

Technology, Engineering & Construction, Inc.

 35 South Linden Avenue
 •
 South San Francisco, CA 94080-6407

 Tel: (650) 952-5551
 • Fax: (650) 952-7631
 • Contractor's Lic. #762034

120/03

August 27, 2001

Ms. Eva Chu Hazardous Materials Specialist Alameda County Health Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

HUU & 1 2001

SUBJECT: SUBSURFACE INVESTIGATION REPORT

SITE: FORMER OLYMPIAN STATION 1435 Webster Street Alameda, California.

Dear Ms. Chu:

On behalf of Olympian, TEC Accutite is pleased to submit this subsurface investigation report for the above referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions, please call the undersigned at (650) 952-5551, Ext. 208.

Sincerely, TEC Accutite

Smo **David Gregory**

David Gregory Project Manager

Mr. Rusty Firenze, Olympian, 260 Michelle Court, South San Francisco, CA 94080
 Mr. David Harris, Trump-Alioto-Trump & Prescott, LLP, 2280 Union Street, San Francisco, CA 94123
 Mr. Jeff Farrar, P.O. Box 1701, Chico, CA 95927
 Mr. Thomas Ballard, GHH Engineering Inc., 8084 Old Auburn Rd., Citrus Heights, CA 95610

(প্লি)

- volues COCS exect Revolution Resis Consider doin a set preserve RECA is site proved a organic content of other soil parameters Att last it gts to cal. 95% Her. Att last it gts to cal. 95% Her. Unclude that in ROSA (use MAsshed, - fractionation) - subject reption soil gas in 1533

AUG 3 1 2001

SUBSURFACE INVESTIGATION REPORT

FORMER OLYMPIAN STATION 1435 WEBSTER STREET ALAMEDA, CA

PREPARED FOR:

OLYMPIAN AND ALAMEDA COUNTY HEALTH SERVICES AGENCY

AUGUST 27, 2001

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	ENVIRONMENTAL BACKGROUND	1
4.0	SCOPE OF WORK	2
5.0	RESULTS	4
6.0	CONCLUSIONS AND RECOMMENDATIONS	5
7.0	LIMITATIONS	6

TABLES

- 1. SOIL ANALYTICAL DATA BORINGS B1-B4
- 2. HISTORICAL GROUNDWATER ANALYTICAL DATA
- 3. SOIL BORINGS GROUNDWATER ANALYTICAL DATA
- 4. TIER 1 RBSL COMPARISON

FIGURES

- 1. VICINITY MAP
- 2. SITE MAP
- 3. GROUNDWATER FLOW DIRECTION AND GRADIENT
- 4. BENZENE IN GROUNDWATER
- 5. MTBE IN GROUNDWATER
- 6. TPHG IN GROUNDWATER
- 7. PLOT OF NATURAL LOG OF BTEX CONCENTRATIONS VS TIME FOR WELLS MW1 AND MW5

ATTACHMENTS

- A BORING LOGS AND PERMITS
- B LABORATORY REPORT
- C WELL SAMPLING LOGS

1.0 INTRODUCTION

On behalf of Olympian, TEC Accutite performed a subsurface investigation at the former Olympian Station located at 1435 Webster Street, Alameda, California. TEC Accutite conducted soil borings and quarterly groundwater sampling simultaneously to evaluate the extent of dissolved phase hydrocarbons beneath the site and downgradient of the site. Presented below are the site background and results of the investigation. A site vicinity map and site map are presented as Figures 1 & 2, respectively.

2.0 SITE DESCRIPITION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, CA. Prior to 1989, the site was occupied by an Olympian Service Station. Former station facilities consisted of two 10,000 gallon gasoline and one 7,500 gallon diesel underground storage tanks (USTs), two dispenser islands and a 500 gallon waste oil UST (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently leased by the City of Alameda and operated as a metered parking lot.

SITE GEOLOGY

The site is located on the bay plain deposits of the San Francisco Bay consisting of shallow marine and continental deposits known as the "Bay Mud". Sediments beneath the site consist of fine-medium grained, poorly sorted, brown sand to a maximum explored depth of 20 fbg.

Groundwater elevation at the site varies from 8 to 11 fbg. Groundwater flow direction has consistently been toward the south-southeast at an average gradient of 0.002. Groundwater beneath the site has been designated as potentially suitable for municipal and industrial use (San Francisco Bay Water Quality Control Plan, 1995).

Request report.

3.0 <u>ENVIRONMENTAL BACKGROUND</u> In October 1988, CHIPS Environmental Consultants, Inc. performed <u>soil gas analysis at the</u> subject site. High soil gas readings were found on the eastern side of one of the <u>numn island</u>.

In September 1989, Accutite removed the following USTs:

- Two 10,000-gallon gasoline USTs
- One 7,500-gallon diesel UST
- One 500-gallon waste oil UST

Analysis of soil samples collected during removal of the USTs detected hydrocarbons at maximum concentrations of 220 parts per million (ppm) Total Petroleum Hydrocarbons as gasoline (TPHg), 430 ppm Total Petroleum Hydrocarbons as diesel (TPHd), and 650 ppm Total Recoverable Petroleum Hydrocarbons as Oil and Grease (TRPH).

In January 1991, remedial excavation of the hydrocarbon impacted soil was conducted by AAA Tank Removal / Forcade Excavations Services. Approximately 950 cubic yards of soil were removed from the former location of the USTs. This soil was bioremediated onsite and returned to the former excavation.

In January 1993, Uriah Environmental Services, Inc. installed three monitoring wells onsite (MW-1 through MW-3). Soil samples collected during well installation contained no detectable concentrations of petroleum hydrocarbons. Bi-annual groundwater monitoring was initiated. Dissolved phase hydrocarbons have been detected in all wells at varying concentrations.

In February 1999, TEC Accutite advanced four borings on and offsite (B1 through B4) to determine the extent of hydrocarbon impact to soil and groundwater. The soil analytical results detected non-significant concentrations of TPHg, benzene, toluene, ethyl-benzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE). The groundwater samples detected hydrocarbon concentrations up to 6,000 parts per billion (ppb) MTBE and 38,000 ppb benzene.

In December 1999, TEC Accutite installed three additional wells MW-4 through MW-6 to define the dissolved phase hydrocarbons and assess plume stability. Analysis of soil samples detected hydrocarbon concentrations of 1,100 ppm TPHg, 200 ppm TPHd and 3.4 ppm benzene from soil collected at 9.5 feet below grade (fbg) in well MW-5. No hydrocarbons were detected in soil samples collected during installation of wells MW-4 and MW-6. Groundwater sampling from wells MW-6 and MW-3 defined the dissolved phase hydrocarbon plume upgradient of the former dispenser islands and cross-gradient of the former USTs.

In November 2000, TEC Accutite completed a site conceptual model. Based on historical quarterly monitoring data, it was determined that the contaminant plume required further definition downgradient. An assessment of hydrological conditions, proximity to sensitive receptors and current groundwater usage, suggest that MTBE in groundwater is not the primary chemical of concern. Given the shallow groundwater elevation (9 fbg), estimated high permeability of soils beneath the site, the potential for benzene vapor phase migration from hydrocarbon impacted groundwater to indoor and ambient air was identified as an exposure pathway requiring future evaluation.

As part of an ongoing investigation, this report details the combined second quarter 2001 groundwater monitoring episode and most recent subsurface investigation.

4.0 SCOPE OF WORK

The investigation objective was to evaluate the extent of dissolved phase hydrocarbons in groundwater beneath and downgradient of the site. Quarterly groundwater sampling was conducted simultaneously with soil borings to obtain groundwater analytical data representative of one time hydrogeological conditions. Boring logs and permits are presented in Attachment A. The laboratory analytical reports for soil and groundwater are presented in Attachment B. Attachment C contains well sampling logs.

