

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201
 Fax: (650) 616-1244

•

RECEIVED

9:54 am, Feb 01, 2012

Alameda County

Environmental Health

www.tecenvironmental.com

Contractor's Lic. #762034

January 30, 2012

Ms. Karel Detterman, P.G.
Alameda County Health Agency
Division of Environmental Protection
1131 Harbor Bay Parkway, 2nd Floor
Alameda. CA 94502

SUBJECT: PERJURY STATEMENT

SITE:

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET

ALAMEDA, CALIFORNIA 94501

FLC # RO0000193

Dear Ms. Detterman:

I declare under penalty of perjury that the information and/or recommendations contained in the attached proposal or report is true and correct.

Thank you for your cooperation and assistance on this project. If you have any questions, feel free to contact me at (650) 596-8950.

Fred Bertetta

Sincere

Responsible Party

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201
• Fax: (650) 616-1244

www.tecenvironmental.com
 Contractor's Lic. #762034

January 30, 2012

Ms. Karel Detterman, P.G. Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

SUBJECT: 2011 OXIDIZER INJECTION PILOT TEST AND SECOND SEMI-ANNUAL

GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501 FLC # RO0000193

Dear Ms. Detterman:

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. is pleased to submit the oxidizer injection pilot test and second semi-annual groundwater monitoring report for the above-referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1214.

Sincerely,

Technology, Engineering & Construction, Inc.

Elise Sbarbori Project Manager

CC:

Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, California 94070

Mr. Jeff Farrar, via email Mr. Ed Firestone, via email

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, California 95540

2011 OXIDIZER INJECTION PILOT TEST AND SECOND SEMI-ANNUAL GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

FLC #: RO0000193

PREPARED FOR:

OLYMPIAN JV
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:

TECHNOLOGY, ENGINEERING & CONSTRUCTION, INC.
PROJECT #: E-480 AND E-521

INJECTION DATES:

OCTOBER 4-5, 2011

SAMPLING DATES:

SEPTEMBER 30, OCTOBER 26-27, DECEMBER 6, DECEMBER 13, 2011

REPORT DATE:

JANUARY 30, 2012

TABLE OF CONTENTS

	<u>Page</u>
1.0	INTRODUCTION1
2.0	SITE DESCRIPTION1
3.0	ENVIRONMENTAL BACKGROUND1
3.1	Site Timeline1
3.2	Site Condition3
4.0	BASELINE AND CONFIRMATION MONITORING AND SAMPLING PROCEDURES3
4.1	Groundwater Monitoring3
4.2	Baseline and Confirmation Soil Sampling4
4.3	Baseline and Confirmation Soil Vapor Monitoring5
4.4	Electronic Laboratory Data Submittal5
5.0	CORRECTIVE ACTION: OXIDIZER INJECTION5
5.1	Oxidizer Injection and Workplan Deviation6
5.2	Injection Monitoring6
6.0	MONITORING RESULTS7
6.1	Groundwater7
6.2	Soil and Grab Groundwater8
6.3	Soil Vapor8
7.0	CONCLUSIONS AND RECOMMENDATIONS9
8.0	LIMITATIONS

TABLES

- 1 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS AND ACTIVITY SCHEDULE
- 2 SUMMARY OF SOIL VAPOR FIELD DATA: INJECTION MONITORING
- 3 INJECTION VOLUMES
- 4 SUMMARY OF HISTORICAL GROUNDWATER ELEVATION DATA
- 5 SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS
- 6 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS: METALS
- 7 SUMMARY OF SOIL ANALYTICAL RESULTS
- 8 SUMMARY OF GRAB GROUNDWATER ANALYTICAL RESULTS
- 9 SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS

FIGURES

- 1 VICINITY MAP
- 2 SITE MAP
- 3 INJECTION VOLUMES AT TARGET LOCATIONS
- 4 GROUNDWATER GRADIENT MAP, SEPTEMBER 30, 2011
- 5 GROUNDWATER GRADIENT MAP, DECEMBER 6, 2011
- 6 PETROLEUM HYDROCARBONS IN SOIL
- 7 PETROLEUM HYDROCARBONS IN GROUNDWATER

CHART

1 MTBE CONCENTRATION TRENDS AND DEPTH TO WATER, MW-8

ATTACHMENTS

- A FIELD DATA SHEETS
- **B** LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION
- C Low Flow Sampling Protocol
- D DRILLING PERMITS
- E SOIL BORING LOGS
- **F** GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 INTRODUCTION

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) conducted the oxidizer injection pilot test and 2011 second semi-annual groundwater monitoring event at the former Olympian Service Station located at 1435 Webster Street, Alameda, California. The site is the location of a subsurface release of petroleum hydrocarbons related to the former gasoline underground storage tanks (USTs) that were removed in 1989.

This report includes the site environmental background, procedures and results of the oxidizer injection pilot test, including baseline and post-injection monitoring, and the second semi-annual groundwater monitoring event. The pilot test was intended to reduce concentrations of site contaminants of concern (COCs), to determine the efficacy of hydrogen peroxide injection as a remedial alternative and determine whether future injection rounds of hydrogen peroxide would be required to achieve site cleanup goals. The work was completed in accordance with the approved *Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Plan* (workplan), the *Corrective Action Plan Addendum* (addendum) and the Alameda County Environmental Health Department (ACEHD) directive letter dated July 1, 2011. A vicinity map and site map are provided as Figures 1 and 2, respectively.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST, one 500-gallon waste oil UST and two dispenser islands (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently used as a parking lot, however the site owner wishes to redevelop the property as mixed commercial (ground floor) / residential.

3.0 ENVIRONMENTAL BACKGROUND

A historical timeline of relevant activities at the subject site is presented in Section 3.1; a summary of the current site condition, including the monitoring well network and general chemical of concern (COC) distribution, is presented in Section 3.2.

3.1 Site Timeline

October 1988 Soil gas analysis performed onsite identified significant concentrations of total hydrocarbons as propane in soil gas.

September 1989 Two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST removed by TEC Accutite; petroleum hydrocarbons detected in soil

beneath former tank location.

January 1991 Approximately 950 cubic yards of soil were removed from the former location of the

USTs; this soil was bioremediated onsite and returned to the former excavation.

January 1993 Three monitoring wells installed onsite (MW-1 through MW-3); no petroleum

hydrocarbons detected in soil.

February 1999 Four soil borings advanced on- and offsite (B-1 through B-4); petroleum hydrocarbon

concentrations detected in soil and groundwater.

December 1999 Three monitoring wells, installed onsite (MW-4 through MW-6); petroleum

hydrocarbons detected in soil.

November 2000 Site conceptual model (SCM) completed; potential for benzene vapor-phase

migration from hydrocarbon affected groundwater to indoor and ambient air identified

as an exposure pathway requiring futher evaluation.

June 2001 Four soil borings advanced [B-1 through B-4 (second set of B-1 through B-4)]; no

petroleum hydrocarbons detected in soil; petroleum hydrocarbons detected in

groundwater.

February 2002 Site-specific risk assessment performed; compounds of concern identified as TPHg

and benzene.

May 2003 Eight soil vapor probes advanced onsite (SV-1 through SV-7); petroleum

hydrocarbons detected below their respective Environmental Screening Levels

(ESLs).

September 2005 SCM updated; uncertainties identified in onsite benzene vapor concentrations and

offsite groundwater conditions.

June 2006 Eight soil borings advanced (SP-1 through SP-8); petroleum hydrocarbons detected

in soil above constituent ESLs.

November 2006 Seventeen soil borings advanced (CB-1 through CB-17) to determine excavation

limits; petroleum hydrocarbons detected at concentrations below ESLs and/or

laboratory detection limits at depths shallower than 8 feet bsg.

December 2006 Five soil borings advanced (DB-1 through DB-5); onsite soils classified as Class II

waste; monitoring wells MW-1 and MW-5 abandoned by pressure grouting.

February 2007 Interim remedial action conducted; 992.54 tons of soil excavated from site; 15,000

gallons of groundwater pumped from open excavation pit, sediment removed and

carbon-filtered, and discharged to sewer under permit.

March 2007 Two monitoring wells installed onsite (MW-7 and MW-8).

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2009 Six off-site soil borings advanced (B-19 through B-24); off-site plume fully defined.

One groundwater monitoring well (MW-9) installed in the public right-of-way on Webster Street. Five permanent nested vapor monitoring points installed onsite; no

petroleum hydrocarbons detected in onsite soil vapor.

February 2010 Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study and

Corrective Action Plan submitted to the Alameda County Health Agency. Hydrogen

peroxide injection identified as the most effective remedial alternative.

March 2011 Corrective Action Plan Addendum submitted to the Alameda County Health Agency.

April 2011

Baseline sampling for chromium, hexavalent chromium and other metals completed onsite. Total chromium was detected in wells MW-3, MW-4, MW-6 and MW-7. Chromium was detected at low levels in the hexavalent (oxidized) state in wells MW-3 and MW-4.

3.2 Site Condition

The site currently has seven groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and five dual-completed vapor monitoring points (VMP-1 through VMP-5). Locations of site monitoring wells are presented in Figure 2. Groundwater monitoring well construction details and activity schedule are presented in Table 1. Chemicals of concern (COCs) for the site include petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), and methyl tert-butyl ether (MTBE). The source of the contamination was the former USTs, which were removed in 1989. TEC continues to monitor all active groundwater monitoring wells associated with the site on a semi-annual basis.

