RECEIVED

1:14 pm, Jul 16, 2012 Alameda County Environmental Health

April 30, 2009

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Perjury Statement and Report Transmittal Quarterly Site Monitoring Report (First Quarter, 2009)

245 8th Street Oakland, California 94607 AEI Project No. 116907 ACEH RO#0000202

Dear Mr. Wickham:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached report for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me at (510) 832-9014, or Mr. Ricky Bradford at AEI Consultants, (925) 746-6000 extension 148.

Sincerely,

Victor Lum Owner Vic's Automotive

RB/vl

Attachment

cc: Mr. Ricky Bradford, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

April 30, 2009

QUATERLY SITE MONITORING REPORT (FIRST QUARTER, 2009)

245 8th Street Oakland, California

AEI Project No. 116907 ACHCSA RO#00000202

Prepared For:

Vic's Automotive 245 8th Street Oakland, California 94607

Prepared By:

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, California 94597 (925) 944-2899

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION & BACKGROUND	1
3.0	GEOLOGY AND HYDROGEOLOGY	4
4.0	HVDPE TECHNOLOGY AND PROCESS DESCRIPTION	4
4.1 4.2	Technology Overview Site, System, & Process Description	4 4
5.0	SUMMARY OF MONITORING ACTIVITIES	6
5.1 5.2	Quarterly Groundwater Monitoring	
5.3	5.2.4 Soil Gas Composition & Vacuum Influence Monitoring	
6.0	RESULTS & CONCLUSIONS	11
6.1 6.2 6.3	Apparent LNAPL Thickness, Groundwater Elevations, and Hydraulic GradientGroundwater Sample Analytical Data	
7.0	SUMMARY & PLANNED ACTIVITIES	16
8.0	REFERENCES	
7. 0	KEPUKI LIMITATIUNS AND SIGNATUKES	

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 SYSTEM LAYOUT PLAN
- FIGURE 4 GROUNDWATER ELEVATION DATA (02/05/09)
- FIGURE 5 GROUNDWATER SAMPLE ANALYTICAL DATA (02/05/09)
- FIGURE 6 EXTRACTION WELL INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 7 COMBINED TPH-G INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 8 HYDROCARBON MASS REMOVAL RATES BASED ON LAB DATA
- FIGURE 9 CUMULATIVE HYDROCARBON MASS REMOVED BASED ON LAB DATA

TABLES

- TABLE 1
 GROUNDWATER ELEVATION DATA
- TABLE 2
 GROUNDWATER FLOW SUMMARY
- TABLE 3
 GROUNDWATER SAMPLE ANALYTICAL DATA
- TABLE 4
 SOIL GAS SAMPLE ANALYTICAL DATA
- TABLE 5
 HVDPE VAPOR INLET SAMPLE ANALYTICAL & FIELD SCREENING DATA SUMMARY
- TABLE 6
 GROUNDWATER TREATMENT SYSTEM SAMPLE ANALYTICAL DATA
- TABLE 7
 SOIL GAS FIELD DATA SCREENING SUMMARY (TVH, CH4, O2, CO2)
- TABLE 8Wellhead Vacuum & Drop Tube Depth Data Summary
- TABLE 9HVDPE Performance & Mass Removal Data Summary
- TABLE 10
 THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 11
 AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 12
 ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 13
 HVDPE Process Monitoring Schedule

APPENDICES

- APPENDIX A MONITORING WELL FIELD SAMPLING FORMS
- APPENDIX B SOIL GAS FIELD SAMPLING FORMS
- APPENDIX C LABORATORY ANALYTICAL REPORTS

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Mr. Victor Lum, owner and operator of Vic's Auto automotive repair and fuel service station located at 245 8th Street in the City of Oakland, Alameda County, California (Figure 1). AEI has been retained by Mr. Lum to provide environmental engineering and consulting services related to the release of gasoline fuel hydrocarbons from the former underground storage tank (UST) and dispensing system on the property. The ongoing investigation and mitigation of the release is being performed under the direction of the Alameda County Health Care Services Agency (ACHCSA). This report has been prepared to document the field activities and results of groundwater monitoring for the First Quarter, 2009 as well as the high vacuum dual phase extraction (HVDPE) system processing monitoring and operations and maintenance (O&M) activities for the months of January, February, and March of 2009.

The HVDPE system was installed and started up in June of 2007. The main purposes for installing and operating a HVDPE system onsite as interim corrective action include:

- Hydrocarbon mass removal by performing continuous HVDPE using existing monitoring/extraction wells for the removal, recovery, and treatment of light non-aqueous phase liquid (LNAPL), soil gas, and groundwater from the vadose zone, capillary fringe, and shallow saturated zone in accordance with state and local air and water quality permit requirements.
- Performing continuous HVDPE at the source and along the southwestern property boundary to the mitigate the potential for vapor intrusion into nearby residences situated above and in close proximity to the LNAPL and groundwater plumes by maintaining a low negative pressure (i.e., high vacuum) in the subsurface relative to the building foundations.

2.0 SITE DESCRIPTION & BACKGROUND

The subject property (hereafter referred to as the "site" or "property") is located in a mixed commercial and residential area of Oakland. The site is a lot on the south corner of Alice Street and 8th Street, and is currently developed with a gasoline service station and automotive repair facility (Figure 2). The property covers approximately 9,375 square feet and is improved with an approximately 1,200 square foot building located centrally on the property with two bays used for automotive repair, two restrooms, and a cashier's office. The current UST hold and the dispenser island are located to the north of the building, along 8th Street. The former UST hold was located to the south of the building, along Alice Street. The remainder of the property is paved with asphalt and used for parking and staging vehicles for repairs.

• Between June of 1993 and August of 1994, AEI removed seven (7) underground storage tanks (USTs) from the property. The tanks consisted of four (4) 1,000-gallon gasoline tanks located in the sidewalk along Alice Street, two (2) 6,000-gallon gasoline tanks and one (1) 250-gallon waste oil tank. Impacted soil was removed from beneath the former tank area. Groundwater was encountered beneath the former 6,000-gallon tanks. Light non-aqueous

phase liquid (LNAPL) was observed on the water table beneath the southern tank. The excavated soil was transported to an appropriate disposal facility and the excavation was backfilled with clean fill material. A new tank system was installed just west of the dispenser island.

- In July of 1995, two (2) groundwater monitoring wells (MW-1 and MW-2) were installed onsite. Total petroleum hydrocarbons as gasoline (TPH-g) and benzene were detected in MW-2 at concentrations up to 210,000 μ g/L and 720 μ g/L, respectively during the first two monitoring episodes. Light non-aqueous phase liquid (LNAPL) or free phase gasoline was discovered in MW-1. The apparent LNAPL thickness in MW-1 ranged from 1.20 to 4.39 feet between December 1995 and March 1996.
- In August of 1996, AEI advanced three (3) soil borings (i.e., SB-1 through SB-3) onsite. TPH-g and benzene were detected in the groundwater samples from these borings at concentrations ranging from 120,000 to 140,000 μ g/L, and from 12,000 to 19,000 μ g/L, respectively. Methyl tertiary-butyl ether (MTBE) was also detected in all three samples at concentrations up to 27,000 μ g/L. Although free phase product was not observed in the field, qualitative laboratory observations indicated an immiscible sheen was present in the samples.
- Manual bailing and pumping of LNAPL from MW-1 occurred intermittently from 1997 to 1998.
- In May of 2001, two (2) additional groundwater monitoring wells (MW-3 and MW-4) were installed onsite. In June of 2001, a free product recovery system was installed in MW-1. The free product recovery system removed several hundred gallons of LNAPL between 2001 and 2003.
- In April of 2003, AEI advanced twelve (12) additional soil borings (SB-4 to SB-15) onsite and offsite for the collection of soil, shallow groundwater, and soil vapor samples to further characterize the magnitude and lateral extent of the release.
- In January of 2005, AEI installed six (6) additional monitoring/extraction wells (MW-5, MW-6 and MW-7 were installed onsite and wells MW-10 to MW-12 were installed offsite at the 708 Alice Street property). Wells MW-8 and MW-9 were proposed for installation in the parking lane along 7th and Alice Streets; however, due to difficult insurance wording requirements imposed by the City of Oakland, these wells were not installed until March of 2008.
- From July 11 to July 27, 2005, a 16-day HVDPE pilot test was performed on wells MW-1, MW-2, MW-5, MW-6, and MW-7. Combined vapor influent flow rates ranged from approximately 170 to 190 standard cubic feet per minute (scfm) under a sustained vacuum of 16 to 17 inches of mercury (in-Hg). The average water flow rate was approximately 4.1 gallons per minute (gpm). A total of 80,740 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer under a short-term, limited volume groundwater

discharge permit from the East Bay Municipal Utilities District (EBMUD). Significant drawdown and pressure (i.e., vacuum) response was observed in the vadose and saturated zone monitoring points. Approximately 5 pounds per day (lbs/day) of dissolved phase and 697 lbs/day of vapor phase hydrocarbons were recovered during the test. A total of 10,719 pounds or 1,716 gallons of gasoline was removed during this test. Based on the encouraging results of this pilot test, AEI recommended interim corrective action using HVDPE for 12 to 18 months using fixed equipment. Please refer to AEI's "HVDPE Event Report", dated December 14, 2005, for more information.

- In March of 2006, the ACHSA concurred with the implementation of HVDPE using fixed equipment and requested a system design, operations and maintenance, and monitoring plan. In this letter, the ACHSA also requested soil vapor sampling to evaluate the potential for vapor intrusion due to the elevated concentrations of fuel hydrocarbons detected in the soil and groundwater onsite and offsite.
- In May of 2006, a HVDPE system design, operations and maintenance, and monitoring plan and a separate soil gas investigation work plan were submitted to ACHSA for review and comment. Please refer to AEI's "High Vacuum Dual Phase Extraction System Design, Operations, and Maintenance Plan," dated May 24, 2006 and "Soil Gas Investigation Work Plan", dated May 12, 2006, for more information.
- In November of 2006, trenching and installation of the conveyance piping for HVDPE system was conducted. The system completion and delivery was scheduled for 1st Quarter 2007; however, the system was delivered in April 2007. The remaining infrastructure, such as the rotary phase converter, equipment, fence, and wellhead connections were installed in May of 2007 and the system was started up on June 26, 2007.
- On June 11, 2007, two (2) 55-gallon drums, or approximately 100 gallons of water containing about 50% LNAPL, was removed from MW-1 and MW-6 by operating the HVDPE system in product skimming mode.
- In November of 2007, additional HVDPE conveyance piping was installed above grade behind the onsite building to the rear of the property and the system was expanded to include monitoring/extraction wells MW-10, MW-11, and MW-12.
- In March of 2008, wells (MW-8, MW-9 and MW-13) were installed. Elevated concentrations of TPH-g, BTEX, and MTBE were detected in samples collected from MW-9. Low to none-detectable concentrations of TPH-g, BTEX, and MTBE were detected in MW-8 and MW-13. Elevated concentrations of MTBE were detected in MW-13.
- Between August 21 and 22, 2008, soil gas probes GP-3 and GP-4 was decommissioned by physical removal and three (3) horizontal HVDPE conveyance piping laterals were installed to MW-10, 11, and 12 so that these wells could continue to be used for dual phase extraction while the property was being developed.

3.0 GEOLOGY AND HYDROGEOLOGY

The elevation of the site is approximately 27 to 29 feet above mean sea level (amsl). The site is flat; however, the topography of the area slopes gently to the southwest. The site is located between Lake Merritt and the Oakland Inner Harbor channel, approximately one-half mile from each. The near surface sediments are mapped as Holocene and Pleistocene Merritt Sand (Qms), which are further described as "fine-grained, well-sorted, well-drained, Aeolian sand deposits" (Helley and Graymer, 1997 and Graymer, 2000). Depth to the Franciscan Formation basement underlying the unconsolidated deposits is approximately 400 feet (Norfleet Consultants, 1998).

Based on the logs of soil borings advanced on and offsite, the native soils generally consist of fine to medium grained sands with silt and clay present to at least 28 feet bgs, the deepest explored at the site. Typically, silty and clayey fine grained sand have been encountered to depths of 15 to 18 feet bgs. This is underlain by poorly graded, clean to slightly clayey and silty fine to medium sand. Both sand bodies represent a single hydro-geologic system. Sediments have been relatively uniform throughout the investigation area.

Groundwater depths have typically ranged from 13 to 17 feet bgs, corresponding to elevation of approximately 10 to 14 feet above mean sea level (msl). Annual groundwater levels fluctuate by approximately 3 to 4 feet. Groundwater has consistently flowed to the south, southeast, or southwest with a hydraulic gradient of approximately 0.010 ft/ft. Recent water levels have been affected by the groundwater extraction activities.

4.0 HVDPE TECHNOLOGY AND PROCESS DESCRIPTION

4.1 Technology Overview

HVDPE is a proven and effective technology for a wide range of soil types and subsurface conditions. HVDPE is often also referred to as dual phase extraction (DPE), multi-phase extraction (MPE), two-phase extraction (TPE), and sometimes "bioslurping". There are several variations of this technology, but a great majority of HVDPE systems use a water-sealed liquid-ring vacuum pump to simultaneously extract and recover LNAPL, groundwater, and soil gas through a single 1-inch diameter adjustable drop tube (also called a "stinger") sealed within a 2 to 4-inch diameter extraction well. The application of high vacuum enhances soil vapor extraction (SVE) by lowering the water table and creating dewatered zones and exposing previously saturated soils to airflow. The airflow through the subsurface supplies oxygen needed to enhance in-situ aerobic biodegradation of fuel hydrocarbons, which is analogous to bioventing technology.

4.2 Site, System, & Process Description

Light non-aqueous phase liquid (LNAPL), soil gas and groundwater are simultaneously extracted through a single 1-inch diameter drop tube currently installed in eight (8) monitoring/extracting wells (MW-1, MW-2, MW-5 to MW-7, and MW-10 to MW-12) using two (2) 15 horsepower water-sealed liquid ring pumps piped in parallel. These pumps can generate flows up to 140 cubic

feet per minute (cfm) each (i.e., 280 cfm combined capacity) and high vacuums of up to 28 in-Hg, but normally operate in the range of 18 to 22 in-Hg.

The monitoring wellheads were modified for dual phase extraction by installing a 1-inch PVC ambient bleed air valve, two-hole cast iron wellhead pump seal, stinger and casing vacuum gauges, and 1-inch clear, flexible PVC stinger. The manifold and conveyance piping leading up to the manifold were constructed out of schedule 80 PVC. Recovered LNAPL, soil gas, and groundwater are separated by a knock-out tank. Because the LNAPL and other gasoline fuel hydrocarbons dissolved in the groundwater are volatilized under high vacuum (i.e., >20 in-Hg), an oil-water separator is not used. A progressive cavity pump transfers the groundwater from the knock-out tank to the top of the low-profile air stripping unit. Groundwater trickles-down through small holes in the air stripper trays, where nearly 99% of the remaining volatile fuel hydrocarbons are stripped from the groundwater. Groundwater is pumped from the air stripper reservoir to a single 1,000-pound activated carbon absorber, where its further treated and polished and then discharged to the onsite sanitary sewer under a wastewater discharge permit from the East Bay Municipal Utilities District (EBMUD).

The soil gas and off-gas from the air stripping unit is routed to a thermal/catalytic oxidizer operating in catalytic mode for direct thermal destruction. The catalytic oxidizer operates at 700 °F with a minimum destruction efficiency of 99% as required by permit. The treated off-gas is discharge through a stack located 15 feet above grade under a Bay Area Air Quality Management District (BAAQMD) air quality permit.

A Dwyer[®] Instruments (Model No. DS-300) averaging pitot tube combined with a dual-scale Magnehelic[®] differential pressure gauge is used to measure the well velocity and total velocity. The well velocity and total velocity are multiplied by the cross sectional area of the pipe (i.e., 0.0491 ft² for a 3-inch pipe) to obtain the actual flow rate. The difference between the well flow rate and total flow rate is the air stripper flow rate. All flow rates are corrected to standard temperature and pressure (i.e., 70°F and 1 atm or 29.92 in-Hg) using formulas provided by Dwyer[®]. The groundwater recovery volume is measured with a Neptune (Model T-10) cold water flow totalizer and recorded along with the equipment hour meter reading during each O&M visit. The flow totalizer and hour meter readings are used to estimate the average daily flow rate between sampling dates.

The field point names for the vapor influent sample ports are the monitoring well identification followed by the letter "S" (i.e., MW-1S, MW-2S, MW-5S, MW-6S, MW-7S and MW-10S to MW-12S). These sample ports are labeled and located along a common a common manifold inside the fenced equipment enclosure. Control valves are installed on each line to regulate the vacuum and flow. Clear sections of pipe are also installed on each line to observe the flow patterns and process streams.

The field point names for the vapor influent samples ports before dilution air, after dilution air, and from the air stripping unit and the stack gas effluent sample port are: PRED, POST, AS, and STACK.

The field point names for the water influent sample ports for the combined influent, after the air stripper, after the first carbon absorber, and after the last carbon absorber at the effluent: INF, POST-AS, POST-C1, and EFF.

The four (4) nested soil gas probes used for collecting soil gas samples and vacuum measurements are as follows: SG-1-5', SG-10', SG-2-5', SG-2-10', SG-3-5', SG-3-10', to SG-4-5' and SG-1-10'.

The location of the sample ports for the extraction wells are shown on Figure 3. The soil gas probe locations are shown on Figure 2.

5.0 SUMMARY OF MONITORING ACTIVITIES

5.1 Quarterly Groundwater Monitoring

The HVDPE system was shutdown on January 6, 2009, approximately one (1) month prior to this groundwater monitoring event. On February 5, 2009, the water levels were measured and groundwater samples were collected from all of the monitoring / dual-phase extraction wells, except for MW-10 through MW-12. Measuring the depth to water and sampling these wells is no longer feasible because the wellheads were removed and the wells were buried beneath a new residential construction in August of 2008. The well locations are shown in Figure 2.

The well caps and stingers, where applicable, were removed and depths from the top of the well casings were measured with an electronic water level indicator prior to sampling. Wells with historic free product (i.e., MW-1, MW-6, and MW-7) were checked with an oil-water interface meter. Wells with no measurable free product were purged of at least three well volumes of water with a submersible purge pump and sampled using disposable clear plastic bailers.

Temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured while purging the wells and the turbidity was visually noted. Once temperature, pH, specific conductivity stabilized after three consecutive readings, and following the recovery of water levels to at least 90% of the static level, a water sample was collected.

The groundwater samples were collected with disposable bailers into 40-millileter (mL) volatile organic analysis (VOA) vials and capped so that no head space or air bubbles were present within the sample containers. Samples were preserved on ice and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification #1644). A total of ten (10) groundwater samples were submitted for chemical analysis for TPH-g by EPA Method SW8015C and MBTEX by EPA Method SW8021B. In addition, due to the elevated detection limit for MTBE by EPA Method SW8021B, the samples collected from MW-5 through MW-7 and MW-9 were tested for MTBE only by EPA Method SW8260B.

5.2 Quarterly Soil Gas Monitoring for Vapor Intrusion Evaluation

Per concurrence from the ACHCSA in a letter dated October 3, 2008, quarterly soil gas sampling has been temporarily suspended during the operation of the HVDPE system.

5.2.1 Routine Monitoring and Data Collection

An AEI project engineer monitored the system using the remote monitoring system via email daily from the office. The system was also monitored and checked by a senior field technician weekly to biweekly and as needed to respond to system shutdowns. A Daily Field Report and O&M Field Logs were filled out during each site visit. Routine O&M visits ranged from approximately 2 to 4 hours per visit, depending upon the activities performed.

The following data was recorded on the Daily Field Report and/or O&M Field Log during each site visit:

- <u>HVDPE System</u>: current hour meter reading, PG&E meter reading (kilowatt-hours), system runtime (hours), system inlet vacuum (in-Hg), vacuum at the inlets of both liquid ring pumps (in-Hg), well velocity (fpm) and calculated well flow rate (cfm) by multiplying the well velocity by the cross-sectional area (ft^2) of a 3-inch pipe, control valve initial and final positioning (% open), and cooling fan(s) status (on/off).
- <u>HVDPE Wells:</u> the stinger vacuum (in-Hg), casing vacuum (in-Hg), and drop tube depth (ft toc) data were collected monthly or as needed.
- <u>Thermal/Catalytic Oxidizer</u>: propane level (%), preheat controller temperature (°F), exhaust controller temperature (°F), total velocity (fpm) and calculated total flow rate (cfm) by multiplying the total velocity and by the cross-sectional area (ft^2) of a 3-inch pipe.
- <u>Air Stripper</u>: variable frequency drive setting (Hz), outlet velocity (fpm) and calculated outlet flow rate (cfm) by subtracting the well flow rate from the total flow rate, air stripper tray backpressure (in-H2O), control valve positioning (% open).
- <u>Activated Carbon Absorbers</u>: inlet pressure (psig), outlet pressure (psig), flow totalizer reading (gallons), and whether or not the bag filter was change and/or carbon absorber backwashed.

5.2.2 Influent & Effluent Vapor Monitoring

Influent and effluent vapor samples were collected on January 6, February 9, and March 18, 2009. The extraction well and other process sample ports were continuously purged and sampled with a Gast[®] (Model DOA-P707-FB) 1/3 horsepower diaphragm vacuum / pressure pump, capable of up to 1.1 cfm free airflow and vacuums up to 25.5 in-Hg, using the "side-stream" purging and

sampling method as described in Downey, et al., 2004 and Hinchee, et al., 1996. A 2-liter water separator device was used to collect vapor samples from the dual-phase air-water influent process stream.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Instruments Eagle (Type 474-04) multi-gas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded on the field data sheets and a vapor sample was collected into 1-liter Tedlar bag using the same sampling tee.

The Tedlar bags were stored in a cardboard box and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification No. 1644) on the day of collection. The samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

5.2.3 Influent & Effluent Water Monitoring

Influent and effluent water samples were collected on January 6, February 9, and March 18, 2009. The process water sample ports were purge of approximately 1-Liter of water prior to sample collection. Water was collected into three (3) 40-millileter (mL) volatile organic analysis (VOA) vials, or as required by the analysis, and capped so that no head space or air bubbles were present within the sample containers.

The water samples were placed in a pre-chilled cooler on a mixture of water and ice and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification #1644) on the day of collection. The samples were analyzed for TPH-g by EPA Method SW8015C and MBTEX by EPA Method SW8021B.

Additionally, as required by EBMUD semi-annually, an effluent sample (i.e., Sample ID "EFF") was collected on February 9, 2009 and analyzed for Total Oil and Grease Hydrocarbon by EPA Method 1664 HEM-SGT with silica gel cleanup.

5.2.4 Soil Gas Composition & Vacuum Influence Monitoring

On February 9 and March 10, 2009, nested soil gas probes (GP-1 and GP-2) were screened in the field for TVH, CH4, O2, and CO2 and vacuum influence was measured. The soil gas probes were not screened nor was the vacuum influence measured during the month of January because the system was shutdown on January 6, 2009 for a one (1) month rebound evaluation.

The vacuum influence was measured with a set of Magnehelic differential pressure gauges and recorded first. A 3/16-inch inside diameter clear vinyl or equivalent tubing was used to connect the Magnehelic[®] gage to the plug valve and soil gas probe. The following pressure ranges in inches of water were normally available: 0-0.2", 0-1", 0-5", 0-10", 0-20", 0-50", 0-100", and 0-150".

Then the soil gas probes were continuously purged and sampled with a Geotech (Model Geopump II) peristaltic pump, capable of vacuums up to 25 in-Hg, using the "side-stream" purging and sampling method as described in Downey, et al., 2004 and Hinchee, et al., 1996.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Instruments Eagle (Type 474-04) multi-gas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded on the field data sheets. Vapor samples were not collected into 1-liter tedlar bags for laboratory analysis.

5.3 HVDPE System Operations & Maintenance

5.3.1 Routine Maintenance

Routine maintenance performed during this quarter included:

- Performed visual inspections of all major system components, including checking for signs of leaks, physical wear, and/or damage during each site visit.
- Checked the cooling blower filter, dilution air inlet filter, and air stripper blower filter. All three (3) filters were changed this quarter and are routinely changed on a quarterly basis or as needed based on a visual inspection of the filter elements.
- Checked the two (2) separator filters on Liquid Ring Pump #2 (LRP #2). Both filters were changed this quarter and are routinely changed on a quarterly basis or as needed based on the quality of the influent process water.
- During the monitoring event on February 5, 2009 and later on February 9, 2009, an AEI technician unsuccessfully attempted to backwash the PV-1000 (1,000-pound) liquid-phase carbon absorber.
- Formerly considered a non-routine maintenance item, the aluminum fins on the heat exchanger for LRP #2 were cleaned with compressed air during each O&M visit.
- No other routine maintenance was performed during this quarter.

5.3.2 Non-Routine Maintenance

Non-routine maintenance performed during this quarter included:

- On February 19, 2009, Liquid Ring Pump (LRP #1) was removed from the HVDPE system and transported back to the office for further inspection, disassembly, and subsequent repair. Due to an electrical short and damaged wiring, LRP #1 was removed from service on July 29, 2008. Please refer to page 12 of AEI's "System Modifications & Quarterly Site Monitoring Report (Third Quarter, 2008)", dated November 15, 2008, for more information.
- Between February 24 and 25, 2009, LRP #1 was inspected and disassembled by an AEI senior technician. The electric motor and liquid ring pump assembly, which are bolted together as a single unit, were transported to Magdeburg Systems in San Leandro for a final inspection, evaluation, and subsequent repair.
- On February 27, 2009, due to age and precipitation of dissolved inorganics (e.g., calcium, iron, magnesium, manganese, etc.), constant high backpressure across the carbon bed, and unsuccessful attempts at backwashing and restoring the unit, the spent carbon was swapped out with new carbon by Siemens Water Technology per the rental contract. A total of five (5) 55-gallon drums of spent carbon (1,000 pounds total) were generated. The drums of spent carbon have be profiled, characterized as non-hazardous waste, and should be properly disposed of off-site by Siemens during the next quarter.
- On February 27, 2009, after the carbon change out, an AEI technician attempted to restart the HVDPE system. However, the catalytic oxidizer could not be restarted due to a problem with the Veri-Flame burner and flame monitoring system and/or possibly other devices.
- On March 3, 2009, Magdeburg confirmed the stator component of the electric motor for LRP #1 was damaged beyond repair and provided a quote for rewinding the stator and replacing the non drive end bearing and seal.
- On March 9, 2009, several components, including the cooling fan assembly, were delivered to Magdeburg for further inspection. A quote for a complete pump overhaul was requested.
- On March 10, 2009, after consulting with the project engineer, an AEI technician unsuccessfully attempted troubleshooting the Veri-Flame burner and flame monitoring system.
- On March 17, 2009, an AEI project engineer successfully troubleshot the Veri-Flame burner and flame monitoring system and discovered a problem with the temperature controller setup and configuration settings. After consulting with the equipment manufacturer, the original setup and configuration settings were restored and the system was restarted without a problem.

- On March 17, 2009, Magdeburg provided an updated quote for rewinding the stator and a complete pump overhaul, which includes cleaning all parts by boiling, wire wheeling, and/or bead blasting, machining all worn internal parts back to factory specifications or replacing them, replacing the non drive end and drive end bearings, the mechanical seal and tolerance ring, and the rotary shaft lip seal, setting internal clearances to factory specification, and painting the pump.
- On March 24, 2009, the repairs to LRP #1 were authorized and on March 31, 2009 Magdeburg ordered parts from the manufacturer in Germany. The repairs to LRP #1 are expected to be completed by the end of April to early May 2009 and will be reported in the next Site Monitoring Report.
- No other none-routine maintenance was performed during this quarter.

5.3.3 System Modifications

System modifications completed during this quarter included:

• No major system modifications were performed during this quarter.

6.0 **RESULTS & CONCLUSIONS**

6.1 Apparent LNAPL Thickness, Groundwater Elevations, and Hydraulic Gradient

The results of the apparent LNAPL thickness measurements, groundwater elevations, and hydraulic gradient for this monitoring episode are summarized below:

- LNAPL was not encountered, nor was a hydrocarbon sheen noted, in any of the monitoring wells, although elevated concentrations of dissolved hydrocarbons, such as TPH-g, BTEX, and MTBE, remain onsite and offsite.
- Not including the recently installed wells MW-8, MW-9, and MW-13, groundwater elevations ranged from approximately 14.70 (MW-4) to 16.29 (MW-6) feet above mean sea level (msl). The elevations of MW-8, MW-9, and MW-13 relative to msl have not been surveyed pending the installation of two (2) additional monitoring wells (MW-15 and MW-16) in a parking lane along the southeastern side of 7th Street and installation of one (1) monitoring well (MW-14) along Alice Street.
- The groundwater elevations have been influenced by the HVDPE groundwater extraction activities. Therefore, groundwater elevation contours have not been included on Figure 4.
- The normal historical groundwater flow direction has been predominantly to the south with an average hydraulic gradient of approximately 0.010 ft/ft.

The historic and current groundwater elevation data is summarized in Table 1 with the current data shown on Figure 4. A summary of the current and historic average groundwater elevations and flow directions are presented in Table 2.

6.2 Groundwater Sample Analytical Data

The analytical results for the groundwater sample collected for this monitoring episode are summarized below:

- The highest concentrations of TPH-g were detected in MW-1, MW-6 and MW-9 at 42,000 μ g/L, 92,000 μ g/L. and 32,000 μ g/L, respectively.
- The highest concentration of benzene was detected in MW-9 at 11,000 μ g/L. The next highest concentrations of benzene were detected in MW-1, MW-6, and MW-7, all three at a 1,100 μ g/L.
- The highest concentration of MTBE was detected in MW-9 at 360 μ g/L. The second highest concentration was detected in MW-2 at 82 μ g/L.
- Elevated concentrations of TPH-g were detected in source area wells MW-2, MW-5, and MW-7 at 1,000 µg/L, 2,800 µg/L, and 7,800 µg/L, respectively.
- Very low to almost none-detectable levels of TPH-g, BTEX, and MTBE were detected in MW-3, MW-4, and MW-8. Very low to almost none-detectable levels of TPH-g and BTEX were detected in MW-13.
- LNAPL of any apparent measurable thickness has not been detected in MW-1, MW-6, and MW-7 since May of 2007.
- Dissolved hydrocarbons have been significantly reduced (by at least one order of magnitude) onsite and offsite by operating the HVDPE system, although rebound was observed particularly in source area wells MW-1 and MW-6.
- It is unknown at this time if the elevated concentrations of TPH-g and BTEX in MW-9 will be reduced by operating the HVDPE system.

A summary of the current and historic groundwater analytical data is summarized in Table 3 with current data shown on Figure 5. Refer to Appendix A for the monitoring well field sampling forms. The laboratory analytical report with chain of custody and quality assurance / quality control documentation is included in Appendix C.

6.3 HVDPE System Process Monitoring

6.3.1 Influent & Effluent Vapor Sample Analytical Data

The analytical results of the monthly influent and effluent vapor samples are summarized below:

- On January 6, 2009, the highest concentrations of TPH-g were detected in MW-2S (35 ppmv), MW-7S (2,000 ppmv), MW-10S (2,200 ppmv), and M-11S (1,200 ppmv). Likewise, the highest concentrations of benzene were detected in MW-2S (1.6 ppmv), MW-7S (2.3 ppmv), MW-10S (1.2 ppmv), and MW-11S (0.6 ppmv). The highest levels of CO2 were also detected in these wells at concentrations ranging from 0.6% in MW-11S to 2.3% in MW-7S.
- On February 9, 2009, the highest concentrations of TPH-g were detected in MW-2S (1,100 ppmv), MW-7S (1,100 ppmv), MW-10S (500 ppmv), and MW-12S (490 ppmv). The highest concentrations of benzene were detected in MW-2S (25 ppmv), MW-7S (19 ppmv), MW-10S (5.6 ppmv), and MW-11S (14 ppmv). The highest levels of CO2 were detected in the same above wells ranging from 0.7% in MW-10S to 2.5% in MW-7S.
- On March 18, 2009, the highest concentrations of TPH-g were detected in MW-2S (130 ppmv), MW-7S (690 ppmv), MW-10S (220 ppmv), and MW-11S (400 ppmv). The highest concentrations of benzene were detected in MW-5S (2 ppmv), MW-7S (28 ppmv), MW-10S (8.9 ppmv), and MW-11S (48 ppmv). The highest levels of CO2 were detected in MW-7S, MW-10S, and MW-11S ranging from 0.7% in MW-10S to 2.7% in MW-7S.
- The pre-dilution (PRED) influent concentrations of TPH-g ranged from 30 ppmv to 150 ppmv.
- The air stripping system effluent concentrations of TPH-g ranged from non-detect (less than 7.0 ppmv) to 150 ppmv.
- Sampling the post-dilution (POSTD) process sample port was discontinued starting in the Third Quarter, 2008 monitoring and reporting period because it does not provide any additional useful information above of beyond what data has already been collected. Refer to Note #10 on Table 10 for more information.
- TPH-g, BTEX, and MTBE were not detected in the STACK sample at or above the laboratory reporting limit of 7 ppmv, except for a trace amount (26 ppmv) on January 6, 2009.

