

Technology, Engineering & Construction, Inc.

262 Michelle Court • So. San Francisco, CA 94080-6201 • Contractor's Lic. #762034 Tel: (650) 616-1200 • Fax: (650) 616-1244 • www.tecaccutite.com

RECEIVED By lopprojectop at 8:47 am, Dec 22, 2005

September 30, 2005

Mr. Amir K. Gholami, REHS

Hazardous Materials Specialist Alameda County Health Care Services Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502-6577

SUBJECT: UPDATED SITE CONCEPTUAL MODEL

SITE: Former Olympian Service Station 1435 Webster Street Alameda, California Fuel Leak Case #RO0000193

Dear Mr. Gholami:

On behalf of Olympian, TEC Accutite is pleased to submit this Updated Site Conceptual Model report for the above referenced site.

If you have any questions or require additional information, please contact the undersigned at (650) 616-1208.

Sincerely, TEC Accutite

Jing Heisler, PG, CHG

Cc: Ms. Janet Heikel, Olympian Mr. David Harris, Esq. Mr. Jeff Farrar

UPDATED SITE CONCEPTUAL MODEL

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CA

SEPTEMBER 2005

PREPARED FOR:

OLYMPIAN AND ALAMEDA COUNTY ENVIRONMENTAL HEALTH

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE BACKGROUND AND ENVIRONMENTAL CONDITIONS	1
2.1 2.2	SITE DESCRIPTION ENVIRONMENTAL BACKGROUND	1 1
3.0	UPDATED SITE CONCEPTUAL MODEL	3
3.1 3.2 3.3 3.4	SITE GEOLOGY AND HYDROGEOLOGY HYDROCARBON SOURCE PLUME CONCEPTUAL MODEL RISK CONCEPTUAL MODEL	3 3 4 5
4.0	CONCLUSIONS	7
5.0	LIMITATIONS	7
6.0	REFERENCES	9

TABLES

Table 1	Soil Analytical Results
Table 2	Groundwater Analytical Results
Table 3	Soil Vapor Analytical Results

FIGURES

Figure 1	Vicinity Map with Sensitive Receptors
Figure 2	Site Map with Historical Sampling Locations
Figure 3	
Figure 4	
Figure 5	Groundwater Concentration Changes Over Time
Figure 6	Estimated Extent of Petroleum Hydrocarbon Impact in Groundwater

ATTACHMENTS

Attachment A	Boring Logs and Well Specifications
Attachment B	Groundwater Travel Velocity Calculation
Attachment C	Site Averaged Concentration Calculation
Attachment D	Risk Calculation

1.0 INTRODUCTION

On behalf of Olympian, TEC Accutite prepared this Updated Site Conceptural Model (SCM) for the former Olympian service station located at 1435 Webster Street in Alameda, California (Figure 1). This updated SCM addresses the requests of the Alameda County Environmental Health regulatory letter, dated April 28, 2005 (ACEH, 2005). Presented below are the site background and the updated environmental site conditions since the preparation of the last SCM (TEC, 2000).

2.0 SITE BACKGROUND AND ENVIRONMENTAL CONDITIONS

2.1 Site Description

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, CA. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline underground storage tanks (USTs), one 7,500-gallon diesel UST, one 500-gallon waste oil UST and two dispenser islands (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area. The site is currently leased by the City of Alameda and operated as a metered parking lot.

2.2 Environmental Background

October 1988, Soil Gas Survey: CHIPS Environmental Consultants, Inc. performed soil gas analysis at the subject site. High soil gas readings were found on the eastern side of one of the pump islands, between the pump islands, and from backfill between the gasoline storage tanks.

September 1989, Tank Removal: In September 1989, TEC Accutite removed two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST. Analysis of soil samples collected during removal of the USTs detected hydrocarbons at a maximum concentration of 220 parts per million (ppm) Total Petroleum Hydrocarbons as gasoline (TPHg), 430 ppm Total Petroleum Hydrocarbons as diesel (TPHd), and 650 ppm Total Recoverable Petroleum Hydrocarbons as Oil and Grease (TRPH).

January & September 1991, Soil Excavation: Remedial excavation of the hydrocarbon impacted soil was conducted by AAA Tank Removal / Forcade Excavations Services. In January 1991, approximately 550 cubic yards of soil were removed from the former location of the USTs. This soil was bioremediated onsite. In September 1991 (following the bioremediation of the previously excavated soil), additional 300 cubic yards of contaminated soil were removed. Confirmation soil samples were free of detectable concentrations of TPH-g, benzene, toluene, ethyl-benzene, xylenes (BTEX), and TPH-oil but contained 21 to 24 ppm TPH in the diesel range. This "non-standard" TPH-d range material detected was composed of partially-degraded, extractable hydrocarbons which comprise of a portion of the tar wrap material. The majority of the excavated soil had been biologically detoxified and returned to the former excavation under the approval of the Alameda County Health Care Services Agency.

January 1993, Well Installation: Uriah Environmental Services, Inc. installed three monitoring wells onsite (MW-1 through MW-3). Soil samples collected during the well installation contained no detectable concentrations of petroleum hydrocarbons. Bi-annual groundwater monitoring was initiated. Dissolved phase hydrocarbons have been detected in all wells at varying concentrations.

February 1999, Soil Borings: TEC Accutite advanced four borings onsite (B1 through B4) to determine the extent of hydrocarbon impact to soil and groundwater. The soil analytical results detected non-

significant concentrations of TPHg, BTEX, and methyl tert-butyl ether (MTBE). The groundwater samples detected hydrocarbon concentrations up to 6,000 parts per billion (ppb) MTBE and 38,000 ppb benzene.

December 1999, Well Installations: TEC Accutite installed three additional wells MW-4 through MW-6 to define the dissolved phase hydrocarbons and assess plume stability. Analysis of soil samples detected hydrocarbon concentrations of 1,100 ppm TPHg, 200 ppm TPHd and 3.4 ppm benzene from soil collected at 9.5 feet below grade (fbg) in well MW-5. No hydrocarbons were detected in the soil samples collected during the installation of wells MW-4 and MW-6. Groundwater sampling from wells MW-6 and MW-3 defined the dissolved phase hydrocarbon plume upgradient of the former dispenser islands and cross-gradient of the former USTs.

November 2000, Site Conceptual Model: TEC Accutite completed a site conceptual model. Based on historical quarterly monitoring data, it was determined that the contaminant plume is unstable and is undefined downgradient. An assessment of hydrological conditions, proximity to sensitive receptors and current groundwater usage, suggest that MTBE in groundwater is not the primary chemical of concern. Given the shallow groundwater elevation (9 fbg), estimated high permeability of soils beneath the site, the potential for benzene vapor phase migration from hydrocarbon affected groundwater to indoor and ambient air was identified as an exposure pathway requiring future evaluation.

June 2001, Soil Borings: TEC Accutite drilled additional four borings (B1 through B4) to assess the extent of the plume and sampled all wells. Soil samples were collected approximately 9 fbg within the capillary fringe from soil borings B1 through B4. No petroleum hydrocarbons were detected in the soil above laboratory reporting limits. Insignificant concentrations of petroleum hydrocarbons were detected in groundwater samples collected from downgradient and cross gradient soil borings B1 through B4. The greatest concentration of petroleum hydrocarbons was detected in boring B3 at 400 ppb TPHg and 3 ppb MTBE. MTBE was detected in all soil boring groundwater samples below 5 ppb.

The greatest concentration of dissolved phase petroleum hydrocarbons were detected in monitoring well MW-1 at 18,000 ppb TPHg, 1,200 ppb benzene, and 1,500 ppb MTBE. Dissolved phase concentrations of TPHg, benzene, and MTBE in surrounding monitoring wells were either non-detect or insignificant.

February 2002, Risk Assessment: To address the potential exposure pathway identified in the SCM, TEC Accutite performed a site-specific risk assessment. The risk assessment addressed the potential inhalation risk posed by hydrocarbon impacted groundwater beneath the site assuming both residential and commercial land use scenarios. The compounds of concern were identified as TPHg and benzene. TPHg was assessed using the TPH fractional methodology developed by TPH Criteria Working Group. The calculated annual regional mean concentrations for benzene and TPHg were 2,988 ppb and 23,137 ppb, respectively. The results of the risk assessment found that concentrations of TPHg in groundwater beneath the site were below the calculated site specific target level concentrations (SSTL's) for residential and commercial scenarios. Therefore, TPHg remaining in groundwater beneath the site does not present an inhalation risk. Benzene concentrations in groundwater exceed the SSTL for a residential scenario (110 ppb) but are less than the SSTL for a commercial scenario (6400 ppb).

The results of the risk assessment suggest that benzene in groundwater beneath the site may present an inhalation risk, assuming residential land use. The risk assessment was based on the Johnson & Ettinger Vapor Fate and Transport Model, which often overestimates actual vapor concentrations at the point of exposure by factors of 10 to 100. Rather than proceed with site closure under restricted commercial land use, a soil vapor survey was recommended to validate the exposure pathway.

May 2003, Soil Vapor Investigation: In May 2003, TEC Accutite conducted a soil vapor investigation at the site. Eight soil vapor samples (SV1 through SV7, duplicate sample SV7) were collected at selected locations by advancing a 1-inch diameter chrome-moly steel probe equipped with a steel drop tip into the ground to a depth of 3.5 fbg. The objective of the soil vapor investigation was to evaluate potential human exposure to site contaminants created by vapors emanating off impacted groundwater and

intruding into indoor air (inhalation risk). Soil vapor was withdrawn from the formation into a small calibrated syringe connected with an on-off valve. Following sample collection, the valve was closed and the sample immediately transferred to a State Certified onsite laboratory for analysis.

Soil vapor sampling results were either non-detectable or detected below the Environmental Screening Levels (ESLs). Inhalation risk associated with exposure to vapors emanating off impacted groundwater beneath the site determined to be an invalid exposure pathway.

October 2003, Case Closure Summary: TEC Accutite submitted the completed closure summary forms for the site to the Alameda County Environmental Health (ACEH). In a letter dated April 28, 2005, the ACEH requested a stand-alone document for closure review.

In response to this request, TEC Accutite has prepared this report to summarize overall site investigation results and evaluate the appropriateness for site closure.

3.0 UPDATED SITE CONCEPTUAL MODEL

3.1 Site Geology and Hydrogeology

The site is located on the bay plain deposits of the San Francisco Bay consisting of shallow marine and continental deposits known as the "Bay Mud". Sediments beneath the site consist mainly of fine grained brown sand to a maximum explored depth of 20 fbg. Figure 3 depicts the geological cross-section for the site according to the boring and well logs (Attachment A).

Depth to groundwater at the site varies from 8 to 11 fbg. Groundwater flow direction has consistently been toward the south to southeast at an average gradient of 0.005 ft/ft (Figure 4). Groundwater beneath the site has been designated as potentially suitable for municipal and industrial use (San Francisco Bay Water Quality Control Plan, 1995).

3.2 Hydrocarbon Source

Primary source of fuel hydrocarbons (FHCs) releases associated with the former USTs had been removed. Hydrocarbon impacted soil surrounding the UST excavation was removed and bioremediated onsite. Analysis of the excavated soil following bioremediation found the concentrations of hydrocarbons in soil had been remediated to undetectable levels before it was placed back into the tank excavation. Effective remediation was further confirmed by analysis of soil samples collected during installation of well MW-2 (post tank removal), and by insignificant hydrocarbon concentrations detected in groundwater samples collected from well MW-2 (immediately down-gradient of the former tanks location).

Residual sources that remain in soil, either as vapor or residual (sorbed) phase, are limited in extent. These residuals may release small amounts of FHC constituents through volatilization and/or advection, but are not themselves mobile, and generally cannot supply enough FHC to act as a major source of hazard. They exist at low concentrations and they are not considered a source for continued degradation of soil and groundwater.

No free product has been observed at any of the on site wells. Chemical concentrations have been decreasing or within the historical ranges, suggesting that there's no residual hydrocarbon material that provides mass to the dissolved hydrocarbon plume.

3.3 Plume Conceptual Model

Soil

A total of 22 soil samples were collected at this site since soil excavation. As shown in Table 1, elevated hydrocarbon concentrations (1,100 ppm TPHg, 200 ppm TPHd, 3.4 ppm benzene) were detected in one soil sample from MW-5 at 9.5 fbg. A review of drill logs and groundwater elevations suggests the sample was collected from the saturated zone. Based on the moderate estimated permeability of soils beneath the site and shallow groundwater elevation, any past release of hydrocarbons from the dispenser islands or product piping would have migrated to groundwater. Past investigations (well installations MW-1, MW-5, and soil borings B1-B4) surrounding the dispensers have found soil hydrocarbon concentrations to be non-detect. Based on past boring investigations and subsurface characteristics, large concentrations of hydrocarbons are unlikely to be residual in soil.

