December 20, 2006

QUARTERLY MONITORING REPORT 4th Quarter, 2006

245 8th Street Oakland, California 94607

AEI Project No. 111783 ACEH Case No. RO0000202 / State ID 263

Prepared For

Mr. Vic Lum Vic's Automotive 245 8th Street Oakland, CA 94607

Prepared By

AEI Consultants 2500 Camino Diablo Blvd., Suite 200 Walnut Creek, California 94597 (925) 283-6000

December 20, 2006

Mr. Vic Lum Vic's Automotive 245 8th Street Oakland, CA 94607

Subject: Quarterly Monitoring Report 4th Quarter, 2006 245 8th Street Oakland, California 94607 AEI Project No. 111783 ACEH No. RO0000202 / State ID 263

Dear Mr. Lum:

AEI Consultants (AEI) has prepared this report on behalf of Mr. Vic Lum of Vic's Automotive and documents the ongoing groundwater and soil gas investigation at the above-referenced property (Figure 1). This investigation was initiated by the property owner in accordance with the requirements of the Alameda County Environmental Health (ACEH) local oversight program. The purpose of this investigation is to monitor pollution associated with the release of fuel hydrocarbons from the former underground storage tank system. This report presents the findings of the 4th quarter, 2006 groundwater monitoring and soil gas sampling episode conducted on November 8, 2006.

I. Site Description and Background

The subject property (hereafter referred to as the "site" or "property") is located in a mixed commercial and residential area of Oakland. The site is a lot on the south corner of Alice Street and 8th Street, and is currently developed with a gasoline station and auto repair facility (Figure 2). The property covers approximately 9,375 square feet and is improved with an approximately 1,200 square foot building located centrally on the property used for automotive repair, cashier, and office. The current UST hold and the dispenser island are located to the north of the building, along 8th Street. The remainder of the property is paved with asphalt.

Between June 1993 and August 1994, AEI removed a total of seven (7) underground storage tanks (USTs) from the property. The tanks consisted of four (4) 1,000-gallon and two (2) 6,000-gallon gasoline tanks and one (1) 250-gallon waste oil tank. The former locations of the tanks are shown on Figure 2. Impacted soil was removed from beneath the former tank area. Groundwater was encountered beneath the former 6,000-gallon tanks. Light non-aqueous phase liquid (LNAPL) was observed on the water table beneath the southern tank. The excavated soil was transported to an appropriate disposal facility and the excavation was backfilled with clean fill material. A new tank system was installed just west of the dispenser island.

Two groundwater monitoring wells (MW-1 and MW-2) were installed in July 1995. The first two episodes of monitoring revealed total petroleum hydrocarbons as gasoline (TPH-g) and Benzene up to 210,000 μ g/L and 720 μ g/L, respectively, in MW-2. Free phase gasoline product (LNAPL), was discovered in MW-1, which ranged from 1.20 to 4.39 feet thick between December 1995 and March 1996.

Three soil borings (SB-1 through SB-3) were advanced in August 1996. Groundwater samples collected from each of the borings contained TPH-g and Benzene ranging from 120,000 to 140,000 μ g/L, and from 12,000 to 19,000 μ g/L, respectively. Methyl tertiary-butyl ether (MTBE) was also present in all three samples, up to 27,000 μ g/L. Although free phase product was not observed in the field, qualitative laboratory observations indicated immiscible sheen. Manual bailing and pumping of NAPL from MW-1, and monitoring of MW-2 occurred intermittently through 1997.

Two additional groundwater monitoring wells (MW-3 and MW-4) were installed in May 2001. Refer to Tables 1 and 2 for data collected from these wells. A free product recovery pump was installed in MW-1 in June 2001.

Fourteen (14) additional soil borings were performed on and offsite in 2003, from which soil, groundwater, and soil vapor samples were collected to further characterize the extent of the release.

On January 11, 19, and 20, 2005, AEI installed a total of six (6) additional wells, three (3) extraction/monitoring wells on the subject site and three (3) extraction/monitoring wells at 708 Alice Street. The locations of the six (6) additional wells (labeled MW-5 through MW-7 and MW-10 through MW-12) are shown on Figure 2. Note that wells MW-8 and MW-9 were proposed for installation in the public right of way, north of and west of the site. However, due to insurance and permitting limitations imposed by the City of Oakland, these wells were not been installed, and likely cannot be installed in City of Oakland right-of-way.

A high vacuum dual phase extraction (HVDPE) pilot test was performed at the site from July 11 to July 27, 2005, using wells MW-1 through MW-3 and MW-10 through MW-12. Vapor flow rates ranged from approximately 170 to 190 standard cubic feet per minute (scfm) under a sustained vacuum of 16 to 17 inches of mercury. Significant drawdown and vacuum response was observed in many of the monitoring points. A total of 80,740 gallons of water was recovered and treated for an average flow rate of about 4.1 gallons per minute over the 15-day pilot test. Approximately 5 pounds per day of dissolved phase and 697 lbs/day of vapor phase hydrocarbons were recovered. Based on the favorable results, and following review and approval by ACEH, implementation of a fixed base HVDPE system is currently underway.

On July 13, 2006, four (4) permanent soil gas probes (GP-1 through GP-4) were installed to evaluate the potential risk for vapor intrusion into indoor air. Two soil gas probes were installed on the western side of the subject property near 718 Alice Street and the remaining two on an

empty lot at 708 Alice Street near 712 Alice Street. The locations of the four permanent soil gas probes are shown on Figure 2.

Soil gas sampling was conducted in conjunction with the quarterly groundwater monitoring episode.

II. Summary of Groundwater Monitoring Activities

AEI measured depth to groundwater in wells MW-1 through MW-7 and MW-10 through MW-12 on November 8, 2006. The well locations are shown in Figure 2. The depth from the top of the well casings was measured with an electric water level indicator prior to sampling. An oil-water interface meter was used to measure thickness of LNAPL observed in MW-1 and MW-6. The eight (8) wells with no measurable free product (MW-2 through MW-5, MW-7 and MW-10 through MW-12) were purged of at least three well volumes of water with a submersible purge pump and sampled using disposable polyethylene bailers.

Temperature, turbidity, pH, specific conductivity, dissolved oxygen (DO), and oxidationreduction potential (ORP) were measured during the purging of the wells. The turbidity was visually noted. Once temperature, pH, specific conductivity stabilized after three consecutive readings and following the recovery of water levels to at least 90%, a water sample was collected. The well locations are shown in Figure 2.

The groundwater samples were collected with disposable bailers into 40-millileter (mL) volatile organic analysis (VOA) vials and capped so that neither head space nor air bubbles were present within the sample containers. Samples were preserved on ice and transported under proper chain of custody protocol to McCampbell Analytical, Inc. of Bay Point, California (Department of Health Services Certification #1644). The eight (8) groundwater samples were submitted for chemical analysis for analyses of TPH-g by Method SW8015Cm and Benzene, Toluene, Ethylbenzene, and total Xylenes and MTBE by Method SW8021B and Halogenated Volatile Organic Compounds (HVOCs) by EPA 8260 (8010 list).

III. Field Results

LNAPL was encountered in wells MW-1 and MW-6 at thicknesses of 0.01 feet and 0.38 feet, respectively. No measurable thickness of free product was encountered in the remaining wells. However, sheen of LNAPL was noted in well MW-7.

Groundwater elevations for this monitoring event ranged from 15.63 (MW-11) to 16.97 (MW-3) feet above mean sea level (amsl). The current groundwater elevations were an average of 0.93 feet lower than the previous monitoring event (August 4, 2006). The groundwater flow direction at the time of measurement is to the south-southwest with a calculated hydraulic gradient of approximately 0.007 ft/ft.

Groundwater elevation data are summarized in Table 1. A summary of the average groundwater elevations and flow directions are presented in Table 2. Water table contours are shown on Figure 5. Refer to Appendix A for the Monitoring Well Field Sampling Forms.

IV. Summary of Soil Gas Sampling Activities

On November 8, 2006, soil gas samples were collected from soil gas probes GP-1 through GP-4, which were screened at two depths, 5 feet bgs and 10 feet bgs.

Prior to sample collection, the soil gas probes were purged of three (3) volumes of dead air using a dedicated 6-L SummaTM purge canister. This helped to ensure that a sufficient volume of ambient air was removed from the sampling point and that samples collected were representative of subsurface conditions. The purge volume was calculated by summing the volume of the sample tubing and annular space around the probe tip. One purge volume for the 5 and 10-foot probes are 16.1 and 27.6 mL, respectively. Three default purge volumes for the 5 and 10-foot probes are 48.3 and 82.8 mL, respectively. Therefore, to adequately purge the 5 and 10 foot probes (at 167 mL/min) it took approximately 18 and 30 seconds, respectively.

After the probes were adequately purged of three well volumes, soil gas samples were collected into laboratory-evacuated 1-L SummaTM canisters pending transportation to the laboratory. Critical orifice flow control regulators designed and provided by Air Toxics affixed with a vacuum gauge was placed inline between the soil gas probe and SummaTM canister to ensure that it was filled at a constant rate of 100 to 200 milliliters per minute (mL/min) as recommend by the ASGI. The evacuated SummaTM canisters were filled at a constant rate of 167 milliliters per minute (mL/min). A new or laboratory-certified clean flow controller was used at each sampling point. Low or no flow conditions were not encountered

A rag moistened with the leak check compound (isopropyl alcohol), was placed inside the well box where the soil gas tubing and the grout seal meet A leak test dome made of a 12-inch round plastic bowl was then placed upside-down over the top of the well box and secured using the well box lid. Cotton strips moistened with isopropyl alcohol were placed around the Swagelok[®] valves, fittings, connections, and other potential leak points. To avoid possible cross contamination, the isopropyl alcohol leak check compound was stored separately from the other sampling tools in a zipper locking bag.

A total of nine (9) soil gas samples, which included one field duplicate (GP-4-5D) were shipped via UPS ground under proper chain of custody protocol to Air Toxics, Ltd. of Folsom, California (Department of Health Services Certification #02110CA). Samples were analyzed for TPH-g by EPA Method Modified TO-3 and for select volatile organic compounds (VOCs) including BTEX, MTBE, Tetrachloroethene (PCE), Trichloroethene (TCE), 1,1-DCE, cis and trans 1,2-DCE and ethanol by EPA Method Modified TO-15 along with the 2-Propanol leak check compound. Laboratory procedures included appropriate quality assurance and quality control analyses, including method blanks and use of surrogates during sample analyses. According to Air Toxics, the analytical equipment was calibrated in conformance with the most current ASGI and the

Analytical Methods.

V. Groundwater Monitoring Results

For this monitoring event, the highest detected concentrations of fuel hydrocarbons were in MW-7, MW-11, and MW-12. TPH-g, benzene, toluene, ethylbenzene, total xylenes, and MTBE were detected in these wells at concentrations up to 240,000 μ g/L, 41,000 μ g/L, 44,000 μ g/L, 3,300 μ g/L, 16,000 μ g/L, and 33,000 μ g/L, respectively. Lower but elevated concentrations of TPH-g were detected in MW-2 (110,000 μ g/L), MW-5 (51,000 μ g/L) and MW-10 (57,000 μ g/L). Low to non-detectable concentrations of fuel hydrocarbons were detected in MW-3 and MW-4.

A summary of groundwater sample analytical data is presented in Table 3 and on Figure 3. Laboratory analytical reports and chain of custody documents are included in Appendix B.

VI. Soil Gas Sampling Results

The highest concentrations of TPH-g were detected in GP-1-5' as well as GP-2-5' and GP-3-10' at concentrations of 1,100 μ g/m³ and 1,800 μ g/m³, respectively. TPH-g was detected in all other samples, at concentrations up to 950 μ g/m³.

Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) were not detected above laboratory detection limits.

Tetrachloroethene (PCE) was detected in three samples, at concentrations up to 450 μ g/m³ (GP-2-10'). TCE, 1,1-DCE, cis-trans-1,2-DCE were not detected above the laboratory reporting limits of 5.0 μ g/m³. The leak check compound, 2-propanol, was not detected in any samples.

A summary of soil gas sample analytical data is presented in Table 4 and on Figure 4. Laboratory analytical reports and chain of custody documents are included in Appendix B.

VII. Summary and Upcoming Activities

This report presents the findings of the 4th Quarter, 2006 groundwater monitoring and soil gas event. The results of this groundwater monitoring episode are generally consistent with previous episodes and indicates that a significant mass of free product and dissolved phase hydrocarbons exist on and offsite. LNAPL remains in wells MW-1 and MW-6 with significant dissolved phase contaminants present in many of the other wells. PCE was not detected in any of the groundwater samples, although it was detected in soil gas samples GP-1-5 and GP-2-5 and -10. During the upcoming quarter, the following activities are planned:

groundwater samples, although it was detected in soil gas samples GP-1-5 and GP-2-5 and -10. During the upcoming quarter, the following activities are planned:

- The next quarterly soil gas sampling and groundwater monitoring event (1st Quarter, 2007) are scheduled for early February 2007. Groundwater samples will be analyzed for TPH-g, BTEX and MTBE and soil gas samples for TPH-g, BTEX, MTBE, and PCE
- Mobilization and startup of the HVDPE system is expected to occur in late January or February 2007. Conveyance piping and other underground work was completed in December 2006 with resurfacing and electrical hookup to occur within the coming weeks. The BAAQMD permit to construct has recently been received. AEI expects that the HVDPE unit will be ready for delivery by mid January. The ACHCSA will be notified of the anticipated system startup date as the schedule becomes firm or if there are any significant delays.
- Arrange access for the installation of a down-gradient groundwater monitoring well on private property along the eastern side of 7th Street. ACHCSA will be notified once access is arranged.

VIII. Report Limitations and Signatures

This report presents a summary of work completed by AEI Consultants, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and geology fields that existed at the time and location of the work. If you have any questions or need any additional information, please contact either of the undersigned at (925) 283-6000.

Sincerely, AEI Consultants

Calvin Hee Staff Engineer

.

Peter J. McIntyre, PG/REA Senior Project Manager

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Sample Anlytical Data (11/8/06)
Figure 4	Soil Gas Sample Analytical Data (11/8/06)
Figure 5	Groundwater Elevation Contours (11/8/06)
-	

Tables

Table 1	Groundwater Elevation Data
Table 2	Groundwater Flow Summary
Table 3	Groundwater Sample Analytical Data
Table 4	Soil Gas Sample Analytical Data

Appendix A	Monitoring Well and Soil Gas Field Sampling Forms
Appendix B	Laboratory Analytical Reports w/ Chain of Custody Documentation

Report Distribution

 Mr. Victor Lum Vic's Automotive
 245 8th Street
 Oakland, CA 94607 2) Mr. Jerry Wickham (electronic copy) Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

3) Geotracker

FIGURES

AEI CONSULTANTS

2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597

SITE LOCATION PLAN

245 8th Street Oakland, California **FIGURE 1** Job No: 111783

OAKLAND, CALIFORNIA

FIGURE 2 Project No. 111783

AEI CONSULTANTS 2500 CAMINO DIABLO, STE 100, WALNUT CREEK, CA

GROUNDWATER ELEVATION CONTOURS (11/8/06)

245 8th STREET OAKLAND, CALIFORNIA

FIGURE 5 Project No. 111783 TABLES

	Date	TOC Well ^{1,2}	Depth to	Groundwater ³	Depth to	Apparent
Well/Sample ID	Collected	Elevation	Water	Elevation	LNAPL	LNAPL Thickness
(screen interval)	Concercu	(ft amel)	(ft)	(ft amel)	(ft)	(ft)
		(it allist)	(11)	(it allist)	(11)	(11)
MW-1	6/29/2001	27.73	16.52	11.21	14.89	1.63
(8-28)	10/10/2001	27.73	15.45	12.28	15.37	0.08
(0 = 0)	1/9/2002	27.73	12.61	15.12	-	<0.01
	4/24/2002	27.73	13 35	14 38	-	<0.01
	7/24/2002	27.73	14 19	13.54	-	<0.01
	11/5/2002	27.73	14 85	12.88	-	<0.01
	2/4/2003	27.73	14 91	12.82	-	<0.01
	5/2/2003	27.73	14.43	13.30	-	0.08
	8/4/2003	27.73	15.24	12.49	15.01	0.23
	11/3/2003	27.73	16.94	10.79	15.67	1.27
	2/9/2004	27.73	14.61	13.12	14.43	0.18
	5/10/2004	27.73	Inaccessible	_	_	_
	8/9/2004	27.73	15.24	12.49	15.03	0.21
	11/9/2004	27.73	15.95	11.78	15.71	0.24
	2/3/2005	32.55	13.75	18.80	13.58	0.17
	5/9/2005	32.55	13.93	18.62	13.81	0.12
	8/5/2005	32.55	15.40	17.15	15.39	0.01
	11/9/2005	32.55	15.76	16.79	15.75	0.01
	2/9/2006	32.55	13.52	19.03	13.50	0.02
	5/4/2006	32.55	12.47	20.08	12.46	0.01
	8/4/2006	32.55	15.11	17.44	15.09	0.02
	11/8/2006	32.55	16.03	16.52	16.02	0.01
MW-2	6/29/2001	28.16	16 14	12.02	_	_
(8-28)	10/10/2001	28.16	16.43	11.73	-	_
(0 -0)	1/9/2002	28.16	13.50	14 66	-	_
	4/24/2002	28.16	14 40	13 76	-	_
	7/24/2002	28.16	14 91	13.25	-	_
	11/5/2002	28.16	16.96	11.20	-	_
	2/4/2003	28.16	15.42	12.74	-	_
	5/2/2003	28.16	15.24	12.92	-	_
	8/4/2003	28.16	15.98	12.18	-	-
	11/3/2003	28.16	16.60	11.56	-	Sheen
	2/9/2004	28.16	15.22	12.94	-	Sheen
	5/10/2004	28.16	15.34	12.82	-	Sheen
	8/9/2004	28.16	15.92	12.24	-	Sheen
	11/9/2004	28.16	16.51	11.65	-	Sheen
	2/3/2005	33.24	14.44	18.80	-	Sheen
	5/9/2005	33.24	14.67	18.57	-	Sheen
	8/5/2005	33.24	16.27	16.97	_	Sheen
	11/9/2005	33.24	16.53	16.71	-	Sheen
	2/9/2006	33.24	14.36	18.88	-	Sheen
	5/4/2006	33 24	13 46	19.78	-	Sheen
	8/4/2006	33 24	15 95	17.29	-	Sheen
	11/8/2006	33.24	16.86	16.38	-	Sheen

	Date	TOC Well ^{1,2}	Depth to	Groundwater ³	Depth to	Apparent
Well/Sample ID	Collected	Elevation	Water	Elevation	LNAPL	LNAPL Thickness
(screen interval)	concerca	(ft amsl)	(ft)	(ft amsl)	(ft)	(ft)
		(it anisi)	(11)	(it anisi)	(11)	(11)
MW-3	6/29/2001	29.21	16 60	12.61	-	-
(10-25)	10/10/2001	29.21	16.92	12.29	-	-
(10 -0)	1/9/2002	29.21	14 20	15.01	-	-
	4/24/2002	29.21	15.07	14.14	-	-
	7/24/2002	29.21	16.40	12.81	-	-
	11/5/2002	29.21	16.47	12.74	-	-
	2/4/2003	29.21	16.92	12.29	-	-
	5/2/2003	29.21	15.45	13.76	-	-
	8/4/2003	29.21	16.46	12.75	-	-
	11/3/2003	29.21	17.15	12.06	-	-
	2/9/2004	29.21	15.78	13.43	-	-
	5/10/2004	29.21	15.77	13.44	-	-
	8/9/2004	29.21	16.45	12.76	-	-
	11/9/2004	29.21	17.26	11.95	-	-
	2/3/2005	34.25	15.92	18.33	-	-
	5/9/2005	34.25	15.03	19.22	-	-
	8/5/2005	34.25	16.59	17.66	-	-
	11/9/2005	34.25	16.82	17.43	-	-
	2/9/2006	34.25	14.65	19.60	-	-
	5/4/2006	34.25	13.61	20.64	-	-
	8/4/2006	34.25	16.28	17.97	-	-
	11/8/2006	34.25	17.28	16.97	-	-
MW-4	6/29/2001	29.38	17.71	11.67	_	_
(10-25)	10/10/2001	29.38	18.00	11.38	-	-
	1/9/2002	29.38	15.02	14.36	-	-
	4/24/2002	29.38	15.74	13.64	-	-
	7/24/2002	29.38	16.69	12.69	-	-
	11/5/2002	29.38	17.64	11.74	-	-
	2/4/2003	29.38	16.02	13.36	-	-
	5/2/2003	29.38	16.72	12.66	-	-
	8/4/2003	29.38	17.51	11.87	-	-
	11/3/2003	29.38	18.09	11.29	-	-
	2/9/2004	29.38	16.67	12.71	-	-
	5/10/2004	29.38	16.89	12.49	-	-
	8/9/2004	29.38	17.44	11.94	-	-
	11/9/2004	29.38	17.89	11.49	-	-
	2/3/2005	34.42	14.98	19.44	-	-
	5/9/2005	34.42	16.20	18.22	-	-
	8/5/2005	34.42	17.73	16.69	-	-
	11/9/2005	34.42	17.91	16.51	-	-
	2/9/2006	34.42	15.62	18.80	-	-
	5/4/2006	34.42	15.12	19.30	-	-
	8/4/2006	34.42	17.39	17.03	-	-
	11/8/2006	34.42	18.30	16.12	-	-

	Date	TOC Well ^{1,2}	Depth to	Groundwater ³	Depth to	Apparent
Well/Sample ID	Collected	Floyation	Watar	Flavation	INAPI	I NAPL Thickness
(screen interval)	Concelled		(f4)			
		(it amsi)	(11)	(it amsi)	(11)	(11)
MW-5	2/3/2005	33 33	14 23	19.10	_	
(12-22)	5/9/2005	33.33	14.23	19.00	-	_
(12 22)	8/5/2005	33 33	15.89	17.00	_	
	11/9/2005	33 33	16.18	17.44	_	
	2/9/2006	33.33	14.02	19.31	_	_
	5/4/2006	33.33	12.02	20.36	_	_
	8/4/2006	33.33	15.63	17 70	_	-
	11/8/2000	33.33	16.55	16.78	_	_
	11/0/2000	55.55	10.55	10.78	-	-
MW-6	2/3/2005	32.82	13.99	18.83	-	Sheen
(12-22)	5/9/2005	32.82	13.61	19.21	-	Sheen
	8/5/2005	32.82	15.50	17.32	15.13	0.37
	11/9/2005	32.82	15.87	16.95	15.50	0.37
	2/9/2006	32.82	13.93	18.89	13.22	0.71
	5/4/2006	32.82	12.88	19.94	12.13	0.75
	8/4/2006	32.82	15.22	17.60	14.81	0.41
	11/8/2006	32.82	16.16	16.66	15.78	0.38
MW-7	2/3/2005	33.07	14.17	18.90	-	Sheen
(12-22)	5/9/2005	33.07	14.47	18.60	14.44	0.03
	8/5/2005	33.07	16.07	17.00	16.02	0.05
	11/9/2005	33.07	16.47	16.60	16.35	0.12
	2/9/2006	33.07	14.18	18.89	14.11	0.07
	5/4/2006	33.07	13.12	19.95	13.11	0.01
	8/4/2006	33.07	15.74	17.33	-	Sheen
	11/8/2006	33.07	16.59	16.48	-	Sheen
MXX 10	2/2/2005	21.17	12 (5	19.50		
(12, 22)	2/3/2005	31.17	12.05	18.52	-	-
(12-22)	5/9/2005	31.17	13.09	18.08	-	-
	8/5/2005	31.17	14.68	16.49	-	-
	11/9/2005	31.17	14.94	16.23	-	-
	2/9/2006	31.17	12.82	18.35	-	-
	5/4/2006	31.17	12.11	19.06	-	-
	8/4/2006	31.17	14.38	16.79	-	-
	11/8/2006	31.17	15.32	15.85	-	-
MW-11	2/3/2005	31.78	13.39	18.39	_	Sheen
(12-22)	5/9/2005	31.78	13.89	17.89	-	Sheen
()	8/5/2005	31 78	15.67	16 31	-	Sheen
	11/9/2005	31 78	15 73	16.05	-	Sheen
	2/9/2006	31 78	13 53	18.25	-	Sheen
	5/4/2006	31 78	12.73	19.05	-	Sheen
	8/4/2006	31 78	15.17	16.61	-	Sheen
	11/8/2006	31.78	16 15	15.63	_	-
	11,0,2000	01110	10110	10.00		