SOIL BORINGS

Project Personnel:	Geologist David Gregory conducted all fieldwork under the supervision of Registered Engineer Sami Malaeb PE# 60888.
Permits:	City of Alameda Public Works Drilling Permit# WO1-266 City of Alameda Public Works Encroachment Permit# EN01-019 City of Alameda Public Works Right of Way Permit# EX01-0048 CALTRANS Encroachment Permit# 0401-6SV-0824
Drilling Co:	Gregg Drilling, C57# 485 165
Drilling Dates:	June 27, 2001

Number of Borings: Four Borings (B1 through B4). A fifth soil boring attempted on the southwest corner of the intersection of Webster Street and Taylor Street could not be completed due to underground utility constraints.

Drilling Method: Borings were completed with a hydraulic push drill rig.

- **Boring Depth:** Borings B1 through B3 were drilled to an approximate depth of 15 fbg. Boring B4 was drilled to an approximate depth of 14 fbg.
- Sediment Lithology: Sediments beneath the site consist of fine grained sand.

Depth to Water: Groundwater was first encountered 9.5 to 10 fbg.

Sample Technique: Continuous soil samples were collected by pushing a core barrel lined with 2-inch diameter plastic macro core liners at the bottom of the boring. Soil samples were collected at 9 fbg within the capillary fringe. Soil samples were covered with Teflon liners and capped.

Soil borings were installed with temporary 1-inch screened PVC casing. Groundwater samples were obtained from within the casing with a metal bailer decontaminated in Alconox and water prior to sampling. Groundwater samples were transferred into HCI preserved laboratory VOA's. All samples were labeled, placed on ice, and delivered to North State Environmental Laboratory (a California State Certified Laboratory) under a Chain of Custody.

QUARTERLY GROUNDWATER SAMPLING

- Project Personnel: Accutite Geologist David Gregory conducted monitoring well sampling.
- Sampling Date: June 25, 2001
- Wells Sampled: MW-1 through MW-6
- Sampling Procedure: Approximately three casing volumes of water were purged from wells MW-1 through MW-6 prior to sampling. Following purging, groundwater samples were collected with disposable bailers and transferred into HCl preserved VOA's. Sample containers were labeled, placed on blue ice in an ice chest, and transported under chain of custody to North State Environmental Laboratory for analysis.
- Laboratory Analysis: Selected soil samples and groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg: EPA Method 8015), benzene, toluene, ethylbenzene, xylenes, and methyl tert-butyl ether (BTEX, MTBE: EPA Method 8020). MTBE was confirmed by EPA Method 8260. As approved by the Alameda County Health Services Agency (ACHSA) no further analysis of TPHd is required. Gas chromatograms are not typical of diesel.

5.0 RESULTS

GROUNDWATER ELEVATION AND FLOW DIRECTION

The reference mark considered as a base for calculating the groundwater elevations was a fire hydrant, located on the sidewalk of Webster Street. The calculated groundwater flow direction is toward the south at a gradient of 0.002 (Figure 3). Groundwater elevation data are summarized below:

Groundwat	er Elevation E)ata	
Well Identification	Elevation of Casing in ft	Depth to Ground- Water in ft	Ground Water Elevation in ft
MW-1	19.53	9.73	9.8
MW-2	19.80	10.11	9.69
<u>MW</u> -3	19.79	10.04	9.75
<u>MW</u> -4	19.30	9.68	9.62
<u>MW</u> -5	18.99	9.05	9.94
<u>MW-6</u>	20.27	10.39	9.88

<u>Soil</u>

Soil samples were collected approximately 9 fbg within the capillary fringe from soil borings B1 through B4. No petroleum hydrocarbons were detected in soil above laboratory reporting limits (Table 1).

Groundwater

The greatest concentration of dissolved phase petroleum hydrocarbons were detected in monitoring well MW-1 at 18,000 ppb TPHg, 1,200 ppb benzene, 1,500 ppb MTBE (Table 2). Hydrocarbons were detected in well MW-5 at concentrations of 3,100 ppb TPHg, 1,000 ppb benzene. Dissolved phase concentrations of TPHg, benzene, and MTBE in surrounding monitoring wells are either non-detect or insignificant.

Insignificant concentrations of petroleum hydrocarbons were detected in groundwater samples collected from downgradient and cross gradient soil borings B1 through B4 (Table 3). The greatest concentration of petroleum hydrocarbons was detected in boring B3 at 400 ppb TPHg and 3 ppb MTBE. MTBE was detected in all soil boring groundwater samples below 5 ppb.

Tier 1 RBSL Comparison

Groundwater concentrations detected in monitoring wells MW-1 and MW-5 were compared to the California Regional Water Quality Control Board (CRWQCB) Tier 1 Risk Based Screening Levels (RBSL; CRWQCB Interim Final – August 2000). Based on the current groundwater use and criteria outlined in TEC Accutite's Site Conceptual Model Report (TEC Accutite, 2000), a comparison of Tier 1 screening levels for groundwater designated as a current or potential drinking water use was not included. The comparison was based on Tier 1 groundwater screening levels for potential indoor air impacts by vapors, emanating from impacted groundwater (Table 4). This comparison was deemed more applicable, as any future development of the property would be required to address the potential risk of emanating vapors from hydrocarbon impacted groundwater.

Benzene concentrations detected in wells MW-1 (1,200 ppb) and MW-5 (1,000 ppb) greatly exceed the RBSL of 84 ppb. Benzene is the most conservative RBSL, as it is a known carcinogen and it has a high propensity to partition between the dissolved phase and gas phase (Henry's Constant).

Toluene, ethylbenzene, xylenes and MTBE are below RBSL's.

The RBSL Ceiling Value (CV) reflects the lowest one-half the chemicals solubility, the taste and odor threshold and a maximum of 50,000 ug/L limit for any chemical. A comparison of the CV was made with respect to TPHg, RBSL for TPHg are calculated on site by site basis. TPHg concentrations in well MW-1 and MW-5 significantly exceed the CV of 100 ppb.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- A groundwater gradient of 0.002 is consistent with previous sampling events. The flow direction has deviated from the Southeast to the south.
- No petroleum hydrocarbons were detected in soil samples collected from offsite soil borings B1 through B4.
- The greatest concentrations of dissolved phase hydrocarbons were detected in wells MW-1 and MW-5. Hydrocarbons were either non-detect or non-significant in surrounding Wells MW-2, MW-3, MW-4 and MW-6.
- Benzene and MTBE Isoconcentration maps produced from quarterly groundwater monitoring data and soil boring groundwater data (Borings B1 through B4) indicate the contaminant plume is concentrated around onsite wells MW-1 and MW-5 (Figures 4 & 5). TPHg Isoconcentration maps indicate TPHg has migrated offsite toward the US Bank. TPHg concentrations have decreased from 18,000 ppb at the source to 400 ppb 140 ft down gradient (Figure 6). MTBE concentrations detected in offsite borings are below the secondary Maximum Contaminant Level (MCL) of 5 ppb.
- A natural log of BTEX concentration versus time was plotted for onsite wells MW-1 and MW-5 (Figure 7). The analytical data for the last two years was used so concentration trends in well MW-5 could be compared with well MW-1. The natural log of concentrations was used to reduce the effects of random concentration fluctuations. A linear trend line was applied to the data to determine the best fit line. A review of the data indicates BTEX concentrations in well MW-5 are decreasing. Linear analysis of concentrations in well MW-1 suggests concentrations have remained relatively stable during the past two years. This analysis is in contrast to the time versus benzene concentration plot illustrated in the November 2000 site conceptual model report, which identifies increasing concentrations. It is evident that there are large fluctuations in BTEX concentrations in well MW-1 which have influenced the data. Concentration fluctuations are significant in that they are evident even when smoothed by the natural logarithmic approach. Given the age of the release and that no significant BTEX concentrations are stable in well MW-1.
- As previously identified in the site conceptual model, the identified potential risk from site hydrocarbons was by vapor phase migration of hydrocarbons from groundwater to indoor air.

Benzene concentrations in onsite wells MW-1 and MW-5 exceed the TIER 1 RBSI of 84 ppb for impacted groundwater 1.5m beneath a residential dwelling. However, given

- 1) the BTEX plume is small and localized around monitoring wells MW-1, MW-5, and is located beneath a public parking lot, and
- 2) the nearest downgradient residence is in excess of 500ft downgradient, and
- 3) the primary line of evidence for natural attenuation (BTEX concentration / time plots) indicates the plume is stable, suggests the risk associated with site hydrocarbons is minimal.

