5900 Hollis Street, Suite A **CONESTOGA-ROVERS** Emeryville, California 94608 Fax: (510) 420-9170 Telephone: (510) 420-0700 & ASSOCIATES www.CRAworld.com TRANSMITTAL October 12, 2010 581000 DATE: **REFERENCE NO.:** 800 Franklin Street, Oakland **PROJECT NAME:** TO: Mr. Jerry Wickham RECEIVED Alameda County Department of Environmental Health 2:24 pm, Oct 13, 2010 1131 Harbor Bay Parkway, Suite 250 Alameda County Alameda, California 94502-6577 Environmental Health Please find enclosed: Draft Final Originals Other Prints Sent via: Mail Same Day Courier **Overnight Courier** \square Other Geotracker and ACEH ftp uploads QUANTITY DESCRIPTION 1 Down-Gradient Site Characterization Work Plan As Requested For Review and Comment \boxtimes For Your Use **COMMENTS:** Should you have any questions regarding the contents of the document, please contact Bryan Fong at (510) 420-3369. Ms. Anny Chiu Copy to: Signed: Jryw N Completed by: **Bryan** Fong [Please Print] **Correspondence File** Filing:

With respect to:

Down-Gradient Site Characterization Work Plan Dated October 12, 2010 Fuel Leak Case No. RO0000196

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Tommy m Mr. Tompy Chiu

-12-10 Date

DOWN-GRADIENT SITE CHARACTERIZATION WORK PLAN

CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

FUEL LEAK CASE NO. RO0000196

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

OCTOBER 12, 2010 REF. NO. 581000 (7) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0	INTROI	DUCTION	1							
2.0	SITE BA	CKGROUND	1							
2.0	2.1	SITE DESCRIPTION								
	2.2	REGIONAL GEOLOGY AND HYDROGEOLOGY								
	2.3	LOCAL GEOLOGY AND HYDROGEOLOGY								
	2.4	SUMMARY OF PREVIOUS INVESTIGATIONS								
3.0	HYDRO	CARBON DISTRIBUTION	6							
	3.1	HYDROCARON DISTIBUTION IN SOIL								
	3.2	HYDROCARBON DISTRIBUTION IN GROUNDWATER	7							
4.0	PROPOS	SED SCOPE OF WORK	8							
	4.1	HEALTH AND SAFETY PLAN								
	4.2	PERMIT								
	4.3	UTILITY CLEARANCE								
	4.4	FIELD LOGISTICS								
	4.5	SOIL BORINGS	9							
	4.6	GRAB GROUNDWATER SAMPLING	9							
	4.7	CHEMICAL ANALYSIS	10							
	4.8	MONITORING WELL INSTALLATION	10							
	4.9	WELL DEVELOPMENT	10							
	4.10	WELL SURVEY	10							
	4.11	INVESTIGATION DERIVED WASTE	10							
	4.12	REPORTING	11							
5.0	SCHEDULE11									
REFE	RENCES.		12							

LIST OF FIGURES (Following Text)

FIGURE 1	VICINITY MAP
FIGURE 2	SITE MAP
FIGURE 3	SOIL ANALYTICAL SUMMARY MAP
FIGURE 4	TPHg IN SOIL ISOCONCENTRATION MAP
FIGURE 5	BENZENE IN SOIL ISOCONCENTRATION MAP
FIGURE 6	GROUNDWATER ELEVATION AND CONCENTRATION MAP
FIGURE 7	DISSOVED PHASE TPHg ISOCONCENTRATION MAP
FIGURE 8	DISSOVED PHASE BENZENE ISOCONCENTRATION MAP
FIGURE 9	PROPOSED SOIL BORING LOCATION MAP

LIST OF TABLES (Following Text)

- TABLE 1WELL CONSTRUCTION DETAILS
- TABLE 2GROUNDWATER ANALYTICAL AND ELEVATION DATA -
PETROLEUM HYDROCARBONS
- TABLE 3SOIL ANALYTICAL DATA

LIST OF APPENDICES

- APPENDIX A AGENCY CORRESPONDENCE
- APPENDIX B STANDARD FIELD PROCEDURES FOR SOIL BORINGS AND MONITORING WELL INSTALLATION
- APPENDIX C WELL CONSTRUCTION DETAILS AND SOIL BORING LOGS

1.0 INTRODUCTION

On behalf of our client, Mr. Tommy Chiu, Conestoga-Rovers & Associates (CRA) has prepared the following *Down-Gradient Site Characterization Work Plan* (Work Plan) for the site located at 800 Franklin Street, Oakland, California. The preparation of this Work Plan is in response to a letter dated August 9, 2010, from Alameda County Environmental Health Agency (ACEH), requesting a work plan to assess the down-gradient extent of the plume. The site is referenced by ACEH as Fuel Leak Case No. RO0000196. Mr. Jerry Wickham is the ACEH Case Manager. A copy of the regulatory agency correspondence is provided in Appendix A.

The Work Plan provides a description of the site background, hydrocarbon distribution and a proposed scope of work and schedule for the additional site assessment.

2.0 <u>SITE BACKGROUND</u>

2.1 <u>SITE DESCRIPTION</u>

The site is located in a commercial area, at the eastern corner of the intersection of 8th and Franklin Streets in Oakland, California (Figure 1). It is set at an elevation of approximately 35 feet above mean sea level (msl). The site presently has a two-story commercial building that occupies the entire lot (Figure 2). Retail stores currently operate on the ground floor: Cathay Chinese Herb Company, Pacific Seafood Inc., Kim Van Jewelry, and Phoung Jewelry. Commercial offices currently operate on the second floor: Express Tax Service, Trident Financial, Mekong Reality & Mortgage Inc., and Evergreen Travel. The site is bound by commercial properties to the northeast and southeast, 8th Street to the southwest, and Franklin Street to the northwest.

Prior to 1989, the site operated as a gasoline service station. Previous investigations indicated that up to five underground storage tanks (USTs) previously existed at the site. The former USTs consisted of two 6,000-gallon gasoline USTs, one 550-gallon waste oil, and one 1,000-gallon solvent UST. These four USTs were installed circa 1970 (MES, 1989a) and subsequently removed in 1989. The 6,000-gallon USTs were formerly located in the northwest portion of the site, and the 550-gallon and 1,000-gallon USTs were formerly located underneath the sidewalk along 8th Street on the south side of the site. A potential fifth former UST is presumed to have been located on the eastern portion of the site and removed prior to 1988; however, no documentation has been discovered regarding the size, former contents, and removal of the UST.

2.2 <u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>

The site is located within the Coast Range geomorphic province of California. In general, the Coast Range province consists of Jurassic eugeosynclinal basement rocks and Cretaceous and Cenozoic sedimentary and volcanic rocks that have been faulted and folded with a northwest-southeast trend. Sediments beneath the site consist of coalescing alluvial deposits from the Oakland-Berkeley Hills. According to the United States Geologic Survey (USGS) Professional Paper 943, the site is located on quaternary age alluvial deposits consisting of medium-grained, unconsolidated, moderately sorted, and permeable, fine sand, silt, and clayey silt with thin beds of coarse sand.

The site is located in the East Bay Plain Subbasin, Groundwater Basin No. 2-9.04 (DWR 2003). The East Bay Plain Subbasin is a northwest trending alluvial basin, bounded on the north by San Pablo Bay, on the east by the contact with Franciscan basement rock, and on the south by the Nile Cone Groundwater Basin. The East Bay Plain Subbasin extends beneath the San Francisco Bay to the west of the site. The East Bay Plain Subbasin aquifer system consists of unconsolidated sediments of Quaternary age. Throughout most of the East Bay Plain in the vicinity of the site, groundwater flows from east to west, towards San Francisco Bay, and typically correlates with the site topography.

From 1860 to 1930, groundwater from the East Bay Plain was the major water supply for communities in the East Bay, before Sierra water was imported into the area. By the late 1920's the groundwater supply was too small to meet the growing population and the wells often became contaminated by seepage or saltwater intrusion. By 1929, East Bay Municipal Utility District (EBMUD) provided imported water to East Bay communities via the Mokelumne Aqueduct. This high-quality, reliable supply soon eliminated the need for local groundwater wells. In 1996, the Regional Board reviewed General Plans for Oakland and other communities. They found that Oakland did not have any plans to develop local groundwater resources for drinking water, due to existing or potential saltwater intrusion, contamination, or poor or limited quality (Regional Board 1999).

2.3 LOCAL GEOLOGY AND HYDROGEOLOGY

Based on previous subsurface investigations, subsurface soil beneath the site consists predominantly of fine to medium-grained sand and silty sand to approximately 36 feet. Some sand-clay mixtures were encountered in boring B-4 (Frank Lee & Associates) on the western portion of the site from 2 to 6 feet below ground surface (ft bgs), and

northwest of the site from 15 to 18 ft bgs in boring MW-6. Geotechnical soil boring logs obtained from nearby Bay Area Rapid Transit District (BART) identified fine to medium-grained sand to 40 ft bgs underlain by a low permeability, hard, silty clay from approximately 40 to 70 ft bgs.

An unconfined water-bearing zone is present beneath the site at a depth of 20 ft bgs and with a thickness of approximately 20 feet. Since 1989, the groundwater table has fluctuated approximately 4 feet from approximately 20 to 24 ft bgs. Groundwater beneath the site flows predominantly towards the northwest. The observed flow direction may potentially be influenced by the BART tunnels, which run east-west beneath 8th Street and Franklin Street and vary in depth from approximately 27 to 32 ft bgs, and/or by potential groundwater pumping from the BART pump station No. 2 located approximately 550 feet southwest of the site.

2.4 <u>SUMMARY OF PREVIOUS INVESTIGATIONS</u>

Several phases of soil and groundwater assessments have been conducted at the site since the USTs were removed in 1989. Boring and well locations are presented on Figure 2.

May 1988: Frank Lee & Associates performed a geotechnical investigation for the subject site. The purpose of this investigation was to determine the strength characteristics of the soil as a basis for making site grading and foundation design recommendations for a proposed three-story commercial building. Soil beneath the site was observed to consist of generally moist, medium dense, fine-grained silty sand to the total explored depth of 28.5 ft bgs. Tank backfill soil was observed to approximately 15.5 ft bgs in B-3 and to a minimum depth of 6 ft bgs in B-4. Frank Lee & Associates recommended excavating the then existing surficial material "to a minimum depth of 2 feet and re-compact before placement of engineered fill or construction." Soil samples were collected from 1 to 4 ft bgs for analysis for volatile organic compounds (VOCs); low to medium boiling point hydrocarbons; benzene, toluene, ethylbenzene, xylenes (BTEX); and total oil and grease (TOG). None of these analytes were detected above laboratory detection limits (Frank Lee & Associates, 1988). Soil analytical data is summarized in Table 3. See Appendix C for copies of the boring logs.

August 1988: LW Environmental Services, Inc. performed a soil investigation. Gasoline hydrocarbon concentrations were detected in the vicinity of the then existing USTs (MEC, 1989b).

June 1989: The Robert J. Miller Company removed four USTs: two 6,000-gallon gasoline tanks, one 550-gallon waste-oil tank, and one 1,000-gallon solvent tank. The Traverse Group Inc. (TGI) collected soil samples from beneath each tank and visually inspected the condition of each tank upon removal. No obvious pitting or corrosion was reported. The two gasoline USTs were removed from one excavation area in the northwestern corner of the site. The waste-oil and solvent USTs were removed from one excavation area in the sidewalk south of the site, along 8th Street. Approximately 10 cubic yards of soil was deemed contaminated by TGI and stockpiled on site. Soil that TGI determined to be clean or only slightly impacted was stockpiled on site. Soil samples from the excavations and stockpiles were analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPHg), as diesel (TPHd), as waste oil (TPHwo), and BTEX. Additionally, samples from the waste oil and solvent UST's excavation were analyzed for purgeable organics and semi-volatile organic compounds (SVOCs). High levels of fuel hydrocarbon contamination were detected in the northeast corner of the northeastern excavation and in the waste oil/solvent UST's excavation (MEC, 1989c).

September - October 1989: Miller Environmental Company (MEC) performed a preliminary investigation to determine whether fuel detected in soil during UST excavation activities impacted groundwater. Two excavation pits were re-excavated to approximately 15 ft bgs and approximately 25 cubic yards of additional contaminated soil was removed. Confirmation soil samples were collected from the overexcavation sidewalls and bottoms. The highest levels detected in the northwestern overexcavated pit were 2.3 milligrams per kilogram (mg/kg) TPHg, 80 mg/kg TPHwo, 0.05 mg/kg toluene, and 0.14 mg/kg xylenes. TPHd, benzene, and ethylbenzene were not detected above laboratory detection limits in samples collected from the northwestern pit. The highest levels detected in the waste oil/solvent overexcavated pit were 10,000 mg/kg TPHg, 250 mg/kg TPHd, 400 mg/kg TPHwo, 50 mg/kg benzene, 210 mg/kg toluene, 54 mg/kg ethylbenzene, and 270 mg/kg xylenes. Further overexcavation in the waste oil/solvent pit was not possible due to the proximity of 8th Street and interfering utilities along the southern edge of this excavation. An estimated 32 cubic yards of contaminated soil was hauled to a Class I disposal facility. The northwestern pit was backfilled with a combination of clean fill and re-used "uncontaminated soil" from the initial excavation of the two gasoline USTs. This re-used fill was intended to be temporary and to be removed when construction took place on the property. The waste oil/solvent pit was backfilled with clean fill. In addition, three monitoring wells (MW-1, MW-2, and MW-3) were installed as part of this investigation. Analytical results from these borings and wells indicated soil and groundwater from boring MW-1 was not impacted by hydrocarbons. Impacted soil was detected in offsite borings MW-2 and MW-3, between 20 to 25 ft bgs. Groundwater was first encountered in all boreholes at approximately 25 ft bgs. The groundwater gradient and flow direction were calculated to be 0.006 feet per foot and to the west-northwest, respectively.

Early 1991: Construction of the existing building on site began in early 1991. It is reported that the ACEH concurred with MEC's conclusion that soil excavation in the 6,000-gallon UST pit was successful in removing all but minor residual hydrocarbon contamination. As a result no objections were raised to construction activities on site. Monitoring well MW-1 was preserved in the construction process and remains accessible inside the building (MEC, 1992).

September - October 1991: MEC conducted a subsurface investigation to further define the lateral extent of offsite hydrocarbon contamination. On September 11, 1991, one borehole (B-1) was advanced and soil samples were collected. On October 2 and 3, 1991, three boreholes (B-2, MW-4, and MW-5) were advanced, soil samples were collected, and two monitoring wells were constructed. Groundwater was first encountered in all boreholes at approximately 25 ft bgs. No hydrocarbons were detected in soil samples collected to a depth of 20 ft bgs. However, soil samples from 25 ft bgs in boreholes B-1 and B-2 detected TPHg, Total Recoverable Petroleum Hydrocarbons (TRPH), TPHd, and toluene (Table 3). On October 31, 1992, groundwater was sampled from wells MW-1 through MW-5. Approximately 1/8-inch of floating product was observed in well MW-2. Groundwater analytical results indicated very low to moderate concentrations of TPHg, TPHd, BTEX, and 1,2-dichloroethane (1,2-DCA) in monitoring wells MW-1, MW-2, and MW-3. No TOG was detected above laboratory detection limits in any of the wells. Also detected in well MW-3 were 1,2-dichloropropane at 0.0007 parts per million (ppm) and 1,1,1-trichoroethane (1,1,1-TCE) at 0.0014 ppm. No hydrocarbons were detected in groundwater from off site wells MW-4 and MW-5. However, very low levels of chloroform were detected in off site wells MW-4 and MW-5. See Table 2 for historic groundwater analytical results.

May 1997: On May 15, 1997, Associated Terra Consultants, Inc. (ATC) installed monitoring well MW-6. Soil samples were collected and analyzed. Soil samples had detectable concentrations of TPHd, BTEX, and methyl tertiary butyl ether (MTBE). TPHd was detected in soil at 10 ft bgs. BTEX were detected in soil at 25 ft bgs. MTBE was detected in soil at 30 ft bgs. See Table 3 for soil analytical results. Groundwater was first encountered at approximately 22.5 ft bgs. Boring logs are included in Appendix C. On May 21, 1997 ATC performed groundwater monitoring and sampling activities for all six of the site's monitoring wells.