Groundwater

A total of 6 groundwater monitoring wells were installed and monitored onsite, and 4 grab groundwater samples were collected offsite. The stability of groundwater contaminant plume is examined by concentration-time plots for benzene and MTBE (indicator compounds) and concentration distribution map (Figures 5 & 6).

The most recent groundwater data in July 2005 indicated that elevated concentrations had been observed at two onsite wells MW-1 and MW-5 and non-detectable or non-significant concentrations were shown in other wells (Table 2, Figure 5). Groundwater monitoring at this site was continuous from year 1999 to 2001, over two to three years period of time. Groundwater concentration changes over time for monitoring wells MW-1 and MW-5 are presented in Figure 5. At well MW-1, peak concentrations of benzene and MTBE were occurred around the time of the beginning of 1999 (2/11/1999) and are now decreasing. At well MW-5, the highest detected concentrations of benzene and MTBE occurred in 1999 (12/6/1999). Since well MW-5 was not installed until November 1999, the occurrence of the real peak concentration at this well might be earlier and is not known exactly. A decreasing trend is noted at well MW-5. Low concentrations are now decreasing and much lower than the historical high, suggesting that the dissolved hydrocarbon plume is stable onsite.

Figure 6 shows the estimated area where historical groundwater sample results exceeded the respective ESLs. Based on the hydrocarbon concentration distribution, it is evident that the source of hydrocarbons is from the former dispenser islands and/or from the former product piping trench. High concentrations of hydrocarbons in groundwater were observed close to the source area near the dispenser islands. Groundwater data collected from monitoring wells and borings on 6/27/2001 indicated that petroleum hydrocarbon concentrations decrease with distance from the source.

Based on the calculated flow velocity, it would take about 7 years for groundwater to move to the offsite groundwater sampling location B3 or B4 (Attachment B). The sorption of chemicals to the aquifer solids causes them to move slower on average than groundwater. This effect is called retardation. Since MTBE has very low retardation and minimal biodegradation in groundwater, MTBE is a good indicator of how far the plume has traveled. The high concentration of MTBE detected at well MW-1 in 1999 and low concentrations of MTBE shown at downgradient sampling location B3 or B4, suggest that petroleum plumes had not traveled very far. In other words, the dissolved plume was transported in a low groundwater velocity aquifer. Chemical concentrations are decreasing with time and distance; the dissolved hydrocarbon plume seems to be stable. However, no groundwater data have been obtained at downgradient locations off-site since 2001. The stability of the plume can be verified by collecting current groundwater sample(s) at these downgradient locations.

Soil Vapor

Two rounds of soil gas surveys have been conducted at this site. The 1988 soil gas survey indicated that high soil gas readings were found adjacent to the UST locations, on the eastern side of one of the dispenser islands and in-between the dispenser's islands (Table 3) (CHIPS, 1988). Note that soil vapor samples collected in 1988 were analyzed by an FID hydrocarbon monitor (Beckman 400), so all vapor-phase hydrocarbons were detected as one result including methane and heavier hydrocarbons. Since methane would be included in the result, gasoline hydrocarbon values can be vastly overestimated.

The second round of soil vapor survey was conducted in 2003 (TEC, 2003). The soil gas concentrations were either non-detectable or below the ESLs. However, the detection limit for benzene (1 mg/m^3) was greater than the ESL value (0.085 mg/m^3) . Therefore, benzene may or may not be an issue and compliance with the ESL cannot be demonstrated based on available data.

3.4 Risk Conceptual Model

3.4.1 Potential Sensitive Receptors

Sensitive receptor survey conducted in year 2000 identified two sensitive receptors within a 1,000 feet (ft) radius of the site (Figure 1) (TEC, 2000).

- 1. Saint Barnabas Elementary School, located at 1400-6th Street, is approximately 500 ft westsouthwest of the site in a cross-gradient direction.
- 2. News Maker Home Day Care Center, located on the corner of Taylor and 6th Street is approximately 500 ft west of the site in an up cross-gradient direction.

Given the groundwater flow direction and historical hydrocarbon concentrations in cross-gradient wells MW-2, MW-3, MW-6, it is unlikely that site hydrocarbons present any risk to the above sensitive receptors. In other words, cross-gradient receptors are under no threat from site hydrocarbons.

A review of records at the Department of Water Resources (DWR) indicated that no domestic, municipal or industrial wells exist within a 1,000 ft radius of the site. Nine groundwater monitoring wells were identified during the review including the six wells located at 1435 Webster Street, and 3 up-gradient wells used for groundwater monitoring at the Shell Gas Station located at 1601 Webster Street (approximately 1,000 ft north of the site) (Figure 1).

There is no surface water within a 1,000 ft radius of the site. The nearest surface water is the San Francisco Bay located approximately 1,500 ft south of the site. Since the most down-gradient collected groundwater sample (B4), located approximately 200 ft from the site, was not significantly impacted by the dissolved phase petroleum hydrocarbon plume; the plume is unlikely to reach the nearby creek/lagoon located more than 1,500 ft away. Given the distance to San Francisco Bay, site hydrocarbons pose no threat to surrounding surface water.

Therefore, no sensitive receptors would likely be impacted by the contaminants on-site according to the available information.

3.4.2 Potential Exposure Pathways

Inhalation Pathway

Due to the elevated groundwater concentrations at wells MW-1 and MW-5, on-site trespassers or future residents are the primary receptors of potential inhalation concern at the site. For protection of trespassers and potential future residents from inhalation of outdoor and indoor air, inhalation is considered to be a complete pathway.

Ingestion Pathway

Incidental soil ingestion for site trespassers is unlikely because the site is covered with asphalt.

Groundwater directly beneath the site is not used as a current or potential drinking water resource; no water wells exist within 1,000 ft radius of the site, as such the ingestion exposure pathway is not relevant.

Direct Contact Pathway

Direct contact with chemicals in soil is assumed to occur during outdoor activities. However, the likelihood of trespassers directly contacting outdoor surface soil is unlikely since the site is covered by asphalt. Nonetheless, the possibility of direct contact with chemicals in soil is considered for construction workers. To address the possibility of future short-term but intensive exposures to chemicals in subsurface soil, a construction worker is assumed to have skin contact with chemicals in soil ranging from the surface to 10 fbg. Direct contact with chemicals of concern in groundwater is possible for construction worker(s).

Direct contact with chemicals of concern in surface water is unlikely. Since low concentrations were observed at about 200 ft away down-gradient of the site, the nearest surface water located approximately 1,500 ft away, is unlikely to be impacted.

In summary, the following exposure pathways are assumed to be complete:

- Inhalation of chemicals in outdoor air for trespassers and indoor air for potential future residents.
- Skin contact of chemicals for construction workers.

Inhalation of vapor in indoor air is believed to be the most significant exposure pathway at the site.

3.4.3 Potential Risks to Human Health

Quantification of potential human exposure in relation to the contamination by petroleum hydrocarbons in soil and groundwater, baseline human health risks are evaluated using the computer software "RBCA Tool Kit for Chemical Releases" (Groundwater Services Inc., 2000) designed to meet the requirements of the ASTM PS 104 Standard Provisional Guide for Risk Based Corrective Action. The site is a commercial site, but might be used for residential in the future. The cancer risks and noncancer hazard indices were calculated using RBCA model default exposure parameters and site-specific characteristics for the identified exposure pathways. The chemical-specific physical parameters were obtained from RBCA database and its toxicological parameters were modified to reflect CalEPA-specific toxicity factors. A conservative approach was adopted by using the lowest toxicity value to calculate the risks.

Since the USTs were removed in 1989 and no continuous fresh spills exist at the site, weathered product is assumed in the risk assessment. Based on the type of petroleum used at the site, benzene and MTBE were identified as carcinogenic "indicator compounds" to evaluate risks associated with petroleum hydrocarbons in soil and groundwater. Other petroleum compounds exist within the subsurface at concentrations above ESLs, however considering the range of physical, chemical and toxicological properties of benzene and MTBE, evaluation of risk based on these two compounds (benzene and MTBE) is adequate to be protective of other petroleum compounds.

Data used to calculate exposures to chemicals in on-site indoor air and on-site soil and groundwater are the site averaged concentrations. Site averaged concentration was calculated using ProUCL software developed by EPA (USEPA, 2004) and presented in Attachment C. Note that data from the last four groundwater sampling events at the site were averaged in the calculation to obtain more representative data. One-half of the detection limit was used in the calculation of the non-detected sampling results.

The cancer risks were calculated as 3.5×10^{-5} for "hypothetical" building occupants, conservatively estimated to be in the range of one hundred-in-a-million (10^{-4}) to one-in-a-million (10^{-6}). This risk is more

than the 10⁻⁶ target cancer risk level. Indoor air and soil exposure pathways exceeded acceptable risks. The non-carcinogenic hazard index is less than the target level (i.e., value of 1) for receptors in all pathways. Therefore, the chemicals in soil vapor, soil, and groundwater at the site pose no non-carcinogenic hazard under current conditions. Details of the model input parameters and risk calculation are presented in Attachment C.

It should be noted that the calculated risk estimates are likely to over-predict actual risk because of the conservative nature of the fate and transport models used in the analysis. Based on the current conditions at the site, the actual risks are probably lower than the modeled risk level due to the fact that the site is covered with asphalt and currently used as a parking lot and only trespassers might be exposed to the potential vapor and the estimated cancer risk for outdoor exposure scenario is 6.5×10^{-7} , below the acceptable level.

In conclusion, there is no risk for trespassers based on current site conditions. However, future building occupants might be at risk for contracting cancer. The primary reason for the elevated risk is inhalation of indoor air containing chemicals of potential concern.

4.0 CONCLUSIONS

Due to the uncertainty of benzene vapor concentration on-site and present groundwater concentrations off-site, and the risks calculated to be above the acceptable level, TEC Accutite recommends submitting a workplan to:

- 1) Verify vapor intrusion pathway by collecting soil vapor samples using Summa Canisters and analyzing for benzene using low detection limits (equal to or less than ESL).
- 2) Obtain a geotechnical sample in the unsaturated zone to facilitate site-specific evaluation of vapor volatilization at the site.
- 3) Evaluate stability of the dissolved-phase hydrocarbon plume concentrations at downgradient locations by collecting groundwater samples.

Pending results from these vapor sampling and off-site groundwater investigations, TEC Accutite will determine the course of action for this site, be it closure or further corrective actions.

5.0 LIMITATIONS

Our services consist of professional opinions, conclusions and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TEC Accutite's liability is limited to the dollar amount of the work performed.

This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk. Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

*

TEC Accutite would like to thank you in advance for your assistance and prompt attention to this matter. If you have any questions or comments, please feel free to contact Jing Heisler at (650) 616-1208. LESSIONAL GEO

OGIS

*

No. 666 CERTIFIED HYDROGEOLOGIST

Exp. 2/28/0

OF CAL

Sincerely, **TEC Accutite**

Prepared by:

Jing Heisler, PG, CHG. Project Manager

CC: Ms. Janet Heikel, Olympian Mr. David Harris, Esq. Mr. Jeff Farrar

Reviewed by:

icholas Haddad

Nicholas B. Haddad **Environmental Director**

6.0 REFERENCES

- ACEH, 2005. Alameda County Environmental Health, "Fuel Leak Case #RO0000193, Environmental Investigation at Former Olympian, 1435 Webster Street, Alameda, CA", April 28, 2005.

- California Regional Water Quality Control Board, "*Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater*", Interim Final – February 2005.

- CHIPS, 1988. Chips Environmental Consultants, Inc., "Field Sampling and Analysis of Soil Gases at 1435 Webster, Alameda, California", October, 1988.

- Groundwater Services Inc., RBCA Tool Kit for Chemical Releases, Computer Software, 2000

- TEC, 2000. TEC Accutite, "Quarterly Groundwater Monitoring, Sensitive Receptor Survey and Site Conceptual Model", November 29, 2000.

- TEC, 2002. TEC Accutite, "Quarterly Monitoring Report for December 2001, Tier 2 RBCA Report", February 15, 2003.

- TEC, 2003. TEC Accutite, "Soil Vapor Investigation Report", May 2003.