A summary of the historic and current vapor influent and effluent sample analytical and field screening data is presented in Table 5. The laboratory analytical report with chain of custody and quality assurance / quality control documentation is included in Appendix C.

6.3.2 Influent & Effluent Water Sample Analytical Data

The results of the monthly influent and effluent water samples are summarized below:

- The concentrations of TPH-g and benzene detected in the combined water influent (INF) ranged from 7,800 to 11,000 μ g/L and 96 to 250 μ g/L, respectively.
- The concentrations of TPH-g and benzene detected in the water effluent from the air stripper (POST-AS) ranged from non-detect (less than 50 μ g/L) to 250 μ g/L and non-detect (less than 0.5 μ g/L) to 3.1 μ g/L.
- The average air stripper removal efficiency during this quarter was approximately 97.1%.
- TPH-g and BTEX were not detected in the effluent (EFF) at or above the laboratory reporting limits.

A summary of the historic and current water influent / effluent sample analytical data is presented in Table 6. The laboratory analytical report with chain of custody and quality assurance / quality control documentation is included in Appendix C.

6.3.3 Influent Well Vapor and Water Flow Rates

The total well influent vapor velocity ranged from approximately 1,200 to 1,400 feet per minute (fpm) and the total well influent flow rate ranged from approximately 59 to 69 standard cubic feet per minute (scfm). Average groundwater extraction rates ranged from 0 to 5,002 gallons per day or approximately 0 to 3.5 gallons per minute (gpm). Approximately 104,690 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer between December 2, 2008 and March 18, 2009. A total of approximately 1,385,760 gallons have been recovered and treated since startup in June of 2007.

A summary of the historic and current well vapor and water flow rates is presented in Tables 9 and 12. The laboratory analytical report with chain of custody and quality assurance / quality control documentation is included in Appendix C.

6.3.4 Mass Removal Rates

Short-term and long-term vapor phase and dissolved phase mass removal rates in pounds per day (lbs/day) and gallons per day (gpd) were estimated using TPH-g concentrations based on lab data and the actual system runtime between sampling dates.

The vapor phase mass removal rates ranged from approximately 4 to 28 pounds per day (lbs/day) with an overall average of approximately 20 lbs/day during this reporting period. Approximately 715 pounds or 119 gallons of gasoline in the vapor phase was recovered and treated between

December 2, 2008 and March 18, 2009. Approximately 26,430 pounds or 4,405 gallons of vapor phase gasoline have been removed since startup in June of 2007.

Although insignificant when compared with the vapor phase mass removal data, the dissolved phase mass removal rates ranged from approximately 0 to 0.26 lbs/day with an overall average of approximately 0.11 lbs/day. Approximately 7 pounds or 1 gallon of gasoline in the dissolved phase was recovered and treated between December 2, 2008 and March 18, 2009. Approximately 141 pounds or 23 gallons of dissolved phase gasoline has been removed since startup.

A summary of the historic and current vapor phase mass removal rates with assumptions, unit conversions, and sample calculations are presented in Tables 9 and 10 and shown on Figure 8. The dissolve phase mass removal rates are presented in Table 12. A cumulative vapor phase mass removal graph is shown on Figure 9.

6.3.5 Soil Gas Composition and Vacuum Influence

The results of the TVH, CH4, O2, and CO2 field screening data and vacuum influence measurements collected on February 9 and March 10, 2009 are summarized below:

- On February 9, 2009 water was detected in GP-2 at 10-feet bgs but not at 5-feet bgs. On March 10, 2009, water was detected in GP-2 at both 5 and 10-feet bgs. Water was not detected in GP-1 during either field screening events. Field screening and vacuum influence measurements were not collected from the probes when water was detected.
- Concentrations of total volatile hydrocarbons (TVH) were not detected in any of the soil gas probes at or above the detection limit of 5 ppmv.
- The concentration of O2 in all probes screened at 5 and 10-feet bgs was nearly 20%.
- The concentrations of CO2 in all probes screened at 5-feet bgs ranged from approximately 0.2 to 0.8%.
- The concentrations of CO2 in only probe screened at 10-feet bgs was approximately 1.0%.
- Significant vacuum influence (i.e., greater than 0.1 inches of water Hinchee, R.E., et al., 1996 and others) was measured at 0.39 in-H2O in GP-1 at 10-feet bgs.

A summary of the historic and current TVH, CH4, O2, and CO2 soil gas field screening data and vacuum influence measurements are presented in Table 8.

7.0 SUMMARY & PLANNED ACTIVITIES

This report presented the findings of the First Quarter, 2009 groundwater monitoring event and included a discussion of the field activities and results of the HVDPE system operations and maintenance and process monitoring. Quarterly soil gas sampling for vapor intrusion has been temporarily suspended during the operation of the HVDPE system.

The main results of this monitoring period are summarized below:

- Elevated concentrations of TPH-g, BTEX, and MTBE were detected in MW-9. Very low to nearly non-detectable concentrations of TPH-g and BTEX were detected in MW-8 and MW-13. MTBE had not been detected in MW-8 above the standard reporting limit of 5 μg/L.
- Additional monitoring wells will need to be installed on the southwest side of 7th Street to complete the lateral plume delineation.
- The results of this groundwater and soil gas monitoring event are generally consistent with previous episodes with a notable decrease in groundwater table elevation, which is likely a result of the groundwater extraction activities onsite and offsite.
- LNAPL has not been detected since the HVDPE system was installed and started up in June of 2007, although elevated dissolved phase concentrations remain onsite and offsite.
- Overall, decreases in the concentrations of dissolved phase hydrocarbons in several wells onsite and offsite (most notably MW-1, 2, 5, 6, and 7) are the result of ongoing HVDPE remediation activities.
- An overall lower than historic but significant mass of volatile hydrocarbons is still being removed from the subsurface (up to 5 gallons per day). The influent vapor concentrations of hydrocarbons are within the range for catalytic oxidation, but may be still be too high for activated carbon to be a more cost-effective treatment option.
- Nearly ambient concentrations of oxygen indicate the HVDPE process is fully oxygenating the soils in the vadose zone, which can support and enhance aerobic biodegradation of hydrocarbons in the subsurface.
- Approximately 1.3 million gallons of groundwater was processed by the PV-1000 activated carbon absorber before requiring a change out due to high backpressure caused by precipitation of dissolved inorganics, but not due to contaminant breakthrough.

The following activities and system modifications are planned for the next quarter:

- Soil gas sampling has been temporarily suspended during the operation of the HVDPE system as approved by the ACHCSA in a letter dated October 3, 2008.
- The recently installed monitoring wells MW-8, MW-9, and MW-13 will continue to be sampled quarterly and analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.
- Due the elevated reporting limit for MTBE by EPA Method 8021B in certain monitoring wells, AEI recommends testing all wells with elevated reporting limits for MTBE by EPA Method 8260B during the next and subsequent groundwater monitoring events as needed.
- Continue operation of the HVPDE system, including monthly O&M and process monitoring, evaluate the system performance, and conduct air and water discharge compliance sampling and reporting as required by permit.
- Continue to screen the soil gas probes for TVH, CH4, O2, and CO2 with the RKI Eagle gas detector on a quarterly rather than monthly basis. The soil gas probes will be screened according to the methods described in Downey, et al., 2004.
- Continue operation of the thermal oxidizer in catalytic mode to reduce auxiliary fuel consumption. As the influent vapor concentrations decline over the next quarter of system operation, evaluate (as applicable) if and when the system should be shutdown for rebound testing or operated on an intermittent schedule.
- Finish permitting with the City of Oakland and ACPWA for the installation of two (2) additional monitoring wells (MW-15 and MW-16) in the parking lane on the northwest side of 7th Street and one (1) monitoring well (MW-14) in a parking lane along Alice Street as discussed in AEI's "Site Monitoring Report (Second Quarter, 2008)", dated August 1, 2008. If permits can be obtained and the wells installed, developed, and sampled within a reasonable period of time, the results will be incorporated into the next Site Monitoring Report.
- While there is no room to reinstall soil gas probe GP-3 at 708 Alice Street, soil gas probe GP-4 will be reinstalled once the building construction activities have been completed, most likely during the Third or Fourth Quarter of 2009.

8.0 REFERENCES

Department of Toxic Substances Control (DTSC) & Los Angeles Regional Water Quality Control Board, 2003. "Advisory – Active Soil Gas Investigations", issued January 28, 2003.

Downey, D., Miller, R.N., and Dragoo, T., 2004. "Procedures for Conducting Bioventing Pilot Tests and Long-Term Monitoring of Bioventing Systems", prepared for the United States Air Force Center for Environmental Excellence by Parsons, Inc, Denver, Colorado.

DTSC, 2004. "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air", Interim-Final, California Environmental Protection Agency, Sacramento, California, issued December 15, 2004, revised February 7, 2005.

Graymer, R.W., 2000. "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California", U.S. Geologic Survey, Miscellaneous Field Studies MF2342, Online Version 1.0, includes 1 geologic map and 33 page pamphlet.

Helley, E.J. and Graymer, R.W., 1997. "Quaternary Geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: A Digital Database", U.S. Geological Survey, Open-File Report 97-97, includes 1 geologic map, 1 map explanation sheet, and 9 page discussion booklet.

Hinchee, R.E., et al., 1992. "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing", prepared for United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Miller, R.N., et al., 1995. "Test Plan and Technical Protocol for a Field Treatability Test for POL Free Product Recovery – Evaluating the Feasibility of Traditional and Bioslurping Technologies", prepared for the United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Norfleet Consultants, 1998. "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, California", prepared for the Friends of the San Francisco Estuary, P.O. Box 791, Oakland, California, and dated June 15, 1998.

Place, M.C., Coonfare, C.T., Chen, A., Hoeppel, R.E., and Rosansky, S.H., 2001. "Principles and Practices of Bioslurping", Battelle Press, Columbus, Ohio

United States Army Core of Engineers, 1999. "Multi-Phase Extraction Engineer Manual", EM 1110-1-4010, Washington, DC.

9.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices in the environmental engineering and geology fields that existed at the time and location of the work.

Should you have any questions or comments, or need any additional information, please contact Mr. Bradford (925) 944-2899, ext. 148 or Mr. McIntyre at (925) 944-2899, ext. 104.

Sincerely, AEI Consultants

Adrian M. Angel Project Geologist

Richard J. Bradford Project Engineer

Distribution List:

Mr. Victor Lum (1 copy) Vic's Automotive 245 8th Street Oakland, California 94607

Attn. Mr. Jerry Wickham (electronic) Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

SWRCB's GeoTracker Information System (electronic)

John Sigg Senior Technician

Peter J. McIntyre, PG Senior Project Manager

FIGURES

$\begin{array}{c} & & \\$	MW-13 (ns) 80			RESIDENTIAL (228 7TH ST)
LEGEND	DR/ REV	AFTED BY RJB 10-01-07 /ISED BY RJB 02-28-09	AEI CONS	ULTANTS
- MONITORING WELL	*Note: The HVDPE system was shutdown on January 6, 2009,	FORMER UST LOCATION	2500 CAMINO DIABLO, SU	ITE 200, WALNUT CREEK
MW = 1	approximately one (1) monthr prior to this monitoring event		GROUNE	WATER
(15.00) = feet above mean sea level			ELEVATION DATA (02/05/09)	
Contour Interval = n/a Contours plotted with Surfer V.7.0	ns = well elevation has not been surveyed nm = depth to water not measured		245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 4 PROJECT NO. 116907

8,000 7,000 TPH-g Influent Vapor Concentration (ppmv) 6,000 5,000 4,000 3,000 2,000 1,000 0 03108108 10/19/08 03/18/09 09/15/07 10/10/07 12124107 071/78/08 02112108 05/22/08 07/11/108 08105108 09124108 12108108 01/02/09 02121109 07/27/07 08121107 11104107 04102108 04127108 08/16/08 08/30/08 11/13/08 01/27/09 11/29/07 Date → MW-1S → MW-2S → MW-5S -MW-6S — MW-7S — MW-10S — MW-11S — MW-12S

FIGURE 6: EXTRACTION WELL INFLUENT CONCENTRATIONS OVER TIME

Vic's Auto, 245 8th Street, Oakland, California

FIGURE 7: COMBINED SYSTEM INFLUENT CONCENTRATIONS OVER TIME

Vic's Auto, 245 8th Street, Oakland, California

FIGURE 8: HYDROCARBON MASS REMOVAL RATES BASED ON LAB DATA

Vic's Auto, 245 8th Street, Oakland, California

FIGURE 9: CUMULATIVE HYDROCARBON MASS REMOVED BASED ON LAB DATA

Vic's Auto, 245 8th Street, Oakland, California

TABLES

TABLE 1:	GROUND	WATER	ELEVA	TION D	АТА
-----------------	--------	-------	-------	---------------	-----

TABLE 1: GROUNDWATER ELEVATION DATA Vic's Auto, 245 8th Street, Oakland, California						
Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-1	06/29/01	27.73	16.52	11.21	14.89	1.63
(8-28)	10/10/01	27.73	15.45	12.28	15.37	0.08
	01/09/02	27.73	12.61	15.12	-	< 0.01
	04/24/02	27.73	13.35	14.38	-	< 0.01
	07/24/02	27.73	14.19	13.54	-	< 0.01
	11/05/02	27.73	14.85	12.88	-	< 0.01
	02/04/03	27.73	14.91	12.82	-	< 0.01
	05/02/03	27.73	14.43	13.30	-	0.08
	08/04/03	27.73	15.24	12.49	15.01	0.23
	11/03/03	27.73	16.94	10.79	15.67	1.27
	02/09/04	27.73	14.61	13.12	14.43	0.18
	05/10/04	27.73	Obstructed	-	-	-
	08/09/04	27.73	15.24	12.49	15.03	0.21
	11/09/04	27.73	15.95	11.78	15.71	0.24
	02/03/05	32.55	13.75	18.80	13.58	0.17
	05/09/05	32.55	13.93	18.62	13.81	0.12
	08/05/05	32.55	15.40	17.15	15.39	0.01
	11/09/05	32.55	15.76	16.79	15.75	0.01
	02/09/06	32.55	13.52	19.03	13.50	0.02
	05/04/06	32.55	12.47	20.08	12.46	0.01
	08/04/06	32.55	15.11	17.44	15.09	0.02
	11/08/06	32.55	16.03	16.52	16.02	0.01
	02/08/07	32.55	16.51	16.04	16.48	0.03
	05/29/07	32.55	15.56	16.99	15.51	0.05
	09/05/07	32.55	16.33	16.22	-	Sheen
	12/12/07	32.55	17.62	14.93	-	Sheen
	02/13/08	32.55	15.94	16.61	-	Sheen
	05/15/08	32.55	16.64	15.91	-	-
	08/05/08	32.55	16.99	15.56	-	-
	02/05/09	32.55 32.55	17.40 16.89	15.15 15.66	-	-
MW-2	06/29/01	28.16	16.14	12.02	_	_
(8-28)	10/10/01	28.16	16.43	11.73	_	_
(0 20)	01/09/02	28.16	13.50	14.66	_	-
	04/24/02	28.16	14.40	13.76	-	-
	07/24/02	28.16	14.91	13.25	-	-
	11/05/02	28.16	16.96	11.20	-	-
	02/04/03	28.16	15.42	12.74	-	-
	05/02/03	28.16	15.24	12.92	-	-
	08/04/03	28.16	15.98	12.18	-	-
	11/03/03	28.16	16.60	11.56	-	Sheen
	02/09/04	28.16	15.22	12.94	-	Sheen
	05/10/04	28.16	15.34	12.82	-	Sheen
	08/09/04	28.16	15.92	12.24	-	Sheen
	11/09/04	28.16	16.51	11.65	-	Sheen
	02/03/05	33.24	14.44	18.80	-	Sheen
	05/09/05	33.24	14.67	18.57	-	Sheen
	08/05/05	33.24	16.27	16.97	-	Sheen
	11/09/05	33.24	16.53	16.71	-	Sheen
	02/09/06	33.24	14.36	18.88	-	Sheen
	05/04/06	33.24	13.46	19.78	-	Sheen
	08/04/06	33.24	15.95	17.29	-	Sheen

TABLE 1: GROUNDWATER ELEVATION DATA

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)										
MW-2	11/08/06	33.24	16.86	16.38	-	Sheen										
cont.	02/08/07	33.24	17.13	16.11	-	Sheen										
	05/29/07	33.24	16.51	16.73	-	Sheen										
	09/05/07	33.24	17.48	15.76	-	-										
	12/12/07	33.24	18.72	14.52	-	-										
	02/13/08	33.24	16.91	16.33	-	-										
	05/15/08	33.24	17.67	15.57	-	-										
	08/05/08	33.24	17.94	15.30	-	-										
	11/07/08	33.24	18.79	14.45	-	-										
	02/05/09	33.24	17.98	15.26	-	-										
MW-3	06/29/01	29.21	16.60	12.61	-	-										
(10-25)	10/10/01	29.21	16.92	12.29	-	-										
· · · ·	01/09/02	29.21	14.20	15.01	-	-										
	04/24/02	29.21	15.07	14.14	-	-										
	07/24/02	29.21	16.40	12.81	-	-										
	11/05/02	29.21	16.47	12.74	-	-										
	02/04/03	29.21	16.92	12.29	-	-										
	05/02/03	29.21	15.45	13.76	-	-										
	08/04/03	29.21	16.46	12.75	-	-										
	11/03/03	29.21	17.15	12.06	-	-										
	02/09/04	29.21	15.78	13.43	-	-										
	05/10/04	29.21	15.77	13.44	-	-										
	08/09/04	29.21	16.45	12.76	-	-										
	11/09/04	29.21	17.26	11.95	-	-										
	02/03/05	34.25	15.92	18.33	-	-										
	05/09/05	34.25	15.03	19.22	-	-										
	08/05/05	34.25	16.59	17.66	-	-										
	11/09/05	34.25	16.82	17.43	-	-										
	02/09/06	34.25	14.65	19.60	-	-										
	05/04/06	34.25	13.61	20.64	-	-										
	08/04/06	34.25	16.28	17.97	-	-										
	11/08/06	34.25	17.28	16.97	-	-										
	02/08/07	34.25	17.68	16.57	-	-										
	05/29/07	34.25	17.37	16.88	-	-										
	09/05/07	34.25	18.53	15.72	-	-										
	12/12/07	34.25	19.61	14.64	-	-										
	02/13/08	34.25	18.12	16.13	-	-										
	05/15/08	34.25	18.64	15.61	-	-										
	08/05/08	34.25	18.88	15.37	-	-										
	11/07/08	34.25	19.60	14.65	-	-										
	02/05/09	34.25	19.02	15.23	-	-										
MW-4	06/29/01	29.38	17.71	11.67	-	-										
(10-25)	10/10/01	29.38	18.00	11.38	-	-										
()	01/09/02	29.38	15.02	14.36	-	-										
	04/24/02	29.38	15.74	13.64	-	-										
	07/24/02	29.38	16.69	12.69	-	-										
	11/05/02	29.38	17.64	11.74	-	-										
	02/04/03	29.38	16.02	13.36	-	-										
	05/02/03	29.38	16.72	12.66	-	-										
	08/04/03	29.38	17.51	11.87	-	-										
	11/03/03	29.38	18.09	11.29	-	-										
	02/09/04	29.38	16.67	12.71	-	-										
TA	BL	E 1:	GRO)UN	JD	WA	TER	EL	EV.	AΊ	IO	N	D	Α'	ΓÆ	١
----	----	------	-----	-----	-----------	----	-----	----	-----	----	-----------	---	---	----	----	---
----	----	------	-----	-----	-----------	----	-----	----	-----	----	-----------	---	---	----	----	---

	TA	BLE 1: GROU Vic's Auto, 2	V NDWATER 245 8th Street, O	ELEVATION akland, California	DATA	
Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-4	05/10/04	29.38	16.89	12.49	-	-
cont.	08/09/04	29.38	17.44	11.94	-	-
	11/09/04	29.38	17.89	11.49	-	-
	02/03/05	34.42	14.98	19.44	-	-
	05/09/05	34.42	16.20	18.22	-	-
	08/05/05	34.42	17.73	16.69	-	-
	11/09/05	34.42	17.91	16.51	-	-
	02/09/06	34.42	15.62	18.80	-	-
	05/04/06	34.42 34.42	15.12	19.30	-	-
	11/08/06	34.42 34.42	17.39	17.05	-	-
	02/08/07	34 42	18.50	15.85	_	
	05/29/07	34.42	18.29	16.13	-	-
	09/05/07	34.42	19.27	15.15	-	-
	12/12/07	34.42	20.44	13.98	-	-
	02/13/08	34.42	18.52	15.90	-	-
	05/15/08	34.42	19.42	15.00	-	-
	08/05/08	34.42	19.67	14.75	-	-
	11/07/08	34.42	20.42	14.00	-	-
	02/05/09	34.42	19.72	14.70	-	-
MW 5	02/02/05	22.22	14.02	10.10		
(12, 22)	02/03/05	33.33 22.22	14.23	19.10	-	-
(12-22)	03/09/03	33.33	14.55	19.00	-	-
	11/09/05	33 33	15.89	17.44	-	-
	02/09/06	33.33	14.02	19.31	_	-
	05/04/06	33.33	12.97	20.36	-	-
	08/04/06	33.33	15.63	17.70	-	-
	11/08/06	33.33	16.55	16.78	-	-
	02/08/07	33.33	16.12	17.21	-	-
	05/29/07	33.33	15.87	17.46	-	-
	09/05/07	33.33	16.95	16.38	-	-
	12/12/07	33.33	18.13	15.20	-	-
	02/13/08	33.33	16.58	16.75	-	-
	05/15/08	33.33	17.08	16.25	-	-
	08/03/08	33.33	17.42	15.91	-	-
	02/05/09	33.33	17.42	15.91	-	
	02/02/09	00.00		1001		
MW-6	02/03/05	32.82	13.99	18.83	-	Sheen
(12-22)	05/09/05	32.82	13.61	19.21	-	Sheen
	08/05/05	32.82	15.50	17.32	15.13	0.37
	11/09/05	32.82	15.87	16.95	15.50	0.37
	02/09/06	32.82	13.93	18.89	13.22	0.71
	05/04/06	32.82	12.88	19.94	12.13	0.75
	08/04/06	32.82	15.22	17.60	14.81	0.41
	11/08/06	32.82	16.16	16.66	15.78	0.38
	02/08/07	52.82 22.82	15.48	17.34	15.14	0.34
	05/29/07	32.82 32.82	15.55	1/.4/	15.04	0.31
	12/12/07	52.82 32.82	13.33	17.27	-	- Shoon
	02/13/08	32.82	17.22	17.00	-	Sheen
	05/15/08	32.82	16.25	16.57	-	-

TABLE 1: GROUNDWA	FER ELEVATION DATA
-------------------	--------------------

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-6	08/05/08	32.82	16.48	16.34	-	-
cont.	11/07/08	32.82	17.33	15.49	-	-
	02/05/09	32.82	16.53	16.29	-	-
MW-7	02/03/05	33.07	14.17	18.90	-	Sheen
(12-22)	05/09/05	33.07	14.47	18.60	14.44	0.03
	08/05/05	33.07	16.07	17.00	16.02	0.05
	11/09/05	33.07	16.47	16.60	16.35	0.12
	02/09/06	33.07	14.18	18.89	14.11	0.07
	05/04/06	33.07	15.12	19.95	13.11	0.01
	08/04/06	33.07	15.74	17.33	-	Sheen
	11/08/06	33.07	16.39	16.48	-	Sheen
	02/08/07	55.07 22.07	16.25	10.84	-	Sheen
	03/29/07	55.07 22.07	16.15	16.94	-	Sheen
	12/12/07	55.07 22.07	10.40	10.07	-	Sheen
	02/12/07	33.07	16.02	15.05	-	Sheen
	05/15/08	33.07	17.01	16.06	-	Sheen
	08/05/08	33.07	17.01	15.00		-
	11/07/08	33.07	18.18	14.89		-
	02/05/09	33.07	17 26	15.81		-
	02/05/09	55.07	17.20	10.01		
MW-8	05/15/08	33.00	16.47	16.53	-	-
(12-22)	08/05/08	33.00	16.88	16.12	-	-
· · · ·	11/07/08	33.00	17.28	15.72	-	-
	02/05/09	33.00	16.78	16.22	-	-
MW-9	05/15/08	32.00	15.16	16.84	-	-
(12-22)	08/05/08	32.00	15.38	16.62	-	-
	11/07/08	32.00	15.84	16.16	-	-
	02/05/09	32.00	15.38	16.62		
MW-10	02/03/05	31.17	12.65	18 52	_	-
(12-22)	05/09/05	31.17	13.09	18.08	_	_
(12 22)	08/05/05	31.17	14.68	16.00	_	_
	11/09/05	31.17	14.00	16.3	_	-
	02/09/06	31.17	12.82	18.35	-	_
	05/04/06	31.17	12.11	19.06	-	-
	08/04/06	31.17	14.38	16.79	-	-
	11/08/06	31.17	15.32	15.85	-	-
	02/08/07	31.17	15.59	15.58	-	-
	05/29/07	31.17	15.27	15.90	-	-
	09/05/07	31.17	16.25	14.92	-	-
	12/12/07	31.17	17.75	13.42	-	Sheen
	02/13/08	31.17	15.59	15.58	-	-
	05/15/08	31.17	16.40	14.77	-	-
	08/05/08	31.17	16.67	14.50	-	-
	11/07/08	31.17	nm	-	-	-
	02/05/09	31.17	nm	-	-	-

VICS AULO. 245 OUI SUCCI. Oakianu. Camonna
--

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to ³ Water (ft)	Groundwater ⁴ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-11	02/03/05	31.78	13.39	18.39	-	Sheen
(12-22)	05/09/05	31.78	13.89	17.89	-	Sheen
	08/05/05	31.78	15.47	16.31	-	Sheen
	11/09/05	31.78	15.73	16.05	-	Sheen
	02/09/06	31.78	13.53	18.25	-	Sheen
	05/04/06	31.78	12.73	19.05	-	Sheen
	08/04/06	31.78	15.17	16.61	-	Sheen
	11/08/06	31.78	16.15	15.63	-	-
	02/08/07	31.78	16.36	15.42	-	Sheen
	05/29/07	31.78	16.06	15.72	-	Sheen
	09/05/07	31.78	17.03	14.75	-	Sheen
	12/12/07	31.78	18.68	13.10	-	-
	02/13/08	31.78	16.28	15.50	-	-
	05/15/08	31.78	17.12	14.66	-	-
	08/05/08	31.78	17.33	14.45	-	-
	11/07/08	31.78	nm	-	-	-
	02/05/09	31.78	nm	-	-	-
MW-12	02/03/05	32.05	13 70	18 35	_	Sheen
(12-22)	05/09/05	32.05	14 17	17.88	_	Sheen
(12 22)	08/05/05	32.05	15.69	16.36	_	Sheen
	11/09/05	32.05	15.03	16.50	_	Sheen
	02/09/06	32.05	13.78	18.27	_	Sheen
	05/04/06	32.05	12.98	19.07	_	Sheen
	08/04/06	32.05	15.39	16.66	-	Sheen
	11/08/06	32.05	16.29	15.76	-	-
	02/08/07	32.05	16.54	15.51	-	-
	05/29/07	32.05	16.27	15.78	-	-
	09/05/07	32.05	17.24	14.81	-	-
	12/12/07	32.02	18.65	13.37	-	-
	02/14/08	32.02	16.50	15.52	-	-
	05/15/08	32.02	17.34	14.68	-	-
	08/05/08	32.02	17.61	14.41	-	-
	11/07/08	32.02	nm	-	-	-
	02/05/09	32.02	nm	-	-	-
MW-13	05/15/08	32.00	14 87	17 13	_	_
(12-22)	08/05/08	32.00	15.10	16.90	_	_
(12-22)	11/07/08	32.00	15.10	16.39	_	-
	02/05/09	32.00	15.09	16.91	-	-

NOTES:

- not applicable

ft = feet

ft amsl = feet above mean sea level

wells MW-14, MW-15, and MW-16

Red = Assumed elevation, awaiting final survey pending installation of proposed monitoring

nm = not measured

LNAPL = light non-aqueous phase liquid (i.e., free product)

1) Monitoring well top of casing (TOC) elevations were resurveyed by Morrow Surveying on January 10, 2006 and February 7, 2006

2) Groudwater elevations for the February 3, 2005 and subsequent monitoring episodes use the new well survey data

3) Depth water is measured from the top of the well casing

4) When LNAPL is present at >0.10 ft, the groundwater elevations are assumed to be affected by the LNAPL

TABLE 2: GROUNDWATER FLOW SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Episode #	Date	Average Groundwater Elevation ¹ (ft amsl)	Change from Previous Episode (ft)	Flow direction (gradient)
1	06/29/01	12.10	-	SSE (0.0074)
2	10/10/01	11.80	-0.30	SSE (0.0071)
3	01/09/02	14.68	2.88	SE (0.0054)
4	04/24/02	13.85	-0.83	SSW (0.005)
5	07/24/02	12.92	-0.93	NE (0.021)
6	11/05/02	11.89	-1.02	SW (0.019)
7	02/04/03	12.80	0.90	NNW (0.01)
8	05/02/03	13.11	0.32	SSE (0.01)
9	08/04/03	12.27	-0.85	SSE(0.007)
10	11/03/03	11.64	-0.63	SSE (0.006)
11	02/09/04	13.03	1.39	SSE (0.006)
12	05/10/04	12.92	-0.11	SSE (0.008)
13	08/09/04	12.31	-0.60	SSE (0.006)
14	11/09/04	11.70	-0.62	SSE (0.004)
15	02/03/05	18.75	-	W (0.007)
16	05/09/05	18.53	-0.22	S (0.010)
17	08/05/05	16.94	-1.59	S (0.010)
18	11/09/05	16.65	-0.28	S (0.010)
19	02/09/06	18.83	2.17	SSW (0.010)
20	05/04/06	19.72	0.90	SSW (0.012)
21	08/04/06	17.24	-2.48	SSW (0.010)
22	11/08/06	16.32	-0.93	SSW(0.0007)
23	02/08/07	16.25	-0.07	SSE (0.0009)
24	05/29/07	16.60	0.35	SSE (0.0009)
25*	09/05/07	15.77	-0.84	-
26*	12/12/07	14.38	-1.38	-
27*	02/13/08	16.24	1.86	-
28*	05/15/08	15.81	-0.43	-
29*	08/05/08	15.54	-0.27	-
30*	11/07/08	15.22	-0.32	-
31*	02/05/09	15.86	0.64	-

NOTES:

- not applicable

 $\mathbf{ft} = \mathbf{feet}$

ft amsl = feet above mean sea level

1) MW-2 to MW-4 only used for episodes 1 through 14; all wells used for episodes 15 and later * = Flow direction not calculated due to onsite operation of dual-phase extraction remediation system

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-1	06/29/01	1.63	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
(8-28)	10/10/01	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	01/09/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	04/24/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	07/24/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/05/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/04/03	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/02/03	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/03	0.23	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/03/03	1.27	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/04	0.18	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/10/04	Obstructed	-	-	-	-	-	-	-
	08/09/04	0.21	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/04	0.24	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/03/05	0.17	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	47,000	<500	4,200	11,000	1,100	6,400	-
	12/12/07	Sheen	80,000	<250	630	22,000	1,700	8,900	-
	02/13/08	Sheen	22,000	<250	750	4,100	340	3,200	-
	05/15/08	0.00	25,000	<600	580	9,200	970	4,200	-
	08/05/08	0.00	110,00	<1,000	730	22,000	1,700	8,200	-
	11/07/08	0.00	15,000	290	460	1,400	84	2,700	-
	02/05/09	0.00	42,000	<1,000	1,100	8,500	880	4,500	