Based on the above conclusions, TEC Accutite would like to meet with the Alameda County Health Services Agency to discuss future requirements to bring this site towards closure.

7.0 <u>LIMITATIONS</u>

Our services consist of professional opinions, conclusions and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Accutite's liability is limited to the dollar amount of the work performed.

Thank you for your cooperation with this project. If you have any questions, please call at (650) 952-5551, Ext. 208.

Sincerely, TEC Accutite

David Gregory Project Manager

Reviewed by No. 6088 Sami Malaeb, P.E., R.E.A. **Environmental Director** 08/27/01

Mr. Dan Koch, Olympian, 260 Michelle Court, South San Francisco, CA 94080
 Mr. Rusty Firenze, Olympian, 260 Michelle Court, South San Francisco, CA 94080
 Mr. David Harris, Trump-Alioto-Trump & Prescott, LLP, 2280 Union Street, San Francisco, CA 94123
 Mr. Jeff Farrar, P.O. Box 1701, Chico, CA 95927
 Mr. Thomas Ballard, GHH Engineering Inc., 8084 Old Auburn Rd., Citrus Heights, CA 95610

C:\Projects\Olympian Sites\1435 Webster St\SSIJune01.doc

REFERENCE

CRWQCB Interim Final – August 2000, Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater.

California Regional Water Quality Control Board – San Francisco Bay Region 2 Water Quality Control Plan, June 1995.

TEC Accutite, 2000. *Report on* Quarterly Groundwater Monitoring, Sensitive Receptor Survey and Site Conceptual Model, 1435 Webster Street, Alameda, CA., November 29, 2000.

	Former Oly	mpian Statio	n, 1435 Wel	oster Street, A	Alameda CA.							
Sample ID	Sample	Sample	TPHg	В	Т	E	Х	MTBE				
	Depth (ft)	Date	Concentrations in parts per million (ppm)									
B1-9	9	6/27/01	< 0.5	<0.005	<0.005	<0.005	<0.01	<0.005				
B2-9	9	6/27/01	<0.5	<0.005	<0.005	<0.005	<0.01	<0.005				
B3-9	9	6/27/01	<0.5	<0.005	<0.005	<0.005	<0.01	<0.005				
B4-9	9	6/27/01	<u><</u> 0.5	<0.005	<0.005	< 0.005	<0.01	< 0.005				

TABLE 1: Soil Analytical Data Borings B1 - B4 June 27, 2001

Abbreviations / Notes

TPHg = Total Petroleum Hydrocarbons as Gasoline (EPA Method 8015) BTEX = Benzene, Toluene, Ethylbenzene, Xylenes (EPA Method 8020)

MTBE = Methyl tert-butyl Ether (EPA Method 8020)

<X = Concentration less than laboratory reporting limit

Well ID	Sample	Depth to	TPHd	TPHg	В	т	E	x	MTBE	TRPH
	Date	Water (ft)			Concentratio	ins in parts pe	r billion (ppb)	<u></u>		
MW-1	6/3/93	NA(1)	NA	NA	NA	NA	NA	NA	NA	NA
	9/14/94	11.46	<50	14,000	44	28	25	50	NA	800
	12/30/94	9.22	<50	4,000	12	9	6.8	30	NA	<500
	3/26/95	6.76	<50	1,000	21	10	7.1	25	NA	2,100
	7/9/95	8.92	<50	16,000	57	28	25	53	NA	NA
	7/31/98	8.3	1,700	4,700	1,300	48	140	150	6,600	<5000
	2/11/99	7.91	2000	25,000	18,000	1,600	1,400	500	28,000	NA
	6/23/99	9.03	4,900	42,000	11,000	1,100	1,500	2,300	15,000	NA
	12/6/99	10.86	4,000	44,000	8,900	3,400	1,900	5,100	11,000	NA
	3/16/00	6.93	700	5,100	2,400	100	280	460	2,700(2)	NA
	6/13/00	8.73	2,800	17,000	5,300	260	720	790	7,000(2)	NA
	9/29/00	10.18	5,200*	50,000	11,000	2,900	1,900	4,600	7,200(2)	NA
	3/22/01	8.24	1,500*	8,600	2,600	750	250	950	3,200(2)	NA
	0/25/01	9.73		18,000	1,200	1,800	970	3,200	1500(2)	NA
M W - 2	6/3/93	9.54	<50	<50	5.8	<0.5	<0.5	<0.5	NA	<500
	9/14/94	11.82	<5U	<0U	<0.5	<0.5	<0.5	<0.5	NA	<500
	12/30/94	9.40	VC>	100	1.4	1. 4	U.0	о -0 Г	NA NA	<000
	3/20/90	0.8∠ 0.33	<5U		<0.5	<u.5< th=""><th>C.U></th><th><u.5< th=""><th></th><th><500 NA</th></u.5<></th></u.5<>	C.U>	<u.5< th=""><th></th><th><500 NA</th></u.5<>		<500 NA
	7/3/30	9.22	NM non	NA <50	NA ~0.5	NA -0 5	-0 E	NA ≺0.5	1NA 79	NA <500
	2/11/00	0.00	ZZU ~50	<50 <50	<0.5 <0.5	<0.0 <0.5	<0.5 <0.5	<0.5 ≺0.5	75	UUG~
	<l< th=""><th>0.12</th><th>∿02 100</th><th>~50 ~50</th><th>SU.0</th><th><0.5 ~0.5</th><th><0.5</th><th>≤0.0 ∠0.5</th><th>10</th><th>N/N</th></l<>	0.12	∿02 100	~50 ~50	SU.0	<0.5 ~0.5	<0.5	≤0.0 ∠0.5	10	N/N
	©/∠3/୪୬ 10/6/00	9.00 41 0	420	200	SU.3	SU.D	∿0,0 £	NU.D 27	30 210	NA NA
	2/16/00	م. ۱۱ ۵ DQ	~50	200 ~50	40	40 ~05	и 05	37 4	210	NA
	3/ 10/00 8/13/00	0.00	~ 50	 68	1	<0.5 ~0.6	-0.5	-0.5	ວ 38	NA NA
	0/13/00	10.55	<u>~</u> 50	67	0.0	<u>к</u> 0,5 ОБ	<0.5 <0.5	∿0.0 1	96/2)	NΔ
	3/25/00	ло. ч Я <u>46</u>	>00 <50	ง <i>า</i> <รัก	0.0	0.5	<0.0 <0.5	1	14	NA.
	6/25/01	10.11	NA	<50	<0.5	<0.5	<0.5	<1.0	13	NA
MW-3	6/3/93	9.8	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	9/14/94	12.19	<50	<50	<0.5	< 0.5	<0.5	< 0.5	NA	<500
	12/30/94	9.72	<50	<50	<0.5	< 0.5	<0.5	< 0.5	NA	<500
	3/26/95	6.88	<50	<50	<0.5	< 0.5	<0.5	<0.5	NA	<500
	7/9/95	9.52	NA	NA	NA	NA	NA	NA	NA	NA
	7/31/98	8.4	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000
	2/11/99	7.77	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	6/23/99	9.21	<50	<50	<0.5	<0.5	<0.5	<0.5	3	NA
	12/6/99	11.12	<110	<50	3	1	<0.5	1	0.6	NA
	3/16/00	6.48	<50	<50	<0.5	<0.5	<0.5	<1.0	1	NA
	6/13/00	8.76	<50	490	0.8	<0.5	<0.5	9	2	NA
	9/29/00	10.2	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0(2)	NA
	3/22/01	8.24	<50	<50	<0.5	<0.5	<0.5	<1.0	2	NA
	6/25/01	10.04	NA	<50	<0.5	<0.5	<0.5	<1.0	0.8	NA
MW-4	12/6/99	10.79	160	<50	3	2	0.6	4	140	NA
	3/16/00	6.86	90	<50	0.5	0.5	<0.5	2	34	NA
	6/13/00	8.18	<50	56	<0.5	<0.5	<0.5	<1.0	1	NA
	9/29/00	10.11	<50	92	0.7	<0.5	<0.5	3	<1.0(2)	NA
	4/5/01	8.26	<50	51	<0.5	0.5	<0.5	1	6.0(2)	NA
	6/25/01	9.68	<u>N</u> A	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
MW-5	12/6/99	10.17	2,800	30,000	2,200	3,300	910	7000	670	NA
	3/16/00	6.28	1,100	3,500	1,100	260	210	6300	260	NA
	6/13/00	7.95	1,100	6,500	2200	360	360	730	480	NA
2	9/29/00	9.54	700*	3,900	990	120	300	340	390(2)	NA
	3/22/01	7.48	380*	4,300	780	240	250	530	190	NA
·	6/25/01	9.05	NA	3,100	1,000	110	200	320	140	NA

