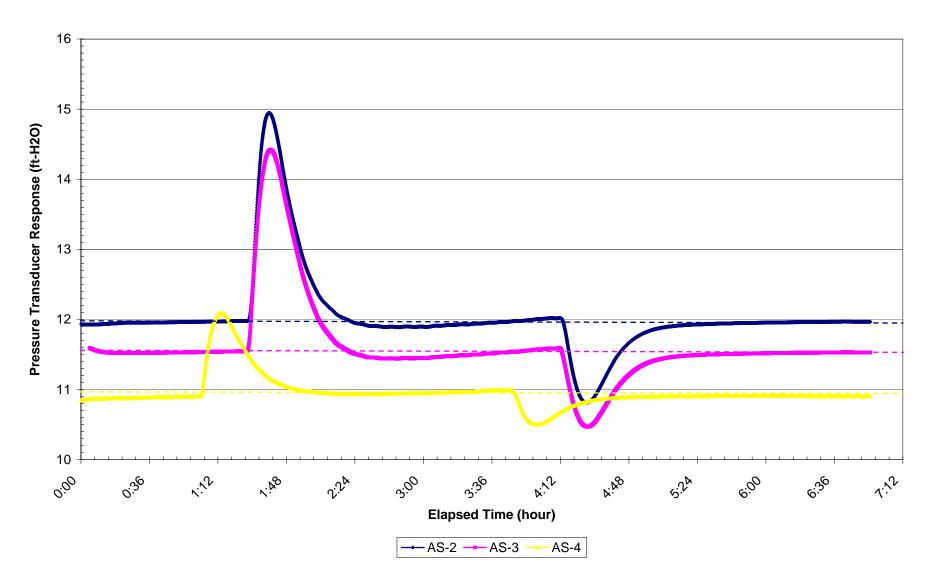


FIGURE 7: HYDROCARBON MASS REMOVAL RATES OVER TIME

FIGURE 8: TRANSIENT PRESSURE TRANSDUCER RESPONSE (SPARGE TEST AS-1)

FIGURE 9: GROUNDWATER PRESSURE OVER TIME (SPARGE TEST AS-3)

TABLES

TABLE 1: WELL CONSTRUCTION DETAILS

Vic's Auto, 245 8th Street, Oakland, California

Well ID	Installation Date	Nominal Diameter (inch)	Total Depth (ft bgs)	Screen Interval (ft bgs)	Sand Pack Interval (ft bgs)	Sand Pack Size	Screen Slot Size (inch)	Bentonite Seal Interval (ft bgs)	Cement Grout Interval (feet bgs)	Casing Material	Design / Use
M31 1*	07/14/05	4	29	0.00	()9	#2	0.010	5 (055		Manitarina / DDE Wall
MW-1* MW-2*	07/14/95	4 2	28 28	8 - 28 8 - 28	6 - 28 6 - 28	#3 #3	0.010 0.010	5 - 6 5 - 6	0.5 - 5 0.5 - 5	SCH40 PVC	Monitoring / DPE Well
MW-2* MW-3	07/14/95 05/25/01	2	28 25	8 - 28 10 - 25	6 - 28 8 - 25	#3 #3	0.010	5 - 6 7 - 8	0.3 - 3 0.5 - 7	SCH40 PVC SCH40 PVC	Monitoring / DPE Well
						#3 #3	1	7 - 8 7 - 8			Monitoring Well
MW-4	05/25/01	2	25 22	10 - 25 12 - 22	8 - 25 11 - 22		0.010		0.5 - 7	SCH40 PVC	Monitoring Well
MW-5*	01/11/05	4	22		i	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-6*	01/19/05	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-7*	01/11/05	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-8	03/18/08	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
MW-9	03/18/08	2	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
MW-10*	01/20/05	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-11*	01/20/05	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-12*	01/20/05	4	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring / DPE Well
MW-13	03/18/08	2	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
MW-14	07/28/09	2	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
MW-15	07/28/09	2	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
MW-16	07/28/09	2	22	12 - 22	11 - 22	#2/12	0.010	10 - 11	0.5 - 10	SCH40 PVC	Monitoring Well
GP-1	07/13/06	0.25	10	5 & 10	-	#60 - 100	-	-	n/a	Kynar Tubing	Soil Gas Probe
GP-2	07/13/06	0.25	10	5 & 10	-	#60 - 100	-	-	n/a	Kynar Tubing	Soil Gas Probe
$\frac{\text{GP-3}^+}{1}$	07/13/06	0.25	10	-5 & 10	-	#60 100	-	-	n/a	Kynar Tubing	Soil Gas Probe
$\frac{\text{GP-4}^+}{4}$	07/13/06	0.25	10	-5 & 10	-	#60—100	-	-	n/a	Kynar Tubing	Soil Gas Probe
AS-1 AS-2 AS-3 AS-4	06/30/10 06/30/10 06/30/10 06/30/10	2 2 2 2	30 30 30 30	28 - 30 28 - 30 28 - 30 28 - 30 28 - 30	27 - 30 27 - 30 27 - 30 27 - 30 27 - 30	#2/16 #2/16 #2/16 #2/16	0.010 0.010 0.010 0.010	25 - 27 25 - 27 25 - 27 25 - 27 25 - 27	1 - 25 1 - 25 1 - 25 1 - 25 1 - 25	SCH80 PVC SCH80 PVC SCH80 PVC SCH80 PVC	Air Sparge Well Air Sparge Well Air Sparge Well Air Sparge Well

NOTES:

MW = monitoring well GP = soil gas probe * Monitoring wells MW-1, 2, 5, 6, 7, 10, 11, and 12 are also being used for high vacuum dual phase extraction (HVDPE).

+ In August 2008, soil gas probes GP-1 and GP-2 were decommissioned.

AS = air sparge well

ft bgs = feet below ground surface

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-1	06/29/01	1.63	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
(8-28)	10/10/01	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
(8-28)	01/09/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	04/24/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	_
	07/24/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/05/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/04/03	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/02/03	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/03	0.23	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/03/03	1.27	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/04	0.18	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/10/04	Obstructed	-	-	-	-	-	-	-
	08/09/04	0.21	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/04	0.24	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/03/05	0.17	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	47,000	<500	4,200	11,000	1,100	6,400	-
	12/12/07	Sheen	80,000	<250	630	22,000	1,700	8,900	-
	02/13/08	Sheen	22,000	<250	750	4,100	340	3,200	-
	05/15/08	0.00	25,000	<600	580	9,200	970	4,200	-
	08/05/08	0.00	110,000	<1,000	730	22,000	1,700	8,200	-
	11/07/08	0.00	15,000	290	460	1,400	84	2,700	-
	02/05/09	0.00	42,000	<1,000	1,100	8,500	880	4,500	-
	05/05/09	0.00	44,000	<50*	1,300	6,500	1,300	6,800	-
	08/21/09	0.00	63,000	<50*	1,900	15,000	1,200	7,600	-
	11/23/09	0.00	63,000	<17*	3,300	9,800	1,500	8,200	-
	02/26/10	0.00	62,000	<25*	3,500	14,000	1,600	9,300	-
	05/12/10	0.00	13,000	<5.0*	270	2,000	330	1,900	-
Traditional	08/19/10	0.00	45,000	<25*	960	9,900	1,100	5,300	-
Low-Flow	08/19/10	0.00	4,100	<110	520	540	190	290	-
Low-Flow	12/22/10	0.00	12,000	<250	440	1,300	270	2,300	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-2	06/29/01	0.00	69,000	4,100/4,400*	7,200	6,100	1,500	7,000	_
(8-28)	10/10/01	0.00	87,000	14,000	22,000	12,000	2,700	9,100	-
(0 20)	01/09/02	0.00	130,000	11,000	30,000	19,000	3,800	14,000	-
	04/24/02	Sheen	210,000	32,000	38,000	23,000	4,600	19,000	-
	07/24/02	Sheen	170,000	36,000	48,000	12,000	3,700	8,600	-
	11/05/02	Sheen	190,000	36,000	45,000	25,000	4,600	16,000	-
	02/04/03	Sheen	150,000	27,000	51,000	24,000	4,200	14,000	-
	05/02/03	Sheen	150,000	35,000	39,000	11,000	3,800	9,900	-
	08/04/03	Sheen	120,000	29,000	32,000	5,000	3,200	7,200	-
	11/03/03	Sheen	120,000	24,000	33,000	4,300	3,200	5,400	-
	02/09/04	Sheen	130,000	19,000	27,000	7,700	3,100	7,600	-
	05/10/04	Sheen	67,000	13,000	20,000	3,000	2,300	4,100	-
	08/09/04	Sheen	100,000	22,000	27,000	7,100	2,800	6,600	-
	11/09/04	Sheen	100,000	23,000	27,000	6,100	3,000	5,600	-
	02/03/05	Sheen	84,000	11,000	23,000	5,000	3,000	5,500	-
	05/09/05	Sheen	74,000	14,000	21,000	4,200	2,300	3,300	-
	07/27/05	Sheen	9,500	910	1,400	1,000	180	960	-
	08/05/05	Sheen	74,000	4,000	8,800	11,000	1,300	7,600	-
	11/09/05	Sheen	120,000	16,000	21,000	14,000	2,300	13,000	-
	02/09/06	Sheen	120,000	10,000	18,000	16,000	2,200	13,000	-
	05/04/06	Sheen	71,000	8,300	14,000	11,000	1,500	7,600	-
	08/04/06	Sheen	160,000	14,000	22,000	14,000	2,400	11,000	-
	11/08/06	Sheen	110,000	6,400	17,000	9,200	1,600	6,800	<dl< td=""></dl<>
	$02/08/07^{1}$	Sheen	68,000	5,400	11,000	7,800	1,500	7,700	-
	05/29/07	Sheen	49,000	4,800	7,600	4,400	940	4,600	-
	09/05/07	Sheen	25,000	1,000	3,300	3,400	490	2,800	-
	12/12/07	0.00	5,500	870	1,100	440	28	550	-
	02/13/08	0.00	5,700	250	440	290	43	1,000	-
	05/15/08	0.00	490	68	110	11	0.90	42	-
	08/05/08	0.00	520	<25	26	57	7.6	70	-
	11/07/08	0.00	680	72	110	38	3.1	75	-
	02/05/09	0.00	1,000	82	130	50	15	120	-
	05/05/09	0.00	570	8.6*	22	33	9.2	73	-
	08/21/09	0.00	660	<10	13	41	13	48	-
	11/23/09	0.00	400	23*	20	10	1.0	33	-
	02/26/10	0.00	1,400	17*	56	83	18	230	-
	05/12/10	0.00	350	88	63	7.0	3.0	18	-
Traditional	08/19/10	0.00	260	<10	4.6	1.1	0.93	3.4	-
Low-Flow	08/19/10	0.00	580	<15	18	4.4	4.4	25	-
Low-Flow	12/22/10	0.00	1,700	130	230	140	33	290	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-3	06/29/01	0.00	550	<5.0	<0.5	3.1	3.2	1.2	_
(10-25)	10/10/01	0.00	470	<5.0	0.77	5.3	3.3	5.9	
(10-25)	01/09/02	0.00	1,000	<5.0	0.90	7.6	7.8	25	_
	04/24/02	0.00	1,500	<5.0	0.64	7.2	12	14	_
	07/24/02	0.00	1,200	<5.0	10	17.0	11	25	-
	11/05/02	0.00	1,800	<25	33	43.0	18	31	-
	02/04/03	0.00	450	<5.0	< 0.5	5.0	< 0.5	0.77	-
	05/02/03	0.00	340	<5.0	7.3	10.0	2.5	7.3	-
	08/04/03	0.00	170	<5.0	5.8	5.9	1.5	4.9	-
	11/03/03	0.00	54	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/09/04	0.00	190	<5.0	< 0.5	3.6	< 0.5	< 0.5	-
	05/10/04	0.00	280	<5.0	< 0.5	3.4	< 0.5	< 0.5	-
	08/09/04	0.00	290	<5.0	< 0.5	3.8	< 0.5	< 0.5	-
	11/09/04	0.00	220	<5.0	< 0.5	4.0	< 0.5	< 0.5	-
	02/03/05	0.00	160	<5.0	13	30	3	21	-
	05/09/05	0.00	200	<5.0	< 0.5	3.9	<0.5	<0.5	-
	08/05/05	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	11/09/05	0.00	130	<5.0	<0.5	2.3	<0.5	<0.5	-
	02/09/06	0.00	270	< 5.0	<0.5	5.6	<0.5	<0.5	-
	05/04/06	0.00	220	< 5.0	<0.5	4.3	< 0.5	< 0.5	-
	08/04/06	0.00	93 160	< 5.0	< 0.5	1.5	< 0.5	<0.5	- (DI
	11/08/06	0.00	160	<5.0	<0.5	2.9	<0.5	<0.5	<dl< td=""></dl<>
	$02/08/07^{1}$	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	05/29/07	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	09/05/07	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	12/12/07	0.00	<50	< 5.0	<0.5	<0.5	<0.5	<0.5	-
	02/13/08	0.00	<50	< 5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	05/15/08	0.00	<50	< 5.0	0.99	<0.5	< 0.5	0.68	-
	08/05/08	0.00	91 150	<5.0	2.0	8.0	1.3	8.0 26	-
	11/07/08	0.00	150	<5.0	0.70	6.5	1.3	26 <0.5	-
	02/05/09 05/05/09	0.00 0.00	<50 <50	<5.0	1.7	<0.5	<0.5	<0.5	-
	05/05/09 08/21/09	0.00	<50 <50	<5.0 <5.0	<0.5 <0.5	0.76 <0.5	<0.5 <0.5	<0.5 <0.5	-
	08/21/09 11/23/09	0.00	<50 <50	<5.0 <5.0	<0.5 0.90	<0.5 <0.5	<0.5 0.59	<0.5 1.2	-
	02/26/10	0.00	~50	~5.0	0.90	~0.5	0.37	1.2	-
	02/20/10	-	-	-		-	_	_	-
	08/19/10	-	-	-	-	_	_	_	_
Low-Flow	12/22/10	0.00	<50	<5.0	<0.5	<0.5	<0.5	1.7	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-4	06/29/01	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	_
(10-25)	10/10/01	0.00	<50	<5.0	<0.5	<0.5	<0.5	< 0.5	_
(10 23)	01/09/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
	04/24/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
	07/24/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	_
	11/05/02	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	_
	02/04/03	0.00	<50	<5.0	<0.5	< 0.5	<0.5	<0.5	-
	05/02/03	0.00	500	10	68	<0.5 71	18	<0.5 65	
	08/04/03	0.00	270	<5.0	30	29	9.2	32	_
	11/03/03	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	_
	02/09/04	0.00	<50	<5.0 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	_
	05/10/04	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	_
	08/09/04	0.00	130	<5.0 <5.0	<0.5 14	13	<0.5 5.3	<0.5 17	-
	11/09/04	0.00	<50	<5.0 <5.0	<0.5	<0.5	<0.5	<0.5	-
	02/03/05	0.00	370	<5.0 <5.0	<0.5 <0.5	<0.5 4.1	<0.5 <0.5	<0.5 0.64	-
	02/03/03	0.00	840	<5.0 <5.0	<0.5 50	180	<0.5 21	110	-
	07/27/05	0.00	<50	<5.0 <5.0	<0.5	<0.5	<0.5	<0.5	-
	08/05/05	0.00	<30 310	<5.0 <5.0	<0.3 7.5	<0.3 57	<0.5 10	<0.3 53	-
	11/09/05	0.00	290	<5.0 <5.0	12	61	8.8	49	-
	02/09/06	0.00	250	<5.0 <5.0	9.9	42	7.5	49 45	_
	02/09/00	0.00	300	<5.0 <5.0	37	42 76	7.8	43	-
	03/04/00	0.00	270	<5.0 <5.0	7.3	33	5.6	42 32	-
	11/08/06	0.00	1,300	<5.0 <5.0	7.5	230	31	160	<dl< td=""></dl<>
	02/08/07	0.00	<50	<5.0 <5.0	< 0.5	<0.5	<0.5	<0.5	\DL
	02/08/07 05/29/07	0.00	<50	<5.0 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.3 <0.5	-
	03/23/07 09/05/07	0.00	<50	<5.0 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-
	12/12/07	0.00	<50	<5.0 <5.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
	02/13/08	0.00	<30 75	<5.0 <5.0	<0.3 2.4	<0.3 8.3	<0.3 1.2	<0.3 14	-
	02/13/08	0.00	<50	<5.0 <5.0	0.65	8.3 <0.5	<0.5	0.52	-
	03/13/08 08/05/08	0.00	<30 76	<5.0 <5.0	1.2	<0.3 8.1	<0.3 1.5	9.7	-
	11/07/08	0.00	100	<5.0 <5.0	2.8	8.1 7.7	1.5	9.7 15	-
	02/05/09	0.00	100	<5.0 <5.0	0.87	19	3.9	13 29	-
	02/03/09 05/05/09	0.00	85	<5.0 <5.0	1.2	8.0	2.5	29 19	-
	03/03/09 08/21/09	0.00	390	<5.0 <5.0	1.2	8.0 58	2.5 11	73	-
	11/23/09	0.00	<50	<5.0 <5.0	2.6	<0.5	1.5	2.3	-
	02/26/10	0.00	~50	-5.0	2.0	~0.5	-	2.5	-
	02/20/10 05/12/10	-	-	_		-	-	-	-
	03/12/10 08/19/10	-	-	_	-	-	-	-	-
Low-Flow	12/22/10	0.00	<50	<5.0	<0.5	<0.5	<0.5	1.2	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MIN 5	02/02/05	0.00	70.000	<1.000	7 (00	12 000	2 200	0.600	
MW-5	02/03/05	0.00	78,000	<1,000	7,600	13,000	2,200	9,600	-
(12-22)	05/09/05	0.00	60,000	<900	6,100	9,900	1,600	6,600	-
	07/27/05	nm	120,000	1,100	10,000	19,000	2,100	13,000	-
	08/05/05	0.00	59,000	<500	4,100	10,000	1,200	6,600	-
	11/09/05	0.00	44,000	<500 <500	3,300	7,400	1,100	4,900	-
	02/09/06	0.00 0.00	110,000	<500 <250	10,000	22,000	2,400	13,000	-
	05/04/06	0.00	110,000	<250 <500	11,000	22,000	2,900	15,000	-
	08/04/06 11/08/06	0.00	73,000 51,000	<500 <500	4,700	8,600 7,200	1,700	7,600 6,700	- <dl< td=""></dl<>
	02/08/07	0.00	51,000 67,000	<500 <800	3,700	7,200 10,000	1,400 1,800	6,700 10,000	<dl< td=""></dl<>
		0.00	,	<800 <1000	5,100	· · ·	·	· · · · · ·	-
	05/29/07	0.00	86,000	<1000 <350	6,200 2,100	12,000	2,000 560	11,000 4,600	-
	09/05/07	0.00	36,000 8,200		2,100	4,000 56	290	4,600	-
	12/12/07	0.00	8,200 4,600	<100 <50	160 77	36 440		· ·	-
	02/13/08 05/15/08	0.00	4,600 3,000	<30 <10	59	440 330	41 47	1,300 670	-
		0.00		<10 <50	59 64	330 490	47 46		-
	08/05/08		4,500	<30 <17	i			1,100	-
	11/07/08	0.00	5,000	<17 <0.5*	66 40	400	29 22	1,200	-
	02/05/09 05/05/09	0.00 0.00	2,800 12,000	<0.5* <5.0*	49 360	120 1,300	22 250	570 2,000	-
	03/03/09 08/21/09	0.00	12,000	<3.0* <1.0*	450	610	230 400	2,000 2,300	-
	08/21/09 11/23/09	0.00	1,700	<1.0* <0.5*	450 47	100	400 29	2,300	-
	02/26/10	0.00	1,700 3,100	<0.5* <1.0*	47 55	220	29 27	520	-
	02/20/10 05/12/10	0.00	3,100 1,300	<5.0	55	190	13	180	-
Traditional	03/12/10 08/19/10	0.00	1,500 3,600	<3.0 <75	33 140	190 50	13	370	-
Low-Flow	08/19/10 08/19/10	0.00	3,600 3,600	<73 <25	140	180	130	550	-
Low-Flow^	08/19/10 08/19/10	0.00	5,600 5,400	<23 <25	210	230	230	660	-
Low-Flow	12/22/10	0.00 0.00	3,400 9,000	<23 <100	300	230 1,100	230 180	1,700	-
LUW-FIUW	12/22/10	0.00	2,000	~100	500	1,100	100	1,700	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
	02/02/05	01	120.000	<1.000	2 400	22.000	2 400	15.000	
MW-6	02/03/05	Sheen	130,000	<1,000	2,400	33,000	2,400	15,000	-
(12-22)	05/09/05 08/05/05	Sheen	170,000	<4,000	11,000	43,000	3,100	16,000	-
	08/05/05 11/09/05	0.37 0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/05	0.37	ns/fp ns/fp	ns/fp ns/fp	ns/fp	ns/fp ns/fp	ns/fp ns/fp	ns/fp ns/fp	-
	02/09/08 05/04/06	0.71	ns/fp	ns/fp	ns/fp ns/fp	ns/fp	ns/fp	ns/fp	-
	03/04/00	0.73	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.41	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.38	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.34	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	0.00	74,000	<750	870	7,000	2,400	12,000	_
	12/12/07	Sheen	12,000	<10	556	7,000 560	550	1,800	_
	02/13/08	Sheen	27,000	<250	700	4,900	620	5,300	<dl< td=""></dl<>
	05/15/08	0.00	25,000	<150	410	2,500	1,000	3,700	-
	08/05/08	0.00	33,000	<350	480	5,500	1,400	6,800	-
	11/07/08 ²	0.00	54,000	<5.0	610	7,000	1,700	8,900	
	02/05/09	0.00	92,000	<5.0 <50*	1,100	7,000 8,600	2,800	14,000	-
	02/03/09 05/05/09	0.00	92,000 58,000	<50*	560	4,300	2,800 2,400	13,000	
	08/21/09	0.00	53,000	<5.0*	1,800	4,500 8,100	1,200	12,000	_
	11/23/09	0.00	28,000	< <u>10</u> *	270	710	1,200	5,500	-
	02/26/10	0.00	21,000	<10*	84	<5.0	800	3,900	_
	05/12/10	0.00	19,000	<12*	350	1,100	1,000	3,300	-
Traditional	08/20/10	0.00	64,000	<50*	2,000	12,000	1,600	8,300	-
Low-Flow	08/20/10	0.00	1,900	<5.0	13	98	62	350	-
Low-Flow	12/22/10	0.00	21,000	<100	180	1,300	520	4,900	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MIN 7	02/02/05	CI	220.000	10.000	45,000	11.000	2 500	10.000	
MW-7	02/03/05	Sheen	220,000	18,000	45,000	44,000	3,500	18,000	-
(12-22)	05/09/05	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.07	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	Sheen	230,000	19,000	37,000	37,000	3,100	14,000	- DI
	11/08/06	Sheen	240,000	13,000	41,000	39,000	3,000	14,000	<dl< td=""></dl<>
	02/08/07	Sheen	230,000	15,000	41,000	37,000	3,700	20,000	-
	05/29/07	Sheen	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	14,000	<450	41	210	99 55	1,600	-
	12/12/07	Sheen	9,200	<500	1,100	870	66	1,100	-
	02/13/08	0.00	17,000	590	2,800	2,700	300	1,900	-
	05/15/08	0.00	10,000	230	1,700	1,900	200	950	-
	08/05/08	0.00	6,100	<150	1,100	1,100	120	740	-
	11/07/08	0.00	4,200	<50	580	570	44	400	-
	02/05/09	0.00	7,800	26*	1,100	810	190	690	-
	05/05/09	0.00	7,200	77*	1,200	1,200	150	860	-
	08/21/09	0.00	28,000	390*	6,200	3,200	450	3,100	-
	11/23/09	0.00	17,000	32*	430	1,600	730	2,800	-
	02/26/10	0.00	21,000	29*	1,500	1,500	870	3,300	-
	05/12/10	0.00	18,000	51*	1,300	2,700	540	3,100	-
Traditional	08/19/10	0.00	11,000	<300	2,100	590	270	2,000	-
Low-Flow	08/19/10	0.00	24,000	<500	3,700	2,200	510	4,800	-
Low-Flow^	08/19/10	0.00	23,000	<300	3,300	2,000	520	3,900	-
Low-Flow	12/22/10	0.00	16,000	<200	1,600	1,700	250	2,800	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-8	05/15/08	0.00	90	<5.0	0.62	2.4	<0.5	1.0	
(12-22)	03/13/08 08/05/08	0.00	90 81	<5.0 <5.0	0.62	2.4 7.2	<0.5 1.2	9.1	-
(12-22)	08/03/08 11/07/08	0.00	430	<5.0 <5.0	2.9	26	6.1	9.1 86	-
	02/05/09	0.00	430 <50	<5.0 <5.0	0.98	1.3	0.1 <0.5	<0.5	-
	02/03/09	0.00	<30 94	<5.0 <5.0	0.98	7.1	<0.3 2.2	<0.3 17	-
	08/21/09	0.00	480	<5.0 <5.0	30	100	17	130	
	11/23/09	0.00	62	<5.0	5.3	2.0	2.4	3.3	_
	02/26/10	-	-	-	-	-	_	-	_
	05/12/10	-	-	_	-	-	-	-	-
	08/19/10	-	-	-	-	-	-	-	-
Low-Flow	12/22/10	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
MW-9	05/15/08	0.00	60,000	960	14,000	410	1,500	3,500	_
(12-22)	08/05/08	0.00	42,000	<1,200	13,000	400	1,800	4,800	-
(12 22)	11/07/08 ²	0.00	53,000	400	13,000	350	1,800	3,100	
	02/05/09	0.00	32,000	360*	13,000	310	1,800	2,700	-
	05/05/09	0.00	44,000	730*	14,000	520	1,000	2,700 3,400	_
	08/21/09	0.00	48,000	900*	15,000	550	2,000	3,300	_
	11/23/09	0.00	39,000	750	11,000	390	1,800	2,400	-
	02/26/10	0.00	44,000	760*	12,000	360	1,900	3,800	-
	05/12/10	0.00	34,000	390*	6,800	320	1,700	3,600	-
Traditional	08/19/10	0.00	35,000	<1,200	9,600	220	2,300	3,600	-
Low-Flow	08/19/10	0.00	30,000	<1,200	8,400	140	1,800	2,800	-
Low-Flow	12/22/10	0.00	15,000	<300	3,600	47	870	730	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-10	02/03/05	0.00	36,000	<500	4,700	7,200	660	3,400	-
(12-22)	05/09/05	0.00	88,000	<1,500	6,900	20,000	2,300	9,900	-
	08/05/05	0.00	88,000	<1,100	10,000	21,000	1,900	9,800	-
	11/09/05	0.00	63,000	<1,100	5,400	13,000	1,900	7,900	-
	02/09/06	0.00	100,000	<500	6,600	19,000	2,900	13,000	-
	05/04/06	0.00	100,000	<500	8,500	25,000	3,000	13,000	-
	08/04/06	0.00	190,000	<2,200	17,000	35,000	2,800	13,000	-
	11/08/06	0.00	57,000	<500	2,500	7,600	1,600	5,700	<dl< td=""></dl<>
	02/08/07	0.00	69,000	<1,000	4,400	14,000	2,200	8,800	-
	05/29/07	0.00	100,000	<1,000	5,300	19,000	2,600	12,000	-
	09/05/07	0.00	87,000	<1,000	6,100	20,000	2,400	12,000	-
	12/12/07	Sheen	4,700	<50	95	280	110	730	-
	02/13/08	0.00	4,500	<250	190	370	65	880	-
	05/15/08	0.00	4,800	<50	130	320	110	710	-
	08/05/08	0.00	3,500	<120	230	180	74	190	-
	11/07/08 ³	Well now locat	ed beneath a	new residenta	ll building. Ii	mpossible to	sample.		-