Well/Sample ID (screen interval)	Il/Sample ID Date een interval) Collected		TOC Well ^{1,2} Depth toElevationWater(ft amsl)(ft)		Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)	
MW-12	2/3/2005	32.05	13 70	18 35	-	Sheen	
(12-22)	5/9/2005	32.05	14.17	17.88	-	Sheen	
~ /	8/5/2005	32.05	15.69	16.36	-	Sheen	
	11/9/2005	32.05	15.93	16.12	-	Sheen	
	2/9/2006	32.05	13.78	18.27	-	Sheen	
	5/4/2006	32.05	12.98	19.07	-	Sheen	
	8/4/2006	32.05	15.39	16.66	-	Sheen	
	11/8/2006	32.05	16.29	15.76	-	-	

1) Monitoring well top of casing (TOC) elevations were resurveyed by Morrow Surveying on January 10, 2006 and February 7, 2006

2) Groudwater elevations for the February 3, 2005 and subsequent monitoring episodes use the new well survey data

3) When LNAPL is present at >0.10 ft, the groundwater elevations are assumed to be affected by the LNAPL

All well elevations are measured from the top of the casing (TOC)

LNAPL = light non-aqueous phase liquid (floating free product)

- = not applicable

ft amsl = feet above mean sea level

TABLE 2: GROUNDWATER FLOW SUMMARY

Vic's Automotive

245 8th Street, Oakland, California

Episode #	Date	Average Groundwater Elevation ¹ (ft amsl)	Change from Previous Episode (ft)	Flow direction (gradient)
1	6/29/2001	12.10	<u> </u>	SSE (0.0074)
2	10/10/2001	11.80	-0.30	SSE (0.0071)
3	1/9/2002	14.68	2.88	SE (0.0054)
4	4/24/2002	13.85	-0.83	SSW (0.005)
5	7/24/2002	12.92	-0.93	NE (0.021)
6	11/5/2002	11.89	-1.02	SW (0.019)
7	2/4/2003	12.80	0.90	NNW (0.01)
8	5/2/2003	13.11	0.32	SSE (0.01)
9	8/4/2003	12.27	-0.85	SSE(0.007)
10	11/3/2003	11.64	-0.63	SSE (0.006)
11	2/9/2004	13.03	1.39	SSE (0.006)
12	5/10/2004	12.92	-0.11	SSE (0.008)
13	8/9/2004	12.31	-0.60	SSE (0.006)
14	11/9/2004	11.70	-0.62	SSE (0.004)
15	2/3/2005	18.75	-	W (0.007)
16	5/9/2005	18.53	-0.22	S (0.010)
17	8/5/2005	16.94	-1.59	S (0.010)
18	11/9/2005	16.65	-0.28	S (0.010)
19	2/9/2006	18.83	2.17	SSW (0.010)
20	5/4/2006	19.72	0.90	SSW (0.012)
21	8/4/2006	17.24	-2.48	SSW (0.010)
22	11/8/2006	16.32	-0.93	SSW(0.007)

1) MW-2 to MW-4 only used for episodes 1 through 14; all wells used for episodes 15 and later

- = not applicable

ft amsl = feet above mean sea level

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATAVic's Automotive245 8th Street, Oakland, California

	D (Apparent	TPH-g	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	HVOC
Well/Sample	Date	LNAPL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
ID	Collected	Thickness	Method SW8015Cm			Method SW802	1B		Method
		(11)							8260
MW_1	6/29/2001	1.63	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn	_
101 00 -1	10/10/2001	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	1/9/2002	<0.00	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	4/24/2002	<0.01	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	7/24/2002	~0.01	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	11/5/2002	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	2/4/2003	~0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	5/2/2003	0.08	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	8/4/2003	0.00	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	11/3/2003	1.27	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	2/9/2004	0.18	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	5/10/2004	Inaccessible	113/1p	115/1p	-			- -	
	8/9/2004	0.21	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn	
	11/9/2004	0.24	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	
	2/3/2005	0.17	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	5/9/2005	0.12	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	_
	8/5/2005	0.01	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	_
	11/9/2005	0.01	ns/fp	ns/fn	ns/fp	ns/fp	ns/fp	ns/fp	_
	2/9/2006	0.02	ns/fp	ns/fn	ns/fp	ns/fp	ns/fp	ns/fp	_
	5/4/2006	0.02	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	8/4/2006	0.02	ns/fp	ns/fn	ns/fp	ns/fn	ns/fp	ns/fp	
	11/8/2006	0.02	ns/fp	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn	ns/fn
	11/0/2000	0.01	ns/ 1 P	113#1P	1 .5/1 P	113/1P	113/ IP	ns/ip	113/1P
MW-2	6/29/2001	0.0	69,000	4100/4400*	7,200	6,100	1,500	7,000	-
	10/10/2001	0.0	87,000	14,000	22,000	12,000	2,700	9,100	-
	1/9/2002	0.0	130,000	11,000	30,000	19,000	3,800	14,000	-
	4/24/2002	Sheen	210,000	32,000	38,000	23,000	4,600	19,000	-
	7/24/2002	Sheen	170,000	36,000	48,000	12,000	3,700	8,600	-
	11/5/2002	Sheen	190,000	36,000	45,000	25,000	4,600	16,000	-
	2/4/2003	Sheen	150,000	27,000	51,000	24,000	4,200	14,000	-
	5/2/2003	Sheen	150,000	35,000	39,000	11,000	3,800	9,900	-
	8/4/2003	Sheen	120,000	29,000	32,000	5,000	3,200	7,200	-
	11/3/2003	Sheen	120,000	24,000	33,000	4,300	3,200	5,400	-
	2/9/2004	Sheen	130,000	19,000	27,000	7,700	3,100	7,600	-
	5/10/2004	Sheen	67,000	13,000	20,000	3,000	2,300	4,100	-
	8/9/2004	Sheen	100,000	22,000	27,000	7,100	2,800	6,600	-
	11/9/2004	Sheen	100,000	23,000	27,000	6,100	3,000	5,600	-
	2/3/2005	Sheen	84,000	11,000	23,000	5,000	3,000	5,500	-
	5/9/2005	Sheen	74,000	14,000	21,000	4,200	2,300	3,300	-
	7/27/2005	Sheen	9,500	910	1,400	1,000	180	960	-
	8/5/2005	Sheen	74,000	4,000	8,800	11,000	1,300	7,600	-
	11/9/2005	Sheen	120,000	16,000	21,000	14,000	2,300	13,000	-
	2/9/2006	Sheen	120,000	10,000	18,000	16,000	2,200	13,000	-
	5/4/2006	Sheen	71,000	8,300	14,000	11,000	1,500	7,600	-
	8/4/2006	Sheen	160,000	14,000	22,000	14,000	2,400	11,000	-
	11/8/2006	Sheen	110,000	6,400	17,000	9,200	1,600	6,800	<mdl< th=""></mdl<>
		0.00			<u> </u>	<u> </u>			
MW-3	6/29/2001	0.00	550	<5.0	<0.5	3.1	3.2	1.2	-
	10/10/2001	0.00	470	<5.0	0.77	5.3	3.3	5.9	-
	1/9/2002	0.00	1,000	<5.0	0.90	7.6	7.8	25	-
				Continued					

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA

Vic's Automotive

245 8th Street, Oakland, California

		Apparent	TPH-g	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	HVOC
Well/Sample	Date	LNAPL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
ID	Collected	Thickness	Method SW8015Cm			Method SW802	1 <i>B</i>		Method
		(ft)	memou 5 // 6015 em			memou 5 1 662	10		8260
	4/24/2002	0.00	1,500	<5.0	0.64	7.2	12	14	-
	7/24/2002	0.00	1,200	<5.0	10	17.0	11	25	-
	11/5/2002	0.00	1,800	<25	33	43.0	18	31	-
	2/4/2003	0.00	450	<5.0	<0.5	5.0	< 0.5	0.77	-
	5/2/2003	0.00	340	<5.0	7.3	10.0	2.5	7.3	-
	8/4/2003	0.00	170	<5.0	5.8	5.9	1.5	4.9	-
	11/3/2003	0.00	54	<5.0	<0.5	<0.5	<0.5	<0.5	-
	2/9/2004	0.00	190	<5.0	< 0.5	3.6	<0.5	<0.5	-
	5/10/2004	0.00	280	<5.0	<0.5	3.4	<0.5	<0.5	-
	8/9/2004	0.00	290	<5.0	<0.5	3.8	<0.5	<0.5	-
	11/9/2004	0.00	220	<5.0	<0.5	4.0	<0.5	<0.5	-
	2/3/2005	0.00	160	<5.0	13	30	3	21	-
	5/9/2005	0.00	200	<5.0	<0.5	3.9	<0.5	<0.5	-
	8/5/2005	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	11/9/2005	0.00	130	<5.0	<0.5	2.3	<0.5	<0.5	-
	2/9/2006	0.00	270	<5.0	<0.5	5.6	<0.5	<0.5	-
	5/4/2006	0.00	220	<5.0	<0.5	4.3	<0.5	<0.5	-
	8/4/2006	0.00	93	<5.0	<0.5	1.5	<0.5	<0.5	-
	11/8/2006	0.00	160	<5.0	<0.5	2.9	<0.5	<0.5	<mdl< td=""></mdl<>
	(12012001	0.00	-50	-5.0	-0.5	-0.5	-0.5	-0.5	
MW-4	6/29/2001	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	10/10/2001	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	1/9/2002	0.00	<50	<5.0	<0.5	<0.5	< 0.5	< 0.5	-
	4/24/2002	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	//24/2002	0.00	<50	< 5.0	<0.5	<0.5	<0.5	<0.5	-
	11/5/2002	0.00	<50	<5.0	< 0.5	<0.5	<0.5	< 0.5	-
	2/4/2003	0.00	<50	<5.0	<0.5	<0.5	<0.5	< 0.5	-
	5/2/2003	0.00	500	10	08	/1	18	05	-
	8/4/2003	0.00	270	<5.0	30 <0.5	29 <0.5	9.2	32 <0.5	-
	2/0/2004	0.00	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5	-
	2/9/2004	0.00	<50	<5.0	< 0.5	<0.5	<0.3	< 0.5	-
	3/10/2004 8/0/2004	0.00	< <u>50</u> 120	< 5.0	<0.5 14	<0.5 12	<0.5	<0.5	-
	0/9/2004 11/0/2004	0.00	<50	<5.0	14 <0.5	13	5.5	-0.5	-
	2/3/2004	0.00	370	<5.0	<0.5	<0.3 4.1	<0.5	<0.3 0.64	-
	2/3/2003	0.00	370 840	<5.0	<0.3 50	4.1	~0.5	110	-
	7/27/2005	0.00	<50	<5.0	<0.5	<0.5	<0.5	<0.5	-
	8/5/2005	0.00	310	<5.0	<0.5 7 5	<0.5 57	<0.5 10	<0.5 53	
	11/9/2005	0.00	290	<5.0	12	61	8.8	49	
	2/9/2006	0.00	250	<5.0	9.9	42	7.5	45	
	5/4/2006	0.00	300	<5.0	37	76	7.5	43	
	8/4/2006	0.00	270	<5.0	73	33	5.6	32	
	11/8/2006	0.00	1.300	<5.0	7.5	230	31	160	<mdl< td=""></mdl<>
	11/0/2000	0.00	1,000	-0.0	10	200	01	100	
MW-5	2/3/2005	0.00	78 000	<1.000	7 600	13 000	2 200	9 600	_
	5/9/2005	0.00	60,000	<900	6 100	9 900	1,600	6 600	_
	7/27/2005	nm	120,000	1 100	10,000	19 000	2,100	13 000	_
	8/5/2005	0.00	59.000	<500	4.100	10.000	1,200	6.600	-
	11/9/2005	0.00	44,000	<500	3,300	7,400	1,100	4,900	_
	2/9/2006	0.00	110.000	<500	10.000	22.000	2,400	13,000	-
	5/4/2006	0.00	110.000	<250	11.000	22.000	2,900	15,000	-
	8/4/2006	0.00	73,000	<500	4,700	8.600	1,700	7,600	-
	11/8/2006	0.00	51,000	<500	3,700	7,200	1,400	6,700	<mdl< td=""></mdl<>