TABLE 2: Continued

Well ID	Sample	Depth to	TPHd	TPHg	В	T	E	x	МТВЕ	TRPH
	Date	Water (ft)			Concentratio	ins in parts pe	r billion (ppb)			
MW-6	12/6/99	11.46	110	<50	2	2	0.8	8	1	NA
	3/16/00	8.32	<50	<50	8	8	5	18	<0.5	NA
	6/13/00	9.14	<50	75	0.7	1	0.9	2	0.6	NA
	9/29/00	10.81	<50	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	3/22/01	8.64	<50	66	0.5	<0.5	<0.5	<1.0	3	NA
	6/25/01	10.39	NA	<50	<0.5	<0.5	<0.5	<1.0	4	NA

1

TABLE 3: Soil Borings Groundwater Analytical Data June 27, 2001.

Former Olympian Station, 1435 Webster Street, Alameda CA.

Sample ID	Sample	TPHg	В	т	E	х	MTBE
	Date		Concentration	ns in parts p	er billion (ppb)		
B1	6/ 27 /01	<50	<0.005	3	<0.005	<0.01	4
B2	6/27/01	<50	<0.005	0.9	0.5	2	4(2)
B3	6/27/01	400	<0.005	1	0.6	1	3
B4	6/27/01	96	2	3	0.6	2	2

Abbreviations / Notes TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015) TPHg = Total Petroleum Hydrocarbons as Gasoline (EPA Method 8015) BTEX = Benzene, Toluene, Ethylbenzene, Xylenes (EPA Method 8020) MTBE = Methyl tert-butyl Ether (EPA Method 8020) TRPH = Total Recoverable Petroleum Hydrocarbons <X = Concentration less than laboratory reporting limit <I) Well not accessible because of a car obstruction NA = not analyzed * Does not match diesel chromatogram pattern <I) Confirmed by EPA Method 8260

Chemical	Well	Well	RBSL	RBSL	7 62
	MW-1	MW-5	Indoor air impacts	Ceiling Value	
TPHg	18,000	3,100			5000
Benzene	1,200	1,000	*84		20,01
Toluene	1,800	110	76,000	40	400
Ethylbenzene	970	200	170,000	30	300
Xylenes	3,200	320	150000	20	5,30
MTBE	1,500	140	290000	5	1.20

TABLE 4 : Comparison of groundwater hydrocarbon concentrations in monitoring wells MW-1 and MW-5 with Tier 1 RBSL's - Former Olympian Station, 1435 Webster St. Alameda, CA

"-- not established

Indoor air impacts = impact to indoor air quality from emission of vapors from impacted groundwater 1.5 m below ground surface.

Ceiling Value = reflect the lowest value of one-half the chemicals solubility, the taste and odor threshold and a maximum 50000 ug/L limit for any chemical.

where did this value cometron? RBSLS show certingvalue for Tetla = 5000 ppb for site where water is not potential dentiting water resource

Figure 7: Plot of Natural Log of BTEX Concentrations Vs Time for Wells MW1 & MW5

т	TEC ACCUTITE						BORING LOG					
CLIEN LOCA DRILL DRILL BORII GEOL PE/RC DATE	IT: TION ING NG D OGI: 3: STA	I: CO: METHO NAMETE ST: RTED: 6	01 14 G: C: Ge R: 2- D. S.N 5/27/01	vmpian 35 Webs regg coprobe inch Gregory Malaeb P DAT	ter St., Al E#60888 E COM	LETFD	TOTAL DEPTH: TOTAL DEPTH: WELL DEVELOPMENT GROUND SURFACE EI TOP OF CASING ELEV SCREENED INTERVAL FIRST ENCOUNTERED STATIC WATER	1 : LEVATION: № /ATION: .: D WATER 10	5 fbg //A 0 fbg			
DEPTH (ft)	Sample Interval	Sample ID	Water Level	Moisture	Estimated K	TPHg ppm	DESCRIPTION		USCS	WELL		
25.0 		B1-9	A	Damp Moist Wet	High High High	ND	ASPHALT: SAND: (SP): Moderate yellowish brown (10YR 95% fine grained sand. Hydropunch EOH	25/4); 5% silt,				
30.0												

т	EC	ACC	UTI	TE			BORING LOG	BORI		UMBER
				vmpies		1	TOTAL DEDTU		5 fbr	
		ŀ	14	35 W/aba	tor S+ A	lamada (. 1	2.10g	
DRILI	ING		- <u>1</u>		WI BLAA	iginicua, C			ī/A	
DRILL	ING	METHO	D: C.	onrohe						
BORI			D ⊃:	inch						
GEOL	OGL	ST	н. <u>2-</u>	inca Gregory					0. 0. _	
PF/R			5.1	Malach P	F#60888			JWATER 1	<u>U 1109</u>	
DATE	STA	RTED: 6	/27/01	DAT	E COM	PLETED	STATIC WATER			
	a			1					1 1	z
£	Iten	0	•		¥					0E
I) H	le Fr	le IC	Lev	e	ated	dd				LLA
TPT	duu	dme	ater	Distu	tim	9 6				ELL 3TAI
ö	S	ŝ	NS NS	ž	Ш	L d	DESCRIPTION		USCS	IN IS
.0 7			1	<u>.</u>	1		ASPHALT		-	100
-								NTR 4/22- 1/20/	1111	2
				Damo	Hich		sill 7 SAND: (SM): Dark yellowish brown (1) silt, 85% fine grained sand.	J 1 K4/2); 15%	HHH	
				Damp	nign		SAND: (SP): Moderate yellowish brown (10YR	(5/4); 5% silt,		
5.0 -							95% fine grained sand.			10
- 9										10
0.2		B2-9		Damp	High	ND	CLAYEY SAND: (SC): Dark greenish gray (5C clay, 85% fine grained sand, moderate plasticity	3 4/1); 15%		8
10.0-				Wet	High		SAND: (SP): Moderate yellowish brown (10YR 95% fine grained sand	(5/4); 5% silt,		
-	0						Hydropunch			
15.0-	2						EOH			5454
20.0										
.0.0										
25.0-										
- 5										
30.0										
0.0-			11		15				20 V	

