CAMBRIA

American Costerby

MAR Z c 2000

March 23, 2005

Enviorente daam

Groundwater Monitoring Report - First Quarter 2005

Mr. Barney Chan Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

 $oldsymbol{\Theta}$

Dear Mr. Chan:

Chiu Property 800 Franklin Street

Oakland, California 94607

RE:

On behalf of Mr. Tommy Chiu, Cambria Environmental Technology, Inc (Cambria) is submitting the *Groundwater Monitoring Report – First Quarter 2005*. Presented in the report are the first quarter 2005 activities and results, and the anticipated second quarter 2005 activities.

If you have any questions or comments regarding this report, please call me at (510) 420-3314.

Sincerely, Cambria Environmental Technology, Inc.

Matthew A. Meyers Project Geologist

Enclosures: Groundwater Monitoring Report – First Quarter 2005

cc: Ms. Anny Chiu, P.O. Box 28194, Oakland, California 94606 Ms. Lu Anne Rolland, UST Cleanup Fund, 1001 "I" Street, Sacramento, California 95812

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

GROUNDWATER MONITORING REPORT – FIRST QUARTER 2005

Chiu Property 800 Franklin Street Oakland, California Cambria Project No. 589-1000

March 23, 2005

Prepared for:

Mr. Tommy Chiu P.O. Box 28194 Oakland, California 94606

Alterests County

MAR 2 5 2005

Environne de l'estàbl

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Written by:

Neal E. Siler, P.G., R.E.A. Senior Project Geologist

Matthew A. Meyers Project Geologist

GROUNDWATER MONITORING REPORT - FIRST QUARTER 2005

Chiu Property 800 Franklin Street Oakland, California Cambria Project No. 589-1000

March 23, 2005

INTRODUCTION

This report describes the first quarter 2005 groundwater monitoring activities performed at 800 Franklin Street, Oakland, California (Figure 1). This groundwater monitoring event was conducted at the request of the Alameda County Department of Environmental Health (ACDEH). This report presents a summary of field activities, groundwater flow conditions, groundwater analytical data, and a presentation of activities anticipated for the second quarter 2005.

FIRST QUARTER 2005 ACTIVITIES

Monitoring Activities

On March 11, 2005, Muskan Environmental Sampling (MES) conducted quarterly groundwater monitoring activities at the site. MES measured groundwater levels and collected groundwater samples from monitoring wells MW-2 and MW-4 through MW-6 (Figure 2). Wells MW-1 and MW-3 were inaccessible and therefore were not monitored this quarter. Copies of the field data sheets are included as Appendix A.

Water Level Measurements: Depth to groundwater measurements were recorded to the nearest 0.01foot, relative to a previously established reference elevation. Measurements were collected using an electric, conductance-actuated well sounder. The groundwater level data are presented in Table 1.

Groundwater Sampling: MES collected groundwater samples from wells MW-2 and MW-4 through MW-6. Field activities associated with the sampling included well purging, measuring groundwater parameters, sample collection, and equipment decontamination.

Prior to sampling, the wells were purged to remove standing water in the well casings and promote inflow of representative groundwater from the surrounding formation. The wells were purged by repeated bailing using a new, pre-cleaned disposable Teflon bailer. Field measurements of the pH, specific conductance, and temperature of the purged groundwater were measured initially and after the

CAMBRIA

extraction of each successive casing volume or at regular volume intervals. Casing volumes were calculated based on the well diameter and the height of the water column in the well casing. Typically, well purging continued until three or more casing volumes had been removed from the well and consecutive pH, specific conductance, and temperature measurements were within 10 percent. Field water quality measurements, purge volumes and sample collection data were recorded on field sampling data forms (Appendix A).

Groundwater samples were collected from each of the wells using new, pre-cleaned disposable bailers. The samples were decanted from the bailers into 40-ml glass volatile organic analysis (VOA) vials supplied by McCampbell Analytical, Inc. (McCampbell) of Pacheco, California. Immediately after collection, the sample VOA vials were labeled and placed on water-based ice in a cooler. Chain-of-custody procedures were followed at all times from sample collection to transfer to McCampbell (Appendix B).

Equipment Decontamination: To minimize the potential for cross-contamination, the groundwater monitoring equipment was decontaminated prior to being deployed in the first monitoring well and between successive wells. The probe of the electric well sounder used for water level measurements was rinsed thoroughly with distilled water prior to first use and between subsequent water level measurements. The disposable bailers were discarded after use at each well.

Sample Analysis: The groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by modified United States Environmental Protection Agency (EPA) Method 8015C. Samples were also analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) by EPA Method 8021B. The analyses were performed by McCampbell. The laboratory analytical report is included in Appendix B. Groundwater analytical results are presented on Figure 2 and summarized in Table 1.

Monitoring Results

Groundwater Flow Direction and Gradient: Depth-to-water measurements collected on March 11, 2005, ranged from 11.35 to 21.60 feet below top of casing. Groundwater elevations were calculated by subtracting the depth to water measurements from the surveyed top of casing elevations. The ... groundwater elevations were plotted on a site plan and contoured. Based on depth-to-water data collected during the site visit, groundwater beneath the site flows towards the northwest at a gradient of 0.009 feet/foot. The depth to water measurement and calculated groundwater elevation in well MW-2 appear to be anomalous and was not used in groundwater flow or gradient calculations. Future

monitoring events will be used to evaluate the significance of these results. Depth-to-water and groundwater elevation data for the site are summarized in Table 1 and presented on Figure 2.