November-December 2006: On November 17, 2006, Cambria Environmental Technology, Inc. (Cambria) installed soil vapor probes VP-1 and VP-2 in the city

sidewalk along Franklin and 8th Streets. Soil samples were collected from each soil vapor probe location at approximately 5 ft bgs. Soil samples were analyzed for TPHg, TPHd, and TPHmo by EPA Method 8015C; BTEX and MTBE by EPA Method 8021 B; and 1,2-DCA and chloroform by EPA Method 8260. Low levels of TPHd and TPHmo concentrations were detected in soil sample VP-1.5.5 at 4.0 and 6.9 mg/kg, respectively. Based on these results, Cambria concluded the upper 5.5 feet of soil at locations VP-1 and VP-2 has little to no hydrocarbon impact.

On December 28, 2006, Cambria returned to the site to collect vapor samples from VP-1 and VP-2. The samples were analyzed, in accordance with the approved July 24, 2006 Work Plan, for benzene and tracer compounds isobutene, butane, and propane by modified EPA Method TO-15. No concentrations of benzene, and the tracer compounds were detected.

January-February 2007: Since 2004, monitoring well MW-3 has been filled with debris and inaccessible. ACEH requested that this well be decommissioned and rebuilt. On January 29, 2007, Cambria destroyed well MW-3 by pressure grouting. To replace MW-3, Cambria returned to the site on February 8, 2007 to install well MW-3A. This work was performed in accordance with the approved July 24, 2006 *Work Plan.* On July 25, 2007, CRA collected a second round of vapor samples from soil vapor wells VP-1 and VP-2. Each sample was analyzed by EPA Method TO-15 GC/MS for benzene and the full VOC target list. No concentrations of benzene or tracer compounds were detected. The only chemicals detected were 2-butanone (methyl ethyl ketone), 2,2,4-Trimethylpentane, Freon 12, Acetone, and Tetrachloroethane. Detections did not exceed Regional Water Quality Control Board – San Francisco Bay Region Environmental Screening Levels (ESLs) for any of the chemicals with an established ESL.

Groundwater Monitoring: Groundwater monitoring was initially conducted from October 1989 through 2000, and from 2004 through October 2006. Due to some missing project files, the entire monitoring and sampling history is unknown. Groundwater is currently monitored on a semi-annual basis.

3.0 <u>HYDROCARBON DISTRIBUTION</u>

Following is an overview of hydrocarbon distribution in soil and groundwater at the site.

3.1 <u>HYDROCARON DISTIBUTION IN SOIL</u>

Soil samples have been collected from a total of six soil borings; six groundwater monitoring well locations and two vapor probes located on and off the site. Of the six soil borings, four of them (B-1 through B-4; Frank Lee & Associates) were drilled mainly for geotechnical reasons and therefore soil samples were only collected from 1 to 4 ft bgs for VOC analysis. No VOCs were detected in any of the samples.

Petroleum hydrocarbons have been detected at depths ranging from 21 to 26 ft bgs beneath the sidewalk and street located directly west-northwest of the former 6,000-gallon gasoline USTs, and also beneath the former 550-gallon and 1,000-gallon USTs located in the sidewalk along 8th Street. TPHg concentrations ranged from 120 to 2,200 mg/kg in the vicinity of the two former 6,000-gallon USTs and ranged from 1,900 to 10,000 mg/kg in the vicinity of the former 550-gallon and 1,000-gallon USTs.

Hydrocarbon-impacted soil in the vicinity of the former 6,000-gallon USTs appears to extend offsite beneath the sidewalk and Franklin Street to the northwest. Hydrocarbon-impacted soil in the vicinity of the former 550-gallon and 1,000-gallon USTs appears to extend offsite beneath the sidewalk and 8th Street to the southwest and south. The extent of hydrocarbon-impacted soil is not fully defined laterally and also vertically below groundwater, beyond 26 ft bgs. However, based on the lack of any identified exposure pathways in CRA's *Site Conceptual Model Report*, dated July 2, 2010, no further assessment of hydrocarbon-impacted soil is warranted at this time. Soil analytical data is presented on Table 3. Figure 3 provides a summary of soil analytical data, and Figures 4 and 5 provide isoconcentrations for TPHg and benzene in soil, respectively.

3.2 <u>HYDROCARBON DISTRIBUTION IN GROUNDWATER</u>

During the September 3, 2010 sampling event, TPHg concentrations were 9,500, 35,000, and 4,600 micrograms per liter (μ g/L) in monitoring wells MW-2, MW-3A, and MW-6, respectively. Elevated concentrations of TPHg and benzene in groundwater appear to form a comingled plume that extends from the two former UST source areas towards well MW-6. The elongated plume shape is consistent with the local groundwater flow direction (Figure 6). The down-gradient extent of the hydrocarbon plume is undefined; however concrete-lined BART tunnels in the immediate vicinity may be acting as a potential barrier to plume migration. Installation records indicate that the top of the BART tunnels ranges from approximately 27 to 32 ft bgs under 8th and Franklin Street. However, further down-gradient of the site, the BART tunnels may rise up to the same

elevation as the groundwater table. The hydrocarbon plume appears to be adequately defined in all directions except down-gradient to the northwest. Figures 7 and 8 present isoconcentrations for TPHg and benzene in groundwater, respectively.

4.0 <u>PROPOSED SCOPE OF WORK</u>

The objectives of this work plan are to further characterize the hydrocarbon plume down-gradient of the source areas. CRA proposes to assess the down-gradient portion of the plume by the collection of grab groundwater samples, and installation of an additional monitoring well. To determine the appropriate monitoring well location and achieve the work tasks described in this Work Plan cost efficiently, CRA proposes to implement this work through the following two phases; 1) Drill soil borings and perform Hydropunch grab groundwater sampling, and 2) Install a monitoring well based on the analytical results of the grab groundwater samples. During the first phase, a minimum of three Hydropunch borings will be drilled to collect grab groundwater samples. Based on field observations, additional step out Hydropunch borings may be drilled (Figure 9). Grab groundwater samples will be submitted for laboratory analysis. Following receipt of the analytical results, CRA will determine the most appropriate location for a down-gradient monitoring well and submit a Work Plan Addendum that will include the results of the first phase and the proposed monitoring well location. Following ACEH approval of the Work Plan Addendum, CRA will install the monitoring well as described below during the second phase of this field work.

4.1 <u>HEALTH AND SAFETY PLAN</u>

A site specific Health and Safety Plan will be prepared for the fieldwork. The Health and Safety Plan will be available onsite to all site workers and visitors during all field work activities.

4.2 <u>PERMIT</u>

A drilling permit will be obtained from Alameda County Public Works Agency. Excavation, encroachment, and obstructions permits will be obtained from the City of Oakland.

4.3 <u>UTILITY CLEARANCE</u>

Prior to any drilling activities, the proposed drilling locations will be marked with white paint. CRA will alert Underground Service Alert (USA) of the proposed drilling locations a minimum of 48 hours prior to drilling and obtain a USA ticket. Following receipt of the USA ticket, CRA will obtain a private utility locator to identify and mark any subsurface utilities not identified by USA. In addition, CRA will notify BART of the proposed drilling locations, and request to review any available BART records to identify the locations and depths of the BART tubes in the vicinity of the proposed drilling locations. Actual soil boring and monitoring well locations will be based on the field conditions and possible utility constraints.

4.4 <u>FIELD LOGISTICS</u>

The proposed drilling locations are located within the public right of way. Pedestrian and vehicle traffic are expected to be high during the daylight hours. CRA will coordinate with the City of Oakland to schedule and conduct the proposed work during evening hours when public activity is anticipated to be minimal.

4.5 <u>SOIL BORINGS</u>

A minimum of three Hydropunch borings are proposed to the northwest of MW-5 and MW-6 (Figure 9). Based on field observations, additional step out Hydropunch borings to the northwest may be drilled. The soil borings will be advanced to approximately 25 ft bgs using a Geoprobe direct push or similar drilling rig. The monitoring well will be drilled to approximately 35 ft bgs using a hollow-stem auger drilling rig. Prior to drilling, each of the borings will be cleared for utilities to 8 ft bgs using a hand auger or air knife method.

4.6 GRAB GROUNDWATER SAMPLING

A grab groundwater sample will be collected from the proposed Hydropunch borings. Once the boring is advanced to approximately 25 ft bgs, the drilling rods will be retracted from the bottom of the boring approximately 4 feet, exposing a stainless steel screen. A grab groundwater sample will be collected using a new clean disposable bailer and submitted for laboratory analysis.

4.7 <u>CHEMICAL ANALYSIS</u>

A grab groundwater samples will be analyzed for the following constituents:

- TPHg by EPA Method 8015Bm
- BTEX by EPA Method 8021B

4.8 MONITORING WELL INSTALLATION

The well will be constructed using 2-inch diameter, schedule 40 PVC pipe with 0.010-inch slotted casing from approximately 18 to 35 ft bgs. A filter pack of Monterey No. 2/16 sand will be placed from the bottom of the boring to approximately 2 feet above the screen. The well annulus will have a 2-foot bentonite seal above the filter pack and will be filled with neat Portland Type I/II cement to grade. CRA's standard field procedure for soil borings and monitoring well installation is presented as Appendix B.

4.9 <u>WELL DEVELOPMENT</u>

Following installation of the monitoring well(s), each well will be developed using a surge block and purge method.

4.10 <u>WELL SURVEY</u>

Newly installed monitoring well(s) will be surveyed for latitude and longitude coordinates based on the California State Coordinate System, Zone III (NAD83).

4.11 INVESTIGATION DERIVED WASTE

All investigation derived waste (IDW) will be temporarily stored on-site in sealed DOT-approved drums. IDW composite samples will be collected and submitted for laboratory analysis and waste profiling. The drums will be properly labeled and transported off site for disposal.

4.12 <u>REPORTING</u>

Following receipt of the analytical results, CRA will prepare a subsurface investigation report that at a minimum will include:

- Descriptions of the drilling and groundwater sampling methods,
- Tabulated groundwater analytical results,
- Soil boring logs and well construction details,
- Figures depicting the location of all borings and associated analytical groundwater results,
- Laboratory reports and chain-of-custody forms,
- An evaluation of the analytical results and distribution of hydrocarbons, and
- Conclusions and recommendations.

5.0 <u>SCHEDULE</u>

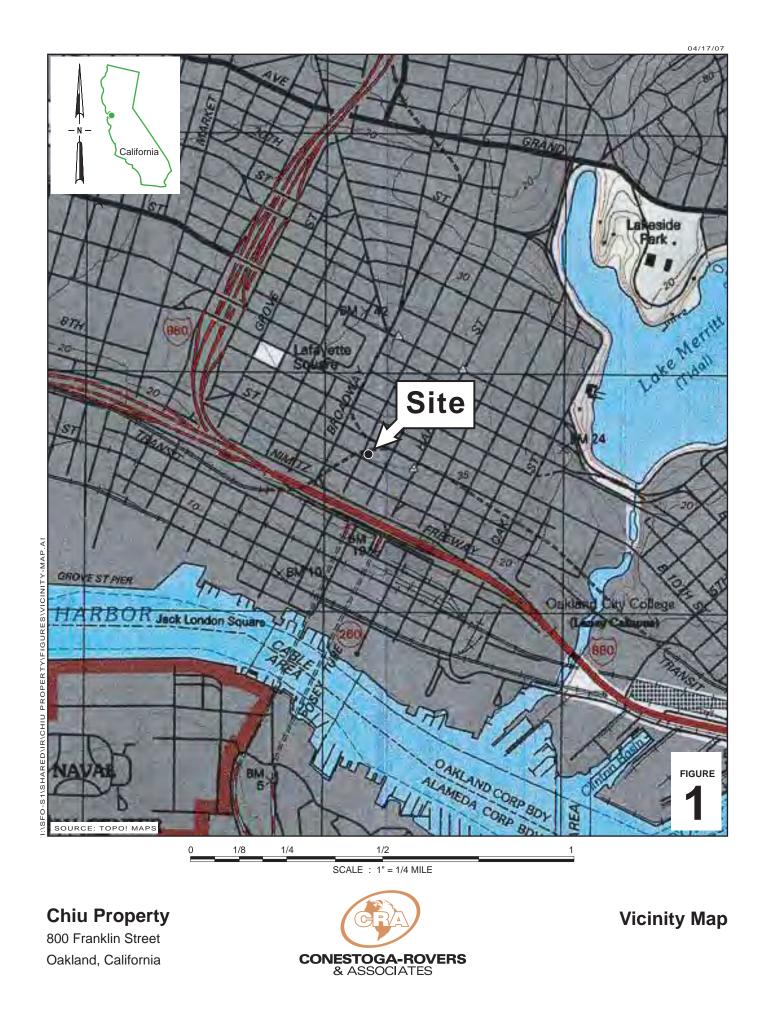
CRA will perform this investigation after receiving written approval of this *Work Plan* from the ACEH and obtaining necessary permits from Alameda County Public Works and the City of Oakland. CRA will submit a comprehensive investigation report approximately 6 weeks after all field work has been completed and the receipt of all analytical data.

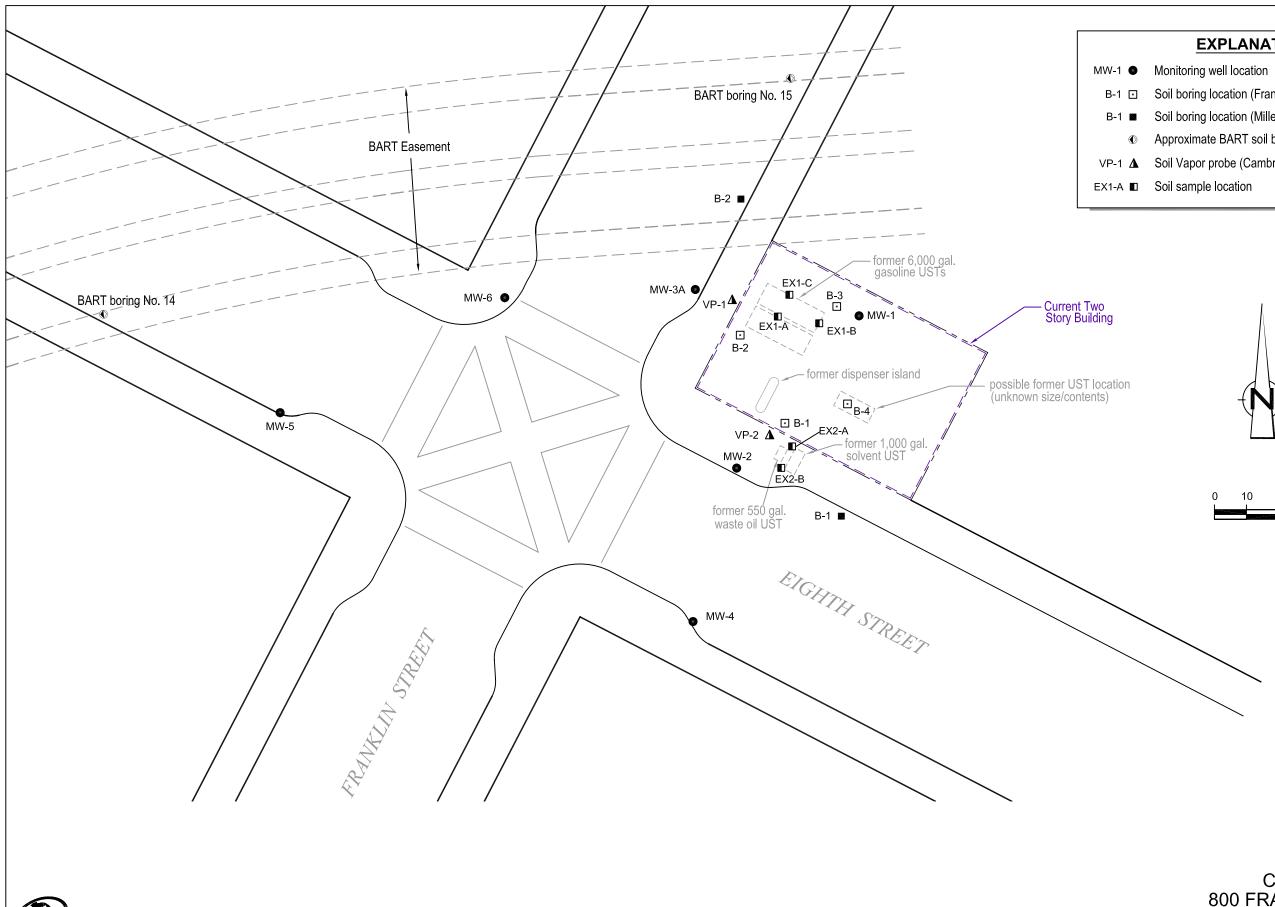
REFERENCES

- California Department of Water Resources (DWR), 2003, Bulletin 118 California's Groundwater.
- Regional Water Quality Control Board, San Francisco Bay Region Groundwater Committee, 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. June.
- Frank Lee & Associates, 1988. *Soil and Foundation Investigation Proposed Commercial Building* at 800 Franklin Street, Oakland, California. June 13, 1988.
- MEC, 1989b. *Update on 800 Franklin Street in Oakland*, 800 Franklin Street, Oakland, California. October 9, 1989.
- MEC, 1989c. *Report on Subsurface Investigation and Remediation of Contaminated Soil,* 800 Franklin Street, Oakland, California. November 3, 1989 Draft Edition.
- MEC, 1992. *Report on Subsurface Investigation, Related to Well Installation and Borings*, 800 Franklin Street, Oakland, California. January 20, 1992.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Bryan A. Fong


Soluto



Ron Scheele, P.G.

