

By Alameda County Environmental Health 1:00 pm, Aug 04, 2015

July 30, 2015

Mr. Karel Detterman, P.G.
Hazardous Materials Specialist
Alameda County Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502
San Francisco, CA 94102

Re: Final Enhanced Bioremediation Pilot Study Report and Full Scale

Implementation Plan, 3093 Broadway, Oakland, CA

Site Cleanup Program Case No. Ro0000199

Dear Ms. Detterman,

Please find attached, for your review and comment, Final Enhanced Bioremediation Pilot Study Report and Full Scale Implementation Plan, for the Former Connell Oldsmobile site, located at 3093 Broadway in Oakland, California. The report has been prepared by Langan Treadwell Rollo.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

OWNER:

3093 BROADWAY HOLDINGS, L.L.C.

By:

Name:

J David Martin

Title:

Chairman, Investment Committee - CityView

ENHANCED BIOREMEDIATION PILOT STUDY REPORT AND FULL SCALE IMPLEMENTATION PLAN 3093 Broadway Oakland, California ACEH Case No.: RO0000199

Prepared For:

Ms. Karel Detterman, P.G.
Hazardous Materials Specialist
Alameda County Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502

Prepared By:
Langan Treadwell Rollo
555 Montgomery Street, Suite 1300
San Francisco, California 94111

Annie Lee, PE Project Engineer

Christopher Glenn, PE, LEED GA Senior Project Engineer

> Robert W. Schultz, CHG Senior Project Manager

> > 30 July 2015 730637001

LANGAN TREADWELL ROLLO

C 66866

TABLE OF CONTENTS

1.0	BACI	KGROUND	1
	1.1	Site Geology and Hydrogeology	2
2.0	FIELD	O INVESTIGATION	3
	2.1	Permitting, Utility Clearance, and Surveying	3
	2.2	Monitoring Well Installation and Development	
	2.3	Groundwater Monitoring Well Sampling	
	2.4	Soil Sampling	
3.0	INIVE	STIGATION RESULTS AND DISCUSSION	6
J.U	3.1	Water Levels	
	3.2	Groundwater Sampling Results and Observations	
		3.2.1 Field Parameters	
		3.2.2 Petroleum Concentrations in Groundwater	
		3.2.3 Sulfate and Sulfate Reducing Bacteria	8
		3.2.4 Metals	
		3.2.5 Additional Water Quality Parameters	
	3.3	Soil Sampling Results and Observations	10
4.0	PILO	T STUDY IMPLEMENTATION	11
	4.1	Remediation Boring Drilling	
	4.2	Mixing and Emplacement	
	4.3	Field Modifications	
5.0	FULL	-SCALE GROUNDWATER CORRECTIVE ACTION PLAN	1:
0.0	5.1	Treatment Area	
	5.2	Sulfate Emplacement Mass and Remediation Boring Locations	
	5.3	Emplacement Procedures	
6.0	REPO	DRTING	
7.0		ICIPATED SCHEDULE	
, .v			I \

TABLES

FIGURES

APPENDICES

Oakland, California

ACEH Case No.: RO0000199

LIST OF TABLES

Table 1	Groundwater Sampling and Analysis Schedule
Table 2	Groundwater Analytical Results, Field Parameters
Table 3	Groundwater Analytical Results, Petroleum Compounds
Table 4	Groundwater Analytical Results, Natural Attenuation Parameters
Table 5	Groundwater Analytical Results, Dissolved Metals
Table 6	Select Soil Analytical Results
Table 7	Batching and Mass of Remediation Materials

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Monitoring Well Locations
Figure 3	Groundwater Analytical Results
Figure 4	Pilot Study and Proposed Full-Scale Remediation Boring Locations
Figure 5	Pilot Study Remediation Boring Construction Detail
Figure 6	Proposed Full-Scale Remediation Boring Construction Detail

LIST OF APPENDICES

Appendix A	Permits
Appendix B	Boring Logs
Appendix C	Groundwater Analytical Laboratory Reports
Appendix D	Material Data Sheets for Gypsum and Sand
Appendix E	Bioremediation Dosing Calculations

Oakland, California ACEH Case No.: RO0000199 30 July 2015 730637001 Page 1

ENHANCED BIOREMEDIATION PILOT STUDY REPORT AND FULL SCALE IMPLEMENTATION PLAN 3093 Broadway Oakland, California

ACEH Case No.: RO0000199

On behalf of 3093 Broadway Holdings, L.L.C. ("Broadway Holdings"), Langan Treadwell Rollo (Langan) has prepared this Enhanced Bioremediation Pilot Study Report ("Report") for the Former Connell Oldsmobile site ("site"), located at 3093 Broadway in Oakland, California (Figure 1). The site investigation and pilot test implementation activities have been performed in general accordance with the Feasibility Study and Corrective Action Plan (FS/CAP) dated May 2015 and the Groundwater Sampling and Enhanced Bioremediation Pilot Study Work Plan (Work Plan) in Appendix A of the FS/CAP. The objectives of the site investigation and pilot study were, respectively: 1) to obtain additional remediation design parameters and 2) to demonstrate the implementability of the proposed groundwater corrective action. This Report presents a brief background of the site, summarizes the methods and results of the field investigation and monitoring well installation activities, reports on the pilot study implementation, and presents the full-scale groundwater corrective action plan.

1.0 BACKGROUND

The approximately 3.4-acre site is bounded by Hawthorne Street to the north, Broadway to the east, Webster Street to the west, and a surface parking lot to the south. The site is currently occupied by a vacant, two-story concrete structure that was formerly a car dealership. Currently, the parking areas west and south of the site structure are used to store automobiles for other nearby dealerships. The site is located in a mixed-use area, near commercial, medical, and residential properties.

Three underground storage tanks (USTs) that previously contained gasoline, diesel, and waste oil were removed from beneath the Hawthorne Avenue sidewalk, north of the service bay in December 1989. Soil and groundwater investigations have been ongoing since 1990. The chemicals of concern in groundwater at the site include benzene, toluene, ethylbenzene, and xylenes (BTEX), 1,2-dichloroethane, and naphthalene.

On behalf of Broadway Holdings, Langan is implementing an enhanced bioremediation pilot study at the site and, pending receipt of public comment and final approval by the Alameda Oakland, California

ACEH Case No.: RO0000199

County Department of Environmental Health (ACEH), plans to implement the Corrective Action Plan concurrent with development of a multi-story mixed-use building that will occupy nearly the entire property. We understand the existing buildings will be demolished, with the exception of a portion of the showroom in the northeast corner of the site. The ground floor will consist of parking and commercial space. The upper levels will include residential units. Site excavation for the development is planned to reduce existing grade by approximately 3 to 18 feet; the ground floor of the proposed development will be roughly level with Broadway.

The FS/CAP evaluated several remedial alternatives and recommended using enhanced bioremediation to address petroleum impacts in groundwater. The biological degradation of petroleum hydrocarbons in site groundwater is limited by the availability of electron acceptors, so bioremediation can be accelerated by introducing an electron acceptor (e.g., sulfate) into the subsurface. The groundwater corrective action consists of drilling remediation borings and backfilling the saturated interval with a combination of sand and calcium sulfate (gypsum) powder to add sulfate to the site groundwater.

1.1 Site Geology and Hydrogeology

The site elevation ranges from approximately 52 to 68 feet above mean sea level (a-msl). The site slopes downward to the southeast, from Webster Street to Broadway. The site is underlain by unconsolidated sediments ranging from silty clays to sandy gravels. Based on geotechnical drilling conducted by Langan at the site, unconsolidated sediments extend to at least 50 feet below ground surface. The site surficial geology is mapped as the Temescal Formation, which consists of quaternary age alluvial fan deposits comprised of interbedded layers of silt, sand, clay, and gravel (Radbrush, 1957). Alluvial fan deposits are characterized by laterally discontinuous and heterogeneous layers of irregular thickness.

Langan reviewed groundwater investigation reports for the site prepared between 1990 and 2015. The depth to water in the groundwater monitoring wells at the site have ranged from 15.19 to 33.65 feet below the tops of the well casings (corresponding to elevations of approximately 23.41 to 41.84 feet a-msl, based on the 2014 BKF Engineers site survey). Historical site data indicates an annual water level fluctuation on the order of one to four feet.

The predominant site-scale groundwater flow direction is to the east-southeast. Since the UST release, groundwater flow directions have reportedly ranged from southeast to east. Based on literature values for the observed soil types, the groundwater seepage velocity at the site is low

to very low, with estimated groundwater seepage velocities ranging from approximately 0.2 to 20 feet per year.

2.0 FIELD INVESTIGATION

Field investigation activities were performed from 11 through 21 May 2015 and include monitoring well installation, groundwater monitoring well sampling, and soil logging and sample collection. Selected soil samples in the smear zone and saturated zone that pertain to the groundwater corrective action are discussed in this report. A summary of soil investigation activities and results are provided in the Soil Investigation Report submitted to the ACEH under separate cover (Langan, 2015).

2.1 Permitting, Utility Clearance, and Surveying

Prior to installing the monitoring wells and remediation borings, a permit was obtained from the Alameda County Public Works Agency, Water Resources Section (ACPWA). The ACPWA permit is provided in Appendix A.

A private utility locator was subcontracted to confirm the presence/absence of subsurface utilities at the monitoring well and remediation boring installation locations. Underground Services Alert, a regional subsurface utility notification center, was notified of the work on 6 May 2015.

2.2 **Monitoring Well Installation and Development**

Monitoring wells MW-18, MW-19, and MW-19S were installed on 13 and 14 May 2015 in general accordance with the Work Plan to provide additional information for plume extent to support the full-scale dosage and design. The boreholes were advanced with a Geoprobe 7720 rig fitted with 8-inch diameter hollow stem augers. Prior to drilling, the borings were handaugered to approximately 5 feet below ground surface (bgs) to clear for possible underground utility conflicts.

Borings at MW-18 and MW-19 were initially advanced using dual-wall direct push technology producing 2.25-inch boreholes to depths of 35 feet bgs. Soil samples were continuously collected into 1.125-inch diameter acetate liners in approximately four foot intervals. The soil cores were examined and logged by a Langan geologist and screened in the field using a photoionization detector (PID). Soil samples for potential laboratory chemical analysis were cut Oakland, California

ACEH Case No.: RO0000199

from the liners, sealed with Teflon tape and capped, and stored on ice pending submittal under chain-of-custody protocol to a State of California-certified analytical laboratory.

Following soil sampling activities from MW-18 and MW-19, these boreholes were overdrilled by advancing 8-inch diameter hollow stem augers to facilitate installation of the monitoring wells. MW-18 was augered to a depth of 24 feet bgs, while MW-19 was augered to a depth of 27 feet bgs. Slow groundwater recharge was observed following completion of the borehole at MW-19, which resulted in uncertainty regarding depth to groundwater at equilibrium. Based on field observations, an additional shallower well (MW-19S) was installed adjacent to well MW-19 to a depth of 23 feet bgs.. Soil cores were not logged and soil samples were not collected at well MW-19S due to its proximity to well MW-19 (approximately six feet to the east).

Each monitoring well was constructed by placing a 2-inch diameter, Schedule 40 casing with 10 feet of slotted 0.020-inch well screen through the augers. An annular sand pack consisting of #2/16 Monterey Sand was installed through the augers to approximately one foot above the screened interval. The monitoring well screened intervals are provided in Table 1. A one-foot hydrated bentonite seal was placed above the sand and the remainder of the borehole was sealed with neat cement grout. Expanding, locking caps and flush-mounted traffic rated well boxes were installed over each casing. The drilling and well installation work was performed under the oversight of an ACPWA inspector.

The newly installed monitoring wells were developed by surging, bailing, and purging the well to remove accumulated fines from the casings and stabilize the sand packs on 18 May 2015. Wells MW-18 and MW-19 were developed by removing approximately 10 well volumes, while well MW-19S was developed by removing approximately 8 well volumes before the well dewatered.

The locations of the newly installed wells are presented in Figure 2. Copies of the boring logs are presented in Appendix B.

2.3 Groundwater Monitoring Well Sampling

Pre-remediation groundwater sampling was performed at 12 monitoring wells on 18, 21 and 22 May 2015. Representative wells in the upper groundwater plume (MW-1, MW-14), lower groundwater plume (MW-4, MW-6, RW-3A, RW-3B), cross-gradient (MW-3), within the showroom (MW-18, MW-19), and downgradient (MW-5, MW-7, MW-8) were selected to collect data characterizing groundwater conditions before initiating enhanced bioremediation of

dissolved petroleum compounds. Monitoring well MW-19S, installed as a contingency monitoring point should the screen of well MW-19 be submerged, was not sampled because MW-19 is screened across the water table. Figure 2 shows the locations of the monitoring wells.

Groundwater sampling was performed using U.S. EPA low-flow sampling procedures. Water quality parameters (including temperature, pH, specific electrical conductance, oxidation-reduction potential [ORP], and dissolved oxygen [DO]) were measured using a flow-through cell during low-flow pumping. The groundwater sampling and analysis schedule summarizing the monitoring wells sampled, sample parameters, and analytical methods, is presented in Table 1. The groundwater sampling results are discussed in Section 3.2.

2.4 Soil Sampling

The soil results within the smear zone and saturated zone are discussed in this report to evaluate contaminant mass in the treatment zones, which includes soil samples collected at:

- Remediation borings RB-2 and RB-6 in the service bay;
- Soil borings B-29 and B-30 in the service bay; and
- Monitoring wells MW-18 and MW-19 in the showroom.

The boring logs for these soil borings are provided in Appendix B. The sampling methods and observations are discussed below and the analytical results are discussed in Section 3.3.

At remediation borings RB-2 and RB-6, direct push borings were advanced to 40 feet bgs for soil logging and sampling prior to drilling with hollow stem augers. The pilot study borings were located within the area of highest impacts, south of the former UST tanks. Moderate to strong odors were detected in the borings with PID readings above 1,000 parts per million (ppm) within the 20 to 30 feet bgs depth range. At RB-2, staining was observed from 25 to 26 feet bgs. Field observations related to odor, PID readings, and soil staining are consistent with the remediation target depth interval (pilot study remediation boring biostimulation media was installed from 18 to 35 feet bgs). Soil samples were collected every two feet from 22 to 40 feet bgs and analyzed for volatile organic compounds (VOCs) and total petroleum hydrocarbons in the gas, diesel and motor oil ranges (TPHg, TPHd, and TPHmo) to evaluate the vertical extent of impacts within the saturated zone. These borings were sealed with bentonite prior to overdrilling with hollow stem augers for installation of the remediation borings.

At soil borings B-29 and B-30, located along the southwestern portion of the service bay, direct push borings were advanced to 28 feet bgs for soil logging and sampling. No odors, PID readings above background, or soil staining were observed. Soil samples were collected at borings B-29 (12.5, 17.5, and 28 feet bgs) and B-30 (2.5, 7.5, 12.5, 17.5 and 27 feet bgs).

At MW-18 and MW-19 within the showroom, direct push borings were advanced to 35 feet bgs for soil logging and sampling prior to well installation. At MW-18, elevated PID readings over 1,000 ppm were observed between approximately 21 to 24 feet bgs and were associated with very strong petroleum odors. Soil samples were collected from the MW-18 boring at 7.5, 12.5, 17.5, 21.5, 26.5, and 31.5 feet bgs. Moderate petroleum odors were observed at MW-19, but no PID readings were detected above background levels. At MW-19, soil samples were collected at 7.5, 12.5, 17.5, 22, and 27.5 feet bgs.

3.0 INVESTIGATION RESULTS AND DISCUSSION

Soil and groundwater sampling activities were performed in May 2015 to provide additional data to characterize the existing soil impacts and groundwater conditions prior to remediation and site development. The water levels, pre-remediation groundwater sampling data, and saturated and smear zone soil sample data were reviewed to further delineate and characterize petroleum impacts and to refine the full-scale groundwater corrective action design.

3.1 Water Levels

The depth to water at the monitoring wells sampled ranged from 14.56 feet bgs at RW-3A to 26.68 feet bgs at MW-5 (25.02 to 40.12 feet a-msl). Based on depth to water measurements for recently installed wells MW-18, MW-19, and MW-19S, groundwater elevations were calculated to be 37.04, 34.19, and 34.41 feet above MSL, respectively. These water level results are consistent with the groundwater flow direction interpretation presented in the Conceptual Site Model (Langan, 2014). Based on these results, we infer that the water table elevation drops relatively sharply east of well MW-18.

3.2 Groundwater Sampling Results and Observations

Groundwater samples were analyzed to establish the pre-remediation groundwater conditions and verify that the conditions are favorable for enhanced bioremediation. The field water quality parameters and the groundwater analytical results are summarized in Tables 2 to 5. The groundwater laboratory analytical packages are provided in Appendix C.

Page 7

30 July 2015

730637001

Oakland, California

ACEH Case No.: RO0000199

3.2.1 Field Parameters

The field water quality parameters are summarized in Table 2 according to position relative to the groundwater plume (within, cross-gradient and downgradient). Of these parameters, pH, DO, and ORP are of particular importance in understanding the groundwater conditions for remediation.

The pH within the plume was close to neutral, ranging from 6.42 to 7.13, which is favorable for bioremediation.

Reducing conditions are present within the groundwater plume, where the DO is low (0.34 to 0.67 milligrams per liter [mg/L]) and ORP is negative (-93.3 to -163.8 millivolts). Because the wells outside of the plume have higher DO concentrations and positive ORP, there is likely sufficient electron donor on the fringes of the plume but the electron acceptor demand (*e.g.*, oxygen) is depleted where higher levels of petroleum are present.

3.2.2 Petroleum Concentrations in Groundwater

Groundwater samples were analyzed for petroleum compounds, including BTEX, methyl tert-butyl ether, TPHg, TPHd, 1,2-dichloroethane and naphthalene. Groundwater analytical results for petroleum compounds are provided in Table 3 and shown on Figure 3. This discussion focuses primarily on TPHg and benzene, which are used as representative compounds to evaluate remediation progress.

Within the upper plume area, concentrations at MW-1 and MW-14 were lower than what was detected in the previous sampling event (November 2014). At MW-1, near the former UST source area, TPHg and benzene were detected at 31,000 and 2,300 micrograms per liter (μ g/L), respectively. At MW-14, farther downgradient, TPHg and benzene were detected at 5,700 and 250 μ g/L, respectively. Although the benzene concentration at MW-14 is less than 1,000 μ g/L, MW-14 is still included in the 1,000 μ g/L benzene plume extents (Figure 4) because it is surrounded by other impacted wells.

Within the lower plume area, concentrations at MW-4 and MW-6 are consistent with previous sampling results, with TPHg concentrations of 66,000 and 18,000 μ g/L and benzene concentrations of 1,400 and 2,400 μ g/L, respectively. RW-3A and RW-3B were sampled to evaluate the vertical distribution of groundwater impacts in the lower plume area. Although RW-3A had a benzene concentration of 1,100 μ g/L, no benzene was detected at RW-3B. RW-3A is screened from 16 to 26 feet bgs and RW-3B is screened from 32 to 37 feet bgs,

which confirms the previous conceptual site model that the majority of the groundwater impacts in the lower plume area are above a depth of 30 feet bgs.

Monitoring wells MW-18 and MW-19 were installed to assess petroleum concentrations beneath the showroom. TPHg and benzene were detected at MW-18 at 3,200 and 240 µg/L, respectively, but TPHg and benzene were not detected at MW-19 further downgradient.

Benzene was not detected at monitoring wells MW-3, MW-5, MW-7, MW-8, and MW-19, located cross-gradient and downgradient to the groundwater plume. These results are consistent with our conceptual site model and suggest that the extent of the benzene in groundwater is limited to the site.

3.2.3 Sulfate and Sulfate Reducing Bacteria

Groundwater analytical results for sulfate and sulfate reducing bacteria are provided in Table 4. The sulfate concentrations at the wells sampled ranged from 0.33 to 200 mg/L. The lowest concentrations of sulfate corresponded with the wells with the highest levels of petroleum, with the concentrations at MW-1, MW-4, MW-6, and RW-3A ranging from 0.33 to 1.6 mg/L. The highest sulfate concentration (200 mg/L) was detected at cross-gradient well MW-3, outside of the contaminant plume. No sulfite was detected in the samples collected and sulfide was detected at low levels ranging from non-detect (less than) 0.05 to 2.4 mg/L.

Groundwater was analyzed for sulfate reducing bacteria at wells MW-1, MW-3, MW-6, MW-8, and MW-18. There is a strong sulfate reducing bacteria population at the wells within the plume, with 2.84x10⁵ and 1.05x10⁶ cells per milliliter (cells/mL) at MW-1 and MW-6, respectively. The sulfate reducing bacteria concentration is moderate, on the order of 10⁴ cells/mL, at MW-18 and MW-8 at the fringes of the groundwater plume. The lowest concentration was observed at MW-3, with a cell count on the order of 10³ cells/mL, which is expected due to the higher oxygen concentrations outside of the plume and aerobic bacteria outcompeting the sulfate reducing bacteria.

The presence of sulfate reducing bacteria and low sulfate concentrations within the planned treatment area indicate that sulfate reduction is occurring naturally, but biological activity may be limited by the lack of sulfate. These results support using sulfate addition to sustain biodegradation processes at the site.

3.2.4 Metals

Groundwater analytical results for dissolved metals are provided in Table 5. The purpose of metals analysis was to evaluate the potential for metal sulfides precipitation in the treatment area. Note that groundwater samples for metals analyses were field-filtered using 0.45-micron filters to remove sediment and turbidity.

Concentrations of metals within groundwater treatment area indicate that metal sulfides precipitation could be a significant sulfide removal process that mitigates concerns about hydrogen sulfide generation. Within the treatment area, at MW-1 and MW-6, the concentrations of iron, manganese and barium are elevated in groundwater. At MW-1 in the upper plume, concentrations of iron, manganese and barium were 33,000 μg/L, 11,000 μg/L, and 810 µg/L, respectively. At MW-6 in the lower plume, concentrations of iron, manganese and barium were 11,000 µg/L, 6,700 µg/L, and 280 µg/L, respectively. The remainder of the metals analyzed were present at lower concentrations and will be compared to future metals analysis results, if needed. In addition to the metals in groundwater, metals within the soil in the saturated and unsaturated zones will also react with the sulfide produced as a part of this remediation process.

The abundance of naturally-occurring metals at the site, combined with the neutral groundwater pH at the site (6.42 to 7.13), supports the conclusion metal sulfides precipitation is expected to be the dominant sulfide removal process onsite and hydrogen sulfide generation will be minimal.

3.2.5 Additional Water Quality Parameters

In addition to the parameters discussed above, electron acceptors/reduced electron acceptors, nutrients, and other water quality parameters were analyzed at wells MW-1, MW-3, MW-6, MW-8, and MW-18 to characterize site conditions and provide a baseline for comparison with future post-remediation groundwater sampling events.

The data indicates that electron acceptors are depleted within the treatment area where petroleum impacts are present. Nitrate was only detected in one sample collected at crossgradient well MW-3. Iron and manganese have been reduced to their more soluble form, which is why those metals concentrations are higher within the plume. As discussed in Section 3.2.3, sulfate concentrations are low and depleted at the most highly impacted wells. Methane is produced by methanogenesis, which occurs under strongly reducing conditions after other electron acceptors have been depleted. The highest concentrations of dissolved methane

corresponded with the wells with the highest levels of petroleum, with concentrations at MW-1 and MW-6 ranging from 560 to 5,700 µg/L. The lowest concentrations of dissolved methane corresponded with cross-gradient and downgradient wells MW-3, MW-8 and MW-18, ranging from 0.52 to $190 \mu g/L$.

The total nitrogen concentrations ranged from non-detect (less than 0.7 mg/L) to 5.2 mg/L. Total phosphorus concentrations ranged from 0.13 to 1.1 mg/L. The highest concentrations for total nitrogen and total phosphorus were found in MW-1 located near the former source area.

Total organic carbon concentrations represent organic matter in the groundwater that may exert sulfate demand and ranged from 3.1 mg/L at cross-gradient well MW-3 to 53 mg/L at source area well MW-1. Total dissolved solids concentrations ranged from 517 to 817 mg/L and alkalinity ranged from 239 to 711 mg/L as calcium carbonate.

The groundwater results are consistent with our conceptual site model and indicate that addition of sulfate to the groundwater will likely stimulate bioremediation of petroleum compounds.

3.3 **Soil Sampling Results and Observations**

The discussion in this section focuses on the TPHg and benzene concentrations in smear zone and saturated zone soil samples, which are the drivers for the groundwater corrective action design. The soil sample results from RB-2, RB-6, B-29, B-30, MW-18, and MW-19 are summarized in Table 6. A summary of soil investigation activities and results are provided in the Soil Investigation Report submitted to the ACEH under separate cover (Langan, 2015).

The highest soil concentrations were observed at remediation borings RB-2 and RB-6, near the former UST source area. At RB-2, TPHg ranging from 3,100 to 22,000 milligrams per kilogram (mg/kg) was detected from 22 to 30 feet bgs, which is indicative of residual NAPL. The highest benzene concentrations in RB-2 soil were 120 and 100 mg/kg, which were detected at 24 and 26 feet bgs, respectively. At RB-6, the highest TPHg concentrations ranged from 1,500 to 7,200 mg/kg, and were detected from 26 to 30 feet bgs. The highest benzene concentration in RB-6 soil was 14 mg/kg at 28 feet bgs.

At soil borings B-29 and B-30, no TPH or BTEX concentrations were detected in the samples collected, indicating that there are negligible impacts (if any) along the southwestern portion of the service bay.

Soil results from MW-18 and MW-19 within the showroom are consistent with the groundwater results, indicating that petroleum impacts are present at MW-18 but do not extend as far as MW-19. At MW-18, TPHg was detected at a maximum concentration of 620 mg/kg at 21.5 feet bgs and benzene was detected at 0.16 mg/kg at 17.5 feet bgs. No TPHg or benzene was detected in the soil samples collected at MW-19.

Overall, field observations and soil data support the selected target interval for the pilot study remediation borings and have informed the proposed design for full scale implementation, as discussed in the next section.

4.0 PILOT STUDY IMPLEMENTATION

The groundwater corrective action pilot study was performed on 18, 19 and 21 May 2015 and included placement of seven remediation borings (RB-1 through RB-7) located in a row near the former USTs within the service bay (Figure 4). The objective of the pilot study was to demonstrate the implementability of the proposed groundwater corrective action by establishing the boring installation workflow within the service bay, including concrete coring, drilling, and mixing and emplacement of biostimulation media consisting of a mixture of gypsum and sand.

4.1 **Remediation Boring Drilling**

Prior to drilling the remediation borings, the water level was gauged at nearby monitoring wells MW-1 and RW-5 and was at approximately 22 feet bgs. In accordance with the Work Plan in Appendix A of the FS/CAP, the borings were drilled to 35 feet bgs, equivalent to 27 feet a-msl. Several remediation boring locations were offset a few feet from the proposed locations in the Work Plan due to the presence of underground utilities (RB-3, RB-4, and RB-5) and limitations in overhead clearance (RB-1). Prior to drilling, the approximately 6-inch thick concrete slab was cored and each boring was cleared using a hand auger to 5 feet bgs. Drilling was performed by Cascade Drilling, a California-licensed driller, using a limited access CME auger rig and a Geoprobe 7720 rig to advance 8-inch hollow stem augers. Waste generated during drilling was placed in a roll-off bin to be chemically tested and disposed of properly.

4.2 Mixing and Emplacement

After each borehole was drilled, a depth to water measurement was collected within the borehole. However, the depth of emplacement of materials was selected based on depth to

Oakland, California

ACEH Case No.: RO0000199

water at adjacent monitoring wells MW-1 and RW-5, as the water levels in the individual boreholes did not stabilize prior to emplacement of materials.

The remediation borings were backfilled with biostimulation media consisting of a mixture of USG Food and Pharmaceutical Grade Terra Alba Gypsum (powder calcium sulfate dihydrate) and Cemex Lapis Lustre #3 Sand (Appendix D). Materials were delivered to the site in 50-pound bags. Batches of the mixture were mixed aboveground in a wheelbarrow, with each batch consisting of 100 pounds of sand and 75 pounds of Terra Alba gypsum. The mixture is based on bulk densities of 70 and 95 pounds per cubic feet of the gypsum powder and sand, respectively. A summary of the batching and mass of remediation materials used is shown in Table 7.

After the borings were drilled to 35 feet bgs, one four-foot auger section was removed from the borehole. The biostimulation media was poured into the borehole through the hollow-stem auger until the mixture was level with the bottom of the deepest remaining auger section. A 2-inch plugged tremie pipe was used to compact the mixture within the borehole. Once the mixture was approximately level with the bottom of the auger, the next auger section was removed and another batch of the mixture was poured into the borehole. This process continued until the biostimulation media was located at a depth approximately four feet above the anticipated groundwater table (Figure 5). Complications with biostimulation media emplacement were encountered in the southern remediation borings (RB-4 through RB-7), where the formation was relatively more permeable and water was entering the boreholes. Due to the powdered nature of the Terra Alba gypsum, the mixture becomes more cohesive and sticky when wet and tended to bridge and clog up the augers. As a result, the augers were completely removed from the borehole and backfilling was completed down the open borehole. Strategies for emplacement in boreholes with water present are discussed in Section 5.3.

A total of approximately 1,800 pounds of gypsum and 2,500 pounds of sand were emplaced into the seven pilot remediation borings. These quantities are consistent with the amount of sand and gypsum we calculated to fill seven 8-inch boreholes over a 17 feet depth interval. Due to concern that the biostimulation media may further compact or settle following installation of the grout seal, an additional two feet of biostimulation media was added and backfilled to 18 feet bgs. This was completed so that the remediation boring will intersect the highly impacted groundwater smear zone even if some settling occurs. Two feet of hydrated bentonite was placed above the biostimulation media, from 16 to 18 feet bgs, and the borehole was finished with neat cement grout.

The pilot remediation boring construction detail for RB-1 through RB-6 is shown on Figure 5. At RB-7, the augers needed to be removed after pouring in approximately half a batch of the mixture, but the borehole collapsed to 22 feet bgs after auger removal. Therefore, the biostimulation media emplaced at RB-7 was predominantly at the bottom of the borehole (around 35 feet bgs) and from 17 to 22 feet bgs within the groundwater smear zone.

4.3 **Field Modifications**

Several borehole locations were shifted due to the presence of electrical utilities underneath the slab and overhead clearance for the CME auger rig, which required vertical clearance for lifting the mast in between the steel girders in the service bay.

Furthermore, a field decision was made to increase the thickness of the biostimulation media backfill from 15 feet to 17 feet (from 18 to 35 feet bgs), due to the potential for settling and compaction of the media within the borehole. This was completed so that the biostimulation media would intersect the groundwater smear zone and water table, where the highest impacts are present, even if there is some settling after grouting the borehole.

5.0 FULL-SCALE GROUNDWATER CORRECTIVE ACTION PLAN

As presented in the FS/CAP, the groundwater corrective action consists of stimulating bioremediation by introducing sulfate into the groundwater because the biological degradation of petroleum hydrocarbons at the site is limited by the availability of electron acceptors. This section presents the corrective action design and procedures for implementation based on the sampling results and experience gained from the pilot test.

5.1 **Treatment Area**

This groundwater corrective action is designed to expedite restoration of shallow groundwater at the site. Areas of benzene concentrations greater than 1,000 µg/L are targeted for active treatment with the goal of reducing the source area hydrocarbon mass and allowing the remainder of the plume to naturally attenuate. Benzene concentrations greater than 1,000 µg/L are present in two areas: under the service bay (upper plume) and south of the showroom (lower plume), as shown by the approximate benzene isoconcentration contours shown on Figure 4. Rows of remediation borings are placed along the upgradient portions of these plumes and dissolved sulfate will flow downgradient with the natural groundwater gradient.

Oakland, California

- The upper plume is approximately 8,000 square feet in extent and treatment is targeted to the top 15 feet of the shallow groundwater aquifer. The treatment depth will be from approximately 20 to 35 feet below the ground surface at the service bay, or approximately 27 to 42 feet MSL.
- The lower plume is approximately 7,000 square feet in extent and treatment is targeted to the top 10 feet of the shallow groundwater aquifer. The vertical treatment zone is thinner here due to lower contaminant mass in soil and farther distance from the former source area. The water levels in this area ranged from 14.56 feet bgs (39.44 feet MSL) at RW-3A to 17.95 feet bgs (37.72 feet MSL) at MW-4, to 22.66 feet bgs (28.99 feet MSL) at MW-6. Variation in groundwater elevations may be up to ten feet. Therefore, the depths of the remediation borings in the lower plume area will depend on the water level of the nearest monitoring well, and installation is expected to vary from depths of 13 to 23 feet bgs (31 to 41 feet MSL) to 21 to 31 feet bgs (21 to 31 feet MSL).

Installation and sampling of monitoring wells MW-18 and MW-19 under the showroom indicate that benzene concentrations are below 1,000 μ g/L in that area. The groundwater treatment area was revised to exclude the showroom, because the concentrations of petroleum compounds at MW-18 (240 μ g/L of benzene) and field parameters (4.51 mg/L of DO) suggest that the groundwater impacts in this area will naturally attenuate within a shorter timeframe.

5.2 Sulfate Emplacement Mass and Remediation Boring Locations

The contaminant mass and remediation dosage calculations were updated based on the revised treatment area and the analytical data that was collected. The dosage calculations were updated to account for gypsum powder filling a portion of the porosity of the sand, which slightly increases the amount of gypsum emplaced into the borehole. The bioremediation dosing calculations are provided in Appendix E.

Consistent with the FS/CAP, enough gypsum will be emplaced to meet 25% of the calculated sulfate demand. Based on the sulfate demand calculations, 12-inch diameter remediation borings are selected to be installed for the full-scale implementation in the upper plume area to satisfy the contaminant demand, especially near the former USTs, where most of the residual petroleum mass is located. As shown on Figure 4, 29 remediation borings will be installed in the upper groundwater plume in addition to the seven already installed during the pilot phase. Remediation borings are placed in a grid configuration near the former USTs to address the larger contaminant mass indicated by the RB-2 soil samples. In the lower groundwater plume, 13 remediation borings will be installed. The borings will be 12 inches in diameter and spaced approximately 5 to 10 feet on center. A typical detail of the proposed full-scale remediation borings is shown on Figure 6. Including the pilot borings, a total of 49 remediation borings are

planned as a part of the groundwater corrective action. Overall, including the pilot study borings, a total of approximately 20,000 pounds of gypsum is proposed to be emplaced as part of the enhanced bioremediation groundwater corrective action.

As requested by the structural engineer, the remediation boring locations have been aligned to the structural grid and placed to maximize the distance to the nearest column footing. Langan has reviewed the proposed full-scale remediation boring locations with the structural team to verify these locations are acceptable for structural purposes. Because remediation borings installed close to the perimeter of the building present potential structural concerns, pilot study boring RB-1 will be overdrilled and sealed with neat cement grout prior to site development. Replacement of the gypsum removed during removal of RB-1 has been included in the proposed full-scale remediation borings discussed above.

5.3 Emplacement Procedures

Langan's experience during the pilot test was that a larger drill rig was more efficient, therefore we propose to utilize a limited access CME auger rig when possible, and a Geoprobe rig only when needed due to overhead clearance limitations. The two remediation borings proposed within the showroom, upgradient of MW-6, will need to be installed with the smaller Geoprobe rig due to doorway clearance limitations.

The pilot study implementation demonstrated that the biostimulation media can be effectively emplaced into borings, however it is more challenging if there is water in the borehole. To determine whether there is water in the borehole, the moisture of the drill cuttings will be observed and the water level within the boring will be measured after the wooden plug is knocked out. For boreholes where only small amounts of water enter the borehole, the mixing and backfilling procedures used during the pilot test is sufficient. For locations that are relatively more permeable, the following strategies and contingency plans may be used to reduce the likelihood that the biostimulation media will get stuck in the augers:

- Use a pump to dewater the borehole prior to pouring the biostimulation media;
- Fill filter socks with the biostimulation media and drop them through the augers, using a pipe or hammer to compact the socks at the bottom of the borehole; and
- Mixing potable water with the biostimulation media and pouring the slurry into the borehole.

The use of larger diameter (12-inch) augers for the full-scale implementation may also reduce the potential for bridging of the biostimulation media as there is a larger opening for the material to fall through.

6.0 REPORTING

A completion report will be prepared following the completion of the site corrective actions documenting the activities and results. Related to the groundwater corrective action, the completion report will:

- Document the final full-scale remediation boring locations and construction details;
- Summarize the lithologic and groundwater level observations; and
- Summarize field observations.

The completion report will also document construction details and sampling data for downgradient monitoring wells MW-25 to MW-27 as proposed by the Work Plan.

7.0 ANTICIPATED SCHEDULE

Full scale implementation of the groundwater corrective action is tentatively scheduled for August and September 2015. Post-corrective action verification groundwater sampling will be completed on a quarterly basis starting in the first quarter of 2016. On-site sampling will be dependent on installation of the replacement monitoring wells following site development. Implementation of the Corrective Action Plan and verification sampling are scheduled to be complete by October 2017.