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-2	06/29/01	0.00	69,000	4,100/4,400*	7,200	6,100	1,500	7,000	-
(8-28)	10/10/01	0.00	87,000	14,000	22,000	12,000	2,700	9,100	-
	01/09/02	0.00	130,000	11,000	30,000	19,000	3,800	14,000	-
	04/24/02	Sheen	210,000	32,000	38,000	23,000	4,600	19,000	-
	07/24/02	Sheen	170,000	36,000	48,000	12,000	3,700	8,600	-
	11/05/02	Sheen	190,000	36,000	45,000	25,000	4,600	16,000	-
	02/04/03	Sheen	150,000	27,000	51,000	24,000	4,200	14,000	-
	05/02/03	Sheen	150,000	35,000	39,000	11,000	3,800	9,900	-
	08/04/03	Sheen	120,000	29,000	32,000	5,000	3,200	7,200	-
	11/03/03	Sheen	120,000	24,000	33,000	4,300	3,200	5,400	-
	02/09/04	Sheen	130,000	19,000	27,000	7,700	3,100	7,600	-
	05/10/04	Sheen	67,000	13,000	20,000	3,000	2,300	4,100	-
	08/09/04	Sheen	100,000	22,000	27,000	7,100	2,800	6,600	-
	11/09/04	Sheen	100,000	23,000	27,000	6,100	3,000	5,600	-
	02/03/05	Sheen	84,000	11,000	23,000	5,000	3,000	5,500	-
	05/09/05	Sheen	74,000	14,000	21,000	4,200	2,300	3,300	-
	07/27/05	Sheen	9,500	910	1,400	1,000	180	960	-
	08/05/05	Sheen	74,000	4,000	8,800	11,000	1,300	7,600	-
	11/09/05	Sheen	120,000	16,000	21,000	14,000	2,300	13,000	-
	02/09/06	Sheen	120,000	10,000	18,000	16,000	2,200	13,000	-
	05/04/06	Sheen	71,000	8,300	14,000	11,000	1,500	7,600	-
	08/04/06	Sheen	160,000	14,000	22,000	14,000	2,400	11,000	-
	11/08/06	Sheen	110,000	6,400	17,000	9,200	1,600	6,800	<dl< td=""></dl<>
	$02/08/07^{1}$	Sheen	68,000	5,400	11.000	7.800	1.500	7.700	-
	05/29/07	Sheen	49.000	4,800	7.600	4.400	940	4.600	-
	09/05/07	Sheen	25.000	1.000	3.300	3.400	490	2.800	-
	12/12/07	0.00	5,500	870	1,100	440	28	550	-
	02/13/08	0.00	5,700	250	440	290	43	1,000	-
	05/15/08	0.00	490	68	110	11	0.90	42	-
	08/05/08	0.00	520	<25	26	57	7.6	70	-
	11/07/08	0.00	680	72	110	38	3.1	75	-
	02/05/09	0.00	1,000	82	130	50	15	120	-
	i	İ	i	i	1	1	i	i i	

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-3	06/29/01	0.00	550	<5.0	< 0.5	3.1	3.2	1.2	-
(10-25)	10/10/01	0.00	470	<5.0	0.77	5.3	3.3	5.9	-
	01/09/02	0.00	1,000	<5.0	0.90	7.6	7.8	25	-
	04/24/02	0.00	1,500	<5.0	0.64	7.2	12	14	-
	07/24/02	0.00	1,200	<5.0	10	17.0	11	25	-
	11/05/02	0.00	1,800	<25	33	43.0	18	31	-
	02/04/03	0.00	450	<5.0	< 0.5	5.0	< 0.5	0.77	-
	05/02/03	0.00	340	<5.0	7.3	10.0	2.5	7.3	-
	08/04/03	0.00	170	<5.0	5.8	5.9	1.5	4.9	-
	11/03/03	0.00	54	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/09/04	0.00	190	<5.0	< 0.5	3.6	<0.5	<0.5	-
	05/10/04	0.00	280	<5.0	< 0.5	3.4	<0.5	< 0.5	-
	08/09/04	0.00	290	<5.0	< 0.5	3.8	<0.5	<0.5	-
	11/09/04	0.00	220	<5.0	< 0.5	4.0	<0.5	<0.5	-
	02/03/05	0.00	160	<5.0	13	30	3	21	-
	05/09/05	0.00	200	<5.0	< 0.5	3.9	<0.5	<0.5	-
	08/05/05	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	11/09/05	0.00	130	<5.0	< 0.5	2.3	<0.5	< 0.5	-
	02/09/06	0.00	270	<5.0	< 0.5	5.6	< 0.5	< 0.5	-
	05/04/06	0.00	220	<5.0	< 0.5	4.3	< 0.5	< 0.5	-
	08/04/06	0.00	93	<5.0	< 0.5	1.5	<0.5	< 0.5	-
	11/08/06	0.00	160	<5.0	< 0.5	2.9	<0.5	< 0.5	<dl< th=""></dl<>
	$02/08/07^{1}$	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/29/07	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	09/05/07	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	12/12/07	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	02/13/08	0.00	<50	<5.0	< 0.5	<0.5	<0.5	<0.5	-
	05/15/08	0.00	<50	<5.0	0.99	< 0.5	< 0.5	0.68	-
	08/05/08	0.00	91	<5.0	2.0	8.0	1.3	8.0	-
	11/07/08	0.00	150	<5.0	0.70	6.5	1.3	26	-
	02/05/09	0.00	<50	<5.0	1.7	<0.5	<0.5	<0.5	

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-4	06/29/01	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
(10-25)	10/10/01	0.00	<50	<5.0	<0.5	< 0.5	< 0.5	< 0.5	-
	01/09/02	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	04/24/02	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	<0.5	-
	07/24/02	0.00	<50	<5.0	<0.5	< 0.5	< 0.5	< 0.5	-
	11/05/02	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	02/04/03	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	05/02/03	0.00	500	10	68	71	18	65	-
	08/04/03	0.00	270	<5.0	30	29	9.2	32	-
	11/03/03	0.00	<50	<5.0	<0.5	< 0.5	< 0.5	< 0.5	-
	02/09/04	0.00	<50	<5.0	<0.5	< 0.5	< 0.5	< 0.5	-
	05/10/04	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	08/09/04	0.00	130	<5.0	14	13	5.3	17	-
	11/09/04	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	02/03/05	0.00	370	<5.0	<0.5	4.1	< 0.5	0.64	-
	05/09/05	0.00	840	<5.0	50	180	21	110	-
	07/27/05	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	08/05/05	0.00	310	<5.0	7.5	57	10	53	-
	11/09/05	0.00	290	<5.0	12	61	8.8	49	-
	02/09/06	0.00	250	<5.0	9.9	42	7.5	45	-
	05/04/06	0.00	300	<5.0	37	76	7.8	42	-
	08/04/06	0.00	270	<5.0	7.3	33	5.6	32	-
	11/08/06	0.00	1,300	<5.0	75	230	31	160	<dl< th=""></dl<>
	02/08/07	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	05/29/07	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	09/05/07	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	12/12/07	0.00	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	-
	02/13/08	0.00	75	<5.0	2.4	8.3	1.2	14	-
	05/15/08	0.00	<50	<5.0	0.65	< 0.5	< 0.5	0.52	-
	08/05/08	0.00	76	<5.0	1.2	8.1	1.5	9.7	-
	11/07/08	0.00	100	<5.0	2.8	7.7	1.1	15	-
	02/05/09	0.00	140	<5.0	0.87	19	3.9	29	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-5	02/03/05	0.00	78,000	<1,000	7,600	13,000	2,200	9,600	-
(12-22)	05/09/05	0.00	60,000	<900	6,100	9,900	1,600	6,600	-
	07/27/05	nm	120,000	1,100	10,000	19,000	2,100	13,000	-
	08/05/05	0.00	59,000	<500	4,100	10,000	1,200	6,600	-
	11/09/05	0.00	44,000	<500	3,300	7,400	1,100	4,900	-
	02/09/06	0.00	110,000	<500	10,000	22,000	2,400	13,000	-
	05/04/06	0.00	110,000	<250	11,000	22,000	2,900	15,000	-
	08/04/06	0.00	73,000	<500	4,700	8,600	1,700	7,600	-
	11/08/06	0.00	51,000	<500	3,700	7,200	1,400	6,700	<dl< th=""></dl<>
	02/08/07	0.00	67,000	<800	5,100	10,000	1,800	10,000	-
	05/29/07	0.00	86,000	<1000	6,200	12,000	2,000	11,000	-
	09/05/07	0.00	36,000	<350	2,100	4,000	560	4,600	-
	12/12/07	0.00	8,200	<100	160	56	290	1,200	-
	02/13/08	0.00	4,600	<50	77	440	41	1,300	-
	05/15/08	0.00	3,000	<10	59	330	47	670	-
	08/05/08	0.00	4,500	<50	64	490	46	1,100	-
	11/07/08	0.00	5,000	<17	66	400	29	1,200	-
	02/05/09	0.00	2,800	<0.5*	49	120	22	570	-
MW-6	02/03/05	Sheen	130,000	<1,000	2,400	33,000	2,400	15,000	-
(12-22)	05/09/05	Sheen	170,000	<4,000	11,000	43,000	3,100	16,000	-
~ /	08/05/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.71	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.75	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.41	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.38	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.34	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.31	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	0.00	74,000	<750	870	7,000	2,400	12,000	-
	12/12/07	Sheen	12,000	<10	556	560	550	1,800	-
	02/13/08	Sheen	27,000	<250	700	4,900	620	5,300	<dl< th=""></dl<>
	05/15/08	0.00	25,000	<150	410	2,500	1,000	3,700	-
	08/05/08	0.00	33,000	<350	480	5,500	1,400	6,800	-
	11/07/08 ²	0.00	54,000	<5.0	610	7,000	1,700	8,900	-
	02/05/09	0.00	92,000	<50*	1,100	8,600	2,800	14,000	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-7	02/03/05	Sheen	220,000	18,000	45,000	44,000	3,500	18,000	-
(12-22)	05/09/05	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.07	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	Sheen	230,000	19,000	37,000	37,000	3,100	14,000	-
	11/08/06	Sheen	240,000	13,000	41,000	39,000	3,000	14,000	<dl< td=""></dl<>
	02/08/07	Sheen	230,000	15,000	41,000	37,000	3,700	20,000	-
	05/29/07	Sheen	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	14,000	<450	41	210	99	1,600	-
	12/12/07	Sheen	9,200	<500	1,100	870	66	1,100	-
	02/13/08	0.00	17,000	590	2,800	2,700	300	1,900	-
	05/15/08	0.00	10,000	230	1,700	1,900	200	950	-
	08/05/08	0.00	6,100	<150	1,100	1,100	120	740	-
	11/07/08	0.00	4,200	<50	580	570	44	400	-
	02/05/09	0.00	7,800	26*	1,100	810	190	690	-
MW-8	05/15/08	0.00	90	<5.0	0.62	2.4	<0.5	1.0	-
(12-22)	08/05/08	0.00	81	<5.0	0.66	7.2	1.2	9.1	-
	11/07/08	0.00	430	<5.0	2.90	26.0	6.1	86	-
	02/05/09	0.00	<50	<5.0	0.98	1.3	<0.5	<0.5	
MW-9	05/15/08	0.00	60,000	960	14,000	410	1,500	3,500	-
(12-22)	08/05/08	0.00	42,000	<1,200	13,000	400	1,800	4,800	-
· · · ·	$11/07/08^2$	0.00	53 000	400	13 000	350	1 800	3 100	_
	02/05/09	0.00	32,000	360*	11,000	310	1,600	2,700	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-10	02/03/05	0.00	36,000	<500	4,700	7,200	660	3,400	-
(12-22)	05/09/05	0.00	88,000	<1,500	6,900	20,000	2,300	9,900	-
	08/05/05	0.00	88,000	<1,100	10,000	21,000	1,900	9,800	-
	11/09/05	0.00	63,000	<1,100	5,400	13,000	1,900	7,900	-
	02/09/06	0.00	100,000	<500	6,600	19,000	2,900	13,000	-
	05/04/06	0.00	100,000	<500	8,500	25,000	3,000	13,000	-
	08/04/06	0.00	190,000	<2,200	17,000	35,000	2,800	13,000	-
	11/08/06	0.00	57,000	<500	2,500	7,600	1,600	5,700	<dl< th=""></dl<>
	02/08/07	0.00	69,000	<1,000	4,400	14,000	2,200	8,800	-
	05/29/07	0.00	100,000	<1,000	5,300	19,000	2,600	12,000	-
	09/05/07	0.00	87,000	<1,000	6,100	20,000	2,400	12,000	-
	12/12/07	Sheen	4,700	<50	95	280	110	730	-
	02/13/08	0.00	4,500	<250	190	370	65	880	-
	05/15/08	0.00	4,800	<50	130	320	110	710	-
	08/05/08	0.00	3,500	<120	230	180	74	190	-
	$11/07/08^3$	-	-	-	-	-	-	-	-
	02/05/09	0.00	-	-	-	-	-	-	-
MW-11	02/03/05	Sheen	170,000	<3,000	23,000	35,000	3,100	16,000	-
(12-22)	05/09/05	Sheen	210,000	3,500	29,000	40,000	3,400	16,000	-
	07/27/05	Sheen	220,000	2,500	26,000	37,000	3,200	18,000	-
	08/05/05	Sheen	210,000	<2,500	35,000	42,000	3,300	16,000	-
	11/09/05	Sheen	180,000	9,100	32,000	47,000	3,600	18,000	-
	02/09/06	Sheen	210,000	10,000	33,000	39,000	3,800	20,000	-
	05/04/06	Sheen	190,000	12,000	34,000	41,000	3,500	17,000	-
	08/04/06	Sheen	290,000	11,000	33,000	43,000	3,300	15,000	-
	11/08/06	0.00	240,000	14,000	34,000	44,000	3,300	16,000	<dl< th=""></dl<>
	02/08/07	0.00	230,000	19,000	43,000	44,000	3,900	20,000	-
	05/29/07	0.00	230,000	19,000	35,000	39,000	3,600	20,000	-
	09/05/07	0.00	200,000	19,000	34,000	36,000	3,700	23,000	-
	12/12/07	0.00	81,000	4,000	9,400	9,500	1,700	9,700	-
	02/13/08	0.00	36,000	4,200	5,700	4,000	560	5,300	-
	05/15/08	0.00	15,000	2,300	2,800	1,400	120	1,900	-
	08/05/08	0.00	12,000	1,100	1,800	760	98	630	-
	11/07/08 ³	-	-	-	-	-	-	-	-
	02/05/09	-	-	-	-	-	-	-	-

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-12	02/03/05	Sheen	250,000	100,000	52,000	41,000	3,400	15,000	-
(12-22)	05/09/05	Sheen	210,000	91,000	44,000	28,000	3,300	13,000	-
· · · ·	08/05/05	Sheen	170,000	52,000	38,000	28,000	3,000	12,000	-
	11/09/05	Sheen	180,000	52,000	39,000	25,000	2,900	12,000	-
	02/09/06	Sheen	170,000	34,000	40,000	23,000	3,500	15,000	-
	05/04/06	Sheen	160,000	47,000	33,000	28,000	2,800	10,000	-
	08/04/06	Sheen	240,000	55,000	40,000	24,000	3,200	12,000	-
	11/08/06	0.00	190,000	33,000	40,000	23,000	2,700	13,000	<dl< td=""></dl<>
	02/08/07	0.00	150,000	34,000	38,000	19,000	3,300	12,000	-
	05/29/07	0.00	150,000	30,000	30,000	15,000	3,100	13,000	-
	09/05/07	0.00	160,000	38,000	33,000	21,000	3,200	14,000	-
	12/12/07	0.00	58,000	6,700	10,000	7,100	1,200	4,900	-
	02/13/08	0.00	17,000	3,000	3,600	2,300	440	1,800	-
	05/15/08	0.00	7,800	1,900	2,000	500	130	640	-
	08/05/08	0.00	3,900	800	730	130	61	200	-
	11/07/08 ³	-	-	-	-	-	-	-	-
	02/05/09	-	-	-	-	-	-	-	-
MW-13	05/15/08	0.00	<250	6,700	18	<2.5	<2.5	<2.5	-
(12-22)	08/05/08	0.00	<250	3,400	<2.5	5.7	<2.5	4.3	
	11/07/08	0.00	61	380	2.8	1.4	0.55	0.87	
	02/05/09	0.00	<50	14	<0.5	<0.5	<0.5	<0.5	-

TPH-g = total petroleum hydrocarbons as gasoline

HVOC= halogenated volatile organic compounds (e.g., PCE, TCE, DCE, VC)

MTBE = methyl tertiary-butyl ether

* = MTBE by EPA Method 8260

DL = detection limit

NOTES:

- not sampled/analyzed

ft = feet

it = leet

 $ns/fp = not \ sampled \ / \ free \ product \ present$

 μ g/L = micrograms per liter or parts per billion (ppb)

TPH-g by EPA Method SW8015Cm

BTEX & MTBE by EPA Method SW8021B

1) Analytical results for MW-2 and MW-3 reversed from lab data based on historical concentration trends observed

2) Groundwate sample re-analyzed for MTBE-only by EPA Method SW8260B

3) Wellheads removed and wells now located ~4' below grade beneath new residential construction; routine sampling is no longer possible

4)

5)

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (μg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (μg/m3)
GP-1-5	08/04/06	5	331	<8.0	<7.1	<8.4	<9.7	<9.7	<17	17	23
$GP-1-5D_1$	08/04/06	5	-	<8.0	<7.1	<8.4	<9.7	<9.7	<17	18	23
GP-1-5	11/08/06	5	1,100	<4.6	<4.0	<4.8	<5.5	<5.5	<9.5	12	<12
GP-1-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-1-5	05/17/07	5 5	457	<3.6	< 3.2	< 3.8 < 3.8	<4.4 <1.4	<4.4 <1.4	<7.6 <7.6	14 14	<9.9 <0.0
$GP_{-1}-5D_{1}$	12/12/07	5	- <1 500	< <u>5.0</u>	<5.2 <6.5	>3.0 <7.7	~4.4 <8.8	<4.4 <27	<96	<14	<9.9 <25
GP-1-5	02/14/08	5	<1,300	<48 <48	<0.5 <6.5	<7.7	<8.8	<27	<90 <96	<14	<10 000
GP-1-5	05/08/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
GP-1-5	08/15/08	5	<1800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-1-5 ²	11/07/08	5	-	-	-	-	-	-	-	-	-
GP-1-10	08/04/06	10	493	<4.1	<3.6	<4.3	<5.0	<5.0	<8.6	20	<11
GP-1-10	11/08/06	10	950	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-1-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-1-10	05/17/07^	10	-	-	-	-	-	-	-	-	-
GP-1-10	12/12/07	10	<1,500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-1-10	02/14/08	10	<1,800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-1-10	05/08/08	10	<1,800	<7.3	< 6.5	<1.1	<8.8	<27	-	<14	<25
GP-1-10	08/15/08	10	<1,800	<7.5	<0.5	<1.1	~8.8	~27	-	<14	<10,000
GP-1-10 ⁻	11/07/08	10	-	-	-	-	-	-	-	-	-
GP-2-5	08/04/06	5	493	<4.4	<3.9	6.9	<5.4	10	<9.3	600	<12
GP-2-5	11/08/06	5	1,100	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	240	<11
GP-2-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-2-5 GP-2-5	05/1//07	5 5	582 <1.500	<4.0 <48	<3.3 <6.5	<4.1 <7.7	<4.8 <8.8	<4.8 <27	<8.3 <96	420 <14	<11
GP-2-5	02/14/08	5	<1,300	<48 <48	<0.5 <6.5	<7.7	<8.8	<27	<90 <14	<14	<10.000
GP-2-5	05/08/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
GP-2-5	08/15/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	39	<10,000
GP-2-5 ²	11/07/08	5	-	-	-	-	-	-	-	-	-
GP-2-10	08/04/06	10	352	<10	<9.0	18	<12	<12	<21	270	<28
GP-2-10	11/08/06	10	910	<3.9	<3.4	<4.1	<4.7	<4.7	<8.1	450	<11
GP-2-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-2-10	05/17/07	10	748	<3.8	<3.3	<3.9	<4.5	<4.5	<7.9	440	<10
GP-2-10 GP 2 10	12/12/07	10	<1500 <1900	<48 <49	<0.5 <6.5	./<br ~7 7	<8.8	<27	<96	<14 <14	<25
GP-2-10 GP-2-10	02/14/08	10	<1800 <1.800	<48 <7 3	<0.3 <6.5	<1.1 <77	~ð.ð <8 8	<27 < 27	-	<14 <1/	<10,000
GP-2-10	08/15/08	10	<1,800	<7.3	<0.5 <6.5	<7.7	~0.0 <8.8	<27	-	48	<10 000
GP-2-10 ²	11/07/08	10	-	-	-	-	-	-	-	-	-

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (µg/m3)	Ethyl- benzene (μg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (μg/m3)
GP-3-5	08/04/06	5	<240	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-3-5	11/08/06	5	930	<4.4	<3.9	<4.6	<5.2	<5.2	<9.1	<8.2	<12
GP-3-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-3-5	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	17	<7.5	<11
GP-3-5D _f	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	<8.3	16	<11
GP-3-5	12/12/07	5	<1500	<48	<6.5	.7</td <td><8.8</td> <td><27</td> <td><96</td> <td><14</td> <td><25</td>	<8.8	<27	<96	<14	<25
GP-3-5	02/14/08	5	<1800	<48	< 6.5	./</td <td>< 8.8</td> <td><27</td> <td>-</td> <td><14</td> <td><10,000</td>	< 8.8	<27	-	<14	<10,000
GP-3-5	05/08/08	5	<1,800	<7.3	<0.5	<1.1 <7.7	<8.8 <9.9	<27	-	<14 <14	<25
GF - 3 - 3	00/15/00	5	<1,000	~7.5	<0.5	~7.7	~0.0	~27	-	<u>_14</u>	<10,000
GP-3-5"	11/07//08	5	-	-	-	-	-	-	-	-	-
GP-3-10	08/04/06	10	564	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-3-10	11/08/06	10	1,800	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	<7.6	<11
GP-3-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-3-10	05/17/07	10	1,538	<4.1	<3.6	<4.3	<5.0	<5.0	18	<7.8	12
GP-3-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	-
GP-3-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-3-10	05/08/08	10	<1,800	.3</td <td>< 6.5</td> <td><!--./</td--><td>< 8.8</td><td><27</td><td>-</td><td><14</td><td><25</td></td>	< 6.5	./</td <td>< 8.8</td> <td><27</td> <td>-</td> <td><14</td> <td><25</td>	< 8.8	<27	-	<14	<25
GP-3-10	08/15/08	10	<1,800	<7.5	<0.5	<1.1	<8.8	<27	-	<14	<10,000
GP-3-10 ^{**}	11/07/08	10	-	-	-	-	-	-	-	-	-
GP-4-5	08/04/06	5	705	<4.4	5.4	<4.6	<5.4	<5.4	<9.3	<8.4	<12
GP-4-5D ₁	08/04/06	5	599	-	-	-	-	-	-	-	-
GP-4-5	11/08/06	5	540	<4	<3.5	<4.1	<4.8	<4.8	<8.3	<7.5	<11
$GP-4-5D_{f}$	11/08/06	5	610	<7.7	<6.8	<8.0	<9.2	<9.2	<16	<14	<21
GP-4-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-4-5	05/17/07	5	873	<4	<3.6	<4.2	<4.9	<4.9	15	<7.6	<11
GP-4-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
$GP-4-5D_{f}$	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-4-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	<96	<14	<10,000
GP-4-5	05/08/08	5	<1,800	<7.3	<6.5	<7.7	<8.8	<27	-	<14	<25
GP-4-5	08/15/08	5	<1,800	.3</td <td><6.5</td> <td><7.7</td> <td><8.8</td> <td><27</td> <td>-</td> <td><14</td> <td><10,000</td>	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-4-5 ^{1,2}	11/07/08	5	-	-	-	-	-	-	-	-	-
GP-4-10	08/04/06	10	564	<4.1	6.1	17	5.7	16	12	<7.8	<11
$GP-4-10D_{f}$	08/05/06	10	529	<3.8	4.2	18	<4.6	17	18	<7.2	<10
GP-4-10	11/08/06	10	900	<4.0	<3.5	4.1	<4.8	5.2	<8.3	<7.5	<11
$GP-4-10D_1$	11/08/06	10	880	<1.8	<1.6	<1.9	<2.2	<2.2	<3.8	<3.4	<4.9
GP-4-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-4-10	05/17/07^	10	-	-	-	-	-	-	-	-	-
GP-4-10	12/12/07/	10	1,600	<48	<6.5	<1.1	<8.8	<27	<96	<14	<25
GP-4-10 GP 4 10	02/14/08	10	-	-	-65	-	-00	77	-	- 14	-25
GP-4-10 GP-4-10	03/08/08	10	<1.800 <1.800	<73	<0.3 <6.5	>1.1 <77	~0.ð <8.8	~27 < 27	-	<14 <1∕I	<10.000
$CP 4 10^{1.2}$	11/07/00	10	~1,000	~1.5	~0.5	~1.1	~0.0	~41	-	~14	~10,000
GP-4-10	11/0///08	10	-	-	-	-	-	-	-	-	-
ESLs			26,000	9,400	85	63,000	420,000	150,000	1.9E+07	410	-
CHHSLs		Į.	-	4,000	36.2	135,000	рр	315,000	-	180	-

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA

Vic's Auto, 245 8th Street, Oakland, California

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (µg/m3)	Ethyl- benzene (µg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (µg/m3)
---------	-------------------	-----------------------------	------------------	-----------------	--------------------	--------------------	------------------------------	--------------------	--------------------	----------------	-----------------------

TPH-g by modified EPA Method TO-3

BTEX, MTBE, Ethanol, PCE, 2-propanol by modified EPA Method TO-15

NOTES:

- not sampled/analyzed

2-propanol (i.e., isopropyl alcohol) tracer/leak check compound

ft bgs = feet below ground surface

 $\mu g/m3 = micrograms$ per cubic meter

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

PCE = tetrachloroethene

ESLs = Environmental Screening Levels - for residential land use

CHHSLs = California Human Health Screening Levels

pp = CHHSL postponed

* = Sampling not possible due to seasonal wet soil conditions

 $^{\wedge}$ = No sample analysis due to presence of free moisture in sample tubing

 D_f = after the probe/sample ID indicates a duplicate sample collected in the field

D_l = after the probe/sample ID indicates a duplicate sample prepared and analyzed by the lab

1) On August 21, 2008, GP-3 and GP-4 were decommissioned during the installation of the HVDPE conveyance piping laterals

2) Per concurrence from ACHCSA in a letter dated October 3, 2008, quarterly soil gas sampling has been temporarily suspended during operation of the HVDPE system 3)

4)

5)

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-1S	08/10/07		100%	OFF	21	-	-	-	-	3,400	ND<14	68	210	30	160
	09/28/07	1,2	OFF	OFF	20	-	-	-	-	-	-	-	-	-	-
	10/17/07		100%	100%	21	0	0.0	20.9	0.0	380	ND<14	26	58	5.7	46
	11/16/07		50%	50%	21	2,800	0.5	20.7	0.5	3,200	ND<14	69	220	20	110
	12/26/07		50%	50%	18	3,000	1.5	20.7	0.4	3,900	ND<27	79	210	41	210
	01/22/08		100%	OFF	18	160	0.0	19.7	0.3	660	ND<14	5.8	23	2.7	28
	02/07/08	4	OFF	OFF	21.5	0	0.0	20.9	0.0	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	0	xx	20.9	0.0	140	ND<0.68	1.3	6.9	0.78	6.9
	04/30/08		OFF	OFF	18	50	0	20.9	0.1	520	3.3	13	38	6.7	53
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08	7	OFF	OFF	23	- 210	-	- 19.2	-	-	-	-	-	-	-
	07/30/08	/	OFF	0FF 1000/	17	510	0	18.3	1.1	-	- 0.71	-	-	-	- 12
	09/30/08		100%	100%	10.5	5	0	20.9	0.4	65 2 100	0.71 ND <180	0.44	2.2	0.65	12
	12/02/08		100%	100%	15	4,230	1.5	20.3	2.9	3,100	ND<100	57	140	14	120
	01/06/00		100%	100%	10	2,710	0.5	20.5	0.9	3,300	ND<14	36	56	0.22	110
	01/00/09		100%	100 /0	12	15	0	20.9	0.0	36	ND<0.68	3.0 4 7	5.0	0.22	3.1
	03/18/09		100%	100%	12	10	0	20.9	0.0	120	ND<1.0	1.8	9.6	0.55	3.1 4.2
	00/10/05		10070	10070	10	10	v	-0.5	0.2	120	112 110	1.0	2.0	0.05	
MW-2S	08/10/07		100%	100%	21	-	-	-	-	11.000	ND<110	280	770	81	360
	09/28/07	1	100%	100%	20	5,900	2.5	20.6	0.4	5,100	ND<35	110	310	46	260
	10/17/07		100%	100%	21	1,450	1.0	20.9	0.1	1,900	ND<20	59	120	12	73
	11/16/07		100%	100%	21	4,600	2.5	20.7	0.5	5,800	ND<27	120	340	40	200
	12/26/07		100%	100%	18	2,600	1.5	20.9	0.4	3,100	ND<27	84	230	37	190
	01/22/08		100%	100%	18	1,000	0.5	17.7	0.6	3,000	ND<14	61	190	24	180
	02/07/08	5	100%	100%	21.5	1,000	0.5	20.9	0.2	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	100	xx	20.9	0.6	1,400	2.3	17	51	13	81
	04/30/08		100%	OFF	18	190	0	20.7	0.5	1,900	ND<6.8	22	75	16	110
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08		OFF	OFF	23	-	-	-	-	-	-	-	-	-	-
	07/30/08	7	OFF	OFF	17	100	0.0	20.3	0.6	-	-	-	-	-	-
	09/30/08		OFF	100%	16.5	160	0.0	16.7	1.8	220	ND<0.68	0.44	3.1	1.0	17
	11/04/08		100%	100%	13	6,800	1.5	11.8	3.1	3,800	ND<14	78	170	18	150
	12/02/08		100%	100%	10	3,200	0.5	18.3	0.9	3,200	ND<14	66	170	14	130
	01/06/09		100%	100%	11	1,950	0.5	17.7	1.6	3,400	ND<30	69	150	13	95
	02/09/09		100%	100%	12	900	0	16.4	1.4	1,100	ND<10	25	53	4.9	49
1	03/18/09		100%	100%	10	30	0	20.9	0	130	ND<0.68	1.1	5.6	0.43	2.6
				i	i			i			i		i		