Groundwater Analytical Results: Hydrocarbons were detected in two of the four wells sampled during the first quarter 2005 event. TPHg and BTEX were detected in the samples collected from wells MW-2 and MW-6. The maximum TPHg and BTEX concentrations were detected in well MW-2 at 32,000 micrograms per liter (μ g/L), 970 μ g/L, 2,400 μ g/L, 890 μ g/L, and 4,200 μ g/L, respectively. The TPHg and BTEX concentrations detected in well MW-6 were 340 μ g/L, 1.9 μ g/L, 2.6 μ g/L, 0.68 μ g/L and 0.61 μ g/L, respectively. MTBE was not detected in any of the wells sampled during the first quarter 2005 event (Table 1, Appendix B).

GEOTRACKER CONFIRMATION

Cambria received approval from the California State Water Resources Control Board (SWRCB) to upload relevant data to the GeoTracker database on behalf of Mr. Tommy Chiu. Cambria has uploaded top of casing elevation survey data, a site map, groundwater depth data, analytical results, boring logs and well construction details for wells MW-4 through MW-6, and this report to the State's GeoTracker database. GeoTracker delivery confirmation documentation is included in Appendix C.

ANTICIPATED SECOND QUARTER 2005 ACTIVITIES

Monitoring Activities

Cambria will gauge water levels and collect groundwater samples from wells MW-1, MW-2, and MW-4 through MW-6. Groundwater samples will be analyzed for TPHg by EPA Method 8015C, and BTEX and MTBE by EPA Method 8021B. Cambria will prepare a groundwater monitoring report summarizing the monitoring activities and results.

Meeting Request

Cambria would like to request a meeting with the ACDEH to develop an approach that addresses the agency concerns relating to the site. Specifically, the discussion would address groundwater monitoring frequency, the status of well MW-3, and potential future investigation and remediation activities.

CAMBRIA

ATTACHMENTS

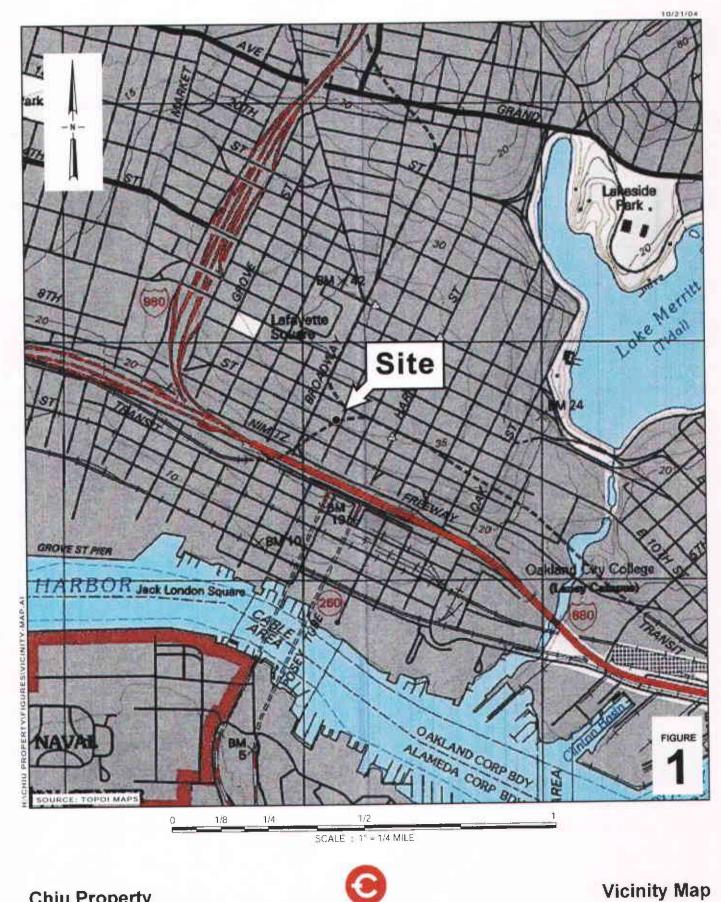
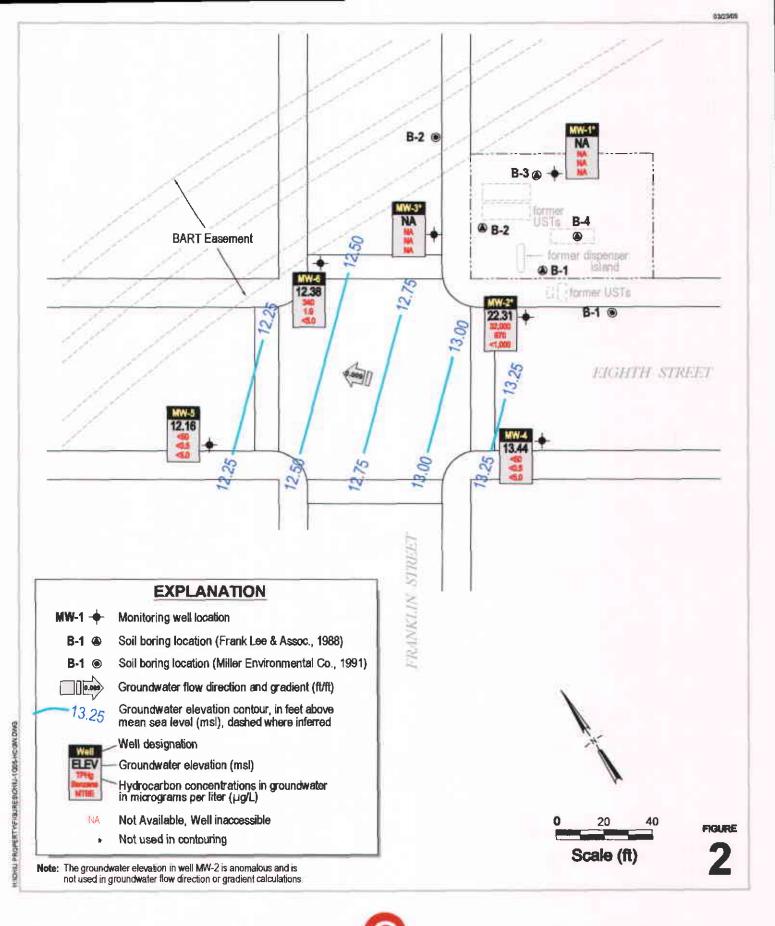