TABLE 3: GROUNDWATER SAMPLE ANALYTICAL DATA Vic's Automotive

245 8th Street, Oakland, California

		Apparent	TPH-g	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	HVOC
Well/Sample	Date	LNAPL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
ID	Collected	Thickness (ft)	Method SW8015Cm			Method SW802	1B		Method 8260
MW-6	2/3/2005	Sheen	130,000	<1,000	2,400	33,000	2,400	15,000	-
	5/9/2005	Sheen	170,000	<4,000	11,000	43,000	3,100	16,000	-
	8/5/2005	0.37	ns/fp	ns/tp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/9/2005	0.37	ns/fp	ns/tp	ns/fp	ns/fp	ns/fp	ns/fp	-
	2/9/2006	0.71	ns/fp	ns/tp	ns/fp	ns/tp	ns/fp	ns/tp	-
	5/4/2006	0.75	ns/fp	ns/tp	ns/fp	ns/fp	ns/fp	ns/fp	-
	8/4/2006	0.41	ns/tp	ns/tp	ns/fp	ns/tp	ns/fp	ns/fp	-
	11/8/2006	0.38	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp
MW-7	2/3/2005	Sheen	220,000	18,000	45,000	44,000	3,500	18,000	-
	5/9/2005	0.03	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	8/5/2005	0.05	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	11/9/2005	0.12	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	2/9/2006	0.07	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	5/4/2006	0.01	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	ns/fp	-
	8/4/2006	Sheen	230,000	19,000	37,000	37,000	3,100	14,000	-
	11/8/2006	Sheen	240,000	13,000	41,000	39,000	3,000	14,000	<mdl< td=""></mdl<>
MW-10	2/3/2005	0.00	36.000	<500	4 700	7 200	660	3 400	_
141 44-10	5/9/2005	0.00	88.000	<1 500	6 900	20,000	2 300	9,400	_
	8/5/2005	0.00	88,000	<1,000	10,000	21,000	1 900	9,800	_
	11/9/2005	0.00	63,000	<1 100	5 400	13 000	1 900	7 900	_
	2/9/2006	0.00	100,000	<500	6 600	19,000	2 900	13 000	_
	5/4/2006	0.00	100,000	<500	8 500	25,000	3,000	13,000	_
	8/4/2006	0.00	190,000	<2.200	17,000	35,000	2,800	13,000	_
	11/8/2006	0.00	57,000	<500	2,500	7,600	1,600	5,700	<mdl< td=""></mdl<>
						·	-		
MW-11	2/3/2005	Sheen	170,000	<3,000	23,000	35,000	3,100	16,000	-
	5/9/2005	Sheen	210,000	3,500	29,000	40,000	3,400	16,000	-
	7/27/2005	Sheen	220,000	2,500	26,000	37,000	3,200	18,000	-
	8/5/2005	Sheen	210,000	<2,500	35,000	42,000	3,300	16,000	-
	11/9/2005	Sheen	180,000	9,100	32,000	47,000	3,600	18,000	-
	2/9/2006	Sheen	210,000	10,000	33,000	39,000	3,800	20,000	-
	5/4/2006	Sheen	190,000	12,000	34,000	41,000	3,500	17,000	-
	8/4/2006	Sheen	290,000	11,000	33,000	43,000	3,300	15,000	-
	11/8/2006	0.00	240,000	14,000	34,000	44,000	3,300	16,000	<mdl< th=""></mdl<>
MW-12	2/3/2005	Sheen	250.000	100.000	52,000	41.000	3.400	15.000	-
	5/9/2005	Sheen	210,000	91,000	44 000	28,000	3 300	13,000	_
	8/5/2005	Sheen	170,000	52 000	38,000	28,000	3,000	12,000	_
	11/9/2005	Sheen	180,000	52,000	39,000	25,000	2,900	12,000	_
	2/9/2006	Sheen	170,000	34,000	40,000	23,000	3,500	15,000	_
	5/4/2006	Sheen	160,000	47 000	33,000	28,000	2,800	10,000	_
	8/4/2006	Sheen	240,000	55,000	40,000	24,000	3,200	12,000	_
	11/8/2006	0.00	190.000	33.000	40.000	23,000	2,700	13.000	<mdl< th=""></mdl<>
	11,0,2000	0.00	1,0,000		10,000	-0,000	2,700	10,000	-1,101

 $\mu g/L = micrograms per liter (ppb)$

TPH-g = total petroleum hydrocarbons as gasoline MTBE = methyl tertiary-butyl ether ns/fp = not sampled / free product

HVOC= Halogenated Volatile Organic Compounds

* samples re-analyzed by Method SW8260B (expressed as SW8021B / SW8260B)

MDL= Method Detection Limit

Refer to Appendix B: Lab Analytical Reports w/ Chain of Custody Documentation for detailed analytical reports including dilution factors and reporting limits

TABLE 4: SOIL GAS SAMPLE ANALYTICAL DATA Vic's Automotive 245 8th Street, Oakland, California

Probe/Sample	Date	Sample Depth	TPH-g µg/m3	MTBE μg/m3	Benzene µg/m3	Toluene μg/m3	Ethylbenzene μg/m3	Xylenes μg/m3	Ethanol μg/m3	PCE μg/m3	CD µg/m3	MEK μg/m3	Acetone μg/m3	2-Propanol ¹ μg/m3
ID	Collected	(ft bgs)	EPA Method Modified TO-3					EPA I	Method Modified T	0-15				
GP-1-5	8/4/2006	5	331	<8.0	<71	<8.4	<9.7	<9.7	<17	17	72	<6.6	82	23
GP-1-5D	8/4/2006	5	-	<8.0	<7.1	<8.4	<9.7	<9.7	<17	18	71	<6.6	78	23
GP-1-5	11/8/2006	5	1,100	<4.6	<4.0	<4.8	<5.5	<5.5	<9.5	12	-	-	-	<12
GP-1-10	8/4/2006	10	493	<4.1	<3.6	<4.3	<5.0	<5.0	<8.6	20	71	11	120	<11
GP-1-10	11/8/2006	10	950	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	-	-	-	<11
GP-2-5	8/4/2006	5	493	<4.4	<3.9	6.9	<5.4	10	<9.3	600	120	4.1	110	<12
GP-2-5	11/8/2006	5	1,100	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	240	-	-	-	<11
GP-2-10	8/4/2006	10	352	<10	<9.0	18	<12	<12	<21	270	18	<8.4	62	<28
GP-2-10	11/8/2006	10	910	<3.9	<3.4	<4.1	<4.7	<4.7	<8.1	450	-	-	-	<11
GP-3-5	8/4/2006	5	<240	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	<3.6	4.8	110	<11
GP-3-5	11/8/2006	5	930	<4.4	<3.9	<4.6	<5.2	<5.2	<9.1	<8.2	-	-	-	<12
GP-3-10	8/4/2006	10	564	<4.2	<3.7	<4.4	<5.0	<5.0	<8.8	<7.9	9.0	5.6	240	<11
GP-3-10	11/8/2006	10	1,800	<4.0	<3.6	<4.2	<4.9	<4.9	<8.4	<7.6	-	-	-	<11
GP-4-5	8/4/2006	5	705	<4.4	5.4	<4.6	<5.4	<5.4	<9.3	<8.4	270	4.3	100	<12
GP-4-51	8/4/2006	5	599	-	-	-	-	-	-	-	-	-	-	-
GP-4-5	11/8/2006	5	540	<4.0	<3.5	<4.1	<4.8	<4.8	<8.3	<7.5	-	-	-	<11
GP-4-5 _f	11/8/2006	5	610	<7.7	<6.8	<8.0	<9.2	<9.2	<16	<14	-	-	-	<21
GP-4-10	8/4/2006	10	564	<4.1	6.1	17	5.7	16	12	<7.8	250	9.4	130	<11
GP-4-10D _f	8/5/2006	10	529	<3.8	4.2	18	<4.6	17	18	<7.2	130	9.4	130	<10
GP-4-10	11/8/2006	10	900	<4.0	<3.5	4.1	<4.8	5.2	<8.3	<7.5	-	-	-	<11
GP-4-10 ₁	11/8/2006	10	880	<1.8	<1.6	<1.9	<2.2	<2.2	<3.8	<3.4	-	-	-	<4.9
ESLs CHHSLs			26,000	9,400 4,000	85 36.2	63,000 135,000	420,000 postponed	150,000 315,000	19,000,000 -	410 180	-	210,000	660,000 -	-

ESLs = Environmental Screening Levels - for residential land use

CHHSLs = California Human Health Screening Levels

1) 2-Propanol (i.e., isopropyl alcohol) is the tracer/leak check compound

ft bgs = feet below ground surface

 $\mu g/m3 = micrograms per cubic meter$

TPH-g = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

PCE = tetrachloroethene

CD = carbon disulfide

MEK = methyl ethyl ketone (i.e., 2-Butanone)

 D_f = after the probe/sample ID indicates a duplicate sample collected in the field

 D_1 = after the probe/sample ID indicates a duplicate sample prepared and analyzed by the lab

Please refer to Appendix B: Lab Analytical Reports w/ Chain of Custody Documentation for detailed analytical data, including dilution factors and reporting limits

APPENDICES

McCampbell Analytical, Inc.
"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Faz: 925-252-9269

AEI Consultants	Client Project ID: #111783; Vic's	Date Sampled:	11/08/06
2500 Camino Diablo, Ste. #200	Automotive	Date Received:	11/08/06
	Client Contact: Ricky Bradford	Date Reported:	11/13/06
Walnut Creek, CA 94597	Client P.O.:	Date Completed:	11/13/06

WorkOrder: 0611182

November 13, 2006

Dear Ricky:

Enclosed are:

- 1). the results of 8 analyzed samples from your #111783; Vic's Automotive project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

		MeCAM	PBELI	L ANAI	LYT	ICA	[,]]	NC.		********								(CIL	Al	N (DF	CL	IST	ΓO	Dì	k ŀ	E (co	RD		
		1	10 2 A PACHE(VENUE SO CO, CA 94	эртн. 553-55	, #D7 60								Т	UR	٤N	AR	OL	INE	T	IMI	E		<u></u> ∏₁		C	ļ		Ū		Ц,	. HP
	Telephor	ne: (925) 798	-1620			1	7ax:	(925)) 798-	162	2			EL)} }	teq	uire	:d?/	ÝES)	P	DFI	R Lequ	USI tirec	1 d?/¥	ES	HR /	4	8 116	2	72 HR	5 DAY
	Report To: Ricky Bradford Bill To:									112				C,	Ańal	ysis	Rea	lues	t		C.,				Othe	er	Com	ments				
	Company: AEI Co	onsultants												1		G					-											
	2500 C	amino Diabl	o, Suite	200										15		B&					i											
	Walm	it Creek, CA	94597	E-	Mail	rbr:	adfor	das	reicor	isult	ants	s.con	n	-55 +	l	S.F.	-	-	1				(isi							ł		
	Tele: (925) 283-60	00 ext. 148		I	ax: ((925)	944-	2895						070		5	I SI						1									
	Project #: 111783			Г	rojec	t Na	ne; 1	Vie's	Auto)moi	live			(<u>55</u> (<u>55</u> <u>58</u>									1 ar									
	Project Location:	245 8 th Stree	t, Oakla	ind										PA 6		21251	hon		802		Ţ	1	010			10)						
	Sampler Signatur	e: Alarke	r.1	Ville	J									<u>Е</u> 2.		6	DCAL		33		S C		180			0977						
		<i>,</i> ,	5AMI	PLING	. s	lers		MAT	RIX	[ME RES	THO ERV	D ED	ા તેલ્કો	80151	l Oil &	Hydr		EPA 6		1 JUS		\$250		8	1/339.						
	SAMPLE ID (Field Point Name)	LUCATION	Date	l'ime	# Container	Type Contain	Water	Soil	Sludge	Other	HCI	HNO ₅	Other	MDTEX & TPH a	TPH as Dizci (Total Perroleum	Total Permicum	EPA 601/ 8010	BTEX ONLY O	EFA CUA / SUAU	EPA 603 / 8030	EPA 6257 8270	HVOCs by EP.A	CAM-17 Metale	LUFT 5 Metals	Lead (7240/742	RCI					
	Male		1 glad	1	-2	1.4.4	X				ΧХ	(X					İ				X								Aler	r an All an Ara a
i.	MW-2		Core.	2:00	k	1	1x			-	XX	ε		X									X							10.00	1.8-1	v en servici
	^r MW-3			1204	2		x				X X			x									X									
1	MW-4	The second distribution of the second distributi		1.10	2	+ +	X				X X	5		x									l v					1				
}	MW-5			10.10			X				X X	-		Y				I					l v					l				
-1-1	MW 6-	1 = = 43mi-	(a)	10.20			x	11 11 22.1			x x			Y.														1000			1,.	
+	MW-7			in eren							v x		-	v													-				Nor .	×664.701
+	<u></u>			12.25								,		- N					_													
1-	MW 11			1-20			1 1 1				$\frac{\partial}{\partial x}$								····				1						-			
i				1.20		<u> </u>			_			.																				
1	MW-12		+	12:39			<u> </u>				$\frac{\lambda}{\lambda}$	í		X									X									
									i		1				i																	
			-	. U												,																
		Contraction of the second s			1	1			-							1		1								Ì		-				
	Internet and a second se											-					···					-						r t	-			A 100-10 11 June 11 11 1100-1011
	Relinquished By:		Dates	Time	Race	ived f						1	-															<u> </u>		dalmed as yes	1	
	III In Mr.	1 /20	1.45	16 ISP	1				Q)	K							ţ,		10		2						YI	Das	0.80	a	METALS	OTHER
	Relinquished BV:	6115	Date:	Time	Rech	fved 1	- N:		K.				_	10	CE/I	l ^e	X	出	1-4	1	t j		PRF	SEF	WA	TIO	N.	٧				
	Menus education and an and an and a second													G	00	DC	ON	DIT	ION	V	$\overline{\mathbf{v}}$		APP	RO	PRI	ATE	^{1}V	8				
	Relinquished Bu	(1999)	Date-	Time	Rep	ived b	0.							D D	ECI	0.81	PAC DRE	A'IA'I	ISSE FD	NI	AR		COP PI	REA CRSI	ERV	ED.	IN	LAR				
							2.							~																		
1				1	I								1																			

(184111) -

· • •

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY REC	0	RD
----------------------	---	----

Page 1 of 1

(925) 252-9262					Work(Order:	06111	.82	С	lientIE	: AEL					
					ΠFε	ax	[y]Email		□н	ardCopy	[Party		
Report to: Ricky Bradford	Email: rbradfo	ord@aei	iconsultants.com	4.00	1	Bill to: Dei	nise Mo	ckel				Req	uested ⁻	TAT:	5	days
2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597	ProjectNo: #1117 PO:	283-600 83; Vic's	s Automotive	4-28	95	AE 250 Wa	0 Cam Inut Cre	ino Diat eek, CA	olo, Ste 94597	. #200		Dat Dat	e Recei e Printe	ve d : ed:	11/08 11/08	/2006 /2006
				Ι		n initi		Red	quested	Tests	See lege	nd bel	ow)			
Sample ID ClientSampID	N	latrix	Collection Date	lold	1	2	3	4	5	6	7	8	9	10	11	12
0611182-001 MW-2	V	Vater	11/8/06 7·40·00 AM		в	Ā	A		[I	1
0611182-002 MVV-3		Vater	11/8/06 6:28:00 AM	ň	B	A									-	
0611182-003 MW-4	ν	Vater	11/8/06 10:20:00		В	A										
0611182-004 MW-5	ν	Vater	11/8/06 6:38:00 AM		В	A										
0611182-005 MVV-7	V	Vater	11/8/06 6:55:00 AM		В	A										
0611182-006 MW-10	ν	Vater	11/8/06 9:20:00 AM		В	A										
0611182-007 MW-11	ĺv	Vater	11/8/06 9:30:00 AM		В	A										
0611182-008 MW-12	V	Vater	11/8/06 12:39:00	\square	В	A									1	

Test Legend:

1 8010BMS_V	2	G-MBTEX_W 3	PREDF REPORT
6	7	8	
11	12		

4	
9	

5		
10	0.4 siles/10.55	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

When Quality Counts"	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269
s	ample Re	ceipt Checklist
Client Name: AEL		Date and Time Received: 11/8/06 6:53:11 PM
Work Order Number. 0611182		Checklist completed and reviewed by: Melissa Valles
Matrix <u>Water</u>		Carrier. <u>Client Drop-In</u>
Ch	ain of Custoc	iy (COC) Information
Custody seals intact on shippping container/cooler?	Yes 🗆	
Custody seals intact on sample bottles?	Yes 🗌	
Chain of custody present?	Yes 🗹	Νο
Chain of custody signed when relinquished and received?	Yes 🗹	Νο
Chain of custody agrees with sample labels?	Yes 🗹	
Sample ID noted by Client on COC?	Yes 🗹	Νο
Date and Time of collection noted by Client on COC?	Yes 🗹	
Sampler's name noted on COC?	Yes 🗹	No 🗔
	Sample Rec	ceipt Information
Shipping container/cooler in good condition?	Yes 🔽	
Samples in proper container/bottle?	Yes 🗹	
Sample containers intact?	Yes 🗹	
Sufficient sample volume for indicated test?	Yes 🗹	
Sample Pre	eservation and	d Hold Time (HT) Information
All samples received within holding time?	Yes 🗹	
Container/Temp Blank temperature in compliance?	Yes 📃	No 🗌 Ice Present 🗌 Cooler Temp:
Water - VOA vials have zero headspace / no bubbles?	Yes 🗹	No 💭 No VOA vials submitted 🗍
Sample labels checked for correct preservation?	Yes 🔽	No 🗌
<u>,</u>		
	====	
Client contacted: Date conta	acted:	Contacted by:
Comments		
	and the second	

۰ _____

tana in at

McCampbell Ar	alytical,	Inc.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	om		
AFI Consultants	Clien	t Project ID:	#11178	3; Vic's	Date Sampled:	11/08/06			
	Auto	motive			Date Received: 11/08/06				
2500 Camino Diablo, Ste. #200	Clier	t Contact: R	icky Bra	dford	Date Extracted:	11/09/06-11/10/06			
Walnut Creek, CA 94597	Clien	t P.O.:		Date Analyzed	11/09/06-1	1/10/06			
The second second	Valatila Ong	mice by D.&.	C and C	C MS (8010 Bas	ic Torget List)*				
Extraction Method: SW5030B	voratile Org	Analytical Metho	d: SW826	DB		Work Order	0611182		
Lab ID	0611182-001	B 0611182	-002B	0611182-003B	0611182-004B	Reporting	Limit for		
Client ID	MW-2	MW	-3	MW-4	MW-5	DF	=1		
Matrix	W	W		W	W	5	w		
DF	10	1		2	10				
Compound			Conce	entration		µg/kg	μg/L		
Bromodichloromethane	ND < 5.0	NI)	ND<1.0	ND<5.0	NA	0.5		
Bromoform	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
Bromomethane	ND < 5.0	NI)	ND <1.0	ND<5.0	NA	0.5		
Carbon Tetrachloride	ND < 5.0	NI)	ND <1.0	ND<5.0	NA	0.5		
Chlorobenzene	ND < 5.0	NI NI)	ND < 1.0	ND<5.0	NA	0.5		
Chloroethane	ND < 5.0	NI NI)	ND < 1.0	ND<5.0	NA	0.5		
2-Chloroethyl Vinyl Ether	ND<10	NI)	ND < 2.0	ND<10	NA	1.0		
Chloroform	ND < 5.0	NI)	ND<1.0	ND<5.0	NA	0.5		
Chloromethane	ND<5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
Dibromochloromethane	ND < 5.0	NI)	ND<1.0	ND<5.0	NA	0.5		
1,2-Dichlorobenzene	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1,3-Dichlorobenzene	ND<5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1,4-Dichlorobenzene	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
Dichlorodifluoromethane	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1.1-Dichloroethane	ND < 5.0	NI		ND < 1.0	ND<5.0	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1,1-Dichloroethene	ND < 5.0	NI NI)	ND < 1.0	ND<5.0	NA	0.5		
cis-1,2-Dichloroethene	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
trans-1,2-Dichloroethene	ND < 5.0	NI	>	ND<1.0	ND<5.0	NA	0.5		
1,2-Dichloropropane	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
cis-1.3-Dichloropropene	ND < 5.0	NI)	ND<1.0	ND<5.0	NA	0,5		
trans-1,3-Dichloropropene	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
Methylene chloride	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1,1,2,2-Tetrachloroethane	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
Tetrachloroethene	ND < 5.0	NI)	ND < 1.0	ND<5.0	NA	0.5		
1,1,1-Trichloroethane	ND < 5.0	NI)	ND <1.0	ND<5.0	NA	0.5		
1,1,2-Trichloroethane	ND < 5.0)	ND <1.0	ND<5.0	NA NA	0.5		
Trichloroethene	MD < 5.0)	ND <1.0	ND<5.0	NA	0.5		
Trichlorofluoromethane	ND < 5.0	NI	2	ND<1.0	ND<5.0	NA NA	0.5		
Vinyl Chloride	ND<5.0	NI)	ND<1.0	ND<2.0	I NA	0.5		
		Surrogate R	ecoverie	<u>s (%)</u>		1			
%SS1:	86	10	4	100	93				
%SS2:	104	10	2	99	105				
%SS3:	97	97	7	97	98				
Comments	j			j	j				