Conestoga-Rovers & Associates (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

FIGURES

EXPLANATION B-1 Soil boring location (Frank Lee & Assoc., 1988) B-1 ■ Soil boring location (Miller Environmental Co., 1991) Approximate BART soil boring location (BART 1963) VP-1 **A** Soil Vapor probe (Cambria, 2006)

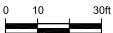
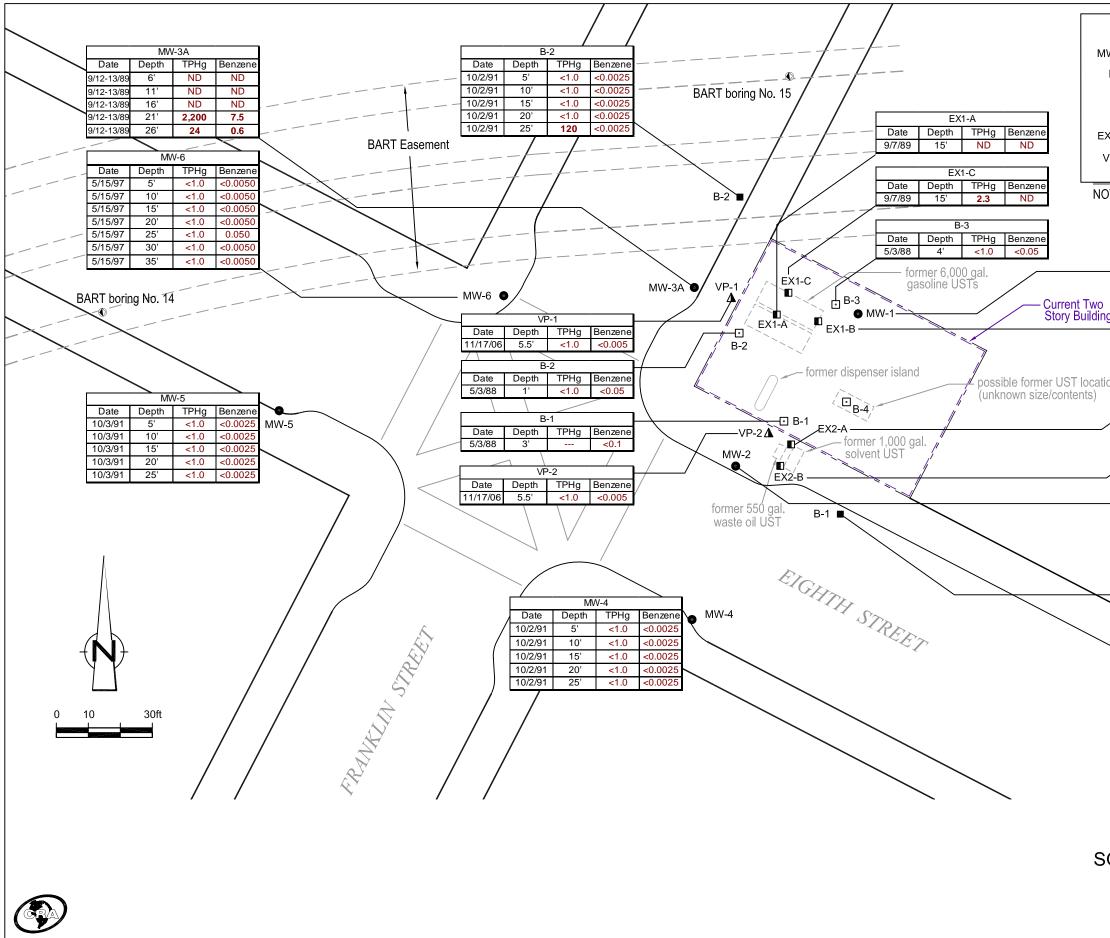
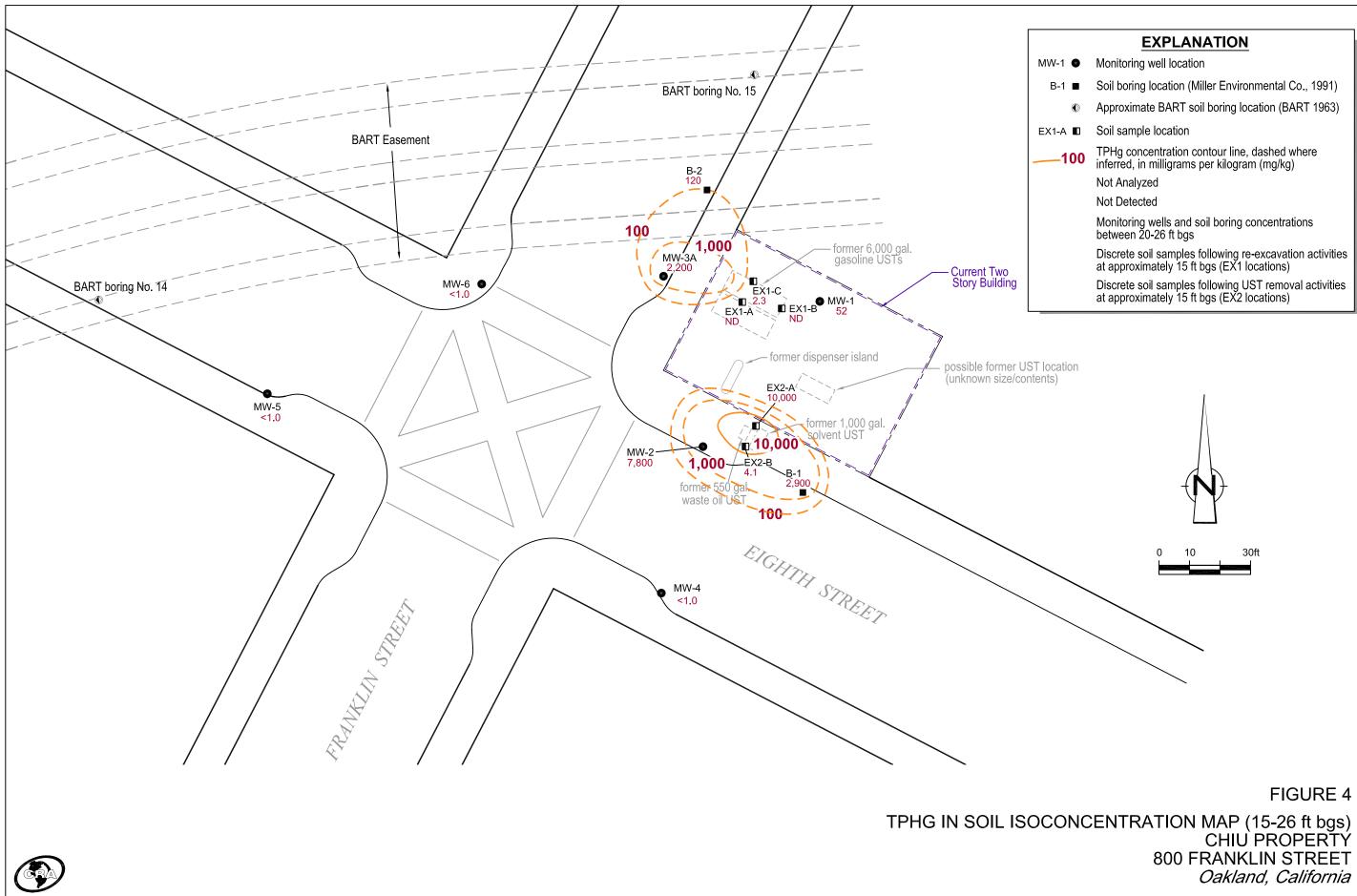



FIGURE 2 SITE PLAN CHIU PROPERTY 800 FRANKLIN STREET Oakland, California

EXPLANATION


/IW-1 🜑	Monitoring well location
B-1 ⊡	Soil boring location (Frank Lee & Assoc., 1988)
B-1 🔳	Soil boring location (Miller Environmental Co., 1991)
\odot	Approximate BART soil boring location (BART 1963)
EX1-A 🔟	Soil sample location
VP-1 🛕	Soil Vapor probe (Cambria, 2006)

NOTE: Soil concentrations are in milligrams per kilogram (mg/kg)