Figure 1 – Vicinity Map Figure 2 – Groundwater Elevation Contour and Hydrocarbon Concentration Map

Table 1 - Groundwater Analytical and Elevation Data

Appendix A – Groundwater Monitoring Field Data Sheets Appendix B – Laboratory Analytical Report Appendix C – GeoTracker Electronic Delivery Confirmations

H:\Chiu - 800 Franklin, Oakland\1q05\1q05 QMR.doc



Chiu Property 800 Franklin Street

Oakland, California

CAMBRIA

Chiu Property 800 Franklin Street

Oakland, California

Groundwater Elevation Contour and Hydrocarbon Concentration Map

CAMBRIA

March 11, 2005

CAMBRIA

Sample ID <i>TOC</i>	Date Sampled	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
(ft amsl)		(ft below TOC)	(feet amsl)	~			ıg/L	·	
MW-1	8/10/2004	23.35	10.63	<50	<0.5	<0.5	<0.5	<0.5	<5.0
33.98	9/28/2004+						••		
	12/21/2004	22.93	11.05	<50	<0.5	<0.5	<0.5	⊲0.5	<5.0
	3/11/2005			Well was ina	ccessable. Unable to me	asure depth to water of	r collect sample.		
MW-2	8/10/2004	21.03	12.63	47,000 (a)	4,200	4,900	1,400	6,000	<500
33.66	9/28/2004	22.95	10.71						
	12/21/2004	20.91	12.75	13,000 (a)	500	310	34	1600	<100
	3/11/2005	11.35	22.31	32,000 (a)	970	2,400	890	4,200	<1,000
MW-3	9/28/2004			Well is da	maged. Unable to meas	ure depth to water or co	ollect sample.		
34.23	12/21/2004			Well is da	maged. Unable to meas	ure depth to water or co	ollect sample.		
	3/11/2005			Well is da	maged. Unable to meas	ure depth to water or co	ollect sample.		
MW-4	9/28/2004	22.72	10.92	<50	<0.5	<0.5	<0.5	<0.5	<5.0
33.64	12/21/2004	20.65	12.99	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	3/11/2005	20.20	13.44	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-5	9/28/2004	23.70	9.86	<50	<0.5	<0.5	⊲0.5	1.5	<5.0
33.56	12/21/2004	21.40	12.16	<50	<0.5	⊲0.5	<0.5	<0.5	<5.0
	3/11/2005	21.40	12.16	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-6	9/28/2004	24.00	9. 98	<50	<0.5	<0.5	<0.5	<0.5	5.0
33,98	12/21/2004	21.61	12.37	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	3/11/2005	21.60	12.38	340 (a)	1.9	2.6	0.68	0.61	<5.0

 Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

CAMBRIA

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Sample ID	Date	Depth	Groundwater						
TOC	Sampled	to Water	Elevation	TPHg	Benzene	Tohiene	Ethylbenzene	Xylenes	MTBE
(ft amsl)		(ft below TOC)	(feet amsl)	<u> </u>		μ	μg/L	· · · · · · · · · · · · · · · · · · ·	
bbreviations:					Notes:				
PHg = Total petro	leum hydrocarbons	as gasoline by EPA Metho	od 8015C.		(a) = unmodified or weak	kly modified gasoline is	significant		
enzene, Toluene,	Ethylbenzene, and 3	Cylenes by EPA Method 8	021B.						
TBE = Methyl te	rtiary-butyl ether by	EPA Method 8021B.							
= Measured in fe	et								
OC = Top of casi	ng								
nsl = Above mea	n sea level								
g/L = microgran	ns per liter								
n = Chemical no	t present at a concer	tration in excess of detect	ion limit shown (n).						
= Not available,	not sampled, or doe	s not apply.							
	ss well due to denial								

WELL GAUGING SHEET

Client:	Cambria Er	vironmental	Technology			
Site	800 Frankli	n Street Oole	land CA			
riduress.	ou rialikii		land, CA			
Date:	3/11/2005			Signature:	L	1
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comments
						MW-1 inaccesible
MW-1	inaccessible					
MW-2	7:15		11.35		34.40	
<u>M</u> W-4	7:00		20.20		33.69	
MW-5	7:05		21.40		34.60	
MW-6	7:10		21.60		32.90	