* water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Ar	alytical, In Counts"	<u>IC.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
AEI Consultants	Client P	roject ID:	#11178	3; Vic's	Date Sampled:	11/08/06					
2500 Gamina Diable (the #200	Automo	otive			Date Received:	11/08/06					
2500 Camillo Diablo, Sie. #200	Client C	Client Contact: Ricky Bradford Date Extracted:									
Walnut Creek, CA 94597	Client P	Client P.O.: Date Analyzed									
Halogenated	Volatile Organi	cs by P&I	and G	C-MS (8010 Bas	ic Target List)*						
Extraction Method: SW5030B	Ana	lytical Method	: SW826	OB		Work Order:	0611182				
Lab ID	0611182-005B	0611182	-006B	0611182-007B	0611182-008B		T				
Client ID	MW-7	MW-	10	MW-11	MW-12	DF	=1				
Matrix	w	w		W	W		317				
DF	10	10		10	10	5	W				
Compound			Conce	entration		µg/kg	μg/L				
Bromodichloromethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Bromoform	ND<5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Bromomethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Carbon Tetrachloride	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Chlorobenzene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Chloroethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
2-Chloroethyl Vinyl Ether	ND<10	ND<	10	ND<10	ND<10	NA	1.0				
Chloroform	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Chloromethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Dibromochloromethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1,2-Dichlorobenzene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1,3-Dichlorobenzene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1.4-Dichlorobenzene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Dichlorodifluoromethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1,1-Dichloroethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1.2-Dichloroethane (1.2-DCA)	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1.1-Dichloroethene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
cis-1,2-Dichloroethene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
trans-1,2-Dichloroethene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1.2-Dichloropropane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
cis-1,3-Dichloropropene	ND<5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
trans-1,3-Dichloropropene	ND < 5 0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Methylene chloride	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1,1,2,2-Tetrachloroethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
Tetrachloroethene	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	NA	0.5				
1,1,1-Trichloroethane	ND < 5.0	ND<	5.0	ND < 5.0	ND<5.0	<u>NA</u>	0.5				
1,1,2-Trichloroethane	ND < 5.0	ND<	5.0	<u>ND<5.0</u>	ND<5.0	NA NA	0.5				
Trichloroethene	ND < 5.0	ND<	5.0	ND<5.0	ND<5.0		0.5				
Trichlorofluoromethane	ND < 5.0	ND<	5.0	ND <5.0	ND<5.0	NA	0.5				
Vinyl Chloride	<u> ND<5.0</u>	<u> ND<</u>	0.0	<u>0()</u>	0.C>UM	AM I	1 0.5				
	100	urrogate Re	ecoverie	5 (%)	107	1					
%551:	102	86		22	107						
%SS2:	107	96		104	107						
%SS3:	96	95		96	95						
Comments	j	j		j	j						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

	McCampbell	Analyt	ical, Inc	<u>.</u>		1534 Wi Web: www.m	llow Pass Road, F ccampbell.com	Pittsburg, CA 94565 E-mail: main@mcca	-1701 mpbell.com 1760			
AEI Co	nsultants	anto Counts	Client Proj	ect ID:	#1117	783; Vic's Aut	omotive	Date Sample	d: 11/08/06			
2500 0	mine Diable Ste #200						Date Received: 11/08/06					
2300 Ci	anino Diabio, sie. #200		Client Cor	ntact: Ri	ckv B	radford		Date Extract	ed: 11/09/06	-11/10	/06	
Walnut	Creek, CA 94597		Client P.O.				e + 44	Date Analyz	ed 11/09/06	-11/10	/06	
	Caralia	D			noon	hone as Casol	in a with BTL	TX and MTRE	*			
Extraction	1 method SW5030B	e Kange (v	Anal	ytical metho	ds SW	78021B/8015Cm	me with D11		Work Order	061	1182	
Lab ID	Client ID	Matrix	TPH(g)	MTB	E	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-2	w	110,000,a	6400	b	17,000	9200	1600	6800	100	91	
002A	MW-3	w	160,m	ND		ND	2.9	ND	ND	1	104	
003A	003A MW-4 W			ND		75	230	31	160	1	109	
004A	MW-5	w	51,000,a	000,a ND<500		3700	7200	1400	6700	100	116	
005A	MW-7	w	240,000,a	13,00	00	41,000	39,000	3000	14,000	100	106	
006A	MW-10	w	57,000,a	ND<500		2500	7600	1600	5700	100	103	
007A	MW-11	w	240,000,a	14,00	00	34,000	44,000	3300	16,000	100	104	
008A	MW-12	w	190,000,a	33,00	00	40,000	23,000	2700	13,000	100	109	
1												
	2 U U U U U U U U U U U U U U U U U U U											
			96 99 m									
			19763									
 	$rac{1}{2}$		60	60		0.5	0.5	0.5	0.5	1		
ND	means not detected at or	S N	NA	NA		NA	NA	NA NA	NA	1	mg/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram, sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

WorkOrder: 0611182 QC Matrix: Water W.O. Sample Matrix: Water EPA Method: SW8260B Extraction: SW5030B BatchID: 24704 Spiked Sample ID: 0611158-006b LCSD LCS-LCSD LCS Acceptance Criteria (%) Sample Spiked MS MSD MS-MSD Analyte % Rec. % Rec. % RPD % Rec. % Rec. % RFD MS/MSD RPD LCS/LCSD RFD µg/L µg/L ND 10 100 91.7 9.07 106 111 3.82 70 - 130 30 70 - 130 30 Chlorobenzene 102 108 5.71 70 - 130 30 70 - 130 30 ND 10 96.5 88.6 8.60 1,2-Dichloroethane (1,2-DCA) 125 2.40 70 - 130 30 70 - 130 30 10 126 107 16.0 128 ND 1,1-Dichloroethene 83.5 9.44 94.7 96.8 2.18 70 - 130 30 70 - 130 30 Trichloroethene ND 10 91.8 10 99 95 4.67 98 97 0.824 70 - 130 30 70 - 130 30 %SS1: 100 99 0 70 - 130 30 70 - 130 30 %SS2 94 10 99 97 1.80 99 70 - 130 30 %SS3: 88 10 98 97 1.36 99 100 0.764 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 24704 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611182-001	11/08/06 7:40 AM	11/09/06	11/09/06 7:29 PM	0611182-002	11/08/06 6:28 AM	11/10/06	11/10/06 4:46 AM
0611182-003	1/08/06 10:20 AM	11/10/06	11/10/06 2:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

<u>McCampbell Analytical, Inc.</u>

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

WorkOrder: 0611182 QC Matrix: Water W.O. Sample Matrix: Water EPA Method:SW8260B Extraction: SW5030B BatchID: 24718 Spiked Sample ID: 0611206-006a LCSD LCS-LCSD Acceptance Criteria (%) LCS Sample Spiked MS MSD MS-MSC Analyte % Rec. % Rec % RPD % Rec. % Rec. % RFD MS/MSD RPD LCS/LCSD RFD µg/L µg/L 30 ND 10 108 107 0.619 107 108 1.57 70 - 130 30 70 - 130 Chlorobenzene 0 99.7 97.1 2.64 70 - 130 30 70 - 130 30 ND 10 99.1 99.1 1,2-Dichloroethane (1,2-DCA) 0.639 1.46 70 - 130 30 70 - 130 30 10 127 128 128 126 ND 1,1-Dichloroethene 97.3 1.71 94.9 95.7 0.797 70 - 130 30 70 - 130 30 Trichloroethene ND 10 98.9 102 100 1.22 100 99 1.62 70 - 130 30 70 - 130 30 %SS1: 10 102 99 1.71 70 - 130 70 - 130 30 %SS2: 93 10 97 96 1.02 98 30 30 70 - 130 %SS3: 88 10 96 96 0 97 97 0 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24718 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611182-004	11/08/06 6:38 AM	11/09/06	1/09/06 11:05 PM	0611182-005	11/08/06 6:55 AM	11/09/06	1/09/06 11:47 PM
0611182-006	11/08/06 9:20 AM	11/10/06	1/10/06 12:30 AM	0611182-007	11/08/06 9:30 AM	11/10/06	11/10/06 1 13 AM
0611182-008	1/08/06 12:39 PM	11/10/06	11/10/06 1:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc. "When Outlity Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0611182

EPA Method:SW8021B/8015Cm Extraction:SW5030B					BatchID: 24717 Spiked Sample ID: 0611182-001A						01A	
Apoluto	Sample	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD					A	cceptance Criteria (%)				
Analyte	µg/L	µg/L	% Rec.	% Rec	% RPD	% Rec.	% Rec.	% RPD	MS/MSC	RPD	LCS/LCSD	RFD
TPH(btex ^{\$}	38000	60	NR	NR	NR	102	108	5.36	70 - 130	30	70 - 130	30
MTBE	6400	10	NR	NR	NR	92.8	98	5.45	70 - 130	30	70 - 130	30
Benzene	17000	10	NR	NR	NR.	99.3	109	9.62	70 - 130	30	70 - 130	30
Toluene	9200	10	NR	NR	NR	92.8	101	8.33	70 - 130	30	70 - 130	30
Ethylbenzene	1600	10	NR	NR	NR	97.1	106	8.94	70 - 130	30	70 - 130	30
Xylenes	6800	30	NR	NR	NR	90.3	95.3	5.39	70 - 130	30	70 - 130	30
%SS:	91	10	104	101	2.77	105	112	6.02	70 - 130	30	70 - 130	30
All target compounds in the Met	hod Blank o	of this extra	action bat	ch were b	TD less tha	n the met	hod RL w	rith the follo	wing except	ions:		

BATCH 24717 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0611182-001	11/08/06 7:40 AM	11/10/06	11/10/06 9:08 AM	0611182-002	11/08/06 6:28 AM	11/09/06	11/09/06 5:27 PM	
0611182-003	1/08/06 10:20 AM	11/10/06	11/10/06 8:25 AM	0611182-004	11/08/06 6:38 AM	11/10/06	11/10/06 4:44 AM	
0611182-005	11/08/06 6:55 AM	11/10/06	11/10/06 5:16 AM	0611182-006	11/08/06 9:20 AM	11/10/06	11/10/06 5:47 AM	
0611182-007	11/08/06 9:30 AM	11/10/06	11/10/06 6:18 AM	0611182-008	1/08/06 12:39 PM	11/10/06	11/10/06 6:50 AM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

WORK ORDER #: 0611295B

Work Order Summary

CLIENT:	Mr. Ricky Bradford AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597	BILL TO:	Mr. Ricky Bradford AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597
PHONE:	925-283-6000	P.O. #	100685
FAX:	925-283-6121	PROJECT #	116907 Vic's Automotive
DATE RECEIVED:	11/13/2006	CONTACT:	Sarah Nguyen
DATE COMPLETED:	11/25/2006		

			KECEH I
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.
01A	GP-1-5	Modified TO-3	6.0 "Hg
02A	GP-1-10	Modified TO-3	4.0 "Hg
03A	GP-2-5	Modified TO-3	3.0 "Hg
04A	GP-2-10	Modified TO-3	2.0 "Hg
05A	GP-3-5	Modified TO-3	5.0 "Hg
06A	GP-3-10	Modified TO-3	3.0 "Hg
07A	GP-4-5	Modified TO-3	2.5 "Hg
08A	GP-4-5 Dup	Modified TO-3	2.0 "Hg
09A	GP-4-10	Modified TO-3	2.5 "Hg
09AA	GP-4-10 Duplicate	Modified TO-3	2.5 "Hg
10A	Lab Blank	Modified TO-3	NA
11A	LCS	Modified TO-3	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>11/25/06</u>

DECEIDT

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 17

LABORATORY NARRATIVE Modified TO-3 AEI Consultants, Inc. Workorder# 0611295B

Nine 1 Liter Summa Canister samples were received on November 13, 2006. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system. The TPH (Gasoline Range) results are calculated using the response factor of Gasoline and correspond to the range of hydrocarbons from C5 to C10. A molecular weight of 100 is used to convert the TPH (Gasoline Range) ppmv result to ug/L.