- USEPA, 2004. United States Environmental Protection Agency, "ProUCL Version 3.0 User Guide", April, 2004

- URIAH, 1991. Uriah Inc., "Interim Report of Remedial Activities at 1435 Webster Street, Alameda, California", October, 1991.

- URIAH, 1993. Uriah Inc., "The Installation of Three Groundwater Monitoring Wells at 1435 Webster Street, Alameda, California", March 25, 1993.

TABLES

Sample ID	Sample	Depth	TPHg	TPHd	TPHo	В	Т	E	Х	MTBE
	Date	(ft bgs)			Concent	rations in part	s per million (p	opm)		
Confirmatio	n Soil Sample	s after Excava	ntion							
WEB1	9/27/1991	15	<1	23	<50	<0.003	<0.003	<0.003	<0.003	NA
WEB2	9/27/1991	15	<1	21	<50	<0.003	<0.003	<0.003	<0.003	NA
WEB3	9/27/1991	15	<1	23	<50	<0.003	<0.003	<0.003	<0.003	NA
WEB4	9/27/1991	15	<1	24	<50	<0.003	<0.003	<0.003	<0.003	NA
FS-18	9/27/1991	18	<1	<10	<50	0.12	0.016	<0.003	0.023	NA
On-Site Soil	l Samples									
MW-1	1/11/1993	5	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
MW-1	1/11/1993	10	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
MW-2	1/11/1993	5	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
MW-2	1/11/1993	10	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
MW-3	1/12/1993	5	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
MW-3	1/12/1993	10	<1	<1	<10	<0.005	<0.005	<0.005	<0.005	NA
B1-7.5	2/11/1999	7.5	0.65	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
B2-7.5	2/11/1999	7.5	<0.5	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
B3-6	2/11/1999	6	<0.5	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
B4-7.5	2/11/1999	7.5	<0.5	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
MW-4	11/11/1999	9.5	<0.5	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
MW-5	11/10/1999	9.5	1,100	200	NA	3.4	21	14	70	<0.02
MW-6	11/10/1999	9	<0.5	<1.0	NA	<0.005	<0.005	<0.005	<0.010	<0.005
Off-Site Soi	l Samples									
B1-9	6/27/2001	9	<0.5	NA	NA	<0.005	<0.005	<0.005	<0.01	<0.005
B2-9	6/27/2001	9	<0.5	NA	NA	<0.005	<0.005	<0.005	<0.01	<0.005
B3-9	6/27/2001	9	<0.5	NA	NA	<0.005	<0.005	<0.005	<0.01	<0.005
B4-9	6/27/2001	9	<0.5	NA	NA	<0.005	<0.005	<0.005	<0.01	<0.005
		ESLs	100	100	500	0.044	2.9	3.3	2.3	0.023

Table 1: Soil Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Table 1: Soil Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Abbreviations / Notes TPHg = Total petroleum hydrocarbons as gasoline, EPA Method 8015. TPHd = Total petroleum hydrocarbons as diesel, EPA Method 8015. TPHo = Total petroleum hydrocarbons as oil and grease, SM 5520 E/F B T E X = Benzene, Toluene, Ethylbenzene, Xylenes, EPA Method 8020. MTBE = Methyl tert-butyl ether, EPA Method 8020 <X or ND = Concentration less than laboratory reporting limit</td> NA = not analyzed or not available ft bgs = feet below ground surface ESLs = Environmental Screening Levels obtained from Table A, assuming residential land use and groundwater is a current or potential drinking water resource (CARWQCB, Interim Final, February 2005). Numbers in bold exceeded the respective ESL.

Sample ID	Sample	Depth to	TPHg	TPHd	В	Т	E	Х	MTBE	TRPH		
	Date	Water (ft bgs)	<u> </u>	Concentrations in parts per billion (ppb)								
Groundwater Sa	ampes from Me	onitoring Wells	 I									
MW-1	06/03/1993	NA (1)	NA	NA	NA	NA	NA	NA	NA	NA		
	09/14/1994	11.46	14,000	<50	44	28	25	50	NA	800		
	12/30/1994	9.22	4,000	<50	12	9	6.8	30	NA	<500		
	03/26/1995	6.76	1,000	<50	21	10	7.1	25	NA	2,100		
	07/09/1995	8.92	16,000	<50	57	28	25	53	NA	NA		
	07/31/1998	8.3	4,700	1,700	1,300	48	140	150	6,600	<5000		
	02/11/1999	7.91	25,000	2000	18,000	1,600	1,400	500	28,000	NA		
	06/23/1999	9.03	42,000	4,900	11,000	1,100	1,500	2,300	15,000	NA		
	12/06/1999	10.86	44,000	4,000	8,900	3,400	1,900	5,100	11,000	NA		
	03/16/2000	6.93	5,100	700	2,400	100	280	460	2,700 (2)	NA		
	06/13/2000	8.73	17,000	2,800	5,300	260	720	790	7,000 (2)	NA		
	09/29/2000	10.18	50,000	5,200*	11,000	2,900	1,900	4,600	7,200 (2)	NA		
	03/22/2001	8.24	8,600	1,500*	2,600	750	250	950	3,200 (2)	NA		
	06/25/2001	9.73	18,000	NA	1,200	1,800	970	3,200	1,500 (2)	NA		
	09/28/2001	11.06	48,000	NA	5,200	6100	2200	8100	4000	NA		
	12/26/2001	8.11	524	NA	216	1.2	8.6	7.4	721	NA		
	07/07/2005	6.93	1,500	NA	190	15	36	29	1,100	NA		
MW-2	06/03/1993	9.54	<50	<50	5.8	<0.5	<0.5	<0.5	NA	<500		
	09/14/1994	11.82	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500		
	12/30/1994	9.46	160	<50	1.4	1.4	0.8	5	NA	<500		
	03/26/1995	6.82	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500		
	07/09/1995	9.22	NA	NA	NA	NA	NA	NA	NA	NA		
	07/31/1998	8.56	<50	220	<0.5	<0.5	<0.5	<0.5	73	<500		
	02/11/1999	8.12	<50	<50	<0.5	<0.5	<0.5	<0.5	75	NA		
	06/23/1999	9.33	<50	420	<0.5	<0.5	<0.5	<0.5	96	NA		
	12/06/1999	11.2	300	<110	28	45	6	37	210	NA		
	03/16/2000	6.88	<50	<50	1	<0.5	0.5	1	3	NA		
	06/13/2000	8.99	68	<50	0.8	<0.5	<0.5	<0.5	38	NA		
	09/29/2000	10.4	67	<50	0.8	0.5	<0.5	1	86 (2)	NA		

Table 2: Groundwater Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Sample ID	Sample	Depth to	TPHg	TPHd	В	Т	E	Х	MTBE	TRPH
	Date	Water (ft bgs)			Concentration	ns in parts pe	r billion (ppb)		•	
MW-2	03/22/2001	8.46	<50	<50	1	0.5	<0.5	1	14	NA
	06/25/2001	10.11	<50	NA	<0.5	<0.5	<0.5	<1.0	13	NA
	09/28/2001	11.4	300	NA	4	6	3	10	130	NA
	12/26/2001	8.28	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	07/07/2005	6.88	<50	NA	<0.5	<0.5	<0.5	<1.0	20	NA
MW-3	06/03/1993	9.8	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
_	09/14/1994	12.19	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	12/30/1994	9.72	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	03/26/1995	6.88	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<500
	07/09/1995	9.52	NA	NA	NA	NA	NA	NA	NA	NA
	07/31/1998	8.4	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000
	02/11/1999	7.77	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	06/23/1999	9.21	<50	<50	<0.5	<0.5	<0.5	<0.5	3	NA
	12/06/1999	11.12	<50	<110	3	1	<0.5	1	0.6	NA
	03/16/2000	6.48	<50	<50	<0.5	<0.5	<0.5	<1.0	1	NA
	06/13/2000	8.76	490	<50	0.8	<0.5	<0.5	9	2	NA
	09/29/2000	10.2	57	<50	<0.5	<0.5	<0.5	<1.0	<1.0 (2)	NA
	03/22/2001	8.24	<50	<50	<0.5	<0.5	<0.5	<1.0	2	NA
	06/25/2001	10.04	<50	NA	<0.5	<0.5	<0.5	<1.0	0.8	NA
	09/28/2001	11.34	91	NA	<0.5	<0.5	<0.5	2	2	NA
	12/26/2001	8.01	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	07/07/2005	6.48	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	NA
MW-4	12/06/1999	10.79	<50	160	3	2	0.6	4	140	NA
	03/16/2000	6.86	<50	90	0.5	0.5	<0.5	2	34	NA
	06/13/2000	8.18	56	<50	<0.5	<0.5	<0.5	<1.0	1	NA
	09/29/2000	10.11	92	<50	0.7	<0.5	<0.5	3	<1.0 (2)	NA
	04/05/2001	8.26	51	<50	<0.5	0.5	<0.5	1	6 (2)	NA
	06/25/2001	9.68	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	NA
	09/28/2001	10.98	<50	NA	<0.5	<0.5	<0.5	2	2	NA

Table 2: Groundwater Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Sample ID	Sample	Depth to	TPHg	TPHd	В	Т	E	Х	MTBE	TRPH	
	Date	Water (ft bgs)	Concentrations in parts per billion (ppb)								
MW-4	12/26/2001	8.18	<50	NA	1.6	1.7	1.6	4.4	2.7	NA	
	07/07/2005	6.86	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	NA	
MW-5	12/06/1999	10.17	30,000	2,800	2,200	3,300	910	7,000	670	NA	
	03/16/2000	6.28	3,500	1,100	1,100	260	210	6,300	260	NA	
	06/13/2000	7.95	6,500	1,100	2,200	360	360	730	480	NA	
	09/29/2000	9.54	3,900	700*	990	120	300	340	390 (2)	NA	
	03/22/2001	7.48	4,300	380*	780	240	250	530	190	NA	
	06/25/2001	9.05	3,100	NA	1,000	110	200	320	140	NA	
	09/28/2001	10.39	3,000	NA	1,200	77	120	170	770	NA	
	12/26/2001	7.28	3,240	NA	738	262	218	626	66.4	NA	
	08/24/2005	8.65	150	NA	57	3	8	3.9	67	NA	
MW-6	12/06/1999	11.46	<50	110	2	2	0.8	8	1	NA	
	03/16/2000	8.32	<50	<50	8	8	5	18	<0.5	NA	
	06/13/2000	9.14	75	<50	0.7	1	0.9	2	0.6	NA	
	09/29/2000	10.81	<50	<50	<0.5	<0.5	<0.5	<1.0	<0.5	NA	
	03/22/2001	8.64	66	<50	0.5	<0.5	<0.5	<1.0	3	NA	
	06/25/2001	10.39	<50	NA	<0.5	<0.5	<0.5	<1.0	4	NA	
	09/28/2001	11.7	63	NA	2	ND	ND	1	3	NA	
	12/26/2001	8.4	<50	NA	<0.5	<0.5	<0.5	1.4	<0.5	NA	
	07/07/2005	8.32	<50	NA	<0.5	<0.5	<0.5	<1.0	<0.5	NA	
Grab Groundwa	ater Samples fr	om Soil Boring:	5								
B1	6/27/2001	9	<50	NA	<0.005	3	<0.005	<0.01	4	NA	
B2	6/27/2001	9	<50	NA	<0.005	0.9	0.5	2	4 (2)	NA	
B3	6/27/2001	9	400	NA	<0.005	1	0.6	1	3	NA	
B4	6/27/2001	9	96	NA	2	3	0.6	2	2	NA	
		ESLs	100	NA	1	40	30	20	5	NA	
		SSTLs	7,200	NA	110	NA	NA	NA	NA	NA	

Table 2: Groundwater Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Table 2: Groundwater Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Sample ID	Sample	Depth to	TPHg	TPHd	В	Т	E	Х	MTBE	TRPH				
	Date	Water (ft bgs)			Concentration	ns in parts pe	r billion (ppb)							
Abbreviations														
TPHg = Total Petr	PHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; since July 2005 by EPA 8260													
TPHd = Total Petr	Hd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)													
BTEX = Benzene,	3TEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; since July 2005 by EPA 8260													
MTBE = Methyl te	rt-butyl Ether by E	PA Method 8020;	July 2005 by E	PA 8260										
TRPH = Total Rec	overable Petroleu	Im Hydrocarbons												
<x =="" concentratio<="" td=""><td>n less than labora</td><td>atory reporting limit</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x>	n less than labora	atory reporting limit												
NA = not available	or not analyzed													
ESLs = Environme	ental Screening Le	evels obtained from	n Table F-1a, a	ssuming groui	ndwater is a cu	rrent or potent	ial drinking wa	ter resource						
(CARWQCB, Inter	ARWQCB, Interim Final, February 2005).													