	3/11/200:	<u> </u>					
	Cambria I	Environmer	ntal Technol	ogy			
ress:	800 Frank	lin Street (Dakland, CA	۹			
	MW-2						
neter:	2"						
evice:	Disposabl	e Bailer			· · · · · · · · · · · · · · · · · · ·		
Method:	Disposabl	e Bailer					
l Depth:			34.40	Fe=	mg/L		
Water:			11.35	ORP=	mV		
lumn Height	t:		23.05	DO=	mg/L		
:			0.16		· –		
Volume (gal	l):		3.69	сомм	ENTS:		
			11.06	Ţ			
CASING VOLUME	ТЕМР		COND.				
				-			
11.1	23.9	7.15	638				
Date:		Time	Containe	r Type	Preservative		Method
3/11/	/2005	9:30	Voa		НСІ	TPHg, BTEX, MTBE	8015, 8021
					Signat		M
	Volume (ga Volumes (ga CASING VOLUME (gal) 3.7 7.4 11.1 Date:	ress: 800 Frank MW-2 neter: 2" Pevice: Disposabl Method: Disposabl 1 Depth: Water: Water: Wolume (gal): Volume (gal): Volumes (gal): CASING VOLUME TEMP (gal) CASING VOLUME TEMP (Celsius) 3.7 23.6 7.4 23.8 11.1 23.9	ress: 800 Franklin Street (MW-2 neter: 2" Pevice: Disposable Bailer Method: Disposable Bailer 1 Depth: Water: Water: Volume (gal): Volume (gal): Volumes (gal): CASING VOLUME TEMP (gal) (Celsius) pH 3.7 23.6 7.11 7.4 23.8 7.14 11.1 23.9 7.15 Date: Time	ress: 800 Franklin Street Oakland, C/ MW-2 neter: 2" Pevice: Disposable Bailer Method: Disposable Bailer 1 Depth: 34.40 Water: 11.35 humn Height: 23.05 : 0.16 Volume (gal): 3.69 Volumes (gal): 11.06 CASING VOLUME TEMP (Getsius) pH (microns) 3.7 23.6 7.11 682 7.4 23.8 7.14 645 11.1 23.9 7.15 638 Date: Time Contained	MW-2 neter: 2" vevice: Disposable Bailer Method: Disposable Bailer 1 Depth: 34.40 Fe= Water: 11.35 ORP= Water: 11.35 ORP= humn Height: 23.05 DO= : 0.16 O Volume (gal): 3.69 COMM Volumes (gal): 11.06 COND. (casling volume (gal): 0.11 06 CASING volume (gal): 0.11 682 3.7 23.6 7.11 682 7.4 23.8 7.14 645 11.1 23.9 7.15 638 Date: Time Container Type	ress:800 Franklin Street Oakland, CAMW-2 $MW-2$ neter: 2^n vevice:Disposable BailerMethod:Disposable Bailer1 Depth: 34.40 Fe= mg/LWater: 11.35 ORP= mV/Water: 11.35 ORP= mg/LWater: 0.16 DO= mg/LVolume (gal): 3.69 COMMENTS:Volumes (gal): 11.06 COND. (riferons)CASING (gal)PH (CoND. (Cesius)COND. (riferons)PH (riferons) 3.7 23.6 7.11 682 7.4 23.8 7.14 645 11.1 23.9 7.15 638 Date:TimeContainer TypePreservative $3/11/2005$ $9:30$ VoaHCl	ress: 800 Franklin Street Oakland, CA MW-2 neter: 2" vevice: Disposable Bailer Method: Disposable Bailer 1 Depth: 34.40 Fe= mg/L Water: 11.35 ORP= mV /// Mater: 11.35 // Munn Height: 23.05 // Source 0.16 Volume (gal): 3.69 Volumes (gal): 11.06 CASING pH (microns) 3.7 3.7 23.6 7.4 23.8 7.4 23.9 7.15 638

Date:		3/11/200:	5					
Client:		Cambria I	Environmer	ntal Technol	logy			
Site Add	ress:	800 Frank	lin Street (Dakland, C	A			
Well ID:		MW-4						· · · · · · · · · · · · · · · · · · ·
Well Diar	neter:	2"						
Purging D	Device:	Disposabl	e Bailer	u			· · · · · · · · · · · · · · · · · · ·	
Sampling	Method:	Disposabl	le Bailer					
Total Wel	l Depth:			33.69	Fe=	mg/L		
Depth to `	Water:			20.20	ORP=	mV		
Water Co	lumn Heigh	t:		13.49	DO=	mg/L		
Volume/fi	L:			0.16				
1 Casing	Volume (ga	l):		2.16	СОММ	ENTS:		
	Volumes (g			6.48	1			
	CASING	TEMP (Celsius)		COND.				
TIME: 7:30		24.1	рН 7.24	(interons) 860	4			
7:30	<u>}-</u>	23.5	7.18	872	1			
7:40		23.7	7.20	840	1			
Sample ID:	Date:	(Time	Containe	г Туре	Preservative	Analytes	Method
MW-4	3/11	/2005	7:45	Voa		нсі	TPHg, BTEX, MTBE	8015, 8021
							/	1 <u> </u>
			<u> </u>	<u> </u>		Signatu	re: 🖊	

Date:		3/11/2005	;					
Client:		Cambria E	nvironmen	tal Technol	ogy			
Site Addı	ess:	800 Frank	lin Street (Dakland, CA	¥			
Well ID:		MW-5						
Well Dian	neter:	2*						
Purging D	evice:	Disposabl	e Bailer					
Sampling	Method:	Disposabl	e Bailer		<u></u>			
Total Wel	l Depth:			34.60	Fe=	mg/L		
Depth to V	Water:			21.40	ORP=	mV		·····
Water Col	Water Column Height: 13					mg/L		
Volume/ft				0.16				
I Casing V	Volume (gal):		2.11	СОММЕ	ENTS:		
	Volumes (ga			6.34				
TIME:	CASING VOLUME	TEMP (Celsius)	рН	COND.				
8:30		24.4	6.99	790	1			
8:35	4.2	24.4	6.83	845				
8:40	6.3	24.2	6.85	831				
Sample ID:	Data		Time	Containe	Turno	Preservative	Analytes	Mathod
MW-5			Voa	Турс	HCI	TPHg, BTEX, 	8015, 8021	
						Signatu	ire:	-2