4.0 BASELINE AND CONFIRMATION MONITORING AND SAMPLING PROCEDURES

TEC conducted the second semi-annual monitoring event on September 30, 2011. This event was conducted as a baseline monitoring event to measure hydrocarbon concentrations in groundwater prior to oxidizer injections. Additionally, TEC conducted post-injection monitoring events on October 26, and December 6, 2011, approximately 3 and 9 weeks after injection, respectively. Post-injecton events were intended to monitor hydrocarbon concentrations and metals concentrations (specifically hexavalent chromium) in groundwater following the introduction of the oxidizer into the subsurface. Field data sheets from the groundwater sampling events are presented as Attachment A.

4.1 Groundwater Monitoring

Upon arrival to the site, a TEC technician uncapped all active site groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and allowed the water level in each well to fully equilibrate prior to measuring the depth to water. Wells were gauged to the nearest 0.01 foot using an electric water level meter and recorded on the well sampling logs.

During the September 30 event, wells were purged by removing approximately three casing-water volumes of groundwater from each well with a submersible pump, with the exception of wells MW-4 and MW-8, which went dry after purging 1.5 and 2.3 casing volumes, respectively. After water levels in each well recovered to a minimum of 80% of the pre-purge level, groundwater samples were collected with dedicated new disposable bailers. During the October 26 and December 6 events, the wells were purged and sampled using a carbon dioxide gas-driven portable bladder pump (QED Micropurge) using a low-flow purge and sample protocol. Optimal flow rates ranged from 100 to 140 milliliters per minute.

Indicator parameters such as pH, dissolved oxygen (DO), temperature, conductivity, and oxygen reduction potential (ORP) were monitored using an in-line flow cell system, and recorded on the field data sheets every five minutes. Purging continued until three consecutive parameter readings had stabilized. During these events, the indicator parameters stabilized in each well following approximately 15 to 25 minutes of continuous purging (2.3 to 3.8 liters).

Groundwater samples collected during the 3 sampling events were transferred to laboratory supplied, HCl preserved 40-milliliter volatile organic analysis vials (VOAs); during the October 26 and December 6 events, samples were also collected in unpreserved 250-milliliter polyethylene sample containers. The groundwater samples were labeled, placed on ice in an insulated container, and transported to Torrent Laboratory, Inc., a California state-certified laboratory, under chain-of-custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX compounds, and fuel oxygenates by EPA Method 8260B. Additionally, samples collected during the October 26 and December 6 events were analyzed for dissolved metals (Fe, Cr, Se, As) by EPA Method 6020B, hexavalent chromium by EPA Method 7196, and ferrous iron by method SM3500D. The laboratory analytical reports and chain-of-custody documentation are presented in Attachment B.

All non-dedicated monitoring and sampling equipment, including the submersible pump, bladder pump and water analyzer, were decomtaminated prior to sampling the first well, and between wells using phosphate-free detergent and rinsed with potable and de-ionized water. Dedicated well equipment, including pump bladders, Teflon-lined tubing and compression fittings were used for each well. TEC's standard operatoring procedures for low-flow sampling are included in Attachment C.

4.2 Baseline and Confirmation Soil Sampling

On October 4, 2011, immediately prior to injection, TEC collected soil samples at locations I-A3, I-B1, I-B6 and I-C1, representing each target remediation area. Ten weeks following the injections, on December 6, 2011, TEC collected soil samples from borings advanced adjacent to the baseline sampling locations to assess the efficacy of oxidizer injection in removing sorbed contaminants in the smear zone. Confirmation borings were designated A-1, A-2, A-3 and A-4 (Figure 2)

4.2.1 Pre-Field Activities

TEC completed the following tasks prior to field mobilization:

- As required by the Occupational Health and Safety Administration (OSHA), and by the California OSHA, TEC prepared a site-specific Health and Safety Plan prior to the commencement of fieldwork. The plan was reviewed and signed by field staff and contractors before beginning field operations, and was in the possession of TEC personnel while conducting activities at the site.
- TEC obtained a drilling permit from the Alameda County Public Works Agency (ACPWA) prior to commencing fieldwork (Attachment D).
- More than 48 hours prior to the initiation of fieldwork, TEC personnel marked the soil boring locations with white paint and contacted Underground Service Alert of Northern California (USA). Additionally, a private subsurface utility locator completed a detailed survey of the proposed soil boring locations on February 8, 2011 to identify any subsurface utilities and obstructions. The results of the survey were reported in the Corrective Action Plan Addendum (2011).
- TEC contracted with RSI Drilling, a C-57 licensed drilling company with extensive experience in chemical injection work.

4.2.2 Soil Boring and Sampling

Prior to drilling, borings I-A3, I-B1, I-B6, I-C1, and A-1 through A-4 were cleared to 5 ft bsg using a hand auger. After clearing, each boring was advanced to a total depth of 14 ft bsg using a direct push technology (DPT) drill rig equipped with Macrocore rods lined with acetate sleeves. Soil cores were collected from each boring in the acetate sleeves. The lithology of each boring was viewed continuously and logged in accordance with the Unified Soil Classification System. Soil samples were collected from target depths by cutting an approximately 6-inch length of the acetate sleeve, capping each end, properly labeling the sample and placing it in an ice chest with ice.. Splits of each soil sample were screened for volatile organic compounds (VOCs) by sealing the soil within a plastic bag, placing the bag in a warm location allowing volatiles to accumulate in the bag headspace, and screening the headspace for VOCs using a calibrated PID. One soil sample from each boring was submitted for laboratory analysis based on

PID results and field observations. Observations (unusual odor or staining), sample IDs and PID readings were recorded on the boring logs (Attachment E).

After reaching total boring depth, the drill rods were removed from each boring and a temporary %-inch diameter PVC casing was installed for grab groundwater collection. Grab groundwater samples were collected from each boring using a properly decontamined steel bailer and transferred to HCl-preserved VOAs, which were stored in an insulated container with ice pending shipment to Torrent Laboratory for analysis.

All grab groundwater and selected soil samples were submitted for laboratory analysis under chain-of-custody documentation and analyzed for TPHg, BTEX compounds, and fuel oxygenates by EPA Method 8260B.

All non-disposable sampling materials, including drill rods and steel bailer, were cleaned using a phosphate-free detergent and triple rinsed with potable water. Disposable sampling materials, including acetate liners and temporary casings, were used for each boring. Borings were backfilled following injection activities as described in Section 5.1, below.

4.3 Baseline and Confirmation Soil Vapor Monitoring

Soil vapor monitoring was conducted before remedial activities on October 3, 2011, and following remedial activities on October 27 and December 13, 2011.

4.3.1 Soil Vapor Monitoring Methods

Soil vapor samples were collected from each vapor sampling point with a "lung sampler," an air tight box with a sample observation window and exterior tubing ports connected to the sample source and a vacuum pump. For each sample, a new Tedlar bag was attached to the interior fitting of the inlet connection on the inside of the box. Prior to sample collection, ambient air was purged from the sample tubing by activating the vacuum pump with the valve of the Tedlar bag closed. After purging, the Tedlar bag valve was opened. The vacuum pump created negative pressure in the box which drew soil gas into the Tedlar bag. After the Tedlar bag filled, an exterior valve was closed, the box was opened, and the Tedlar bag valve was closed. The Tedlar bag was then connected to a calibrated photo-ionization detector (PID) and screened for total volatile organic compounds (VOCs).

During the October 27 vapor monitoring event, soil vapor samples and sample splits were collected from points VMP-1 through VMP-6 for laboratory submittal and for in-field screening by PID. During the October 3 and December 12 sampling events, Tedlar bag samples were field screened by PID only. Field measurements are included in Attachment A and are summarized in Table 2. The laboratory analytical report is provided in Attachment B.

4.4 Electronic Laboratory Data Submittal

All report documents and data, including boring logs, an updated site map, well data, and laboratory analytical reports, were submitted in electronic format to GeoTracker, the California online geospatial database. This report was converted to PDF format and submitted as a GEO_REPORT file. Attachment F contains the GeoTracker submission confirmations.

5.0 CORRECTIVE ACTION: OXIDIZER INJECTION

On October 5 and 6, 2011 TEC conducted a pilot test to determine the feasibility of hydrogen peroxide injection as a remedial technology for addressing residual contaminants in site soil and groundwater. The following sections describe the pre-field activities, injection procedures and sampling protocols.

5.1 Oxidizer Injection and Workplan Deviation

The scope of the pilot test included the first round of injections and associated monitoring described in the workplan. Hydrogen peroxide was injected at a total of 10 locations, including points I-A2, I-A3 and I-A5 in target area A, points I-B1, I-B2, I-B4 and I-B6 in target area B, and points I-C1, I-C2 and I-C4 in target area C as shown on Figure 3. Due to the observed surface breaching of heated water mixed with diluted injection material 5 to 20 ft away from several injection areas, TEC decreased oxidizer injection volumes at locations near the pubic right-of-way, to avoid potential damage to shallow utilities located in the sidewalk along Webster Street. Additionally, because the observed radius of influence (ROI) was larger than the anticipated ROI (as inferred by the presence of heated water at the surface at significant distances from some injection points), TEC did not space the injections as closely as proposed; consequently, proposed locations I-A1, I-A4 and I-B3, I-B5 and I-C3 were not advanced.