TABLES

Langan Project: 731637001 July 2015

Table 1 Groundwater Sampling and Analysis Schedule 3093 Broadway Oakland, California

								Contar	minants		Ele	ctron Accepto	ors/Reduced Ele	ectron Accep	otors	Nut	rients	Metals	Water Quality Parameters		Microbial	
Sampling Location	Location	TOC Elevation	Casing Diameter	Screened Interval	Depth to Groundwater (May 2015)	Depth to Ground Water (May 2015)	BTEX/ MTBE	TPH- Gasoline and Diesel	1,2-DCA	Naphthalene	Nitrate/ Nitrite	Total Manganese	Total Iron/ Ferrous Iron	Sulfate/ Sulfite/ Sulfide	Dissolved Methane	Total Nitrogen	Total Phosphorus	CAM17 Metals	Total Organic Carbon (TOC)	Total Dissolved Solids (TDS)	Alkalinity	Sulfate Reducing Bacteria
	1	Aı	nalytical Me	ethods		1	8260B	8015B	8260B	8260B	E300.1	E200.8	E200.8 SM 3500Fe	E300.1	RSK175	SM4500-N	SM4500-P	E200.8	E415.3	SM2540C	SM2320B	CENSUS APS
		feet a-msl	inches	feet bgs	feet bgs	feet a-msl	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	mg/L	μg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L CaCO	3 cells/mL
Pre-Constru	ction Sampling	- pre-reme	diation eve	nt (2015)			•		•	•		•	•	•	•		•		•	•	•	" -
MW-1	In plume	60.57	2	19 to 35	21.14	39.43	X	X	Х	X	Х	X	Х	X	Х	Х	Х	X	Х	X	X	Х
MW-3	Cross-gradient	56.87	2	20 to 35	18.98	37.89	X	X	X	X	Х	Х	X	Х	Х	Х	Х		X	Х	X	Х
MW-4	In plume	55.67	2	15 to 30	17.95	37.72	X	X	Х	X				X								
MW-5	Downgradient	51.7	2	15 to 35	26.68	25.02	X	X	Х	X				Х								
MW-6	In plume	51.65	2	15 to 35	22.66	28.99	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-7	Downgradient	52.25	2	13.5 to 33.5	17.68	34.57	Х	Х	Х	Х				Х								
MW-8	Downgradient	52.30	6	19.5 to 40	25.44	26.86	X	X	Х	X	Х	X	Х	X	Х	Х	Х		Х	X	X	Х
MW-14	In plume	61.5ª		10 to 40	21.38	40.12	Х	Х	Х	Х				Х								
MW-18	Cross-gradient	52.51	2	14 to 24	15.47	37.04	X	X	Х	X	Х	X	Х	X	Х	Х	Х	X	Х	X	X	X
MW-19	Cross-gradient	52.35	2	17 to 27	18.16	34.19	Х	Х	Х	Х				Х								
MW-19S	Cross-gradient	52.38	2	13 to 23	17.97	34.41																
RW-3A	In plume	54ª	4	16 to 26	14.56	39.44	Х	Х	X	Х				Х								
RW-3B	In plume	54ª	4	32 to 37	23.83	30.17	Χ	Χ	Х	X				Х								

Notes:

^a Estimated value based on topographic contour

a-msl = above mean sea level

bgs = below ground surface

BTEX/MTBE = benzene, toluene, ethylbenzene, xylenes, methyl tertiary butyl ether

cells/mL = cells per milliliter

1,2-DCA = 1,2-dichloroethane

mg/L = milligrams per liter

TPH = total petroleum hydrocarbons

μg/L = micrograms per liter
– not applicable

Page 1 of 1

Langan Project: 731637001 July 2015

Table 2
Groundwater Analytical Results – Field Parameters
3093 Broadway
Oakland, California

Monitoring Well ID	Date	Temperature (°C)	рН	Conductivity (µS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
In Plume								
MW-1	05/18/15	18.5	7.13	1486	110		-119	
MW-14	05/22/15	19.7	6.65	973	226	0.34	-107.4	
MW-4	05/22/15	20.6	6.59	666	9	0.37	-131	Odor
MW-6	05/21/15	21.8	6.42	1041	17	0.35	-127.6	
RW-3A	05/22/15	20.2	6.56	1245	5	0.68	-93.3	Odor
RW-3B	05/22/15	21.1	6.98	596	11	0.43	-163.8	
Cross-gradien	nt	-		-				
MW-3	05/21/15	20.8	6.13	817	152	2.48	169	
MW-18	05/21/15	20.6	6.61	1171	270	4.51	88.6	
MW-19	05/21/15	20.7	6.53	792	737	3.47	86	
Downgradien	t	•		•				
MW-5	05/22/15	19.6	6.51	823	127	0.6	78.7	
MW-7	05/22/15	20.3	6.56	6625	82	1.95	96.8	
MW-8	05/21/15	20	6.38	946	6	0.36	50.7	

Notes:

°C = degrees Celsius

DO = dissolved oxygen

mg/L = milligrams per liter

mV = millivolts

ORP = oxidation reduction potential

NTU = nephelometric turbidity units

 μ S = microsiemens

Langan Project: 731637001 July 2015

Table 3 Groundwater Analytical Results – Petroleum Compounds 3093 Broadway Oakland, California

Well ID	Date	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	1,2-DCA	Naphthalene	ТВА
	Sampled ¹						μg/L				
AS-1B	05/22/14	170		4.9	4.0	< 2.5	6.5	< 2.5	< 2.5	< 2.5	460
MW-1	06/21/13	51,000		2,300	3,500	340	8,100	<120			
MW-1	05/21/14	60,000		4,300	6,400	660	10,000	< 250	< 250	780	< 1,000
MW-1 ^a	11/19/14	68,000	9900	5,700	4,100	680	13,000	< 250	-	_	
MW-1	05/18/15	31,000	10,000	2,300	650	260	5,400	<50	<50	430	
MW-2	05/22/14	< 50		< 0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
MW-3	05/22/14	< 50	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
MW-3 ^a	11/19/14	< 50	52	0.63	< 0.50	< 0.50	1.0	< 5.0		_	-
MW-3	05/21/15	<50	380	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
MW-4	06/21/13	110,000		4,400	15,000	1,700	13,000	<1,200		_	
MW-4	05/20/14	72,000		1,900	7,300	1,400	9,400	< 250	< 250	1,100	< 1,000
MW-4	05/22/15	66,000	14,000	1,400	5,300	1,200	7,100	<250	<250	780	
MW-5	05/22/14	< 50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
MW-5	05/22/15	<50	<50	<0.5	0.5	<0.5	1.4	<0.5	<0.5	<0.5	
MW-6	06/21/13	15,000		2,400	300	370	680	<250		_	
MW-6	05/20/14	17,000		3,700	530	830	840	< 50	< 50	200	490
MW-6 ^a	11/19/14	20,000	3,200	3,500	400	900	970	< 250		-	
MW-6	05/21/15	18,000	4,100	2,400	220	320	520	<100	<100	120	
MW-7	05/20/14	< 50		< 0.50	< 0.50	< 0.50	0.64	< 0.50	< 0.50	< 0.50	< 2.0
MW-7	05/22/15	<50	<50	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	_
MW-8	05/21/14	70		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	9.7	< 2.5	310
MW-8	05/21/15	91	130	<0.5	<0.5	<0.5	<0.5	< 0.5	10	<0.5	
MW-9	05/20/14	< 50		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	100	< 2.5	640
MW-9 ^a	11/19/14	240	83	4.5	2.2	< 0.5	6.2	< 5.0		-	
MW-10	05/20/14	88,000		5,600	18,000	1,700	9,900	< 500	< 500	770	< 2,000
MW-13	05/22/14	< 50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	6.2
MW-14	06/21/13	36,000		1,100	4,000	550	6,400	<250			
MW-14	05/22/15	5,700	1,500	250	90	110	850	<5.0	<5.0	100	
MW-15	06/21/13	11,000		390	710	120	2,200	<50		-	
MW-15	05/21/14	4,100	-	430	19	220	250	< 17	< 17	_	< 67
MW-16A	05/21/14	3,700		5.3	3.7	7.4	31	< 2.5	< 2.5	11	27
MW-16B	06/21/13	5,400		1,600	350	56	170	<50		-	
MW-16B	05/21/14	15,000		11,000	710	1,000	2,000	< 250	< 250	< 250	3,400
MW-17A	06/21/13	20,000		1,300	1,500	73	3,400	<250		-	
MW-17A	05/21/14	52,000		1,900	3,500	970	10,000	< 50	< 50	830	< 200
MW-17B	05/21/14	< 50		< 0.50	< 0.50	< 0.50	1.1	< 0.50	< 0.50	< 0.50	< 2.0
MW-18	05/21/15	3,200	2,000	240	<5.0	42	26	<5.0	74	14	
MW-19	05/22/15	<50	<50	<0.5	<0.5	< 0.5	0.7	<5.0	1.9	<0.5	
RW-2	05/20/14	3,600		220	330	140	780	< 10	< 10	38	49
RW-2	06/21/13	4,000		180	350	65	530	<50		-	
RW-3A	05/22/15	20,000	5,000	1,100	190	170	2,700	<25	<25	260	_
RW-3B	05/22/15	190	2,600	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	
RW-4	05/21/14	11,000		200	670	310	1,700	< 17	< 17	170	< 67
RW-5	05/21/14	14,000		880	440	520	2,200	< 50	< 50	250	< 200
Drinking Water	ESLs ^z	100	100	1.0	150	300	1,800	5.0	0.5	6.1	12

Notes:

Bolded values exceed drinking water Environmental Screening Level (ESLs).

1,2-DCA = 1,2-dichloroethane

MTBE = methyl-t-butyl ether

TBA =t-butyl alcohol

TPHd = total petroleum hydrocarbons as diesel analyzed by EPA Method 8015B

TPHg = total petroleum hydrocarbons as gasoline analyzed by EPA Method 8015B unless otherwise indicated

All volative organic compounds were analyzed using EPA method 8260B

 μ g/L = micrograms per liter

¹Compilation of groundwater data collected for the site, June 2013 through May 2015.

² Drinking Water ESLs = Table F-3 - Summary of Drinking Water Screening Levels, as established by the San Francisco Regional Water Quality Control Board, December 2013.

<50 - Analyte was not detected at or above the laboratory reporting limit (50 $\mu g/L)$

^{-- =} Not analyzed

^a TPHg, benzene, toluene, ethylbenzene, xylenes, and MTBE analyzed using EPA Method 8021B/ 8015Bm

Table 4 Groundwater Analytical Results – Natural Attenuation Parameters 3093 Broadway Oakland, California

Sample ID	Sample Date	Nitrate & Nitrite as N	Nitrate as N	Nitrate as	тос	Total Nitrogen	Total Dissolved Solids	Total Phosphorous as P	Sulfate	Sulfide	Sulfite	Bicarbonate	Total Iron	Ferrous Iron	Total Manganese	Methane	Sulfate Reducing Bacteria
							mg/L					mg CaCO ₃ /L	μg/L				cells/mL
MVV-1	05/18/15	<0.2	<0.1	<0.45	53	5.2	728	1.1	0.33	0.094	< 10	711	33,000	27,000	11,000	5,700	284,000
MVV-1	11/19/14	_	<0.1	<0.45	73	-	660	-	0.73			501	16,000	_	9,800	4,300	-
MW-3	05/21/15	1.1	1.1	5	3.1	1.4	476	0.25	200	0.067	< 10	239	5,700	<50	71	0.52	5,940
MW-3	11/19/14	-	1.3	5.6	3.0	-	535		140			220	3,000	_	59	0.37	-
MVV-4	05/22/15	-			-	-			1	0.65	< 0.1		-	_	-	-	-
MW-5	05/22/15	_	-		-	-	-		100	<0.05	< 10		-	_	-	-	_
MVV-6	05/21/15	<0.2	<0.1	<0.45	13	<0.7	817	0.54	1.6	1.1	< 0.1	510	11,000	10,000	6,700	560	1,050,000
MVV-6	11/19/14	-	<0.1	<0.45	21	-	570		9.1		-	462	6,000		4,400	510	
MW-7	05/22/15	-			-	-			80	<0.05	< 10		-			-	
MW-8	05/21/15	<0.2	<0.1	< 0.45	3.5	<0.7	517	0.13	27	<0.05	< 1.0	374	380	210	720	190	59,300
MVV-9	11/19/14	-	<0.1	<0.45	6.0		497		110		-	234	1,300		580	47	
MW-14	05/22/15	-			-	-			21	1.1	< 5.0		-	_	-	-	-
MW-18	05/21/15	<0.2	<0.1	<0.45	16	<0.7	694	0.14	140	0.14	< 10	500	11,000	520	1,100	2.5	30,300
MW-19	05/22/15	-	-		-	-			66	<0.05	< 10		-			-	
RW-3A	05/22/15	-	-		_	-			0.59	0.14	< 0.1		-	-	-	-	
RW-3B	05/22/15	_	_			_	-	-	69	2.4	< 10		-	-			

Notes:

Additional information related to the November 2014 analytical results is provided in Additional Investigation Results by Langan Treadwell Rollo, 2014.

mg $CaCO_3/L$ = miligrams per liter as Calcium Carbonate

mg/L = milligrams per liter

N = Nitrogen

TOC = Total Organic Carbon

μg/L = micrograms per liter

-- = Not analyzed

< 50 - Analyte was not detected at or above the laboratory reporting limit (50 $\mu g/L$)

Bicarbonate by EPA method SM2320B

Ferrous Iron by EPA mehod SM3500-Fe B4c

Methane by EPA method RSK175

Nitrate & Nitrite as N, Nitrate as N, Nitrate as NO3⁻, Sulfate & Sulfite by EPA method E300.1

Sulfide by EPA mehod SM4500 S-2 D

TOC and Total Nitrogen by EPA method E415.3

Total Dissolved Soilds by EPA method SM2540C

Total Iron and Maganese by EPA method E200.8

Total Phosphorous as P by EPA method E365.1

Langan Project: 731637001

July 2015

Table 5 Groundwater Analytical Results – Dissolved Metals 3093 Broadway Oakland, California

Well ID	Date	Arsenic	Barium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Vanadium	All Other Metals ¹
	Sampled						μg/L				
MW-1	05/18/15	76	810	<5.0	25	28	<5.0	7.9	<5.0	13	ND
MW-6	05/21/15	25	280	<0.5	<2.0	< 0.5	0.65	1.5	0.91	1.4	ND
MW-18	05/21/15	4.0	33	2.9	<2.0	<0.5	1.1	16	<0.5	3.4	ND

Notes:

Metals analyzed by EPA Method E200.8

ND = not detected at or above the laboratory reporting limit

μg/L = micrograms per liter

< 50 - Analyte was not detected at or above the laboratory reporting limit (50 μ g/L)

¹ See Table 5 for total and ferrous iron and total manganese.

Table 6 Select Soil Analytical Results 3093 Broadway Oakland, California

Sample ID	Sample Date	Sample Depth	Sample Elevation	TPHd	TPHg	TPHmo	Benzene	Ethylbenzene	Toluene	Xylenes	MTBE	Naphthalene
		feet bgs	feet a-msl					mg/kg				
B-29-12.5	05/11/15	12.5	49.27	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005		<0.01
B-29-17.5	05/11/15	17.5	44.27	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005		<0.01
B-29-28	05/11/15	28	33.77	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005		
B-30-7.5	05/11/15	7.5	54.24	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0087	<0.0087
B-30-12.5	05/11/15	12.5	49.24	<1	<1	<5	<0.005	< 0.005	<0.005	< 0.005		<0.01
B-30-17.5	05/11/15	17.5	44.24	<1	<1	<5	<0.005	< 0.005	<0.005	< 0.005		<0.01
B-30-27	05/11/15	27	34.74	<1	<1	<5	<0.005	< 0.005	<0.005	< 0.005		-
MW-18-7.5	05/13/15	7.5	45.01	<1	<1	_	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
MW-18-12.5	05/13/15	12.5	40.01	<1	<1	_	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
MW-18-17.5	05/13/15	17.5	35.01	2	13	_	0.16	0.11	<0.010	0.17	<0.010	0.16
MW-18-21.5	05/13/15	21.5	31.05	37	620	_	<0.5	2	< 0.5	1.9	< 0.5	1.9
MW-18-26.5	05/13/15	26.5	26.01	<1	<1	_	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
MW-18-31.5	05/13/15	31.5	21.01	<1	<1	_	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
MW-19-7.5	05/13/15	7.5	44.85	<1	<1	-	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
MW-19-12.5	05/13/15	12.5	39.85	<1	<1	_	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005
MW-19-17.5	05/13/15	17.5	34.85	<1	<1	_	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
MW-19-22	05/13/15	22	30.35	<1	<1	-	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005
MW-19-27.5	05/13/15	27.5	24.85	<1	<1	_	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
RB-2-22	05/15/15	22	39.78	1,600	10,000	130	<20	160	250	940	< 20	55
RB-2-24	05/15/15	24	37.78	2,500	13,000	240	120	150	640	850	< 50	57
RB-2-26	05/15/15	26	35.78	7,700	22,000	560	100	140	640	770	< 100	<100
RB-2-28	05/15/15	28	33.78	630	5,100	<50	11	70	150	400	< 10	24
RB-2-30	05/15/15	30	31.78	160	3,100	<50	<10	28	74	160	< 10	11
RB-2-32	05/15/15	32	29.78	3.2	11	<5	0.24	0.051	0.06	0.37	< 0.025	0.085
RB-2-34	05/15/15	34	27.78	15	29	<5	0.1	<0.1	<0.1	0.48	< 0.1	0.26
RB-2-36	05/15/15	36	25.78	52	960	<50	<2	2.1	<2	14	< 2	<2
RB-2-38	05/15/15	38	23.78	1.7	16	<5	0.48	0.16	0.066	0.74	< 0.025	0.078
RB-2-40	05/15/15	40	21.78	2	7.7	<5	0.68	0.066	0.34	0.29	< 0.05	< 0.05
RB-6-22	05/15/15	22	39.71	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
RB-6-24	05/15/15	24	37.71	<1	<1	<5	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
RB-6-26	05/15/15	26	35.71	500	2,100	<50	<5	<5	<5	50	< 5	25
RB-6-28	05/15/15	28	33.71	1,200	7,200	<25	14	77	210	390	< 10	40
RB-6-30	05/15/15	30	31.71	480	1,500	<50	<5	13	<5	43	< 5	8.7
RB-6-32	05/15/15	32	29.71	<1	<1	<5	0.0055	0.009	<0.005	<0.005	< 0.005	<0.005
RB-6-34	05/15/15	34	27.71	<1	1	<5	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005
RB-6-36	05/15/15	36	25.71	<1	<1	<5	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005
RB-6-38	05/15/15	38	23.71	<1	<1	<5	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
RB-6-40	05/15/15	40	21.71	<1	<1	<5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

Notes:

Only select soil sample results collected within the smear zone and saturated zone are presented. Additional soil data and information related to the May 2015 soil sampling event are presented in the Soil Characterization Technical Memorandum (Langan, 2015).

Bolded values are detected values greater than the laboratory reporting limit.

bgs = below ground surface

a-msl = above mean seal level

BTEX - Benzene, toluene, ethylbenzene and xylenes by EPA Method 8260B

mg/kg - milligrams per kilogram

MTBE = Methyl tertiary butyl ether by EPA Method 8260

MW - Monitoring well

TPHg - Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015M

 $\ensuremath{\mathsf{TPHd}}$ - Total Petroleum Hydrocarbons as Diesel Range, EPA Method 8015M

TPHmo - Total Petroleum Hydrocarbons as Motor Oil, EPA Method 8015M

RB - Remediation boring

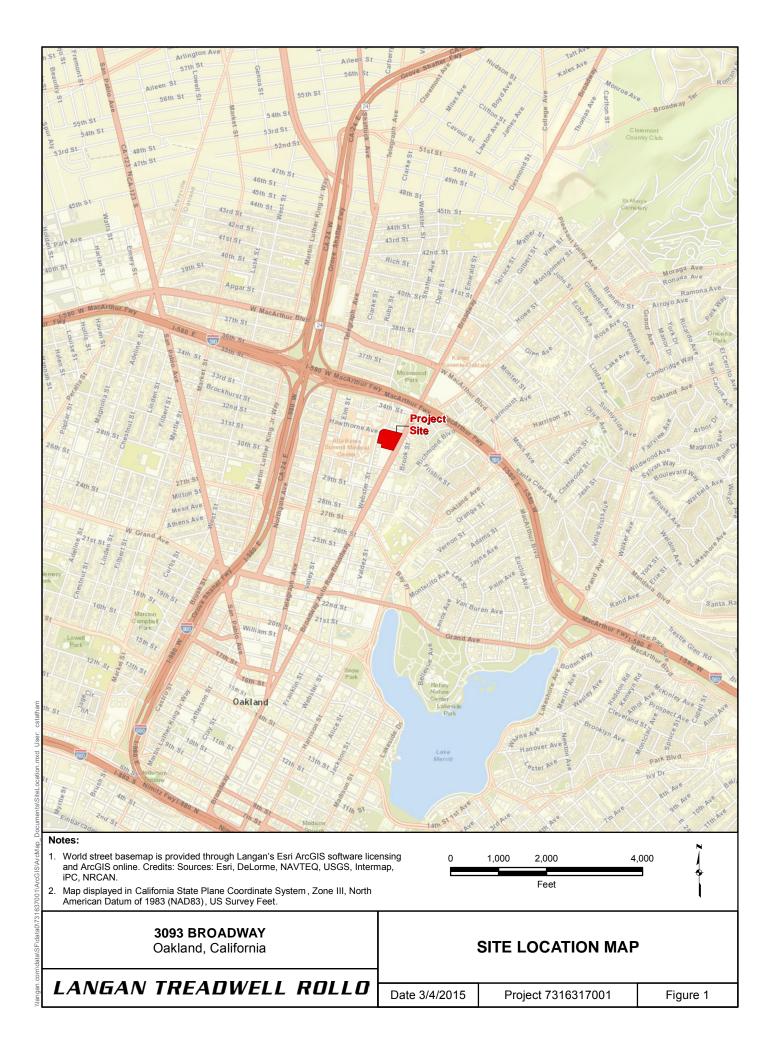
< 1.0 - Analyte was not detected above the laboratory reporting limit (1.0 mg/kg)

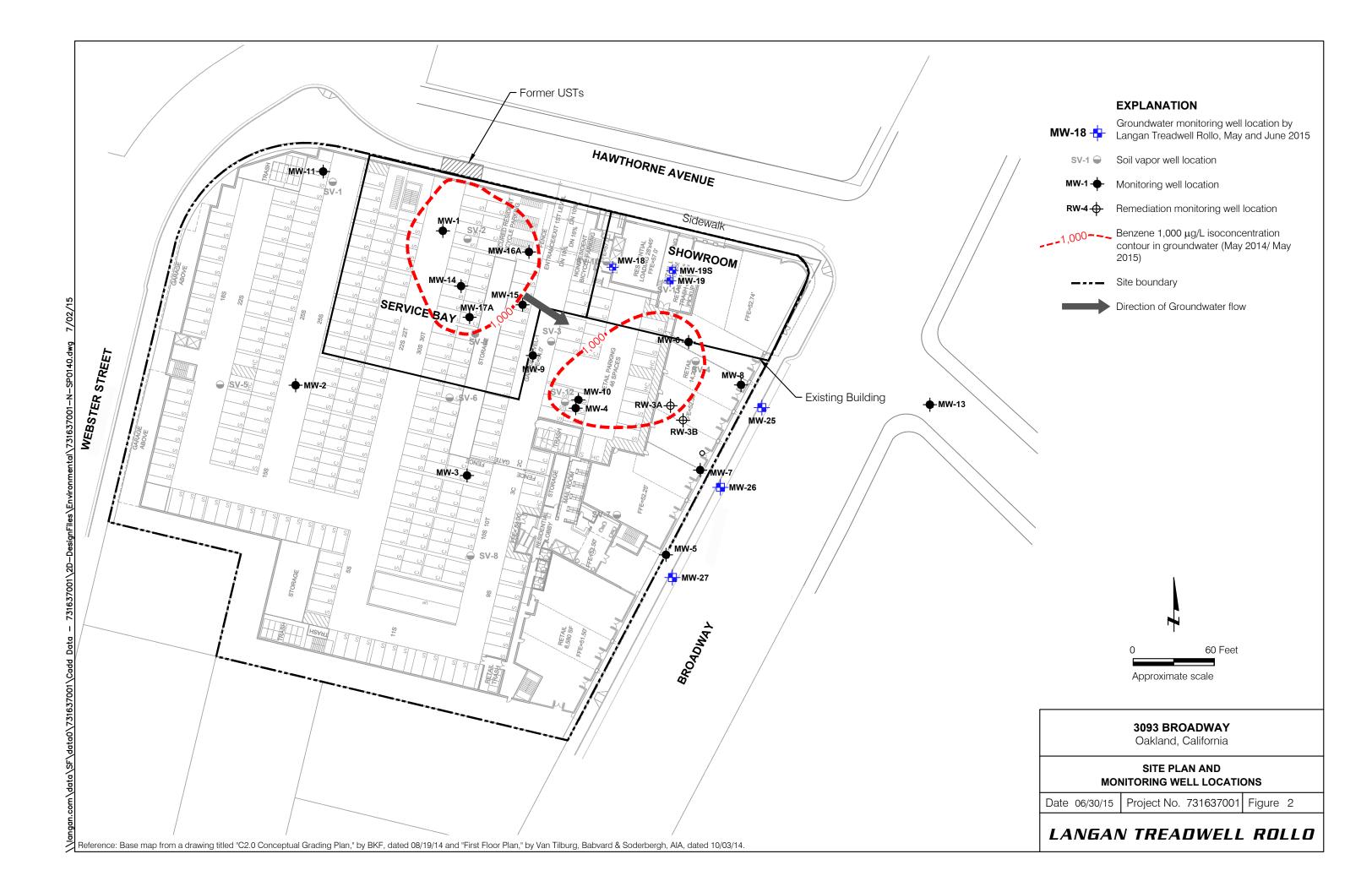
- not analyzed

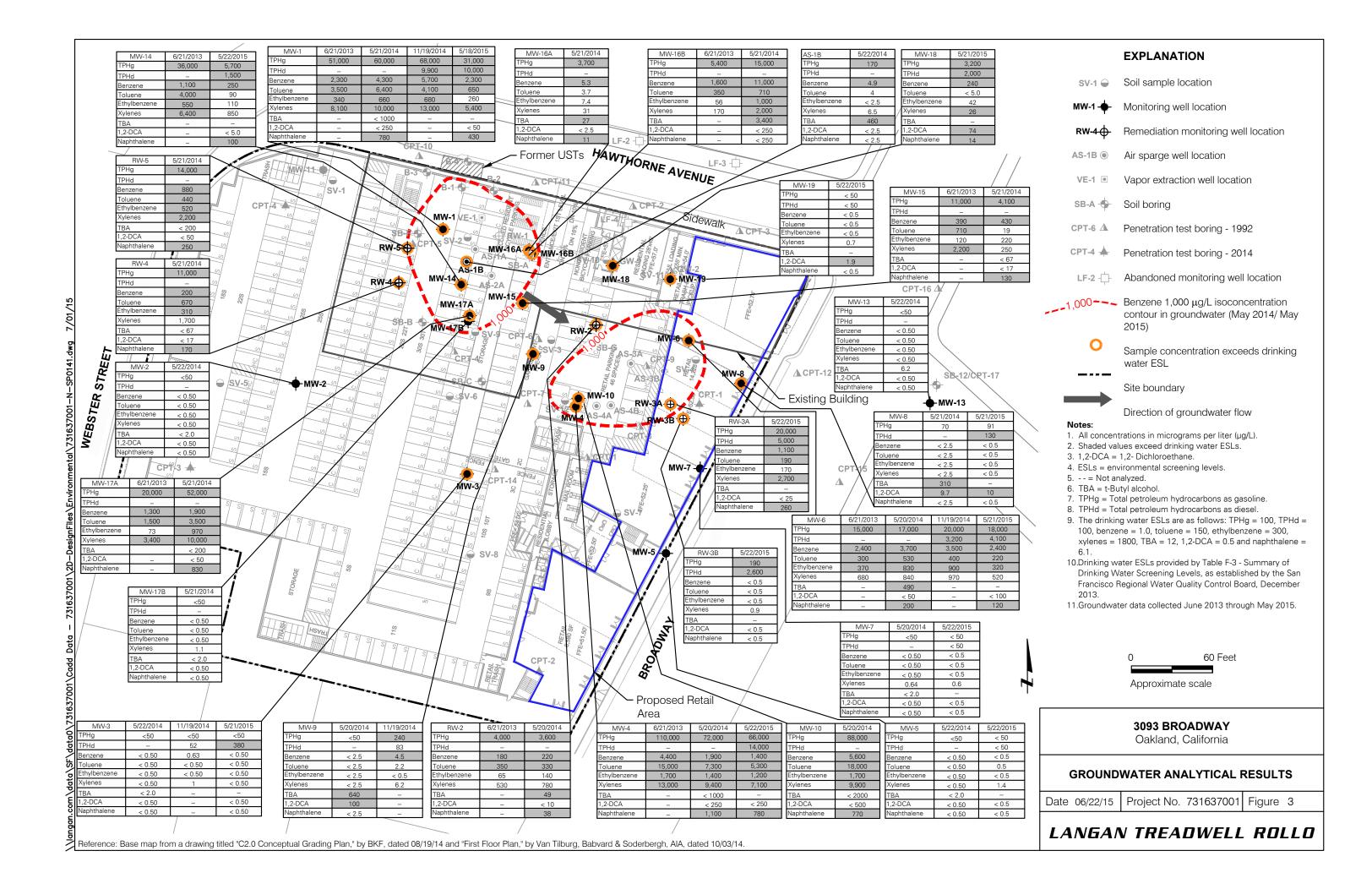
Table 7 Batching and Mass of Remediation Materials Pilot Study Remediation Borings 3093 Broadway Oakland, California

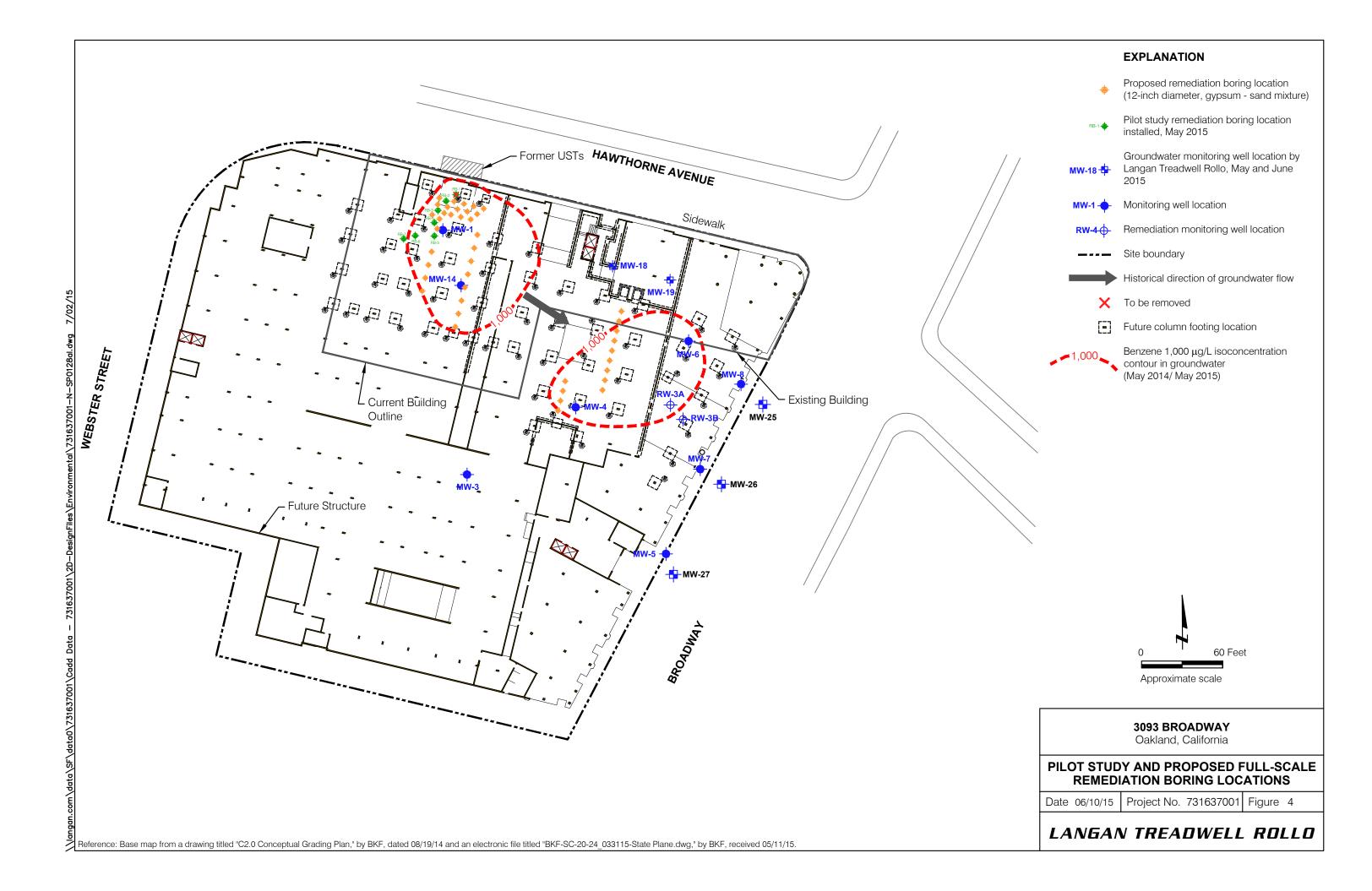
	Materials Summary												
Boring ID	Ground Elevation (feet a-msl)	Backfill Depth (feet bgs)	#3 Sand (lbs)	Terra Alba gypsum (Ibs)									
RB-1	61.88	18 to 35	450	288									
RB-2	61.78	18 to 35	400	300									
RB-3	61.74	18 to 35	375	281									
RB-4	61.75	18 to 35	425	319									
RB-5	61.78	18 to 35	417	313									
RB-6	61.71	18 to 35	275	206									
RB-7	61.63	18 to 35	150	113									
Total			2,492	1,819									

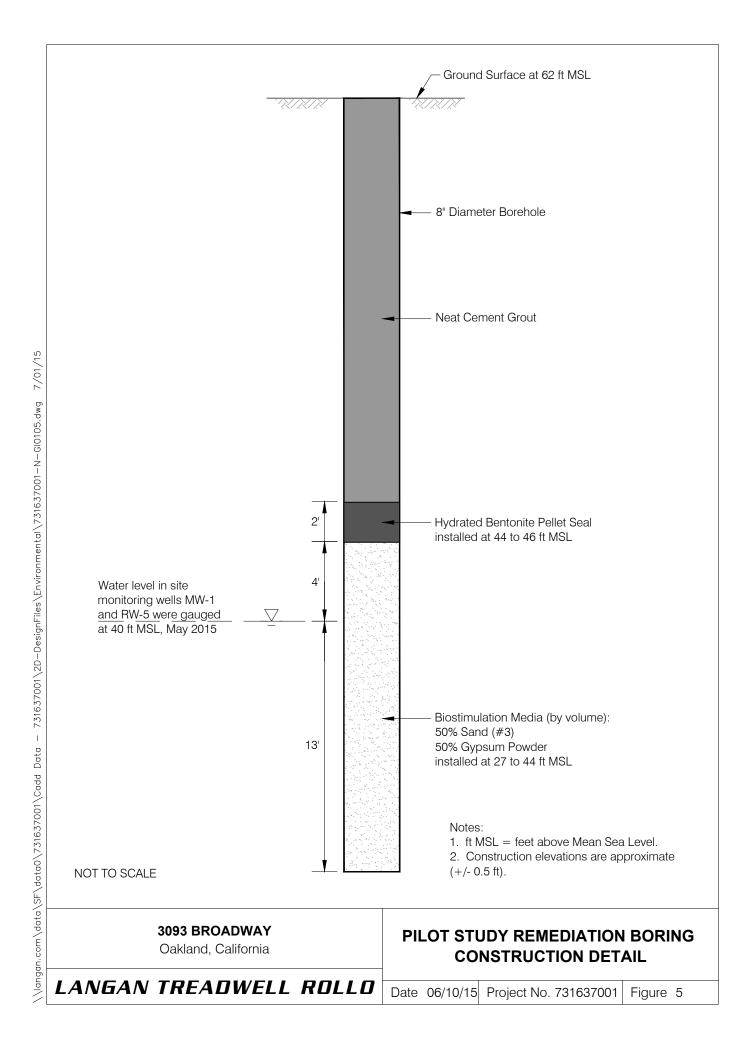
Pilot Study Remediation Boring Backfill Log													
Date	Time	Batch ID	#3 Sand (lbs)	Terra Alba gypsum (lbs)	Remediation Boring Backfilled								
05/18/15	1210	1	100	62.5	RB-1								
05/18/15	1225	2	100	50	RB-1								
05/18/15	1235	3	100	62.5	RB-1								
05/18/15	1238	4	100	75	RB-1								
05/18/15	1245	5	100	75	RB-1, RB-2								
05/18/15	1450	6	100	75	RB-2								
05/18/15	1503	7	100	75	RB-2								
05/18/15	1513	8	100	75	RB-2								
05/18/15	1525	9	100	75	RB-2, RB-3								
05/19/15	915	10	100	75	RB-3								
05/19/15	930	11	100	75	RB-3								
05/19/15	940	12	100	75	RB-3								
05/19/15	1010	13	100	75	RB-3, RB-4								
05/19/15	1110	14	100	75	RB-4								
05/19/15	1133	15	100	75	RB-4								
05/19/15	1155	16	100	75	RB-4								
05/19/15	1204	17	100	75	RB-4, RB-5								
05/19/15	1345	18	100	75	RB-5								
05/19/15	1405	19	100	75	RB-5								
05/19/15	1428	20	100	75	RB-5								
05/19/15	1437	21	67	50	RB-5								
05/21/15	910	22	100	75	RB-6								
05/21/15	1015	23	100	75	RB-6								
05/21/15	05/21/15 1050		100	75	RB-6, RB-7								
05/21/15	1530	25	100	75	RB-7								
05/21/15	1550	26	25	19	RB-7								

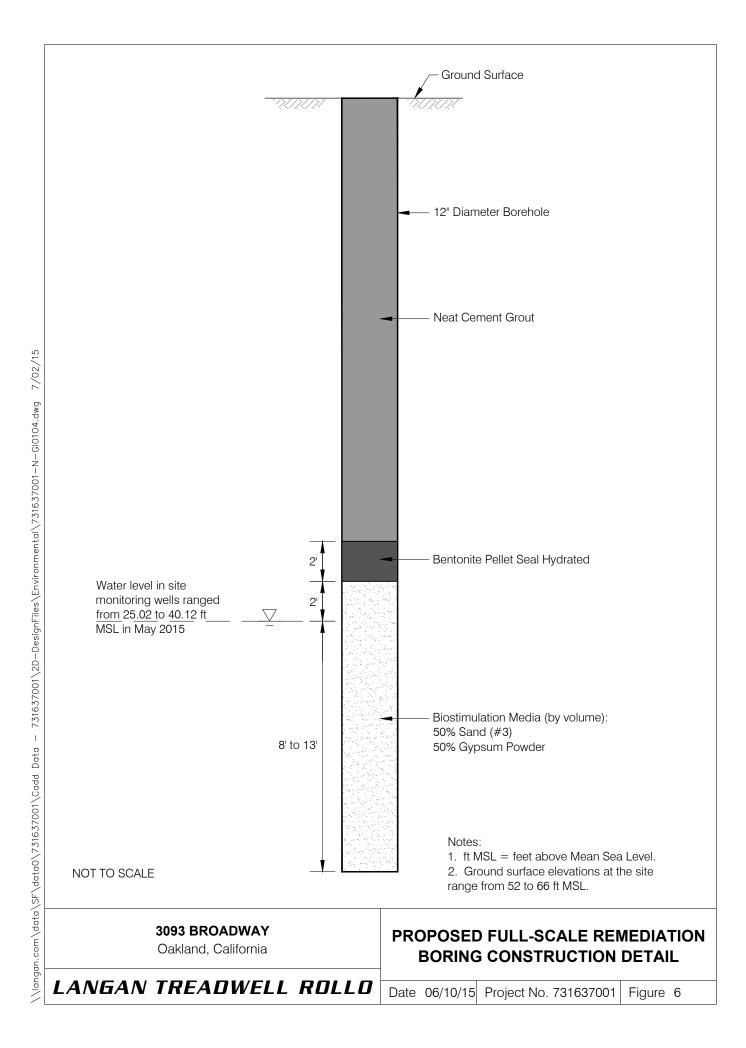

Notes:


bgs = below ground surface


lbs = pounds


FIGURES


LANGAN TREADWELL ROLLO



APPENDIX A PERMITS

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/08/2015 By jamesy Permit Numbers: W2015-0389 to W2015-0392

Permits Valid from 05/11/2015 to 06/03/2015

Phone: 510-874-7018

City of Project Site: Oakland

Application Id: 1430776246973

Site Location: 3093 Broadway, Oakland, CA 94611

Project Start Date: 05/11/2015 Completion Date: 06/03/2015

Assigned Inspector: Contact Sam Brathwaite at (925) 570-7609 or sbrathwaite@groundzonees.com

Langan Treadwell Rollo - Elizabeth Kimbrel

501 14th St, 3rd Flr., Oakland, CA 94612

3093 Broadway Holdings LLC - Stephen Siri **Property Owner:** Phone: 415-262-5156 555 California St, 10th Flr., San Francisco, CA 94014

** same as Property Owner ** Client:

> Total Due: \$1324.00 Receipt Number: WR2015-0230 **Total Amount Paid:** \$1324.00

> Payer Name: Langan Treadwell Rollo Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 2 Wells

Driller: Cascade - Lic #: 938110 - Method: other Work Total: \$794.00

Specifications

Applicant:

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth
			ld		Diam.		
W2015- 0389	05/08/2015	08/09/2015	MW18	8.00 in.	2.00 in.	19.00 ft	40.00 ft
W2015- 0390	05/08/2015	08/09/2015	MW19	8.00 in.	2.00 in.	19.00 ft	40.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755

(Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Remediation Well Construction-Injection - 7 Wells

Driller: Cascade - Lic #: 938110 - Method: other Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2015- 0391	05/08/2015	08/09/2015	RB1	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB2	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB3	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB4	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB5	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB6	8.00 in.	0.00 in.	25.00 ft	40.00 ft
W2015- 0391	05/08/2015	08/09/2015	RB7	8.00 in.	0.00 in.	25.00 ft	40.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

waterways or be allowed to move off the property where work is being completed.

- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 7. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 10. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Borehole(s) for Investigation-Environmental/Monitorinig Study - 43 Boreholes

Driller: Cascade - Lic #: 938110 - Method: other Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2015-	05/08/2015	08/09/2015	43	2.00 in.	22.50 ft
0302					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend

and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B BORING LOGS

PRO	DJECT:						B BROADWAY and, California	L	og of B	Boring B-29	AGE 1 OF	= 1
Borir	ng location	1:	See Sit	e Pla	an, F	igur	e 2	•		Logged by: E. Kir	mbrel	
Date	started:	5/11	/15				Date finished: 5/11/15					
	ng method											
-	mer weigl		-				Hammer type: NA					
Sam	<u> </u>	ıal Tu				_						
DEPTH (feet)	5,	AMPL		· (g)	(mdd)	LOG	MAT	ERIAL	DESCRIPT	ΓΙΟΝ		
DEF (fe	Sample Number	Sample	Blow Count Recover	(lnches)	OVM (ppm)	LITHOLOGY						
_			, "				6 inches concrete					
1-	_	Λ	1			CL	SANDY CLAY with GRAVE dark brown to light brown, r		stiff dry sub:	angular gravel up to 1	1/4 inch in	_
2-		$ \cdot $			+		diameter, plastic, no odor		Juli, di y, Jube	arigular graver up to	1/ -1 11 1011 111	
3-		$ $					SILTY CLAY (CL) yellow to light brown, soft, or	drv. sliah	tlv plastic. no	odor		_
4-	-	$ / \setminus$, 0				_
5-		<u> </u>	1									_
6-												_
7-			36	/36								
												_
8-						~ !						_
9-						CL						_
10-	-		48	/48								_
11-												_
12-	B-29-12.5	•										_
13-	_		36	/48								_
14-	_		50	/40								_
15-		Ш										_
16-		<u></u>			-		CLAY (CL)					
17-	B-29-17.5	•					light brown, medium stiff, d	ry, plasti	c, no odor			_
18-	D-29-17.5	Ť	48	/48								_
19-												_
20-		Ш										_
21-												_
				/40		0 1						
22-			48	/48		CL						_
23-	-											
24-		П	†									_
25—	_											_
26-			48	/48								_
27—							- ` '					_
28-	B-29-28	•			-		moist					
29-												_
Borir Grou	ng terminated a ng backfilled wi undwater encou	th ceme	nt grout.		ground	d surfa	ce during			LANGAN TREA	DWELL	ROLLO
drillin Expa	ig. Insive clays.									Project No.: 731637001	Figure:	A-29
-												

PRO	DJEC	T:				3093 BROADWAY Oakland, California		Log of	Borir	ng B		AGE 1	OF 1	
Borir	ng loca	ation:	5	See S	ite Pla	n, Figure 2	1		Logge	ed by:	E. Kim	brel		
Date	starte	ed:	Ę	5/11/1	5	Date finis	shed: 5/11/15							
-	ng me			Direct										
	mer w				١	Hamr	mer type: NA		_	LABO	RATOR	Y TEST	DATA	
Sam	1	Dua									£			
DEPTH (feet)	Sampler Type	Samble	Blows/ 6"	SPT SPT N-Value ¹	гітногод	MATER	IAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
۵	S	o	<u> </u>	Z	5	6 inches concret	te				"			
1 - 2 - 3 -	HA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			CL	dark brown, soft, inch in diameter, odor	vith GRAVEL (CL) , dry, subangualr gravel u slightly plastic, brick deb							
4 -		$/ \setminus$			CL	SILTY CLAY wit light brown, soft,	h GRAVEL (CL) brick debris	-						
6 -	DP					SILTY CLAY (CI light brown, med odor	L) lium stiff, dry, slightly plas	stic, no						
7 -	1	•						-	1					
8 –	1	H	ł		CL			-	1					
9 —	-							-	+					
10 —	DP							-						
11 -	-							-	4					
12 -		Щ	ı			OANDY OLAY (OL)	_	4					
13 -			1		CL	SANDY CLAY (0 yellow-brown, me	oL) edium stiff, moist, slightly	plastic,						
14 -	DP					no odor CLAY (CL)		/_						
		Ш	ł			light brown, stiff,	moist, plastic, no odor							
15 -								-						
16 —		П	1					-						
17 —	DP	•						-	1					
18 —	1	H	1					-	1					
19 —	DP							-	+					
20 —	1	H	ł					-	+					
21 -	DP				CL			-	-					
22 -		\mathbb{H}	ļ					-	4					
23 -	DP							-	4					
24 –		Щ						-						
25 –	DP							_						
20														
26 –		•	1					-						
27 –	DP	П	1					-						
28 –			1						1					
29 -	<u> </u>		L					-						
Borir Grou	ng termina ng backfill undwater i ansive cla	ed with o	ement	t grout.									LL RO	ILLO
- 0 1									rioject	73163	37001	Figure:		A-30

PRO	PROJECT: 3093 BROADWAY Oakland, California							Log of E	Boring MW-1	8 AGE 1 OF 2
Borir	ng location	1:	See	Site F	Plan,	Figur	e 2		Logged by: Z. Tra	abzada
Date	started:	5/13	/15				Date finished: 5/13/15			
Drilli	ng method	l: Di	irect I	Push						
Ham	mer weigh	nt/dro	p: N	NΑ			Hammer type: NA			
Sam	pler: Du	ıal Tu	ıbe							
Εæ	SA	AMPL	.ES		(md	УЭС	MATERIA	AL DESCRIP	TION	
DEPTH (feet)	Sample Number	Sample	Blow Count	Recovery (Inches)	OVM (ppm)	гтногосу	IVI (I EI (I	AL DECORA		
Ľ	Number	Ss	Ш О	₽ E	0	5	Single-segments			
1-			1				5 inches concrete SILTY CLAY with SAND (CL)			
		$ \setminus $					light brown to brown, soft, dense	fine gravel, no	odor	
2-	MW-18-2.5	Y	1			CL				_
3-		$ \wedge $								_
4-	-	/ \								_
5-	-	 	\				SILTY CLAY (CL)			
6-							brown, soft, moist, slightly plastic	, gravel and roo	ck fragments, moist	_
7-				36/36						_
	MW-18-7.5	•								
8-	1	П	1							_
9-	-			36/36						_
10-	-			00/00						_
11-	_	Щ	<u> </u>							_
12-		Ш			48.6					_
	MW-18-12.5		1	36/36	10.0	CL				
13-	MW-18-14	•	ł							
14-	10000	T			37.4					_
15-	1			36/36						_
16-	-				68.9					_
17-	-	Щ								-
18-				24/24	202					_
					202					
19-]		1		452					_
20 —				24/24			SILTY CLAY with SAND (CL)			
21-	MW-18-21.5	•	ł		1,451		dark gray and gray, soft, modera	te to strong petr	roleum odor	_
22-				24/24						_
23-		Щ	ļ			CL				_
24 –				24/24	1,295					_
2 2				["-"						
25-					25		SILTY CLAY (CL)	4	_	_
26-	MW-18-26.5	•		24/24	18		gray, soft, moist, slightly plastic,	io to weak odol		_
27-		++	1		2.8	CL				_
28-	-			24/24	3.7					_
29 –		Щ								_
30-				24/24	2.1					
22 — 23 — 24 — 25 — 25 — 26 — 27 — 28 — 27 — 28 — 29 — 30 — 30 — 30 — 30 — 30 — 30 — 30 — 3										OWELL ROLLO
200									Project No.: 731637001	Figure: A-44a

PRC	JECT:					3093 l Oakla	BROADWAY nd, California	Log of Boring MW-1	8 AGE 2 OF 2
E æ	SA	AMPL		T>-	(mdd	-0GY	MATERI	AL DESCRIPTION	
(feet)	Sample Number	Sample	Blow	Recovery (Inches)	OVM (ppm)	ГІТНОГОСУ			
_		III		24/24			SILTY CLAY (CL) (continued)		
	MW-18-31.5	•	İ		1.6				
32-				24/24		CL			
33—		$\forall t$	1		0.4				
34—				24/24					
35—		Т	1						
36-									
37-									
38-									
39 —									
40-									
41-									
42— 43—									
43 — 44 —									
4 4 45—									
46-									
47—									
48									
49-									
50									
51-									
52-									
53-									
54-									
55—									
56-									
57—									
58-									
59—									
60 Boring Boring	g terminated a g backfilled wit ndwater not en nsive clays.	t a dept h ceme	th of 35	feet. t.	<u> </u>			LANGAN TREA	ADWELL ROLL
Grour Expar	ndwater not en nsive clays.	counte	red duri	ing drillin	g.				
								Project No.: 731637001	A-4

PRO	OJECT:						BROADWAY and, California	Log of E	Boring MW-1	9 AGE 1 OF 2
Bori	ng location	1:	See	Site F	Plan,	Figure	2		Logged by: Z. Tra	abzada
Date	started:	5/13	/15				Date finished: 5/13/15			
Drilli	ng method	d: D	irect I	Push						
Ham	mer weigl			NA_			Hammer type: NA			
Sam	i	ıal Tu				1. 1				
E fi	Si	AMPL		20	(mdd	-0GY	MATERIA	AL DESCRIP	TION	
DEPTH (feet)	Sample Number	Sample	Blow	Recovery (Inches)	OVM (ppm)	LITHOLOGY -				
		0)		~ =			5 inches concrete			
1-	-	1	1				SILTY SAND with CLAY (SM)	u		
2-	MW-19-2.5						brown, medium dense, dry, sligh	tly plastic, some	e gravei, no odor	_
3-	10100-13-2.3	X				SM				_
4-		/								_
		/ \	\backslash							
5-	1	П				sc	CLAYEY SAND with GRAVEL (S	SC)	l no odor	
6-	1			36/36			red-brown, dry, slightly plastic, w	earriered graver	i, no odor	
7-	MW-19-7.5	•				CL	CLAY (CL) dark gray, soft, dry, slightly plast	ic to plastic, no	odor	_
8-	+	₩	1				SILTY CLAY (CL)	-		
9-	-						light brown, soft, dry, moderate of	odor		_
10-				36/36						_
11-		Ш								_
12-	MW-19-12.5	5		36/36						_
13-	1									_
14-	1	\forall	1			_				_
15-	+			20/20		CL				_
16-	-			36/36						_
17-	NAV 40 47 5	Щ								_
18-	MW-19-17.5			24/24						_
19-										_
20-	1			24/24						_
21-	1	ш								_
<u>\$2</u>	MW-19-22			24/24			CLAYEY SAND with SILT (SC)			
⁶ 23-	+	H	1			SC	brown, moist to wet, slightly plas	tic, no odor		_
ਹ <u>ਦ</u> 24 –	-			24/24			SILTY CLAY (CL) light gray, soft, moist to wet, slight	ath colonia sam	o again as odor	_
≟ ⊒ 25−	1	Щ	-				light gray, soit, moist to wet, sligh	illy plastic, som	ie sand, no odor	_
ဖုံ့ 26 –				24/24						_
16370				27/27		CL				
ξ 27 – g	MW-19-27.5									_
원 28-	1			24/24						_
29−	1	$\forall t$	1	24/24						_
TEST ENVIRONMENTAL INCHES 734637001.0PJ 18.R.GDT 66715 23 - 24 - 25 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27				<u> </u>					LANGAN TREA	DWELL ROLLO
ESTEN									Project No.: 731637001	Figure: A-45a

Log of Boring MW-19 PROJECT: **3093 BROADWAY** Oakland, California PAGE 2 OF 2 **SAMPLES** OVM (ppm) DEPTH MATERIAL DESCRIPTION Recovery (Inches) Blow Count Sample Number SILTY CLAY (CL) (continued) 24/24 31 32 24/24 MW-19-32.5 CL 33 34 24/24 35 36 37 38 39 40-41-42-43-44-45 46-47-48-49-50-51-52-53-54 55-56 57 58 59 Boring terminated at a depth of 35 feet. Boring backfilled with cement grout. Groundwater not encountered during drilling. Expansive clays. LANGAN TREADWELL ROLLO Project No.: 731637001 A-45b

PRO	PROJECT: 3093 BROADWAY Oakland, California							Log of E	Boring RB-2	AGE 1 OF 2
Borir	ng location	1:	See S	Site F	Plan,	Figure	:2		Logged by: E. Kir	mbrel/Z. Trabzada
Date	started:	5/15	/15				Date finished: 5/15/15			
Drilli	ng method	d: D	irect P	ush						
Ham	mer weigh	nt/dro	p: N	A			Hammer type: NA			
Sam	ıpler: Du	ıal Tu	ıbe							
I	S/	AMPL			Ē	Ğ	MATERIA	U DECODID	TION	
DEPTH (feet)	Sample	Sample	Blow Count	Recovery (Inches)	OVM (ppm)	LITHOLOGY	MATERIA	AL DESCRIP	TION	
	Number	Sar	⊞ S	Reco	8	5				
			/				5 inches concrete			
1-		$ \rangle /$					SANDY CLAY with SILT (CL) black, soft, dry, slightly plastic, no	o odor		-
2-	1	$ \vee $				۱ . ا	brown and light brown			-
3-	-					CL				-
4-	_	/\								-
5-			1							
							SILTY CLAY (CL) light brown, soft, dry, slightly plas	tic no odor		
6-	1			36/36			iight brown, bott, dry, biightly plac	nio, no odoi		-
7-	1				0.2					-
8-	1	$\forall \forall$	+			CL				-
9-	_									-
10-				36/36	0.1					_
11-										
		Ш					SILTY SAND with CLAY (SC) brown, medium dense, dry, slight	tly plactic no or	Nor	
12-				36/36	0.3	SC	brown, medium dense, dry, siigin	lly plastic, 110 oc	101	-
13-	1					CL	SILTY CLAY with GRAVEL (CL)			_
14 —	-	++	+		4		brown, soft, dry, slightly plastic, r	no odor		
15-	_					CL	SANDY CLAY with GRAVEL (CL yellow-brown, soft, dry, slightly pl	-) astic, strong od	lor	-
16-				36/36	7.2			_		-
17-		Ш			4.2		GRAVELLY CLAY with SAND (C	CL)		
						CL	olive-brown, moist, subrounded g plastic, moderate odor	rável up to 1/4	inch in diameter, bricl	k debris, slightly
18-				36/36	47.5		•			
19-	1	Ш			159		SILTY CLAY (CL) yellow-brown to dark brown, med	ium stiff, moist,	plastic, moderate od	or _
20 —	RB-2-20	-					•			-
21-	-				314					-
22−	RB-2-22	•		36/36						_
70/0					1,498					
23-	RB-2-24				1,304					
설 24 —		П		36/36		CL	wet			-
ਤੂ 25 <i>-</i>	1	Ш			1,583		staining			_
26-	RB-2-26				1,283					-
27 —	-			24/24						-
28-	RB-2-28				937					-
29-				24/24	758					
29	RB-2-30	•		<u>-</u> 4/24						_
22 — 23 — 24 — 25 — 25 — 26 — 26 — 26 — 27 — 26 — 27 — 26 — 27 — 28 — 28									LANGAN TREA	OWELL ROLLO
5									Project No.: 731637001	Figure: A-46a
= [. 5.55.501	700

Log of Boring RB-2 PROJECT: 3093 BROADWAY Oakland, California PAGE 2 OF 2 **SAMPLES** OVM (ppm) DEPTH MATERIAL DESCRIPTION Recovery (Inches) Blow Count Sample Number ,572 SILTY CLAY (CL) (continued) 24/24 994 31 RB-2-32 32 597 33-24/24 251 RB-2-34 119 35 24/24 251 CL RB-2-36 36 10.2 24/24 37 RB-2-38 38 9.0 24/24 9.4 39 RB-2-40 (5/15/15)40-9.8 41-42-43-44-45 46-47-48-49-50-51-52-53-54 55-56 57 58 59 60 Boring terminated at a depth of 40 feet.
Boring backfilled with cement grout.
Groundwater encountered 39.9 feet below ground surface during drilling.
Expansive clays. LANGAN TREADWELL ROLLO Project No.: 731637001 A-46b

PRO	PROJECT: 3093 BROADWAY Oakland, California								Log of E	Boring RB-6	AGE 1 OF 2
Borin	ng location	า:	See	Site I	Plan,	Figu	re 2			Logged by: E. Kir	mbrel
Date	started:	5/15	/15					Date finished: 5/15/15			
Drillir	ng metho	d: D	irect	Push							
Ham	mer weig	ht/dro	p: 1	NA				Hammer type: NA			
Sam	<u> </u>	ual Tu									
F €	S	AMPL		T>-	(mdc	OGY		MATERIA	AL DESCRIP	TION	
DEPTH (feet)	Sample Number	Sample	Blow	Recovery (Inches)	OVM (ppm)	LITHOLOGY		1VI/ (1 = 1 (I/	L DLOOK!!		
ļ	Number	Š	120	8 등	0	5		5 inches concrete			_
1 1-	RB-6-1.0	•	Ĭ		125	CL		SANDY CLAY with SILT (CL)			
2-		$ \rangle /$			61.8			dark brown and black, soft, mois	t, slightly plastic	c, moderate odor	/
	RB-6-3	W						SILTY CLAY (CL) yellow-brown, medium stiff, dry,	plastic, weak oc	dor	
3-		$\overline{\mathcal{M}}$			277			, , , . , , , , , , , , ,	, ,		_
4-		/ \			101						_
5-		\prod	1		23.4						_
6-					0.6	۵.		moist			_
7-				36/36	0.7	CL		moist			_
8-		Щ			0.1						_
9-					0.1						_
				36/36							
10-											_
11—		+	1		0.5						_
12-				36/36	0.2	CL		SANDY CLAY with GRAVEL (CI	_)		
13-				30/30	,	CL	\bigcap	yellow-brown, medium stiff, dry, plastic, orange and black mottling	subangular grav	vel up to 1/4 inch in di	ameter, slightly $\int_{-}^{}$
14 —		\mathbb{H}	-		0.1	CL	\Box	SILTY CLAY (CL)	g, brick and roc	k fraginerits, no odor	
15-							$\Gamma /$	yellow-brown, medium stiff, dry, SANDY CLAY with GRAVEL (CI			
16-				36/36	3	CL	\	yellow-brown to red-brown, soft,	dry, subangular	gravel up to 1/2 inch	in diameter,
						0_	\	slightly plastic, large white gravel CLAY (CL)	fragments and	brick, no odor	
17—			Ī				\bigcap	yellow to light brown, very stiff, d	ry, plastic, no o	dor	
18-				36/36	6	sc		SILTY SAND with GRAVEL (SC yellow-brown, loose, dry, subrout		to 1/9 inch in diamete	r no odor
19—		Ш						yellow-brown, loose, dry, subroul	nueu graver up	to 1/6 inch in diamete	
20 —	RB-6-20		-					SANDY CLAY with GRAVEL (CI)		_
21-								dark brown, soft, moist, slightly p			_
ည <u></u> 22 —	RB-6-22	•		36/36	5						_
23—		Ш			0.1			(05/45/45)			_
	RB-6-24	•		0.4/0.4			$ \bar{\Delta} $	(05/15/15)			
జ. 24 —		П		24/24		CL					_
25—	DD 2 25		1		0.1			wet, staining			_
26—	RB-6-26			36/36	1,870	þ		strong odor			-
9E 27—				50/50	1,459	9		-			_
g 28—	RB-6-28		1					CLAYEY SAND (SC)			
29 —				36/36	3	sc		olive-brown and green, medium of	dense, wet, stro	ong odor	_
30 —	RB-6-30	•									
1 22 — 23 — 24 — 24 — 25 — 25 — 26 — 26 — 26 — 26 — 26 — 26											DWELL ROLLO
TEST										Project No.: 731637001	Figure: A-47a

PROJECT: Log of Boring RB-6 3093 BROADWAY Oakland, California PAGE 2 OF 2 **SAMPLES** DEPTH MATERIAL DESCRIPTION Recovery (Inches) Blow Count Sample Number 1,659 CLAYEY SAND (SC) (continued) 36/36 31 SC RB-6-32 32 24/24 230 33 SANDY CLAY with GRAVEL (CL) RB-6-34 olive-green, soft, moist, slightly plastic, moderate to strong odor 34 110 36/36 CL 35 RB-6-36 36 CLAYEY SAND with GRAVEL (SC) SC 95 olive-green, medium dense, moist, moderate to strong odor 24/24 37 SILTY CLAY with SAND (CL) RB-6-38 38 38 yellow-brown, medium stiff, moist, plastic, moderate odor CL 39 24/24 49 CL RB-6-40 CLAY (CL) 40light brown, soft, moist, plastic, weak odor 41-42 43 44 45 46 47-48-49-50-51-52 53 54 55 56 57 58 59 Boring terminated at a depth of 40 feet.
Boring backfilled with cement grout and tremie PVC pipe.
Groundwater encountered at 23.3 feet below ground surface during drilling.
Expansive clays. LANGAN TREADWELL ROLLO Project No.: 731637001 Figure: A-47b

APPENDIX C GROUNDWATER ANALYTICAL LABORATORY REPORTS

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1505685

Report Created for: Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

Project Contact: Annie Lee

Project P.O.:

Project Name: #731637001; Connell Auto

Project Received: 05/18/2015

Analytical Report reviewed & approved for release on 05/26/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Treadwell & Rollo

Project: #731637001; Connell Auto

WorkOrder: 1505685

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference

lighter than water immiscible sheen/product is present
 weakly modified or unmodified gasoline is significant

e4 gasoline range compounds are significant.

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E300.1

 Date Received:
 5/18/15 15:24
 Analytical Method:
 E300.1

 Date Prepared:
 5/19/15
 Unit:
 mg/L

Sulfite by IC

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-1	1505685-001I	Water	05/18	8/2015 09:05 IC1	105063
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/19/2015 21:37

Analyst(s): TD Analytical Comments: a1

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:E300.1Date Received:5/18/15 15:24Analytical Method:E300.1Date Prepared:5/18/15Unit:mg/L

Inorganic Anions by IC

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-1	1505685-001G	Water	05/18/20	015 09:05 IC3	104993
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Nitrate as N	ND		0.10	1	05/18/2015 22:53
Nitrate as NO3 ⁻	ND		0.45	1	05/18/2015 22:53
Nitrite as N	ND		0.10	1	05/18/2015 22:53
Nitrite as NO2 ⁻	ND		0.33	1	05/18/2015 22:53
Nitrate & Nitrite as N	ND		0.20	1	05/18/2015 22:53
Sulfate	0.33		0.10	1	05/18/2015 22:53
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Formate	93		90-115		05/18/2015 22:53
Analyst(s): TD					

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:SW5030BDate Received:5/18/15 15:24Analytical Method:SW8260B

Date Prepared: 5/21/15 **Unit:** $\mu g/L$

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date (Collected	Instrument	Batch ID
MW-1	1505685-001F	Water	05/18/2	2015 09:05	GC28	105184
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	2300		50	100		05/21/2015 05:01
1,2-Dichloroethane (1,2-DCA)	ND		50	100		05/21/2015 05:01
Ethylbenzene	260		50	100		05/21/2015 05:01
Methyl-t-butyl ether (MTBE)	ND		50	100		05/21/2015 05:01
Naphthalene	430		50	100		05/21/2015 05:01
Toluene	650		50	100		05/21/2015 05:01
Xylenes, Total	5400		50	100		05/21/2015 05:01
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	110		73-131			05/21/2015 05:01
Toluene-d8	110		72-117			05/21/2015 05:01
4-BFB	98		74-116			05/21/2015 05:01
Analyst(s): KBO		<u>Anal</u>	ytical Con	nments: b6		

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:SM2320BDate Received:5/18/15 15:24Analytical Method:SM2320BDate Prepared:5/18/15Unit:mg CaCO₃/L

Total & Speciated Alkalinity as Calcium Carbonate

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-1	1505685-001M	Water	05/18/20	015 09:05 Titrino	104991
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total	711		1.00	1	05/18/2015 16:28
Carbonate	ND		1.00	1	05/18/2015 16:28
Bicarbonate	711		1.00	1	05/18/2015 16:28
Hvdroxide	ND		1.00	1	05/18/2015 16:28

Analyst(s): HN

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E200.8

 Date Received:
 5/18/15 15:24
 Analytical Method:
 E200.8

 Date Prepared:
 5/18/15
 Unit:
 μg/L

CAM / CCR 17 Metals + Misc. Elements

Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
MW-1	1505685-001J	Water	05/18/201	5 09:05	ICP-MS1	104984
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		5.0	10		05/19/2015 21:12
Arsenic	76		5.0	10		05/19/2015 21:12
Barium	810		50	10		05/19/2015 21:12
Beryllium	ND		5.0	10		05/19/2015 21:12
Cadmium	ND		2.5	10		05/19/2015 21:12
Chromium	ND		5.0	10		05/19/2015 21:12
Cobalt	ND		5.0	10		05/19/2015 21:12
Copper	25		20	10		05/19/2015 21:12
Iron	33,000		200	10		05/19/2015 21:12
Lead	28		5.0	10		05/19/2015 21:12
Manganese	11,000		200	10		05/19/2015 21:12
Mercury	ND		0.25	10		05/19/2015 21:12
Molybdenum	ND		5.0	10		05/19/2015 21:12
Nickel	7.9		5.0	10		05/19/2015 21:12
Selenium	ND		5.0	10		05/19/2015 21:12
Silver	ND		1.9	10		05/19/2015 21:12
Thallium	ND		5.0	10		05/19/2015 21:12
Vanadium	13		5.0	10		05/19/2015 21:12
Zinc	ND		150	10		05/19/2015 21:12
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	96		70-130			05/19/2015 21:12
Analyst(s): BBO		Analy	vtical Comm	<u>ients:</u> a	1	

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505685

Project: #731637001; Connell Auto Extraction Method: SM3500-Fe B4c

Date Received: 5/18/15 15:24 Analytical Method: SM3500-Fe B4c

Date Prepared: 5/19/15 **Unit:** $\mu g/L$

Fei	rro	11C	Ira	n

		rerrous from			
Client ID	Lab ID	Matrix/ExtType	Date Collec	ted Instrument	Batch ID
MW-1	1505685-001D	Water	05/18/2015 09	9:05 SPECTROPHOTOMET	ER 105092
Analytes	Result		RL DI	=	Date Analyzed
Ferrous Iron	27,000		2500 5	0	05/19/2015 18:30

Analyst(s): RB

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/18/15 15:24 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 5/19/15 **Unit:** $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-1	1505685-001A	Water	05/18/2	015 09:05 GC3	105127
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	31,000		500	10	05/19/2015 18:23
MTBE			50	10	05/19/2015 18:23
Benzene			5.0	10	05/19/2015 18:23
Toluene			5.0	10	05/19/2015 18:23
Ethylbenzene			5.0	10	05/19/2015 18:23
Xylenes			5.0	10	05/19/2015 18:23
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	109		70-130		05/19/2015 18:23
Analyst(s): SS		<u>Anal</u>	ytical Com	nments: d1,b6	

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Project:
 #731637001; Connell Auto
 Extraction Method:
 RSK175

 Date Received:
 5/18/15 15:24
 Analytical Method:
 RSK175

 Date Prepared:
 5/19/15
 Unit:
 µg/L

Light Gases

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-1	1505685-001E	Water/DISS.	05/18/2	2015 09:05 GC26	105148
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	5700		10	100	05/19/2015 14:10

Analyst(s): KBO Analytical Comments: b6

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505685

Project: #731637001; Connell Auto Extraction Method: SM4500 S-2 D **Date Received:** 5/18/15 15:24 **Analytical Method:** SM4500 S-2 D

Unit: **Date Prepared:** 5/22/15 mg/L

Sulfide

		10 02				
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
MW-1	1505685-001H	Water	05/18/2015	09:05	SPECTROPHOTOMETE	R 105311
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	0.094		0.050	1		05/22/2015 15:15

Analyst(s): RB

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:SM2540CDate Received:5/18/15 15:24Analytical Method:SM2540CDate Prepared:5/19/15Unit:mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected 1	Instrument	Batch ID
MW-1	1505685-001L	Water	05/18/20	15 09:05 \	WetChem	105183
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	728		10.0	1		05/19/2015 19:40

Analyst(s): AL

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:E415.3Date Received:5/18/15 15:24Analytical Method:E415.3Date Prepared:5/19/15Unit:mg/L

Total Nitrogen

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-1	1505685-001C	Water	05/18/20	015 09:05 TOC_SHIMADZ	ZU 104999
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Nitrogen	5.2		0.70	1	05/19/2015 21:00

Analyst(s): AV

Angela Rydelius, Lab Manager

Analytical Report

Client:Treadwell & RolloWorkOrder:1505685Project:#731637001; Connell AutoExtraction Method:E415.3Date Received:5/18/15 15:24Analytical Method:E415.3Date Prepared:5/19/15Unit:mg/L

Total Organic Carbon (TOC) reported as NPOC

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-1	1505685-001B	Water	05/18/20	015 09:05 TOC_SHIMADZU	104999
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TOC	53		0.30	1	05/19/2015 21:00

Analyst(s): AV

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Project:
 #731637001; Connell Auto
 Extraction Method:
 SW3510C

 Date Received:
 5/18/15 15:24
 Analytical Method:
 SW8015B

 Date Prepared:
 5/18/15
 Unit:
 µg/L

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
MW-1	1505685-001A	Water	05/18/2015 09:05 GC2B	105013
<u>Analytes</u>	Result		RL DF	Date Analyzed
TPH-Diesel (C10-C23)	10,000		2500 50	05/21/2015 21:00
TPH-Motor Oil (C18-C36)	ND		12,000 50	05/21/2015 21:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
C9	128		70-130	05/21/2015 21:00
Analyst(s): HD		<u>Anal</u>	ytical Comments: e4,b6	

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505685 **Project:** #731637001; Connell Auto **Extraction Method:** E365.1 **Date Received:** 5/18/15 15:24 **Analytical Method:** E365.1 **Date Prepared:** 5/20/15 Unit:

Total Phosphorous as P

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-1	1505685-001K	Water/TOTAL	05/18/20	15 09:05 SKALAR	105212
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Phosphorous as P	1.1		0.040	1	05/21/2015 16:54

Analyst(s): LP

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/19/15 **Date Analyzed:** 5/19/15 **Instrument:** IC1

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505685

BatchID: 105063

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L **Sample ID:** MB/LCS-105063

1505685-001IMS/MSD

OC	Summary	Rei	nort	for	E300 1
V	Summar y	110	DOLL	101	E300.1

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Sulfite	ND	0.908	0.10	1	_	91	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfite	NR	NR		ND<10	NR	NR	-	NR	

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Date Prepared:
 5/18/15
 BatchID:
 104993

Date Analyzed:5/18/15Extraction Method:E300.1Instrument:IC3Analytical Method:E300.1Matrix:WaterUnit:mg/L

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-104993

1505666-001KMS/MSD

QC Summary Report for E300.1

		<u> </u>					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Nitrate as N	ND	0.969	0.10	1	-	97	85-115
Nitrate as NO3 ⁻	ND	4.29	0.45	4.4	-	97	85-115
Nitrite as N	ND	1.01	0.10	1	-	101	85-115
Nitrite as NO2 ⁻	ND	3.34	0.33	3.3	-	101	85-115
Sulfate	ND	1.01	0.10	1	=	101	85-115

Surrogate Recovery

Formate 0.0964 0.0920 0.10 96 92 90-115

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Nitrate as N	0.869	0.868	1	ND	87	87	85-115	0	15
Nitrate as NO3 ⁻	3.85	3.84	4.4	ND	87	87	85-115	0	15
Nitrite as N	0.885	0.896	1	ND	89	90	85-115	1.22	15
Nitrite as NO2 ⁻	2.92	2.96	3.3	ND	89	90	85-115	1.22	15
Sulfate	1.66	1.63	1	0.7424	92	89	85-115	1.79	15
Surrogate Recovery									
Formate	0.0953	0.0956	0.10		95	96	90-115	0.225	10

Quality Control Report

Client: Treadwell & Rollo

Date Prepared:5/20/15Date Analyzed:5/20/15Instrument:GC28

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505685 **BatchID:** 105184

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/L$


Sample ID: MB/LCS-105184

1505687-001DMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	9.97	0.50	10	-	100	54-140
Benzene	ND	10.4	0.50	10	-	104	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	38.4	2.0	40	-	96	42-140
n-Butyl benzene	ND	-	0.50	=	-	-	-
sec-Butyl benzene	ND	-	0.50	=	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	=	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	9.96	0.50	10	-	100	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	9.77	0.50	10	-	98	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	10.2	0.50	10	-	102	66-125
1,1-Dichloroethene	ND	10.7	0.50	10	-	107	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	_	-	_	_

(Cont.)