CLIENT: Obminian TOTAL DEPTH: LStar LOCATION: 1435 Wichter Sit, Alameda, CA. WELL DEVELOPMENT: SAlameda, CA. DRILLING CO: Gregorabi TOP OF CASING ELEVATION: X/A. DRILLING CO: Gregorabi TOP OF CASING ELEVATION: X/A. DRILLING COCIOST: B/Gregorabi FIRST ENCOUNTERVAL: 10 fbg GEOLOCOIST: Statuab PERGE STATIC WATER 10 fbg DATE STARTED: 62700 USCS TOP OF CASING ELEVATION: MI Statuab PERGE STATIC WATER 10 fbg DATE STARTED: 62700 USCS TOP OF CASING ELEVATION: 00 TOP OF CASING ELEVATION: 10 fbg 98 B3-9 Value PERGE Status -5.0 B3-9 Moist High ND -10.0 B3-9 Moist High ND -20.0 B3-9 Moist <t< th=""><th>TEC ACC</th><th>UTITE</th><th></th><th></th><th>BORING LOG</th><th>BORIN</th><th>IG/WELL I</th><th>NUMBER</th></t<>	TEC ACC	UTITE			BORING LOG	BORIN	IG/WELL I	NUMBER
10.0 10.0	CLIENT: LOCATION: DRILLING CO: DRILLING METHOE BORING DIAMETEI GEOLOGIST: PE/RG: DATE STARTED: 6	Olympian 1435 Webs Greeg D: Geoprobe R: 2-inch D.Gregory S.Malaeb P 27/01	<u>ter St., Ala</u> <u>E#60888</u> E COMP	umeda, C	TOTAL DEPTH: MULL DEVELOPMENT GROUND SURFACE E TOP OF CASING ELEV SCREENED INTERVAL FIRST ENCOUNTERED STATIC WATER	1 : LEVATION: 1 /ATION: L: D WATER 1	<u>5 fbg</u> 3/A 0 fbg	
 ASPHALT: ROAD BASE: Road Base Gravel SILTY SAND: (SM): Dark yellowish brown (10YR4/2); 15% silt. 85% fine grained sand. SAND: (SP): Moderate yellowish brown (10YR5/4); 5% silt, 95% fine grained sand. B3-9 Moist High ND High ND High ND High ND EOH 	Sample Interval	Water Level Moisture	Estimated K	mdd pHAT	DESCRIPTION		USCS	WELL
	0.0 -5.0 - -10.0- -15.0- -20.0- -25.0-	Damp Moist Wet	High High High	ND	ASPHALT: ROAD BASE: Road Base Gravel SILTY SAND: (SM): Dark yellowish brown (1 silt, 85% fine grained sand SAND: (SP): Moderate yellowish brown (10YF 95% fine grained sand Hydropunch EOH	0YR4/2); 15% R5/4); 5% silt		

ATTACHMENT A

BORING LOGS AND PERMITS

ARI 01:07 PM ALAME COUNTY PWA RM	239 FAX NO. 5107, 939 P. 02 MAY. 4.2001 10:12AM P.2
MIN - 17-00 MON 04:07 PM ALAMEDA COUNTY PWA RM239	FAX NO. 5107821939 P. 02
ALAMEDA COUNTY F WATER RESOURCES SECT 399 ELMHURST ST. HAYWARD C. PHONE (510) 670-5554 MARLON M FAX (510)782-1939	VUBLIC WORKS AGENCY ION A. 94544-1395 IAGALLANES/FRANK CODD (510) 579-5783
DRILLING PERMIT	APPLICATION
FOR APPLICANT TO COMPLETE LOCATION OF PROJECT 1935 WEDDER ST. Alaunday CA	FOR OFFICE USE
	PERMIT CONDITIONS Circled Permit Requirements Apply
CLIGNT Name Olyms Diana (Prom Kech) Address 2 60 Michaelic Cat, Phone 650 878 8208 City Sourie Bon Francisco CA Zip 94080	A. GENERAL I. A permit application should be submitted to us to Arrive at the ACPWA office five doys prior to proposed starting data.
APPLICANT Name TEC Accounting Mart Section of Fax 650 -982-7621 Address 25 Applies Lineactor Phone 50 152 551 Chy sound Jam Pradicipico of Zip 40000	2. Submit to ACPWA within 60 days after completion of pormitted original Department of Water Resources- Wall Completion Report. 3. Permit is void if project pot begun within 90 days of approval date 8. WATER SUPPLY WELLS
TYPE OF PROJECT Wall Construction Geotechnical Investigation Cathodic Protection D Canaral D Water Supply D Contamination X Monitoring D Well Destruction D	 Minimum sufface seal biokness is two inches of concert group blaced by womic. Minimum seal depth is 30 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless = lesser depth is specially approved. C. GROUNDWATER MONITORING WELLS
PROPOSED WATER SUPPLY WELL USE New Damenio D Replacement Domenic C Municipal D Intigation D Industrial O Other	INCLUDING FIEZOMETERS L. Minimum surface soal thickness is two inches of coment grown placed by tremis. 2. Minimum stal depth for monitoring wells is the maximum depth presticable of 20 feet.
PRILLING METHOD: Mud Rotary C Air Rotary C Auger C Cablo U Other M Groppishe	Bischill bor: hale by tremie with germont graut of semical grautizend mixture. Upper two-three fort replaced in kind or with compacted autungs. E. CATHODIC
SRILLER'S LICENSE NO. 257- 485165	Fill hole anode zone with concrete placed by verne. F. WELL DESTRUCTION See attached requirements for destruction of shallow wells.Send a map of work site A different permit application is required for wells desper than 45 feet.
WELL PROJECTS Delli Hole Diameterin, Maximum Casing Diameterin, DepthA Surface Scal DapthA. Owner's Well Number	G. SPECLAL CONDITIONS NOTE: One application must be submitted for each well of well destruction. Multiple borings on one application are acceptable for geotenhnical and consemination investigations.
SECTECINICAL PROJECTS Number of Botings Maximum Hale Diamotor in. Depth 15ft.	
STIMATED STARTING DATE 5/15/01 STIMATED COMPLETION DATE 7/15/01	AMPROVED A. MAD DATE 5-4
hereby agree to comply with all requirements of this permit and Alamede County Or . PPLICANT'S SIGNATURE Mate J. 111-1 DATE 5	rdinanço No. 73-68.
LEASE PRINT NAME May J. Goffmy Roy	r.4-5-00
4	•

950 West Mall Squa	re, #110	CITY OF	ALAME	DA			(510) 749-584
Alameda, IA 9450	1	Public Works Department				Fa	x (510) 749-586
Printed: 05-22-200)1	Encroachment Permit					Permit #
						EN01	-019
Applicant		Contractor Inf	ormation		<u>Ov</u>	vner Informati	on
TEC ACCUTITE 35 SOUTH LINDEN AV SOUTH SAN FRANCIS 94080	YE SCO, CA	TEC ACCUTITE 35 SOUTH LINDE SOUTH SAN FRA	N AVE NCISCO, CA		FAI 950 AL	RRAR GEOFFRE W MALL SQ #1 AMEDA CA	Y A 10
650-952-5551 X 209		94080			94	501	
Project Information ENCROACH - End Sub-Type:	<u>a</u> croachment Permit	- APPROVED	Applied: Finaled:	05/22/2	001	lssued: Expires: Valuation:	05/22/2001 05/22/2002 \$55.00
Job Address: 074 042700501 Suite / Unit: Work Description:	1435 WEBSTER	ST CES/JUNE 27, 2001	(1400 BLK CEN	ITRAL B	Pa rwn	rcel Number:	
				Total Fee Total Pay BALAN	es: ments: CE DUE	-	\$55.00 <u>\$55.00</u> \$0.00
Payments Made:	05/22/2001 03:49	PM	RECEIPT		·····	Receipt #: I	R01-002469
Total Payment:	\$ <u>55.00</u>		Payee:	TEC AC		WRONMENT	AL
Current Payment	Made to the Follow Description	ing Items:	ıA	nount			
224-37330 (8763) 4520-33410 (1011)	Parking Met Encroachmer	ter Revenue ht Fees		45.00 10.00			
Payments Made for Type Method	o r this Receipt: Description		Amount				
Payment Check	2722		55.00				
Account Summary Item# Description	/ for Fees and Payr	nents: Account Code	Tot	E Fee	Paid	Prev. Pmts	Cur. Pmts
240 Encroachment 1150 Parking Mete	t Fees er Revenue	4520-33410 (1011) 224-37330 (8763)	 1 2	LO.00 15.00	10.00 45.00	. 00 . 00 . 00	10.00 45.00
INSPECTIONS					<u></u>	510	-749-5840

INSPECTIONS Call for an inspection when work is complete.

This is to certify that the above work has been completed to my satisfaction and approval.