ter: vice: lethod:		lin Street (e Bailer	tal Technol					
ter: vice: lethod:	MW-6 2" Disposable	e Bailer	Dakłand, CA	4				
ter: vice: lethod:	2" Disposable							
vice: lethod:	Disposable							
lethod:	-							
	Disposabl	e Bailer						
Depth:								
		<u> </u>	32.90	Fe=	mg/L			
ater:			21.60	ORP= mV				
nn Height	:		11,30	DO=	mg/L			
			0.16					
olume (gal):		1.81	Сомми	ENTS:			
lumes (ga	I):		5.42					
CASING /OLUME	ТЕМР	pH	COND. (microns)					
1.8	24.7	6.80	840					
3.6	24.5	6.93	868					
5.4	24.4	6.95	839					
					1			
ate:		Time	Container	г Туре	Preservative		Method	
W-6 3/11/2005 8:15 Voa		нсі		BTEX	8015, 8021			
-								
						/	h	
	nn Height lume (gal lumes (ga CASING OLUME (gal) 1.8 3.6 5.4 ate:	Depth: tter: an Height: hume (gal): humes (gal): CASING OLUME TEMP (gal) (Cetsius) 1.8 24.7 3.6 24.5 5.4 24.4 ate:	Depth: anter: an Height: hume (gal): humes (gal): CASING OLUME (gal) (Celsius) pH 1.8 24.7 3.6 24.5 5.4 24.4 6.95	Depth: 32.90 ater: 21.60 an Height: 11.30 0.16 0.16 hume (gal): 1.81 humes (gal): 5.42 CASING COND. (gal) (Celsius) pH (microns) 1.8 24.7 6.80 3.6 24.5 6.93 868 5.4 24.4 6.95 839 ate: Time Contained	Depth: 32.90 Fc= ater: 21.60 ORP= an Height: 11.30 DO= 0.16 0.16 hume (gal): 1.81 COMMI humes (gal): 5.42 CASING OLUME TEMP COND. (gal) (Cetsius) pH (Column 1.8) 24.7 6.80 840 3.6 24.5 6.93 868 5.4 24.4 6.95 839 ate: Time Container Type	Depth: 32.90 Fe= mg/L nter: 21.60 ORP= mV an Height: 11.30 DO= mg/L 0.16 0.16 00= mg/L 0.16 0.16 00= mg/L lume (gal): 1.81 COMMENTS: lumes (gal): 5.42 COND. (Gal) (Cetsius) pH COND. (gal) (Cetsius) pH COND. (gal) (Cetsius) pH Container Type ate: Time Container Type Preservative 3/11/2005 8:15 Voa HC1	Depth: 32.90 Fe= mg/L tter: 21.60 ORP= mV an Height: 11.30 DO= mg/L 0.16 0.16 00= 00= CASING 0.15 0.16 00= (gal) (Celsius) pH COND. 000= (gal) (Celsius) pH (microns) 00= 00= 1.8 24.7 6.80 840 00= 00= 3.6 24.4 6.95 839 00= 00= ate: Time Container Type Preser	

DAILY REPORT

Client:	Cambria Environmental Technology
Project:	Chiu
Site Address:	800 Franklin Street Oakland, CA
Date:	3/11/2005
Time	Activity
6:00 AM	Arrived onsite
6:15 AM	Opened all well boxes
7:00 AM	Began Gauging wells at
7:30 AM	Began Sampling
	MW-1 was inaccessible (Jewelry shop did not open in which MW-1 is located)
9:30 AM	Finished sampling
11:00 AM	Evergreen Environmental Services arrived for drum disposal
	All well boxes and casing in good condition, very clean and open site.
11:20 AM	Left Site
4:00 PM	Samples Picked up

DRUM INVENTORY

Client:	Cambria Environmental Technology				
Project:	Chiu				
Site Address:	800 Franklin Street Oakland, CA				
Date:	3/11/2005				
ARRIVAL		Amount	SPH	Soil	Water
COMMENTS (color, typ	e, label markings, location etc.): No	FULL			
drums onsite.		3/4			
		1/2			
		1/4			
		2/3			
		1/3			
				<u> </u>	
			· · · · · ·		
		<u> </u>		[
DEPARTURE		Amount	SPH	Soil	Water
	e, label markings, location etc.):	FULL			
	f full open top steel drums. Picked up by	3/4	·		
Evergreen Environmenta		1/2			
Ŭ		1/4			
		2/3			
		1/3			
		· · · · · · · · · · · · · · · · · · ·			
		TOTAL		0	0

McCampbell Analytical, Inc.

Cambria Env. Technology	Client Project ID: #589-1000; Chiu	Date Sampled: 03/11/05
5900 Hollis St, Suite A		Date Received: 03/11/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 03/17/05
	Client P.O.:	Date Completed: 03/17/05

WorkOrder: 0503222

March 17, 2005

Dear Matt:

S,

Enclosed are:

1). the results of 4 analyzed samples from your #589-1000; Chiu project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