At each injection location, a solution of 7% hydrogen peroxide was injected into the subsurface through specially designed 5-foot injection points attached to hollow DPT rods. The injection points were advanced to 14 ft bsg using the DPT rig and the outer sleeve was pulled back to target the depth zone between 9 and 14 ft bsg. Injection locations are shown on Figure 2; injection volumes at each location are summarized on Figure 3 and in Table 3. The hydrogen peroxide solution was injected into the subsurface at flow rates ranging from 0.4 to 5.6 gallons per minute (gpm), but were generally maintained at between 1 and 2 gpm. Initial injection pressures at each point were elevated (as high as 160 psi), but decreased significantly in the first few minutes of injection and in general were maintained at 0 psi for the duration of the injection period. Injection pressures were kept low (0 psi) to prevent surface breaching along the injection rods or at distance.

Surface breaching of heated water occurred at distance during injection at borings I-A5, I-B6 and I-C1, at approximately 5 ft to the southeast, 20 ft to the south, and 20 ft to the southwest, respectively. Surface breaches occurred randomly around injection locations at features such as cracks in the asphalt pavement, in landscaped areas, and through pre-existing field points (vapor point VMP-1). Injection was terminated if surface breaching was observed.

During the injection activities and as part of process monitoring, a TEC technician observed and recorded measured pressures and flow rates at each injection location. Parameters including pH, temperature, ORP, dissolved oxygen, and conductivity were monitored in nearby groundwater monitoring wells during injection of the hydrogen peroxide solution. To determine if unsafe levels of explosive gases were being generated during the injection process, soil vapor samples were collected from selected vapor monitoring points in Tedlar bags using a lung sampler for in-field analysis by PID and a lower explosive level (LEL) meter. However, due to the significant concentrations of oxygen generated during injection, the LEL meter malfunctioned prior to completing injection activities.

Groundwater and soil vapor monitoring field sheets are presented in Attachment A. Soil vapor monitoring field data are summarized on Table 2.

Following completion of sampling and/or injection activities, all borings were backfilled to near surface grade through a tremie pipe with neat cement grout in accordance with the ACPWA, and completed to match existing surface grade.

5.2 Injection Monitoring

While injecting at borings I-C2 and I-C4, a TEC technician measured temperature, conductivity, DO concentration, pH and ORP in well MW-8, located approximately 20 ft from the injection location. Monitored temperatures ranged from 19.77 to 19.94 degrees Celsius and did not appear to show an overall decreasing or increasing trend. However, conductivity and pH increased significantly and DO and ORP decreased. When injecting at location I-C1, surface breaching was observed 20 feet away from the injection location and the ground was warm to the touch.

During injection at boring I-B4, measured temperatures and conductivities in nearby well MW-7 (approximately 10 ft distance) remained relatively stable. Over the injection period, temperatures ranged from 20.41 to 20.60 degrees Celsius showing a slight increasing trend. Measured conductivities ranged from 7588 to 7660 uS/cm. Measured dissolved oxygen concentrations ranged from 2.25 to 2.91 mg/L and showed an overall decreasing trend during injection. ORP ranged from 199.3 mV to 251.2 mV, decreasing during injection. The pH readings increased from 6.60 pH units prior to injection to 6.83 pH units during injection.

Generally, conductivity and ORP increased across the site over the injection period. However, data collected on October 5, 2011 are suspect because the water analyzer (YSI mulitparameter meter) could not be calibrated properly the following day. The faulty water analyzer was replaced on October 6, 2011.

6.0 MONITORING RESULTS

6.1 Groundwater

6.1.1 Groundwater Elevation and Flow Direction

The calculated groundwater gradient based on groundwater elevations was toward the southwest at 0.003 feet/foot (ft/ft) during the September 30 and December 6 monitoring events. Groundwater elevations are presented in Table 4 and groundwater gradient maps are presented as Figures 4 and 5.

6.1.2 Petroleum Hydrocarbons in Groundwater

Analytical results of the 3 groundwater monitoring events conducted during the second half of 2011 are summarized below:

- September 30, 2011 the highest concentrations of petroleum hydrocarbons in groundwater were detected in the sample from well MW-8 (2,500 ug/L TPHg, 140 ug/L benzene, 2.0 ug/L toluene, 38 ug/L ethylbenzene, 5.3 ug/L xylenes, 5,600 ug/L MTBE, 8.2 ug/L DIPE and 180 1,2-DCA). The sample from well MW-4 contained 73 ug/L TPHg and 70 ug/L MTBE. The TPHg results in both wells MW-4 and MW-8 were flagged as being due to a discrete peak (MTBE). All other wells contained non-detectable concentrations of TPHg and BTEX compounds and relatively low concentrations of MTBE ranging from <0.5 to 12 ug/L.
- October 26, 2011 well MW-8 contained 6,900 ug/L TPHg, 3.7 ug/L benzene, 0.59 ug/L ethylbenzene, 6,600 ug/L MTBE, and 16 ug/L DIPE. TPHg and BTEX compounds were not detected in any other monitored wells during that event. MTBE was not detected in any other wells with the exception of MW-2 (20 ug/L) and MW-4 (80 ug/L).
- **December 6, 2011** well MW-8 contained 2,100 ug/L TPHg, 4.3 ug/L benzene, 0.52 ug/L toluene, 0.56 ug/L ethylbenzene, 10,000 ug/L MTBE, 16 ug/L DIPE, and 590 ug/L TBA. The sample from well MW-4 contained 110 ug/L TPHg, 140 ug/L MTBE and 14 ug/L TBA. TPHg and BTEX compounds were not detected in any other monitored wells during that event. MTBE was not detected in any other wells with the exception of MW-2 (15 ug/L).

Groundwater analytical results are summarized in Table 5 and Figure 6.

6.1.3 Dissolved Metals in Groundwater

During the October 26 groundwater monitoring event, wells MW-3 and MW-4 contained detectable concentrations of total chromium (2.9 ug/L and 2.7 ug/L, respectively) and hexavalent chromium (18 ug/L and 17 ug/L, respectively). No other wells contained detectable concentrations of hexavalent chromium. Samples from wells MW-6 and MW-7 contained total chromium at concentrations of 0.54 ug/L and 1.7 ug/L, respectively.

During the December 6 groundwater monitoring event, no wells contained hexavalent chromium at levels above laboratory detection limits. Dissolved total chromium was detected in wells MW-3, MW-4, MW-6 and MW-7 at concentrations ranging from 0.53 ug/L to 3.4 ug/L.

Arsenic concentrations ranged from non-detectable (<0.3 ug/L) to 7.2 ug/L in all sampled wells. Selenium was not detected above the laboratory reporting limits during either monitoring event.

Ferrous iron was detected in wells MW-2 and MW-8 only. Ferrous iron was detected at a concentration of 2,800 ug/L in well MW-8 during the October sampling event and at 200 ug/L and 120 ug/L in well MW-2 during the October and December sampling events, respectively. Total iron was detected in well MW-8 at concentrations of 2,000 ug/L (October) and 5,600 ug/L (December); in all other wells, concentrations of total iron ranged from 2.9 to 510 ug/L.

A summary of the dissolved metals analytical results are presented in Table 6.

6.2 Soil and Grab Groundwater

In borings advanced prior to chemical injection (I-A3, I-B1, I-B6 and I-C1), chemicals of concern were detected in soil in borings in target area B only (I-B1 and I-B6); however, staining, odor and elevated PID readings were noted during drilling at all locations. The sample from boring I-B1 collected at 9 ft bsg contained 170 milligrams per kilogram (mg/kg) TPHg, 2.3 mg/kg ethylbenzene, and 3.1 mg/kg total xylenes. The sample from boring I-B6 collected at 9 ft bsg contained 150 mg/kg TPHg, 2.3 mg/kg ethylbenzene, and 7.4 mg/kg total xylenes. Benzene, toluene and MTBE were not detected above laboratory reporting limits in either sample.

Samples from confirmation borings A-1, A-2, A-3 and A-4 (collocated with injection borings I-A3, I-B1, I-B6 and I-C1, respectively), did not contain detectable concentrations of BTEX compounds or MTBE, with the exception of sample A-3@9', which contained low concentrations of ethylbenzene (0.13 mg/kg) and xylenes (0.43 mg/kg). TPHg was detected in samples from target area B samples only; the sample from boring A-2 contained 49 mg/kg TPHg and from boring A-3 contained 12 mg/kg TPHg.

Pre-injection grab groundwater samples contained from 2,600 ug/L TPHg (I-C1) to 20,000 ug/L TPHg (I-B6), and elevated concentrations of BTEX compounds. Grab groundwater samples did not contain detectable concentrations of MTBE with the exception of the sample collected from I-B6, which contained MTBE at a concentration of 720 ug/L.

Grab groundwater samples collected approximately 9 weeks following injection contained concentrations of TPHg an order of magnitude higher than those collected prior to injection. Concentrations of TPHg ranged from 56,000 ug/L in groundwater collected from boring A-4 (target area C) to 240,000 ug/L in boring A-1 (target area A). Post-injection samples contained MTBE at concentrations ranging from 57 ug/L (A-4) to 1,400 ug/L (A-3), and concentrations of BTEX compounds in excess of calculated site-specific cleanup goals.

Soil and grab groundwater analytical results are summarized in Tables 7 and 8. The laboratory analytical report is included in Attachment B.

6.3 Soil Vapor

During the October 3 vapor monitoring event (PID screening only), all points contained 0.0 ppm volatile organic compounds (VOCs) with the exception of point VMP-3(4) which contained 0.3 ppm total VOCs.

During injection activities on October 4 and 5, vapor points VMP-1(4), VMP-1(8), VMP-2(4), VMP-2(8), and VMP-4(8) contained concentrations of volatile organics over the working range of the PID (>1,000 ppm). Points VMP-1, VMP-2 and VMP-4 are located in the immediate vicinities of target areas A, B, and

C, respectively. Elevated concentrations of VOCs (greater than baseline concentrations) were measured at all other vapor monitoring points during injection activities.