Quality Control Report

Client: Treadwell & Rollo

Date Prepared:5/20/15Date Analyzed:5/20/15Instrument:GC28

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505685 **BatchID:** 105184

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-105184

1505687-001DMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	10.1	0.50	10	-	101	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	9.64	0.50	10	-	96	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	9.79	0.50	10	-	98	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	10.1	0.50	10	-	101	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	10.4	0.50	10	-	104	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	27.9	27.3		25	112	109	65-135
Toluene-d8	26.5	27.0		25	106	108	64-127
4-BFB	2.50	2.55		2.5	100	102	59-139

Quality Control Report

Client: Treadwell & Rollo

Date Prepared:5/20/15Date Analyzed:5/20/15Instrument:GC28

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505685

BatchID: 105184 **Extraction Method:** SW5030B

Analytical Method: SW8260B

Unit: μg/L

Sample ID: MB/LCS-105184

1505687-001DMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	10.8	11.4	10	ND	108	114	69-139	5.68	20
Benzene	10.0	10.5	10	ND	100	105	69-141	4.59	20
t-Butyl alcohol (TBA)	46.0	47.9	40	ND	115	120	41-152	4.18	20
Chlorobenzene	9.13	9.53	10	ND	91	95	77-120	4.33	20
1,2-Dibromoethane (EDB)	10.0	10.5	10	ND	100	105	76-135	4.24	20
1,2-Dichloroethane (1,2-DCA)	10.5	11.0	10	ND	105	110	73-139	4.90	20
1,1-Dichloroethene	10.0	10.3	10	ND	100	103	59-140	3.08	20
Diisopropyl ether (DIPE)	9.97	10.5	10	ND	100	105	72-140	5.46	20
Ethyl tert-butyl ether (ETBE)	10.0	10.6	10	ND	100	106	71-140	5.28	20
Methyl-t-butyl ether (MTBE)	10.9	11.4	10	ND	109	114	73-139	4.65	20
Toluene	9.26	9.65	10	ND	92	96	71-128	4.18	20
Trichloroethene	9.64	10.0	10	ND	96	100	64-132	4.15	20
Surrogate Recovery									
Dibromofluoromethane	28.0	28.2	25		112	113	73-131	0.633	20
Toluene-d8	26.4	26.7	25		106	107	72-117	0.912	20
4-BFB	2.40	2.48	2.5		96	99	74-116	3.01	20

Quality Control Report

Client:Treadwell & RolloWorkOrder:1505685Date Prepared:5/18/15BatchID:104991Date Analyzed:5/18/15Extraction Method:SM2320BInstrument:TitrinoAnalytical Method:SM2320B

Matrix: Water Test Method: SM2320B (Alkalinity)

Project: #731637001; Connell Auto

QC Summary Report for Alkalinity

		C	<i>y</i>		•			
Lab ID	Analyte	Reporting Units	Sample Result	Sample DF	Dup / Serial Dilution Result	Dup / Serial Dilution DF	RPD	Acceptance Criteria (%)
1505685-001M	Total	mg CaCO₃/L	711	1	714	1	0.351	<20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/18/15

Date Analyzed: 5/19/15
Instrument: ICP-MS2
Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505685

BatchID: 104984 **Extraction Method:** E200.8

Analytical Method: E200.8

Unit:

Sample ID: MB/LCS-104984

μg/L

1505676-001AMS/MSD

	QC Sun	nmary Report	for Metals				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	47.2	0.50	50	-	94	85-115
Arsenic	ND	47.3	0.50	50	-	95	85-115
Barium	ND	454	5.0	500	-	91	85-115
Beryllium	ND	48.8	0.50	50	-	98	85-115
Cadmium	ND	46.8	0.25	50	-	94	85-115
Chromium	ND	49.7	0.50	50	-	99	85-115
Cobalt	ND	48.8	0.50	50	-	98	85-115
Copper	ND	52.3	2.0	50	-	105	85-115
Iron	ND	536	20	500	-	107	85-115
Lead	ND	48.1	0.50	50	-	96	85-115
Manganese	ND	484	20	500	-	97	85-115
Mercury	ND	1.13	0.025	1.25	-	90	85-115
Molybdenum	ND	46.7	0.50	50	-	93	85-115
Nickel	ND	50.4	0.50	50	-	101	85-115
Selenium	ND	48.2	0.50	50	-	96	85-115
Silver	ND	47.3	0.19	50	-	95	85-115
Thallium	ND	45.9	0.50	50	-	92	85-115
Vanadium	ND	48.7	0.50	50	-	97	85-115
Zinc	ND	509	15	500	-	100	85-115
Surrogate Recovery							
Terbium	696	696		750	93	93	70-130

1505685

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared:5/18/15BatchID:104984Date Analyzed:5/19/15Extraction Method:E200.8Instrument:ICP-MS2Analytical Method:E200.8Matrix:WaterUnit:μg/L

Project: #731637001; Connell Auto Sample ID: MB/LCS-104984

1505676-001AMS/MSD

QC Summary Report for Metals MS MSD SPK **SPKRef** MS MSD MS/MSD **RPD RPD** Analyte Result Result Val Val %REC %REC Limits Limit 49.3 48.4 50 ND 98 96 70-130 1.76 20 **Antimony** Arsenic 52.7 50.1 50 2.1 101 96 70-130 5.12 20 500 91 20 **Barium** 491 480 23 94 70-130 2.35 Beryllium 48.9 48.3 50 ND 98 97 70-130 1.36 20 46.7 ND 93 70-130 1.88 20 Cadmium 45.9 50 92 Chromium 49.9 48.8 50 0.54 99 97 70-130 2.21 20 Cobalt 47.2 46.6 50 ND 94 92 70-130 1.28 20 Copper 54.2 52.6 50 4.880 99 95 70-130 2.90 20 640 613 500 100 107 102 70-130 4.30 20 Iron 20 52.5 51.2 50 ND 105 102 70-130 2.35 Lead Manganese 713 702 500 240 94 91 70-130 1.64 20 1.23 1.19 1.25 ND 98 95 70-130 3.30 20 Mercury Molybdenum 51.3 98 97 70-130 1.24 20 50.7 50 2.2 Nickel 52.5 50 99 96 70-130 2.90 20 51.0 2.8 Selenium 49.4 48.5 50 ND 98 96 70-130 1.74 20 Silver 45.8 45.1 50 ND 92 90 70-130 1.45 20 Thallium 50.6 49.5 50 ND 101 99 70-130 2.20 20 Vanadium 51.2 50.3 50 1.4 100 98 70-130 1.77 20 Zinc 519 500 97 70-130 1.55 20 511 36 95 **Surrogate Recovery Terbium** 714 696 750 95 93 70-130 2.48 20

1505685

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared:5/19/15BatchID:105092Date Analyzed:5/19/15Extraction Method:SM3500-Fe B4c

Instrument: SPECTROPHOTOMETER Analytical Method: SM3500-Fe B4c

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \end{tabular}$

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105092

1505685-001DMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ferrous Iron	ND	188	50	200	-	94	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Ferrous Iron	NR	NR		27000	NR	NR	-	NR	

1505685

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared:5/19/15BatchID:105127Date Analyzed:5/19/15Extraction Method:SW5030B

Instrument: GC3 Analytical Method: SW8021B/8015Bm

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \end{tabular}$

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105127

1505680-003AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	64.0	40	60	-	107	70-130
MTBE	ND	11.0	5.0	10	-	110	70-130
Benzene	ND	11.4	0.50	10	-	114	70-130
Toluene	ND	11.3	0.50	10	-	113	70-130
Ethylbenzene	ND	11.4	0.50	10	-	114	70-130
Xylenes	ND	34.0	0.50	30	-	113	70-130

Surrogate Recovery

aaa-TFT 10.3 10.4 10 103 104 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	65.4	65.3	60	ND	109	109	70-130	0	20
MTBE	10.4	10.2	10	ND	104	102	70-130	1.45	20
Benzene	11.3	10.4	10	ND	113	104	70-130	8.40	20
Toluene	11.3	10.4	10	ND	113	104	70-130	7.73	20
Ethylbenzene	11.5	10.6	10	ND	115	106	70-130	8.29	20
Xylenes	33.9	32.0	30	ND	113	107	70-130	5.58	20
Surrogate Recovery									
aaa-TFT	10.3	9.66	10		103	97	70-130	6.68	20

Quality Control Report

Client: Treadwell & Rollo WorkOrder: 1505685 **Date Prepared:** 5/19/15 **BatchID:** 105148 **Date Analyzed:** 5/19/15 **Extraction Method:** RSK175 **Instrument:** GC26 **Analytical Method:** RSK175 **Matrix:** Air Unit: μL/L

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105148

	QC Sum	mary Report	for RSK175				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethane	ND	10.3	0.50	10	-	103	70-130
Ethylene	ND	7.14	0.50	10	-	71	70-130
Methane	ND	11.5	0.50	10	-	115	70-130

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505685

 Date Prepared:
 5/22/15
 BatchID:
 105311

Date Analyzed:5/22/15Extraction Method:SM4500 S-2 DInstrument:SPECTROPHOTOMETERAnalytical Method:SM4500 S-2 D

Matrix: Water Unit: mg/L

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105311

1505875-003IMS/MSD

QC Summary Report For SM4500S2D

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Sulfide	ND	2.71	0.050	2.5	-	108	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfide	2.51	2.44	2.5	ND	100	98	75-125	2.71	20

1505685

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared: 5/19/15 BatchID:

Date Prepared:5/19/15BatchID:105183Date Analyzed:5/19/15Extraction Method:SM2540CInstrument:WetChemAnalytical Method:SM2540C

Matrix: Water Unit: mg/L

Project: #731637001; Connell Auto

	QC Summary	Report for	Fotal Dissolved	Solids		
SampID	Sample Result	Sample DF	Dup / Serial Dilution Result	Dup / Serial Dilution DF	RPD	Acceptance Criteria (%)
1505546-001J	331	1	306	2	7.85	<20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/18/15 **Date Analyzed:** 5/18/15

Instrument: TOC_SHIMADZU

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder:

1505685

BatchID: 10

104999

Extraction Method: E415.3

Analytical Method: E415.3

Unit:

mg/L

Sample ID: MB/LCS-104999

1505600-002AMS/MSD

QC Summary R	eport for E415.3
--------------	------------------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Total Nitrogen	ND	50.4	0.70	50	-	101	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Nitrogen	49.3	50.2	50	4.4	90	92	70-130	1.97	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/18/15 **Date Analyzed:** 5/18/15

Instrument: TOC_SHIMADZU

Matrix: Water

Project: #731637001; Connell Auto WorkOrder:

1505685

BatchID: 104999

Extraction Method: E415.3 **Analytical Method:** E415.3

Unit: mg/L

Sample ID: MB/LCS-104999

1505600-002AMS/MSD

QC Summary Report for E415.3											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
TOC	ND	47.2	0.30	50	-	94	80-120				

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TOC	132	131	50	82.87	98	96	70-130	0.913	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/18/15

Date Analyzed: 5/18/15 - 5/19/15

Instrument: GC2B **Matrix:** Water

Project: #731637001; Connell Auto

WorkOrder: 1505685

BatchID: 105013

Extraction Method: SW3510C

Analytical Method: SW8015B

Unit: $\mu g/L$

Sample ID: MB/LCS-105013

QC Report for SW8015B w/out SG Clean-Up										
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits			
TPH-Diesel (C10-C23)	ND	1010	50	1000	-	101	61-157			
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-			
Surrogate Recovery										
C9	719	714		625	115	114	70-134			

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/21/15Date Analyzed: 5/21/15Instrument: SKALARMatrix: Water

Total Phosphorous as P

Project: #731637001; Connell Auto

WorkOrder: 1505685

BatchID: 105212

Extraction Method: E365.1 **Analytical Method:** E365.1

Unit: mg/L

0.040

Sample ID: MB/LCS-105212

0.80

1505601-002AMS/MSD

104

90-110

QC Summary Report for E365.1										
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits			

0.832

ND

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Phosphorous as P	NR	NR	0.80	6.014	NR	NR	80-120	NR	20

CHAIN-OF-CUSTODY RECORD

05/18/2015

Date Received:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1505685 ClientCode: TWRF

WaterTrax	WriteOn	✓ EDF	Excel	■ EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
-----------	---------	--------------	-------	---------	---------	----------	------------	--------

Report to: Bill to: Requested TAT: 5 days

Email: alee@langan.com Accounts Payable Annie Lee cc/3rd Party: Treadwell & Rollo Treadwell & Rollo PO:

555 Montgomery St., Suite 1300 555 Montgomery St., Suite 1300 San Francisco, CA 94111 ProjectNo: #731637001: Connell Auto San Francisco, CA 94111 Date Printed: 05/18/2015

(415) 955-5200 FAX: (415) 955-9041 Langan_InvoiceCapture@concursolutio

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date F	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1505685-001	MW-1	Water	5/18/2015 9:05		I	G	F	М	J	D	Α	В	E	Н	L	С

Test Legend:

1	300_1_Sulfite_W	2	300_1_W		3	8260VOC_W]	4	Alka(spe)_W	5	CAMMETMS_W
6	FE2_W	7	G-MBTEX_W	;	8	PREDF REPORT		9	RSK175_W	10	SULFIDE_W
11	TDC W	12	TN W]							

The following SampID: 001A contains testgroup. Prepared by: Jena Alfaro

SEND HARD COPY/ Always notify the PM when TAT is not going to be met! JEL 9-9-14 **Comments:**

> NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

CHAIN-OF-CUSTODY RECORD

Page	1	of	
------	---	----	--

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1505685 ClientCode: TWRF

✓ EDF □WaterTrax WriteOn **EQuIS** □ Excel ✓ Email HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Email: alee@langan.com Accounts Payable Annie Lee cc/3rd Party: Treadwell & Rollo Treadwell & Rollo Date Received: 05/18/2015 PO: 555 Montgomery St., Suite 1300 555 Montgomery St., Suite 1300 San Francisco, CA 94111 ProjectNo: #731637001: Connell Auto San Francisco, CA 94111 Date Printed: 05/18/2015 (415) 955-5200 FAX: (415) 955-9041 Langan_InvoiceCapture@concursolutio

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	13	14	15	16	17	18	19	20	21	22	23	24
4505005.004	NAVA 4	10/2422	F/40/004F 0:0F			1/	_									
1505685-001	MW-1	Water	5/18/2015 9:05		В	K	А									

Test Legend:

TOC_W	14 TotalP_W	15 TPH(DMO)_W	16	17
18	19	20	21	22
23	24			

The following SampID: 001A contains testgroup.

Prepared by: Jena Alfaro

Comments: SEND HARD COPY/ Always notify the PM when TAT is not going to be met! JEL 9-9-14

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO
QC Level: LEVEL 2
Work Order: 1505685
Project: #731637001: Connell Auto
Client Contact: Annie Lee
Date Received: 5/18/2015

Project: #731637001; Connell Auto Client Contact: Annie Lee Date Received: 5/18/201

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		☐ WaterTrax	☐WriteOn	Excel]Fax ☑ Email	HardC	opyThirdPart	yJ	l-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505685-001A	MW-1	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl & 2-aVOA		5/18/2015 9:05	5 days	Present	
1505685-001B	MW-1	Water	E415.3 (TOC)	2	VOA w/ HCl		5/18/2015 9:05	5 days	Present	
1505685-001C	MW-1	Water	E415.3 (Total Nitrogen)	2	VOA w/ HCl		5/18/2015 9:05	5 days	Present	
1505685-001D	MW-1	Water	SM3500 Fe B4c (Ferrous Iron)	2	aVOA w/ Concentrated HCl		5/18/2015 9:05	5 days	Present	
1505685-001E	MW-1	Water	RSK175 <methane_4></methane_4>	2	aVOA w/ H2SO4		5/18/2015 9:05	5 days	Present	
1505685-001F	MW-1	Water	SW8260B (VOCs) <1,2-Dichloroethane (1,2-DCA), Benzene, Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>	e 2	VOA w/ HCl		5/18/2015 9:05	5 days	Present	
1505685-001G	MW-1	Water	E300.1 (Inorganic Anions) <nitrate &="" as="" n,="" nitrate="" nitrite="" no3<sup="">-, Nitrite as N, Nitrite as NO2⁻, Sulfate></nitrate>	2	125mL HDPE, unprsv.		5/18/2015 9:05	5 days	Present	
1505685-001H	MW-1	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/18/2015 9:05	5 days	Present	
1505685-001I	MW-1	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/18/2015 9:05	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505685Project:#731637001; Connell AutoClient Contact:Annie LeeDate Received:5/18/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		☐ WaterTrax	WriteOnEDF	Excel	Fax Fmail	HardC	opyThirdPar	tyJ	-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Ho Content	old SubOut
1505685-001J	MW-1	Water	E200.8 (Metals) <antimony, arsenic,<br="">Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc></antimony,>	1	250mL HDPE w/ HNO3		5/18/2015 9:05	5 days	Present	
1505685-001K	MW-1	Water	E365.1 (Total Phosphorous as P)	1	500mL aG w/ H2SO4		5/18/2015 9:05	5 days	Present	
1505685-001L	MW-1	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		5/18/2015 9:05	5 days	Present	
1505685-001M	MW-1	Water	SM2320B (Alkalinity)	1	500mL HDPE, unprsv.		5/18/2015 9:05	5 days	Present	
1505685-002A	TB	Water		1	VOA w/ HCl		5/18/2015 7:00		None	✓

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

													1	OFZ	
	1680 RG	OGERS AVENUE			CONE	UCT	ANALY	YSIS T	O DET	ECT		LAB McCampbell			DHS#
TECH SERVICES, INC.	FA	RNIA 95112-1105 X (408) 573-7771 E (408) 573-0555				((E200.8)			(0)			MUST MEET SPECIFICATIONS EPA LIA OTHER	С	RWQCB REG	GION
CHAIN OF CUSTODY BTS #	150518	-mm1	4	260B)					200S-2	. 4					
CLIENT Treadwell & Ro	ollo			ene (8)	2	CAM 17 Metals			Sulfide (SA4500S-2D)			SPECIAL INSTRUCTIO	ONS		
SITE Connell Auto			``	phthal	£			(52	Sulfide	. 15		Invoice and Report to	: Annie Lee		
3093 Broadwa	у			A, Na	e (300	Total Iron,	0Fe)	SK 1	_	3)	365.1)	Treadwell & Rollo - Sa	an Francisco (Office	
Oakland, CA	MATRIX	CONTAINERS	TPH-d (8015)	MTBE, 1,2-DCA, Naphthalene (8260B)	Nitrate, Nitrite, Sulfate (300.1)	Manganese, To	Ferrous Iron (SM 3500Fe)	Dissolved Methane (RSK 175)	Sulfite (SM4500 SQ3-2)	Total Nirogen (E415.3)	osphorus (E	415.955.5285 alee@langan.com	Project No: 7316 EI	37001 DF Requir I I	red
	S = Soil W = H2O	TOTAL .	TPH-g, T	втех, м	Vitrate, N	Total Mai	errous l	Dissolved	Sulfite (S	Fotal Nin	Total Pho	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
SAMPLE I.D. DATE TIME MW-1 5/18/2015 0905		19 Various	X		X	Х	X	Х	X	Х	X				2.10 07 1111 22 #
1 -700		2	 ^												
TB 1 0100		39													
												8			
		10.1													
												-			
SAMPLING DATE TIME COMPLETED 5/18/15 0905	SAMPLIN PERFOR	IG MED BY Nich	0/0	s J)rac	her	be					RESULTS NEEDED NO LATER THAN	Standard		
RELEASED BY)			118	115	10.00	03	0	RECE		11	_		DATE 5/18/	TIME /030
RELEASED BY			5		115	TIME	1/19	5-	RECE	1	_	//	- 5	DATE /	5 915
RELEASED BY	10	7		TE -18-	1	TIME	3 R		RÉCE	IVED	BA	7		DATE SISIO	TIME 5 1350
SHIPPED VIA				ATE SE		,	SENT		COOL	ER#		GOOD CONE	DITION	APPROPRIATE	
						1						HEAD SPAC	E ABSENT	CONTAINE	Page 38 of

20FZ

1680 ROGERS AVENUE			CON	DUCT	ANALYSIS	TO DE	TECT	LAB McCampbell DHS#
BLAINE IN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 PHONE (408) 573-0555								MUST MEET SPECIFICATIONS □ EPA □ RWQCB REGION
CHAIN OF CUSTODY BTS # 150518-MM1								OTHER
CLIENT Treadwell & Rollo		R						SPECIAL INSTRUCTIONS
SITE Connell Auto								Invoice and Report to: Annie Lee
3093 Broadway								Treadwell & Rollo - San Francisco Office
Oakland, CA		6	320B)				· -	415.955.5285 Project No: 731637001
MATRIX CONTAINERS □ Q	(E415.3)	TDS (SM2540C)	Alkalinity (SM2320B)				V	alee@langan.com EDF Required
SAMPLE I.D. DATE TIME S TOTAL	TOC (8	TDS (S	Alkalini					ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #
MW-1 5/18/2015 0905 W 4 Various	X	Х	Х					
	_							
		V I	2					
	1					-		
SAMPLING DATE TIME SAMPLING COMPLETED 5/18/15 0905 PERFORMED BY NICH	ola	5]	Drac	he	nberg			RESULTS NEEDED NO LATER THAN Standard
RELEASED BY	DAT	/18	/12	TIME (030	REC	EIVED BY	DATE TIME
RELEASED BY	DAT S/	18/	15	TIME	115	REC	EIVEDBY	DATE TIME
RELEASED BY	JDAT	E 3-/		TIME		REC.	EIVED BY	DATE TIME 1350
SHIPPED VIA	DAT	E SEN	ΙΤ̈́	TIME	N D THEFT	coc	LER#	

Sample Receipt Checklist

Client Name:	Treadwell & Rollo)			Date and T	ime Received:	5/18/2015 3:24:20 PM
Project Name:	#731637001; Cor	nnell Auto			LogIn Revie	ewed by:	Jena Alfaro
WorkOrder №:	1505685	Matrix: Water			Carrier:	Bernie Cummir	ns (MAI Courier)
		Chain of C	ustody	(COC)	<u>Information</u>		
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when reling	uished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample	e labels?	Yes	✓	No 🗆		
Sample IDs noted	d by Client on COC	?	Yes	✓	No 🗌		
Date and Time of	f collection noted by	/ Client on COC?	Yes	✓	No 🗌		
Sampler's name r	noted on COC?		Yes	✓	No \square		
		<u>Sampl</u>	e Rece	eipt Info	rmation		
Custody seals into	act on shipping cor	-	Yes		No 🗆		NA 🗸
Shipping containe	er/cooler in good co	ondition?	Yes	•	No 🗌		
Samples in prope	er containers/bottles	s?	Yes	•	No 🗌		
Sample container	rs intact?		Yes	•	No 🗌		
Sufficient sample	volume for indicate	ed test?	Yes	•	No 🗆		
		Sample Preservation	on and	Hold Ti	me (HT) Infor	mation	
All samples recei	ved within holding	time?	Yes	✓	No 🗆		
Sample/Temp Bla	ank temperature			Temp	: 3°C		NA 🗌
Water - VOA vials	s have zero headsp	pace / no bubbles?	Yes	✓	No 🗆		NA \square
Sample labels ch	ecked for correct p	reservation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal:	<2; 522: <4; 218.7: >8)?	Yes	✓	No 🗌		NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Type	e: WE	T ICE)		
UCMR3 Samples Total Chlorine t		ble upon receipt for EPA 522?	Yes		No 🗆		NA 🗹
	ested and acceptal	ble upon receipt for EPA 218.7,	Yes		No 🗆		NA 🗹
* NOTE: If the "N	lo" box is checked,	see comments below.					
	=====		==:	===	====	=====	======

"When Quality Counts"

Analytical Report

WorkOrder: 1505875 **Amended:** 06/02/2015

Report Created for: Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

Project Contact: Annie Lee

Project P.O.:

Project Name: #731637001; Connell Auto

Project Received: 05/21/2015

Analytical Report reviewed & approved for release on 06/02/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Treadwell & Rollo

Project: #731637001; Connell Auto

WorkOrder: 1505875

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a1 sample diluted due to matrix interference

lighter than water immiscible sheen/product is presentweakly modified or unmodified gasoline is significant

e2 diesel range compounds are significant; no recognizable pattern

e4 gasoline range compounds are significant.e7 oil range compounds are significant

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:E300.1Date Received:5/21/15 19:34Analytical Method:E300.1Date Prepared:5/26/15Unit:mg/L

Su	ılfite	hv	IC
Du			\mathbf{I}

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-3	1505875-001H	Water	05/21	1/2015 12:10 IC1	105374
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/26/2015 20:28

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-6	1505875-002H	Water	05/21/20	015 13:15 IC1	105374
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		0.10	1	05/26/2015 17:18

Analyst(s): TD

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrumen	Batch ID
MW-8	1505875-003H	Water	05/21/	2015 10:05 IC1	105374
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		1.0	10	05/26/2015 08:55

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-18	1505875-004H	Water	05/21/	/2015 14:20 IC1	105374
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/26/2015 21:23

Analyst(s): TD Analytical Comments: a1

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E300.1

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E300.1

 Date Prepared:
 5/21/15-5/27/15
 Unit:
 mg/L

Inorganic Anions by IC

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-3	1505875-001G	Water	05/21/20	015 12:10 IC3	105178
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Nitrate as N	1.1		0.10	1	05/21/2015 22:38
Nitrate as NO3 ⁻	5.0		0.45	1	05/21/2015 22:38
Nitrite as N	ND		0.10	1	05/21/2015 22:38
Nitrite as NO2 ⁻	ND		0.33	1	05/21/2015 22:38
Nitrate & Nitrite as N	1.1		0.20	1	05/21/2015 22:38
Sulfate	200		10	100	05/27/2015 16:35
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Formate	94		90-115		05/21/2015 22:38
A (/) ===					

Analyst(s): TD

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-6	1505875-002G	Water	05/21/2015 13:15 IC3		105178
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Nitrate as N	ND		0.10	1	05/21/2015 23:19
Nitrate as NO3 ⁻	ND		0.45	1	05/21/2015 23:19
Nitrite as N	ND		0.10	1	05/21/2015 23:19
Nitrite as NO2 ⁻	ND		0.33	1	05/21/2015 23:19
Nitrate & Nitrite as N	ND		0.20	1	05/21/2015 23:19
Sulfate	1.6		0.10	1	05/21/2015 23:19
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Formate	95		90-115		05/21/2015 23:19
Analyst(s): TD					

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E300.1

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E300.1

 Date Prepared:
 5/21/15-5/27/15
 Unit:
 mg/L

Inorganic Anions by IC

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-8	1505875-003G	Water	05/21/20	015 10:05 IC3	105178
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Nitrate as N	ND		0.10	1	05/22/2015 00:00
Nitrate as NO3 ⁻	ND		0.45	1	05/22/2015 00:00
Nitrite as N	ND		0.10	1	05/22/2015 00:00
Nitrite as NO2 ⁻	ND		0.33	1	05/22/2015 00:00
Nitrate & Nitrite as N	ND		0.20	1	05/22/2015 00:00
Sulfate	27		1.0	10	05/27/2015 17:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Formate	94		90-115		05/22/2015 00:00
Analyst(s). TD					

Analyst(s): TD

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-18	1505875-004G	Water	05/21/20	015 14:20 IC3	105178
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Nitrate as N	ND		0.10	1	05/22/2015 00:41
Nitrate as NO3 ⁻	ND		0.45	1	05/22/2015 00:41
Nitrite as N	ND		0.10	1	05/22/2015 00:41
Nitrite as NO2 ⁻	ND		0.33	1	05/22/2015 00:41
Nitrate & Nitrite as N	ND		0.20	1	05/22/2015 00:41
Sulfate	140		10	100	05/27/2015 18:09
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Formate	98		90-115		05/22/2015 00:41
Analyst(s): TD					

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030BDate Received:5/21/15 19:34Analytical Method:SW8260B

Date Prepared: 5/28/15 **Unit:** μg/L

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date C	collected Instrument	Batch ID
MW-3	1505875-001B	Water	05/21/20	015 12:10 GC28	105459
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.50	1	05/28/2015 00:45
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	05/28/2015 00:45
Ethylbenzene	ND		0.50	1	05/28/2015 00:45
Methyl-t-butyl ether (MTBE)	ND		0.50	1	05/28/2015 00:45
Naphthalene	ND		0.50	1	05/28/2015 00:45
Toluene	ND		0.50	1	05/28/2015 00:45
Xylenes, Total	ND		0.50	1	05/28/2015 00:45
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	114		70-130		05/28/2015 00:45
Toluene-d8	108		70-130		05/28/2015 00:45
4-BFB	104		70-130		05/28/2015 00:45

Analyst(s): AK

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	t Batch ID
MW-6	1505875-002B	Water	05/21/2	015 13:15 GC28	105459
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	2400		100	200	05/28/2015 01:22
1,2-Dichloroethane (1,2-DCA)	ND		100	200	05/28/2015 01:22
Ethylbenzene	320		100	200	05/28/2015 01:22
Methyl-t-butyl ether (MTBE)	ND		100	200	05/28/2015 01:22
Naphthalene	120		100	200	05/28/2015 01:22
Toluene	220		100	200	05/28/2015 01:22
Xylenes, Total	520		100	200	05/28/2015 01:22
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	112		70-130		05/28/2015 01:22
Toluene-d8	108		70-130		05/28/2015 01:22
4-BFB	106		70-130		05/28/2015 01:22
Analyst(s): AK					

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030BDate Received:5/21/15 19:34Analytical Method:SW8260B

Date Prepared: 5/28/15 **Unit:** μg/L

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-8	1505875-003B	Water	05/21/20	015 10:05 GC28	105459
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.50	1	05/28/2015 02:00
1,2-Dichloroethane (1,2-DCA)	10		0.50	1	05/28/2015 02:00
Ethylbenzene	ND		0.50	1	05/28/2015 02:00
Methyl-t-butyl ether (MTBE)	ND		0.50	1	05/28/2015 02:00
Naphthalene	ND		0.50	1	05/28/2015 02:00
Toluene	ND		0.50	1	05/28/2015 02:00
Xylenes, Total	ND		0.50	1	05/28/2015 02:00
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	115		70-130		05/28/2015 02:00
Toluene-d8	110		70-130		05/28/2015 02:00
4-BFB	109		70-130		05/28/2015 02:00

Analyst(s): AK

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
MW-18	1505875-004B	Water	05/21/2	015 14:20 GC28	105459
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	240		5.0	10	05/28/2015 02:37
1,2-Dichloroethane (1,2-DCA)	74		5.0	10	05/28/2015 02:37
Ethylbenzene	42		5.0	10	05/28/2015 02:37
Methyl-t-butyl ether (MTBE)	ND		5.0	10	05/28/2015 02:37
Naphthalene	14		5.0	10	05/28/2015 02:37
Toluene	ND		5.0	10	05/28/2015 02:37
Xylenes, Total	26		5.0	10	05/28/2015 02:37
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	118		70-130		05/28/2015 02:37
Toluene-d8	111		70-130		05/28/2015 02:37
4-BFB	104		70-130		05/28/2015 02:37
Analyst(s): AK					

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030BDate Received:5/21/15 19:34Analytical Method:SW8260B

Date Prepared: 5/28/15 **Unit:** μg/L

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
Trip Blank	1505875-005A	Water	05/21/20	15 07:30	GC28	105459
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.50	1		05/28/2015 03:15
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/28/2015 03:15
Ethylbenzene	ND		0.50	1		05/28/2015 03:15
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/28/2015 03:15
Naphthalene	ND		0.50	1		05/28/2015 03:15
Toluene	ND		0.50	1		05/28/2015 03:15
Xylenes, Total	ND		0.50	1		05/28/2015 03:15
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	113		70-130			05/28/2015 03:15
Toluene-d8	106		70-130			05/28/2015 03:15
4-BFB	104		70-130			05/28/2015 03:15

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SM2320BDate Received:5/21/15 19:34Analytical Method:SM2320BDate Prepared:5/27/15Unit:mg CaCO₃/L

Total & Speciated Alkalinity as Calcium Carbonate

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-3	1505875-001M	Water	05/21/20	015 12:10 Titrino	105445
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Total	239		1.00	1	05/27/2015 13:29
Carbonate	ND		1.00	1	05/27/2015 13:29
Bicarbonate	239		1.00	1	05/27/2015 13:29
Hydroxide	ND		1.00	1	05/27/2015 13:29

Analyst(s): HN

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
MW-6	1505875-002M	Water	05/21/2	2015 13:15 Titrino	105445
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total	510		1.00	1	05/27/2015 13:41
Carbonate	ND		1.00	1	05/27/2015 13:41
Bicarbonate	510		1.00	1	05/27/2015 13:41
Hydroxide	ND		1.00	1	05/27/2015 13:41

Analyst(s): HN

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-8	1505875-003M	Water	05/21/2	015 10:05 Titrino	105445
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total	374		1.00	1	05/27/2015 13:54
Carbonate	ND		1.00	1	05/27/2015 13:54
Bicarbonate	374		1.00	1	05/27/2015 13:54
Hydroxide	ND		1.00	1	05/27/2015 13:54

Analyst(s): HN

(Cont.)