MW-11 (12-22) $02/03/05$ $05/09/05$ Sheen Sheen $210,000$ $<3,000$ $3,500$ $23,000$ $29,000$ $35,000$ $40,000$ $3,100$ $16,000$ $16,000$ $-$ $-$ $07/27/05$ Sheen Sheen $220,000$ $22,000$ $2,500$ $26,000$ $26,000$ $37,000$ $3,200$ $3,200$ $18,000$ $18,000$ $-$ $-$ $08/05/05$ Sheen Sheen $210,000$ $<2,500$ $<25,000$ $35,000$ $42,000$ $3,300$ $16,000$ $16,000$ $-$ $-$ $02/09/06$ $<$ Sheen $210,000$ $<2,500$ $25,000$ $35,000$ $42,000$ $3,300$ $3,800$ $16,000$ $-$ $-$ $02/09/06$ $<$ Sheen Sheen $190,000$ $10,000$ $12,000$ $32,000$ $47,000$ $47,000$ $3,600$ $3,800$ $20,000$ $<$ $-$ $ 08/04/06$ $08/04/06$ Sheen Sheen $290,000$ $11,000$ $33,000$ $33,000$ $43,000$ $43,000$ $43,000$ $3,300$ $15,000$ $-$ $ 11/08/06$ 0.00 0.00 $230,000$ $14,000$ $34,000$ $43,000$ $44,000$ $3,900$ $20,000$ $-$ $ 02/08/07$ $0.5/29/07$ 0.00 $230,000$ $19,000$ $19,000$ $35,000$ $35,000$ $39,000$ $36,000$ $3,000$ $ -$ $ 02/08/07$ 0.00 0.00 $230,000$ $19,000$ $19,000$ $36,000$ $36,000$ $37,000$ $23,000$ $-$ $ 02/08/07$ 0.00 0.00 $230,000$ $19,000$ $36,000$ $36,000$ $36,000$ $37,000$ $36,000$ $36,000$ $36,000$ $37,000$ $36,000$ $-$ $30,000$ $02/$	Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
		05/09/05 07/27/05 08/05/05 11/09/05 02/09/06 05/04/06 08/04/06 11/08/06 02/08/07 05/29/07 09/05/07 12/12/07 02/13/08 05/15/08 08/05/08	Sheen Sheen Sheen Sheen Sheen Sheen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	210,000 220,000 210,000 180,000 210,000 290,000 290,000 230,000 230,000 230,000 81,000 36,000 15,000 12,000	3,500 2,500 <2,500 9,100 10,000 12,000 11,000 14,000 19,000 19,000 4,000 4,000 4,200 2,300 1,100	$\begin{array}{c} 29,000\\ 26,000\\ 35,000\\ 32,000\\ 33,000\\ 34,000\\ 33,000\\ 34,000\\ 43,000\\ 35,000\\ 34,000\\ 9,400\\ 5,700\\ 2,800\\ 1,800\\ \end{array}$	$\begin{array}{c} 40,000\\ 37,000\\ 42,000\\ 47,000\\ 39,000\\ 41,000\\ 43,000\\ 44,000\\ 44,000\\ 39,000\\ 36,000\\ 9,500\\ 4,000\\ 1,400\\ 760\\ \end{array}$	3,400 3,200 3,300 3,600 3,800 3,500 3,300 3,300 3,300 3,600 3,700 1,700 560 120 98	$\begin{array}{c} 16,000\\ 18,000\\ 18,000\\ 20,000\\ 17,000\\ 15,000\\ 15,000\\ 20,000\\ 20,000\\ 20,000\\ 23,000\\ 9,700\\ 5,300\\ 1,900 \end{array}$	- - - - - - - - - - - - - - - - - -

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-12	02/03/05	Sheen	250,000	100,000	52,000	41,000	3,400	15,000	_
(12-22)	05/09/05	Sheen	210,000	91,000	44,000	28,000	3,300	13,000	_
(12 22)	08/05/05	Sheen	170,000	52,000	38,000	28,000	3,000	12,000	-
	11/09/05	Sheen	180,000	52,000	39,000	25,000	2,900	12,000	-
	02/09/06	Sheen	170,000	34,000	40,000	23,000	3,500	15,000	-
	05/04/06	Sheen	160,000	47,000	33,000	28,000	2,800	10,000	-
	08/04/06	Sheen	240,000	55,000	40,000	24,000	3,200	12,000	-
	11/08/06	0.00	190,000	33,000	40,000	23,000	2,700	13,000	<dl< td=""></dl<>
	02/08/07	0.00	150,000	34,000	38,000	19,000	3,300	12,000	-
	05/29/07	0.00	150,000	30,000	30,000	15,000	3,100	13,000	-
	09/05/07	0.00	160,000	38,000	33,000	21,000	3,200	14,000	-
	12/12/07	0.00	58,000	6,700	10,000	7,100	1,200	4,900	-
	02/13/08	0.00	17,000	3,000	3,600	2,300	440	1,800	-
	05/15/08	0.00	7,800	1,900	2,000	500	130	640	-
	08/05/08	0.00	3,900	800	730	130	61	200	-
	11/07/08 ³	Well now locat	ed beneath a	new residenta	l building. I	mpossible to	sample.	-	-

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MXV 12	05/15/00	0.00	-250	(700	18	-2.5	-2.5	-2.5	
MW-13	05/15/08 08/05/08	0.00	<250 <250	6,700 2,400	18 <2.5	<2.5 5.7	<2.5 <2.5	<2.5 4.3	-
(12-22)	08/05/08 11/07/08	0.00	<230 61	3,400 380	<2.5 2.8	5.7 1.4	<2.5 0.55	4.3 0.87	-
	02/05/09	0.00	<50	380 14	2.8 <0.5	1.4 <0.5	0.55 <0.5	0.87 <0.5	-
			1						-
	05/05/09	0.00	<50 85	< 5.0	0.53 2.0	3.2 10	1.1 2.2	7.5 13	-
	08/21/09	0.00		< 5.0					-
	11/23/09	0.00	<50	< 5.0	< 0.5	< 0.5	<0.5	< 0.5	-
	02/26/10	0.00	500	< 5.0	9.8	58	20	110	-
	05/12/10	0.00	<50	< 5.0	< 0.5	< 0.5	< 0.5	<0.5	-
I FI	08/19/10	0.00	<50	< 5.0	<0.5	< 0.5	< 0.5	< 0.5	-
Low-Flow	12/22/10	0.00	<50	<5.0	1.1	<0.5	<0.5	0.63	-
MW-14	08/21/09	0.00	3,000	<1.0*	11	41	92	40	-
(12 - 22)	11/23/09	0.00	1,600	<5.0	6.1	16	33	4.9	-
	02/26/10	0.00	1,800	<5.0	4.7	24	18	11	-
	05/12/10	0.00	970	16	0.63	14	5.3	0.57	-
	08/19/10	0.00	890	<30	1.3	16	2.6	1.3	-
Low-Flow	12/22/10	0.00	290	<5.0	<0.5	7.6	<0.5	0.52	-
MW-15	08/21/09	0.00	190	23	23	15	6.6	25	
(12 - 22)	11/23/09	0.00	280	23 19	23 65	4.6	20	23	-
(12 - 22)	02/26/10	0.00	280 96	27	9.9	4.0 3.7	3.1	9.2	-
	05/12/10	0.00	<50	20	<0.5	<0.5	<0.5	<0.5	-
	08/19/10	0.00	<50	33	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	_
Low-Flow	12/22/10	0.00	<50 <50	12	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-
MW-16	08/21/09	0.00	860	20	80	110	26	130	-
(12 - 22)	11/23/09	0.00	870	31	280	13	46	63	-
	02/26/10	0.00	240	21	46	28	16	59	-
	05/12/10	0.00	<50	15	2.3	0.62	<0.5	0.79	-
	08/19/10	0.00	<50	15	< 0.5	< 0.5	< 0.5	< 0.5	-
Low-Flow	12/22/10	0.00	<50	10	<0.5	<0.5	<0.5	<0.5	-

NOTES:

- not sampled/analyzed

ft = feet

 $ns/fp = not \ sampled \ / \ free \ product \ present$

 μ g/L = micrograms per liter or parts per billion (ppb)

TPH-g by EPA Method SW8015Cm

BTEX & MTBE by EPA Method SW8021B

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

HVOC= halogenated volatile organic compounds (e.g., PCE, TCE, DCE, VC)

DL = detection limit

* = MTBE by EPA Method 8260

^ = Duplicate sample analyzed from different VOA

1) Analytical results for MW-2 and MW-3 reversed from lab data based on historical concentration trends observed

2) Groundwate sample re-analyzed for MTBE-only by EPA Method SW8260B

3) Wellheads removed and wells now located ~4' below grade beneath new residential construction; routine sampling is no longer possible

TABLE 3: GROUNDWATER ANALYTICAL DATA SUMMARY (SOIL BORINGS)

Vic's Automotive	, 245 8th S	Street, Oakland,	California
------------------	-------------	------------------	------------

Sample ID	Date Collected	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
SB-1 W SB-2 W SB-3 W	08/18/96 08/18/96 08/18/96	140,000 130,000 120,000	480 2,300 27,000	12,000 15,000 19,000	30,000 20,000 29,000	3,900 2,800 1,900	19,000 15,000 9,500
SB-4 W SB-5 W SB-6 W SB-7 W SB-8 W SB-9 W SB-10 W SB-10 W SB-11 W SB-12 W SB-12 W SB-13 W SB-14 W SB-15 W	04/02/03 04/03/03 04/02/03 04/02/03 04/02/03 04/03/03 04/03/03 04/03/03 04/03/03 04/03/03 04/03/03	310,000 420 210 240,000 51 7,300 210,000 200,000 ND<50 190 ND<50 ND<50	17,000 ND<5.0 69,000 360 ND<100 ND<5000 ND<2000 ND<2.0 ND<20 140 ND<5.0	45,000 11 0.57 42,000 ND<0.5 2,100 22,000 18,000 ND<0.5 ND<0.5 ND<0.5 ND<0.5	65,000 3.7 4.2 45,000 ND<0.5 280 38,000 39,000 0.85 1.1 0.95 ND<0.5	4,500 18 1.1 3,100 ND<0.5 300 3,400 3,600 ND<0.5 1.9 ND<0.5 ND<0.5	23,000 1.1 1.4 16,000 ND<0.5 140 18,000 0.53 1.8 1.3 ND<0.5
SB-18W	03/17/10	230	ND<5.0	3.2	39	10	65

NOTES:

TPH-g by EPA Method 8015C

BTEX & MTBE by EPA Method 8021B

ND = not detected at or above the laboratory reporting limit

 $\mu g/L = micrograms per liter$

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

BTEX = Benzene, ethylbenzene, toluene, and xylenes

TABLE 4: SOIL ANALYTICAL DATA SUMMARY

Sample ID	Date Collected	Depth (ft bgs)	TPH-g (mg/kg)	TOG (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)
MW-1 (6') MW-1 (11')	7/14/95 7/14/95	6 11	390 370	-	-	0.28 0.24	0.29 0.24	0.29 0.23	0.62 0.61
MW-2 (6') MW-2 (11')	7/14/95 7/14/95	6 11	ND 300	24 38	-	ND 0.30	ND 0.23	ND 0.24	ND 0.63
SB-1 (18') SB-1 (24')	8/18/96 8/18/96	18 24	9,100 30	-	47 0.20	57 0.37	580 1.4	190 0.52	1,000 2.5
SB-2 (24')	8/18/96	24	1.1	-	0.032	0.11	0.17	0.018	0.099
SB-3 (24') MW-3 15' MW-3 20'	8/18/96 05/25/01 05/25/01	24 15 20	16 ND<1.0 ND<1.0	- -	4.7 ND<0.05 ND<0.05	1.6 ND<0.005 ND<0.005	2.5 ND<0.005 ND<0.005	0.21 ND<0.005 ND<0.005	0.95 ND<0.005 ND<0.005
MW-4 15' MW-4 20'	05/25/01 05/25/01	15 20	ND<1.0 ND<1.0	- -	ND<0.05 ND<0.05	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005
SB-4 12' SB-4 15'	04/02/03 04/02/03	12 15	25 260	-	ND<0.5 ND<1.7	0.41 3.5	1.0 15	0.2 4.5	1.3 23
SB-5 11'	04/03/03	11	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-6 16' SB-7 12' SB-7 18'	04/02/03 04/02/03 04/02/03	16 12 18	ND<1.0 700 4,900	-	ND<0.05 ND<10 ND<25	ND<0.005 6.0 65	ND<0.005 25 260	ND<0.005 9.3 77	ND<0.005 50 400
SB-8 17'	04/02/03	17	ND<1.0	-	ND<0.05		ND<0.005		
SB-9 16'	04/03/03	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-10 12' SB-11 12' SB-11 16'	04/03/03 04/03/03 04/03/03	12 12 16	ND<1.0 1.4 2,700	- - -	ND<0.05 ND<0.05 ND<30	ND<0.005 0.12 29	ND<0.005 0.10 170	ND<0.005 0.026 49	ND<0.005 0.066 250
SB-12 15'	04/02/03	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005