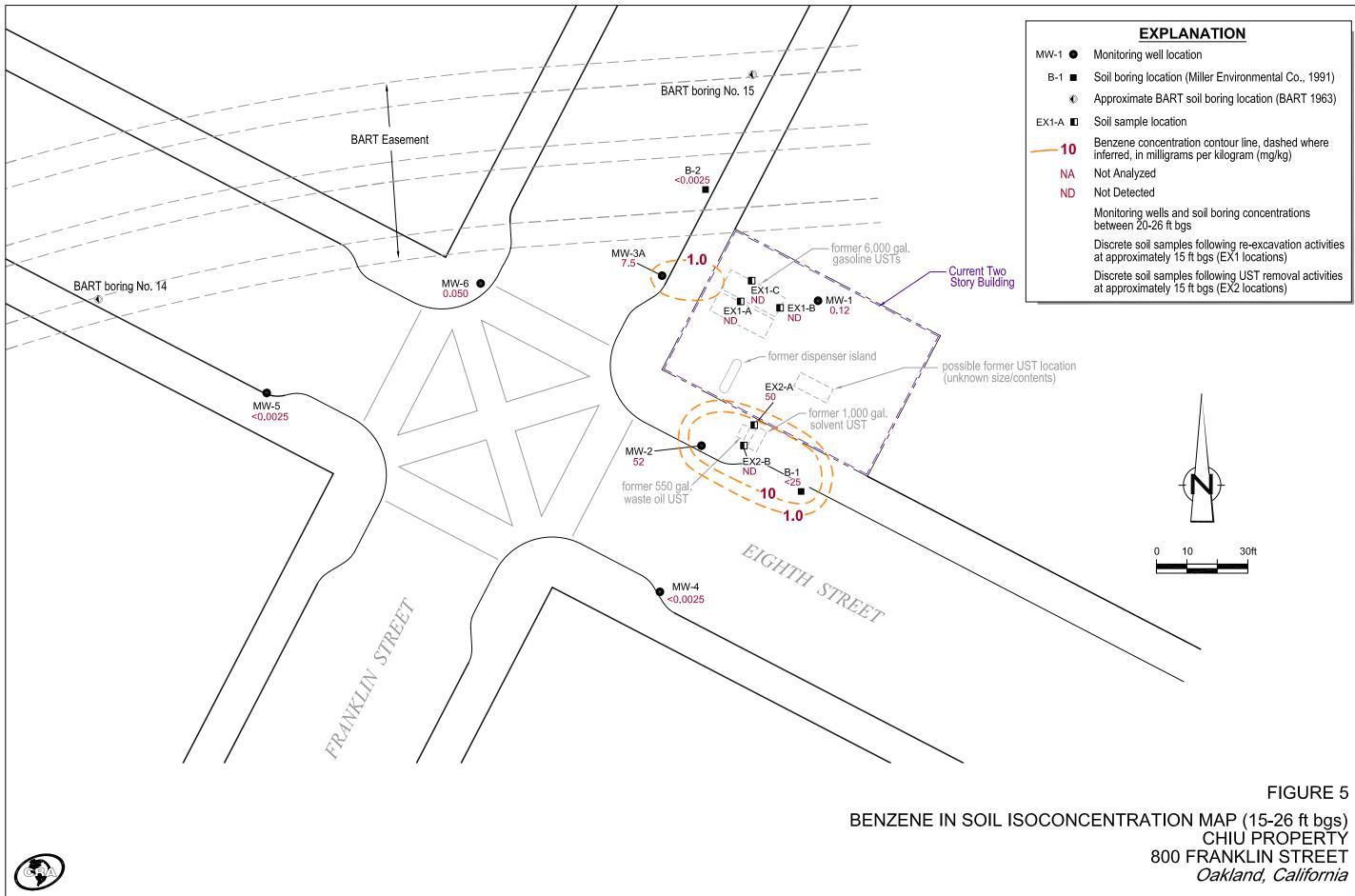
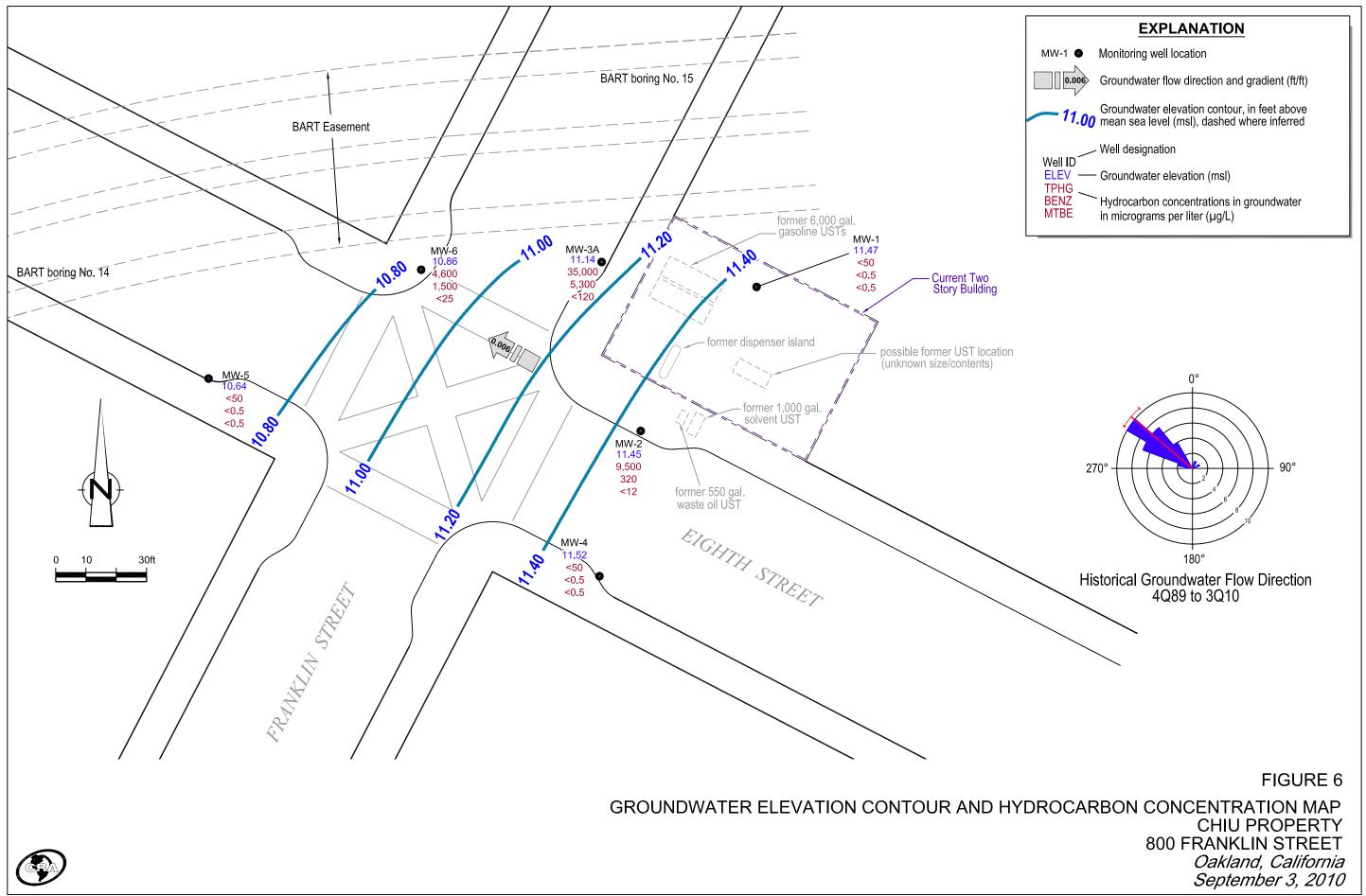
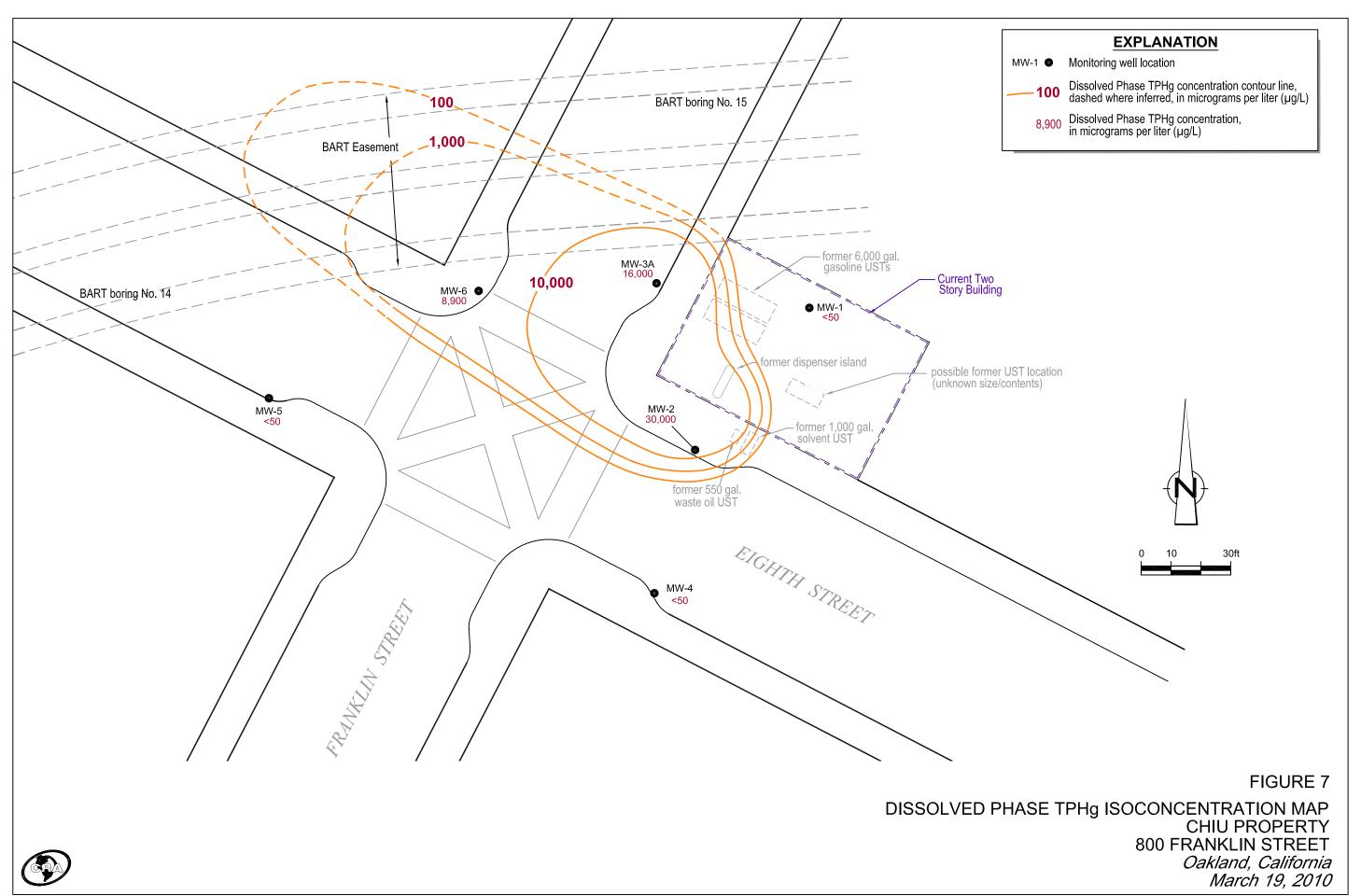
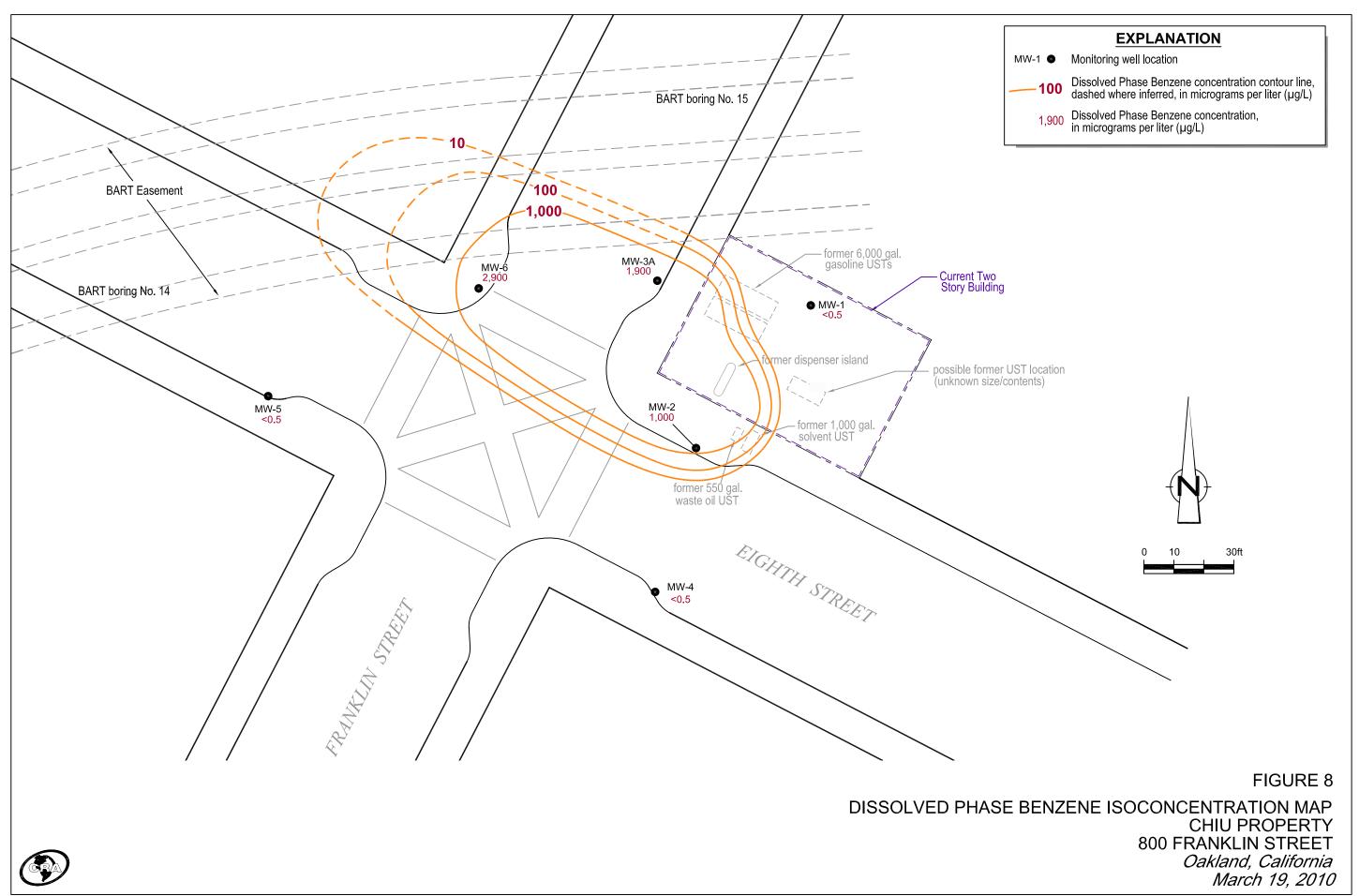
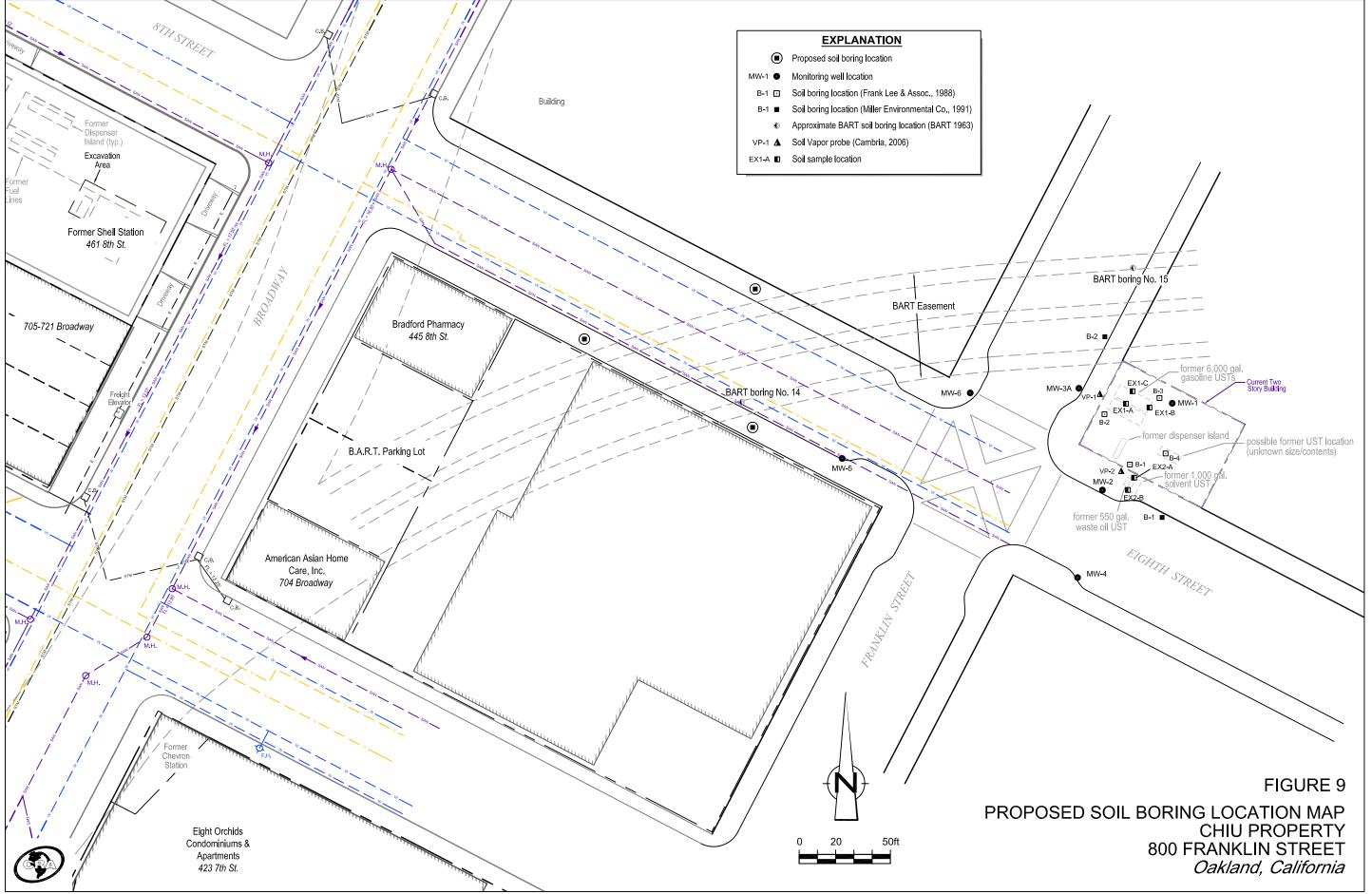

Date)/12-13/89)/12-13/89)/12-13/89)/12-13/89)/12-13/89 Date 9/7/89 Date 9/7/89	Depth 15'	TPHg ND ND 52 ND 1-B TPHg ND	Benzene ND ND 0.12 ND Benzene ND											
0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/7/89	6' 11' 21' 26' EX Depth 15' EX Depth	ND ND 52 ND 1-B TPHg ND 2-A	ND ND 0.12 ND Benzene ND											
0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 0/12-13/89 Date 9/7/89 Date	11' 16' 21' 26' EX Depth 15' EX Depth	ND ND 52 ND 1-B TPHg ND 2-A	ND ND 0.12 ND Benzene ND											
0/12-13/89 0/12-13/89 0/12-13/89 Date 9/7/89 Date	16' 21' 26' EX Depth 15' EX Depth	ND 52 ND 1-B TPHg ND 2-A	ND 0.12 ND Benzene ND											
0/12-13/89 0/12-13/89 Date 9/7/89 Date	21' 26' EX Depth 15' EX Depth	52 ND 1-B TPHg ND 2-A	0.12 ND Benzene ND											
Date 9/7/89 9/7/89 Date	26' EX Depth 15' EX Depth	ND 1-B TPHg ND 2-A	ND Benzene ND											
Date 9/7/89 Date	EX Depth 15' EX Depth	1-B TPHg ND 2-A	Benzene ND											
9/7/89 Date	Depth 15' EX Depth	TPHg ND 2-A	ND											
9/7/89 Date	Depth 15' EX Depth	TPHg ND 2-A	ND											
9/7/89 Date	15' EX Depth	ND 2-A	ND											
Date	EX Depth	2-A												
	Depth													
	Depth													
		TPHa	EX2-A											
9/7/89	15'	i i i i i y	Benzene											
	10	10,000	50											
	EX	2-B												
Date	Depth	TPHg	Benzene											
9/7/89	15'	4.1	ND											
MW-2														
Date	Depth	TPHg	Benzene											
9/12-13/89	6'	ND	ND											
9/12-13/89	11'	ND	ND											
9/12-13/89	16'	ND	ND											
9/12-13/89	21'	1,900	50											
9/12-13/89	26'	7,800	30											
	B	-1	•											
Date	Depth	TPHg	Benzene											
9/11/91	5'	<0.20	< 0.0050											
9/11/91	10'	<0.20	< 0.0050											
9/11/91	15'	<0.20	< 0.0050											
9/11/91	20'	<0.20	< 0.0050											
9/11/91	25'		<25											
		_,												
	9/7/89 Date //2-13/89 //2-13/89 //2-13/89 //2-13/89 //12-13/	9/7/89 15' MW Date Depth 9/12-13/89 6' 9/12-13/89 11' 9/12-13/89 26' 9/12-13/89 26' B Date Depth 9/11/91 5' 9/11/91 10' 9/11/91 15' 9/11/91 20'	9/7/89 15' 4.1 MW-2 Date Depth TPHg 0/12-13/89 6' ND 0/12-13/89 11' ND 0/12-13/89 16' ND 0/12-13/89 16' ND 0/12-13/89 21' 1,900 0/12-13/89 26' 7,800 B-1 Date Depth JPHg 9/11/91 5' <0.20											

FIGURE 3


SOIL ANYALYTICAL SUMMARY MAP CHIU PROPERTY 800 FRANKLIN STREET *Oakland, California*


I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-EM004.DWG


I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-EM005.DWG


I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-2Q10-GWHC.DWG

I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-EM007.DWG

I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-EM008.DWG

I:\IR\6-chars\5810--\581000\581000-CHIU\581000-FIGURES\581000-EM002.DWG

TABLES

TABLE 1

WELL CONSTRUCTION DETAILS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID	Date Installed	Borehole Depth (ft)	Borehole Diameter (in)	Casing Diameter (in)	Screen Interval (ft bgs)	Screen Size (in)	Filter Pack (ft bgs)	Bentonite Seal (ft bgs)	Cement Seal (ft bgs)	TOC Elevation (ft msl)
MW-1	1989	35.0	8.0	2	20.0 - 35.0	0.010	18.0 - 35.0	16.0 - 18.0	0 - 16.0	33.42
MW-2	1989	35.0	8.0	2	20.0 - 35.0	0.010	18.0 - 35.0	16.0 - 18.0	0 - 16.0	33.66
MW-3*	Installed: 1989 Destroyed: 1/29/07	35.0	8.0	2	20.0 - 35.0	0.010	18.0 - 35.0	16.0 - 18.0	0 - 16.0	34.23
MW-3A	2/8/2007	35.0	10.0	4	20.0 - 35.0	0.010	19.0 - 35.0	17.0 - 19.0	0 - 17.0	34.16
MW-4	10/2/1991	35.0	8.0	2	20.0 - 35.0	0.010	18.0 - 35.0	-	0 - 18.0	33.64
MW-5	10/3/1991	35.0	8.0	2	20.0 - 35.0	0.010	18.0 - 35.0	· _	0 - 18.0	33.56
MW-6	5/15/1997	35.0	8.0	2	14.5 - 36.25	0.010	14.5 - 36.25	12.5 - 14.5 (?)	0 - 12.5	33.98

Abbreviations / Notes

ft = feet

in = inches

ft bgs = feet below grade surface

ft msl = feet above mean sea level

TOC = top of casing

* = Monitoring well MW-3 properly destroyed on January 29, 2007 by Cambria.

