

April 30, 2008

2500 Camino Diablo, Walnut Creek, CA 94597 tel 800-801-3224 fax 925-944-2895

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

RECEIVED

2:01 pm, Jun 10, 2008

Alameda County Environmental Health

Attn. Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Site Monitoring Report (First Quarter, 2008) 245 8th Street Oakland, California 94607 Project No. 116907 ACHCSA RO#0000202

Dear Mr. Wickham:

Enclosed is the recently completed Site Monitoring Report (First Quarter, 2008) prepared for the above-reference property.

As required, electronic copies have been uploaded to the State Water Resources Control Board's GeoTracker information system and the Alameda County Health Care Services Agency ftp site for review.

Should you have any questions or comments, or need any additional information, you may reach me or Peter McIntyre at (925) 944-2899.

Sincerely, AEI Consultants

Richard J. Bradford Project Engineer

RB/rb

Enclosure (1)

cc: Mr. Victor Lum, Vic's Automotive, 245 8th Street, Oakland, California 94607

April 30, 2008

QUATERLY SITE MONITORING REPORT (First Quarter, 2008)

245 8th Street Oakland, California

Project No. 116907 ACHCSA RO#00000202

Prepared For:

Vic's Automotive 245 8th Street Oakland, California 94607

Prepared By:

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, California 94597 (925) 944-2899

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION & BACKGROUND	1
3.0	GEOLOGY AND HYDROGEOLOGY	3
4.0	HVDPE TECHNOLOGY AND PROCESS DESCRIPTION	4
	Technology Overview System / Process Description	
5.0	SUMMARY OF MONITORING ACTIVITIES	6
5.2 5.3	Quarterly Groundwater MonitoringQuarterly Soil Gas Monitoring for Vapor Intrusion EvaluationHVDPE System Process Monitoring5.3.1Routine Monitoring and Data Collection5.3.2Influent/Effluent Vapor Monitoring5.3.3Influent/Effluent Water Monitoring5.3.4Soil Gas Composition & Vacuum Influence MonitoringHVDPE System Operations & Maintenance5.4.1Routine Maintenance5.4.3System Modifications	
6.0	SUMMARY OF RESULTS	11
6.2 6.3	Apparent LNAPL Thickness and Groundwater ElevationsGroundwater Sample Analytical Data.Soil Gas Concentrations for Vapor IntrusionHVDPE System Process Monitoring6.4.1 Influent/Effluent Vapor Concentrations.6.4.2 Influent/Effluent Water Concentrations6.4.3 Well Vapor and Water Flow Rates6.4.4 Mass Removal Rates.6.4.5 Soil Gas Concentrations and Vacuum Influence	
7.0	CONCLUSIONS & RECOMMENDATIONS	16
	REFERENCES	
9.0	REPORT LIMITATIONS AND SIGNATURES	

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 SYSTEM LAYOUT PLAN
- FIGURE 4 GROUNDWATER ELEVATION DATA (02/13/08)
- FIGURE 5 GROUNDWATER SAMPLE ANALYTICAL DATA (02/13/08)
- FIGURE 6 SOIL GAS SAMPLE ANALYTICAL DATA (02/14/08)
- FIGURE 7 EXTRACTION WELL INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 8 COMBINED TPH-G INFLUENT CONCENTRATIONS OVER TIME
- FIGURE 9 TPH-G MASS REMOVAL RATES OVER TIME
- FIGURE 10 CUMULATIVE MASS REMOVAL GRAPH

TABLES

- TABLE 1
 GROUNDWATER ELEVATION DATA
- TABLE 2
 GROUNDWATER FLOW SUMMARY
- TABLE 3
 GROUNDWATER SAMPLE ANALYTICAL DATA
- TABLE 4
 SOIL GAS SAMPLE ANALYTICAL DATA
- TABLE 5HVDPE VAPOR ANALYTICAL DATA: TPH-G & MBTEX
- TABLE 6HVDPE VAPOR FIELD DATA: TVH, CH4, O2, CO2
- TABLE 7
 GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA
- TABLE 8SOIL GAS FIELD DATA: TVH, CH4, O2, CO2
- TABLE 9Wellhead Vacuum & Drop Tube Depth Data Summary
- TABLE 10
 HVDPE Performance & Mass Removal Data Summary
- TABLE 11
 Thermal/Catalytic Oxidizer Performance & Mass Removal Data Summary
- TABLE 12
 Air Stripper Performance & Mass Removal Data Summary
- TABLE 13
 ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY
- TABLE 14
 HVDPE Process Monitoring Schedule

APPENDICES

- APPENDIX A MONITORING WELL FIELD SAMPLING FORMS
- APPENDIX B SOIL GAS FIELD SAMPLING FORMS
- APPENDIX C LABORATORY ANALYTICAL REPORTS

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Mr. Victor Lum, owner and operator of Vic's Auto automotive repair and fuel service station located at 245 8th Street in the City of Oakland, Alameda County, California (Figure 1). AEI has been retained by Mr. Lum to provide environmental engineering and consulting services related to the release of gasoline fuel hydrocarbons from the former underground storage tank (UST) and dispensing system on the property. The ongoing investigation and mitigation of the release is being performed under the direction of the Alameda County Health Care Services Agency (ACHCSA). This report has been prepared to document the field activities and results of groundwater and soil gas monitoring for the First Quarter, 2008 as well as the high vacuum dual phase extraction (HVDPE) system processing monitoring and operations and maintenance (O&M) activities for the months of January, February, and March of 2008.

The HVDPE system was installed and started up in June of 2007. The main purposes for installing and operating a HVDPE system onsite as interim corrective action include:

- Hydrocarbon mass removal by performing continuous HVDPE using existing monitoring/extraction wells for the removal, recovery, and treatment of light non-aqueous phase liquid (LNAPL), soil gas, and groundwater from the vadose zone, capillary fringe, and shallow saturated zone in accordance with state and local air and water quality permit requirements.
- Performing continuous HVDPE at the source and along the southwestern property boundary to the mitigate the potential for vapor intrusion into nearby residences situated above and in close proximity to the LNAPL and groundwater plumes by maintaining a low negative pressure (i.e., high vacuum) in the subsurface relative to the building foundations.

2.0 SITE DESCRIPTION & BACKGROUND

The subject property (hereafter referred to as the "site" or "property") is located in a mixed commercial and residential area of Oakland. The site is a lot on the south corner of Alice Street and 8th Street, and is currently developed with a gasoline service station and automotive repair facility (Figure 2). The property covers approximately 9,375 square feet and is improved with an approximately 1,200 square foot building located centrally on the property with two bays used for automotive repair, two restrooms, and a cashier's office. The current UST hold and the dispenser island are located to the north of the building, along 8th Street. The former UST hold was located to the south of the building, along Alice Street. The remainder of the property is paved with asphalt and used for parking and staging vehicles for repairs.

• Between June of 1993 and August of 1994, AEI removed seven (7) underground storage tanks (USTs) from the property. The tanks consisted of four (4) 1,000-gallon gasoline tanks located in the sidewalk along Alice Street, two (2) 6,000-gallon gasoline tanks and one (1) 250-gallon waste oil tank. Impacted soil was removed from beneath the former tank area. Groundwater was encountered beneath the former 6,000-gallon tanks. Light non-aqueous

phase liquid (LNAPL) was observed on the water table beneath the southern tank. The excavated soil was transported to an appropriate disposal facility and the excavation was backfilled with clean fill material. A new tank system was installed just west of the dispenser island.

- In July of 1995, two (2) groundwater monitoring wells (MW-1 and MW-2) were installed onsite. Total petroleum hydrocarbons as gasoline (TPH-g) and benzene were detected in MW-2 at concentrations up to 210,000 μ g/L and 720 μ g/L, respectively during the first two monitoring episodes. Light non-aqueous phase liquid (LNAPL) or free phase gasoline was discovered in MW-1. The apparent LNAPL thickness in MW-1 ranged from 1.20 to 4.39 feet between December 1995 and March 1996.
- In August of 1996, AEI advanced three (3) soil borings (i.e., SB-1 through SB-3) onsite. TPH-g and benzene were detected in the groundwater samples from these borings at concentrations ranging from 120,000 to 140,000 μ g/L, and from 12,000 to 19,000 μ g/L, respectively. Methyl tertiary-butyl ether (MTBE) was also detected in all three samples at concentrations up to 27,000 μ g/L. Although free phase product was not observed in the field, qualitative laboratory observations indicated an immiscible sheen was present in the samples.
- Manual bailing and pumping of LNAPL from MW-1 and monitoring of MW-2 occurred intermittently from 1997 to 1998.
- In May of 2001, two (2) additional groundwater monitoring wells (MW-3 and MW-4) were installed onsite. In June of 2001, a free product recovery system was installed in MW-1. The free product recovery system removed several hundred gallons of LNAPL between 2001 and 2003.
- In April of 2003, AEI advanced twelve (12) additional soil borings (SB-4 to SB-15) onsite and offsite for the collection of soil, shallow groundwater, and soil vapor samples to further characterize the magnitude and lateral extent of the release.
- In January of 2005, AEI installed six (6) additional monitoring/extraction wells (i.e., MW-5, MW-6, MW-7, MW-10, MW-11, and MW-12) onsite and offsite. Wells MW-5, MW-6 and MW-7 were installed onsite and wells MW-10 to MW-12 were installed offsite at the 708 Alice Street property. Wells MW-8 and MW-9 were proposed for installation in the parking lane along 7th and Alice Streets; however, due to difficult insurance wording requirements imposed by the City of Oakland, these wells were not installed until March of 2008.
- From July 11 to July 27, 2005, a 16-day HVDPE pilot test was performed on wells MW-1, MW-2, MW-5, MW-6, and MW-7. Combined vapor influent flow rates ranged from approximately 170 to 190 standard cubic feet per minute (scfm) under a sustained vacuum of 16 to 17 inches of mercury (in-Hg). The average water flow rate was approximately 4.1 gallons per minute (gpm). A total of 80,740 gallons of groundwater was recovered, treated, and discharged to the sanitary sewer under a short-term, limited volume groundwater

discharge permit from the East Bay Municipal Utilities District (EBMUD). Significant drawdown and pressure (i.e., vacuum) response was observed in the vadose and saturated zone monitoring points. Approximately 5 pounds per day (lbs/day) of dissolved phase and 697 lbs/day of vapor phase hydrocarbons were recovered during the test. A total of 10,719 pounds or 1,716 gallons of gasoline was removed during this test. Based on the encouraging results of this pilot test, AEI recommended interim corrective action using HVDPE for 12 to 18 months using fixed equipment. Please refer to AEI's "HVDPE Event Report", dated December 14, 2005, for more information.

- In March of 2006, the ACHSA concurred with the implementation of HVDPE using fixed equipment and requested a system design, operations and maintenance, and monitoring plan. In this letter, the ACHSA also requested soil vapor sampling to evaluate the potential for vapor intrusion due to the elevated concentrations of fuel hydrocarbons detected in the soil and groundwater onsite and offsite.
- In May of 2006, a HVDPE system design, operations and maintenance, and monitoring plan and a separate soil gas investigation work plan were submitted to ACHSA for review and comment. Please refer to AEI's "High Vacuum Dual Phase Extraction System Design, Operations, and Maintenance Plan," dated May 24, 2006 and "Soil Gas Investigation Work Plan", dated May 12, 2006, for more information.
- In November of 2006, trenching and installation of the conveyance piping for HVDPE system was conducted. The system completion and delivery was scheduled for 1st Quarter 2007; however, the system was delivered in April 2007. The remaining infrastructure, such as the rotary phase converter, equipment, fence, and wellhead connections were installed in May of 2007 and the system was startup up on June 26, 2007.
- On June 11, 2007, two (2) 55-gallon drums, or approximately 100 gallons of water containing about 50% LNAPL, was removed from MW-1 and MW-6 by operating the HVDPE system in product skimming mode.
- In November of 2007, additional conveyance piping was installed from locations stubbed up near in the alley way behind to building to the rear of the property and the system was expanded to include monitoring/extraction wells MW-10, MW-11, and MW-12.
- In March of 2008, wells (MW-8, MW-9 and MW-13) were finally installed. The results will be incorporated into to the next quarterly Site Monitoring Report.

3.0 GEOLOGY AND HYDROGEOLOGY

The elevation of the site is approximately 27 to 29 feet above mean sea level (amsl). The site is flat; however, the topography of the area slopes gently to the southwest. The site is located between Lake Merritt and the Oakland Inner Harbor channel, approximately one-half mile from each. The near surface sediments are mapped as Holocene and Pleistocene Merritt Sand (Qms), which are further described as "fine-grained, well-sorted, well-drained, Aeolian sand deposits"

(Helley and Graymer, 1997 and Graymer, 2000). Depth to the Franciscan Formation basement underlying the unconsolidated deposits is approximately 400 feet (Norfleet Consultants, 1998).

Based on the logs of soil borings advanced on and offsite, the native soils generally consist of fine to medium grained sands with silt and clay present to at least 28 feet bgs, the deepest explored at the site. Typically, silty and clayey fine grained sand have been encountered to depths of 15 to 18 feet bgs. This is underlain by poorly graded, clean to slightly clayey and silty fine to medium sand. Both sand bodies represent a single hydro-geologic system. Sediments have been relatively uniform throughout the investigation area.

Groundwater depths have typically ranged from 13 to 17 feet bgs, corresponding to elevation of approximately 10 to 14 feet above mean sea level (msl). Annual groundwater levels fluctuate by approximately 3 to 4 feet. Groundwater has consistently flowed to the south, southeast, or southwest with a hydraulic gradient of approximately 10^-3 ft/ft. Recent water levels have been affected by the groundwater extraction activities.

4.0 HVDPE TECHNOLOGY AND PROCESS DESCRIPTION

4.1 Technology Overview

HVDPE is a proven and effective technology for a wide range of soil types and subsurface conditions. HVDPE is often also referred to as dual phase extraction (DPE), multi-phase extraction (MPE), two-phase extraction (TPE), and sometimes Bioslurping. HVDPE involved from adaptation of vacuum-enhanced groundwater recovery (VER) frequently used in the construction industry for the dewatering and remediation of contaminated soils. There are several variations of this technology, but a great majority of HVDPE systems use a water-sealed liquid-ring vacuum pump to simultaneously extract and recover LNAPL, groundwater, and soil gas through a single 1-inch adjustable drop tube (also called a "stinger") sealed within a 2 to 4-inch diameter extraction well. The application of high vacuum enhances soil vapor extraction (SVE) by lowering the water table and creating dewatered zones and exposing previously saturated soils to airflow. The airflow through the subsurface supplies oxygen needed to enhance in-situ aerobic biodegradation of fuel hydrocarbons, which is analogous to bioventing technology.

4.2 System / Process Description

Light non-aqueous phase liquid (LNAPL), soil gas and groundwater are simultaneously extracted through a single 1-inch drop tube currently installed in eight (8) monitoring/extracting wells (MW-1, MW-2, MW-5 to MW-7, and MW-10 to MW-12) using two (2) 15 horsepower water-sealed liquid ring pumps piped in parallel. These pumps can generate flows up to 140 cubic feet per minute (cfm) each (i.e., 280 cfm combined capacity) and high vacuums of up to 28 in-Hg, but normally operate in the range of 18 to 22 in-Hg. The monitoring wellheads were modified for dual phase extraction by installing a 1-inch PVC ambient bleed air valve, two-hole cast iron wellhead pump seal, stinger and casing vacuum gauges, and 1-inch clear, flexible PVC stinger. The manifold and conveyance piping leading up to the manifold was constructed out of schedule 80 PVC. Recovered LNAPL, soil gas, and groundwater are separated by a knock-out tank. LNAPL

and other gasoline fuel hydrocarbons dissolved in the groundwater are volatilized under high vacuum (i.e., >20 in-Hg) and an oil-water separator not used. A progressive cavity pump transfers the groundwater from the knock-out tank to the top of the low-profile 4-tray air stripper. Groundwater trickles down through small holes in the air stripper trays, where nearly 99% of the remaining volatile fuel hydrocarbons are stripped from the groundwater. Groundwater is pumped from the air stripper reservoir to a 1,000-pound activated carbon absorber, where its further treated and polished prior to discharge to the onsite sanitary sewer lateral under a wastewater discharge permit from the East Bay Municipal Utilities District (EBMUD). The soil gas and off-gas from the air stripper is sent to a thermal/catalytic oxidizer operating in catalytic mode for direct thermal destruction. The catalytic oxidizer operates at 700 °F with a minimum destruction efficiency of 99% as required by permit. The treated off-gas is discharge through a stack located 15 feet above grade under a Bay Area Air Quality Management District (BAAQMD) air quality permit.

A Dwyer[®] Instruments (Model No. DS-300) averaging pitot tube combined with a dual-scale Magnehelic[®] differential pressure gauge is used to measure the well velocity and total velocity. The well velocity and total velocity are multiplied by the cross sectional area of the pipe (i.e., 0.0491 ft² for a 3-inch pipe) to obtain the actual flow rate. The difference between the well flow rate and total flow rate is the air stripper flow rate. All flow rates are corrected to standard temperature and pressure (i.e., 70°F and 1 atm or 29.92 in-Hg) using formulas provided by Dwyer[®]. The groundwater recovery volume is measured with a Neptune (Model T-10) cold water flow totalizer and recorded along with the equipment hour meter reading during each O&M visit. The flow totalizer and hour meter readings are used to estimate the average daily flow rate between sampling dates.

The field point names for the vapor influent sample ports for the individual extraction wells, which are the well identification following by an "S" are: MW-1S, MW-2S, MW-5S, MW-6S, MW-7S, MW-10S, MW-11S, and MW-12S. These sample ports are labeled and located along a common SCH80 PVC manifold inside the fenced equipment enclosure. Control valves are installed on each line to regulate the vacuum and flow. Clear sections of pipe are also installed on each line to observe the flow patterns and process streams.

The field point names for the vapor influent samples ports before dilution air, after dilution air, and from the air stripper and the stack gas effluent sample port are: PRED, POST, AS, and STACK.

The field point names for the water influent sample ports for the combined influent, after the air stripper, after the first carbon absorber, and after the last carbon absorber at the effluent: INF, POST-AS, POST-C1, and EFF.

The four (4) nested soil gas probes used for collecting soil gas samples and vacuum measurements for monitoring subsurface are as follows: SG-1-5', SG-10', SG-2-5', SG-2-10', SG-3-5', SG-3-10', to SG-4-5' and SG-1-10'.

The location of the sample ports for the extraction wells are shown on Figure 3. The soil gas probe locations are shown on Figure 2.

5.0 SUMMARY OF MONITORING ACTIVITIES

5.1 Quarterly Groundwater Monitoring

The HVDPE system was shutdown on February 11, 2008, two days prior to groundwater monitoring event. On February 13, 2008, the water levels were measured and groundwater samples were collected from monitoring wells MW-1 through MW-7 and MW-10 through MW-12. The well locations are shown in Figure 2.

The well caps and stingers, where applicable, were removed and depths from the top of the well casings were measured with an electronic water level indicator prior to sampling. An oil-water interface meter was used to measure thickness of LNAPL in MW-1, MW-2, MW-6, MW-7, MW-10, MW-11, and MW-12. Wells with no measurable free product were purged of at least three well volumes of water with a submersible purge pump and sampled using disposable polyethylene bailers.

Temperature, turbidity, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured while purging the wells and the turbidity was visually noted. Once temperature, pH, specific conductivity stabilized after three consecutive readings, and following the recovery of water levels to at least 90% of the static level, a water sample was collected.

The groundwater samples were collected with disposable PVC bailers into 40-millileter (mL) volatile organic analysis (VOA) vials and capped so that no head space or air bubbles were present within the sample containers. Samples were preserved on ice and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644).

The ten (10) groundwater samples were submitted for chemical analysis for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B. As requested, monitoring well MW-6 was tested for halogenated volatile organic compounds (HVOCs) by the EPA Method 8260B (i.e., 8010 Basic Target List).

5.2 Quarterly Soil Gas Monitoring for Vapor Intrusion Evaluation

Soil gas sampling for vapor intrusion evaluation, including purging, leak testing, sampling, and sample analyses was performed in accordance with the most current "Advisory – Active Soil Gas Investigations" (ASGI), dated January 28, 2003.

On February 14, 2008, soil gas samples were collected from four (4) nested gas probes GP-1 through GP-4 at two depths of approximately 5 and 10 feet bgs. However, due to excessive soil moisture conditions, soil gas sample collection from GP-4-10' was not possible during this event. The soil gas probe locations are shown on Figure 2.

Prior to sampling, the soil gas probes were purged of three (3) volumes of dead air using a 30 to 60 milliliter (ml) plastic syringe connected to the purging/sampling manifold using a 3-way stopcock valve and small section of 3/16-inch diameter silicone tubing. Low to no-flow conditions were immediately detected in GP-4-10' using the syringe purging method. Purging prior to sampling helped to ensure that a sufficient volume of ambient air was removed from the sampling point and that samples collected were representative of subsurface conditions. The purge volume was calculated by summing the volume of the sample tubing and annular space around the probe tip. One purge volume for the 5 and 10-foot probes are 16.1 and 27.6 milliliters (mL), respectively. Three default purge volumes for the 5 and 10-foot probes are 48.3 and 82.8 mL, respectively.

After the probes were adequately purged, soil gas samples were collected into 1-Liter laboratoryevacuated Summa canisters and labeled with unique identification. The purging and sampling manifold, supplied by McCampbell Analytical, Inc., was equipped with a critical orifice flow regulator and down-hole pressure (i.e., vacuum) gauge. The critical orifice device was designed maintain a sampling flow rate of between approximately 100 to 200 milliliters per minute (mL/min) as recommended by the ASGI. However, please note that the actual flow rate varies depending upon the down-hole pressure (i.e., vacuum). The soil gas sampling manifold was placed inline between the soil gas probe and Summa[™] canister and used for both purging and sample collection. A new laboratory-certified clean sampling manifold was used at each sampling point. A field duplicate was not collected and a trip blank was not used during this sampling event. The presence of free moisture or water was encountered in GP-2-10', but sample collection was still possible.

The sampling manifolds and all valves and connections downstream of the Summa canisters were leak tested and confirmed to hold a vacuum for at least 5-minutes. Places where ambient air could enter the sampling train, including all Swagelok valves and connections and the permanent bentonite seals around the soil gas probes, were also leak checked with a tracer compound. A 12-inch plastic leak test dome was placed over the sampling probe at the surface. A rag moistened with isopropyl alcohol (i.e., 2-propanol) was placed under the dome as a tracer compound. Cotton strips moistened with isopropyl alcohol were also placed around the Swagelok[®] valves and fittings. To avoid possible cross contamination, the isopropyl alcohol leak check compound was stored separately from other sampling tools in a zipper locking bag. This tracer compound is not know or suspected to be present in gasoline or anywhere in the subsurface onsite.

A total of seven (7) soil gas samples were collected and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS No. 1644) on the day of collection. The soil gas samples were analyzed for TPH-g by modified EPA Method TO-3 and for select volatile organic compounds (VOCs), including BTEX, MTBE, and tetrachloroethene (PCE) by modified EPA Method TO-15 along with the 2-propanol leak check compound. The detection limit for 2-propanol was at least 10 μ g/L (i.e., 10,000 μ g/m³). Laboratory procedures included appropriate quality assurance and quality control protocols, including method blanks and use of surrogates during sample analyses.

5.3 HVDPE System Process Monitoring

5.3.1 Routine Monitoring and Data Collection

An AEI project engineer monitored the system using remote monitoring system via email daily from the office. The system was also monitored and checked by a senior field technician weekly to biweekly and as needed to respond to system shutdowns. A Daily Field Report and/or O&M Field Log were filled out during each site visit. Routine O&M visits ranged from approximately 2 to 4 hours per visit, depending upon the activities performed.

The following data was recorded on the Daily Field Report and/or O&M Field Log during each site visit:

- <u>HVDPE System</u>: current hour meter reading, PG&E meter reading (kilowatt-hours), system runtime (hours), system inlet vacuum (in-Hg), vacuum at the inlets of both liquid ring pumps (in-Hg), well velocity (fpm) and calculated well flow rate (cfm) by multiplying the well velocity by the cross-sectional area (ft^2) of a 3-inch pipe, control valve initial and final positioning (% open), and cooling fan(s) status (on/off).
- <u>HVDPE Wells:</u> the stinger vacuum (in-Hg), casing vacuum (in-Hg), and drop tube depth (ft toc) data were collected monthly or as needed.
- <u>Thermal/Catalytic Oxidizer</u>: propane level (%), preheat controller temperature (F), exhaust controller temperature (F), total velocity (fpm) and calculated total flow rate (cfm) by multiplying the total velocity and by the cross-sectional area (ft^2) of a 3-inch pipe.
- <u>Air Stripper</u>: variable frequency drive setting (Hz), outlet velocity (fpm) and calculate outlet flow rate (cfm) by subtracting the well flow rate from the total flow rate, air stripper tray backpressure (in-H2O), control valve positioning (% open).
- <u>Activated Carbon Absorbers</u>: inlet pressure (psig), outlet pressure (psig), flow totalizer reading (gallons), and whether or not the bag filter was change and/or carbon absorber backwashed.

5.3.2 Influent/Effluent Vapor Monitoring

Influent and effluent vapor samples were collected on January 22, 2008 and on March 18, 2008. No vapor samples were collected in February of 2008, because the system was shutdown for about 1 month to evaluate LNAPL recovery in MW-1, MW-6, and MW-7.

The extraction well and other process sample ports were continuously purged and sampled with a 1/16 horsepower (0.5 cfm) vacuum pump, a peristaltic pump, or an equivalent pump, capable of vacuums up to 25 in-Hg, using the "side-stream" purging and sampling method as described in

Downey, et al., 2004 and Hinchee, et al., 1996. A 2-liter water separator device was used to collect vapor samples from the dual-phase air-water influent process stream.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Eagle multigas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded and a vapor sample was collected into 1-liter tedlar bag using the same sampling tee.

The tedlar bags were stored in a cardboard box and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (DHS Certification No. 1644) on the day of collection. The samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

5.3.3 Influent/Effluent Water Monitoring

Influent and effluent water samples were collected on January 8, 2008 and March 18, 2008. No water samples were collected in February of 2008, because the system was shutdown to evaluate LNAPL recovery in MW-1, MW-6, and MW-7.

The process water sample ports were purge of approximately 1-Liter of water prior to sample collection. Water was collected into three (3) 40-millileter (mL) volatile organic analysis (VOA) vials, or as required by the analysis, and capped so that no head space or air bubbles were present within the sample containers.

A total of three (3) water samples were collected and transported in a pre-chilled cooler on a mixture of water and ice under proper chain of custody protocol to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification No. 1644) on the day of collection. The samples were analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.

Additionally, as required by EBMUD semi-annually, an effluent sample (i.e., Sample ID "EFF") was collected and analyzed for Total Oil and Grease Hydrocarbon by EPA Method 1664 HEM-SGT with silica gel cleanup. Based on the results of the water sample data collected since startup, testing for metals was discontinued by EBMUD wastewater control representative in an email dated January 31, 2008.

5.3.4 Soil Gas Composition & Vacuum Influence Monitoring

The soil gas probes were screened in the field for TVH, CH4, O2, and CO2 and vacuum influence was measured on March 28, 2008.

The vacuum influence was measured with a set of Magnehelic differential pressure gauges and recorded first. A 3/16-inch inside diameter clear vinyl or equivalent tubing was used to connect the Magnehelic[®] gage to the plug valve and soil gas probe. The following pressure ranges in inches of water were normally available: 0-0.2", 0-1", 0-5", 0-10", 0-20", 0-50", 0-100", and 0-150".

Then the soil gas probes were purged and sampled with a 1/16 horsepower (0.5 cfm) vacuum sampling pump, a peristaltic pump, or equivalent pump, capable of vacuums up to 25 in-Hg, using the "side-stream" purging and sampling method as described in Downey, et al., 2004 and Hinchee, et al., 1996.

TVH, CH4, O2, and CO2 concentrations were continuously monitored with an RKI Eagle multigas detector using a sampling tee placed several feet downstream of the pump outlet. The hydrocarbon detector, which is a catalytic bead sensor, was calibrated with a 40% LEL (i.e., 4,400 ppmv) hexane gas standard. The methane, oxygen, and carbon dioxide detectors were also calibrated with the appropriate gas standards. Once the readings stabilized, they were recorded. Vapor samples were not collected into 1-liter tedlar bags for laboratory analysis.

5.4 HVDPE System Operations & Maintenance

5.4.1 Routine Maintenance

Routine maintenance performed during this quarter included:

- Performed visual inspections of all major system components, including checking for signs of leaks, physical wear, and/or damage.
- Changed dirty separator filters on both liquid ring pumps at approximately 750,000 gallons of groundwater processed through the system. These filters will be changed quarterly or as needed based on the quality of the influent process water.
- Checked the main blower, dilution air, and air stripper blower inlet filters. No air filters required changing or were changed this quarter.
- On January 31, 2008, cleaned dirty air stripper trays fouled and clogged with iron and sulfur bacteria biomass. The air stripper trays will be cleaned approximately every 6 months or as needed based on the backpressure on the air stripper trays.

• Checked the operation of the cooling fans on the rotary phase converter, the down-draft fan on the roof, and the adjustable fan on the side of the equipment enclosure. All fans were working properly.

5.4.2 Non-Routine Maintenance

Non-routine maintenance performed during this quarter included:

- The system shutdown twice in January because propane deliveries were missed on December 28, 2007 and January 18, 2008. The system was restarted after deliveries on January 1, 2008 and January 22, 2008.
- Because LNAPL had not been detected in the last two quarters and the system had been operating for about 6 months, a LNAPL rebound/recovery test was performed from February 19 to March 5, 2008. Dept to water and LNAPL thickness measurements were collected weekly for 3 weeks.

5.4.3 System Modifications

System modifications completed during this quarter included:

- On March 5, 2008, a catalyst module was installed to reduce auxiliary fuel consumption.
- On March 13, 2008, the BAAQMD was notified of the startup as required.
- On March 14, 2008, the oxidizer was started up in catalytic mode after a broken exhaust thermocouple was replaced.
- On March 18, 2008, influent and effluent vapor samples were collected as required by the BAAQMD. A compliance report, dated April 18, 2008, which included an estimation of the benzene emissions rate and the POC abatement efficiency, was submitted to the BAAQMD.

6.0 SUMMARY OF RESULTS

6.1 Apparent LNAPL Thickness and Groundwater Elevations

The following is a summary of the apparent LNAPL thickness and groundwater elevations for this monitoring episode:

• No measurable thickness of LNAPL was encountered in any of the monitoring wells; however, sheen was noted in the samples from wells MW-1, MW-6 and MW-11.

- Groundwater elevations for this monitoring event ranged from 15.50 (MW-11) to 17.28 (MW-6) feet above mean sea level (msl).
- The water levels have been influenced by the operation by HVDPE system.
- The historical normal groundwater flow direction is predominantly to the south.

The historic and current groundwater elevation data is summarized in Table 1 with the current data shown on Figure 5. A summary of the current and historic average groundwater elevations and flow directions are presented in Table 2.

6.2 Groundwater Sample Analytical Data

The following is a summary of the dissolved phase fuel hydrocarbon data for this monitoring episode:

- As requested, monitoring well MW-6 was tested for halogenated volatile organic compounds (HVOCs) by the EPA Method 8260B (i.e., 8010 Basic Target List); however, no HVOCs were detected at or above the laboratory reporting limit of 5.0 μg/L.
- The highest concentrations of TPH-g, BTEX, and MTBE were detected in MW-1, MW-6, MW-7, MW-11, and MW-12.
- The highest concentrations of MTBE were detected in MW-11 (4,200 µg/L) and MW-12 (3,000µg/L).
- Lower, but significant concentrations of TPH-g were detected in MW-2 (5,500 μg/L), MW-5 (8,200 μg/L), MW-7 (9,200 μg/L), and MW-10 (4,700 μg/L).
- Very low to almost none-detectable concentrations of TPH-g, BTEX, and MTBE were detected in MW-4
- TPH-g, BTEX, and MTBE were not detected in MW-3 at or above the laboratory reporting limits.
- Dissolved concentrations of fuel hydrocarbons in the groundwater have been reduced onsite and offsite by the HVDPE remediation system operating.

A summary of the current and historic groundwater analytical data is presented in Table 3 with current data shown on Figure 3. Refer to Appendix A for the monitoring well field sampling forms. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

6.3 Soil Gas Concentrations for Vapor Intrusion

The following is a summary of the soil gas concentrations for the evaluation of vapor intrusion potential for this monitoring episode:

- TPH-g was not detected at or above the laboratory reporting limit of 1,800 μ g/m³ in all samples analyzed.
- Benzene was not detected at or above the laboratory reporting limit of 6.5 μ g/m³ in all samples analyzed.
- PCE was or was not detected at or above the laboratory reporting limit of 14 μ g/m³ in all samples analyzed.

A summary of the historic and current soil gas sample analytical data for the evaluation of vapor intrusion potential is presented in Table 4 with current data shown on Figure 6. Refer to Appendix B for the soil gas field sampling forms. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

6.4 HVDPE System Process Monitoring

6.4.1 Influent/Effluent Vapor Concentrations

The following is a summary of the vapor influent/effluent concentrations of for this reporting period:

- The highest concentrations of TPH-g were detected in MW-2S (3,000 ppmv), MW-6S (1,900 ppmv), MW-7S (3,900 ppmv), MW-10S (4,700 ppmv), MW-11S (3,000 ppmv), MW-12S (1,100 ppmv), and AS (1,100 ppmv).
- Lower, but significant concentrations of TPH-g were detected in MW-1S (660 ppmv) and MW-5 (760 ppmv).
- The pre-dilution (PRED) influent concentrations of TPH-g ranged from 630 to 2,200 ppmv.
- The post-dilution (POSTD) influent concentrations of TPH-g ranged from 310 to 1,700 ppmv.
- TPH-g, BTEX, and MTBE were not detected in the STACK at or above the laboratory reporting limits.

A summary of the historic and current vapor influent/effluent sample analytical data is presented in Table 5. A summary of the historic and current TVH, CH4, O2, and CO2 field screening data

is presented in Table 6. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

6.4.2 Influent/Effluent Water Concentrations

The following is a summary of the water influent and effluent concentrations of TPH-g and benzene for this reporting period:

- The concentrations of TPH-g and benzene detected in the combined water influent (i.e., Sample ID "INF") ranged from 4,100 to 12,000 μ g/L and 150 to 260 μ g/L, respectively.
- The concentrations of TPH-g and benzene detected in the water effluent from the air stripper (i.e., Sample ID "POST-AS") ranged from 120 to 130 μ g/L and 0.85 to 2.5 μ g/L, respectively.
- The average air stripper removal efficiency during this quarter was approximately 98%
- TPH-g and BTEX were not detected in the effluent (i.e., Sample ID "EFF") at or above the laboratory reporting limits.
- MTBE, which has a high solubility and is difficult to adsorb, was detected in the effluent at concentrations ranging from 17 to 50 µg/L. MTBE is not regulated by EBMUD wastewater discharge permit.

A summary of the historic and current water influent/effluent sample analytical data is presented in Table 7. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

6.4.3 Well Vapor and Water Flow Rates

The total well influent vapor velocity ranged from approximately 1,100 to 1,500 feet per minute (fpm) and the total well influent flow rates ranged from 54 to 74 standard cubic feet per minute (scfm). Average groundwater extraction rates ranged from 260 to 752 gallons per day or 0.18 to 0.52 gallons per minute (gpm). Approximately 310,983 gallons of groundwater was recovered and treated between December 26, 2007 and March 28, 2008. A total of 760,073 gallons have been recovered and treated since startup in June of 2007.

A summary of the historic and current well vapor and water flow rates is presented in Table 10. The laboratory analytical report with chain of custody and quality assurance/quality control documentation is included in Appendix C.

6.4.4 Mass Removal Rates

Short-term and long-term vapor phase and dissolved phase mass removal rates were calculated using TPH-g concentrations based on lab data and the actual system runtime between sampling dates.

Vapor phase mass removal rates ranged from approximately 17 to 56 pounds per day, which is approximately equivalent to 3 to 8 gallons of gasoline per day. Approximately 1,887 pounds or 315 gallons of gasoline in the vapor phase was recovered and treated between December 26, 2007 and March 18, 2008. Approximately 16,500 pounds or 2,750 gallons of vapor phase gasoline have been removed since startup in June of 2007.

Dissolved phase mass removal rates ranged from approximately 0.0056 to 0.0060 pounds of gasoline per day. Approximately 0.21 pounds or 0.035 gallons of gasoline in the dissolved phase was recovered and treated between January 8, 2008 and April 1, 2008. Approximately 93 pounds or 16 gallons of dissolved phase gasoline has been removed since startup.

A summary of the historic and current vapor phase mass removal rates are presented in Tables 10 and 11 and shown on Figure 9. The dissolve phase mass removal rates are presented in Table 13. A cumulative vapor phase mass removal graph is shown on Figure 10.

6.4.5 Soil Gas Concentrations and Vacuum Influence

The following is a summary of the soil gas data collected on March 28, 2008:

- Soil gas samples could not be collected from GP-1-10', GP-2-5', and GP-2-10' because saturated soil conditions were encountered and water was present within the sample tubing during purging. Furthermore, the higher than normal down-hole pressure (i.e., purge vacuum) of greater than 150 inches of water in GP-3-10' and GP-4-10' also indicated wet to nearly saturated soil conditions. The normal purge vacuum for these probes is below 50 inches of water, which is not unusual for this quarter.
- No total volatile hydrocarbons (TVH) were detected in the soil gas probes at concentrations at or greater than 1 ppmv.
- The concentrations of oxygen and carbon dioxide detected in GP-1-5', GP-3-5', and GP-4-5' were 20.9 and 0.0%, 20.5 and 0.1%, and 20.0 and 0.4%, respectively. Nearly ambient concentrations of oxygen indicate the HVDPE is fully oxygenating the soil in the vadose zone, which can support and enhance aerobic biodegradation of hydrocarbons in the subsurface.
- Significant vacuum influence (i.e., greater than 0.1 inches of water Hinchee, R.E., et al., 1996 and others) was measured in GP-3-10' at approximately 1.0 inches of water and is likely due to its close proximity to extraction well MW-10.

A summary of the historic and current TVH, CH4, O2, and CO2 soil gas field screening data and vacuum influence measurements are presented in Table 8.

7.0 CONCLUSIONS & RECOMMENDATIONS

This report presents the findings of the First Quarter, 2008 Site Monitoring Report, which includes the results of groundwater and soil monitoring and HVDPE system operations and maintenance and process monitoring data. The results of this quarterly groundwater and soil gas monitoring episode are generally consistent with previous episodes. LNAPL has not been detected since HVPDE began operation in June of 2007, although elevated dissolved phase concentrations remain onsite and offsite. As requested in a technical letter, dated December 27, 2007, monitoring well MW-6 was tested for HVOCs by the EPA Method 8260B (i.e., 8010 Basic Target List); however, no HVOCs were detected at or above the laboratory reporting limit of $5.0 \mu g/L$.

The following activities and system modifications are planned for the next quarter:

- The Second Quarter, 2008 groundwater and soil gas monitoring event is scheduled for May of 2008. Soil gas samples will be collected if soils are sufficiently dry for sample collection. The recently installed monitoring wells MW-8, MW-9, and MW-13 will be samples for the first time. Groundwater samples collected from these wells will be analyzed for TPH-g by EPA Method 8015C and MBTEX by EPA Method 8021B.
- A discussion of the well installation and the results of first sampling event for wells MW-8, MW-9, and MW-13 will be discussed in the Second Quarter, 2008 Site Monitoring Report.
- Continue operation of the HVPDE system, including weekly system checks and monthly O&M and process monitoring, evaluate the system performance, and conduct air and water discharge compliance sampling and reporting as required by permit.
- Installation of the catalyst module will reduced the overall auxiliary fuel consumption over the next 6 to 12 months of operation and is currently a more cost-effective treatment option as compared with granular activated carbon adsorption.
- Focus on groundwater recovery from MW-10, MW-11, and MW-12, because the property owner may request that these wells are removed and properly abandoned if property development begins.
- Because the separator filters were extremely dirty and the separator reservoirs have never been cleaned, the separator reservoirs on both pumps will be drained and flushed with clean water during the next quarter.