During the October 27 post-injection monitoring event, PID concentrations ranged from 0.0 ppm (at points VMP-2, VMP-3 and VMP-4 at 4 ft bsg and at points VMP-3 and VMP-5 at 8 ft bsg) to 18.2 ppm at point VMP-2(8). Sample splits submitted for laboratory analysis did not contain detectable concentrations of target analytes with the exception of 55.1 ug/m³ of m,p-xylenes at point VMP-2(8) and 15.6 ug/m³ of m,p-xylenes at point VMP-1(8). The laboratory report case narrative included a note stating the gasoline results were "corrected for contribution from [a] non-fuel compound (unknown single peak) within the gasoline quantitation range. Where no TPH as Gasoline compounds (BTEX) are present result reported as 'ND'." The laboratory was unable to identify the compound, but did state that the compound was not included in the EPA Method 8260 list. In addition, the laboratory advised that based on previous experience, the unidentified compound was likely associated with the Tedlar-type bags.

During the December 13 post-injection monitoring event, PID readings at all points were 0.0 ppm.

Soil vapor analytical results are included in Table 9; field results are summarized in Table 2 and included in the field sheets (Attachment A).

7.0 CONCLUSIONS AND RECOMMENDATIONS

- For the September 30 and December 6 groundwater monitoring events, the general groundwater flow was toward the southwest at approximately 0.003 ft/ft, within historical precedent for seasonal change in groundwater elevation and gradient.
- Although sustained injection pressures were kept low throughout the pilot test (0 psi), surface
 breaching of heated water was observed on several occasions as far as 20 feet away from the
 injection location, further than the expected radius of influence. Although site lithology is
 characterized as being relatively homogeneous, it appeared that reaction products (water vapor)
 and injection material were being displaced along preferential flow pathways. The exothermic
 hydrogen peroxide reaction produces a significant amount of heat which likely produced water
 vapor in the subsurface that migrated to the surface through preferential flow pathways.
- Wells monitored for changes in temperature, conductivity, pH, oxidation-reduction potential and dissolved oxygen observed during injection indicated there was influence from injection points advanced at 20 ft from the well location. Generally, conductivity and pH increased in wells across the site, and dissolved oxygen and ORP decreased in wells across the site over the injection period. However, data collected on the first day of injection may be suspect due to a malfunctioning water analyzer.
- During injection activities, concentrations of volatile organic compounds at vapor monitoring points VMP-1, VMP-2 and VMP-4 increased to levels above the working range of the PID meter (>1,000 ppm). Concentrations of volatiles in soil gas increased at all other sampled points. Samples collected 3 weeks following injection and submitted for laboratory analysis confirmed levels of COCs had returned to low to non-detectable pre-test concentrations.
- Soil samples collected at 9 ft bsg from remediation target areas A and C did not contain
 detectable concentrations of COCs. Soil samples collected from target area B contained elevated
 concentrations of TPHg, ethylbenzene, and total xylenes, which were reduced to acceptable
 levels (non-detectable or below ESLs and site-specific treatment levels [SSTLs]) following the
 injection activities.
- Grab groundwater samples collected from confirmation soil borings advanced 9 weeks following hydrogen peroxide injection contained hydrocarbon concentrations an order of magnitude higher than those collected immediately prior to remedial activity. Based on these data, TEC concludes

that the decreased soil concentrations may be due in small part to desorption and mobilization of contaminants to groundwater. Injection of any material into the subsurface may cause mobilization of dissolved-phase contamination due to displacement. Based on TEC's experience, concentrations of dissolved organic contaminant levels increase immediately following an injection event, after which they permanently decrease as the contaminant mass is degraded and the dissolved phase re-equilibrates with the saturated soil and is degraded under natural conditions.

- As observed in previous investigations, grab groundwater concentrations were elevated when compared with data from nearby groundwater monitoring wells. The grab groundwater samples collected from borings I-B1 and I-B6 contained concentrations of TPHg at 20,000 and 12,000 ug/L, respectively; the sample collected from monitoring well MW-7, located between the two borings, did not contain detectable concentrations of TPHg. Based on TEC's experience at this and other sites, grab groundwater samples often yield elevated or inconsistent results due to sample agitation and desorption of COCs from soil during collection.
- MTBE concentrations in well MW-8 increased following injection and show an increasing trend between the September (pre-injection), October (post-injection) and December (post-injection) monitoring events. However, reported MTBE concentrations in well MW-8 are within the range of historically monitored concentrations, and may be related to seasonal changes in groundwater elevation. Groundwater concentration data collected since the historically low concentrations reported in April 2011 show an increasing trend. However, reported MTBE concentrations in well MW-8 have shown a significant decreasing trend in samples collected during the first and third quarters (Chart 1).
- BTEX compounds in well MW-8 have shown a decreasing trend following injection activity.
- During the October 26 groundwater monitoring event, chromium in the hexavalent (oxidized) state was detected in wells MW-3 and MW-4 at concentrations of 18 ug/L and 17 ug/L respectively, which exceeds the most stringent environmental screening level (11 ug/L). However, wells MW-3 and MW-4 are not located in the targeted injection area, and contained detectable concentrations of hexavalent chromium prior to injection. During the December 6 groundwater monitoring event, approximately 9 weeks following injection, hexavalent chromium was not detected above laboratory reporting limits in any monitored wells. Based on the monitored baseline and post-injection concentrations it does not appear that hexavalent chromium is of concern at this site. Moreover, based on the relatively low concentrations of total chromium in source zone wells, it does not appear that even full oxidation of Cr(III) to Cr(VI) would produce concentrations in excess of appropriate screening levels during future peroxide injection events.
- During the September, October and December monitoring events, dissolved-phase COCs were non-detectable or detected below approved SSTLs in all permanently installed monitoring points with the exception of MTBE in well MW-8. The extant monitoring well network indicates impacted groundwater occurs in the vicinity of well MW-8 only. However, historical grab groundwater samples VMP-1, VMP-2, VMP-3 and grab samples collected prior to and following injection from points I-B6, A-1, A-3 and A-4 contained concentrations of BTEX compounds and/or MTBE which exceeded SSTLs. Site contaminants continue to be non-detectable or detected at very low levels in soil vapor samples collected at 4 ft bsg and 8 ft bsg across the site, and following the recent injection activities, sorbed concentrations of COCs in the vadose zone were reduced to levels below SSTLS. Remaining site contamination occurs below 9 ft bsg in groundwater or as sorbed materials already in contact with groundwater, appears stable, and has a limited lateral extent (occurs in localized areas bordering the excavation areas).

 To address residual dissolved-phase petroleum hydrocarbons, TEC recommends completing the two additional rounds of hydrogen peroxide injection as described in the ACDEH-approved corrective action plan and addendum.

8.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Technology, Engineering & Construction Inc.'s liability is limited to the dollar amount of the work performed.

Thank you for your cooperation and assistance with this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1200.

No. 8237

Sincerely,

Technology, Engineering & Construction, Inc.

Elise Sbarbori Project Manager

Reviewed by:

Paul B. Dotson, PG # 8237 Professional Geologist

TABLES

Table 1 Groundwater Monitoring Well Construction Details and Activity Schedule

Former Olympian Service Station 1435 Webster Street Alameda, California

			Monitoring V	Vell Constru	ction Details				Activity	Schedule
Well ID	Date Installed ¹	Total Depth	Diameter	Top of Screen	Bottom of Screen	Screen Length	Top of Casing ²	Monitoring Status	Gauging	Sampling ³
	ilistalleu	(ft bsg)	(inches)	(ft bsg)	(ft bsg)	(feet)	(ft msl)		(semi-a	annually)
MW-1	1/1/1993	24	2	6	24	18	19.53	Destroyed		
MW-2	1/1/1993	24	2	6	24	18	19.80	Active	\checkmark	\checkmark
MW-3	1/1/1993	24	2	6	24	18	19.79	Active	\checkmark	\checkmark
MW-4	12/1/1999	20	2	5	20	15	19.30	Active	\checkmark	\checkmark
MW-5	12/1/1999	20	2	5	20	15	18.99	Destroyed		
MW-6	12/1/1999	20	2	5	20	15	20.27	Active	\checkmark	\checkmark
MW-7	3/9/2007	20	4	10	20	10	18.93	Active	\checkmark	\checkmark
MW-8	3/9/2007	20	4	10	20	10	19.33	Active	\checkmark	\checkmark
MW-9	7/13/2009	20	4	5	20	15	18.83	Active	\checkmark	\checkmark

Notes

ft = feet

bsg = below surface grade

msl = mean sea level

¹ = Well installation date is given as first day of the installation month when exact well installation date is unknown

² = survey performed by Virgil Chavez Land Surveying (PLS #6323)

³ = groundwater samples are routinely analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260TPH, and for benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl-tert-butyl ether (MTBE), di-isopropyl ether (DIPE), tert-butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA) and 1,2-dibromoethane (EDB) by EPA Method 8260B.