TABLE 2

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID TOC Elevation (ft msl)	Date Sampled	Depth to Water (ft below TOC)	Groundwater Elevation (feet msl)	TPHg ←	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	МТВЕ	Chloroform	1,2-DCA →
MW-1	10/12/1989	22.87	10:55	ND	_	~	ND	ND	ND	· ND		0.8	8.6
33.42	10/31/1991	<u> </u>		630	960	1,700	3.2	ND<0.5	ND<0.5	130			0.0098
34.89	10/21/1992	23.48	11.41	520	- '		78	38	ND<0.5	120		· _	ND
	2/25/1993	22.51	12.38	1,600	-		160	190	34	350	_		
	4/27/1993	22.36	12.53	380			5.2	ND<0.5	ND<0.5	74	_		
	10/7/1993		12.10	1,000	. . .	~	81	150	47	230	_	·	_
33.98	3/28/1994	_ `	11.91	460	—		14	25	14	39	<u> </u>	_	· · .
	4/29/1994	-		_	<u> </u>		_	— .	~	-	-		·
	6/10/1994		11.66		-	~-	-	_ · ·	~	-		_	_
	7/8/1994		11.62	-	_	-		-		_	_	_	_ `
	7/26/1994	-	11.48	_ '	-	~		-	-			-	
	8/25/1994	· _ ·	11.47	-	—		· _	-	~	_	_	_	
	10/27/1994	22.51	11.47	ND<50	¹		ND<0.5	ND<0.5	ND<0.5	ND<0.5	·		
	1/6/1995	-	12.08	_	-		-	-		-	-	-	_
	2/1/1995	_	12.79	_			-	-	-			-	_
	3/29/1995	· - ·	12.75		_	-	-	_			-		
	10/31/1995	-	12.48	1,400	_ '		15	38	49	510	19		_
	5/21/1997	_	12.49	150	<u> </u>	~	2.9	1.5	8.6	26	ND<5.0	_	· _
	8/10/2004	23.35	10.63	ND<50	-	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-
	9/28/2004É		-	· _	-		_	_		_	-		-
	12/21/2004	22.93	11.05	ND<50	— .	·	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_
	3/11/2005É	- .	_				_	_ ·	~	-		<u> </u>	_
	6/16/2005	20.68	13.30	ND<50	-		0.64	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	—
	9/1/2005	20.74	13.24	ND<50	``	-	1.2	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_
	12/16/2005	20.95	13.03	ND<50	-		ND<0.5	ND<0.5	ND<0.5	N⁄D<0.5	ND<5.0	_	-
	3/10/2006	20.34	13.64	ND<50	- /		0.60	ND<0.5	ND<0.5	ND<0.5	ND<5.0		· _
	9/15/2006	21.51	12.47	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	6.4	ND<0.5
	3/8/2007	21.81	12.17	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	0.72	ND<0.5	ND<5.0	6.9	ND<0.5
	9/17/2007	22.08	11.90	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	2.3	ND<0.5	ND<0.5	4.7	ND<0.5
	3/4/2008	21.72	12.26	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND<0.5
	9/3/2008	22.70	11.28	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.98	ND<0.5
	3/4/2009	22.49	11.49	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.65
	9/8/2009	22.80	11.18	ND<50	ND<50	ND<250	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5	ND<0.5
	3/19/2010	22.25	11.73	ND<50	ND<50	-	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	ND<0.5	0.58
	9/3/2010	22.51	11.47	ND<50	ND<50	-	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	1.2	ND<0.5
MW-2	10/12/1989	23.25	10.40	38,000		3,900	1,300	1,200	ND	4,700	· <u> </u>		
33.66	10/31/1991	· _	-	10,000	1,500	· —	1,800	1,200	270	960	-	-	0.17
	11/6/1991	24.02	9.64	-	- , .	-	- .		-		'	. .	-
	10/21/1992	22.42	11.24	270,000		-	9,700	4,500	9,600	56,000	-	-	15.4
	2/25/1993	21.50	12.16	49,000	·	-	4,300	11,000	1,300	9,100	-	-	-
	4/27/1993	21.26	12.40	39,000	-	-	1,400	4,000	220	5,200	-	· _	-
	10/7/1993	-	12.04	50,000	-	_	2,700	8,100	940	7,800	-	-	-

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID TOC Elevation (ft msl)	Date Sampled	Depth to Water (ft below TOC)	Groundwater Elevation (feet msl)	TPHg ←	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	МТВЕ	Chlorofo rm	1,2-DCA
MW-2 (cont.)	3/28/1994	_ ·	11.88	20,000		_	360	1,300	220	1,800	_	-	
	4/29/1994		11.87		-	_		-		_	-	-	-
	6/10/1994	-	11.44		-	<u>. </u>	_	-	-	· _	, -		
	7/8/1994	-	11.42	_	-	_	_	- -		·	 ,	. –	
	7/26/1994	-	11.22		_	-				— ,	-	-	-
	8/25/1994		11.01	_	-	-	_	-	-	-	· _ ·	_	-
	10/27/1994	22.66	11.00	21,000	-	-	1,200	3,700	600	4,300	· -	-	· _
	1/6/1995	_	11.66	<u> </u>	-	-	-	-	-	-	-	-	-
	2/1/1995	-	12.21			-	-	· _	-	—		-	
	3/29/1995	-	12.66	-	-		-	- ·	1 - 1	_	-		-
	10/31/1995		11.51	45,000	 `	-	3,100	8,800	1,200	8,400	810	·	-
	5/21/1997		12.65	18,000	-	-	1,400	4,200	680	3,600	370	-	_
	8/10/2004	21.03	12.63	47,000 (a)	-		4,200	4,900	1,400	6,000	ND<500		
	9/28/2004	22.95	10.71	-	-	·	-		-	-	-	-	-
	12/21/2004	20.91	12.75	13,000 (a)	-	. –	500	310	34	1600	ND<100		
	3/11/2005	11.35	22.31	32,000 (a)	-	-	970	2,400	890	4,200	ND<1,000	-	
	6/16/2005	20.50	13.16	43,000 (a,i)	-	-	1,500	3,400	1,200	5,400	ND<1,200	-	
	9/1/2005	20.60	13.06	20,000 (a)	-	-	640	1,700	460	2,200	ND<200		_
	12/16/2005	20.83	12.83	32,000 (a,i)	- :	_	1,000	3,100	760	3,800	ND<500	-	
	3/10/2006	20.05	13.61	20,000 (a)	— .	—	460	1,900	440	2,400	ND<400	-	-
	9/15/2006	21.31	12.35	43,000 (a)	3,100 (d)	ND<250	1,600	4,400	1,100	5,100	ND<500	16	ND<10
	3/8/2007	21.62	12.04	30,000 (a,h)	4,600 (d,h)	ND<1,200	1,200	3,400	890	4,500	ND<500	ND<50	ND<50 (j,h)
	9/17/2007	21.92	11.74	31,000 (a)	6,600 (d,b)	340	790	3,000	700	3,100	ND<100	ND<100	ND<100
	3/4/2008	-	_	_	_	-	_	-	~				
	9/3/2008	22.50	11.16	46,000 (a)	5,100 (d)	370	1,700	8,600	1,400	7,500	ND<250	ND<250	ND<250
	3/4/2009	22,25	11.41	56,000 (a)	13,000 (d)	1,100	1,500	5,300	990	4,500	ND<10	ND<10	ND<10
	9/8/2009	22.60	11.06	42,000 (a)	11,000 (d)	1,200	1,400 (1,200)	5,200 (4,900)	970 (890)	5500 (4,900)	ND<100 (ND<100)	ND<0.5	ND<100
33.75	3/19/2010 **	21.96	11.70	30,000 (a,h)	12,000 (d,h)	-	(1,000)	(3,500)	(980)	(4,500)	(ND<50)	ND<5.0	ND<5.0
	9/3/2010	22.30	11.45	9,500 (a)	1,500 (d)	-	(320)	(290)	(140)	(970)	(ND<12)	ND<12	ND<12
MW-3	10/12/1989	24.02	10.21	87,000	·	4,500	3,200	8,800	ND	6,500	-	-	70.0
34.23	10/31/1991	_ · .	_	310,000	25,000	-	9,300	25,000	5,600	27,000		-	0.058
	11/6/1991	23.52	10.71		_		-	-	·	-	-		-
	10/21/1992	23.32	10.91	22,000	-	-	10,000	4,300	790	2,100		-	ND
	2/25/1993	22.51	11.72	29,000	-	_	8,400	5,400	1,300	3,300			-
	4/27/1993	22.37	11.86	50,000	-	_	8,200	8,700	1,000	5,400		-	-
	10/7/1993	<u> </u>	14.19	1,700	_	· —	3,100	3,700	400	1,700	-		
	3/28/1994	<u> </u>	11.52	53,000	-	-	3,900	4,600	710	2,500	_	_	-
	4/29/1994		11.34	-	·	-	<u></u> '	~~ ,	~	-	-		-
	6/10/1994		11.13		-	-	·	_	-	<u> </u>	-	-	-
	7/8/1994	·	11.09	-		·	-	-	~		_	-	
	7/26/1994		10.94	-	-	-	-		·	-		-	_
	8/25/1994	-	10.80	-	-			_	-	-	-	-	

CRA 581000 (7)

TABLE 2

Page 3 of 6

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID TOC Elevation (ft msl)	Date Sampled	Depth to Water (ft below TOC)	Groundwater Elevation (feet msl)	TPHg ←	ТРНА	TPHmo	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	МТВЕ	Chloroform	1,2-DCA →
MW-3 (cont.)	10/27/1994	23.56	10.67	8,500	_	_	2,700	2,700	490	2,000	-		· _
•	1/6/1995	-	11.33	-		·	_	· _	· _ · ·	-		_	· · · _
	2/1/1995	-	11.79	_	— ·	· _	· . –	-	_	_	·	— .	_
	3/29/1995	-	12.10	-	· -	-	-	_ `	-	· _	_ *	-	· _
	10/31/1995	· _	11.23	19,000	· _ 1	_	4,400	4,600	720	2,900	410	_	-
	5/21/1997	. —	11.68	4,000		-	810 -	840	190	690	ND<100		_
	9/28/2004						Well is damaged.	Unable to measure depth to	water or collect sample.				
	12/21/2004						Well is damaged.	Unable to measure depth to	water or collect sample.				
	3/11/2005						Well is damaged.	Unable to measure depth to	water or collect sample.				
	6/16/2005						Well is damaged.	Unable to measure depth to	water or collect sample.				
	9/1/2005						Well is damaged.	Unable to measure depth to	water or collect sample.				
	12/16/2005						Well is damaged.	Unable to measure depth to	water or collect sample.			. *	
	3/10/2006						Well is damaged.	Unable to measure depth to	water or collect sample.				
	9/15/2006						Well is damaged.	Unable to measure depth to	water or collect sample.				
	1/29/2007						ļ	Nell properly destroyed by C	ambria.				
MW-3A	1/29/2007							MW-3A replaces MW	-3				
34.16	3/8/2007	22.42	11.74	30,000 (a,i)	1,700 (d,i)	ND<250	2,600	4,400	710	4,600	ND<1,000	ND<50	ND<50 (j)
	9/17/2007	22.65	11.51	9,800 (a)	980 (d)	ND<250	1,100	1,800	270	1,100	ND<25	ND<25	ND<25
	3/4/2008	22.31	11.85	21,000 (a,i)	1,700 (d,i)	ND<250	2,600	5,000	810	3,500	ND<50	ND<50	ND<50
	9/3/2008	23.11	11.05	13,000 (a)	880 (d)	ND<250	1,400	2,100	370	1,500	ND<50	ND<50	ND<50
	3/4/2009	22.98	11.18	12,000 (a)	810 (d)	ND<250	1,000	1,700	330	1,200	ND<5.0	7.9	7.2
	9/8/2009	23.25	10.91	8,900 (a)	780 (d)	ND<250	870 (830)	1300 (1,200)	260 (200)	1100 (880)	ND<25 (ND<25)	6.3	ND<25
	3/19/2010	22.79	11.37	16,000 (a)	1,700 (d)	·	(1,900)	(3,200)	(620)	(2,800)	(ND<50)	ND<5.0	10
	9/3/2010	23.02	11.14	35,000 (a)	1,600 (d)	-	(5,300)	(6,500)	(1,100)	(5,100)	(ND<120)	ND<120	ND<120
MW-4	10/31/1991	- -	.—	ND<50	-		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	2.6	ND
33.64	11/6/1991	23.32	10.32		·	-	-	_ ·		- .	-	-	
	10/21/1992	22.10	11.54	410		_	3.1	29	6.8	47		. —	ND
	2/25/1993	21.13	12.51	170	-	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	· -	-
· · ·	4/27/1993	20.74	12.90	100	-	. —	ND<0.5	ND<0.5	ND<0.5	0.9		· _	-
	10/7/1993	· _	12.52	240	-	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	· _	-	_
	3/28/1994	- '	12.34	ND<50	· -	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5		·	-
	4/29/1994	-	11.33	-	-	-	·	_			-	_	-
	6/10/1994	-	11.55	<u> </u>	-	-		-	-	-	-	-	
	7/8/1994	-	11.54		-	<u> </u>	-		<u> </u>	-	-	-	-
	7/26/1994	-	11.30	-	- 1	-		-	-	-	-	-	-
	8/25/1994	-	11.09	-	. –		. –	-	-	·		-	
	10/27/1994	22.69	10.95	ND<50	- ,	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	. –	· -	-
	1/6/1995	_	11.70	-	-	-	-	-	-	_		-	-
	2/1/1995	-	12.34	-	-	_		·	-			-	
	3/29/1995		12:76	-	. –		_	-		-	_	. –	-
	10/31/1995	-	11.61	80	-	-	ND<0.5	0.6	ND<0.5	1.0	ND<0.5	-	
	5/21/1997	_	12.08	ND<50		-	11	120	27	180	ND<5.0	-	-

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID TOC Elevation (ft msl)	Date Sampled	Depth to Water (ft below TOC)	Groundwater Elevation (feet msl)	TPHg ←	TPHd	ТРНто	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	MTBE	Chloroform	1,2-DCA →
MW-4 (cont.)	9/28/2004	22.72	10.92	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-
	12/21/2004	20.65	12.99	ND<50	-		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-
	3/11/2005	20.20	13.44	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	·	
	6/16/2005	20.38	13.26	ND<50	_	_	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<5.0	<u> </u>	
	9/1/2005	20.48	13.16	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-
	12/16/2005	20.78	12.86	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	·	-
	3/10/2006	19.81	13.83	ND<50	_	·	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	
	9/15/2006	21.16	12.48	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	28	ND<0.5
	3/8/2007	21.52	12.12	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	23	ND<0.5
		21.32	11.80	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	18	ND<0.5
	9/17/2007 -3/4/2008	21.44	12.23	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	13	ND<0.5
				ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	12	ND<0.5
	9/3/2008	22.50	11.14 11.49	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	14	ND<0.5
	3/4/2009	22.15		ND<50	ND<50	ND<250	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	11	ND<0.5
	9/8/2009.	22.56	11.08	ND<50	ND<50 ND<50		(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	10	ND<0.5
33.73	3/19/2010 *	21.88	11.76	ND<50 ND<50	ND<50 ND<50	_	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	ND<0.5	ND<0.5
	9/3/2010	22.21	11.52	ND<50	IND/SU	-	(11D<0.5)	(112 <0.5)	(112 100)	(, (2, (0,0))	(,		
MW-5	10/31/1991	_	-	ND<50	<u> </u>	. '	ND<0.5	ND<0.5	110 010	ND<0.5	-	1.1	-
33.51	11/6/1991	24.00	9.51	ND	· ·	-	ND	ND	ND	ND	-	. – .	_
	10/21/1992	23.24	10.27	840	-	_	17	120	39	180	-		-
33.56	2/25/1993	22.40	11.16	ND<50		-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	
	4/27/1993	22.15	11.41	260	- '		53	19	1.2	2.4	-	-	
	10/7/1993		11.06	ND<50	· -		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	
	3/28/1994	_	10.95	ND<50	-		ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	- .	-
	4/29/1994	-	10.91		-	-	_		- .	-	-	—	- ·
	6/10/1994	_	10.68	-	-		- ·	-	·	-		-	-
	7/8/1994	_	10.60	_	-	-	- ·		_	-	-	_	-
	7/26/1994	_	10.45	_	-	_	-	-	. –	· _	· -		-
	8/25/1994	-	10.28		-	_	—	· _			-	-	
	10/27/1994	23.50	10.06	ND<50	-	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	1/6/1995	_	10.78	_	- ,	-	_	-	-			-	
	2/1/1995	· _	11.25	-	-	-	·	-			_	-	
	3/29/1995	_	11.63	-	-	_	-	-	-	-	<u> </u>		-
	10/31/1995		10.64	ND<50	-	<u> </u>	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		
	5/21/1997		11.04	260	_	-	2.4	33	7.7	56	ND<5.0	·	-
	9/28/2004	23.70	9.86	ND<50		_	ND<0.5	ND<0.5	ND<0.5	1.5	ND<5.0	-	
	12/21/2004	21.40	12.16	ND<50	-		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	_
	3/11/2005	21.40	12.16	ND<50		_	ND<0.5	ND<0.5	ND<0:5	ND<0.5	ND<5.0	-	
	6/16/2005	21.63	11.93	ND<50 (i)	-		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/1/2005 9/1/2005	21.65	11.91	ND<50	·	. <u> </u>	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-,
	12/16/2005	21.94	11.62	ND<50 (i)		-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/10/2006	21.11	12.45	ND<50		_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	-	-
	9/15/2006	22.20	11.36	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	10	ND<0.5