8.0 REFERENCES

Department of Toxic Substances Control (DTSC) & Los Angeles Regional Water Quality Control Board, 2003. "Advisory – Active Soil Gas Investigations", issued January 28, 2003.

Downey, D., Miller, R.N., and Dragoo, T., 2004. "Procedures for Conducting Bioventing Pilot Tests and Long-Term Monitoring of Bioventing Systems", prepared for the United States Air Force Center for Environmental Excellence by Parsons, Inc, Denver, Colorado.

DTSC, 2004. "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air", Interim-Final, California Environmental Protection Agency, Sacramento, CA, issued December 15, 2004, revised February 7, 2005.

Graymer, R.W., 2000. "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California", U.S. Geologic Survey, Miscellaneous Field Studies MF2342, Online Version 1.0, includes 1 geologic map and 33 page pamphlet.

Helley, E.J. and Graymer, R.W., 1997. "Quaternary Geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: A Digital Database", U.S. Geological Survey, Open-File Report 97-97, includes 1 geologic map, 1 map explanation sheet, and 9 page discussion booklet.

Hinchee, R.E., et al., 1992. "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing", prepared for United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Miller, R.N., et al., 1995. "Test Plan and Technical Protocol for a Field Treatability Test for POL Free Product Recovery – Evaluating the Feasibility of Traditional and Bioslurping Technologies", prepared for the United States Air Force Center for Environmental Excellence by the Battelle, Columbus, Ohio.

Norfleet Consultants, 1998. "Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, California", prepared for the Friends of the San Francisco Estuary, P.O. Box 791, Oakland, California, and dated June 15, 1998.

Place, M.C., Coonfare, C.T., Chen, A., Hoeppel, R.E., and Rosansky, S.H., 2001. "Principles and Practices of Bioslurping", Battelle Press, Columbus, Ohio

United States Army Core of Engineers, 1999. Multi-Phase Extraction Engineer Manual", EM 1110-1-4010, Washington, DC.

9.0 REPORT LIMITATIONS AND SIGNATURES

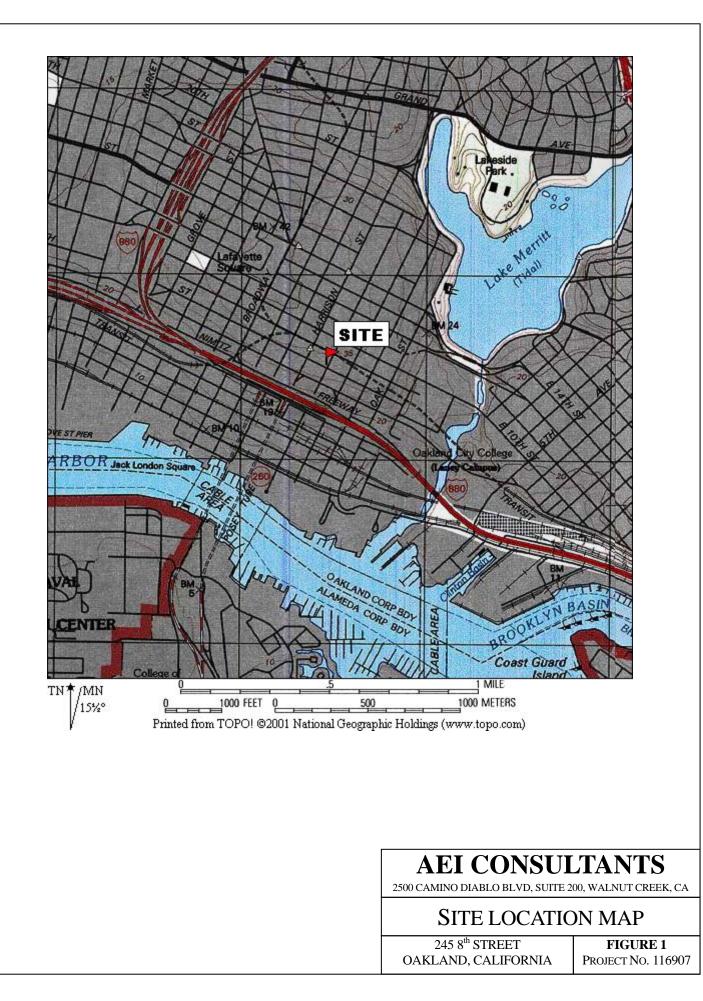
This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices in the environmental engineering and geology fields that existed at the time and location of the work.

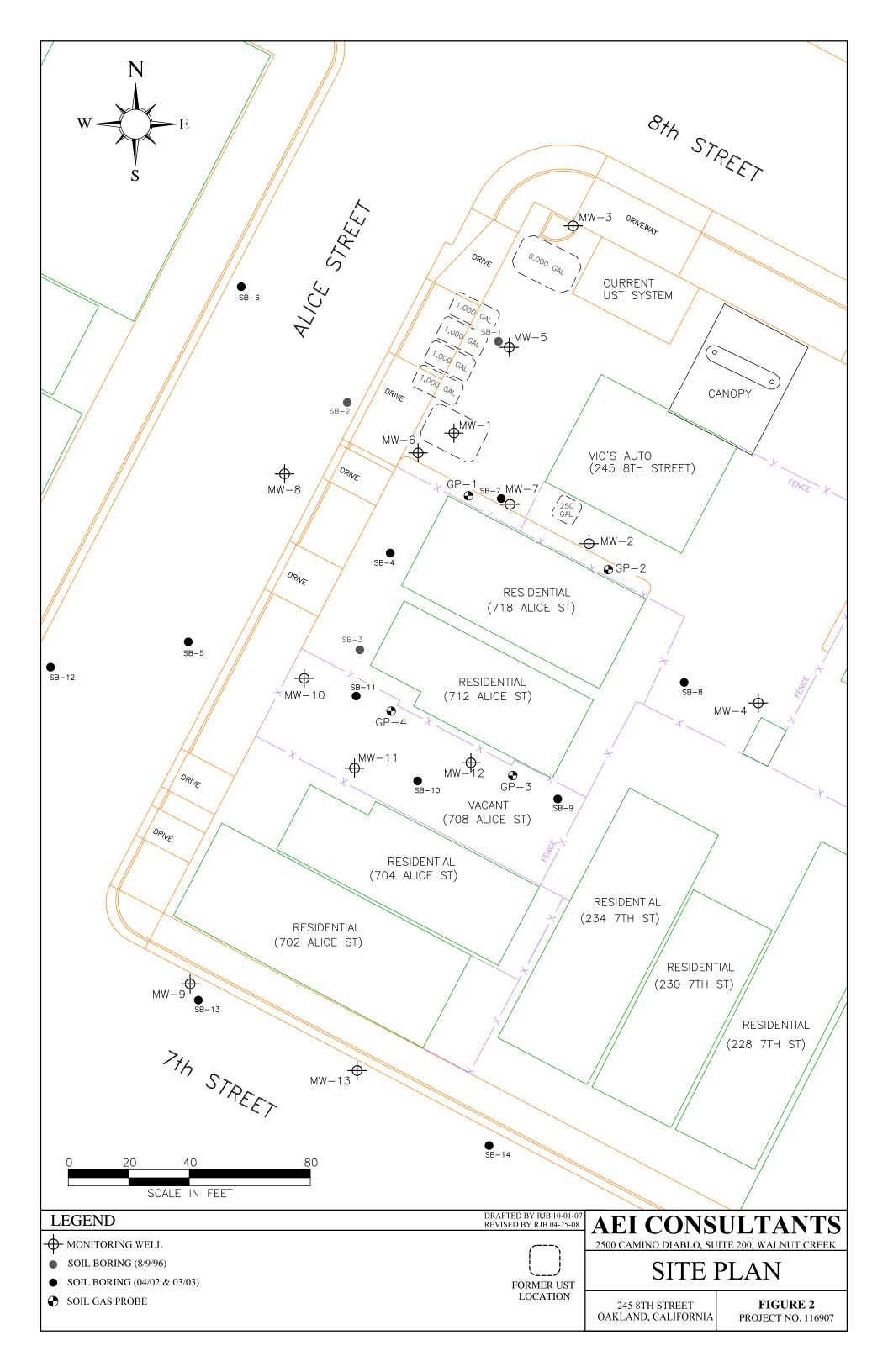
Should you have any questions or comments, or need any additional information, please contact Mr. Bradford or Mr. McIntyre at (925) 944-2899.

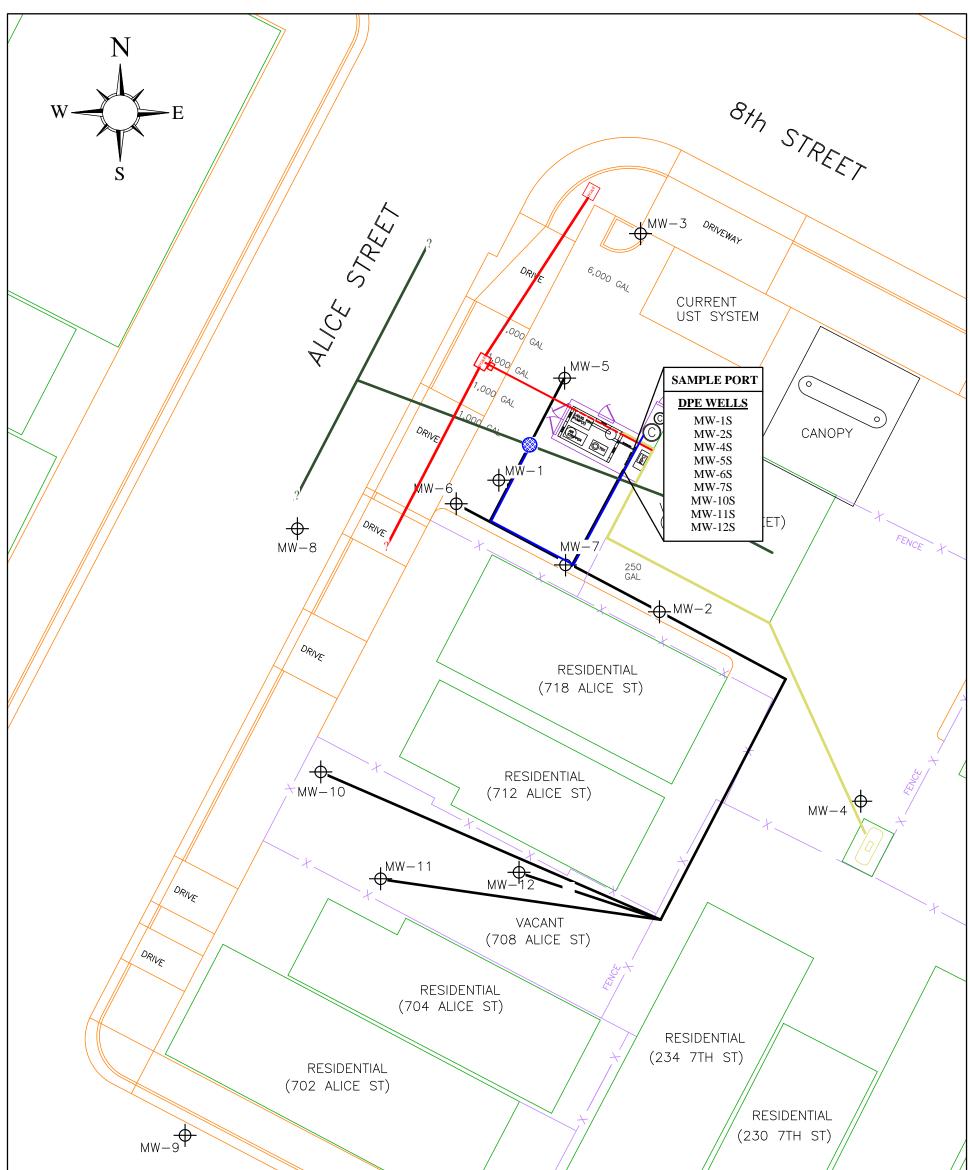
Sincerely, AEI Consultants

Richard J. Bradford GF Project Engineer PETER J. MCINTYRE RE Exp. S eter J. McIntyre No. 7702 PG Senior Project Manager

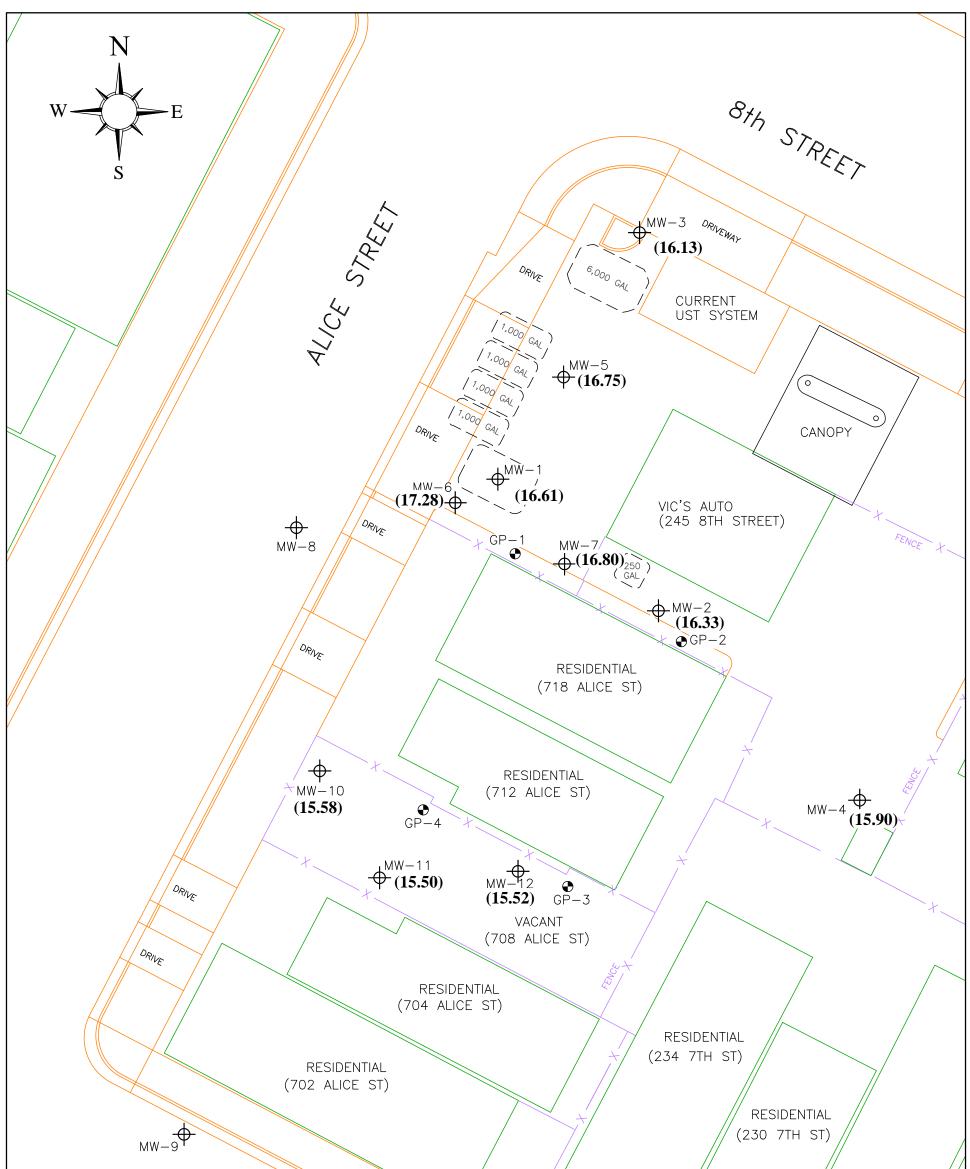
Russell Bartlett Staff Scientist

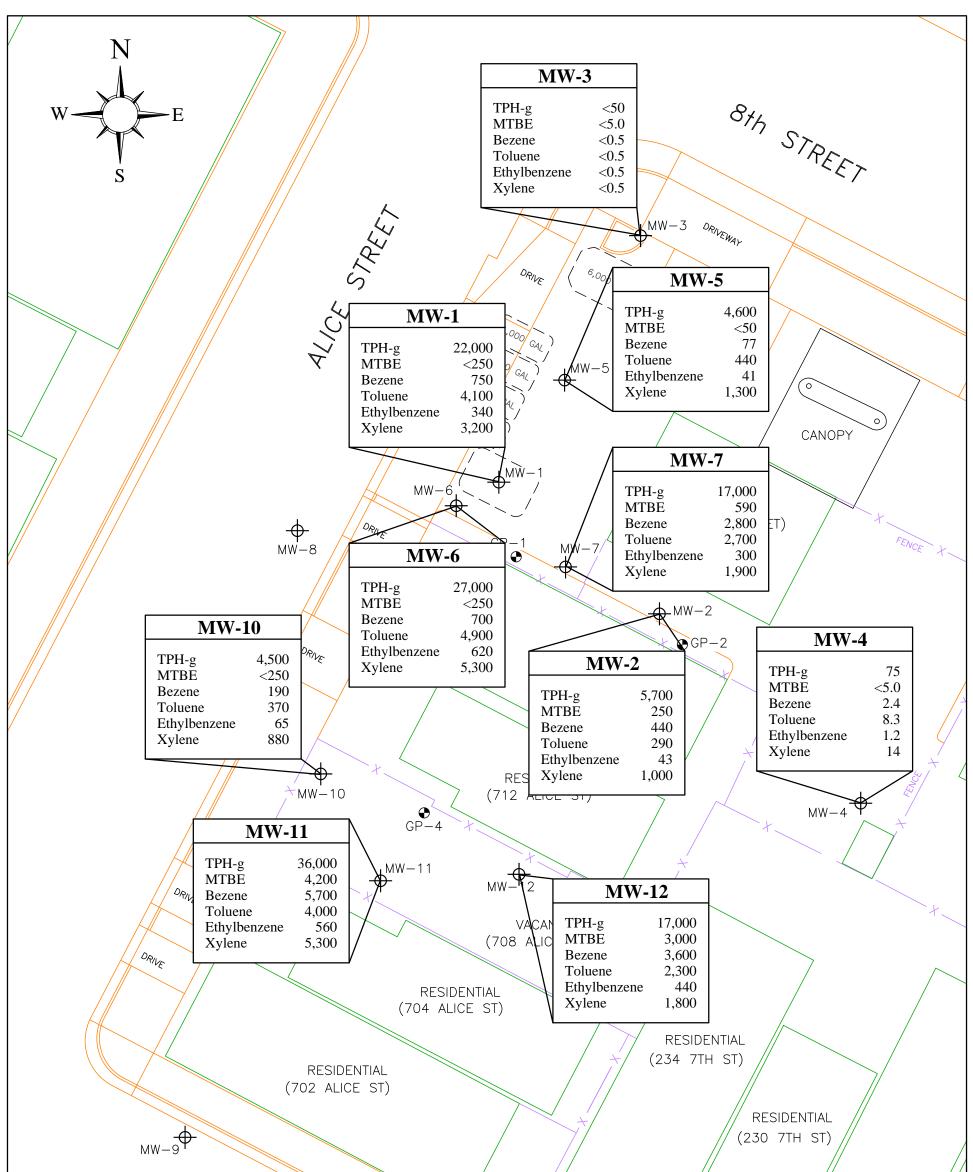

Distribution List:

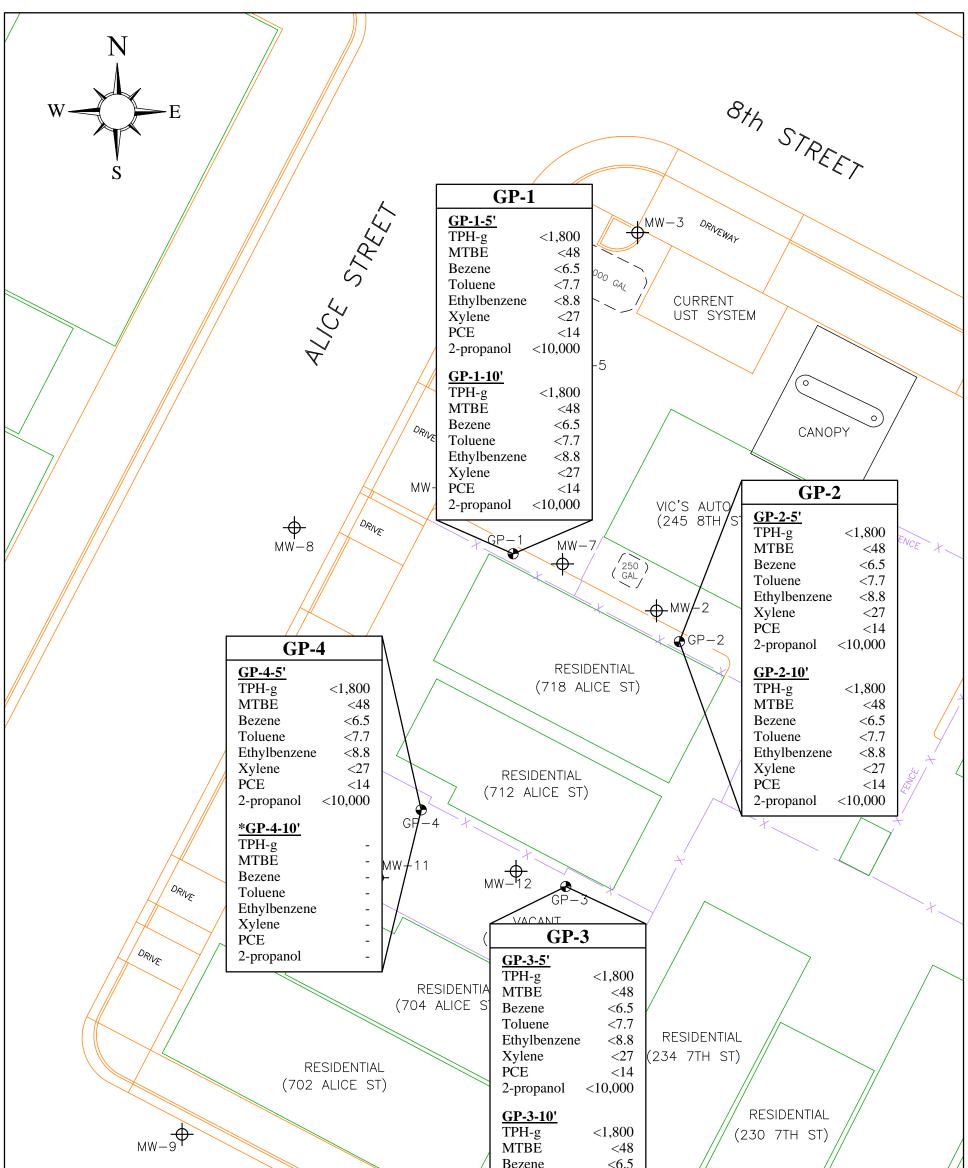

Mr. Victor Lum (2 copies) Vic's Automotive 245 8th Street Oakland, California 94607


Attn. Mr. Jerry Wickham (electronic) Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

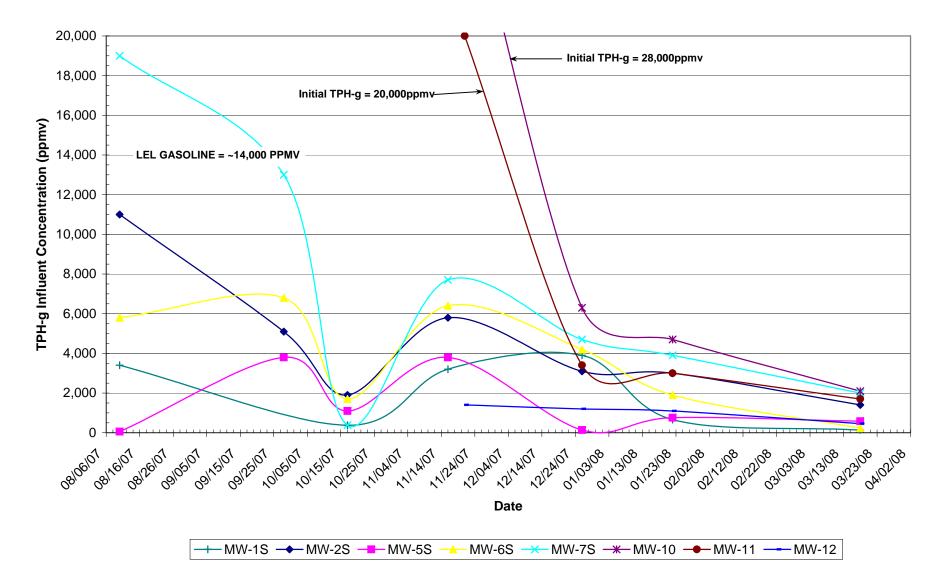
SWRCB's GeoTracker Information System (electronic)


Quarterly Site Monitoring Report (First Quarter, 2008) Project No. 116907 April 30, 2008 Page 18 **FIGURES**

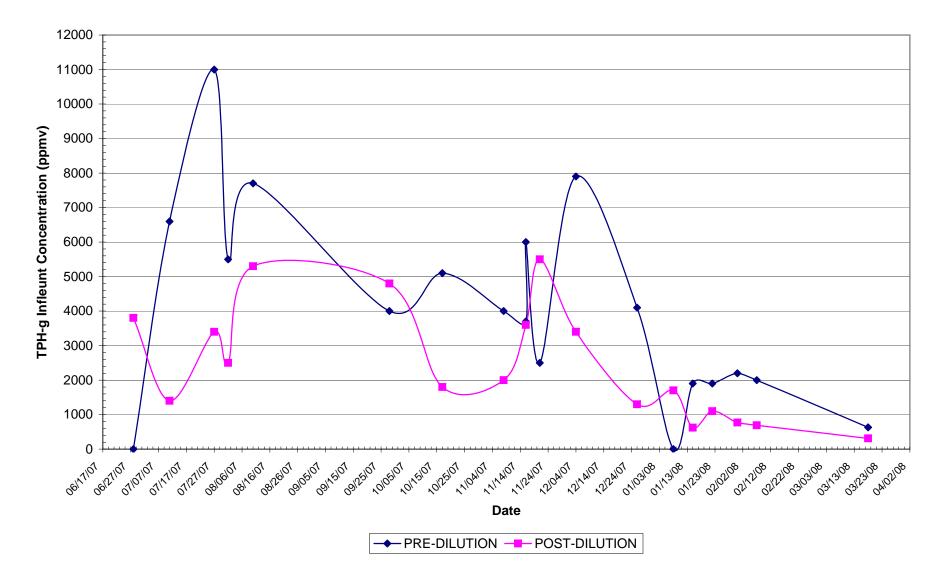



>th S	TREET MW-13 TREET		RESIDENTIAL (228 7TH ST)
0 20 40 SCALE IN FE	80 ET		
LEGEND	DRAFTED BY RJB 10-01-0 REVISED BY RJB 04-25-08		III TANTS
- MONITORING WELL	HVDPE CONVEYANCE PIPING (~18 - 24" BGS)	2500 CAMINO DIABLO, SU	
• SOIL BORING (8/9/96)	WATER DISCHARGE (~24" BGS)	SYSTME LA	
• SOIL BORING (04/02 & 03/03)	SANITARY SEWER (~36 - 48" BGS)	SISINE LA	
SOIL GAS PROBE	TEMPORARY POWER SERVICE (~24" BGS)	245 8TH STREET	FIGURE 3
MONITORING STRUCTURE	PROPANE LINE (~18 - 24" BGS)	OAKLAND, CALIFORNIA	PROJECT NO. 116907

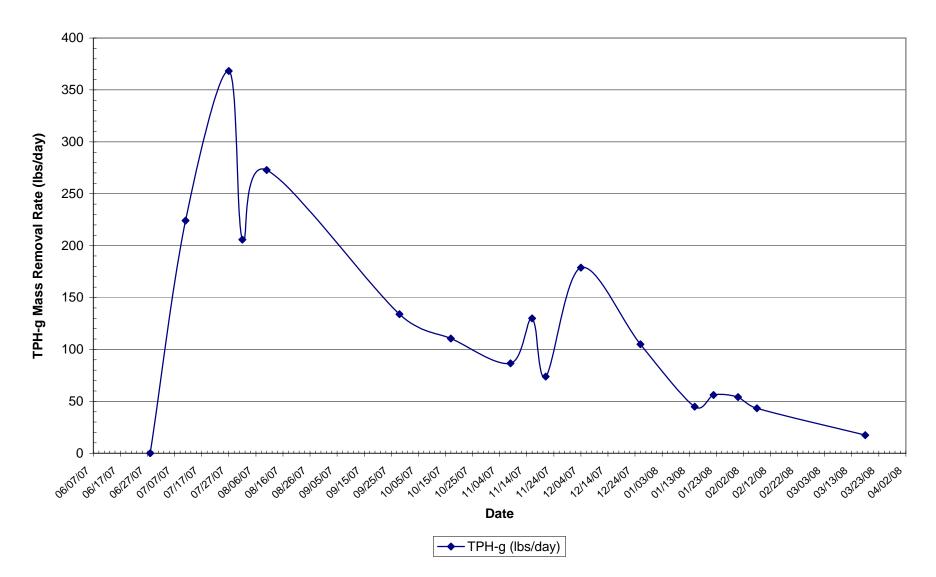
TH STREET 0 20 40 SCALE IN FEET	MW-13 80	RESIDENTIAL (228 7TH ST)
LEGEND	DRAFTED BY RJB 10-01- REVISED BY RJB 04-25-0	AEI CONSULTANTS
- MONITORING WELL	MW-1 ()	2500 CAMINO DIABLO, SUITE 200, WALNUT CREEK
• SOIL BORING (8/9/96)	(15.00) = feet above mean sea level	GROUNDWATER ELEVATION
• SOIL BORING (04/02 & 03/03)	Contour Interval = n/a FORMER UST	DATA (02/13/08)
SOIL GAS PROBE	Contours plotted with Surfer V.7.0 LOCATION System was shutdown 2 days prior to monitoring	245 8TH STREETFIGURE 4OAKLAND, CALIFORNIAPROJECT NO. 116907



D 20 40 SCALE IN FEET	80		RESIDENTIAL (228 7TH ST)
LEGEND	DRAFTED BY RJB 10-0 REVISED BY RJB 04-25	AEI CONS	ULTANTS
MONITORING WELL	Groundwater analytical data in micrograms per liter (ug/L) or ppb		JITE 200, WALNUT CREEK
• SOIL BORING (8/9/96)	TPH-g = Total Petroleum Hydrocarbons as gasoline	GROUNDWATE	
• SOIL BORING (04/02 & 03/03)	MTBE = Methyl tertiary-butyl ether FORMER US NS/FP= not sampled / free product present LOCATION	1 (02/13/08)
SOIL GAS PROBE	System was shutdown 2 days prior to monitoring	245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 5 PROJECT NO. 116907



C 20 40	80	nzene <8.8 <27 <14		RESIDENTIAL (228 7TH ST)
LEGEND	REV	FTED BY RJB 10-01-07 ISED BY RJB 04-25-08	AEI CONS	ULTANTS
- MONITORING WELL	Soil gas analytical data in micrograms per cubic meter (ug/m^3)) 	2500 CAMINO DIABLO, SU	ITE 200, WALNUT CREEK
• SOIL BORING (8/9/96)	TPH-g = Total Petroleum Hydrocarbons as gasoline	FORMER UST	SOIL GAS AN	NALYTICAL
• SOIL BORING (04/02 & 03/03)	MTBE = Methyl tertiary-butyl ether PCE = Tetrachloroethene		DATA (02/4/08)	
SOIL GAS PROBE	 Not sampled and/or analyzed * Sampling not possible due to seasonal wet soil conditions System was shutdown 2 days prior to monitoring 	LOCATION	245 8TH STREET OAKLAND, CALIFORNIA	FIGURE 6 PROJECT NO. 116907


FIGURE 7: EXTRACTION WELL INFLUENT CONCENTRATIONS

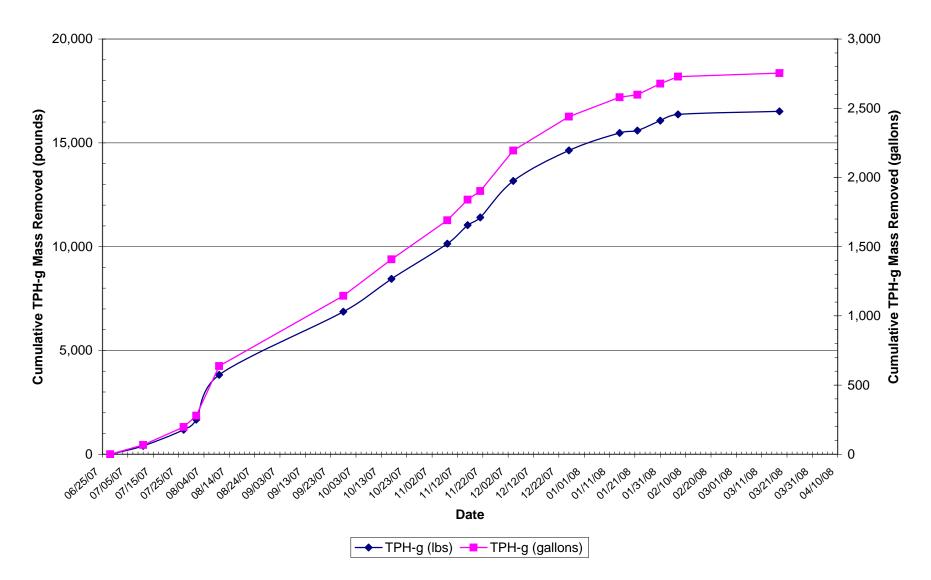

FIGURE 8: COMBINED SYSTEM INFLUENT CONCENTRATIONS

FIGURE 9: HYDROCARBON MASS REMOVAL RATES BASED ON LAB DATA

FIGURE 10: CUMULATIVE HYDROCARBON MASS REMOVED BASED ON LAB DATA

TABLES

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to Water (ft)	Groundwater ³ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-1	06/29/01	27.73	16.52	11.21	14.89	1.63
(8-28)	10/10/01	27.73	15.45	12.28	15.37	0.08
(0 20)	01/09/02	27.73	12.61	15.12	-	< 0.01
	04/24/02	27.73	13.35	14.38	-	< 0.01
	07/24/02	27.73	14.19	13.54	-	< 0.01
	11/05/02	27.73	14.85	12.88	-	< 0.01
	02/04/03	27.73	14.91	12.82	-	< 0.01
	05/02/03	27.73	14.43	13.30	-	0.08
	08/04/03	27.73	15.24	12.49	15.01	0.23
	11/03/03	27.73	16.94	10.79	15.67	1.27
	02/09/04	27.73	14.61	13.12	14.43	0.18
	05/10/04	27.73	Obstructed	-	-	-
	08/09/04	27.73	15.24	12.49	15.03	0.21
	11/09/04	27.73	15.95	11.78	15.71	0.24
	02/03/05	32.55	13.75	18.80	13.58	0.17
	05/09/05	32.55	13.93	18.62	13.81	0.12
	08/05/05	32.55	15.40	17.15	15.39	0.01
	11/09/05	32.55	15.76	16.79	15.75	0.01
	02/09/06	32.55	13.52	19.03	13.50	0.02
	05/04/06	32.55	12.47	20.08	12.46	0.02
	03/04/00	32.55	15.11	17.44	15.09	0.01
	11/08/06	32.55	16.03	16.52	16.02	0.02
	02/08/07	32.55	16.51	16.04	16.48	0.03
	05/29/07	32.55	15.56	16.99	15.51	0.05
	09/05/07	32.55	16.33	16.22	-	Sheen
	12/12/07	32.55	17.62	14.93	-	Sheen
		32.55 32.55	17.02 15.94	i i	-	Sheen
	02/13/08	52.55	15.94	16.61	-	Sheen
MW-2	06/29/01	28.16	16.14	12.02	-	-
(8-28)	10/10/01	28.16	16.43	11.73	-	-
	01/09/02	28.16	13.50	14.66	-	-
	04/24/02	28.16	14.40	13.76	-	-
	07/24/02	28.16	14.91	13.25	-	-
	11/05/02	28.16	16.96	11.20	-	-
	02/04/03	28.16	15.42	12.74	-	-
	05/02/03	28.16	15.24	12.92	-	-
	08/04/03	28.16	15.98	12.18	-	-
	11/03/03	28.16	16.60	11.56	-	Sheen
	02/09/04	28.16	15.22	12.94	-	Sheen
	05/10/04	28.16	15.34	12.82	-	Sheen
	08/09/04	28.16	15.92	12.24	-	Sheen
	11/09/04	28.16	16.51	11.65	-	Sheen
	02/03/05	33.24	14.44	18.80	-	Sheen
	05/09/05	33.24	14.67	18.57	-	Sheen
	08/05/05	33.24	16.27	16.97	-	Sheen
	11/09/05	33.24	16.53	16.71	-	Sheen
	02/09/06	33.24	14.36	18.88	-	Sheen
	05/04/06	33.24	13.46	19.78	-	Sheen
	08/04/06	33.24	15.95	17.29	-	Sheen
	11/08/06	33.24	16.86	16.38	-	Sheen
	02/08/07	33.24	17.13	16.11	-	Sheen
	05/29/07	33.24	16.51	16.73	-	Sheen
	09/05/07	33.24	17.48	15.76	-	-
	12/12/07	33.24	18.72	14.52	-	-
	02/13/08	33.24	16.91	16.33	-	-

TABLE 1: GROUNDWATER ELEVATION DATA

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to Water (ft)	Groundwater ³ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-3	06/29/01	29.21	16.60	12.61	_	_
(10-25)	10/10/01	29.21	16.92	12.29	-	-
(10 20)	01/09/02	29.21	14.20	15.01	-	_
	04/24/02	29.21	15.07	14.14	-	-
	07/24/02	29.21	16.40	12.81	-	-
	11/05/02	29.21	16.47	12.74	-	-
	02/04/03	29.21	16.92	12.29	-	-
	05/02/03	29.21	15.45	13.76	-	-
	08/04/03	29.21	16.46	12.75	-	-
	11/03/03	29.21	17.15	12.06	-	-
	02/09/04	29.21	15.78	13.43	-	-
	05/10/04	29.21	15.77	13.44	-	-
	08/09/04	29.21	16.45	12.76	-	-
	11/09/04	29.21	17.26	11.95	-	-
	02/03/05	34.25	15.92	18.33	-	-
	05/09/05	34.25	15.03	19.22	-	-
	08/05/05 11/09/05	34.25 34.25	16.59 16.82	17.66 17.43	-	-
	02/09/06	34.25	16.82	17.45	-	-
	05/04/06	34.25	13.61	20.64	-	-
	08/04/06	34.25	16.28	17.97	-	-
	11/08/06	34.25	17.28	16.97	_	_
	02/08/07	34.25	17.68	16.57	-	_
	05/29/07	34.25	17.37	16.88	-	-
	09/05/07	34.25	18.53	15.72	-	-
	12/12/07	34.25	19.61	14.64	-	-
	02/13/08	34.25	18.12	16.13	-	-
MW-4	06/29/01	29.38	17.71	11.67	-	_
(10-25)	10/10/01	29.38	18.00	11.38	-	-
× /	01/09/02	29.38	15.02	14.36	-	-
	04/24/02	29.38	15.74	13.64	-	-
	07/24/02	29.38	16.69	12.69	-	-
	11/05/02	29.38	17.64	11.74	-	-
	02/04/03	29.38	16.02	13.36	-	-
	05/02/03	29.38	16.72	12.66	-	-
	08/04/03	29.38	17.51	11.87	-	-
	11/03/03	29.38	18.09	11.29	-	-
	02/09/04	29.38	16.67	12.71	-	-
	05/10/04	29.38	16.89	12.49	-	-
	08/09/04	29.38	17.44	11.94	-	-
	11/09/04	29.38	17.89	11.49	-	-
	02/03/05	34.42	14.98	19.44	-	-
	05/09/05	34.42	16.20	18.22	-	-
	08/05/05	34.42	17.73	16.69	-	-
	11/09/05	34.42	17.91	16.51	-	-
	02/09/06	34.42	15.62	18.80	-	-
	05/04/06	34.42	15.12	19.30 17.03	-	-
	08/04/06	34.42 34.42	17.39 18 30	17.03	-	-
	11/08/06 02/08/07	34.42 34.42	18.30 18.57	16.12 15.85	-	-
	05/29/07	34.42 34.42	18.57	15.85 16.13	-	-
	09/05/07	34.42 34.42	18.29	15.15	-	-
	12/12/07	34.42 34.42	20.44	13.98	-	_
	02/13/08	34.42 34.42	18.52	15.98 15.90	-	
	04/15/00	57,72	10,54	15.70	-	-