TABLE 4: SOIL ANALYTICAL DATA SUMMARY

Sample ID	Date Collected	Depth (ft bgs)	TPH-g (mg/kg)	TOG (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)
SB-13 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-14 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-15 14'	04/03/03	14	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-5 16'	01/11/05	16	100	-	ND<5.0	2.6	6.0	1.5	8.4
MW-5 20'	01/11/05	20	37		ND<0.50	2.6	5.6	0.91	4.6
MW-7 16'	01/11/05	16	19	-	2.9	3.3	3.5	0.4	1.9
MW-7 20.5'	01/11/05	20.5	340		ND<5.0	9.6	25	7.0	35
MW-6 20'	01/19/05	20	14	-	ND<0.25	0.099	4.1	0.33	1.7
MW-10 15.5'	01/20/05	15.5	840	-	ND<2.0	11	58	16	83
MW-11 15.5'	01/19/05	15.5	3,200	-	ND<10	35	320	85	430
MW-12 15.5'	01/19/05	15.5	13	-	8.5	2.5	2.8	0.22	1.1
MW-9-15'	03/17/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-9-20'	03/17/08	20	1.5		ND<0.05	0.37	0.0052	0.047	0.067
MW-13-15'	03/17/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-13-20'	03/17/08	20	ND<1.0		0.086	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-8-15'	03/18/08	15	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-8-20'	03/18/08	20	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-14-16'	07/28/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-14-23'	07/28/09	23	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-15-16'	07/27/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-15-24'	07/27/09	24	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-16-16'	07/27/09	16	ND<1.0	-	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
MW-16-25'	07/27/09	25	ND<1.0		0.24	ND<0.005	ND<0.005	ND<0.005	ND<0.005

TABLE 4: SOIL ANALYTICAL DATA SUMMARY

Vic's Automotive, 245 8th Street, Oakland, California

Sample ID	Date Collected	Depth (ft bgs)	TPH-g (mg/kg)	TOG (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)
	00/15/10								
SB-16-15'	03/17/10	15	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-16-17'	03/17/10	17	34	-	-	ND<0.005	ND<0.005	ND<0.005	0.20
SB-16-20'	03/17/10	20	2,100	-	-	ND<1.0	ND<1.0	1.1	68
SB-16-23'	03/17/10	23	5.0	-	-	ND<0.005	0.056	0.019	0.18
SB-16-25'	03/17/10	25	2.0	-	-	ND<0.005	0.028	0.005	0.041
SB-17-15'	03/17/10	15	3.0			ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-17-18'	03/17/10	18	900	-	-	ND<0.25	ND<0.25	0.52	27
SB-17-19'	03/17/10	19	1,900	-	-	ND<1.0	4.5	4.4	83
SB-17-20'	03/17/10	20	4,300	-	-	87	320	85	430
SB-17-23	03/17/10	23	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
~~									
SB-18-15'	03/17/10	15	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-18-17'	03/17/10	17	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-18-20'	03/17/10	20	250	-	-	2.5	8.7	2.7	18
SB-18-21'	03/17/10	21	9.6	-	-	0.05	0.14	0.051	0.31
SB-18-23'	03/17/10	23	1.8	-	-	0.12	0.073	0.044	0.18
SB-18-25'	03/17/10	25	6.1	-	-	0.012	1.3	0.17	0.99
SB-19-15'	03/17/10	15	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-19-17'	03/17/10	17	18	-	-	ND<0.005	0.018	ND<0.005	0.021
SB-19-20'	03/17/10	20	7,500	-	-	100	490	130	700
SB-19-23	03/17/10	23	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB-19-25	03/17/10	25	ND<1.0	-	-	ND<0.005	ND<0.005	ND<0.005	ND<0.005

NOTES:

 $\ensuremath{\mathbf{ND}}\xspace$ not detected at or above the laboratory reporting limit

mg/kg = milligrams per kilogram of soil

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

TOG = Total Oil and Grease

TABLE 5: SOIL PHYSICAL PROPERTIES DATA SUMMARY

Sample ID	Date	Notes	Gravel (%)	Coarse Sand (%)	Medium Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)	Hydraulic Conductivity (cm/sec)	Moisture Content (%)	Total Porosity (%)	Specific Gravity	TOC (mg/kg)	TOC (%)	Bulk Density (g/cm ³)
MW-7-15.5'	01/11/05	1,3,4	0.2	0.0	1.5	81.8	8.1	8.4	1.0E-06	18.3%	36.1%	2.74			1.75
MW-7-21'	01/11/05	1,3,4	0.0	0.0	1.9	88.0	4.2	5.9	5.0E-06	23.1%	38.7%	2.73			1.67
MW-11-15.5'	01/11/05	2	0.1	0.0	2.3	73.8	23	3.8							
MW-11-20.5'	01/01/05	2	0.0	0.0	2.8	86.9	10).2							
MW-8-15'	03/18/08	1,5,6	0.1			67.3	18.7	13.9		13.6%			440	0.044%	2.20
MW-8-20'	03/18/08	1,6	0.1			90.8	3.5	5.7					ND	ND	2.00
MW-9-15'	03/17/08	1,6	0.0			78.2	6.8	15					290	0.029%	2.00
MW-9-20'	03/17/08	1,6	0.2			92.9	3.9	3.0					ND	ND	2.00
MW-9-20'	03/17/08	1,6	0.2			92.9	3.9	3.0					ND	ND	2.00

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

Particle size distribution by ASTM D422 (Sieve Analysis) Hydraulic conductivity by ASTM D5084 Method C: Falling Head / Rising Tailwater cm/sec = centimeters per second % = percent mg/kg = milligrams per kilogram of soil TOC = total organic carbon g/cm³ = grams per cubic centimeter

1) Particle size distribution by sieve and hydrometer (silt and clay reported as separate fractions)

2) Particle size distribution by sieve only (silt and clay reported together)

3) Specific gravity measured with a pycnometer

4) Bulk Density is a "dry bulk density" by ASTM D2937 (sample is always dried)

5) Moisture content by ASTMD2216-92

6) Bulk Density is a "wet bulk density" by the Soil Science Society of America (SSSA) Method #5 (sample is not dried, unless requested)

Hydraulic Conductivity Unit Conversions

1 cm/sec \approx 1,035 darcy 1 cm/sec \approx 2,820 feet/day 1 cm/sec \approx 864 meter/day

Intrinsic Permeability Unit Conversions

 $1 \text{ cm}^2 \approx 101,320,202 \text{ darcy}$ $1 \text{ cm}^2 \approx 97,894 \text{ cm/sec}$ $1 \text{ cm}^2 \approx 84,574,459 \text{ meter/day}$

TABLE 6: AIR SPARGE WELL INJECTION PRESSURE OVER TIME

	Well II	D: AS-1			Well II	D: AS-3	
Date	Time	Elapsed Time (min)	Wellhead Pressure (psig)	Date	Time	Elapsed Time (min)	Wellhead Pressure (psig)
11/08/10	8:40	0	18	11/09/10	8:40	0	14
11,00,10	8:45	5	11	11,03,10	8:45	5	12
	8:50	10	10		8:50	10	10
	8:55	15	8.0		8:55	15	9.5
	9:00	20	7.0		9:00	20	8.5
	9:05	25	6.5		9:05	25	8.0
	9:10	30	6.0		9:10	30	8.0
	9:15	35	5.5		9:15	35	7.5
	9:20	40	5.0		9:20	40	7.0
	9:25	45	5.0		9:25	45	7.0
	9:30	50	5.0		9:30	50	7.0
	9:35	55	5.0		9:35	55	6.5
	9:40	60	5.0		9:40	60	6.5
	9:45	65	5.0		9:45	65	6.5
	9:50	70	5.0		9:50	70	6.5
	9:55	75	5.0		9:55	75	6.5
	10:00	80	5.0		10:00	80	6.5
	10:05	85	5.0		10:05	85	6.5
	10:10	90	5.0		10:10	90	6.5
	10:15	95	5.0		10:15	95	6.5
	10:20	100	5.0		10:20	100	6.5
	10:25	105	5.0		10:25	105	6.5
	10:30	110	5.0		10:30	110	6.5
	10:35	115	5.0		10:35	115	6.5
	10:40	120	5.0		10:40	120	6.5
	10:45	125	5.0		10:45	125	6.5
	10:50	130	5.0		11:00	140	6.5
	10:55	135	5.0		11:15	155	6.5
	11:00	140	5.0		11:20	160	6.5
	11:05	145	5.0				
	11:10	150	5.0				
	11:15	155	5.0				
	11:20	160	5.0				
	11:25	165	5.0				
	11:30	170	5.0				

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

min = minutes

psig = pounds per square inch - gauge pressure

TABLE 7: VAPOR ANALYTICAL & FIELD SCREENING DATA SUMMARY

Sample ID	Date Collected	TVH (ppmv)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-1S	11/03/10	15	43	ND<0.68	0.33	2.1	0.23	1.4
	11/8/10 7:15	50	65	ND<0.68	0.42	2.6	0.24	1.6
	11/8/10 11:05	1,200	730	ND<10	6.6	8.1	0.45	3.0
	11/9/10 6:55	30	91	ND<5.0	0.95	2.6	0.22	1.9
	11/9/10 10:55	1,650	360	ND<10	2.3	3.4	0.21	2.0
	11/16/10	45	120	ND<0.68	0.71	3.5	0.39	4.8
	11/23/10	220	200	ND<1.4	1.0	4.2	0.24	3.5
	12/10/10	80	110	ND<0.68	0.92	3.9	0.37	3.0
MW-2S	11/03/10	20	650	ND<2.7	16	43	3.9	34
	11/8/10 7:20	420	970	ND<5.0	22	51	4.5	39
	11/8/10 11:10	450	1,000	ND<10	24	54	5.0	42
	11/9/10 7:00	500	990	ND<5.0	22	51	5.0	40
	11/9/10 11:00	600	1,000	ND<10	24	57	5.5	45
	11/16/10	650	1,400	ND<5.0	33	73	7.0	56
	11/23/10	620	1,300	ND<14	35	69	4.7	42
	12/10/10	950	1,500	ND<10	31	66	5.6	57
MW-5S	11/03/10	70	230	ND<4.5	1.2	7.9	0.73	15
	11/8/10 7:25	120	300	ND<2.7	1.5	8.2	0.65	20
	11/8/10 11:15	100	310	ND<2.7	1.7	9.1	0.74	21
	11/9/10 7:05	110	300	ND<1.4	1.4	7.8	0.84	19
	11/9/10 11:05	110	340	ND<1.4	1.9	9.2	1.0	24
	11/16/10	190	400	ND<1.4	1.5	8.6	0.99	28
	12/10/10	150	310	ND<2.7	2.3	9.2	0.81	23
MW-6S	11/03/10	120	320	ND<6.8	1.9	9.9	3.3	18
	11/8/10 7:30	200	430	ND<4.5	2.1	10	2.5	14
	11/8/10 11:20	230	490	ND<2.7	2.3	11	2.6	16
	11/9/10 7:10	230	500	ND<2.7	2.4	12	2.8	17
	11/9/10 11:10	1,450	710	ND<10	2.7	12	2.4	15
	11/16/10	390	850	ND<2.7	3.4	16	2.6	22
	11/23/10	580	1,000	ND<2.7	3.5	19	2.4	21
	12/10/10	300	580	ND<4.5	4.5	18	5.3	29
MW-7S	11/03/10	790	1,400	ND<6.8	18	31	1.5	24
	11/8/10 7:35	1,150	2,100	ND<10	19	29	1.6	29
	11/8/10 11:25	1,150	2,000	ND<15	17	28	1.4	29
	11/9/10 7:15	1,500	2,100	ND<10	21	32	1.5	30
	11/9/10 11:15	>11,000	4,700	ND<120	46	44	2.0	34
	11/16/10	2,200	2,800	ND<10	28	48	5.5	96
	11/23/10	9,250	3,500	ND<30	38	48	2.4	47
	12/10/10	>11,000	2,700	ND<25	42	46	3.3	44

TABLE 7: VAPOR ANALYTICAL & FIELD SCREENING DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample ID	Date Collected	TVH (ppmv)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
INF	11/03/10	20	250	ND<2.7	3.0	9.1	0.92	9.0
(PRED)	11/8/10 7:10	150	350	ND<2.7	4.1	11	1.0	11
. ,	11/8/10 11:00	900	830	ND<10	7.7	14	1.1	12
	11/9/10 6:50	250	330	ND<2.0	4.0	9.8	0.82	10
	11/9/10 10:55	2,900	700	ND<15	6.2	11	0.94	11
	11/16/10	210	460	ND<1.4	5.4	13	1.5	19
	11/23/10	670	630	ND<5.0	7.3	15	1.2	16
	12/10/10	260	350	ND<2.7	4.7	10	1.1	12
	12/30/10	100	64	<0.68	2.1	2.6	0.34	2.0

NOTES:

ppmv - parts per million by volume

TVH = total volatile hydrocarbons

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary butyl ether

TPH-g by EPA Method 8015Bm

BTEX & MTBE by EPA Method 8021B

ND<5.0 not detected at or above the stated laboratory reporting limit

TABLE 8: HVDPE MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Inlet Temp (°F)	Inlet Vacuum (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	Influent TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Mass Removal Rate (gal/day)
11/03/10	1	60	15	1,600	79	250	7.9	1.3
11/08/10 11/08/10	2	60 60	14 14	1,000 1,000	49 49	350 830	6.9 16	1.1 2.7
11/09/10		60	14	1,000	49	330	6.5	1.1
11/09/10 11/16/10	3 4	60 60	14 14	1,000 1,000	49 49	700 460	14 9.1	2.3 1.5
11/23/10	5	60	15	1,000	49	630	12	2.1
12/10/10		60	16	1,000	49	350	6.9	1.1
12/30/10		60	15	1,000	49	64	1.3	0.21

NOTES:

°F = degree Fahrenheit in-Hg = inches of mercury (gauge pressure) fpm = feet per minute scfm = standard cubic feet per minute ppmv = parts per million by volume lbs/day = pounds per day gal/day = gallons per day

TPH-g = Total Petroleum Hydrocarbons as gasoline by EPA Method 8015 TPH-g by EPA Method 8015C Well Flow = Well Velocity x Pipe Cross Sectional Area Cross Sectional Area of 3" Pipe = 0.0491 ft^2 Well Flow = Well Velocity * 0.0491 1 gallon gas ~ 6 pounds

1) Baseline sampling one week prior to air sparging pilot test

2) Sample collected after sparging into AS-1 for approximately 120 minutes

3) Sample collected after sparging into AS-3 for approximately 120 minutes

4) Sample collected approximately one week after air sparging pilot test (sparging into AS-3 only)

5) Sample collected approximately two weeks after air sparging pilot test (sparging into AS-3 only)

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

 $MRR Estimate = (20,000*10^{-6})*(50scfm)*(1440min/day)*(28.32L/ft^3)*(1mol/22.4L)*(100g/mol)*(1lb/454g)$ MRR Estimate assumes negligible change in air density, constant concentration and average molecular weight

1 mole occupies 22.4 Liters at STP	STP is 21°C and 1 atm
1 lb = 454 grams	1ft^3 = 28.38 liters

TABLE 9: SOIL GAS FIELD SCREENING DATA SUMMARY

Soil Gas Probe ID	Date	Time	Notes	Peristaltic Pump Head Tubing	Pump Speed (rpms)	*Vacuum/ Pressure (in-H2O)	Background PID (ppmv)	PID (ppmv)
Ambient Air	11/08/10 11/09/10	8:00 7:50		PharmaPure PharmaPure	600 600	nm nm	0.2 1.1	-
GP-1-5'	Equip Blank 11/08/10	8:00 8:20 8:45 9:05 9:25 9:45 10:05 10:25 10:45		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600	nm -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \end{array}$	$\begin{array}{c} 0.5 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.4 \end{array}$
	Equip Blank 11/09/10	7:50 8:00 8:50 9:10 9:30 9:50 10:10 10:30 10:50		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600	nm -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 nm	1.1 0.7 0.4 0.3 0.3 0.3 0.3 0.2 nm	1.0 1.5 0.9 0.8 0.8 0.8 0.9 0.7 nm
GP-1-10'	Equip Blank 11/08/10	11:10 8:00 8:15 8:40 9:00 9:20 9:40 10:00 10:20 10:40		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600 600	nm -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	nm 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1	nm 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4
	Equip Blank 11/09/10	$7:50 \\ 8:00 \\ 8:45 \\ 9:05 \\ 9:25 \\ 9:45 \\ 10:05 \\ 10:25 \\ 10:45 \\ 11:05$		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600	nm -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85	1.1 0.7 0.4 0.3 0.4 0.4 0.5 0.2 nm nm	1.3 1.7 0.8 0.8 1.0 1.0 0.9 0.9 nm nm

TABLE 9: SOIL GAS FIELD SCREENING DATA SUMMARY

Soil Gas Probe ID	Date	Time	Notes	Peristaltic Pump Head Tubing	Pump Speed (rpms)	*Vacuum/ Pressure (in-H2O)	Background PID (ppmv)	PID (ppmv)
GP-2-5'	Equip Blank 11/08/10	8:00 8:30 8:55 9:15 9:35 9:55 10:15 10:35		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600	nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	$\begin{array}{c} 0.2 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{array}{c} 0.5 \\ 0.7 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.2 \\ 1.0 \\ 0.7 \end{array}$
	Equip Blank 11/09/10	10:55 7:50 8:00 9:00 9:20 9:40 10:00 10:20 10:40 11:00		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600 600	0.00 nm 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.1 1.1 0.8 0.3 0.4 0.4 0.3 0.2 0.2 nm	0.6 1.2 2.1 1.4 1.6 2.8 2.8 3.0 2.4 nm
GP-2-10'	Equip Blank 11/08/10	11:20 8:00 8:25 8:50 9:10 9:30 9:50 10:10 10:30 10:50		PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600	nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	nm 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2	nm 0.5 0.9 1.2 1.8 2.0 3.7 2.4 2.4 2.1
	Equip Blank 11/09/10	$7:50 \\ 8:00 \\ 8:55 \\ 9:15 \\ 9:35 \\ 9:55 \\ 10:15 \\ 10:35 \\ 10:55 \\ 11:15 \\ 11:15 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:51 \\ 10:55 \\ 11:15 \\ 10:55 \\ 10:55 \\ 11:15 \\ 10:55 \\ 11:15 \\ 10:55 \\ 10$	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure PharmaPure	600 600 600 600 600 600 600 600 600 600	nm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.1 0.8 0.4 0.3 0.3 0.3 0.3 0.3 0.3 nm nm	4.6 5.5 2.7 3.6 4.3 5.5 5.6 5.5 nm nm

TABLE 9: SOIL GAS FIELD SCREENING DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Soil Gas Probe ID	Date	Time	Notes	Peristaltic Pump Head Tubing	Pump Speed (rpms)	*Vacuum/ Pressure (in-H2O)	Background PID (ppmv)	PID (ppmv)
----------------------	------	------	-------	------------------------------------	-------------------------	----------------------------------	-----------------------------	---------------

NOTES:

rpms = revolutions per minute in-H2O = inches of water ppmv = parts per million by volume PID = photo-ionization detector Equip Blank = equipment blank Equipment Blanks were prepared by pumping ambient air into a new 1-liter tedlar bags using new pieces of PharmaPure tubing.