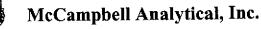
4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

is mul

Angela Rydelius, Lab Manager

	McCam	bell A	Analytica	al, Inc.		Telepho	venue South, #D7, Pache one : 925-798-1620 Fa mccampbell.com E-mail	x : 925-798-1622			
Cambri	ia Env. Technol	ogy	Client P	roject ID: #58	9-1000; Chi	u	Date Sampled:	03/11/05	·	<u></u>	
5900 H	Iollis St, Suite A	1					Date Received:	03/11/05		-	
Emeru	ville, CA 94608		Client C	Contact: Matt M	eyers		Date Extracted:	03/13/05-03	/17/0	5	
Lincity	·Inc, CA 94000		Client F	Client P.O.: Date Analyzed: 03/13/05-03/17/05							
Extraction	Gasoli method: SW5030B	ne Rang	ze (C6-C12)		carbons as		with BTEX and	MTBE* Work O	rder: 0:	503222	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-2	w	32,000,a	ND<1000	970	2400	890	4200	200	102	
002A	MW-4	w	ND	ND	ND	ND	ND	ND	1	101	
003A	MW-5	w	ND	ND	ND	ND	ND	ND	1	100	
004A	MW-6	w	340,a	ND	1.9	2.6	0.68	0.61	1	110	
						,					
	· · ···-										
				· · · · · · · · · · · · · · · · · · ·							
									-		
L											
Reportir ND mean	ig Limit for DF =1; ns not detected at or	w	50	5.0	0.5	0.5	0.5	0.5	1	µg/L	
	the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	


* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Cm

WorkOrder: 0503222 QC Matrix: Water W.O. Sample Matrix: Water Spiked Sample ID: 0503221-005A BatchID: 15351 EPA Method: SW8021B/8015Cm Extraction: SW5030B LCS-LCSD Acceptance Criteria (%) MSD* MS-MSD* LCS LCSD MS* Sample Spiked Analyte MS / MSD LCS / LCSD % Rec. % RPD % Rec. % Rec. % RPD % Rec. µg/L µg/L 70 - 130 70 - 130 3.84 95.5 99.3 97.8 96.7 1.14 TPH(btex)[£] ND 60 70 - 130 70 - 130 90.6 1.18 91.6 96.7 89.1 8.18 ND 10 MTBE 70 - 130 1.33 70 - 130 100 10 112 105 7.09 99.1 ND Benzene 70 - 130 70 - 130 0.481 108 101 6.80 95.4 95 ND 10 Toluene 70 - 130 98.4 0.766 70 - 130 99.2 10 108 103 4.84 ND Ethylbenzene 70 - 130 70 - 130 86.3 4.16 90.7 5.02 90 95.3 ND 30 Xylenes 70 - 130 70 - 130 111 0.353 1.95 110 116 114 98 10 %SS: All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 15351 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0503222-001A	3/11/05 9:30 AM	3/14/05 9:30 PM	3/14/05 9:30 PM	0503222-002A	3/11/05 7:45 AM	3/13/05 7:05 AM	3/13/05 7:05 AM
000000000000000000000000000000000000000	3/11/05 8:45 AM	3/13/05 7:38 AM	3/13/05 7:38 AM	0503222-004A	3/11/05 8:15 AM	3/17/05 12:06 AM	3/17/05 12:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(blex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix splke and matrix splke duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

UL QA/QC Officer

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

MW-6

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

ClientID: CETE WorkOrder: 0503222

Report to: Matt Meyers Cambria Env. Technology 5900 Hollis St, Suite A Emeryville, CA 94608		TEL: FAX: Projec PO:	(510) 420-0700 (510) 420-9170 tNo: #589-1000; Chiu				Bill	Accou Cambo 5900 I	Iollis S	able Techno t, Ste. A A 94608			Ĺ	•	ed TAT: eceived: rinted:		5 da /11/20(/11/20	05
									Request	ed Tests	i (See k	egend b	elow)					
Sample ID	ClientSampiD	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0503222-001	MW-2	Water	3/11/05 9:30:00 AM	A	A					-								
0503222-002	MW-4	Water	3/11/05 7:45:00 AM	А											ļ	 	<u> </u>	
0503222-003	MW-5	Water	3/11/05 8:45:00 AM	А												 		

А

Test Legend:

0503222-004

1	G-MBTEX_W
6	
11	

PREDF REPORT	
	[
	[

3/11/05 8:15:00 AM

Water

2

12

3	
8	
13	

	·····
4	
9	
14	

5		 	
10		 	
15			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Cere 0503222