TABLE 1: GROUNDWATER ELEVATION DATA

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to Water (ft)	Groundwater ³ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-5	02/03/05	33.33	14.23	19.10	_	_
(12-22)	05/09/05	33.33	14.33	19.00	_	_
(12 22)	08/05/05	33.33	15.89	17.44	_	_
	11/09/05	33.33	16.18	17.15	-	-
	02/09/06	33.33	14.02	19.31	-	-
	05/04/06	33.33	12.97	20.36	-	-
	08/04/06	33.33	15.63	17.70	-	-
	11/08/06	33.33	16.55	16.78	-	-
	02/08/07	33.33	16.12	17.21	-	-
	05/29/07	33.33	15.87	17.46	-	-
	09/05/07	33.33	16.95	16.38	-	-
	12/12/07	33.33	18.13	15.20	-	-
	02/13/08	33.33	16.58	16.75	-	-
MW-6	02/03/05	32.82	13.99	18.83	-	Sheen
(12-22)	05/09/05	32.82	13.61	19.21	-	Sheen
	08/05/05	32.82	15.50	17.32	15.13	0.37
	11/09/05	32.82	15.87	16.95	15.50	0.37
	02/09/06	32.82	13.93	18.89	13.22	0.71
	05/04/06	32.82	12.88	19.94	12.13	0.75
	08/04/06	32.82	15.22	17.60	14.81	0.41
	11/08/06	32.82	16.16	16.66	15.78	0.38
	02/08/07	32.82	15.48	17.34	15.14	0.34
	05/29/07	32.82	15.35	17.47	15.04	0.31
	09/05/07	32.82	15.55	17.27	-	-
	12/12/07	32.82	17.22	15.60	-	Sheen
	02/13/08	32.82	15.54	17.28	-	Sheen
MW-7	02/03/05	33.07	14.17	18.90	-	Sheen
(12-22)	05/09/05	33.07	14.47	18.60	14.44	0.03
	08/05/05	33.07	16.07	17.00	16.02	0.05
	11/09/05	33.07	16.47	16.60	16.35	0.12
	02/09/06	33.07	14.18	18.89	14.11	0.07
	05/04/06	33.07	13.12	19.95	13.11	0.01
	08/04/06	33.07	15.74	17.33	-	Sheen
	11/08/06	33.07	16.59	16.48	-	Sheen
	02/08/07	33.07	16.23	16.84	-	Sheen
	05/29/07	33.07	16.13	16.94	-	Sheen
	09/05/07	33.07	16.40	16.67	-	Sheen
	12/12/07	33.07	18.02	15.05	-	Sheen
	02/13/08	33.07	16.27	16.80	-	Sheen
MW-10	02/03/05	31.17	12.65	18.52	-	-
(12-22)	05/09/05	31.17	13.09	18.08	-	-
	08/05/05	31.17	14.68	16.49	-	-
	11/09/05	31.17	14.94	16.23	-	-
	02/09/06	31.17	12.82	18.35	-	-
	05/04/06	31.17	12.11	19.06	-	-
	08/04/06	31.17	14.38	16.79	-	-
	11/08/06	31.17	15.32	15.85	-	-
	02/08/07	31.17	15.59	15.58	-	-
	05/29/07	31.17	15.27	15.90	-	-
	09/05/07 12/12/07	31.17 31.17	16.25 17.75	14.92 13.42	-	- Sheen
	02/13/08	31.17 31.17	17.75 15.59	15.42 15.58	-	5110011
	04/13/00	51,17	10,09	15.50	-	_

TABLE 1: GROUNDWATER ELEVATION DATA

Well ID (screen interval)	Date Collected	TOC Well ^{1,2} Elevation (ft amsl)	Depth to Water (ft)	Groundwater ³ Elevation (ft amsl)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)
MW-11	02/03/05	31.78	13.39	18.39		Sheen
	02/03/05	31.78 31.78	13.89	18.39	-	Sheen
(12-22)					-	
	08/05/05	31.78	15.47	16.31	-	Sheen
	11/09/05	31.78	15.73	16.05	-	Sheen
	02/09/06	31.78	13.53	18.25	-	Sheen
	05/04/06	31.78	12.73	19.05	-	Sheen
MW-11	08/04/06	31.78	15.17	16.61	-	Sheen
Cont.	11/08/06	31.78	16.15	15.63	-	-
	02/08/07	31.78	16.36	15.42	-	Sheen
	05/29/07	31.78	16.06	15.72	-	Sheen
	09/05/07	31.78	17.03	14.75	-	Sheen
	12/12/07	31.78	18.68	13.10	-	-
	02/13/08	31.78	16.28	15.50	-	-
MW-12	02/03/05	32.05	13.70	18.35	-	Sheen
(12-22)	05/09/05	32.05	14.17	17.88	-	Sheen
	08/05/05	32.05	15.69	16.36	-	Sheen
	11/09/05	32.05	15.93	16.12	-	Sheen
	02/09/06	32.05	13.78	18.27	-	Sheen
	05/04/06	32.05	12.98	19.07	-	Sheen
	08/04/06	32.05	15.39	16.66	-	Sheen
	11/08/06	32.05	16.29	15.76	-	-
	02/08/07	32.05	16.54	15.51	-	-
	05/29/07	32.05	16.27	15.78	-	-
	09/05/07	32.05	17.24	14.81	-	-
	12/12/07	32.02	18.65	13.37	-	-
	02/14/08	32.02	16.50	15.52	-	-
	02,21,00		20120			

TABLE 1: GROUNDWATER ELEVATION DATA

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

all well elevations are measured from the top of the casing

- not applicable

ft = feet

ft amsl = feet above mean sea level

LNAPL = light non-aqueous phase liquid (i.e., free product)

Monitoring well top of casing (TOC) elevations were resurveyed by Morrow Surveying on January 10, 2006 and February 7, 2006
 Groudwater elevations for the February 3, 2005 and subsequent monitoring episodes use the new well survey data
 When LNAPL is present at >0.10 ft, the groundwater elevations are assumed to be affected by the LNAPL

TABLE 2: GROUNDWATER FLOW SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Episode #	Date	Average Groundwater Elevation ¹ (ft amsl)	Change from Previous Episode (ft)	Flow direction (gradient)
1	06/29/01	12.10	-	SSE (0.0074)
2	10/10/01	11.80	-0.30	SSE (0.0071)
3	01/09/02	14.68	2.88	SE (0.0054)
4	04/24/02	13.85	-0.83	SSW (0.005)
5	07/24/02	12.92	-0.93	NE (0.021)
6	11/05/02	11.89	-1.02	SW (0.019)
7	02/04/03	12.80	0.90	NNW (0.01)
8	05/02/03	13.11	0.32	SSE (0.01)
9	08/04/03	12.27	-0.85	SSE(0.007)
10	11/03/03	11.64	-0.63	SSE (0.006)
11	02/09/04	13.03	1.39	SSE (0.006)
12	05/10/04	12.92	-0.11	SSE (0.008)
13	08/09/04	12.31	-0.60	SSE (0.006)
14	11/09/04	11.70	-0.62	SSE (0.004)
15	02/03/05	18.75	-	W (0.007)
16	05/09/05	18.53	-0.22	S (0.010)
17	08/05/05	16.94	-1.59	S (0.010)
18	11/09/05	16.65	-0.28	S (0.010)
19	02/09/06	18.83	2.17	SSW (0.010)
20	05/04/06	19.72	0.90	SSW (0.012)
21	08/04/06	17.24	-2.48	SSW (0.010)
22	11/08/06	16.32	-0.93	SSW(0.0007)
23	02/08/07	16.25	-0.07	SSE (0.0009)
24	05/29/07	16.60	0.35	SSE (0.0009)
25*	09/05/07	15.77	-0.84	-
26*	12/12/07	14.38	-1.38	-
27*	02/13/08	16.24	1.86	-

NOTES:

- not applicable

ft = feet

ft amsl = feet above mean sea level

1) MW-2 to MW-4 only used for episodes 1 through 14; all wells used for episodes 15 and later

* = Flow direction not calculated due to onsite operation of dual-phase extraction remediation system

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-1	06/29/01	1.63	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
(8-28)	10/10/01	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	01/09/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	04/24/02	< 0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	07/24/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/05/02	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/04/03	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/02/03	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/03	0.23	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/03/03	1.27	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/04	0.18	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/10/04	Obstructed	-	-	-	-	-	-	-
	08/09/04	0.21	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/04	0.24	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/03/05	0.17	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.02	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/08/07	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/29/07	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	47,000	<500	4,200	11,000	1,100	6,400	-
	12/12/07	Sheen	80,000	<250	630	22,000	1,700	8,900	-
	02/13/08	Sheen	22,000	<250	750	4,100	340	3,200	
MW-2	06/29/01	0.00	69,000	4,100/4,400*	7,200	6,100	1,500	7,000	-
(8-28)	10/10/01	0.00	87,000	14,000	22,000	12,000	2,700	9,100	-
× ,	01/09/02	0.00	130,000	11,000	30,000	19,000	3,800	14,000	-
	04/24/02	Sheen	210,000	32,000	38,000	23,000	4,600	19,000	-
	07/24/02	Sheen	170,000	36,000	48,000	12,000	3,700	8,600	-
	11/05/02	Sheen	190,000	36,000	45,000	25,000	4,600	16,000	-
	02/04/03	Sheen	150,000	27,000	51,000	24,000	4,200	14,000	-
	05/02/03	Sheen	150,000	35,000	39,000	11,000	3,800	9,900	-
	08/04/03	Sheen	120,000	29,000	32,000	5,000	3,200	7,200	-
	11/03/03	Sheen	120,000	24,000	33,000	4,300	3,200	5,400	-
	02/09/04	Sheen	130,000	19,000	27,000	7,700	3,100	7,600	-
	05/10/04	Sheen	67,000	13,000	20,000	3,000	2,300	4,100	-
	08/09/04	Sheen	100,000	22,000	27,000	7,100	2,800	6,600	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-2	11/09/04	Sheen	100,000	23,000	27,000	6,100	3,000	5,600	-
cont.	02/03/05	Sheen	84,000	11,000	23,000	5,000	3,000	5,500	-
	05/09/05	Sheen	74,000	14,000	21,000	4,200	2,300	3,300	-
	07/27/05	Sheen	9,500	910	1,400	1,000	180	960	-
	08/05/05	Sheen	74,000	4,000	8,800	11,000	1,300	7,600	-
	11/09/05	Sheen	120,000	16,000	21,000	14,000	2,300	13,000	-
	02/09/06	Sheen	120,000	10,000	18,000	16,000	2,200	13,000	-
	05/04/06	Sheen	71,000	8,300	14,000	11,000	1,500	7,600	-
	08/04/06	Sheen	160,000	14,000	22,000	14,000	2,400	11,000	-
	11/08/06	Sheen	110,000	6,400	17,000	9,200	1,600	6,800	<dl< td=""></dl<>
	2/8/2007*	Sheen	68,000	5,400	11,000	7,800	1,500	7,700	-
	05/29/07	Sheen	49,000	4,800	7,600	4,400	940	4,600	-
	09/05/07	Sheen	25,000	1,000	3,300	3,400	490	2,800	-
	12/12/07	0.00	5,500	870	1,100	440	28	550	-
	02/13/08	0.00	5,700	250	440	290	43	1,000	
MW-3	06/29/01	0.00	550	<5.0	<0.5	3.1	3.2	1.2	-
(10-25)	10/10/01	0.00	470	<5.0	0.77	5.3	3.3	5.9	-
	01/09/02	0.00	1,000	<5.0	0.90	7.6	7.8	25	-
	04/24/02	0.00	1,500	<5.0	0.64	7.2	12	14	-
	07/24/02	0.00	1,200	<5.0	10	17.0	11	25	-
	11/05/02	0.00	1,800	<25	33	43.0	18	31	-
	02/04/03	0.00	450	<5.0	< 0.5	5.0	< 0.5	0.77	-
	05/02/03	0.00	340	<5.0	7.3	10.0	2.5	7.3	-
	08/04/03	0.00	170	<5.0	5.8	5.9	1.5	4.9	-
	11/03/03	0.00	54	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/09/04	0.00	190	<5.0	< 0.5	3.6	< 0.5	< 0.5	-
	05/10/04	0.00	280	<5.0	< 0.5	3.4	< 0.5	< 0.5	-
	08/09/04	0.00	290	<5.0	< 0.5	3.8	< 0.5	< 0.5	-
	11/09/04	0.00	220	<5.0	< 0.5	4.0	<0.5	< 0.5	-
	02/03/05	0.00	160	<5.0	13	30	3	21	-
	05/09/05	0.00	200	<5.0	< 0.5	3.9	< 0.5	< 0.5	-
	08/05/05	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	11/09/05	0.00	130	<5.0	< 0.5	2.3	< 0.5	< 0.5	-
	02/09/06	0.00	270	<5.0	< 0.5	5.6	< 0.5	< 0.5	-
	05/04/06	0.00	220	<5.0	< 0.5	4.3	< 0.5	< 0.5	-
	08/04/06	0.00	93	<5.0	<0.5	1.5	<0.5	<0.5	-
	11/08/06	0.00	160	<5.0	< 0.5	2.9	< 0.5	< 0.5	<dl< td=""></dl<>
	2/8/2007*	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/29/07	0.00	<50	<5.0	<0.5	< 0.5	< 0.5	< 0.5	-
	09/05/07	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	12/12/07	0.00	<50	<5.0	<0.5	<0.5	< 0.5	< 0.5	-
	02/13/08	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-4	06/29/01	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
(10-25)	10/10/01	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	01/09/02	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	04/24/02	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	07/24/02	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	11/05/02	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/04/03	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/02/03	0.00	500	10	68	71	18	65	-
	08/04/03	0.00	270	<5.0	30	29	9.2	32	-
	11/03/03	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	02/09/04	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	05/10/04	0.00	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	-
	08/09/04	0.00	130	<5.0	14	13	5.3	17	-
	11/09/04	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	02/03/05	0.00	370	<5.0	< 0.5	4.1	< 0.5	0.64	-
	05/09/05	0.00	840	<5.0	50	180	21	110	-
	07/27/05	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	08/05/05	0.00	310	<5.0	7.5	57	10	53	-
	11/09/05	0.00	290	<5.0	12	61	8.8	49	-
	02/09/06	0.00	250	<5.0	9.9	42	7.5	45	-
	05/04/06	0.00	300	<5.0	37	76	7.8	42	-
	08/04/06	0.00	270	<5.0	7.3	33	5.6	32	-
	11/08/06	0.00	1,300	<5.0	75	230	31	160	<dl< td=""></dl<>
	02/08/07	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	05/29/07	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	09/05/07	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	12/12/07	0.00	<50	<5.0	< 0.5	< 0.5	<0.5	<0.5	-
	02/13/08	0.00	75	<5.0	2.4	8.3	1.2	14	-
MW-5	02/03/05	0.00	78,000	<1,000	7,600	13,000	2,200	9,600	-
(12-22)	05/09/05	0.00	60,000	<900	6,100	9,900	1,600	6,600	-
	07/27/05	nm	120,000	1,100	10,000	19,000	2,100	13,000	-
	08/05/05	0.00	59,000	<500	4,100	10,000	1,200	6,600	-
	11/09/05	0.00	44,000	<500	3,300	7,400	1,100	4,900	-
	02/09/06	0.00	110,000	<500	10,000	22,000	2,400	13,000	-
	05/04/06	0.00	110,000	<250	11,000	22,000	2,900	15,000	-
	08/04/06	0.00	73,000	<500	4,700	8,600	1,700	7,600	-
	11/08/06	0.00	51,000	<500	3,700	7,200	1,400	6,700	<dl< td=""></dl<>
	02/08/07	0.00	67,000	<800	5,100	10,000	1,800	10,000	-
	05/29/07	0.00	86,000	<1000	6,200	12,000	2,000	11,000	-
	09/05/07	0.00	36,000	<350	2,100	4,000	560	4,600	-
	12/12/07	0.00	8,200	<100	160	56	290	1,200	-
	02/13/08	0.00	4,600	<50	77	440	41	1,300	-

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-6	02/03/05	Sheen	130,000	<1,000	2,400	33,000	2,400	15,000	-
(12-22)	05/09/05	Sheen	170,000	<4,000	11,000	43,000	3,100	16,000	-
	08/05/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.37	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.71	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.75	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	0.41	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/08/06 02/08/07	0.38 0.34	ns/fp ns/fp	ns/fp ns/fp	ns/fp ns/fp	ns/fp	ns/fp ns/fp	ns/fp	-
	02/08/07 05/29/07	0.34	ns/fp	ns/fp	ns/fp	ns/fp ns/fp	ns/fp	ns/fp ns/fp	-
	03/23/07 09/05/07	0.00	74,000	<750	870	7,000	2,400	12,000	-
	12/12/07	Sheen	12,000	<10	556	7,000 560	2,400 550	12,000	
	02/13/08	Sheen	27,000	<250	700	4,900	620	5,300	<dl< td=""></dl<>
MW-7	02/03/05	Sheen	220,000	18,000	45,000	44,000	3,500	18,000	-
(12-22)	05/09/05	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/05/05	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/09/05	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	02/09/06	0.07	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	05/04/06	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	08/04/06	Sheen	230,000	19,000	37,000	37,000	3,100	14,000	-
	11/08/06	Sheen	240,000	13,000	41,000	39,000	3,000	14,000	<dl< td=""></dl<>
	02/08/07	Sheen	230,000	15,000	41,000	37,000	3,700	20,000	-
	05/29/07	Sheen	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	09/05/07	Sheen	14,000	<450 <500	41	210	99 66	1,600	-
	12/12/07 02/13/08	Sheen 0.00	9,200 17,000	<500 590	1,100 2,800	870 2,700	66 300	1,100 1,900	-
MW-10	02/03/05	0.00	36,000	<500	4,700	7,200	660	3,400	-
(12-22)	05/09/05	0.00	88,000	<1,500	6,900	20,000	2,300	9,900	-
	08/05/05	0.00	88,000	<1,100	10,000	21,000	1,900	9,800	-
	11/09/05	0.00	63,000	<1,100	5,400	13,000	1,900	7,900	-
	02/09/06	0.00	100,000	<500	6,600	19,000	2,900	13,000	-
	05/04/06	0.00	100,000	<500	8,500	25,000	3,000	13,000	-
	08/04/06	0.00	190,000	<2,200	17,000	35,000	2,800	13,000	-
	11/08/06	0.00	57,000	<500	2,500	7,600	1,600	5,700	<dl< td=""></dl<>
	02/08/07	0.00	69,000	<1,000	4,400	14,000	2,200	8,800	-
	05/29/07	0.00	100,000	<1,000	5,300	19,000	2,600	12,000	-
	09/05/07	0.00	87,000	<1,000	6,100	20,000	2,400	12,000	-
	12/12/07 02/13/08	Sheen 0.00	4,700 4,500	<50 <250	95 190	280 370	110 65	730 880	-
			-,200	200					

Vic's Auto, 245 8th Street, Oakland, California

Well ID (screen interval)	Date Collected	Apparent LNAPL Thickness (ft)	TPH-g (μg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	HVOC (µg/L)
MW-11	02/03/05	Sheen	170,000	<3,000	23,000	35,000	3,100	16,000	-
(12-22)	05/09/05	Sheen	210,000	3,500	29,000	40,000	3,400	16,000	-
	07/27/05	Sheen	220,000	2,500	26,000	37,000	3,200	18,000	-
	08/05/05	Sheen	210,000	<2,500	35,000	42,000	3,300	16,000	-
	11/09/05	Sheen	180,000	9,100	32,000	47,000	3,600	18,000	-
	02/09/06	Sheen	210,000	10,000	33,000	39,000	3,800	20,000	-
	05/04/06	Sheen	190,000	12,000	34,000	41,000	3,500	17,000	-
	08/04/06	Sheen	290,000	11,000	33,000	43,000	3,300	15,000	-
	11/08/06	0.00	240,000	14,000	34,000	44,000	3,300	16,000	<dl< td=""></dl<>
	02/08/07	0.00	230,000	19,000	43,000	44,000	3,900	20,000	-
	05/29/07	0.00	230,000	19,000	35,000	39,000	3,600	20,000	-
	09/05/07	0.00	200,000	19,000	34,000	36,000	3,700	23,000	-
	12/12/07	0.00	81,000	4,000	9,400	9,500	1,700	9,700	-
	02/13/08	0.00	36,000	4,200	5,700	4,000	560	5,300	-
MW-12	02/03/05	Sheen	250,000	100,000	52,000	41,000	3,400	15,000	-
(12-22)	05/09/05	Sheen	210,000	91,000	44,000	28,000	3,300	13,000	-
(12 22)	08/05/05	Sheen	170,000	52,000	38,000	28,000	3,000	12,000	-
	11/09/05	Sheen	180,000	52,000	39,000	25,000	2,900	12,000	-
	02/09/06	Sheen	170,000	34,000	40,000	23,000	3,500	15,000	-
	05/04/06	Sheen	160,000	47,000	33,000	28,000	2,800	10,000	-
	08/04/06	Sheen	240,000	55,000	40,000	24,000	3,200	12,000	-
	11/08/06	0.00	190,000	33,000	40,000	23,000	2,700	13,000	<dl< td=""></dl<>
	02/08/07	0.00	150,000	34,000	38,000	19,000	3,300	12,000	-
	05/29/07	0.00	150,000	30,000	30,000	15,000	3,100	13,000	-
	09/05/07	0.00	160,000	38,000	33,000	21,000	3,200	14,000	-
	12/12/07	0.00	58,000	6,700	10,000	7,100	1,200	4,900	-
	02/13/08	0.00	17,000	3,000	3,600	2,300	440	1,800	-

NOTES:

- not sampled/analyzed

ft = feet

ns/fp = not sampled / free product present

 μ g/L = micrograms per liter or parts per billion (ppb)

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

HVOC= halogenated volatile organic compounds (e.g., PCE, TCE, DCE, VC)

DL = detection limit

* MTBE sample re-analyzed by modified EPA Method 8260B (expressed as 8021B / 8260B)

* = Analytical results for MW-2 and MW-3 reversed from lab data based on historical concentration trends observed

TPH-g by modified EPA Method 8015

BTEX & MTBE by modified EPA Method 8021B

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (µg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (µg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (µg/m3)
GP-1-5	08/04/06	5	331	<8.0	<7.1	<8.4	<9.7	<9.7	<17	17	23
GP-1-5D ₁	08/04/06	5	-	<8.0	<7.1	<8.4	<9.7	<9.7	<17	18	23
GP-1-5	11/08/06	5	1,100	<4.6	<4.0	<4.8	<5.5	<5.5	<9.5	12	<12
GP-1-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-1-5	05/17/07	5	457	<3.6	<3.2	<3.8	<4.4	<4.4	<7.6	14	<9.9
GP-1-5D ₁	05/17/07	5	-	<3.6	<3.2	<3.8	<4.4	<4.4	<7.6	14	<9.9
GP-1-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-1-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	<96	<14	<10,000
GP-1-10	08/04/06	10	493	<4.1	<3.6	<4.3	<5.0	<5.0	<8.6	20	<11
GP-1-10	11/08/06	10	950	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-1-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-1-10	05/17/07^	10	-	-	-	-	-	-	-	-	-
GP-1-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-1-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-2-5	08/04/06	5	493	<4.4	<3.9	6.9	<5.4	10	<9.3	600	<12
GP-2-5	11/08/06	5	1,100	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	240	<11
GP-2-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-2-5	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	<8.3	420	<11
GP-2-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-2-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	<14	<14	<10,000
GP-2-10	08/04/06	10	352	<10	<9.0	18	<12	<12	<21	270	<28
GP-2-10	11/08/06	10	910	<3.9	<3.4	<4.1	<4.7	<4.7	<8.1	450	<11
GP-2-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-2-10	05/17/07	10	748	<3.8	<3.3	<3.9	<4.5	<4.5	<7.9	440	<10
GP-2-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-2-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-3-5	08/04/06	5	<240	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-3-5	11/08/06	5	930	<4.4	<3.9	<4.6	<5.2	<5.2	<9.1	<8.2	<12
GP-3-5	03/06/07*	5	-	-	-	-	-	-	-	-	-
GP-3-5	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	17	<7.5	<11
$GP-3-5D_{f}$	05/17/07	5	582	<4.0	<3.5	<4.1	<4.8	<4.8	<8.3	16	<11
GP-3-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-3-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000
GP-3-10	08/04/06	10	564	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<11
GP-3-10	11/08/06	10	1,800	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	<7.6	<11
GP-3-10	03/06/07*	10	-	-	-	-	-	-	-	-	-
GP-3-10	05/17/07	10	1,538	<4.1	<3.6	<4.3	<5.0	<5.0	18	<7.8	12
GP-3-10	12/12/07	10	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	-
GP-3-10	02/14/08	10	<1800	<48	<6.5	<7.7	<8.8	<27	-	<14	<10,000

Well ID	Date Collected	Sample Depth (ft bgs)	TPH-g (μg/m3)	MTBE (µg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (µg/m3)	Xylenes (µg/m3)	Ethanol (µg/m3)	PCE (µg/m3)	2-propanol (µg/m3)
GP-4-5	08/04/06	5	705	<4.4	5.4	<4.6	<5.4	<5.4	<9.3	<8.4	<12
GP-4-5D ₁	08/04/06	5	599	~7.7	Ј.т	\т.U	ч у .т	ч у .т	<i>\.</i>	~0. +	512
GP-4-5	11/08/06	5	540	<4	<3.5	<4.1	<4.8	<4.8	<8.3	<7.5	<11
$GP-4-5D_f$	11/08/06	5	610	<7.7	<6.8	<8.0	< 9 .2	<9.2	<0.5 <16	<14	<21
GP-4-5	03/06/07*	5	-	~7.7	~0.0	~0.0	-9.2	-9.2	-	-14	~21
GP-4-5	05/17/07	5	873	<4	<3.6	<4.2	<4.9	<4.9	15	<7.6	<11
GP-4-5	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-4-5D _f	12/12/07	5	<1500	<48	<6.5	<7.7	<8.8	<27	<96	<14	<25
GP-4-5	02/14/08	5	<1800	<48	<6.5	<7.7	<8.8	<27	<96	<14	<10,000
$\begin{array}{c} GP-4-10\\ GP-4-10D_f\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ GP-4-10\\ \end{array}$	08/04/06 08/05/06 11/08/06 11/08/06 03/06/07* 05/17/07^ 12/12/07 02/14/08	10 10 10 10 10 10 10 10 10	564 529 900 880 - 1,600	<4.1 <3.8 <4.0 <1.8 - <48 -	6.1 4.2 <3.5 <1.6 - <6.5	17 18 4.1 <1.9 - - <7.7 -	5.7 <4.6 <4.8 <2.2 - - <8.8	16 17 5.2 <2.2 - - <27 -	12 18 <8.3 <3.8 - - <96 -	<7.8 <7.2 <7.5 <3.4 - <14 -	<11 <10 <11 <4.9 - - <25 -
ESLs			26,000	9,400	85	63,000	420,000	150,000	1.9E+07	410	
CHHSLs			-	4,000	36.2	135,000	ч20,000 рр	315,000	-	180	-

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

- not sampled/analyzed

2-propanol (i.e., isopropyl alcohol) tracer/leak check compound

ft bgs = feet below ground surface

 $\mu g/m3 = micrograms$ per cubic meter

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

PCE = tetrachloroethene

ESLs = Environmental Screening Levels - for residential land use

CHHSLs = California Human Health Screening Levels

pp = CHHSL postponed

* = Sampling not possible due to seasonal wet soil conditions

 $^{\wedge}$ = No sample analysis due to presence of free moisture in sample tubing

D_f = after the probe/sample ID indicates a duplicate sample collected in the field

 D_l = after the probe/sample ID indicates a duplicate sample prepared and analyzed by the lab

TPH-g by modified EPA Method TO-3

BTEX, MTBE, Ethanol, PCE, 2-propanol by modified EPA Method TO-15

TABLE 5: HVDPE VAPOR ANALYTICAL DATA: TPH-g & MBTEX

Vic's Auto, 245	8th Street,	Oakland,	California
-----------------	-------------	----------	------------

Sample Port ID	Sample Date	Notes	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-1S	08/10/07		3,400	ND<14	68	210	30	160
	09/28/07	1,2	-	-	-	-	-	-
	10/17/07		380	ND<14	26	58	5.7	46
	11/16/07		3,200	ND<14	69	220	20	110
	12/26/07		3,900	ND<27	79	210	41	210
	01/22/08		660	ND<14	5.8	23	2.7	28
	02/07/08		-	-	-	-	-	-
	03/18/08 04/28/08		140	ND	1.3	6.9	0.78	6.9
MW-2S	08/10/07		11,000	ND<110	280	770	81	360
	09/28/07	1	5,100	ND<35	110	310	46	260
	10/17/07		1,900	ND<20	59	120	12	73
	11/16/07		5,800	ND<27	120	340	40	200
	12/26/07		3,100	ND<27	84	230	37	190
	01/22/08 02/07/08		3,000	ND<14 -	61 -	190 -	24	180 -
	03/18/08		1,400	2.3	17	51	13	81
MW-58	08/10/07		54	ND	0.60	2.7	0.60	3.7
	09/28/07	1	3,800	ND<60	70	150	19	120
	10/17/07		1,100	ND<14	27	56	5.3	36
	11/16/07		3,800	ND<110	64	170	21	170
	12/26/07	3	140	ND<0.68	0.45	3.7	1.5	14
	01/22/08		760	ND<4.5	3.3	16	2.4	28
	02/07/08		-	-	-	-	-	-
	03/18/08		580	ND<2.7	3.0	24	4.2	39
MW-68	08/10/07		5,800	ND<30	69	280	24	140
	09/28/07	1	6,800	ND<60	100	360	34	190
	10/17/07		1,700	ND<10	24	90	9.7	79
	11/16/07		6,400	ND<27	56	270	40	310
	12/26/07		4,200	ND<27	21	96	14	180
	01/22/08 02/07/08		1,900	ND<14	11	74	13	100
	03/18/08		230	ND<1.4	1.2	9.2	2.4	16
MW-7S	08/10/07		19,000	ND<450	620	590	27	100
	09/28/07	1	13,000	ND<150	350	630	69	370
	10/17/07		390	ND<14	27	60	6	51
	11/16/07		7,700	ND<45	170	390	47	280
	12/26/07		4,700	ND<45	100	220	27	190
	01/22/08		3,900	ND<14	69	200	20	210
	02/07/08 03/18/08		2,000	- ND<5.0	25	- 81	- 11	- 78

TABLE 5: HVDPE VAPOR ANALYTICAL DATA: TPH-g & MBTEX

Vic's Auto	, 245 8th	Street,	Oakland,	California
------------	-----------	---------	----------	------------

Sample Port ID	Sample Date	Notes	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
MW-10S	11/21/07		28,000	ND<68	300	800	63	230
	12/26/07		6,300	ND<14	55	350	64	300
	01/22/08		4,700	ND<14	38	230	49	310
	02/07/08		-	-	-	-	-	-
	03/18/08		2,100	ND<14	13	73	31	190
MW-11S	11/21/07		20,000	ND<68	240	640	63	240
	12/26/07		3,400	ND<75	50	220	50	230
	01/22/08		3,000	ND<30	81	190	39	230
	02/07/08		-	-	-	-	-	-
	03/18/08		1,700	ND<14	26	66	26	150
MW-12S	11/21/07		1,400	ND<100	87	51	10	40
	12/26/07		1,200	ND<45	27	100	13	74
	01/22/08		1,100	ND<45	14	50	8.4	65
	02/07/08		- 460	- ND<30	42	32	4.2	- 36
	03/18/08		400	ND<30	42	52	4.2	50
AS	10/17/07		130	ND<1.4	4.3	11	1.4	12
	11/08/07		19	ND	0.60	1.8	0.18	3.2
	01/15/08		1,100	19	31	100	17	180
	01/31/08		69	ND<4.5	1.7	5.0	0.81	11
	02/07/08		31	1.4	0.47	1.5	0.21	4.1
	03/18/08		31	0.71	0.60	1.8	0.34	3.2
PRED	06/28/07		-	-	-	-	-	-
	07/11/07		6,600	ND<90	180	340	39	190
	07/27/07		11,000	ND<75	170	330	38	160
	08/01/07		5,500	ND<70	140	250	16	71
	08/10/07		7,700	ND<90	210	410	41	190
	09/28/07	1	4,000	ND<50	90	170	9.3	42
	10/17/07		5,100	ND<60	130	210	8.6 0.68	51
	11/08/07 11/16/07		4,000 3,700	ND<0.68 ND<120	0.35 63	2.2 170	0.68 20	6.6 120
	11/16/07		3,700 6,000	ND<120 ND<27	100	170 250	20 27	120 170
	11/21/07		2,500	ND<27 ND<14	39	120	16	79
	12/04/07		7,900	ND<32	120	340	48	280
	12/26/07		4,100	ND<27	72	250	42	270
	01/08/08	4	-	-	-	-	-	-
	01/15/08		1,900	ND<14	29	89	16	100
	01/22/08		1,900	ND<14	34	100	13	100
	01/31/08		2,200	ND<14	36	120	19	160
	02/07/08		2,000	ND<35	34 7.0	110 25	10 5 (130
	03/18/08		630	ND<3.0	7.0	25	5.6	38

TABLE 5: HVDPE VAPOR ANALYTICAL	DATA: TPH-g	& MBTEX
--	-------------	---------

Sample Port ID	Sample Date	Notes	TPH-g (ppmv)	MTBE (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)	Xylenes (ppmv)
POSTD	06/28/07		3,800	ND<60	120	160	22	110
	07/11/07		1,400	ND<14	36	82	12	67
	07/27/07		3,400	ND<14	56	120	15	70
	08/01/07		2,500	ND<27	59	140	17	95
	08/10/07		5,300	ND<45	130	290	37	180
	09/28/07		4,800	ND<60	100	210	23	120
	10/17/07		1,800	ND<14	41	110	14	100
	11/08/07		2,000	ND<15	42	100	12	88
	11/16/07		3,600	ND<14	58	190	25	180
	11/21/07		5,500	ND<25	75	210	28	130
	12/04/07		3,400	ND<16	44	120	22	120
	12/26/07		1,300	ND<45	26	96	15	100
	01/08/08		1,700	ND<14	23	79	13	83
	01/15/08		620	ND<14	11	39	6.6	44
	01/22/08		1,100	ND<14	14	50	8.4	65
	01/31/08		770	ND<14	12	38	6.9	62
	02/07/08		690	ND<6.8	10	37	6.6	58
	03/18/08		310	ND<3.5	3.9	12	3.0	20
STACK	06/28/07		ND	ND	ND	ND	ND	ND
	07/27/08		-	-	-	-	-	-
	08/10/07		ND	ND	ND	ND	ND	ND
	09/28/07		ND	ND	ND	ND	ND	ND
	10/17/07		ND	ND	ND	ND	ND	ND
	11/08/07		21	ND	0.24	1.5	0.29	2.4
	11/16/07		ND	ND	ND	ND	ND	ND
	12/26/07		-	-	-	-	-	-
	01/18/08		ND	ND	ND	ND	ND	ND
	02/07/08		-	-	-	-	-	-
	03/18/08		ND	ND	ND	ND	ND	ND
				0.50	0.0==	0.0.5	0.077	0.0
DL			7	0.68	0.077	0.065	0.057	0.057

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

ppmv = parts per million by volume

% = percent concentration by volume

PRED = pre-dilution sample port at combined inlet

POSTD = post-dilution sample part at thermal/catalytic oxidizer inlet

- not sampled/analyzed

xx = methane sensor damaged; pending replacement

1) Individual well water seperator trap used for the 1st time

2) Vacuum leak detected at wellhead due to broken wellhead seal

3) Opened 100% for sampling, turned OFF after sampling

4) Pump failed, not strong enough to collect sample from PRED

5)

DL = detection limit for dilution factor of 1 TPH-g by modified EPA Method 8015 BTEX & MTBE by modified EPA Method 8021B

Vic's Auto, 245	8th Street,	Oakland,	California
-----------------	-------------	----------	------------

Sample Port ID	Date	Notes	Initial Valve Position (%OPEN)	Final Valve Position (%OPEN)	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-1S	09/28/07	1,2	OFF	OFF	-	-	-	-	-
	10/17/07		100%	100%	-20.0	0	0.0	20.9	0.0
	11/07/07		100%	50%	-20.0	680	0.0	20.9	0.1
	11/16/07		50%	50%	-20.5	2,750	0.5	20.9	0.6
	12/04/07		50%	50%	-20.5	2,050	1.0	20.9	0.3
	12/26/07		50%	50%	-18.0	3,000	1.5	20.7	0.4
	01/15/08		50%	50%	-19.0	110	0.0	20.4	0.2
	01/22/08		100%	100%	-18.0	160	0.0	19.7	0.3
	01/31/08		OFF	OFF	-17.5	85	0.0	20.9	0.0
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-19.0	0	XX	20.9	0.1
	03/18/08		100%	100%	-14.0	0	XX	20.9	0.0
	03/28/08		100%	100%	-19.5	0	-	21.0	0.1
MW-2S	09/28/07	1	100%	100%	-20.0	5,900	2.5	20.6	0.4
	10/17/07		100%	100%	-20.0	1,450	1.0	20.9	0.1
	11/07/07		100%	100%	-20.0	1,100	0.5	20.9	0.2
	11/16/07		100%	100%	-20.0	4,600	2.5	20.7	0.5
	12/04/07		100%	100%	-19.5	10,000	8.5	19.5	0.6
	12/26/07		100%	100%	-17.0	2,600	1.5	20.9	0.4
	01/15/08		100%	100%	-19.0	1,700	0.5	20.2	0.4
	01/22/08		100%	100%	-17.0	1,000	0.5	17.7	0.6
	01/31/08		100%	100%	-21.0	1,150	0.5	20.8	0.3
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-19.0	120	XX	12.0	1.8
	03/18/08		100%	100%	-14.0	100	XX	20.3	0.6
	03/28/08		100%	100%	-19.5	210	-	20.9	0.5
MW-5S	09/28/07	1	100%	100%	-20.0	8,000	5.5	20.2	0.3
1111 25	10/17/07		100%	100%	-20.0	880	0.5	20.2	0.1
	11/07/07		100%	100%	-20.0	1,200	0.5	20.2	0.4
	11/16/07		100%	100%	-20.5	4,600	3.0	20.0	0.7
	12/04/07	3	OFF	OFF	-19.5	6,900	5.5	15.5	1.9
	12/26/07	3	OFF	OFF	-17.0	200	0.0	20.9	0.0
	01/15/08		OFF	OFF	-	-	-	-	-
	01/22/08		100%	100%	-16.0	300	0.0	18.0	0.4
	01/31/08		50%	50%	-21.0	740	0.0	20.7	0.4
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-18.5	50	XX	17.0	0.6
	03/18/08		100%	100%	-16.5	0	XX	19.9	0.3
	03/28/08		100%	100%	-20.0	200	-	20.9	0.4