Table 2 Summary of Soil Vapor Field Data: Injection Monitoring

1435 Webster Street Alameda, California

Vapor Point ID	Date	Time	VOC concentration (ppm)	Notes
VMP-1 (4)	10/3/2011 10/4/2011 10/5/2011 10/26/2011 12/13/2011	 12:10 9:30 	0.0 over range* 330 1.2 0.0	sample collected during injection at I-A3
VMP-1 (8)	10/3/2011 10/4/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	12:10 9:30 15:30 	0.0 over range* 13.0 0.0	sample collected during injection at I-A3
VMP-2 (4)	10/3/2011 10/5/2011 10/5/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 10:10 13:43 15:30 	53.5	sample collected before injection @ I-B4 sample collected during injection @ I-B4 sample collected immediately following injection @ I-B4
VMP-2 (8)	10/3/2011 10/5/2011 10/5/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 10:10 13:43 15:30 	260	sample collected before injection @ I-B4 sample collected during injection @ I-B4 sample collected imediately following injection @ I-B4
VMP-3 (4)	10/3/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 15:30 	0.3 280* 9.5 0.0 0.0	
VMP-3 (8)	10/3/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 15:30 	0.0 240* 16.0 0.0 0.0	

Table 2 Summary of Soil Vapor Field Data: Injection Monitoring

1435 Webster Street Alameda, California

Vapor Point ID	Date	Time	VOC concentration (ppm)	Notes
VMP-4 (4)	10/3/2011 10/4/2011 10/5/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	12:30 9:30 13:00 15:30	880	
VMP-4 (8)	10/3/2011 10/4/2011 10/5/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	12:30 9:30 13:00 15:30 	0.0 480* 1840 241 252 1.0	C-zone injection sample collected before injection at I-C2
VMP-5 (4)	10/3/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 15:30 	0.0 280* 7.3 1.3 0.0	
VMP-5 (8)	10/3/2011 10/5/2011 10/5/2011 10/26/2011 12/13/2011	9:30 15:30 	0.0 200* 12.1 0.0 0.0	

Notes:

VOC = volatile organic compound, measured by photo-ionization detector

-- = Not recorded

^{* =} LEL meter used to make measurement; gave inconsistent readings, switched to PID meter ppm = parts per million

Table 3 Injection Volumes 1435 Webster Street Alameda, California

Boring ID	Date Advanced	Date(s) of Injection	Injection Interval	Injection Volume	Surface Breaching?	Notes
			(ft bsg)	(gallons)	(Y/N)	
I-A2	10/5/2011	10/5/2011	9-14	150	N	
I-A3	10/4/2011	10/4/2011	9-14	200	N	
I-A5	10/5/2011	10/5/2011	9-14	175	Y	Injection terminated after breaching within 5 ft lateral ft of boring I-A5 at VMP-1
I-B1	10/4/2011	10/4-10/5/2011	9-14	10	Y	Breaching at injection location (vertically up the drill rod)
I-B2	10/5/2011	10/5/2011	9-14	50	N	
I-B4	10/5/2011	10/5/2011	9-14	50	N	
I-B6	10/4/2011	10/4-10/5/2011	9-14	160	Y	Breaching 20 ft away from injection site in landscaped area
I-C1	10/4/2011	10/4-10/5/2011	9-14	195	Y	Surface breaching 20 ft southwest of boring location, cracks in asphalt
I-C2	10/5/2011	10/5/2011	9-14	3	Y	Breaching at injection location (vertically up the drill rod)
I-C4	10/5/2011	10/5/2011	9-14	85	N	
TOTAL INJECT	ON VOLUME			1,078		
Notos:						

Notes:

ft = feet

bsg = below surface grade

gal = gallons of 7% H_2O_2 solution injected

Table 4 Summary of Historical Groundwater Elevation Data Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-1	19.53	6/3/1993	(1)	
		9/14/1994 12/30/1994	11.46 9.22	8.07 10.31
		3/26/1995	6.76	12.77
		7/9/1995	8.92	10.61
		7/31/1998	8.30	11.23
		2/11/1999	7.91	11.62
		6/23/1999	9.03	10.50
		12/6/1999	10.86	8.67
		3/16/2000	6.93	12.60
		6/13/2000	8.73	10.80 9.35
		9/29/2000 3/22/2001	10.18 8.24	11.29
		6/25/2001	9.73	9.80
		9/28/2001	11.06	8.47
		12/26/2001	8.11	11.42
		07/0705	8.69	10.84
		10/19/2005	10.25	9.28
		1/13/2006	7.09	12.44
		5/5/2006	6.40	13.13
		7/19/2006	8.28 9.67	11.25 9.86
		10/5/2006	9.67 ndoned 12/27	
		Aba	ildoned 12/2//	2000
MW-2	19.80	6/3/1993	9.54	10.26
		9/14/1994	11.82	7.98
		12/30/1994	9.46	10.34
		3/26/1995	6.82	12.98
		7/9/1995 7/31/1998	9.22	10.58
		2/11/1999	8.56 8.12	11.24 11.68
		6/23/1999	9.33	10.47
		12/6/1999	11.20	8.60
		3/16/2000	6.88	12.92
		6/13/2000	8.99	10.81
		9/29/2000	10.40	9.40
		3/22/2001	8.46	11.34
		6/25/2001 9/28/2001	10.11 11.40	9.69 8.40
		12/26/2001	8.28	11.52
		7/7/2005	8.99	10.81
		10/19/2005	10.63	9.17
		1/13/2006	7.15	12.65
		5/5/2006	6.43	13.37
		7/19/2006	8.57	11.23
		10/5/2006	10.05	9.75
		3/29/2007 6/27/2007	8.83 9.86	10.97
		9/19/2007	10.89	9.94 8.91
		12/19/2007	10.78	9.02
		3/6/2008	8.48	11.32
		6/18/2008	10.23	9.57
		9/10/2008	11.36	8.44
		12/10/2008	11.89	7.91
		3/4/2009	8.68	11.12
		6/3/2009 8/27/2009	9.91 11.16	9.89 8.64
		12/10/2009	11.32	8.48
		3/10/2010	7.99	11.81
		6/10/2010	9.13	10.67
		9/22/2010	10.95	8.85
		4/19/2011	7.43	12.37
		9/30/2011	10.54	9.26
		12/6/2011	10.79	9.01

Table 4 Summary of Historical Groundwater Elevation Data Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-3	19.79	6/3/1993	9.80	9.99
		9/14/1994	12.19	7.60
		12/30/1994	9.72	10.07
		3/26/1995	6.88	12.91
		7/9/1995	9.52	10.27
		7/31/1998	8.40	11.39
		2/11/1999	7.77	12.02
		6/23/1999	9.21	10.58
		12/6/1999 3/16/2000	11.12 6.48	8.67 13.31
		6/13/2000	8.76	11.03
		9/29/2000	10.20	9.59
		3/22/2001	8.24	11.55
		6/25/2001	10.04	9.75
		9/28/2001	11.34	8.45
		12/26/2001	8.01	11.78
		7/7/2005	8.84	10.95
		10/19/2005	10.58	9.21
		1/13/2006	6.85	12.94
		5/5/2006	6.11	13.68
		7/19/2006	8.41	11.38
		10/5/2006	10.02	9.77
		3/29/2007	9.71	10.08
		6/27/2007	9.82	9.97
		9/19/2007	10.88	8.91
		12/19/2007	10.68	9.11
		3/6/2008	8.30	11.49
		6/18/2008 9/10/2008	10.18 11.33	9.61
		12/10/2008	11.89	8.46 7.90
		3/4/2009	8.40	11.39
		6/3/2009	9.81	9.98
		8/27/2009	11.18	8.61
		12/10/2009	11.30	8.49
		3/10/2010	7.78	12.01
		6/10/2010	9.02	10.77
		9/22/2010	10.96	8.83
		4/19/2011	7.22	12.57
		9/30/2011	10.52	9.27
		12/6/2011	10.78	9.01
MW-4	19.30			
MW-4	19.30	12/6/1999	10.79	8.51
MW-4	19.30	12/6/1999 3/16/2000	10.79 6.86	8.51 12.44
MW-4	19.30	12/6/1999	10.79	8.51
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000	10.79 6.86 8.18	8.51 12.44 11.12
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000	10.79 6.86 8.18 10.11	8.51 12.44 11.12 9.19
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001	10.79 6.86 8.18 10.11 8.26	8.51 12.44 11.12 9.19 11.04
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001	10.79 6.86 8.18 10.11 8.26 9.68	8.51 12.44 11.12 9.19 11.04 9.62
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 17/7/2005 10/19/2005 1/13/2006	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1)	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1)
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1)	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1)
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 7/19/2006	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1)
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 10/5/2006	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 9.65
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 12/26/2001 12/26/2001 17/7/2005 10/19/2006 7/19/2006 10/5/2006 3/29/2007	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 17/7/2005 10/19/2006 5/5/2006 7/19/2006 10/5/2006 3/29/2007 6/27/2007	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 17/7/2005 10/19/2006 5/5/2006 7/19/2006 10/5/2006 3/29/2007 6/27/2007	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 12/19/2007 3/6/2008	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 12/26/2001 12/26/2005 10/19/2005 1/13/2006 7/19/2006 3/29/2007 6/27/2007 12/19/2007 12/19/2008 6/18/2008	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 12/26/2005 1/13/2006 5/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 12/10/2008 3/4/2009 6/3/2009	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 12/26/2001 12/26/2001 17/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 12/19/2007 12/19/2007 12/19/2007 12/19/2007 12/19/2007 12/19/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 8/27/2009	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 6/3/2009 8/27/2009	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72 10.85	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 8/27/2009 12/10/2009 3/10/2010	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72 10.85 7.87	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45 11.43
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2008 6/18/2008 8/18/2008 8/10/2008 3/4/2009 8/27/2009 12/10/2009 12/10/2009 3/10/2010 6/10/2010	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72 10.85 7.87 8.87	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45 11.43 10.43
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 12/10/2009 8/27/2009 12/10/2009 8/27/2009 12/10/2010 9/22/2010	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72 10.85 7.87 8.87 10.52	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45 11.43 10.43 8.78
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2001 7/7/2005 10/19/2006 10/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 8/27/2009 12/10/2009 3/10/2010 6/10/2010 9/22/2010 4/19/2011	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 11.43 8.47 9.53 10.72 10.85 7.87 8.87 10.52 7.43	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45 11.43 10.43 8.78 11.87
MW-4	19.30	12/6/1999 3/16/2000 6/13/2000 9/29/2000 4/5/2001 6/25/2001 9/28/2001 12/26/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 12/10/2009 8/27/2009 12/10/2009 8/27/2009 12/10/2010 9/22/2010	10.79 6.86 8.18 10.11 8.26 9.68 10.98 8.18 8.77 10.24 (1) (1) 8.38 9.65 8.55 9.40 10.45 10.35 8.25 9.80 10.89 11.43 8.47 9.53 10.72 10.85 7.87 8.87 10.52	8.51 12.44 11.12 9.19 11.04 9.62 8.32 11.12 10.53 9.06 (1) (1) (1) 10.92 9.65 10.75 9.90 8.85 8.95 11.05 9.50 8.41 7.87 10.83 9.77 8.58 8.45 11.43 10.43 8.78