SSTLs = Site Specific Target Level developed by TEC Accutite detailed in a report entitled "Quarterly Monitoring Report for December 2002, Tier 2 RBCA Report", dated February 15, 2002

Notes

E.

(1) Well not accessible because of a car obstruction

(2) Confirmed by EPA Method 8260

* Does not match diesel chromatogram pattern

Sample	Sample	Sample													
ID	Depth	Date	TH	TPH	В	Т	E	X (mp)	MTBE	TBA	DIPE	ETBE	TAME	Freon 11	Freon 12
	(fbg)			÷			•	Con	centrations	s in mg/m	3				
Pre-Remedi	ation (Soil	Excavation)													
1	8	10/11/1988	900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11	10/11/1988	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	8	10/11/1988	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11	10/11/1988	90	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3	11	10/11/1988	90	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4	8	10/11/1988	9,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11	10/11/1988	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5	8	10/11/1988	50,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
â	0	40/44/4000	44.000	N1.0	N1.0	N 1 A		N1.0	N1.0	N1.0	N1.0	N1.0	N1.0	N 1 A	
6	8	10/11/1988	41,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11	10/11/1988	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
7	8	10/11/1988	59,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8	8	10/11/1988	72,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
9	8	10/11/1988	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, , , , , , , , , , , , , , , , , , ,	11	10/11/1988	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10	8	10/11/1988	42,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11	10/11/1988	2,300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-														
11	8	10/11/1988	900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
12	8	10/11/1988	2,300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
13	8	10/11/1988	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 3: Soil Vapor Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Sample	Sample	Sample													
ID	Depth	Date	TH	TPH	В	Т	Е	X (mp)	MTBE	TBA	DIPE	ETBE	TAME	Freon 11	Freon 12
	(fbg)							Con	centrations	in mg/m	3				
14	8	10/11/1988	720	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
15	8	10/11/1988	56,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
16	8	10/11/1988	2,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
17	8	10/11/1988	4,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
18	8	10/11/1988	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
19	8	10/11/1988	270	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	8	10/11/1988	43,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
21	8	10/11/1988	25,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
22	8 11	10/11/1988 10/11/1988	63,000 3,600	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
23	8	10/11/1988	67,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
24	8	10/11/1988	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
25	8	10/11/1988	45	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Post-Remed	liation (So	il Excavation)													
SV-1	3.5	05/14/03	NA	19	<1	1.9	<1	<1	<1	<5	<1	<1	<1	<1	1
SV-2	3.5	05/14/03	NA	<3.5	<1	<1	<1	<1	<1	<5	<1	<1	<1	1.5	1.4
SV-3	3.5	05/14/03	NA	20	<1	3.7	<1	<1	<1	<5	<1	<1	<1	<1	<1
SV-4	3.5	05/14/03	NA	<3.5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1

TABLE 3: Soil Vapor Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

August 2005 Tables_USCM_Rpt

Sample ID	Sample Depth	Sample Date	TH	ТРН	В	т	E	X (mp)	MTBE	ТВА	DIPE	ETBE	TAME	Freon 11	Freon 12
	(fbg)							Con	centrations	s in mg/m	3				
SV-5	3.5	05/14/03	NA	<3.5	<1	<1	<1	<1	<1	<5	<1	<1	<1	8.7	7.9
SV-6	3.5	05/14/03	NA	<3.5	<1	<1	<1	<1	<1	<5	<1	<1	<1	1.1	1.9
SV-7	3.5 3.5dup	05/14/03 05/14/03	NA NA	<3.5 <3.5	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<5 <5	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
		ESL (mg/m ³)	NA	26	0.085	63	420	150	9.4	NA	NA	NA	NA	NA	NA

TABLE 3: Soil Vapor Analytical Results - Former Olympian Station, 1435 Webster Street, Alameda, CA

Abbreviations

TH = Total hydrocarbons calibrated as propane, C3. Data obtained from "Field Sampling and Analysis of Soil Gases at 1435 Webster, Alameda, CA", prepared by Chips Environmental Consultants, Inc., dated October 1988.

TPH = Total petroleum hydrocarbons by EPA method 8015M

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8260B

Freon 11 = Trichloroluoromethane by EPA Method 8260B

Freon 12 = Dichlorodifluoromethane by EPA Method 8260B

TBA = Tert-Butanol by EPA Method 8260B

MTBE = Methyl-tert-butyl ether by EPA Method 8260B

DIPE = Diisopropyl ether by EPA Method 8260B

ETBE = Ethyl-tert-butyl ether by EPA Method 8260B

TAME = Tert-amyl methyl ether by EPA Method 8260B

<x = compound not detected above laboratory reporting limits

NA = Not Analyzed or Not Available

ESL= Soil gas screening level for protection of indoor air (emissions from impacted groundwater) assuming coarse soils and residential land use (CRWQCB Interim Final, February 2005,

Table E)

FIGURES

ATTACHMENT A

BORING LOGS AND WELL SPECIFICATIONS

	SOIL BORING	5 LOG	· · · · · · · · · · · · · · · · · · ·	
LOCATIO CLIENT: DATE DF DRILLIN LOGGED	N: 1435 Webster Street John E. Ferrar RILLED: 1/11/93 G METHOD: H.S.Augers BY: Adi Constantinescu	, <i>Alameda</i> , Monito Drille Sample	<i>ca</i> . RING WE! D BY: <i>s. e</i> MethOD	_L:MW-1 5. S. Split Spoon
Depth Samp Below Collec Surface INT N	les SOIL DESCRIPTION ted mple Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Log Classi- fication	Penetration Collected Blows / 18*	Comments
5 WW	Asphalt 2". Brown, medium SAND, well gra ded, loose, moist, no hydrocar bon odor;	SW	3, 4, 6	
	Same as above, wet, no hydr 1-10 carbon odor;		10, 14, 14	
15	Brown, fine SAND, medium deņse, poorly graded, water s turated, no hydrocarbon odor;	° SP	10, 10, 12	
	Light brown, fine to medium SAND, well graded, dense, wa ter saturated, no hydrocarbon odor.	- SW	10, 14, 21	
	Same as above.		10, 20, 28	Hole bottom at 24'. Monitoring well com pleted at 24' bgs.

SOIL BORING LOG

	LOCATION: 1435 Webster Street, ALAMEDA, CA. CLIENT: John E. Ferrar DATE DRILLED: 1/11/93 DRILLING METHOD: H.S.Augers LOGGED BY: Adi Constantinescu									
Dept Belo Surfo	th w ice	So Col INT	amples lected Sample No.	SOIL DESCRIPTION Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Classi- fication	Log	Penetration Collected Blows / 18"	Comments		
·				Asphalt 2".						
	5		MW2-5	Brown, medium SAND, well gra- ded, medium dense, moist, no hydrocarbon odor;			5, 5, 6			
· · ·	10		MW2-13	Gray—brown, mottled, medium) gravelly SAND, medium dense, wet, well graded, no hydrocar— bon odor;	SW		4, 5, 7			
ź	15			Brown, medium SAND, well gra- ded, medium dense, water sa- turated, no hydrocarbon odor;			7, 11, 13			
	20	 		Brown, fine to medium SAND, well graded, medium dense, water saturated, no hydrocar- bon odor;			10, 13, 20			
ĉ	258			Same as above.			11, 18, 25	Hole bottom at 24'. Monitoring well com- pleted at 24' bgs.		
	30									

.

	SUI	BURING	T DG	
	SUIL			
•				

LOCATIO CLIENT: . DATE DR DRILLIN LOGGED	N: 1435 Webster Street, John E. Ferrar RILLED: 1/12/93 G METHOD: H.S.Augers BY: Adi Constantinescu	ALAME MON DRIL SAM	<i>eda, (</i> Itor _led ple	CA. ING WEL BY: <i>S.E</i> METHOD:	_L: MW-3 S. Split Spoon
Depth Samp Below Collec Surface INT So	ample SOIL DESCRIPTION Color, Grain size, Texture, Moisture, Consistency, Odor	Unified Soil Classi- fication	Lòg	Penetration Collected Blows / 18"	Comments
	Asphalt 2". Brown, medium SAND, well gro W3-5 ded, medium cense, moist, no hydrocarbon ecor;	1-		3, 5, 7	
	Brown, fine to medium SAND, medium dense. well graded, wat, no hydrocarbon odor;			14, 14, 15	
	Brown, fine SAND, well grade medium dense, no hydrocorb odor;	d, SW		10, 11, 12	2
20	Light brown, fine to medium SAND, well graded, water so turated, no hydrocarbon odd	or;		11, 13, 2	3
25	Same as above.			- 11, 19, 2	Hole bottom at 24'. 23 Monitoring well com- pleted at 24' bgs.
- 30					

				EC ACCUTITE SOIL BO	ORING	LUG	PAGE 1 OF 1		
CLIEN Conta BORII DATE DRILL	CLIENT 0 Contact 1 BORING NO. DATE DRILLED DRILLING METHOD			Delymptan LOCATION Dan KOCH MONITORING WELL NO MW-4 MONITORING WELL NO 11/11/99 START HOLLOW STEM AUGER SAMPLING METHOD	MPIAN LOCATION 1435 Webster Street KOCH Alameda, California MW-4 MONITORING WELL N0. MW-4 11/11/99 START 7:00 am FINISH 11:00 am LOGGED BY OLLOW STEM AUGER SAMPLING METHOD SPLIT SPOON DRILLED BY West Ha				
DEPTH BELOW SURFACE	INT	SAMF COLLE TPHg	CTED	LITHOLOGY	UNIFIED SOIL CLASSI- FICATION	GRAPHIC LOG	WELL CONSTRUCTION DETAILS		
0 FT				ASPHALT: 3-inches thick	ASPHALT	-	STREET BOX WITH		
			MW-4 @ 6.0 MW-4	SILTY SAND; (SM); fine-grained; poorly graded; light brown; moist; no odor; no plasticity, moderate estimated permeability.	SM		CONCRETE SEAL LOCKING CAP Portland VII Bentonite Seal		
1112			<u>@</u> 9.5	SAND; (SP); fine-grained; poorly graded; tan; damp to wet; no plasticity, high estimated permeability. Bottom of boring at 20 feet bgs	SP		2-inch diameter schedule 40 PVC 0.010" slotted casing 4000 slotted		
$ \begin{array}{c} 20 \\ - 21 \\ - 22 \\ - 23 \\ - 24 \\ - 25 \\ - 26 \\ - 27 \\ - 28 \\ - 29 \\ - 30 \\ - 31 \\ - 32 \\ - 33 \\ - 34 \\ - 35 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$				Total depth of monitoring well at 20 feet bgs					

[·				SA OF	CUTITE SOIL BO	ORING	LUG	PAG	GE 1 OF 1
CLIEN Conta BORIN DATE DRILL	T ct IG N(DRIL ING I). LED METH	O D IOD	LYMPIAN LC AN KOCH MW-5 MC 11/10/99 ST HOLLOW STEM AUGER SA	DCATION DNITORING WELL NO TART 2:30 pm FIN MPLING METHOD	14 Ai MW-5 IISH 5: SPLIT SP4	135 Webste lameda, Ca 00 pm DON	r Street lifornia ELEVATION LOGGED BY DRILLED BY	NA feet msl Walter Cuculic West Hazmat Drilling, Inc.
DEPTH BELOW SURFACE	C	SAMP OLLE TPHg ppm	CTED SAMPLE	LITHOLO	GY	UNIFIED SOIL CLASSI- FICATION	GRAPHIC LOG	WELL	CONSTRUCTION DETAILS
0 FT [ASPHALT; 3-inches thick		ASPHALT			- STREET BOX WITH CONCRETE SEAL
$ \begin{array}{c} - & 1 \\ - & 2 \\ - & 3 \\ - & 4 \\ - & 5 \\ - & 6 \\ - & 7 \\ - & 8 \\ - & 9 \\ - & 9 \\ - & 10 \\ \end{array} $			MW-5 @ 6.0 MW-5 @ 9.5	SILTY SAND; (SM); fine-g light brown; moist; no odor estimated permeability.	rained; poorly graded; ; no plasticity, moderate	SM			LOCKING CAP Portland [/1] J-inch diameter blank pvc casing schedule 40 Bentonite Scal
				SAND; (SP); fine-grained; p tan; damp to wet; no plastici permeability. Bottom of boring at 20 f	oorly graded; ty, high estimated eet bgs	SP			2-inch diameter schedule 40 PVC D.010" slotted easing #2/12 MONTEREY SAND BOTTOM CAP
$ \begin{array}{c} 20 \\ -21 \\ -22 \\ -23 \\ -24 \\ -27 \\ -26 \\ -27 \\ -28 \\ -29 \\ -30 \\ -31 \\ -32 \\ -33 \\ -34 \\ -35 \\ \\ \\ \\ \\ \\ \\ \\ -$				Total depth of monitorin	g well at 20 feet bgs				