Sample Port ID	Date	Notes	Initial Valve Position (%OPEN)	Final Valve Position (%OPEN)	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-6S	09/28/07	1	100%	100%	-20.0	>11,000	8.0	19.7	0.5
1111-05	10/17/07	1	100%	100%	-20.0	1,350	0.5	20.9	0.5
	11/07/07		100%	100%	-20.0	0	0.0	20.9	0.0
	11/16/07		100%	50%	-19.0	6,300	4.5	19.2	1.0
	12/04/07		50%	100%	-19.5	10,000	8.0	17.1	1.8
	12/26/07		100%	100%	-17.5	4,600	2.5	18.5	1.3
	01/15/08		100%	75%	-19.0	410	-	-	-
	01/22/08		75%	100%	-16.5	1,050	0.5	15.6	1.0
	01/31/08		50%	50%	-20.8	1,000	0.5	20.0	0.9
	02/07/08		-	-		_,	-	-	-
	03/14/08	5	100%	100%	-18.5	110	XX	18.5	0.7
	03/18/08		100%	100%	-17.0	15	XX	20.5	0.1
	03/28/08		100%	100%	-19.0	125	-	20.9	0.2
MW-7S	09/28/07	1	100%	100%	-20.0	11,000	19	20.0	0.5
	10/17/07		100%	100%	-20.0	0	0.0	20.9	0.0
	11/07/07		100%	100%	-20.0	4,200	3.0	20.9	0.4
	11/16/07		100%	50%	-20.5	10,000	8.0	20.5	0.4
	12/04/07		50%	100%	-19.5	14,000	14.0	19.1	0.8
	12/26/07		100%	100%	-17.5	5,500	3.0	20.4	0.5
	01/15/08		100%	75%	-19.0	1,150	0.5	20.9	0.3
	01/22/08		75%	100%	-16.0	2,050	1.0	18.2	0.4
	01/31/08		50%	50%	-21.0	670	0.0	20.9	0.3
	02/07/08	_	-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-18.5	280 200	XX	14.4	1.0
	03/18/08		100%	100%	-14.0	390	XX	20.2	0.3
	03/28/08		100%	100%	-19.0	2,100	-	20.0	0.0
MW-10S	11/21/07		100%	100%	-19.0	>44,000	43.0	17	2.2
	12/04/07		100%	100%	-20.0	7,650	6.5	19.2	0.5
	12/26/07		100%	100%	-18.0	3,900	2.5	19.4	0.5
	01/15/08		100%	100%	-19.0	1,900	1.0	18.9	0.7
	01/22/08		100%	100%	-16.5	1,850	0.5	16.1	0.5
	01/31/08		100%	50%	-21.0	440	0.0	20.9	0.0
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-18.0	170	XX	16.7	0.5
	03/18/08		100%	100%	-14.0	270	XX	19	0.9
	03/28/08		100%	100%	-19.0	215	-	20.9	0.1

Vic's Auto, 245 8th Stree	t, Oakland, California
---------------------------	------------------------

Sample Port ID	Date	Notes	Initial Valve Position (%OPEN)	Final Valve Position (%OPEN)	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-11S	11/21/07		100%	100%	-19.0	36,600	26.5	19.2	2.2
	12/04/07		100%	50%	-19.5	430	0.0	20.9	0.1
	12/26/07		50%	100%	-18.0	1350	0.5	20.9	0.2
	01/15/08		100%	100%	-19.0	1000	0.5	20.2	0.2
	01/22/08		100%	100%	-16.0	1,000	0.5	18.7	0.2
	01/31/08		50%	50%	-21.0	1,050	0.5	19.4	0.5
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-19.0	260	XX	17.3	0.5
	03/18/08		100%	100%	-14.5	130	XX	20	0.3
	03/28/08		100%	100%	-20.0	60	-	20.9	0.2
MW-12S	11/21/07		50%	50%	-19.0	110	0.0	20.9	0.7
	12/04/07		50%	50%	-20.0	1,350	0.5	20.9	0.2
	12/26/07		50%	50%	-18.0	710	0.0	20.9	0.1
	01/15/08		50%	50%	-19.0	945	0.0	20.6	0.3
	01/22/05		100%	100%	-15.0	630	0.0	19.3	0.2
	01/31/08		50%	50%	-21.5	1,100	0.0	20.9	0.2
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	100%	100%	-19.0	20	XX	20.3	0.2
	03/18/08 03/28/08		100% 100%	100% 100%	-14.0 -20.0	0 0	XX -	20.9 21.0	0.0 0.1
AS	06/28/07		100%	100%	-	0	0.0	12.3	5.4
	10/17/07		100%	100%	-	0	0.0	20.9	0.0
	11/07/07		100%	100%	-	0	0.0	20.9	0.0
	11/08/07		100%	100%	-	0	0.0	20.9	0.0
	11/16/07 12/04/07	İ	100% 100%	100% 100%	-	0	0.0	20.9	0.0
	01/15/08		100%	100%	-	-	-	-	-
	01/13/08 01/22/08		100% 100%	100% 100%	-	0	0.0	20.9	0.0
	01/22/08		100 /0	- 100		-	-	40.7	-
	03/14/08	5	100%	100%	_	0	xx	20.9	0.0
	03/18/08	-	100%	100%	-	0	XX	20.9	0.0
	03/28/08		100%	100%	-	0	-	20.9	0.0

Sample Port ID	Date	Notes	Initial Valve Position (%OPEN)	Final Valve Position (%OPEN)	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
PRED	06/28/07		_	_	-18.5	_	_	_	_
IKLD	06/29/07		_	_	-18.5	_	_	_	_
	07/03/07		-	_	-18.0	_	-	_	-
	07/11/07		_	_	-21.5	10,750	_	_	_
	07/27/07		-	_	-20.0	>11,000	-	_	-
	08/01/07		_	_	-19.0	6,000	9.1	18.5	1.1
	08/10/07		_	_	-21.0	-	-	-	-
	09/28/07		-	-	-20.0	5,700	3.5	20.7	0.3
	10/17/07		-	-	-21.0	9,050	6.5	20.1	0.6
	11/07/07		-	-	-19.0	40	0.0	20.9	0.0
	11/08/07		-	-	-21.0	0	0.0	20.9	0.0
	11/16/07		-	-	-21.0	3,050	2.0	20.7	0.4
	11/16/07		-	-	-21.0	6,100	4.5	20.3	0.7
	11/21/07		-	-	-19.0	12,000	13.5	19.4	1.2
	12/04/07		-	-	-20.0	10,500	9.5	18.8	0.9
	12/26/07		_	-	-18.0	3,650	2.0	20.9	0.5
	01/08/07	4	-	_	-18.0	5,550	-	2017	-
	01/15/08		-	-	-19.0	710	0.0	20	0.3
	01/22/08		-	-	-18.0	800	0.0	17.8	0.5
	01/31/08		-	_	-21.0	1,250	0.5	20.9	0.5
	02/07/08		_	-			-		-
	03/14/08	5	-	-	-19.0	160	XX	15.3	0.9
	03/18/08		-	-	-		-		-
	03/28/08		-	-	-20.0	230	-	20.9	0.2
POSTD	06/28/07		-	-	-	10,000	6.5	18.2	1.4
	06/29/07		-	-	-	2,450	3.5	19.3	0.9
	07/03/07		-	-	-	11,300	13.5	17.2	1.9
	07/11/07		-	-	-	3,550	-	-	-
	07/27/07		-	-	-	4,550	-	-	-
	08/01/07		-	-	-	10,000	9.1	18.5	1.1
	08/10/07		-	-	-	4,800	2.0	19.9	0.5
	09/28/07	İ	-	-	-	6,750	4.0	20.7	0.3
	10/17/07		-	-	-	4,500	2.5	20.9	0.0
	11/07/07		-	-	-	1,550	1.0	20.7	0.3
	11/08/07		-	-	-	1,300	1.0	20.9	0.4
	11/16/07		-	-	-	4,150	2.0	20.5	0.4
	11/21/07	İ	-	-	-	8,600	7.5	20.5	0.8
	12/04/07	l	-	-	-	6,500	5.0	19.8	0.6
	12/26/07	İ	-	-	-	2,000	1.0	20.9	0.3
	01/08/07	l	-	-	-	1,200	0.5	20.9	0.3
	01/15/08	l	-	-	-	45	0.0	20.7	0.0
	01/22/08		-	-	-	280	0.0	20.2	0.0
	01/31/08		-	-	-	470	0.0	20.9	0.1
	02/07/08		-	-	-	-	-	-	-
	03/14/08	5	-	-	-	75	XX	20.2	0.4
	03/18/08	İ	-	-	-	-	-	-	-
	03/28/08	6	-	-	-	10	-	22.9	0.0

Sample Port ID	Date	Notes	Initial Valve Position (%OPEN)	Final Valve Position (%OPEN)	Manifold Vacuum (in-Hg)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
STACK	06/28/07		_	-	_	0	0.0	12.3	5.4
Sinci	07/27/07		-	-	-	-	-	-	-
	08/10/07		-	-	-	-	-	-	-
	09/28/07		-	-	-	0	0.0	14.0	4.5
	10/17/07		-	-	-	-	-	-	-
	11/08/07		-	-	-	-	-	-	-
	11/16/07		-	-	-	0	0.0	14.8	4.8
	12/26/07		-	-	-	-	-	-	-
	01/18/08		-	-	-	-	-	-	-
	02/07/08		-	-	-	-	-	-	-
	03/18/08		-	-	-	0	-	18.0	1.9
DL	-	-	-	-	-	5.0	0.1	0.1	0.1

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

- not sampled/analyzed

in-Hg = inches of mercury

ppmv = parts per million by volume

 $\% = percent \ concentration \ by \ volume$

xx = methane sensor damaged; pending replacement

DL = detection limit for dilution factor of 1

1) Individual well water seperator trap used for the 1st time

2) Vacuum leak detected at wellhead due to broken wellhead seal

3) Opened 100% for sampling, turned OFF after sampling

4) Pump failed, not strong enough to collect sample from PRED

5) First samples collected after system was shutdown on February 12, 2008 prior to groundwater and soil gas monitoring event

6) All readings with GasTech GT409 gas detector

7)

8)

9)

10)

TVH = total volatile hydrocarbons (calibrated w/ hexane)

CH4 = methane by infrared detection (0 to 100% by volume)

O2 = oxygen by electrochemical detection (0-40% by volume)

CO2 = carbon dioxide by infrared detection (0 to 20% by volume)

TVH, CH4, O2, and CO2 measured in the field w/ RKI Eagle gas detector

Sample ID	Sample Date	Notes	TOG (mg/L)	TPH-g (µg/L)	MTBE (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)
INF	06/26/07	1	-	20,000	<1500	1,400	2,300	350	3,000
	06/27/07		-	25,000	1,300	2,300	3,400	490	3,100
	06/28/07		-	28,000	1,500	2,300	4,800	540	3,300
	07/12/07		-	8,300	150	660	1,500	120	1,300
	08/22/07	2	-	16,000	130	610	2,000	300	2,400
	10/17/07	3,4	-	25,000	<250	990	3,000	380	3,600
	11/07/07		-	21,000	<500	730	2,600	300	4,800
	12/12/07	5	-	75,000	<250	1,200	9,900	1,700	12,000
	01/08/08		-	12,000	320	260	1,100	170	2,900
	03/18/08		-	4,100	480	150	240	52	520
POST-AS	06/26/07	1	-	1,000	92	19	34	6.8	48
	06/27/07		-	420	45	7.8	13	2.1	22
	06/28/07		-	6,400	570	610	890	59	750
	07/12/07		-	-	-	-	-	-	-
	08/22/07	2	-	5,300	100	610	2,000	300	2,400
	10/17/07	3,4	-	84	12	0.90	2.6	< 0.5	7
	11/07/07		-	120	41	0.71	1.9	< 0.5	12
	12/12/07	5	-	65,000	<250	210	3,400	1,300	11,000
	01/08/08		-	130	55	0.85	2.8	<0.5	12
	03/18/08		-	120	190	2.5	3.5	0.77	7.2
POST-C1	06/26/07	1	-	<50	<5.0	<0.5	<0.5	<0.5	<0.5
	08/22/07	2	-	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
	10/17/07	3,4	-	<50	<5.0	<0.5	<0.5	<0.5	<0.5
EFF	06/26/07	1	<5.0	<50	<5.0	<0.5	<0.5	<0.5	<0.5
	08/22/07	2	-	<50	<5.0	< 0.5	< 0.5	<0.5	< 0.5
	10/17/07	3,4	-	<50	<5.0	< 0.5	< 0.5	<0.5	< 0.5
	11/07/07		-	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
	12/12/07	5	-	<50	17	< 0.5	< 0.5	<0.5	< 0.5
	01/08/08		-	<50	17	<0.5	<0.5	<0.5	<0.5
	03/18/08	6	<5.0	<50	50	<0.5	<0.5	<0.5	<0.5
DL	-	-	5.0	50	5.0	0.5	0.5	0.5	0.5

TABLE 7: GROUNDWATER TREATMENT SYSTEM ANALYTICAL DATA

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

- not sampled/analyzed

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

mg/L = mi	lligrams pe	r liter	or parts	per mil	lion (ppn	1)

TOG = total oil and grease hydrocarbon

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

DL = detection limit for dilution factor of 1 TOG by EPA Method 1664 HEM-SGT TPH-g by EPA Method SW8015Cm BTEX & MTBE by EPA Method 8021B

1) System startup and first dischrage to sanitary sewer

2) Bag filter (LCO8) pre-filter for sediment rremoval installed and started up on 08/17/07

3) 1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07

4) 200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07

5) Extraction wells MW-10, MW-11, and MW-12 brought online 11/20/07

6) Metal analysis no longer required per email from EBMUD, dated January 31, 2008

TABLE 8: SOIL GAS FIELD DATA: TVH, CH4, O2, & CO2

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-1-5'	05/17/07	4	0.00	-	0.11	0.0	18.0	2.2
	06/12/07		0.00	-	0	0.0	18.6	2.4
	08/01/07		-0.40	-	0	0.0	20.9	0.0
	08/10/07		-0.35	-	0	0.0	20.9	0.0
	10/05/07		0.00	-	0	0.0	20.9	0.3
	11/07/07		-0.24	-1.50	0	0.0	20.9	0.0
	11/21/07		-0.84	-1.50	0	0.0	20.9	0.0
	03/28/08		<-0.10	>-50	0	XX	20.9	0.0
GP-1-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07		0.00	-	0	0.0	18.7	2.2
	08/01/07		-0.44	-	0	0.0	20.9	0.0
	08/10/07		-0.38	-	0		20.9	0.0
	10/05/07		0.00	-	0	0.0	20.9	0.3
	11/07/07		-0.27	-2.00	0	0.0	20.9	0.0
	11/21/07		-0.59	-1.50	0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
GP-2-5'	05/17/07	4	0.00	-	0.14	0.0	19.0	1.5
	06/12/07		0.00	-	0	0.0	19.0	1.7
	08/01/07		0.00	-	0	0.0	20.9	0.3
	08/10/07		-0.04	-	0	0.0	20.9	0.2
	10/05/07		0.00	-	0	0.0	20.9	0.1
	11/07/07		-0.08	-4.00	0	0.0	20.9	0.0
	11/21/07		-0.04	-1.50	0	0.0	20.9	0.0
	03/28/08	1	-	-	-	-	-	-
GP-2-10'	05/17/07	4	0.00	-	0.18	0.0	18.0	1.5
	06/12/07	2	0.00	-	-	-	-	-
	08/01/07		-0.08	-	0	0.0	20.8	0.5
	08/10/07		0.00	-	0	0.0	20.9	0.2
	10/05/07		0.00	-	0	0.0	20.9	0.1
	11/07/07		< 0.10	-24.0	0	0.0	20.9	0.0
	11/21/07 03/28/08	1	-1.70 -	-35.0 -	0 -	-	20.9	0.0 -
GP-3-5'	05/17/07	4	0.00		0.14	0.0	20.0	0.49
91-3-3	05/17/07 06/12/07	4	0.00	-	0.14	0.0	20.0 20.9	$\begin{array}{c} 0.48 \\ 0.4 \end{array}$
	08/10/07		-0.01		0	0.0	20.9	0.4
	10/05/07		0.00	-	0	0.0	20.9	0.3
	11/07/07		<-0.10	-1.00	0	0.0	20.9	0.2
	11/21/07		-0.05	-1.00	0	0.0	20.9	0.0
	03/28/08		<-0.10	-43	0	XX	20.5	0.1
GP-3-10'	05/17/07	4	0.00	_	0.37	0.0	2.4	3.4
	06/12/07		0.00	-	0	0.0	10.5	1.8
	08/10/07		-0.16	-	0	0.0	16.8	2.2
	10/05/07		0.00	-	0	0.0	20.8	1.2
	11/07/07		-0.30	-55.0	0	0.0	20.9	0.5
	11/21/07		-5.20	-47.0	0	0.0	20.9	0.2
	03/28/08	3	-1.00	>-150	0	XX	20.0	0.0

TABLE 8: SOIL GAS FIELD DATA: TVH, CH4, O2, & CO2

Vic's Auto, 245 8th Street,	Oakland, California
-----------------------------	---------------------

Soil Gas Probe ID	Date	Notes	Vacuum Influence (in-H2O)	Purge Vacuum (in-H2O)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
GP-4-5'	05/17/07 06/12/07	4	0.00 0.00	-	0.21 0	0.0 0.0	20.0 20.8	0.7 0.6
	08/10/07		-0.02	-	0	0.0	20.9	0.4
	10/05/07		0.00	-	0	0.0	20.9	0.5
	11/07/07		<-0.10	-0.85	0	0.0	20.9	0.3
	11/21/07		0.00	-0.50	0	0.0	20.9	0.0
	03/28/08		<-0.10	-47	0	XX	20.0	0.0
GP-4-10'	05/17/07	4	0.00	-	-	-	-	-
	06/12/07	2	0.00	-	-	-	-	-
	08/10/07		-0.08	-	0	0.0	20.4	0.2
	10/05/07		0.00	-	0	0.0	20.9	0.5
	11/07/07		<-0.1	-80.0	0	0.0	20.9	0.3
	11/21/07		<-0.1	>-50.0	0	0.0	20.9 20.5	0.0
	03/28/08	2,3	<-0.1	>-150	U	XX	20.5	0.0
DL	-	-	-	-	5	0.1	0.1	0.1

NOTES:

- not sampled/analyzed

in-H20 = inches of water

ppmv = parts per million by volume

% = percent concentration by volume

xx = methane sensor damaged; pending replacement

DL = detection limit for dilution factor of 1

TVH = total volatile hydrocarbons (calibrated w/ hexane)

CH4 = methane

O2 = oxygen

CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured in the field w/ RKI Eagle gas detector

1) Soil gas sample collection not possible due to wet or saturated soil conditions

2) Moisture present within the sample tubing

3) High purge vacuum may indicate wet or saturated soil conditions

4) TPH-g by modified EPA Method TO-3 GC/FID and CH4, O2, and CO2 by modified method ASTM D-1946 GC/FID or GC/TCD 5)

		MW-1			MW-2			MW-5			MW-6			MW-7	
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)
06/26/07	1.5	8.0	15.0	6.0	9.0	15.0	-	OFF	-	5.5	10.0	15.0	6.5	10.0	15.0
06/27/07	2.0	7.0	15.0	5.5	9.0	15.0	-	OFF	-	5.0	9.5	15.0	5.0	9.5	15.0
06/28/07	1.5	8.0	15.0	5.0	10.0	15.0	-	OFF	-	5.0	9.0	15.0	6.0	10.0	15.0
07/12/07	2.0	8.0	15.0	6.0	9.0	15.0	10.0	12.0	15.0	5.0	10.0	15.0	6.0	10.0	15.0
08/01/07	1.5	7.0	15.0	5.5	10.0	15.0	-	OFF	-	5.0	9.5	15.0	5.5	11.0	15.0
08/10/07	5.0	10.0	17.0	9.5	16.0	17.0	-	OFF	-	10.0	12.5	17.0	9.0	15.5	17.0
09/11/07	5.5	17.0	16.0	5.5	16.5	16.0	-	OFF	-	9.0	10.0	19.5	8.0	12.0	19.5
09/28/07	3.0	7.5	24.0	8.0	17.0	20.0	2.5	8.0	20.0	16.0	17.0	20.0	9.0	15.0	20.0
10/01/07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/21/07	3.0	10.0	25.0	11.0	15.0	21.0	n/a	OFF	-	12.0	12.0	20.0	0	BSTRUCTE	D
12/26/07	-	OFF	-	0	BSTRUCTE	D	n/a	OFF	-	18.0	13.5	20.0	11.5	15.5	20.0
01/15/08	-	OFF	-	11.0	14.0	21.0	n/a	OFF	-	16.5	11.5	20.0	12.0	14.0	20.0
02/07/08	5.0	9.5	25.0	10.0	13.0	20.0	n/a	OFF	-	15.5	14.0	19.0	15.5	21.0	20.0
03/18/08	9.0	10.0	25.0	5.5	11.5	19.0	n/a	9.5	21.0	8.0	9.5	20.0	8.5	12.0	21.0

TABLE 9: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

in-Hg = inches of mercury (gauge pressure)

ft toc = dpeth in feet as measured from the top of the well casing

TABLE 9: WELLHEAD VACUUM & DROP TUBE DEPTH DATA SUMMARY

		MW-10			MW-11			MW-12							
Date	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)	Casing Vacuum (in-Hg)	Stinger Vacuum (in-Hg)	Stinger Depth (ft toc)
06/28/07	-	-	-	-	-	-	-	-	-						
07/12/07	-	-	-	-	-	-	-	-	-						
08/01/07	-	-	-	-	-	-	-	-	-						
08/10/07	-	-	-	-	-	-	-	-	-						
09/11/07	-	-	-	-	-	-	-	-	-						
09/28/07	-	-	-	-	-	-	-	-	-						
10/01/07	-	-	-	-	-	-	-	-	-						
11/21/07	n/a	13.0	18.0	n/a	11.0	19.0	n/a	14.0	19.0						
12/26/07	n/a	11.0	18.0	n/a	10.5	19.0	n/a	14.5	19.0						
01/15/08	n/a	10.0	18.0	n/a	9.0	19.0	n/a	12.0	19.0						
02/01/08	n/a	9.0	18.0	n/a	10.0	19.0	n/a	15.0	19.0						
03/18/08	n/a	7.5	18.0	n/a	9.0	19.0	n/a	9.0	20.5						

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

in-Hg = inches of mercury (gauge pressure)

ft toc = dpeth in feet as measured from the top of the well casing

 $n/a = casing \ vacuum \ gauges \ not \ installed \ at \ this \ well$

TABLE 10: HVDPE PERFORMANCE & MASS REMOVAL DATA SUMMARY

Vic's Auto, 245 8th Street, Oakland, California

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Inlet Temp (°F)	Inlet Vac (in-Hg)	Well Velocity (fpm)	Well Flow (scfm)	PRED TPH-g (ppmv)	Mass Removal Rate (lbs/day)	Total Mass Removed (pounds)	Total Mass Removed (gallons)
06/28/07	1 Startup	-	-	10	-	-	-	60	18	850	42	-	-	-	-
07/11/07		13	312	53	2	43	14%	60	22	1,725	85	6,600	224	402	67
07/27/07		16	384	103	2	51	13%	60	20	1,700	83	11,000	368	1,180	197
08/01/07		5	120	160	2	57	47%	60	19	1,900	93	5,500	206	1,668	278
08/10/07	2,3	9	216	350	8	189	88%	60	22	1,800	88	7,700	273	3,820	637
09/28/07	4	49	1176	896	23	546	46%	60	20	1,700	83	4,000	134	6,865	1,144
10/17/07		19	456	1,239	14	343	75%	60	21	1,100	54	5,100	110	8,446	1,408
11/08/07		22	528	1,709	20	470	89%	60	22	1,100	54	4,000	87	10,141	1,690
11/16/07		8	192	1,874	7	166	86%	60	21	1,100	54	6,000	130	11,038	1,840
11/21/07	5	5	120	1,994	5	120	100%	60	20.5	1,500	74	2,500	74	11,407	1,901
12/04/07		13	312	2,231	10	236	76%	60	20	1,150	56	7,900	179	13,168	2,195
12/26/07		22	528	2,566	14	335	63%	60	18	1,300	64	4,100	105	14,633	2,439
01/15/08		20	480	3,016	19	451	94%	60	19	1,200	59	1,900	45	15,476	2,579
01/22/08	6,7	7	168	3,064	2	48	29%	60	18	1,500	74	1,900	56	15,589	2,598
01/31/08		9	216	3,276	9	212	98%	60	20	1,250	61	2,200	54	16,067	2,678
02/07/08		7	168	3,443	7	167	99%	60	22	1,100	54	2,000	43	16,368	2,728
03/18/08	8,9	40	960	3,653	9	210	22%	60	15	1,400	69	630	17	16,520	2,753
AVG	-	-	-	-	-	-	68%	60	19	1,290	63	1,726	43	-	-

NOTES:

ppmv = parts per million by volume TPH-g = total petroluem hydrocarbons as gasoline TPH-g by modified EPA Method 8015

in-Hg = inches of mercury (gauge pressure)

1) System installed and started up on June 26, 2007

2) Propane delivery missed; system shutdown on 08/06/07

3) Propane delivery missed; system shutdown on 08/21/07

4) System down between 09/11 and 09/24/08 due to electrical problems

5) System expanded; MW-10, MW-11 and MW-12 extraction added online

- not analyzed/applicable fpm = feet per minute scfm = standard cubic feet per minute

10)

6) Propane delivery missed; system shutdown on 01/02/08

7) Propane delivery missed; system shutdown on 01/22/08

9) Catalyst module installed and started up in March

8) System shutdown most of February to evaluate free product recovery

hrs = hours

Flow = Velocity x Cross Sectional Area of the Pipe Cross Sectional Area of 3" Pipe = 0.0491 ft^2 Well Flow = Well Velocity * 0.0491 PRED = TPH-g influent concentration

AVG = averages

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

 $MRR Estimate = (20,000*10^{-6})*(50scfm)*(1440min/day)*(28.32L/ft^{-3})*(1mol/22.4L)*(100g/mol)*(1lb/454g)$ Negligible change in air density, constant concentration and average molecular weight 1 mole occupies 22.4 Liters at STP STP is 21°C and 1 atm $1ft^3 = 28.38$ liters MWgas = 100 grams/mole (weathered gasoline) 1 lb = 454 grams1 day = 1440 minutes1 gallon gas ~ 6 pounds

TABLE 11: THERMAL/CATALYTIC OXIDIZER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Possible Runtime (days)	Possible Runtime (hrs)	Hour Meter Reading	Actual Runtime (days)	Actual Runtime (hrs)	System Runtime (%)	Preheat Temp (°F)	Exhaust Temp (°F)	Total Velocity (fpm)	Total Flow (scfm)	POSTD TPH-g (ppmv)	STACK TPH-g (ppmv)	Abatement Efficiency (%)	TPH-g Destruction Rate (lbs/day)	Total TPH-g Destroyed (pounds)	Total TPH-g Destroyed (gallons)	Total TPH-g Destroyed (btu)
06/28/07	1 Startup	-	-	10	0.4	10	-	1,430	1,427	2,150	106	3,800	3.5	99.91%	161	65	11	1,233,826
07/11/07		13	312	53	2	43	14%	1,478	1,392	2,625	129	1,400	3.5	99.75%	72	195	32	3,701,491
07/27/07		16	384	103	2	51	13%	1,428	1,386	2,600	128	3,400	3.5	99.90%	174	562	94	10,692,358
08/01/07		5	120	160	2	57	47%	1,425	1,377	2,800	137	2,500	3.5	99.86%	138	890	148	16,916,123
08/10/07	2,3	9	216	350	8	189	88%	1,411	1,341	2,000	98	5,300	3.5	99.93%	209	2,535	422	48,204,535
09/28/07	4	49	1176	896	23	546	46%	1,471	1,438	3,000	147	4,800	3.5	99.93%	284	8,984	1,497	170,844,523
10/17/07		19	456	1,239	14	343	75%	1,409	1,365	2,400	118	1,800	3.5	99.81%	85	10,201	1,700	193,992,681
11/08/07		22	528	1,709	20	470	89%	1,412	1,342	2,000	98	2,000	21	98.95%	79	11,742	1,957	223,297,250
11/16/07		8	192	1,874	7	166	86%	1,408	1,347	2,000	98	3,600	3.5	99.90%	142	12,721	2,120	241,905,549
11/21/07	5	5	120	1,994	5	120	100%	1,412	1,308	2,400	118	5,500	3.5	99.94%	260	14,022	2,337	266,642,477
12/04/07		13	312	2,231	10	236	76%	1,416	1,312	2,050	101	1,300	3.5	99.73%	52	14,538	2,423	276,461,730
12/26/07		22	528	2,566	14	335	63%	1,408	1,352	2,200	108	1,700	3.5	99.79%	74	15,566	2,594	296,020,076
01/15/08		20	480	3,016	19	451	94%	1,411	1,357	2,100	103	620	3.5	99.44%	26	16,048	2,675	305,174,194
01/22/08	6,7	7	168	3,064	2	48	29%	1,407	1,348	2,400	118	1,100	3.5	99.68%	52	16,152	2,692	307,153,643
01/31/08		9	216	3,276	9	212	98%	1,348	1,267	2,150	106	770	3.5	99.55%	33	16,440	2,740	312,628,082
02/07/08		7	168	3,443	7	167	99%	1,409	1,333	2,000	98	690	3.5	99.49%	27	16,628	2,771	316,215,556
03/18/08	8,9	40	960	3,653	9	210	22%	705	794	2,300	113	310	3.5	98.87%	14	16,751	2,792	318,555,075
AVG	-	-	-	-	-	-	68%	1,256	1,220	2,190	108	698	3.5	99.41%	30	-	-	-

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

ppmv = parts per million by volume TPH-g = total petroluem hydrocarbons as gasoline TPH-g by modified EPA Method 8015 hrs = hours

1) System installed and started up on June 26, 2007 2) Propane delivery missed; system shutdown on 08/06/07

3) Propane delivery missed; system shutdown on 08/21/07

4) System down between 09/11 and 09/24/08 due to electrical problems

5) System expanded; MW-10, MW-11 and MW-12 extraction added online

MASS REMOVAL RATE (MRR) ESTIMATE ASSUMPTIONS:

 $MRR Estimate = (20,000*10^{-6})*(50scfm)*(1440min/day)*(28.32L/ft^{3})*(1mol/22.4L)*(100g/mol)*(11b/454g)$ Negligible change in air density, constant concentration and average molecular weight 1 mole occupies 22.4 Liters at STP STP is 21°C and 1 atm $1 \text{ ft}^3 = 28.32 \text{ liters}$

MWgas = 100 grams/mole (weathered gasoline) 1 day = 1440 minutes

- not analyzed/applicable fpm = feet per minute scfm = standard cubic feet per minute btu = british thermal units

1 lb = 454 grams

1 gallon gas ~ 6 pounds

Flow = Velocity x Cross Sectional Area of the Pipe Cross Sectional Area of 3" Pipe = 0.0491 ft² Total Flow = Total Velocity * 0.0491 POSTD = TPH-g influent concentration

DL = detection limit 1/2 the DL was used for abatement efficiency calculations DL for THP-g by modified EPA Method 8015 = 7.0 ppmv AVG = averages

6) Propane delivery missed; system shutdown on 01/02/08 7) Propane delivery missed; system shutdown on 01/22/088) System shutdown most of February to evaluate free product recovery 9) Catalyst module installed and started up in March 10)

1 gallon gas ~ 114,100 btu

Sample Date	Notes	Hour Meter	Actual Runtime (days)	Blower VFD (Hz)	*Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent Conc. (ppmv)	Influent Conc. (µg/L)	Effluent Conc. (µg/L)	Removal Efficiency (%)
06/26/07	1	0.00	-	45	25	2,600	128	-	20,000	1,000	95.0%
06/27/08		4.84	0.20	45	25	2,600	128	-	25,000	420	98.3%
06/28/07		9.68	0.20	25	10	1,300	64	-	28,000	6,400	77.1%
07/03/07				40	20	2,300	113	-	-	-	-
07/11/07				40	20	2,300	113	-	-	-	-
07/11/07				20	5	900	44	-	-	-	-
07/12/07		70.48	3	20	5	900	44	-	8,300	-	-
07/12/07		70.48	0	15	4	600	29	-	8,300	-	-
07/27/07				20	6	900	44	-	-	-	-
08/01/07				20	6	900	44	-	-	-	-
08/10/07				10	2	200	10	-	-	-	-
08/07/07				15	3	600	29	-	-	-	-
08/21/07				20	18	900	44	-	-	-	-
08/22/07		529.98	19	15	5	600	29	-	16,000	5,300	66.9%
09/28/07				25	16	1,300	64	-	-	-	-
10/17/07		1,238.96	30	25	15	1,300	64	130	25,000	84	99.7%
10/23/07				25	15	1,300	64	-	-	-	-
10/25/07				20	15	900	44	-	-	-	-
11/07/07		1,708.55	20	20	16	900	44		21,000	120	99.4%
11/08/07				20	16	900	44	19	-	-	-
11/16/07				20	16	900	44	-	-	-	-
11/20/07				20	18	900	44	-	-	-	-
11/21/07				20	18.5	900	44	-	-	-	-
11/27/07				20	20	900	44	-	-	-	-
12/04/07				20	19	900	44	-	-	-	-
12/12/07		2,365.83	99	20	18	900	44		75,000	65,000	13.3%
12/14/07				20	18	900	44	-	-	-	

TABLE 12: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

TABLE 12: AIR STRIPPER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter	Actual Runtime (days)	Blower VFD (Hz)	*Back Pressure (in-H2O)	Outlet Velocity (fpm)	Outlet Flow (scfm)	Effluent Conc. (ppmv)	Influent Conc. (µg/L)	Effluent Conc. (µg/L)	Removal Efficiency (%)
12/25/07				20	20	900	44	-	-	-	-
12/26/07				20	20	900	44	-	-	-	-
01/08/08		2,814.79	19	20	19.5	900	44	-	12,000	130	98.9%
01/15/08				20	19.0	900	44	1,100	-	-	-
01/24/08				20	19.0	900	44	-	-	-	-
01/31/08				20	18.5	900	44	-	-	-	-
01/31/08				20	12.5	900	44	-	-	-	-
02/07/08				20	15	900	44	31	-	-	-
02/12/08				20	15	900	44	-	-	-	-
03/18/08		3,653.33	35	20	15	900	44	31	4,100	120	97.1%
03/28/08				20	16	900	44	-	-	-	-
AVG	-	-	-	20	17	900	44	387	8,050	125	97.99%

Vic's Auto, 245 8th Street, Oakland, California

*Air will leak from air stripper if backpressure exceeds 30 to 35 in-H2O as tested on June 11, 2007

NOTES:

Hz = hertz (used to control flow rate) in-H2O = inche of water scfm = standard cubic feet per minute ppmv = parts per million by volume µg/L = micrograms per Liter of water

1) System started up and first discharge to the sanitary sewer

2) Air stripper cleaned due to high backpressure

3)

4)

5)

TABLE 13: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (μg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
06/26/07	1	0.00	-	0	-	-	-	-	-	-	1.5	<1.0	-	Ν	Ν	1,000	25	97.50%	-	-	-
06/27/07		4.84	0.2	780	780	3,868	161	2.69	-	-	1.5	<1.0	-	N	N	420	25	94.05%	0.0127	0.0026	0.00
06/28/07		9.68	0.2	1,300	520	2,579	107	1.79	-	-	1.5	<1.0	-	N	N	6,400	25	99.61%	0.1369	0.0302	0.01
07/03/07		13.47	0.2	1,800	500	3,166	132	2.20	-	-	1.5	<1.0	-	N	N	-	-	-	-	-	-
07/09/07		25.12	0.5	4,310	2,510	5,171	215	3.59	-	-	2	<1.0	-	N	N	-	-	-	-	-	-
07/10/07		28.29	0.1	5,000	690	5,224	218	3.63	-	-	3	<1.0	-	N	N	-	-	-	-	-	-
07/11/07		52.72	1.0	7,280	2,280	2,240	93 7	1.56	-	-	3	<1.0	-	N V	N N	-	-	-	-	-	-
07/12/07 07/27/07		70.48 103.41	0.7	7,400 8,580	120 1,180	162 860	7 35.8	0.11 0.60	-	-	5	<1.0 <1.0	-	Y N	N N	-	-	-	-	-	-
07/30/07		103.41	1.4 0.7	8,380 9,200	620	800 844	35.8	0.60	-	-	2 2	<1.0	-	N	N N	_	-	-	-	-	-
08/01/07		160.40	0.7 1.6	9,200 13,400	4,200	2,560	107	0.39 1.78	-	_	5	<1.0	-	N V	N N	-	_	_	_	_	-
08/07/07		278.73	4.9	14,470	4,200 1,070	2,300	9.0	0.15		_	2	<1.0	_	N	N	_		_		_	_
08/17/08	2	444.73	6.9	25,000	10,530	1,522	63.4	1.06	2	2.5	2.5	<1.0	Y	N	N	_	-	_	_	_	_
08/21/07	2	505.98	2.6	33,000	8,000	3,135	131	2.18	7	2.5	2.5	<1.0	Ŷ	N	N	_	-	-	-	-	-
08/22/07		529.98	1.0	34,110	1,110	1,110	46	0.77	2	2.5	2.5	<1.0	N	N	N	5,300	25	99.53%	0.0488	1.47	0.25
08/23/07		554.07	1.0	36,710	2,600	2,590	108	1.80	2	2.5	2.5	<1.0	Ν	Ν	Ν	_	-	-	_	-	-
08/27/07		648.48	3.9	45,800	9,090	2,311	96	1.60	10	>7	>7	-	Y	Y	Y	_	-	-	-	-	-
08/31/07		744.48	4.0	50,820	5,020	1,255	52	0.87	2	2.5	2.5	<1.0	Ν	N	Ν	-	-	-	-	-	-
09/05/08		862.48	4.9	57,100	6,280	1,277	53	0.89	10	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
09/24/07		895.50	1.4	65,360	8,260	6,004	250	4.17	10	2.5	2.5	<1.0	Y	Ν	Ν	-	-	-	-	-	-
10/01/07		1,087.50	8.0	99,000	33,640	4,205	175	2.92	15	>10	>10	2	Y	Ν	Y	-	-	-	-	-	-
10/17/07	3	1,238.96	6.3	140,710	41,710	6,609	275	4.59	11	4	4	2	Ν	Ν	Ν	84	25	70.24%	0.0032	1.52	0.25
10/23/07		1,383.93	6.0	173,260	32,550	5,389	225	3.74	24	7.5	7.5	2.5	Ν	Ν	Ν	-	-	-	-	-	-
10/25/07	4	1,395.35	0.5	175,600	2,340	4,918	205	3.42	>30 / 7.5	8 / 8	8 / 8	>5 / >5	Y	Ν	Ν	-	-	-	-	-	-
11/07/07		1,708.55	13	223,380	47,780	3,661	153	2.54	14	14.5	14.5	OFFLINE	Y	N	Ν	120	25	79.17%	0.0029	1.59	0.26
11/08/07		1,729.55	0.9	227,190	3,810	4,354	181	3.02	16	16.5	16.5	OFFLINE	Ν	Ν	Ν	-	-	-	-	-	-
11/13/07		1,808.50	3.3	244,360	17,170	5,220	217.5	3.62	14	14.5	15	OFFLINE	Ν	Ν	Ν	-	-	-	-	-	-
11/16/07		1,874.21	2.7	259,600	15,240	5,566	232	3.87	17	17.5	18	OFFLINE	Ν	N	N	-	-	-	-	-	-
11/20/07	5	1,968.57	3.9	279,190	19,590	4,983	208	3.46	19	19.5	20	OFFLINE	N	N	N	-	-	-	-	-	-
11/21/07		1,992.57	1.0	287,450	8,260	8,260	344	5.74	19	19.5	20	OFFLINE	N	N	N	-	-	-	-	-	-
11/27/07		2,106.56	4.7	320,320	32,870	6,921	288	4.81	20.5	21.5	21.5	OFFLINE	Y	N	N	-	-	-	-	-	-
11/29/07		2,131.25	1.0	328,040	7,720	7,504	313	5.21	18/4.5	18.5 / 5.5	19/6.0	OFFLINE	Y	Y	N	-	-	-	-	-	-
12/04/07		2,229.83	4.1	355,820	27,780	6,763	282	4.70	17 / 7	17.5 / 7.5	17.5 / 7.5	OFFLINE	Y	Y	N N	-	-	-	-	-	-
12/12/07		2,365.83	5.7	391,500	35,680	6,296	262 278	4.37	20 / 5	10/4.5	10/4.5	OFFLINE OFFLINE	Y	Y	N N	65,000	25	99.96%	3.4067	92.55	15.42
12/14/07 12/26/07		2,379.36 2,545.24	0.6 6.9	395,260 440,900	3,760 45,640	6,670 6,603	278 275	4.63 4.59	11 13	4.0 13.5	4.5 14	OFFLINE OFFLINE	N N	N N	N N	-	-	-	-	-	-
12/20/07		2,343.24	0.9	440,900	45,040	0,003	215	4.37	15	13.3	14	OFFLINE	IN	IN	IN	-	-	-	-	-	-