Table 4 Summary of Historical Groundwater Elevation Data Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
BANA/ E	(ft msl)	12/6/1000	(ft)	(ft msl)
MW-5	18.99	12/6/1999 3/16/2000	10.17	8.82 12.71
		6/13/2000	6.28 7.95	12.71
		9/29/2000	9.54	9.45
		3/22/2001	7.48	11.51
		6/25/2001	9.05	9.94
		9/28/2001	10.39	8.60
		12/26/2001	7.28	11.71
		8/24/2005	7.87	11.12
		10/19/2005	9.51	9.48
		1/13/2006	6.35	12.64
		5/5/2006	5.64	13.35
		7/19/2006	7.41	11.58
		10/5/2006	8.89	10.10
		************Aba	ndoned 12/27/	2006******
MW-6	20.27	12/6/1999	11.46	8.81
		3/16/2000	8.32	11.95
		6/13/2000	9.14	11.13
		9/29/2000	10.81	9.46
		3/22/2001	8.64	11.63
		6/25/2001	10.39	9.88
		9/28/2001	11.70	8.57
		12/26/2001	8.40	11.87
		7/7/2005	9.10	11.17
		10/19/2005	10.88	9.39
		1/13/2006	7.33	12.94
		5/5/2006	6.53	13.74 11.63
		7/19/2006 10/5/2006	8.64 10.29	9.98
		3/29/2007		9.96 11.26
		6/27/2007	9.01 10.14	10.13
		9/19/2007	11.17	9.10
		12/19/2007	10.99	9.28
		3/6/2008	8.65	11.62
		6/18/2008	10.46	9.81
		9/10/2008	11.64	8.63
		12/10/2008	12.18	8.09
		3/4/2009	8.86	11.41
		6/3/2009	10.07	10.20
		8/27/2009	11.45	8.82
		12/10/2009	11.61	8.66
		3/10/2010	8.19	12.08
		6/10/2010	9.30	10.97
		9/22/2010	11.28	8.99
		4/19/2011	7.59	12.68
		9/30/2011	10.81	9.46
		12/6/2011	11.13	9.14
MW-7	18.02	3/20/2007	7.00	11.02
IVI VV-/	18.93	3/29/2007 6/27/2007	7.90 8.87	11.03 10.06
		9/19/2007	8.87 9.88	9.05
		12/19/2007	9.00	9.05 9.21
		3/6/2008	7.52	11.41
		6/18/2008	9.13	9.80
		9/10/2008	10.29	8.64
		12/10/2008	10.81	8.12
		3/4/2009	7.89	11.04
		6/3/2009	8.70	10.23
		8/27/2009	10.05	8.88
		12/10/2009	10.21	8.72
		3/10/2010	7.16	11.77
		6/10/2010	8.58	10.35
		9/22/2010	9.89	9.04
		4/19/2011	6.58	12.35
		9/30/2011	9.48	9.45
		12/6/2011	9.68	9.25

Table 4

Summary of Historical Groundwater Elevation Data Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-8	19.33	3/29/2007	8.40	10.93
		6/27/2007	9.33	10.00
		9/19/2007	10.31	9.02
		12/19/2007	10.23	9.10
		3/6/2008	9.14	10.19
		6/18/2008	9.74	9.59
		9/10/2008	10.76	8.57
		12/10/2008	11.31	8.02
		3/4/2009	8.59	10.74
		6/3/2009	9.51	9.82
		8/27/2009	10.57	8.76
		12/10/2009	10.72	8.61
		3/10/2010	7.77	11.56
		6/10/2010	8.01	11.32
		9/22/2010	10.39	8.94
		4/19/2011	7.36	11.97
		9/30/2011	9.97	9.36
		12/6/2011	10.22	9.11
MW-9	18.83	8/27/2009	10.01	8.82
		12/10/2009	10.16	8.67
		3/10/2010	7.31	11.52
		6/10/2010	8.14	10.69
		9/22/2010	9.86	8.97
		4/19/2011	6.86	11.97
		9/30/2011	9.48	9.35
		12/6/2011	9.65	9.18

Notes: TOC = Top of Casing

ft msl = Feet referenced to mean sea level

--- = Not Available

(1) = Well not accessible due to obstruction by a parked car

yellow row = most recent data

Table 5 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	Е	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			Concentration								
ES		100	100	1.0 940	4,300	30	7,100	5.0			12	0.5
MW-1	6/3/1993			940	4,300	760	7,100	1,300				
14144-1	9/14/1994	<50	14,000	44	28	25	50		800			
	12/30/1994	<50	4,000	12	9	6.8	30		<500			
	3/26/1995	<50	1,000	21	10	7.1	25		2,100			
	7/9/1995	<50	16,000	57	28	25	53					
	7/31/1998	1,700	4,700	1,300	48	140	150	6,600	<5000			
	2/11/1999	2000	25,000	18,000	1,600	1,400	500	28,000				
	6/23/1999	4,900	42,000	11,000	1,100	1,500	2,300	15,000				
	12/6/1999 3/16/2000	4,000 700	44,000 5,100	8,900 2,400	3,400 100	1,900 280	5,100 460	11,000 2,700				
	6/13/2000	2.800	17,000	5,300	260	720	790	7.000				
	9/29/2000	5,200	1 50,000	11,000	2,900	1,900	4,600	7,200				
	3/22/2001	1,500	1 8,600	2,600	750	250	950	3,200				
	6/25/2001		18,000	1,200	1,800	970	3,200	1,500				
	9/28/2001		48,000	5,200	6,100	2,200	8,100	4,000				
	12/26/2001		524	216	1.2	8.6	7.4	721				
	7/7/2005		1,500	190	15	36	29	1,100		<20		50
	10/19/2005		11,000	2,100	45	370	82	4,600		<250	<500	200
	1/13/2006		5,400	680	37	83	41	3,900		<250	<500	180
	5/5/2006 7/19/2006		<25 5,000	2 836	<0.5 22.3	<0.5 107	<0.5 81.8	2.2 1,130		<5.0 <4.2	<10 <84	<0.5 54.1
	10/5/2006		23,000	3,740	112	395	161	6,020		13.5	546	219
	10/3/2000		25,000					7/2006*****	******		540	213
MW-2	6/3/1993	<50	<50	5.8	<0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994 3/26/1995	<50 <50	160 <50	1.4 <0.5	1.4 <0.5	0.8 <0.5	5 <0.5		<500 <500			
	7/9/1995	<30	<50	<0.5	<0.5	<0.5	<0.5		<300			
	7/31/1998	220	<50	<0.5	< 0.5	< 0.5	< 0.5	73	<500			
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	75				
	6/23/1999	420	<50	< 0.5	< 0.5	< 0.5	< 0.5	96				
	12/6/1999	<110	300	28	45	6	37	210				
	3/16/2000	<50	<50	1	< 0.5	0.5	1	3				
	6/13/2000	<50	68	0.8	<0.5	<0.5	<0.5	38	,			
	9/29/2000	<50	67	0.8	0.5	<0.5	1	86				
	3/22/2001 6/25/2001	<50 	<50 <50	1 <0.5	0.5 <0.5	<0.5 <0.5	1 <1.0	14 13				
	9/28/2001		300	4	6	3	10	130				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	20		<1.0		1.1
	10/19/2005		29	1.4	<0.5	< 0.5	< 0.5	19		<5.0	<10	0.95
	1/13/2006		<25	<0.5	<0.5	<0.5	< 0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	16.6		<0.5	<10	1.24
Doot oug-	10/5/2006		<50	<0.5 <0.5	<0.5	<0.5 <0.5	<1.5	11.9 3.36		<0.5 <0.5	<10	0.750 <0.5
Post excavation	3/29/2007 6/27/2007		<50 <50	<0.5	<0.5 <0.5	<0.5	<1.5 <1.5	10.5		<0.5	<10 <10	0.820
	9/19/2007		52	4 <0.5	<0.5	<0.5	<1.5	18.1		<0.5	<10	0.820
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	22.9		<0.5	<10	0.840
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	1.02		<0.5	<10	<0.5
	6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	36.9		<0.5	<10	0.880
	9/10/2008		69	4 <0.5	<0.5	<0.5	<1.5	24.6		<0.5	<10	0.810
	12/10/2008		84	<0.5	<0.5	<0.5	<1.5	30.2		<0.5	<10	0.650
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	3.15		<0.5	<10	<0.5
	6/3/2009 8/27/2009		<55 <50	<0.55 <0.5	<0.55 <0.5	<0.55 <0.5	<1.6 <1.5	35 73		<0.55 <0.5	<11 23	0.55 1.1
	3/11/2010		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<30	<0.5
	9/22/2010		<50	<0.5	<0.5	<0.5	<1.5	44		<0.5	<5.0	1.3
	4/19/2011		<50	<0.5	<0.5	<0.5	<1.5	2.4		<0.5	<5.0	
	9/30/2011		<50	<0.5	<0.5	<0.5	<1.5	12		<0.5	<5.0	0.80
	10/26/2011		<50	<0.5	<0.5	<0.5	<1.5	20		<0.5	<5.0	
	12/6/2011		<50	<0.5	<0.5	<0.5	<1.5	15		<0.5	<5.0	
		1										