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-5S	08/10/07		100%	100%	21	-	-	-	-	54	ND<0.68	0.60	2.7	0.60	3.7
	09/28/07	1	100%	100%	20	8,000	5.5	20.2	0.3	3,800	ND<60	70	150	19	120
	10/17/07		100%	100%	21	880	0.5	20.9	0.1	1,100	ND<14	27	56	5.3	36
	11/16/07		100%	100%	21	4,600	3.0	20.0	0.7	3,800	ND<110	64	170	21	170
	12/26/07		OFF	OFF	18	200	0.0	20.9	0.0	140	ND<0.68	0.45	3.7	1.5	14
	01/22/08		100%	100%	18	300	0.0	18.0	0.4	760	ND<4.5	3.3	16	2.4	28
	02/07/08	4	OFF	OFF	21.5	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	0	XX	19.9	0.3	580	ND<2.7	3	24	4.2	39
	04/30/08		OFF	OFF	18	0	0.0	19.4	1.0	2,000	ND<10	18	56	5.7	63
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08		OFF	OFF	23	-	-	-	-	-	-	-	-	-	-
	07/30/08	7	OFF	50%	17	1,000	0.0	14.0	2.8	-	-	-	-	-	-
	09/30/08		OFF	100%	16.5	1,850	0.0	16.0	2.8	2,000	ND<14	27	61	6.2	87
	11/04/08		100%	100%	13	2,450	0.5	14.6	2.3	3,900	ND<27	30	100	6.1	150
	12/02/08		100%	100%	10	1,810	0.0	19.7	0.1	1,900	ND<27	ND<3.1	29	2.9	81
	01/06/09	8	100%	100%	11	1,350	0.0	17.3	0.3	-	-	-	-	-	-
	02/09/09		100%	100%	12	260	0.0	19.7	0.3	270	ND<4.5	2.4	7.5	0.90	23
	03/18/09		100%	100%	10	50	0.0	20.8	0.3	99	ND<2.0	2.1	6.0	0.76	6.2
MW-6 S	08/10/07		100%	100%	21	-	-	-	-	5,800	ND<30	69	280	24	140
	09/28/07	1	100%	100%	20	>11,000	8.0	19.7	0.5	6,800	ND<60	100	360	34	190
	10/17/07		100%	100%	21	1,350	0.5	20.9	0.1	1,700	ND<10	24	90	9.7	79
	11/16/07		100%	50%	21	6,300	4.5	19.2	1.0	6,400	ND<27	56	270	40	310
	12/26/07		100%	100%	18	4,600	2.5	18.5	1.3	4,200	ND<27	21	96	14	180
	01/22/08		50%	100%	18	1,050	0.5	15.6	1.0	1,900	ND<14	11	74	13	100
	02/07/08		-	-	21.5	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	15	XX	20.5	0.1	230	ND<1.4	1.2	9.2	2.4	16
	04/30/08		100%	100%	18	140	0.0	20.7	0.7	760	ND<6.8	3.5	18	3.2	36
	05/29/08		OFF	OFF	19.5	-	-	-	-	-	-	-	-	-	-
	06/26/08		OFF	100%	23	210	0.0	19.8	0.4	400	ND<10	2	18	3.1	24
	07/30/08	7	100%	100%	17	270	0.0	20.2	0.7	460	ND<4.5	1.7	14	2.2	19
	09/30/08		OFF	100%	16.5	570	0.0	17.4	2.0	640	ND<14	7.7	42	3.7	31
	11/04/07		100%	100%	13	580	0.0	17.4	1.2	900	ND<2.7	4.6	21	4.6	46
	12/02/08		100%	100%	10	460	0.0	20.6	0.3	710	ND<14	3.2	13	1.4	30
	01/06/09		100%	100%	11	280	0.0	19.9	0.4	520	ND<14	4.1	17	2.3	32
	02/09/09		100%	100%	12	80	0.0	20.9	0.1	60	ND<0.68	1.4	3.4	0.49	8.2
1	03/18/09		100%	100%	10	70	0.0	20.9	0.0	61	ND<3.0	1.3	1.7	0.38	4.0

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-7S	08/10/07 09/28/07 10/17/07 11/16/07 12/26/07 01/22/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09	1	100% 100% 100% 100% 100% 100% 0FF 0FF 100% 0FF 100% 100%	100% 100% 50% 100% 100% 100% 100% 100% 1	21 20 21 18 18 21.5 14.5 18 19.5 23 17 16.5 13 10 11 12 10	- 11,000 0 10,000 5,500 2,050 - 390 600 - 5,200 2,750 4,200 9,100 4,350 3,150 1,050 440	- 19 0.0 8.0 3.0 1.0 - xx 1.0 - 1.5 0.5 1.0 1.5 0.5 0.5 0.5 0.0 0.0	- 20.0 20.9 20.5 20.4 18.2 - 20.2 19.0 - 15.8 18.3 12.6 7.5 19.5 15.4 13.4 15.3	- 0.5 0.0 0.4 0.5 0.4 - 0.3 1.2 2.7 1.7 5.9 3.5 1.1 2.3 2.5 2.7	19,000 13,000 390 7,700 4,700 3,900 - 2,000 4,100 - 2,800 4,100 3,900 2,000 1,100 690	ND<450 ND<150 ND<14 ND<45 ND<45 ND<14 - ND<5.0 ND<14 - ND<30 - ND<30 ND<14 ND<27 ND<4.5 ND<10 ND<14	620 350 27 170 100 69 - 25 66 - 56 - 57 53 44 19 19 28	590 630 60 390 220 200 - 81 150 - 71 - 72 87 89 43 21 22	27 69 6 47 27 20 - 11 15 - 4 - 4.2 4.3 4.1 3.0 1.8 19	100 370 51 280 190 210 - 78 150 - 110 - 110 130 110 77 34
MW-10S	11/21/07 12/26/07 01/22/08 02/07/08 03/18/08 04/30/08 05/29/08 06/26/08 07/30/08 09/30/08 09/30/08 11/04/08 12/02/08 01/06/09 02/09/09 03/18/09	7	100% 100% 100% 100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%	19 19 18 16.5 - 14.5 18 18 23 17 16.5 13 10 11 12 10	>44,000 3,900 1,850 - 270 310 1,750 370 1,050 640 1,900 1,550 1,150 310 130	43.0 2.5 0.5 - xx 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.0 19.4 16.1 - 19.0 19.6 19.6 20.7 20.3 20.9 13.0 20.3 18.2 17.8 18.7	2.2 0.5 0.9 0.9 0.8 0.1 0.8 0.4 2.5 0.6 1.2 0.7 0.7	28,000 6,300 4,700 - 2,100 2,500 1,800 780 1,600 690 2,300 1,500 2,200 400 220	ND<68 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<14 ND<12 ND<217 ND<10	300 55 38 - 13 11 13 4.1 16 10 36 26 31 5.6 8.9	800 350 230 - 73 76 47 15 50 29 89 73 64 12 7.7	63 64 49 - 31 33 17 4.9 9.5 5.1 8.1 8.4 6.7 1.1 1.4	230 300 310 - 190 230 120 38 95 53 120 71 64 21 10

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-11S	11/21/07		100%	100%	19	36,600	26.5	19.2	2.2	20,000	ND<68	240	640	63	240
	12/26/07		50%	100%	18	1,350	0.5	20.9	0.2	3,400	ND<75	50	220	50	230
	01/22/08		100%	100%	16.5	1,000	0.0	19.3	0.2	3,000	ND<30	81	190	39	230
	02/07/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	130	XX	20.0	0.3	1,700	ND<14	26	66	26	150
	04/30/08		100%	100%	18	120	0.0	20.9	0.2	600	ND<5.0	6.7	23	5.9	49
	05/29/08		100%	100%	18	950	0.0	20.9	0.3	1,800	ND<30	24	47	18	120
	06/26/08		100%	100%	23	480	0.0	20.9	0.1	940	ND<15	12	28	8.4	57
	07/30/08	7	100%	100%	17	980	0.0	20.9	0.3	1,600	ND<30	22	50	13	100
	09/30/08		100%	0%	16.5	510	0.0	20.9	0.2	490	ND<10	11	22	3.8	40
	11/04/08		0%	100%	13	360	0.0	16.5	1.4	820	ND<20	22	21	5.2	57
	12/02/08		100%	100%	10	320	0.0	20.9	0.2	1,400	ND<35	23	57	6.3	73
	01/06/09		100%	100%	11	790	0.0	18.9	0.6	1,200	ND<20	29	53	5.7	56
	02/09/09		100%	100%	12	380	0.0	17.6	0.8	500	ND<6.0	14	18	2.3	28
	03/18/09		100%	100%	10	280	0.0	17.3	1.2	400	ND<3.0	48	18	3.4	20
MW-12S	11/21/07		50%	50%	19	110	0.0	20.9	0.7	1,400	ND<100	87	51	10	40
	12/26/07		50%	50%	18	720	0.0	20.9	0.1	1,200	ND<45	27	100	13	74
	01/22/08		100%	100%	16.5	630	0.0	19.3	0.2	1,100	ND<45	14	50	8.4	65
	02/07/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	03/18/08		100%	100%	14.5	0	XX	20.9	0.0	460	ND<30	42	32	4.2	36
	04/30/08		100%	100%	18	150	0.0	20.9	0.2	390) ND -10	8.8	17	3.9	30
	05/29/08		100%	100%	18	140	0.0	20.9	0.5	490	ND<10	14 5 1	25	4.4	50 22
	00/20/08	7	100%	100%	23 17	240	0.0	20.9	0.1	450	4.1 ND<5.0	J.1 4.5	20	2.0	32
	09/30/08	,	100%	0%	16.5	190	0.0	20.9	0.3	230	ND<5.0	3.9	12	2.2	28
	11/04/08		0%	100%	13	140	0.0	18	0.8	260	ND<5.0	6.5	7.4	1.2	14
	12/02/08		100%	100%	10	150	0.0	20.5	0.6	660	ND<5.0	7.3	29	4.5	66
	01/06/09		100%	100%	11	380	0.0	20.3	0.4	490	ND<6.8	9.1	18	2.2	37
	02/09/09		100%	100%	12	70	0.0	20.1	0.3	110	ND<5.0	4.2	4.0	0.58	8.1
	03/18/09		100%	100%	10	25	0.0	20.9	0.2	98	ND<5.0	7.6	4.2	0.53	2.5

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
AS	10/17/07		100%	100%	-	0	0.0	20.9	0.0	130	ND<1.4	4.3	11	1.4	12
	11/08/07		100%	100%	-	0	0.0	20.9	0.0	19	ND<0.68	0.60	1.8	0.18	3.2
	01/15/08		100%	100%	-	-	-	-	-	1,100	19	31	100	17	180
	01/31/08		100%	100%	-	-	-	-	-	69	ND<4.5	1.7	5.0	0.81	11
	02/07/08		100%	100%	-	0	0.0	20.9	0.0	31	1.4	0.47	1.5	0.21	4.1
	03/18/08		100%	100%	-	-	-	-	-	31	0.71	0.60	1.8	0.34	3.2
	04/30/08		100%	100%	-	10	0.0	20.9	0.0	37	ND<0.68	0.36	1.4	0.34	4.1
	05/29/08		100%	100%	-	60	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	0.16
	06/26/08		100%	100%	-	10	0.0	20.9	0.0	44	0.97	0.89	2.5	0.54	6.3
	07/30/08	7	100%	100%	-	0	0.0	20.9	0.0	41	ND<1.4	0.81	2.2	0.20	4.2
	09/30/08		100%	100%	-	0	0.0	20.9	0.0	-	-	-	-	-	-
	11/04/08		100%	100%	-	0	0.0	20.9	0.1	21	ND<0.68	0.38	0.91	0.13	2.6
	12/02/09		100%	100%	-	0	0.0	20.9	0.1	10	ND<0.68	ND<0.077	0.22	ND<0.057	0.79
	01/06/09		100%	100%	-	0	0.0	20.9	0.1	150	ND<1.5	1.9	6.9	1.1	22
	02/09/09		100%	100%	-	15	0.0	20.9	0.0	18	ND<0.68	0.28	0.57	0.078	1.5
	03/18/09		100%	100%	-	0	0.0	20.9	0.0	ND<7.0	ND<0.68	ND<0.077	0.085	ND<0.057	0.15

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
PRED	06/28/07		-	-	18.5	-	-	-	-	-	-	-	-	-	-
	07/11/07		-	-	21.5	10,750	-	-	-	6,600	ND<90	180	340	39	190
	07/27/07		-	-	20	>11,000	-	-	-	11,000	ND<75	170	330	38	160
	08/01/07		-	-	19	6,000	9.1	18.5	1.1	5,500	ND<70	140	250	16	71
	08/10/07		-	-	21	-	-	-	-	7,700	ND<90	210	410	41	190
	09/28/07	1	-	-	20	5,700	3.5	20.7	0.3	4,000	ND<50	90	170	9.3	42
	10/17/07		-	-	21	9,050	-	-	-	5,100	ND<60	130	210	8.6	51
	11/08/07		-	-	21	0	0.0	20.9	0.0	4,000	ND<0.68	0.35	2.2	0.68	6.6
	11/16/07		-	-	21	3,050	2.0	20.7	0.4	3,700	ND<120	63	170	20	120
	11/16/07		-	-	21	6,100	4.5	20.3	0.7	6,000	ND<27	100	250	27	170
	11/21/07		-	-	19	12,000	13.5	19.4	1.2	2,500	ND<14	39	120	16	79
	12/04/07		-	-	20	10,500	9.5	18.8	0.9	7,900	ND<32	120	340	48	280
	12/26/07		-	-	18	3,650	2.0	20.9	0.5	4,100	ND<27	72	250	42	270
	01/08/08	3	-	-	18	-	-	-	-	-	-	-	-	-	-
	01/15/08		-	-	19	710	0.0	20.0	0.3	1,900	ND<14	29	89	16	100
	01/22/08		-	-	18	800	0.0	17.8	0.5	1,900	ND<14	34	100	13	100
	01/31/08		-	-	21	1,250	0.5	20.9	0.5	2,200	ND<14	36	120	19	160
	02/07/08		-	-	21.5	700	0.0	20.9	0.4	2,000	ND<35	34	110	10	130
	03/18/08		-	-	14.5	160	XX	15.3	0.9	630	ND<3.0	7.0	25	5.6	38
	04/30/08		-	-	18	280	0.5	20.2	0.0	2,100	ND<5.0	20	63	16	120
	05/29/08		-	-	19.5	1,500	0.0	19.6	0.8	2,100	ND<10	21	45	18	120
	06/26/08		-	-	23	280	0.5	20.2	0.0	860	ND<5.0	11	27	6.5	50
	07/30/08	7	-	-	17	1,350	0.0	19.3	1.1	2,200	ND<6.8	24	62	10	90
	09/30/08		-	-	16.5	1,650	0.5	16.1	1.8	1,100	ND<10	20	42	8.2	78
	11/04/08		-	-	13	2,500	0.5	16.1	1.8	2,700	ND<10	31	77	9.3	130
	12/02/08		-	-	10	1,100	0.0	20.5	0.6	2,200	ND<5.0	27	80	8.7	130
	01/06/09		-	-	11	1,300	0.0	18.4	1.2	1,200	ND<80	21	58	5.7	78
	02/09/09		-	-	12	880	0.0	15.6	1.5	1,200	ND<10	17	31	3.1	46
	03/18/09		-	-	10	60	0.0	20.8	0.4	130	ND<0.68	5.2	11	1.2	7.1

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
POSTD	06/28/07		-	-	-	10,000	6.5	18.2	1.4	3,800	ND<60	120	160	22	110
	07/11/07		-	-	-	3,550	-	-	-	1,400	ND<14	36	82	12	67
	07/27/07		-	-	-	4,550	-	-	-	3,400	ND<14	56	120	15	70
	08/01/07		-	-	-	5,200	-	-	-	2,500	ND<27	59	140	17	95
	08/10/07		-	-	-	4,800	2.0	19.9	0.5	5,300	ND<45	130	290	37	180
	09/28/07		-	-	-	6,750	4.0	20.7	0.3	4,800	ND<60	100	210	23	120
	10/17/07		-	-	-	4,500	2.5	20.9	0.0	1,800	ND<14	41	110	14	100
	11/08/07		-	-	-	1,300	1.0	20.9	0.4	2,000	ND<15	42	100	12	88
	11/16/07		-	-	-	4,150	2.0	20.5	0.4	3,600	ND<14	58	190	25	180
	11/21/07		-	-	-	8,600	7.5	20.5	0.8	5,500	ND<25	75	210	28	130
	12/04/07		-	-	-	6,500	5.0	19.8	0.6	3,400	ND<16	44	120	22	120
	12/26/07		-	-	-	2,000	1.0	20.9	0.3	1,300	ND<45	26	96	15	100
	01/08/08		-	-	-	1,200	0.5	20.9	0.3	1,700	ND<14	23	79	13	83
	01/15/08		-	-	-	45	0.0	20.7	0.0	620	ND<14	11	39	6.6	44
	01/22/08		-	-	-	280	0.0	20.2	0.0	1,100	ND<14	14	50	8.4	65
	01/31/08		-	-	-	470	0.0	20.9	0.1	770	ND<14	12	38	6.9	62
	02/07/08		-	-	-	120	0.0	20.9	0.0	690	ND<6.8	10	37	6.6	58
	03/18/08		-	-	-	75	XX	20.2	0.4	310	ND<3.5	3.9	12	3	20
	04/30/08		-	-	-	55	0.0	20.9	0.2	700	ND<2.0	7.6	23	5	42
	05/29/08		-	-	-	630	0.0	20.7	0.2	500	ND<3.5	5.4	12	4.1	29
	06/26/08		-	-	-	55	0.0	20.9	0.2	620	ND<10	7.8	25	5.4	45
	07/30/08	6,7	-	-	-	-	-	-	-	-	-	-	-	-	-
	09/30/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	11/04/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	12/02/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	01/06/09		-	-	-	-	-	-	-	-	-	-	-	-	-
	02/09/09		-	-	-	-	-	-	-	-	-	-	-	-	-
	03/18/09		-	-	-	-	-	-	-		-	-	-	-	-

Vic's Auto, 245 8th Street, Oakland, California

Sample Port ID	Sample Date	Notes	Initial Valve Position	Final Valve Position	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
STACK	06/28/07		-	-	-	0	0.0	12.3	5.4	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	07/27/08		-	-	-	-	-	-	-	-	-	-	-	-	-
	08/10/07		-	-	-	-	-	-	-	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	09/28/07		-	-	-	0	0.0	14.0	4.5	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	10/17/07		-	-	-	-	-	-	-	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	11/08/07		-	-	-	-	-	-	-	21	ND<0.68	0.24	1.5	0.29	2.4
	11/16/07		-	-	-	0	0.0	14.8	4.8	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	12/26/07		-	-	-	-	-	-	-	-	-	-	-	-	-
	01/18/08		-	-	-	-	-	-	-	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	02/07/08		-	-	-	0	0.0	19.0	1.7	-	-	-	-	-	-
	03/18/08		-	-	-	0	XX	18.0	1.9	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	04/30/08		-	-	-	0	0.0	17.7	2.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	05/29/08		-	-	-	0	0.0	17.7	2.5	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	06/26/08		-	-	-	0	0.0	17.9	1.9	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	07/30/08	7	-	-	-	0	0.0	17.0	1.8	27	ND<0.68	0.09	0.64	0.16	2.1
	09/30/08		-	-	-	0	0.0	16.1	2.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	11/04/08		-	-	-	0	0.0	15.7	2.9	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	12/02/08		-	-	-	0	0.0	17.7	2.3	52	ND<0.68	0.19	1.5	0.34	4.4
	01/06/09		-	-	-	0	0.0	17.7	2.3	26	ND<0.68	ND<0.077	0.52	0.11	1.9
	02/09/09		-	-	-	0	0.0	16.1	2.6	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
	03/18/09		-	-	-	0	0.0	18.3	2.0	ND<7.0	ND<0.68	ND<0.077	ND<0.065	ND<0.057	ND<0.057
DL						5.0	0.1	0.1	0.1	7.0	0.68	0.077	0.065	0.057	0.057

xx = methane sensor damaged; pending replacement

TVH = total volatile hydrocarbons (calibrated w/ hexane)

CH4 = methane by infrared detection (0 to 100% by volume)

O2 = oxygen by electrochemical detection (0-40% by volume) CO2 = carbon dioxide by infrared detection (0 to 20% by volume)

TVH, CH4, O2, and CO2 measured RKI Eagle gas detector

NOTES:

TPH-g = total petroleum hydrocarbons as gasoline

- MTBE = methyl tertiary-butyl ether
- in-Hg = inches of mercury
- ppmv = parts per million by volume
- % = percent concentration by volume
- PRED = pre-dilution sample port at combined inlet

POSTD = post-dilution sample part at thermal/catalytic oxidizer inlet

- not sampled/analyzed

1) Individual well water seperator trap used for the 1st time.

2) Vacuum leak detected at wellhead due to broken wellhead seal.

3) Pump failed, not strong enough to collect sample from PRED @ 18 in-Hg.

4) Opened 100% for field screening, turned OFF after screening, no lab sample collected.

5) Opened 100% for field screening, no lab sample collected.

6) Discontinued POSTD process sampling port starting in the 3rd Quarter, 2008 because it no longer provides any additional useful information.

7) HVDPE system shutdown most of the month of August for quarterly soil gas monitoring and pending repair of the rotary phase converter.

8) Sample was lost in transit or at the laboratory.

9)

10)

DL = detection limit for dilution factor of 1

TPH-g by EPA Method 8015C BTEX & MTBE by EPA Method 8021B

TABLE 6: GROUNDWATER TREATMENT SYSTEM SAMPLE ANALYTICAL DATA

	2,300 3,400	350	
INF 06/26/07 1 - 20,000 ND<1,500 1,400	3,400	550	3,000
06/27/07 - 25,000 1,300 2,300		490	3,100
- 28,000 1,500 2,300	4,800	540	3,300
07/12/07 - 8,300 150 660	1,500	120	1,300
08/22/07 2 - 16,000 130 610	2,000	300	2,400
10/17/07 3,4 - 25,000 ND<250 990	3,000	380	3,600
11/07/07 - 21,000 ND<500 730	2,600	300	4,800
12/12/07 5 - 75,000 ND<250 1,200	9,900	1,700	12,000
01/08/08 - 12,000 320 260	1,100	170	2,900
03/18/08 - 4,100 480 150	240	52	520
04/01/08 - 2,400 60 37	140	20	390
04/30/08 - 8,600 170 150	630	160	2,200
05/29/08 - 13,000 310 140	470	170	1,800
06/26/08 - 7,600 260 130	360	82	1,100
07/30/08 - 9,400 220 160	510	60	1,100
09/30/08 - 6,100 270 240	370	49	780
11/04/08 9,400 380 320	800	110	1,800
12/02/08 8,300 150 140	460	60	1,700
01/06/09 7,800 ND<250 160	460	58	1,600
	660	84	1,700
03/18/09 7 2,000 - 96	180	21	220
POST-AS 06/26/07 1 - 1,000 92 19	34	6.8	48
06/27/07 - 420 45 7.8	13	2.1	22
06/28/07 - 6.400 570 610	890	59	750
07/12/07	-	-	-
08/22/07 2 - 5,300 100 610	2,000	300	2,400
10/17/07 3,4 - 84 12 0.90	2.6	ND<0.5	7
- 120 41 0.71	1.9	ND<0.5	12
12/12/07 5 - 65,000 ND<250 210	3,400	1,300	11,000
01/08/08 - 130 55 0.85	2.8	ND<0.5	12
03/18/08 - 120 190 2.5	3.5	0.77	7.2
04/01/08 - 140 ND<5.0 5.6	0.60	ND<0.5	1.7
04/30/08 - ND<50 11 0.56	ND<0.5	ND<0.5	1.1
05/29/08 - 100 20 ND<0.5	ND<0.5	ND<0.5	6.7
06/26/08 - 70 27 ND<0.5	1.1	ND<0.5	6.3
07/30/08 - 130 16 1.1	3.3	0.73	10
09/30/08 - 94 15 0.85	1.6	ND<0.5	5
11/04/08 ND<50 27 ND<0.5	ND<0.5	ND<0.5	ND<0.5
12/02/08 ND<50 6.3 ND<0.5	ND<0.5	ND<0.5	1.5
01/06/09 ND<50 28 ND<0.5	ND<0.5	ND<0.5	0.77
02/09/09 250 37 3.1	8.7	1.3	28
03/18/09 7 120 - 2.4	4.8	0.81	6.9
POST-C1 06/26/07 1 - ND-50 ND-50 ND-0.5	ND-0 5	ND-0.5	ND-0 5
08/22/07 2 - ND-50 ND-50 ND-05	ND-0.5	ND~0.5	ND-0.5
10/17/07 34 - ND-50 ND-50 ND-05	ND-0.5	ND-0.5	ND-0.5
10/17/07 5,4 - 110/50 110/5.0 110/0.5		110~0.5	112<0.5

TABLE 6: GROUNDWATER TREATMENT SYSTEM SAMPLE ANALYTICAL DATA

Vic's Auto, 245 8th Street, Oakland, California

Sample ID	Sample Date	Notes	TOG (mg/L)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
EFF	06/26/07	1	ND<5.0	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/22/07	2	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/17/07	3,4	-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/07/07		-	ND<50	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/12/07	5	-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/08/08		-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/18/08	6	ND<5.0	ND<50	50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/01/08		-	-	-	-	-	-	-
	04/30/08		ND<5.0	ND<50	30	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	05/29/08		-	ND<50	27	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/26/08		-	ND<50	37	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	07/30/08		-	ND<50	30	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	09/23/08		ND<5.0	-	-	-	-	-	-
	09/30/08		-	ND<50	18	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	11/04/08		-	ND<50	25	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/02/08		-	ND<50	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	01/06/09		-	ND<50	32	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	02/09/09		ND<5.0	ND<50	9.9	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/18/09	7	-	ND<50	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5
DL	-	-	5.0	50	5.0	0.5	0.5	0.5	0.5

NOTES:

- not sampled/analyzed

 $\mu g/L = micrograms$ per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

TOG = total oil and grease hydrocarbon

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

1) System startup and first dischrage to sanitary sewer

2) Bag filter (LCO8) pre-filter for sediment rremoval installed and started up on 08/17/07

3) 1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07

4) 200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07

5) On November 20, 2007, extraction wells MW-10, MW-11, and MW-12 were brought online

6) Metal analysis no longer required per email from EBMUD, dated January 31, 2008

7) On February 27, 2009, the carbon in the PV1000 carbon absorber was changed out by Siemens Water Technoligies

8)

9)

10)

DL = detection limit for dilution factor of 1

TOG by EPA Method 1664 HEM-SGT TPH-g by EPA Method 8015C BTEX & MTBE by EPA Method 8021B

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-1-5'	05/17/07	4	0.00	-	0.11	0.0	18.0	2.2
	06/12/07		0.00	-	0.0	0.0	18.6	2.4
	08/01/07		0.40	-	0.0	0.0	20.9	0.0
	08/10/07		0.35	-	0.0	0.0	20.9	0.0
	10/05/07		0.00	-	0.0	0.0	20.9	0.3
	11/07/07		0.24	1.50	0.0	0.0	20.9	0.0
	11/21/07		0.84	1.50	0.0	0.0	20.9	0.0
	03/28/08		< 0.10	>50	0.0	XX	20.9	0.0
	04/30/08	5	0.00	<1.00	0.0	0.0	20.9	0.1
	08/15/08		0.00	1.50	0.0	0.0	20.9	0.0
	11/11/08		0.20	1.10	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	1.00	0.0	0.0	19.7	0.8
	03/10/09		0.00	1.80	0.0	0.0	19.3	1.3
GP-1-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07		0.00	-	0.0	0.0	18.7	2.2
	08/01/07		0.44	-	0.0	0.0	20.9	0.0
	08/10/07		0.38	-	0.0		20.9	0.0
	10/05/07		0.00	-	0.0	0.0	20.9	0.3
	11/07/07		0.27	2.00	0.0	0.0	20.9	0.0
	11/21/07		0.59	1.50	0.0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	0.14	<1.00	0.0	0.0	20.9	0.1
	08/15/08		0.00	1.00	0.0	0.0	18.5	0.1
	11/11/08		0.19	1.20	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	1.20	10	0.0	19.8	0.7
	03/10/09		0.39	9.00	0.0	0.0	19.5	1.0
GP-2-5'	05/17/07	4	0.00	-	0.14	0.0	19.0	1.5
	06/12/07		0.00	-	0.0	0.0	19.0	1.7
	08/01/07		0.00	-	0.0	0.0	20.9	0.3
	08/10/07		0.04	-	0.0	0.0	20.9	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.1
	11/07/07		0.08	4.00	0.0	0.0	20.9	0.0
	11/21/07		0.04	1.50	0.0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	0.01	2.00	0.0	0.0	20.9	0.0
	08/15/08		0.00	3.00	0.0	0.0	20.9	0.0
	11/11/08	-	0.07	1.80	0.0	0.0	20.9	0.0
	02/09/09	8	0.00	2.20	0.0	0.0	20.7	0.2
	03/10/09	1	-	-	-	-	-	-

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-2-10'	05/17/07	4	0.00	-	0.18	0.0	18.0	1.5
	06/12/07	2	0.00	-	-	-	-	-
	08/01/07		0.08	-	0.0	0.0	20.8	0.5
	08/10/07		0.00	-	0.0	0.0	20.9	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.1
	11/07/07		< 0.10	24.0	0.0	0.0	20.9	0.0
	11/21/07		1.70	35.0	0.0		20.9	0.0
	03/28/08	1	-	-	-	-	-	-
	04/30/08	5	3.50	2.00	0.0	0.0	20.9	0.0
	08/15/08		0.00	3.00	0.0	0.0	20.9	0.0
	11/11/08		1.80	2.00	0.0	0.0	20.9	0.0
	02/09/09	8,1	-	-	-	-	-	-
	03/10/09	1	-	-	-	-	-	-
	0.5/4.5/05		0.00		0.1.1		•••	0.40
GP-3-5'	05/17/07	4	0.00	-	0.14	0.0	20.0	0.48
	06/12/07		0.00	-	0.0	0.0	20.9	0.4
	08/10/07		0.01	-	0.0	0.0	20.9	0.3
	10/05/07		0.00	-	0.0	0.0	20.9	0.2
	11/0//07		<0.10	1.00	0.0	0.0	20.9	0.2
	11/21/07		0.05	1.00	0.0	0.0	20.9	0.0
	03/28/08	~	<0.10	43.0	0.0		20.5	0.1
	04/30/08	5	0.02	<1.00	0.0	0.0	20.9	0.1
	08/15/08	67	0.00	1.00	0.0	0.0	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-
GP-3-10'	05/17/07	4	0.00	-	0.37	0.0	2.4	3.4
	06/12/07		0.00	-	0.0	0.0	10.5	1.8
	08/10/07		0.16	-	0.0	0.0	16.8	2.2
	10/05/07		0.00	-	0.0	0.0	20.8	1.2
	11/07/07		0.30	55.0	0.0	0.0	20.9	0.5
	11/21/07		5.20	47.0	0.0	0.0	20.9	0.2
	03/28/08	3	1.00	>150	0.0	XX	20.0	0.0
	04/30/08	5	9.00	110	0.0	0.0	20.9	0.1
	08/15/08		0.00	50.0	-	-	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-4-5'	05/17/07	4	0.00	-	0.21	0.0	20.0	0.7
	06/12/07		0.00	-	0.0	0.0	20.8	0.6
	08/10/07		0.02	-	0.0	0.0	20.9	0.4
	10/05/07		0.00	-	0.0	0.0	20.9	0.5
	11/07/07		< 0.10	0.85	0.0	0.0	20.9	0.3
	11/21/07		0.00	0.50	0.0	0.0	20.9	0.0
	03/28/08		< 0.10	47.0	0.0	XX	20.0	0.0
	04/30/08	5	0.02	<1.00	0.0	0.0	20.9	0.2
	08/15/08		0.00	1.00	-	-	20.9	0.0
	11/11/08	6,7	-	-	-	-	-	-
GP-4-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07	2	0.00	-	-	-	-	-
	08/10/07		0.08	-	0.0	0.0	20.4	0.2
	10/05/07		0.00	-	0.0	0.0	20.9	0.5
	11/07/07		< 0.1	80.0	0.0	0.0	20.9	0.3
	11/21/07		< 0.1	>50.0	0.0	0.0	20.9	0.0
	03/28/08	2,3	< 0.1	>150	0.0	XX	20.5	0.0
	04/30/08	1,5	0.20	>150	-	-	-	-
	08/15/08		0.00	>50.0	-	-	19.0	0.1
	11/11/08	6,7	-	-	-	-	-	-
DL	-	-	varies	varies	5.0	0.1	0.1	0.1

Vic's Auto, 245 8th Street, Oakland, California

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
----------------------	------	-------	---------------------------------	-----------------------------	---------------	------------	-----------	------------

NOTES:

- not sampled/analyzed

in-H20 = inches of water

ppmv = parts per million by volume

% = percent concentration by volume

xx = methane sensor damaged; pending replacement

DL = detection limit for dilution factor of 1

TVH = total volatile hydrocarbons (calibrated w/ hexane) CH4 = methane O2 = oxygen CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured w/ RKI Eagle gas detector

1) Soil gas sample collection not possible due to wet or saturated soil conditions

2) Moisture present within the sample tubing

3) High purge vacuum may indicate wet or saturated soil conditions

4) TPH-g by modified EPA Method TO-3 GC/FID and CH4, O2, and CO2 by modified method ASTM D-1946 GC/FID or GC/TCD

5) Soil gas probe screened for TVH, CH4, O2, and CO2 approximaltey one week prior to sampling for vapor intrusion evaluation

6) Nested soil gas probes GP-3 and GP-4 were abandoned on August 21, 2008 during the HVDPE conveyance lateral installation

7) GP-4 and possibly GP-3 will be re-installed once the construction activities at 708 Alice Street are completed

8) HVDPE system was shutdowwn on January 6, 2009, approximlatey one (1) month before screening GP-1 & GP-2

9)

10)