*A minus (-) sign to indicate vacuum and a plus (+) sign to indicate positive pressure

1) Significant moisture or water was present in 1-liter tedlar bag during field screening.

2) High humidity can cause a significant false positive PID response.

TABLE 10: AIR SPARGING SYSTEM DATA SUMMARY

245 8th Oakland, California

Date	Time	Notes	Hour ¹ Meter	Actual Runtime (hrs)	Actual Runtime (days)	System Uptime (%)	System Status (ON/OFF)	Active Sparge Well	Manifold Temp (°F)	Manifold Pressure (psig)	Flow Rate (acfh)	Flow ² Rate (acfm)	Flow ³ Rate (scfm)	Wellhead Pressure (psig)
11/08/10	11:20		12,133.16	0			ON	AS-1	60	5.0	120	2.0	2.2	5.0
11/09/10	11:15	а	12,157.36	24	1	100%	ON	AS-3	60	6.5	120	2.0	2.3	6.5
11/10/10	7:30		12,174.90	18	1	100%	ON	AS-3	58	6.5	100	1.7	1.9	6.5
11/11/10	6:30		12,198.80	24	1	100%	ON	AS-3	52	6.5	120	2.0	2.3	6.5
11/12/10	6:30		12,221.60	23	1	95%	ON	AS-3	50	6.5	120	2.0	2.3	6.5
11/16/10	6:30		12,320.12	99	4	100%	ON	AS-3	60	6.5	120	2.0	2.3	6.5
11/23/10	8:15		12,482.71	163	7	100%	ON	AS-3	50	6.5	120	2.0	2.3	6.5
12/10/10	10:45	b	12,542.71	60	3	15%	ON	AS-3/4	58	7.0	120	2.0	2.3	7.0
12/10/10	13:45		12,545.49	3	0	100%	ON	AS-4	64	5.0	120	2.0	2.2	5.0
12/30/10	7:30		12,810.13	265	11	55%	ON	AS-4	42	7.0	120	2.0	2.3	7.0
01/21/11	10:35	c, d, e	5,813.40	0.0	0.0		ON	AS-1/3	78	10.0	300	5.0	6.1	10/10
01/31/11	11:15		6,056.40	243	10	100%	ON	AS-1/3	78	9.0		6.0	7.1	9/9
02/04/11	10:15		6,151.00	95	4	89%	ON	AS-1/3	78	8.5		6.0	7.0	8.5/8.5
02/04/11	11:45	f	6,152.50	1.5	0.06	100%	ON	AS-2/4	82	10.0		6.0	7.2	10/10
02/18/11	10:30		6,442.00	289.5	12.06	86%	ON	AS-2/4	72	10.0		6.0	7.3	10/10
02/18/11	11:30	g	6,443.00	1.0	0.04	100%	ON	AS-1/3	68	9.0		6.0	7.2	9/9
		÷	· ·											

TABLE 10: AIR SPARGING SYSTEM DATA SUMMARY

245 8th Oakland, California

Date	Time Notes	es Hour ¹ Meter	Actual Runtime (hrs)	Actual Runtime (days)	System Uptime (%)	System Status (ON/OFF)	Active Sparge Well	Manifold Temp (°F)	Manifold Pressure (psig)	Flow Rate (acfh)	Flow ² Rate (acfm)	Flow ³ Rate (scfm)	Wellhead Pressure (psig)
------	------------	-------------------------------	----------------------------	-----------------------------	-------------------------	------------------------------	--------------------------	--------------------------	--------------------------------	------------------------	-------------------------------------	-------------------------------------	--------------------------------

NOTES:

psig = pounds per square inch

°F = degrees Fahrenheit

acfh = actual cubic feet per hour

acfm = actual cubic feet per minute

scfm = standard cubic feet per minute

Recording of HVDPE system and thermal oxidizer hour meter from 11/8/10 to 1/12/11
 Flow Rate (acfm) = Flow Rate (acfh) / 60 (min/hour)

3) Flow Rate (scfm) = Flow Rate (acfm) $\frac{1}{\sqrt{((14.7+Manifold Pressure)*530)}}(14.7*(530+Manifold Temp)))}$

a) AS-3 left on after testing on 11/08/10; air sparging system interlocked w/ HVDPE system.
b) Turned off AS-3; turned on AS-4
c) Turned off AS-4; turned on AS-1 & 3
d) Repaired hour meter for refurbished AS system
e) Increased flow rate from 2 acfm per well to 5 -6 acfm per well
f) Turned off AS-1 & 3; turned on AS-2 & 4.
g) Turned off AS-2 & 4; turned on AS-1 & 3.

APPENDIX A

ACPWA DRILLING PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/23/2010 By jamesy

Permit Numbers: W2010-0448 Permits Valid from 06/30/2010 to 07/01/2010

Application Id: Site Location: Project Start Date: Assigned Inspector:	1276823270246 245 8th Street 06/30/2010 Contact Vicky Hamlin at (510) 670-5443 or vicky	City of Project Site:Oakland Completion Date:07/01/2010 h@acpwa.org
Applicant:	AEI Consultants - Adrian Angel	Phone: 408-559-7600
Property Owner:	2500 Camino Diablo, Walnut Creek, CA 94597 Victor Lum 245 8th Street, Oakland, CA 94607	Phone: 510-832-9014
Client: Contact:	** same as Property Owner ** Adrian Angel	Phone: 408-559-7600
		Cell: 831-331-3547

Total Due	\$265.00
Receipt Number: WR2010-0216 Total Amo Payer Name : Peter McIntyre Paid By: V	
· · · · · · · · · · · · · · · · · · ·	

Works Requesting Permits:

Remediation Well Construction-Injection - 4 Wells Driller: PeneCore Drilling - Lic #: 906899 - Method: auger

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0448	06/23/2010	09/28/2010	AS-1	8.00 in.	2.00 in.	25.00 ft	30.00 ft
W2010- 0448	06/23/2010	09/28/2010	AS-2	8.00 in.	2.00 in.	25.00 ft	30.00 ft
W2010- 0448	06/23/2010	09/28/2010	AS-3	8.00 in.	2.00 in.	25.00 ft	30.00 ft
W2010- 0448	06/23/2010	09/28/2010	AS-4	8.00 in.	2.00 in.	25.00 ft	30.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

Work Total: \$265.00

Alameda County Public Works Agency - Water Resources Well Permit

4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

7. Minimum surface seal thickness is two inches of cement grout placed by tremie

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

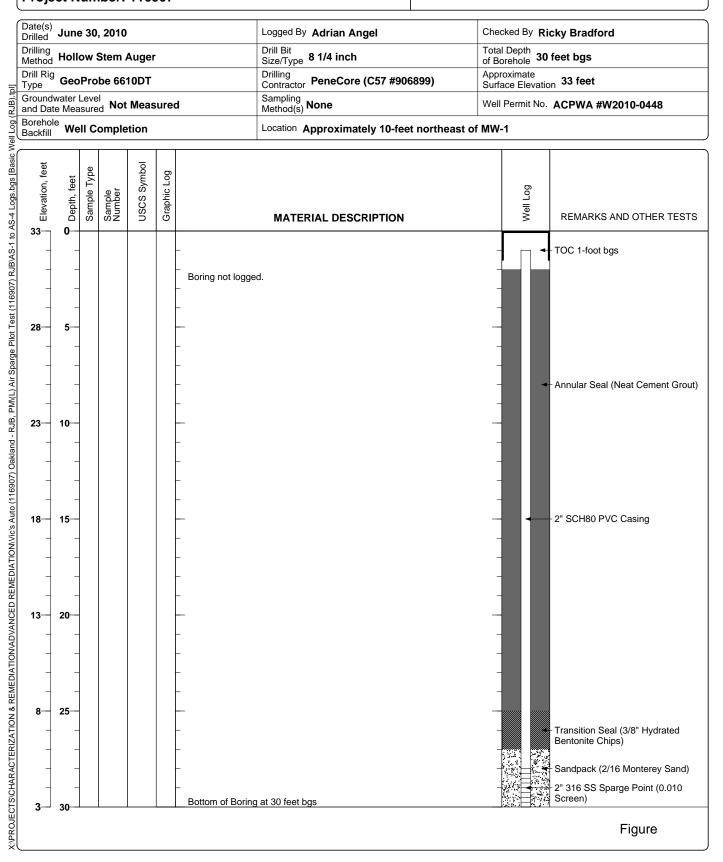
Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

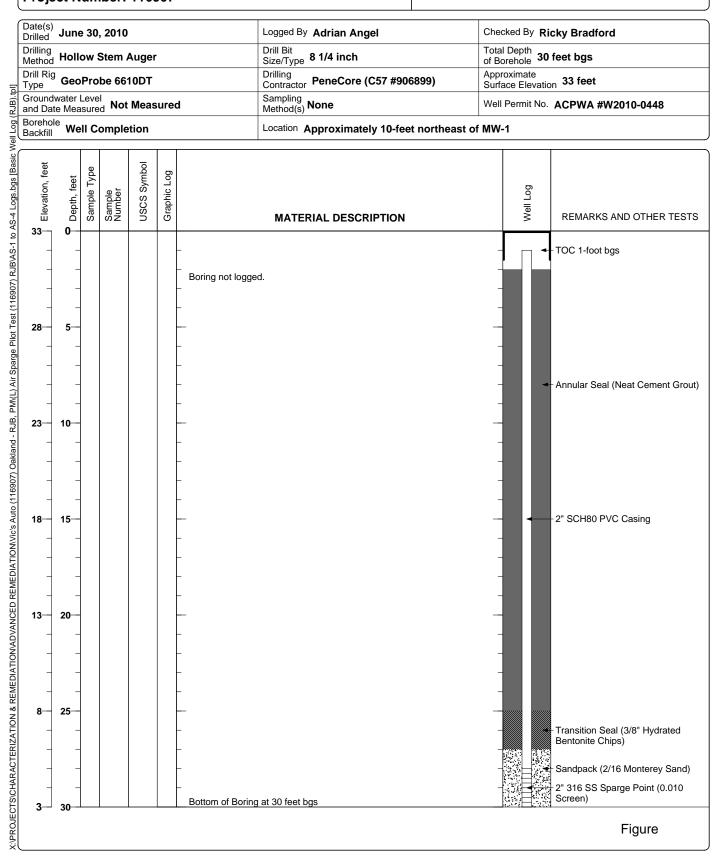
violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).


Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (<u>www.acgov.org/pwa/wells/index.shtml</u>) for links to additional forms.


APPENDIX B

AIR SPARGE WELL CONSTRUCTION LOGS

Log of Boring AS-1

Log of Boring AS-2

Log of Boring AS-3

ate(s) rilled	June		2010				Logged By Adrian Angel	Checked By Ri			
	Hod Hollow Stem Auger Size/Type 8 1/4 Inch of Borehole 3										
rill Rig ype	Geo		be 661	I ODT			Drilling Contractor PeneCore (C57 #906899)	Approximate Surface Elevation	Approximate Surface Elevation 33 feet Well Permit No. ACPWA #W2010-0448		
round nd Dat	lwater te Mea	Leve Isure	d Not	Meas	ured	ł	Sampling Method(s) None	Well Permit No.			
orehol ackfill	le 🛺		omple				Location Approximately 10-feet north	heast of MW-1			
Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TEST		
- - - 28 -	- - 5					- Boring not logge - - 	d.		- TOC 1-foot bgs		
- 23 - -	- - 10 - -					- - - -			- Annular Seal (Neat Cement Grou		
18 - - -	15 - -					- - -			- 2" SCH80 PVC Casing		
- 13 - - -	- 20 - - -					- - -					
8 - -	25 - -										
3	- 30—					Bottom of Boring	g at 30 feet bgs		2" 316 SS Sparge Point (0.010 Screen)		
5	30								Figure		

Log of Boring AS-4

Date(s) Drilled	June	e 30,	, 2010				Logged By Adrian Angel		cky Bradford			
Drilling Method Hollow Stem Auger Drill Bit Size/Type 8 1/4 inch Total Depth of Borehole 30 feet be												
Drill Rig Type	Geo		be 661				Drilling Contractor PeneCore (C57 #906899)	Approximate Surface Elevation	on 33 feet			
Ground	water te Mea	Leve asure	l d Not	Meas	ure	b	Sampling Method(s) None	Well Permit No.	Well Permit No. ACPWA #W2010-0448			
Borehol Backfill	le 🛺		omple				Location Approximately 10-feet north	east of MW-1				
Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log		MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TEST			
- - - 28 -	- - 5					 Boring not logge 	vd.		- TOC 1-foot bgs			
_ 23— _ _	- - 10 - -					-			-Annular Seal (Neat Cement Grou			
- 18 - -	- 15 - -					- 			-2" SCH80 PVC Casing			
- 13 - - -	- 20 - - -					- - -						
8 - - -	25 					-			2" 316 SS Sparge Point (0.010			
3—	30—					Bottom of Boring	g at 30 feet bgs		Screen)			
									Figure			

APPENDIX C

LABORATORY ANALYTICAL REPORTS w/ CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269		
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	11/03/10
2500 Camino Diablo, Ste. #200			Date Received:	11/03/10
2000 Cumilio Diaolo, 500. #200	Client Contact: Ricky Brad	dford	Date Reported:	11/09/10
Walnut Creek, CA 94597	Client P.O.: #WC082705		Date Completed:	11/09/10

WorkOrder: 1011089

November 09, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Telephone: (925) 252-9262 Fax: (925) 252-9269 EDF Required? Yes INO RUSH 24 HR 48 HR 72	Comments	
TURN AROUND TIME I	HR 5 DAY No Comments	
Telephone: (925) 252-9262 Fax: (925) 252-9269 EDF Required? Yes in o RUSH 24 HR 48 HR 72 Report To: Ricky Bradford Bill To: AEI Consultants Company: AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597 Analysis Request Other 0 PO# WC082705 E-Mail: rbradford@aeiconsultants.com (181b) southout Creek, CA 94597 OTHER (925) 746-6009 Fax: (925) 746-6009 AEI Project No. 116907 Project Noe: 16907 Project Name: Vic's Automotive Project Location: 245.8 th Street, Oakland, California 94607 SAMPLING suiting signature: NUT ON 808 / 609 Val 46, 100 / 700 Val 48, 1	No Comments	
Interview of the second	Comments	
Company: AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597 PO# WC082705 E-Mail: rbradford@aeiconsultants.com Telephone: (925) 746-6000 Fax: (925) 746-6009 AEI Project No. 116007 Project No. 116007 Project No. 116007 Project Name: Vic's Automotive Project No. 116007 Project Name: Vic's Automotive Project No. 116007 Project Name: Vic's Automotive Project No. 116007 Project Name: Vic's Automotive Project Name: Vic's Name: Vi		
PO# WC082705 E-Mail: rbradford@aeiconsultans.com Telephone: (925) 746-6000 FF-Mail: rbradford@aeiconsultans.com Telephone: (925) 746-6000 Project No. 116907 Project Name: Vic* Automotive Project Name: Vic* Automotive <th colsp<="" td=""><td>ıl data mv</td></th>	<td>ıl data mv</td>	ıl data mv
SAMPLE ID SAMPPING MATRI	ul data mv	
SAMPLE ID SAMPPING MATRI	ul d wv	
SAMPLE ID SAMPPING MATRI		
SAMPLE ID SAMPPING MATRI	pp	
SAMPLE ID SAMPPING MATRI	land	
SAMPLE ID SAMPPING MATRI	t ai	
MW-1S MW-1S M-10 OO 1 TB X X X I I I I I MW-2S MW-2S MW-2S DOO 1 TB X X I	ease report analytical d in both μg/L and ppmv	
MW-2S MW-2S DO 1 TB X X X I <th< td=""><td>*Please report analytical data in both μg/L and ppmv</td></th<>	*Please report analytical data in both μg/L and ppmv	
MW-2S MW-2S DO 1 TB X X X I <th< td=""><td>X</td></th<>	X	
MW-5S MW-5S O2O 1 TB X X X I <t< td=""><td>X</td></t<>	X	
MW-6S MW-6S 1 TB X X	X	
	x	
	X	
MW-105 MW-105 - 1050 1 TB - X X	X	
PRED PRED 1000 1 TB X X I <th< td=""><td>X</td></th<>	X	
	4.9	
ICE/t ^e 10 PRESERVATION	TALS OTHER	
Relinquished By: Date: Time: Received By: ICEN_IIII APPROPRIATE Relinquished By: Date: Time: Received By: DechLORINATED IN LAB PERSERVED IN LAB		

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	-9262					Work	Order	: 1011	089	Clier	ntCode: Al	CL				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	V	e Email	Hard	Сору	Thir	dParty	□ J-	flag
Report to: Ricky Bradford	4	Email:	rbradford@ae	iconsultants com			Bill to:	anette I	Brown			Req	uested	TAT:	5 0	days
Ricky BradfordEmail:rbradford@aeiconsultants.comAEI Consultantscc:2500 Camino Diablo, Ste. #200PO:#WC082705Walnut Creek, CA 94597ProjectNo:#116907; Vic's Automotive(925) 283-6000FAX(925) 944-2895							AE 25 Wa	El Consi 00 Can alnut Cr	ultants nino Dial reek, CA	blo, Ste. # 94597 Iltants.con			e Rece e Print		11/03/ 11/03/	
					Γ				Requ	ested Tes	sts (See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 (ô 7	8	9	10	11	12
1011089-001	MW-1S		Air	11/3/2010 10:00		Α	Α									
1011089-002	MW-2S		Air	11/3/2010 10:10		А										
1011089-003	MW-5S		Air	11/3/2010 10:20		А										
1011089-004	MW-6S		Air	11/3/2010 10:30		А										

11/3/2010 10:40

11/3/2010 11:00

А

А

Test Legend:

1011089-005

1011089-006

1	G-MBTEX_AIR	2
6		7
11		12

2	PREDF REPORT	
7		
12		

Air

Air

3	
8	

4	
٩	
9	

5		
10		

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

MW-7S

PRED

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	and Time Received:	11/3/2010	1:11:38 PM	
Project Name:	#116907; Vic's A	utomotive			Checl	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	1011089	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗌			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes		No 🗆			
Sampler's name r	noted on COC?		Yes		No 🗆			
		<u>Si</u>	ample	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Preser	vatio	n and Hold [·]	Time (HT	<u>) Information</u>		
All samples recei	ived within holding tim	e?	Yes		No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes		No			
Metal - pH accep	table upon receipt (p⊢	1<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An en Ouality		l, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
AEI Co	onsultants		Cl	ient Project ID: #	116907; Vie	•	Date Sample							
2500 C	amino Diablo, Ste. #2	200	A	utomotive			Date Receiv	ed: 11/03	3/10					
2000 0		-00	C	lient Contact: Ric	ky Bradford	l	Date Extract	ed: 11/03	3/10-11/	04/10				
Walnut	Creek, CA 94597		C	lient P.O.: #WC08	32705		Date Analyz	xed: 11/03	3/10-11/	04/10				
		asoline F	Range (C6-	·C12) Volatile Hyd				and MTBE ³						
	method: SW5030B				ical methods:		1	37.1			1011089			
Lab ID	ab ID Client ID Matrix		TPH(g) MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comment			
001A	MW-1S	Α	150	ND	1.1	8.2	1.0	6.0	1	104	d1			
002A	MW-2S	А	2300	ND<10	51	170	17	150	4	102	d1			
003A	MW-5S	А	830	ND<17	4.0	30	3.2	65	6.7	#	d1			
004A	MW-6S	А	1100	ND<25	6.0	38	15	79	10	#	d1			
005A	MW-7S	А	5000	ND<25	58	120	6.8	110	10	107	d1			
006A	PRED	А	910	ND<10	9.6	35	4.0	40	4	109	d1			
	ing Limit for DF =1;	А	25	2.5	0.25	0.25	0.25	0.25		μg/l				
	ans not detected at or e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg			
* water a	nd vapor samples are re	ported in	μg/L, soil/sl	udge/solid samples i	n mg/kg, wip	e samples in	µg/wipe, produc	t/oil/non-aque	eous liqu	id sample	s in mg/L.			
t cluttere	ed chromatogram; samp	ole peak c	oelutes with	surrogate peak.										
	ercent Recovery of Surr			- *										
	ution Factor	oguie ota	naura											