Table 5 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	B	T	E	X liter (verfl.)	MTBE	TRPH	DIPE	TBA	1,2-DCA
ES	Date	100	100	Concentrati 1.0	ons in micro	ograms per 30	liter (µg/L)	5.0			12	0.5
SST		100		940	4,300	760	7,100	1,300				U.5
MW-3	6/3/1993	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	< 0.5	< 0.5	<0.5		<500			
	12/30/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995 7/31/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000			
	2/11/1999	<50 <50	<50 <50	<0.5	<0.5	<0.5	<0.5	<0.5	<3000			
	6/23/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	3				
	12/6/1999	<110	<50	3	1	<0.5	1	0.6				
	3/16/2000	<50	<50	< 0.5	< 0.5	< 0.5	<1.0	1				
	6/13/2000	<50	490	0.8	<0.5	< 0.5	9	2	,			
	9/29/2000	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0				
	3/22/2001 6/25/2001	<50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	2 0.8				
	9/28/2001		91	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	< 0.5	< 0.5	< 0.5	<1.0	< 0.5		<1.0		< 0.5
	10/19/2005		<25	<0.5	<0.5	< 0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006 10/5/2006		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/19/2007		<50	<0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/18/2008		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/10/2008 12/10/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5	<0.5 <0.5		<0.5 <0.5	<10	<0.5 <0.5
	3/4/2009		<50 <50	<0.5 <0.5	<0.5	<0.5 <0.5	<1.5 <1.5	<0.5		<0.5	<10 <10	<0.5 <0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	8/27/2009		<55	< 0.55	< 0.55	< 0.55	<1.6	< 0.55		<1.55	<11	< 0.55
	3/11/2010		<50	<0.5	< 0.5	< 0.5	<1.5	<0.5		< 0.5	<30	<0.5
	9/22/2010		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	<0.5
	4/19/2011		<50	<0.5	<0.5	<0.5	<1.5	2.9		<0.5	<5.0	
	9/30/2011 10/26/2011		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<5.0 <5.0	<0.5
	12/6/2011		<50 <50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0 <5.0	
MW-4	12/6/1999	160	<50	3	2	0.6	4	140				-
	3/16/2000	90	<50	0.5	0.5	<0.5	2	34				
	6/13/2000	<50	56	<0.5	<0.5	<0.5	<1.0	1				
	9/29/2000 4/5/2001	<50 <50	92 51	0.7 <0.5	<0.5 0.5	<0.5 <0.5	3 1	<1.0 ²				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	9/28/2001		<50	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	1.6	1.7	1.6	4.4	2.7				
	7/7/2005		<50	<0.5	<0.5	< 0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25	<0.5	<0.5 ³	<0.5	<0.5 ampled *****	<1.0	*******	<5.0	<10	<0.5
	1/13/2006 5/5/2006	**		******	**********	NOt S	ampled *****	*******	*****		******	
	7/19/2006		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
Post excavation	3/29/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	0.69		< 0.5	<10	< 0.5
	6/27/2007		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		< 0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	1.38		<0.5	<10	<0.5
	12/19/2007		63	<0.5	<0.5	< 0.5	<1.5	2.20		<0.5	<10	0.590
	3/6/2008 6/18/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	0.700		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	2.04		<0.5	<10	<0.5
	3/4/2009		<50	<0.5	< 0.5	<0.5	<1.5	2.96		< 0.5	<10	<0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	1.5		<0.5	<10	<0.5
	8/27/2009		<50 <50	<0.5	<0.5	<0.5	<1.5	4.9		<0.5	11	1.3
	12/10/2009 3/11/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	4.1 9.8		<0.5 <0.5	<5 <30	0.71 <0.5
	6/10/2010		<50 <50	<0.5 <0.5	<0.5	<0.5 <0.5	0.52	9.8 8.5		<0.5	6.1	1.8
	9/22/2010		<50	<0.5	<0.5	<0.5	<1.5	5.2		<0.5	5.1	1.1
	4/19/2011		<50	<0.5	<0.5	<0.5	<1.5	6.1		<0.5	<5.0	
	9/30/2011		73	⁵ <0.5	<0.5	<0.5	<1.5	70		<0.5	<5.0	2.4
	10/26/2011		<50	<0.5	<0.5	<0.5	<1.5	80		<0.5	<5.0	
	12/6/2011		110	⁵ <0.5	<0.5	<0.5	<1.5	140		<0.5	14	
MW-5	12/6/1999	2,800	30,000	2,200	3,300	910	7000	670				
	3/16/2000	1,100	3,500	1,100	260	210	6300	260				
	6/13/2000	1,100	6,500	2,200	360	360	730	480				
	9/29/2000	700	3,900	990	120	300	340	390 2				
	3/22/2001	380	4,300	780	240	250	530	190				
	6/25/2001		3,100	1,000	110	200	320	140				
	9/28/2001 12/26/2001		3,000	1,200	77 262	120	170	770 66.4				
			3,240 150	738 57	262 3	218 8	626 3.9	66.4 67		<1.0	18	3.0
			100	31								11
	8/24/2005			130	3.8	23	9.3	230				
			560 2,300	130 570	3.8 18	23 120	9.3 140	230 220		<25 <25	<50 <50	14
	8/24/2005 10/19/2005		560									
	8/24/2005 10/19/2005 1/13/2006 5/5/2006 7/19/2006	 	560 2,300 130 210	570 35 102	18 1.7 1.54	120 7.8 15.8	140 7.4 3.85	220 8 27.6		<25 <5.0 <0.5	<50 <10 <10	14 0.55 2.06
	8/24/2005 10/19/2005 1/13/2006 5/5/2006		560 2,300 130	570 35 102 105	18 1.7 1.54 1.06	120 7.8 15.8 9.05	140 7.4	220 8 27.6 101	 	<25 <5.0 <0.5 0.640	<50 <10	14 0.55

Table 5 **Summary of Groundwater Monitoring Analytical Results**

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	Е	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			Concentration	ons in micro	ograms per	liter (µg/L)					
ES SS1		100	100	1.0 940	4,300	30 760	7,100	5.0 1,300			12	0.5
MW-6	12/6/1999	110	<50	2	2	0.8	8	1,300				
	3/16/2000	<50	<50	8	8	5	18	<0.5				
	6/13/2000	<50	75	0.7	1	0.9	2	0.6				
	9/29/2000	<50	<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	3/22/2001	<50	66	0.5	<0.5 <0.5	< 0.5	<1.0	3				
	6/25/2001 9/28/2001		<50 63	<0.5 2	<0.5 ND	<0.5 ND	<1.0 1	3				
	12/26/2001		<50	<0.5	<0.5	<0.5	1.4	<0.5				
	7/7/2005		<50	< 0.5	< 0.5	< 0.5	<1.0	< 0.5		<1.0		< 0.5
	10/19/2005		<25	< 0.5	<0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	1/13/2006		<25	<0.5	<0.5	<0.5	< 0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10 <10	<0.5
	7/19/2006 10/5/2006		<50 <50	<0.5 <05	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10	<0.5 <0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	< 0.5
	9/19/2007		<50	<0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	< 0.5
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/18/2008 9/10/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	12/10/2008		<50 <50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	8/27/2009		<50	<0.5	< 0.5	< 0.5	<1.5	<0.5		< 0.5	<10	< 0.5
	3/11/2010		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<30	<0.5
	9/22/2010 4/19/2011		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 0.63		<0.5 <0.5	<5.0 <5.0	<0.5
l I	9/30/2011		<50 <50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0 <5.0	<0.5
	10/26/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
	12/6/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
MW-7	3/29/2007		840 270	50.8	9.33	2.54 7.11	162	39.9		<0.5	<10	2.26 6.21
	6/27/2007 9/19/2007		191	126 4 0.5	<0.5 <0.5	7.11 5.38	<1.5 <1.5	94.4 49.6		0.550 <0.5	58.4 28.5	4.37
	12/19/2007		54	4 <0.5	<0.5	<0.5	<1.5	11.4		<0.5	<10	1.09
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	4.83		<0.5	<10	0.59
	6/18/2008		<50	0.840	< 0.5	0.500	<1.5	52.5		< 0.5	15.3	5.70
	9/10/2008		55	4 <0.5	< 0.5	< 0.5	<1.5	15.3		<0.5	<10	1.98
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	2.43		<0.5	<10	<0.5
	3/4/2009 6/3/2009		<50 <50	<0.5 0.62	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	0.530 5.2		<0.5 <0.5	<10 <10	<0.5 <0.5
	8/27/2009		<50	<0.5	<0.5	<0.5	<1.5	4.8		<0.5	<10	0.55
	3/11/2010		<50	< 0.5	< 0.5	< 0.5	<1.5	0.73		< 0.5	<30	< 0.5
	9/22/2010		<50	<0.5	<0.5	< 0.5	<1.5	3.9		<0.5	<5.0	0.64
	4/19/2011		<50	<0.5	<0.5	<0.5	<1.5	2.0		<0.6	<5.0	
	9/30/2011 10/26/2011		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	4.3 <0.5		<0.5 <0.5	<5.0 <5.0	
	12/6/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
MW-8	4/6/2007		27,000	2,460	1,520	210	1,810	16,000		24.3	1,050	459
	6/27/2007		20,000	2,460	382	611	1,040	7,310		11.1	3,400	319
	9/19/2007		20,400	4 814 4 400	16.2	219	21.6	10,300		<4.40	7,080	194
	12/19/2007 3/6/2008		14,100 19.000	4 426 5 639	10.6 19.5	115 268	22.4 152	12,700 11,200		25.0 <4.4	864 <88	289 227
	6/18/2008		5,800	4 496	11.7	258	24.4	9,730		15.7	468	209
	9/10/2008		9,900	299	11.1	73.0	13.6	11,600		27.1	1,670	240
	12/10/2008		6,900	477	3.98	57.9	22.6	11,600		23.1	634	287
	3/4/2009		8,500	168	1.35	17.3	8.59	8,190		7.00	2,050	238
	6/3/2009		11,000	490	3.90	57	16	14,000		<0.5	<10	310
	8/27/2009		5,400	340	8.3	67	37	8,900		21	2,900	300
	3/11/2010		7,900	. 660	3.7	100	28.3	5,800		18	1,100	150
	9/22/2010 4/19/2011		4,700 67	4 1,100 6 <0.5	<44 <0.5	230 0.83	<132 <1.5	5,700 20		<44 <0.5	470 <5.0	120
	9/30/2011		2,500	5 140	2.0	38	5.3	5,600		<0.5 8.2	<5.0	180
	10/26/2011		6,900	5 3.7	<0.5	0.59	<1.5	6,600		16	<440	
	12/6/2011		2,100	5 4.3	0.52	0.56	<1.5	10,000		21	590	
MW-9	8/27/2009		<50	<0.5	<0.5	<0.5	<1.5	12		<0.5	<10	0.76
	12/10/2009		<50	<0.5	0.50	<0.5	<1.5	4.8		<0.5	<5.0	<0.5
	3/10/2010 6/10/2010		<50 <50	<0.5	<0.5	<0.5	<1.5	3.8 7.4		<0.5 <0.5	<30 <5.0	<0.5 0.6
	9/22/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	7.4 1.6		<0.5 <0.5	<5.0 <5.0	0.6 <0.5
	4/19/2011		<50	<0.5	<0.5	<0.5	<1.5	8.7		<0.5	<5.0	
l	9/30/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	<0.5
	10/26/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
	12/6/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
l												