	MW-1				MW-2		MW-5				MW-6		MW-7		
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)												
06/26/07	1.5	8.0	15.0	6.0	9.0	15.0	-	OFF	-	5.5	10.0	15.0	6.5	10.0	15.0
06/27/07	2.0	7.0	15.0	5.5	9.0	15.0	-	OFF	-	5.0	9.5	15.0	5.0	9.5	15.0
06/28/07	1.5	8.0	15.0	5.0	10.0	15.0	-	OFF	-	5.0	9.0	15.0	6.0	10.0	15.0
07/12/07	2.0	8.0	15.0	6.0	9.0	15.0	10.0	12.0	15.0	5.0	10.0	15.0	6.0	10.0	15.0
08/01/07	1.5	7.0	15.0	5.5	10.0	15.0	-	OFF	-	5.0	9.5	15.0	5.5	11.0	15.0
08/10/07	5.0	10.0	17.0	9.5	16.0	17.0	-	OFF	-	10.0	12.5	17.0	9.0	15.5	17.0
09/11/07	5.5	17.0	16.0	5.5	16.5	16.0	-	OFF	-	9.0	10.0	19.5	8.0	12.0	19.5
09/28/07	3.0	7.5	24.0	8.0	17.0	20.0	2.5	8.0	20.0	16.0	17.0	20.0	9.0	15.0	20.0
10/01/07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/21/07	3.0	10.0	25.0	11.0	15.0	21.0	n/a	OFF	-	12.0	12.0	20.0	0	BSTRUCTE	D
12/26/07	-	OFF	-	0	BSTRUCTE	D	n/a	OFF	-	18.0	13.5	20.0	11.5	15.5	20.0
01/15/08	-	OFF	-	11.0	14.0	21.0	n/a	OFF	-	16.5	11.5	20.0	12.0	14.0	20.0
02/07/08	5.0	9.5	25.0	10.0	13.0	20.0	n/a	OFF	-	15.5	14.0	19.0	15.5	21.0	20.0
03/18/08	9.0	10.0	25.0	5.5	11.5	19.0	n/a	9.5	21.0	8.0	9.5	20.0	8.5	12.0	21.0
04/24/08	7.0	7.0	25.0	3.0	7.0	19.0	-	7.0	21.0	5.0	5.0	21.0	4.0	7.0	21.0
05/29/08	0.0	0.0	25.0	0.0	0.0	19.0	n/a	0.0	21.0	0.0	0.0	21.0	0.0	0.0	21.0
06/26/08	0.0	0.0	25.0	0.0	0.0	20.0	n/a	0.0	22.0	0.0	0.0	21.0	0.0	0.0	21.0
07/30/08	OFF	OFF	25.0	OFF	OFF	20.0	OFF	OFF	22.0	5.0	15.0	21.0	4.5	15.0	21.0
09/30/08	OFF	OFF	25.0	OFF	OFF	20.0	n/a	8.0	22.0	OFF	OFF	21.0	OFF	OFF	21.0
11/04/08	3.0	8.0	25.0	3.0	8.0	20.0	n/a	8.0	22.0	5.0	10.0	21.0	5.0	10.0	21.0
12/02/08	2.5	8.0	25.0	5.0	9.0	20.0	n/a	12.0	22.0	7.0	10.0	21.0	6.0	11.0	21.0
01/06/09	3.0	9.0	25.0	5.0	10.0	20.0	n/a	11.0	22.0	8.0	9.0	21.0	6.0	10.0	21.0
02/09/09	2.5	10.0	25.0	5.0	11.0	20.0	n/a	12.0	22.0	7.0	10.0	21.0	6.0	11.0	21.0
03/18/09	2.5	9.0	25.0	5.0	9.0	20.0	n/a	8.0	22.0	7.0	9.0	21.0	6.0	9.0	21.0

TABLE 8: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

in-Hg = inches of mercury (gauge pressure)

ft toc = dpeth in feet as measured from the top of the well casing

n/a = casing vacuum gauges not installed at this well

TABLE 8: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

		MW-10		MW-11				MW-12							
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)												
06/28/07	-	-	-	-	-	-	-	-	-						
07/12/07	-	-	-	-	-	-	-	-	-						
08/01/07	-	-	-	-	-	-	-	-	-						
08/10/07	-	-	-	-	-	-	-	-	-						
09/11/07	-	-	-	-	-	-	-	-	-						
09/28/07	-	-	-	-	-	-	-	-	-						
10/01/07	-	-	-	-	-	-	-	-	-						
11/21/07	n/a	13.0	18.0	n/a	11.0	19.0	n/a	14.0	19.0						
12/26/07	n/a	11.0	18.0	n/a	10.5	19.0	n/a	14.5	19.0						
01/15/08	n/a	10.0	18.0	n/a	9.0	19.0	n/a	12.0	19.0						
02/01/08	n/a	9.0	18.0	n/a	10.0	19.0	n/a	15.0	19.0						
03/18/08	n/a	7.5	18.0	n/a	9.0	19.0	n/a	9.0	20.5						
04/24/08	n/a	0.0	18.0	n/a	0.0	19.0	n/a	4.0	19.0						
05/29/08	n/a	11.0	20.0	n/a	14.0	20.0	n/a	13.0	20.0						
06/26/08	n/a	12.0	20.0	n/a	15.0	20.0	n/a	14.0	20.0						
07/30/08	n/a	10.0	20.0	n/a	13.0	20.0	n/a	12.0	20.0						
09/30/08	n/a	15.0	22.0	n/a	15.0	22.0	n/a	15.0	22.0						
11/04/08	n/a	10.0	22.0	n/a	15.0	22.0	n/a	15.0	22.0						
12/02/08	n/a	10.0	22.0	n/a	11.0	22.0	n/a	11.0	22.0						
01/06/09	n/a	10.0	22.0	n/a	11.0	22.0	n/a	11.0	22.0						
02/09/09	n/a	10.0	22.0	n/a	11.0	22.0	n/a	12.0	22.0						
3/18/09`	n/a	9.0	22.0	n/a	9.0	22.0	n/a	9.0	22.0						
									i i						

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

in-Hg = inches of mercury (gauge pressure)

ft toc = dpeth in feet as measured from the top of the well casing

n/a = casing vacuum gauges not installed at this well

TABLE 9: HVDPE PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Inlet Temp (°F)	Inlet Vac (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	PRED TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Total Mass Removed (pounds)	Total Mass Removed (gallons)
06/28/07	1 Startup	-	-	10	-	-	-	60	18	850	42	-	-	0	0
07/11/07		13	312	53	2	43	14%	60	22	1,725	85	6,600	224	402	67
07/27/07		16	384	103	2	51	13%	60	20	1,700	83	11,000	368	1,180	197
08/01/07		5	120	160	2	57	47%	60	19	1,900	93	5,500	206	1,668	278
08/10/07	2,3	9	216	350	8	189	88%	60	22	1,800	88	7,700	273	3,820	637
09/28/07	4	49	1176	896	23	546	46%	60	20	1,700	83	4,000	134	6,865	1,144
10/17/07		19	456	1,239	14	343	75%	60	21	1,100	54	5,100	110	8,446	1,408
11/08/07		22	528	1,709	20	470	89%	60	22	1,100	54	4,000	87	10,141	1,690
11/16/07		8	192	1,874	7	166	86%	60	21	1,100	54	6,000	130	11,038	1,840
11/21/07	5	5	120	1,994	5	120	100%	60	20.5	1,500	74	2,500	74	11,407	1,901
12/04/07		13	312	2,231	10	236	76%	60	20	1,150	56	7,900	179	13,168	2,195
12/26/07		22	528	2,566	14	335	63%	60	18	1,300	64	4,100	105	14,633	2,439
01/15/08		20	480	3,016	19	451	94%	60	19	1,200	59	1,900	45	15,476	2,579
01/22/08	6,7	7	168	3,064	2	48	29%	60	18	1,500	74	1,900	56	15,589	2,598
01/31/08		9	216	3,276	9	212	98%	60	20	1,250	61	2,200	54	16,067	2,678
02/07/08		7	168	3,443	7	167	99%	60	22	1,100	54	2,000	43	16,368	2,728
03/18/08	8,9	40	960	3,653	9	210	22%	60	15	1,400	69	630	17	16,520	2,753
04/01/08		14	336	3,952	12	299	89%	60	19	1,500	74	2,100	62	17,292	2,882
04/30/08		29	696	4,591	27	639	92%	60	19	1,900	93	2,100	79	19,383	3,231
05/29/08		29	696	4,978	16	387	56%	60	19.5	900	44	2,100	37	19,983	3,331
06/26/08		28	672	5,489	21	511	76%	60	23	1,200	59	860	20	20,416	3,403
07/30/08		34	816	6,184	29	694	85%	60	17	1,600	79	2,200	69	22,422	3,737
09/30/08		62	1488	6,673	20	489	33%	60	9	2,000	98	1,100	43	23,304	3,884
11/04/08		35	840	7,062	16	389	46%	60	11	1,200	59	2,700	64	24,339	4,057
12/02/08		28	672	7,697	26	635	94%	60	10	1,200	59	2,200	52	25,715	4,286
01/06/09		35	840	8,298	25	601	72%	60	11	1,200	59	1,200	28	26,425	4,404
02/09/09		34	816	8,300	0.1	2	0%	60	12	1,200	59	1,200	28	26,427	4,405
03/18/09		37	888	8,320	0.8	20	2%	60	10	1,400	69	130	4	26,430	4,405
AVG	-	-	-	-	-	-	25%	60	11	1,267	62	843	20	-	-

TABLE 9: HVDPE PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Inlet Temp (°F)	Inlet Vac (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	PRED TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Total Mass Removed (pounds)	Total Mass Removed (gallons)
----------------	-------	-------------------------------	------------------------------	--------------------------	-----------------------------	----------------------------	--------------------------	-----------------------	-------------------------	---------------------------	------------------------	-------------------------	--------------------------------------	--------------------------------------	---------------------------------------

NOTES:

ppmv = parts per million by volume	hrs = hours	Flow = Velocity x Cross Sectional Area of the Pipe
TPH-g = total petroluem hydrocarbons as gasoline	- not analyzed/applicable	Cross Sectional Area of 3" Pipe = 0.0491 ft^2
TPH-g by EPA Method 8015C	fpm = feet per minute	Well Flow = Well Velocity * 0.0491
in-Hg = inches of mercury (gauge pressure)	scfm = standard cubic feet per minute	PRED = TPH-g influent concentration
1) System installed and started up on June 26, 2007	6) Propane deliv	ery missed; system shutdown on 01/02/08
2) Propane delivery missed; system shutdown on 08/06/07	7) Propane deliv	ery missed; system shutdown on 01/22/08
3) Propane delivery missed; system shutdown on 08/21/07	8) System shutd	lown most of February to evaluate free product recovery
4) System down between 09/11 and 09/24/08 due to electrical problems	9) Catalyst mode	ile installed and started up in March
5) System expanded; MW-10, MW-11 and MW-12 extraction added online	10)	

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

 MRR Estimate = (20,000*10^-6)*(50scfm)*(1440min/day)*(28.32L/fr^3)*(1mol/22.4L)*(100g/mol)*(1lb/454g)

 Negligible change in air density, constant concentration and average molecular weight

 1 mole occupies 22.4 Liters at STP

 STP is 21°C and 1 atm
 1ft^3 = 28.38 liters

 MWgas = 100 grams/mole (weathered gasoline)
 1 lb = 454 grams

 1 day = 1440 minutes
 1 gallon gas ~ 6 pounds

AVG = average values in red for the current reporting period

TABLE 10: THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Preheat Temp (°F)	Exhaust Temp (°F)	Total Velocity (fpm)	Total Flow (scfm)	POSTD TPH-g (ppmv)	STACK TPH-g (ppmv)	Abatement Efficiency (%)	TPH-g Destruction Rate (lbs/day)	Total TPH-g Destroyed (pounds)	Total TPH-g Destroyed (gallons)	Total TPH-g Destroyed (btu)
06/28/07	1 Startup	-	-	10	0.4	10	-	1,430	1,427	2,150	106	3,800	3.5	99.91%	161	65	11	1,233,826
07/11/07		13	312	53	2	43	14%	1,478	1,392	2,625	129	1,400	3.5	99.75%	72	195	32	3,701,491
07/27/07		16	384	103	2	51	13%	1,428	1,386	2,600	128	3,400	3.5	99.90%	174	562	94	10,692,358
08/01/07		5	120	160	2	57	47%	1,425	1,377	2,800	137	2,500	3.5	99.86%	138	890	148	16,916,123
08/10/07	2,3	9	216	350	8	189	88%	1,411	1,341	2,000	98	5,300	3.5	99.93%	209	2,535	422	48,204,535
09/28/07	4	49	1176	896	23	546	46%	1,471	1,438	3,000	147	4,800	3.5	99.93%	284	8,984	1,497	170,844,523
10/17/07		19	456	1,239	14	343	75%	1,409	1,365	2,400	118	1,800	3.5	99.81%	85	10,201	1,700	193,992,681
11/08/07		22	528	1,709	20	470	89%	1,412	1,342	2,000	98	2,000	21	98.95%	79	11,742	1,957	223,297,250
11/16/07		8	192	1,874	7	166	86%	1,408	1,347	2,000	98	3,600	3.5	99.90%	142	12,721	2,120	241,905,549
11/21/07	5	5	120	1,994	5	120	100%	1,412	1,308	2,400	118	5,500	3.5	99.94%	260	14,022	2,337	266,642,477
12/04/07		13	312	2,231	10	236	76%	1,416	1,312	2,050	101	1,300	3.5	99.73%	52	14,538	2,423	276,461,730
12/26/07		22	528	2,566	14	335	63%	1,408	1,352	2,200	108	1,700	3.5	99.79%	74	15,566	2,594	296,020,076
01/15/08		20	480	3,016	19	451	94%	1,411	1,357	2,100	103	620	3.5	99.44%	26	16,048	2,675	305,174,194
01/22/08	6,7	7	168	3,064	2	48	29%	1,407	1,348	2,400	118	1,100	3.5	99.68%	52	16,152	2,692	307,153,643
01/31/08		9	216	3,276	9	212	98%	1,348	1,267	2,150	106	770	3.5	99.55%	33	16,440	2,740	312,628,082
02/07/08		7	168	3,443	7	167	99%	1,409	1,333	2,000	98	690	3.5	99.49%	27	16,628	2,771	316,215,556
03/18/08	8,9	40	960	3,653	9	210	22%	705	794	2,300	113	310	3.5	98.87%	14	16,751	2,792	318,555,075
04/01/08		14	336	3,952	12	299	89%	703	751	3,100	152	500	3.5	99.30%	31	17,131	2,855	325,777,446
04/30/08		29	696	4,591	27	639	92%	709	792	2,700	133	700	3.5	99.50%	37	18,122	3,020	344,619,107
05/29/08		29	696	4,978	16	387	56%	703	769	1,800	88	500	3.5	99.30%	18	18,408	3,068	350,052,986
06/26/08		28	672	5,489	21	511	76%	802	841	2,500	123	620	3.5	99.44%	31	19,057	3,176	362,409,874
07/30/08	10	34	816	6,184	29	695	85%	705	797	2,800	137	-	3.5	-	-	-	-	-
09/30/08		62	1488	6,673	20	489	33%	759	855	3,200	157	-	3.5	-	-	-	-	-
11/04/08		35	840	7,062	16	389	46%	702	832	2,600	128	-	3.5	-	-	-	-	-
12/02/08		28	672	7,697	26	635	94%	704	812	2,100	103	-	52	-	-	-	-	-
01/06/09		35	840	8,298	25	601	72%	704	817	3,100	152	-	26	-	-	-	-	-
02/09/09		34	816	8,300	0	2	0%	701	819	3,100	152	-	3.5	-	-	-	-	-
03/18/09		37	888	8,320	1	20	2%	706	780	3,000	147	-	3.5	-	-	-	-	-
AVC	İ						250/	704	805	2.067	151	1	11					

NOTES:

ppmv = parts per million by volume TPH-g = total petroluem hydrocarbons as gasoline TPH-g by EPA Method 8015C hrs = hours - not analyzed/applicable fpm = feet per minute scfm = standard cubic feet per minute btu = british thermal units Flow = Velocity x Cross Sectional Area of the Pipe Cross Sectional Area of 3" Pipe = 0.0491 ft^2 Total Flow = Total Velocity * 0.0491 POSTD = TPH-g influent concentration (after dilution)

6) Propane delivery missed; system shutdown on 01/02/08

7) Propane delivery missed; system shutdown on 01/22/088) System shutdown most of February to evaluate free product recovery

9) Catalyst module installed and started up in March

DL = detection limit 1/2 the DL was used for abatement efficiency calculations DL for TPH-g by EPA Method 8015C = 7.0 ppmv

System installed and started up on June 26, 2007
 Propane delivery missed; system shutdown on 08/06/07
 Propane delivery missed; system shutdown on 08/21/07
 System down between 09/11 and 09/24/08 due to electrical problems
 System expanded; MW-10, MW-11 and MW-12 extraction added online

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

 $\begin{array}{ll} {\sf MRR Estimate} = (20,000^{\circ}10^{\circ}.6)^{\circ}(50scfm)^{\circ}(1440min/day)^{\circ}(28.32L/ft^{\circ}3)^{\circ}(1mol/22.4L)^{\circ}(100g/mol)^{\circ}(11b/454g) \\ {\sf Negligible change in air density, constant concentration and average molecular weight 1 mole occupies 22.4 Liters at STP $$71 is 21^{\circ}C and 1 atm 1 ft^{\circ}3 = 28.32 liters 1 gallon gas ~ 114,100 btu \\ {\sf MWgas} = 100 \ grams/mole (weathered gasoline) 1 lb = 454 \ grams 1 \\ day = 1440 \ minutes 1 \ gallon gas ~ 6 \ pounds \end{array}$

AVG = average values in red for the current reporting period

10) Sampling POSTD was discontinued starting in the Third Quarter, 2008 monitoring and reporting period

TABLE 11: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Blower VFD (Hz)	Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent TPH-g Conc. (ppmv)	Influent TPH-g Conc. (µg/L)	Effluent TPH-g Conc. (µg/L)	Removal Efficiency (%)
06/26/07	1	0	-	45	25	2,600	128	-	20,000	1,000	95.0%
06/27/08		5	0.20	45	25	2,600	128	-	25,000	420	98.3%
06/28/07		10	0.20	25	10	1,300	64	-	28,000	6,400	77.1%
07/03/07		-	-	40	20	2,300	113	-	-	-	-
07/11/07		-	-	40	20	2,300	113	-	-	-	-
07/11/07		-	-	20	5	900	44	-	-	-	-
07/12/07		70	3	20	5	900	44	-	8,300	-	-
07/12/07		70	0	15	4	600	29	-	8,300	-	-
07/27/07		-	-	20	6	900	44	-	-	-	-
08/01/07		-	-	20	6	900	44	-	-	-	-
08/10/07		-	-	10	2	200	10	-	-	-	-
08/07/07		-	-	15	3	600	29	-	-	-	-
08/21/07		-	-	20	18	900	44	-	-	-	-
08/22/07		530	19	15	5	600	29	-	16,000	5,300	66.9%
09/28/07		-	-	25	16	1,300	64	-	-	-	-
10/17/07		1.239	30	25	15	1.300	64	130	25.000	84	99.7%
10/23/07		-	-	25	15	1,300	64	-	-	-	-
10/25/07		-	-	20	15	900	44	-	-	-	-
11/07/07		1,709	20	20	16	900	44	-	21,000	120	99.4%
11/08/07		-	-	20	16	900	44	19	-	-	-
11/16/07		-	-	20	16	900	44	-	-	-	-
11/20/07		-	-	20	18	900	44	-	-	-	-
11/21/07		-	-	20	18.5	900	44	-	-	-	-
11/27/07		-	-	20	20	900	44	-	-	-	_
12/04/07		-	-	20	19	900	44	-	-	-	-
12/12/07	3	2.366	27	20	18	900	44		75.000	65,000	13.3%
12/14/07	-	_,= =	-	20	18	900	44	-	-	-	
12/25/07		-	-	20	20	900	44	-	-	-	-
12/26/07		-	-	20	20	900	44	-	-	-	_
01/08/08		2.815	19	20	19.5	900	44	-	12.000	130	98.9%
01/15/08		-,	-	20	19.0	900	44	1.100		-	-
01/24/08		-	-	20	19.0	900	44	-	-	-	_
01/31/08		-	-	20	18.5	900	44	-	-	-	_
01/31/08		-	-	20	12.5	900	44	-	-	-	_
02/07/08		-	-	20	15	900	44	31	-	-	-
02/12/08		-	-	20	15	900	44	-	-	-	_
03/18/08		3.653	35	20	15	900	44	31	4,100	120	97.1%
03/28/08		-	-	20	16	900	44	-	-	-	
04/01/08		3,953	12	20	15	900	44	-	2,400	140	94.2%
04/30/08		4,591	27	20	15	900	44	37	8,600	25	99.7%
05/29/08		4,978	16	20	17.5	900	44	ND<7.0	13.000	100	99.2%
06/26/08		5,489	21	20	20	1.300	64	44	7.600	70	99.1%
07/30/08		6,184	29	30	17.5	1,200	59	41	9,400	130	98.6%
09/30/08		6 673	20	30	19	1,200	59	-	6 100	94	98.5%
11/04/08	4	7.062	16	30	16	1,200	59	21	9,400	ND<50	99.7%
12/02/08	5	7 697	26	30	17	1,200	59	10	8 300	ND<50	99.7%
12, 02, 00	5	.,	20	20	- '	1,200	27		0,000	1.2.00	

TABLE 11: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Blower VFD (Hz)	Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent TPH-g Conc. (ppmv)	Influent TPH-g Conc. (µg/L)	Effluent TPH-g Conc. (µg/L)	Removal Efficiency (%)
01/06/09 02/09/09		8,298 8,300	25 0	30 30	18 17	1,200 1,200	59 59	150 18	7,800 11,000	ND<50 250	99.7% 97.7%
03/18/09	_	8,320	1	30 30	17 17	1,200 1200	59 59	ND<7.0	2,000 6.933	120 185	94.0% 97.1%

NOTES:

Hz = hertz (used to control flow rate)

in-H2O = inche of water

 $scfm = standard \ cubic \ feet \ per \ minute$

ppmv = parts per million by volume

 $\mu g/L = micrograms$ per Liter of water

1) System started up and first discharge to the sanitary sewer	6)
2) Air stripper cleaned due to high backpressure	7)
3) Slug of free product may have been processed by air stripper	8)
4) First time air stripper effluent was non-detect for TPH-g	9)
5) Second time air stripper effluent was non-detect for TPH-g	10)

AVG = average values in red for the current reporting period
TABLE 12: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (µg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
06/26/07	1	0	-	0	-	-	-	-	-	-	1.5	<1.0	-	Ν	Ν	1,000	25	97.50%	-	-	-
06/27/07		5	0.2	780	780	3,868	161	2.69	-	-	1.5	<1.0	-	Ν	Ν	420	25	94.05%	0.0127	0.0026	0.00
06/28/07		10	0.2	1,300	520	2,579	107	1.79	-	-	1.5	<1.0	-	Ν	Ν	6,400	25	99.61%	0.1369	0.0302	0.01
07/03/07		13	0.2	1,800	500	3,166	132	2.20	-	-	1.5	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/09/07		25	0.5	4,310	2,510	5,171	215	3.59	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/10/07		28	0.1	5,000	690	5,224	218	3.63	-	-	3	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/11/07		53	1.0	7,280	2,280	2,240	93	1.56	-	-	3	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/12/07		70	0.7	7,400	120	162	7	0.11	-	-	5	<1.0	-	Y	Ν	-	-	-	-	-	-
07/27/07		103	1.4	8,580	1,180	860	35.8	0.60	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
07/30/07		121	0.7	9,200	620	844	35	0.59	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
08/01/07		160	1.6	13,400	4,200	2,560	107	1.78	-	-	5	<1.0	-	Y	Ν	-	-	-	-	-	-
08/07/07		279	4.9	14,470	1,070	217	9.0	0.15	-	-	2	<1.0	-	Ν	Ν	-	-	-	-	-	-
08/17/07	2	445	6.9	25,000	10,530	1,522	63.4	1.06	2	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
08/21/07		506	2.6	33,000	8,000	3,135	131	2.18	7	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
08/22/07		530	1.0	34,110	1,110	1,110	46	0.77	2	2.5	2.5	<1.0	N	Ν	Ν	5,300	25	99.53%	0.0488	1.47	0.25
08/23/07		554	1.0	36,710	2,600	2,590	108	1.80	2	2.5	2.5	<1.0	N	Ν	Ν	-	-	-	-	-	-
08/27/07		648	3.9	45,800	9,090	2,311	96	1.60	10	>7	>7	-	Y	Y	Y	-	-	-	-	-	-
08/31/07		744	4.0	50,820	5,020	1,255	52	0.87	2	2.5	2.5	<1.0	N	Ν	N	-	-	-	-	-	-
09/05/07		862	4.9	57,100	6,280	1,277	53	0.89	10	2.5	2.5	<1.0	Y	Ν	N	-	-	-	-	-	-
09/24/07		896	1.4	65,360	8,260	6,004	250	4.17	10	2.5	2.5	<1.0	Y	Ν	N	-	-	-	-	-	-
10/01/07		1,088	8.0	99,000	33,640	4,205	175	2.92	15	>10	>10	2	Y	Ν	Y	-	-	-	-	-	-
10/17/07	3	1,239	6.3	140,710	41,710	6,609	275	4.59	11	4	4	2	N	Ν	N	84	25	70.24%	0.0032	1.52	0.25
10/23/07		1,384	6.0	173,260	32,550	5,389	225	3.74	24	7.5	7.5	2.5	N	Ν	N	-	-	-	-	-	-
10/25/07	4	1,395	0.5	175,600	2,340	4,918	205	3.42	>30 / 7.5	8 / 8	8 / 8	>5 / >5	Y	Ν	Ν	-	-	-	-	-	-
11/07/07		1,709	13	223,380	47,780	3,661	153	2.54	14	14.5	14.5	OFFLINE	Y	Ν	N	120	25	79.17%	0.0029	1.59	0.26
11/08/07		1,730	0.9	227,190	3,810	4,354	181	3.02	16	16.5	16.5	OFFLINE	N	Ν	N	-	-	-	-	-	-
11/13/07		1,809	3.3	244,360	17,170	5,220	217.5	3.62	14	14.5	15	OFFLINE	N	Ν	N	-	-	-	-	-	-
11/16/07		1,874	2.7	259,600	15,240	5,566	232	3.87	17	17.5	18	OFFLINE	N	Ν	N	-	-	-	-	-	-
11/20/07	5	1,969	3.9	279,190	19,590	4,983	208	3.46	19	19.5	20	OFFLINE	N	Ν	N	-	-	-	-	-	-
11/21/07		1,993	1.0	287,450	8,260	8,260	344	5.74	19	19.5	20	OFFLINE	N	Ν	N	-	-	-	-	-	-
11/27/07		2,107	4.7	320,320	32,870	6,921	288	4.81	20.5	21.5	21.5	OFFLINE	Y	Ν	Ν	-	-	-	-	-	-
11/29/07		2,131	1.0	328,040	7,720	7,504	313	5.21	18/4.5	18.5 / 5.5	19 / 6.0	OFFLINE	Y	Y	N	-	-	-	-	-	-
12/04/07		2,230	4.1	355,820	27,780	6,763	282	4.70	17 / 7	17.5 / 7.5	17.5 / 7.5	OFFLINE	Y	Y	Ν	-	-	-	-	-	-
12/12/07		2,366	5.7	391,500	35,680	6,296	262	4.37	20 / 5	10 / 4.5	10/4.5	OFFLINE	Y	Y	Ν	65,000	25	99.96%	3.4067	92.55	15.42
12/14/07		2,379	0.6	395,260	3,760	6,670	278	4.63	11	4.0	4.5	OFFLINE	N	Ν	Ν	-	-	-	-	-	-
12/26/07		2,545	6.9	440,900	45,640	6,603	275	4.59	13	13.5	14	OFFLINE	N	Ν	Ν	-	-	-	-	-	-
			İ	l	1	İ	İ	İ		1	1	i	1	İ	1	1	İ	1		İ	İ

TABLE 12: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Hour Meter Reading	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (µg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
01/08/08		2,815	11.2	512,760	71,860	6,398	267	4.44	18.5	19	19	OFFLINE	OFFLINE	Ν	Ν	130	25	80.77%	0.0056	92.66	15.44
01/15/08		3,016	8.4	541,920	29,160	3,472	145	2.41	19	20	20	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
01/22/08		3,064	2.0	550,780	8,860	4,424	184	3.07	16.5 / 4	17 / 4	17/4	OFFLINE	OFFLINE	Y	Ν	-	-	-	-	-	-
01/31/08		3,276	8.8	608,890	58,110	6,580	274	4.57	16/8	16.5 / 8.5	16.5 / 8.5	OFFLINE	OFFLINE	Y	Ν	-	-	-	-	-	-
02/07/08		3,443	6.9	657,140	48,250	6,950	290	4.83	19	19.5	19.5	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
02/12/08		3,559	4.8	685,990	28,850	5,957	248	4.14	25.5	26	26	OFFLINE	OFFLINE	N	Ν	-	-	-	-	-	-
03/18/08		3,653	3.9	715,480	29,490	7,523	313	5.22	16.5	17	17	OFFLINE	OFFLINE	Y	Ν	120	25	79.17%	0.0060	92.82	15.47
03/28/08		3,851	8.2	760,730	45,250	5,499	229	3.82	4	4.5	4.5	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
04/01/08		3,953	4.3	771,940	11,210	2,637	110	1.83	9.5	10	10	OFFLINE	OFFLINE	Ν	Ν	2,400	25	98.96%	0.0522	94.52	15.75
04/30/08		4,591	26.6	858,530	86,590	3,254	136	2.26	17	17.5	17.5	OFFLINE	OFFLINE	Ν	Ν	8,600	25	99.71%	0.2324	103.03	17.17
05/29/08		4,978	16.1	931,605	73,075	4,532	189	3.15	23	23.5	23.5	OFFLINE	OFFLINE	N	Ν	13,000	25	99.81%	0.4896	110.93	18.49
06/26/08		5,489	21.3	1,039,610	108,005	5,075	211	3.52	25	26	26	OFFLINE	OFFLINE	Ν	Ν	7,600	25	99.67%	0.3201	117.74	19.62
07/30/08		6,184	28.9	1,061,870	22,260	769	32	0.53	26	26.5	26.5	OFFLINE	OFFLINE	N	Ν	9,400	25	99.73%	0.0601	119.48	19.91
09/30/08		6,673	20.4	1,111,770	49,900	2,449	102	1.70	23	24.5	24.5	OFFLINE	OFFLINE	Ν	Ν	6,100	25	99.59%	0.1239	122.00	20.33
11/04/08		7,062	16.2	1,181,610	69,840	4,305	179	2.99	22	22.5	22.5	OFFLINE	OFFLINE	N	Ν	9,400	25	99.73%	0.3360	127.45	21.24
12/02/08		7,697	26.5	1,281,070	99,460	3,759	157	2.61	28	28.5	28.5	OFFLINE	OFFLINE	Ν	Ν	8,300	25	99.70%	0.2590	134.31	22.38
01/06/09		8,298	25.0	1,381,550	100,480	4,013	167	2.79	>30	>30	>30	OFFLINE	OFFLINE	Ν	Ν	7,800	25	99.68%	0.2598	140.81	23.47
02/09/09		8,300	0.1	1,381,550	0	0	0	0.00	-	-	-	OFFLINE	OFFLINE	Ν	Ν	11,000	25	99.77%	0.0000	140.81	23.47
03/18/09	6	8,320	0.8	1,385,760	4,210	5,002	208	3.47	5	5	5	OFFLINE	OFFLINE	Ν	Ν	2,000	25	98.75%	0.0823	140.88	23.48
			<u> </u>		<u> </u>																
AVG	-	-	-	-	-	3,005	125	2.09	-	-	-	-	-	-	-	6,933	25	99.40%	0.1140	-	-

NOTES:

gpd = gallons per day gph = gallons per hour gpm = gallons per minute psig = pounds per square inch $\mu g/L =$ micrograms per Liter of water (ppb) lbs/day = pounds per day GAC = granular activated carbon Conc. = concentration TBH a = Total Patrolaum Hudensachene er of

Conc. = concentration TPH-g = Total Petroleum Hydrocarbons as Gasoline TPH-g by EPA Method 8015C

System startup and first dischrage to sanitary sewer
Bag filter (LCO8) pre-filter for sediment removal installed and started up on 08/17/07
1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07
200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07
5 Extraction wells MW-10, MW-11, and MW-12 brought online 11/20/07

Mass Removal Rate (lbs/day) = (1 gal/min)*(1,000µg/L - 25µg/L)*(3.785L/gallon)*(1440/min/day)*(2.2lbs/10^9µg) Total Mass Removed (lbs) = (1 gallon)*(1,000µg/L - 25µg/L)*(3.785L/gallon)*(2.2lbs/10^9µg) 1 gallon of gas = ~6 pounds 1/2 the DL was used for removal efficiency and mass removal calculations DL for THP-g by modified EPA Method 8015C = 50 µg/L AVG = average values in red for the current reporting period

*Bag filter inlet and outlet pressures are recorded before and after the bag filter is changed using the following convention: (pressure before / pressure after) **GAC inlet and outlet pressures are recorded before and after the vessel is backwashed using the following convention: (pressure before / pressure after)

7)

8)

9)

10)

Minimum EBMUD wastewater discharge permit reporting requirements are:

- volume of groundwater treated during this reporting period

- description of any operationsl changes during this reporting period

- monthly flow totalizer readings

- total volume of groundwater treated to date

6) On February 27, 2009, the carbon in the PV1000 carbon absorber was changed out by Siemens Water Technologies

TABLE 13: HVDPE PROCESS MONITORING SCHEDULE

Field Point Name	Sample Port Description/Location	TPH-g (SW8015Cm)	BTEX &MTBE (SW8021B)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-1S MW-2S MW-5S MW-6S MW-7S MW-10S MW-11S	Sample Port at DPE Manifold Sample Port at DPE Manifold Sample Port at DPE Manifold Sample Port at DPE Manifold Sample Port at DPE Manifold Sample Port at DPE Manifold Sample Port at DPE Manifold	M M M M M M	M M M M M M	M M M M M M	M M M M M M	M M M M M M	M M M M M M
MW-12S	Sample Port at DPE Manifold	M	M	M M	M M	M M	M M
POSTD	Oxidizer Inlet Sample Port	M	M	M	M	M	M
AS	Stipper Outlet Vapor Sample Port	М	М	М	М	М	М
STACK	Stack Gas Discharge Sample Port	М	М	М	М	М	М
GP-1-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-1-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-2-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-2-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-3-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-3-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-4-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-4-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
INF	Influent Water Sample Port	М	М	-	-	-	-
POST-AS	Water Sample Port After Stripper	М	М	-	-	-	-
POST-C1	Water Sample Port After C-1	М	М	-	-	-	-
EFF	Effluent Water Sample Port	М	М	-	-	-	-

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

W = weekly

- $\mathbf{BW} = \mathbf{bi}\text{-weekly}$
- $\mathbf{M} = \mathbf{monthly}$
- A = annual
- SA = semi-annual
- AN = as needed
- $\mathbf{SP} = \mathbf{sample} \ \mathbf{port}$

HC = total volatile hydrocarbon

ppmv = parts per million by volume

% = percent concentration by volume

TVH = total volatile hydrocarbons (calibrated w/ hexane)

- CH4 = methane
- O2 = oxygen

CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured w/ RKI Eagle gas detector

*Additional water analysis for Total Oil and Grease Hydrocarbon by Method HEM-1664SGT required every 6 months by EBMUD permit **POSTD and STACK required every month by BAAQMD permit

***Soil gas sampling for vapor intrusion evaluation is conducted quarterly with routine groundwater monitoring events

APPENDIX A

MONITORING WELL FIELD SAMPLING FORMS

Monitoring Well Number: MW-1

Project Name:	Vic's Automotive	Date of Sampling:	2/5/2009
Job Number:	116907	Name of Sampler:	A Nieto
Project Address:	245 8th Street, Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	ок				
Elevation of Top of Casing (feet above msl)	32.55				
Depth of Well	28.00				
Depth to Water (from top of casing)		16.89			
Depth to Free Product (from top of casing)	Not detected				
Water Elevation (feet above msl)		15.66			
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	21.6				
Actual Volume Purged (gallons)	22.0				
Appearance of Purge Water	Clears after 1 gallon				
Free Product Present?	No	Thickness (ft):			

GROUNDWATER SAMPLES

Number of Sample	es/Container S	lize							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments		
9:25	1	19.67	824	0.2	6.16	-165.3	Black		
	2	19.77	811	0.14	6.22	-170.0	Clear		
	3	19.80	801	0.12	6.28	-175.8	Clear		
	4	19.81	778	0.11	6.31	-177.6	Clear		
	5	19.81	758	0.11	6.33	-178.4	Clear		
	10	19.90	621	1.27	6.39	-144.8	Clear		
	15	19.92	546	1.65	6.35	-110.7	Clear		
	20	19.92	533	1.68	6.32	-105.3	Clear		
	22	19.91	526	1.71	6.32	-102.7	Clear		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong petroleum odors noted.