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	McCam		Analyti	cal, Inc.		Web: www.mccam	Pass Road, Pittsburg pbell.com E-mail: 877-252-9262 Fa	main@mccampbe				
AEI C	onsultants			Client Project II	D: #116907;	Vic's	Date Sampled: 11/03/10					
2500 (Camino Diablo, Ste	e. #200		Automotive			Date Receive	ed: 11/03/10	C			
2000 0				Client Contact:	Ricky Bradf	ord	Date Extract	ed: 11/03/1	0-11/04	4/10		
Walnu	t Creek, CA 9459	7		Client P.O.: #W	VC082705		Date Analyz	ed: 11/03/1	0-11/04	4/10		
	Ga	soline R	Range (C6-0	C12) Volatile Hyd	lrocarbons a	s Gasoline wit	th MTBE and 1	BTEX in ppn	ıv*			
	on method: SW5030E				Analytical method	1			1	k Order: % SS	1011089	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	Comments		
001A	MW-1S	А	43	ND	0.33	2.1	0.23	1.4	1	104	d1	
002A	MW-2S	А	650	ND<2.7	16	43	3.9	34	4	102	d1	
003A	MW-5S	А	230	ND<4.5	1.2	7.9	0.73	15	6.7	#	d1	
004A	MW-6S	А	320	ND<6.8	1.9	9.9	3.3	18	10	#	d1	
005A	MW-7S	А	1400	ND<6.8	18	31	1.5	24	10	107	d1	
006A	PRED	А	250	ND<2.7	3.0	9.1	0.92	9.0	4	109	d1	
	ppm (mg/l	L) to ppm	ıv (ul/L) con	version for TPH(g)	assumes the m	olecular weigh	t of gasoline to b	e equal to that	of hexa	ine.		
Report	ing Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1		uL/L	
ND mea	ans not detected at or the reporting limit	S	NA	NA	NA	NA	NA	NA	1	1	mg/Kg	
	samples are reported and all TCLP & SP				kg, wipe samp	les in µg/wipe,	product/oil/non-a	queous liquid sa	amples	in mg/L	, water	
# clutter	ed chromatogram; s	ample pe	ak coelutes v	vith surrogate peak								
	Percent Recovery of lution Factor	Surrogate	e Standard									
_ _ _ D												

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

OC for Angela Rydelius, Lab Manager

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		QC Matrix: Water						ID: 54192	WorkOrder 1011089			
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 1011087-0	005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	95.5	98.5	3.13	96.9	97.7	0.791	70 - 130	20	70 - 130	20
MTBE	ND	10	113	119	5.70	116	121	4.15	70 - 130	20	70 - 130	20
Benzene	ND	10	108	110	2.14	107	108	0.409	70 - 130	20	70 - 130	20
Toluene	ND	10	94.6	97.7	3.30	95.5	94.9	0.581	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.3	96.6	4.49	93.3	93.8	0.521	70 - 130	20	70 - 130	20
Xylenes	ND	30	106	111	4.37	110	108	1.40	70 - 130	20	70 - 130	20
%SS:	103	10	101	101	0	98	101	2.82	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:											

BATCH 54192 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011089-001A	11/03/10 10:00 AM	11/04/10	11/04/10 6:19 PM	1011089-002A	11/03/10 10:10 AM	11/03/10	11/03/10 8:07 PM
1011089-003A	11/03/10 10:20 AM	11/03/10	11/03/10 8:40 PM	1011089-004A	11/03/10 10:30 AM	11/03/10	11/03/10 9:13 PM
1011089-005A	11/03/10 10:40 AM	11/03/10	11/03/10 9:46 PM	1011089-006A	11/03/10 11:00 AM	11/03/10	11/03/10 10:18 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	11/08/10			
2500 Camino Diablo, Ste. #200			Date Received:	11/08/10			
2500 Camino Diaolo, 5tc. #200	Client Contact: Ricky Brad	Date Reported:	11/11/10				
Walnut Creek, CA 94597	Client P.O.: #WC082742	Date Completed:	11/10/10				

WorkOrder: 1011246

November 11, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 12 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			. 1	0	112	4	6																											
	McCAM	PBELI	ANAI	YI	TICA	LI	NC.						Τ						CE	IA	IN	0	F	CU	SI	ГО	D	YI	RE	C	OR	D		1
	1538 Will	ow Pass	Road, Pit	ttsbu	irg, C	4 94	565							T	UF	N	AR	10	UN	D 1	TIN	ME						1			1			Å
Telephone: (92			,		8,				(925) 25	2_02	269		EF	NE I			10	N	N					USH		24 1			48 1			72 HR	5 DAY
Report To: Rie			p	:II T	o: AE	IC		_		9 200		-07	+	EL	DF 1	keq	uire	-	An		-	-	-		PD	FF	cequ	lire		_	Yes her	<u> </u>	No Com	nonte
	El Consultants,	2500 Car						_		597			┢			_			TAIN .	ilys	13 1	cequ	Cot						\vdash		IIII		Com	
PO# WC08274	and the second	2000 041	inno Dia	,								-15		TBE		E&F/B&F)																		
			E	-Ma	ul: rbr	adfo	rd@a	eico	onsu	tatn	s.co	m		M		&F/)								310					2601			1	dat	>
Telephone: (9	25) 746-6000		F	ax:	(925)	746	-6099							8015C)/MTBE		20 E	18.1)							625 / 8270 / 8310					by EPA 8260B				100	bm
AEI Project N					et Nar		Vic's	Au	tom	otiv	e			+		c (55	ns (4		20)		X			827			_		by E				lvfi	dp
	on: 245 8th Stree			orni	ia 9460	07					_	_	-	2/8020		Grease (5520	arboi		602 / 8020)		PCB's ONLY			625			5010		st)	8260B			ans	30
Sampler Signa	ture:	omy								M	ETH	IOD	_	(602	0	S	droc				B's(560		EPA			9.2/		get li	EPA 8.			ta	I/Bn
		SAMI	PLINE	ers	ners		MAT	RL	x	PRE			D	as Gas	(8015)	n Oil	n Hy	0	EPA	0	0 PC	0 / 82	0		50		21/23		0 tar	by EI			Len	th
SAMPLE ID	FIELD POINT			of Containers	Type Containers									TPH a		Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA	EPA 608 / 8080	EPA 608 / 8080	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)		- (8010 target list)	Only 1			*Please renort analytical data	in both µg/L and ppmv
SAMPLEID	NAME	Date	Time	Con	ů	er		0.0	Sr 1			~		& 1	IS D	Petra	Petro	201/	0	608	608	624 /	625	s/P	-171	S N	(724		Cs-	E O			Ple	-=
				Jo :	lype	Water	Soil	Sludge	Other	Ice	HCI	HNO3	Other	BTEX &	TPH as Diesel	otal	otal	PA.	STE	PA	PA	PA.	PA	HY	AM	UF	,ead	RCI	HVOCs	MTBE				
MW-1S	MW-1S	11-8-10	0715	1	ТВ	-		x	-	-	-		-	x	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	\vdash			X
MW-2S	MW-2S		0720	1	TB			x	+		+	+	-	X			-	-					-				-			-		-	<u> </u>	x
MW-5S	MW-58	-+ -	0725	1	TB		-	x	-		+	+	-	X	-		-	-												-	$\left \right $	-	-	X
MW-6S	MW-6S		0730	-	TB		-	x	+		+	+	-	X	-	-	-	-			-	-				-				-	\vdash	-		x
MW-7S	MW-7S	+ -	0735	1	TB			x	+		+	+	-	X	-	-		+				-			_					-	$\left \right $			X
PRED	PRED		0710	1	TB		-	x	-			+	-	X	-	-		-		-					-		-			-		-		X
MW-1S	MW-1S	1.1-	1105	1	TB		_	x	+		-	+	-	X	-			+	-						-					-				X
MW-2S	MW-2S	· · ·	1110	1	TB			x				-	-	X	-	-		+		-	-		-							-			-	X
MW-5S	MW-5S	h 🗠	1115	1	TB		-	x	-		+	+	-	X		-		+																x
MW-6S	MW-6S		1120	1	TB		-	ĸ	-		+	+	-	X	-	-		+						-										X
MW-7S	MW-7S		1125	1	TB		-	x	+				-	x	-			+					_		<u>.</u>							\square		X
PRED	PRED	1	1100	1	TB		-	K					_	X																			-	X
Relinquished By	nGN	Date:	Time:	Rec	ceived B	y:	5	3	_				Τ		CE/	. /	U	1	2			(**			orr		THE		OAS	0	0&G	N	IETALS	OTHER
Relinquished By:	SUCCES. AA	Date:	Time: 15·31	Rec	eived B	y: le	wt	_	_					G	00	DC			TION			-	ł	APP	RO	PRI		E	/	_		_		
Relinquished By:		Date: 11/8/10	Time: 1600	Rec	cived B		in	/	2	/_	2	5	-						TED			B							LAI	8		-		

1534 Willow Pass Rd Pitteburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	: 10112	246	C	lientCo	de: Al	EL				
		WaterTrax	WriteOn	EDF	Γ	Excel		Fax		Email	[Hard	Сору	☐ Thir	dParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
	ants o Diablo, Ste. #200 .k, CA 94597	cc: PO: #	WC082742	iconsultants.com			AE 25 Wa	anette E El Consu 00 Cam alnut Cr rown@a	iltants iino Dia eek, CA	94597				e Rece e Print		11/08/ 11/08/	
									Requ	lested 1	Fests (S	See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1011246-001	MW-1S		Air	11/8/2010 7:15		Α	А					[1	
1011246-002	MW-2S (0720))	Air	11/8/2010 7:20		Α											
1011246-003	MW-5S (0725))	Air	11/8/2010 7:25		Α											
1011246-004	MW-6S (0730)		Air	11/8/2010 7:30		Α											
1011246-005	MW-7S (0735)		Air	11/8/2010 7:35		Α											
1011246-006	PRED (0710)		Air	11/8/2010 7:10		Α											
1011246-007	MW-1S (1105))	Air	11/8/2010 11:05		Α											
1011246-008	MW-2S (1110)		Air	11/8/2010 11:10		Α											
1011246-009	MW-5S (1115))	Air	11/8/2010 11:15		Α											
1011246-010	MW-6S (1120))	Air	11/8/2010 11:20		Α											

А

А

Test Legend:

1011246-011

1011246-012

1 G-MBTEX_AIR	2 PREDF REPORT
6	7
11	12

MW-7S (1125)

PRED (1100)

 _		
	3	
	8	
 -		

11/8/2010 11:25

11/8/2010 11:00

4	
9	

5			
10			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A contain testgroup.

Air

Air

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	11/8/2010	4:32:23 PM
Project Name:	#116907; Vic's A	utomotive			Checl	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	1011246	Matrix <u>Air</u>			Carrie	er: Derik Cartan (N	/AI Courier)	
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>Sa</u>	ample	Receipt Inf	ormatior	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Preser	vatio	n and Hold [·]	Time (HT	<u>) Information</u>		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	Is have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	necked for correct pres	servation?	Yes	\checkmark	No			
Metal - pH accep	otable upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An en Ouality		ical, Ir	<u>nc.</u>		: www.mccamp	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com		
AEI C	onsultants				0	‡116907; Vic	's	Date Sample	d: 11/08	8/10		
2500 (Camino Diablo, Ste. #2	200		Automo	otive			Date Receiv	ed: 11/08	8/10		
2500 (.00		Client C	Contact: Rid	cky Bradford		Date Extract	ed: 11/08	8/10-11/	09/10	
Walnu	t Creek, CA 94597			Client P	.O.: #WC0	82742		Date Analyz	ed: 11/08	8/10-11/	09/10	
	G	asoline H	Range ((C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	k		
<u> </u>	on method: SW5030B	1 1				tical methods: S					k Order:	1
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1S	Α	2	230	ND	1.4	9.9	1.1	7.2	1	97	d1
002A	MW-2S (0720)	3	500	ND<20	70	200	20	170	5	98	d1	
003A	MW-58 (0725)	1	100	ND<10	5.0	32	2.9	87	4	86	d1	
004A	MW-6S (0730)	1	500	ND<17	6.9	39	11	63	6.7	106	d1	
005A	MW-7S (0735)	А	7	400	ND<35	60	110	7.0	130	4	123	d1
006A	PRED (0710)	А	1	200	ND<10	13	42	4.5	51	4	109	d1
007A	MW-1S (1105)	А	2	600	ND<45	21	31	2.0	13	2	106	d1
008A	MW-2S (1110)	А	3	700	ND<35	77	210	22	180	4	120	d1
009A	MW-5S (1115)	А	1	100	ND<10	5.6	35	3.3	93	4	111	d1
010A	MW-6S (1120)	А	1	700	ND<10	7.5	42	11	71	4	89	d1
011A	MW-78 (1125)	А	7	100	ND<60	56	110	6.3	130	4	87	d1
012A	PRED (1100)	А	3	000	ND<30	25	54	4.8	51	4	115	d1
-	ting Limit for DF =1;	А		25	2.5	0.25	0.25	0.25	0.25		μg/L	_
	eans not detected at or ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

	McCam		Analyti alitv Counts"	cal, Inc.	, in the second s	Web: www.mccamj	Pass Road, Pittsbur obell.com E-mail 877-252-9262 Fa	: main@mccampbe							
AEI C	onsultants			Client Project ID: Automotive	: #116907;`	Vic's	Date Sample	ed: 11/08/10	0						
2500 0	Camino Diablo, Ste	e. #200		Automotive			Date Receiv	ed: 11/08/10	0						
				Client Contact:	Ricky Bradf	ord	Date Extract	ed: 11/08/1	0-11/09	9/10					
Walnu	t Creek, CA 9459	7		Client P.O.: #W	C082742	C082742 Date Analyzed: 11/08/10-11/09/10									
			ange (C6-0												
<u> </u>	on method: SW5030E	1				1	1	V 1	1		1				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments				
001A	MW-1S	А	65	ND	0.42	2.6	0.24	1.6	1	97	d1				
002A	MW-2S (0720)	А	970	ND<5.0	22	51	4.5	39	5	98	d1				
003A	MW-5S (0725)	А	300	ND<2.7	1.5	8.2	0.65	20	4	86	d1				
004A	MW-6S (0730)	А	430	ND<4.5	2.1	10	2.5	14	6.7	106	d1				
005A	MW-78 (0735)	А	2100	ND<10	19	29	1.6	29	4	123	d1				
006A	PRED (0710)	А	350	ND<2.7	4.1	11	1.0	11	4	109	d1				
007A	MW-18 (1105)	А	730	ND<10	6.6	8.1	0.45	3.0	2	106	d1				
008A	MW-28 (1110)	А	1000	ND<10	24	54	5.0	42	4	120	d1				
009A	MW-58 (1115)	А	310	ND<2.7	1.7	9.1	0.74	21	4	111	d1				
010A	MW-6S (1120)	А	490	ND<2.7	2.3	11	2.6	16	4	89	d1				
011A	MW-78 (1125)	А	2000	ND<15	17	28	1.4	29	4	87	d1				
012A	PRED (1100)	А	830	ND<10 7.7 14 1.1 12 4 115											

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air			QC Matriz	x: Water			Batch	ID: 54319		WorkC	Drder 10112	46
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					ŝ	Spiked San	nple ID	: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	N/A	60	N/A	N/A	N/A	125	118	5.46	N/A	N/A	70 - 130	20
MTBE	N/A	10	N/A	N/A	N/A	119	118	0.816	N/A	N/A	70 - 130	20
Benzene	N/A	10	N/A	N/A	N/A	94.6	102	7.20	N/A	N/A	70 - 130	20
Toluene	N/A	10	N/A	N/A	N/A	91.8	94.6	2.99	N/A	N/A	70 - 130	20
Ethylbenzene	N/A	10	N/A	N/A	N/A	90.8	93.6	3.01	N/A	N/A	70 - 130	20
Xylenes	N/A	30	N/A	N/A	N/A	91.8	93.9	2.27	N/A	N/A	70 - 130	20
%SS:	N/A	10	N/A	N/A	N/A	96	99	3.49	N/A	N/A	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			BATCH 54319 SL	IMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011246-001A	11/08/10 7:15 AM	11/09/10	11/09/10 7:54 PM	1011246-002A	11/08/10 7:20 AM	11/08/10	11/08/10 8:38 PM
1011246-003A	11/08/10 7:25 AM	11/08/10	11/08/10 9:10 PM	1011246-004A	11/08/10 7:30 AM	11/08/10	11/08/10 9:41 PM
1011246-005A	11/08/10 7:35 AM	11/08/10	11/08/10 10:13 PM	1011246-006A	11/08/10 7:10 AM	11/08/10	11/08/10 10:44 PM
1011246-007A	11/08/10 11:05 AM	11/08/10	11/08/10 11:15 PM	1011246-008A	11/08/10 11:10 AM	11/08/10	11/08/10 11:46 PM
1011246-009A	11/08/10 11:15 AM	11/09/10	11/09/10 12:17 AM	1011246-010A	11/08/10 11:20 AM	11/09/10	11/09/10 12:48 AM
1011246-011A	11/08/10 11:25 AM	11/09/10	11/09/10 1:19 AM	1011246-012A	11/08/10 11:00 AM	11/09/10	11/09/10 1:50 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Quality"		1534 Willow Pass F Web: www.mccampbell.c Telephone: 877-2	ccampbell.com	
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	11/09/10
2500 Camino Diablo, Ste. #200			Date Received:	11/10/10
2300 Camilio Diaolo, Stc. #200	Client Contact: Ricky Brac	Date Reported:	11/16/10	
Walnut Creek, CA 94597	Client P.O.: #WC082743	Date Completed:	11/16/10	