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SM2320BDate Received:5/21/15 19:34Analytical Method:SM2320BDate Prepared:5/27/15Unit:mg CaCO₃/L

Total & Speciated Alkalinity as Calcium Carbonate

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
MW-18	1505875-004M	Water	05/21/2	2015 14:20 Titrino	105445
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Total	500		1.00	1	05/27/2015 14:05
Carbonate	ND		1.00	1	05/27/2015 14:05
Bicarbonate	500		1.00	1	05/27/2015 14:05
Hydroxide	ND		1.00	1	05/27/2015 14:05

Analyst(s): HN

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E200.8

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E200.8

 Date Prepared:
 5/21/15
 Unit:
 μg/L

Dissolved CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrun	nent Batch ID
MW-6	1505875-002N	Water	05/21/20	15 13:15 ICP-MS2	105228
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	ND		0.50	1	05/22/2015 22:35
Arsenic	25		0.50	1	05/22/2015 22:35
Barium	280		5.0	1	05/22/2015 22:35
Beryllium	ND		0.50	1	05/22/2015 22:35
Cadmium	ND		0.25	1	05/22/2015 22:35
Chromium	ND		0.50	1	05/22/2015 22:35
Cobalt	ND		0.50	1	05/22/2015 22:35
Copper	ND		2.0	1	05/22/2015 22:35
Lead	ND		0.50	1	05/22/2015 22:35
Mercury	ND		0.025	1	05/22/2015 22:35
Molybdenum	0.65		0.50	1	05/22/2015 22:35
Nickel	1.5		0.50	1	05/22/2015 22:35
Selenium	0.91		0.50	1	05/22/2015 22:35
Silver	ND		0.19	1	05/22/2015 22:35
Thallium	ND		0.50	1	05/22/2015 22:35
Vanadium	1.4		0.50	1	05/22/2015 22:35
Zinc	ND		15	1	05/22/2015 22:35

Analyst(s): DVH

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E200.8

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E200.8

 Date Prepared:
 5/21/15
 Unit:
 μg/L

Dissolved CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
MW-18	1505875-004N	Water	05/21/20	15 14:20	ICP-MS2	105228
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		0.50	1		05/22/2015 22:29
Arsenic	4.0		0.50	1		05/22/2015 22:29
Barium	33		5.0	1		05/22/2015 22:29
Beryllium	ND		0.50	1		05/22/2015 22:29
Cadmium	ND		0.25	1		05/22/2015 22:29
Chromium	ND		0.50	1		05/22/2015 22:29
Cobalt	2.9		0.50	1		05/22/2015 22:29
Copper	ND		2.0	1		05/22/2015 22:29
Lead	ND		0.50	1		05/22/2015 22:29
Mercury	ND		0.025	1		05/22/2015 22:29
Molybdenum	1.1		0.50	1		05/22/2015 22:29
Nickel	16		0.50	1		05/22/2015 22:29
Selenium	ND		0.50	1		05/22/2015 22:29
Silver	ND		0.19	1		05/22/2015 22:29
Thallium	ND		0.50	1		05/22/2015 22:29
Vanadium	3.4		0.50	1		05/22/2015 22:29
Zinc	ND		15	1		05/22/2015 22:29

Analyst(s): DVH

Angela Rydelius, Lab Manager

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505875

Project: #731637001; Connell Auto **Extraction Method:** SM3500-Fe B4c **Date Received:** 5/21/15 19:34 **Analytical Method:** SM3500-Fe B4c

Date Prepared: 5/22/15 **Unit:** $\mu g/L$

		Ferrous Iron				
Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
MW-3	1505875-001E	Water	05/21/20	15 12:10	SPECTROPHOTOMETER	R 105312
<u>Analytes</u>	Result		<u>RL</u>	DF		Date Analyzed
Ferrous Iron	ND		50	1		05/22/2015 19:35

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date (Collected	Instrument	Batch ID
MW-6	1505875-002E	Water	05/21/2	015 13:15	SPECTROPHOTOMETER	105312
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>D</u> .	ate Analyzed
Ferrous Iron	10,000		500	10	05	5/22/2015 19:50

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
MW-8	1505875-003E	Water	05/21/20	015 10:05	SPECTROPHOTOMETER	105312
Analytes	Result		<u>RL</u>	<u>DF</u>	<u> </u>	Date Analyzed
Ferrous Iron	210		50	1	C	05/22/2015 19:55

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date (Collected	Instrument	Batch ID
MW-18	1505875-004E	Water	05/21/2	2015 14:20	SPECTROPHOTOMETER	105312
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>D</u> .	ate Analyzed
Ferrous Iron	520		50	1	08	5/22/2015 20:00

Analyst(s): RB

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:E200.8Date Received:5/21/15 19:34Analytical Method:E200.8

Date Prepared: 5/21/15		U	nit:	μg/L	
		Metals			
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-3	1505875-001J	Water	05/21/2015 12:10	ICP-MS2	105228
<u>Analytes</u>	Result		RL DF		Date Analyzed
Iron	5700		20 1		05/22/2015 22:41
Manganese	71		20 1		05/22/2015 22:41
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Terbium	91		70-130		05/22/2015 22:41
Analyst(s): DVH					
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-6	1505875-002J	Water	05/21/2015 13:15	ICP-MS2	105228
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
Iron	11,000		20 1		05/22/2015 22:47
Manganese	6700		20 1		05/22/2015 22:47
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	91		70-130		05/22/2015 22:47
Analyst(s): DVH					
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-8	1505875-003J	Water	05/21/2015 10:05	ICP-MS2	105228
Analytes	<u>Result</u>		RL DF		Date Analyzed
Iron	380		20 1		05/22/2015 22:54
Manganese	720		20 1		05/22/2015 22:54
Surrogates	REC (%)		<u>Limits</u>		
Terbium	92		70-130		05/22/2015 22:54

Analyst(s): DVH

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E200.8

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E200.8

 Date Prepared:
 5/21/15
 Unit:
 μg/L

Metals							
Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instr	rument	Batch ID	
MW-18	1505875-004J	Water	05/21/201	15 14:20 ICP-N	1S2	105228	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
Iron	11,000		20	1		05/22/2015 23:00	
Manganese	1100		20	1		05/22/2015 23:00	
Surrogates	REC (%)		<u>Limits</u>				
Terbium	90		70-130			05/22/2015 23:00	
Analyst(s): DVH							

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/21/15 19:34 Analytical Method: SW8021B/8015Bm

Date Prepared: 5/27/15 **Unit:** $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-3	1505875-001A	Water	05/21/20	015 12:10 GC3	105449
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	05/27/2015 02:56
MTBE			5.0	1	05/27/2015 02:56
Benzene			0.50	1	05/27/2015 02:56
Toluene			0.50	1	05/27/2015 02:56
Ethylbenzene			0.50	1	05/27/2015 02:56
Xylenes			0.50	1	05/27/2015 02:56
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	106		70-130		05/27/2015 02:56
Analyst(s): SS					

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-6	1505875-002A	Water	05/21/20	015 13:15 GC7	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	18,000		1000	20	05/27/2015 00:05
MTBE			150	20	05/27/2015 00:05
Benzene			10	20	05/27/2015 00:05
Toluene			10	20	05/27/2015 00:05
Ethylbenzene			10	20	05/27/2015 00:05
Xylenes			10	20	05/27/2015 00:05
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	108		70-130		05/27/2015 00:05
Analyst(s): SS		<u>Anal</u>	ytical Com	ments: d1	

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/21/15 19:34 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 5/27/15 **Unit:** $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-8	1505875-003A	Water	05/21/20	015 10:05 GC3	105449
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	91		50	1	05/27/2015 04:25
MTBE			5.0	1	05/27/2015 04:25
Benzene			0.50	1	05/27/2015 04:25
Toluene			0.50	1	05/27/2015 04:25
Ethylbenzene			0.50	1	05/27/2015 04:25
Xylenes			0.50	1	05/27/2015 04:25
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	108		70-130		05/27/2015 04:25
Analyst(s): SS		<u>Anal</u>	ytical Com	nments: d1	

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-18	1505875-004A	Water	05/21/20	015 14:20 GC3	105449
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	3200		500	10	05/27/2015 03:25
MTBE			50	10	05/27/2015 03:25
Benzene			5.0	10	05/27/2015 03:25
Toluene			5.0	10	05/27/2015 03:25
Ethylbenzene			5.0	10	05/27/2015 03:25
Xylenes			5.0	10	05/27/2015 03:25
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
aaa-TFT	99		70-130		05/27/2015 03:25
Analyst(s): SS		<u>Anal</u>	ytical Com	nments: d1	

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/21/15 19:34 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 5/27/15 Unit: μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
Trip Blank	1505875-005B	Water	05/21/20	15 07:30 GC3	105449
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/27/2015 05:24
MTBE			5.0	1	05/27/2015 05:24
Benzene			0.50	1	05/27/2015 05:24
Toluene			0.50	1	05/27/2015 05:24
Ethylbenzene			0.50	1	05/27/2015 05:24
Xylenes			0.50	1	05/27/2015 05:24
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	104		70-130		05/27/2015 05:24
Analyst(s): SS					

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 RSK175

 Date Received:
 5/21/15 19:34
 Analytical Method:
 RSK175

 Date Prepared:
 6/1/15
 Unit:
 µg/L

Light Gases

		8			
Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
MW-3	1505875-001F	Water/DISS.	05/21/201	5 12:10 GC26	105675
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	0.52		0.10	1	06/01/2015 16:17

Analyst(s): KBO

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrume	nt Batch ID
MW-6	1505875-002F	Water/DISS.	05/21/	2015 13:15 GC26	105675
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	560		1.0	10	06/01/2015 15:16

Analyst(s): KBO

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrumer	at Batch ID
MW-8	1505875-003F	Water/DISS.	05/21/2	2015 10:05 GC26	105675
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	190		1.0	10	06/01/2015 16:31

Analyst(s): KBO

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
MW-18	1505875-004F	Water/DISS.	05/21/20	015 14:20 GC26	105675
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Methane	2.5		0.10	1	06/01/2015 15:52

Analyst(s): KBO

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SM4500 S-2 DDate Received:5/21/15 19:34Analytical Method:SM4500 S-2 D

Date Prepared: 5/22/15 **Unit:** mg/L

Sulfide

		Buillac				
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
MW-3	1505875-0011	Water	05/21/2015	12:10	SPECTROPHOTOMETE	R 105311
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	0.067		0.050	1		05/22/2015 15:20

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
MW-6	1505875-0021	Water	05/21/20	15 13:15	SPECTROPHOTOMETER	105311
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>]</u>	Date Analyzed
Sulfide	1.1		0.050	1	C	05/22/2015 15:25

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
MW-8	1505875-003I	Water	05/21/20	15 10:05	SPECTROPHOTOMETER	105311
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	2	Date Analyzed
Sulfide	ND		0.050	1	C	05/22/2015 15:00

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
MW-18	1505875-004I	Water	05/21/201	5 14:20	SPECTROPHOTOMETER	R 105311
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	0.14		0.050	1		05/22/2015 15:30

Analyst(s): RB

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SM2540CDate Received:5/21/15 19:34Analytical Method:SM2540C

Date Prepared: 5/26/15 **Unit:** mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix/ExtType	Date Colle	cted Instrument	Batch ID
MW-3	1505875-001L	Water	05/21/2015	12:10 WetChem	105427
<u>Analytes</u>	<u>Result</u>		RL I	<u>DF</u>	Date Analyzed
Total Dissolved Solids	476		10.0	1	05/26/2015 19:15

Analyst(s): AL

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-6	1505875-002L	Water	05/21/20	15 13:15 WetChem	105427
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Dissolved Solids	817		10.0	1	05/26/2015 19:25

Analyst(s): AL

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-8	1505875-003L	Water	05/21/20	15 10:05 WetChem	105427
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Dissolved Solids	517		10.0	1	05/26/2015 19:30

Analyst(s): AL

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-18	1505875-004L	Water	05/21/20	15 14:20 WetChem	105427
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Dissolved Solids	694		10.0	1	05/26/2015 19:35

Analyst(s): AL

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:E415.3Date Received:5/21/15 19:34Analytical Method:E415.3Date Prepared:5/22/15Unit:mg/L

Total Nitrogen								
Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID			
MW-3	1505875-001D	Water	05/21/2	015 12:10 TOC_SHIMADZU	105273			
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed			
Total Nitrogen	1.4		0.70	1	05/22/2015 16:54			

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
MW-6	1505875-002D	Water	05/21/201	5 13:15 TOC_SHIMADZU	105273
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Nitrogen	ND		0.70	1	05/22/2015 22:07

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-8	1505875-003D	Water	05/21/20	015 10:05 TOC_SHIMADZU	105273
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Nitrogen	ND		0.70	1	05/22/2015 17:08

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-18	1505875-004D	Water	05/21/20	15 14:20 TOC_SHIMADZU	105273
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Nitrogen	ND		0.70	1	05/22/2015 17:33

Analyst(s): AV

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:E415.3Date Received:5/21/15 19:34Analytical Method:E415.3Date Prepared:5/22/15Unit:mg/L

Total Organic Carbon (TOC) reported as NPOC

	8				
Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
MW-3	1505875-001C	Water	05/21/201	5 12:10 TOC_SHIMADZU	105273
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TOC	3.1		0.30	1	05/22/2015 16:54

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
MW-6	1505875-002C	Water	05/21/201	5 13:15 TOC_SHIMADZU	105273
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TOC	13		0.30	1	05/22/2015 22:07

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-8	1505875-003C	Water	05/21/20	015 10:05 TOC_SHIMADZU	105273
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TOC	3.5		0.30	1	05/22/2015 17:08

Analyst(s): AV

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-18	1505875-004C	Water	05/21/20	15 14:20 TOC_SHIMADZU	105273
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TOC	16		0.30	1	05/22/2015 17:33

Analyst(s): AV

Analytical Report

Client:Treadwell & RolloWorkOrder:1505875Project:#731637001; Connell AutoExtraction Method:SW3510CDate Received:5/21/15 19:34Analytical Method:SW8015B

Date Prepared: 5/21/15 **Unit:** $\mu g/L$

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up									
Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instru	ment Batch ID				
MW-3	1505875-001A	Water	05/21/20)15 12:10 GC2B	105201				
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed				
TPH-Diesel (C10-C23)	380		50	1	05/23/2015 01:09				
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>						
C9	114		70-130		05/23/2015 01:09				

Analyst(s): HD Analytical Comments: e7,e2

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
MW-6	1505875-002A	Water	05/21/2015 13:15 GC2B	105201
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	4100		50 1	05/23/2015 06:09
Surrogates	REC (%)		<u>Limits</u>	
C9	113		70-130	05/23/2015 06:09
Analyst(s): HD		Analy	vtical Comments: e4,e7,e2,b6	

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
MW-8	1505875-003A	Water	05/21/2015 10:05 GC2B	105201
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	130		50 1	05/23/2015 14:56
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
C9	111		70-130	05/23/2015 14:56
Analyst(s): HD		<u>Anal</u>	ytical Comments: e2	

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-18	1505875-004A	Water	05/21/20	015 14:20 GC2B	105201
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	2000		50	1	05/23/2015 13:40
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	112		70-130		05/23/2015 13:40
Analyst(s): HD		<u>Anal</u>	tical Com	ments: e4,e2	

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Project:
 #731637001; Connell Auto
 Extraction Method:
 E365.1

 Date Received:
 5/21/15 19:34
 Analytical Method:
 E365.1

 Date Prepared:
 5/21/15
 Unit:
 mg/L

Total Phosphorous as P

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-3	1505875-001K	Water/TOTAL	05/21/20	15 12:10 SKALAR	105212
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Phosphorous as P	0.25		0.040	1	05/22/2015 14:38

Analyst(s): LP

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-6	1505875-002K	Water/TOTAL	05/21/20	15 13:15 SKALAR	105212
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Phosphorous as P	0.54		0.040	1	05/22/2015 14:42

Analyst(s): LP

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-8	1505875-003K	Water/TOTAL	05/21/20	15 10:05 SKALAR	105212
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Phosphorous as P	0.13		0.040	1	05/22/2015 14:46

Analyst(s): LP

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-18	1505875-004K	Water/TOTAL	05/21/20	15 14:20 SKALAR	105212
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Total Phosphorous as P	0.14		0.040	1	05/22/2015 14:50

Analyst(s): LP

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/26/15Date Analyzed: 5/26/15Instrument: IC1Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105374

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L

Sample ID: MB/LCS-105374

1505875-002HMS/MSD

QC Summary Report for E300.1							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Sulfite	ND	1.07	0.10	1	-	107	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfite	1.01	0.972	1	ND	101	97	80-120	3.88	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/20/15

Date Analyzed: 5/20/15 - 5/21/15

Instrument: IC3
Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105178

Extraction Method: E300.1

Analytical Method: E300.1

Unit: mg/L

Sample ID: MB/LCS-105178

1505812-001BMS/MSD

QC Summary	Report for	E300.1
------------	------------	--------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Nitrate as N	ND	0.907	0.10	1	-	91	85-115
Nitrate as NO3 ⁻	ND	4.02	0.45	4.4	-	91	85-115
Nitrite as N	ND	0.944	0.10	1	-	94	85-115
Nitrite as NO2 ⁻	ND	3.11	0.33	3.3	-	94	85-115
Sulfate	ND	0.969	0.10	1	-	95	85-115

Surrogate Recovery

Formate 0.0916 0.0910 0.10 92 91 90-115

Result	Result	Val	Val	%REC	%REC	Limits		
								Limit
0.933	1.01	1	ND	93	101	85-115	7.49	15
4.13	4.45	4.4	ND	94	101	85-115	7.49	15
0.957	1.05	1	ND	96	105	85-115	9.00	15
3.16	3.46	3.3	ND	96	105	85-115	9.00	15
NR	NR	1	13	NR	NR	85-115	NR	15
0.0906	0.0899	0.10		91	90	90-115	0.812	10
	4.13 0.957 3.16 NR	4.13 4.45 0.957 1.05 3.16 3.46 NR NR	4.13 4.45 4.4 0.957 1.05 1 3.16 3.46 3.3 NR NR 1	4.13 4.45 4.4 ND 0.957 1.05 1 ND 3.16 3.46 3.3 ND NR NR 1 13	4.13 4.45 4.4 ND 94 0.957 1.05 1 ND 96 3.16 3.46 3.3 ND 96 NR NR 1 13 NR	4.13 4.45 4.4 ND 94 101 0.957 1.05 1 ND 96 105 3.16 3.46 3.3 ND 96 105 NR NR 1 13 NR NR	4.13 4.45 4.4 ND 94 101 85-115 0.957 1.05 1 ND 96 105 85-115 3.16 3.46 3.3 ND 96 105 85-115 NR NR 1 13 NR NR 85-115	4.13 4.45 4.4 ND 94 101 85-115 7.49 0.957 1.05 1 ND 96 105 85-115 9.00 3.16 3.46 3.3 ND 96 105 85-115 9.00 NR NR 1 13 NR NR 85-115 NR

Quality Control Report

Client: Treadwell & Rollo

Date Prepared:5/27/15Date Analyzed:5/27/15Instrument:GC28

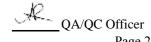
Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875 **BatchID:** 105459

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$


Sample ID: MB/LCS-105459

1505866-019BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	10.2	0.50	10	-	102	54-140
Benzene	ND	9.96	0.50	10	-	100	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	=	-	-	-
Bromoform	ND	-	0.50	=	-	-	-
Bromomethane	ND	-	0.50	=	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	41.2	2.0	40	-	103	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	9.50	0.50	10	-	95	43-157
Chloroethane	ND	-	0.50	-	-	-	_
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	9.90	0.50	10	-	99	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	10.1	0.50	10	-	101	66-125
1,1-Dichloroethene	ND	10.3	0.50	10	-	103	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	_	-	_	-

(Cont.)

Quality Control Report

Client: Treadwell & Rollo

Date Prepared:5/27/15Date Analyzed:5/27/15Instrument:GC28

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875 **BatchID:** 105459

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-105459

1505866-019BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	9.88	0.50	10	-	99	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	9.66	0.50	10	-	97	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	10.0	0.50	10	-	100	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	9.72	0.50	10	-	97	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	9.68	0.50	10	-	97	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	28.2	28.0		25	113	112	70-130
Toluene-d8	26.9	27.4		25	108	110	70-130
4-BFB	2.56	2.61		2.5	102	105	70-130

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

1505875 **Date Prepared:** 5/27/15 **BatchID:** 105459 **Date Analyzed:** 5/27/15 **Extraction Method: SW5030B Instrument:** GC28 **Analytical Method:** SW8260B Matrix: Water Unit: μg/L

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105459

1505866-019BMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	10.8	11.5	10	ND	108	115	69-139	6.80	20
Benzene	10.4	10.9	10	ND	103	108	69-141	4.55	20
t-Butyl alcohol (TBA)	45.1	49.1	40	ND	113	123	41-152	8.50	20
Chlorobenzene	9.78	10.3	10	ND	98	103	77-120	4.96	20
1,2-Dibromoethane (EDB)	10.4	11.0	10	ND	104	110	76-135	5.88	20
1,2-Dichloroethane (1,2-DCA)	10.6	11.2	10	ND	106	112	73-139	5.75	20
1,1-Dichloroethene	10.7	11.0	10	ND	107	110	59-140	3.59	20
Diisopropyl ether (DIPE)	10.2	10.9	10	ND	102	109	72-140	6.02	20
Ethyl tert-butyl ether (ETBE)	10.1	10.8	10	ND	101	108	71-140	5.97	20
Methyl-t-butyl ether (MTBE)	10.8	11.6	10	ND	108	116	73-139	7.24	20
Toluene	9.99	10.4	10	ND	99	103	71-128	3.97	20
Trichloroethene	10.0	10.3	10	ND	100	103	64-132	3.13	20
Surrogate Recovery									
Dibromofluoromethane	28.1	28.6	25		112	114	70-130	1.83	20
Toluene-d8	27.3	27.3	25		109	109	70-130	0	20
4-BFB	2.57	2.61	2.5		103	105	70-130	1.71	20

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Date Prepared:
 5/27/15 - 5/28/15
 BatchID:
 105445

 Date Analyzed:
 5/27/15
 Extraction Method:
 SM2320B

Date Analyzed:5/27/15Extraction Method:SM2320BInstrument:TitrinoAnalytical Method:SM2320B

Matrix: Water Test Method: SM2320B (Alkalinity)

Project: #731637001; Connell Auto

QC Summary Report for Alkalinity

Lab ID	Analyte	Reporting Units	Sample Result	Sample DF	Dup / Serial Dilution Result	Dup / Serial Dilution DF	RPD	Acceptance Criteria (%)
1505875-001M	Total	mg CaCO₃/L	239	1	238	1	0.587	<20
1505875-002M	Total	mg CaCO ₃ /L	510	1	512	1	0.288	<20
1505875-003M	Total	mg CaCO₃/L	374	1	373	1	0.286	<20
1505875-004M	Total	mg CaCO₃/L	500	1	497	1	0.708	<20

Quality Control Report

Client:Treadwell & RolloWorkOrder:1505875Date Prepared:5/21/15BatchID:105228Date Analyzed:5/22/15Extraction Method:E200.8

Instrument:ICP-MS1Analytical Method:E200.8Matrix:WaterUnit:μg/L

Project: #731637001; Connell Auto Sample ID: MB/LCS-105228

1505869-006AMS/MSD

	QC Sun	nmary Report	for Metals				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	50.8	0.50	50	-	102	85-115
Arsenic	ND	48.3	0.50	50	-	97	85-115
Barium	ND	484	5.0	500	-	97	85-115
Beryllium	ND	52.7	0.50	50	-	105	85-115
Cadmium	ND	50.2	0.25	50	-	100	85-115
Chromium	ND	49.2	0.50	50	-	98	85-115
Cobalt	ND	49.1	0.50	50	-	98	85-115
Copper	ND	49.8	2.0	50	-	99	85-115
Lead	ND	49.8	0.50	50	-	100	85-115
Mercury	ND	1.12	0.025	1.25	-	89	85-115
Molybdenum	ND	49.7	0.50	50	-	99	85-115
Nickel	ND	49.3	0.50	50	-	99	85-115
Selenium	ND	51.2	0.50	50	-	102	85-115
Silver	ND	50.4	0.19	50	-	101	85-115
Thallium	ND	48.1	0.50	50	-	96	85-115
Vanadium	ND	49.4	0.50	50	-	99	85-115
Zinc	ND	504	15	500	-	100	85-115
Surrogate Recovery							
Terbium	751	890		750	100	119	70-130

1505875

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared:5/21/15BatchID:105228Date Analyzed:5/22/15Extraction Method:E200.8Instrument:ICP-MS1Analytical Method:E200.8Matrix:WaterUnit:µg/L

Project: #731637001; Connell Auto Sample ID: MB/LCS-105228

1505869-006AMS/MSD

QC Summary Report for Metals MS MSD SPK **SPKRef** MS MSD MS/MSD **RPD RPD** Analyte Result Result Val Val %REC %REC Limits Limit 52.2 52.1 50 2.3 100 100 70-130 0 20 **Antimony** Arsenic 50.1 49.0 50 1.110 98 96 70-130 2.08 20 500 49.81 100 70-130 1.50 20 **Barium** 543 552 99 Beryllium 47.3 47.7 50 ND 95 95 70-130 0 20 48.2 47.8 96 70-130 0 20 Cadmium 50 ND 96 Chromium 48.4 47.6 50 ND 96 94 70-130 1.79 20 Cobalt 49.1 48.5 50 0.97 96 95 70-130 1.13 20 Copper NR NR 50 3100 NR NR 70-130 NR 20 57.6 57.5 50 11.88 91 91 70-130 0 20 Lead 20 1.09 1.10 1.25 ND 87 87 70-130 0 Mercury Molybdenum 49.8 49.6 50 1.0 98 97 70-130 0.483 20 148 148 50 110 70 70 70-130 0 20 Nickel Selenium 50.7 50 ND 101 100 70-130 1.37 20 50.0 Silver 48.6 48.0 50 0.2003 97 96 70-130 1.18 20 50 ND Thallium 45.2 45.0 90 90 70-130 0 20 Vanadium 50.0 49.0 50 ND 99 97 70-130 2.18 20 Zinc NR NR 500 3600 NR NR 70-130 NR 20 **Surrogate Recovery** Terbium 762 758 750 102 101 70-130 0.539 20

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Date Prepared:
 5/22/15
 BatchID:
 105312

Date Analyzed:5/22/15Extraction Method:SM3500-Fe B4cInstrument:SPECTROPHOTOMETERAnalytical Method:SM3500-Fe B4c

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105312

1505875-001EMS/MSD

QC Summary Report for SM3500 Fe B4c

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ferrous Iron	ND	207	50	200	-	104	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Ferrous Iron	208	208	200	ND	104	104	70-130	0	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/21/15Date Analyzed: 5/22/15Instrument: ICP-MS1Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105228

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Sample ID: MB/LCS-105228

1505869-006AMS/MSD

	QC Sur	nmary R	eport fo	or Metals						
Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC		_CS _imits
Iron	ND	503		20	500	-		101	8	35-115
Manganese	ND	515		20	500	-		103	8	35-115
Surrogate Recovery										
Terbium	751	890			750	10	00	119	7	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit	-	RPD	RPD Limit
Iron	920	905	500	440	96	93	70-13	30	1.56	20
Manganese	769	756	500	270	99	96	70-13	30	1.68	20
Surrogate Recovery										
Terbium	762	758	750		102	101	70-13	30	0.539	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/27/15

Date Analyzed: 5/27/15 - 5/28/15

Instrument: GC3, GC7

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105444 **Extraction Method:** SW5030B

Analytical Method: SW8021B/8015Bm

Unit: $\mu g/L$

Sample ID: MB/LCS-105444

1505892-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	63.2	40	60	-	105	70-130
MTBE	ND	10.6	5.0	10	-	106	70-130
Benzene	ND	11.2	0.50	10	-	112	70-130
Toluene	ND	11.2	0.50	10	-	112	70-130
Ethylbenzene	ND	11.4	0.50	10	-	114	70-130
Xylenes	ND	34.3	0.50	30	-	114	70-130

Surrogate Recovery

aaa-TFT 9.64 10.2 10 96 102 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	57.4	57.3	60	ND	96	96	70-130	0	20
MTBE	9.59	10.8	10	ND	96	107	70-130	11.3	20
Benzene	10.6	10.6	10	ND	106	106	70-130	0	20
Toluene	10.9	11.2	10	ND	109	112	70-130	2.81	20
Ethylbenzene	10.8	10.8	10	ND	107	108	70-130	0.645	20
Xylenes	33.5	33.2	30	ND	112	111	70-130	0.824	20
Surrogate Recovery									
aaa-TFT	10.4	10.1	10		104	101	70-130	2.49	20

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505875

 Date Prepared:
 5/26/15
 BatchID:
 105449

Date Analyzed: 5/27/15 Extraction Method: SW5030B

Instrument: GC3 Analytical Method: SW8021B/8015Bm

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \end{tabular}$

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105449

1505838-002AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	59.2	40	60	-	99	70-130
MTBE	ND	12.3	5.0	10	-	123	70-130
Benzene	ND	12.0	0.50	10	-	119	70-130
Toluene	ND	12.1	0.50	10	-	121	70-130
Ethylbenzene	ND	12.1	0.50	10	-	121	70-130
Xylenes	ND	36.1	0.50	30	-	120	70-130

Surrogate Recovery

aaa-TFT 10.1 10.0 10 101 100 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	65.5	66.4	60	ND	109	111	70-130	1.41	20
MTBE	11.0	11.2	10	ND	110	112	70-130	2.08	20
Benzene	11.0	10.9	10	ND	110	109	70-130	1.50	20
Toluene	11.1	11.0	10	ND	108	107	70-130	1.01	20
Ethylbenzene	11.3	11.0	10	ND	113	110	70-130	1.95	20
Xylenes	33.6	33.3	30	ND	112	111	70-130	0.848	20
Surrogate Recovery									
aaa-TFT	9.94	9.56	10		99	96	70-130	3.83	20

Matrix:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

μg/L

Quality Control Report

Client: Treadwell & Rollo WorkOrder: 1505875 **Date Prepared:** 6/1/15 **BatchID:** 105675 **Date Analyzed:** 6/1/15 **Extraction Method:** RSK175 **Instrument:** GC26 **Analytical Method:** RSK175 Water

Project: Sample ID: #731637001; Connell Auto MB/LCS-105675

QC Summary Report for RSK175										
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits			
Methane	ND	1.33	0.10	1.17	- ,	113	70-130			

Unit:

1505875

Quality Control Report

Client: Treadwell & Rollo WorkOrder:

Date Prepared:5/22/15BatchID:105311Date Analyzed:5/22/15Extraction Method:SM4500 S-2 D

Instrument: SPECTROPHOTOMETER Analytical Method: SM4500 S-2 D

Matrix: Water Unit: mg/L

Project: #731637001; Connell Auto Sample ID: MB/LCS-105311

1505875-003IMS/MSD

	QC Summa	ary Report Fo	or SM4500S2L)			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Sulfide	ND	2.71	0.050	2.5	-	108	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfide	2.51	2.44	2.5	ND	100	98	75-125	2.71	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/26/15Date Analyzed: 5/26/15Instrument: WetChemMatrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105427

Extraction Method: SM2540C **Analytical Method:** SM2540C

Unit: mg/L

QC Summary Report for Total Dissolved Solids									
SampID	Sample Result	Sample DF	Dup / Serial Dilution Result	Dup / Serial Dilution DF	RPD	Acceptance Criteria (%)			
1505875-001L	476	1	498	2	4.52	<20			

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/22/15 **Date Analyzed:** 5/22/15

Instrument: TOC_SHIMADZU

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder:

1505875

BatchID: 105273

Extraction Method: E415.3

Analytical Method: E415.3

Unit: mg/L

Sample ID: MB/LCS-105273

1505799-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Total Nitrogen	ND	51.6	0.70	50	-	103	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Nitrogen	52.1	52.6	50	0.8014	103	104	70-130	1.03	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/22/15 **Date Analyzed:** 5/22/15

Instrument: TOC_SHIMADZU

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105273

Extraction Method: E415.3 **Analytical Method:** E415.3

Unit: mg/L

Sample ID: MB/LCS-105273

1505799-001AMS/MSD

	QC Summary Report for E415.3							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limit	

TOC ND 47.2 0.30 50 - 94 80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TOC	48.6	49.4	50	2.659	92	94	70-130	1.59	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/21/15

 Date Analyzed:
 5/22/15 - 5/28/15

 Instrument:
 GC2B, GC6B

Matrix: Water

Project: #731637001; Connell Auto

WorkOrder: 1505875

BatchID: 105201

Extraction Method: SW3510C **Analytical Method:** SW8015B

Unit: $\mu g/L$

Sample ID: MB/LCS-105201

QC Report for SW8015B w/out SG Clean-Up												
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits					
TPH-Diesel (C10-C23)	ND	1130	50	1000	_	113	61-157					
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-					
Surrogate Recovery												
C9	562	706		625	90	113	70-134					

1505875

Quality Control Report

Client:Treadwell & RolloWorkOrder:Date Prepared:5/21/15BatchID:

Date Prepared:5/21/15BatchID:105212Date Analyzed:5/21/15Extraction Method:E365.1Instrument:SKALARAnalytical Method:E365.1Matrix:WaterUnit:mg/L

Project: #731637001; Connell Auto **Sample ID:** MB/LCS-105212

1505601-002AMS/MSD

	QC Sun	nmary Report	for E365.1				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Total Phosphorous as P	ND	0.832	0.040	0.80	-	104	90-110

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Phosphorous as P	NR	NR	0.80	6.014	NR	NR	80-120	NR	20

CHAIN-OF-CUSTODY RECORD

Page 1 of

1534 W Pittsbur (925) 2:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1505875 ClientCode: TWRF

WaterTrax	WriteOn	✓ EDF	Excel	■ EQuIS	🕢 Email	HardCopy	ThirdParty	☐ J-fla
-----------	---------	--------------	-------	---------	---------	----------	------------	---------

Report to: Bill to: Requested TAT: 5 days

Annie Lee Email: alee@langan.com Accounts Payable Treadwell & Rollo cc/3rd Party: Treadwell & Rollo

555 Montgomery St., Suite 1300 PO: 555 Montgomery St., Suite 1300 Date Received: 05/21/2015
San Francisco, CA 94111 ProjectNo: #731637001; Connell Auto San Francisco, CA 94111 Date Printed: 05/22/2015

(415) 955-5200 FAX: (415) 955-9041 Langan_InvoiceCapture@concursolutio

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1505875-001	MW-3	Water	5/21/2015 12:10		Н	G	В	М		Е	J	Α	В	F	I	L
1505875-002	MW-6	Water	5/21/2015 13:15		Н	G	В	M	N	Е	J	Α		F	I	L
1505875-003	MW-8	Water	5/21/2015 10:05		Н	G	В	М		E	J	Α		F	I	L
1505875-004	MW-18	Water	5/21/2015 14:20		Н	G	В	М	N	E	J	Α		F	I	L
1505875-005	Trip Blank	Water	5/21/2015 7:30				Α					В	Α			

Test Legend:

1	300_1_Sulfite_W	2	300_1_W		3	8260VOC_W	4	Alka(spe)_W	5	CAM17MS_FF_DISS
6	FE2_W	7	FEMNMS_W		8	G-MBTEX_W	9	PREDF REPORT	10	RSK175_W
11	SULFIDE_W	12	TDS_W]						

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Prepared by: Jena Alfaro

Comments: SEND HARD COPY/ Always notify the PM when TAT is not going to be met! JEL 9-9-14

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

CHAIN-OF-CUSTODY RECORD

Page	1	of	
------	---	----	--

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1505875 ClientCode: TWRF

	WriteOn	✓ EDF	Excel	EQuiS	∠ Email	HardCop	y I hirdParty	J-flag
Report to:			Bill	to:		R	equested TAT:	5 days
Annie Lee Treadwell & Rollo	Email: alee@langan.com cc/3rd Party:	1		Accounts Payal Treadwell & Ro				-
555 Montgomery St., Suite 1300	PO:		Ę	555 Montgomer	ry St., Suite 130	D_0 D	ate Received:	05/21/2015
San Francisco, CA 94111 (415) 955-5200 FAX: (415) 955-9041	ProjectNo: #731637001; Con	nell Auto		San Francisco, Langan_Invoice		_	ate Printed:	05/22/2015

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	13	14	15	16	17	18	19	20	21	22	23	24
1505875-001	MW-3	Water	5/21/2015 12:10		D	С	K	Α								
1505875-002	MW-6	Water	5/21/2015 13:15		D	С	K	Α								
1505875-003	MW-8	Water	5/21/2015 10:05		D	С	K	Α								
1505875-004	MW-18	Water	5/21/2015 14:20		D	С	K	Α								
1505875-005	Trip Blank	Water	5/21/2015 7:30													

Test Legend:

13	TN_W	TOC_W	TotalP_W	16 TPH(D)_W	17
18		19	20	21	22
23		24			

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments: SEND HARD COPY/ Always notify the PM when TAT is not going to be met! JEL 9-9-14

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Jena Alfaro

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO
QC Level: LEVEL 2
Work Order: 1505875
Project: #731637001; Connell Auto
Client Contact: Annie Lee
Date Received: 5/21/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn	xcel]Fax ✓ Email	HardCo	ppy ThirdPart	y 🔲 J	-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505875-001A	MW-3	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl & 2-aVOA		5/21/2015 12:10	5 days	Present	
1505875-001B	MW-3	Water	SW8260B (VOCs) <1,2-Dichloroethane (1,2-DCA), Benzene, Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>	2	VOA w/ HCl		5/21/2015 12:10	5 days	Present	
1505875-001C	MW-3	Water	E415.3 (TOC)	2	VOA w/ HCl		5/21/2015 12:10	5 days	Present	
1505875-001D	MW-3	Water	E415.3 (Total Nitrogen)	2	VOA w/ HCl		5/21/2015 12:10	5 days	Present	
1505875-001E	MW-3	Water	SM3500 Fe B4c (Ferrous Iron)	2	aVOA w/ concentrated HCl (1.6ml)		5/21/2015 12:10	5 days	Present	
1505875-001F	MW-3	Water	RSK175 <methane_4></methane_4>	2	aVOA w/ H2SO4		5/21/2015 12:10	5 days	Present	
1505875-001G	MW-3	Water	E300.1 (Inorganic Anions) <nitrate &="" as="" n,="" nitrate="" nitrite="" no3<sup="">-, Nitrite as N, Nitrite as NO2⁻, Sulfate></nitrate>	1	125mL HDPE, unprsv.		5/21/2015 12:10	5 days	Present	
1505875-001H	MW-3	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/21/2015 12:10	5 days	Present	
1505875-0011	MW-3	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/21/2015 12:10	5 days	Present	
1505875-001J	MW-3	Water	E200.8 (Fe & Mn)	1	250mL HDPE w/ HNO3		5/21/2015 12:10	5 days	Present	
1505875-001K	MW-3	Water	E365.1 (Total Phosphorous as P)	1	500mL aG w/ H2SO4		5/21/2015 12:10	5 days	Present	
1505875-001L	MW-3	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		5/21/2015 12:10	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO
QC Level: LEVEL 2
Work Order: 1505875
Project: #731637001: Connell Auto
Client Contact: Annie Lee
Date Received: 5/21/2015

Project: #731637001; Connell Auto Client Contact: Annie Lee Date Received: 5/21/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn	Excel	Fax Email	HardC	opyThirdPart	у 🔲	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505875-001M	MW-3	Water	SM2320B (Alkalinity)	1	500mL HDPE, unprsv.		5/21/2015 12:10	5 days	Present	
1505875-002A	MW-6	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl & 2-aVOA		5/21/2015 13:15	5 days	Present	
1505875-002B	MW-6	Water	SW8260B (VOCs) <1,2-Dichloroethane (1,2-DCA), Benzene, Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>	2	VOA w/ HCl		5/21/2015 13:15	5 days	Present	
1505875-002C	MW-6	Water	E415.3 (TOC)	2	VOA w/ HCl		5/21/2015 13:15	5 days	Present	
1505875-002D	MW-6	Water	E415.3 (Total Nitrogen)	2	VOA w/ HCl		5/21/2015 13:15	5 days	Present	
1505875-002E	MW-6	Water	SM3500 Fe B4c (Ferrous Iron)	2	aVOA w/ concentrated HCl (1.6ml)		5/21/2015 13:15	5 days	Present	
1505875-002F	MW-6	Water	RSK175 <methane_4></methane_4>	2	aVOA w/ H2SO4		5/21/2015 13:15	5 days	Present	
1505875-002G	MW-6	Water	E300.1 (Inorganic Anions) <nitrate &="" as="" n,="" nitrate="" nitrite="" no3<sup="">-, Nitrite as N, Nitrite as NO2⁻, Sulfate></nitrate>	1	125mL HDPE, unprsv.		5/21/2015 13:15	5 days	Present	
1505875-002H	MW-6	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/21/2015 13:15	5 days	Present	
1505875-002I	MW-6	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/21/2015 13:15	5 days	Present	
1505875-002J	MW-6	Water	E200.8 (Fe & Mn)	1	250mL HDPE w/ HNO3		5/21/2015 13:15	5 days	Present	
1505875-002K	MW-6	Water	E365.1 (Total Phosphorous as P)	1	500mL aG w/ H2SO4		5/21/2015 13:15	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO

QC Level: LEVEL 2

Work Order: 1505875

Project: #731637001: Connell Auto

Client Contact: Annie Lee

Date Received: 5/21/2015

Project: #731637001; Connell Auto Client Contact: Annie Lee Date Received: 5/21/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn	Excel	Fax Fmail	HardC	opyThirdPart	ty .	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505875-002L	MW-6	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		5/21/2015 13:15	5 days	Present	
1505875-002M	MW-6	Water	SM2320B (Alkalinity)	1	500mL HDPE, unprsv.		5/21/2015 13:15	5 days	Present	
1505875-002N	MW-6	Water	E200.8 (CAM 17) (Dissolved-Field Filtered)	1	250mL HDPE w/ HNO3		5/21/2015 13:15	5 days	Present	
1505875-003A	MW-8	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl & 2-aVOA		5/21/2015 10:05	5 days	Present	
1505875-003B	MW-8	Water	SW8260B (VOCs) <1,2-Dichloroethane (1,2-DCA), Benzene, Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>	2	VOA w/ HCI		5/21/2015 10:05	5 days	Present	
1505875-003C	MW-8	Water	E415.3 (TOC)	2	VOA w/ HCl		5/21/2015 10:05	5 days	Present	
1505875-003D	MW-8	Water	E415.3 (Total Nitrogen)	2	VOA w/ HCl		5/21/2015 10:05	5 days	Present	
1505875-003E	MW-8	Water	SM3500 Fe B4c (Ferrous Iron)	2	aVOA w/ concentrated HCl (1.6ml)		5/21/2015 10:05	5 days	Present	
1505875-003F	MW-8	Water	RSK175 <methane_4></methane_4>	2	aVOA w/ H2SO4		5/21/2015 10:05	5 days	Present	
1505875-003G	MW-8	Water	E300.1 (Inorganic Anions) <nitrate &="" as="" n,="" nitrate="" nitrite="" no3<sup="">-, Nitrite as NO2⁻, Sulfate></nitrate>	1	125mL HDPE, unprsv.		5/21/2015 10:05	5 days	Present	
1505875-003H	MW-8	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/21/2015 10:05	5 days	Present	
1505875-003I	MW-8	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/21/2015 10:05	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO
QC Level: LEVEL 2
Work Order: 1505875
Project: #731637001; Connell Auto
Client Contact: Annie Lee
Date Received: 5/21/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn	Excel]Fax ☑ Email	HardCo	opyThirdPart	у	l-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505875-003J	MW-8	Water	E200.8 (Fe & Mn)	1	250mL HDPE w/ HNO3		5/21/2015 10:05	5 days	Present	
1505875-003K	MW-8	Water	E365.1 (Total Phosphorous as P)	1	500mL aG w/ H2SO4		5/21/2015 10:05	5 days	Present	
1505875-003L	MW-8	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		5/21/2015 10:05	5 days	Present	
1505875-003M	MW-8	Water	SM2320B (Alkalinity)	1	500mL HDPE, unprsv.		5/21/2015 10:05	5 days	Present	
1505875-004A	MW-18	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl & 2-aVOA		5/21/2015 14:20	5 days	Present	
1505875-004B	MW-18	Water	SW8260B (VOCs) <1,2-Dichloroethane (1,2-DCA), Benzene, Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>	2	VOA w/ HCl		5/21/2015 14:20	5 days	Present	
1505875-004C	MW-18	Water	E415.3 (TOC)	2	VOA w/ HCl		5/21/2015 14:20	5 days	Present	
1505875-004D	MW-18	Water	E415.3 (Total Nitrogen)	2	VOA w/ HCl		5/21/2015 14:20	5 days	Present	
1505875-004E	MW-18	Water	SM3500 Fe B4c (Ferrous Iron)	2	aVOA w/ concentrated HCl (1.6ml)		5/21/2015 14:20	5 days	Present	
1505875-004F	MW-18	Water	RSK175 <methane_4></methane_4>	2	aVOA w/ H2SO4		5/21/2015 14:20	5 days	Present	
1505875-004G	MW-18	Water	E300.1 (Inorganic Anions) <nitrate &="" as="" n,="" nitrate="" nitrite="" no3<sup="">-, Nitrite as NO2⁻, Sulfate></nitrate>	1	125mL HDPE, unprsv.		5/21/2015 14:20	5 days	Present	
1505875-004H	MW-18	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/21/2015 14:20	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: TREADWELL & ROLLO
QC Level: LEVEL 2
Work Order: 1505875
Project: #731637001; Connell Auto
Client Contact: Annie Lee
Date Received: 5/21/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		☐ WaterTrax	WriteOn	✓ EDF	Excel]Fax ☑ Email	HardC	opyThirdPar	ty 🗀	J-flag		
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut	
1505875-004I	MW-18	Water	SM4500S2D	(Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/21/2015 14:20	5 days	Present		
1505875-004J	MW-18	Water	E200.8 (Fe &	Mn)	1	250mL HDPE w/ HNO3		5/21/2015 14:20	5 days	Present		
1505875-004K	MW-18	Water	E365.1 (Total	Phosphorous as P)	1	500mL aG w/ H2SO4		5/21/2015 14:20	5 days	Present		
1505875-004L	MW-18	Water	SM2540C (TI	OS)	1	500mL HDPE, unprsv.		5/21/2015 14:20	5 days	Present		
1505875-004M	MW-18	Water	SM2320B (Al	kalinity)	1	500mL HDPE, unprsv.		5/21/2015 14:20	5 days	Present		
1505875-004N	MW-18	Water	E200.8 (CAM Filtered)	17) (Dissolved-Field	1	250mL HDPE w/ HNO3		5/21/2015 14:20	5 days	Present		
1505875-005A	Trip Blank	Water	(1,2-DCA), Bo Methyl-t-buty	OCs) <1,2-Dichloroet enzene, Ethylbenzene, l ether (MTBE), Toluene, Xylenes, Tot		VOA w/ HCl		5/21/2015 7:30	5 days	Present		
1505875-005B	Trip Blank	Water	SW8021B/80	15Bm (G/MBTEX)	2	VOA w/ HCl		5/21/2015 7:30	5 days	Present		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

1505875

					RS AVENUE			CON	DUCT	ANAL	YSIS T	O DET	ECT		LAB McCampbell			DHS#
BLAI TECH SERV			ř.	FAX (40	95112-1105 8) 573-7771 8) 573-0555		(8)				S-2D)				MUST MEET SPECIFICATIONS □ EPA □ LIA		RWQCB REC	GION
CHAIN OF CUST		Naphthalene (8260B)				(SM4500 S				OTHER								
CLIENT Treadwell & Rollo							halene		200,8		e (SM			,	SPECIAL INSTRUCTION	ONS		
SITE Connell Auto							Napht	300.1	ron (E	e e	Sulfide	(175)		-	Invoice and Report to	o: Annie Lee		
	3093 B	roadwa	y			(2)	1,2-DCA,	ate (E	Total I	500 F	SO3-2),	(RSK	15.3)	E365.	Treadwell & Rollo - S		Office	
	Oaklan	d, CA		T		d (801		e, Sulf	lese,	(SM 3	300 SC	thane	n ((E4	orus (415.955.5285	Project No: 7316		- 4
SAMPLE I.D.	DATE	TIME	S = Soil WALLYWW W = H2O	TOTAL	ITAINERS	TPH-g, TPH-d (8015)	втех, мтве,	Nitrate, Nitrite, Sulfate (E300.1)	Total Manganese, Total Iron (E200,8)	Ferrous Iron (SM 3500 Fe)	Sulfite (SM4500	Dissolved Methane (RSK 175)	Total Nitrogen ((E415.3)	Total Phosphorus	alee@langan.com ADD'L INFORMATION	STATUS	OF Require CONDITION	ea LAB SAMPLE#
MM -3	5/2//15		W	18	Various	×	×	9	6	Ø	Ø	B	0	ko .				
Mw-6	1	1315		18		4	0	ю	0	0	0	0	0	D				
MW-8		1005		18		0	0	0	0	0	0	0	9	×				
MW-18	*	1420	*	18	₩	9	0	0	Ø	6	0	Ø	P	صر				-
	<u> </u>					-												
	· :												1					
	-E 79																	
SAMPLING COMPLETED	DATE 3/21/15		SAMPLI		y Willia	an	wo	ng	*	Tuan	D	ang			RESULTS NEEDED NO LATER THAN	Standard		123-
RELEASEDBY		HIPOLOGICA CONTRACTOR	•			DAT	E 21-1		TIME /S	35		RECE	IVED	BY	-/-		DATE 5-21-	TIME 3
RELEASED BY	3	-/		>	7	DAT		1	TIME			RECE		/	3		DATE S 21	118 1450
RELEASED BY						DAT	E	•	TIME			RECE	IVED	BY		J	DATE	TIME
SHIPPED VIA						DAT	TE SEN	ΝT	TIME	SENT		COOL	ER#		GOOD COL HEAD SPA DECHLOR	CE ABSENT NATED IN LAB	APPROPRIAT CONTAINE PRESERV	ERS /ED IN LAB

					RS AVENUE			CON	DUCT	ANAL'	/SIS T	O DET	ECT	LAB McCampbell DHS#		
BLAI TECH SERV				FAX (40	95112-1105 8) 573-7771 8) 573-0555									MUST MEET SPECIFICATIONS □ EPA □ LIA □ LIA		
CHAIN OF CUST	TODY	BTS#	130	521-	WWI] _								OTHER		
Treadwell & Rollo				filtered						*		SPECIAL INSTRUCTIONS				
SITE	Connel	Auto) Field								Invoice and Report to: Annie Lee		
	3093 B	roadwa	у			(E200.8)			B)					Treadwell & Rollo - San Francisco Office		
	Oaklan	d, CA						()(2320					415.955.5285 Project No: 731637001		
			MATRIX Soil HZO HZO	CON	TAINERS	Cam 17 Metals	TOC (E415.3)	TDS (SM2540C)	Alkalinity (SM2320B)					alee@langan.com EDF Required		
SAMPLE I.D.	DATE	TIME	S = Sc W = H	TOTAL		_	100	TDS (Alkali					ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #		
MW-3	5/2//1	5 1210	W	37	varies	\$	×	×	×					4 boiles		
MW-6		1315		到		×	×	×	\checkmark					5 bottles		
MW-8		1005		34			Y	*	Þ					4 bottles		
MW-18	4	1420	*	33	*	×	7	7	×					5 bottles		
1																
								_						. 1		
3																
						4										
	la		0445			4	L,							RESULTS NEEDED		
SAMPLING COMPLETED	DATE 5/21/15	TIME	SAMPLI PERFO	RMED B	WILLI	ople	10	AN	J G					NO LATER THAN Standard		
RELEASED BY	_					DAT	21/13		TIME	3.			IVED BY	DATE TIME 5-21-15 / 53-		
RELEASED BY	2_	-/=		3		DAT		7	TIME	550		RECÉ	IVED BY	DATE 21 5 1650		
RELEASED BY				1	- 10	DAT	Έ	,	TIME			RECE	IVED BY	DATE TIME		
SHIPPED VIA						DAT	E SEN	IT	TIME	SENT		COOL	ER#			

Sample Receipt Checklist

Client Name:	Treadwell & Rollo				Date and Ti	me Received:	5/21/2015 7:34:44 PM
Project Name:	#731637001; Coni	nell Auto			LogIn Revie	wed by:	Jena Alfaro
WorkOrder №:	1505875	Matrix: Water			Carrier:	Bernie Cummii	ns (MAI Courier)
		Chain of C	ustod	y (COC)) Information		
Chain of custody	present?		Yes	✓	No \square		
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample	labels?	Yes	•	No 🗆		
Sample IDs note	ed by Client on COC?		Yes	✓	No \square		
Date and Time o	of collection noted by	Client on COC?	Yes	✓	No \square		
Sampler's name	noted on COC?		Yes	✓	No \square		
		<u>Sampl</u>	e Reco	eipt Info	ormation		
Custody seals int	tact on shipping con	tainer/cooler?	Yes		No \square		NA 🗸
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No \square		
Samples in prope	er containers/bottles	?	Yes	✓	No \square		
Sample containe	ers intact?		Yes	✓	No \square		
Sufficient sample	e volume for indicate	d test?	Yes	•	No 🗆		
		Sample Preservation	on and	Hold T	ime (HT) Infor	mation	
All samples recei	ived within holding ti	me?	Yes	✓	No 🗆		
Sample/Temp Bl	lank temperature			Tem	p: 2.4°C		NA 🗌
Water - VOA vial	ls have zero headspa	ace / no bubbles?	Yes	✓	No \square		NA \square
Sample labels ch	necked for correct pro	eservation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: <	2; 522: <4; 218.7: >8)?	Yes	✓	No 🗌		NA \square
Samples Receive	ed on Ice?		Yes	✓	No 🗆		
		(Ice Type	e: WE	T ICE)		
UCMR3 Samples Total Chlorine		le upon receipt for EPA 522?	Yes		No 🗌		NA 🗸
	tested and acceptabl	e upon receipt for EPA 218.7,			No 🗆		NA 🗹
* NOTE: If the "N	No" box is checked, s	see comments below.					
* NOTE: If the "N	No" box is checked, s	ee comments below.	==:		====	====	======

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1505938

Report Created for: Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

Project Contact: Annie Lee

Project P.O.:

Project Name: 731637001; Connell Auto

Project Received: 05/22/2015

Analytical Report reviewed & approved for release on 06/02/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Treadwell & Rollo

Project: 731637001; Connell Auto

WorkOrder: 1505938

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Treadwell & Rollo

Project: 731637001; Connell Auto

WorkOrder: 1505938

Analytical Qualifiers

S	spike recovery outside accepted recovery limits
a1	sample diluted due to matrix interference
b6	lighter than water immiscible sheen/product is present
c1	surrogate recovery outside of the control limits due to the dilution of the sample.
c2	surrogate recovery outside of the control limits due to matrix interference.
d1	weakly modified or unmodified gasoline is significant
d7	strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
e2	diesel range compounds are significant; no recognizable pattern
e4	gasoline range compounds are significant.
e7	oil range compounds are significant

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:E300.1Date Received:5/22/15 20:45Analytical Method:E300.1Date Prepared:5/27/15Unit:mg/L

Sulfite by IC

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-4	1505938-001D	Water	05/22/20	015 08:55 IC1	105374
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		0.10	1	05/27/2015 03:17

Analyst(s): TD

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-5	1505938-002D	Water	05/22	/2015 09:55 IC1	105374
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/27/2015 10:05

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-7	1505938-003D	Water	05/22/	2015 10:45 IC1	105374
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/27/2015 10:33

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
MW-14	1505938-004D	Water	05/22	/2015 11:30 IC1	105374
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		5.0	50	05/27/2015 11:00

Analyst(s): TD Analytical Comments: a1

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:E300.1Date Received:5/22/15 20:45Analytical Method:E300.1Date Prepared:5/27/15Unit:mg/L

Sulfite by IC

		•			
Client ID	Lab ID	Matrix/ExtType	Date	e Collected Instrument	Batch ID
MW-19	1505938-005D	Water	05/22	2/2015 13:50 IC1	105374
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/27/2015 11:27

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
RW-3A	1505938-006D	Water	05/22/20	15 12:20 IC1	105374
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		0.10	1	05/27/2015 01:00

Analyst(s): TD

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
RW-3B	1505938-007D	Water	05/22/2	2015 12:55 IC1	105374
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/27/2015 11:54

Analyst(s): TD Analytical Comments: a1

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
DUP-1	1505938-008D	Water	05/22/2	015 09:00 IC1	105374
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		0.10	1	05/27/2015 00:06

Analyst(s): TD

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:E300.1Date Received:5/22/15 20:45Analytical Method:E300.1Date Prepared:5/27/15Unit:mg/L

Sulfite by IC

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrument	Batch ID
DUP-2	1505938-009D	Water	05/22/	2015 10:00 IC1	105374
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfite	ND		10	100	05/27/2015 12:21

Analyst(s): TD Analytical Comments: a1

Client: Treadwell & Rollo WorkOrder: 1505938 **Project:** 731637001; Connell Auto **Extraction Method:** E300.1 **Date Received:** 5/22/15 20:45 **Analytical Method:** E300.1 **Date Prepared:** 5/27/15-5/29/15 Unit: mg/L

	Ino	rganic Anions b	y IC		
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-4	1505938-001C	Water	05/22/2015 08:55	IC3	105315
Analytes	Result		RL DF		Date Analyzed
Sulfate	1.0		0.10 1		05/27/2015 19:43
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Formate	100		90-115		05/27/2015 19:43
Analyst(s): TD					
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-5	1505938-002C	Water	05/22/2015 09:55	IC1	105315
<u>Analytes</u>	Result		RL DF		Date Analyzed
Sulfate	100		10 100		05/28/2015 21:56
<u>Surrogates</u>	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
Formate	0	S	90-115		05/28/2015 21:56
Analyst(s): TD		<u>Anal</u> y	vtical Comments: c1		
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-7	1505938-003C	Water	05/22/2015 10:45	IC1	105315
<u>Analytes</u>	<u>Result</u>		RL DF		Date Analyzed
Sulfate	80		10 100		05/28/2015 22:24
<u>Surrogates</u>	REC (%)	Qualifiers	<u>Limits</u>		
Formate	0	S	90-115		05/28/2015 22:24
Analyst(s): TD		<u>Anal</u> y	vtical Comments: c1		
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
MW-14	1505938-004C	Water	05/22/2015 11:30	IC3	105315
Analytes	Result		RL DF		Date Analyzed
Sulfate	21		1.0 10		05/27/2015 22:04
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
Formate	66	S	90-115		05/27/2015 22:04
Analyst(s): TD		Analy	vtical Comments: c1		

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Project:
 731637001; Connell Auto
 Extraction Method:
 E300.1

 Date Received:
 5/22/15 20:45
 Analytical Method:
 E300.1

 Date Prepared:
 5/27/15-5/29/15
 Unit:
 mg/L

	Ino	rganic Anions b	y IC	
Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
MW-19	1505938-005C	Water	05/22/2015 13:50 IC1	105315
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Sulfate	66		5.0 50	05/28/2015 22:51
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>	
Formate	0	S	90-115	05/28/2015 22:51
Analyst(s): TD		Analy	rtical Comments: c1	
Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
RW-3A	1505938-006C	Water	05/22/2015 12:20 IC1	105315
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>	Date Analyzed
Sulfate	0.59		0.10 1	05/28/2015 21:02
<u>Surrogates</u>	<u>REC (%)</u>	Qualifiers	<u>Limits</u>	
Formate	0	S	90-115	05/28/2015 21:02
Analyst(s): TD		<u>Anal</u> y	rtical Comments: c1	
Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
RW-3B	1505938-007C	Water	05/22/2015 12:55 IC1	105315
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Sulfate	69		5.0 50	05/28/2015 23:18
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>	
Formate	0	S	90-115	05/28/2015 23:18
Analyst(s): TD		<u>Anal</u> y	<u>rtical Comments:</u> c1	
Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
DUP-1	1505938-008C	Water	05/22/2015 09:00 IC1	105315
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Sulfate	2.7		0.10 1	05/28/2015 16:57
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	
Formate	95		90-115	05/28/2015 16:57
Analyst(s): TD				

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Project:
 731637001; Connell Auto
 Extraction Method:
 E300.1

 Date Received:
 5/22/15 20:45
 Analytical Method:
 E300.1

 Date Prepared:
 5/27/15-5/29/15
 Unit:
 mg/L

Inorganic Anions by IC

		8	v		
Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
DUP-2	1505938-009C	Water	05/22/20	15 10:00 IC1	105315
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Sulfate	97		10	100	05/29/2015 10:13
<u>Surrogates</u>	REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
Formate	0	S	90-115		05/29/2015 10:13
Analyst(s): TD		<u>Anal</u>	ytical Comr	ments: c1	

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Date Prepared: 6/1/15 **Unit:** $\mu g/L$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
TB-2	1505938-010A	Water	05/22/20	15 08:00	GC10	105707
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		10	1		06/01/2015 11:10
tert-Amyl methyl ether (TAME)	ND		0.50	1		06/01/2015 11:10
Benzene	ND		0.50	1		06/01/2015 11:10
Bromobenzene	ND		0.50	1		06/01/2015 11:10
Bromochloromethane	ND		0.50	1		06/01/2015 11:10
Bromodichloromethane	ND		0.50	1		06/01/2015 11:10
Bromoform	ND		0.50	1		06/01/2015 11:10
Bromomethane	ND		0.50	1		06/01/2015 11:10
2-Butanone (MEK)	ND		2.0	1		06/01/2015 11:10
t-Butyl alcohol (TBA)	ND		2.0	1		06/01/2015 11:10
n-Butyl benzene	ND		0.50	1		06/01/2015 11:10
sec-Butyl benzene	ND		0.50	1		06/01/2015 11:10
tert-Butyl benzene	ND		0.50	1		06/01/2015 11:10
Carbon Disulfide	ND		0.50	1		06/01/2015 11:10
Carbon Tetrachloride	ND		0.50	1		06/01/2015 11:10
Chlorobenzene	ND		0.50	1		06/01/2015 11:10
Chloroethane	ND		0.50	1		06/01/2015 11:10
Chloroform	ND		0.50	1		06/01/2015 11:10
Chloromethane	ND		0.50	1		06/01/2015 11:10
2-Chlorotoluene	ND		0.50	1		06/01/2015 11:10
4-Chlorotoluene	ND		0.50	1		06/01/2015 11:10
Dibromochloromethane	ND		0.50	1		06/01/2015 11:10
1,2-Dibromo-3-chloropropane	ND		0.20	1		06/01/2015 11:10
1,2-Dibromoethane (EDB)	ND		0.50	1		06/01/2015 11:10
Dibromomethane	ND		0.50	1		06/01/2015 11:10
1,2-Dichlorobenzene	ND		0.50	1		06/01/2015 11:10
1,3-Dichlorobenzene	ND		0.50	1		06/01/2015 11:10
1,4-Dichlorobenzene	ND		0.50	1		06/01/2015 11:10
Dichlorodifluoromethane	ND		0.50	1		06/01/2015 11:10
1,1-Dichloroethane	ND		0.50	1		06/01/2015 11:10
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		06/01/2015 11:10
1,1-Dichloroethene	ND		0.50	1		06/01/2015 11:10
cis-1,2-Dichloroethene	ND		0.50	1		06/01/2015 11:10
trans-1,2-Dichloroethene	ND		0.50	1		06/01/2015 11:10
1,2-Dichloropropane	ND		0.50	1		06/01/2015 11:10
1,3-Dichloropropane	ND		0.50	1		06/01/2015 11:10
2,2-Dichloropropane	ND		0.50	1		06/01/2015 11:10
1,1-Dichloropropene	ND		0.50	1		06/01/2015 11:10

(Cont.)

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Date Prepared: 6/1/15 Unit: $\mu g/L$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
TB-2	1505938-010A	Water	05/22/201	15 08:00	GC10	105707
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		06/01/2015 11:10
trans-1,3-Dichloropropene	ND		0.50	1		06/01/2015 11:10
Diisopropyl ether (DIPE)	ND		0.50	1		06/01/2015 11:10
Ethylbenzene	ND		0.50	1		06/01/2015 11:10
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		06/01/2015 11:10
Freon 113	ND		0.50	1		06/01/2015 11:10
Hexachlorobutadiene	ND		0.50	1		06/01/2015 11:10
Hexachloroethane	ND		0.50	1		06/01/2015 11:10
2-Hexanone	ND		0.50	1		06/01/2015 11:10
Isopropylbenzene	ND		0.50	1		06/01/2015 11:10
4-Isopropyl toluene	ND		0.50	1		06/01/2015 11:10
Methyl-t-butyl ether (MTBE)	ND		0.50	1		06/01/2015 11:10
Methylene chloride	ND		0.50	1		06/01/2015 11:10
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		06/01/2015 11:10
Naphthalene	ND		0.50	1		06/01/2015 11:10
n-Propyl benzene	ND		0.50	1		06/01/2015 11:10
Styrene	ND		0.50	1		06/01/2015 11:10
1,1,1,2-Tetrachloroethane	ND		0.50	1		06/01/2015 11:10
1,1,2,2-Tetrachloroethane	ND		0.50	1		06/01/2015 11:10
Tetrachloroethene	ND		0.50	1		06/01/2015 11:10
Toluene	ND		0.50	1		06/01/2015 11:10
1,2,3-Trichlorobenzene	ND		0.50	1		06/01/2015 11:10
1,2,4-Trichlorobenzene	ND		0.50	1		06/01/2015 11:10
1,1,1-Trichloroethane	ND		0.50	1		06/01/2015 11:10
1,1,2-Trichloroethane	ND		0.50	1		06/01/2015 11:10
Trichloroethene	ND		0.50	1		06/01/2015 11:10
Trichlorofluoromethane	ND		0.50	1		06/01/2015 11:10
1,2,3-Trichloropropane	ND		0.50	1		06/01/2015 11:10
1,2,4-Trimethylbenzene	ND		0.50	1		06/01/2015 11:10
1,3,5-Trimethylbenzene	ND		0.50	1		06/01/2015 11:10
Vinyl Chloride	ND		0.50	1		06/01/2015 11:10
Xylenes, Total	ND		0.50	1		06/01/2015 11:10

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Date Prepared: 6/1/15 Unit: $\mu g/L$

Volatile Organics by P&T and GC/MS (Basic Target List)

Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
1505938-010A	Water	05/22/20 ⁻	15 08:00 GC10	105707
Result		<u>RL</u>	<u>DF</u>	Date Analyzed
<u>REC (%)</u>		<u>Limits</u>		
92		70-130		06/01/2015 11:10
88		70-130		06/01/2015 11:10
80		70-130		06/01/2015 11:10
	1505938-010A Result REC (%) 92 88	1505938-010A Water Result REC (%) 92 88	1505938-010A Water 05/22/20° Result RL REC (%) Limits 92 70-130 88 70-130	1505938-010A Water 05/22/2015 08:00 GC10 Result RL DF REC (%) Limits 92 70-130 88 70-130

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Volatile	Organics	by P&T	and	GC/MS
, Oletti		~,		COLLIE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-4	1505938-001B	Water	05/22/20	015 08:55 GC28	105634
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	1400		250	500	05/31/2015 00:52
1,2-Dichloroethane (1,2-DCA)	ND		250	500	05/31/2015 00:52
1,1-Dichloroethene	ND		250	500	05/31/2015 00:52
Ethylbenzene	1200		250	500	05/31/2015 00:52
Methyl-t-butyl ether (MTBE)	ND		250	500	05/31/2015 00:52
Naphthalene	780		250	500	05/31/2015 00:52
Toluene	5300		250	500	05/31/2015 00:52
Xylenes, Total	7100		250	500	05/31/2015 00:52
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	112		70-130		05/31/2015 00:52
Toluene-d8	110		70-130		05/31/2015 00:52
4-BFB	102		70-130		05/31/2015 00:52
Analyst(s): KF					

Analysi(s).	NΓ	

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
MW-5	1505938-002B	Water	05/22/20	15 09:55	GC28	105634
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.50	1		05/30/2015 12:15
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/30/2015 12:15
1,1-Dichloroethene	ND		0.50	1		05/30/2015 12:15
Ethylbenzene	ND		0.50	1		05/30/2015 12:15
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/30/2015 12:15
Naphthalene	ND		0.50	1		05/30/2015 12:15
Toluene	0.50		0.50	1		05/30/2015 12:15
Xylenes, Total	1.4		0.50	1		05/30/2015 12:15
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	110		70-130			05/30/2015 12:15
Toluene-d8	111		70-130			05/30/2015 12:15
4-BFB	101		70-130			05/30/2015 12:15
Analyst(s): KF						

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
MW-7	1505938-003B	Water	05/22/20	15 10:45	GC28	105634
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.50	1		05/30/2015 01:55
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/30/2015 01:55
1,1-Dichloroethene	ND		0.50	1		05/30/2015 01:55
Ethylbenzene	ND		0.50	1		05/30/2015 01:55
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/30/2015 01:55
Naphthalene	ND		0.50	1		05/30/2015 01:55
Toluene	ND		0.50	1		05/30/2015 01:55
Xylenes, Total	0.63		0.50	1		05/30/2015 01:55
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	109		70-130			05/30/2015 01:55
Toluene-d8	112		70-130			05/30/2015 01:55
4-BFB	102		70-130			05/30/2015 01:55
Analyst(s): KF						

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrum	ent Batch ID
MW-14	1505938-004B	Water	05/22/2	015 11:30 GC28	105634
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	250		5.0	10	05/30/2015 13:30
1,2-Dichloroethane (1,2-DCA)	ND		5.0	10	05/30/2015 13:30
1,1-Dichloroethene	ND		5.0	10	05/30/2015 13:30
Ethylbenzene	110		5.0	10	05/30/2015 13:30
Methyl-t-butyl ether (MTBE)	ND		5.0	10	05/30/2015 13:30
Naphthalene	100		5.0	10	05/30/2015 13:30
Toluene	90		5.0	10	05/30/2015 13:30
Xylenes, Total	850		5.0	10	05/30/2015 13:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	113		70-130		05/30/2015 13:30
Toluene-d8	112		70-130		05/30/2015 13:30
4-BFB	96		70-130		05/30/2015 13:30

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrum	ent Batch ID
MW-19	1505938-005B	Water	05/22/20	15 13:50 GC28	105634
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.50	1	05/30/2015 14:07
1,2-Dichloroethane (1,2-DCA)	1.9		0.50	1	05/30/2015 14:07
1,1-Dichloroethene	ND		0.50	1	05/30/2015 14:07
Ethylbenzene	ND		0.50	1	05/30/2015 14:07
Methyl-t-butyl ether (MTBE)	ND		0.50	1	05/30/2015 14:07
Naphthalene	ND		0.50	1	05/30/2015 14:07
Toluene	ND		0.50	1	05/30/2015 14:07
Xylenes, Total	0.69		0.50	1	05/30/2015 14:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	111		70-130		05/30/2015 14:07
Toluene-d8	111		70-130		05/30/2015 14:07
4-BFB	101		70-130		05/30/2015 14:07
Analyst(s): KF					

Anai	<u>ysi(s).</u>	NΓ

Client ID	Lab ID	Matrix/ExtType	Date	Collected	Instrument	Batch ID
RW-3A	1505938-006B	Water	05/22/	/2015 12:20	GC28	105634
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	1100		25	50		05/30/2015 14:45
1,2-Dichloroethane (1,2-DCA)	ND		25	50		05/30/2015 14:45
1,1-Dichloroethene	ND		25	50		05/30/2015 14:45
Ethylbenzene	170		25	50		05/30/2015 14:45
Methyl-t-butyl ether (MTBE)	ND		25	50		05/30/2015 14:45
Naphthalene	260		25	50		05/30/2015 14:45
Toluene	190		25	50		05/30/2015 14:45
Xylenes, Total	2700		25	50		05/30/2015 14:45
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	<u>i</u>		
Dibromofluoromethane	112		70-13	0		05/30/2015 14:45
Toluene-d8	111		70-13	0		05/30/2015 14:45
4-BFB	97		70-13	0		05/30/2015 14:45
Analyst(s): KF						

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Volatile	Organics	bv	P&T	and	GC/MS
, oregine		~.,		~~~	COLLIE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instru	ment Batch ID
RW-3B	1505938-007B	Water	05/22/20)15 12:55 GC28	105634
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.50	1	05/30/2015 15:24
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	05/30/2015 15:24
1,1-Dichloroethene	ND		0.50	1	05/30/2015 15:24
Ethylbenzene	ND		0.50	1	05/30/2015 15:24
Methyl-t-butyl ether (MTBE)	ND		0.50	1	05/30/2015 15:24
Naphthalene	ND		0.50	1	05/30/2015 15:24
Toluene	ND		0.50	1	05/30/2015 15:24
Xylenes, Total	0.92		0.50	1	05/30/2015 15:24
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	112		70-130		05/30/2015 15:24
Toluene-d8	111		70-130		05/30/2015 15:24
4-BFB	100		70-130		05/30/2015 15:24
Analyst(s): KF		<u>Anal</u>	ytical Com	ments: b6	

Client ID	Lab ID	Matrix/ExtType	Date C	Collected	Instrument	Batch ID
DUP-1	1505938-008B	Water	05/22/2	015 09:00	GC28	105634
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	1300		100	200		05/30/2015 16:02
1,2-Dichloroethane (1,2-DCA)	ND		100	200		05/30/2015 16:02
1,1-Dichloroethene	ND		100	200		05/30/2015 16:02
Ethylbenzene	1000		100	200		05/30/2015 16:02
Methyl-t-butyl ether (MTBE)	ND		100	200		05/30/2015 16:02
Naphthalene	700		100	200		05/30/2015 16:02
Toluene	5100		100	200		05/30/2015 16:02
Xylenes, Total	6500		100	200		05/30/2015 16:02
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	113		70-130			05/30/2015 16:02
Toluene-d8	108		70-130			05/30/2015 16:02
4-BFB	94		70-130			05/30/2015 16:02
Analyst(s): KF						

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030BDate Received:5/22/15 20:45Analytical Method:SW8260B

Volatile Organics by P&T and GC/MS

Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
1505938-009B	Water	05/22/20	15 10:00	GC28	105634
Result		<u>RL</u>	<u>DF</u>		Date Analyzed
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
ND		0.50	1		05/31/2015 01:29
1.3		0.50	1		05/31/2015 01:29
<u>REC (%)</u>		<u>Limits</u>			
112		70-130			05/31/2015 01:29
109		70-130			05/31/2015 01:29
107		70-130			05/31/2015 01:29
	1505938-009B Result ND ND ND ND ND ND ND ND ND 1.3 REC (%) 112 109	1505938-009B Water Result ND ND ND ND ND ND ND ND 1.3 REC (%) 112 109	Result RL ND 0.50 1.3 0.50 REC (%) Limits 112 70-130 109 70-130	ND 0.50 1 ND 0.50	ND 0.50 1 ND 0.50

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/22/15 20:45 **Analytical Method:** SW8021B/8015Bm

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrume	nt Batch ID	
MW-4	1505938-001A	Water	Water 05/22/2015 08:55 GC7			
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
TPH(g)	66,000		500	10	05/26/2015 20:02	
MTBE			50	10	05/26/2015 20:02	
Benzene			5.0	10	05/26/2015 20:02	
Toluene			5.0	10	05/26/2015 20:02	
Ethylbenzene			5.0	10	05/26/2015 20:02	
Xylenes			5.0	10	05/26/2015 20:02	
Surrogates	REC (%)		<u>Limits</u>			
aaa-TFT	125		70-130		05/26/2015 20:02	
Analyst(s): SS		<u>Anal</u>	ytical Con	nments: d1,c2		

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-5	1505938-002A	Water	05/22/20	15 09:55 GC7	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/27/2015 01:05
MTBE			5.0	1	05/27/2015 01:05
Benzene			0.50	1	05/27/2015 01:05
Toluene			0.50	1	05/27/2015 01:05
Ethylbenzene			0.50	1	05/27/2015 01:05
Xylenes			0.50	1	05/27/2015 01:05
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	98		70-130		05/27/2015 01:05
Analyst(s): SS					

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/22/15 20:45 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 5/26/15-5/28/15 **Unit:** μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Ins	trument	Batch ID
MW-7	1505938-003A	Water	05/22/20	15 10:45 GC	7	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g)	ND		50	1		05/27/2015 04:36
MTBE			5.0	1		05/27/2015 04:36
Benzene			0.50	1		05/27/2015 04:36
Toluene			0.50	1		05/27/2015 04:36
Ethylbenzene			0.50	1		05/27/2015 04:36
Xylenes			0.50	1		05/27/2015 04:36
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
aaa-TFT	100		70-130			05/27/2015 04:36
Analyst(s): SS						

Client ID Lab ID Matrix/ExtType Date Collected Instrument Batch ID

MW-14	1505938-004A Water	05/22/2015 11:30 GC7	105444
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	5700	500 10	05/27/2015 05:06
MTBE		50 10	05/27/2015 05:06
Benzene		5.0 10	05/27/2015 05:06
Toluene		5.0 10	05/27/2015 05:06
Ethylbenzene		5.0 10	05/27/2015 05:06
Xylenes		5.0 10	05/27/2015 05:06
Surrogates	REC (%)	<u>Limits</u>	
aaa-TFT	107	70-130	05/27/2015 05:06
Analyst(s): SS		Analytical Comments: d1	

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505938 **Project:** 731637001; Connell Auto **Extraction Method: SW5030B**

Date Received: 5/22/15 20:45 Analytical Method: SW8021B/8015Bm

Date Prepared: 5/26/15-5/28/15 Unit: μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-19	1505938-005A	Water	05/22/20	015 13:50 GC7	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/27/2015 05:36
MTBE			5.0	1	05/27/2015 05:36
Benzene			0.50	1	05/27/2015 05:36
Toluene			0.50	1	05/27/2015 05:36
Ethylbenzene			0.50	1	05/27/2015 05:36
Xylenes			0.50	1	05/27/2015 05:36
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	101		70-130		05/27/2015 05:36
Analyst(s): SS					

Analyst(s):

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
RW-3A	1505938-006A	Water	05/22/20	015 12:20 GC7	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	20,000		500	10	05/27/2015 06:06
MTBE			50	10	05/27/2015 06:06
Benzene			5.0	10	05/27/2015 06:06
Toluene			5.0	10	05/27/2015 06:06
Ethylbenzene			5.0	10	05/27/2015 06:06
Xylenes			5.0	10	05/27/2015 06:06
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	112		70-130		05/27/2015 06:06
Analyst(s): SS		<u>Anal</u>	ytical Com	nments: d1	

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/22/15 20:45 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 5/26/15-5/28/15 **Unit:** μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
RW-3B	1505938-007A	Water	05/22/20	015 12:55 GC3	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	190		50	1	05/28/2015 06:40
MTBE			5.0	1	05/28/2015 06:40
Benzene			0.50	1	05/28/2015 06:40
Toluene			0.50	1	05/28/2015 06:40
Ethylbenzene			0.50	1	05/28/2015 06:40
Xylenes			0.50	1	05/28/2015 06:40
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	98		70-130		05/28/2015 06:40
Analyst(s): SS		<u>Anal</u>	ytical Com	ments: d7,b6	

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
DUP-1	1505938-008A	Water	05/22/20	15 09:00 GC3	105444
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	57,000		2500	50	05/28/2015 01:43
MTBE			250	50	05/28/2015 01:43
Benzene			25	50	05/28/2015 01:43
Toluene			25	50	05/28/2015 01:43
Ethylbenzene			25	50	05/28/2015 01:43
Xylenes			25	50	05/28/2015 01:43
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
aaa-TFT	103		70-130		05/28/2015 01:43
Analyst(s): SS		<u>Anal</u>	ytical Com	ments: d1	

Analytical Report

Client:Treadwell & RolloWorkOrder:1505938Project:731637001; Connell AutoExtraction Method:SW5030B

Date Received: 5/22/15 20:45 **Analytical Method:** SW8021B/8015Bm

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
DUP-2	1505938-009A	Water	05/22/20	015 10:00 GC3	105499
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/27/2015 14:10
MTBE			5.0	1	05/27/2015 14:10
Benzene			0.50	1	05/27/2015 14:10
Toluene			0.50	1	05/27/2015 14:10
Ethylbenzene			0.50	1	05/27/2015 14:10
Xylenes			0.50	1	05/27/2015 14:10
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
aaa-TFT	100		70-130		05/27/2015 14:10
Analyst(s): SS					