TABLE 13: ACTIVATED CARBON ABSORBER PERFORMANCE & MASS REMOVAL DATA SUMMARY

Sample Date	Notes	Hour Meter	Actual Runtime (days)	Flow Totalizer (gallons)	Gallons Pumped/ Treated	Average Flow Rate (gpd)	Average Flow Rate (gph)	Average Flow Rate (gpm)	Bag filter *Inlet Pressure (psig)	Bag filter *Outlet Pressure (psig)	GAC-1 ** Inlet Pressure (psig)	GAC-2 **Inlet Pressure (psig)	Bag filter Changed? (Y/N)	GAC Back- washed? (Y/N)	GAC Changed? (Y/N)	TPH-g Influent Conc. (µg/L)	TPH-g Effluent Conc. (µg/L)	Removal Efficiency (%)	Mass Removal Rate (lbs/day)	Total Mass Removed (lbs)	Total Mass Removed (gallons)
01/08/08		2,814.79	11.2	512,760	71,860	6,398	267	4.44	18.5	19	19	OFFLINE	OFFLINE	Ν	Ν	130	25	80.77%	0.0056	92.66	15.44
01/15/08		3,016.36	8.4	541,920	29,160	3,472	145	2.41	19	20	20	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
01/22/08		3,064.42	2.0	550,780	8,860	4,424	184	3.07	16.5 / 4	17 / 4	17 / 4	OFFLINE	OFFLINE	Y	Ν	-	-	-	-	-	-
01/31/08		3,276.38	8.8	608,890	58,110	6,580	274	4.57	16 / 8	16.5 / 8.5	16.5 / 8.5	OFFLINE	OFFLINE	Y	Ν	-	-	-	-	-	-
02/07/08		3,443.01	6.9	657,140	48,250	6,950	290	4.83	19	19.5	20	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
02/12/08		3,559.25	4.8	685,990	28,850	5,957	248	4.14	25.5	26	26	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
03/18/08		3,653.33	3.9	715,480	29,490	7,523	313	5.22	16.5	17	17	OFFLINE	OFFLINE	Y	Ν	120	25	79.17%	0.0060	92.82	15.47
03/28/08		3,850.81	8.2	760,730	45,250	5,499	229	3.82	4	4.5	5	OFFLINE	OFFLINE	Ν	Ν	-	-	-	-	-	-
AVG	-	-	-	-	-	4268	178	3.0	-	-	-	-	-	-	-	8,730	25	88.21%	0.4028	-	-

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

gpd = gallons per day

 $gph = gallons \ per \ hour$

gpm = gallons per minute

psig = pounds per square inch

 $\mu g/L = micrograms per Liter of water (ppb)$

lbs/day = pounds per day

GAC = granular activated carbon

Conc. = concentration

TPH-g = Total Petroleum Hydrocarbons as Gasoline

TPH-g by SW8015Cm

Minimum EBMUD wastewater discharge permit reporting requirements are:

- monthly flow totalizer readings

- volume of groundwater treated during this reporting period

- total volume of groundwater treated to date

- description of any operationsl changes during this reporting period

Mass Removal Rate (lbs/day) = $(1 \text{ gal/min})*(1,000\mu g/L - 25\mu g/L)*(3.785L/gallon)*(1440/min/day)*(2.2lbs/10^9\mu g)$ Total Mass Removed (lbs) = $(1 \text{ gallon})*(1,000\mu g/L - 25\mu g/L)*(3.785L/gallon)*(2.2lbs/10^9\mu g)$ 1 gallon of gas = ~ 6 pounds

1/2 the DL was used for removal efficiency and mass removal calculations DL for THP-g by modified EPA Method $8015=50\,\mu g/L$

*Bag filter inlet and outlet pressures are recorded before and after the bag filter is changed using the following convention: (pressure before / pressure after) **GAC inlet and outlet pressures are recorded before and after the vessel is backwashed using the following convention: (pressure before / pressure after)

1) System startup and first dischrage to sanitary sewer

2) Bag filter (LCO8) pre-filter for sediment removal installed and started up on 08/17/07

3) 1,000-pound (PV-1000) carbon absorber (up to 75 psig) installed on 10/5/07 and started up on 10/9/07

4) 200-pound (ASC-200) carbon absorber (i.e., C-2) taken offline permanently on 10/25/07

5) Extraction wells MW-10, MW-11, and MW-12 brought online 11/20/07

TABLE 14: HVDPE PROCESS MONITORING SCHEDULE

Field Point Name	Sample Port Description/Location	TPH-g (SW8015Cm)	BTEX &MTBE (SW8021B)	TVH (ppmv)	CH4 (%)	O2 (%)	CO2 (%)
MW-1S	Sample Port at DPE Manifold	М	М	М	М	М	М
MW-1S MW-2S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-25 MW-5S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-6S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-05 MW-7S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-10S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-105 MW-11S	Sample Port at DPE Manifold	M	M	M	M	M	M
MW-12S	Sample Port at DPE Manifold	M	M	M	M	M	M
PRED	Influent Vapor Sample Port	М	М	М	М	М	М
POSTD	Oxidizer Inlet Sample Port	М	М	М	М	М	М
AS	Stipper Outlet Vapor Sample Port	M	М	М	М	М	М
STACK	Stack Gas Discharge Sample Port	М	М	М	Μ	М	М
GP-1-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-1-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-2-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-2-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-3-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-3-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-4-5'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
GP-4-10'	Permanent Soil Gas Probe	-	-	Q	Q	Q	Q
INF	Influent Water Sample Port	М	М	-	-	-	-
POST-AS	Water Sample Port After Stripper	М	М	-	-	-	-
POST-C1	Water Sample Port After C-1	M	M	-	-	-	-
EFF	Effluent Water Sample Port	М	М	-	-	-	-

Vic's Auto, 245 8th Street, Oakland, California

NOTES:

W = weekly

- BW = bi-weekly
- $\mathbf{M} = \mathbf{monthly}$
- A = annual
- SA = semi-annual
- AN = as needed
- $\mathbf{SP} = \mathbf{sample} \ \mathbf{port}$

HC = total volatile hydrocarbon

ppmv = parts per million by volume

% = percent concentration by volume

TVH = total volatile hydrocarbons (calibrated w/ hexane)

- CH4 = methane
- O2 = oxygen

CO2 = carbon dioxide

TVH, CH4, O2, and CO2 measured in the field w/ RKI Eagle gas detector

*Additional water analysis for Total Oil and Grease Hydrocarbon by Method HEM-1664SGT required every 6 months by EBMUD permit **POSTD and STACK required every month by BAAQMD permit

***Soil gas sampling for vapor intrusion evaluation is conducted quarterly with routine groundwater monitoring events

APPENDIX A

MONITORING WELL FIELD SAMPLING FORMS

Monitoring Well Number: MW-1

Project Name	: Vic's Automotive	Date of Sampling: 2/14/2008
Job Number	: 116907	Name of Sampler: A Nieto
Project Address	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		4				
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)	32.55					
Depth of Well		28.00				
Depth to Water (from top of casing)		15.94				
Depth to Free Product (from top of casing)	Not detected					
Water Elevation (feet above msl)		16.61				
Well Volumes Purged		3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		23.4				
Actual Volume Purged (gallons)	urged (gallons) 24.0					
Appearance of Purge Water	Dark, clears at 2.5 gal, sheen noted					
Free Product Present?	No	Thickness (ft):	Sheen			

GROUNDWATER SAMPLES

Number of Sampl		3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
10:00 AM	1	20.09	6.88	871	0.71	-100.4	Dark
	2	20.24	6.87	865	0.42	-102.0	Clear
	3	20.33	6.86	861	0.30	-101.6	Clear
	6	20.52	6.84	871	0.20	-99.0	Clear
	9	20.58	6.84	855	0.36	-93.6	Clear
	12	20.50	6.86	802	1.43	-80.9	Clear
	15	20.20	6.99	774	1.67	-73.0	Clear
	18	20.49	6.82	762	1.20	-64.1	Clear
	21	20.46	6.82	762	1.20	-64.1	Clear
10:26 AM	24	20.46	6.82	766	1.65	-62.3	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Black with silt present and strong hydrocarbon odors. Clears at 2.5 gallons. Sheen present in puge water. Dry at 12 gallons (10:08am). Recharge at 10:20am.

Monitoring Well Number: MW-2

Project Nam	e: Vic's Automotive	Date of Sampling: 2/14/2008
Job Numb	r: 116907	Name of Sampler: A Nieto
Project Addre	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)		33.24				
Depth of Well		28.00				
Depth to Water (from top of casing)		16.91				
Water Elevation (feet above msl)	16.33					
Well Volumes Purged		3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		5.3				
Actual Volume Purged (gallons)	6.0					
Appearance of Purge Water	Dark					
Free Product Present?	No Thickness (ft): -					

GROUNDWATER SAMPLES

Number of Sample		3 VOAs					
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
8:47 AM	1	18.48	6.91	1,210	0.94	-119.9	Dark
	2	18.57	6.90	1,159	0.51	-110.0	Clear
	3	18.67	6.88	1,080	0.34	-96.1	Clear
	4	18.74	6.85	1,037	0.29	-85.1	Clear
	5	18.78	6.83	1031	0.29	-78.6	Clear
8:52 AM	6	18.80	6.79	1028	0.28	-71.9	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark with strong hydrocarbon odors. Clears by 1.0 gallons
Iron bacteria stuck on stinger tube.

Monitoring Well Number: MW-3

Project Name:	Vic's Automotive	Date of Sampling: 2/14/2008
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		4			
Wellhead Condition	ОК 🗸 🗸				
Elevation of Top of Casing (feet above msl)	34.25				
Depth of Well		25.00			
Depth to Water (from top of casing)		18.12			
Water Elevation (feet above msl)	16.13				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	13.4				
Actual Volume Purged (gallons)	14				
Appearance of Purge Water	Slightly brown, fast clearing				
Free Product Present?	PNO Thickness (ft): -				

	GROUNDWATER SAMPLES										
Number of Samp	les/Container S	Size		3 VOAs							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments				
7:55 AM	1	19.41	6.57	908	1.40	111.4	Light brown				
	2	19.50	6.58	907	1.06	98.7	Clear				
	3	19.54	6.56	908	0.88	87.7	Clear				
	4	19.58	6.55	900	0.81	69.2	Clear				
	5	19.60	6.55	888	0.83	53.2	Clear				
	7	19.68	6.56	85.2	0.80	23.4	Clear				
	9	19.72	6.56	861	0.62	13.2	Clear				
	11	19.76	6.56	878	0.50	10.6	Clear				
	14	19.80	6.57	912	0.44	22.9	Clear				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Milky brown with no hydrocarbon odors noted. Clears by 2.0 gallons

Monitoring Well Number: MW-4 Project Name: Vic's Automotive Date of Sampling: 2/14/2008 Job Number: 116907 Name of Sampler: A Nieto Project Address: 245 8th Street, Oakland Vicion Vicion

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)	34.42				
Depth of Well	25.00				
Depth to Water (from top of casing)	18.52				
Water Elevation (feet above msl)	15.90				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	12.6				
Actual Volume Purged (gallons)	13.0				
Appearance of Purge Water	Reddish brown, clears at 0.5 gallon.				
Free Product Present?	t? No Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
12:40 PM	1	18.11	7.17	524	6.76	-4.3	Clear
	2	18.11	7.13	537	6.91	1.8	Clear
	3	18.11	7.07	545	7.04	6.7	Clear
	4	18.13	7.00	537	7.11	15.9	Clear
	5	18.15	6.85	520	6.59	22.8	Clear
	7	18.16	6.81	506	5.95	25.8	Clear
	9	18.18	6.72	520	5.34	30.1	Clear
	11	18.20	6.75	523	5.14	27.4	Clear
12:52 PM	14	18.22	6.76	523	5.03	26.6	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Reddish brown with no hydrocarbon odor. Clears at 0.5 gallon.

Monitoring Well Number: MW-5

Project Name:	Vic's Automotive	Date of Sampling: 2/14/2008
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		1			
Weil Casing Diameter (2 /4 /0)	4				
Wellhead Condition	OK				
Elevation of Top of Casing (feet above msl)	33.33				
Depth of Well	22.00				
Depth to Water (from top of casing)	16.58				
Water Elevation (feet above msl)	16.75				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		10.5			
Actual Volume Purged (gallons)	8.0				
Appearance of Purge Water	Dark gray, clears by 0.5 gallons				
Free Product Present?	nt? No Thickness (ft): -				

GROUNDWATER SAMPLES							
Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
8:12 AM	1	20.01	6.89	844	0.47	-127.6	Clear
	2	20.17	6.90	821	0.36	128.2	
	3	20.31	6.89	797	0.31	-123.0	
	4	20.37	6.88	709	0.28	-108.0	
	5	20.36	6.88	692	0.28	-105.2	
	7	20.28	6.90	668	0.31	-96.4	
	9	20.15	6.87	634	1.15	-56.9	
8:40 AM	11	20.35	6.86	637	2.18	-46.0	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark gray with strong hydrocarbon odors. Clears at 0.5 gallons.			
Dry at 7.0 gallons (8:18am). Recharged at 8:37am.			

Monitoring Well Number: MW-6

Project Name:	Vic's Automotive	Date of Sampling: 2/14/2008
Job Number:	116907	Name of Sampler: A Nieto
Project Address:	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4					
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)	32.82					
Depth of Well		22.00				
Depth to Water (from top of casing)	15.54					
Depth to Free Product (from top of casing)	None					
Water Elevation (feet above msl)	17.28					
Well Volumes Purged		3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	12.5					
Actual Volume Purged (gallons)	13.0					
Appearance of Purge Water	rge Water Dark, clears at 2 gallons, sheen noted					
Free Product Present?	No	Thickness (ft): Sheen				

GROUNDWATER SAMPLES

Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
9:30 AM	1	19.65	6.68	698	1.25	-42.5	Dark
	2	19.71	6.64	698	0.71	-44.3	Clear
	3	19.73	6.63	700	0.50	-44.6	Clear
	4	19.75	6.61	691	0.36	-42.4	Clear
	6	19.78	6.61	658	0.26	-39.0	Clear
	8	19.76	6.62	701	0.31	-42.3	Clear
	10	19.65	6.82	694	1.09	-46.7	Clear
	13	19.78	6.74	667	0.79	-42.7	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark with strong hydrocarbon odor. Clears at 2.0 gallons.

Sheen noted in purge water. Dry at 9 gallons (9:38am). Recharged at 9:52am.

Monitoring Well Number: MW-7

Project Nam	e: Vic's Automotive	Date of Sampling: 2/14/2008
Job Numb	r: 116907	Name of Sampler: A Nieto
Project Addre	245 8th Street, Oakland	

MONITORING WELL DATA

$ M_{c} = 0$		4					
Well Casing Diameter (2"/4"/6")	ļ	4					
Wellhead Condition	OK						
Elevation of Top of Casing (feet above msl)	33.07						
Depth of Well		22.00					
Depth to Water (from top of casing)		16.27					
Depth to Free Product (from top of casing)	NONE						
Water Elevation (feet above msl)	16.80						
Well Volumes Purged		0					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	⁶ 11.1						
Actual Volume Purged (gallons)	12.0						
Appearance of Purge Water	Gray, fast clearing				Gray, fast clearing		
Free Product Present?	nt? No Thickness (ft): Sheen						

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
9:00 AM	1	18.52	6.93	775	0.90	-102.9	Clear
	2	18.57	6.94	774	0.63	-104.3	Clear
	3	18.60	6.92	821	0.42	-102.9	Clear
	4	18.63	6.90	826	0.37	-101.6	Clear
	6	18.77	6.99	712	0.53	-100.4	Clear
	8	18.64	7.12	707	1.85	-66.6	Clear
	10	18.78	7.07	711	1.10	-68.1	Clear
9:27 AM	12	18.82	7.05	720	0.85	-68.5	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark gray with strong hydrocarbon ordors.

Dry at 6 gallons (9:04). Recharged at 9:22am.

Monitoring Well Number: MW-10

Project Nam	e: Vic's Automotive	Date of Sampling: 2/14/2008
Job Numb	r: 116907	Name of Sampler: A Nieto
Project Addre	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		4					
Wellhead Condition	ок						
Elevation of Top of Casing (feet above msl)	31.17						
Depth of Well		22.00					
Depth to Water (from top of casing)		15.59					
Water Elevation (feet above msl)	15.58						
Well Volumes Purged	3						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	12.4						
Actual Volume Purged (gallons)	13				13		
Appearance of Purge Water	Clear at 1.0 gallon						
Free Product Present?	No	Thickness (ft): -					

	GROUNDWATER SAMPLES							
Number of Samp	les/Container S	Size		3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments	
10:54 AM	1	18.70	6.76	625	1.54	-36.7	Clear	
	2	18.75	6.72	625	1.11	-36.5	Clear	
	3	18.77	6.71	622	0.78	-38.1	Clear	
	5	18.81	6.70	606	0.49	-37.4	Clear	
	7	18.87	6.70	594	0.36	-37.5	Clear	
	9	19.04	6.71	581	0.37	-40.9	Clear	
	11	19.11	6.77	617	0.45	-46.2	Clear	
11:06 AM	13	19.12	6.77	626	0.59	-46.6	Clear	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark gray with strong hydrocarbon odor. Clears quickly with some slit and clay present in purge water.

Monitoring Well Number: MW-11

Project Nam	e: Vic's Automotive	Date of Sampling: 2/14/2008
Job Numb	r: 116907	Name of Sampler: A Nieto
Project Addre	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4						
Wellhead Condition	ОК	•					
Elevation of Top of Casing (feet above msl)	31.78						
Depth of Well		22.00					
Depth to Water (from top of casing)	16.28						
Water Elevation (feet above msl)	15.50						
Well Volumes Purged	3						
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		11.1					
Actual Volume Purged (gallons)	12.0				12.0		
Appearance of Purge Water	Dark, clears at 2.0 gallon						
Free Product Present?	No	Thickness (ft): -					

	GROUNDWATER SAMPLES							
Number of Samp	Number of Samples/Container Size			3 VOAs				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO(mg/L)	ORP (meV)	Comments	
11:14 AM	1	17.91	6.90	664	1.28	-33.1	Dark	
	2	17.92	6.86	683	0.77	-31.3	Clear	
	3	17.93	6.80	672	0.44	-29.0	Clear	
	4	17.94	6.76	682	0.40	-28.1	Clear	
	6	18.10	6.76	675	0.28	-36.1	Clear	
	8	18.14	6.77	670	0.25	-38.5	Clear	
	10	18.17	6.78	672	0.25	-41.7	Clear	
11:25 AM	12	18.19	6.81	672	0.26	-43.7	Clear	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Dark with strong hydrocarbon odors. Clears at 2.0 gallons.

Monitoring Well Number: MW-12

Project Nam	e: Vic's Automotive	Date of Sampling: 2/14/2008
Job Numb	r: 116907	Name of Sampler: A Nieto
Project Addre	245 8th Street, Oakland	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	4		
Wellhead Condition	ОК 🗸		
Elevation of Top of Casing (feet above msl)	32.05		
Depth of Well		22.00	
Depth to Water (from top of casing)		16.50	
Water Elevation (feet above msl)	15.55		
Well Volumes Purged		11	
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)		10.7	
Actual Volume Purged (gallons)	11.0		
Appearance of Purge Water		Clear, fast clearing	
Free Product Present?	No	Thickness (ft): -	

GROUNDWATER SAMPLES							
Number of Sampl	Number of Samples/Container Size			3 VOAs			
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
11:33 AM	1	17.63	6.83	758	1.06	-56.7	Clear
	2	17.64	6.79	765	0.48	-57.7	Clear
	3	17.65	6.77	787	0.40	-58.1	Clear
	5	17.68	6.72	821	0.27	-66.9	Clear
	7	17.76	6.70	758	0.22	-54.0	Clear
	9	17.94	6.73	765	0.31	-48.3	Clear
11:43 AM	11	17.01	6.76	768	0.37	-49.5	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with strong hydrocarbon odors. Some silts present during purging.

APPENDIX B

SOIL GAS FIELD SAMPLING FORMS

SOIL GAS PROBE ID: GP-1-5

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	8:48
Project Address: 245 8th Street, Oakland, California		End Time:	9:10
Project Address:	245 our Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA		
Starting Vacuum (in-Hg)	-27.0	
Ending Vacuum (in-Hg)	-5.0	
Flow Controller / Sampling Flow Rate (mL/min)	167	
Tubing Inside Diameter (1/8" or 1/4")	1/8"	
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)	
Wellbox Condition	WELL BOX IN GOOD CONDITION	
Depth of Probe (ft bgs)	5	
Length of Tubing Above Grade (ft)	2	
Total Length of Tubing Purged (ft)	7	
Number of Purge Volumes (default = 3 purge volumes)	3	
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	50 mL	
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO	
Moisture / Water Present in Tubing?	NO	

SOIL GAS SAMPLING EQUIPMENT		
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister		
Summa Canister Number	4740	
Sampling Manifold / Flow Controller Number	-	
Leak Check Compound	Isopropyl Alcohol (2-propanol)	

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-1-10

Project N	ame:	Vic's Automotive	Date of Sampling:	02/14/08
Job Nur	nber:	116907	Start Time:	9:03
Project Address: 245 8th Street, Oakland, California		End Time:	9:27	
Project Addi	Address: 245 8th Street, Oakland, California		Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA		
Starting Vacuum (in-Hg)	-29.0	
Ending Vacuum (in-Hg)	-3.0	
Flow Controller / Sampling Flow Rate (mL/min)	167	
Tubing Inside Diameter (1/8" or 1/4")	1/8"	
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)	
Wellbox Condition	WELL BOX IN GOOD CONDITION	
Depth of Probe (ft bgs)	10	
Length of Tubing Above Grade (ft)	2	
Total Length of Tubing Purged (ft)	12	
Number of Purge Volumes (default = 3 purge volumes)	3	
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	86 mL	
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO	
Moisture / Water Present in Tubing?	NO	

SOIL GAS SAMPLING EQUIPMENT		
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister		
Summa Canister Number	4752	
Sampling Manifold / Flow Controller Number	-	
Leak Check Compound	Isopropyl Alcohol (2-propanol)	

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-2-5

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	8:26
Project Address: 245 8th Street, Oakland, California		End Time:	8:50
Project Address:	245 our Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA		
Starting Vacuum (in-Hg)	-29.0	
Ending Vacuum (in-Hg)	-5.0	
Flow Controller / Sampling Flow Rate (mL/min)	167	
Tubing Inside Diameter (1/8" or 1/4")	1/8"	
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)	
Wellbox Condition	WELL BOX IN GOOD CONDITION	
Depth of Probe (ft bgs)	5	
Length of Tubing Above Grade (ft)	2	
Total Length of Tubing Purged (ft)	7	
Number of Purge Volumes (default = 3 purge volumes)	3	
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	50 mL	
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO	
Moisture / Water Present in Tubing?	NO	

SOIL GAS SAMPLING EQUIPMENT		
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister		
Summa Canister Number	4707	
Sampling Manifold / Flow Controller Number	-	
Leak Check Compound	Isopropyl Alcohol (2-propanol)	

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-2-10

Project Na	e: Vic's Automotive	Date of Sampling:	02/14/08
Job Num	<mark>r:</mark> 116907	Start Time:	8:22
	245 8th Street, Oakland, California	End Time:	9:30
Project Addre		Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA	
Starting Vacuum (in-Hg)	-29.0
Ending Vacuum (in-Hg)	-5.0
Flow Controller / Sampling Flow Rate (mL/min)	167
Tubing Inside Diameter (1/8" or 1/4")	1/8"
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)
Wellbox Condition	WELL BOX IN GOOD CONDITION
Depth of Probe (ft bgs)	10
Length of Tubing Above Grade (ft)	2
Total Length of Tubing Purged (ft)	12
Number of Purge Volumes (default = 3 purge volumes)	3
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	86 mL
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO
Moisture / Water Present in Tubing?	NO

SOIL GAS SAMPLING EQUIPMENT	
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister	
Summa Canister Number	3653
Sampling Manifold / Flow Controller Number	-
Leak Check Compound	Isopropyl Alcohol (2-propanol)

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-3-5

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	10:36
Draiget Address:	245 9th Street Ookland California	End Time:	11:05
Project Address:	245 8th Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA	
Starting Vacuum (in-Hg)	-27.5
Ending Vacuum (in-Hg)	-5.0
Flow Controller / Sampling Flow Rate (mL/min)	167
Tubing Inside Diameter (1/8" or 1/4")	1/8"
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)
Wellbox Condition	WELL BOX IN GOOD CONDITION
Depth of Probe (ft bgs)	5
Length of Tubing Above Grade (ft)	2
Total Length of Tubing Purged (ft)	7
Number of Purge Volumes (default = 3 purge volumes)	3
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	50 mL
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO
Moisture / Water Present in Tubing?	NO

SOIL GAS SAMPLING EQUIPMENT	
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister	
Summa Canister Number	4753
Sampling Manifold / Flow Controller Number	-
Leak Check Compound	Isopropyl Alcohol (2-propanol)

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-3-10

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	10:54
Draiget Address:	245 8th Street, Oakland, California	End Time:	11:24
Project Address:	245 our Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA	
Starting Vacuum (in-Hg)	-28.5
Ending Vacuum (in-Hg)	-5.0
Flow Controller / Sampling Flow Rate (mL/min)	167
Tubing Inside Diameter (1/8" or 1/4")	1/8"
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)
Wellbox Condition	WELL BOX IN GOOD CONDITION
Depth of Probe (ft bgs)	10
Length of Tubing Above Grade (ft)	2
Total Length of Tubing Purged (ft)	12
Number of Purge Volumes (default = 3 purge volumes)	3
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	86 mL
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO
Moisture / Water Present in Tubing?	NO

SOIL GAS SAMPLING EQUIPMENT	
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister	
Summa Canister Number	4760
Sampling Manifold / Flow Controller Number	-
Leak Check Compound	Isopropyl Alcohol (2-propanol)

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-4-5

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	10:12
Draiget Address:	245 9th Street Ookland California	End Time:	10:37
Project Address:	245 8th Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS PROBE DATA	
Starting Vacuum (in-Hg)	-27.5
Ending Vacuum (in-Hg)	-5.0
Flow Controller / Sampling Flow Rate (mL/min)	167
Tubing Inside Diameter (1/8" or 1/4")	1/8"
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)
Wellbox Condition	WELL BOX IN GOOD CONDITION
Depth of Probe (ft bgs)	5
Length of Tubing Above Grade (ft)	2
Total Length of Tubing Purged (ft)	7
Number of Purge Volumes (default = 3 purge volumes)	3
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	50 mL
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO
Moisture / Water Present in Tubing?	NO

SOIL GAS SAMPLING EQUIPMENT	
Number of Samples / Container Size and Type One (1) 1-Liter Summa Canister	
Summa Canister Number	4892
Sampling Manifold / Flow Controller Number	-
Leak Check Compound	Isopropyl Alcohol (2-propanol)

NOTES & COMMENTS

cc = cubic centimeter mL = milliliter

SOIL GAS PROBE ID: GP-4-10

Project Name:	Vic's Automotive	Date of Sampling:	02/14/08
Job Number:	116907	Start Time:	10:20
Draiget Address:	245 8th Street, Oakland, California	End Time:	11:00
Project Address:	245 oth Street, Oakland, California	Name of Sampler:	R. Bartlett

SOIL GAS I	PROBE DATA
Starting Vacuum (in-Hg)	-
Ending Vacuum (in-Hg)	-
Flow Controller / Sampling Flow Rate (mL/min)	-
Tubing Inside Diameter (1/8" or 1/4")	-
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	KYNAR (PVDF)
Wellbox Condition	WELL BOX IN GOOD CONDITION
Depth of Probe (ft bgs)	10
Length of Tubing Above Grade (ft)	2
Total Length of Tubing Purged (ft)	12
Number of Purge Volumes (default = 3 purge volumes)	0
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (2.40 mL/ft) and 1/4" I.D. (9.60 mL/ft)	0.0
Appreciable Amount of Rain (>1/2") in Last Five Days?	NO
Moisture / Water Present in Tubing?	YES

SOIL GAS SAMP	PLING EQUIPMENT
Number of Samples / Container Size and Type	One (1) 1-Liter Summa Canister
Summa Canister Number	-
Sampling Manifold / Flow Controller Number	-
Leak Check Compound	Isopropyl Alcohol (2-propanol)

NOTES & COMMENTS

Excessive moisture in tubing, sampling not undertaken

cc = cubic centimeter mL = milliliter 1 L = 1000 mL 1 mL = 1 cc

APPENDIX C

LABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION

McCampbell A		Web: www.mce	CA 94565-1701 nain@mccampbell.com 925-252-9269	
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	02/13/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	02/13/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/19/08
Wallat Creek, CAY 94597	Client P.O.:		Date Completed:	02/19/08

WorkOrder: 0802310

February 19, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	Telephor	McCAM 1 ne: (925) 798	10 2 nd A PACHEO	L ANAI VENUE SC CO, CA 94	DUTH,	#D7 60				98-1	622				CHAIN OF CUSTODY R TURN AROUND TIME									.,	72 HR 5 DAY								
	ort To: Ricky			E	Bill To):									Analysis Request							t		0			(Other	r	Con	ments		
Com	pany: AEI Co	and product the state of the st								_							()																
	the second second second second second second second second second second second second second second second se	amino Diabl	and the second se							_			+		8015		Grease (5520 E&F/B&F)															I	
	the second second second second second second second second second second second second second second second s	it Creek, CA	94597		Mail		-	-	-	cons	ulta	ant	s.co	m	. +		3&F	~						List)								1	
	(925) 283-60	00 ext. 148			ax: (_	602/8020		5201	18.1						get I								I	
	ect #: 116907	e ce office.	/		rojec	t Na	ne:	Vic	's A	uton	noti	ive			602/		e (55	1S (4		50)				Tar			_						
	ect Location:		et, Oakla	ind							_	_		_	EPA		reas	-pq		/ 80		z		8260 (8010 Target			010						
Sam	pler Signatur	e: An	10	A			_				-	ME	THO	D.	P N	_	& G	roca		602		S		0 (8			0.2/6						
		'/	SAMI	PLING		ers	1	MA	TR	IX			SERV		s Gas	8015	Ю	Hyd		AdS		PC-	8				1/239						
	MPLE ID Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge Other	lce	HCI	HNO	Other	MBTEX & TPH at	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB'S UNLY EPA 624 / 8240 / 8260	EPA 625 / 8270	HVOCs by EPA	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI					
MW-	-1		2/13/08	10:40	3	Vous	X		1	1	7	< 2	x		Х								\top	\top	t				\square	+			
MW-	2		í	9:40	1	1	X				X	()	X		Х																		
MW-	-3			gra			X				X	()	X		X								1	\top						-	1	•	
MW-	4			1:04			X		+	+	X		K		X							-	1	1		1				-	1		
MW-	5			9:20			X		-	+	1		x		X					-	-	-	+	+	-	1				-	+	<u> </u>	
MW-	6			10:05			X	+	+	+	1		x		X				-	-	+	+	+	X		+				+	+		
MW-				10.01			X	-	-	+	X				X						+	-	+	r		-				-	-		
MW-	10			9:50			X	-	+	+	_	()	-		X				-	-	+	+	+	+	\vdash					+	+	-	
MW-	11			12:10	1		x		-	+		()	_		X				-		-	-	+	-	\vdash	-				+	+	-	
MW-	12		De	12:15		+	X		+	+	X	()	κ.		X					-	+	+	+	+		-				+	+		
			R						-														-							_			
142	uished By:	~	Date: U13/05 Date:	Time: Sy : (Sg Time:	11	ived B	11	U	2	0	2.	-	б		0	300	DD C		DIT	TON		/	/	PRI API	RO	PRI	ATE	DN <u>H</u>		0&G	M	METALS	отні
Relinq	uished By:		Date:	Time:	Rece	ived B	y:							-	ŀ	IEA	DS	PAC	E A	BSI	NT		7/F	CO	NTA	INE	RS	V	LAB_	HCI	_		

McCampbell Analytical, Inc.

AWA

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, (925) 252	CA 94565-1701 -9262				Work	Order	: 0802	310	(ClientC	ode: A	AEL				
			EDF	Γ	Excel		Fax		🖌 Email		Har	dCopy	🗌 Thi	rdParty		
Report to: Ricky Bradford AEI Consultan 2500 Camino Walnut Creek,	nts Diablo, Ste. #200	Email: rbradford@a TEL: (925) 283-600 ProjectNo: #116907; Vic PO:	. ,	44-28	95	AE 25 W	enise Mo El Consu 500 Cam alnut Cr nockel@	ultants nino Di eek, C	A 9459	7		Dat	uested e Rece e Prin	eived:	5 (02/13/ 02/13/	
								Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0802310-001	MW-1	Water	02/13/08 10:40:00			Α	А							Τ		<u> </u>
0802310-002	MW-2	Water	02/13/08 9:45:00			Α										
0802310-003	MW-3	Water	02/13/08 9:10:00			Α										
0802310-004	MW-4	Water	02/13/08 10:04:00			Α										
0802310-005	MW-5	Water	02/13/08 9:20:00			Α										
0802310-006	MW-6	Water	02/13/08 10:05:00		В	Α								1		
0802310-007	MW-7	Water	02/13/08 9:50:00			Α								1		
0802310-008	MW-10	Water	02/13/08 12:00:00			Α								1		
0802310-009	MW-11	Water	02/13/08 12:10:00			Α										
0802310-010	MW-12	Water	02/13/08 12:15:00			Α										

Test Legend:

1	8010BMS_W	2 G-MBTEX_W	3 PREDF REPORT	4	5
6		7	8	9	10
11		12			

Prepared by: Samantha Arbuckle

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Date a	and Time Received:	02/13/08 4	:51:38 PM
Project Name:	#116907; Vic's A	utomotiv	е			Check	klist completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0802310	Matrix <u>W</u>	<u>ater</u>			Carrie	r: <u>Client Drop-In</u>		
			Chain	of Cu	stodv (C	OC) Informa	ation		
Chain of custody	(propont?			Yes		No 🗆			
	•								
Chain of custody	/ signed when relinqui	ished and re	eceived?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?		Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?			Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC	??	Yes	✓	No 🗆			
Sampler's name	noted on COC?			Yes	✓	No 🗆			
			6.	amplo	Possint	Information			
			<u></u>		-			_	
Custody seals in	tact on shipping conta	iner/cooler?	?	Yes	\checkmark	No 🗆		NA 🗆	
Shipping contain	er/cooler in good conc	lition?		Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	ers intact?			Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?		Yes	✓	No 🗌			
		Samr	alo Prosor	watio	and Ho	d Time (UT) Information		
		Jani		vatioi			<u>j miormation</u>		
All samples rece	ived within holding tim	ie?		Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature			Coole	er Temp:	10.9°C		NA 🗆	
Water - VOA via	ls have zero headspa	ce / no bub	bles?	Yes		No 🗆	No VOA vials submi	tted 🗹	
Sample labels ch	hecked for correct pre	servation?		Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?		Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

<u> </u>	<u>alytical, Inc.</u>		illow Pass Road, Pittsburg, CA accampbell.com E-mail: main		om
"When Ouality	Counts"		none: 877-252-9262 Fax: 92	-	
AEI Consultants	Client Project	ID: #116907; Vic's	Date Sampled:	02/13/08	
	Automotive		Date Received:	02/13/08	
2500 Camino Diablo, Ste. #200	Client Contac	ct: Ricky Bradford	Date Extracted:	02/14/08	
Walnut Creek, CA 94597	Client P.O.:		Date Analyzed		
Walliut Creek, CA 94597	Client F.O		Date Allaryzed	02/14/08	
Halogenated	Volatile Organics by	P&T and GC-MS (801	0 Basic Target List)*		
Extraction Method: SW5030B	Analytical	Method: SW8260B		Work Order:	0802310
Lab ID	0802310-006B				
Client ID	MW-6			- Reporting DF	
Matrix	W			s	W
DF	10				**
Compound	-	Concentration		µg/kg	μg/L
Bromodichloromethane	ND<5.0			NA	0.5
Bromoform	ND<5.0			NA	0.5
Bromomethane	ND<5.0			NA	0.5
Carbon Tetrachloride	ND<5.0			NA	0.5
Chlorobenzene	ND<5.0			NA	0.5
Chloroethane	ND<5.0			NA	0.5
2-Chloroethyl Vinyl Ether	ND<10			NA	1.0
Chloroform	ND<5.0			NA	0.5
Chloromethane	ND<5.0			NA	0.5
Dibromochloromethane	ND<5.0			NA	0.5
1,2-Dichlorobenzene	ND<5.0			NA	0.5
1,3-Dichlorobenzene	ND<5.0			NA	0.5
1,4-Dichlorobenzene	ND<5.0			NA	0.5
Dichlorodifluoromethane	ND<5.0			NA	0.5
1,1-Dichloroethane	ND<5.0			NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0			NA	0.5
1,1-Dichloroethene	ND<5.0			NA	0.5
cis-1,2-Dichloroethene	ND<5.0			NA	0.5
trans-1,2-Dichloroethene	ND<5.0			NA	0.5
1,2-Dichloropropane	ND<5.0			NA	0.5
cis-1,3-Dichloropropene	ND<5.0			NA	0.5
trans-1,3-Dichloropropene	ND<5.0			NA	0.5
Methylene chloride	ND<5.0			NA	0.5
1,1,2,2-Tetrachloroethane	ND<5.0			NA	0.5
Tetrachloroethene	ND<5.0			NA	0.5
1,1,1-Trichloroethane	ND<5.0			NA	0.5
1,1,2-Trichloroethane	ND<5.0			NA	0.5
Trichloroethene	ND<5.0			NA	0.5
Trichlorofluoromethane	ND<5.0			NA	0.5
Vinyl Chloride	ND<5.0	ate Recoveries (%)		NA	0.5
%SS1:	104	an Netuvel 105 (70)		1	
%SS2:				+	
	91			+	
%SS3:	96			────	
Comments	j		1		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

	McCampbell	Analy ality Counts		2	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI C	Consultants		Client Proj	ect ID: #11	6907; Vic's Aut	omotive	Date Sample	ed: 02/13/08							
2500 0	Camino Diablo, Ste. #200						Date Received: 02/13/08								
XX7.1			Client Con	tact: Ricky	Bradford		Date Extracted: 02/14/08-02/16/08								
Walnu	tt Creek, CA 94597		Client P.O.	:			Date Analyzed 02/14/08-02/16/08								
Extracti	Gasolin on method SW5030B	e Range (-	arbons as Gaso SW8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0802	.310					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS					
001A	MW-1	W	22,000,a	ND<250	750	4100	340	3200	50	94					
002A	MW-2	W	5700,a	250	440	290	43	1000	20	91					
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	92					
004A	MW-4	W	75,a	ND	2.4	8.3	1.2	14	1	89					
005A	MW-5	W	4600,a	ND<50	77	440	41	1300	10	91					
006A	MW-6	W	27,000,a	ND<250	700	4900	620	5300	20	94					
007A	MW-7	W	17,000,a	590	2800	2700	300	1900	50	94					
008A	MW-10	W	4500,a	ND<250	190	370	65	880	50	93					
009A	MW-11	W	36,000,a	4200	5700	4000	560	5300	50	93					
010A	MW-12	w	17,000,a	3000	3600	2300	440	1800	20	96					
	porting Limit for DF =1; means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L					
	pove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg					

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

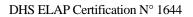
QC Matrix: Water

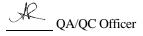
WorkOrder 0802310

EPA Method SW8260B	Extra	ction SW	5030B		Bat	Sp	Spiked Sample ID: 0802276-005B					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Chlorobenzene	ND	10	102	100	1.62	103	103	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	105	103	1.62	108	105	2.70	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	87.7	97.8	10.8	93.5	90.9	2.87	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	74.3	74	0.362	74.2	73.6	0.778	70 - 130	30	70 - 130	30
%SS1:	113	10	109	110	0.496	110	108	1.32	70 - 130	30	70 - 130	30
%SS2:	98	10	103	102	0.835	102	102	0	70 - 130	30	70 - 130	30
%SS3:	107	10	94	94	0	93	92	0.805	70 - 130	30	70 - 130	30

BATCH 33767 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802310-006B	02/13/08 10:05 AM	02/14/08	02/14/08 5:20 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

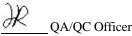
WorkOrder: 0802310

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 33	785	Sp	iked Sam	ole ID:	0802310-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	110	99.7	10.0	87.9	96	8.85	70 - 130	30	70 - 130	30
MTBE	ND	10	101	110	8.79	107	105	2.03	70 - 130	30	70 - 130	30
Benzene	ND	10	106	114	7.32	97	100	3.16	70 - 130	30	70 - 130	30
Toluene	ND	10	117	123	5.73	94.9	97.1	2.28	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	113	116	2.23	96.5	98.2	1.84	70 - 130	30	70 - 130	30
Xylenes	ND	30	122	123	0.784	89.7	90.6	1.05	70 - 130	30	70 - 130	30
%SS:	92	10	97	105	7.71	104	106	1.76	70 - 130	30	70 - 130	30

NONE

BATCH 33785 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802310-001A	02/13/08 10:40 AM	02/14/08	02/14/08 2:28 PM	0802310-002A	02/13/08 9:45 AM	02/14/08	02/14/08 3:03 PM
0802310-003A	02/13/08 9:10 AM	02/16/08	02/16/08 12:59 AM	0802310-004A	02/13/08 10:04 AM	02/14/08	02/14/08 4:10 PM
0802310-005A	02/13/08 9:20 AM	02/16/08	02/16/08 1:32 AM	0802310-006A	02/13/08 10:05 AM	02/14/08	02/14/08 6:59 PM
0802310-007A	02/13/08 9:50 AM	02/14/08	02/14/08 6:26 PM	0802310-008A	02/13/08 12:00 PM	02/14/08	02/14/08 5:51 PM
0802310-009A	02/13/08 12:10 PM	02/14/08	02/14/08 5:17 PM	0802310-010A	02/13/08 12:15 PM	02/14/08	02/14/08 4:44 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell An "When Ouality		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #116907	7; Vic's	Date Sampled:	02/14/08
2500 Camino Diablo, Ste. #200			Date Received:	02/15/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/26/08
Wallat Creek, Cri 91897	Client P.O.:		Date Completed:	02/26/08

WorkOrder: 0802359

February 26, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: **#116907; Vic's,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

-0

McCAM Telephone: (925) 252	1534 W Pittsbur www.mai	L ANAI Villow Pas g, CA 945 n@mccam	565-1701	252-9269	CHAI TURN AROUND TIM EDF Required? Coelt (No	AE R	USH 2	DDY RE	HR 72	HR 5D	AY
D 17 0	Brad Ge	гJ	Bill To: SA			I	ab Use (Only	al grad		
Company:	sul ta					int.			Pre	ssurizatio	n Gas
2500 Camino D		272			/ Pressurized	By		Date	the second second		
Walnut Creek	CA	1	E-Mail: chall	rd @ q ei cossuldante	Vuet Mance	non	2 0	2.15.0	s X	2	He
Tele: (925) 944- 289	9	f	Fax: (925)99	14-28 9.5	mprest property	R.T.		- /	1		
Project #: 116907			Desite of Manager				100 2		1-		
Project Location'				1123						- fine from	
Project Location: Og Ela	nd (CA			Number	1		Sheet and	Q 1.01 11-2	J. 2. 4.	
Sampler Signature:	ttt)			Notes: * please re	port	iesu	its in	bbut	and le	9/2
Field Sample 1D	Colle	ction			pre added s						
(Location)			Canister SN#	Sampler Kit SN#	Analysis Requested	Indoor	Soil	Car	nister Pres	sure/Vacu	um
	Date	Time				Air	Gas	Initial	Final	Receipt	Final (psi)
6 P-1-5		8:48	4740		TPH-gEMBTEX (TO15)		×	-27.0	-5.0	12.00	23.90
GP-1-10	4/14	8-4-63	4740-4752		51.1		×	-29.0	-3.0	13.82	27.54
67-2-5	2/14	8:26	4707		11		×	-29.0	5.0		23.62
GP-2-10	2/14	8:22	3653		16		×	-29.0	-5.0	11.45	22.82
67.3-5	414	10:36	4753		t i		X	-27.0	-5.0	12.06	24.10
68-45 67-3-10	2/14	10:54	4760		11		×	-28.5	-5-0	12.27	24.44
67-4-10 6P.4-5	414	10:12	4892		17		×	-27.5		11.81	23.53
										The second	
Relinguished By:	Date:	Time:	Received By:							10.42 M	
Ruizatto	2/15		m	110	Temp (°C) :	Work Ord	er #:				-
Relinquished By:	Date:	Time:	Received By:	0-0	Condition:						
					Custody Seals Intact?: Y	es 1	No	None			
Relinquished By:	Date:	Time:	Received By:		- Shipped Via:						

McCampbell Analytical, Inc.