\square				C ACCUTITE SOIL BO	ORING	L_J	PAGE 1 OF 1
CLIEN	IT		0	LYMPIAN LOCATION	1	435 Webste	er Street
BORIN DATE DRILL	ig Ni Dril Ing I	0. .LED METH	:30 pm 200N	ELEVATION LOGGED BY DRILLED BY West Hazmat Drilling, Inc			
DEPTH BELOW SURFACE	C	SAMP OLLE TPHg	CTED	LITHOLOGY	UNIFIED SOIL CLASSI- FICATION	GRAPHIC LOG	WELL CONSTRUCTION DETAILS
0 FT		ppm		ASPHALT: 3-inches thick	ASPHALT		STREET BOX WITH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MW-6 @ 5.0	SILTY SAND; (SM); fine-grained; poorly graded; light brown; moist; no odor; no plasticity, moderate estimated permeability.	SM		CONCRETE SEAL LOCKING CAP Portland VII 2-inch diameter blank pre casing schedule 40
$ \begin{array}{c} $			MW-6 @ 9.0	GW SAND; (SP); fine-grained; poorly graded; tan; damp to wet; no plasticity, high estimated permeability. Bottom of boring at 20 feet bgs	SP		2-inch diameter schedule 40 PVC 0.010" slotted casing 92/12 MONTEREY SAND 80TTOM CAP
$ \begin{array}{c} 20 \\ -21 \\ -22 \\ -23 \\ -24 \\ -27 \\ -26 \\ -27 \\ -28 \\ -29 \\ -30 \\ -31 \\ -32 \\ -33 \\ -34 \\ -35 \\ \\ \\ \\ \\ \\ \\ \\ -$				Total depth of monitoring well at 20 feet bgs			

ACCUTITE SOIL BORING LC

	_							à		
PROJE CLIEN	ECT N T	10		OLYMPIAN		1435 W ALAME	/EBSTER EDA, CAL	STREET IFORNIA		
PIEZO DATE DRILLI	METE DRILI NG N	ER NU LED- NETH	0 IODI	B1 2 /11/99 IYDRO-PUNCH	MONITORING WELL. START SAMPLING METHOD	N0 FIN	IISH		ELEVATION LOGGED BY DRILLED BY	SAMI MALAEB ACCUTITE
DEPTH BELOW SURFACE	C C INT	SAMP OLLE OVM ppm	LES CTED SAMPLE ID	LITH	OLOGY		UNIFTED SOIL CLASSI- FICATION	GRAPHIC LOG		
- 0 FT - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 -			B1-4' B1-7.5'	Light brown sands ar medium stiff, medium (no odor of hydrocarl Light brown sands an medium stiff, medium (no odor of hydrocarb	nd gravels (SP), dry, n dense bons or staining) d gravels (SP), moist, dense bons or staining)	43581	SP			

ACCUTITE SOIL BORING LP3

							4			
PRO.IF		10.				1435 W	/EBSTER	STREET		'
CLIEN	т.			OLYMPIAN		ALAM	EDA, CAL	IFORNIA		
PIEZO	MET		0	B2		N0			ELEVATION	'
DATE	DRIL	LED		2 /11/99	- START	FIN	11SH		LOGGED BY	SAMI MALAEB
DBILL				HYDRO-PUNCH	SAMPLING METHO	יי י כ				ACCUTITE
			.05							
DEPTH BELOW SURFACE	c	SAMP OLLE	LES CTED	LIT	THOLOGY		UNIFIED SOIL CLASSI- FICATION	GRAPHIC LOG		
	INT	IOVM ppm	ID SAMPLE	•						
0 FT					· · · · · · · · · · · · · · · · · · ·					
								•••		
2										
3								• •		
-4			B2-4'	Light brown sands	and gravels (SP), dry,		SP		1	
5		ĺ		medium stiff, medi	um dense					
6				(no odor of hydroc:	arbons or staining)					
7										
8			B2-7.5'	Light brown sands	and gravels (SP), moist,		SP	•••	1	
<u> </u>				meaium stiff, mediu (no odor of hydroca	m dense rbons or staining)			••••		
10		Í		(no outri or nyuroeu	, bons of standing ,					
11										
- 10								• • •		
— 12 13								• •		
13										
— 14 15			B2-15'	I ight brown sands (and gravels (SP) maist		SP	• •		
15			D 2-13	medium stiff, mediu	m dense		51			
				(no odor of hydroca	rbons or staining)					
-										
-										
_										
										
- :										
									1	
_										
	ł								1	
_									1	
_									1	
-									1	
_										
-										
-										
-									1	
-										
- I										
									1	
-										· · · · ·
-]	
_						1435B2				

ACCUTITE SOIL BORING L に

/

-			د ان بر می از م							
PROJE CLIEN PIEZO DATE DRILLI	ECT N IT METE DRILL ING M	10 :R N0 _ED IETH()2 ODH	DLYMPIAN B3 /11/99 YDRO-PUNCH	LOCATION 14 A MONITORING WELL N START SAMPLING METHOD	435 WEB LAMED/ 0 – FINISI	ISTER (STREET FORNIA	ELEVATION LOGGED BY DRILLED BY	SAMI MALAEB ACCUTITE
DEPTH BELOW SURFACE	C	SAMPI OLLEC OVM ppm	LES CTED SAMPLE ID	LITH	HOLOGY	U, C Flu	NIFIED SOIL :LASSI- CATION	GRAPHIC LOG		
-0 FT -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -			B3-4' B3-6' B3-12'	Light brown sands a medium stiff, mediu (no odor of hydroca) Light brown sands a medium stiff, mediu (no odor of hydroca) Light brown sands a medium stiff, mediu (no odor of hydroca)	and gravels (SP), dry, im dense irbons or staining) and gravels (SP), moist, m dense rbons or staining) and gravels (SP), moist, m dense rbons or staining)	143583	SP SP			

ACCUTITE SOIL BORING LC

6139

PROJI CLIEN PIEZO DATE DRILL	PROJECT N0. CLIENT OLYMPIAN PIEZOMETER N0. B4 DATE DRILLED 2 /11/99 DRILLING METHOD HYDRO-PUNCH				LOCATION MONITORING W START SAMPLING METI	1435 V ALAM ELL NO. FII HQD	NEBSTER EDA, CAL NISH —	STREET IFORNIA	ELEVATION LOGGED BY DRILLED BY	SAMI MALAEB ACCUTITE
DEPTH BELOW SURFACE	C INT	SAMF OLLE	PLES CTED SAMPLE ID	LITI	HOLOGY		UNIFIED SOIL CLASSI- FICATION	GRAPHIC LOG		
0 FT 1 2 			B4-4' B4-8' B4-12'	Light brown sands a medium stiff, mediu (no odor of hydroca Light brown sands a medium stiff, medium (no odor of hydrocar Light brown sands an medium stiff, medium (no odor of hydrocar	and gravels (SP), dry, m dense rbons or staining) and gravels (SP), mois m dense rbons or staining) nd gravels (SP), moist n dense bons or staining)	t,	SP SP SP			
						143584				

			BORING/WELL NUMBER		
TEC ACCI	JIIIE		B1		
CLIENT: LOCATION: DRILLING CO: DRILLING METHOD BORING DIAMETER GEOLOGIST: PE/RG:	Olympian 1435 Webster St., Alan Gregg Geoprobe R: 2-inch D.Gregory S.Malaeb PE#60888	TOTAL DEPTH: WELL DEVELOPMENT GROUND SURFACE EN TOP OF CASING ELEV SCREENED INTERVAL FIRST ENCOUNTERED STATIC WATER	<u>15 fbg</u> LEVATION: <u>N/A</u> /ATION: _: D WATER <u>10 fbg</u>		
DATE STARTED: 6/	27/01 DATE COMPL	ETED: <u>6/27/01</u>			
DEPTH (ft) Sample Interva Sample ID	Water Level Moisture Estimated K	ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ	WELL INSTALLATIO		
0.0 -5.0 -10.0 -15.0 -15.0 -25	Damp High	ASPHALT: SAND: (SP): Moderate yellowish brown (10YF 95% fine grained sand. ND Hydropunch EOH	25/4); 5% silt,		

<u>1 of 1</u>

and the second

TEC ACCU	TITE			BORING LOG	BORI	NG/WELL	NUMBER
CLIENT: LOCATION: DRILLING CO: DRILLING METHOD: BORING DIAMETER: GEOLOGIST: PE/RG: DATE STARTED: 6/27/	Olympian 1435 Webs Gregg Geoprobe 2-inch D.Gregory S.Malaeb F 01 DAT	ster St., Alar PE#60888 FE COMPL	neda, C	TOTAL DEPTH: WELL DEVELOPMENT GROUND SURFACE E TOP OF CASING ELEN SCREENED INTERVA FIRST ENCOUNTERE STATIC WATER : 6/27/01	L EVATION: ATION: L: D WATER 1	<u>B2</u> <u>15 fbg</u> <u>N/A</u>	
DEPTH (ft) Sample Interval Sample ID	Water Level Moisture	Estimated K	TPHg ppm	DESCRIPTION		USCS	WELL INSTALLATION
0.0 -5.0 -10.0 -15.0 -20.0 -25.0 -	Damp Z Wet	High High High	ID	ASPHALT: SILTY SAND: (SM): Dark yellowish brown (1 silt, 85% fine grained sand. SAND: (SP): Moderate yellowish brown (10YF 95% fine grained sand, moderate plasticity SAND: (SP): Moderate yellowish brown (10YF 95% fine grained sand. Hydropunch EOH	/ OYR4/2); 15% L5/4); 5% silt, 		

<u>1 of 1</u>

							POPING LOC	BORIN	IGWELL	NUMBER
l.		ALL					BURING LUG		B3	
CLI LO DR DR BO GE PEJ DA	IENT: CATIOI RILLING RING E OLOGI /RG: TE STA	N: CO: METHOE DIAMETEI ST: ARTED: <u>6/</u>	<u>Oi</u> 14 Gr D: <u>Ge</u> R: <u>2-i</u> <u>D.</u> <u>S.M</u> 27/01	ympian 35 Webs coprobe inch Gregory Malaeb P DAT	<u>ter St., Al</u> <u>E#60888</u> E COMF	ameda, C. PLETED:	TOTAL DEPTH: MULL DEVELOPMEN' GROUND SURFACE E TOP OF CASING ELEN SCREENED INTERVA FIRST ENCOUNTERE STATIC WATER	1 ELEVATION: № /ATION: L: D WATER 1	<u>5 fbg</u> <u>V/A</u> <u>0 fbq</u>	
DЕРТН (ft)	Sample Interval	Sample ID	Water Level	Moisture	Estimated K	TPHg ppm	DESCRIPTION		USCS	WELL INSTALLATION
0.0 -5.0 -10.0 -15.0 -20.0		B3-9		Damp Moist Wet	High High High	ND	ASPHALT: ROAD BASE: Road Base Gravel SILTY SAND: (SM): Dark yellowish brown (1 silt, 85% fine grained sand. SAND: (SP): Moderate yellowish brown (10YI 95% fine grained sand. Hydropunch EOH	0YR4/2); 15%	нненне неннен 	

· . ~

Á	EC		UTI	TE	<u> </u>	· ·	BORING	LOG	BORI	NG/WELL	NUMBER
CLIEN LOCA DRILL DRILL BORII GEOL PE/RC DATE	IT: TION LING LING NG E .OGI 3: STA	N: CO: METHOD DIAMETER ST: RTED: 6/	<u>OI</u> <u>14</u> <u>G</u> <u>G</u> <u>C</u> <u>C</u> <u>C</u> <u>S.N</u> 27/01	ympian 35 Webs regg coprobe inch Gregory Malaeb P DAT	<u>ter St., Al</u> <u>E#60888</u> E COMI	<u>ameda, C</u>	A : <u>6/27/01</u>	TOTAL DEPTH: WELL DEVELOPMENT GROUND SURFACE E TOP OF CASING ELEN SCREENED INTERVA FIRST ENCOUNTERE STATIC WATER	I ELEVATION: I VATION: L: D WATER 9	<u>14 fbg</u> <u>N/A</u> <u>0.5 fbg</u>	
DEPTH (ft)	Sample Interval	Sample ID	Water Level	Moisture	Estimated K	TPHg ppm	DESC	RIPTION		USCS	WELL INSTALLATION
0.0 - -5.0 - -10.0 - - -15.0 - - - 		B4-9		Damp Moist Wet	High High High	ND	ASPHALT: SAND: (SP): Mc 95% fine grained Hydropunch EOH Refusal	oderate yellowish brown (10Y) sand.	R5/4); 5% silt,		

<u>1 of 1</u>

ATTACHMENT B

.