WorkOrder: 1011306

November 16, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 12 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAM	PBELI	ANAI	LYI	FICA	LI	NC											(CH	IA	IN	0	FO	CU	ST	o	DY	Z F	E	CC	DR	D		
	1538 Wille	ow Pass	Road, Pi	ttsbu	arg, C.	A 94	1565	5						Т	UF	N	AR	01	UN	DI	ΓIN	1E						ł.			ł.			
Telephone: (92			,		8,				(92	5) 2	52-0	0260	0					10	4	9				R	USH		24 H			18 H			2 HR	5 DAY
Report To: Ric			D	E III	o: AE	IC	_			5) 2		- 20.	_	EI	DF I	Req	uire		Ana					_	PD	FR	equ	ire	1?		Yes		No	ments
and the second se	I Consultants, 2	2500 Car								150	7		-	_			1		Alla	arys	15 1	equ	iest	-		-		-		Ou	lier		Com	ments
PO# WC08274	and a second	abou cai		010,	TT AIL	at c	ree	ny C	a	57	/		-	BE		Grease (5520 E&F/B&F)																		
			E	-Ma	il: rbr	adfo	rd(a	aeic	onsu	ltat	ins.c	om		LWV(&F/E								110					260E					1313
Telephone: (92	25) 746-6000				(925)	the state of the s	and the second	Concernance of the local division of the loc						8015C)/MTBE		0 E	Total Petroleum Hydrocarbons (418.1)							625 / 8270 / 8310					EPA 8260B					in both µg/L and ppmv
AEI Project No					ect Nar		Vic	'ssA	uton	noti	ive			+		(552	s (41		6					827(by EF				:	d pi
	on: 245 8th Stree			forni	ia 946	07							_	8020		case	hon		802		NLY			25/			(010)		t) b	8260B				and
Sampler Signa	ture: Ool		nga	_		_				_			_	(602/8020		& Gr	rocar		602 / 8020)		's 0	0		EPA 6			.2/6		et lis	A 82(g/L
		SAMI	PLING	2	ers		MA	TR	X		MET			Gas (TPH as Diesel (8015)		Hydi		PA		PCB's ONLY	EPA 624 / 8240 / 8260		y El			Lead (7240/7421/239.2/6010)		- (8010 target list)	EPA				h h
	FIELD			Containers	ain					T	T			H as	el (8	um	mm	010	Y.B	080	080	240	270	A's F	stals	als	7421		010	/ by				bot
SAMPLE ID	POINT			onta	On			-						HdT 3	Dies	etrole	strole	1/8	N	8/8	8/8	4/8	5/8	PN	7 M(Mc	240/			Only				in in
	NAME	Date	Time	of Co	Type Containers	Water	=	. ·	Other		5	HNO ₃	Other	BTEX &	H as	Total Petroleum Oil	al P	EPA 601 / 8010	BTEX ONLY (EPA	EPA 608 / 8080	EPA 6087 8080	A 62	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	() p	_	HVOCs	MTBE	ê		4	F .
				#	Ê.	×	Soil	Air		Ico	HCI	H	õ	BT	TP	Tot	Tot	8	BT	EP	EP	EP	EP	PA	CA	E	Lei	RCI	H	LW				
MW-1S	MW-1S	11-9-10	OLES	1	TB			х		Γ				х																				x
MW-2S	MW-2S		0700	1	TB			х		Γ				Х																				X
MW-5S	MW-5S		0705	1	TB			х		Γ				х					3															X
MW-6S	MW-6S		6710	1	TB			х		Г				х																				X
MW-7S	MW-7S		0715	1	TB			х		Γ				X																				X
PRED	PRED		0650	1	ТВ			X		Г				X																				X
MW-1S	MW-1S		1055	1	TB			X		T				X																				X
MW-2S	MW-2S		100	1	TB			x		Γ				х																				X
MW-5S	MW-5S		1105	1	TB			X		Γ				х	-																			X
MW-6S	MW-6S		1110	1	TB			X		Γ				X																				X
MW-7S	MW-7S		1115	1	TB			X		Γ				X																				X
PRED	PRED	4	1050	1	ТВ			X		Γ				X																				X
										T																								
Relinquished By)	Date:	Time:	Rec	eived B	y:	1	.0	6		-				_		_	-	-						-	_						_		_
Yem?	3190V	1-10-10	10:30	- 1	M	٢	VC	W	2						CE/	.0 []	1	A			1			DF	CER	37.A	TIO		DAS	0	&G	M	ETALS	OTHER
Relinquished By:	11	Date:	Time:	Rec	eived B	y:	1							0	GOO	DC	ON	DIT	101	N					SER				1	_		-		
0						Les 3 Pro-						F	IEA	D SI	PAC	EA	BS	ENT	-			ON	TA	INE	RS_	V								
Relinquished By:		Date:	Time:	Rec	eived B	y:								Ľ	DEC	HLO	DRI	NA'	TED	IN	LA	В		PE	RSI	RV	ED	IN	LAB	s		-		

1534 Willow Pass Rd Pittsburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	: 10113	06	(ClientC	ode: A	EL				
		WaterTrax	WriteOn	EDF	Γ	Excel		Fax	5	🖌 Email		Hard	lCopy	🗌 Thi	rdParty	🗌 J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
	ants lo Diablo, Ste. #200 kk, CA 94597	cc: PO: # ProjectNo: #	oradford@ae WC082743 116907; Vic's	iconsultants.com			AE 25 Wa	anette B El Consu 500 Cami alnut Cre rown@ae	ltants no Dia ek, CA	A 94597	7)		e Rece e Prin		11/10/ 11/10/	
									Req	uested	Tests	See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1011306-001	MW-1S 6:55		Air	11/9/2010 6:55		А	А										
1011306-002	MW-2S 7:00		Air	11/9/2010 7:00		А											
1011306-003	MW-5S 7:05		Air	11/9/2010 7:05		А											
1011306-004	MW-6S 7:10		Air	11/9/2010 7:10		А											
1011306-005	MW-7S 7:15		Air	11/9/2010 7:15		А											
1011306-006	PRED 6:50		Air	11/9/2010 6:50		А											
1011306-007	MW-1S 10:55	5	Air	11/9/2010 10:55		А											
1011306-008	MW-2S 11:00)	Air	11/9/2010 11:00		А											
1011306-009	MW-5S 11:05	5	Air	11/9/2010 11:05		А											
1011306-010	MW-6S 11:10)	Air	11/9/2010 11:10		Α											

А

А

Test Legend:

1011306-011

1011306-012

1	G-MBTEX_AIR	2	PREDF REPORT
6		7	
11		12	

MW-7S 11:15

PRED 10:50

	3	
_		
	8	

11/9/2010 11:15

11/9/2010 10:50

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A contain testgroup.

Air

Air

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	11/10/2010	0 11:01:45 AM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and re	eviewed by:	Melissa Valles
WorkOrder N°:	1011306	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		<u>S</u>	ample	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold 1	<u>ime (HT</u>) Information		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes	\checkmark	No 🗌			
Metal - pH accep	table upon receipt (p⊦	l<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbo	ell An en Ouality (cal, Iı	<u>ıc.</u>		: www.mccamp	ass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	-	bell.com							
AEI Co	onsultants				Project ID: #	116907; Vic	's	Date Sample	ed: 11/09	/10							
2500 C	amino Diablo, Ste. #2	200		Automo	otive			Date Receiv	ed: 11/10	/10							
2300 C		200		Client (Contact: Ric	ky Bradford		Date Extract	ed: 11/10)/10-11/	11/10						
Walnut	t Creek, CA 94597			Client F	Client P.O.: #WC082743 Date Analyzed: 11/10/10-11/11/10												
	G	asoline R	ange (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [;]	k							
1	n method: SW5030B	1			1	ical methods: S						1011306					
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments					
001A	MW-1S 6:55	Α	3	30	ND	3.1	10	0.97	8.2	1	91	d1					
002A	MW-2S 7:00	A 3500 ND<5.				73	200	22	180	5	99	d1					
003A	MW-58 7:05	А	1	100	ND<5.0	4.7	30	3.7	84	2	91	d1					
004A	MW-6S 7:10	А	1	800	ND<10	7.8	48	12	76	4	102	d1					
005A	MW-7S 7:15	А	7:	500	ND<45	67	120	6.5	130	6.7	90	d1					
006A	PRED 6:50	А	11	200	ND<10	13	38	3.6	45	2	97	d1					
007A	MW-1S 10:55	А	11	300	ND<35	7.4	13	0.93	8.8	2	90	d1					
008A	MW-2S 11:00	А	3	700	ND<35	79	220	24	200	4	88	d1					
009A	MW-5S 11:05	А	12	200	ND<5.0	6.3	35	4.6	110	2	91	d1					
010A	MW-6S 11:10	А	2	600	ND<35	8.9	47	11	68	4	86	d1					
011A	MW-7S 11:15	А	17	,000	ND<450	150	170	8.6	150	6.7	102	d1					
012A	PRED 10:50	А	2:	500	ND<60	20	43	4.1	46	4	97	d1					
	ing Limit for DF =1;	А		25	2.5	0.25	0.25	0.25	0.25		μg/I						
	ans not detected at or e the reporting limit	S	-	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Хg					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

	McCam		Analyti alitv Counts"	cal, Inc.	,	Web: www.mccam	Pass Road, Pittsbur pbell.com E-mail 877-252-9262 Fa	: main@mccampbe				
AEI C	onsultants			Client Project ID Automotive): #116907;	Vic's	Date Sample	ed: 11/09/1	0			
2500 0	Camino Diablo, Ste	e. #200		Automotive		Date Received: 11/10/10						
				Client Contact:	Ricky Bradf	cky Bradford Date Extracted: 11/10/10-11/11/10						
Walnu	t Creek, CA 9459	7		Client P.O.: #W	/C082743		Date Analyz	zed: 11/10/1	0-11/1	1/10		
			ange (C6-0	C12) Volatile Hyd				BTEX in ppn				
<u> </u>	on method: SW5030E		TPH(g)	A MTBE	nalytical methods Benzene	SW8021B/80		Vulanas	Wor DF	k Order: % SS	1011306	
Lab ID	Client ID	Matrix	TPH(g)	MIBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% 55	Comments	
001A	MW-1S 6:55	А	91	ND<5.0	0.95	2.6	0.22	1.9	1	91	d1	
002A	MW-2S 7:00	А	990	ND<5.0	22	51	5.0	40	5	99	d1	
003A	MW-5S 7:05	А	300	ND<1.4	1.4	7.8	0.84	19	2	91	d1	
004A	MW-6S 7:10	А	500	ND<2.7	2.4	12	2.8	17	4	102	d1	
005A	MW-7S 7:15	А	2100	ND<10	21	32	1.5	30	6.7	90	d1	
006A	PRED 6:50	А	330	ND<2.0	4.0	9.8	0.82	10	2	97	d1	
007A	MW-1S 10:55	А	360	ND<10	2.3	3.4	0.21	2.0	2	90	d1	
008A	MW-2S 11:00	А	1000	ND<10	24	57	5.5	45	4	88	d1	
009A	MW-5S 11:05	А	340	ND<1.4	1.9	9.2	1.0	24	2	91	d1	
010A	MW-6S 11:10	А	710	ND<10	2.7	12	2.4	15	4	86	d1	
011A	MW-7S 11:15	А	4700	ND<120	46	44	2.0	34	6.7	102	d1	
012A	PRED 10:50	А	700	ND<15	6.2	11	0.94	11	4	97	d1	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air			QC Matri	x: Water			Batch	ID: 54319		WorkOrder 1011306				
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
, analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex)	N/A	60	N/A	N/A	N/A	125	118	5.46	N/A	N/A	70 - 130	20		
MTBE	N/A	10	N/A	N/A	N/A	119	118	0.816	N/A	N/A	70 - 130	20		
Benzene	N/A	10	N/A	N/A	N/A	94.6	102	7.20	N/A	N/A	70 - 130	20		
Toluene	N/A	10	N/A	N/A	N/A	91.8	94.6	2.99	N/A	N/A	70 - 130	20		
Ethylbenzene	N/A	10	N/A	N/A	N/A	90.8	93.6	3.01	N/A	N/A	70 - 130	20		
Xylenes	N/A	30	N/A	N/A	N/A	91.8	93.9	2.27	N/A	N/A	70 - 130	20		
%SS:	N/A	10	N/A	N/A	N/A	96	99	3.49	N/A	N/A	70 - 130	20		
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 54319 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011306-001A	11/09/10 6:55 AM	11/10/10	11/10/10 7:42 PM	1011306-002A	11/09/10 7:00 AM	11/10/10	11/10/10 8:14 PM
1011306-003A	11/09/10 7:05 AM	11/10/10	11/10/10 8:46 PM	1011306-004A	11/09/10 7:10 AM	11/10/10	11/10/10 9:18 PM
1011306-005A	11/09/10 7:15 AM	11/10/10	11/10/10 9:50 PM	1011306-006A	11/09/10 6:50 AM	11/10/10	11/10/10 10:22 PM
1011306-007A	11/09/10 10:55 AM	11/10/10	11/10/10 10:53 PM	1011306-008A	11/09/10 11:00 AM	11/10/10	11/10/10 11:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 54351	WorkOrder 1011306				
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)		
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f)	N/A	60	N/A	N/A	N/A	96.3	103	6.95	N/A	N/A	70 - 130	20	
MTBE	N/A	10	N/A	N/A	N/A	119	121	2.28	N/A	N/A	70 - 130	20	
Benzene	N/A	10	N/A	N/A	N/A	107	112	4.55	N/A	N/A	70 - 130	20	
Toluene	N/A	10	N/A	N/A	N/A	95.5	100	5.03	N/A	N/A	70 - 130	20	
Ethylbenzene	N/A	10	N/A	N/A	N/A	94.4	97.4	3.12	N/A	N/A	70 - 130	20	
Xylenes	N/A	30	N/A	N/A	N/A	108	114	4.78	N/A	N/A	70 - 130	20	
%SS:	N/A	10	N/A	N/A	N/A	102	104	2.37	N/A	N/A	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

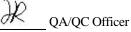
BATCH 54351 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011306-009A	11/09/10 11:05 AM	11/10/10	11/10/10 11:56 PM	1011306-010A	11/09/10 11:10 AM	11/11/10	11/11/10 12:27 AM
1011306-011A	11/09/10 11:15 AM	11/11/10	11/11/10 12:59 AM	1011306-012A	11/09/10 10:50 AM	11/11/10	11/11/10 1:30 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.


£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	11/16/10					
2500 Camino Diablo, Ste. #200			Date Received:	11/16/10					
2000 Cumino Diabio, 5tc. #200	Client Contact: Ricky Brad	Date Reported:	11/19/10						
Walnut Creek, CA 94597	Client P.O.: #WC082749		Date Completed:	11/17/10					

WorkOrder: 1011437

November 19, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAN	IPREL	101	-			N	-	-	-				Т	_		-		-	CI	IA	IN	0	F	CI	IS7	FO	D	VI	DF	C	DR	n		
															TI	TD	NI	AR							cu		IU	E		CE			V		
	1538 Wil	low Pass	Road, Pi	ttsbu	irg, C.	A 94	456	5								K		AR	0	UIN	D.	1 11			R	USH		24 1		÷.,	48 H	-	7	2 HR	5 DAY
Telephone: (92	25) 252-9262							Fax	: (9	25) 252	2-9	269		ED	FR	equ	aire	d?	à	Ye	s [io								Yes		No	0.0111
Report To: Ri	cký Bradford		B	ill T	o: AE	IC	ons	ulta	nts					Γ						An	alys	sis F	leq	uest	t						Ot			Com	ments.
Company: AH	I Consultants,	2500 Ca	mino Dia	blo,	Waln	ut C	ree	k, (CA	945	597				-	1	£																		22
PO# WC08274	<mark>19</mark>											_		- 6	118	4	B&													8					2
					il: <u>rbr</u>	and the second second			icon	sul	tatn	s.co	m	- 8	8015C)/MTBE		Grease (5520 E&F/B&F)	~							8310					8260B				-	UV UA
Telephone: (9					(925)										8015	-	201	118.1							20					EPA					pm
AEI Project N					ct Nai		Vic	'S /	Auto	om	otiv	e		1	+	1	c)	ns (4		20)		×			52			-							nd p
M. Contraction of the second s	on: 245 8th Stre	the second se	of the local division of the local divisiono			07				-		-	-		2/8020		ireas	arbo		/ 80		NI			625/			2010		st)	8260B				ana
Sampler Signa	ture:	ph		04	N	-				_	M	ET	IOD	-18	81	- 1 h	s c	droc		602		8's	60		EPA			9.2/		get li	A 8.			. 1	Ig/I
		VSAM	PLING	Suc	lers		MA	TF	ax				RVED		s Class	108	5	Hh		EPA	_	PC	1/82			00	1953	1/23) targ	by EPA				th p
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO ₃	DEEV & THIT	BIEA & IPH as	TPH as Diesel (8015)	I otal Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	HVOCs - (8010 target list) by	MTBE Only by			i de	"Friease report analytical data in both µg/L and ppmv
MW-1S	MW-1S	11-16-10	0820	1	TB			X						t	x	1			Ť											\vdash		\neg			X
MW-2S	MW-2S		0830	1	TB			X						1	X				1																X
MW-5S	MW-5S		0840	1	TB			X						1	x																			-	X
MW-6S	MW-6S		0850	1	TB			X						Ŀ	x		1																	*	X
MW-7S	MW-7S		0900		TB			X							x				1		24														X
PRED	PRED	-	0815	1	ТВ			X				1			x	-	+		+		-											1			X
																	-	_																	
									-		+	_		t	_			-	+													_	_		
									-			-					-	-	+													-	-		
Relinquished By:	gax	Date:	Time: 1115	1		n	u	a	-	Z.	~	5	-	Ī	IC	E/t°	N		A				_		PRE	SEF	RVA	TIC		OAS	0	&G	м	ETALS	OTHER
Relinquished By:	00	Date: Date:	Time: Time:		eived B										HI	EAD	SI	ONI PAC	E A	BS	ENT		- B_		CON	ROI	PRI	ATE	2	LAI	B				

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-92	.62					Work	Order:	1011	437	Cli	entCo	de: Al	EL				
		WaterTrax	WriteOr	n 🖌 EDF		Excel	[Fax	✓	Email	Γ	Hard	Сору	Thirc	dParty	🗌 J-	flag
Report to:							Bill to:						Req	uested [.]	TAT:	5 0	days
Ricky Bradford AEI Consultants 2500 Camino Dia Walnut Creek, C/ (925) 283-6000		ProjectNo:	rbradford@ae #WC082749 #116907; Vic'	eiconsultants.com s Automotive	1		AE 25 Wa	alnut Cr		94597				e Recei e Print		11/16/ 11/16/	
									Reque	ested Te	ests (S	See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1011437-001	MW-1S		Air	11/16/2010 8:20		А	Α										
1011437-002	MW-2S		Air	11/16/2010 8:30		А											
1011437-003	MW-5S		Air	11/16/2010 8:40		А											
1011437-004	MW-6S		Air	11/16/2010 8:50		А											
1011437-005	MW-7S		Air	11/16/2010 9:00		А											

11/16/2010 8:15

А

Test Legend:

1011437-006

1	G-MBTEX_AIR	[2	PRE
6			7	
11			12	

2	PREDF REPORT	
7		
12		

Air

3	
8	

4	
9	

5					
10					

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

PRED

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	11/16/2010) 11:22:24 AM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and re	eviewed by:	Maria Venegas
WorkOrder N°:	1011437	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chair</u>	n of Cu	istody (COC	C) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		<u>s</u>	ample	Receipt In	formation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold	Time (HT)) Information		
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	1<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An		cal, Ir	<u>nc.</u>	Web	: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	: main@mccamp	bell.com		
AEI C	onsultants					#116907; Vic		Date Sample				
2500 (Camino Diablo, Ste. #2	200		Automo	otive			Date Receiv	ed: 11/16	5/10		
2500 0		200		Client C	Contact: Rid	cky Bradford	l	Date Extract	ed: 11/10	5/10		
Walnu	t Creek, CA 94597			Client P	.O.: #WC0	82749		Date Analyz	zed: 11/16	5/10		
	G	asoline F	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [:]	*		
	on method: SW5030B				-	tical methods:	1	1	37.1	1		1011437
.ab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Commen
001A	MW-1S	А	4	20	ND	2.3	13	1.7	21	1	88	d1
002A	MW-2S	А	48	800	ND<25	110	280	31	250	5	87	d1
003A	MW-5S	А	14	400	ND<5.0	4.8	33	4.4	120	2	96	d1
004A	MW-6S	А	3	100	ND<10	11	63	11	97	4	101	d1
005A	MW-7S	А	10	,000	ND<35	92	180	24	420	6.7	106	d1
006A	PRED	А	10	500	ND<5.0	17	51	6.4	83	2	112	d1
						1						
-	ting Limit for $DF = 1$; eans not detected at or	A		25	2.5	0.25	0.25	0.25	0.25		μg/I	
abov	e the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	-
	and vapor samples are re	-		-	-	in mg/kg, wip	e samples in	µg/wipe, produc	t/oil/non-aque	eous liqu	id sample	s in mg/L.
clutter	ed chromatogram; samp	ole peak c	oelutes	with surro	gate peak.							
SS = I	Percent Recovery of Sur	rogate Sta	ndard									