See the data sheets for the reporting limits for each compound.

Requirement	ТО-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation $DL = A+3.3S$, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Method modifications taken to run these samples include:

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: GP-1-5

Lab ID#: 0611295B-01A				
Compound	Rot. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(UG/L)	(ppmv)	(UG/L)
TPH (Gasoline Range)	0.063	0.26	0.26	1.1
Client Sample ID: GP-1-10				
Lab ID#: 0611295B-02A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.058	0.24	0.23	0.95
Client Sample ID: GP-2-5				
Lab ID#: 0611295B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.056	0.23	0.26	1.1
Client Sample ID: GP-2-10				
Lab ID#: 0611295B-04A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.054	0.22	0.22	0.91
Client Sample ID: GP-3-5				
Lab ID#: 0611295B-05A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.060	0.25	0.23	0.93
Client Sample ID: GP-3-10				
Lab ID#: 0611295B-06A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.056	0.23	0.45	1.8

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: GP-4-5

Rpt. Limit	Rpt. Limit	Amount	Amount
(ppmv)	(uG/L)	(ppmv)	(uG/L)
0.055	0.22	0.13	0.54
Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
0.054	0.22	0.15	0.61
Rpt. Limit	Rpt. Limit	Amount	Amount
0.055	0.22	0.22	0.90
Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
-	Rpt. Limit (ppmv) 0.055 Rpt. Limit (ppmv) 0.054 Rpt. Limit (ppmv) 0.055	Rpt. Limit (ppmv)Rpt. Limit (uG/L)0.0550.22Rpt. Limit (ppmv)Rpt. Limit (uG/L)0.0540.22Rpt. Limit (ppmv)Rpt. Limit (uG/L)0.0550.22	Rpt. Limit (ppmv)Rpt. Limit (uG/L)Amount (ppmv)0.0550.220.13Rpt. Limit (ppmv)Rpt. Limit (uG/L)Amount (ppmv)0.0540.220.15Rpt. Limit (ppmv)Rpt. Limit (uG/L)Amount (ppmv)0.0550.220.22

Client Sample ID: GP-1-5 Lab ID#: 0611295B-01A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111713 2.53		Date of Collection: 11/8/06 Date of Analysis: 11/17/06 05:33		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)	
TPH (Gasoline Range)	0.063	0.26	0.26	1.1	
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits	
Fluorobenzene (FID)		100		75-150	

Client Sample ID: GP-1-10 Lab ID#: 0611295B-02A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111714 2.33	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 0		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.058	0.24	0.23	0.95
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		100		75-150

Client Sample ID: GP-2-5 Lab ID#: 0611295B-03A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111715 2.24		Date of Collection: 11/8/06 Date of Analysis: 11/17/06 06:50 PM		
Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)	
TPH (Gasoline Range)	0.056	0.23	0.26	1.1	
Container Type: 1 Liter Summa	Canister	%Recoverv		Method Limits	
Fluorobenzene (FID)		98		75-150	

Client Sample ID: GP-2-10 Lab ID#: 0611295B-04A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111716 2.16	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 07:25 PM		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.054	0.22	0.22	0.91
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		99		75-150

Client Sample ID: GP-3-5 Lab ID#: 0611295B-05A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111717 2.42	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 08		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.060	0.25	0.23	0.93
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		100		75-150

Client Sample ID: GP-3-10 Lab ID#: 0611295B-06A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111718 2.24	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 09:05 PM		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.056	0.23	0.45	1.8
Container Type: 1 Liter Summa Ca	nister			Method
Surrogates		%Recovery		Limits
Fluorobenzene (FID)		102		75-150

Client Sample ID: GP-4-5 Lab ID#: 0611295B-07A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111719 2.20	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 09:3		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.055	0.22	0.13	0.54
Container Type: 1 Liter Summa	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		101		75-150

Client Sample ID: GP-4-5 Dup Lab ID#: 0611295B-08A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111720 2.16	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 10:15 PM		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.054	0.22	0.15	0.61
Container Type: 1 Liter Summa	Canister			Marthaad
Surrogates		%Recovery		Limits
Fluorobenzene (FID)		102		75-150

Client Sample ID: GP-4-10 Lab ID#: 0611295B-09A MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111721 2.20	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 10:52 P		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.055	0.22	0.22	0.90
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		101		75-150

Client Sample ID: GP-4-10 Duplicate Lab ID#: 0611295B-09AA MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111722 2.20	Date of Collection: 11/8/06 Date of Analysis: 11/17/06 11:32 PM		
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH (Gasoline Range)	0.055	0.22	0.22	0.88
Container Type: 1 Liter Summa Surrogates	Canister	%Recovery		Method Limits
Fluorobenzene (FID)		102		75-150

Client Sample ID: Lab Blank Lab ID#: 0611295B-10A MODIFIED EPA METHOD TO-3 GC/FID

File Name:	6111710		Date of Collection: N	A
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH (Gasoline Range)	0.025	0.10	Not Detected	Not Detected
Container Type: NA - Not Applicable				
Surrogates		%Recovery		Method Limits
Fluorobenzene (FID)		108		75-150

Client Sample ID: LCS

Lab ID#: 0611295B-11A

MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	6111723 1.00	Date of Collection: NA Date of Analysis: 11/18/06 11:46 AM		
Compound			%Recovery	
TPH (Gasoline Range)			117	
Container Type: NA - Not Applicat	ble		Method	
Surrogates		%Recovery	Limits	
Fluorobenzene (FID)		121	75-150	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

WORK ORDER #: 0611295AR1

Work Order Summary

AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597		AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 9459	7
925-283-6000	P.O. #	100685	
925-283-6121	PROJECT #	116907 Vic's Automotive	e
11/13/2006	CONTACT:	Sarah Nguyen	
12/11/2006		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
12/11/2006			
			RECEIPT
NAME	TEST		VAC./PRES.
GP-1-5	Modified	TO-15	6.0 "Hg
GP-1-10	Modified	TO-15	4.0 "Hg
GP-2-5	Modified	TO-15	3.0 "Hg
GP-2-10	Modified	TO-15	2.0 "Hg
GP-3-5	Modified	TO-15	5.0 "Hg
GP-3-10	Modified	TO-15	3.0 "Hg
GP-4-5	Modified	TO-15	2.5 "Hg
GP-4-5 Dup	Modified	TO-15	2.0 "Hg
GP-4-10	Modified	TO-15	2.5 "Hg
Lab Blank	Modified	TO-15	NA
Lab Blank	Modified	TO-15	NA
CCV	Modified	TO-15	NA
CCV	Modified	TO-15	NA
LCS	Modified	TO-15	NA
LCS	Modified	TO-15	NA
	AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597 925-283-6000 925-283-6121 11/13/2006 12/11/2006 12/11/2006 12/11/2006 NAME GP-1-5 GP-1-10 GP-2-5 GP-2-10 GP-3-5 GP-3-10 GP-4-5 GP-4-5 Dup GP-4-5 Dup GP-4-10 Lab Blank Lab Blank Lab Blank CCV CCV LCS LCS	AEI Consultants, Inc. 2500 Camino Diablo Suite 200 Walnut Creek, CA 94597 925-283-6000 P.O. # 925-283-6121 PROJECT # 11/13/2006 CONTACT: 12/11/2006 NAME TEST GP-1-5 Modified GP-1-10 Modified GP-2-5 Modified GP-2-10 Modified GP-3-5 Modified GP-3-5 Modified GP-4-5 Dup Modified GP-4-5 Dup Modified GP-4-10 Modified GP-4-10 Modified CCV Modified Lab Blank Modified Lab Blank Modified CCV M	AEI Consultants, Inc. AEI Consultants, Inc. 2500 Camino Diablo 2500 Camino Diablo Suite 200 Suite 200 Walnut Creek, CA 94597 Walnut Creek, CA 9459 925-283-6000 P.O. # 100685 925-283-6121 PROJECT # 116907 Vic's Automotive 11/13/2006 CONTACT: Sarah Nguyen 12/11/2006 CONTACT: Sarah Nguyen 12/11/2006 Modified TO-15 GP-1-5 Modified TO-15 GP-2-5 Modified TO-15 GP-2-5 Modified TO-15 GP-3-5 Modified TO-15 GP-3-5 Modified TO-15 GP-4-5 Modified TO-15 CV Modified TO-15 CV Modified TO-15 Lab Blank Modified TO-15 Lab Blank Modified TO-15 CV Modified TO-15

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>12/12/06</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

785-1000 . (800) 785-5755 . FAA (710) 785-

LABORATORY NARRATIVE Modified TO-15 AEI Consultants, Inc. Workorder# 0611295AR1

Nine 1 Liter Summa Canister samples were received on November 13, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

THE WORK ORDER WAS RE-ISSUED ON DECEMBER 11, 2006 TO REPORT 1,1-DICHLOROETHENE FOR ALL SAMPLES.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: GP-1-5

Lab ID#: 0611295AR1-01A				
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	1.3	1.8	8.6	12
Client Sample ID: GP-1-10				
Lab ID#: 0611295AR1-02A No Detections Were Found.				
Client Sample ID: GP-2-5				
Lab ID#: 0611295AR1-03A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	1.1	35	7.6	240
Client Sample ID: GP-2-10				
Lab ID#: 0611295AR1-04A				
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Tetrachloroethene	1.1	66	7.3	450

Client Sample ID: GP-3-5

Lab ID#: 0611295AR1-05A

No Detections Were Found.

Client Sample ID: GP-3-10

Lab ID#: 0611295AR1-06A No Detections Were Found.

Client Sample ID: GP-4-5

Lab ID#: 0611295AR1-07A No Detections Were Found.

Client Sample ID: GP-4-5 Dup

Lab ID#: 0611295AR1-08A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: GP-4-5 Dup

Lab ID#: 0611295AR1-08A

No Detections Were Found.