SW)

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262				Work(Order:	0802	359	0	ClientC	ode: A	EL				
			EDF		Excel	[Fax	ļ	🖌 Email		Hard	Сору	🗌 Thir	rdParty		
Report to: Ricky Bradford AEI Consultants 2500 Camino Dia Walnut Creek, Ca	ablo, Ste. #200	Email: rbradford@ TEL: (925) 283-6 ProjectNo: #116907; PO:	· · · ·			AE 25		ultants nino Dia	ablo, Sto A 94597)	Dat	uested te Rece te Prin	ived:	5 c 02/15/2 02/15/2	
		1 4-4-1	. Collection Date			dm		aeico	uested	s.com	(See leç		elow)			
Lab ID	Client ID	Matri	x Collection Date	Ηοία	1	2	3	4	5	0	1	8	9	10	11	12
0802359-001	GP-1-5	Soil Vap	oor 2/14/08 8:48:00		А	А										
0802359-002	GP-1-10	Soil Vap	oor 2/14/08 9:03:00		А	А										
0802359-003	GP-2-5	Soil Vap	oor 2/14/08 8:26:00		А	А										
0802359-004	GP-2-10	Soil Vap	oor 2/14/08 8:22:00		А	А										
0802359-005	GP-3-5	Soil Vap	oor 2/14/08 10:36:00		А	А										
0802359-006	GP-3-10	Soil Vap	oor 2/14/08 10:54:00		А	А										
0802359-007	GP-4-5	Soil Var	or 2/14/08 10:12:00		А	А										

Test Legend:

1 TO15(MBTEX)_SOILGAS	2 TO3_SOIL(UG/M3)	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A contain testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date an	d Time Received:	2/15/08 10):09:22 AM
Project Name:	#116907; Vic's				Checklis	st completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0802359 Mate	ix <u>Soil Vapor</u>			Carrier:	Client Drop-In		
		<u>Chain</u>	of Cu	stody (CO	C) Informati	ion		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinquished	and received?	Yes	\checkmark	No 🗆			
Chain of custody	v agrees with sample labels	?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Client of	n COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		S	ample	Receipt In	formation			
Custody seals in	tact on shipping container/c		Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?		Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	and Hold	Time (HT) I	Information		
All samples rece	ived within holding time?		Yes		No 🗌			
	Blank temperature			er Temp:			NA 🗹	
	Is have zero headspace / n	o hubblos?	Yes			No VOA vials subm		
	necked for correct preserva		Yes					
	acceptable upon receipt (pl		Yes				NA 🗹	
		,.	100					

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality		<u>c.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 925		om		
AEI Consultants	Client Pr	oject ID: #11690)7; Vic's	Date Sampled: 02/14/08				
2500 Camino Diablo, Ste. #200			Date Received: 02/15/08					
W. L. (C) . CA 04507	Client C	ontact: Ricky Br	Date Extracted:	02/15/08-02	2/20/08			
Walnut Creek, CA 94597	Client P.	0.:		Date Analyzed:	02/15/08-02	2/20/08		
Extraction Method: TO-15	Ana	lytical Method: TO15			Work Order:	0802359		
Lab ID	0802359-001A	0802359-002A	0802359-003A	0802359-004A				
Client ID	GP-1-5	GP-1-10	GP-2-5	GP-2-10				
Matrix	Soil Vapor	Soil Vapor	Soil Vapor 11.85	Soil Vapor	 Reporting Limit for DF =1 			
Initial Pressure	12	13.82		11.45				
Final Pressure	23.9	27.54	23.62	22.82	SoilVapor	W		
Compound		Conc	entration		nL/L	ug/L		
Benzene	ND	ND	ND	ND	2.0	NA		
Ethylbenzene	ND	ND	ND	ND	2.0	NA		
Isopropyl Alcohol	ND	ND	ND	ND	4000	NA		
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	13	NA		
Tetrachloroethene	ND	ND	ND	ND	2.0	NA		
Toluene	ND	ND	ND	ND	2.0	NA		
Xylenes	ND	ND	ND	ND	6.0	NA		
	Surr	ogate Recoverie	es (%)					
%SS1:	104	100	105	101				
%SS2:	106	102	108	105				
	108	108	111	113				
%SS3:								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak; &) high/low surrogate due to matrix interference.

When Ouality		<u>nc.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92		om	
AEI Consultants		Project ID: 4	#11690		Date Sampled:	02/14/08		
2500 Camino Diablo, Ste. #200					Date Received: 02/15/08			
	Client (Contact: Ri	cky Bra	Date Extracted:	02/15/08-02	2/20/08		
Walnut Creek, CA 94597	Client F	P.O.:			Date Analyzed:	02/15/08-02	2/20/08	
		MBTEX						
Extraction Method: TO-15	Aı	alytical Method		_		Work Order:	0802359	
Lab ID	0802359-005A	0802359-	-006A	0802359-007A				
Client ID	GP-3-5	GP-3-	-10	GP-4-5		-		
Matrix	Soil Vapor	Soil Va	apor	Soil Vapor		Reporting DF		
Initial Pressure	12.06	12.2	7	11.81				
Final Pressure	24.1	24.4	4	23.53		SoilVapor	W	
Compound			Conce	entration		nL/L	ug/L	
Benzene	ND	ND		ND		2.0	NA	
Ethylbenzene	ND	ND		ND		2.0	NA	
Isopropyl Alcohol	ND	ND		ND		4000	NA	
Methyl-t-butyl ether (MTBE)	ND	ND		ND		13	NA	
Tetrachloroethene	ND	ND		ND		2.0	NA	
Toluene	ND	ND	1	ND		2.0	NA	
Xylenes	ND	ND	I	ND		6.0	NA	
	Sur	rogate Rec	overies	s (%)				
%SS1:	104	102	2	103				
%SS2:	108	106	5	106				
%SS3:	107	106	5	104				
						İ		

surrogate diluted out of range or surrogate coelutes with another peak; &) high/low surrogate due to matrix interference.

McCampbell An "When Ouality"		<u>.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92:		om	
AEI Consultants	Client Pr	oject ID: #11690	07; Vic's	Date Sampled:	02/14/08		
2500 Camino Diablo, Ste. #200				Date Received:	02/15/08		
	Client C	ontact: Ricky Br	Date Extracted:	02/15/08-02	2/20/08		
Walnut Creek, CA 94597	Client P.	Client P.O.: Date Analyzed					
Extraction Method: TO-15	Ana	MBTEX in μg/r lytical Method: TO15			Work Order:	0802359	
Lab ID	0802359-001A	0802359-002A	0802359-003A	0802359-004A			
Client ID	GP-1-5	GP-1-10	GP-2-5	GP-2-10			
Matrix	Soil Vapor	Soil Vapor	Soil Vapor 11.85	Soil Vapor	Reporting DF		
Initial Pressure	12	13.82		11.45	-		
Final Pressure	23.9	27.54	23.62	22.82	SoilVapor	W	
Compound		Conc	entration	1	µg/m³	ug/L	
Benzene	ND	ND	ND	ND	6.5	NA	
Ethylbenzene	ND	ND	ND	ND	8.8	NA	
Isopropyl Alcohol	ND	ND	ND	ND	10000	NA	
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	48	NA	
Tetrachloroethene	ND	ND	ND	ND	14	NA	
Toluene	ND	ND	ND	ND	7.7	NA	
Xylenes	ND	ND	ND	ND	27	NA	
	Surr	ogate Recoverie	s (%)				
%SS1:	104	100	105	101			
%SS2:	106	102	108	105			
%SS3:	108	108	111	113			
Comments							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak; &) high/low surrogate due to matrix interference.

When Ouality		<u>nc.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92		om	
AEI Consultants		roject ID: #	#11690		Date Sampled:			
2500 Camino Diablo, Ste. #200					Date Received: 02/15/08			
	Client C	Contact: Ri	cky Bra	adford	Date Extracted:	02/15/08-02	2/20/08	
Walnut Creek, CA 94597	Client P		•		Date Analyzed:	02/15/08-02	2/20/08	
		MBTEX	in ua/m	.	j			
Extraction Method: TO-15	An	alytical Method		I ² .		Work Order:	0802359	
Lab ID	0802359-005A	0802359-	-006A	0802359-007A				
Client ID	GP-3-5	GP-3-	10	GP-4-5		-		
Matrix	Soil Vapor	Soil Va	apor	Soil Vapor		Reporting Limit fo DF =1		
Initial Pressure	12.06	12.2	27 11.81					
Final Pressure	24.1	24.4	24.44 23.53			SoilVapor	W	
Compound			Conce	entration	1	µg/m³	ug/L	
Benzene	ND	ND		ND		6.5	NA	
Ethylbenzene	ND	ND		ND		8.8	NA	
Isopropyl Alcohol	ND	ND	D ND			10000	NA	
Methyl-t-butyl ether (MTBE)	ND	ND		ND		48	NA	
Tetrachloroethene	ND	ND		ND		14	NA	
Toluene	ND	ND		ND		7.7	NA	
Xylenes	ND	ND		ND		27	NA	
	Sur	rogate Rec	overies	s (%)				
%SS1:	104	102	!	103				
%SS2:	108	106	5	106				
%SS3:	107	106	5	104		1		

surrogate diluted out of range or surrogate coelutes with another peak; &) high/low surrogate due to matrix interference.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Project ID:	#116907; Vi	c's	Date Sampled: 02/14/08				
2500 Camino Dial	blo, Ste. #200			-	Date Received: 02/15	/08			
Walnut Creek, CA	04507	Client Contact:	Ricky Bradfor	d	Date Extracted: 02/19	/08-02/2	1/08		
Walliut Cleek, CF	A 74J77	Client P.O.:	Client P.O.: Date Analyzed 02/19/08-02/2						
Extraction method: TO3	Gasoline Range	(C6-C12) Volatile Analytical	e Hydrocarbo	ns as Gasoli		Order: 08	02359		
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressur	re TPH(g)	DF	% SS		
001A	GP-1-5	SoilVapor	12	23.9	ND	1	N/A		
002A	GP-1-10	SoilVapor	13.82	27.54	ND	1	N/A		
003A	GP-2-5	SoilVapor	11.85	23.62	ND	1	N/A		
004A	GP-2-10	SoilVapor	11.45	22.82	ND	1	N/A		
005A	GP-3-5	SoilVapor	12.06	24.1	ND	1	N/A		
006A	GP-3-10	SoilVapor	12.27	24.44	ND	1	N/A		
007A	GP-4-5	SoilVapor	11.81	23.53	ND	1	N/A		
							<u> </u>		
	ing Limit for DF =1;	W			NA	N	JA		
	ans not detected at or the reporting limit	SoilVapor			1800	με	g/m³		

*vapor samples are reported in $\mu g/m^3$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?) g) strongly aged gasoline or diesel range compounds are significant; j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) no recognizable pattern.j) sample diluted due to high organic content.

DHS ELAP Certification Nº 1644

<u> </u>	ampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants		Client Project ID	: #116907; Vi	c's	Date Sampled: 02/14/08			
2500 Camino Diat	blo, Ste. #200				Date Received: 02/15/08 Date Extracted: 02/19/08-02/21/08			
Walnut Creek, CA	94597	Client Contact:	Ricky Bradfor	d				
Walling Cleek, CA	. 74.371	Client P.O.:			Date Analyzed 02/19	/08-02/2	21/08	
Extraction method: TO3	Gasoline Range	(C6-C12) Volatil	e Hydrocarbo al methods: TO3	ns as Gasolii		Order: 08	02359	
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressur	I	DF	% SS	
001A	GP-1-5	SoilVapor	12	23.9	ND	1	N/A	
002A	GP-1-10	SoilVapor	13.82	27.54	ND	1	N/A	
003A	GP-2-5	SoilVapor	11.85	23.62	ND	1	N/A	
004A	GP-2-10	SoilVapor	11.45	22.82	ND	1	N/A	
005A	GP-3-5	SoilVapor	12.06	24.1	ND	1	N/A	
006A	GP-3-10	SoilVapor	12.27	24.44	ND	1	N/A	
007A	GP-4-5	SoilVapor	11.81	23.53	ND	1	N/A	
Reporti	ng Limit for DF =1;	W			NA	<u>ו</u> א	JA	
ND mea	ns not detected at or the reporting limit	SoilVapor			500		L/L	

Angela Rydelius, Lab Manager

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO-15

W.O. Sample Matrix: Air

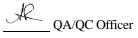
QC Matrix: Soil Vapor

WorkOrder 0802359

EPA Method TO15	Extraction TO-15				BatchID: 33834				piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzene	N/A	25	N/A	N/A	N/A	97.6	99.9	2.32	N/A	N/A	70 - 130	30
Ethylbenzene	N/A	25	N/A	N/A	N/A	99.4	103	3.63	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	95.4	98.6	3.30	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	98.1	101	3.04	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	95.5	101	5.28	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	103	106	2.22	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	105	108	3.25	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	107	112	3.95	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 33834 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802359-001A	02/14/08 8:48 AM	02/15/08	02/15/08 8:25 PM	0802359-002A	02/14/08 9:03 AM	02/15/08	02/15/08 6:13 PM
0802359-003A	02/14/08 8:26 AM	02/15/08	02/20/08 5:45 PM	0802359-004A	02/14/08 8:22 AM	02/15/08	02/16/08 3:07 PM
0802359-005A	02/14/08 10:36 AM	02/15/08	02/15/08 9:12 PM	0802359-006A	02/14/08 10:54 AM	02/15/08	02/15/08 6:59 PM
0802359-007A	02/14/08 10:12 AM	02/15/08	02/15/08 7:42 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO-15

W.O. Sample Matrix: Air

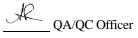
QC Matrix: Soil Vapor

WorkOrder 0802359

EPA Method TO15	Extraction TO-15				BatchID: 33834				piked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzene	N/A	25	N/A	N/A	N/A	97.6	99.9	2.32	N/A	N/A	70 - 130	30
Ethylbenzene	N/A	25	N/A	N/A	N/A	99.4	103	3.63	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	95.4	98.6	3.30	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	98.1	101	3.04	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	95.5	101	5.28	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	103	106	2.22	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	105	108	3.25	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	107	112	3.95	N/A	N/A	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 33834 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802359-001A	02/14/08 8:48 AM	02/15/08	02/15/08 8:25 PM	0802359-002A	02/14/08 9:03 AM	02/15/08	02/15/08 6:13 PM
0802359-003A	02/14/08 8:26 AM	02/15/08	02/20/08 5:45 PM	0802359-004A	02/14/08 8:22 AM	02/15/08	02/16/08 3:07 PM
0802359-005A	02/14/08 10:36 AM	02/15/08	02/15/08 9:12 PM	0802359-006A	02/14/08 10:54 AM	02/15/08	02/15/08 6:59 PM
0802359-007A	02/14/08 10:12 AM	02/15/08	02/15/08 7:42 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO3

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

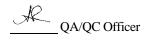
WorkOrder: 0802359

EPA Method TO3 Extraction TO3				BatchID: 33833			Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%			
	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(g)	N/A	1250	N/A	N/A	N/A	90.1	89.8	0.292	N/A	N/A	70 - 130	20
All target compounds in the Method I NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 33833 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802359-001A	02/14/08 8:48 AM	02/15/08	02/19/08 7:03 PM	0802359-002A	02/14/08 9:03 AM	02/15/08	02/19/08 8:22 PM
0802359-003A	02/14/08 8:26 AM	02/15/08	02/21/08 6:11 PM	0802359-004A	02/14/08 8:22 AM	02/15/08	02/19/08 8:59 PM
0802359-005A	02/14/08 10:36 AM	02/15/08	02/19/08 7:41 PM	0802359-006A	02/14/08 10:54 AM	02/15/08	02/19/08 5:48 PM
0802359-007A	02/14/08 10:12 AM	02/15/08	02/19/08 6:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell An "When Quality		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m me: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/08/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/08/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/11/08
Wantat Creek, CA 74577	Client P.O.:		Date Completed:	01/11/08

WorkOrder: 0801184

January 11, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #116907; Vic's Automotive,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0801184

	McCAM	PBELI	L ANA	LY	ГІСА	LI	NC							Γ					CI	HA	IN	0	FC	CU	ST	0	DY	/ F	E	CC	DR	D		
	1538 Wille	w Pass	Road, Pi	ttsb	urg, C	A 94	4565	5						1	ΓUI	RN	AI	RO	UN	D'	TIN	4E						k			k			X
Tolor	ohone: (925) 252		, ,						52-9	26	0														JSH		24 H			48 H			2 HR	5 DAY
		-9202					(92)	5) 2	54-5	20	9	_	_	E	DF	Req	uir	'ed'	the second second second second second second second second second second second second second second second s	Ye	_	Contraction of the local division of the loc		_	PDI	FR	equ	ire		-	Yes	Ę	No	
Report To: Ri Company: Al			t	3111 1	lo: san	ne							_	⊢	_	-		-	An	alys	sis F	equ	iest	_	_		_	_		Ot	her	-	Com	nents
	00 Camino Diab	lo Suite	200					_	_	-						SS	&F)		preserv.															NII N
	alnut Creek, CA			-M	ail: rbr	adfo	ord@	aei	cons	ults	atns.	com	-	î		by Il	&F/B		pres													R		dd
Telephone: (9					(925)			-	00110					SCn		dn-u	0 E8		NO,										(B)			serve	2	and
AEI Project N					ect Nar				Auto	mo	otive	6		(SW8021B/8015C		Clear	& Grease (5520 E&F/B&F)		w/ HNO3										(SW8260B)			unpreserved		- ug/L and ppmv
Project Locati	on: 245 8th Str	eet, Qak	land, ÇA	1 940										021B		Gel	asc	(8.	PE										(SW					în -
Sampler Signa	ture:	1	2		C ;	#/:	53			_				W8(lica	c Gre	3200	IH												0	Amber	0.0	lits
		SAMI	PLING	2	ers		MA	TR	IX	I	ME			EX (S	Cm)	w/ Silica Gel Clean-up by IRS	Oil &	(TTLC/E200.8)	250 ml HDPE										target list	(B)	W10	1 Liter	5	th ur
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Soil	Air	Sludge		HCI			TPH-g & MBTH	TPH-d (SW8015	TRPH (E418.1)	Total Petroleum Oil	*Total Lead (TT	*For Lead Use 2								CAM 17 Metals	LUFT 5 Metals	HVOCs - 8010 ta	MTBE (SW8260B)	**Flash Point (SW1010)	**For FP Use 1 I		Report in both units
MW-1S	MW-1S			1	TB X																											X		
MW-2S	MW-2S			1																												X		
MW-38	MW-38			+	TB			¥		Τ				X																				x
MW-48	MW-48			+	TB			X		T				X																				x
MW-5S	MW-5S			1	TB			X		T																								X
MW-6S	MW-6S			1	TB			X		t										1														x
MW-7S	MW-7S			1	TB			X		t																								x
MW-10S	MW-10S			1	ТВ			X		t	-	+																						x
MW-11S	MW-11S			1	TB			X		t	-																							x
MW-12S	MW-12S			1	ТВ			X		t		1																						x
POSTD	POSTD	1/8/08	0810	1	ТВ			X		t	-	\top		X												1							-	x
PRED	PRED	10100		1	ТВ			X		t		T		<u> </u>						\square														x
AS	AS			1	TB			X		t																								x
Relinquished By:	hay	Date:	Time: 3:10 Time:	C	Received By:						/t°						2			SER			N_	DAS	0	&G	M	IETALS	OTHER					
Relinquished By:		Date:	Time:		Received By:					HEA		PA	CE	ABS	SEN D IN		B		ON	ROP TAI RSE	NEI	RS_	V		I		-							

*

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORI	D
-------------------------	---

Page 1 of 1

Pittsburg, CA (925) 252-926						WorkO	rder:	0801	184	C	ClientIE): AEL					
				EDF		Excel	Γ	Fax	E	🖌 Email		HardCo	ру	Thirc	Party		
Report to: Ricky Bradford		Email:	rbradfard@a	eiconsultants.com		В	ill to:	nise Mo	ockol				Requ	uested [·]	TAT:	5 (days
AEI Consultants 2500 Camino Dia Walnut Creek, CA	,	TEL:	(925) 283-600 #116907; Vic	0 FAX: (925) 94	14-289	95	AE 250 Wa	l Consu 00 Carr alnut Cr	ultants iino Dia eek, CA	ablo, St A 94597 nsultant	7	J		e Recei e Print		01/08/ 01/08/	
									Req	uested	Tests	(See lege	nd be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

Sample ID	ClientSampiD	Watrix	Collection Date	ποια		2	3	4	5	0	1	0	9	10	 12
0801184-001	POSTD	Air	1/8/2008 8:10:00		А	Α									

Test Legend:

1	G-MBTEX_AIR	2	PREDF REPORT]	3	4	5
6		7]	8	9	10
11		12]			

The following SampID: 001A contains testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date ar	nd Time Received:	1/8/2008 3	:53:34 PM
Project Name:	#116907; Vic's A	Automotive			Checkl	list completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0801184	Matrix <u>Air</u>			Carrier	: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC	:) Informat	tion		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by C	lient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Si	ample	Receipt Inf	ormation			
Custody seals in	tact on shipping conta		Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	vatio	n and Hold	Time (HT)	Information		
All samples rece	ived within holding tim		Yes	<	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:


Comments:

	McCampbell	Analyt		<u>-</u>		Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Proj	ject ID: #	#1169	907; Vic's Aut	omotive	Date Sample	d: 01/08/08		
2500	Camino Diablo, Ste. #200							Date Receive	ed: 01/08/08		
Walni	ut Creek, CA 94597		Client Cor	ntact: Rio	cky B	bradford		Date Extracte	ed: 01/08/08		
vv ann	n Cluck, CA 74577		Client P.O	.:				Date Analyz	ed 01/08/08		
Extracti	Gasolin on method SW5030B	e Range (O		-		bons as Gaso /8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0801	184
Lab ID	Client ID	Matrix	TPH(g)	MTBI	E	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	6100,a	ND<5	50	74	300	58	370	20	124
									L		
									L		
				1						<u> </u>	
Rej	porting Limit for DF =1;	A	25	2.5		0.25	0.25	0.25	0.25	1	µg/L
ND	means not detected at or	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCam</u>		Analyti	cal, Inc.	v	Web: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa			
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	ed: 01/08/08		
2500 C	amino Diablo, S	Ste. #200		Automotive			Date Receiv	ed: 01/08/08		
Walnut	Creek, CA 945	597		Client Contact: R	icky Bradf	ord	Date Extract	ed: 01/08/08		
				Client P.O.:			_	ed 01/08/08		
Extraction	Gasolin n method SW5030		(C6-C12) V	Olatile Hydrocarbon Analytical meth			BE and BTEX	in ppmv* Work Order:	0801	184
Lab ID	Client ID	Matrix	TPH(g)	MTBE I	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	1700,a	ND<14	23	79	13	83	20	124

ppm (mg/L) to $ppmv (ul/L)$ conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

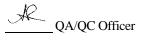
QC Matrix: Water

WorkOrder 0801184

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 33	072	Sp	iked Sam	ole ID:	0801210-00	1E
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	110	113	2.28	108	119	9.13	70 - 130	30	70 - 130	30
MTBE	ND	10	105	109	3.98	81.6	84.1	3.04	70 - 130	30	70 - 130	30
Benzene	ND	10	118	119	1.24	88.3	85.6	3.05	70 - 130	30	70 - 130	30
Toluene	ND	10	101	102	1.61	106	108	1.89	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	109	112	3.00	110	102	7.21	70 - 130	30	70 - 130	30
Xylenes	ND	30	117	117	0	120	113	5.71	70 - 130	30	70 - 130	30
%SS:	89	10	89	88	0.611	94	98	3.91	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method F	RL with th	ne following	exceptions:			

BATCH 33072 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801184-001A	01/08/08 8:10 AM	01/08/08	01/08/08 11:03 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell A		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.co Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/08/08					
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/08/08					
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/14/08					
Wallat Creek, CA 9+397	Client P.O.:		Date Completed:	01/14/08					

WorkOrder: 0801216

January 14, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL INC.							CHAIN OF CUSTODY RECORD																										
1	1538 W	illow Pass	Road, P	ittsk	ourg, CA	4 945	65						1	ΓUI	RN	AR										Ç)						×
Telen	hone: (925)					ax: (252	-920	59			L.	DE	D		49	-	V	-	1 N.			USH		24 I			48 H			2 HR	5 DAY
Report To: Ric				Bill	To: san								E	DF	Req	uire					equ		-	PD	FR	equ	ire	d?	Ot	_	_	No Com	nonte
Company: AE	the second second second second second second second second second second second second second second second s			Dim	10, 541	ic .							H				-		ilysi	5 1	cqui	cst			0				U	lei		Com	nents
	00 Camino D		e 200										1		IRS			rved		0.8)													
Wa	alnut Creek,	CA 94597		E-M	lail: rbr	adfor	d@a	eicor	nsult	atns.	.con	1	â		by	E		rese		A 20			(u)		5	(, Se)					ved)		
Telephone: (9)	25) 944-2899			Fax	: (925)	944-2	895						B/8015Cm)		dn-u	M-S(03 p	0.8)	(EP			Pb, Hg, Ni, Zn)		SM2320	Cr, Hg, Pb, Se)		(B)			eser		
AEI Project N					ect Nar	ne: \	/ic's	Aut	tom	otive	е		B/8		Clea	HEN		E	A 200	nese	6		, Hg.		7	Cr, H		/826			Idun		
Project Location	11		kland, C	A 94	4607	1 11							0211		Gel	1664	(2	DPE	(EP/	angai	& L	-	u, Pb		÷		Pb, Zn)	(SV			ber (
Sampler Signa	ture:			-	- RI	D #			_	MI	TIL	op	(SW8021		ilica	HC ()	200.8	IHI	ron	1, MS	400	Count	5	00.8)	<u>ب</u>	s, Ba,	Ξ,	t list		(010)	WW.		
		SAMPI	LING	2	ers	N	IAT	RIX		PRES	SER			Cm	w/S	ase I	(E.	50 n	(sno	siun	M25	ate ((Cd.	PA 2	Alkalinih	g, As	d, Cr,	arge	0B)	WIG	1 Liter Amber (unpreserv		
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Air	Sludge	Other	lce	HND.	Other	TPH-g & MBTEX	TPH-d (SW8015Cm)	TRPH (E418.1) w/ Silica Gel Clean-up by IRS	Total Oil & Grease HC (1664 HEM-SGT)	*Dissolved Lead (E200.8)	*For Lead Use 250 ml HDPE (HNO ₃ preserved)	Dissolved (Ferrous) Iron (EPA 200.8)	Calcium, Magnesium, Manganese (EPA 200.8)	TDS and TSS (SM2540C & D)	Heterotrophic Plate Count	EBMUD 7 Metals (Cd, Cr, Cu,	CAM 17 Metals (EPA 200.8)	All All	RCRA 8 Metals (Ag, As, Ba, Cd,	LUFT 5 Metals (Cd, Cr,	HVOCs - 8010 target list (SW8260B)	MTBE (SW8260B)	**Flash Point (SW1010)	**For FP Use 11		
INF	INF			4/1	VOA	X				X	x		X						X	X	X	X			X								
POST-AS	POST-AS			4/1	VOA	X				X	X		X						\times	X	X	K.			\times								
/POST-CI	POST-C1				VOA	X	-			X	X	-	F	-	-	-			-	-			-			_	_		_		-		1.11
EFF	EFF			3	VOA	X				X	X		X																				
							-			-										_			_			_			_				
							-			+	+								-							_							
				F			-			+	-	-							-	_											_		
							-			_		-																					
Relinquished By!	1	Date:	Time: 3:10p		eived By	re	1	a	l	2				ICE	10/	4	9	5				Р	RE	SER	RVA'	TIC		OAS	0	&G	M	ETALS	OTHER
Relinquished By:		Date:	Time:	Rec	Received By:					GOO	DDC	ON						A	PPI	ROF	RL	ATE	-										
Relinquished By:		Date:	Time:	Rec	Received By:				HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PERSERVED IN LAB																								

McCampbell Analytical, Inc.

	SW.
6	3V
1	-
	~~/

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94 (925) 252-9262						WorkC)rder:	08012	216	C	lientIE): AEL					
				EDF		Excel	Ľ	Fax	~	Email		Hard	Сору	Thir	dParty		
Report to: Ricky Bradford		Email:	rbradford@a	eiconsultants.com		E	Bill to: Dei	nise Mo	ockel				Requ	uested	TAT:	5	days
AEI Consultants 2500 Camino Diabl Walnut Creek, CA	-,	TEL: ProjectNo: PO:	(925) 283-600 #116907; Vic	()	4-289	5	250 Wa	Inut Cr	ultants hino Dia eek, CA @aeicon	94597)		e Rece e Print		01/08/ 01/09/	
					[4	•	•	Requ	_	•	(See leg		elow)	10		40
Sample ID	ClientSampID		Matrix	Collection Date H	lold	1	2	3	4	5	6	1	8	9	10	11	12

				-										
0801216-001	INF	Water	1/8/2008		С	В	Α	С	В	А	С	С		
0801216-002	POST-AS	Water	1/8/2008		С	В	А	С	В		С	С		
0801216-003	EFF	Water	1/8/2008				А							

Test Legend:

1 Alka(spe)_W	2 FE2_DISS	3 G-MBTEX_W 4
6 PREDF REPORT	7 TDS_W	8 TSS_W 9
11	12	

ŀ	METALSMS_DISS
)	

5	PRDISSOLVED
10	

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	1/8/2008 9	:45:41 PM
Project Name:	#116907; Vic's A	Automotive			Check	list completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0801216	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain	of Cu	stodv (C	OC) Informa	tion		
Chain of custody	/ present?		Yes	V	No 🗆			
	•	ish a dia a dia a si ta d o						
Chain of custody	/ signed when relinqu	ished and received?	Yes					
Chain of custody	agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		S	amnle	Receint	Information			
			-				NA 🔽	
Custody seals in	tact on shipping conta	ainer/cooler?	Yes				NA 🗹	
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	vatio	n and Ho	old Time (HT)	Information		
	ived within holding tim		Yes	v	No 🗌			
	-						🗖	
Container/Temp	Blank temperature		Coole	er Temp:	4.8°C			
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted 🛄	
Sample labels cl	hecked for correct pre	eservation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell A		cal, Inc.	Web: w		bell.com	, Pittsburg, CA 94565 E-mail: main@mcca 262 Fax: 925-252-9	mpbell.com		
AEI Consul		ter Counts	Client Project ID: Automotive	*		Date	Sampled: 01/08	8/08		
2500 Camin	o Diablo, Ste. #200					Date	Date Received: 01/08/08			
Walnut Cree	ek, CA 94597		Client Contact: Ri	cky Bradford	Extracted: 01/08	8/08				
			Client P.O.:			Date	Analyzed 01/09	9/08		
Extraction metho	d SM2320B	Total &	Speciated Alkalini Analytical methods	-	Carbona	nte*	Work	Order: 0801216		
Lab ID	Client ID	Matrix	Total*	Carbonate*	Bicarbo	nate*	Hydroxide*	DF		
001C	INF	w	135	ND	135	5	ND	1		
002C	POST-AS	w	135	ND	135	5	ND	1		
-	ng Limit for DF =1;	W	1.0	1.0	1.0)	1.0	mg CaCO3/I		
	ns not detected at or the reporting limit	S	NA	NA	NA	A	NA	mg/Kg		

*water samples are reported in mg calcium carbonate/L. Hydroxide, Carbonate & Bicarbonate alkalinity measure @ end-point of pH = 8.3 & 4.5 per SM2320B.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment

DHS ELAP Certification Nº 1644

Angela Rydelius, Lab Manager

	Campbell Analyti "When Ouality Counts"	ical, Inc	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
AEI Consultants				16907; Vic's	Date Sampled: 01/08/08								
2500 Camino Dia	blo, Ste. #200	Automotiv	ve		Date Received: 01/08/08								
Walnut Creek, CA	A 94597	Client Cor	ntact: Ricky	y Bradford	Date Extracted: 01/08/08								
Wallat Creek, Cr	171071	Client P.O.	.:		Date Analyzed 01/10/08								
Analytical Method: S	M3500-Fe B4c	Diss	olved Ferro	ous Iron*	Work Order: 0	801216							
Lab ID	Client ID		Matrix		Ferrous Iron	DF							
0801216-001B	INF		W		460	1							
0801216-002B	POST-AS		W		160	1							
				1									

Reporting Limit for DF = 1; ND means not detected at	W	50 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

i) liquid sample that contains greater than 1 vol. % sediment.

	McCampbell	Analyt uality Counts"		2	Web: www.n		Pittsburg, CA 94565 E-mail: main@mcca 62 Fax: 925-252-9	mpbell.com		
AEI Co	nsultants		Client Proj	ect ID: #116	907; Vic's Au	tomotive	Date Sample	d: 01/08/08		
2500 Ca	umino Diablo, Ste. #200						Date Receive	ed: 01/08/08		
			Client Con	tact: Ricky l	Bradford		Date Extract	ed: 01/09/08	-01/11	/08
Walnut	Creek, CA 94597		Client P.O.	:			Date Analyz	ed 01/09/08	-01/11	/08
Extraction	Gasolir method SW5030B	ne Range (O		-	rbons as Gaso W8021B/8015Cm	line with BT	EX and MTBE	* Work Order	:: 0801	216
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	INF	W	12,000,a	320	260	1100	170	2900	20	86
002A	POST-AS	W	130,b	55	0.85	2.8	ND	12	1	98
003A	EFF	W	ND	17	ND	ND	ND	ND	1	88
					<u> </u>					
									+	+
Repor	rting Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	ug/I
ND m	eans not detected at or ve the reporting limit	S	NA	NA	0.5 NA	0.3 NA	NA	0.3 NA	1	µg/L mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

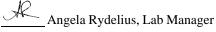
cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	McCampbell Ana		<u>nc.</u>	Web: www.mcca	w Pass Road, Pittsburg, CA mpbell.com E-mail: mair e: 877-252-9262 Fax: 92					
AEI Co	onsultants			#116907; Vic's	Date Sampled: 01/08/08					
2500 C	amino Diablo, Ste. #200	Autom	otive		Date Received:	01/08/08				
Walnut	t Creek, CA 94597	Client	Contact: Ric	cky Bradford	Date Extracted:	Date Extracted: 01/08/08				
vv annu	CICCR, CA J4377	Client l	P.O.:		Date Analyzed:	Date Analyzed: 01/10/08				
		I]	Metals*						
Extraction	method E200.8		Analytical me	ethods E200.8		Work Order	: 08012	16		
Lab ID	Client ID	Matrix	Extraction T	ype Calcium	Magnesium	Manganese	DF	% SS		
001C	INF	W	DISS.	20,000	22,000	2500	10	N/A		
002C	POST-AS	W	DISS.	20,000	22,000	2500	10	N/A		

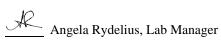
Reporting Limit for DF =1;	w	DISS.	100	20	20	µg/L
ND means not detected at or above the reporting limit	S	TOTAL	NA	NA	NA	NA

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.


means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

WET = Waste Extraction Test (STLC).


DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti	ical, Inc.		Web: www.mccamp	Pass Road, Pittsburg, CA 94565-1701 bbell.com E-mail: main@mccampbell.com 877-252-9262 Fax: 925-252-9269
AEI Consultan	its	Client Project ID: #	#116907;	Vic's	Date Sampled: 01/08/08
2500 Camino D	Diablo, Ste. #200	Automotive			Date Received: 01/08/08
Walnut Creek,	CA 94597	Client Contact: Ri	cky Bradi	ford	Date Extracted: 01/10/08
Walnut Creek,		Client P.O.:			Date Analyzed 01/11/08
		Total Disso	lved Solid	ds*	
Analytical Method:	SM2540C Client ID		Matrix		Work Order: 0801216 Total Dissolved Solids
0801216-001C	INF	1	W		253
0801216-002C	POST-AS		W		249
Reporting Limit	for DF = 1; ND means not dete reporting limit	ected at or above the	W		10 mg/L
	reporting mint		S		NA

DHS ELAP Certification N° 1644

<u> </u>	Campbell Analyti	ical, Inc.		Web: www.mccamp	Pass Road, Pittsburg, CA 94565-1701 bell.com E-mail: main@mccampbell.com 877-252-9262 Fax: 925-252-9269	
AEI Consultan	its	Client Project ID: #	#116907;	Vic's	Date Sampled: 01/08/08	
2500 Camino E	Diablo, Ste. #200	Automotive			Date Received: 01/08/08	
Walnut Creek,	CA 94597	Client Contact: Ri	cky Brad	ford	Date Extracted: 01/09/08	
		Client P.O.:			Date Analyzed 01/09/08	
	01/05/00	Total Susper	nded Soli	ds*	W 1 0 1 00010	21.6
Analytical Method:	Client ID		Matrix		Work Order: 08012 Total Suspended Solids	216
0801216-001C	INF		W		6.67	
0801216-001C	POST-AS	1	w		4.33	
Reporting Limit	t for DF = 1; ND means not deter reporting limit	ected at or above the	W S		4.0 mg/L NA	

DHS ELAP Certification N° 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: Alkalinity Matrix: W WorkOrder: 08										
Method Name: SM23	320B		Units mg CaC	CO3/L		BatchID: 32944				
SampleID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)				
0801216-001C	135	1	136	1	0.738	<20				
0801216-002C	135	1	135	1	0	<20				
		BAT	CH 32944 SUMMARY							
Sample ID Date	e Sampled Date Extr	acted Date An	alyzed Sample ID	Date	Sampled Date I	Extracted Date Analyzed				
0801216-001C	01/08/08 01/08	8/08 01/09/08	4:21 PM 0801216-00	02C	01/08/08 0	1/08/08 01/09/08 4:28 PM				
Test Method: Total Di			Matrix: W			WorkOrder: 0801216				
Method Name: SM2540C Units mg/L BatchID: 33076										
SampleID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)				
0801216-001C	253	1	250	1	1.19	<20				
0801216-002C	249	1	245	1	1.62	<20				
Sample ID Date	Sampled Date Extr		CH 33076 SUMMARY alyzed Sample ID	Date	Sampled Date I	Extracted Date Analyzed				
0801216-001C	01/08/08 01/08	8/08 01/11/08 3	3:20 PM 0801216-00)2C	01/08/08 0	1/08/08 01/11/08 3:10 PM				
Test Method: Total S	uspended Solids		Matrix: W			WorkOrder: 0801216				
Method Name: SM2	540D		Units mg/L			BatchID: 33047				
SampleID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)				
0801216-001C	6.67	1	6.33	1	5.23	<10				
0801216-002C	4.33	1	4.00	1	7.92	<10				
BATCH 33047 SUMMARY Sample ID Date Sampled Date Extracted Date Analyzed Sample ID Date Sampled Date Analyzed 0801216-001C 01/08/08 01/09/08 3:00 PM 0801216-002C 01/08/08 01/09/08 3:10 PM										

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

RD = Absolute Value {Sample - Duplicate}; RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2].

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SM3500 Fe B4c

W.O. Sample Matrix: Water

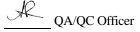
QC Matrix: Water

WorkOrder 0801216

		Extraction SM3500-Fe B4c				BatchID: 32945			Spiked Sample ID: 0801058-003C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CSD Acceptance Criteria			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Ferrous Iron	ND	200	90.8	95.8	5.41	93.3	98.4	5.26	70 - 130	20	80 - 120	20

BATCH 32945 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801216-001B	01/08/08	8 01/08/08	01/10/08 2:51 PM	0801216-002B	01/08/08	01/08/08	01/10/08 3:07 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0801216

EPA Method E200.8	Extra	ction E20	0.8		BatchID: 33087			Spiked Sample ID: 0801208-002B				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
Colorer	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Calcium	94,000	1000	NR	NR	NR	96	103	6.84	70 - 130	20	70 - 130	20
Magnesium	54,000	100	NR	NR	NR	115	120	4.19	70 - 130	20	70 - 130	20
Manganese	27	100	90.7	92	1.10	104	106	1.82	70 - 130	20	70 - 130	20
%SS:	106	750	106	106	0	102	103	0.820	70 - 130	20	70 - 130	20

	BATCH 33087 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0801216-001C	01/08/08	01/08/08	01/10/08 10:48 PM	0801216-002C	01/08/08	01/08/08	01/10/08 10:56 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

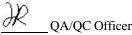
QC Matrix: Water

WorkOrder: 0801216

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		BatchID: 33082 Sp				iked Sample ID: 0801219-003A			
Analyte	Sample Spiked MS				MSD MS-MSD LCS LCSI			LCS-LCSD Acceptance Criteria (%)
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	97.6	93.5	4.32	107	106	0.725	70 - 130	30	70 - 130	30
MTBE	ND	10	102	99.9	1.58	101	108	7.19	70 - 130	30	70 - 130	30
Benzene	ND	10	89	88.2	0.927	100	101	0.457	70 - 130	30	70 - 130	30
Toluene	ND	10	86.9	86.4	0.616	100	99.7	0.578	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	99.4	99	0.478	106	105	0.767	70 - 130	30	70 - 130	30
Xylenes	ND	30	96	96.7	0.692	117	117	0	70 - 130	30	70 - 130	30
%SS:	103	10	99	96	2.19	90	89	1.05	70 - 130	30	70 - 130	30
	103	10	99	96	2.19	90	89	1.05	70 - 130	30		

BATCH 33082 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801216-001A	01/08/08	01/09/08	01/09/08 7:44 PM	0801216-002A	01/08/08	01/11/08	01/11/08 1:02 AM
0801216-003A	01/08/08	01/09/08	01/09/08 9:24 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell A		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/15/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/16/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/18/08
Wantat Creek, CA 94597	Client P.O.:		Date Completed:	01/18/08

WorkOrder: 0801415

January 18, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #116907; Vic's Automotive,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAM	PBELI	ANA	LYI	TICA	LI	NC			_		-		Т	-	-	-			CF	IA	IN	0	F	CU	ST	0	D	YI	E	C	DR	D		
	1538 Wille	w Pass	Road, Pi	ttsbu	irg, C	A 94	1565	5							T	UR	N	AR		UN												li -			×1
Telen	hone: (925) 252	-9262			F	ax:	(92	5) 2	52-	920	69				FD	FD	0.00		42	rtı.	No	е Г				USH PD		24 H			48 H			2 HR No	5 DAY
Report To: Rie			B	sill T	o: san	_	(- / -					_	+	LD	r R	eq	uire	u:	An			lequ			rD	r R	equ	ure	u:	-	her		Com	nents
Company: AH	and the Real Property lies and the real Property lies a													T				(C)																	
25	00 Camino Diab	lo, Suite	200														IRS	B&I		preserv.															hund
	alnut Creek, CA	94597		_	il: rbr		-		cons	sult	tatns	.cor	n		(i)		p by	E&F															ved		d pi
Telephone: (9	and the second se				(925)	_	_					23	_		0150		n-ue:	520 I		w/ HNO3										60B			reser		Lar
AEI Project N	o. 116907 on: 245 8 th Str	ant Oak			ct Nar	me:	VI	c's A	Auto	om	otiv	e		-	1B/8		C	se (5		E w/										W82			dun		- ug/L and ppmv
Sampler Signa	ture: RECO	Alt	land, CA	1 940	007										V802		a Ge	Great	00.8	HDP										st (S			mber		
Sampler Signa			PLING		- 20		ма	TR	IV	Т	M	ETH	OD		& MBTEX (SW8021B/8015Cm)	î	TRPH (E418.1) w/ Silica Gel Clean-up by IRS	Total Petroleum Oil & Grease (5520 E&F/B&F)	*Total Lead (TTLC/E200.8)	*For Lead Use 250 ml HDPE										HVOCs - 8010 target list (SW8260B)		**Flash Point (SW1010)	**For FP Use 1 Liter Amber unpreserved		Report in both units
		SAM	LING	ers	iner		NI A	IN		+	PRE	SEF	VEI	2	TEX	15Ci	/m ()	m Oi	E	: 250								Is	50) tang	260B	(SW	1 Lit	1	oth
SAMPLE ID	FIELD POINT			# of Containers	Type Containers										MB	TPH-d (SW8015Cm)	418.	oleu) pe	I Use								CAM 17 Metals	LUFT 5 Metals	8010	MTBE (SW8260B)	oint	Usc		in b
	NAME	Date	Time	Col	e C	ter			dge	er		_	5		8	-q (S	H(B)	I Petu	alLe	Lead								117	T 5 N	Cs-	E (S	ash P	r FP		port
				fo #	Typ	Water	Soil	Air	Sludge	Other	Ice	HCI	Dihor Of		TPH-g	TPH	TRP	Tota	*Tot	*For								CAN	LUF	HVO	MTB	**F1	**Fo		Rep
STACK	STACK	115	2:30	1	TB	t		X		1			+	+	X																				X
														T																					
														T																					
														T																					
														T																					
										1				T																					
												1	+	t																					
									1	1	+	1	+	t		+		-											_	-		-			
									-	1		+	+	+	-	+	+	+	+																
									+	+		+	+	+	+	+	-	-	-	-	_	_						-	_	-		-			
				\vdash	-				+	+	-	+	+	+	+	+	+	-	+			_			_	-		-	_	-	-	-			
								-	-	+	-	+	+	+	+	+	-	-	+	_		_				-					_				
								-	-	+	-	+	+	+	-	-	-	-	-		_	-							_			-			
Relinquished By;		Date:	Time:	Ret	ceived B	by:		1		_				+	_																				
RBUI	1-	Yel	3:40	/		9	Y	-	-8																					OAS	0	&G	N	IETALS	OTHER
Relinquished By:	₹/	Date:	Time:	Ree	ceived B	By:	0		0				-			CE/t		'ON	DF	ГІОІ	N					SER									
																				ABS		Γ	2			TA									
Relinquished By:		Date:	Time:	Ree	ceived B	By:								1						TEI			B		PE	RSI	ERV	ED	IN	LAI	B		_		

McCampbell Analytical, Inc.

		(
		(
		L C

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	order: 0801415	5 Clier	ntID: AEL			
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	y	
Report to:				В	Bill to:		Re	equested TAT	: 5 days	
Ricky Bradford AEI Consultants 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597	Email: TEL: ProjectNo PO:	rbradford@ae (925) 283-6000 : #116907; Vic'	()	44-2895	Walnut Creel	ints o Diablo, Ste. #	.200 D	ate Received ate Printed:	: 01/16/2008 01/16/2008	
						· · ·	sts (See legend	<u> </u>		-

Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0801415-001	STACK	Air	1/15/08 2:30:00	А	А										

Test Legend:

1	G-MBTEX_AIR	2	PREDF REPORT]	3]	4]	5
6		7			8]	9]	10
11		12]					

The following SampID: 001A contains testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

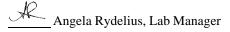
Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	1/16/08 3:	42:16 PM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0801415	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC	c) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes		No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	ient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes		No 🗆			
		Sa	ample	Receipt Inf	formation	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes		No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Preser	vatior	n and Hold	Time (HT) Information		
All samples rece	ived within holding tim		Yes		No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:			NA 🗹	
	Is have zero headspa	ice / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
	hecked for correct pre		Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:


Comments:

	McCampbell	Analyt		•	W	eb: www.n		ittsburg, CA 94565 E-mail: main@mcca i2 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Proj	ject ID: #	‡116907; V	ic's Au	tomotive	Date Sample	d: 01/15/08		
2500 (Camino Diablo, Ste. #200							Date Receive	ed: 01/16/08		
Walni	ut Creek, CA 94597		Client Cor	ntact: Ric	ky Bradfor	rd		Date Extracto	ed: 01/16/08		
vv ann	ii Cicik, CA 94397		Client P.O	·.:				Date Analyz	ed 01/16/08		
Extract	Gasolir on method SW5030B	ne Range ((-	ocarbons and the sw8021B/		line with BTH	EX and MTBE	* Work Order	: 0801	415
Lab ID	Client ID	Matrix	TPH(g)	MTBE	E Ber	nzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	STACK	А	ND	ND	1	ND	ND	ND	ND	1	96
	_			+							
	_			+							
				+							
Rei	porting Limit for DF =1;	А	25	2.5		.25	0.25	0.25	0.25	1	µg/L
ND	means not detected at or pove the reporting limit	S	NA	NA		JA	NA NA	NA NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCan</u>		Analyti	cal, Inc.	,	Web: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa			
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	d: 01/15/08		
2500 C	amino Diablo, S	Ste. #200		Automotive			Date Receive	ed: 01/16/08		
Walnut	t Creek, CA 945	97		Client Contact: F	Ricky Bradf	ord	-	ed: 01/16/08		
				Client P.O.:			-	ed 01/16/08		
Extractio	n method SW5030	_	(C6-C12) V	Olatile Hydrocarbo Analytical meth			BE and BTEX	in ppmv* Work Order:	0801	415
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	STACK	А	ND	ND	ND	ND	ND	ND	1	96

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be	o be equal to that of hexane.	
--	-------------------------------	--

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

_____Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

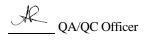
QC Matrix: Water

WorkOrder 0801415

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 33	202	Sp	iked Samp	ble ID:	0801386-01	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	91.1	93.3	2.36	91.2	111	19.3	70 - 130	30	70 - 130	30
MTBE	ND	10	113	107	4.69	125	126	1.05	70 - 130	30	70 - 130	30
Benzene	ND	10	106	99.5	6.28	109	100	8.70	70 - 130	30	70 - 130	30
Toluene	ND	10	96.1	91.7	4.66	103	90.1	13.8	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	106	101	4.13	111	102	8.69	70 - 130	30	70 - 130	30
Xylenes	ND	30	98.5	95.1	3.39	107	100	6.45	70 - 130	30	70 - 130	30
%SS:	94	10	95	96	0.767	93	100	6.48	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method F	RL with th	ne following	exceptions:			

BATCH 33202 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801415-001A	01/15/08 2:30 PM	I 01/16/08	01/16/08 10:36 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell A		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/15/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/16/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/18/08
Wantat Creek, CA 94597	Client P.O.:		Date Completed:	01/18/08

WorkOrder: 0801416

January 18, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

											-			-	_				_		_	_			_	_					_			
	McCAM	PBELI	ANAI	LYT	FICA	LI	NC																	C	UST	0		_	E			D	75755	1
	1538 Willo	ow Pass I	Road, Pi	ttsbu	arg, C/	A 94	1565	ß							T	UR	N	AR	0	UN	DT	IM	13											Ċ X ∕
Telep	hone: (925) 252-	-9262			F	ax:	(925	5) 2	52-9	926	59				ED	F F	lea	uire	d?	X	Ye		No		PD		24 H		d?	48 H			2 HR	5 DAY
Report To: Ric	ky Bradford		P	3ill T	fo: sam	ne		_		_	_	_	_	T		-							eque	_					_	Oth	-	-	-	ments
Company: AE																		(-)		s.														>
	00 Camino Diab									_							IRS	/B&		preserv														ud
	alnut Creek, CA	94597			ail: rbra				cons	ult	atns	s.cor	m	-	(m)		th p	E&F														rved		- ug/L and ppmv
Telephone: (92					(925)									-1	0150		San-t	520		w/ HNO3									60B			unpreserved		La
AEI Project No	o. 116907 on: 245 8 th Str	ent Oak			ect Nan	ne:	VIC	'S A	Auto	m	otiv	e		-	1B/8		H Cl	se (5	_										(SW8260B)					/Bn
Sampler Signa		STUR	11-	1 940	007					_				-1	(SW8021B/8015Cm)		w/ Silica Gel Clean-up by IRS	Oil & Grease (5520 E&F/B&F)	(TTLC/E200.8)	*For Lead Use 250 ml HDPE											-	Amber		
Sampler Signa	ture.	L	PLING		~		MA	тр	IV	Т		ETH			(SW	(iii	Silic	180	CIE2	m I									- 8010 target list	-	**Flash Point (SW1010)			Report in both units
	1 1	SAM	LING	ers	ner	Ľ	MIA	IR	IA	4	PRE	ESER	RVE	D	MBTEX	15Cr	/m (n Oi	E	250							s	- 10	targ	60B	SW	1 Lit		oth
SAMPLE ID	FIELD POINT	1 1		tain	ntai										MB	W80	118.1	oleur		Use							Meta	5 Metals	8010	(SW8260B)	oint	Use		d ni
SAMILLID	NAME	Date	Time	of Containers	Type Containers	er			ge	er			03	La l	8	TPH-d (SW8015Cm)	TRPH (E418.1)	Total Petroleum	*Total Lead	Lead							CAM 17 Metals	5 N	Cs-	E (S	sh P	**For FP Use 1 Liter		ort
	1 1			Jo #	Cyp	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO	Other	TPH-g	Hd	Hd.N.	otal	Tota	For							AM	LUFT	HVOCs	MTBE	*Fla	*For		Rep
		\vdash	<u> </u>	-		F		-		4	-	-	+	1	1	-	-	-	+	*		-	-	-		_	-	-	-	~	*	*		_
MW-1S	MW-1S			1	TB		=	X	-	+	-	-	=	A	1	4	_	-	-			_	-	-					\square					X
M W-2S	MW-28			1	TB		H	X	1	1	_		-	1	4	\rightarrow	_	\rightarrow	\downarrow			_	_	_		-			\square					X
MW-3S	MW-38			+	TB			¥	_	4	_		-	N	Ħ	_	_	_	4			_												¥
MW-4S	MW-4S			+	TB			¥							¥																			X
MW-58	MW-58		>	1	TB		-	X	-	-	-	-	-																					X
MW-68	MW-6S			1	TB		-+	X	-	+	-	-	-		41																			X
MW-7S	MW-7S			+	TB		-	X	+	-	-	-			1																			X
MW-108	MW-10S			1	TB			X	-	+		-	+	- 1																				X
MW-115	MWHS			1	TB			X	-	+	-	-	-																					X
M W+128	MW-128-			-1	TB	\square		x		+	-	-	2		M																			X
POSTD	POSTD	1/15	2:32	1	TB			х		T					X																			X
PRED	PRED	1/15	2:40	1	TB			X							X																			X
AS	AS	415	3:20		TB			х							X																			X
Retinquished By:	t	Date:	Time:	Ree	ceived B	y:		V	1	a				Т				1		/			1	-				_		-	_			
Kutha		15	3:40	-	N	~	2	Y	4	5	_				I	CE/t	1 0	JP				1	/	PR	ESER	VA	TIC		OAS	0	&G	M	1ETALS	OTHER
Relinquished By:		Date:	Time:	Ree	ceived B	y:												ON	DIT	ГЮ		_			PROI			_	. 1	_		_		
				L				_		_				_							ENT		_		NTA			-	4					
Relinquished By:		Date:	Time:	Red	ceived B	y:									D	ECI	ALA	JRI	A	TEL) IN	LAE	s	_ r	ERSI	ERV	ED	INI	LAD			-		
				-																														

-

McCampbell Analytical, Inc.

Γ	~	1	Ψ	ò
K	<u>_</u>	3	1	ę
	<u></u>	-4	4	ì
		0.0		4

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-17 (925) 252-9262	701			Work	Order	: 08014	416 (ClientID:	AEL				
			EDF	Excel		Fax	🗸 Email		HardCopy	Third	Party		
Report to: Ricky Bradford	Ema	il: rbradford@a	eiconsultants.com		Bill to: De	enise Mo	ockel		Ree	quested 1	TAT:	5 d	lays
AEI Consultants 2500 Camino Diablo, Ste Walnut Creek, CA 94597	TEL: . #200 Proje	(925) 283-6000 ctNo: #116907; Vic	0 FAX: (925) 94	4-2895	AE 25 W	El Consu 600 Cam alnut Cr		7		te Recei te Printo		01/16/2 01/16/2	
							Requested	Tests (Se	ee legend	below)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold 1	2	3	4 5	6	7 8	9	10	11	12

0801416-001	POSTD	Air	01/15/08 2:32:00	А	Α					
0801416-002	PRED	Air	01/15/08 2:40:00	А						
0801416-003	AS	Air	01/15/08 3:20:00	А						

Test Legend:

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12]		

Prepared by: Ana Venegas

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	1/16/08 3:	48:50 PM
Project Name:	#116907; Vic's A	Automotive			Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0801416	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC	:) Informa	ation		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes		No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes		No 🗆			
		Si	ample	Receipt Inf	formation	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes		No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	vatior	n and Hold	Time (HT) Information		
All samples rece	ived within holding tim		Yes		No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:			NA 🗹	
	ls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
	hecked for correct pre		Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analyt		<u>.</u>		Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Proj	ject ID:	#1169	907; Vic's Aut	comotive	Date Sample	ed: 01/15/08		
2500	Camino Diablo, Ste. #200							Date Receiv	ed: 01/16/08		
Walnu	ut Creek, CA 94597		Client Cor	ntact: Rie	cky B	radford		Date Extract	ed: 01/16/08	-01/17/	/08
			Client P.O	.:				Date Analyz	ed 01/16/08	-01/17/	/08
Extracti	Gasolin ion method SW5030B	ne Range ((-		bons as Gaso /8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0801	416
Lab ID	Client ID	Matrix	TPH(g)	MTB	E	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	2200,a	ND<5	0	34	150	29	190	20	109
002A	PRED	А	6800,a	ND<5	0	95	340	72	440	20	122
003A	AS	А	4000,a	68		100	390	74	820	20	102
	<u> </u>										
	porting Limit for DF =1;	Α	25	2.5		0.25	0.25	0.25	0.25	1	µg/L
	means not detected at or bove the reporting limit	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCam</u>		Analyti uality Counts"	<u>cal, Inc.</u>	,	Web: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa			
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	d: 01/15/08		
2500 C	amino Diablo, S	te. #200					Date Receiv	ed: 01/16/08		
Walnut	t Creek, CA 945	97		Client Contact: R	icky Bradf	ord	Date Extract	ed: 01/16/08-	01/17	/08
				Client P.O.:			Date Analyz	ed 01/16/08-	01/17	/08
		-	(C6-C12) V	olatile Hydrocarbo			BE and BTEX			
Extractio	n method SW5030E	; 		Analytical meth	ods SW8021	B/8015Cm		Work Order:	0801	416
Lab ID	Client ID	Matrix	TPH(g)	MTBE I	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	620,a	ND<14	11	39	6.6	44	20	109
002A	PRED	А	1900,a	ND<14	29	89	16	100	20	122
003A	AS	А	1100,a	19	31	100	17	180	20	102

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

_____Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

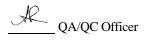
QC Matrix: Water

WorkOrder 0801416

EPA Method SW8021B/8015Cm	Extraction SW5030B			BatchID: 33202				Spiked Sample ID: 0801386-011A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	91.1	93.3	2.36	91.2	111	19.3	70 - 130	30	70 - 130	30
MTBE	ND	10	113	107	4.69	125	126	1.05	70 - 130	30	70 - 130	30
Benzene	ND	10	106	99.5	6.28	109	100	8.70	70 - 130	30	70 - 130	30
Toluene	ND	10	96.1	91.7	4.66	103	90.1	13.8	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	106	101	4.13	111	102	8.69	70 - 130	30	70 - 130	30
Xylenes	ND	30	98.5	95.1	3.39	107	100	6.45	70 - 130	30	70 - 130	30
%SS:	94	10	95	96	0.767	93	100	6.48	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method F	RL with th	ne following	exceptions:			

BATCH 33202 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801416-001A	01/15/08 2:32 PM	01/16/08	01/16/08 11:06 PM	0801416-002A	01/15/08 2:40 PM	01/16/08	01/16/08 11:36 PM
0801416-003A	01/15/08 3:20 PM	01/17/08	01/17/08 12:07 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell A		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/22/08		
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	01/23/08		
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	01/29/08		
	Client P.O.:		Date Completed:	01/29/08		

WorkOrder: 0801561

January 29, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McCAM	PBELI	ANAL	YT	ICA	LI	NC							Τ					C	HA	IN	0	F (CU	ST	ο)Y	F	E	CC)R	D		
	1538 Willo	w Pass	Road. Pit	tsbu	rg, C	4 94	1565	5							τu	RN	A	RC																Ø
Teler	ohone: (925) 252		,,						52-9	26	0			1	EDF Required? 🕅 Yes 🗔 No					RUSH 24 HR PDF Require							2 HR	5 DAY						
		-9202	D			_	(92	5) 2	34-3	20	"	_	_	۲	EDF	Rec	lui	red						-	PDF	Re	qu	ire	d?	-	-	L	No	
Report To: Ri	El Consultants		В		o: san	1e		_				-		┢							SIS I	Requ	lest					-	-	Ot	ier		Com	nents
	00 Camino Diab	lo. Suite	200							-						RS	0.01	QL I	preserv.															mv
	alnut Creek, CA			-Ma	il: rbr	adfo	orda	aei	cons	ult	atns.	con	n			by I	07.0.70	XL/I														ed		I pp
Telephone: (9	and the second se		F	ax:	(925)	944	-289	95							3	Silica Gel Clean-up by IRS	Canada / 663/1 E 6. E/D 6. E/		w/ HNO3										0B)			servi		- ug/L and ppmv
AEI Project N	o. 116907		Р	roje	ct Nar	ne:	Vic	's /	uto	m	otive	9		00/0	0.0	Clear	1667	zce)	W/H										(SW8260B)			upre		g/L
	on: 245 8th Str	eet, Oak	land, CA	946	07									1		Gel		(8)											(SW			ber u		
Sampler Signa	iture: Drus	ears	art	¢	_	_	_			_		_		0/11.	0 44 0	lica	0	E200	H										list		10)	Aml		nits
		SAMI	PLING	s	lers		MA	TR	IX		ME		OD VEI		(m)y	w/Si	3	(TTLC/E200.8)	250 ml HDPE										target	(B)	SW10	Liter		ith u
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Soil	Air	Sludge	Uther	lce	UND	Other Other	6	TPH-d (SW8015Cm)	TRPH (E418.1)	Tatal Basedana	*Total Lead (TTLC/E	Se							Contraction of the second	21	LUFT 5 Metals	HVOCs - 8010 t	MTBE (SW8260B)	**Flash Point (SW1010)	**For FP Use 1 Liter Amber unpreserved		Report in both units
MW-1S	MW-1S	1/22	13:20	1	ТВ			X		1					ĸ		t																	X
MW-2S	MW-2S		13:25	1	ТВ			X		1					<		T																	X
MW-3S	MW-38	400	12	+	TB			x	-	+	-	+		3	¥		T																	¥
MW-48	MW-4S	700		+	TB			X	-	+	+	Ŧ	-	1	¥		t	-		1														¥
MW-5S	MW-5S	1/22	14:00	1	ТВ			X	+	+	-	+	-	1,	<		t	-									1							X
MW-6S	MW-6S	1/22	13:50	1	ТВ			X	+	t	+	+	-	Ŕ	1	1	t	-		1	-						1		-					X
MW-7S	MW-7S	You	13:45		ТВ			X	•	+	-	+	+	ť		-	t	+		-							+							x
MW-10S	MW-10S	422	13:40	1	ТВ			X	-	+	-	+	+	ť	1	1	t	1		+					-		1	-	_					X
MW-11S	MW-118		13:37	-	ТВ			X		+	+	+	-	Ľ		+	t	+	1	+	+					-	1							X
MW-12S	MW-12S		13:30	1	ТВ			X	+	+		+	-	K	1	+	t	-		1	1					-								X
POSTD	POSTD	422	13:10	1	TB			X	+	+	-	+	+	ť		-	t	+		+				-		+	+							X
PRED	PRED		13:05	1	TB			X	-	┫		+	-	ť		1	t	+	-	1				-	-	+		-				-		X
AS	AS	100	13.00	_	TB			X	+	+	-	+	-	ť	+	+	t	+		+	1				-	-	1		-					X
Relinquished By: A Dort Relinquished Byr	the	Date:	Time: 10.15 Time:	Rec	eived B	_		1		1	20	-	_		ICI	E/t°_	2	4.	4		1				SER			N	OAS	0	&G	N	IETALS	
Relinquished By!	Mu	1/23 Date:	3:45 Time:	Rec	eived B	L by:	,	1	a	1	Y				HE	AD	SP.	ACE	AB	SEN			. (ON	TAI	NER	lS_	V	LAI	B <u>N</u>	1P	_		

McCampbell Analytical, Inc.

	SW.
6	3V
1	-
	~~/

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work(Order	: 0801	561	(ClientII): AEI					
				EDF	Ľ	Excel		Fax		🖌 Email		Har	dCopy	Thi	rdParty		
Report to: Ricky Bradford AEI Consultants 2500 Camino D Walnut Creek, 0	Diablo, Ste. #200	Email: TEL: ProjectNo: PO:	rbradford@a (925) 283-600 #116907; Vic	()			AE 25 Wa	enise M El Cons 600 Can alnut Ci	ultants nino Di reek, C	ablo, Sl A 9459 ⁻ nsultan	7	0	Dat	uested te Rece te Prin	eived:	5 (01/23/ 01/23/	
									Rec	uested	Tests	(See le	gend b	oelow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0801561-001	MW-1S		Air	1/22/2008 1:25:00		А	А								Τ		1
0801561-002	MW-2S		Air	1/22/2008 1:25:00		А											
0801561-003	MW-5S		Air	1/22/2008 2:00:00		А											
0801561-004	MW-6S		Air	1/22/2008 1:50:00		А											
0801561-005	MW-7S		Air	1/22/2008 1:45:00		А											
0801561-006	MW-10S		Air	1/22/2008 1:40:00		А											
0801561-007	MW-11S		Air	1/22/2008 1:37:00		А											
0801561-008	MW-12S		Air	1/22/2008 1:13:00		А											
0801561-009	POSTD		Air	1/22/2008 1:10:00		А									1		1
0801561-010	PRED		Air	1/22/2008 1:05:00		А			1		1				1		1

Test Legend:

1	G-MBTEX_AIR	2
6		7
11		12

PREDF REPORT	3	4
	8	9

4	
9	

5	
10	-

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A contain testgroup.

Prepared by: Samantha Arbuckle

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

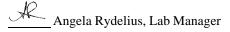
McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	1/23/2008	3:09:07 PM
Project Name:	#116907; Vic's A	utomotive			Check	klist completed and re	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0801561	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain	of Cu	stody (C	OC) Informa	ation		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	v signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	<	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	f collection noted by Cl	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		Si	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆	-	NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	vatio	n and Ho	d Time (HT) Information		
	ived within holding tim		Yes	V	No 🗌	<u>, </u>		
	Ũ						🗖	
Container/Temp	Blank temperature		Coole	er Temp:	24.4°C		NA 🗆	
Water - VOA via	ls have zero headspa	ice / no bubbles?	Yes		No 🗆	No VOA vials submi	itted 🗹	
Sample labels cl	necked for correct pre	servation?	Yes	\checkmark	No			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:


Contacted by:

Comments:

	McCampbell	Analy ality Counts		2	Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com			
AEI C	Consultants		Client Proj	ect ID: #116	5907; Vic's Aut	tomotive	Date Sample	ed: 01/22/08			
2500 0	Camino Diablo, Ste. #200						Date Received: 01/23/08				
			Client Con	tact: Ricky	Bradford		Date Extracted: 01/23/08-01/24/08				
Walnu	tt Creek, CA 94597		Client P.O.	:		Date Analyz	ed 01/23/08	-01/24	/08		
Extracti	Gasolin on method SW5030B	e Range (-	rbons as Gaso W8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0801	1561	
Lab ID	Client ID	Toluene	Ethylbenzene	Xylenes	DF	% SS					
001A	MW-1S	А	2300,a	ND<50	19	89	12	130	20	94	
002A	MW-2S	А	11,000,a	ND<50	200	710	100	800	20	88	
003A	MW-5S	А	2700,a	ND<17	11	61	10	120	6.7	88	
004A	MW-6S	А	6600,a	ND<50	36	280	58	460	20	90	
005A	MW-7S	А	14,000,a	ND<50	220	760	89	920	20	85	
006A	MW-10S	А	17,000,a	ND<50	120	890	220	1400	20	98	
007A	MW-11S	А	11,000,a	ND<270	260	730	170	1000	20	96	
008A	MW-12S	А	6000,a	ND<100	170	460	64	410	20	89	
009A	POSTD	А	3800,a	ND<50	47	190	37	290	20	114	
010A	PRED	А	6900,a	ND<50	110	400	59	450	20	118	
										$\left \right $	
		<u> </u>				<u> </u>	1				
	oorting Limit for DF =1; means not detected at or	А	25	2.5	0.25	0.25	0.25	0.25	1	µg/L	
	ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

	<u>McCam</u>		Analyti uality Counts"	cal, Inc.		Web: www.mccamp		g, CA 94565-1701 main@mccampbel x: 925-252-9269						
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample							
2500 C	amino Diablo, S	te. #200					Date Received: 01/23/08							
Walnut	Creek, CA 945	97		Client Contact: R	Ricky Bradf	ord	Date Extracted: 01/23/08-01/24/08							
				Client P.O.:	Date Analyzed 01/23/08-01/24/									
Extraction	Gasoline	-	(C6-C12) V	-	ons as Gasoline with MTBE and BTEX in ppmv*									
Lab ID	Client ID	Matrix	Toluene	Ethylbenzene	Xylenes	DF	% SS							
001A	MW-1S	А	660,a	ND<14	5.8	23	2.7	28	20	94				
002A	MW-2S	А	3000,a	ND<14	61	190	24	180	20	88				
003A	MW-5S	А	760,a	ND<4.5	3.3	16	2.4	28	6.7	88				
004A	MW-6S	А	1900,a	ND<14	11	74	13	100	20	90				
005A	MW-7S	А	3900,a	ND<14	69	200	20	210	20	85				
006A	MW-10S	А	4700,a	ND<14	38	230	49	310	20	98				
007A	MW-11S	А	3000,a	ND<75	81	190	39	230	20	96				
008A	MW-12S	А	1700,a	ND<30	51	120	14	92	20	89				
009A	POSTD	А	1100,a	ND<14	14	50	8.4	65	20	114				
010A	PRED	А	1900,a	ND<14	34	100	13	100	20	118				

nnm(mg/I) to $nnmu(u1/I)$ conversion for	TDU(a) assumes the melocular	weight of gesoling to	be equal to that of herene
ppm (mg/L) to ppmv (ul/L) conversion for	i r n(g) assumes me molecular	weight of gasonne to	be equal to that of hexalle.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

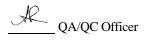
WorkOrder 0801561

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 33	321	Sp	iked Samp	ole ID:	0801543-00	1F
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	87.8	88.7	1.03	119	111	7.10	70 - 130	30	70 - 130	30
MTBE	ND	10	99.2	96	3.33	88.9	90.5	1.70	70 - 130	30	70 - 130	30
Benzene	ND	10	93.3	87.8	6.12	88.9	89.7	0.950	70 - 130	30	70 - 130	30
Toluene	ND	10	86.4	80.2	7.41	88.7	90.6	2.07	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	95.2	89.6	6.01	95.4	96	0.624	70 - 130	30	70 - 130	30
Xylenes	ND	30	92.3	86.3	6.72	107	107	0	70 - 130	30	70 - 130	30
%SS:	92	10	97	96	1.50	91	89	2.67	70 - 130	30	70 - 130	30

NONE

BATCH 33321 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801561-001A	01/22/08 1:25 PM	01/23/08	01/23/08 7:49 PM	0801561-002A	01/22/08 1:25 PM	01/23/08	01/23/08 8:20 PM
0801561-003A	01/22/08 2:00 PM	01/23/08	01/23/08 8:51 PM	0801561-004A	01/22/08 1:50 PM	01/23/08	01/23/08 9:21 PM
0801561-005A	01/22/08 1:45 PM	01/23/08	01/23/08 9:52 PM	0801561-006A	01/22/08 1:40 PM	01/23/08	01/23/08 10:23 PM
0801561-007A	01/22/08 1:37 PM	01/24/08	01/24/08 12:26 AM	0801561-008A	01/22/08 1:13 PM	01/23/08	01/23/08 11:25 PM
0801561-009A	01/22/08 1:10 PM	01/24/08	01/24/08 12:57 AM	0801561-010A	01/22/08 1:05 PM	01/24/08	01/24/08 3:31 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell An "When Quality		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	01/31/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	02/01/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/08/08
Wallat Creek, CA 9+397	Client P.O.:		Date Completed:	02/08/08

WorkOrder: 0802004

February 08, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

					C)E	30	12	20	20	24	4	/																						
	McCAM	PBELI	L ANAI	LY	ГICA	LI	NO	2.												C	HA	IN	10	F	CU	ST	0	D	YI	RE	C	OR	D		
	1538 Will	ow Pass	Road, Pi	ttsbi	irg, C	A 9	456	5							1	ΓUI	RN	A	RO				ME					Ç			Ę				Ø.
Tele	ohone: (925) 252		÷.						252-	02	60															USH		24 1			48 1			72 HR	5 DAY
		-9202		211.7	o: san		(92	.5)	434-	94	09			-	E	DF	Reg	luii	red							PD	FR	equ	iire	d?	-	Ye	-	No	
Report To: Ri	EI Consultants		Ľ		o: san	ne								-	⊢	-						S1S :	Req	uest			-		-	-	01	her	_	Com	nents
	00 Camino Diab	lo, Suite	200											-			RS	&F)		preserv.															mv
	alnut Creek, CA		and the second sec	-Ma	ail: rbr	adfe	ord	ae	icon	sul	tatn	s.ce	om		3		by I	&F/B		Dre													7		- ug/L and ppmv
Telephone: (9			F	ax:	(925)	944	-28	95							15Cm		dn-o	0 E4		ŐN										(B)			unpreserved		and
AEI Project N					et Nar	ne:	Vie	c's.	Auto	om	otiv	ve			8/801		Clean	(552		H/M										8260			npre		g/L
	ion: 2458th Str	eet, Oak	land, CA	946	507										021E		Gel	case	(8)	DE										(SW			ber u		
Sampler Signa	nture: KBa	the	-			_				_					SW8		lica	& Gn	E200	THE										list		(01	Amb		nits
		SAMI	PLING	2	ers	L	MA	TF	IX				HOI		& MBTEX (SW8021B/8015Cm)	TPH-d (SW8015Cm)	TRPH (E418.1) w/ Silica Gel Clean-up by IRS	Total Petroleum Oil & Grease (5520 E&F/B&F)	*Total Lead (TTLC/E200.8)	*For Lead Use 250 ml HDPE w/ HNO,										HVOCs - 8010 target list (SW8260B)	(B)	**Flash Point (SW1010)	**For FP Use 1 Liter Amber		Report in both units
C. MIRE F. IS	FIELD POINT			of Containers	Itain										MBT	/801	(8.1)	leum	I (T	Use 2								etals	etals	010	(SW8260B)	int (S	Ise 1		u bo
SAMPLE ID	NAME	Date	Time	ont	Č	H			Se	2			m		8	(SW	(E4]	ctro	Lea	ead								17 M	5 M(S = 8	(SV	h Poi	FP U		ut ii
		- ure			Type Containers	Water	Soil	Air	Sludge	Other	Ice	HCI	HNO ₃	Other	TPH-g	P-H-d	RPH	otal]	Total	For L								CAM 17 Metals	LUFT 5 Metals	NOC	MTBE	*Flas	*For		Kepc
				#		F	90	-4	001	4	-	-	H	4	F	H	T	L	*	*	-	-	-		_	_	-	0	Н	Ξ	2	*	*	<u> </u>	
MW-LS	MW-1S			1	TB			X	-		_	_	-	_	-						_						_					_			X
M-25	MW-2S			1	TB	1		X					-	-	-																				X
MW-38	MW-3S		2	Ł	TB			X	_	-	-				X											-	_		_					· ·	X
MW-4S	MW-4S		~	+	TB		-	X							X																				X
MW-5S	MW-5S		-	1	TB		-	X				-	-		_	-																			х
MW-6S	MW-6S			1	TB		-	X		-		-		-	-																				Х
MW-78	MW-7S		-	1	ТВ		_	X		-	-		-	-	-																				X
MW-105	MW-10S			+	TB		-	X		-	-	-	-	-	-																				Х
MW-HS	MW-115		-	1	TB			X	-		-			-	-																				X
M W-12S	-MW-125	-	-	1	TB		_	X	_		-	_		-	-																				X
POSTD	POSTD		10:05	1	TB			X		1					X											-									х
PRED	PRED		10:00	1	ТВ			X		1					×																				x
AS	AS		10:15	1	ТВ			X		1					R																				X
Relinquished By:	Atk	Date:	Time:	_	eived B	1: (2	1	10	R	Q	Q)				A	1											V	OAS	0	&G	N	IETALS	OTHER
Relinquished By:	212	Date:	Time:	Rec	eived B	y:	-	_	V	-				\neg		CE	-		-	TIC	1.01	6	/			SER									
																	DS				SEN	Т	-			ROP			· .	/	-				
Relinquished By:		Date:	Time:	Rec	eived B	y:															DIN		B			RSE			IN	LAI	B	_	_		

1 1

McCampbell Analytical, Inc.