GROUNDWATER TRAVEL VELOCITY CALCULATION

CALCULATIONS – Groundwater Travel Velocity

SEEPAGE VELOCITY

Equation:

$$v_s = \frac{k i}{n_e} = \frac{0.57 ft / day \times 0.005}{0.2} = 0.014 ft / day = 5.1 ft / yr$$

where

v_s = seepage velocity
k = hydraulic conductivity
i = hydraulic gradient
ne = effective porosity

Assuming k = 0.57 ft/day (literature value for find sand, obtained from Domenico, P.A. and F.W. Schwartz, 1990. "Physical and Chemical Hydrogeology", John Wiley & Sons, New York, 824 p.)

i = 0.005 (determined from quarterly groundwater monitoring data)

.

 $n_e = 0.20$ (literature value, Driscoll, 1989)

CALCULATED SEEPAGE VELOCITY - 5.1 ft/yr

ATTACHMENT C

SITE AVERAGED CONCENTRATION CALCULATION

Data File	S:\1 Envir	onmental. D	Pept\Active S	Sites\Olymp	i Variable:	Benzene_	S	
h h h a n a	Raw Statisti	CS			Normal L	Distribution	ſest	-
Number o	T Valid Sam	pies	22	Shapir	D-VVIIK Test	Statisitic	_	0.232156
Minimum	r Unique Sa	imples	4	Snapire			9	0.911
Movimum			0.0015	Data n	ot normal a	t 5% signific	ance level	1
Moon	·		3.4	05			e el Distribui	4' \
Modian			0.102091	Ctudor		suming Nori	mai Distribu	
Standard	Doviation		0.0025	Studen	IS-IUCL			0.427565
Variance			0.723031		Comr	na Diatributi	an Taat	
Coefficien	t of Variatio	n [.]	0.525045		et Statistic		on rest	7 215907
Skewness			4.404330		Critical Va		·	1.315097
OKCWIIC33			4.001323		et Statistic	liue		0.693319
•	Gamma S	tatistics		K-S 10	Critical Va	luo		0.30074
k hat	Gamma G		0 196257	Data de	not follow	namma dist	ribution	0.20000
k star (bia	s corrected)		0.199798	at 5% s		javal		
Theta hat	5 concoled)		0.100700	a. 070 a	significance			
Theta star			0.811274	95% [ICI s (Assu	ming Gamm	na Distributio	<u>2n)</u>
nu hat			8 635325	Annrox	imate Gam	ma UCI		0 445225
nu star	<u> </u>	······································	8.791114	Adjuste	d Gamma I			0.482547
Approx.Ch	i Square Va	alue (.05)	3.200538			002		0.102011
Adjusted L	evel of Sign	nificance	0.0386		Lognorn	nal Distribut	ion Test	
Adjusted C	hi Square	/alue	2.952998	Shapiro	-Wilk Test	Statisitic		0.41513
	<u>!-</u>		1	Shapiro	-Wilk 5% C	ritical Value)	0.911
Log-tra	nsformed S	tatistics		Data no	ot lognorma	l at 5% sign	ificance leve	3
Minimum o	of log data		-6.50229		U	J_		
Maximum	of log data		1.223775	95%	UCLs (Ass	uming Loan	ormal Distril	oution)
Mean of lo	g data		-5.580413	95% H-	UCL	<u> </u>		0.071567
Standard [Deviation of	log data	1.750816	95% Cł	nebyshev (N	IVUE) UCL		0.045381
Variance o	f log data	·	3.065355	97.5%	Chebyshev	(MVUE) UC	L	0.058519
				99% Cł	nebyshev (N	IVUE) ÚCL		0.084325
	•							
					95% Non-p	arametric U	CLs	
				CLT UC	CL			0.415857
				Adj-CL ⁻	Г UCL (Adjı	isted for ske	ewness)	0.580386
				Mod-t L	JCL (Adjuste	ed for skew	ness)	0.453228
				Jackkni	fe UCL			0.427565
				Standar	rd Bootstrap	UCL		N/R
				Bootstra	ap-t UCL			N/R
F	RECOMME	NDATION		Hall's B	ootstrap UC	<u>L</u>		N/R
Data a	are Non-par	ametric (0.0)5)	Percent	ile Bootstra	p UCL		N/R
	<u></u>			BCA Bo	otstrap UC	<u> </u>		N/R
Use 99% (Inebyshev	(Mean, Sd)	UCL	95% Ch	ebyshev (N	lean, Sd) U	CL	0.834576
				97.5% (Chebyshev	(Mean, Sd)	UCL	1.125561
				99%	% Chebyshe	ev (Mean, S	d) UCL	1.697145

.

Data File	S:\1 Enviro	onmental. D	ept\Active S	ites\Olymp	Variable:	Benzene_	GW	
	our Otoffat		- <u></u>	1		· · · · · · -		
R R	aw Statistic				Normal D	istribution I	est	0.405040
Number of	Valid Sam	pies	24	Shapiro	-Wilk lest	Statisitic		0.425818
Number of	Unique Sa	mples	11	Shapiro	-Wilk 5% C	ritical Value	; 	0.916
Minimum			0.25	Data no	ot normal at	5% signific	ance level	
Maximum			5200					
Mean		**	408.8271	959	% UCL (Ass	uming Norr	nal Distribut	ion)
Median	· · · · · · · · · · · · · · · · · · ·		0.25	Studen	t's-t UCL			791.6388
Standard D	Deviation	····	1094.24					
Variance			1197362		Gamm	na Distributi	on Test	
Coefficient	of Variatio	n	2.676536	A-D Te	st Statistic			2.931411
Skewness			3.984542	A-D 5%	Critical Val	ue		0.908363
				K-S Te	st Statistic			0.308926
	Gamma St	tatistics		K-S 5%	Critical Val	ue		0.198259
k hat			0.166788	Data do	not follow g	gamma dist	ribution	
k star (bias	corrected)		0.173717	at 5% s	ignificance l	level		
Theta hat			2451.179					
Theta star			2353.406	95% L	ICLs (Assur	ning Gamm	a Distributio	on)
nu hat			8.005819	Approxi	mate Gamm	na UCL		1162.75
nu star			8.338425	Adjuste	d Gamma L	JCL		1257.76
Approx.Chi	Square Va	alue (.05)	2.93182					
Adjusted Le	evel of Sigr	ificance	0.0392		Lognorm	al Distribut	ion Test	
Adjusted C	hi Square \	/alue	2.710353	Shapiro	-Wilk Test S	Statisitic		0.743115
				Shapiro	-Wilk 5% C	ritical Value		0.916
Log-trar	sformed S	tatistics		Data no	t lognormal	at 5% signi	ficance leve	el l
Minimum o	f log data		-1.386294		•	•		
Maximum o	of log data		8.556414	95%	UCLs (Assu	iming Logn	ormal Distrib	oution)
Mean of log	data		1.476718	95% H-	UCL			842066.7
Standard D	eviation of	log data	3.689709	95% Cł	ebyshev (M	IVUE) UCL		4850.293
Variance of	log data		13.61395	97.5% (Chebyshev ((MVÚE) UC	L	6515.623
				99% Cł	ebyshev (M	VUE) ÚCL		9786.84
			····		•	,		
					95% Non-pa	arametric U	CLs	
				CLT UC	Ľ			776.223
				Adj-CL	UCL (Adiu	sted for ske	wness)	970.3385
				Mod-t L	CL (Adjuste	ed for skewi	ness)	821.9169
				Jackkni	fe UCL		·	791.6388
				Standar	d Bootstrap	UCL		775.9761
				Bootstra	ap-t UCL			1417.732
R	ECOMME	NDATION	·····	На	Il's Bootstra	p UCL		1941.678
Data a	re Non-par	ametric (0.0)5)	Percent	ile Bootstra	DUCL		837.5
	I	· · ·		BCA Bo	otstrap UCI			1100.925
Use ł	Hall's Boots	strap UCL		95% Ch	ebvshev (M	lean. Sd) U	CL	1382.435
		•		97.5% (Chebyshev (Mean Sd)	UCL	1803.715
In case	Hall's Boot	strap metho	od vields	99% Ch	ebyshev (M	lean, Sd) U	CL	2631.24
an erratic	, unreasona	ably large U	CL value,		.,			
use 99%	% Chebysh	ev (Mean, S	Sd) UCL					

Data File S:\1 E	nvironmental. D	ept\Active S	Sites\Olymp	Variable:	MTBE_GV	V	
Raw Sta	atistics			Normal D	istribution T	Test	
Number of Valid	Samples	24	Shapiro	-Wilk Test	Statisitic		0.474523
Number of Uniqu	e Samples	17	Shapiro	-Wilk 5% C	ritical Value	9	0.916
Minimum		0.25	Data no	ot normal at	5% signific	ance level	
Maximum		4000					
Mean	···	355.9854	959	<u>% UCL (Ass</u>	uming Norr	mal Distribut	tion)
Median		3.5	Studen	t's-t UCL			661.819
Standard Deviation	on	874.2036					
Variance		764231.9		Gamm	a Distributi	on Test	
Coefficient of Var	iation	2.455729	A-D Te	st Statistic			1.550862
Skewness		3.527586	A-D 5%	Critical Val	ue		0.892181
			K-S Te	st Statistic			0.225803
Gamn	na Statistics		K-S 5%	Critical Val	ue		0.196906
k hat		0.203712	Data do	not follow g	gamma dist	ribution	
k star (bias correc	cted)	0.206026	at 5% s	ignificance l	level		
Theta hat		1747.493					
Theta star		1727.868	95% L	ICLs (Assur	ning Gamm	na Distributio	on)
nu hat		9.778179	Approxi	mate Gamn	na UCL		909.2431
nu star		9.88924	Adjuste	d Gamma L	JCL		975.1526
Approx.Chi Squa	re Value (.05)	3.87182					
Adjusted Level of	Significance	0.0392		Lognorm	al Distribut	ion Test	
Adjusted Chi Squ	are Value	3.610128	Shapiro	-Wilk Test S	Statisitic		0.888237
			Shapiro	-Wilk 5% C	ritical Value)	0.916
Log-transform	ed Statistics		Data no	t lognormal	at 5% signi	ificance leve	el
Minimum of log d	ata	-1.386294					
Maximum of log o	lata	8.29405	95%	UCLs (Assi	iming Logn	ormal Distril	oution)
Mean of log data		2.272703	95% H-	UCL			181613.3
Standard Deviation	on of log data	3.312431	95% Ch	ebyshev (M	IVUE) UCL		4030.876
Variance of log da	ata	10.9722	97.5% (Chebyshev (MVUE) UC	L.	5396.77
		1	99% Ch	ebyshev (M	VUE) ÚCL		8079.804
					· · · · · · · · · · · · · · · · · · ·		· · · · · ·
				95% Non-pa	arametric U	CLs	
			CLT UC	Ľ			649.5031
			Adj-CL7	UCL (Adju	sted for ske	ewness)	786.7995
			Mod-t U	CL (Adjuste	ed for skewi	ness)	683.2345
			Jackkni	feUCL			661.819
			Standar	d Bootstrap	UCL		639.6447
			Bootstra	ap-t UCL			1132.46
RECON	MENDATION		Ha	ll's Bootstra	p UCL		1624.059
Data are Nor	n-parametric (0.0)5)	Percent	ile Bootstra	0 UCL		667.3229
	`		BCA Bo	otstrap UCL	_		809.1229
Use Hall's Bo	otstrap UCL		95% Ch	ebyshev (M	ean, Sd) U	CL	1133.814
	•		97.5% (Chebyshev (Mean, Sd)	UCL	1470.381
In case Hall's	Bootstrap metho	d yields	99% Ch	ebyshev (M	ean, Sd) Ú	CL	2131.501
an erratic, unrea	sonably large U	CL value,	·	`			
use 99% Chel	byshev (Mean, S	d) UCL					