Date

Inspector

950 West Mall Square, #110	ATY OF A	LAMEI	DA ,			(510) 749-5840	
Alameda Point			¢,	3			
Alameda, CA 94501	Public Works Department				Fax	(510) 749-5867	
Printed: 06-08-2001	Right-of-Way Permit				 FX01-	<u>Permit #</u> 0048	
<u>Applicant</u> TEC ACCUTITE	Contractor Inform	ation		<u>Ow</u>	<u>ner Informati</u>	<u>on</u>	
FARRAR GEOFFREY A 35 SOUTH LINDEN AVE SOUTH SAN FRANCISCO, CA	35 SOUTH LINDEN A SOUTH SAN FRANCI	VE SCO, CA		950 AL/	W MALL SQ #1 AMEDA CA	110	
94080 650-952-5551 X 205	94080			- 94	501		
Project Information RTOFWAY - Right-of-Way Permit Sub-Type:	- APPROVED	Applied: Finaled:	05/11/200	1	Issued: Expires: Valuation:	06/08/2001 06/08/2002 \$77.00	
Job Address: 1435 WEBSTER 074 042700501 Suite / Unit: 2011 DOBINO2				Pa	rcel Number:		
Work Description: SOIL BURINGS	ONE DAY TO BE DETEN	RMINED)	Total Fees: Total Paym BALANCI	ents: E DUE	-	\$201.50 <u>\$201.50</u> \$0.00	
Payments Made: 06/08/2001 10:4 Total Payment: \$124.50	AM R	ECEIPT Pavee:	- 		Receipt #: I	R01-002800	
TECHNOLOGY, ENGINEERING & C	ONSTRUCTION, INC.	, aj 56.					
Current Payment Made to the Folio	owing Items:						
Account Code Descripti	on	An 	nount				
4110-37090 (1410) Design Re 4225-37160 (6319) Engineeri	view Fees ng Plan Check	1 11	12.00 12.50				
Payments Made for this Receipt:TypeMethodDescription	A	mount					
Payment Check 2729	1:	24.50					
			.				
Account Summary for Fees and Pa Item# Description	Account Code	Tot	Fee	Paid	Prev. Pmts	Cur. Pmts	
250 Permit Filing Fees 710 Design Review Fees 782 Engineering Plan Check 800 Concrete Permit Fee	4520-37450 (1050) 4110-37090 (1410) 4225-37160 (6319) 4210-33700 (1315)	3 1 1 11 4	36.00 .2.00 .2.50 1.00	36.00 12.00 112.50 41.00	36.00 .00 .00 41.00	.00 12.00 112.50 .00	

INSPECTIONS

** See application for additional requirements **

510-749-5840

NOTE: All construction within the public right of way must have barricades with flashers for night time protection.

This is to certify that the above work has been completed to my satisfaction and approval.

STATE OF CALIFORNIA • DEPARTMENT	SPORTATION	ermit No	·
TR-0120)401-6SV-0824	
In compliance with (Check one):		hist/Co/Rte/PM 14-Ala-260-0.10	<u>, , , , , , , , , , , , , , , , , , , </u>
Xour application of <u>March 26, 2001</u>	D	hate April 23, 2001	Denosit
Utility Notice No.	of \$	80.00	\$80.00
Agreement No.	of	erformance Bond Amount (1)	Payment Bond Amount (2)
R/W Contract No.	bf	ond Company	
	В	ond Number (1)	Bond Number (2)
TO: TEC ACCUTITE 35 S. Linden Avenue South San Francisco, CA	94583		
Attn: David Gregory Phone: (650) 952-5951	, P E	RMITTEE	

and subject to the following, **PERMISSION IS HEREBY GRANTED** to:

Perform soil borings and take soil samples on State Highway 04-Ala-260, Post Mile 0.10, at 1435 Webster Street, in the City of Alameda.

Two days before work is started under this permit, notice shall be given to, and approval of construction details, operations, public safety, and traffic control shall be obtained from State Representative N. Freitag, 600 Lewelling Blvd., San Leandro, 94579, 510-614-5951, weekdays, between 8:00 AM and 4:30 PM.

Immediately following completion of the work permitted herein, the permittee shall fill out and mail the Notice of completion attached to this permit.

All personnel shall wear hard hats and orange vests, shirts, or jackets as appropriate during construction.

The follow	ing attachmer	nts are also included as part of this permit (Check applicable):	In addition	to fee, the per	mittee will be billed actual
⊠ Yes □ Yes □ Yes □ Yes	No ∑ No ∑ No ∑ No	General Provisions Utility Maintenance Provisions Special Previsions A Cal-OSHA permit required prior to beginning work:	☐ Yes ⊠ Yes ⊠ Yes	⊠ No □ No	Review Inspection Field Work
		<u>#</u>	(If any Caltran	s effort expended)

📋 Yes 🛛 No The information in the environmental documentation has been reviewed and considered prior to approval of this permit.

This permit is void unless the work is completed before ______ December 31, 2001

This permit is to be strictly construed and no other work other than specifically mentioned is hereby authorized. No project work shall be commenced until all other necessary permits and environmental clearances have been obtained.

APPROVED:
HARRY Y. YAHATA, District Director
BY:
D. G. Mogan
S. S. NOZZARI, District Permit Engineer

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

Lab Number:	01-0917
Client:	Technology Eng. Const.
Project:	OLYMPIAN/1435 WEBSTER ST/ALAMEDA

Date Reported: 07/09/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
Sample: 01-0917-01	Client ID:	B1-9		06/27/2001	SOIL
Gasoline	8015M	ND			07/02/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 01-0917-02	Client ID:	B2-9		06/27/2001	SOIL
Gasoline	8015M	ND			07/02/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 01-0917-03	Client ID:	B3-9		06/27/2001	SOIL
Gasoline	8015M	ND			07/02/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Toluene Xylenes	8020 8020	ND ND			

Lab Number:	01-0917
Client:	Technology Eng. Const.
Project:	OLYMPIAN/1435 WEBSTER ST/ALAMEDA

Date Reported: 07/09/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Result	<u>Unit</u>	Date <u>Sampled</u>	<u>Date Analyzed</u>
Sample: 01-0917-04	Client ID: 1	B4-9		06/27/2001	SOIL
Gasoline	8015M	ND			07/02/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 01-0917-05	Client ID: H	В1		06/27/2001	WATER
Gasoline	8015M	ND			07/01/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	4	ug/L		
Toluene	8020	3	ug/L		
Xylenes	8020	ND			
Sample: 01-0917-06	Client ID: 1	в2		06/27/2001	WATER
Gasoline	8015M	ND			07/01/2001
Benzene	8020	ND			
Ethylbenzene	8020	0.5	ug/L		
MTBE	8020	*4	ug/L		
Toluene	8020	0.9	ug/L		
Xylenes	8020	2	ug/L		

Lab Number:	01-0917
Client:	Technology Eng. Const.
Project:	OLYMPIAN/1435 WEBSTER ST/ALAMEDA

Date Reported: 07/09/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
Sample: 01-0917-07	Client ID: B3			06/27/2001	WATER
Gasoline	8015M	400	ug/L		07/01/2001
Benzene	8020	ND			
Ethylbenzene	8020	0.6	ug/L		
MTBE	8020	3	ug/L		
Toluene	8020	1	ug/L		
Xylenes	8020	1	ug/L		
Sample: 01-0917-08	Client ID: B4	_		06/27/2001	WATER
Gasoline	8015M	96	ug/L		07/01/2001
Benzene	8020	2	ug/L		
Ethylbenzene	8020	0.6	ug/L		
MTBE	8020	2	ug/L		
Toluene	8020	3	ug/L		
Xylenes	8020	2	ug/L		

CA ELAP # 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:	01-0917
Client:	Technology Eng. Const.
Project:	OLYMPIAN/1435 WEBSTER ST/ALAMEDA

Date Reported: 07/09/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Reporting Limit	Unit	Blank	Avg MS/MSD Recovery	RPD
Gasoline	8015M	0.5	mg/Kg	ND	99	4
Benzene	8020	.005	mg/Kg	ND	101	1
Toluene	8020	.005	mg/Kg	ND	102	0 ·
Ethylbenzene	8020	.005	mg/Kg	ND	104	1
Xylenes	8020	.010	mg/Kg	ND	101	0
MTBE	8020	.005	mg/Kg	ND	98	2
Gasoline	8015M	50	mg/L	ND	108	4
Benzene	8020	0.5	mg/L	ND	99	7
Toluene	8020	0.5	mg/L	ND	98	6
Ethylbenzene	8020	0.5	mg/L	ND	99	8
Xylenes	8020	1.0	mg/L	ND	98	9
MTBE	8020	0.5	mg/L	ND	98	14