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

	<u>McCam</u>		Analyti alitv Counts"	<u>cal, Inc.</u>		Web: www.mccam	Pass Road, Pittsburg pbell.com E-mail: 877-252-9262 Fa	main@mccampbe								
AEI Co	onsultants			Client Project ID	: #116907;	Vic's	Date Sample	d: 11/16/1	0							
2500 C	amino Diablo, St	e. #200		Automotive			Date Received: 11/16/10									
	······,···			Client Contact:	Ricky Bradf	ord	0									
Walnut	Creek, CA 9459	07		Client P.O.: #W	C082749		Date Analyz	ed: 11/16/1	0							
	Ga	asoline R	ange (C6-0	C12) Volatile Hyd	rocarbons as	s Gasoline wit	h MTBE and l	BTEX in ppr	nv*							
Extraction	n method: SW50301	B		Ai	nalytical methods	s: SW8021B/80	15Bm		Wor	k Order:	1011437					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments					
001A	MW-1S	А	120	ND	0.71	3.5	0.39	4.8	1	88	d1					
002A	MW-2S	А	1400	ND<5.0	33	73	7.0	56	5	87	d1					
003A	MW-5S	А	400	ND<1.4	1.5	8.6	0.99	28	2	96	d1					
004A	MW-6S	А	850	ND<2.7	3.4	16	2.6	22	4	101	d1					
005A	MW-7S	А	2800	ND<10	28	48	5.5	96	6.7	106	d1					
006A	PRED	А	460	ND<1.4	5.4	13	1.5	19	2	112	d1					
	((w (m1/L)	vancion for TDU()			t of accoling to 1	a aqual to the t	of b							
De d	ppm (mg/	L) to ppm	7.0	version for TPH(g)	0.077	0.065	0.057	0.057	or nexa	ine.	uL/L					

Reporting Limit for DF =1; uL/L А 7.0 0.68 0.077 0.065 0.057 0.057 1 ND means not detected at or S NA NA NA NA NA NA 1 mg/Kg above the reporting limit

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air			QC Matrix	k: Water			Batchl	D: 54442	WorkOrder 1011437						
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B				Spiked Sample ID: 1011430-003/								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1			
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH(btex ^f)	ND	60	96.1	95.8	0.324	97.3	95.6	1.79	70 - 130	20	70 - 130	20			
MTBE	ND	10	115	115	0	123	121	1.54	70 - 130	20	70 - 130	20			
Benzene	ND	10	110	109	0.856	111	107	3.66	70 - 130	20	70 - 130	20			
Toluene	ND	10	97.8	96.5	1.33	97	94.5	2.64	70 - 130	20	70 - 130	20			
Ethylbenzene	ND	10	96.1	96.2	0.171	96.6	93.7	3.11	70 - 130	20	70 - 130	20			
Xylenes	ND	30	110	109	0.851	110	106	3.03	70 - 130	20	70 - 130	20			
%SS:	100	10	103	100	2.94	99	98	0.663	70 - 130	20	70 - 130	20			
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following e	exceptions:						

BATCH 54442 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011437-001A	11/16/10 8:20 AM	11/16/10	11/16/10 7:24 PM	1011437-002A	11/16/10 8:30 AM	11/16/10	11/16/10 7:56 PM
1011437-003A	11/16/10 8:40 AM	11/16/10	11/16/10 8:29 PM	1011437-004A	11/16/10 8:50 AM	11/16/10	11/16/10 6:51 PM
1011437-005A	11/16/10 9:00 AM	11/16/10	11/16/10 9:01 PM	1011437-006A	11/16/10 8:15 AM	I 11/16/10	11/16/10 9:33 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.co Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	11/23/10					
2500 Camino Diablo, Ste. #200			Date Received:	11/23/10					
2500 Cumilio Diaolo, 5tc. #200	Client Contact: Ricky Brad	dford	Date Reported:	11/30/10					
Walnut Creek, CA 94597	Client P.O.: #WC082765		Date Completed:	11/29/10					

WorkOrder: 1011683

November 30, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: **#116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			101	16	8	3)	1																											
	McCAM	PBELI	L ANAI	YI	ICA	LI	NC													CH	IA	IN	0	F	CU	IS1	07	D	YF	E	C	OR	D		
	1538 Wille	ow Pass	Road, Pit	ttsbu	irg, C	4 94	56	5							Т	UF	۲N	AF	10	UN	D	ΓIN	ME									-			A
Telephone: (92									: (92	5)	252	2-92	269		EI)F I	Req	uir	ed?	X	Ye	s [lo	R	PD		24 I lequ			48 H	HR Yes		72 HR No	5 DAY
Report To: Rie	ky Bradford		В	ill T	o: AE	I Co	ons	ulta	nts										_	An	alys	is F	leq	uest							Ot	ther	-	Com	nents
and the state of the	I Consultants, 2	2500 Car	nino Dia	blo,	Walnu	it C	ree	k, (CA 9	45	97			_			(F)																	1.	
PO# WC08 2	765												-	-	8015C)/MTBE		Grease (5520 E&F/B&F)													B				2	
					il: <u>rbr</u>				cons	ult	atns	s.col	m	-	S		E&F	-							625 / 8270 / 8310					8260B				ę	AL
Telephone: (9					(925)		_	_		_				-	8015		520	118.							102					EPA				ieal	udo
AEI Project N					ct Nar		Vic	'S A	uto	mo	otive	e			+		e (5	ns (4		602 / 8020)	3	X			/ 82			-		by I	-				i pu
	on: 245 8th Stree			orn	a 9400	57	_								2/8020		ireas	arbo		/ 80		NI			625			6010		st)	8260B			an o	al
Sampler Signa	ture: Solv							-		Т	M	ETH	IOD	-	(602	6		droc		602		B's (09		EPA			9.2/		get li	EPA 8			tac	l/B1
		SAMI	LING	SI	lers		MA	TR	IX	\downarrow			RVE	2	Gas	801	0il	Hy		EPA		PC	/ 82		by I	50		1/23) tan	by EF			uo.	t t
	FIELD			of Containers	Type Containers										H as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)		HVOCs - (8010 target list) by				Plaace renort analytical data	in both µg/L and ppmv
SAMPLE ID	POINT	Dete	Time	ont	Co.	5			e.						BTEX & TPH	Die	etro	etro	10	INO	18/	18/	24/	52 /	/P/	1 N	S M	7240) - S	Only			Plag	Ξ.
	NAME	Date	Time	ofC	pe	Water	ii.	1	Sludge	Ouner	0	5	HNO3		EX	Has	tal P	tal P	A 60	EX	A 6(A 60	A 62	A 62	H's	-W	FT	ad (7	-	00	MTBE			1*	
				# 0	L,	X	Soil	Air	SIS	5	Ice	HCI	E	5	BT	Ē	To	To	EP	BT	EP	E	EP	EP	PA	CA	B	Le	RCI	H	W				
MW-1S	MW-1S	11-23-10			ТВ			X		T				Τ	х																				Х
MW-2S	MW-2S		0810	1	TB			Х							х																				X
MW-6S	MW-6S		0820	1	TB			X		Τ				Т	X																				х
MW-7S	MW-7S		0830	1	ТВ			X		T				Τ	х											1								•	Х
PRED	PRED		0840	1	TB			X		T				T	х																				X
AS	AS		0850	1	ТВ			X		T				T	X																				X
STACK	STACK	1	0900	1	ТВ			X		T				Т	х																				X
										1				T																					
-MW-18				1	ТВ			X		1				1	x																				X
MW-28				1	ТВ			х		Τ				Т	х																				х
-MW-6S-	MW-6S			1	ТВ			X		T				T	X																				X
MW-75	MW-7S			1	ТВ			X		T					х																				X
PRED	- PRED			1	TB			X		T				Τ	X																				x
Relinquished By		Date:	Time:	Rec	cived B	12	1					-		T	-			1													7		-		
Am 1	ongar	11-23-10	1106	1	1	e	10	U	2	-	0	1-	6	>		CR		Y	A				535		DPF	CET		TIC		OAS	0)&G	D	IETALS	OTHER
Relinquished By:	0.0	Date:	Time:	Rec	eived B	y:								1		CE/			DI	гю	N	/						ATI		-	_				
															Н	IEA	DS	PAG	CE /	ABS	ENT		-		CON	TA	INE	RS	/	-					
Relinquished By:		Date:	Time:	Rec	eived B	y:									D	DEC	HL	ORI	NA	TEI) IN	LA	B		PE	RS	ERV	/ED	IN	LAI	3		_		

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	: 1011	683	C	ClientCo	ode: A	EL				
		WaterTrax	WriteOn	EDF		Excel		Fax		🖊 Email		Hard	Сору	🗌 Thir	dParty	□ J-	flag
Report to:							Bill to:						Requ	uested	TAT:	5 (days
	ants o Diablo, Ste. #200 kk, CA 94597	CC: PO: ; ProjectNo: ;	rbradford@ae #WC082765 #116907; Vic's	iconsultants.com	I		AE 25 Wa	alnut Cr		A 94597				e Rece e Prini		11/23/ 11/23/	
									Requ	uested [·]	Tests (See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1011683-001	MW-1S		Air	11/23/2010 8:00		А	А										
1011683-002	MW-2S		Air	11/23/2010 8:10		Α											
1011683-003	MW-6S		Air	11/23/2010 8:20		Α											
1011683-004	MW-7S		Air	11/23/2010 8:30		А											
1011683-005	PRED		Air	11/23/2010 8:40		А											

А

А

11/23/2010 8:50

11/23/2010 9:00

Test Legend:

1011683-006

1011683-007

1	G-MBTEX_AIR	2	PREDF F
6		7	
11		12	

PREDF REPORT	ı [

Air

Air

3	
8	

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A contain testgroup.

AS

STACK

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	11/23/2010) 11:17:20 AM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and re	eviewed by:	Maria Venegas
WorkOrder N°:	1011683	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		<u>S</u>	ample	Receipt Infe	ormation	1		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold 1	<u> Time (HT</u>	<u>) Information</u>		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	necked for correct pre	servation?	Yes	\checkmark	No 🗌			
Metal - pH accep	otable upon receipt (p⊦	l<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell Ana en Ouality C		cal, I	<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269												
AEI Co	onsultants				Project ID: #	‡116907; Vio	e's	Date Sample	ed: 11/23	/10								
2500 C	amino Diablo, Ste. #2	200		Autom	otive			Date Receiv	ed: 11/23	/10								
2500 Ca	ammo Diaolo, Ste. #2	.00		Client	Contact: Rid	ky Bradford		Date Extract	ed: 11/24	/10								
Walnut	Creek, CA 94597			Client I	P.O.: #WC0	82765		Date Analyz	zed: 11/24	/10								
	Ga	asoline Ra	ange (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE*	¢								
Extraction	method: SW5030B				-	tical methods:	SW8021B/8015	1		Wor	k Order:	1011683						
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Commen						
001A	MW-1S	Α	7	20	ND<5.0	3.4	16	1.0	15	2	104	d1						
002A	MW-2S	А	40	500	ND<50	110	260	21	190	20	98	d1						
003A	MW-6S	А	37	700	ND<10	11	71	11	93	4	105	d1						
004A	MW-7S	А	12	,000	ND<110	120	180	11	210	20	105	d1						
005A	PRED	А	23	300	ND<15	24	59	72	4	98	d1							
006A	AS	А	Ν	١D	ND	0.30	0.77	ND	1.6	1	107							
007A	STACK	А	Ν	١D	ND	ND	0.31	ND	ND	1	108							
		A 23 A N																
Reporti	ing Limit for DF =1;	А	~	25	2.5	0.25	0.25	0.25	0.25		μg/I							
	ns not detected at or the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

	<u>McCam</u>		Analyti alitv Counts"	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269													
AEI C	onsultants			Client Project ID Automotive	: #116907;	Vic's	Date Sample	d: 11/23/1	0									
2500 0	Camino Diablo, St	e. #200		Automotive			Date Receiv	ed: 11/23/1	0									
				Client Contact:	Ricky Bradf	ford	Date Extract	ed: 11/24/1	0									
Walnu	t Creek, CA 9459	07		Client P.O.: #W	C082765		Date Analyz	ed: 11/24/1	0									
Extractio	Ga on method: SW5030		ange (C6-C	C12) Volatile Hyd	rocarbons as			BTEX in ppn		k Order:	1011683							
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments							
001A	MW-1S	А	200	ND<1.4	1.0	4.2	0.24	3.5	2	104	d1							
002A	MW-2S	А	1300	ND<14	35	69	4.7	42	20	98	d1							
003A	MW-6S	А	1000	ND<2.7	3.5	19	2.4	21	4	105 105	d1							
004A	MW-7S	А	3500	ND<30	38	48	2.4	47	20		d1							
005A	PRED	А	630	ND<5.0	7.3	15	1.2	16	4	98	d1							
006A	AS	Α	ND	ND	0.093	0.20	ND	0.37	1	107								
007A	STACK	Α	ND	ND	ND	0.080	ND	ND	1	108								

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

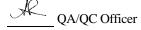
W.O. Sample Matrix: Air		(QC Matri	x: Water			Batch	ID: 54585		WorkOrder 1011683							
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B		Spiked Sample ID: 1011624 SD MS-MSD LCS LCSD LCS-LCSD Acc=tance Criteria (% Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD 99 6.40 94.6 95.5 0.953 70 - 130 20 70 - 130 13 3.03 123 125 1.66 70 - 130 20 70 - 130 07 1.44 110 113 2.85 70 - 130 20 70 - 130 5.4 1.15 96.3 99.5 3.32 70 - 130 20 70 - 130												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)						
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD					
TPH(btex ^f	ND	60	92.8	99	6.40	94.6	95.5	0.953	70 - 130	20	70 - 130	20					
MTBE	ND	10	116	113	3.03	123	125	1.66	70 - 130	20	70 - 130	20					
Benzene	ND	10	106	107	1.44	110	113	2.85	70 - 130	20	70 - 130	20					
Toluene	ND	10	95.3	96.4	1.15	96.3	99.5	3.32	70 - 130	20	70 - 130	20					
Ethylbenzene	ND	10	94.2	96.2	2.14	95.5	98.4	2.99	70 - 130	20	70 - 130	20					
Xylenes	ND	30	106	109	2.57	108	111	3.25	70 - 130	20	70 - 130	20					
%SS:	103	10	99	98	1.20	100	103	2.75	70 - 130	20	70 - 130	20					
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE																	

			<u>BATCH 54585 SL</u>	IMMARY_			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011683-001A	11/23/10 8:00 AM	11/24/10	11/24/10 1:59 PM	1011683-001A	11/23/10 8:00 AM	11/24/10	11/24/10 1:59 PM
1011683-002A	11/23/10 8:10 AM	11/24/10	11/24/10 12:29 PM	1011683-002A	11/23/10 8:10 AM	11/24/10	11/24/10 12:29 PM
1011683-003A	11/23/10 8:20 AM	11/24/10	11/24/10 1:02 PM	1011683-003A	11/23/10 8:20 AM	11/24/10	11/24/10 1:02 PM
1011683-004A	11/23/10 8:30 AM	11/24/10	11/24/10 1:35 PM	1011683-004A	11/23/10 8:30 AM	11/24/10	11/24/10 1:35 PM
1011683-005A	11/23/10 8:40 AM	11/24/10	11/24/10 2:08 PM	1011683-005A	11/23/10 8:40 AM	11/24/10	11/24/10 2:08 PM
1011683-006A	11/23/10 8:50 AM	11/24/10	11/24/10 5:53 PM	1011683-006A	11/23/10 8:50 AM	11/24/10	11/24/10 5:53 PM
1011683-007A	11/23/10 9:00 AM	11/24/10	11/24/10 6:24 PM	1011683-007A	11/23/10 9:00 AM	11/24/10	11/24/10 6:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.


£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"		Web: www.mccampbell.c	Road, Pittsburg, CA 945 com E-mail: main@mc 52-9262 Fax: 925-255	ccampbell.com				
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	12/10/10				
2500 Camino Diablo, Ste. #200			Date Received:	12/13/10				
2000 Cumilio Diaolo, 500. #200	Client Contact: Ricky Brad	Date Reported:	12/17/10					
Walnut Creek, CA 94597	Client P.O.: #WC082796		Date Completed: 12/14/10					

WorkOrder: 1012422

December 17, 2010

Dear Ricky:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **#116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0	12422
$\left(\right)$	(Leit

	McCAM	PBELL	ANAL	YT	ICA	LI	NC											(CH	[A]	IN	0	F (CU	ST	0	D١	Z R	E	CC	R	D		>			
	1538 Wille	ow Pass I	Road, Pit	tsbu	rg, CA	1 94	565							Т	UR	N.	AR	0	UN	DI	TIM	IE						-						F			
Telephone: (92									(92	5)	252-9	9269	9	EI	OF F	Real	uire	d?	16	Ye	s [N	0		PD		24 F				R Yes		2 HR No	5 D	AY		
Report To: Ric			В	ill T	o: AE	I Co	onsu	ltar	its			_							Ana										_	Ot			Com	ment	s		
	I Consultants,	2500 Can		_	and the second se			_		159	7					()																					
PO# WC08279														TBE		B&I													B					22			
			E	-Ma	il: <mark>rbr</mark>	adfo	rd@	aeio	const	ilta	tns.c	om		8015C)/MTBE		Grease (5520 E&F/B&F)	_							625 / 8270 / 8310					8260B		*Please report analytical data in both µg/L and ppmv						
Telephone: (925) 746-6048 Fax: (925) 746-6099										0150		20 E	18,1							10/8					EPA					pm							
AEI Project No. 116907 Project Name: Vic's Automotive										+		e (55	IS (4		50		2			827			-			~				Id p							
Project Location: 245 8th Street, Oakland, California 94607										_	/8020		reas	rbor		602 / 8020)		NL			625			010		st)	8260B				ana						
Sampler Signa	ture:		XX			_				-	MIC	THO	D	(602	_	& G	roca		602		3's C	9		EPA			9.2/6		ict li	A 8.				Ig/			
	\mathcal{O}	SAMI	PING	2	ers		MA	TR	IX		MET			Gas	(8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		by E			Lead (7240/7421/239.2/6010)		- (8010 target list) by	by EPA				case report analytical d in both μg/L and ppmv			
	FIELD			# of Containers	Type Containers					Т				H as		cum	eum	EPA 601 / 8010	X (I	EPA 608 / 8080	080	\$240	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	stals	742		8010	y b				bo			
SAMPLE ID	POINT			onta	On									AT 2	Die	etrol	etrol	1/8	INO	8/8	8/8	4/8	5/8	/ PN	7 M	5 Me	240) - s	Only				ii lea			
	NAME	Date	Time	f C	pe (Water	=	-	Sludge		. 5	HNO ₃	Other	BTEX & TPH	TPH as Diesel	alP	al P	A 60	EX	A 60	A 60	A 62	A 62	H's	I-W	LUFT 5 Metals	() pe		HVOCs	MTBE			3	k			
				# 0	Ty	M	Soil	Air	S	5	HCI	E	õ	BT	4L	To	To	E	BT	EP	B		E	PA	C	EL	Le	RCI	H	M							
MW-1S	MW-1S	12-10-1	1320	1	TB			х		t				х																				Х			
MW-2S	MW-2S		1325	1	TB			х		Т				х																				х			
MW-5S	MW-5S		1330		TB			X		T				X																				х			
MW-6S	MW-6S		1335		ТВ			X		t				X																				х			
MW-7S	MW-7S		1340		TB			X		T				X																				х			
PRED	PRED	4	1315	1	TB			х		T				X																				Х			
		-								T																											
										t																											
										T																											
										T																											
										T																											
										T																											
										1																											
Relinquished By:		Date:	Time:	Ree	ceived/E	By:	1	1	-	2/	2	_							-					-			-	-	_			_		7			
Jan 2466 12.13.10 1346 the Val									ICE	40								DDF	CE	DV.	TI		OAS	0)&G	N	METALS	OT	HER								
Relinquished By: Date: Time: Received By:							ICE. GOO		CON	DI	тю	N					RO			_		_					-										
															HEA	DS	PA	CE	ABS	EN				CON	NTA	INI	RS		-								
Relinquished By:		Date:	Time:	Re	ceived I	By:									DEC	THL	OR	INA	TE	D IN	LA	B		_ PI	ERS	ER	VED	IN	LA	В		_					