· · ·

 $\{ j_i \}$

	M	IcCAMP					AL,	IN	C.								(TH	AĽ	N	ŌF	Ċ	U	ST	OI)Y	RF	\mathbf{C}	OI	XD		
19		1	10 2 nd A' PACHE(VENUE SC CO, CA 945)UTH, 553-55(#D7 50								τι	JRN	ĪA	ROI	UNI) T	IM	E		Ģ]		D,		Ľ		R
	Telephon	site: <u>www.inc</u> ie: (925) 798-	amphell. -1620	<u>com</u> Em	all: m	ain@n	nccam Fax: (1	ipbel 925)	l.con 798-	n -162:	2		1	D	F Re	quir	ed X	Yes	$)_{N_0}$	1			RI	USH		24 H	R	48	HR		72 H	IR 5D4
	Report To: Ma Company: Ca	H Mever	<u> </u>	E	Bill To): C2	imb	0 G_	En	j 1	Tec !	h						Æ	nal	ysis	Rec	lues	it					Т	01	her		Comment
	Company: Ca	mbrie	Env.	Tec	h											E				1				5				Т				Filter
	5900	2 Hollis	_ <u>St_</u>									<u>.</u>		ferne		B&I	ł			lgene				TBA,								Samples f
х. Х. 1.	Emery	ville, C	<u>A</u>		E - <i>N</i>	Iail: "	nne	yers	A.C.	Emp	<u>sie ~(</u>	AV.C	cel -	+		20 E				Con				Β£,				Í				Metals
	5900 Emery Tele: 5/0-420	3314		F	ax:	Iail: , ≶/0 -	420	-91	<u> 10</u>					TRE	a	155	E E	3		lors /		(8)		E D			020)					inalysis:
	Project #: 5%	2-1000		P	rojec	t Nan	ne: (1	1 1 4						8/80	1664	(418	OVI-	(sa)	Aroc		bicid		LAM by 8:	5	•	2/8					Yes / No
	Project Location: Sampler Signatur	800 Fr	an/K/ju	r St.		Ķļģ	rd~	<u>_C(</u>	3		1-4		[]	1700 1700) SEA SE	MTBE / BTEX ONLY (EPA 602 / 8021) FPH as Diesel / Mator Oil (8015)	Grease (1664 / 5520 E/B&F)	fotal Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	3	Fuel Additives (MTBE, ETBE, TAME, DIPE, 1.2 DCA - 1.2 RDB ethanol) hv 8260B.		additives by 8260	fPHg / BTEX & MTBE by (8015 / 8020)					
5 a	Sampler Signatur	e: Muski			pro Cit	2 tal.	•			<i>1</i>		L HOD	-13	se	8	5	ocar	8.	CIPe	No	estic	53	S S	, ET.		ed 23	(q 3		ļ			
			SAMI	PLING		ers	M	ATI	RIX	Р	RESE	RVE	D		ALY of or	S II	 Ivdr	8010	18	CB's	T di	Acid	EPA 524.2 / 624/ 8260 (VOCs)	TBH TDBH		ditiv	ELW					
	SAMPLE ID				Containers	Type Containers							4			Total Petroleum Oil	- un F	91/	37.80	82 P	0 [4]	151 (24/	N N	5 M		3					
	(Field Point Name)	LOCATION			E	0 III		•	a						MTBE / BTEX TPH as Diesel /	trole	trole	2/6	09 2	08/1	168	18 / 9	316	litive A	TPH _g by 8015 M	VOCs and fuel	E E				i I i	÷ •
	(Date	Time	l S	e e	Water		Sludge	Other	1	HNO3	Other		B)E /	l Pe	I Per	V 502	1 509	097	1507	1 515	L 524	LAdo	la B		H B					
					#	Ty	A S	Air	Sle	الح	HCL	Ĥ	5 !		EM 141	Tot	Tots	EPA	EP	EPA	EP.	ΕΡΛ	EP	Fue 1.2-	Idi	٥,	1d1					
1	MN-2		3-11-05	9:30	3	V00.	x			<u>_</u> <u>x</u>	X		-	7								<u>_</u>						+		••••••••		· · · · · · · · · · · · · · · · · · ·
Ŧ	MW-4			7:4S				1_			X		>	٢.																		
÷ †	MW-5			8:45				ĺ			X			K			-							1								
4	1 MN-6			8:15							K		λ	(-	1					 									<u>.</u>
\sim	TB		<u> </u> -€		Z	~				- j	TX		-	•	_												•••••	-			-1	Hole
	┝╼╌┈╸┢┚ _╼ ┹────╴			İ	 	<u>'</u>							+				•	+	1		<u>}</u> —−		<u> </u>	+	1	+			+			
· · ·		 	{				╏┈┝╼			-+-	1-												\vdash			┢──						
	· · · · · · · · · · · · · · · · · · ·				-	<u> </u>	 	+	+		+		_	-+					+					+	+			-+	—İ-			
					 					+													-									·
		 	<u> </u>					_		+	<u> </u>					ICE/		/			1					 	+	-+				
	<u> </u>		<u> </u>	ļ	<u> </u>	 								-		GOO	DCO	NDI	ION.		1		APPI	OF	NIATI VERS	k (\downarrow					<u></u>
d i			ļ			ļ										HEA DEC	HI OF	UNA					R.B.	SER		NĽ.		ᆋ	<u> </u>			
						L				\bot	_					PRE	SERV	ATIC	N_		04	0	3M151	EALS.	on on							
															1		1										T					
														Ţ																		
. 1			1					7									Τ	Ť		Τ		Τ	Ĺ	T		T	İ İ	T	-	T		
	Relinquishout	I	Date: /	Time:	Rece	The B		\mathcal{H}	<u>. </u>		4		7	7	<u>با</u> .		J	_4	.	1	I	1_	<u>ا</u>	. .	1	<u>ا</u>	II	L	L			
	A Lin		2/1/05	40	1	\sim	17	4		5	2		1	-																		
	Relinquished By	7/	Date:	Time	Rec	elved B	17T		\	6 . 1	1	\rightarrow	-1																			
	10110	≤ 2	\$11/05	144			M	4	$^{\prime}$	d	X																					
i	- 0 V		71										مر ا لمرت		<u> </u>			_								-						

	ronic Submittal Information
UPLOADING A GEO_WI	
	essing is complete. No errors were found! ur file has been successfully submitted!
<u>Submittal Title:</u>	1st Qtr 2005 GW Depth Data for 800 Franklin Street, Oakland
Submittal Date/Time:	3/22/2005 4:26:53 PM
<u>Confirmation</u> <u>Number:</u>	1090682804
	Back to Main Menu

Logged in as CAMBRIA-EM (AUTH_RP)

	bmittal Information
UPLOADING A GE	
YOUR IMAGE UPI	OAD WAS SUCCESSFUL!
Facility Name:	BILL LOUIE'S AUTO SERVICE
<u>Global ID:</u>	T0600100050
<u>Submittal Type:</u>	GEO_MAP
Submittal Date/Time:	3/23/2005 11:50:54 AM
<u>Confirmation</u> <u>Number:</u>	1977887809
Click <u>here</u>	to view the image.
Back to Main Menu	
ogged in as CAMBRIA-EM (AUTI	H_RP) CONTACT SITE ADMINISTRATOR.