Monitoring Well Number: MW-2

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	33.24				
Depth of Well	28.00				
Depth to Water (from top of casing)	17.98				
Water Elevation (feet above msl)		15.26			
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.4				
Actual Volume Purged (gallons)	5.0				
Appearance of Purge Water	Clears quickly				
Free Product Present?	No	Thickness (ft): -			

GROUNDWATER SAMPLES

Number of Sample	es/Container S	Size		3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments		
12:54	1	18.81	754	0.31	6.06	-144.2	Black		
	2	18.89	650	0.18	6.09	-133.3	Clear		
	3	18.96	608	0.15	6.10	-117.3	Clear		
	4	18.98	590	0.14	6.09	-110.0	Clear		
	5	18.98	580	0.14	6.06	-102.7	Clear		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Noderate petroleum odors noted.	

Monitoring Well Number: MW-3

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORIN	MONITORING WELL DATA								
Well Casing Diameter (2"/4"/6")		4							
Wellhead Condition	ОК								
Elevation of Top of Casing (feet above msl)		34.25							
Depth of Well		25.00							
Depth to Water (from top of casing)	19.02								
Water Elevation (feet above msl)		15.23							
Well Volumes Purged	3								
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	11.5								
Actual Volume Purged (gallons)	12								
Appearance of Purge Water	Clear								
Free Product Present?	No	Thickness (ft): -							

GROUNDWATER SAMPLES							
Number of Sample		3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
7:35	1	19.57	498	1.74	6.08	-40.5	Clear
	2	19.67	497	1.67	6.05	-45.8	Clear
	3	19.88	496	1.54	6.04	-54.3	Clear
	4	19.89	496	1.46	6.04	-59.8	Clear
	5	19.70	496	1.40	6.04	-70.1	Clear
	6	19.75	506	1.08	6.05	-93.1	Clear
	7	109.77	514	0.93	6.05	-105.6	Clear
	8	19.79	523	0.85	6.06	-113.6	Clear
	9	19.79	523	0.77	6.05	-120.5	Clear
	10	79.08	522	0.75	6.04	-122.6	Clear
	11.5	19.80	522	0.73	6.04	-124.9	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No petroleum odors noted.

Monitoring Well Number: MW-4

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")				
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	34.42			
Depth of Well		25.00		
Depth to Water (from top of casing)		19.72		
Water Elevation (feet above msl)	14.70			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		10.2		
Actual Volume Purged (gallons)	11.0			
Appearance of Purge Water	Light brown, clears quickly			
Free Product Present?	No Thickness (ft): -			

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	ize		3 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments
11:32	1	17.80	269	5.90	6.34	-35.1	Light brown
	2	17.87	262	6.91	6.16	-17.2	Clear
	3	17.90	275	7.22	6.06	-8.2	Clear
	4	17.94	262	6.36	6.00	-5.3	Clear
	5	17.95	258	6.11	5.99	-5.2	Clear
	6	17.97	254	5.82	5.96	-4.5	Clear
	7	17.99	257	5.10	5.95	-4.6	Light brown
	8	18.09	256	5.10	5.31	-58.0	Clear
	9	18.00	252	6.40	5.17	-47.7	Clear
	11	17.99	243	6.86	6.08	-42.9	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Slight petroleum odors noted.

Well dry at 7.5 gallons

Recharged at 11:59am

Monitoring Well Number: MW-5

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	OK				
Elevation of Top of Casing (feet above msl)	33.33				
Depth of Well		22.00			
Depth to Water (from top of casing)	17.42				
Water Elevation (feet above msl)	15.91				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	8.9				
Actual Volume Purged (gallons)	9.0				
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft): -			

GROUNDWATER SAMPLES	

Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
8:22	1	20.23	573	3.42	5.82	-158.3	Dark
	2	20.30	579	2.40	5.94	-165.5	Clear
	3	20.36	548	1.49	6.07	-169.5	Clear
	4	20.21	542	1.51	6.16	-167.2	Clear
8:40	5	20.20	548	0.65	6.01	-140.3	Clear
9:00	6	20.37	445	2.40	6.01	-100.3	Clear
	7	20.42	429	0.79	6.04	-107.8	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Moderate petroleum odors noted.

Dry after 4 gallons.

Recharged, dry again after 7 gallons.

Monitoring Well Number: MW-6

Project Name:	Vic's Automotive	Date of Sampling:	2/5/2009
Job Number:	116907	Name of Sampler:	A Nieto
Project Address:	245 8th Street, Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4			
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)		32.82		
Depth of Well		22.00		
Depth to Water (from top of casing)		16.53		
Depth to Free Product (from top of casing)	Not detected			
Water Elevation (feet above msl)	16.29			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	10.6			
Actual Volume Purged (gallons)	11.0			
Appearance of Purge Water	Clear			
Free Product Present?	No Thickness (ft): -			

GROUNDWATER SAMPLES	3
---------------------	---

Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments
10:55	1	19.3	772	0.52	5.72	-99.6	Clear
	2	19.43	771	0.53	5.75	-102.9	Clear
	3	19.50	708	0.69	5.89	-108.3	Clear
	4	19.51	688	0.62	5.87	-108.4	Clear
	5	19.54	661	0.56	5.90	-108.6	Clear
	6	19.60	621	0.55	5.94	-108.2	Clear
	7	19.55	621	1.23	5.97	-104.1	Clear
	8	19.59	607	0.56	5.95	-80.7	Clear
	11	19.65	589	0.4	5.95	-88.4	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong petroleum and fetids odors noted.

Well dry after 7 gallons

Recharged at 11:17

Monitoring Well Number: MW-7

Project Name:	Vic's Automotive	Date of Sampling:	2/5/2009
Job Number:	116907	Name of Sampler:	A Nieto
Project Address:	245 8th Street, Oakland		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4		
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)	33.07		
Depth of Well		22.00	
Depth to Water (from top of casing)		17.26	
Depth to Free Product (from top of casing)	Not detected		
Water Elevation (feet above msl)	15.81		
Well Volumes Purged	3		
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	10.0		
Actual Volume Purged (gallons)	10.0		
Appearance of Purge Water	Clear		
Free Product Present?	No Thickness (ft): -		

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	РН	ORP (meV)	Comments
12:12	1	19.40	627	0.78	5.67	-101.3	Clear
	2	19.62	622	0.22	5.77	-112.9	Clear
	3	19.64	654	0.23	5.86	-123.9	Clear
	4	19.64	598	0.47	6.03	-136.9	Clear
12:30	5	19.68	515	0.26	6.11	-110.3	Clear
	6	19.73	557	0.38	6.10	-121.7	Clear
	7	19.72	527	0.31	6.13	-121.7	Clear
	9	19.72	522	0.27	6.11	-102.5	Clear
12:45	10	19.69	500	0.29	6.12	-105.3	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Moderate petroleum odors noted.

Well dry at 4 gallons

Well dry again at 7 gallons

Monitoring Well Number: MW-8

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	33.00			
Depth of Well		22.00		
Depth to Water (from top of casing)	16.78			
Depth to Free Product (from top of casing)	None			
Water Elevation (feet above msl)	16.22			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		10.1		
Actual Volume Purged (gallons)	10.5			
Appearance of Purge Water	Initially light brown, clears after 1 gallon			
Free Product Present?	1t? No Thickness (ft): -			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
7:58	1	18.29	204	6.22	6.64	-27.9	Light brown
	2	18.62	205	4.52	6.50	-42.0	Clear
	3	18.58	208	3.56	6.40	-55.7	Clear
	4	18.53	208	3.2	6.38	-62.9	Clear
	5	18.59	207	2.72	6.36	-71.9	Clear
	6	18.61	208	1.98	6.33	-86.8	Clear
	7	18.66	214	1.56	6.35	-94.4	Clear
	8	18.67	214	1.54	6.36	-94.0	Clear
	9	17.98	212	4.54	6.56	-24.7	Clear
	10.5	18.64	212	3.62	3.44	-55.9	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No petroleum odors noted.

Well dry at 8 gallons.

Monitoring Wel	I Number:	MW-9
·		

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ок				
Elevation of Top of Casing (feet above msl)	32.00				
Depth of Well		22.73			
Depth to Water (from top of casing)	15.38				
Depth to Free Product (from top of casing)	None				
Water Elevation (feet above msl)	16.62				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	3.5				
Actual Volume Purged (gallons)	4.0				
Appearance of Purge Water	Initially light grey, clears after 1 gallon				
Free Product Present?	PNO Thickness (ft): -				

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
7:18	1	19.5	541	4.86	6.16	-125.3	Light grey
	2	19.63	548	3.56	6.16	-134.6	Clear
	3	19.70	570	2.40	6.14	-142.4	Clear
	4	19.76	602	1.62	6.11	-150.1	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Greenish color with strong petroleum odors noted.

Monitoring Well Number: MW-10

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4		
Wellhead Condition	ОК	\checkmark	
Elevation of Top of Casing (feet above msl)	31.17		
Depth of Well	22.00		
Depth to Water (from top of casing)			
Water Elevation (feet above msl)			
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)			
Actual Volume Purged (gallons)			
Appearance of Purge Water			
Free Product Present?	No	Thickness (ft): -	

GROUNDWATER SAMPLES

Number of Samples/Container Size			-				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Well covered - inaccessible. Not sampled or gauged.

Monitoring Well Number: MW-11

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	31.78				
Depth of Well	22.00				
Depth to Water (from top of casing)					
Water Elevation (feet above msl)					
Well Volumes Purged					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)					
Actual Volume Purged (gallons)					
Appearance of Purge Water					
Free Product Present?	No	Thickness (ft): -			

GROUNDWATER SAMPLES

Number of Samples/Container Size			-				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Well covered - inaccessible. Not sampled or gauged.

Monitoring Well Number: MW-12

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	32.02				
Depth of Well	22.00				
Depth to Water (from top of casing)					
Water Elevation (feet above msl)					
Well Volumes Purged					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)					
Actual Volume Purged (gallons)					
Appearance of Purge Water					
Free Product Present?	No	Thickness (ft): -			

GROUNDWATER SAMPLES

Number of Samples/Container Size		-					
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Well covered - inaccessible. Not sampled or gauged.

Monitoring Well Number: MW-13

Project Name:	Vic's Automotive	Date of Sampling: 2/5/2009
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	32.00				
Depth of Well		22.00			
Depth to Water (from top of casing)	15.09				
Water Elevation (feet above msl)	16.91				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	3.3				
Actual Volume Purged (gallons)	4.0				
Appearance of Purge Water	Clear				
Free Product Present?	nt? No Thickness (ft): -				

GROUNDWATER S	AMPLES
----------------------	--------

Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	Conductivity	DO	PH	ORP (meV)	Comments
7:10	1	19.27	4.93	2.27	6.20	-57.8	Clear
	2	19.44	485	1.80	6.17	-60.2	Clear
	3	19.56	484	2.04	6.15	-52.3	Clear
	4	19.58	487	1.66	6.19	-55.7	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

No petroleum odors noted.

APPENDIX B

SOIL GAS FIELD SAMPLING FORMS

NO SOIL GAS FIELD FORMS

QUARTERLY SOIL GAS SAMPLING HAS BEEN TEMPORARILY SUSPENED DURING OPERATION OF THE HVDPE SYSTEM

APPENDIX C

LABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Quality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/06/09					
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/07/09					
Walnut Creek CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/14/09					
Trumut Creek, Cri 94397	Client P.O.:		Date Completed:	01/09/09					

WorkOrder: 0901070

January 14, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

					0	91	01	10	5-	7	C)																							
	McCAM	PBELI	ANA	LYI	FICA	LI	NC	1.												CH	IA	IN	0	F	CU	SI	r0	D	YI	RE	C	OR	D		6
20	1538 Wille	w Pass	Road, Pi	ittsbi	irg. C.	A 94	1565	5							T	TURN AROUND TIME									U										
Toloř	hone: (025) 252	0262				lav.	(07	5) 1	52	02	60									_	4.	_			R	USH		24 1	IR		48 I	IR	- 1	72 HR	5 DAY
Telep	olione: (925) 252	-9202		201.7		ax:	(92	3) 4	-54-	92	09	_		_	E	DF	Req	uir	ed?	4	Ye	S L	IN	0		PD	FR	lequ	lire	d?		Yes	s L		
Company: Al	CKy Bradiord		1	5111 1	o: san	ne								-	-			-		An	arys	15 F	lequ	rest	-					-		her	1	Comn	ients
25	00 Camino Diah	lo. Suite	200														RS	3&F)		SCIV															VIII
Walnut Creek, CA 94597 E-Mail: rbradford@aeiconsultatns.com											ê		by I	&F/E		pre pre													ed	0	dd p				
Telephone: (925) 944-2899 Fax: (925) 944-2895											15Cr		dn-u	20 E4		NO,										(B)			serv		and				
AEI Project No. 116907 Project Name: Vic's Automotive											8/80	1.0	Clea	(552		w/H										V826			upre	01	16 				
Project Location: 245 8th Street, Oakland, CA 94607										_	0211		Gel	case	0.8)	DPE										(SW			bert		-				
Sampler Signa	ture:	mag	(-				_		(ETF)		_	SW8	_	ilica	& Gr	E20	IH Iu										t list		(010)	Am	8	nits
		SAM	LING	s	ers		MA	TR	IX		PR	ESE	RVI	ED	EX (SCm	w/S	Ĩ	LCO	50 n										arge	(B)	WIG	Lite		th u
	FIELD POINT			aine	tain										MBT	801	8.1)	cum	I T	Use 2								etals	stals	0101	V826	int (S	- las		od I
SAMPLE ID	NAME	Data	Time	ont	Con	1			e				5		& V	(SW	(E4]	ctrol	Leak	ead		8						17 M	5 Mc	s - 8	(SV	h Poi	EP U	- · ·	II L
		Date	Time	ofC	vpe	ate	-	1	gbu	the	e	Ū	02	the	H-8-H	P-H	HdD	otal P	otal	orL								W	FI	Š	TBE	Flas	For		ebo
-	4			#	Ĥ	2	Š	×	S	<u> </u>	Ic	H	H	2	H	H	E	Ĕ	*	*		_						0	1	H	Σ	*	:		*
MW-1S	MW-1S	1.609	1210	1	TB			Х							X																				x
MW-2S	MW-2S	1	1325	1	ТВ			Х							t																				x
MW-5S	MW-5S		1335.	+	TB	-		X	-	-		-	-	-	+	-	-				-			-						-	-	No	tR	eccivit	sd /
MW-6S	MW-6S		1345	1	TB			х																										-	X
MW-7S	MW-7S		1355*	1	TB			X																											x
MW-10S	MW-10S		1405	1	TB			X																											x
MW-11S	MW-11S		1415	1	TB			X																											x
MW-128	MW-12S		1425	1	TB			X																					4						x
a e.										1																									X
PRED	PRED		1435	1	ТВ			X														-													x
AS	AS		1445	1	ТВ			X		1																									x
STACK	STACK	25	1455	1	ТВ			x		1			1		V																				x
			1						-	+					1			_																	
Retinquished Bya		Date:	Time:	Rec	eived B	y:		-		-	-		4.4	+	-		-	-		-	-	-					_	-			-	-			
20m2	nga	1-7-09	094W	EN	IVIRO-	TG	ert	5	ERI	кC	G	5 1	14	6			0	(1)				-		_			v	OAS	0	&G	N	IETALS	OTHER
Relinquished By:	Staulus Co. A.	Date:	Time:	Ret	erved B	y: /	1	1	,						1	ICE/ GOO	DD C	0	NDE	LIOI	N	/		F A	PP	SER	PRL	ATE	N_		1	-	_		
WIPO-TECH	SCULICES HA	107/09	11:29	C	\rightarrow	1/2	~	0	~						I	HEA	DS	PA	CE	ABS	ENT	٢		C	ON	TA	INE	RS							
Refinquished By:	1	Date:	Time:	Rec	eived B	1	2			/	2	/	-	-	1	DEC	HL	OR	INA	TEI) IN	LA	B		*PE	RSI	ERV	ED	IN	LA	B		-		
Dulp	a	1/7/00	1150	1/	11	A	N	A		4	2		T	Д	_			_		_		_						_	_	_					
/													-																						

*

X

McCampbell Analytical, Inc.

- 1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur (925) 2	rg, CA 94565-1701 252-9262					Work	Order:	0901	070	(ClientC	Code: A	EL				
			WriteOr	EDF	Γ	Excel	I	Fax		🖌 Email		Harc	lCopy	🗌 Thi	rdParty	□ J·	-flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Ricky Bradf AEI Consult 2500 Camin Walnut Cree (925) 283-60	ord tants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: cc: PO: ProjectNo:	rbradford@ae #116907; Vic'	eiconsultants.com s Automotive	l		Denise Mockel AEI Consultants 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 dmockel@aeiconsultants.com Date Printed: 0							01/07/ 01/07/	/2009 /2009		
									Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0901070-001	MW-1S		Air	1/6/2009 12:10		А	А										
0901070-002	MW-2S		Air	1/6/2009 13:25		А											
0901070-004	MW-6S		Air	1/6/2009 13:45		А											
0901070-005	MW-7S		Air	1/6/2009 13:55		А											
0901070-006	MW-10S		Air	1/6/2009 14:05		А											
0901070-007	MW-11S		Air	1/6/2009 14:15		А											
0901070-008	MW-12S		Air	1/6/2009 14:25		А											
0901070-009	PRED		Air	1/6/2009 14:35		А											
0901070-010	AS		Air	1/6/2009 14:45		Α											

Test Legend:

0901070-011

1	G-MBTEX_AIR	2	PF
6		7	
11		12	

STACK

2	PREDF REPORT	
7		
12		

Air

3	
8	

А

1/6/2009 14:55

4	
9	

5		
10		_

The following SampIDs: 001A, 002A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	01/07/09 9	:57:42 AM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0901070	Matrix <u>Air</u>			Carrie	r: <u>EnviroTech</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ient on COC?	Yes	✓	No 🗆			
Sampler's name i	noted on COC?		Yes		No 🗆			
		<u>Sa</u>	ample	Receipt Inf	ormation	1		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vatio	n and Hold 1	<u>Гіте (НТ</u>) Information		
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	<u>McCampbe</u> "Wh	ell Ana	alytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269											
AEI C	Consultants		Client Project ID:	#116907	; Vic's	Date Sa	ampled: 01/0)6/09							
2500 0	Camino Diablo, Ste. #2	200	Automotive			Date R	Date Received: 01/07/09								
			Client Contact: R	Ricky Bradford Date Extracted: 01/07/09-01/08/09											
Walnu	tt Creek, CA 94597		Client P.O.:	ent P.O.: Date Analyzed 01/07/09-01/08/09											
Extraction	Gas	oline Rar	nge (C6-C12) Volatile Hyd	drocarboi	ns as Gasolin	e with BTH	EX and MTBI	E* Work Ord	ler: 090	1070					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS					
001A	MW-1S	А	130,d1	ND	12	21	0.99	8.0	1	109					
002A	MW-2S	А	12,000,d1	ND<110	220	570	56	420	10	97					
004A	MW-6S	А	1900,d1	ND<50	13	65	10	140	20	116					
005A	MW-7S	А	7300,d1	ND<17	63	160	13	340	6.7	100					
006A	MW-10S	А	8000,d1	ND<45	100	240	30	280	6.7	117					
007A	MW-11S	А	4400,d1	ND<80	95	200	25	250	2	120					
008A	MW-12S	А	1800,d1	ND<25	29	70	9.9	160	10	119					
009A	PRED	А	4500,d1	ND<300	67	220	25	340	40	115					
010A	AS	А	530,d1	ND<5.0	6.1	26	4.8	95	1	116					
011A	STACK	А	94,d1	ND	ND	2.0	0.47	8.5	1	98					
Repor	Reporting Limit for DF =1; A 25				0.25	0.25	0.25	0.25	μ	g/L					
abov	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg						

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

	<u>McCam</u>	pbell	Analyti uality Counts"	<u>cal, Inc.</u>	,	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg bell.com E-mail 377-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	1.com			
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	ed: 01/06/09				
2500 C	amino Diablo, S	te. #200					Date Received: 01/07/09					
				Client Contact: I	Ricky Bradf	ord	Date Extract	ed: 01/07/09-	: 01/07/09-01/08/09			
Walnut	Creek, CA 9459	€7		Client P.O.:			Date Analyz	xed 01/07/09-	-01/08	8/09		
	Gasoline	e Range	(C6-C12) V	olatile Hydrocarbo	ons as Gasol	line with MTH	BE and BTEX	in ppmv*				
Extractio	n method SW5030B			thods SW8021	B/8015Cm		Work Order:	: 0901	070			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1S	А	35,d1	ND	3.6	5.6	0.22	1.8	1	109		
002A	MW-2S	А	3400,d1	ND<30	69	150	13	95	10	97		
004A	MW-6S	А	520,d1	ND<14	4.1	17	2.3	32	20	116		
005A	MW-7S	А	2000,d1	ND<4.5	19	43	3.0	77	6.7	100		
006A	MW-10S	А	2200,d1	ND<15	31	64	6.7	64	6.7	117		
007A	MW-11S	А	1200,d1	ND<20	29	53	5.7	56	2	120		
008A	MW-12S	А	490,d1	ND<6.8	9.1	18	2.2	37	10	119		
009A	PRED	А	1200,d1	ND<80	21	58	5.7	78	40	115		
010A	AS	А	150,d1	ND<1.5	1.9	6.9	1.1	22	1	116		
011A	STACK	А	26,d1	ND	ND	0.52	0.11	1.9	1	98		

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

Angela Rydelius, Lab Manager

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water BatchID: 40679 WorkOrder 0901070 W.O. Sample Matrix: Air EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0901062-005A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD µg/L TPH(btex) ND 60 109 109 0 107 113 5.48 70 - 130 20 70 - 130 20 MTBE ND 10 109 115 5.21 106 103 2.06 70 - 130 20 70 - 130 20 ND 10 94.1 98.5 4.53 94.6 92.7 2.00 70 - 130 70 - 130 20 Benzene 20 ND 10 96.3 100 4.25 97.2 95.3 2.06 70 - 130 70 - 130 20 Toluene 20 99.2 95.7 70 - 130 Ethylbenzene ND 10 96.5 2.6996.1 0.420 20 70 - 130 20 **Xylenes** ND 30 109 112 2.70 110 108 1.70 70 - 130 20 70 - 130 20 70 - 130 99 10 101 6.25 103 102 0.364 70 - 130 20 %SS: 95 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 40679 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 0901070-001A 01/06/09 12:10 PM 01/07/09 01/07/09 7:13 PM 0901070-002A 01/06/09 1:25 PM 01/08/09 01/08/09 2:28 PM 0901070-004A 01/07/09 0901070-005A 01/07/09 01/06/09 1:45 PM 01/07/09 6:42 PM 01/06/09 1:55 PM 01/07/09 3:40 PM 0901070-006A 01/06/09 2:05 PM 01/08/09 01/08/09 3:02 PM 0901070-007A 01/06/09 2:15 PM 01/08/09 01/08/09 3:36 PM 0901070-008A 01/07/09 0901070-009A 01/07/09 01/07/09 6:12 PM 01/06/09 2:25 PM 01/07/09 9:14 PM 01/06/09 2:35 PM 0901070-010A 01/06/09 2:45 PM 01/07/09 01/07/09 9:45 PM 0901070-011A 01/06/09 2:55 PM 01/07/09 01/07/09 11:46 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

McCampbell An "When Quality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/06/09					
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/07/09					
Walnut Creek CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/12/09					
Wallat Creek, Cri 94397	Client P.O.: #WC081241		Date Completed:	01/09/09					

WorkOrder: 0901078

January 12, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0901078

		McCAMPBELL ANALYTICAL INC.								Τ					(CH	A	IN	0	F	CHAIN OF CUSTODY RECORD						CC	R	D						
		1538 V	Villow Pass	Road, P	ittsl	ourg, C.	A 94	565							Т	UF	N	AR	ROI	UNI	DI	IN	1E)						Ľ
	Telep	hone: (925)	252-9262			F	ax:	(925)	25	2-92	269				FF)F I	Dea	nira	ad?		Vo	. r	1 N	0	R	PD	FD	24 H	IR	42	18 H	R	7	2 HR	5 DAY
	Report To: Ric	cky Bradford	d		Bill	To: san	ne	(-	+	EL	T I	xey	une	cu :	Ana	lvsi	is R	eau	lest		10	TT	tequ	me		Otl	ier	-	Com	nents
	Company: AE	CI Consultan	ts		P	0 # V	NC	08	12	41										9															
	250	00 Camino D	iablo, Suit	e 200													IRS	1		crvco		00.8											0		
	Wa	alnut Creek,	CA 94597		E-M	lail: rbr	adfo	rd@s	eico	nsu	ltatr	IS.CO	m	_	(m)		up by	(LDS		pres	_	PA 2			(uZ			6, Sc					urved		
	Telephone: (9	25) 944-2899)		Fax	: (925)	944-	2895	5					-	0150		can-t	S-WE		NO	00.8)	c (E)			g, Ni			Hg, I		60B			prese		
	AEI Project No	0. 11090/	Street Oo	kland C	Proj	ect Nai	ne:	VIC	s Au	iton	noti	ve		-	1B/8		E C	4 HI		E (H	PA 2	anes	â		Pb, H			Ċ.	(uZ	W82			r (un		
	Sampler Signa	ture:	mSig	Manu, C	A	1007									V802		ca Ge	(166	(8)	HDP	E E	Mang	C&	unt	Cu, J	(8)		Sa, Co	i, Pb,	st (S			mber		
	Sumptor Signa	0	SAMP	LING	~	SIS		МАТ	RD	ĸ	PR	IET	HOD) ED	X (SV	(III)	v/ Silic	se HC	(E20(50 ml]	as) Iro	ium, N	VI2540	tte Cot	Cd, Cr,	PA 200		3, As, B	, Cr, N	rget li	8	N1010	iter A		
	÷	FIELD			iner	taine									BTE	8015	8.1) v	Grea	Lead	se 2	cirol	ignes	S (SI	ic Pla	ctals (uls (El		ds (A	ls (Cd	10 ta	8260	nt (S)	e l I		
	SAMPLE ID	POINT	D	T	onta	Cont			e						& N	(SW)	E418	il &	ved]	ad U	cd (F	n, Ma	d TS	roph	7 M	Meta	stals	Meta	Metal	5 - 80	(SW	Poir	P Us		
		NAME	Date	Time	ofC	vpe	ate	-	ndg	ther	0	Ū	0N	ther	H-g-H	P-H	Hda	tal O	issol	orLe	ssolv	lciur	DS an	terot	MUD	M 17	13 M	RA 8	FT 5	100	TBE	Flash	For F		
					#	f	=	ŏ <	< S	0	2 P	H	H	0	Ë	T	T	To	*	*	ā	õ	F	Hc	EB	5	ЪЪ	RC	3	Ŧ	Σ	*	*		
T	INF	INF	1-6-09	1300	3	VOA	X				X	X			X																				•
H	POST-AS	POST-AS		1255	3		X				X	X			1																				
	POST-C1	POST-C1					X				X	¥																							
H	EFF	EFF	¥	1305	3	*	X				X	X			*																				
																												-							
														1																					
	Relinquished By:		Date:	Time:	Ree	ceived By	:	. ~			27	f	HA	+					-				-	_							-	_	_		
l	Amo	SIGN S	1-7-09	0440	EN	NIKUT	60	1 20	- KA	iu		1	(n		14	CEA	+0	52	6			P			DF	SFI	V.	TIC	V	OAS	0.	&G	M	ETALS	OTHER
	Relinquished By:	CONVES	Date:	Time:	Reg	eived By	1	1	/						G	00	DO	ON	DIT	ION	V			A	PP	RO	PRI	ATE	C _	V	_		_	l	
	DUVINO-IECEI	AA	17109	11-22	C	-4	L	h	-	-	-	_			H	EA	DS	PAC	E A	BSH	INT	LAT	\checkmark	(ON	TA	INE	RS	IN	Ł.					
	Refinquished By:		Date:	I Son	Ree	ceived By	e	1	20	00	٢				D	EC	HL	JKI	INA .	ED	IN	LAI	5		PE	RS	ERI	ED	IN.	LAP		-	-		
1	O Ver		1/101	1 20		04	-	YL.	Ne	v		_				_		_			_														

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	rder: 090107	78 Client	Code: AEL		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Rec	uested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeico	nsultants.com		Denise Moc	kel			
AEI Consultants	CC:				AEI Consult	ants	-		
2500 Camino Diablo, Ste. #200	PO:	#WC081241			2500 Camin	o Diablo, Ste. #20	10 Dat	te Received:	01/07/2009
Walnut Creek, CA 94597	ProjectNo:	#116907; Vic's Au	utomotive		Walnut Cree	ek, CA 94597	Dat	te Printed:	01/07/2009
(925) 283-6000 FAX (925) 944-2895					dmockel@a	eiconsultants.com	1		
						Requested Tests	(See legend t	pelow)	

								noq	400104	10010 (000.05	j onia 80	// /			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0901078-001	INF	Water	1/6/2009 13:00		А	Α										
0901078-002	POST-AS	Water	1/6/2009 12:55		А											
0901078-003	EFF	Water	1/6/2009 13:05		А											

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

4	
9	

5	T	 		
10		 		

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants						Date a	and Ti	me Received:	1/7/09 12:	17:44 PM
Project Name:	#116907; Vic's A	utomot	ive				Check	dist co	ompleted and	reviewed by:	Melissa Valles
WorkOrder N°:	0901078	Matrix	<u>Water</u>				Carrie	er:	Dropped Off	Envirotech; F	Picked Up By: B.I.
			<u>Chain</u>	ofCu	stody (C	COC) In	forma	ation			
Chain of custody	present?			Yes		No					
Chain of custody	signed when relinqui	shed and	d received?	Yes	✓	No					
Chain of custody	agrees with sample la	abels?		Yes		No					
Sample IDs noted	by Client on COC?			Yes	\checkmark	No					
Date and Time of	collection noted by Cli	ent on C	OC?	Yes		No					
Sampler's name r	noted on COC?			Yes		No					
			<u>S</u>	ample	Receipt	Inform	ation	<u>1</u>			
Custody seals int	tact on shipping contai	iner/cool	er?	Yes		No				NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No					
Samples in prope	er containers/bottles?			Yes	✓	No					
Sample containe	rs intact?			Yes	✓	No					
Sufficient sample	volume for indicated	test?		Yes		No					
		<u>Sa</u>	mple Prese	rvation	and Ho	old Tim	e (HT)) Info	ormation		
All samples recei	ved within holding time	e?		Yes		No					
Container/Temp E	Blank temperature			Coole	r Temp:	5.2°C				NA 🗆	
Water - VOA vial	ls have zero headspac	ce / no b	ubbles?	Yes	✓	No		No V	/OA vials subm	nitted 🗌	
Sample labels ch	necked for correct pres	servation	1?	Yes	✓	No					
TTLC Metal - pH	acceptable upon recei	pt (pH<2))?	Yes		No				NA 🗹	
Samples Receive	ed on Ice?			Yes		No					
			(Ісе Тур	e: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.								