1534 Willow Pass Rd Pitteburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9	9262					Work	Order	: 1012	422	Clien	tCode: A	EL				
		WaterTrax	WriteOr	EDF		Excel	l	Fax		Email	Hard	Сору	Third	lParty	∐J-f	flag
Report to: Ricky Bradford		Email: I	rbradford@ae	eiconsultants.com				anette l				Req	uested ⁻	TAT:	5 (days
AEI Consultanta 2500 Camino E Walnut Creek, ((925) 283-6000	Diablo, Ste. #200		#WC082796 #116907; Vic'	s Automotive	AEI Consultants 2500 Camino Diablo, Ste. # Walnut Creek, CA 94597 jbrown@aeiconsultants.cor					4597		0 Date Received: Date Printed:			12/13/ 12/17/	
									Reque	sted Test	ts (See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	56	7	8	9	10	11	12
1012422-001	MW-1S		Air	12/10/2010 13:20		Α	А									
1012422-002	MW-2S		Air	12/10/2010 13:25		А										
1012422-003	MW-5S		Air	12/10/2010 13:30		А										
1012422-004	MW-6S		Air	12/10/2010 13:35		А										

12/10/2010 13:40

12/10/2010 13:15

А

А

Test Legend:

1012422-005

1012422-006

1	G-MBTEX_AIR	2	Р
6		7	
11		12	

2	PREDF REPORT	
7		
12		

Air

Air

3	
8	

4	
-	
9	

5				
10				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

MW-7S

PRED

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	12/13/2010	1:43:27 PM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	1012422	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chair</u>	n of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes		No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ient on COC?	Yes		No 🗆			
Sampler's name i	noted on COC?		Yes		No 🗆			
		<u>S</u>	ample	Receipt Inf	ormatior	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	rvatio	n and Hold 1	<u>Гіте (HT</u>) Information		
All samples recei	ived within holding tim	e?	Yes		No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes		No 🗌			
Metal - pH accep	table upon receipt (pH	l<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbo	ell An en Ouality		cal, Ir	<u>nc.</u>	Web	: www.mccamp	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com			
AEI C	Consultants				•	#116907; Vic	c's	Date Sample	d: 12/10)/10			
2500 (Camino Diablo, Ste. #2	200		Automo	otive			Date Received: 12/13/10					
2500 0		200		Client C	Contact: Rid	icky Bradford Date Extracted: 12/13/10							
Walnu	tt Creek, CA 94597			Client P	.O.: #WC0	82796		Date Analyz	ed: 12/13	8/10			
Extractio	Gron method: SW5030B	asoline F	Range (C6-C12)	•	drocarbons		e with BTEX a	nd MTBE*		k Order:	1012422	
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-1S	А	4	00	ND	3.0	15	1.6	13	1	108	d1	
002A	MW-2S	А	5	200	ND<25	100	250	25	250	4	114	d1	
003A	MW-5S	А	1	100	ND<10	7.4	35	3.6	100	4	106	d1	
004A	MW-6S	А	2	100	ND<17	15	69	23	130	6.7	100	d1	
005A	MW-7S	А	9	800	ND<90	140	180	15	190	4	102	d1	
006A	PRED	А	1	300	ND<10	15	39	4.7	51	4	103	d1	
	rting Limit for DF =1;	А		25	2.5	0.25	0.25	0.25	0.25		μg/I		
	eans not detected at or ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/Kg		
	and vapor samples are re red chromatogram; samp	-		-	-	in mg/kg, wip	e samples in	µg/wipe, produc	t/oil/non-aque	eous liqu	id sample	s in mg/L.	

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

-			ality Counts"	<u>cal, Inc.</u>			pbell.com E-mail: 877-252-9262 Fa		ll.com		
AEI Co	nsultants			Client Project ID	: #116907;	Vic's	Date Sample	d: 12/10/1	0		
2500 Ca	amino Diablo, S	te. #200		Automotive			Date Receive	ed: 12/13/1	0		
2000 00				Client Contact:	Ricky Bradf	ord	Date Extract	ed: 12/13/1	0		
Walnut	Creek, CA 9459	97		Client P.O.: #W	C082796		Date Analyzed: 12/13/10				
	G	asoline R	ange (C6-0	C12) Volatile Hyd	lrocarbons as	s Gasoline wit	th MTBE and l	BTEX in ppn	nv*		
Extraction	method: SW5030	B		A	nalytical methods	s: SW8021B/80	015Bm		Wor	k Order:	1012422
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1S	А	110	ND	0.92	3.9	0.37	3.0	1	108	d1
002A	MW-2S	А	1500	ND<10	31	66	5.6	57	4	114	d1
003A	MW-5S	А	310	ND<2.7	2.3	9.2	0.81	23	4	106	d1
004A	MW-6S	А	580	ND<4.5	4.5	18	5.3	29	6.7	100	d1
005A	MW-7S	А	2700	ND<25	42	46	3.3	44	4	102	d1
006A	PRED	А	350	ND<2.7	4.7	10	1.1	12	4	103	d1
		_									
	,	/I) to marrie	y (u1/L) as a	version for TDU(-)	accumac the	ologular wei-t-	t of gogoling to b	a aqual to the	ofbor-		
	ppm (mg,	L) to ppm	7 0	version for TPH(g)	assumes the m	olecular weigh	t of gasoline to b	0.057	of hexa	ne.	ш./Г

above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L

* vapor samples are reported in µL/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 54997	WorkOrder 1012422			
EPA Method SW8021B/8015Bm	Extrac	straction SW5030B					Spiked Sample ID: 1012413				: 1012413-0	01A
Analyte	Sample	Sample Spiked MS MSD MS-MSI				LCS	LCSD	D LCS-LCSD	Acceptance Criteria (%)			
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	98.4	94	4.64	96.4	88.3	8.74	70 - 130	20	70 - 130	20
MTBE	ND	10	103	110	6.80	110	112	1.42	70 - 130	20	70 - 130	20
Benzene	ND	10	101	105	4.16	108	104	3.25	70 - 130	20	70 - 130	20
Toluene	ND	10	92.9	95.3	2.61	97.8	94	3.96	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	89.7	94.2	4.84	94.3	93.5	0.842	70 - 130	20	70 - 130	20
Xylenes	ND	30	103	107	3.64	108	106	1.89	70 - 130	20	70 - 130	20
%SS:	98	10	99	102	3.34	108	103	4.36	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 54997 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012422-001A	12/10/10 1:20 PM	1 12/13/10	12/13/10 6:22 PM	1012422-002A	12/10/10 1:25 PM	12/13/10	12/13/10 6:55 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air	W.O. Sample Matrix: Air QC Matrix: Water						Batch	ID: 55002		WorkC	Order 10124	22	
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 1012417-0	02A	
Analyte	Sample Spiked MS MSD MS-MSD					LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)				
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex [£]	ND	60	97.6	98.1	0.504	94.5	98.4	4.02	70 - 130	20	70 - 130	20	
MTBE	ND	10	101	104	3.01	105	104	0.595	70 - 130	20	70 - 130	20	
Benzene	ND	10	93.4	97.1	3.91	98	97.8	0.141	70 - 130	20	70 - 130	20	
Toluene	ND	10	94.3	97.7	3.55	98.2	98.5	0.311	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	94	96.9	3.01	96.8	97.8	1.02	70 - 130	20	70 - 130	20	
Xylenes	ND	30	97	99.6	2.64	99.4	101	1.31	70 - 130	20	70 - 130	20	
%SS:	97	10	96	96	0	98	97	0.406	70 - 130	20	70 - 130	20	
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

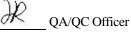
BATCH 55002 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012422-003A	12/10/10 1:30 PM	12/13/10	12/13/10 7:28 PM	1012422-004A	12/10/10 1:35 PM	12/13/10	12/13/10 8:00 PM
1012422-005A	12/10/10 1:40 PM	12/13/10	12/13/10 8:33 PM	1012422-006A	12/10/10 1:15 PM	12/13/10	12/13/10 9:05 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.


£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants	Client Project ID: #116907;	Vic's Automotive	Date Sampled:	12/30/10				
2500 Camino Diablo, Ste. #200			Date Received:	12/30/10				
2000 Cumilio Diaolo, 510. #200	Client Contact: Ricky Brad	Date Reported:	01/05/11					
Walnut Creek, CA 94597	Client P.O.: #WC082833		Date Completed:	01/03/11				

WorkOrder: 1012943

January 05, 2011

Dear Ricky:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																											10	012	a	4	3					
	McCAM	PBELI	ANA	YI	ICA	LI	NC							Т						CH	IA	IN	0	F	CU	ST	0	D	YI	RE	C	DR	D			
	1538 Wille	w Pass l	Road, Pi	ttshu	rg. C	4 94	1565	5							T	UF	N	AR																		۱ I
T.I		,	ttonu, i i	1004	1, 5, 0,				. 10	25)	251		160													USH		24 1			48 H			2 HR	5 D.	AY
Telephone: (92	-								: (9)	43)	434	6-91	209	4	EI	DFI	Req	uire	ed?		-	a second second	-	-		PD	FR	lequ	uire	d?	-	Yes	_	No		_
Report To: Ric	the second se	1500 C			o: AE					4.5	0.7			\rightarrow	_			_	-	Ana	ilys	is R	equ	iest	-		_	-	_	-	Ot	her	_	Con	ment	s
Company: AE PO#WC082833	I Consultants, 2	And the second se	nino Dia T0600			IT C	ree	к, С	A	45	91			-	BE		&F)										7.								82	
PO# WC08285.	G	obai iD:			il: rbr	adfo	rda	laai	con	mlt	atne	0.00		-	EW		F/B								10					8260B					ata	
Telephone: (92	25) 746-6000				(925)				com	suite		neu			8015C)/MTBE		Grease (5520 E&F/B&F)	E							/ 8310					A 82					ppmv	
AEI Project No					ct Nar				uto	mo	tive	e	_		+ 80		552((418		-					270					EPA					pp	
	on: 245 8th Stree	t, Oakla													2/8020		ase (oons		8020		ILY			5/8			(î)) by	OB				and	
Sampler Signa			IGAN												02/8		Gre	ocart		02/		NO S	_		A 62			2/60		list	8260B				La	
	()	SAME	PLING		LS		MA	TR	IX	Т			HOE		ias (6	15)	bil &	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		PAH's / PNA's by EPA 625 / 8270 /			Lead (7240/7421/239.2/6010)		HVOCs - (8010 target list)	by EPA				*Please report analytical data in both µg/L and ppmv	
	FIELD			ners	aine					ť	FRE	SEI	RVI	50	as 0	31 (80	m	m	10	9	80	80 P	40/	20	's by	als	Ils	421/		10					e re	
SAMPLE ID	POINT			Containers	Type Containers										HdT	TPH as Diesel (8015)	Total Petroleum Oil	Inole	EPA 601 / 8010	SI	EPA 608 / 8080	/ 80	/ 82	EPA 625 / 8270	PNA	CAM-17 Metals	LUFT 5 Metals	40/7		- (8)	Only				in l	
	NAME	Date	Time	C	e C	ter	_		dge	ler		_	°	ler	BTEX &	as I	I Pet	I Pet	601	0 X	608	608	624	625	l's l	11-IV	T5	1 (72		SC					4	
				fo #	Typ	Water	Soil	Air	Sludge	Other	Ice	HCI	HN03	Other	BTE	HAT	Tota	Tota	EPA	BTE	EPA	EPA	EPA	EPA	PAF	CAD	LUF	Leak	RCI	HVC	MTBE					
PRED	PRED	12-30-10	0800	1	ТВ			x		+	1	1		+	X	-																			X	-
STACK	STACK	12-30-10	0745	1	ТВ			X		1				1	X																				х	
										1		+		1																						
								1		+	+	+		+																				•		
								+	+	+	+	+	-	+			-		-	-					_		-	-			-		-			_
				-				-	-	+	+	+	+	+					-	-		-								-			-			-
				-			-	-	-	+	+	+	+	+	_	_	-	-	-	-		-	-				-			-	-		-	-		-
								-	-	+	+	+	+	+	_	_	-	_	_	-	_	_	-		_	_		-		-			_			_
								_	_	+	_	_	_	-	_		_	_	_	_	_	_														_
							1	_		4	_	_	_	4						_	_		_													_
																										6							_			
										Τ																										
										T				1					-																	
Relinquished By:		Date:	Time:	Rec	eived B	y	0			1	Q	R		+					_	-		-	-				_									
A)mrz	nom	12-30-10	1102		J	1-	2		Ac	~		-				0.0		No							-	one		1010		OAS	0	&G	M	ETALS	OTE	IER
Relinquished By:	<i>y</i> 0	Date:	Time:	Rec	cived B	y:										CE/				101	N	V						ATI	_	1						-
0											_					IEA						Γ	-		ON	TAI	INE	RS		v						
Relinquished By:		Date:	Time:	Rec	eived B	y:									D	DEC	HLO	ORI	NA	TED	IN	LA	B		PI	RSI	ERV	VED	IN	LA	B					

.

1534 Willow Pass Rd Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	rder: 101294	3 Client	Code: AEL		
	WaterTrax	WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Rec	quested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeico	onsultants.com		Jeanette Bro	own			
AEI Consultants	CC:				AEI Consult	ants	-		
2500 Camino Diablo, Ste. #200	PO:	#WC082833			2500 Camin	no Diablo, Ste. #20	DO Da	te Received:	12/30/2010
Walnut Creek, CA 94597	ProjectNo:	#116907; Vic's A	utomotive		Walnut Cree	ek, CA 94597	Da	te Printed:	12/30/2010
(925) 283-6000 FAX (925) 944-2895					jbrown@aei	iconsultants.com			

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
·														0		
1012943-001	PRED	Air	12/30/2010 8:00		А	Α										
1012943-002	STACK	Air	12/30/2010 7:45		А											

Test Legend:

1	G-MBTEX_AIR] [
6] [
11] [1

2	PREDF REPORT
7	
12	

3		
8		

4	1
9]

5	
10	

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	12/30/2010) 11:21:39 AM
Project Name:	#116907; Vic's A	utomotive			Check	list completed and re	eviewed by:	Melissa Valles
WorkOrder N°:	1012943	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Cha</u>	in of Cu	stody (CO	<u>C) Informa</u>	ition		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
			<u>Sample</u>	Receipt In	formation	l		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Pres	ervatio	n and Hold	Time (HT)) Information		
All samples recei	ived within holding tim	le?	Yes	\checkmark	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	1<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269											
AEI C	onsultants		Client F Automo	-	#116907; Vic	c's	Date Sampled: 12/30/10						
2500 0	Camino Diablo, Ste. #2			Date Received: 12/30/10									
2000 0				Client C	Contact: Rid	cky Bradford	l	Date Extracted: 12/30/10					
Walnu	t Creek, CA 94597			Client P	P.O.: #WC0	82833		Date Analyz	ed: 12/30)/10			
	Ga	asoline I	Range (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [*]	k			
Extraction method: SW5030B					-	tical methods:	1	1			Work Order: 1012943		
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	PRED	А	2	230	ND	6.7	9.9	1.5	8.9	1	116	d1	
002A	STACK	А	1	ND	ND	0.72	ND	ND	ND	1	108		
-	ting Limit for DF =1;	А		25	2.5	0.25	0.25	0.25	0.25	μg/L			
	eans not detected at or ve the reporting limit	S	1	1.0 0.05 0.005 0.005 0.005 0.005				0.005		mg/k	Kg		
	and vapor samples are re	ported in	μg/L, so	oil/sludge/s	solid samples i	in mg/kg, wip	e samples in	µg/wipe, produc	t/oil/non-aque	ous liqu	id sample	s in mg/L.	
# clutte	red chromatogram; samp	ole peak c	oelutes	with surro	gate peak.								
	Percent Recovery of Surrillution Factor	rogate Sta	ndard										
+The fo	llowing descriptions of	the TPH	chromat	ogram are	e cursory in na	ature and McC	ampbell Ana	alytical is not re	sponsible for	their in	terpretatio	on:	
d1) wea	kly modified or unmodif	ied gasoli	ne is sig	nificant									

Angela Rydelius, Lab Manager

	McCam		Analyti ality Counts"	cal, Inc.	,	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEIC	Consultants			Client Project I	D: #116907;								
2500	Camino Diablo, Ste	» #200		Automotive		Date Receiv	Date Received: 12/30/10						
25000		π200		Client Contact	: Ricky Bradf	ord	Date Extract	ed: 12/30/1	0				
Walnu	ut Creek, CA 9459	7		Client P.O.: #	WC082833		Date Analyz	Date Analyzed: 12/30/10					
	Ga	soline F	Range (C6-0	C12) Volatile Hy	drocarbons as	s Gasoline wi	ith MTBE and 1	BTEX in ppn	ıv*				
Extraction method: SW5030B				Analytical methods			1		k Order:	1012943			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	PRED	А	64	ND	2.1	2.6	0.34	2.0	1	116	d1		
002A	STACK	А	ND	ND	0.22	ND	ND	ND	1	108			
<u> </u>	<u>.</u>			I	<u> </u>	<u>.</u>		<u>. </u>		•	<u>. </u>		
	ppm (mg/l	L) to ppn	w (ul/L) con	version for TPH(g) assumes the m	olecular weigh	nt of gasoline to b	e equal to that	of hexa	ne.			
	Reporting Limit for DF =1; A 7.0		0.68	0.077	0.065	0.057	0.057	1		uL/L			
	e the reporting limit	S	NA	NA	NA	NA	NA	NA	1	1	mg/Kg		
samples	samples are reported and all TCLP & SP red chromatogram; s	LP extrac	ets are report	ed in μg/L.		les in μg/wipe,	product/oil/non-a	queous liquid sa	amples i	n mg/L,	water		
	Percent Recovery of ilution Factor	Surrogate	e Standard										
+The fo	llowing descriptions	s of the T	PH chromato	ogram are cursory	in nature and M	cCampbell An	alytical is not res	sponsible for th	eir inte	rpretatio	on:		

d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		QC Matrix: Water					Batch	ID: 55360	WorkOrder 1012943			
EPA Method SW8021B/8015Bm E		Extraction SW5030B					Spiked Sample ID: 1012917-001A					
Analyte	Sample Spiked MS M			MSD	MS-MSD	LCS L	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	78.9	92.7	16.0	95	92.1	3.09	70 - 130	20	70 - 130	20
MTBE	ND	10	123	121	2.11	115	111	2.90	70 - 130	20	70 - 130	20
Benzene	ND	10	105	115	9.14	110	112	2.34	70 - 130	20	70 - 130	20
Toluene	ND	10	92.9	101	8.44	97.9	99.2	1.30	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	82.5	97.8	16.9	97.1	96.4	0.715	70 - 130	20	70 - 130	20
Xylenes	ND	30	91.9	110	18.0	111	111	0	70 - 130	20	70 - 130	20
%SS:	104	10	100	100	0	100	101	0.701	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 55360 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012943-001A	12/30/10 8:00 AM	12/30/10	12/30/10 9:17 PM	1012943-001A	12/30/10 8:00 AM	12/30/10	12/30/10 9:17 PM
1012943-002A	12/30/10 7:45 AM	12/30/10	12/30/10 4:40 PM	1012943-002A	12/30/10 7:45 AM	12/30/10	12/30/10 4:40 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K QA/QC Officer