ELAP Certificate NO:1753 Reviewed and Approved

John A. Murphy, Laboratory Director

Chain of Custody Accutite Environmental Engineering

01-0917

Client	Accutite Env	vironmental Engin	neering			Repor	ιΤο	Danis	2 Cr.	مربون	Jon and the second s				<u> </u>		Тиглаго	und	<u> </u>
Address	35 South Lin	iden Avenue				Bill T	Bill To: Accutite					ASAP	1 Day	12	Dav	(Day)			
	South San Fr	ancisco, CA 940	80			Billin	Billing Reference# 50 92				I Week	2 Week	: 10	thers					
Phone	650-952-555	1							Ana	lysis Re	equired								
Project Na)دی سرر me/Address	putpicen	4	1			4		ſ					- <u> </u>	-				
Complex	~ 1	((amend	 _	1 574	Eg					ļ							
Sampier	Sample	User york	Date: 4 (28/01		32	K B					ļ							
Sample ID	Matrix	Containers	Туре	Sample Dai	te/Time	1-	819								Remark	5			
B1-9	Ser 1	1	Brows	6/27/41	12.45	X	X								Carol		TBE	- 826	· 0
B2-9	j j	ĥ	1	1	12.00	X	X											020	,
B3-9				<u> </u>	// 00	X	X	<u>†</u> :							·				· · · · · · · · · · · · · · · · · · ·
44-9					1.00	$\overline{\mathbf{x}}$	$\frac{1}{\lambda}$	+											<u> </u>
· p	<u>+ ⊻</u>	<u> </u>	<u>₩_</u>	 V t	10 30			┨{							·				
		<u> </u>						├											
181	brakes .	3	VERS	6(27/54	కి.లు	X	X								ļ				
<u>B2</u>	+ +	<u>├}</u>	┟━━┟──	!	2.50	X	X												
<u>. B3</u>	<u> </u>		 		233	\times	\times												
. 64			↓		2.20	\checkmark	X												-
10													-		 	<u>_</u>	×		
	- <u></u> -							<u> </u>						•				·····	······································
, <u></u>							u n .					-							
4: 																			
13		i		· · · · · · · · · · · · · · · · · · ·										ļ					
lia																			·
··													_			-			
14	ļ																		
17													_						
														<u>†</u>					
	1																		
															<u> </u>	i			
* Relinquished	by:	l1	Date	Time	. <u> </u>	l	Receive	d by:		, I			Date			Time	···		
Klun	11	ns in	Ginter	8.00				ht.	$_{-}$ Pr	υØ	\mathcal{M}^{-}		0000	6.2	8:01	1 1016	8-00)	
Relinquished	by:		Date	Time			Receive	id by:	/		<u></u>		Daie		·	Time			
Relinquished	hu		Date	Time			Daari												
ast studuistica	vj.		LAIE				Receive	a by:					Date			Time			

Lab Number:	01-0900
Client:	Technology Eng. Const.
Project:	OLYMPIAN 1435 WEBSTER ST., ALAMEDA

Date Reported: 07/02/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
Sample: 01-0900-01	Client ID: MW	1		06/25/2001	WATER
Gasoline	8015M	18000	ug/L		06/26/2001
Benzene	8020	1200	ug/L		
Ethylbenzene	8020	970	ug/L		
MTBE	8020	*1500	ug/L		
Toluene	8020	1800	ug/L		
Xylenes	8020	3200	ug/L		
Sample: 01-0900-02	Client ID: MW	2		06/25/2001	WATER
Gasoline	8015M	ND			06/26/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	13	ug/L		
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 01-0900-03	Client ID: MW	3		06/25/2001	WATER
Gasoline	8015M	ND			06/26/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	0.8	ug/L		
Toluene	8020	ND			
Xylenes	8020	ND			

Lab Number:	01-0900
Client:	Technology Eng. Const.
Project:	OLYMPIAN 1435 WEBSTER ST., ALAMEDA

Date Reported: 07/02/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
Sample: 01-0900-04	Client ID: M	W 4		06/25/2001	WATER
Gasoline	8015M	ND			06/26/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 01-0900-05	Client ID: M	w 5		06/25/2001	WATER
Gasoline	8015M	3100	ug/L		06/26/2001
Benzene	8020	1000	ug/L		
Ethylbenzene	8020	200	ug/L		
MTBE	8020	140	ug/L		
Toluene	8020	110	ug/L		
Xylenes	8020	320	ug/L		
Sample: 01-0900-06	Client ID: M	W 6	'	06/25/2001	WATER
Gasoline	8015M	ND			06/26/2001
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	4	ug/L		
Toluene	8020	ND			
Xylenes	8020	ND			

North State Environmental Laboratory 90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

ANALYSIS CERTIFICATE ΟF

Quality Control/Quality Assurance

Lab Number:	01-0900				
Client:	Technolog	gy Eng	g. Const.		
Project:	OLYMPIAN	1435	WEBSTER	ST.,	ALAMEDA

Date Reported: 07/02/2001

Gasoline, BTEX and MTBE by Methods 8015M and 8020

		Reporting	Avg MS/MSD						
Analyte	Method	Limit	Unit	Blank	Recovery	RPD			
Gasoline	8015M	50	ug/L	ND	78/85	0			
Benzene	8020	0.5	ug/L	ND	98/92	6			
Toluene	8020	0.5	ug/L	ND	96/91	5			
Ethylbenzene	8020	0.5	ug/L	ND	97/91	6			
Xylenes	8020	1.0	ug/L	ND	94/90	4			
MTBE	8020	0.5	ug/L	ND	90/83	9			

ELAP Certificate NO:1753

Reviewed and Approved

John A.Murphy, Laboratory Director

Chain of Custody Accutite Environmental Engineering

01-0900

Client	Accutite E	nvironmental Engi	neering			Repor	t To	Dawe	Gree					·	<u> </u>		urnaround.	
Address	35 South L	inden Avenue				Bill T	Bill To: Accutite				ASAP	1 Day	2 Day	Day				
	South San	Francisco, CA 940	80			Billin	g Refer	ence#	5092) 					l Week	2 Week	Others	
Phone	650-952-55	51							Analy	sis Requ	uired							
Project Nam	e/Address	1435 Webst	rst, Ala	merly			60.25											
Sampler	Burn	argon	Date: 6/	26/01		5 h	× 4								ļ			
Sample ID	Sample Matrix	#of Containers	Container Type	Sample	Date/Time	E F	875 M18							ļ	Remarks			
MWI	water	3	164s	6/25/01	2.40	$ \times $	\times								Conf	im M	TBE wit	«
MW2					2.00	X	\times				-			·		8-260		
MW3					2.10	\times	${\color{black}{\overline{}}}$										<u> </u>	
. Mwy					1.00	X	$\boldsymbol{\times}$											<u></u>
, MWS				'	3.00	\times	$\boldsymbol{\chi}$					-		· · · · ·				· · · · · · · · · · · · · · · · · · ·
. MWb				T	2.30	X	\mathbf{X}					1						
,											_						·····	
ı																		· <u> </u>
,											1							· · · · · · · · · · · · · · · · · · ·
14										_			+ +	······································				
												-[
12																		
u	······································			+									<u> </u>			<u> </u>		
4				 							1						·····	
15												-}					····, .	
16																		
17	·	1										+	<u> </u>					
, ,							_						╞─┈┥				<u></u>	
		1		<u> </u>	·			·····					┼╌┼				<u> </u>	
												<u> </u>			· · · · · · · · · · · · · · · · · · ·			
Relinquished b	y: Kur	· · · · · ·	Date b/2/b/ n i	Time & 10 n		I,	Receive	d by	Eln	k	L K	1	L Date		6.01	Time	8:00	- m
Relinquished b	iy:	7	Date	Time			Receive	d by:	- y r	<u>v_u</u>			Date		·····	Time		<u></u>
Relinquished b	ıy:		Date	Time			Receive	d by					Date			Time		

ATTACHMENT C

WELL SAMPLING LOGS

CLIENT: Olympian ADDRESS: 1435 Webster St, Alancela WELL # TESTED: MUST

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER		
2	0.17	
3"	0.36	
4	0.65	

TOTAL WELL DEPTH 20.7

- DEPTH TO WATER 9.73

= WATER COLUM HEIGHT 10.97 XA= 1.86 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

=

5.6

(3 well volume)

DATE: 6/25/01 TIME: 2.40 WATER LEVEL: 9.78

TIME:	GALS PUMPED	ТЕмр	COND.	РН
1.25	1.9	22.1	344	6.13
1.30	3.8	21.4	381	6-12
1.35	5.7	21.0	333	6.14
			<u></u>	
		<u> </u>		<u></u>
		<u> </u>		<u> </u>
	<u> </u>	<u> </u>	<u> </u>	
				······
		 .	·	<u> </u>

3 x

time: 2.40 Volume Pumped: Sampler:

Sheen or inches of free product: Analyzed lor: Mad - str good odor.