CRA 581000 (7)

TABLE 2

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID			Groundwater										
TOC Elevation (ft msl)	Date Sampled	Depth to Water (ft below TOC)	Elevation (feet msl)	TPHg ←───	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	MTBE	Chloroform	1,2-DCA →
MW-5 (cont.)	3/8/2007	22.44	11.12	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	18	ND<0.5
	9/17/2007	22.73	10.83	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	10	ND<0.5
	3/4/2008	22.32	11.24	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	19	ND<0.5
	9/3/2008	23.13	10.43	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	17	ND<0.5
	3/4/2009	22.95	10.61	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	14	ND<0.5
	9/8/2009	23.21	10.35	ND<50	ND<50	ND<250	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	ND<0.5 (ND<0.5)	11	ND<0.5
33.67	3/19/2010 *	22.72	10.84	ND<50	ND<50	-	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	14	ND<0.5
00107	9/3/2010	23.03	10.64	ND<50	ND<50	. · _	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	(ND<0.5)	7.2	ND<0.5
MW-6	5/21/1997	· _	11.26	760		_	2.5	1.7	ND<0.50	25	10		
33.98	9/28/2004	24.00	9.98	NID<50	_	-	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	-
	12/21/2004	21.61	12.37	ND<50		_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	_	_
	3/11/2005	21.60	12.38	340 (a)	·	_	1.9	2.6	0.68	0.61	ND<5.0	-	
	6/16/2005	21.81	12.17	1,300 (a)	_		58	8.3	6.1	4.0	ND<25	-	-
	9/1/2005	21.82	12.16	1,900 (a)	<u> </u>		150	19	18	76	ND<12	·	_
	12/16/2005	22.03	11.95	3,600 (a,i)	_	_	560	63	33	230	ND<50	-	_
	3/10/2006	21.46	12.52	2,200 (a)	-		240	10	20	87	ND<50		
	9/15/2006	22.46	11.52	1,800 (a)	480 (d)	ND<250	10	6.7	9.9	42	ND<17	3.2	ND<0.5
	3/8/2007	22.64	11.34	4,300 (a)	890 (d)	ND<250	260	36	29	140	ND<60	ND<10	ND<10 (j)
	9/17/2007	22.88	11.10	7,000 (a)	970 (d)	ND<250	760	28	46	270	ND<10	ND<10	·ND<10
	3/4/2008	22.51	11.47	400 (a)	74 (d)	ND<250	46	ND<1.0	1.0	6.0	ND<1.0	ND<1.0	ND<1.0
	9/3/2008	23.24	10.74	280 (a)	69 (d, b)	ND<250	2.9	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	3/4/2009	23.14	10.84	670 (a)	150 (d)	ND<250	68	13	ND<2.5	12	ND<2.5	ND<2.5	ND<2.5
	9/8/2009	23.38	10.60	8,000 (a)	1,400 (d)	ND<250	870 (770)	16 (ND<12)	34 (17)	1500 (1,200)	ND<12 (ND<12)	ND<0.5	ND<12
34.05	3/19/2010 *	22.93	11.05	8,900 (a)	1,200 (d)	-	(2,900)	(ND<100)	(ND<100)	(ND<100)	(ND<5.0)	ND<5.0	15
	9/3/2010	23.19	1 0.86	4,600 (a)	710 (d)		(1,500)	(33)	(35)	(79)	(ND<25)	ND<25	ND<25

Abbreviations and Notes:

. TOC Elevation = Top of well casing elevation measured in feet above mean sea level

msl = Above mean sea level

 $\mu g/L = Micrograms per liter$

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method SW8015C.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method SW8015C with silica gel cleanup.

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method SW8015C with silica gel cleanup.

Benzene, toluene, ethylbenzene, and xylenes by EPA Method SW8021B (SW8260B).

MTBE = Methyl tertiary-butyl ether by EPA Method SW8021B by (8260B)

Chloroform by EPA Method SW8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method SW8260B.

Sheen = A sheen was observed on the water's surface.

Field = Observed in the field.

Lab = Observed in analytical laboratory.

(a) = unmodified or weakly modified gasoline is significant

(b) = diesel range compounds are significant; no recognizable pattern

TABLE 2

GROUNDWATER ANALYTICAL AND ELEVATION DATA: PETROLEUM HYDROCARBONS CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Well ID TOC Elevation Date Sampled Depth to Water (ft msl) (ft below TOC)	Groundwater Elevation (feet msl)	TPHg ←	TPHd	ТРНто	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	MTBE	Chloroform	1,2-DCA →
(d) = gasoline range compounds are significant (h) = lighter than water immiscible sheen/product :											
 (i) = liquid sample that contains ~1 vol. % sediment (j) = sample diluted due to high organic content/mu ND<5.0 = Not detected above detection limit. 											
 – = Not available, not analyzed, or not applicable * = Surveyed September 7, 2006; updated to table M 	av 24, 2010				۶			•			
** = Surveyed March 8, 2007; updated to table May É = Unable to access well due to denial by current t	24, 2010										

TABLE 3

SOIL ANALYTICAL DATA CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

														Total Oíl		Total
		Depth	TPHg	TPHd	TPHwo	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	SVOCs		& Grease		Lead
Sample ID	Date Sampled	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	VOCs (mg/kg)	(mg/kg)	TRPH	(mg/kg)
Soil and Foundation Investigatio	n by Frank Lee & A	ssociates	; - Soil Borin	185											•	
B-1-3	5/3/1988	3	·· •	-	-	-	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND	ND<30	ND<30	- 1
B-2-1	5/3/1988	1	ND<1.0 *	-	-	-	ND<0.05	ND<0.1	-	ND<0.1	-	-	ND	-	-	· •
B-3-4	5/3/1988	· 4	ND<1.0 *	-	-	-	ND<0.05	ND<0.1	- '	ND<0.1	-	-	ND	-	-	-
UST Removal by Robert J. Miller	Company							1.	*							
UST Excavation Compliance San	nples - Collected by	The Tra	verse Group	, Inc.												
T1 - Gasoline Tank	June-89	-		ND<6.3	ND<30	_	0.011	0.0036	ND<0.0025	0.006	-	(1)	ND	-	-	· _
T2 - Gasoline Tank	June-89	-	5.0	ND<6.7	30	-	0.050	0.044	0.0036	0.023	-	(2)	ND	-	-	· _
T3 - Gasoline Tank	June-89	-	ND<1.0	ND<7.0	ND<30	_	0.0046	ND<0.0025	ND<0.0025	ND<0.0025	-	(3)	ND	-	-	-
T4 - Gasoline Tank	June-89	-	3,100	420	1,350	-	7.5	87	59	290	-	(4)	ND	· _	_	
W1 - Waste Oil Tank	June-89	-	270	430	4,000		ND<5.0	ND<5.0	ND<5.0	14	-	(5)	ND	-	-	-
W2A - Waste Oil Tank	June-89	-	2,300	170	50		ND<2.5	3	ND<2.5	12		• (6)	ND	-	-	-
S1 - Solvent Tank	June-89	-	1.8	ND<6.0	ND<30	_	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	(7)	ND	· -	-	-
S2 - Solvent Tank	June-89	-	62	106	ND<30		ND<1.0	ND<1.0	ND<1.0	ND<1.0		(8)	ND	-	-	-
SP1 - Spoils Pile "Contaminate	d June-89	-	184	240	900		ND<5.0	17	19	110	-	(9)	ND	-	-	· -
SP2 - Spoils Pile "Clean"	June-89	-	ND<1.0	ND<6.7	ND<30	_	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	ND	ND		<u>_</u>	-
SP3 - Spoils Pile "Clean"	June-89	- '	120	40	150	-	ND<1.0	ND<1.0	ND<1.0	2.1		(10)	ND	-	-	-
Subsurface Investigation by Mill	er Environmental C	ompany														
Over-Excavation Confirmation S	amples		÷				+ .									
EX1-A (fuel tank)	9/7/1989	15	ND	ND	ND		ND	ND	ND	ND	-	-	-	-	-	-
EX1-B (fuel tank)	9/7/1989	15	ND	ND	40		ND	ND	ND	ND	-	_ `	-	-	- 1	-
EX1-C (fuel tank)	9/7/1989	15	2.3	ND	80		ND	0.05	0.14	ND	-	_		-	-	-
EX2-A (waste oil and solvent t		15	10,000	250	400		50	210	270	54	-	-	-	-	-	· -
EX2-B (waste oil and solvent t		15	4.1	ND	ND		ND	ND	0.15	ND	-		-	-	-	
Well Installation Soil Samples																
MW1-A	9/12-13/1989	6	ND	23		30	ND	ND	ND	ND	-	-	-	30	-	-
MW1-B	9/12-13/1989	11	ND	ND		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW1-C	9/12-13/1989	16	ND	ND	~	ND	ND	ND	ND	ND		-	-	ND	-	-
MW1-D	9/12-13/1989	21	52	ND		ND	0.12	0.7	0.53	4.5	-	-	-	ND	-	-
MW1-E	9/12-13/1989	26	ND	ND	-	ND	ND	ND	ND	ND	-	-	-	ND	-	-
NIMO A	9/12-13/1989	6	ND	ND	~	ND	ND	ND	ND	ND	_	-	_		-	-
MW2-A MW2-B	9/12-13/1989	0 11	ND	ND	~	ND	ND	ND	ND	ND	_	-		· _	-	-
MW2-B MW2-C	9/12-13/1989	16	ND	ND	-	ND	ND	ND	ND	ND		_	_	· _	-	-
	• •	21	1,900	110	~	50	7.4	51	24	180			_	50	_	
MW2-D	9/12-13/1989			170		30	52	220	77	400	_	-	_	30	_	_
MW2-E	9/12-13/1989	26	7,800	170	~	JU	52	220		400	-	-	_		-	
MW3-A	9/12-13/1989	6	ND	ND	~	ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW3-B	9/12-13/1989	11	ND	25	~	ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW3-C	9/12-13/1989	16	ND	ND	~	ND	ND	ND	ND	0.07	-	-	-	ND	-	-
-	9/12-13/1989	21	2,200	160		40	7.5	42.3	16	180	-	-	-	40		-
MW3-D	/ 12 10/ 1/0/													ND		

m . 100

TABLE 3

SOIL ANALYTICAL DATA CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Sample ID	Date Sampled	Depth (ft)	TPHg (mg/kg)	TPHd (mg/kg)	TPHwo (mg/kg)	TPHmo (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	SVOCs (mg/kg)	VOCs (mg/kg)	Total Oil & Grease (mg/kg)	TRPH	Total Lead (mg/kg)
<u></u>								0						0		<u>v_</u> v_
Additional Subsurface Investigat	tion by Miller Envir	o n menta	l Company													
B1-5	9/11/1991	5	N:D<0.20	ND<5.0	-		ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	· _	ND	ND<20	-
B1-10	9/11/1991	10	ND<0.20	ND<5.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-15	9/11/1991	15	ND<0.20	ND<5.0	-	- '	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-20	9/11/1991	20	ND<0.20	ND<5.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-25	9/11/1991	25	2,900	160	-	-	ND<25	60	ND<25	ND<25	-	-	-	ND	190	-
B2-5	10/2/1991	5	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	-	-	ND<50		_
B2-0 B2-10	10/2/1991	10	ND<1	ND<1	· _	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	_	-	ND<50	-	-
B2-15	10/2/1991	15	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	_	<u>_</u>	ND<50	-	-
B2-20	10/2/1991	20	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	-	-	ND<50	-	-
B2-25	10/2/1991	25	120	83	· _	ND<10	ND<0.0025	0.310	0.210	0.600	-		-	ND<50	-	-
02-20	10/2/1//1	20	120			112 .10	112 -010020	0.010	0.210	0.000			· •			
MW4-5	10/2/1991	5	ND<1	ND<1		ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW4-10	10/2/1991	10	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW4-15	10/2/1991	15	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW4-20	10/2/1991	20	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	· -	ND<50	-	-
MW4-25	10/2/1991	25	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW5-5	10/3/1991	5	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025		-	_	ND<50		-
MW5-10	10/3/1991	10	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	· ·		-	ND<50	-	-
MW5-15	10/3/1991	15	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	-	-	ND<50	-	-
MW5-20	10/3/1991	20	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW5-25	10/3/1991	25	ND<	ND<1	-	NÐ<10		ND<0.0025	ND<0.0025	ND<0.0025	-	-		ND<50	-	-
•																
Additional Subsurface Investigat	tion by Associated 1	erra Con	sultants, Ind	5.												-
B6-1 (MW-6)	5/15/1997	5	ND<1.0	ND<1.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	ND<50	-	-
B6-2 (MW-6)	5/15/1997	10	ND<1.0	9.1	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	ND<50	-	-
B6-3B (MW-6)	5/15/1997	15	ND<1.0	ND<1.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	ND<50	-	-
B6-4B (MW-6)	5/15/1997	20	ND<1.0	ND<1.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	ND<50	-	-
B6-5B (MW-6)	5/15/1997	25	ND<1.0	ND<1.0	- ·	-	0.050	0.011	0.023	0.099	ND<0.0050	-	-	ND<50	· -	-
B5-6B (MW-6)	5/15/1997	30	ND<1.0	ND<1.0	<u> </u>	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.0050	-	-	ND<50	-	-
B6-11 (MW-6)	5/15/1997	35	ND<1.0	ND<1.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	ND<50	-	-
Soil Vapor Borings by Cambria								· · · ·								
VP-1.5.5	11/17/2006	5.5	ND<1.0	4.0	-	6.9	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	-	chloroform & 1,2- DCA: ND<0.005	-	-	35
VP-2-5.5	11/17/2006	5.5	ND<1.0	ND<1.0	-	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	-	chloroform & 1,2- DCA: ND<0.005			-

Abbreviations and Analyses:

ND<0.5 = Not Detected (ND) above laboratory detection limit.