ATTACHMENT D

RISK CALCULATION

RBCA Tool Kit for Chemical Releases, Version 1.3b

		RBCA SI	TE ASSES	SMENT			Baseline	Risk Su	mmary-Ail	Pathways
Site Name: F Site Location	ormer Olymp : 1435 Webst	ian Service S ter Street, Ala	Station ameda, CA		Completed E Date Comple	ly: J.Heisler eted: 18-Aug-	-05	····	<u>_</u>	1 of
			TIER 2	BASELIN	NE RISK SU	MMARY T	ABLE			
		BASELINE	CARCINOG	ENIC RISK			BASELI	NE TOXIC I	EFFECTS	
	Individual	COC Risk	Cumulativ	e COC Risk	Risk	Hazard	Quotient	Haza	rd Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Totai Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE P	PATHWAYS							.	·····
Complete:	6.4E-7	1.0E-6	6.5E-7	1.0E-6		1.0E-3	1.0E+0	1.0E-3	1.0E+0	
NDOOR AIR E	XPOSURE PA	THWAYS								I
Complete:	3.5E-5	1.0E-6	3.5E-5	1.0E-6		5.6E-2	1.0E+0	5.6E-2	1.0E+0	
SOIL EXPOSU	RE PATHWAY	′S					L <u> </u>		· · · · · · · · · · · · · · · · · · ·	.
Complete:	1.8E-6	1.0E-6	1.8E-6	1.0E-6		1.6E-2	1.0E+0	1.6E-2	1.0E+0	
ROUNDWAT	ER EXPOSURI	E PATHWAYS					·		J	I
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
URFACE WA	TER EXPOSU	RE PATHWAY	′S						-A	
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
		WAY (Maxim	um Values Fr	om Complete	Pathways)		·····			•
	3.5E-5	1.0E-6	3.5E-5	1.0E-6		5.6E-2	1.0E+0	5.6E-2	1.0E+0	
	Indoc	or Air	Indo	or Air		Indo	or Air	Indo	or Air	

RBCA SITE ASSESSMENT

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

		Representa	ative COC Concentration		
CONSTITUENT	Gro	undwater	Soils	s (9 - 11 ft)	
	value (mg/L)	note	value (mg/kg)	note	
Benzene*	1.9E+0		1.7E+0		
Methyl t-Butyl ether*	1.6E+0		0.0E+0		
* = Chemical with user-spe	cified data				
Site Name: Former Olympian Se	ervice Station		Date Completed: 18-A	ug-05	
Site Location: 1435 Webster Str	reet, Alameda, CA		Job ID:		
Completed By: J.Heisler					

RBCA Tool Kit for Chemical Releases, Version 1.3b

	RI	BCA SI	TE AS	SESSM	IENT				Input Pa	arameter S	Bumma	ry
Site Name: Former Olympian Service Station					Completed By:	J.Helsler		Job ID:				
She Eocation. 1455 Webster Street, Atameda, CA					Date Complete	ed: 18-Aug-05						1 OF 1
Exposure Parameters		Residential		Commerc	lal/industrial	Surfac	e Parameters	General	Construction			(Units)
	Adult	<u>(1-6yrs)</u>	<u>(1-16 vrs)</u>	Chronic	Construc.	A	Source zone area	1.3E+3	1.3E+3	•		(ft^2)
AT Averaging time for bat service (yr)	/0					W	Length of source-zone area parallel to wind	3.6E+1	3.6E+1			(ft)
BW Body weight (//g)	30			25	1	VV _{gw}	Length of source-zone area parallel to GW flow	NA				(ft)
ED Experies duration (ur)	70	15	35	70		Uatr	Ambient air velocity in mixing zone	6.4E+5				(ft/d)
s Averaging time for yoopr flow (yr)	30	6	16	25	1	δ _{air}	Air mixing zone height	6.6E+0				(ft)
FE Exposite frequency (days/yr)	350			25	1	P _a	Areal particulate emission rate	NA				(g/cm*2/s)
EFp Exposure frequency for dermal exposure	350			250	180	L _{SS}	I hickness of affected surface soils	1.0E+1				(ft)
IR. ingestion rate of water (L/day)	330			230		<u></u>						
IR. ingestion rate of soli (ma/dev)	100	200		1	400	Surface	Soll Column Parameters	Value				(Units)
SA Skin surface area (dermal) (cm^2)	5800	200	2022	50	5800	n _{cap}	Capillary zone thickness	1.6E-1				(ft)
M Soli to skin adherence factor	1		2025	3000	5600		Vedose zone thickness	8.8E+0				(ft)
ET wim Swimming exposure time (hr/event)	3					P 6	Soli Buik density	1./E+0				(g/cm^3)
EV _{ewim} Swimming event frequency (events/vr)	12	12	12			100	Praction organic carbon	1.UE-4				(-)
IR win Water ingestion while swimming (L/hr)	0.05	0.5	14	1		of K	Vortical budraulia conductivity	4.1E-1				(-)
SA _{awim} Skin surface area for swimming (cm ²)	23000	0.0	8100		1	Cvs V	Venet Bermechiller	1.0E-2				(cm/s)
IR _{fish} Ingestion rate of fish (kg/vr)	0.025		0100			17	Perth to groundwater	1.16-11				(ft^2)
Flish Contaminated fish fraction (unitiess)	1				1	L.	Depth to for of affected solls	9.0E+0				(ft)
			·····-	-l		Lhara	Depth to have of effected solls	9.0E+0				(π)
Complete Exposure Pathways and Receptors	On-site	Off-site 1	Off-site 2	1 ·		-base	Thickness of affected solls	2.05.0				(π)
Groundwater:	1			1				2.0E+0				(11)
Groundwater Ingestion	None	None	None			P11	Congroundwater pri	0.0E+U		formed a film		(-)
Soll Leaching to Groundwater Ingestion	None	None	None			e.,	Volumetric water content	capitary 0.360	vapose	roundation		
				1		θ,	Volumetric air content	0.305	0.00	0,100		
Applicable Surface Water Exposure Routes:	·····			1				0.041	0.00	0.220		()
Swimming			NA	1		Buildin	n Parameters	Booldertio	Commercial			
Fish Consumption			NA			L	Building volume/area ratio	6 56 540	NA			(Units)
Aquatic Life Protection			NA			AL	Foundation area	7.535+2	NA			(11)
						X	Foundation perimeter	1 12E+2	NA			(11"2)
Soli;				1		ER	Building all exchange rate	2 405-1	NA			(11)
Direct ingestion and Dermal Contact	Com./Constr.					Lerv	Foundation thickness	4 925-1	NA			(1/0)
						Zerk	Depth to bottom of foundation slab	4.92E-1	NA			(11)
Outdoor Air:			·	1			Enundation crack fraction	1.00E-3	NA			(11)
Particulates from Surface Soils	None	None	None	1		dP	indoor/outdoor differential pressure	0.00E+0	NA			(-)
Volatilization from Solls	Res./Constr.	None	None			ä,	Convective air flow through slab	0.00E+0	NA NA			(g/cm/s*2)
Volatilization from Groundwater	Residential	None	None									(10.300)
						Ground	water Parameters	Value				(linite)
Indoor Air:				1		δ _{gw}	Groundwater mixing zone depth	1 NA				(01113)
Volatilization from Subsurface Solls	Residential	NA	NA			1 4	Net groundwater infiltration rate	NA				(in/vr)
Volatilization from Groundwater	Residential	NA	NA			Ugw	Groundwater Dercy velocity	NA				(cm/s)
					_	Vgw	Groundwater seepage velocity	NA				(cm/s)
Receptor Distance from Source Media	On-site	Off-site 1	Off-site 2	(Units)		K,	Saturated hydraulic conductivity	NA				(cm/s)
Groundwater receptor	NA	NA	NA	(ft)	1	[i	Groundwater gradient	NA				(-)
Soil leaching to groundwater receptor	NA	NA	NA	(ft)	ł	S.,	Width of groundwater source zone	NA				(ff)
Outdoor air innalation receptor	0	NA	NA	(ft)		Sd	Depth of groundwater source zone	NA				(ft)
					-	θ _{eff}	Effective porosity in water-bearing unit	NA				(-)
i arget Health Risk Values	Individual C	umulative				f _{oc-sat}	Fraction organic carbon in water-bearing unit	NA				ē I
IR ab larget Risk (class A&B carcinogens)	1.0E-6	1.0E-6				pH _{sat}	Groundwater pH	NA				(-)
TRe Target Risk (class C carcinogens)	1.0E-5						Biodegradation considered?	NA				
THQ Target Hazard Quotient (non-carcinogenic risk)	1.0E+0	1.0E+0										
Hadeling Ontions												
				1		Transp	ort Parameters	Off-site 1	Off-site 2	Off-site 1	Off-site 2	(Units)
NDVA lief	Lier 2 Surface A sub	(1	ł		Lateral	Groundwater Transport	Groundwa	ter ingestion	Soil Leachin	a to GW	
Indeer els volatilization medel	SUTTRCE & SUDSUF	ace models				αx	Longitudinal dispersivity	NA	NA	NA	NA	(ft)
	Jonnson & Ettinge	er model				αγ	Transverse dispersivity	NA	NA	NA	NA	(ft)
Son addening model	INA					α	Vertical dispersivity	j NA	NA	NA	NA	(ft)
Air divides factor	NA NA					Lateral	Outdoor Air Transport	Soil to Outo	<u>loor Air Inhai,</u>	GW to Outdoo	r Air Inhal,	
Groundwater dilution-attenuation factor	NA NA					σy	Transverse dispersion coefficient	NA	NA	NA	NA	(ft)
Groundwater andhorr-attendation factor	NA			J		σz	Vertical dispersion coefficient	NA	NA	NA	NA	(ft)
						ADF	Air dispersion fector	NA	NA	NA	NA	(-)
						Burder -	Water Berometere					
NOTE: NA = Not applicable						Sunface	Surface unter flourate	1	Uff-site 2			(Units)
·····						NAV.	Midth of GNA nume at SNA discharge		NA			(ft^3/d)
						νν _{pi} δ _m	Thickness of GW plume at SW discharge		NA NA			(π) (#\
			· · · · · · · · · · · ·			DF.	Groundwater-to-surface water dilution factor	1	NA			
						L off		1	11/1		1	(7)

CHEMICAL DATA FOR SELECTED COCS

Physical Property Data

			Molecul	ar		Diffu Coeffi	ision clents		I	og (Koc) or log(Kd)		Henry	s Law Constant		Vapor Pressur	e	Solubili	ty			
			Weigh	t	in air		in wate	r	(@ 20 - 25 C)		(@	20 - 25 C)		(@ 20 - 25	C)	(@ 20 - 25	iC)			
• ···· ·	CAS		(g/mole)	(cm2/s)		(cm2/s)	•		log(L/kg)		(atm-m3)			(mm Hg)	(mg/L)		acid	base	
Constituent	Number	type	MW	ref	Dair	ref	Dwat	ref		partition	ref	mol	(unitless)	ref		ref		ref	рКа	nKh	ref
Benzene*	71-43-2	A	78.1	PS	8.80E-02	PS	9.80E-06	PS	1.77	Koc	PS	5.55E-03	2.29E-01	PS	9.52E+01	PS	1 75E+03	PS I			
Methyl t-Butyl ether*	1634-04-4	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Koc	A -	577E-04	2.385-02		2 49E+02		4 80E+04				
* = Chemical with user-specif	ied data						······						2.002.02		2.401.02		4.000.104	<u> </u>			
Site Name: Former Olympian	Service Station				••••	Comp	leted Bv: J.Hei	sler						ioh iD	· · · · ·				··· ·		
Site Location: 1435 Webs	ter Street, Alam	eda, CA				Date	Completed:	8-Aug	-05					00010	•						

Page 1 of 4

CHEMICAL DATA FOR SELECTED COCS

Toxicity Data

-		Referen	ce Dose		Reference C	ionc.		Slope F	actors		Unit Risk Fr	actor		
		(mg/k	g/day)		(mg/m3)			1/(mg/	(g/day)		1/(µg/m3)			
			(mg/kg/day)						1/(mg/kg/day)				EPA Weight	is
Constituent	Oral BfD aral		Dermai		Inhalation		Oral		Dermal		Inhalation		of	Constituent
	RID_oral	rei	RID_dermal	ret	RfC_inhai	ref	SF_oral	ref	SF_dermai	ref	URF_inhal	ref	Evidence	Carcinogenic ?
Benzene	3.00E-03	CA	-	-	6.00E-02	CA	1.00E-01	CA	1.00E-01	CA	2.90E-05	CA	A	TRUE
Methyl t-Butyl ether*	8.60E-01	CA	8.00E-03	0.01	8.00E+00	CA	1.80E-03	CA			2 60E-07	CA		TRUE
* = Chemical with user-specified						l					2.002 07			
Site Name: Former Olympian Se												•		
Site Location: 1435 Webster														

.