CLIENT: Olympian ADDRESS: 1435 Webster St, Alameda WELL # TESTED: MM2

3 x

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER	Α
2	0.17
3	0.36
4	0.65

TOTAL WELL DEPTH 1915

- DEPTH TO WATER 10.11

= WATER COLUM HEIGHT 9.04 x A = 1.54 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

= 4.6

(3 well volume)

DATE: 6/25/0) TIME: 2.00 WATER LEVEL: 10 .12

THE	GALS			
HME:	PUMPED	ТЕМР	COND.	РН
12.05	1.5	03-1	723	610
12.10	3.0			
12 1		22.7	769	6.10
12-12	4.5	21.7	758	6.12
	<u>_</u> _	<u> </u>	·	·
	<u></u>	+		.
				<u> </u>
			<u> </u>	
				
	<u> </u>			

Time: 200 Volume Pumped: Sampler: 0 4

÷

ADDRESS: 1435 Welster St, Alaweda WELL # TESTED: MW 3

3 x

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER	
2"	<u> </u>
	0.17
3	0.36
4"	0.65

TOTAL WELL DEPTH 21.6

· DEPTH TO WATER 10.04

= WATER COLUM HEIGHT 11.56 x A = 1.96 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

5.9

(3 well volume)

DATE: 6/25/0, TIME: 2.70 WATER LEVEL: 10.06

TIME:	GALS PUMPED	ТЕМР	COND.	РН
12-20	2	24.6	127	6.04
12-25	4	22.9	169	6.11 *
12.27	6	22.7	211	6-11
	• <u>•</u> •••			
		<u> </u>	·····	<u> </u>
	 _	<u> </u>	<u> </u>	
	<u>-</u>			<u></u>
		 .		

Time: Volume Pumped:

Sampler: D. G

;;;

CLIENT: Olympian ADDRESS: 1435 Webster St, Alancely WELL # TESTED: MWY

3 х

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER	Α
2	0.17
3	0.36
eg	0.65

TOTAL WELL DEPTH 1944

- DEPTH TO WATER 9.68 = WATER COLUM HEIGHT 9.76 ×A= 165 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

=

50

(3 well volume)

6/25/01 DATE: 1.00 TIME: WATER LEVEL: 9.85

TIME:	GALS PUMPED	ТЕМР	COND.	РН
11 30	1.65	20.8	189	6.14
11.45	3.3	21.8	198	6.12
11.55	5.0	22.8	172	6.09
				
				<u></u> -
	<u> </u>		<u> </u>	<u> </u>
		 .		,

Time: 1.00 Volume Pumped: Sampler: D.G.

÷ :

CLIENT: Clympian ADDRESS: 1435 webster st Alamenta WELL # TESTED: MWS

Зx

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER	A
2"	
2	0.17
3	0.36
4	0.65

TOTAL WELL DEPTH 18.45

- DEPTH TO WATER 9.05

= WATER COLUM HEIGHT 9.4 xA= 1.6 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

4.8

(3 well volume)

DATE: 6/25/01 TIME: 3.00 WATER LEVEL: 9.44

TIME:	GALS PUMPED	ТЕМР	COND.	РН	
12.50	1.6	221	657	6.11	
1.15	2.2	24.3	689	6.14	
		<u> </u>	 .		
		- <u></u> ,			
		<u> </u>			
		·	<u> </u>		
	<u> </u>				
	<u> </u>				

Time: 🧊 ပမ Volume Pumped: Sampler: 0. <

Sheen or inches of free product: Analyzed for: Wk organic

octor - gragat green caloor (gevlogy change)

Slow recharge - purge 7 1 volume, let recharge and get sample.

CLIENT: Olympian ADDRESS: 1435 webster St., Alanceda WELL # TESTED: Mulb.

To convert water column height to total amount of gallons in one (1) well volume, multiply the water colum height by A.

WELL DIAMETER	
2"	A
2	0.17
3	0.36
4"	0.00
	0.65

TOTAL WELL DEPTH 18-2

- DEPTH TO WATER 10.39

= WATER COLUM HEIGHT 7.81 × A = 1.3 GAL (1 well volume)

Multiply one (1) well volume by three (3) to obtain the minimum # of gallons to be extracted before taking well sample(s).

3 x = 3 · 9 (3 well volume)

DATE: 6/25/01 TIME: 2.30 WATER LEVEL: 10.42

TIME:	GALS PUMPED	ТЕМР	COND	PH
12-35	1.3	23.5	547	6.12
12.38	2.6	23.1	678	6.10
12-42	3.9	23-1	636	6.13
	<u> </u>		<u> </u>	
				<u>-</u>
			· · · · · · · · · · · · · · · · · · ·	<u> </u>
	<u> </u>			- <u></u>
		- <u></u>		
			<u> </u>	

Time: $2 g_{0}$ Volume Pumped: Sampler: $p - q_{1}$

÷

Chain of Custody Accutite Environmental Engineering

Client	Acc	itite Env	ironmental Engi	ncering				Report To David Greener								Turnaround.						
Address	35 S	outh Lin	den Avenue					Bill T	Bill To: Accutite								ASAP	Day	,	2 Day	Day	
	Sout	h San Fr	ancisco, CA 940	80				Billin	Billing Reference#									l Week	2 Wee	:k	Others	
Phone	650-	952-555	t									Analysis	Requi	red							· • • • • • • • • • • • • • • • • • • •	
Project Nam	c/Add	ress. 1	425 Websh	~ sf,	Ala-	ر وساله			8									1				
Sampier	t).	with a	arean	Date:	6/2	<u>(</u> a1		קים [X 4					1								
Sample ID	Si M	mple latrix	#of Containers	Contai Typ	iner e	Sampl	e Date/Time	1 T	875 110									Remarks				
MWI	624	ites .	3	the	<u>15 </u>	6/2/0	2.40	$\left \times \right $	\times									Can	2-	MT	BE -IK	<u>.</u>
Mw2	5. 1999	1		<u> </u>			2.00	\times	\times										8-260			
HWS	•						2.10	\times	\times											-		
. Mwy							/.00	ト	\leq													
MWS							3.00	×	て													
. Mwb	•					l	2.30	\times	$\left \times \right $					1	T							
,							1							1								
																		1	· · · ·			
19 - 11 1															1							
															1	1				<u></u>		
				T										1	1	1						
2											1					1						
			<u> </u>		· · ·	·					†	1	<u> </u>	<u> </u>	<u> </u>	†	·					
	•	÷					·					<u> </u>		†	\uparrow			<u> </u>		•		
,												1	†			1		1		<u> </u>		
												1			†	1						
	· .													<u>†</u>		+	L	1				
. 1														-					-			
												<u> </u>			<u> </u>	 						
																<u> </u>						
telinquished by				Date 6/26/11	'π , ζ	ime \$./0 ~			Receive	d by	4	In.	k	<u> </u>	I <u></u>	Date	6.7	1. 1. 6.01	Time	_	8:00	
Relinquished by	r.		7	Date	Ti	me			Receive	d by:		<u>r • / /</u>				Date			Time		0.	
Relinquished by	y:			Date	Ti	me			Receive	d by:				<u></u>		Date	. <u></u>	····-	Time			