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An en Oualitv	alyti	cal, Inc.		1534 Willo Web: www.mcca Telephon	ow Pass Road, F ampbell.com ne: 877-252-926	Pittsburg, CA 9456 E-mail: main@mcc 52 Fax: 925-252	55-1701 campbell.com -9269			
AEI C	Consultants			Client Project II Automotive	D: #116907;	; Vic's	Date Sa	ampled: 01/	06/09			
2500	Camino Diablo, Ste. #2	200		110001100110			Date R	eceived: 01/	07/09			
				Client Contact:	Ricky Brad	ford	Date E	xtracted: 01/0	08/09-01/09/	09		
Walnı	ıt Creek, CA 94597			Client P.O.: #W	VC081241		Date A	nalyzed 01/	08/09-01/09/	/09		
Extractio	Gas	oline Ra	ange (C	6-C12) Volatile I	Hydrocarbon	E* Work Order: 0901078						
Lab ID	Client ID	Matrix		TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	INF	W		7800,d1	ND<250	160	460	58	1600	50	99	
002A	POST-AS	w		ND	28	ND	ND	ND	0.77	1	101	
003A	EFF	w		ND	32	ND	ND	ND	ND	1	97	
Repo	rting Limit for DF =1;	W		50	5	0.5	0.5	0.5	0.5	μ	g/L	
abo ^w	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water			QC Matri		BatchID: 40679 WorkOrder 09010							
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0901062-0	005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, in all to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	109	109	0	107	113	5.48	70 - 130	20	70 - 130	20
MTBE	ND	10	109	115	5.21	106	103	2.06	70 - 130	20	70 - 130	20
Benzene	ND	10	94.1	98.5	4.53	94.6	92.7	2.00	70 - 130	20	70 - 130	20
Toluene	ND	10	96.3	100	4.25	97.2	95.3	2.06	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.5	99.2	2.69	96.1	95.7	0.420	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	112	2.70	110	108	1.70	70 - 130	20	70 - 130	20
%SS:	99	10	101	95	6.25	103	102	0.364	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 40679 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901078-001A	01/06/09 1:00 PM	01/08/09	01/08/09 9:53 PM	0901078-002A	01/06/09 12:55 PM	01/09/09	01/09/09 3:31 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water			QC Matri	x: Water			Batchl	D: 40689		WorkOrder 0901078								
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B				Spiked Sample ID: 0901084-0											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance								
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD						
TPH(btex ^f	ND	60	111	104	6.14	111	103	7.24	70 - 130	20	70 - 130	20						
MTBE	ND	10	96	92.2	4.04	91.9	92.2	0.325	70 - 130	20	70 - 130	20						
Benzene	ND	10	90.7	91	0.367	85.9	85.3	0.631	70 - 130	20	70 - 130	20						
Toluene	ND	10	92.8	93.1	0.375	88.1	87.8	0.291	70 - 130	20	70 - 130	20						
Ethylbenzene	ND	10	93.7	93.5	0.211	89.3	89.4	0.0637	70 - 130	20	70 - 130	20						
Xylenes	ND	30	106	105	0.551	101	101	0	70 - 130	20	70 - 130	20						
%SS:	97	10	102	105	3.01	102	101	0.767	70 - 130	20	70 - 130	20						
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:									

			BATCH 40689 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901078-003A	01/06/09 1:05 PM	1 01/08/09	01/08/09 10:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality"	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #11690	7; Vic's Auto (Q1,	Date Sampled:	02/05/09					
2500 Camino Diablo, Ste. #200	2009)		Date Received:	02/05/09					
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/10/09					
Wallat Crock, Crr 9 (897	Client P.O.:		Date Completed:	02/10/09					

WorkOrder: 0902147

February 11, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #116907; Vic's Auto (Q1, 2009),
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0902147

ſ	McCAMPBELL ANALYTICAL INC.									CHAIN OF CUSTODY RECORD													٦										
	1538 Willow Pass Road, Pittsburg, CA 94565										TURN AROUND TIME 🔲 🔍 🔍 🖉										A												
	Telephone: (925) 252-9262 Fax: (925) 252-9269										RUSH 24 HR 48 HR 72 HR 5 DA												5 DAY	6									
ł	Report To: Ricky Bradford Bill To: AEI Consultants													ł	Analy	sis	Requ	iest				T	-	Oth	er	T	Com	nents					
	Company: AE	Consultants,	2500 Car	nino Dia	blo,	Walnu	it Cr	eek,	CA	9459	97															Т				Т			
	P.O. # WC081.	323																															
	E-Mail: rbradford@aeiconsultatns.com									B)																							
	Telephone: (92	5) 944-2899, e	xt. 148	F	ax:	(925)	944-2	2895	A	- (C	1	2000	0)	8021																			
ł	Project No: 110	n: 745 8 th Stre	et Oakla	nd CA 9	460'	ct Nan 7	ne:	vic s	Aut	0 (0	1,	2009	"	SC/																			
ł	Sampler Signat	ure:	ct, Oakia	MA	100	-					_			N801													(B)						
Ì		SAMI	PLING	s	ers	N	MATRIX				METHOD PRESERVED			0												W8260							
	SAMPLE ID	FIELD POINT NAME	Date	Time	# of Container	Type Contain	Water	Soil	Sludge	Other	lce	HCI HNO.	Other	TPH-g & MBTH	TPH-d (SW8015												MTBE Only (S)						
İ	MW-1	MW-1	2/5/09	1015	3	VOA	X				Х	х		X					1							T					DPE	E Well	
İ	MW-2	MW-2	I	1:10	3	VOA	X				X	Х		X																	DPE	E Well	
İ	MW-3	- MW-3		9:50	3	VOA	X				X	X		X																			
İ	MW-4	MW-4		17:20	3	VOA	X				Х	ж		X																			
ĺ	MW-5	MW-5		9:15	3	VOA	X				X	Х		X													X				DPE	E Well	
İ	MW-6	MW-6		11:45	3	VOA	X				X	X		X													X				DPE	E Well	
İ	MW-7	MW-7		1:00	3	VOA	X				Х	Х		X											-		X				DPH	E Well	
İ	MW-8	MW-8		8:55	3	VOA	X				Х	Х		X																			
İ	MW-9	MW-9		8.40	3	VOA	X				Х	Х		X													X						
İ	MW-10	MW-10	-	X	3	¥0A	X				X	ж		X																	Not S	ample	i.
ĺ	MW-H	MW-11		×	3	¥0A	X				X	X		X																	Not S	ampleo	i
İ	MW-12	MW-12	1	×	3	VOA	X				Х	Х		X																	Not S	ample	i
Ì	MW-13	MW-13	1	8:30	3	VOA	X	-			Х	Х		X																			
	Relinquished By:	11-	Date: 2/5/09 Date:	Time:	Rec	eived B	12	1.						ICE/t° 4.6°C PRESERVATION O&G METALS OTHE										OTHE	R								
	Relinquished By: Date: Time: Received By: Relinquished By: Date: Time: Received By:						GOOD CONDITION 425 APPROPRIATE HEAD SPACE ABSENT 425 CONTAINERS 425 DECHLORINATED IN LAB 0 PERSERVED IN LAB 0																										
1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work	Order	: 0902	147	ClientCode: AEL							
			WriteOr	n 🖌 EDF	Ľ	Excel		Fax		🖌 Email		Har	dCopy	Th	irdParty	□ J-	-flag
Report to: Ricky Bradford AEI Consultants	5	Email: cc:	rbradford@aeiconsultants.com			Bill to: Denise Mockel AEI Consultants						Requested TAT:			I TAT:	5	days
2500 Camino D Walnut Creek, ((925) 283-6000	PO: ProjectNo	#116907; Vic	's Auto (Q1, 2009)	1		25 W dr	i00 Can alnut Ci nockel@	nino Di reek, C Daeico	ablo, S [.] A 9459 nsultan	te. #20 7 ts.com	0	Dai Dai	te Reco te Prin	eived: uted:	02/05/ 02/09/	'2009 /2009	
									Rec	uested	Tests	(See le	gend b	pelow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0902147-001	MW-1		Water	2/5/2009 10:15		А		А									
0902147-002	MW-2		Water	2/5/2009 13:10		Α											
0902147-003	MW-3		Water	2/5/2009 8:50		А											
0902147-004	MW-4		Water	2/5/2009 12:20		А											
0902147-005	MW-5		Water	2/5/2009 9:15		А	В										
0902147-006	MW-6		Water	2/5/2009 11:45		А	В										
0902147-007	MW-7		Water	2/5/2009 13:00		А	В										
0902147-008	MW-8		Water	2/5/2009 8:55		А											
0902147-009	MW-9		Water	2/5/2009 8:40		А	В										
0902147-010	MW-13		Water	2/5/2009 8:30		А											1

Test Legend:

1	G-MBTEX_W	
6		
11		

2	MTBE_W	
7		
12		

3	PREDF REPORT	4
8		9

4	
9	

5	
10	

Prepared by: Rosa Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date and Time Received: 2/5/2009 8:27:43 PM								
Project Name:	#116907; Vic's A	uto (Q1, 2009)			Check	list completed and re	eviewed by:	Rosa Venegas					
WorkOrder N°:	0902147	Matrix <u>Water</u>			Carrier	:: <u>Client Drop-In</u>							
		<u>Cha</u>	in of Cu	stody (C	COC) Informa	tion							
Chain of custody	present?		Yes	✓	No 🗆								
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆								
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌								
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆								
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆								
Sampler's name r	noted on COC?		Yes	✓	No 🗆								
			<u>Sample</u>	Receipt	Information								
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽						
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆								
Samples in prope	er containers/bottles?		Yes	✓	No 🗆								
Sample container	rs intact?		Yes	\checkmark	No 🗆								
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌								
		Sample Pres	ervatio	n and Ho	old Time (HT)	Information							
All samples recei	ved within holding tim	e?	Yes	✓	No 🗌								
Container/Temp E	Blank temperature		Coole	er Temp:	4.6°C		NA 🗆						
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗆						
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌								
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹						
Samples Receive	ed on Ice?		Yes	✓	No 🗆								
		(Ice T	ype: WE	TICE)								
* NOTE: If the "N	lo" box is checked, se	ee comments below	Ι.										

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An en Ouality (alytical, Inc. ^{Counts} "		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
AEI C	consultants		Client Project I	D: #116907	; Vic's Auto	Date Sa	ampled: 02/	05/09						
2500 0	Camino Diablo, Ste. #2	200	(Q1, 2009)			Date R	Date Received: 02/05/09							
			Client Contact	: Ricky Brad	ford	Date E	Date Extracted: 02/06/09-02/10/09							
Walnu	tt Creek, CA 94597		Client P.O.:			Date A	nalyzed 02/	06/09-02/10/	/09					
Extraction	Gas method SW5030B	oline Ra	nge (C6-C12) Volatile Analy	Hydrocarbor	n <mark>s as Gasolin</mark> W8021B/8015Bn	ne with BTH	EX and MTBI	E* Work Ord	ler: 090	2147				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1	w	42,000,d1	ND<1000	1100	8500	880	4500	200	100				
002A	MW-2	w	1000,d1,b1	82	130	50	15	120	5	103				
003A	MW-3	w	ND	ND	1.7	ND	ND	ND	1	96				
004A	MW-4	W	140,d1	ND	0.87	19	3.9	29	1	91				
005A	MW-5	W	2800,d1	ND<25	49	120	22	570	5	114				
006A	MW-6	W	92,000,d1	ND<2500	1100	8600	2800	14,000	500	97				
007A	MW-7	w	7800,d1	ND<210	1100	810	190	690	10	110				
008A	MW-8	w	ND	ND	0.98	1.3	ND	ND	1	99				
009A	MW-9	w	32,000,d1	ND<1500	11,000	310	1600	2700	20	94				
010A	MW-13	w	ND	14	ND	ND	ND	ND	1	103				
Repor	ting Limit for DF =1;	W	50	5	0.5	0.5	0.5	0.5	μg/L					
abov	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005 mg/F		g/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
AEI Consul	tants	Client Project ID:	#116907; Vic's Auto	Date Sampled: 02/05	/09						
2500 Camin	o Diablo, Ste. #200	(Q1, 2009)		Date Received: 02/05	/09	09					
C		Client Contact: R	icky Bradford	Date Extracted: 02/06/	/09-02/0	9/09					
Walnut Cree	ek, CA 94597	Client P.O.:		Date Analyzed 02/06	/09-02/0	9/09					
Extraction method	1 SW5030B	Methyl tert- Analytical n	Butyl Ether* nethods SW8260B	Work O	rder: 090	02147					
Lab ID	Client ID	Matrix	Methyl-t-butyl	ether (MTBE)	DF	% SS					
005B	MW-5	w	NI)	1	78					
006B	MW-6	W	ND<5	0,a3	100	85					
007B	MW-7	W	26	5	5	84					
009B	MW-9	W	36	0	100	88					
R	Reporting Limit for DF =1; D means not detected at ar	W	0.5	5	με	g/L					
N	above the reporting limit	S	NA	A	N	A					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content / matrix interference.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water	(QC Matrix	k: Water			Batch	ID: 41240		WorkOrder: 0902147			
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B				Spiked Sample ID: 0902130-002					
Analyte	Sample	Sample Spiked MS MSD MS-MSD L						LCS-LCSD	LCS-LCSD Acceptance Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	60	92.2	101	9.51	92	90.2	2.04	70 - 130	20	70 - 130	20
MTBE	ND	10	106	106	0	109	112	2.27	70 - 130	20	70 - 130	20
Benzene	ND	10	83.4	92.6	10.4	105	101	3.21	70 - 130	20	70 - 130	20
Toluene	ND	10	87.2	98.4	12.1	94.8	93.8	1.11	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	98.1	88.6	10.2	105	102	3.13	70 - 130	20	70 - 130	20
Xylenes	ND	30	111	106	3.75	100	97.6	2.44	70 - 130	20	70 - 130	20
%SS:	93	10	103	109	5.06	99	97	1.99	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 41240 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902147-001A	02/05/09 10:15 AM	02/06/09	02/06/09 7:34 PM	0902147-002A	02/05/09 1:10 PM	02/10/09	02/10/09 2:42 AM
0902147-003A	02/05/09 8:50 AM	02/06/09	02/06/09 10:08 PM	0902147-004A	02/05/09 12:20 PM	02/06/09	02/06/09 10:42 PM
0902147-005A	02/05/09 9:15 AM	02/10/09	02/10/09 3:15 AM	0902147-006A	02/05/09 11:45 AM	02/06/09	02/06/09 9:49 PM
0902147-007A	02/05/09 1:00 PM	02/10/09	02/10/09 4:20 AM	0902147-008A	02/05/09 8:55 AM	02/06/09	02/06/09 11:16 PM
0902147-009A	02/05/09 8:40 AM	02/09/09	02/09/09 11:56 PM	0902147-009A	02/05/09 8:40 AM	02/10/09	02/10/09 3:35 PM
0902147-010A	02/05/09 8:30 AM	02/10/09	02/10/09 12:26 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matrix: Water						ID: 41242	WorkOrder 0902147				
EPA Method SW8260B Extraction SW5030B								5	Spiked Sar	nple ID	: 0902134-0	02A	
Analyte	Sample Spiked MS MSD MS-MSD				MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, many to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Methyl-t-butyl ether (MTBE)	ND	10	103	101	1.90	91.6	97.4	6.20	70 - 130	30	70 - 130	30	
%SS1:	85	25	86	85	0.512	87	85	2.17	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 41242 SUMMARY

Lab ID	Date Sampled Date Extracte		ate Extracted Date Analyzed		Date Sampled	Date Extracted	Date Analyzed
0902147-005B	02/05/09 9:15 AM	02/09/09	02/09/09 12:37 PM	0902147-006B	02/05/09 11:45 AM	02/06/09	02/06/09 8:45 PM
0902147-007B	02/05/09 1:00 PM	02/09/09	02/09/09 1:15 PM	0902147-009B	02/05/09 8:40 AM	02/07/09	02/07/09 2:29 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	02/09/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	02/10/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/13/09
	Client P.O.:		Date Completed:	02/12/09

WorkOrder: 0902230

February 13, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	i a			0	90	2	2	3	0																										
	McCAN	IPBELI	ANA	LY	FICA	LI	NC							Т				- 22	(CH	IA	IN	0	F	CU	IST	ГО	D	YI	RE	CC	DRJ	D	S	12
	1538 Wil	low Pass	Road, Pi	ttsb	urg, C	A 94	1565	5							ΤI	UR	N	AR	01	UN	D	ΓIN	1E					Ę)			1			A
Telephone: (0	25) 252-9262				6,			Fay	. (9	25	250	2_9	269	Ι.		E D	0.012		10	-	V	о Г		I.e.	R	USH	I	241	HR	19	48 H	IR	7	2 HR	5 DAY
Pepart To: Ri	aky Bradford		E	E 113	Co: AE	IC	one	lta	nte) 404			ť	ED.	FR	equ	IIre	ar	Ans	re	is D		10	-	PD	FF	cequ	nre		Of	res	4	Com	nents
Company: Al	El Consultants.	2500 Car	nino Dia	blo.	Waln	ut C	ree	k. C	A 9	45	97			┢			_		T	Cane	arys	15 1	equ	lest						\vdash			-	Com	licits
P.O.#WC08 13	324			,				., .						TBC			B&F																		N N
			E	C-Ma	ail: <u>rbr</u>	adfo	orda	aei	cons	ult	atns.	con	1	J.V.	WIN -		S&F/	_							310					32601					idd
Telephone: (9	25) 746-6000		F	ax:	(925)	746	-609	99						0150			20 F	18.1							0/8		1			PA 8					and
AEI Project N	o. 116907		F	Proje	ect Nai	me:	Vic	's A	uto	mo	otive	_	_	+0			e (55	ns (4		50)		Y			/ 827			0		by E	_				g/L
Project Locati	on: 245 8 Stre	et, Oakla	, Oakland, California 94607										- 608/0	2000		ireas	arboi		1/80		ONL			625			6010		ist)	260B				n - s	
Sampler Signa	iture: AVV	1 CIN	Dic					TD	IV	Т	ME	TH	OD	- 9		2	8	droc		V 602		B's	260		EPA			39.2/		get l	PA 8				mits
	0	SAMI	PLING	ers	ners		MA	IR	IX	4	PRES	SER	VEI	D S		(801	n Oi	n Hy	0	(EP/	0	0 PC	0/8	0	s by	Is	10	21/2		0 tar	oy El				othu
SAMPLE ID	FIELD			tain	ntai									Hd		iesel .	oleur	oleur	801	ALY	808	·808	824	827	NA'	Meta	Actal	0/74		(80]	nly				n bé
SAMELE ID	NAME	Date	Time	Con	° Co	er			ge	r.		1	er a	3		as D	Petr	Petr	601	X O	608	608	624	625	s/P	-11	LSN	(724		Cs-	E O				ort
×				# of	Typ	Wat	Soil	Air	Sluc	5	lce		HI-	RTEX		Hall	otal	Total	EPA	BTE	EPA	EPA	EPA	EPA	PAH	CAN	ANT	Lead	RCI	HVO	MTB				Rep
MW-1S	- MW-1S	2-9-09	1230	1	ТВ			X	-					X	1		-													F			-		x
MW-2S	MW-2S	1	1240	1	ТВ			X		1		+		ſ	Ì																				X
MW-5S	MW-5S		12.50	1	ТВ			X		1		+		1	t		1		1																X
MW-6S	MW-6S		1300	1	TB			X	21	1		1	-	1	1																			8	X
MW-7S	MW-7S		1050	1	ТВ			x		1		1		1	1												-								X
MW-10S	MW-10S		1100	1	ТВ			x		1				1	T		1																		X
MW-11S	MW-11S		1110	1	TB			X		1	-	1	1	t	1	1																			X
MW-12S	MW-12S		1120	1	ТВ			X		1																			*						X
POSTD	POSTD		-	-	-	-	-		_	+		1		1	t																			Not S	ampled
PRED	PRED		1130	1	ТВ			X		1				1	1																				X
AS	AS		1140	1	ТВ			X		1																									x
STACK	STACK	¥	1150	1	ТВ			X						V																					х
Dalinquiched Der		Data	Times	De	and and D									+											_						1				
20m	ago	Z-10.09	949	EN	VIRO-	TEC	u	56	en	ce	- 1	44	ł		10	IE 40	1	V	h						DE	CEL		THE	N	OAS	0	&G	M	ETALS	OTHER
Relinquished By:	al SR.	Date:	Time:	Ree	eived B	y:	.1	1	/					1	G	00I	o c	ON	DIT	IO	N	~	-	1	APP	RO	PRI	ATI	E E				1		
ZNUITO-7	ech	2/10/09	1125	12	2em	1	h	1	~	-					H	EAD	SP	AC	EA	BS	ENT	ſ		. (CON	TA	INE	RS	-	-	-				
Relinquished Byz	1_	Date:	Time:	Rec	ceived B	7.			/	2	1	1	5		DI	ECH	IL0	RI	NA'	TED	IN	LA	В		_PI	RS	ER	VED	IN	LAI	B		-		
12- 1/2	m	010/09	1150	1	111	10	a	/	6	/	1		<u></u>																	_					

.....

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, (925) 252	, CA 94565-1701 2-9262					Work	Order	: 0902	230	(ClientC	ode: A	AEL				
			WriteOr	EDF	Γ	Excel		Fax		🖌 Email		Har	dCopy	🗌 Th	irdParty	J	-flag
Report to:							Bill to:						Req	uested	I TAT:	5	days
Ricky Bradfor AEI Consultar 2500 Camino Walnut Creek (925) 283-6000	d nts o Diablo, Ste. #200 c, CA 94597 o FAX (925) 944-2895	Email: r cc: PO: ProjectNo: #	bradford@ae #116907; Vic'	siconsultants.com			De AE 25 W dn	enise M El Cons 500 Can alnut Ci nockel @	ockel ultants nino Di reek, C ⊉aeico	ablo, Si A 9459 ⁻ nsultan	:e. #200 7 ts.com)	Dat Dat	te Reco te Prin	eived: ated:	02/10/ 02/10/	/2009 /2009
									Rec	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0902230-001	MW-1S		Air	2/9/2009 12:30		Α	Α										
0902230-002	MW-2S		Air	2/9/2009 12:40		А											
0902230-003	MW-5S		Air	2/9/2009 12:50		А											
0902230-004	MW-6S		Air	2/9/2009 13:00		А											
0902230-005	MW-7S		Air	2/9/2009 10:50		А											
0902230-006	MW-10S		Air	2/9/2009 11:00		А											
0902230-007	MW-11S		Air	2/9/2009 11:10		А											
0902230-008	MW-12S		Air	2/9/2009 11:20		А											
0902230-009	PRED		Air	2/9/2009 11:30		А											
0902230-010	AS		Air	2/9/2009 11:40		А											
0902230-011	STACK		Air	2/9/2009 11:50		А											

Test Legend:

1	G-MBTEX_AIR	2	PREDF REPORT
6		7	
11		12	

3			
8			

4	
9	

5		 	 	
10				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	02/10/09 9	:59:08 AM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0902230	Matrix <u>Air</u>			Carrie	er: <u>EnviroTech</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cli	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		<u>Sa</u>	ample	Receipt Inf	ormation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vatio	n and Hold 1	<u>ime (HT</u>) Information		
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell Ana en Ouality C	alytical, Inc. ^{Counts} "		1534 Willo Web: www.mcca Telephon	w Pass Road, F ampbell.com e: 877-252-926	Pittsburg, CA 9456 E-mail: main@mcc 52 Fax: 925-252-	55-1701 campbell.com -9269						
AEI C	Consultants		Client Project ID:	#116907	; Vic's	Date Sa	ampled: 02/0)9/09						
2500 0	Camino Diablo, Ste. #2	200	Automotive			Date R	eceived: 02/1	10/09						
			Client Contact: R	icky Brad	lford	Date E	Date Extracted: 02/10/09-02/11/09							
Walnu	tt Creek, CA 94597		Client P.O.:			Date A	nalyzed 02/1	10/09-02/11/	09					
Extraction	Gas n method: SW5030B	oline Ra	nge (C6-C12) Volatile Hyd Analytical	drocarbon methods: S	ns as Gasolin W8021B/8015Bn	ne with BTH	EX and MTBI	∑* Work Ore	der: 0902	2230				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1S	А	130,d1	ND	15	26	1.6	14	1	95				
002A	MW-2S	Α	4100,d1	ND<35	82	200	21	220	4	88				
003A	MW-5S	Α	980,d1	ND<17	7.8	29	3.9	100	6.7	119				
004A	MW-6S	А	220,d1	ND	4.7	13	2.2	36	1	105				
005A	MW-7S	А	3900,d1	ND<45	63	81	7.7	150	4	106				
006A	MW-10S	А	1400,d1	ND<10	18	45	4.8	94	4	113				
007A	MW-11S	А	1800,d1	ND<25	45	70	9.9	120	1	91				
008A	MW-128	А	380,d1	ND<10	14	15	2.6	36	1	121				
009A	PRED	Α	4100,d1	ND<30	56	120	14	200	4	106				
010A	AS	А	63,d1	ND	0.91	2.2	0.35	6.6	1	102				
011A	STACK	Α	ND	ND	ND	ND	ND	ND	1	96				
Repor	the set of the set of	А	25	2.5	0.25	0.25	0.25	0.25	μ	g/L				
aboy	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	<u>McCam</u>	pbell "When O	Analyti	<u>cal, Inc.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com	
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	d: 02/09/09		
2500 C	amino Diablo, S	te. #200					Date Receiv	ed: 02/10/09		
				Client Contact: F	Ricky Bradf	ord	Date Extract	ed: 02/10/09-	-02/11	/09
Walnut	Creek, CA 945	97		Client P.O.:			Date Analyz	ed: 02/10/09-	-02/11	/09
	Gasolin	e Range	(C6-C12) V	olatile Hydrocarbo	ons as Gasol	line with MTI	BE and BTEX	in ppmv*		
Extractio	n method: SW5030B			Analytical met	hods: SW8021	B/8015Bm		Work Order	: 0902	230
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1S	А	36,d1	ND	4.7	6.7	0.35	3.1	1	95
002A	MW-2S	А	1100,d1	ND<10	25	53	4.9	49	4	88
003A	MW-5S	А	270,d1	ND<4.5	2.4	7.5	0.90	23	6.7	119
004A	MW-6S	А	60,d1	ND	1.4	3.4	0.49	8.2	1	105
005A	MW-7S	А	1100,d1	ND<10	19	21	1.8	34	4	106
006A	MW-10S	А	400,d1	ND<2.7	5.6	12	1.1	21	4	113
007A	MW-11S	А	500,d1	ND<6.0	14	18	2.3	28	1	91
008A	MW-12S	А	110,d1	ND<5.0	4.2	4.0	0.58	8.1	1	121
009A	PRED	А	1200,d1	ND<10	17	31	3.1	46	4	106
010A	AS	А	18,d1	ND	0.28	0.57	0.078	1.5	1	102
011A	STACK	А	ND	ND	ND	ND	ND	ND	1	96

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

	1								-
Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 41298		WorkC	Order: 09022	30
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked Sar	nple ID	: 0902222-0	01D
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	101	99.4	1.23	85.2	93.9	9.67	70 - 130	20	70 - 130	20
MTBE	ND	10	97	94.6	2.59	87.3	84.9	2.77	70 - 130	20	70 - 130	20
Benzene	ND	10	87.8	93.7	6.48	90	109	18.7	70 - 130	20	70 - 130	20
Toluene	ND	10	92.1	97.1	5.32	89	95.3	6.82	70 - 130	20	70 - 130	30
Ethylbenzene	ND	10	91.8	97.6	6.10	91.6	110	18.6	70 - 130	20	70 - 130	20
Xylenes	ND	30	104	111	5.65	87.2	105	19.0	70 - 130	20	70 - 130	20
%SS:	99	10	102	102	0	102	111	8.58	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			BATCH 41298 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902230-001A	02/09/09 12:30 PM	02/11/09	02/11/09 4:22 AM	0902230-001A	02/09/09 12:30 PM	02/11/09	02/11/09 4:22 AM
0902230-002A	02/09/09 12:40 PM	02/11/09	02/11/09 4:55 AM	0902230-002A	02/09/09 12:40 PM	02/11/09	02/11/09 4:55 AM
0902230-003A	02/09/09 12:50 PM	02/10/09	02/10/09 6:22 PM	0902230-003A	02/09/09 12:50 PM	02/10/09	02/10/09 6:22 PM
0902230-004A	02/09/09 1:00 PM	02/10/09	02/10/09 11:23 PM	0902230-004A	02/09/09 1:00 PM	02/10/09	02/10/09 11:23 PM
0902230-005A	02/09/09 10:50 AM	02/11/09	02/11/09 10:36 PM	0902230-005A	02/09/09 10:50 AM	02/11/09	02/11/09 10:36 PM
0902230-006A	02/09/09 11:00 AM	02/11/09	02/11/09 12:30 AM	0902230-006A	02/09/09 11:00 AM	02/11/09	02/11/09 12:30 AM
0902230-007A	02/09/09 11:10 AM	02/11/09	02/11/09 1:03 AM	0902230-007A	02/09/09 11:10 AM	02/11/09	02/11/09 1:03 AM
0902230-008A	02/09/09 11:20 AM	02/11/09	02/11/09 1:36 AM	0902230-008A	02/09/09 11:20 AM	02/11/09	02/11/09 1:36 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 41305		WorkC	Order: 09022	30
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 0902235-0	002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	89.2	84.6	5.36	86.1	90.5	5.04	70 - 130	20	70 - 130	20
MTBE	ND	10	77.9	76.5	1.80	80.5	84	4.32	70 - 130	20	70 - 130	20
Benzene	ND	10	90	90.9	1.02	85.9	89.5	4.09	70 - 130	20	70 - 130	20
Toluene	ND	10	90.5	91.3	0.809	86.8	90.2	3.79	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.9	96.1	1.29	90.7	93.9	3.51	70 - 130	20	70 - 130	20
Xylenes	ND	30	105	105	0	100	104	3.40	70 - 130	20	70 - 130	20
%SS:	95	10	90	95	5.61	90	91	1.57	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 41305 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902230-009A	02/09/09 11:30 AM	02/11/09	02/11/09 11:09 PM	0902230-009A	02/09/09 11:30 AM	02/11/09	02/11/09 11:09 PM
0902230-010A	02/09/09 11:40 AM	02/11/09	02/11/09 11:42 PM	0902230-010A	02/09/09 11:40 AM	02/11/09	02/11/09 11:42 PM
0902230-011A	02/09/09 11:50 AM	02/11/09	02/11/09 3:49 AM	0902230-011A	02/09/09 11:50 AM	02/11/09	02/11/09 3:49 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	02/09/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	02/10/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	adford	Date Reported:	02/13/09
	Client P.O.:		Date Completed:	02/13/09