Analytical Report

Client: Treadwell & Rollo

Project: 731637001; Connell Auto

Date Received: 5/22/15 20:45

Date Prepared: 5/26/15

WorkOrder: 1505938

Extraction Method: SM4500 S-2 D **Analytical Method:** SM4500 S-2 D

Unit: mg/L

Sulfide

		Bulliue				
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
MW-4	1505938-001E	Water	05/22/2015	08:55	SPECTROPHOTOMETE	R 105428
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	0.65		0.050	1		05/26/2015 18:05

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
MW-5	1505938-002E	Water	05/22/201	5 09:55	SPECTROPHOTOMETE	R 105428
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	ND		0.050	1		05/26/2015 18:10

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
MW-7	1505938-003E	Water	05/22/201	5 10:45	SPECTROPHOTOMETER	R 105428
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	ND		0.050	1		05/26/2015 18:15

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
MW-14	1505938-004E	Water	05/22/20	015 11:30	SPECTROPHOTOMETER	105428
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>D</u>	ate Analyzed
Sulfide	1.1		0.10	2	0	5/26/2015 18:20

Analyst(s): RB

Angela Rydelius, Lab Manager

Analytical Report

Client: Treadwell & Rollo

Project: 731637001; Connell Auto

Date Received: 5/22/15 20:45

Date Prepared: 5/26/15

WorkOrder: 1505938

Extraction Method: SM4500 S-2 D **Analytical Method:** SM4500 S-2 D

Unit: mg/L

Sulfide

		Bumae				
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
MW-19	1505938-005E	Water	05/22/2015	13:50	SPECTROPHOTOMETE	R 105428
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	ND		0.050	1		05/26/2015 18:25

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
RW-3A	1505938-006E	Water	05/22/201	5 12:20	SPECTROPHOTOMETER	105428
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u> </u>	Date Analyzed
Sulfide	0.14		0.050	1	C	05/26/2015 18:30

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
RW-3B	1505938-007E	Water	05/22/201	5 12:55	SPECTROPHOTOMETE	R 105428
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfide	2.4		0.10	2		05/26/2015 18:35

Analyst(s): RB

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
DUP-1	1505938-008E	Water	05/22/20	15 09:00	SPECTROPHOTOMETER	105428
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>D</u>	Date Analyzed
Sulfide	0.66		0.050	1	0	05/26/2015 18:40

Analyst(s): RB

Angela Rydelius, Lab Manager

Analytical Report

Client: Treadwell & Rollo WorkOrder: 1505938 **Project:** 731637001; Connell Auto Extraction Method: SM4500 S-2 D

Date Received: 5/22/15 20:45 **Analytical Method:** SM4500 S-2 D

Unit: **Date Prepared:** 5/26/15 mg/L

Sulfide

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected	Instrument	Batch ID
DUP-2	1505938-009E	Water	05/22/2015	10:00	SPECTROPHOTOMETE	R 105428
Analytes	Result		RL [<u>DF</u>		Date Analyzed
Sulfide	ND		0.050	1		05/26/2015 17:50

Analyst(s): RB

Client: Treadwell & Rollo WorkOrder: 1505938 **Project:** 731637001; Connell Auto **Extraction Method:** SW3510C **Date Received:** 5/22/15 20:45 **Analytical Method:** SW8015B **Date Prepared:** 5/22/15 Unit: μg/L

<u>T</u>	Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up									
Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID					
MW-4	1505938-001A	Water	05/22/2	015 08:55 GC11B	105293					
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed					
TPH-Diesel (C10-C23)	14,000		50	1	05/24/2015 16:14					
<u>Surrogates</u>	REC (%)		<u>Limits</u>							
C9	111		70-130		05/24/2015 16:14					
Analyst(s): HD		<u>Anal</u>	ytical Com	nments: e4,e2						
Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID					
MW-5	1505938-002A	Water	05/22/2	015 09:55 GC11B	105293					
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed					

Client ID	Lab ID	Matrix/Ext Type	Date C	onected Instrument	Batch ID
MW-5	1505938-002A	Water	05/22/2015 09:55 GC11B		105293
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1	05/24/2015 17:23
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
C9	108		70-130		05/24/2015 17:23
Analyst(s): HD					

Anal	yst(s)	<u>:</u>	HD

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
MW-7	1505938-003A	Water	05/22/20	015 10:45 GC11B	105293
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1	05/24/2015 18:32
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
C9	110		70-130		05/24/2015 18:32
Analyst(s): HD					

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
MW-14	1505938-004A	Water	05/22/20	15 11:30 GC11A	105293
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1500		500	10	05/24/2015 16:14
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	98		70-130		05/24/2015 16:14
Analyst(s): HD		<u>Anal</u>	ytical Comr	ments: e4	

Client: Treadwell & Rollo WorkOrder: 1505938 **Project:** 731637001; Connell Auto **Extraction Method: SW3510C Date Received:** 5/22/15 20:45 Analytical Method: SW8015B **Date Prepared:** 5/22/15 Unit:

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID		
MW-19	1505938-005A	Water 05/22/2015 13:50 GC11A		1505938-005A Water 05/22/2015 13:50 GC11A		015 13:50 GC11A	105293
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
TPH-Diesel (C10-C23)	ND		50	1	05/24/2015 17:23		
Surrogates	REC (%)		<u>Limits</u>				
C9	100		70-130		05/24/2015 17:23		
Analyst(s): HD							

Client ID	Lab ID	Matrix/ExtType	Date Collec	ed Instrument	Batch ID
RW-3A	1505938-006A	Water	05/22/2015 12	:20 GC11A	105293
Analytes	Result		RL DI		<u>Date Analyzed</u>

TPH-Diesel (C10-C23) 5000 500 10 05/24/2015 18:32 Surrogates **REC (%) Limits**

70-130

Analyst(s): HD Analytical Comments: e4

101

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
RW-3B	1505938-007A	Water	05/22/20	015 12:55 GC11A	105293
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	2600		500	10	05/24/2015 20:49
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	98		70-130		05/24/2015 20:49

Analyst(s): Analytical Comments: e7,e2,e4,b6

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
DUP-1	1505938-008A	Water	05/22/20	15 09:00 GC11A	105293
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	13,000		500	10	05/24/2015 21:57
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	105		70-130		05/24/2015 21:57
Analyst(s): HD		<u>Anal</u>	tical Comr	ments: e4	

C9

05/24/2015 18:32

Analytical Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Project:
 731637001; Connell Auto
 Extraction Method:
 SW3510C

 Date Received:
 5/22/15 20:45
 Analytical Method:
 SW8015B

 Date Prepared:
 5/22/15
 Unit:
 µg/L

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
DUP-2	1505938-009A	Water	05/22/20	015 10:00 GC11A	105293
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1	05/24/2015 23:06
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	103		70-130		05/24/2015 23:06
Analyst(s): HD					

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/26/15 **Date Analyzed:** 5/26/15 **Instrument:** IC1

Matrix: Water
Project: 731637001; Connell Auto

WorkOrder: 1505938

BatchID: 105374

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L

Sample ID: MB/LCS-105374

1505875-002HMS/MSD

QC Summary Report for E300.1									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
Sulfite	ND	1.07	0.10	1	-	107	80-120		

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfite	1.01	0.972	1	ND	101	97	80-120	3.88	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/22/15 **Date Analyzed:** 5/26/15 **Instrument:** IC3

Matrix: Water

Project: 731637001; Connell Auto

WorkOrder:

1505938

BatchID: 105315

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L

Sample ID: MB/LCS-105315

1505921-002AMS/MSD

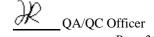
	QC Sur	nmary R	eport f	or E300.1					
Analyte	MB Result	LCS Result		RL	SPK Val			LCS %REC	LCS Limits
Sulfate	ND	1.06		0.10	1	-		101	85-115
Surrogate Recovery									
Formate	0.106	0.101			0.10	10	6	101	90-115
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS		D RPD Limit
Sulfate	NR	NR	1	1200	NR	NR	85-115	NR	15
Surrogate Recovery									
Formate	0.0976	0.0997	0.10		98	100	90-115	2.22	2 10

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Date Prepared:
 6/1/15
 BatchID:
 105707

Date Analyzed:6/1/15Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B


 $\label{eq:matrix:matrix:def} \textbf{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: 731637001; Connell Auto **Sample ID:** MB/LCS-105707

OC Summary	Papart for	r SW2260B
OC Summary	Report 10	C 2007

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	9.23	0.50	10	-	92	54-140
Benzene	ND	9.52	0.50	10	-	95	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	27.5	2.0	40	-	69	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	8.96	0.50	10	-	90	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	8.97	0.50	10	-	90	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	=	-	-	-
Dichlorodifluoromethane	ND	-	0.50	=	-	-	-
1,1-Dichloroethane	ND	-	0.50	=	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	9.91	0.50	10	-	99	66-125
1,1-Dichloroethene	ND	9.54	0.50	10	-	95	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	=	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	_
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-

(Cont.)

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Date Prepared:
 6/1/15
 BatchID:
 105707

Date Analyzed: 6/1/15

Date Analyzed: 6/1/15

Extraction Method: SW5030B

Instrument: GC10

Analytical Method: SW8260B

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Project: 731637001; Connell Auto **Sample ID:** MB/LCS-105707

	QC Sumr	nary Report fo	or SW8260B	3			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	9.86	0.50	10	-	99	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	9.65	0.50	10	-	96	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	9.34	0.50	10	-	93	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	9.37	0.50	10	-	94	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	9.17	0.50	10	-	92	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	22.5	24.0		25	90	96	70-130
Toluene-d8	22.2	22.1		25	89	88	70-130
4-BFB	2.08	2.33		2.5	83	93	70-130

Quality Control Report

Client: Treadwell & Rollo WorkOrder: 1505938 **Date Prepared:** 5/30/15 **BatchID:** 105634

Date Analyzed: 5/29/15 **Extraction Method: SW5030B Instrument:** GC28 **Analytical Method:** SW8260B

Matrix: Water **Unit:** μg/L

Sample ID: Project: 731637001; Connell Auto MB/LCS-105634

QC Summary	Report for	3 W 8 2 0 U B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	11.3	0.50	10	-	113	54-140
Benzene	ND	10.7	0.50	10	-	107	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	47.5	2.0	40	-	119	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	10.0	0.50	10	-	100	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	10.5	0.50	10	-	105	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	11.0	0.50	10	-	110	66-125
1,1-Dichloroethene	ND	10.7	0.50	10	-	107	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	=	-	=	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	_
1,3-Dichloropropane	ND	-	0.50	-	-	-	_
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	_	_	_

(Cont.)

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Date Prepared:
 5/30/15
 BatchID:
 105634

Date Analyzed:5/29/15Extraction Method:SW5030BInstrument:GC28Analytical Method:SW8260B

 $\label{eq:matrix:matrix:def} \textbf{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: 731637001; Connell Auto **Sample ID:** MB/LCS-105634

Ethylbenzene ND - 0.50 - - - Ethyl tert-butyl ether (ETBE) ND 10.8 0.50 10 - 108 Freon 113 ND - 0.50 - - - Hexachlorobutadiene ND - 0.50 - - - Hexachloroethane ND - 0.50 - - - 2-Hexanone ND - 0.50 - - - Stopropylbenzene ND - 0.50 - - - 4-Isopropyl toluene ND - 0.50 - - - Methyl-t-butyl ether (MTBE) ND 11.3 0.50 10 - - Methyl-butyl ether (MTBE) ND 11.3 0.50 10 - - Methyl-butyl ether (MTBE) ND 11.3 0.50 10 - - Methyl-butyl ether (MTBE) ND 11.3 0.50 <th colspan="9">QC Summary Report for SW8260B</th>	QC Summary Report for SW8260B								
Ethylbenzene ND - 0.50 - - - Ethyl tert-butyl ether (ETBE) ND 10.8 0.50 10 - 108 Freon 113 ND - 0.50 - - - Hexachlorobutadiene ND - 0.50 - - - Hexachloroethane ND - 0.50 - - - 2-Hexachloroethane ND - 0.50 - - - Ethylbenzene ND - 0.50 - - - 2-Hexanone ND - 0.50 - - - Hexachloroethane ND - 0.50 - - - 4-Isopropyl benzene ND - 0.50 - - - Methyl-butyl ether (MTBE) ND 11.3 0.50 10 - - 4-Hexphylenchiloride ND - 0.50 - - <th>Analyte</th> <th></th> <th></th> <th>RL</th> <th>-</th> <th></th> <th></th> <th>LCS Limits</th>	Analyte			RL	-			LCS Limits	
Ethyl tert-butyl ether (ETBE)	Diisopropyl ether (DIPE)	ND	11.0	0.50	10	-	111	57-136	
Freon 113	Ethylbenzene	ND	-	0.50	-	-	-	-	
Hexachlorobutadiene ND	Ethyl tert-butyl ether (ETBE)	ND	10.8	0.50	10	-	108	55-137	
Hexachloroethane	Freon 113	ND	-	0.50	-	-	-	-	
2-Hexanone ND -	Hexachlorobutadiene	ND	-	0.50	-	-	-	-	
Sopropylbenzene	Hexachloroethane	ND	-	0.50	-	-	-	-	
Alsopropy toluene ND	2-Hexanone	ND	-	0.50	-	-	-	-	
Methyl-t-butyl ether (MTBE) ND 11.3 0.50 10 - 113 Methylene chloride ND - 0.50 - - - 4-Methyl-2-pentanone (MIBK) ND - 0.50 - - - Naphthalene ND - 0.50 - - - NP 0.50 - - - - - NP 0.50 -	Isopropylbenzene	ND	-	0.50	-	-	-	-	
Methylene chloride ND - 0.50 - - - 4-Methyl-2-pentanone (MIBK) ND - 0.50 - - - Naphthalene ND - 0.50 - - - n-Propyl benzene ND - 0.50 - - - Styrene ND - 0.50 - - - 1,1,1,2-Tetrachloroethane ND - 0.50 - - - 1,1,2,2-Tetrachloroethane ND - 0.50 - - - 1,1,2-Tetrachloroethane ND - 0.50 - - - Toluene ND - 0.50 - - -	4-Isopropyl toluene	ND	-	0.50	-	-	-	-	
4-Methyl-2-pentanone (MIBK) ND - 0.50 - - - Naphthalene ND - 0.50 - - - n-Propyl benzene ND - 0.50 - - - Styrene ND - 0.50 - - - 1,1,2,2-Tetrachloroethane ND - 0.50 - - - 1,1,2,2-Tetrachloroethane ND - 0.50 - - - Tetrachloroethane ND - 0.50 - - - Tetrachloroethane ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND 10.1 0.50 -	Methyl-t-butyl ether (MTBE)	ND	11.3	0.50	10	-	113	53-139	
Naphthalene ND - 0.50 - - n-Propyl benzene ND - 0.50 - - Styrene ND - 0.50 - - 1,1,2-Tetrachloroethane ND - 0.50 - - 1,1,2-Z-Tetrachloroethane ND - 0.50 - - - 1,1,2,2-Tetrachloroethane ND - 0.50 - - - Tetrachloroethane ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND 10.1 0.50 - - - 1,1,1-Trichloroethane ND 10.1 0.50 - - - 1,1,2-Trichl	Methylene chloride	ND	-	0.50	-	-	-	-	
Naphthalene ND - 0.50 - - n-Propyl benzene ND - 0.50 - - Styrene ND - 0.50 - - - 1,1,2-Tetrachloroethane ND - 0.50 - - - Totulene ND 10.1 0.50 10 - - Totulene ND 10.1 0.50 10 - - Totulene ND - 0.50 - - - 1,2,3-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND 10.1 0.50 - - - <	4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-	
ND ND ND ND ND ND ND ND		ND	=		-	-	-	-	
Styrene ND - 0.50 - - - 1,1,1,2-Tetrachloroethane ND - 0.50 - - - 1,1,2,2-Tetrachloroethane ND - 0.50 - - - Tetrachloroethane ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichlorobenzene ND - 0.50 - - - 1,2,4-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - <td><u>-</u></td> <td>ND</td> <td>=</td> <td>0.50</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	<u>-</u>	ND	=	0.50	-	-	-	-	
1,1,2,2-Tetrachloroethane ND - 0.50 - - - Tetrachloroethene ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichlorobenzene ND - 0.50 - - - 1,2,4-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50		ND	=	0.50	-	-	-	-	
1,1,2,2-Tetrachloroethane ND - 0.50 - - - Tetrachloroethene ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichlorobenzene ND - 0.50 - - - 1,2,4-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50	1,1,1,2-Tetrachloroethane	ND	=	0.50	-	-	-	-	
Tetrachloroethene ND - 0.50 - - - Toluene ND 10.1 0.50 10 - 101 1,2,3-Trichlorobenzene ND - 0.50 - - - 1,2,4-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,2-Trichloroethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 <		ND	=	0.50	-	-	-	-	
1,2,3-Trichlorobenzene ND - 0.50 - - - 1,2,4-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2<		ND	-		-	-	-	-	
1,2,4-Trichlorobenzene ND - 0.50 - - 1,1,1-Trichloroethane ND - 0.50 - - 1,1,2-Trichloroethane ND - 0.50 - - - Trichloroethane ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	Toluene	ND	10.1	0.50	10	-	101	52-137	
1,2,4-Trichlorobenzene ND - 0.50 - - - 1,1,1-Trichloroethane ND - 0.50 - - - 1,1,2-Trichloroethane ND - 0.50 - - - Trichloroethane ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	1,2,3-Trichlorobenzene		-	0.50	-	-	-	-	
1,1,2-Trichloroethane ND - 0.50 - - - Trichloroethene ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	-	
1,1,2-Trichloroethane ND - 0.50 - - - Trichloroethene ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	1.1.1-Trichloroethane	ND	-	0.50	-	-	-	_	
Trichloroethene ND 10.1 0.50 10 - 101 Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	_	
Trichlorofluoromethane ND - 0.50 - - - 1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	· ·		10.1		10	-	101	43-157	
1,2,3-Trichloropropane ND - 0.50 - - - 1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	Trichlorofluoromethane	ND	-			-			
1,2,4-Trimethylbenzene ND - 0.50 - - - 1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	_	
1,3,5-Trimethylbenzene ND - 0.50 - - - Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	_	
Vinyl Chloride ND - 0.50 - - - Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	_	
Xylenes, Total ND - 0.50 - - - Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109	-		-		-	-	-	_	
Surrogate Recovery Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109			-		-	-	-	-	
Dibromofluoromethane 28.2 27.9 25 113 112 Toluene-d8 27.2 27.2 25 109 109									
	•	28.2	27.9		25	113	112	70-130	
	Toluene-d8	27.2	27.2		25	109	109	70-130	
								70-130	

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/27/15

Date Analyzed: 5/27/15 - 5/28/15

Instrument: GC3, GC7

Matrix: Water

Project: 731637001; Connell Auto

WorkOrder: 1505938

BatchID: 105444 **Extraction Method:** SW5030B

Analytical Method: SW8021B/8015Bm

Unit: $\mu g/L$

Sample ID: MB/LCS-105444

1505892-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	63.2	40	60	-	105	70-130
MTBE	ND	10.6	5.0	10	-	106	70-130
Benzene	ND	11.2	0.50	10	-	112	70-130
Toluene	ND	11.2	0.50	10	-	112	70-130
Ethylbenzene	ND	11.4	0.50	10	-	114	70-130
Xylenes	ND	34.3	0.50	30	-	114	70-130

Surrogate Recovery

aaa-TFT 9.64 10.2 10 96 102 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	57.4	57.3	60	ND	96	96	70-130	0	20
MTBE	9.59	10.8	10	ND	96	107	70-130	11.3	20
Benzene	10.6	10.6	10	ND	106	106	70-130	0	20
Toluene	10.9	11.2	10	ND	109	112	70-130	2.81	20
Ethylbenzene	10.8	10.8	10	ND	107	108	70-130	0.645	20
Xylenes	33.5	33.2	30	ND	112	111	70-130	0.824	20
Surrogate Recovery									
aaa-TFT	10.4	10.1	10		104	101	70-130	2.49	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/27/15

Date Analyzed: 5/27/15 - 5/29/15

Instrument: GC3, GC7

Matrix: Water

Project: 731637001; Connell Auto

WorkOrder: 1505938

BatchID: 105499 **Extraction Method:** SW5030B

Analytical Method: SW8021B/8015Bm

Unit: $\mu g/L$

Sample ID: MB/LCS-105499

1505938-009AMS/MSD

QC Summary F	Report for	: SW8021B/8015E	3m
--------------	------------	-----------------	----

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	57.5	40	60	-	96	70-130
MTBE	ND	10.4	5.0	10	-	104	70-130
Benzene	ND	10.7	0.50	10	-	107	70-130
Toluene	ND	10.7	0.50	10	-	107	70-130
Ethylbenzene	ND	11.0	0.50	10	-	110	70-130
Xylenes	ND	32.6	0.50	30	-	109	70-130

Surrogate Recovery

aaa-TFT 9.60 10.2 10 96 102 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	66.5	62.1	60	ND	111	103	70-130	6.83	20
MTBE	10.7	10.5	10	ND	107	105	70-130	2.40	20
Benzene	10.6	11.2	10	ND	105	111	70-130	4.82	20
Toluene	11.1	11.8	10	0.7510	104	110	70-130	5.62	20
Ethylbenzene	11.1	11.5	10	ND	108	112	70-130	3.35	20
Xylenes	34.2	36.4	30	1.4	109	116	70-130	6.28	20
Surrogate Recovery									
aaa-TFT	9.63	9.52	10		96	95	70-130	1.19	20

Quality Control Report

 Client:
 Treadwell & Rollo
 WorkOrder:
 1505938

 Date Prepared:
 5/26/15
 BatchID:
 105428

Date Analyzed:5/26/15Extraction Method:SM4500 S-2 DInstrument:SPECTROPHOTOMETERAnalytical Method:SM4500 S-2 D

Matrix: Water Unit: mg/L

Project: 731637001; Connell Auto **Sample ID:** MB/LCS-105428

1505938-009EMS/MSD

QC Summary Report For SM4500S2D

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Sulfide	ND	2.60	0.050	2.5	-	104	80-120

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Sulfide	2.73	2.72	2.5	ND	108	107	75-125	0.454	20

Quality Control Report

Client: Treadwell & Rollo

Date Prepared: 5/22/15

Date Analyzed: 5/24/15 - 5/26/15 **Instrument:** GC11B, GC9a

Matrix: Water

Project: 731637001; Connell Auto

WorkOrder: 1505938

BatchID: 105293

Extraction Method: SW3510C **Analytical Method:** SW8015B

Unit: $\mu g/L$

Sample ID: MB/LCS-105293

QC Report for SW8015B w/out SG Clean-Up											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
TPH-Diesel (C10-C23)	ND	1140	50	1000	-	114	61-157				
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-				
Surrogate Recovery											
C9	723	705		625	116	113	70-134				

ampoeli Analytical, inc 1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1505938 ClientCode: TWRF

	WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	✓ Email	✓ HardCo	opy ThirdParty	☐ J-flag
eport to:				Bill	to:			Requested TAT:	5 days
Annie Lee Treadwell & Rollo	Email: al	ee@langan.com	1		Accounts Paya Treadwell & Ro				
555 Montgomery St., Suite 1300	PO:					ry St., Suite 130	00	Date Received:	05/22/2015
San Francisco, CA 94111 (415) 955-5200 FAX: (415) 955-9041	ProjectNo: 73	31637001; Conn	nell Auto		San Francisco, Langan_Invoice	CA 94111 eCapture@cond		Date Printed:	05/26/2015

								Re	quested	Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1505938-001	MW-4	Water	5/22/2015 8:55		D	С		В	Α	В	E	Α				
1505938-002	MW-5	Water	5/22/2015 9:55		D	С		В	Α		Е	Α				
1505938-003	MW-7	Water	5/22/2015 10:45		D	С		В	Α		Е	Α				
1505938-004	MW-14	Water	5/22/2015 11:30		D	С		В	Α		Е	Α				
1505938-005	MW-19	Water	5/22/2015 13:50		D	С		В	Α		Е	Α				
1505938-006	RW-3A	Water	5/22/2015 12:20		D	С		В	Α		Е	Α				
1505938-007	RW-3B	Water	5/22/2015 12:55		D	С		В	Α		Е	Α				
1505938-008	DUP-1	Water	5/22/2015 9:00		D	С		В	Α		Е	Α				
1505938-009	DUP-2	Water	5/22/2015 10:00		D	С		В	Α		Е	Α				
1505938-010	TB-2	Water	5/22/2015 8:00				Α									

Test Legend:

1	300_1_Sulfite_W	2	300_1_W	3	8260B_W	4	8260VOC_W	5	G-MBTEX_W
6	PREDF REPORT	7	SULFIDE_W	8	TPH(D)_W	9		10	
11		12							

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

Comments: SEND HARD COPY/ Always notify the PM when TAT is not going to be met! JEL 9-9-14

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Agustina Venegas

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505938Project:731637001; Connell AutoClient Contact:Annie LeeDate Received:5/22/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOnEDFE	Excel	Fax ✓ Email	✓ HardC	opyThirdPar	ty 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505938-001A	MW-4	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 8:55	5 days	Present	
1505938-001B	MW-4	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 8:55	5 days	Present	
1505938-001C	MW-4	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 8:55	5 days	Present	
1505938-001D	MW-4	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 8:55	5 days	Present	
1505938-001E	MW-4	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 8:55	5 days	Present	
1505938-002A	MW-5	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 9:55	5 days	None	
1505938-002B	MW-5	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 9:55	5 days	None	
1505938-002C	MW-5	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 9:55	5 days	None	
1505938-002D	MW-5	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 9:55	5 days	None	
1505938-002E	MW-5	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 9:55	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505938Project:731637001; Connell AutoClient Contact:Annie LeeDate Received:5/22/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn ✓ EDF	xcel	Fax 🗾 Email	✓ HardC	opyThirdPar	ty 🗀 -	l-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505938-003A	MW-7	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 10:45	5 days	Present	
1505938-003B	MW-7	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 10:45	5 days	Present	
1505938-003C	MW-7	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 10:45	5 days	Present	
1505938-003D	MW-7	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 10:45	5 days	Present	
1505938-003E	MW-7	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 10:45	5 days	Present	
1505938-004A	MW-14	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 11:30	5 days	Present	
1505938-004B	MW-14	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 11:30	5 days	Present	
1505938-004C	MW-14	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 11:30	5 days	Present	
1505938-004D	MW-14	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 11:30	5 days	Present	
1505938-004E	MW-14	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 11:30	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505938Project:731637001; Connell AutoClient Contact:Annie LeeDate Received:5/22/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn ✓ EDF	xcel	Fax 🗾 Email	✓ HardC	opyThirdPar	ty 🗀 -	l-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505938-005A	MW-19	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 13:50	5 days	Present	
1505938-005B	MW-19	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 13:50	5 days	Present	
1505938-005C	MW-19	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 13:50	5 days	Present	
1505938-005D	MW-19	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 13:50	5 days	Present	
1505938-005E	MW-19	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 13:50	5 days	Present	
1505938-006A	RW-3A	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 12:20	5 days	Present	
1505938-006B	RW-3A	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 12:20	5 days	Present	
1505938-006C	RW-3A	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 12:20	5 days	Present	
1505938-006D	RW-3A	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 12:20	5 days	Present	
1505938-006E	RW-3A	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 12:20	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505938Project:731637001; Connell AutoClient Contact:Annie LeeDate Received:5/22/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		☐ WaterTrax	WriteOnEDFE	Excel	Fax Email	✓ HardC	opyThirdPar	ty 🗀 -	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505938-007A	RW-3B	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 12:55	5 days	Present	
1505938-007B	RW-3B	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 12:55	5 days	Present	
1505938-007C	RW-3B	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 12:55	5 days	Present	
1505938-007D	RW-3B	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 12:55	5 days	Present	
1505938-007E	RW-3B	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 12:55	5 days	Present	
1505938-008A	DUP-1	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 9:00	5 days	Present	
1505938-008B	DUP-1	Water	SW8260B (VOCs) <1,1- Dichloroethene, 1,2-Dichloroethane (1,2- DCA), Benzene, Ethylbenzene, Methyl-t- butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>		VOA w/ HCl		5/22/2015 9:00	5 days	Present	
1505938-008C	DUP-1	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 9:00	5 days	Present	
1505938-008D	DUP-1	Water	E300.1 (Sulfite)	1	125mL HDPE w/ MAI Presv.		5/22/2015 9:00	5 days	Present	
1505938-008E	DUP-1	Water	SM4500S2D (Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 9:00	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:TREADWELL & ROLLOQC Level:LEVEL 2Work Order:1505938Project:731637001; Connell AutoClient Contact:Annie LeeDate Received:5/22/2015

Comments: SEND HARD COPY/ Always notify the PM when TAT is not Contact's Email: alee@langan.com

going to be met! JEL 9-9-14

		WaterTrax	WriteOn	y EDF □ E	Excel	Fax Fmail	✓ HardC	opyThirdPart	у 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1505938-009A	DUP-2	Water	Multi-Range TP	PH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		5/22/2015 10:00	5 days	None	
1505938-009B	DUP-2	Water	DCA), Benzene,	1,2-Dichloroethane (1,2-, Ethylbenzene, Methyl-t-BE), Naphthalene,		VOA w/ HCl		5/22/2015 10:00	5 days	None	
1505938-009C	DUP-2	Water	E300.1 (Inorgan	ic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		5/22/2015 10:00	5 days	None	
1505938-009D	DUP-2	Water	E300.1 (Sulfite)		1	125mL HDPE w/ MAI Presv.		5/22/2015 10:00	5 days	None	
1505938-009E	DUP-2	Water	SM4500S2D (S	ulfide)	1	250mL HDPE w/ NaOH+ZnAc		5/22/2015 10:00	5 days	None	
1505938-010A	TB-2	Water	SW8260B (VOC	Cs)	4	VOA w/ HCl		5/22/2015 8:00	5 days	None	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

DI 41		_	00.000.00		0 ROGE					CON	DUCT	ANAL	YSIS T	O DET	ECT		LAB McCampbell			DHS#
BLAI TECH SERV		_		7	FORNIA FAX (40 IONE (40	08) 573	-7771		B)				S-2D)	*	ž.		MUST MEET SPECIFICATIONS EPA LIA		RWQCB REC	GION
CHAIN OF CUST	ODY		BTS#	1505	21-0	MAI			1,2-DCA, Naphthalene (8260B)	10	681						OTHER			
CLIENT	Trea		ell & Ro				W		nalene	W.	200,8)	-	Sulfide (SM4500				SPECIAL INSTRUCTIO	NS		e A
CITE			Auto						Japht	Sulfate (E300.1)	on (E	(6)) Sulfide	175)		-	Invoice and Report to	: Annie Lee		
	3093	B Br	oadway	У				2)	CA, N	ite (E	otal Ir	(SM 3500 Fe)	3-2),	(RSK	15.3)	365.	Treadwell & Rollo - Sa		ffice	
			d, CA					(801	1,2-D		sse, T	SM 35	(E3	hane	((E41	rus (E	415.955.5285	Project No: 7316	37001	
*				= Soil = H2O		NTAINE	RS	ТРН-g, ТРН-d (8015)	втех, мтве,	Nitrate, Nitrite,	Total Manganese, Total Iron (E200,8)	Ferrous Iron (SVLF ATE (E300. Sulfite (SM4500 SO3-2),	Dissolved Methane (RSK 175)	Total Nitrogen ((E415.3)	Total Phosphorus	alee@langan.com	EC	F Require	ed
SAMPLE I.D.	DAT		TIME	ω ≥	TOTAL	$\overline{}$	4.1		.× B	Ž	To	Fe		ä	2	<u> </u>	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
MW-4	5-21	<u>-17</u>	0855	W	9	VAC	2005	×			-		×						40	
MW-5		_	0955	+	9			X	×				Q						-42(8)	
MW-14	-	_	1045	+	9			9	Ø				y				-57			
	+	_	1130	-	9			0	0		3		-	-			SULFITE PRESERV	ED 12 N	P POLY	PRESERVED UPON
MW-19	-		1350	+	9			Q	D	-		1	0							ARRIVAC.
RW-3A	+	_	1220	-+	1			9	æ	/1	1		Ψ	31			ICE /t · A ·	OITION	APPROP	PIATE
RW-3B	-		1255	-	9	-	-	0	P	100			9		- 1		GOOD CON		CON	SERVED IN LAB
DVP-1		_	0900		-			X	Ø		,		9				DECHLORIN	VOAS 108	S WETALS	OTHER
DUP-2			1000	1	9	-	TM.	9	×		-		4		3		PRESERVAT	ION		
SAMPLING COMPLETED	DAT			SAMPL PERFO	ING RMED B	YWI	LLIPM	j			>						RESULTS NEEDED NO LATER THAN	Standard		A la
RELEASED BY	5	-						-	-22-	15	TIME /C/	145			IVED E	1	1			TIME -15 / 45
RELEASED BY	2		-/-	/		2	5		22-	T	TIME	35 9		/	//ED E	14	uffina V.		DATE 5/22/	
RELEASED BY								DAT	E		TIME			RECE	IVED E	3¥			DATE	TIME
SHIPPED VIA								DAT	E SEN	Т	TIME	SENT	4	COOL	ER#			п		

DI 411					RS AVENUE			CON	DUCT	ANAL	YSIS T	TO DETI	ECT		LAB McCampbell			DHS#
BLAIN TECH SERVIO	0.000			FAX (40	95112-1105 8) 573-7771 8) 573-0555										MUST MEET SPECIFICATIONS EPA LIA	[RWQCB REG	GION
CHAIN OF CUSTO	DY	BTS#	15051	21-W	w I]_									OTHER			
CLIENT	readwe	ell & Ro	ollo			filtered									SPECIAL INSTRUCTION	NS		-
SITE	onnell	Auto				Field									Invoice and Report to	: Annie Lee		
3	093 Br	oadwa	у			(E200.8)			B)						Treadwell & Rollo - S	an Francisco (Office	
C	Oakland, CA							()	12320							Project No: 731		l
\$AMPLE I.D.	DATE	TIME	S = Soil W W = H2O	TOTAL		Cam 17 Metals	TOC (E415.3)	TDS (SM2540C)	Alkalinity (SM2320B)	V0C5					alee@langan.com	STATUS	DF Require	EQ LAB SAMPLE#
110 0	5-22-15	0800	ws	2	HC1 vou		-	<u> </u>	٩	X					ADD L INFORMATION	314103	CONDITION	LAB SAIVIPLE #
		0 0 0	00							70								
<u> </u>																		
																		(_)
SAMPLING COMPLETED	DATE -22 -(S	TIME	SAMPLII PERFOR	NG RMED B	WILLIA Y WON										RESULTS NEEDED NO LATER THAN	Standard		
RELEASED BY						DAT	E -22-		TIME			RECEI	VED BY	1	7 11	·	DATE 5 -22 -	TIME 5 1 945
RELEASED BY	-					DAT	E		TIME	, 6		RECEI	VEDBY	1	ustiva V		DATE 5/22	
RELEASED BY		-6	2			DAT	E 55-	-1	TIME	28	0	RECEI	VED B)	96	W)/////		DATE	TIME
SHIPPED VIA						DAT	E SEN	T	TIME	SENT		COOLE	ER#					

Sample Receipt Checklist

Client Name:	Treadwell & Rol	lo			Date and T	ime Received:	5/22/2015 8:45:14 PM
Project Name:	731637001; Coi	nnell Auto			LogIn Revi	ewed by:	Agustina Venegas
WorkOrder №:	1505938	Matrix: Water			Carrier:	Bernie Cummii	ns (MAI Courier)
		Chain of C	ustod	(COC)	Information		
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relir	nquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with samp	ole labels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on CO	C?	Yes	✓	No 🗌		
Date and Time of	f collection noted	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
		<u>Sampl</u>	e Rece	eipt Info	<u>rmation</u>		
Custody seals int	tact on shipping c	-	Yes		No 🗆		NA 🗹
Shipping contain	er/cooler in good	condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottl	es?	Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indica	ated test?	Yes	✓	No 🗌		
		Sample Preservation	on and	Hold Ti	me (HT) Info	rmation	
All samples recei	ived within holding	g time?	Yes	•	No 🗌		
Sample/Temp Bla	ank temperature			Temp	: 4.5°C		NA \square
Water - VOA vial	ls have zero head	space / no bubbles?	Yes	✓	No 🗌		NA 🗆
Sample labels ch	necked for correct	preservation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal	: <2; 522: <4; 218.7: >8)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ісе Туре	e: WE	T ICE)		
UCMR3 Samples Total Chlorine		able upon receipt for EPA 522?	Yes		No 🗌		NA 🗹
Free Chlorine t 300.1, 537, 539		able upon receipt for EPA 218.7,	Yes		No 🗌		NA 🗹
* NOTE: If the "N	lo" box is checked	d, see comments below.					
Comments:	=====	=======	==			=====	======

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client: Annie Lee Phone: 415.955.5285

Langan Engineering & Environmental Services

555 Montgomery Street

Suite 1300

San Francisco, CA 94111-2517 Fax:

Client Project #: 731637001 Client Project Name: Connell Auto

Purchase Order #:

Analysis Requested: CENSUS

ht Will

Reviewed By:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

 $10515 \; Research \; Dr., \; \; Knoxville, \; TN \; 37932$

Tel. (865) 573-8188 Fax. (865) 573-8133

Client: Langan Engineering & Environmental Servic

Desirate Connell Auto

MW-1

Project: Connell Auto

MI Project Number: Date Received:

062ME

05/19/2015

CENSUS

Sample Information

Client Sample ID:

Sample Date: 05/18/2015
Units: cells/mL
Analyst: RW

Phylogenetic Group

Sulfate Reducing Bacteria APS 2.84E+05

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client: Annie Lee Phone: 415.955.5285

Langan Engineering & Environmental Services

555 Montgomery Street

Suite 1300

San Francisco, CA 94111-2517

 Identifier:
 062ME
 Date Rec:
 05/19/2015
 Report Date:
 05/29/2015

Fax:

Client Project #: 731637001 Client Project Name: Connell Auto

Purchase Order #:

Analysis Requested: CENSUS

Reviewed By:

Casy Brown

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

10515 Research Dr., Knoxville, TN 37932

Tel. (865) 573-8188 Fax. (865) 573-8133

Client: Langan Engineering & Environmental Servic

Project: Connell Auto MI Project Number:

Date Received:

062ME

05/19/2015

CENSUS

Sample Information

Client Sample ID: MW-1 MW-3 MW-6 MW-8 MW-18 05/18/2015 05/21/2015 05/21/2015 05/21/2015 05/21/2015 Sample Date: Units: cells/mL cells/mL cells/mL cells/mL cells/mL СВ СВ СВ

Analyst: СВ СВ

Phylogenetic Group

Sulfate Reducing Bacteria APS 2.84E+05 5.94E+03 1.05E+06 5.93E+04 3.03E+04

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

APPENDIX D MATERIAL DATA SHEETS FOR GYPSUM AND SAND

High-purity additives for high-quality food, beverage and pharmaceutical products

Calcium sulfate products are used by the food, beverage and pharmaceutical industries as an economical and FDA-approved source of supplemental calcium. Calcium sulfate is also acceptable as an additive in pigments and colorants used in food containers.