Client Sample ID: GP-4-10

Lab ID#: 0611295AR1-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
m,p-Xylene	1.1	1.2	4.8	5.2
Toluene	1.1	1.1	4.1	4.1

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-1-5 Lab ID#: 0611295AR1-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112015r1 2.53		Date of Collection: Date of Analysis: 1	11/8/06 1/21/06 01:56 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Benzene	1.3	Not Detected	4.0	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
Trichloroethene	1.3	Not Detected	6.8	Not Detected
Tetrachloroethene	1.3	1.8	8.6	12
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
2-Propanol	5.1	Not Detected	12	Not Detected
Ethanol	5.1	Not Detected	9.5	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	94	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-1-10 Lab ID#: 0611295AR1-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112016r1 2.33	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 06:56 AM		11/8/06 1/21/06 06:56 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
Benzene	1.2	Not Detected	3.7	Not Detected
Ethyl Benzene	1.2	Not Detected	5.0	Not Detected
m,p-Xylene	1.2	Not Detected	5.0	Not Detected
o-Xylene	1.2	Not Detected	5.0	Not Detected
Trichloroethene	1.2	Not Detected	6.3	Not Detected
Tetrachloroethene	1.2	Not Detected	7.9	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Toluene	1.2	Not Detected	4.4	Not Detected
2-Propanol	4.7	Not Detected	11	Not Detected
Ethanol	4.7	Not Detected	8.8	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: GP-2-5 Lab ID#: 0611295AR1-03A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112017r1 2.24		Date of Collection: Date of Analysis: 1	11/8/06 1/21/06 07:38 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.1	Not Detected	2.9	Not Detected
Benzene	1.1	Not Detected	3.6	Not Detected
Ethyl Benzene	1.1	Not Detected	4.9	Not Detected
m,p-Xylene	1.1	Not Detected	4.9	Not Detected
o-Xylene	1.1	Not Detected	4.9	Not Detected
Trichloroethene	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	35	7.6	240
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Toluene	1.1	Not Detected	4.2	Not Detected
2-Propanol	4.5	Not Detected	11	Not Detected
Ethanol	4.5	Not Detected	8.4	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	96	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-2-10 Lab ID#: 0611295AR1-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112018r1 2.16	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 08:20 AN		11/8/06 1/21/06 08:20 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
Benzene	1.1	Not Detected	3.4	Not Detected
Ethyl Benzene	1.1	Not Detected	4.7	Not Detected
m,p-Xylene	1.1	Not Detected	4.7	Not Detected
o-Xylene	1.1	Not Detected	4.7	Not Detected
Trichloroethene	1.1	Not Detected	5.8	Not Detected
Tetrachloroethene	1.1	66	7.3	450
cis-1,2-Dichloroethene	1.1	Not Detected	4.3	Not Detected
Toluene	1.1	Not Detected	4.1	Not Detected
2-Propanol	4.3	Not Detected	11	Not Detected
Ethanol	4.3	Not Detected	8.1	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	3.9	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.3	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.3	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	95	70-130
4-Bromofluorobenzene	88	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-3-5 Lab ID#: 0611295AR1-05A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112019r1 2.42	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 09:03 A		11/8/06 1/21/06 09:03 AM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
Benzene	1.2	Not Detected	3.9	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	Not Detected	5.2	Not Detected
o-Xylene	1.2	Not Detected	5.2	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Toluene	1.2	Not Detected	4.6	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Ethanol	4.8	Not Detected	9.1	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	94	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-3-10 Lab ID#: 0611295AR1-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112108r1 2.24	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 03:46 PM		11/8/06 1/21/06 03:46 PM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.1	Not Detected	2.9	Not Detected
Benzene	1.1	Not Detected	3.6	Not Detected
Ethyl Benzene	1.1	Not Detected	4.9	Not Detected
m,p-Xylene	1.1	Not Detected	4.9	Not Detected
o-Xylene	1.1	Not Detected	4.9	Not Detected
Trichloroethene	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	Not Detected	7.6	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Toluene	1.1	Not Detected	4.2	Not Detected
2-Propanol	4.5	Not Detected	11	Not Detected
Ethanol	4.5	Not Detected	8.4	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: GP-4-5 Lab ID#: 0611295AR1-07A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112107r1 2.20	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 03:03 P		11/8/06 1/21/06 03:03 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
Benzene	1.1	Not Detected	3.5	Not Detected
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected
m,p-Xylene	1.1	Not Detected	4.8	Not Detected
o-Xylene	1.1	Not Detected	4.8	Not Detected
Trichloroethene	1.1	Not Detected	5.9	Not Detected
Tetrachloroethene	1.1	Not Detected	7.5	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Toluene	1.1	Not Detected	4.1	Not Detected
2-Propanol	4.4	Not Detected	11	Not Detected
Ethanol	4.4	Not Detected	8.3	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	96	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-4-5 Dup Lab ID#: 0611295AR1-08A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112106r1 4.26	Date of Collection: 11/8/06 Date of Analysis: 11/21/06 02:21 Pl		11/8/06 1/21/06 02:21 PM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	2.1	Not Detected	5.4	Not Detected
Benzene	2.1	Not Detected	6.8	Not Detected
Ethyl Benzene	2.1	Not Detected	9.2	Not Detected
m,p-Xylene	2.1	Not Detected	9.2	Not Detected
o-Xylene	2.1	Not Detected	9.2	Not Detected
Trichloroethene	2.1	Not Detected	11	Not Detected
Tetrachloroethene	2.1	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	2.1	Not Detected	8.4	Not Detected
Toluene	2.1	Not Detected	8.0	Not Detected
2-Propanol	8.5	Not Detected	21	Not Detected
Ethanol	8.5	Not Detected	16	Not Detected
Methyl tert-butyl ether	2.1	Not Detected	7.7	Not Detected
trans-1,2-Dichloroethene	2.1	Not Detected	8.4	Not Detected
1,1-Dichloroethene	2.1	Not Detected	8.4	Not Detected

Surrogates	%Recovery	Method Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	89	70-130

н

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GP-4-10 Lab ID#: 0611295AR1-09A

Lab ID#: 0011295AK1-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112105r1 2.20		Date of Collection: Date of Analysis: 1	11/8/06 1/21/06 01:39 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
Benzene	1.1	Not Detected	3.5	Not Detected
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected
m,p-Xylene	1.1	1.2	4.8	5.2
o-Xylene	1.1	Not Detected	4.8	Not Detected
Trichloroethene	1.1	Not Detected	5.9	Not Detected
Tetrachloroethene	1.1	Not Detected	7.5	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Toluene	1.1	1.1	4.1	4.1
2-Propanol	4.4	Not Detected	11	Not Detected
Ethanol	4.4	Not Detected	8.3	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected

Surrogates	%Pecoverv	Method
Surroyates	/intecovery	Lillins
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: Lab Blank Lab ID#: 0611295AR1-10A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112005R1 1.00		Date of Collection: N Date of Analysis: 1	IA 1/20/06 12:38 PM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 0611295AR1-10B MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112104r1 1.00		Date of Collection: I Date of Analysis: 1	NA 1/21/06 12:10 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: CCV

Lab ID#: 0611295AR1-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112002 1.00	Date of Collection: NA Date of Analysis: 11/20/06 10:08 AM
Compound		%Pecovery
		/orecovery
Vinyl Chloride		84
Benzene		80
Ethyl Benzene		87
m,p-Xylene		83
o-Xylene		91
Trichloroethene		81
Tetrachloroethene		85
cis-1,2-Dichloroethene		83
Toluene		86
2-Propanol		87
Ethanol		84
Methyl tert-butyl ether		88
trans-1,2-Dichloroethene		83
1,1-Dichloroethene		88

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV

Lab ID#: 0611295AR1-11B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112102 1.00	Date of Collection: NA Date of Analysis: 11/21/06 10:21 AM
Commonwed		1/ Decement
Compound		%Recovery
Vinyl Chloride		85
Benzene		84
Ethyl Benzene		90
m,p-Xylene		84
o-Xylene		95
Trichloroethene		84
Tetrachloroethene		88
cis-1,2-Dichloroethene		86
Toluene		90
2-Propanol		85
Ethanol		80
Methyl tert-butyl ether		86
trans-1,2-Dichloroethene		85
1,1-Dichloroethene		88

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	102	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS

Lab ID#: 0611295AR1-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112003 1.00	Date of Collection: NA Date of Analysis: 11/20/06 10:37 AM
Commonwell		*/ D
Compound		%Recovery
Vinyl Chloride		84
Benzene		83
Ethyl Benzene		84
m,p-Xylene		87
o-Xylene		91
Trichloroethene		82
Tetrachloroethene		85
cis-1,2-Dichloroethene		82
Toluene		85
2-Propanol		83
Ethanol		61
Methyl tert-butyl ether		80
trans-1,2-Dichloroethene		88
1,1-Dichloroethene		90

Container Type: NA - Not Applicable

		Method		
Surrogates	%Recovery	Limits		
Toluene-d8	103	70-130		
1,2-Dichloroethane-d4	102	70-130		
4-Bromofluorobenzene	98	70-130		

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS

Lab ID#: 0611295AR1-12B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	8112103 1.00	Date of Collection: NA Date of Analysis: 11/21/06 11:12 AM
Compound		%Recovery
Vinyl Chloride		84
Benzene		82
Ethyl Benzene		86
m,p-Xylene		86
o-Xylene		92
Trichloroethene		83
Tetrachloroethene		85
cis-1,2-Dichloroethene		76
Toluene		85
2-Propanol		78
Ethanol		56 Q
Methyl tert-butyl ether		72
trans-1,2-Dichloroethene		81
1,1-Dichloroethene		85

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

	Method Limits		
%Recovery			
102	70-130		
95	70-130		
103	70-130		
	%Recovery 102 95 103		

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that earnple is being shipped in compliance 180 BLUE RAVINE ROAD, SUITE B with all applicable local, State, Federal, national, and international lows, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or (916) 985-1000 FAX (916) 985-1020 shipping of these complex. Relinquishing signature also indicates agreement to hold hamless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (600) 467-4922.

FOLSOM, CA 95630-4719 Page of

Contact Person RICKY BRADFORD				Project Info:	Tum	Tum Around		Lab Use Only					
Company AEI CONSISTANTS Email + bradford Concerninging					PO +			Pressu	Pressurized by:				
Address 2500 CAMIN DARKO, "City WALNUT (AREK State CA Zip 94597			F.O. #			XNormal		111-0	100				
Phone 17	15)283 6000 /	X 148 FOS	(25)	944 - 2895	2	Project # [IG9 01]	Project #		🗅 Rush		Pressurization Gas:		
Collected	by: (Signature)	<u>Latte</u>	\leq			Project Name Vic's Auto Motive specify			pecity	He N2			
		22	[·						ster Pre	ter Pressure/Vacuum		
Lab I.D.	Field Sample	I.D. (Location)	Can≇	Date	Time	Analyses R	lequested	1	Initial	Final	Receipt	Final	
<u>6</u> LA	GP-1-5	3(184	1/8/06	9:40	PFI-a by T	<u>`</u> 0-3		27,5	4.0	1. 1º 1/2	KIN	
029	GP-1-10	34	171	11/8/00	9:57	BTEX MTBE	PCE 4		24,0	4-0	4.6%		
034	GP-2-5	રર્સ	44	11/8/06	10:34	\$ TLE	h Tol	15	29,5	4.0	214		
OHA	GP-2-10	2,10	28	11/8/06	10:45	*		ļ	Bor D	4.0	5.01		
05A	Gp-3-5	341	78	118/06	11:07	TEA	۲. 	\sum	29,5	4.0	KUM		
D6A	GP-3-10	210	23	11/8/06	11,2	LIGR HL	- JAMPLES	5)	3010	4.5	3.114		
079	GP-4-5	222	,o	114106	11:48		i	 	27,0	4,0	7 514		
OBA-	GP-4-SDUP	. 20	4	1/8/06	11:48		·	!	27.0	4.0	6 M		
OPA	GP-4-10	' LZ	5	11/8/06	11:35		\downarrow		B010	3,5	5.5MA		
	PUTE Car	1129	뉸	11/8/06	<u></u>						f f		
Relinguist Relinguist	hed by: (signature)	Date/Lime 11/10/06 9:5 Date/Time	50.	Received b	ny: (signature) (R) by: (signature)	Date/Time 83 32/11 AFT 11/13/06 Date/Time	2- Propanol	دأ	leik	detect	<u>fan (a</u>		
Relinquist	red by: (signature)	Date/Time		Received b	y: (signature)	Date/Time	· · · · · ·				· · · ·		
Lab	Shipper Name	A	jįr.́Bill	#	은 : Temp (º)	C) Condition	Customer Sr	cals Int	lact?⊡	Work	<u>c</u> Order #		
Use (Only	al Over	D100101107	1671	659	<u> n(U</u>	<u> </u>	Yes No		ne	—0 €	; <u>112</u>	95	

2

7