ft = Measured in feet

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TABLE 3

SOIL ANALYTICAL DATA CHIU PROPERTY 800 FRANKLIN STREET OAKLAND, CALIFORNIA

Sample ID	Date Sample	Depth d (ft)	TPHg (mg/kg)	TPHd (mg/kg)	TPHwo (mg/kg)	TPHmo (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	SVOCs (mg/kg)	VOCs	(mg/kg)	Total Oil & Grease (mg/kg)	TRPH	Total Lead (mg/kg)
TPHd = Total petroleum hydr	ocarbons as dies	sel by mod	lified EPA	Method 8	015												
TPHwo = Total petroleum hy	drocarbons as w	aste oil by	y modified	EPA Metł	10d 418.1/	3550/SM50	13										
TPHmo = Total petroleum hy	drocarbons as m	otor boil l	by modifie	d EPA Me	thod 8015:									•			
Benzene, ethylbenzene, toluer	ne and xylenes (l	BTEX) and	l methyl te	rtiary buty	yl ether (M	TBE) by EE	PA Method	8020 or 8021B									
SVOCs = Semi-volatile organi	cs by EPA Meth	od 8 270.									•						
VOCs = Volatile organics by H	EPA Method 824	0.															
TRPH = Total Recoverable Pe	troleum Hydroc	arbons by	EPA Metl	nod 418.1													
Total Lead by EPA Method 74																	
mg/kg = Milligrams per kilog	gram				•												
- = Not sampled, not analyzed	l, or not applica	ble							÷						•		
* = Analyzed for "low to med	ium boiling poir	ıt hydroca	rbons" by	EPA Meth	od 8015.				(1)								
WOI sampled on 1/17/1991	was also analyze	d for Tota	al Petroleu	m Fuel Hy	drocarbor	s by EPA N	lethod 8015	(ND<1.0 mg/	rkg).								
WO1 sampled on 1/17/1991	was also analyze	ed for Halo	ogenated V	/olatile Or	ganics by	EPA Metho	d 8010 (all a	inalytes were	ND).		-0.10 mg/kg						
WO1 sampled on 1/17/1991	was also analyze	ed for Sem	u-Volatile (Organics t	oy EPA Me	ethod 8270.	The follows	ng analytes w	ere aetectea: beru	zo(a)pyrene ai	. 0.10 шқ/ <i>к</i> ғ						
(1) = 0.20 mg/kg bis (2-ethylh	exyl) phthalate.	Other SV	OCs were	ND.													
(2) = 0.24 mg/kg bis (2-ethylh	exyl) phthalate.	Other SV	OCs were	ND.													
(3) = 0.42 mg/kg bis (2-ethylb	exyl) phthalate.	Other SV	OCs were	ND.													
(4) = 28 mg/kg naphthalene;	23 mg/kg 2-met	hyl-napht	halene. Ot	her SVOC	s were NL).											
(5) = 0.37 mg/kg bis (2-ethylr	exyl) phthalate.	Other SV	OCs were	ND.	- 11	D											
(6) = 6.4 mg/kg naphthalene;	4.1 mg/kg 2-me	thyl-naph	uthalene. C	ther SVO	Cs were N	D.											
(7) = 0.50 mg/kg bis (2-ethylk	exyl) phthalate.	Other SV	OCs were	ND.				,			5						
(7) = 0.50 mg/kg bis (2-ethylt	nexyl) phthalate.	Other SV	OCs were	ND.	C												
(8) = 2.4 mg/kg naphthalene;	1.9 mg/kg 2-me	thyl-naph	nthalene. C	ther SVO	s were N	D.					,						
(9) = 27 mg/kg naphthalene;	13 mg/kg 2-met	hyl-napht	halene. Ot	her SVOC	s were NL	ν. ND											
(10) = 1.6 mg/kg naphthalene	e; 2.0 mg/kg 2-n	iethyi-nap	onthaiene.	Other SAC	rs were i	ч . .											

APPENDIX A

AGENCY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 9, 2010

Mr. Tommy Chiu P.O. Box 28194 Oakland, CA 94606

Subject: Fuel Leak Case No. RO0000196 and Geotracker Global ID T0600100050, Bill Louie's Auto Service, 800 Franklin Street, Oakland, CA 94607 - Request for Work Plan

Dear Mr. Chiu:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the subject site including the most recently submitted document entitled, "Site Conceptual Model," dated July 2, 2010. The Site Conceptual Model (SCM), which was prepared on your behalf by Conestoga-Rovers & Associates, was prepared to identify and address data gaps. The SCM identifies the downgradient extent of the hydrocarbon plume to the northwest as a data gap and includes a recommendation to install an offsite downgradient monitoring well northwest of MW-6.

We generally concur with this recommendation and request that you prepare a Work Plan no later than October 12, 2010 to define the downgradient extent of the plume. Please assure that the proposed scope of the investigation is sufficient to assess the downgradient extent of the plume and whether the BART tube acts as a barrier that potentially deflects plume migration; potentially this may require installation of more than one monitoring well.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- October 14, 2010 Work Plan
- November 8, 2010 Semi-Annual Groundwater Monitoring Report Thrid Quarter 2010

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham DN: cn=Jerry Wickham, o, ou, email=jerry.wickham@acgov.org, c=US

Digitally signed by Jerry Wickham DN: cn=Jerry Wickham, o, ou, Date: 2010.08.10 08:59:03 -07'00'

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Mr. Tommy Chiu RO0000196 August 9, 2010 Page 2

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 2032 (Sent via E-mail to: <u>Igriffin@oaklandnet.com</u>)

Bryan Fong, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A Emeryville, CA 94608 (Sent via E-mail to: <u>bfong@craworld.com</u>)

Donna Drogos, ACEH (*Sent via E-mail to: <u>donna.drogos@acgov.org</u>)* Jerry Wickham, ACEH

Geotracker, File

Attachment 1 Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005
Oversight Programs	REVISION DATE: July 8, 2010
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements **must** be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

• A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>

Or

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Teena Le Khan.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on Page on upper right side of browser, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

STANDARD FIELD PROCEDURES FOR SOIL BORINGS AND MONITORING WELL INSTALLATION

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR SOIL BORING AND MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe®. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Conestoga-Rovers & Associates

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Conestoga-Rovers & Associates

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

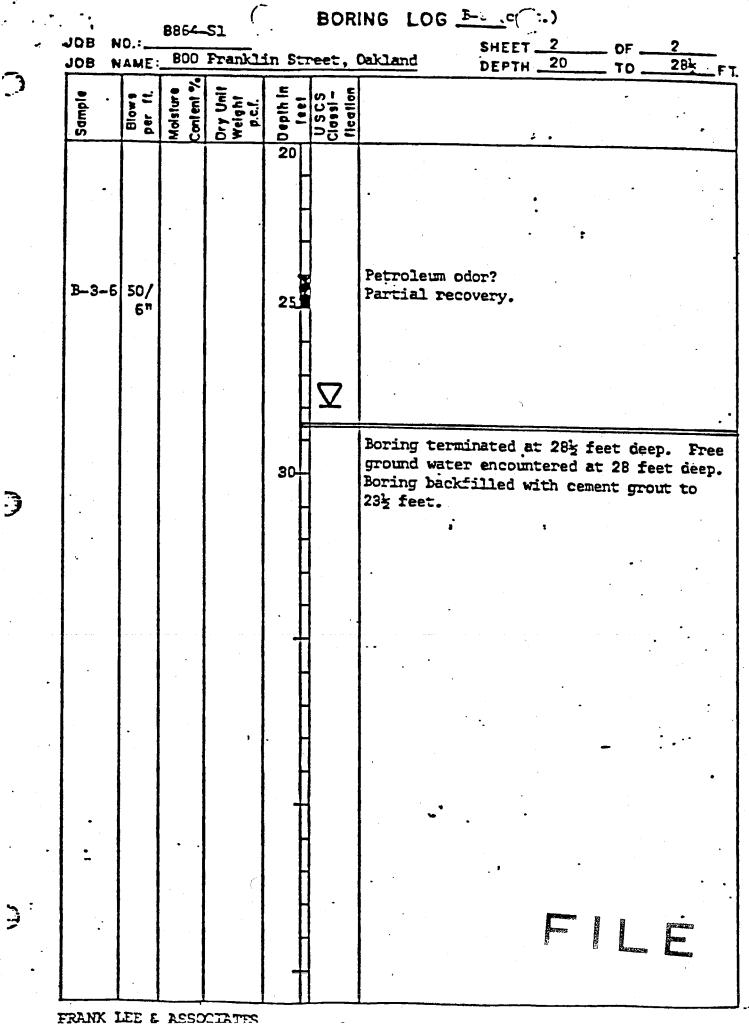
I:\Rocklin.Public\Procedures & SOPs\SB & MW Installation.doc

APPENDIX C

WELL CONSTRUCTION DETAILS AND SOIL BORING LOGS

JDB NA	ME	800 F	Tanklin	6 th C	, Oakli cont. f.	and Light auger DATUM
•	•	•	SAMPLE Califo Modif:	ornia		DRIVE WEIGHT - 1 B HEIGHT OF FALL - 1 140 30
Sample	Blows per 11	Moisture Content %	Dry Unit Weighi pc f	Depth in	USCS Classi- Ilcation	Description
B-1-1		10.4			SM	Silty fine sand, mottled yellowish-brown and brown, moist, loose. Medium dense. Color changes to yellowish-brown.
B-1-2	45	12.8	106.4	5_		Dense.
				<u> 1</u> 0 _		
						Boring terminated at 10 feet deep. No free ground water encountered.
	:				- -	
						•
-						

 $\overline{\gamma}$


<u>)</u>

<u>,</u>	JOB N	AME: 8	00 Fr	anklin	Stree	t. Oak	DATE DRILLED 5-3-88 Land SURFACE ELEV. Approx. 35' DATUM MSL
•	EQUIPN	IENT:		SAMPLE Califo Modif:	R TY ornia		DRIVE WEIGHT-LB HEIGHT OF FALL-IN 30
•	Somple	Blows per 11	Moisture Content %	Dry Unit Weight pc.f	Depth in feet	U SC S Classi – Ilcation	Description
						SM	Silty sand, brown, moist, medium dense.
	•				5_		Color changes to yellowish-brown.
	3-2-	-1 45			10 .		Less fines.
Ó	B-2	-2 51	0/ 13 .	.7 96	.3 ₂₀		Some silt. Boring terminated at 20 feet deep. No

JOB NA	ME:_ ENT:	BOO F	Tanklir LING É		eet, Da nt. fli	kland SURFACE ELEV. Approx. 351 cht auger DATUM MSL
		•	SAMPLE Califo Modifi	rnia		DRIVE WEIGHT-L'E HEIGHT OF FALL- 140 30
Sample	Blows per 11	Moisture Content %	Dry Unit Weight pc f	Depth in feet	U SC S Classi – Ilcation	. Description
B-3-1	8	11.6		-	SM	Silty sand with some gravel, brown, moi stiff: baserock. Some clay, gray, green and brown: tank backfill?
5-3 - 2	ış	17.9	102.6	5 -		· · · · · · · · · · · · · · · · · · ·
B-3-3		א.בנ	210.4	_ סב	ML	Sandy silt, dark gray, moist, low plass city, firm to stiff: tank backfill? Silty fine sand, grayish-green, moist, dense: tank backfill?
B-3-4	45	13.3	114.2	25 -		Slight petroleum odor? Slight petroleum odor? End of backfill 15½ feet?
B-3-5	50	5.1	108.9			Color changes to yellowish-brown.

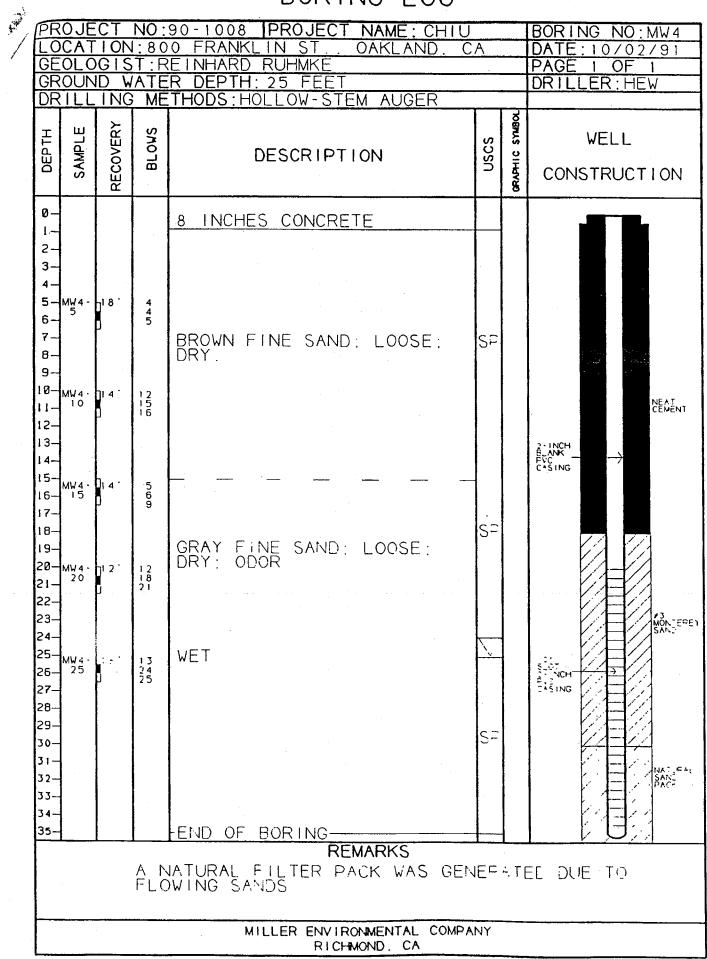
٠.

، مر • •

	COB NO	- [™] 81	86 4- 51	L		BORIN	IG LOG F-4
3		ME.	800 Fr	anklin	Stre	et, Oal	ATE DRILLED: 5-3-88 kland SURFACE ELEV. Approx. 351 part auger DATUM MSL
•				SAMPLE Califo Modif:	ornia		DRIVE WEIGHT-LE HEIGHT OF FALL-IN 30
••••	Sample	Blows per fl	Moisture Content %	Dry Unit Weight pc.f	Depth in	U SC S Classi - Ilcation	Description
	B-4-1	8	13.1	11.7			Silt, brown, moist, low plasticity, soft: artificial fill? Some sand and gravel.
)	B-4-2	בנ			5 _		Sandy clay, mottled light and dark brown, moist, low plasticity; metal objects: artificial fill, old tank removal backfill.
		•					Boring terminated at 6 feet deep due to refusal (obstruction in fill). No free ground water encountered.
				•	10 <u>-</u>		
					_		
	•				-		FILE

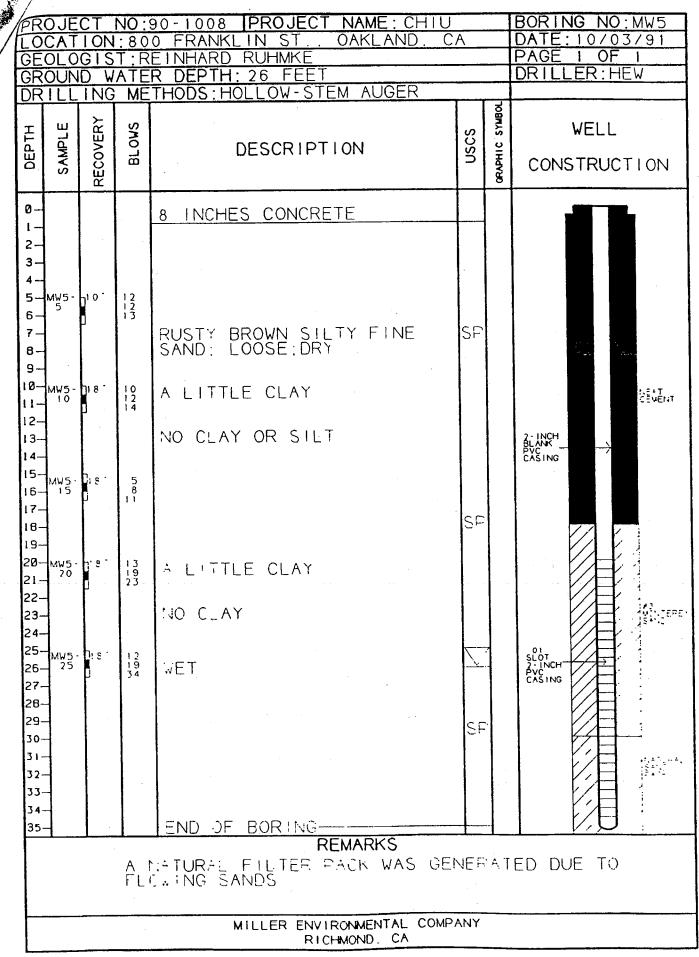
.