Γ	~	1	Ψ.	ò
K	<u>_</u>	3	1	ę
	<u></u>	-4	٠	ì
		0.0		4

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262		WorkOrd	er: 08020	04 Cl	ientID: AEL		
	✓ EDF	Excel	Fax	🖌 Email	HardCop	by ThirdParty	
Report to:		Bill t	to:		R	Requested TAT:	5 days
Ricky Bradford Email:	rbradford@aeiconsultants.com		Denise Mo				
AEI Consultants TEL: 2500 Camino Diablo, Ste. #200 ProjectNo	(925) 283-6000 FAX: (925) 944-28 o: #116907; Vic's Automotive	-	AEI Consu 2500 Cami	ltants no Diablo. Ste	#200 L	Date Received:	02/01/2008
Walnut Creek, CA 94597 PO:		,	Walnut Cre	ek, CA 94597 aeiconsultants	L	Date Printed:	02/01/2008
				Requested 1	rests (See legen	d below)	
Sample ID ClientSampID	Matrix Collection Date Hold	1 2	3	4 5	6 7	8 9 10	11 12

0802004-001	POSTD	Air	01/31/08 10:05:00	А	А					
0802004-002	PRED	Air	01/31/08 10:00:00	А						
0802004-003	AS	Air	01/31/08 10:15:00	А						

Test Legend:

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	02/01/08 1	0:02:53 AM
Project Name:	#116907; Vic's A	Automotive			Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0802004	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC	:) Informa	ation		
Chain of custody	y present?		Yes		No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		S	ample	Receipt Inf	ormation	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆	-	NA 🗹	
Shipping contain	er/cooler in good con	dition?	Yes		No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	I test?	Yes		No 🗌			
		Sample Prese	vatio	n and Hold	Time (HT) Information		
All samples rece	ived within holding tim		Yes	<	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	Ils have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:


Contacted by:

Comments:

	McCampbell	Analy		•	Web	: www.m	illow Pass Road, l accampbell.com none: 877-252-92	Pittsburg, CA 94565 E-mail: main@mcca 62 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Pro	ject ID: #	#116907; Vi	c's Aut	omotive	Date Sample	ed: 01/31/08		
2500	Camino Diablo, Ste. #200							Date Receive	ed: 02/01/08		
Walni	ıt Creek, CA 94597		Client Cor	ntact: Rio	cky Bradford	l		Date Extract	ed: 02/01/08		
vv ann	n Cleek, CA)4377		Client P.O).:				Date Analyz	ed 02/01/08		
Extracti	Gasolin ion method SW5030B	ne Range ((-	rocarbons a ds SW8021B/8		line with BT	EX and MTBE	* Work Order	:: 0802	2004
Lab ID	Client ID	Matrix	TPH(g)	MTBI	E Ben	zene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	2700,a	ND<5	0 3	9	150	30	270	20	105
002A	PRED	А	7700,a	ND<5	0 12	.0	450	85	720	20	101
003A	AS	А	250,a	ND<1	7 5	5	19	3.6	47	6.7	90
	porting Limit for DF =1;	А	25	2.5	0.	25	0.25	0.25	0.25	1	µg/L
	means not detected at or bove the reporting limit	S	NA	NA			NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

	<u>McCam</u>		Analyti uality Counts"	cal, Inc.	,	Web: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa			
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's		ed: 01/31/08		
2500 C	amino Diablo, S	te. #200					Date Receiv	ed: 02/01/08		
Walnut	t Creek, CA 945	97		Client Contact: R	icky Bradf	ford	Date Extract	ed: 02/01/08		
				Client P.O.:			Date Analyz	ed 02/01/08		
			(C6-C12) V	olatile Hydrocarbo			BE and BTEX			
	on method SW5030E	1 1		Analytical meth				Work Order:		
Lab ID	Client ID	Matrix	TPH(g)	MTBE I	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	770,a	ND<14	12	38	6.9	62	20	105
002A	PRED	А	2200,a	ND<14	36	120	19	160	20	101
003A	AS	А	69,a	ND<4.5	1.7	5.0	0.81	11	6.7	90

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

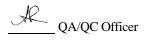
QC Matrix: Water

WorkOrder 0802004

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 33	565	Sp	iked Sam	ble ID:	0802009-00	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
ſPH(btex [£]	ND	60	102	103	0.777	97.6	94	3.81	70 - 130	30	70 - 130	30
MTBE	ND	10	118	123	3.89	109	106	3.03	70 - 130	30	70 - 130	30
Benzene	ND	10	101	104	3.02	98.8	102	3.31	70 - 130	30	70 - 130	30
Foluene	ND	10	111	115	3.40	91.8	94.4	2.78	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	107	111	3.88	103	104	1.78	70 - 130	30	70 - 130	30
Xylenes	ND	30	113	120	5.71	100	100	0	70 - 130	30	70 - 130	30
%SS:	102	10	97	97	0	98	96	2.17	70 - 130	30	70 - 130	30

BATCH 33565 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0802004-001A	01/31/08 10:05 AM	02/01/08	02/01/08 1:24 PM	0802004-002A	01/31/08 10:00 AM	02/01/08	02/01/08 1:57 PM
0802004-003A	01/31/08 10:15 AM	02/01/08	02/01/08 2:31 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell An "When Qualit		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #11690	07; Vic's	Date Sampled:	02/07/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	02/08/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	02/14/08
Wallut Creek, CA 94397	Client P.O.:		Date Completed:	02/14/08

WorkOrder: 0802186

February 14, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																0	87	00	-19	36														
	McCAM	PBELI	ANAL	YT	ICA	LI	NC												CI	IA	IN	0	F (CU	ST	0	DY	7 F	E	C)R	D		
	1538 Willo	w Pass I	Road, Pit	tsbu	rg, C	A 9.	456	5						1	TUI	RN	Al		UN															×
Telen	hone: (925) 252							5) 25	2-0	260								10		1.	_	_			SH		4 H			48 H			2 HR	5 DAY
Report To: Rie		-9202	D	ш т	o: san		(94	5) 45	52-9	209			-	E	DF	Req	uir	ed?				N lequ			PDF	R	equ	ire		-	Yes her	_	No	
Company: AE			D	1111	o; san	ne			-	_			-	⊢			-			arys	IS R	lequ	est					-		00	ner		Com	nents
	00 Camino Diab	lo, Suite	200							_						IRS	3&F		preserv.															VUIC
W	alnut Creek, CA	94597	E	-Ma	il: rbr	adfo	ord@	aeic	onsu	iltat	tns.c	com		î		w/ Silica Gel Clean-up by IRS	& Grease (5520 E&F/B&F)															bed		- ug/L and ppmv
Telephone: (9					(925)									(SW8021B/8015Cm)		in-ut	20 E		w/ HNO3										50B)			unpreserved		an
AEI Project N					ct Nar	me:	Vie	c's A	utor	mot	tive		_	B/8(Cle	e (55		//M										(SW8260B)			unpr	8	l/gn
	on: 245 8th Str	11	land, CA	946	07	- ie	1-	-		_			_	8021		Gel	rease	0.8)	DPE													ber		
Sampler Signa	ture:		12	-		_	15			Т	ME	тно	D	(SW	-	Silica	& G	/E20	ml H										et list		010	r An		Turit
		SAMP	PLING	ers	ners		MA	TRI	X			ERV		EX	SCm		liOu	(TTLC/E200.8)	250								8		targe	60B)	SW1	Lite		othu
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Soil	Air	Other	lee	HCI	HNO ₃	Other	TPH-g & MB1	TPH-d (SW8015Cm)	TRPH (E418.1)	Total Petroleum Oil	*Total Lead (T	*For Lead Use 250 ml HDPE								CAM 17 Metals	LUFT 5 Metals	HVOCs - 8010 target	MTBE (SW8260B)	**Flash Point (SW1010)	**For FP Use 1 Liter		Report in both units
MW-1S	MW-1S			1	ТВ			X		t															1									x
MW-2S	MW-2S			1	ТВ			X		T																								X
MW-38	MW-38			+	ŦB			¥		Τ				X																				¥
MW-48	MW-48			+	TB		1	X	-	Γ				X																				X
MW-5S	MW-5S			1	ТВ			X		Τ																								X
MW-6S	MW-6S			1	ТВ			X		T																								X
MW-7S	MW-7S			1	ТВ			X		T	T																							X
MW-10S	MW-10S			1	ТВ			X		T																								X
MW-11S	MW-11S			1	ТВ			X		T	T																							Х
MW-12S	MW-12S			1	ТВ			X		T																								X
POSTD	POSTD	2/7/04	1230	1	ТВ			X		T				X																			(X)
PRED	PRED	2/7/08		1	ТВ			X		T				X																			(X
AS	AS	2/7/08	1240	1	ТВ			X		t				$\mathbf{\nabla}$																			(x
Relinquished By:	1.	Date:	Time: 509p	Rec	eived B	14	0	Va	i	j					ICE	/t°	D						Р	RES	SER	VAT	10		OAS	0	&G	N	IETALS	OTHER
Relinquished By: Date: Time: Received By: Relinquished By: Date: Time: Received By:						GOO	DDO	CON	NDI	TIO ABS TEI	EN) B	A	PPF ON	ROP	RIA	TE S	2	LAF	3_		_		ł.									

McCampbell Analytical, Inc.

Γ	~	1	Ψ.	ò
K	<u>_</u>	3	1	ę
	<u></u>	-4	٠	ì
		0.0		4

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 945 (925) 252-9262	65-1701				,	WorkO	rder: 0	802186	6 C	lientID:	AEL				
				EDF		Excel	E F	Fax	🖌 Email	[HardCopy	/ ThirdF	Party		
Report to:						Bi	II to:				R	equested T	AT:	5 c	days
Ricky Bradford AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94		Email: TEL: ProjectNo: PO:	rbradford@ae (925) 283-6000 # 116907; Vic	()	4-289	5	AEI C 2500 Walnu	ut Creek		,	_	ate Receiv ate Printe		02/08/2 02/08/2	
								I	Requested	Tests (S	See legend	l below)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7 8	9	10	11	12

0802186-001	POSTD	Air	2/7/2008 12:30:00	А	А					
0802186-002	PRED	Air	2/7/2008 12:25:00	А						
0802186-003	AS	Air	2/7/2008 12:40:00	А						

Test Legend:

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12]		

5	
10	

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	2/8/2008 5	:50:19 PM
Project Name:	# 116907; Vic's	Automotive			Check	dist completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0802186	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes		No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes		No 🗆			
		Si	ample	Receipt Inf	ormation	<u>!</u>		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?	,	Yes		No 🗆			
Sample containe	ers intact?		Yes		No 🗆			
Sufficient sample	e volume for indicated	I test?	Yes		No 🗌			
		Sample Prese	rvatior	n and Hold	Time (HT)) Information		
All samples rece	ived within holding tin	ne?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:


Contacted by:

Comments:

	McCampbell	Analy		, 	Web: www	Willow Pass Road, .mccampbell.com ephone: 877-252-92	Pittsburg, CA 94565 E-mail: main@mcca 262 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Pro	ject ID: #	# 116907; Vic's A	Automotive	Date Sample	ed: 02/07/08		
2500 0	Camino Diablo, Ste. #200						Date Receive	ed: 02/08/08		
Walnı	ıt Creek, CA 94597		Client Cor	ntact: Ric	ky Bradford		Date Extract	ed: 02/09/08		
vv ann	n Clock, CA 7 4 377		Client P.O).:			Date Analyz	ed 02/09/08		
Extracti	Gasolin on method SW5030B	ne Range ((-	cocarbons as Gas ds SW8021B/8015Cr		EX and MTBE	* Work Order	r: 0802	2186
Lab ID	Client ID	Matrix	TPH(g)	MTBI	E Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	2500,a	ND<2	5 33	140	29	250	10	119
002A	PRED	А	7000,a	ND<12	20 110	410	44	580	20	111
003A	AS	А	110,a	5.1	1.5	5.9	0.90	18	1	97
	porting Limit for DF =1;	А	25	2.5	0.25	0.25	0.25	0.25	1	µg/L
	means not detected at or ove the reporting limit	S	NA	NA		NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

	<u>McCam</u>		Analyti uality Counts"	cal, Inc.		Web: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa			
AEI Co	onsultants			Client Project ID: Automotive	# 116907;	Vic's	Date Sample	ed: 02/07/08		
2500 C	amino Diablo, S	te. #200		/ utomotive			Date Receiv	ed: 02/08/08		
Walnut	t Creek, CA 945	97		Client Contact: R	icky Bradf	ord	Date Extract	ed: 02/09/08		
				Client P.O.:			Date Analyz	ed 02/09/08		
		-	(C6-C12) V	olatile Hydrocarbo			BE and BTEX			
	n method SW5030E	1 1	TDU(-)	Analytical meth			Etherlihansana	Work Order:		
Lab ID	Client ID	Matrix	TPH(g)	MTBE I	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	POSTD	А	690,a	ND<6.8	10	37	6.6	58	10	119
002A	PRED	А	2000,a	ND<35	34	110	10	130	20	111
003A	AS	А	31,a	1.4	0.47	1.5	0.21	4.1	1	97

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1; ND means not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

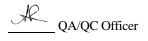
QC Matrix: Water

WorkOrder 0802186

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 33	710	Sp	iked Sam	ple ID: 0802210-002A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)			
Analyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f)	ND	60	121	119	2.19	98.8	98.1	0.709	70 - 130	30	70 - 130	30		
MTBE	23	10	97.9	100	0.726	115	118	3.31	70 - 130	30	70 - 130	30		
Benzene	ND	10	101	102	0.766	109	112	2.37	70 - 130	30	70 - 130	30		
Toluene	ND	10	100	101	0.241	101	99.5	1.17	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	10	108	109	0.154	111	106	4.32	70 - 130	30	70 - 130	30		
Xylenes	ND	30	120	121	0.162	107	100	6.45	70 - 130	30	70 - 130	30		
%SS:	97	10	96	96	0	99	104	5.59	70 - 130	30	70 - 130	30		

BATCH 33710 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802186-001A	02/07/08 12:30 PM	02/09/08	02/09/08 3:49 AM	0802186-002A	02/07/08 12:25 PM	02/09/08	02/09/08 4:19 AM
0802186-003A	02/07/08 12:40 PM	02/09/08	02/09/08 4:50 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell A		Web: www.mco	CA 94565-1701 nain@mccampbell.com 925-252-9269	
AEI Consultants	Client Project ID: #11690	7; Vic's	Date Sampled:	03/18/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	03/18/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	dford	Date Reported:	03/24/08
Wantat Creek, CA 9+397	Client P.O.:		Date Completed:	03/20/08

WorkOrder: 0803447

March 24, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #116907; Vic's Automotive,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

			De	8	03	4	17	7	-																											
	McCAM	PBELI	ANA	LYI	FICA	LI	NC							Г					C	HA	I	NO)F	C	US	T	DD	Y	F	E	C	OF	D			
	1538 Willo	w Pass	Road Pi	ttshi	irg C	A 94	565								TU	RN	A	RO									0000				Ę	1			k	A
T 1			itoau, i i	(LSD)					53 0	20	0									62				F	RUS		24				48 I			72 H		5 DA
	ohone: (925) 252	-9262				ax:	(923	s) 2:	52-9	26	9		_	E	DF	Rec	qui	red	-				_		P	DF	Rec	qui	ire	d?	-	Ye	_			
Report To: Ri			В	Sill 1	o: san	ne								⊢	-	-	_	-	A	naly	sis	Req	ues	t	-	_	-	_	-	_	01	ther	1	- C	omm	ents
Company: Al	00 Camino Diab	la Suita	200													s	(H-8	ì.	erv.																	ALL A
	alnut Creek, CA			M	il: rhr	bradford@aeiconsultatns.com						_			by II	F/B		preserv.														5			Idd	
Telephone: (9	and the second se	94377				×						(SW8021B/8015Cm)		dn-	Grease (5520 E&F/B&F)		0											(B)			perved		7	- ug/r and ppmv		
AEI Project N	and a second second second second second second second second second second second second second second second			Fax: (925) 944-2895 Project Name: Vic's Automotive						108/		lean	552(w/ HNO3											(SW8260B)			serves	and a state	t	L				
	on: 245 8th Str	eet, Oak						-						21B		iel C	ase	6	PE											SWS			ar ur		8	
	ampler Signature:									W80		ica (Gre	200.	E													6	Amber		1	SI I				
	SAMPLINC & MATDIX ME										(SCm)) w/ Silica Gel Clean-up by IRS	n Oil &	(TTLC/E200.8)	250 ml									0		8010 target list	60B)	Point (SW1010)			4	un uno				
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	PRESERVED					Other	TPH-g & MB	S	TRPH (E418.1)	Total Petroleum Oil &	*Total Lead (]									CAM 17 Metals	THE ALL AND A REAL AND A	LUFT 5 Metals	HVOCs - 8010	MTBE (SW8260B)		**For FP Use 1 Liter			report in bour units		
MW-1S	MW-1S	3/18/08	1117	1	TB		+	X		t		-		X			1			+	+	+	+	+	+	1		1	-			1	+	+	J	ζ
MW-2S	MW-2S		1124	1	TB			X		t		1		X			T						1	T		1	1	t				T	T	1	2	K
MW-5S	MW-5S		1204	1	ТВ			X		t		1	-	X				-			1		1	1	1			T				\square	T		• 3	4
MW-6S	MW-6S		1157	1	TB			X		t		t		K			T			1	1			1	1			t					T	1	7	¢
MW-7S	MW-7S		1150	1	TB			X		t				K										T				t				T	T	T	2	K
MW-10S	MW-10S		1145	1	TB			X		t		1		Ŕ	>								1					T					T		7	(
MW-11S	MW-11S		1140	1	TB			X		t				k	*			1	1				T	T	1	1		Ť					T	\top	2	K
MW-12S	MW-12S		1133	1	TB			X		t		1		X	7		T	-		1	-	1	T	T	1			1				\square	T		2	(
POSTD	POSTD		1110	1	TB			X		t				X	7													t					T		2	<
PRED	PRED		1100	1	TB			X		t				k			T					1		T	1			T					T		2	(
AS	AS			1	TB			X		t	-		-	F									T	T			1	T					Т			K
STACK	STACK	Y	1220	1	TB			X		1				\geq																					2	(
Relfiquished By: MM Relinquished By:	hu Nhu 3/18/199 455 Manual elinquished By: Date: Time: Received By:							7		ICE GO HE/ DE(OD O	SPA	CE	AB	SEN	_			AP CO	ESE PRO NT/	OPR	ER	SE S	N	DAS		D&G		MET	ALS	отне					
Rennquisned By:	Relinquished By: Date: Time: Received By:								DECHLORINATED IN LAB PERSERVED IN LAB																											

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92						Work(Order	: 08034	47	(ClientC	Code: A	AEL				
			WriteOr		Γ	Excel		Fax	l	🗸 Email		Har	dCopy	🗌 Thi	irdParty	٦	-flag
Report to:						I	Bill to:						Req	uested	TAT:	5	days
Ricky Bradford AEI Consultants 2500 Camino Dia Walnut Creek, C/		TEL: PO:	rbradford@ae (925) 283-6000 #116907; Vic'	, , , , , , , , , , , , , , , , , , ,		95	AE 25 W	enise Moo El Consul 500 Cami alnut Cre nockel@a	tants no Dia ek, Ca	A 94597	7					03/18/ 03/18/	
									Req	uested	Tests	(See le	gend b	elow)			J
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0803447-001	MW-1S		Air	3/18/2008 11:17		А											
0803447-002	MW-2S		Air	3/18/2008 11:24		Α											
0803447-003	MW-5S		Air	3/18/2008 12:04		Α											
0803447-004	MW-6S		Air	3/18/2008 11:57		Α											
0803447-005	MW-7S		Air	3/18/2008 11:50		Α											
0803447-006	MW-10S		Air	3/18/2008 11:45		Α											
0803447-007	MW-11S		Air	3/18/2008 11:40		Α											
0803447-008	MW-12S		Air	3/18/2008 11:33		Α											
0803447-009	POSTD		Air	3/18/2008 11:10		Α											
0803447-010	PRED		Air	3/18/2008 11:00		Α											
0803447-011	STACK		Air	3/18/2008 12:20		Α											1

Test Legend:

1 G-MBTEX_AIR	2	3
6	7	8
11	12	

3	4
8	9

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

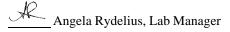
McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	ind Time Received:	03/18/08 4	:52:15 PM
Project Name:	#116907; Vic's A	Automotive			Check	list completed and re	eviewed by:	Maria Venegas
WorkOrder N°:	0803447	Matrix <u>Air</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC	:) Informa	ition		
Chain of custody	v present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by C	lient on COC?	Yes		No 🗆			
Sampler's name	noted on COC?		Yes		No 🗆			
		<u>S</u>	ample	Receipt Inf	ormation	L		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	rvatior	n and Hold [·]	Time (HT)	Information		
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials submi	itted 🗹	
Sample labels cl	necked for correct pre	eservation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:


Contacted by:

Comments:

	McCampbell	Analy ality Counts			Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI C	Consultants		Client Proj	ect ID: #116	5907; Vic's Aut	omotive	Date Sample	ed: 03/18/08		
2500 0	Camino Diablo, Ste. #200						Date Receive	ed: 03/18/08		
			Client Con	tact: Ricky	Bradford		Date Extract	ed: 03/18/08	-03/19/	/08
Walnu	tt Creek, CA 94597		Client P.O.	:			Date Analyz	ed 03/18/08	-03/19/	/08
Extracti	Gasolin on method SW5030B	e Range (-	rbons as Gaso W8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0803	447
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1S	А	500,a	ND	4.2	26	3.4	30	1	#
002A	MW-2S	А	4900,a	ND<15	56	200	59	360	2	#
003A	MW-5S	А	2100,a	ND<10	9.9	93	19	170	4	#
004A	MW-6S	А	820,a	ND<5.0	4.0	35	10	72	2	#
005A	MW-7S	А	7000,a	ND<20	81	310	48	340	4	#
006A	MW-10S	А	7400,a	ND<50	41	280	140	850	20	119
007A	MW-11S	А	6000,a	ND<50	83	250	120	680	20	112
008A	MW-12S	А	1600,a	ND<150	140	120	19	160	20	104
009A	POSTD	А	1100,a	ND<15	13	47	13	89	2	#
010A	PRED	А	2300,a	ND<11	23	96	25	170	2	#
011A	STACK	А	ND	ND	ND	ND	ND	ND	1	105
-	porting Limit for DF =1;	А	25	2.5	0.25	0.25	0.25	0.25	1	µg/L
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

	<u>McCam</u>		Analyti uality Counts"	cal, Inc.		Web: www.mccamp		g, CA 94565-1701 main@mccampbel x: 925-252-9269						
AEI Co	onsultants			Client Project ID: Automotive	#116907;	Vic's	Date Sample	ed: 03/18/08						
2500 C	amino Diablo, S	te. #200		T utomoti ve			Date Receiv	Date Received: 03/18/08						
Walnut	Creek, CA 945	97		Client Contact: R	Ricky Bradf	ford	Date Extract	ed: 03/18/08-	-03/19	/08				
				Client P.O.:			Date Analyz	xed 03/18/08-	-03/19	0/08				
Extraction	Gasoline	-	(C6-C12) V	olatile Hydrocarbo Analytical meth			BE and BTEX	in ppmv* Work Order	0803	3447				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	MW-1S	А	140,a	ND	1.3	6.9	0.78	6.9	1	#				
002A	MW-2S	А	1400,a	2.3	17	51	13	81	2	#				
003A	MW-5S	А	580,a	ND<2.7	3.0	24	4.2	39	4	#				
004A	MW-6S	А	230,a	ND<1.4	1.2	9.2	2.4	16	2	#				
005A	MW-7S	А	2000,a	ND<5.0	25	81	11	78	4	#				
006A	MW-10S	А	2100,a	ND<14	13	73	31	190	20	119				
007A	MW-11S	А	1700,a	ND<14	26	66	26	150	20	112				
008A	MW-12S	А	460,a	ND<30	42	32	4.2	36	20	104				
009A	POSTD	А	310,a	ND<3.5	3.9	12	3.0	20	2	#				
010A	PRED	А	630,a	ND<3.0	7.0	25	5.6	38	2	#				
011A	STACK	А	ND	ND	ND	ND	ND	ND	1	105				

$(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, u$		1 1 - 1 - f 1 ! 1 1	1 + - + 1 + - f 1
ppm (mg/L) to ppmv (ul/L) conversion	on for TPH(g) assumes the mole	cutar weight of gasoline to be	equal to that of nexane.

Reporting Limit for $DF = 1$;	Δ	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
ND means not detected at or	r c						0.057	1	
above the reporting limit	3	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder: 0803447

EPA Method SW8021B/8015Cm	ction SW	5030B		Ba	chID: 34	Sp	Spiked Sample ID: 0803460-002A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, maryto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	270	60	NR	NR	NR	98.3	103	4.22	70 - 130	20	70 - 130	20	
MTBE	ND<10	10	NR	NR	NR	92.6	95.5	3.11	70 - 130	20	70 - 130	20	
Benzene	34	10	NR	NR	NR	96.2	95.6	0.615	70 - 130	20	70 - 130	20	
Toluene	1.8	10	NR	NR	NR	107	106	0.810	70 - 130	20	70 - 130	20	
Ethylbenzene	ND<1.0	10	NR	NR	NR	104	103	1.44	70 - 130	20	70 - 130	20	
Xylenes	17	30	NR	NR	NR	113	111	1.68	70 - 130	20	70 - 130	20	
%SS:	120	10	#	#	#	95	97	2.06	70 - 130	20	70 - 130	20	

NONE

BATCH 34456 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0803447-001A	03/18/08 11:17 AM	03/18/08	03/18/08 7:54 PM	0803447-002A	03/18/08 11:24 AM	03/18/08	03/18/08 8:24 PM
0803447-003A	03/18/08 12:04 PM	03/18/08	03/18/08 7:24 PM	0803447-004A	03/18/08 11:57 AM	03/19/08	03/19/08 4:04 PM
0803447-005A	03/18/08 11:50 AM	03/18/08	03/18/08 9:24 PM	0803447-006A	03/18/08 11:45 AM	03/19/08	03/19/08 4:34 PM
0803447-007A	03/18/08 11:40 AM	03/18/08	03/18/08 10:23 PM	0803447-008A	03/18/08 11:33 AM	03/18/08	03/18/08 10:53 PM
0803447-009A	03/18/08 11:10 AM	03/18/08	03/18/08 11:23 PM	0803447-010A	03/18/08 11:00 AM	03/18/08	03/18/08 11:53 PM
0803447-011A	03/18/08 12:20 PM	03/19/08	03/19/08 3:34 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification Nº 1644

K QA/QC Officer

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: n ne: 877-252-9262 Fax:	nain@mccampbell.com
AEI Consultants	Client Project ID: #11690	07; Vic's	Date Sampled:	03/18/08
2500 Camino Diablo, Ste. #200	Automotive		Date Received:	03/18/08
Walnut Creek, CA 94597	Client Contact: Ricky Bra	ndford	Date Reported:	03/25/08
wanut CICCK, CA 94397	Client P.O.:		Date Completed:	03/25/08

WorkOrder: 0803451

March 25, 2008

Dear Ricky:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **# 116907; Vic's Automotive**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																	O	ST	350	5	(
	McCA	MPBEL	L ANA	LY	TICA	L IN	IC.						Т					(CHA	IN	0	FO	CU	ST	ГO	DY	Y F	E	cc	DR	D		
	1538 V	Villow Pass	Road, P	ittsb	urg, C	A 945	565							Т	UR	N	AR		JND														X
Telen	ohone: (925)					ax: (25	2-92	69								10	24					SH		24 I			48 H			2 HR	5 DAY
Report To: Rie				Bill /	To: san	-	140			.07	_		+	EI	DF F	tequ	IIre	_	Analy	_		_	_	PD	FR	equ	ure	_	01	Yes		No	ments
Company: Al				Dill	10. 541	ie		14	_										Analy	515 1	lequ	lest							U	ler		Com	nents
	00 Camino I		e 200											B)			0	a															
W	alnut Creek,	CA 94597		E-M	ail: rbr	adfor	d@a	eico	nsu	ltatn	s.co	m		\$021			SG)H //			3		(uZ			, Se)					ved)		
Telephone: (9	25) 944-2899)		Fax:	(925)	944-2	2895	;						(SW8015Cm /SW8021B)			EM.	Liter Ambers (w/ HCI)			ŇH		ž			lg, Pb,		(0B)			reser		
AEI Project N					ect Nar	ne: \	Vic'	s Au	iton	notiv	ve		_	Cm			64 H	mbe			/m)		, Hg,			Cr, H	(u	(SW8260B)			idun		
Project Locati		Street, Oa	kland, C	X 94	607	_					_		_	015			(16	ter A		0.8)	DPE		lu, Pb,			As, Ba, Cd, Cr, Hg,	Pb, Z				Amber (
Sampler Signa	ture:	v~	14	~	-	<u> </u>					UP T	UOD	_	SWS	_		e HC	ILi		E20	HIU		C.			s, Ba	NI,	t list		(010)	r Am	ding	
	T	SAMP	LING	S	ers	N	1A1	RD	X			HOD RVE		_	SCm		reas	Use		(TTLC/E200.8)	50 n		(Cd,	00.7			d. Cr.	arge	(B)	WIG	Liter	Rea	
SAMPLE ID	FIELD POINT NAME	Date	Time	# of Containers	Type Containers	Water	Soil	Sludge	Other	Ice	HCI	HNO ₃	Other	TPH-g & MBTEX	TPH-d (SW8015Cm)		**Total Oil & Grease HC (1664 HEM-SGT)	**For TOG HC Use 1		*Total Lead (T)	*For Lead Use 250 ml HDPE (w/ HNO ₃)		EBMUD 7 Metals (Cd, Cr, Cu,	CAM 17 Metals (200.7)	PP13 Metals	RCRA 8 Metals (Ag,	LUFT 5 Metals (Cd,	HVOCs - 8010 target list	MTBE (SW8260B)	**Flash Point (SW1010)	**For FP Use 1	Flow Totalizer Reading	
INF	INF	3/18/08	1120	3	3VOA	X				X	X			X																			
POST-AS	POST-AS	1	1120	3	3VOA	x	-	+	-		X	-	1	$\mathbf{\mathbf{x}}$			-			-							-						
POST-C1	POST-C1		1.2	3	3VOA	X	-	+	1		X	-	1	4	-	-	-																
EFF	EFF	Vc	1140	5	3VOA	X	-	+	-	X	-	-		X	-		X			-							_						
		₩.	11-10	-	2AMB		-	+	+			-	ľ	~	+	-1			-	-			-	-			-						
					-		+	+	-		-	-	+	-	-	-	-	-	-	-			-				-						
							-	+	+		-	-	+	-	-	+	-	-	-	-			-			-	-		_				
							-	+	+		-	-	+	-	-	+	-	-		-			-			-	-						
							-	+	-		-	-	+	-	-	+	-	-		-			+	-	-	_	-						
							+	+	-		-	-	+	-	-	-	-	-		-			-	-		-	-						
							-	+	-		-	-	+	-	-	-	-	-		-			-		-	-	-						
				-			-	+	-		-	-	+	-	-	-	-	-		-		-	-	-	-	-	-						
							-	+	-		_		+		-	_	_	_	_	-			-	_	_	_	_		\vdash				
Relinquished By:	0	Data	Theres	Pa	eived By								+																				
Relinquished By:	Im	Date: 3/18/08	Time: 455-	Rec		100	10	2-	2	/	-	8	1		CE/t	. 1	26	0					DE	SED		TIO		OAS	0	&G	M	ETALS	OTHER
Relinquished By:		Date:	Time:	Rec	eived By	:								0	CE/t	DC	ONI	DIT	ION	/	-	A	PPI	ROF	PRI	TIO	_	-	/				
									_				_						BSEN	-	D	C	ON				L	-	,				
Relinquished By:		Date:	Time:	Rec	eived By	:								L	ECI	iLC	MIL	AI	ED IN	LA	B		PE	101	ERV	ED	IN	LAE	-				

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkC	Order: 0803451	1 Clien	tCode: AEL		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				E	Bill to:		Re	quested TAT:	5 days
Ricky Bradford	Email:	rbradford@aeic	onsultants.com		Denise Mock	kel			
AEI Consultants	TEL:	(925) 283-6000	FAX: (925) 9	44-2895	AEI Consulta	ants			
2500 Camino Diablo, Ste. #200	PO:				2500 Camino	o Diablo, Ste. #2	Da Da	te Received:	03/18/2008
Walnut Creek, CA 94597	ProjectNo:	# 116907; Vic's	Automotive		Walnut Cree dmockel@ae	k, CA 94597 eiconsultants.co		te Printed:	03/18/2008

								Req	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
									-		-	-		-		
0803451-001	INF	Water	3/18/2008 11:20			Α	Α									
0803451-002	POST-AS	Water	3/18/2008 11:30			Α										
0803451-003	EFF	Water	3/18/2008 11:40		В	Α										

Test Legend:

1	1664A_SG_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	
9	

1	5			
	10			

Prepared by: Kimberly Burks

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	Date and Time Received: 3/18/2008 5:33:18 PM					
Project Name:	# 116907; Vic's	Automotive			Check	list completed and re	eviewed by:	Kimberly Burks			
WorkOrder N°:	0803451	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>					
		Chain	of Cu	stody (C	OC) Informa	ition					
Chain of custody	/ present?			No 🗆							
	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆						
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌						
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆						
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆						
Sampler's name	noted on COC?		Yes	✓	No 🗆						
Sample Receipt Information											
		<u></u>	ampie	<u>Keceipi</u>		<u> </u>	_				
Custody seals in	tact on shipping conta	Yes		No 🗆		NA 🔽					
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗆						
Samples in prop	er containers/bottles?		Yes	✓	No 🗆						
Sample containe	ers intact?		Yes	\checkmark	No 🗆						
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌						
		Sample Prese	rvatior	n and Ho	d Time (HT) Information					
		-									
All samples rece	ived within holding tim	ie?	Yes	\checkmark	No 🗌						
Container/Temp	Blank temperature		Coole	er Temp:	6.6°C		NA 🗆				
Water - VOA via	ls have zero headspa	ice / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted				
Sample labels cl	hecked for correct pre	eservation?	Yes	\checkmark	No 🗌						
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹				

Client contacted:

Date contacted:

Contacted by:

Comments:

	CCampbell Analyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consulta	ints	Client Project II Automotive	9: #116907; Vic's	Date Sampled: 03/18	/08			
2500 Camino	Diablo, Ste. #200	Automotive		Date Received: 03/18/08				
Walnut Creek	, CA 94597	Client Contact:	Ricky Bradford	/08				
	, 	Client P.O.:		Date Analyzed 03/20	/08			
			erial with Silica Gel Clean	-		2451		
Extraction method Lab ID	Client ID	Matrix	al methods E1664A HEMSC	Work Or	DF	03451 % SS		
0803451-003B	EFF	W	ND					
					1			

Reporting Limit for DF =1;	W	5.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

	McCampbell	Analy(:	Web: www.m	ccampbell.com	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI C	onsultants		Client Proj	ect ID: #1	# 116907; Vic's Automotive Date Sampled: 03/18					
2500 0	Camino Diablo, Ste. #200					Date Receive	Date Received: 03/18/08			
XX7 1			Client Cor	tact: Ricky	Bradford	Date Extracto	ed: 03/21/08			
Walnu	tt Creek, CA 94597		Client P.O.	:		Date Analyz	ed 03/21/08			
Extracti	Gasolin on method SW5030B	e Range (-	carbons as Gaso SW8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0803	3451
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	INF	W	120,a	190	2.5	3.5	0.77	7.2	1	107
002A	POST-AS	W	4100,a	480	150	240	52	520	10	104
003A	EFF	W	ND	50	ND	ND	ND	ND	1	108
Rep	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L
ND	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR E1664A

W.O. Sample Matrix: Water

QC Matrix: Water

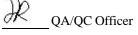
WorkOrder: 0803451

Criteria (%)	eptance Crite					BatchID: 34459			EPA Method E1664A Extraction E1664A_SG					
	•	eptanc	Acce	LCS-LCSD	LCSD	LCS	MS-MSD	MSD	MS	Spiked	Sample	Analyte		
LCS/LCSD	RPD LCS	RPD	MS / MSD	% RPD	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	mg/L	mg/L	Analyte		
70 - 130	N/A 70	N/A	N/A	2.76	101	104	N/A	N/A	N/A	200	N/A	HEMSGT		
-	N/A											HEMSGT All target compounds in the Method E NONE		

BATCH 34459 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0803451-003B	03/18/08 11:40 AM	03/18/08	03/20/08 6:25 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate therefore unable to comply with method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification N° 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0803451

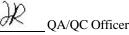
EPA Method SW8021B/8015Cm	Method SW8021B/8015Cm Extraction SW5030B						BatchID: 34432				piked Sample ID: 0803442-006A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex [£]	ND	60	107	104	3.00	100	97.3	3.16	70 - 130	20	70 - 130	20		
MTBE	ND	10	91	87.7	3.66	96.7	92.2	4.73	70 - 130	20	70 - 130	20		
Benzene	ND	10	91.9	95.2	3.51	97.3	96.9	0.431	70 - 130	20	70 - 130	20		
Toluene	ND	10	90.5	93.7	3.50	96.5	95.7	0.908	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	91.9	94.1	2.35	97	95.3	1.76	70 - 130	20	70 - 130	20		
Xylenes	ND	30	85.2	87.4	2.58	89.9	88.3	1.88	70 - 130	20	70 - 130	20		
%SS:	106	10	105	107	2.15	108	107	0.516	70 - 130	20	70 - 130	20		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 34432 SUMMARY

Lab ID	Date Sampled Date Extracted		Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0803451-001A	03/18/08 11:20 AM	03/21/08	03/21/08 7:38 PM	0803451-002A	03/18/08 11:30 AM	03/21/08	03/21/08 10:08 PM
0803451-003A	03/18/08 11:40 AM	03/21/08	03/21/08 10:37 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