Overview

Use of calcium sulfate in food and pharmaceutical applications is wide-spread and continues to expand. United States Gypsum Company offers two highly refined calcium sulfate products: USG® Terra Alba and SNOW WHITE® filler. Both fillers are food- and pharmaceutical-grade forms of calcium sulfate, a mineral that appears on the Food and Drug Administration's GRAS (Generally Recognized as Safe) list of additives approved for nutritional and functional use in food products.

Calcium Sulfate Products

USG Terra Alba (CaSO₄ • 2H₂O), the dihydrate form of calcium sulfate, results from fine-grinding and air-separating a select, high-purity white gypsum that contains about 20 percent water of crystallization.

SNOW WHITE filler (CaSO₄), the anhydrous form of calcium sulfate, is produced by calcining and milling high-purity white gypsum.

USG Terra Alba filler

Snow White filler

Typical	Analyses

Total calcium ^a		23.1%	29.2%
CaO		32.31%	40.92%
S0 ₃		45.22%	57.46%
CaSO ₄		0.39%	97.68%
CaSO ₄ • 2H ₂ O		97.1%	_
CaCO ₃ • MgCO ₃		1.52%	0.77%
SiO ₂ and insolubles		0.24%	0.13%
Fe ₂ 0 ₃ • Al ₂ 0 ₃		0.12%	0.12%
Water loss 250 °C		20.31%	0.33%
Brightness index (mir	1.) ^b	84.4	97.1
Oil absorption ^c		23.5	26.5
Specific gravity		2.32	2.96
Bulk density (pcf)	Loose	42.0	44.0
	Compacted	70.0	80.0
Bulking values	Lbs. per solid gal.	19.38	24.43
	Solid gals. per lb.	0.0518	0.0406
Solubility (70 °F) per	100 cc of H ₂ 0	0.26 grams	0.26 grams
pH (10% slurry)		7.3	10.4
Refractive index		1.52	1.56
Through 100 mesh (r	min.)	100%	100%
Through 325 mesh (r	min.)	93%	97%
Avg. particle size (mi	crons)	12-15	7-9

(a) Conversion of calcium content: Milligrams of calcium per lb. of USG Terra Alba filler computed as follows: 1 lb. = 454 grams = 454,000 mg 23% x 454,000 mg = 104,420 * 1 lb. of USG Terra Alba filler = 104,420 mg of calcium. Milligrams of calcium per lb. of Snow White filler computed as follows: 1 lb. = 454,000 mg 29% of 454,000 mg = 131,600 mg * 1 lb. of Snow White filler = 131,660 mg of calcium.

(b) The brightness index was determined on a Beckman DU Spectrophotometer using magnesium

(c) Oil absorption is the amount of linseed oil, in cubic centimeters, required to wet 100 grams of filler.

oxide as the standard.

Applications

USG Terra Alba and SNOW WHITE filler are used primarily in the food, beverage and pharmaceutical industries.

Commercial Baking Industry	In the commercial baking industry, the fillers are economical sources of supplemental calcium in enriched flour, cereals, baking powder, yeast, bread conditioners, baking powder, and cake icing. The gypsum products can also be found in canned vegetables and artificially sweetened jellies and preserves.
Brewing Industry	In the brewing industry, calcium sulfate promotes a smoother-tasting beer with improved stability and a longer shelf life.
Pharmaceutical	For pharmaceutical applications, calcium sulfate is extensively used as a diluent because it makes an excellent inert

FDA Regulations Title 21 **Food and Drugs** Parts 1-199

and lima beans

⁽a) Product: calcium sulfate

⁽b) Meets specifications of the Food Chemicals Codex
(c) Anti-caking, coloring, drying, firming, leavening; adjunct, dough strengthener, formulation aid, nutrient supplement, pH control,

processing aid, stabilizer and thickener, synergist, texturizer.

(d) Conditions of use: This substance is generally recognized as safe when used in accordance with good manufacturing practices.

⁽e) Waiver-prior sanctions

Specification

USG Terra Alba and SNOW WHITE filler are manufactured only at USG's plant in Southard, Oklahoma. Both products are guaranteed to meet the specifications of the Food Chemicals Codex and the National Formulary, as listed below:

Standards

	Food Chemicals Codex	National Formulary
Arsenic	3.0 ppm max.	3.0 ppm max.
Selenium	30.0 ppm max.	30.0 ppm max.
Fluorine	30.0 ppm max.	30.0 ppm max.
Heavy metals	_	10.0 ppm max.
Iron	_	100.0 ppm max.
Lead	2.0 ppm max.	_
Calcium assay	98.0% min.	98.0% min.

Upon request, USG will supply a continuing guarantee to customers using USG Terra Alba or SNow White filler. Each shipment is batch-coded to show the day, month and year of manufacture. Representative samples are kept for reference at the Southard plant for five years from the date of shipment.

Technical Service

800 487.4431

Web Site

www.usg.com

Samples/Literature

888 874.2450

Samples/Literature E-mail

samplit@usg.com

Samples/Literature Fax

888 874.2348

Customer Service

800 950.3839

Trademarks

The following trademark used herein is owned by USG Corporation or its subsidiaries: USG. Snow White is a registered trademark of United States Gypsum Company.

Notice

We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by application of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claim shall be deemed waived unless made in writing to us within thirty (30) days from date it was or reasonably should have been discovered.

Safety First!

Follow good safety and industrial hygiene practices during handling and installation of all products and systems. Take necessary precautions and wear the appropriate personal protective equipment as needed. Read material safety data sheets and related literature on products before specification and/or installation.

Apr. 24. 2015 1:57PM

No. 6704

PN-233970

LOT - 0420153

Lot#:

Product:

Description:

Order #:

Customer PO #:

Certificate of Analysis

Hydrous Calcium Sulfate Gypsum

Ça\$04.2H20

CAS# 13397-24-5

990885

SJ-763859

Terra Alba Food & Pharmaceutical

0420158

40786

United States Gypsum Co.

HCR 65 BOX 100 Highway 51A

Southard, OK 73770 Tele: (580) 822-6156 Fax: (580) 822-4501

Customer: Address:

UNIVAR (SAN JOSE)

ppm

Attn:

Selenium

kcjones@usg.com

Tests Results Approved By: Kelly Bedwell

rests nesults Approved a	,··,	SAMPLE ID's		
Test	UOM	0420155		
Arsenic :	ppm	0.1		
CaSO4 Assay	%	100.01		
Combined Water	% LOD	19.47		
Flouride :	ppm	<30		
Heavy Metal	mqq	<10		
ID. For CaSO4	0	Positive		
Iron :	ppm	75.87		
Lead	ppm	0.359		
Minus 100 Mesh	%	99.99	•	
Minus 325 Mesh	%	99.36		

<30

FCC& NATIONAL FORMULARY SPECIFICATIONS

ID - Positive CaSO4, Lead - 2 ppm max. Iron - 100 ppm max. Arsenic - 3 ppm max. Selenium - 30 ppm max. Ca\$O4 Assay - 98-101%, Flouride - 30 ppm max, LOD(%Wt. Loss) -19%-23%. Heavy Metals - 10 ppm max.

PHYSICAL SPECIFICATIONS

Alpine Jet Sieve Specifications: -100 = 99.95-100%: -325 = 93-100%

REMARKS: FOOD & CHEMICAL CODEX = HEAVY METALS AS LEAD = PASS

*Manufacturing Date = Bag Stamped Date Code (ie 020114\$ = 2/01/14)

Terra Alba will process best if used within 1 year of Manufacturing Date. As shipped Terra Alba

is free from odor and contains no residual solvents.

CONTROLLED COPY IF THIS PRINT IS IN RED

Friday, April 24, 2015

227-QL038

Rev. 12.0

Effective Date: 02/10/2014

Approved By: Kelly Bedwell

Univar USA Inc Material Safety Data Sheet

MSDS No:	P16232VS
Version No:	011 2014-01-10
Order No:	

Univar USA Inc., 17425 NE Union Hill Rd., Redmond WA 98052 (425) 889 3400

Emergency Assistance

For emergency assistance involving chemicals call Chemtrec - (800) 424-9300

MSDS #52-510-027 Page 1 of 8

SECTION 1 CHEMICAL PRODUCT AND IDENTIFICATION

United States Gypsum Company

550 West Adams Street

Chicago, Illinois 60661-3637

A Subsidiary of USG Corporation

Product Safety: 1 (800) 507-8899

www.usg.com

Version Date: January 1, 2014

Version: 4

PRODUCT(S) USG® Terra Alba No. 1

CHEMICAL FAMILY / **GENERAL CATEGORY**

Industrial Products, Gypsum

SYNONYMS

Gypsum or Calcium Sulfate Dihydrate (CaSO4•2H2O)

SECTION 2 HAZARD IDENTIFICATION

EMERGENCY OVERVIEW:

This product is not expected to produce any unusual hazards during normal use. Exposure to high dust levels may irritate the skin, eyes, nose, throat, or upper respiratory tract. This product does not present an inhalation, ingestion, or contact health hazard unless subjected to operations such as sawing, sanding or machining which result in the generation of airborne particulate. This product contains quartz (crystalline silica) as a naturally occurring contaminant.

POTENTIAL HEALTH EFFECTS (See Section 11 for more information)

ACUTE:

<u> </u>	Exposure to dust generated during the handling or use of the product may cause temporary irritation
	to eyes, skin, nose, throat, and upper respiratory tract. Persons subjected to large amounts of this
Inhalation	dust will be forced to leave area because of nuisance conditions such as coughing, sneezing and
	nasal irritation. Labored breathing may occur after excessive inhalation. If respiratory symptoms
	persist, consult physician.

Dust can cause temporary mechanical irritation of eyes. If burning, redness, itching, pain or other Eyes symptoms persist or develop, consult physician.

Skin None known.

Ingestion None known.

CHRONIC:

	Exposures to respirable crystalline silica are not expected during the normal use of this product;
	however, actual levels must be determined by workplace hygiene testing. Prolonged and repeated
Inhalation	exposure to airborne free respirable crystalline silica can result in lung disease (i.e., silicosis) and/or
	lung cancer. The development of silicosis may increase the risks of additional health effects. The risk
	of developing silicosis is dependent upon the exposure intensity and duration.

None known. Eyes

Skin None known.

None known. Ingestion

MSDS #52-510-027 Page 2 of 8

TARGET ORGANS: Eyes, skin and respiratory system.

PRIMARY ROUTES OF ENTRY: Inhalation, eyes and skin contact.

CARCINOGENICITY CLASSIFICATION OF INGREDIENT(S) All substances listed are associated with the nature of the raw materials used in the manufacture of this product and are not independent components of the product formulation. All substances, if present, are at levels well below regulatory limits. See Section 11: Toxicology Information for detailed information.

MATERIAL	IARC	NTP	ACGIH	CAL- 65
Crystalline silica	1	1	A2	Listed

IARC - International Agency for Research on Cancer: 1- Carcinogenic to humans; 2A – Probably carcinogenic to humans; 2B – Possibly carcinogenic to humans; 3 - Not classifiable as a carcinogen; 4 – Probably not a carcinogen

NTP – National Toxicology Program (Health and Human Services Dept., Public Health Service, NIH/NIEHS): 1-Known to be carcinogen; 2- Anticipated to be carcinogens

ACGIH – American Conference of Governmental Industrial Hygienists: A1 – Confirmed human carcinogen; A2 – Suspected human carcinogen; A3 – Animal carcinogen; A4 - Not classifiable as a carcinogen; A5 – Not suspected as a human carcinogen

CAL-65 - California Proposition 65 "Chemicals known to the State of California to Cause Cancer"

Respirable crystalline silica: IARC: Group 1 carcinogen, NTP: Known human carcinogen. The weight percent of crystalline silica given represents total quartz and not the respirable fraction. The weight percent of respirable silica has not been measured in this product.

Food and Drug Administration [CFR Title 21, v.3, sec 184.1230] – Calcium Sulfate is Generally Recognized as Safe (GRAS).

POTENTIAL ENVIRONMENTAL EFFECTS: Toxicity studies of gypsum performed with fish, aquatic invertebrates and aquatic plants showed no toxic effect. (See Section 12 for more information.)

SECTION 3 COMPOSITION, INFORMATION ON INGREDIENTS

ATTACAMENT OF THE PROPERTY OF	· · · · · · · · · · · · · · · · · · ·	and the second s
MATERIAL	WT%	CAS#
Gypsum, Anhydrite or Gypsum/Anhydrite Blend	>95	13397-24-5/14798-04-0
Crystalline Silica	<1	14808-60-7^

All ingredients of this product are included in the U.S. Environmental Protection Agency's Toxic Substances Control Act Chemical Substance Inventory and the Canadian Domestic Substances List (DSL).

^The weight percent for silica represents total quartz and not the respirable fraction.

SECTION 4 FIRST AID MEASURES

FIRST AID	PROCEDURES
Inhalation	Remove to fresh air. Leave the area of exposure and remain away until coughing and other symptoms subside. Other measures are usually not necessary, however if conditions warrant, contact physician.
Eyes	In case of contact, do not rub or scratch your eyes. To prevent mechanical irritation, flush thoroughly with water for 15 minutes. If irritation persists, consult physician.
Skin	Wash with mild soap and water. If irritation persists, consult physician.

MSDS #52-510-027 Page 3 of 8

Ingestion

Lower Flammable Limit (LFL)

This product is not intended to be ingested or eaten. If gastric disturbance occurs, call physician.

MEDICAL CONDITIONS WHICH MAY BE AGGRAVATED: Pre-existing upper respiratory and lung diseases such as, but not limited to, bronchitis, emphysema and asthma. Pre-existing skin diseases such as, but not limited to, rashes and dermatitis.

NOTES TO PHYSICIAN: Treatment should be directed at the control of symptoms and the clinical condition.

SECTION 5 FIRE FIGHTING MEASURES

General Fire Hazards		None known			
Extinguishing Media		Water or use extinguishing media appropriate for surrounding fire.			
Special Fire Fighting Procedures		Wear appropriate personal protective equipment. See section 8.			
Unusual Fire/ Explosion Hazards		None known			
Hazardous Combustion Products		Above 1450° C - decomposes to calcium oxide (CaO) and sulfur dioxide (SO2).			
Flash Point	Not	Determined	Auto Ignition	Not Applicable	
Method Used	Not Applicable		Flammability	Not Applicable	
Upper Flammable Limit (UFL)	Not Determined		Classification		

SECTION 6 ACCIDENTAL RELEASE MEASURES

Rate of Burning

Not Applicable

CONTAINMENT: No special precautions. Wear appropriate personal protective equipment. See section 8.

Not Determined

CLEAN-UP: Use normal clean up procedures. No special precautions.

DISPOSAL: Follow all local, state, provincial and federal regulations. Never discharge large releases directly into sewers or surface waters.

SECTION 7 HANDLING AND STORAGE

HANDLING: Avoid dust contact with eyes and skin. Wear the appropriate eye and skin protection against dust (See Section 8). Minimize dust generation and accumulation. Avoid breathing dust. Wear the appropriate respiratory protection against dust in poorly ventilated areas and if TLV is exceeded (see Sections 2 and 8). Use good safety and industrial hygiene practices.

STORAGE: Store in a cool, dry, ventilated area away from sources of heat, moisture and incompatibilities (see Section 10).

MSDS #52-510-027 Page 4 of 8

SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

MATERIAL	WT%	TLV (mg/m ³)	PEL(mg/m ³)
Gypsum, Anhydrite or Gypsum/Anhydrite Blend	>95	10	15(T)/5(R)
Crystalline Silica	<1	0.025(R)	0.1(R)

(T)-Total; (R)-Respirable; (NE)-Not Established; (C)-Ceiling; (STEL)-Short-term exposure limit

(F)-Fume; (Du)-Dust; (M)-Mist

ppm-part per million; f/cc-fiber per cubic centimeter; mppcf- million particles per cubic foot

ENGINEERING CONTROLS: Provide ventilation sufficient to control airborne dust levels. If user operations generate airborne dust, use ventilation to keep dust concentrations below permissible exposure limits. Where general ventilation is inadequate, use process enclosures, local exhaust ventilation, or other engineering controls to control dust levels below permissible exposure limits.

RESPIRATORY PROTECTION: Wear a NIOSH/MSHA-approved respirator equipped with particulate cartridges when dusty in poorly ventilated areas, and if TLV is exceeded. A respiratory program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use. If engineering controls are not possible, wear a properly fitted NIOSH/MSHA-approved particulate respirator.

OTHER PERSONAL PROTECTIVE EQUIPMENT:

Eye/Face	Wear eye protection, safety glasses or goggles, to avoid possible eye contact.
Skin	Wear gloves and protective clothing to prevent repeated or prolonged skin contact.
General	Selection of Personal Protective Equipment will depend on environmental working conditions and operations.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

The state of the s			<u></u>
Appearance	White to off-white	Vapor Density (Air = 1)	Not Applicable
Odor	Low to no odor	Specific Gravity (H₂O = 1)	~2.32 (Gypsum)
Odor Threshold	Not Determined	Solubility in water (g/100g)	~ 21 (Gypsum)
Physical State	Solid/ Powder	Partition Coefficient	Not Determined
pH @ 25 ° C	~7	Auto-ignition Temp	Not Determined
Melting Point	Not Applicable	Decomposition Temp	2642°F/1450°C
Freezing Point	Not Applicable	Viscosity	Not Applicable
Boiling Point	Not Applicable	Particle Size	Varies
Flash Point	Not Determined	Bulk Density	~ 45-150 lb/ft3 / 0.7 - 2.5 kg/m3
Evaporation Rate (BuAc = 1)	Not Applicable	Molecular Weight	~172 g/mole
Upper Flammable Limit (UFL)	Not Determined	VOC Content	Zero g/L
Lower Flammable Limit (LFL)	Not Determined	Percent Volatile	Zero

MSDS #52-510-027 Page 5 of 8

Applicable	
SECTION 10 ICAL STABILITY AND REACTIVITY	
Stable.	
Contact with incompatibles (see below).	
None known.	
None known.	
Above 1450° C - calcium oxide (CaO) and sulfur dioxide (SO2).	

SECTION 11 TOXICOLOGICAL INFORMATION

ACUTE EFFECTS: The acute oral toxicity study [OECD TG 420] of calcium sulfate dihydrate showed that this chemical did not cause any changes even at 2,000 mg/kg b.w. Therefore, the oral LD50 value was more than 2,000-mg/kg b.w. for female rats. Gypsum paste applied experimentally to the eyes of rabbits was not an irritant. Gypsum dust particulate has shown an irritant action on mucous membranes of the respiratory tract and eyes. The sulfate ion has caused gastro-intestinal disturbance in humans following large oral doses. Limited studies involving the repeated inhalation of an (unspecified) calcium sulfate failed to identify any particular target organs in monkeys, rats and hamsters. No evidence of mutagenicity was found in Ames bacterial tests.

CHRONIC EFFECTS / CARCINOGENICITY:

Crystalline Silica: Exposures to respirable crystalline silica are not expected during the normal use of this product; however, actual levels must be determined by workplace hygiene testing. The weight percent of respirable crystalline silica may not have been measured in this product. Prolonged and repeated exposure to airborne free respirable crystalline silica can result in lung disease (i.e., silicosis) and/or lung cancer. The development of silicosis may increase the risks of additional health effects. Smoking in combination with silica exposures increases the risk of cancer. The risk of developing silicosis is dependent upon the exposure intensity and duration.

In June, 1997, IARC classified crystalline silica (quartz and cristobalite) as a human carcinogen. In making the overall evaluation, the IARC Working Group noted that carcinogenicity in humans was not detected in all industrial circumstances studied. Carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs.

IARC states that crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1).

SECTION 12 ECOLOGICAL INFORMATION

ENVIRONMENTAL TOXICITY: This product has no known adverse effect on ecology.	Toxicity studies of gypsum
performed with fish, aquatic invertebrates and aquatic plants showed no toxic effect	,
and the same of th	And department and the description of the contract of the cont

Ecotoxicity value Not determined.

MSDS #52-510-027 Page 6 of 8

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD: Dispose of material in accordance with federal, state, and local regulations. Never discharge directly into sewers or surface waters. Consult with environmental regulatory agencies for guidance on acceptable disposal practices.

SECTION 14 TRANSPORT INFORMATION

U.S. DOT INFORMATION	DN: Not a hazardous material per DOT shipping requirements. Not classified or regulated.
Shipping Name	Same as product name.
Hazard Class	Not classified.
UN/NA#	None. Not classified.
Packing Group	None.
Label (s) Required	Not applicable.
GGVSec/MDG-Code	Not classified.
ICAO/IATA-DGR	Not applicable.
RID/ADR	None.
ADNR	None.

SECTION 15 REGULATORY INFORMATION

UNITED STATES REGULATIONS

All ingredients of this product are included in the U.S. Environmental Protection Agency's Toxic Substances Control Act Chemical Substance Inventory.

MATERIAL	WT%	3 0 2	3 0 4	3 1 3	CERCLA	CAA Sec. 112	RCRA Code
Gypsum, Anhydrite or Gypsum/Anhydrite Blend	>95	NL	NL	NL	NL	NL	NL
Crystalline Silica	<1	NL	NL	NL	NL	NL	NL
Key: NL = Not Listed							
SARA Title III Section 302 (EPCRA) Extremely Hazardo	us Substances:	Thres	hold P	lanning	Quant	tity (TP	PQ)
SARA Title III Section 304 (EPCRA) Extremely Hazardous Substances: Reportable Quantity (RQ)							

SARA Title III Section 313 (EPCRA) Toxic Chemicals: X= Subject to reporting under section 313

CERCLA Hazardous Substances: Reportable Quantity (RQ)

CAA Section 112 (r) Regulated Chemicals for Accidental Release Prevention: Threshold Quantities(TQ)

RCRA Hazardous Waste: RCRA hazardous waste code

MSDS #52-510-027 Page 7 of 8

CANADIAN REGULATIONS

This product has been classified in accordance with the hazard criteria of Controlled Product regulations and the MSDS contains all the information required by the Controlled Products Regulations. All ingredients of this product are included in the Canadian Domestic Substances List (DSL).

MATERIAL	WT%	IDL Item #	WHMIS Classification
Gypsum, Anhydrite or Gypsum/Anhydrite Blend	>95	Not Listed	Not Listed
Crystalline Silica	<1	1406	D2A

IDL Item#: Canadian Hazardous Products Act - Ingredient Disclosure List Item #

WHMIS Classification: Workplace Hazardous Material Information System

Risk and Safety Phrases defined by European Union Directive 67/548/EEC (Annex III and IV)

R-Phrase(s): R36/37/38

S-Phrase(s): S51 S38 S39

SECTION 16 OTHER INFORMATION

Label Information

∆ CAUTION!

Dust can cause irritation to eyes, skin and respiratory tract. Wear eye, skin and respiratory protection as necessary per working conditions. If eye contact occurs flush with water for 15 minutes. Do not ingest. If ingested, call physician. Product safety information: 800-507-8899 or usg. com. Customer Service: 800 USG-4-YOU (800 874-4968). KEEP OUT OF REACH OF CHILDREN.

INFORMATION FOR HANDLING AND IDENTIFICATION OF CHEMICAL HAZARDS

NFPA Ratings	S:
Health:	1
Fire:	0
Reactivity:	0

HMIS Ratings:	
Health:	1
Fire:	0
Reactivity:	0

HEALTH	*	1	
FEEANINA(SIETTY		0	
PHYSICAL HAZ	ARD	0	
PERSONAL PROTE	CTION	E	

~	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 = Minimal Hazard
	1 = Slight Hazard
	2 = Moderate Hazard
	3 = Serious Hazard
-	4 = Severe Hazard

E - Safety glasses, gloves and dust respirator; * - Contains silica

Key/Legend	
ANSI	American National Standards Institute
ACGIH	American Conference of Governmental Industrial Hygienists
CAA	Clean Air Act
CAS	Chemical Abstracts Service (Registry Number)
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act of 1980
CFR	Code of Federal Regulations
DOT	United States Department of Transportation
DSL	Canadian Domestic Substances List

MATERIAL SAFETY DATA SHEET USG® Terra Alba No. 1

MSDS #52-510-027 Page 8 of 8

United States Environmental Protection Agency
Emergency Planning & Community Right-to-know Act
Hazardous Materials Identification System
International Agency for Research on Cancer
Mine Safety and Health Administration
Canadian Non-Domestic Substances List
National Fire Protection Association
National Institute for Occupational Safety and Health
Occupational Health and Safety Administration
Permissible Exposure Limit
Personal Protection Equipment
Resource Conservation and Recovery Act
Superfund Amendments and Reauthorization Act of 1986
Threshold Limit Value
Toxic Substances Control Act
United Nations/North America number
Workplace Hazardous Material Information System

Prepared by:

Product Safety

USG Corporation

550 West Adams Street

Chicago, IL 60661-3637

The information contained in this document applies to this specific material as supplied. It may not be valid for this material if it is used in combination with any other materials. It is the user's responsibility to satisfy oneself as to the suitability and completeness of this information for his/her own particular use.

END

Univar USA Inc Material Safety Data Sheet

For Additional Information contact MSDS Coordinator during business hours, Pacific time: (425) 889-3400

Notice

Univar USA Inc. ("Univar") expressly disclaims all express or implied warranties of merchantability and fitness for a particular purpose, with respect to the product or information provided herein, and shall under no circumstances be liable for incidental or consequential damages.

Do not use ingredient information and/or ingredient percentages in this MSDS as a product specification. For product specification information refer to a product specification sheet and/or a certificate of analysis. These can be obtained from your local Univar sales office.

All information appearing herein is based upon data obtained from the manufacturer and/or recognized technical sources. While the information is believed to be accurate, Univar makes no representations as to its accuracy or sufficiency. Conditions of use are beyond Univar's control and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their particular purposes and they assume all risks of their use, handling, and disposal of the product, or from the publication or use of, or reliance upon, information contained herein.

This information relates only to the product designated herein, and does not relate to its use in combination with any other material or in any other process

LAPIS LUSTRE SAND GRADING PARAMETERS

Cumulative percent passing US Sieves

Summary of Test Results

PRODUCT		Special Blend	Coarse Aquarium	Medium Aquarum	4 x 16 6 Mesh	8 Mesh	#3	#2/12
Nominal	Sieve Size	3/8" x #6	4 x 12	6 x 16	4 x 16	8 x 16	8 x 20	12 x 20
US	mm							
3/8"	9.52	100 ± 0						
#3	6.70	77 ± 24						
1/4"	6.35	65 ± 33	100 ± 0	100 ± 0	100 ± 0			
#4	4.75	21 ± 20	97 ± 3	98 ± 2	99 ± 1			
#6	3.35	4 ± 4	78 ± 10	87 ± 14	79 ± 7	100 ± 0	100 ± 0	
#8	2.36	2 ± 1	31 ± 7	37 ± 18	39 ± 17	99 ± 1	99 ± 1	100 ± 0
#12	1.70		1 ± 1	9 ± 5	6 ± 5	40 ± 15	59 ± 12	96 ± 3
#16	1.18			2 ± 1	2 ± 2	4 ± 3	9 ± 5	20 ± 8
#20	0.850			1 ± 1	1 ± 1	2 ± 2	2 ± 1	1 ± 1
#30	0.600						1 ± 1	1 ± 1

PROI	DUCT	#2/16	#1C	#1/20	#0/30	30 Mesh	#60	All Purpose
Nominal S	Sieve Size	16 x 30	16 x 40	20 x 40	30 x 50	30 x 70	40 x 70	4 x 50
US #4	mm 4.75							100 ± 0
#8 #12	2.36 1.70	100 ± 0	100 ± 0					99 ± 1
#16 #20	1.18 0.850	94 ± 5 22 ± 16	95 ± 3 55 ± 9	100 ± 0 88 ± 8	100 ± 0	100 ± 0	100 ± 0	76 ± 21
#30 #40	0.600 0.425	3 ± 3	10 ± 6 1 ± 1	18 ± 11 1 ± 1	77 ± 5 12 ± 6	95 ± 5 73 ± 23	99 ± 1 80 ± 12	42 ± 25
#50 #70	0.300 0.212				2 ± 2 0.5 ± 0.5	25 ± 11 3 ± 2	30 ± 11 5 ± 4	13 ± 7
#100	0.212				0.5 ± 0.5	3 ± 2 1 ± 1	3 ± 4 1 ± 1	1 ± 1

THESE ARE GENERAL GRADINGS ONLY. FOR CURRENT INDIVIDUAL GRADING DATA A CERTIFICATE OF COMPLIANCE IS AVAILABLE ON REQUEST FROM THE TECHNICAL SERVICES LABORATORY. FOR PRICING OR AVAILABILITY INFORMATION CONTACT THE INDUSTRIAL SAND SALES DESK AT 925-200-6207.

Cemex's Lapis Lustre Plant is located on Lapis Road, 2 miles south of Marina, CA. PO Box 337
Marina, CA
93933

831/883-3700 11/8/2010

1544 Stanley Boulevard Pleasanton, CA 94566

Telephone: (925) 249-6422 Fax: (925) 249-6444

LAPIS LUSTRE DRIED SAND

PHYSICAL PROPERTIES

COLOR	GRAY TO AMBER
UNIT WEIGHT	100 pounds per cubic foot
BULK SPECIFIC GRAVITY (Dry)	2.61
APPARENT SPECIFIC GRAVITY	2.65
ABSORPTION	0.5 percent
MOH HARDNESS	6 to 7
ACID SOLUBILITY	0.5 percent (AWWA B100-01, SEC 5.3.1)
SPHERICITY	0.5-0.6
ROUNDNESS	0.5-0.6

CHEMICAL ANALYSIS (Dry Basis)

[
Aluminum as Al ₂ O ₃	10.2 percent	
Calcium as CaO	0.96 percent	
Chlorine as Cl	0.018 percent	
Flourine as F	0.01 percent	
Iron as Fe₂O₃	0.79 percent	
Magnesium as MgO	0.08 percent	
Potassium as K₂O	3.84 percent	
Combined Silica as SiO₂	80.2 percent	
Sodium as Na₂O	2.3 percent	
Sulfur as SO₂	0.02 percent	
Titanium as TiO ₂	0.06 percent	
Loss on Ignition	0.55 percent	
Asbestos	NONE	
Total Siliceous Material	90.6 percent	

Revised 4/24/09 per test results dated 7/17/08

APPENDIX E BIOREMEDIATION DOSING CALCULATIONS

Langan Project: 731637001 June 2015

Dosing Calculations TPHg Mass Estimates

3093 Broadway, Oakland, CA

Assumptions: Treatment interval ranges from 15 ft thick near former USTs to 10 feet in downgradient area

Approximately 15,000 square feet treatment area, as shown on Figure 4

Porosity: 0.35 (Estimated based on soil type)

LNAPL Density: 750 g/L for gasoline http://www.atsdr.cdc.gov/toxprofiles/tp72-c3.pdf

Treatment Area Characteristics	Source	Around Source	Upper Plume	Lower Plume	Total
Area (SF)	500	1,400	6,100	7,000	15,000
Depth Int (ft)	15	15	15	10	
Average TPHg Conc (ug/L)	31,000	31,000	5,700	34,667	
Average Benzene Conc (ug/L)	2,300	2,300	250	1,633	
Groundwater Volume (ft ³)	2,625	7,350	32,025	24,500	66,500
Groundwater Volume (L)	74,332	208,128	906,846	693,762	1,883,067
Est. LNAPL Saturation (% of porosity)	5.0%	1.5%	0.5%	0.5%	
Est. LNAPL Vertical Extent (ft)	10	3	2	2	

Estimated Mass of TPHg (grams)	Source	Around Source	Upper Plume	Lower Plume	Total
in groundwater (g)	2,304	6,452	5,169	24,050	37,976
sorbed to soil (g)	23,043	64,520	51,690	240,504	379,757
as NAPL (g)	1,858,290	468,289	453,423	520,321	3,300,323
Total					3,718,056

Estimated Mass of TPHg (lbs)	Source	Around Source	Upper Plume	Lower Plume	Total
in groundwater (lb)	5	14	11	53	84
sorbed to soil (lb)	51	142	114	530	837
as NAPL (lb)	4,097	1,032	1,000	1,147	7,276
Tot	al				8,197

Notes:

Sorbed mass is estimated to be 10 times the dissolved phase mass Benzene mass is included in the TPHg mass and is therefore not calculated separately TPHg - gasoline-range Total Petroleum Hydrocarbons

June 2015

Dosing Calculations

Sulfate Demand Estimates, Upper Plume

3093 Broadway, Oakland, CA

Representative Equation for Microbially Mediated Hydrocarbon Degradation

1 C8H18+

6.25 SO4^-2 -->

8 CO2 +

9 H2O + 6.25 S^-2

Note: For the purposes of reaction stoichiometry, octane (C8H18) is used as a representative compound for the petroleum impacts at the site, including the gasoline-range Total Petroleum Hydrocarbons and benzene

Physical Properties

- Post and	
Molecular Mass of Sulfate (SO4)	96.1 g/mol
Molecular Mass of Octane (C8H18)	114.2 g/mol
Molecular Mass of Gypsum (CaSO4-2H20)	172.2 g/mol

Gypsum Properties

- -	
Solubility of Gypsum	2 to 2.5 g/L
Corresponding Sulfate Concentration	1.1 to 1.4 g/L
% Sulfate in Gypsum	54%
Assumed gypsum bulk density	70 lb/ft3

Mass Calculations

	TPHg	Sulfate Demand	Gypsum Demand	
mols	25,678	160,486.52		
g	2,933,180	15,416,495	28,549,065	
pounds		33,988	62,940	< t
ft3			899.14	< es

total stoichiometric gypsum demand estimated volume of gypsum required to meet

stoichiometric gypsum demand

Proposed Gypsum Dosage

ypsum bosuge		
Proposed Borehole Size	12	inches diameter
Volume of Borehole	11.8	ft3 over 15 feet depth
Proposed % Gypsum in Borehole (by volume)	59%	(accounts for pore volume in sand)
Gypsum mass introduced in pilot phase	1,531	lbs, excluding RB-1
Additional gypsum mass required	14,204	lbs (to satisfy 25% of total gypsum demand)
Additional gypsum volume required	203	ft3 (to satisfy 25% of total gypsum demand)
Additional Boreholes required	29	(to satisfy 25% of total gypsum demand)
Proposed # Boreholes	29	
Proposed gypsum volume	201	ft3
Proposed gypsum mass required	14,068	lbs
	25%	of total gypsum demand satisfied

June 2015

Dosing Calculations

Sulfate Demand Estimates, Lower Plume

3093 Broadway, Oakland, CA

Representative Equation for Microbially Mediated Hydrocarbon Degradation

1 C8H18 + 6.25 SO4^-2 -->

8 CO2 +

9 H2O + 6.25 S^-2

Note: For the purposes of reaction stoichiometry, octane (C8H18) is used as a representative compound for the petroleum impacts at the site, including the gasoline-range Total Petroleum Hydrocarbons and benzene

Physical Properties

Molecular Mass of Sulfate (SO4)	96.1 g/mol
Molecular Mass of Octane (C8H18)	114.2 g/mol
Molecular Mass of Gypsum (CaSO4-2H20)	172.2 g/mol

Gypsum Properties

Solubility of Gypsum	2 to 2.5 g/L
Corresponding Sulfate Concentration	1.1 to 1.4 g/L
% Sulfate in Gypsum	54%
Assumed gypsum bulk density	70 lb/ft3

Mass Calculations

	TPHg	Sulfate Demand	Gypsum Demand
mols	6,871	42,943.82	
g	784,876	4,125,226	7,639,308
pounds		9,095	16,842
ft3			241

< total stoichiometric gypsum demand < estimated volume of gypsum required to meet stoichiometric gypsum demand

Proposed Gypsum Dosage

sypsum Dosage		
Proposed Borehole Size	12 inche	es diameter
Volume of Borehole	7.9 ft3 ov	ver 10 feet depth
Proposed % Gypsum in Borehole (by volume)	59% (acco	ounts for pore volume in sand)
Gypsum mass introduced in pilot phase	- lbs	
Additional gypsum mass required	4,210 lbs (to	o satisfy 25% of total gypsum demand)
Additional gypsum volume required	60 ft3 (to	o satisfy 25% of total gypsum demand)
Additional Boreholes required	13 (to sa	atisfy 25% of total gypsum demand)
Proposed # Boreholes	13	
Proposed gypsum volume	60 ft3	
Proposed gypsum mass required	4,204 lbs	
	25% of tot	tal gypsum demand satisfied