. :


	SJE	CTI	NO : S	0-1008 PROJECT NAME: CHIU			BORING NO: B1				
ß	CAT	ION	:80	<u>O FRANKLIN ST. OAKLAND. C/</u>	٩		DATE:09/11/91				
Ē	<u>OLO</u>	<u>GIS</u>	$\underline{T:R}$	EINHARD RUHMKE			DRILLER:HEW				
沿		<u>d w</u> i NG	ME	R DEPTH: 25 FEET THODS: HOLLOW-STEM AUGER							
	SAMPLE	RECOVERY	BLOWS 3	DESCRIPTION							
,				8 INCHES CONCRETE							
2	B1-5] 18 ⁻	10 13 16	LIGHT BROWN FINE SAND: LOOSE: DRY	SP						
9 9 2	B1- 10] ! 8]	9 11 13								
3 4- 5 6- 7	B1 - 15];8 ⁻	6 10 14	GRAYISH-GREEN FINE SAND: LOOSE: DRY: ODOR	SF						
8- 9-											
	5 ! 2 c	א ו 8 נ	7 13 18	OLIVE-GRAY BROWN FINE SAND: MOTTLED: ODOR: DRY	SF						
5- 6- ?7- ?8- ?9-	25] ! 8	7 21 28	DARK GRAY FINE SAND: WET: ODOR: END OF BORING							
30-				REMARKS	1						
			BC	MILLER ENVIRONMENTAL COMP.			T CEMENT				

RICHMOND. CA

ø /


2				BOILING LUG								
K	OJE	CT	NO :	90-1008 PROJECT NAME: CHIU			BORING NO: B2					
0	CAT	ION	:80	O FRANKLIN ST. OAKLAND. C/	٩		DATE: 10/02/91					
近	<u>olo</u>	<u>GIS</u>	<u>T : R</u>	EINHARD RUHMKE			PAGE 1 OF 1					
光(AIE	<u>R DEPTH: 26 FEET</u> THODS: HOLLOW-STEM AUGER	<u></u>		UKILLEK. MLW					
	SAMPLE	RECOVERY DO		DESCRIPTION								
,				8 INCHES CONCRETE								
! ? 3				LIGHT BROWN FINE SAND; LOOSE; DRY.								
4	B2-5	، ۱8	7	A LITTLE CLAY.	SP							
5- 7- 3-		þ	14	NOCLAY								
1 2	B2- 10) 14 ⁻	10 12 15	BROWN FINE SAND; LOOSE; DRY								
3 4 5 6 7	B2- 15] :4*]	6 12 14	MOIST	SP							
8												
	B2- 20	- ∶8 *	14 18 19	OLIVE-GRAY FINE SAND: SLIGHT ODOR: DRY	SF							
5 6 7 8 9	4	· 2 ·	7 7 ! 0	DARK GRAY FINE SAND: WET: ODOR: END OF BORING								
Ø	<u> </u>	<u> </u>										
				REMARKS								
			BO	REHOLE WAS BACKFILLED WITH	N{	ΞΑΓ	CEMENT					

MILLER ENVIRONMENTAL COMPANY RICHMOND CA

.

5

KEY TO BORING LOGS

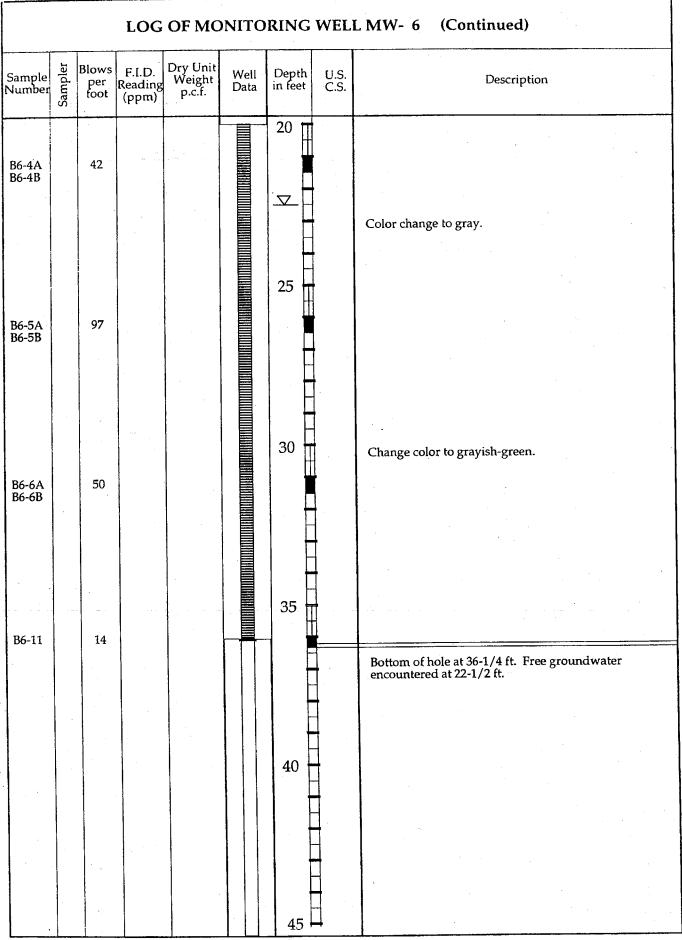
BORING LOG SYMBOL

	Geologic contact line
	Termination of boring
<u>_</u>	Water level, preliminary measurement
.	Water level, stabilized

SAMPLE RECOVERY

•	Undisturbed sample, retained for lab testing
	Sampler drive distance, sample examined in the field
	No sample recovered
SPT	Standard Penetration Test

SOIL SAMPLE TYPE


C	California									
CM	California Modified									
HS	Driven manual Hand Sampler									
NQ	NQ Wireline									
Р	Piston									
PB	Pitcher Barrel									
SS	Split Spoon (Terzaghi)									

ASSOCIATED TERRA CONSULTANTS, Inc.

File N	0: 1	24573	>					· · · · · · · · · · · · · · · · · · ·
				LC	OG OF	MONE	FORI	NG WELL - MW-6
Clier	nt:	<u>Chiu</u>						Logged By: <u>RH</u>
Site:	80	<u>) Fra</u>	<u>nklin S</u>	<u>t.</u>				Approved By:
Drille	ers:	Kvil	haug			12.0 M		Date Completed: May 15, 1997
Drill	Rig	: <u>B-6</u>	1			· · · · · · · · · · · · · · · · · · ·		
Aug	er T	ype/	Size: <u>8</u>	" holloy	v stem			Screen Size:010
Top	of C	asing	Eleva	tion:	<u> </u>	<u>ocal Da</u>	atum)	Filter pack:#3 sand
				Syml	bols use	ed expla	ined o	on "Key to Boring Logs"
Sample Number	Sampler	Blows per foot	F.I.D. Reading (ppm)	Weight	Well Data	Depth in feet	U.S. C.S.	Surface Conditions: Concrete
	0,			p.c.f.				Description
						0		Concrete Slab.
					\boxtimes	4 6		Baserock, grayish-brown crushed rock.
,								Sand, medium-grained, brown, slightly damp to damp, dense; no odor.
				х. 				Some clay
B6-1		48				5		
		-						
								Easy drilling.
B6-2		24				10		No odor.
D0-2		24						Increased sand, decreased clay, moisture change t wet.
B6-3A B6-3B		42				15		Clayey sand, medium-grained, grayish-green, damp, dense; some petroleum hydrocarbon odor.
						20		Sand, medium- to coarse-grained, greenish-gray, damp, dense.

ASSOCIATED TERRA CONSULTANTS, Inc.

File No: 124575

ASSOCIATED TERRA CONSULTANTS, Inc.

Boring/Well Log Legend

KEY TO SYMBOLS/ABBREVIATIONS

 ∇ First encountered groundwater

▼ Static groundwater

Soils logged by hand-auger or air-knife cuttings

¹ Soils logged by drill cuttings or disturbed sample

- Undisturbed soil sample interval
- Soil sample retained for submittal to analytical laboratory
- O No recovery within interval
- Hydropunch screen interval

- PID = Photo-ionization detector or organic vapor meter reading in parts per million (ppm)
- fbg = Feet below grade
- Blow Counts = Number of blows required to drive a California-modified split-spoon sampler using a 140-pound hammer falling freely 30 inches, recorded per 6-inch interval of a total 18-inch sample interval
- (10YR 4/4) = Soil color according to Munsell Soil Color Charts
- msl = Mean sea level

Soils logged according to the USCS.

· · · ·	Major Divisions		Graphic	G roup Symbol	Typical Description
		Clean Gravels		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	Gravel and	$(\leq 5\%$ fines)		GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
	Gravelly Soils	Gravels with Fines		GM	Silty gravels, gravel-sand-silt mixtures
Coarse-Grained Soils		$(\geq 15\%$ fines)	Ø J J	GC	Clayey gravels, gravel-sand-clay mixtures
(>50% Sands and/or Gravels)		Clean Sands		SW	Well-graded sands, gravelly sands, little or no fines
	Sand and Sandy	(≤5% fines)		SP	Poorly-graded sands, gravelly sand, little or no fines
······	Soils	Sands with Fines		SM	Silty sands, sand-silt mixtures
		$(\geq 15\%$ fines)		SC	Clayey sands, sand-clay mixtures
				ML	Inorganic silts, very fine sands, silty or clayey fine sands, clayey silts with slight plasticity
Fine-Grained	Silts ar	nd Clays		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
Soils (>50% Silts				OL	Organic silts and organic silty clays of low plasticity
and/or Clays)				МН	Inorganic silts, micaceous or diatomaceous fine sand or silty soils
	Silts a	Silts and Clays		СН	Inorganic clays of high plasticity
		· · · · ·		ОН	Organic clays of medium to high plasticity, organic silts
Hi	ghly Organic Soil	⁷ Organic Soils			Peat, humus, swamp soils with high organic contents

UNIFIED SOILS CLASSIFICATION SYSTEM (USCS) SUMMARY

MISC/TEMPLATES/BORING LOG LEGEND.AI

CLIENT NAME JOB/SITE NAME LOCATION PROJECT NUMBER DRILLER DRILLING METHOD BORING DIAMETER LOGGED BY REVIEWED BY REMARKS				5900 Eme Felej Fax: <u>Chen</u> <u>Chiu</u> 800 F 589-1 Wood Hollo 10-in <u>C. He</u> M. Jc	Hollis ryville, ohone: 510-4: <u>Tso Ch</u> ranklin 1000 dward D w-stem ch ernande mas	Stree CA 9 510- 20-91 niu Street auger z	et, Suit 94608 420-0 70 	700 and, CA 57 #710079	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT DA GROUND SURFACE ELE TOP OF CASING ELEVAT SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stati parking spaces in front of 8	MW-3A 08-Feb-07 08-Feb-07 ATE (YIELD) VATION 10N Encountered) c)	NA NA 20 to 35 fbg 1)NA NA St. building.				
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITH	OLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WELL	DIAGRAM		
WELL LOG (PID) I:NR6-CHARS\5810-\581000\531000-1\58FF58-1\BORING-1\CHIU- SOIL VAPOR PROBES.GPJ DEFAULT.GDT 9/28/10	0							to medium sand; no <u>Silty SAND:</u> Light medium sand; low p	ight brown; moist; 15% silt, n-plastic; high estimated pe brown; moist; 40% silt, 60% plasticity; low estimated perr 30% silt, 60% fine to mediu	fine to neability.	5.0		 Portland Type I/II Bentonite Seal Lonestar Sand #2/12 		

PAGE 1 OF 2

Conestoga-Rovers & Associates, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

	NAME TE NAME	Cher Chiu	n Tso Ch	niu	-		BORING/WELL NAME	MW-3A 08-Feb-07	MW-3A 08-Feb-07			
LOCAT			Franklin	Street	Oakla		RILLING COMPLETED	08-Feb-07				
					unid	Continued from I						
	·	· · · ·					revious raye		 i			
PID (ppm)	BLOW COUNTS	SAMPLE ID EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOL	DGIC DESCRIPTION	•	CONTACT DEPTH (fbg)	WEL	_ DIAGRAM	
				SM		· · · · · · · · · · · · · · · · · · ·		•				
32		}				@ 25' - Light brown.			•			
28/10			 								 4"-diam., 0.010" Slotted Schedule 40 	
WELL LOG (PID) I:\\RRG-CHARS\5810-\581000\581000-1\58FF5B-1\BORING-1\CHIU- SOIL VAPOR PROBES.GPJ DEFAULT.GDT 9/28/10 86 86 86 86 86 86 86 86 86 86 86 86 86							the second s				PVC	
1198 Solution Case of the second						@ 30 - 15% silt, 85% f and moderate estimate	ine to medium sand; noi ed permeability.	n-plastic;			ан (т. 1997) 1997 - Сан (т. 1997) 1997 - Сан (т. 1997)	
IIU- SOIL VAPOF			·			@ 32.5' - Olive gray ar	nd wet.				· · ·	
1780RING-1/CH			-35-				مرید می اور این می اور مرید این می اور این می او مرید این می اور این می		35.0		Bottom of Borin @ 35 fbg	
1000~1\58FF5B~						Notes:					in no no han	
810\581000\58							n soil cuttings from MW-3 located adjacent to forme					
I: VIR 6-CHARS (E									· .			
WELL LOG (PID)			-									

PAGE 2 OF 2

CLIENT NAME JOB/SITE NAME LOCATION PROJECT NUMBER DRILLER DRILLING METHOL BORING DIAMETER LOGGED BY REVIEWED BY REMARKS	Telep Fax: Chen Chiu 800 F 8 589-1 Viron Holloo R 3-incl C. He M. Jo	ex w-stem h ernandez onas	510-4 20-917 iu Street, auger	120-07 70 Oakla		BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stati	VATION _ FION _ Encountered)	NA NA NA 5.5 to 6 fbg		
PID (ppm) BLOW COUNTS	SAMPLE ID EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM
0					Surface: 4-inches of <u>Silty SAND (fill):</u> Lig to medium sand; nor	concrete. ght brown; damp; 15% silt, i-plastic; high estimated pe	85% fine rmeability.	0.3		 Portiand Type I/II Hydrated Granular Bentonite 1.5 - 4 ft 1/4-inch Nyflow tubing Dry Granular Bentonite 4 - 5 fbg
0	/P-1- 5.5) /				probe.	robe VP-1 to 6 fbg. struction details of the soil s sampled on 12/28/2006.	vapor	6.0		 Monterey Sand #2/12 G-inch Screened Vapor Probe Bottom of Borir (2) 6 fbg
							•			

-\581000\581000~1\58FF5B~1\BORING~1\CHIU- SOIL VAPOR PROBES.GPJ DEFAULT.GDT 9/28/10 I-URV6-CHARSV5810-Ċ

	Ce			590 Err Tel	00 nery lep	Hollis vville,	Street CA 9 510-4	t, Suite 4608 420-07			BORI	NG	/ WEL	LL LOG
С	LIENT	NAME		Ch	en `	Tso Ch	iù		•	BORING/WELL NAME	VP-2			
				Ch		onklin	Chroat	Oakla	nd CA	DRILLING STARTED DRILLING COMPLETED	<u>17-Nov-06</u> 17-Nov-06			
	OCATI	ON CT NUMB	ER			<u>ankiin</u> 000	Street	, Oakla		WELL DEVELOPMENT D		NA		
	RILLE				one			· .	<u></u>	GROUND SURFACE ELE	_	NA		
C	RILLIN	IG METH	OD	Ho	llov	v-stem	auger			TOP OF CASING ELEVAT	ΓΙΟΝ	NA		
		G DIAMET	ER		nch					SCREENED INTERVALS		5.5 to		<u> </u>
		D BY VED BY	. —			rnande. nas	Z			DEPTH TO WATER (First DEPTH TO WATER (Stati		<u>NA</u>		<u>¥</u>
	REMAR						sidew	alk in fr	ont of 800 Franklin St. b					<u>=</u>
ſ					-						· .	-		··
	PID (ppm)	BLOW COUNTS	SAMPLE ID		EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	0								Surface: 4-inches of Silty SAND (fill): Lig to medium sand; nor	Concrete. ght brown; damp; 15% silt, n-plastic; high estimated pe	85% fine rmeability.	0.3		 Portland Type I/II Hydrated Granular Bentonite 1.5 - 4 fbg
	U		-						@3': Yellow-grey; 25	5% silt, 75% fine to medium	n sand.			 1/4-inch Nyflow tubing Dry Granular Bentonite 4 - 5 fbg
	0		VP-2-	- 5.5	2	- 5 - 	· · · .				: 	_6.0		 Monterey Sand #2/12 6-inch Screened Vapor Probe Bottom of Boring @ 6 fbg
									probe.	nstruction details of the soil	vapor			
									Soli vapor probe wa	as sampled on 12/28/2006.				
5							· · .				·			
							-							
3			·											
5		1.1												
000														
												1		
-021														
- (n							1						2 - 1 -	
200														
- 1			_				1	_				-	-	<u> </u>

G (PID) I:NRIG-CHARSIS810-\581000\581000~1\58FF5B~1\BORING~1\CHIU- SOIL VAPOR PROBES.GPJ DEFAULT.GDT 9/28/10