.

	c Submittal Information w/Add Facilities Upload EDD Check EDD
UPLOADING A GEO_Z	FILE
	is complete. No errors were found! has been successfully submitted!
Submittal Title:	Elevation Data for 800 Franklin Street, Oakland
Submittal Date/Time:	3/22/2005 5:22:40 PM
<u>Confirmation</u> <u>Number:</u>	4909118473
	Back to Main Menu

Logged in as CAMBRIA-EM (AUTH_RP)

Electronic Submittal Information	
Your EDF file has been successfully uploaded	!
Confirmation Number: 7885156512	
Date/Time of Submittal: 3/22/2005 6:10:23 PM	
Facility Global ID: T0600100050	
Facility Name: BILL LOUIE'S AUTO SE	RVICE
Submittal Title: 1st Qtr 2005 GW Analytica	
Submittal Type: GW Monitoring Report	u Dulu
Submittal Type: Gw Momoning Report	
Click here to view the detections report for this upl	oad.
BILL LOUIE'S AUTO SERVICE <u>Regional Board - Case #: 01-0056</u>	
800 FRANKLIN ST SAN FRANCISCO BAY RWQCB OAKLAND, CA 94607 Local Agency (lead agency) - Case	
ALAMEDA COUNTY LOP - (AG	
CONF # TITLE	QUARTER
7885156512 1st Qtr 2005 GW Analytical Data	Q1 2005
SUBMITTED BY SUBMIT DATE STATUS	_
Matt Meyers 3/22/2005 PENDING REVIEW	/
SAMPLE DETECTIONS REPORT	
# FIELD POINTS SAMPLED	4
# FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL	2
# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES	WATER
METHOD QA/QC REPORT	
METHODS USED	SW8021F
TESTED FOR REQUIRED ANALYTES?	N
MISSING PARAMETERS NOT TESTED:	
- SW8021F REQUIRES ET6E TO BE TESTED - SW8021F REQUIRES TAME TO BE TESTED	
- SW8021F REQUIRES DIPE TO BE TESTED	
- SW8021F REQUIRES TBA TO BE TESTED	
- SW8021F REQUIRES DCA12 TO BE TESTED - SW8021F REQUIRES EDB TO BE TESTED	
LAB NOTE DATA QUALIFIERS	Ń
QA/QC FOR 8021/8260 SERIES SAMPLES	
TECHNICAL HOLDING TIME VIOLATIONS	0
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS	0 0 0
TECHNICAL HOLDING TIME VIOLATIONS	0
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS	0 0 0 Y
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE	0 0 7 Y
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE DUPLICATE	0 0 7 4 4 4
TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE	0 0 7 Y

MATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) % RECOVERY BE	TWEEN 65-135%	Y				
,	ATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%						
SURROGATE SPIKES % REC			N				
BLANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY BETWE	EN 70-130%	Y				
SOIL SAMPLES FOR 80	21/8260 SERIES						
MATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) % RECOVERY BE	TWEEN 65-135%	n/a				
MATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) RPD LESS THAN	30%	n/a				
SURROGATE SPIKES % REC	OVERY BETWEEN 70-125%		п/а				
BLANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY BETWE	EN 70-130%	n/a				
FIELD QC SAMPL <u>ES</u>							
SAMPLE	COLLECTED	DETECTION	S > REPD				
QCTB SAMPLES N Q							
QCEB SAMPLES N 0							

Logged in as CAMBRIA-EM (AUTH_RP)

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:	BILL LOUIE'S AUTO SERVICE	
<u>Global ID:</u>	T0600100050	
<u>Field Pt Name:</u>	MW-4	
<u>Submittal Type:</u>	GEO_BORE	
Submittal Date/Time:	3/23/2005 10:46:15 AM	
<u>Confirmation</u> Number:	7531064689	
Click here to view the image.		

Back to Main Menu

Logged in as CAMBRIA-EM (AUTH_RP)

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:	BILL LOUIE'S AUTO SERVICE
<u>Global ID:</u>	T0600100050
Field Pt Name:	MW-5
<u>Submittal Type:</u>	GEO_BORE
Submittal Date/Time:	3/23/2005 10:46:35 AM
<u>Confirmation</u> Number:	3653989493

Click here to view the image.

Back to Main Menu

Logged in as CAMBRIA-EM (AUTH_RP)

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:	BILL LOUIE'S AUTO SERVICE
<u>Global ID:</u>	T0600100050
Field Pt Name:	MW-6
Submittal Type:	GEO_BORE
Submittal Date/Time:	3/23/2005 10:46:46 AM
<u>Confirmation</u> Number:	1925840079

Click here to view the image.

Back to Main Menu

Logged in as CAMBRIA-EM (AUTH_RP)

Electronic Submittal Information Main Menu View/Add Facilities Upload EDD Check EDD		
UPLOADING A GEO_REPORT FILE		
YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!		
<u>Facility Name:</u>	BILL LOUIE'S AUTO SERVICE	
<u>Global ID:</u>	T0600100050	
<u>Title:</u>	Groundwater Monitoring Report - First Quarter 2005	
Document Type:	Monitoring Report - Quarterly	
<u>Submittal Type:</u>	GEO_REPORT	
Submittal Date/Time:	3/23/2005 3:50:58 PM	
Confirmation Number:	4713483512	
Click <u>here</u> to view the document.		
Back to Main Menu		

Logged in as CAMBRIA-EM (AUTH_RP)