Page 2 of 4

RBCA Tool Kit for Chemical Releases, Version 1.3b

,

Miscellaneous Chemical Data

	Ma	ximum	Time-Wei Average We	ghted orkplace	Aquatic Li Prot. Crite	Biocon- centration		
	Contan	ninant Level	Criter	ia			Factor	
Constituent	MCL (mg/L)	ref	TWA (mg/m3)	ref	AQL (mg/L)	ref	(L-wat/kg-fish)	
Benzene*	5.00E-03	-	3.25E+00	-	1		12.6	
Methyl t-Butyl ether*	1.30E-02	-	6.00E+01	NIOSH	1.80E-01		1	
* = Chemical with user-specifi	ed							
Site Name: Former Olympian	Se							
Site Location: 1435 Webst	er							

Page 3 of 4

CHEMICAL DATA FOR SELECTED COCS

Miscellaneous Chemical Data

	Dermat	Water Dermal Permeability Data												
	Relative	Dermal	Lag time for	Critical	Relative	Water/Skin			Detection	Limits		Hal	f Life	
	Absorp.	Permeability	Dermal	Exposure	Contr of Derm	Derm Adsorp		Groundw	ater	Soli		(First-Or	der Decay)	
	Factor	Coeff.	Exposure	Time	Perm Coeff	Factor		(mg/L)		(mg/kg)		(days)		
Constituent	(unitiess)	(cm/hr)	<u>(hr)</u>	(hr)	(unitless)	(cm/event)	ref		ref		ref	Saturated	Unsaturated	ref
Benzene*	0.5	0.021	0.26	0.63	0.013	7.3E-2	D	0.002	S T	0.005	s	720	720	H
Methyl t-Butyl ether*	0.5	•	-	-	-		. 1				- <u>-</u>	360	180	- <u>''</u> -
* = Chemical with user-specified									L			000	100	· · · · ·
Site Name: Former Olympian Se														<u> </u>
Site Location: 1435 Webster														

Page 4 of 4

RBCA SITE ASSESSMENT

Site Name: Former Olympian Service Station

Chemical-Specific Tier 2 Cleanup Summary

Completed By: J.Heisler

3 of 3

Site Loca	ation: 1435 Webster Street, Alameda, CA	Da	ate Completed: 18-Aug-05	3 01
	Definitions		Chemical Parameter References	
Site-Spec	cific Target Level Concentrations] PS	Standard Provisional Guide for Risk-Based Corrective Action, ASTM PS 104-98.	
SSTLgw	Site-specific target level for groundwater (mg/L)	7 L		
SSTLs	Site-specific target level for soil (mg/kg)	A	Emergency Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release) Sites,
RBELair	Risk-based exposure limit for air (µg/m3)	D	USEPA, Dermal Exposure Assessment: Principles and Applications, ORD, EPA/600/8-91/0	11B.
THQ	Target hazard quotient		· · · · · · · · · · · · · · · · · · ·	
TR	Target risk	н	Howard, Handbook of Environmental Degradation Rates, Lewis Publishers, Chelsea, MI, 19	89
Cross-Me	edia Transfer Factors		EPA Region III Risk Based Concentration Table, EPA Region 3, March 7, 1995.	
VF	Volatilization factor, surface soil to outdoor air (kg-soil/L-air)		USEPA, Test Methods for Evaluating Solid Waste, SW-846, Third Edition, OSWER, Novem	ber 1986.
VEamb	Volatilization factor, subsurface soil to outdoor air (kg-soil/L-air)			
VFwamb	Volatilization factor, groundwater to outdoor air (L-wat/L-air)		TPH Criteria Working Group, 1996.	
	Volatilization factor, subsurface soil to indoor air (kg-soil/L-air)	ТХ	TNRCC Risk-Based Corrective Action for Leaking Storage Tank Sites, January 1994.	
VFween	Volatilization factor, groundwater to indoor air (L-wat/L-air)	3	based on Kow from (2) and DiToro, D. M., 1985."A Particle Interaction Model of Reversible (Organic
LF	Leaching factor, soil to groundwater (kg-soil/L-wat)		Chemical Sorption", Chemosphere, 14(10), 1505-1538. log(Koc) = 0.00028 + 0.983 log(Kov	*)
Cross-Me	edia Transfer Factors		USEPA, 1989: Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF) - USE	PA,
DAF	Dilution-attenuation factor, groundwater (-)		OAQPS, Air Emission Models, (EPA-450/3-87-026).	
DAF _{s/ow}	Dilution-attenuation factor, soil leaching to groundwater (-)	5	Verschueren, Karel, 1983: Handbook of Environmental data on organic Chemicals, Second	Ed., (Van
			nostrand Reinhold Company Inc., New York), ISBN: 0-442-28802-6.	
Physical i	Properties	6	Calculated diffusivity using the method of Fuller, Schettler, and Giddings from (9).	
MW	Molecular weight (g/mol)	7	Calculated diffusivity using the method of Hayduk and Laudie and the reference from (9).	
Sol	Aqueous solubility limit (mg/L)	8	Calculated using Kenaga ang Goring Kow/solubility regression equation reference (9) and K	ow data
Pvap	Vapor pressure (mmHg)			Made
Hatm	Henry's Law constant (atm-m³/mol)	9	Handbook of Chemical Property Estimation Methods, 1982, W.J. Lyman, (McGraw-Hill, New ISBN -0-07-039175-0	York),
рК₄	Acid ionization constant (log[mol/mol])			
рКь	Base ionization constant (log[mol/mol])	10	Calculated from (Pv/Patm)/(solubility/mol wt).	
K∞	Organic carbon/Water partition coefficcient (L/kg)	11	Back calculated from solubility, Note (8) and (3).	
K₄	Soil/Water distribution coeffient (L/kg)	12	Aldrich Chemical Catalog, 1991.	
D _{air}	Molecular diffusion coeffient in air (cm ² /sec)	13	Calculated using Modified Watson Correlation from (9) and normal boiling point.	
D _{wat}	Molecular diffusion coeffient in water (cm*/sec)	_ ¹⁴	USEPA, 1979: Water Related Environmental Fate of 129 Priority Pollutants, Vol.1, USEPA, OWQPS, (EPA-4404-79-029a).	
Toxicity D	Data	15	The Agrochemicals Handbook, (The Royal Society of Chemistry, The University, Notlinghan	n,
Wt of Evd.	. Weight of evidence]	England), ISBN 0-05700-400-0.	
SF。	Oral slope factor for carcinogens (1/[mg/kg/day])	16	Vapor pressure specified at elevated temperature, adjustments to 25C using methods prese	nted by
SFd	Dermal slope factor for carcinogens (1/[mg/kg/day])			000 100
URF	Inhalation unit risk facor for carcinogens (1/[µg/m³])	17	Wauchope, R. D., T. M. Butter, A. G. Hornsby, P. W. M. Augustijn-Beckers, and J.P. Burt, 13 SCS/ARS/CES Pesticide Properties Database for Environmental Decision Making". Review.	392: "Ine sof
RfD。	Oral reference dose (mg/kg/day)		Environmental Contamination and Toxicology, vol 123, 1-155.	
RfD₄	Dermal reference dose (mg/kg/day)			
RfC _t	Innalation reference concentration (mg/m ⁻)	18	Structure and Nomenclature Search System (Version 7 00/7 03) December, 1992.	J).
DormalE	vnosure Parameters	1 20	From Syracuse Research Corporation Calculated Value from pcchem-pccems. 1988. ref no	255435 in
PAF.	Dermal relative absorption factor (mg/mg)	- 1	Enirofate database, Accession no. 105543.	
K	Dermal permeability coeff (cm/br)	23	NIOSH, 1990; Pocket Guide to Chemical Hazards, (U. S. Dept. of Health & Human Services	, Public
tau.	Lag time for dermal exposure (br/event)		Health Service, Centers for Disease Control, National Institute for Occupational Safety and	dealth).
t.	Critical exposure time (br)	1 1		
B	Relative contribution of nermeability coeff (-)	24	Buchter, B. et al., 1989; Correlation of Greundlich Kd and N retention Parameters with Soils	and
5		J	Elements, Soil Science, 148, 370-379.	
Regulator	ry Standards	25	USEPA, 1993: Air/Superfund National Technical Guidance Study series: Estimation of Air In	npacts for
MCL	Maximum contaminant level for drinking water protection (mg/L)	7	Inermal Description Units Used at Superrund Sites, US Environmental Protection Agency, C Quality Planning and Standards, EPA-451/R-93-005	AUCE OF AIL
TWA	Time-weighted average workplace air criterion (mg/m ³)		· · · · · · · · · · · · · · · · · · ·	
AQL	Aquatic life protection criterion (mg/L)	26	NTIS Accession No. PB93-215630, April 1993.	
		27	Based on salt solubilities in Table 3-120, R. H. Perry and D. W. Green, "Perry's Chemical E Handbook" Sixth Edition, (McGraw-Hill, New York), 1973.	ngineering
Miscellan	eous rarameters	ا	Based on self colubilities in Table of Obviant Constants for Instants Company - Min-1	- C C - C - C - C - C - C - C - C - C -
ADL	Analytical detection limit in groundwater (mg/L)	28	Handbook of Chemistry and Physics. 67th edition. (CRC Press. Inc., Boca Raton). 1987.	, GRG
ADL	Analytical detection limit in soil (mg/kg)		······································	
t _{1/2,sat}	Half life, saturated zone (d)		Management and Walkam "Conjuduator Chaminals Dack Bafaranaa" Louis Bublishers Ch	alson MI
T _{1/2,unsat}	Hair life, unsaturated zone (d)		1990.	01308, 141,
Derived Pa	arameters	30	USEPA, 1996: Soil Screening Guidance: Technical Background Doc., (EPA/540/R-95/128)	
н	Dimensionless Henry's Law contant (L-wat/L-air)	1		
Ksw	Soil to pore-water partitioning factor (L-wat/kg-soil)	31	TNRCC Risk Reduction Rule Implementation, July 23, 1998. (update to Reference "TX")	
C _{sat}	Saturated residual conc. in vadose zone soils (mg/kg-soil)	32	USEPA, Method 8270C, Revision 3, "Semivolatile Organic Compounds by GC/MS", Decem	ber 1996.
C _{sat,vap}	Saturated concentration in vapors (mg/m3-air)			
D _{eff,s}	Effective diffusion coeff. in vadose zone soils (cm ² /sec)	33	40 CFR 131.36, July 1, 1997	
D _{eff,crk}	Effective diffusion coeff. in foundation cracks (cm ² /sec)	34	40 CFR 141.23, July 1, 1997	
D _{eff,cap}	Effective diffusion coeff. in capillary zone (cm ² /sec)	35	USEPA, Manual for the Certification of Laboratories Analyzing Drinking Water, EPA 815-B- March 1007	97-001,
D _{eff,ws}	Effective diffusion coeff., water table to ground surface (cm ² /sec)		Maich (99/	
R _{sal}	Retardation factor, saturated zone (-)	36	Calculated using Chiou et al. equation reported in (9); S (µmol/L) from (15).	
Runsat	Retardation factor, unsaturated zone (-)	37	Calculated using Chiou et al. equation reported in (9); S (µmol/L) from (23).	
1 7	Water to skin dermal absorption factor (cm/event)	38	Calculated using Chiou et al. equation reported in (9); S (µmol/L) from (4).	

CA Table J ESL, RWQCB, February 2005 IR USEPA IRIS Database

Electronic Main Menu View/	Submittal Information					
UPLOADING A GE	PLOADING A GEO_REPORT FILE					
YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!						
Facility Name:	JIFFY LUBE					
Global ID:	T0600100766					
<u>Title:</u>	UPDATED SITE CONCEPTUAL MODEL					
Document Type:	Reports - Risk Assessment Related Rpt.					
Submittal Type:	GEO_REPORT					
Submittal Date/Time:	9/30/2005 12:56:29 PM					
<u>Confirmation</u> <u>Number:</u>	7585447013					
Click <u>here</u> to view the document.						
Back to Main Menu						

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE ADMINISTRATOR.