WorkOrder: 0902231

February 13, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: **#116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCA	MPBEL	L ANA	LY	TICA	LI	N	7.				1.1		Г		-		C	HA	IN	0	FC	CUS	ST	OD	YI	RE	CO	RD		
	1538 V	Villow Pass	Road, F	Pittsh	mrg. C	A 94	156	5							TUR	NA	R	U	ND	TI	ME		[J.	1						A
Telephones (0	25) 252 0262			1000				Fai	. /	025	125	2_01	60	Ι.					-/				RU	SH	24	HR		48 HF		72 HR	5 DAY
Telephone: (9	25) 252-9202			D:11	T AE	1.0		ra	A: (S	945) 45	4-94	.09	1	DF R	equi	red	?	XY	es		0		PDF	Rec	luire	d?	Oth	es		
Report To: Ri	cky Bradford	d		Bill	IO: AE	IC	ons	ulta	nts	0.45	07		_	⊢			-	A	naty	SIS	Requ	lest	-	-		-	⊢	Othe	r	Cor	iments
Company: AF	a Consultan	its, 2500 Ca	amino Di	abio	, wain	utC	ree	ek, C	A	945	91	-		1			4	-													
P.O.#WC0815	25			E M	aile ala	adfe		Deel		and t	atus					10															
Telephones (02	E) 746 6000			E-IVI	(025)	a010	600	agae	con	sun	atns	.con	1	13		200		M)s													
A EL Project N	a 116007			Proi	(945)	/40-	Vi	0%	A	0.00	otiv	0	-	801		EM	at the	1001													
Project Locati	on: 245 8th S	treat Oak	and Cal	ifor	aia 046	07	* 1	c sz	Aut	om	ouv	c		too too		H PS		2													
Sampler Signa	ture:	An Shar	anu, ca	nori	na 940	07				-				08/0		100	1 in														
Sampler Signa	iure.	VI SIG	5	T							M	ETH	OD	19		HOH		5												dib	
	0	SAMP	LING	L'S	lers		MA	ALK	ax		PRE	SER	VED	ě		1940c	L Tan	n sc												Res	
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containe	Type Contair	Water	Soil	Air	Sludge	Other	Ice	HCI	Other	RTFX & TPH ac		**Total Oil & G	O TO IIO IPOT													Flow Totalizer	
INF	INF	2-9-09	1200	3	3VOA	x				1	X	x		,	(+	+	-	-						-	t		-		
POST-AS	POST-AS		1220	3	3VOA	x					x	x	+	1,															-		
FFF	FFF	1	1210	3	3204	x			-	-	x	x	+	5		,	x	-		1			-		-	-			-	-	
LII	LII	Y	1610	-	TOA	1	-		-	+	~	~	+	ť	-	- 4	-	+	+	+			-	-	-	-	\vdash	++	-	-	
				-			-		-	+	-	-	-	⊢		-	-	+		-		-	-		-	-	-		+	-	
				-					-	-	-	-	+	⊢		-	-	+	-	-		_	-	-	-	-	-		+		
							_		-	-	-	_	-	⊢		_	_	+	_	-		_	_	_	_		-		_	-	
									_	\downarrow		_				_				-			_		_				_	-	
1																															
2																															
		1												t					-										-		
										+				1		+-	-	•	-	1		-	-	-		-	-	-	+		
										+		-	-			-	+	+		-				-		-	-	\vdash	+		
Relinquiched Bu		Date	Time	Par	aived D.								_	\vdash				_		1				_		-			_		
An S	'n	2-10-09	949	EN	VIR0-	TEL	14 -	560	LUC	G	\$	4	L		LOD / S	3	.9	3			_					V	OAS	0&	G	METAL	OTHE
Relinquished By:	CO CO	Date:	Time:	Rec	eived By	:		1		1				1	ICE/t°	0.00	ND	ITL	ON	/		P	PPE	ER	RIAT	TE		×			
Enviro -Te	ech sie.	2/10/09	1125		15.		1	1	X	_	_				HEAD	SPA	ACE	AE	BSEN	Т	-/	C	ON	TAIN	NERS	s /	/				
Relinquished By:	/	Date:	Time:	Rec	eived By	:	01	2	-	2	/		-	1	DECH	LOI	RIN	ATI	ED IN	LA	B	1	PEI	RSE	RVE	D IN	LA	В			
15m 1/2	r	2/10/09	1150.		1/10	11	1	-	1	//	1	5																			

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	rder: 090223	31 Client	Code: AEL		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Rec	uested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeico	nsultants.com		Denise Mod	ckel			
AEI Consultants	CC:				AEI Consult	tants			0.010.000
2500 Camino Diablo, Ste. #200	PO:				2500 Camir	no Diablo, Ste. #20	0 Dat	te Received:	02/10/2009
Walnut Creek, CA 94597	ProjectNo:	: #116907; Vic's A	utomotive		Walnut Cree	ek, CA 94597	Dat	te Printed:	02/10/2009
(925) 283-6000 FAX (925) 944-2895					dmockel@a	aeiconsultants.com	1		

							Req	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date Ho	d 1	2	3	4	5	6	7	8	9	10	11	12
0902231-001	INF	Water	2/9/2009 12:00]	Α	Α									
0902231-002	POST-AS	Water	2/9/2009 12:20]	А										
0902231-003	EFF	Water	2/9/2009 12:10] В	Α										

Test Legend:

1	1664A_SG_W
6	
11	

2	G-MBTEX_W	
7		
12		

3	PREDF REPORT
8	

4	
9	

5			
10			

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	02/10/09 1	0:06:03 AM
Project Name:	#116907; Vic's A	utomotive			Check	list completed and r	reviewed by:	Maria Venegas
WorkOrder N°:	0902231	Matrix Water			Carrie	r: <u>EnviroTech</u>		
		<u>C</u>	hain of Cu	stody (C	OC) Informa	ition		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and receive	ed? Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		<u>Sample Pr</u>	eservatior	and Ho	old Time (HT)	Information		
All samples recei	ived within holding time	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	r Temp:	3.8°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	nitted 🗆	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice	Type: WE	TICE)			
* NOTE: If the "N	No" box is checked, se	e comments bel	ow.					

Client contacted:

Date contacted:

Contacted by:

Comments:

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 69	
AEI Consulta	ints	Client Project ID	#116907; Vic's	Date Sampled: 02/09/	09	
2500 Camino	Diablo, Ste. #200	Tutomotive		Date Received: 02/10/	09	
		Client Contact:	Ricky Bradford	Date Extracted: 02/10/	09	
Walnut Creek	, CA 94597	Client P.O.:		Date Analyzed 02/11/	09	
	Hexane	Extractable Mate	rial with Silica Gel Clean	Up*		
Extraction method:	E1664A	Analytica	l methods: E1664A	Work Or	der: 090	02231
Lab ID	Client ID	Matrix	HEMSG	T	DF	% SS
0902231-003B	EFF	W	ND		1	N/A

Reporting Limit for $DF = 1$;	W	5.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampb	ell An	alytical, Inc. Counts"			1534 Willo Web: www.mcca Telephon	w Pass Road, F ampbell.com ie: 877-252-926	ittsburg, CA 9456 E-mail: main@mcc 2 Fax: 925-252-	5-1701 ampbell.com 9269									
AEI C	Consultants		Client Proj	ect ID:	#116907;	Vic's	Date Sa	ampled: 02/0)9/09									
2500 (Camino Diablo, Ste. #	200	Automotiv	C			Date R	eceived: 02/1	0/09									
			Client Con	tact: Ri	icky Brad	ford	Date E	xtracted: 02/1	2/09									
Walnu	ut Creek, CA 94597		Client P.O.	:			Date A	Date Analyzed 02/12/09										
Extraction	Gas n method: SW5030B	soline Ra	nge (C6-C12) Vola	ne with BTH	EX and MTBI	∑ * Work Ore	ler: 0902	2231										
Lab ID	Client ID	Matrix	TPH(g)		MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS							
001A	INF	W	11,000,d1		320	250	660	84	1700	10	96							
002A	POST-AS	w	250,d1		37	3.1	8.7	1.3	28	1	95							
003A	EFF	W	ND		9.9	ND	ND	ND	ND	1	94							
Repo	rting Limit for DF =1;	W	50		5	0.5	0.5	0.5	0.5	μ	g/L							
abov	eans not detected at or ve the reporting limit	S	1.0		0.05	0.005	0.005	0.005	0.005	mg	/Kg							

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

"When Ouality Counts"

QC SUMMARY REPORT FOR E1664A

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 41220		WorkC	Order: 09022	31
EPA Method E1664A	Extra	ction E16	64A					5	Spiked San	nple ID	: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, analy to	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
HEMSGT	N/A	20.83	N/A	N/A	N/A	106	109	3.02	N/A	N/A	70 - 130	30
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 41220 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902231-003B	02/09/09 12:10 PM	02/10/09	02/11/09 4:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate therefore unable to comply with method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 41305 WorkOrder: 0902231 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0902235-002A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 89.2 84.6 5.36 90.5 5.04 70 - 130 70 - 130 60 86.1 20 20 MTBE 10 77.9 ND 76.5 1.80 80.5 84 4.32 70 - 130 2.0 70 - 130 20 Benzene ND 10 90 90.9 1.02 85.9 89.5 4.09 70 - 130 20 70 - 130 20 Toluene ND 10 90.5 91.3 0.809 86.8 90.2 3.79 70 - 130 20 70 - 130 20 Ethylbenzene ND 10 94.9 96.1 1.29 90.7 93.9 3.51 70 - 130 20 70 - 130 20 Xylenes ND 30 105 105 0 100 104 3.40 70 - 130 2.0 70 - 130 20 20 %SS: 95 10 90 95 5.61 90 91 1.57 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41305 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902231-001A	02/09/09 12:00 PM	02/12/09	02/12/09 6:58 PM	0902231-002A	02/09/09 12:20 PM	02/12/09	02/12/09 9:59 PM
0902231-003A	02/09/09 12:10 PM	02/12/09	02/12/09 10:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	03/18/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	03/18/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	adford	Date Reported:	03/24/09
	Client P.O.: #WC081399)	Date Completed:	03/20/09

WorkOrder: 0903467

March 24, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			090	03	340	6	T																											
	McCAM	PBEL	L ANA	LY	TICA	LI	NC	1.		-				Τ					CI	HA	IN	0	F	CI	IST	ГО	D	VI	RE	C	OR	D		
	1539 Will	ow Pase	Dond Di	tteh	ura C		156	=							τu	RN	A	RO	UN	D	TIM	ME					E	ŝî		E]			R
	1556 Will	ow rass	Roau, Fi	ttsb	urg, c	A 9.	+30	9	13	1000	0.000	19330							-	1				R	USE	L	24	HR		48 F	IR	7	2 HR	5 DAY
Telephone: (9	25) 252-9262							Fa	x: (9	25	6) 252	2-92	269	E	DF	Re	qui	red	2	Ye	es [No		PD	FF	Requ	uire	d?	Ø	Yes		No	
Report To: Ri	cky Bradford		E	Bill 1	Γo: AE	IC	ons	ulta	nts					⊢	_	_	-	-	An	alys	sis F	Red	uest	_				_	\vdash	Ot	her		Com	nents
Company: Al	El Consultants,	2500 Ca	mino Dia	blo,	Waln	ut C	ree	k, C	CA 9	45	597			12		(H)																		>
P.O.#WC0813	99		6	- 14	aile she			2						MTE		F/B								0					OB					mq
Telephone: (9	25) 746-6000		E	av.	(025)	746	-60	oo	cons	ult	tatns.	con	<u>n</u>	SCV		E&	=							831					826					d þi
AEI Project N	0. 116907		F	roi	ect Na	me:	Vic	's A	uto	ma	otive			- 801		5520	(418		_					270					EPA					Lar
Project Locati	on: 245 8th Stre	et, Oakh	and, Cali	forn	ia 946	07					Juire			1020		ase (Suns	2	8020		LY			5/8			(0)		by (B				/ßn
Sampler Signa	ture: X	mo	190											02/8		Gree	carb		12/8		NO			A 62			09/7		list	8260				- SI
	0	SAM	PLING	LS	ers		MA	TR	IX		ME	SER	OD VED	Gas (6	80151	Oil &	Hvdro		EPA 60		PCB's	/ 8260		by EP.			1/239.2		target	/ EPA				in uni
	FIELD			aine	Itair									H as) las	leum	enm	8010	CY (8080	8080	8240	8270	IA's	letals	ctals	742		8010	ly by				poq
SAMPLE ID	POINT	Date	Time	ont	Con	1			e					& TF	Die	etro	etro	110	INO	08/3	08 / 8	24/8	25/1	/PN	17 M	5 Mc	7240		s - (On				.E
	(The second sec	Date	Time	of C	ype	/ate	lio	Ŀ.	pn	Ine	a (5 2	the	LEX	Ha	otal P	stal P	9 V 6	IEX	9 V 6	9 V (9 Y 6	9 Y 6	AH's	-MA	JFT) pes	5	VOC	TBE				Ioda
	u-			*	F	2	Ś	P	S	1	P I			B	F	Ē	F		B	Ξ	Ξ	Ξ	Ξ	P	0	F	Z	R	H	N				×
MW-1S	→MW-1S	3-18-09	0800	1	TB			X						X	-																			X
MW-2S	MW-28		0810	1	TB			х						X																				X
MW-5S	MW-5S		0820	1	TB			X						X																				X
MW-6S	MW-6S		0830	1	ТВ			X		Τ				X																				x
MW-7S	MW-7S		0840	1	TB			X						X	-																			x
MW-10S	MW-10S		0850	1	TB			X		1				X	-																			x
MW-11S	MW-11S		0900	1	TB			x		1			-	x																				x
MW-128	MW-12S		0910	1	ТВ			x		t				X		-	1											Ŧ						x
POSTD	POSTD									t		-		ŕ	-																		Not S	ampled
PRED	PRED		0920	1	ТВ			X		t		1		X																				x
AS	AS		0920	1	ТВ			X		t		1	-	5	-	-	1													-				x
STACK	STACK	a	0940	1	ТВ			X		1		+	-	X	-				4															X
	-		~							1		-		1			-																	
Relinquished By:	Sign	Date: 3180(Time: 1561	Ree	reived 1	*7	n	10	7 -	~	1	2	-	E	>			TK	2									v	OAS	0	&G	M	ETALS	OTHER
Relinquished By:	P	Date:	Time:	Ree	ceived B	y:	-							1	GO	OD	co	NDI	TIO	N	-	-	- 1	PRE	SEF	PRL	ATE	EN_		-				
															HE	AD	SPA	CE	ABS	EN	Г	-		CON	TA	INE	RS	6	_					
Relinquished By:		Date:	Time:	Ree	ceived B	y:									DE	CHI	OR	INA	TEI	D IN	LA	B		_PE	RSI	ERV	/ED	IN	LAI	3		-		

ł.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur (925) 2:	rg, CA 94565-1701 52-9262					Work	Order	: 0903	467	(ClientC	Code: A	EL				
			WriteOr	n 🖌 EDF	Ľ	Excel		Fax		🖌 Email		Harc	lCopy	🗌 Thir	dParty	🗌 J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Ricky Bradfo AEI Consult 2500 Camir Walnut Cree (925) 283-600	ord ants no Diablo, Ste. #200 ek, CA 94597 00 FAX (925) 944-2895	Email: cc: PO: ProjectNo:	rbradford@ae #WC081399 #116907; Vic'	eiconsultants.com s Automotive	1		De AE 25 Wa dr	enise M El Consi 500 Can alnut Cr nockel @	ockel ultants nino Di eek, C @aeico	ablo, Sf A 9459 ⁻ nsultan	e. #20 7 ts.com	0	Dat Dat	e Rece e Prin	ived: ted:	03/18/ 03/18/	2009 2009
									Rec	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0903467-001	MW-1S		Air	3/18/2009 8:00		А	А									Τ	
0903467-002	MW-2S		Air	3/18/2009 8:10		А											
0903467-003	MW-5S		Air	3/18/2009 8:20		А											
0903467-004	MW-6S		Air	3/18/2009 8:30		А											
0903467-005	MW-7S		Air	3/18/2009 8:40		А											
0903467-006	MW-10S		Air	3/18/2009 8:50		А											
0903467-007	MW-11S		Air	3/18/2009 9:00		А											
0903467-008	MW-12S		Air	3/18/2009 9:10		А											
0903467-009	PRED		Air	3/18/2009 9:20		А											
0903467-010	AS		Air	3/18/2009 9:30		А											
0903467-011	STACK		Air	3/18/2009 9:40		А							1				

Test Legend:

1	G-MBTEX_AIR	2	PREDF REPORT
6		7	
11		12	

3		
8	-	

4	
9	

5					
10					

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	03/18/09 4	:36:23 PM
Project Name:	#116907; Vic's A	utomotive			Checl	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0903467	Matrix <u>Air</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chair</u>	n of Cu	stody (COC) Informa	ation		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>S</u>	ample	Receipt Inf	ormatior	<u>1</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Hold [·]	<u>Time (HT</u>	<u>) Information</u>		
All samples rece	ived within holding tim	e?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	necked for correct pres	servation?	Yes	✓	No			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

Ĵ	McCampbe	ell Ana en Ouality C	alytical, Inc.		1534 Willo Web: www.mcca Telephon	w Pass Road, F ampbell.com e: 877-252-926	Pittsburg, CA 9456 E-mail: main@mcc 52 Fax: 925-252-	55-1701 campbell.com -9269		
AEI C	onsultants		Client Project ID:	#116907;	Vic's	Date Sa	ampled: 03/2	18/09		
2500 0	Camino Diablo, Ste. #2	200	Automotive			Date R	eceived: 03/	18/09		
			Client Contact: R	Ricky Brad	ford	Date E	xtracted: 03/1	18/09-03/19/	09	
Walnu	t Creek, CA 94597		Client P.O.: #WC	081399		Date A	nalyzed 03/2	18/09-03/19/	/09	
Extraction	Gas	oline Ra	nge (C6-C12) Volatile Hy Analytica	drocarboi	ns as Gasolin W8021B/8015Bn	e with BTH	EX and MTBI	E * Work Ord	ler: 090	3467
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1S	А	420,d1	ND<5.0	5.7	37	3.1	18	1	114
002A	MW-2S	А	480,d1	ND	3.5	21	1.9	11	1	116
003A	MW-5S	А	350,d1	ND<5.0	6.7	23	3.3	27	1	119
004A	MW-6S	А	220,d1	ND<10	4.4	6.4	1.7	18	1	98
005A	MW-7S	А	2500,d1	ND<50	89	86	8.6	74	20	118
006A	MW-10S	А	800,d1	ND<45	29	29	6.3	46	2	102
007A	MW-11S	А	1400,d1	ND<110	160	68	15	89	4	109
008A	MW-12S	А	350,d1	ND<25	25	16	2.3	11	2	96
009A	PRED	А	450,d1	ND	17	40	5.1	31	1	114
010A	AS	А	ND	ND	ND	0.33	ND	0.65	1	90
011A	STACK	А	ND	ND	ND	ND	ND	ND	1	94
Repor	ting Limit for DF =1;	А	25	2.5	0.25	0.25	0.25	0.25	μ	g/L
abov	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	<u>McCam</u>	pbell	Analyti uality Counts"	<u>cal, Inc.</u>	, v	1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com	
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	d: 03/18/09		
2500 C	amino Diablo, S	te. #200					Date Receive	ed: 03/18/09		
				Client Contact: H	Ricky Bradf	ord	Date Extract	ed: 03/18/09-	-03/19	/09
Walnut	Creek, CA 9459	97		Client P.O.: #WC	C081399		Date Analyz	ed 03/18/09-	-03/19	/09
Extractio	Gasoline	e Range	(C6-C12) V	olatile Hydrocarbo	ons as Gaso	line with MTI	BE and BTEX	in ppmv*	0002	2467
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1S	А	120,d1	ND<1.0	1.8	9.6	0.69	4.2	1	114
002A	MW-2S	А	130,d1	ND	1.1	5.6	0.43	2.6	1	116
003A	MW-5S	А	99,d1	ND<2.0	2.1	6.0	0.76	6.2	1	119
004A	MW-6S	А	61,d1	ND<3.0	1.3	1.7	0.38	4.0	1	98
005A	MW-7S	А	690,d1	ND<14	28	22	1.9	17	20	118
006A	MW-10S	А	220,d1	ND<10	8.9	7.7	1.4	10	2	102
007A	MW-11S	А	400,d1	ND<3.0	48	18	3.4	20	4	109
008A	MW-12S	А	98,d1	ND<5.0	7.6	4.2	0.53	2.5	2	96
009A	PRED	А	130,d1	ND	5.2	11	1.2	7.1	1	114
010A	AS	А	ND	ND	ND	0.085	ND	0.15	1	90
011A	STACK	А	ND	ND	ND	ND	ND	ND	1	94

ppm (mg/L) to p	pmv (ul/	L) conversion for	or TPH(g) assum	nes the molecula	ar weight of gas	oline to be equa	l to that of hexa	ne.	

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air		(QC Matrix	k: Water			Batch	ID: 42138		WorkC	Order: 09034	67
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 0903472-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	97.3	95.1	2.29	95.3	88.4	7.46	70 - 130	20	70 - 130	20
MTBE	ND	10	81.1	75.3	7.42	112	96.4	15.4	70 - 130	20	70 - 130	20
Benzene	ND	10	87.9	86.3	1.90	104	105	0.846	70 - 130	20	70 - 130	20
Toluene	ND	10	87.4	86.1	1.46	91	94.5	3.75	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	87.8	86.4	1.58	102	104	1.38	70 - 130	20	70 - 130	20
Xylenes	ND	30	100	98.5	1.59	98.3	102	3.97	70 - 130	20	70 - 130	20
%SS:	95	10	92	92	0	101	102	0.571	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			<u>BATCH 42138 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903467-001A	03/18/09 8:00 AM	03/19/09	03/19/09 7:24 PM	0903467-002A	03/18/09 8:10 AM	03/19/09	03/19/09 1:33 AM
0903467-003A	03/18/09 8:20 AM	03/19/09	03/19/09 9:06 PM	0903467-004A	03/18/09 8:30 AM	03/19/09	03/19/09 8:32 PM
0903467-005A	03/18/09 8:40 AM	03/19/09	03/19/09 2:07 AM	0903467-006A	03/18/09 8:50 AM	03/19/09	03/19/09 9:40 PM
0903467-007A	03/18/09 9:00 AM	03/19/09	03/19/09 11:54 AM	0903467-008A	03/18/09 9:10 AM	03/19/09	03/19/09 7:58 PM
0903467-009A	03/18/09 9:20 AM	03/19/09	03/19/09 10:13 PM	0903467-010A	03/18/09 9:30 AM	03/18/09	03/18/09 9:35 PM
0903467-011A	03/18/09 9:40 AM	03/18/09	03/18/09 9:01 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

McCampbell An "When Ouality"	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	03/18/09
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	03/18/09
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	03/24/09
	Client P.O.:		Date Completed:	03/24/09

WorkOrder: 0903474

March 24, 2009

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McC	MPREI	LANA	LV	TICA	LI	NC	4		-				Т				-	II.	IN		F/	TT	CT	OF	W	DF	CC	DT	>	
	1520.1		Dalla		IICA			-						1	TID	NA	D		ND	TI	ME	гч	-0		or	л. П	RE		RI	, г	
2272 12 12	1538 V	villow Pass	Road, P	ittsb	urg, C	A 94	1503	>	1323	2012		222		1	UN	14 14	in	50			TE		RU	SH	24	4 HR	<u>.</u>	48 H	R	72 1	IR 5
Telephone: (9)	25) 252-9262	2						Fax	: (9	25)	252	2-92	69	E	DF F	lequ	ired	1?	Y	es		0		PDF	Re	quir	ed?	M	es		0
Report To: Ric	cky Bradfor	d		Bill	To: AE	ICo	onsu	ultar	its		_			\vdash	_	_		A	naly	sis I	Requ	iest				_	+	Oth	er	-	Commen
Company: AE	a Consultan	ts, 2500 Ca	mino Di	ablo	, Waln	ut C	ree	k, C	A 9	459	17			ĥ				-													
F.O.# WC0815	99			F-M	ail: rhr	adfo	rda	Daeir	one	ulto	tne	com		10			-	HC													
Telephone: (92	5) 746-6000			Fax:	(925)	46-	609	9	0115	unta	uns.	com		0150			-20	LIS (W													
AEI Project N	o. 116907			Proj	ect Nar	ne:	Vic	's A	uto	mo	tive	•		0± 8			HEW	mber													
Project Locatio	on: 245 8th S	treet, Oakl	and, Cal	ifor	nia 946	07								/802	m1		604	ter A													ing
Sampler Signa	ture: 🕢	Moig	r											(60	8	1000			-												ead
		SAMP	LING	80	S		MA	TR	X	P	ME	THO	DD	Gas	2		ase H	se (1)													r R
	FIELD			iner	aine			-	Т	ť	RLL		TED	Has		0	Clie	2 C C													lize
SAMPLE ID	POINT			nta	Ont				0					& TP	2	0.50	8 10	5													lota
	NAME	Date	Time	fCo	be	ater	-		gp		E	ģ	ier.	X.8	1		otal	or IC													Lw
				#	Ty	Ň	Sol	Ail S		5			ð	BT		144	-	-													Flo
NF	INF	3-18-09	1015	3	3VOA	X					X	x		X															-	\top	
POST-AS	POST-AS	3-18-09	1045	3	3VOA	X				1	X	x		X																	
EFF	EFF	318.09	1100	3	3VOA	X				1	X Z	ĸ		X			X														
										T																					
									T	T	1			1																	
55					-					T		T																	-		
										T		T							1												
										t	1	1																	+	+	
									+	t		-				-	+	-	+	1			+	-		+			+	+	
									-	t		1	-									-				1			+	+	
							-		+	+		1										-		-	-	-	\vdash		-	+	
							-	-	+	+	+	+	-		-	-	+	+	+	-									+	+	
							-	+	+	+	+	+			-	-	+	+	+	-		-	-	-						+	
efinquished By:	}	Date:	Time:	Rec	cived By					-	2	1	1		-																
Am2	CRC	3-18-09	1610,	1	MI	11	10	2.	/	1	/		6	1		11	as	(-	20	0	Q					١	OAS	08	G	MET	ALS OT
telinquished By:	10	Date:	Time:	Rec	eived By		N	-	-	-				1 !	CE/ť	F	ND	TT	ON	J	1	P	RES	ER	VAT	ION_					
0	100 7 0														IEAI	SP	ACE	AF	SEN	T	~	. A	'ON'	FAI	NER	S	1		-		
				_		-	_		_	_	_	_	_				a con		PO MIL	*	-	100	VIII		(LARS		The second second second second second second second second second second second second second second second se				

P

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262		WorkOrder: 0903474 ClientCode: AEL							
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	II to:		Rec	quested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeico	nsultants.com		Denise Mocl	kel			
AEI Consultants	CC:				AEI Consulta	ants	_		
2500 Camino Diablo, Ste. #200	PO:				2500 Camin	o Diablo, Ste. #2	00 Dai	te Received:	03/18/2009
Walnut Creek, CA 94597	ProjectNo	: #116907; Vic's A	utomotive		Walnut Cree	ek, CA 94597	Dat	te Printed:	03/18/2009
(925) 283-6000 FAX (925) 944-2895					dmockel@a	eiconsultants.cor	n		

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			-													
0903474-001	INF	Water	3/18/2009 10:15		Α	А										
0903474-002	POST-AS	Water	3/18/2009 10:45		А											
0903474-003	EFF	Water	3/18/2009 11:00		А											

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	3/18/09 7:3	6:11 PM		
Project Name:	#116907; Vic's A	utomotive			Check	list completed and re	eviewed by:	Samantha Arbuckle		
WorkOrder N°:	0903474	Matrix <u>Water</u>			Carrier	:: <u>Client Drop-In</u>				
		<u>Ch</u>	ain of Cu	stody (C	OC) Informa	<u>tion</u>				
Chain of custody	present?		Yes	✓	No 🗆					
Chain of custody	signed when relinqui	shed and received	? Yes	✓	No 🗆					
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌					
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆					
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆					
Sampler's name r	noted on COC?		Yes	✓	No 🗆					
Sample Receipt Information										
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽			
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆					
Samples in prope	er containers/bottles?		Yes	✓	No 🗆					
Sample containe	rs intact?		Yes	\checkmark	No 🗆					
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌					
		Sample Pre	servatio	n and Ho	old Time (HT)	Information				
All samples recei	ved within holding time	e?	Yes	\checkmark	No 🗌					
Container/Temp E	Blank temperature		Coole	er Temp:	6.8°C		NA 🗆			
Water - VOA vial	s have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted			
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌					
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹			
Samples Receive	ed on Ice?		Yes	✓	No 🗆					
		(Ice	Гуре: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	ee comments belo	W.							

Client contacted:

Date contacted:

Contacted by:

Comments:

When Quality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants Client Project ID: Automotive					#116907; Vic's Date Sampled: 03/18/09							
2500	Camino Diablo, Ste. #2	200				Date R	eceived: 03/	18/09				
			Client Contact:	Ricky Brad	lford	Date E	xtracted: 03/2	20/09-03/21/	09			
Walnu	ıt Creek, CA 94597		Client P.O.:			Date A	nalyzed 03/2	20/09-03/21/	/09			
Extractio	Gas	soline Ra	nge (C6-C12) Volatile H	Iydrocarbo	ns as Gasolir w8021B/8015Br	ne with BTH	EX and MTBI	E * Work Ord	ler: 090	3474		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	INF	W	2000,d1		96	180	21	220	3.3	96		
002A	POST-AS	w	120,d1		2.4	4.8	0.81	6.9	1	97		
003A	EFF	W	ND		ND	ND	ND	ND	1	93		
Repo	rting Limit for $DF = 1$;	W	50	5	0.5	0.5	0.5	0.5	μ	g/L		
abo	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

"When Quality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water BatchID: 42142 WorkOrder: 0903474 W.O. Sample Matrix: Water EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: 0903489-001A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analyte µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH(btex)[£] 104 104 ND 60 118 11.8 101 2.86 70 - 130 20 70 - 130 20 MTBE ND 10 96.5 96.3 0.235 80.8 87.3 7.80 70 - 130 20 70 - 130 20 Benzene ND 10 97 95.8 1.21 96.2 94.2 2.12 70 - 130 20 70 - 130 20 Toluene ND 10 101 98.3 2.82 95.9 93.9 2.16 70 - 130 20 70 - 130 20 ND 10 102 99.6 2.64 100 98 2.07 70 - 130 20 70 - 130 20 Ethylbenzene **Xylenes** ND 30 116 113 2.30 111 109 2.22 70 - 130 20 70 - 130 20 0.793 20 70 - 130 20 %SS: 96 10 102 101 95 92 3.33 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 42142 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0903474-001A	03/18/09 10:15 AM	03/21/09	03/21/09 1:28 AM	0903474-002A	03/18/09 10:45 AM	03/20/09	03/20/09 10:28 PM
0903474-003A	03/18/09 11:00 AM	03/20/09	03/20/09 3:26 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