Notes:
TPH4 = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)
TPHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; after July 2005 by EPA 8260
BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; after July 2005 by EPA 8260

Fuel Additives = Methyl-tert-buryl ether (MTBE), Di-isopropyl ether (DIPE), tert-Buryl alcohol (TBA), 1,2-Dichloroethane (1,2-DCA) by EPA Method 8260B TRPH = Total Recoverable Petroleum Hydrocarbons <X = Concentration less than laboratory reporting limit

- --- = Not Analyzed

 1 = Does not match diesel chromatogram pattern
- 2 = Confirmed by EPA Method 8260
- ¹= Tolusne was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1994).
- = TPH Gasoline value is primarily due to individual peaks / non-target compounds within gasoline quantitative range.
- ⁵ = TPH value due to individual peak(s) (MTBE and/or TBA) within gasoline quantitative range.
- = Does not match pattern of reference gasoline standard; hydrocarbons in the range of C5-C12 quantified as gasoline.

ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CRWQCB, Interim Final, November 2007, revised May 2008).

SSTLs = site-specific treatment levels calculated in the Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Plan (TEC 2010).

bold = constituent exceeds SSTL

Table 6 Summary of Groundwater Analytical Results: Metals

1435 Webster Street Alameda, California

Sample	Date	Fe	Fe(II)	Cr	Cr(VI)	As	Se
ID	Sampled		concentrat	ions in mic	rograms per	liter (ug/L)	
MW-2	4/19/2011	25	<100	<0.5	<0.5	1.1	<1.0
	10/26/2011	24	200	<0.5	<10	1.9	<1.0
	12/6/2011	57	120	<0.5	<10	1.7	<1.0
MW-3	4/19/2011	200	<100	3.9	5.0	0.46	<1.0
	10/26/2011	91	<100	2.9	18	0.81	<1.0
	12/6/2011	510	<100	3.4	<10	<0.3	<1.0
MW-4	4/19/2011	9.3	<100	5.2	6.7	0.69	<1.0
	10/26/2011	40	<100	2.7	17	1.0	<1.0
	12/6/2011	110	<100	1.6	<10	0.31	<1.0
MW-6	4/19/2011	9.9	<100	<0.5	<0.5	1.1	<1.0
	10/26/2011	7.4	<100	0.54	<10	1.0	<1.0
	12/6/2011	39	<100	0.53	<10	<0.3	<1.0
MW-7	4/19/2011	1.5	<100	<0.5	<0.5	1.4	<1.0
	10/26/2011	12	220	1.7	<10	2.0	1.0
	12/6/2011	37	<100	1.5	<10	1.1	<1.0
'							
MW-8	4/19/2011	2,100	1,200	<0.5	<0.5	4.4	<1.0
	10/26/2011	2,000	2,800	<0.5	<10	5.6	<1.0
	12/6/2011	5,600	<100	<0.5	<10	7.2	<1.0
		0,000			- 110		
MW-9	4/19/2011	4.8	<100	<0.5	<0.5	1.7	<1.0
	10/26/2011	2.9	<100	<0.5	<10	1.3	<1.0
	12/6/2011	34	<100	<0.5	<10	0.38	<1.0
, 		_	100				

Notes:

Fe, Cr, As, Se = total dissolved iron, chromium, arsenic and selenium by EPA Method 6020.

Cr(VI) = hexavalent chromium by method SW7199.

Fe(II) = ferrous iron by method H8146

Table 7

Summary of Soil Analytical Results
Former Olympian Service Station
1435 Webster Avenue Alameda, California

Field	Date	Depth	TPHg		TPHd		Benzene	Toluene	Ethylbenzene	Xvlenes	MTBE	Pb
Point ID	Date	(ft bsg)	9		11110	-			s per million (pr			1.0
		ESL	83		83		0.023	2.9	2.3	2.3	0.023	200
	Appro	oved SSTL					0.39	3.3	0.68	6.6	0.63	
MW-1	6/12/1993	?	ND		ND		ND	ND	ND	ND	NA	NA
MW-2	6/12/1993	?	ND		ND		ND	ND	ND	ND	NA	NA
MW-3	6/12/1993	?	ND		ND		ND	ND	ND	ND	NA	NA
B1	2/11/1999	7.5	0.65		<1.0		<0.005	<0.005	< 0.005	<0.010	<0.005	<1.0
B2	2/11/1999	7.5	<0.5		<1.0		< 0.005	< 0.005	< 0.005	< 0.010	< 0.005	2.0
В3	2/11/1999	6	<0.5		<1.0		< 0.005	< 0.005	< 0.005	< 0.010	< 0.005	1.2
В4	2/11/1999	7.5	<0.5		<1.0		< 0.005	< 0.005	< 0.005	< 0.010	< 0.005	1.2
MW-4	11/11/1999	9.5	<0.5		<1.0		<0.005	<0.005	<0.005	<0.010	<0.005	
MW-5	11/10/1999	9.5	1,100		200		3.4	21	14	70	< 0.005	
MW-6	11/10/1999	9	<0.5		<1.0		< 0.005	< 0.005	< 0.005	< 0.010	< 0.005	
		·										
B1	6/27/2001	9	<0.5				<0.005	<0.005	<0.005	<0.01	<0.005	
B2	6/27/2001	9	<0.5				< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B3	6/27/2001	9	<0.5				< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B4	6/27/2001	9	<0.5				< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
	0,2.,200.	· ·	10.0				10.000	10.000	10.000	10.01	10.000	
SP-1	6/12/2006	7.5	1,600	2	9.5	4	0.44	5	38	190	<4	
SP-1	6/12/2006	10	1,530		12	4	3.5 ^J	23	28	150	<4	
SP-2	6/12/2006	7	586	3	8.8	4	0.033	<1	3.1	13	<2	
SP-2	6/12/2006	10	360	3	8.8	4	0.4	0.58 ^J	4.9	23	<2	
SP-3	6/12/2006	8	114	3	2.4	4	<1	2.2	1.7 ^J	9.4	<2	
SP-3	6/12/2006	10	96.3	3	5.5	4	0.46	1.4 ^J	1.2 ^J	7	<2	
SP-4	6/12/2006	4	0.0308		<2		<0.01	0.01	0.01	0.051	<0.01	
SP-4	6/12/2006	7.5	1,240		29	4	0.72	2	12	61	<4	
SP-4	6/12/2006	10	1,410		150	4	6.30	45	18	93	<4	
SP-5	6/12/2006	7	758	2	42	4	0.24	1.7 ^J	4	35	<4	
SP-5	6/12/2006	10	1,100	2	68	4	0.39	16	23	140	<4	
SP-6	6/12/2006	7	5.83	3	64	4	0.019 ^J	0.037	0.48	0.71	<0.025	
SP-6	6/12/2006	10	2.78	3	3.8	4	<0.02	0.0066	0.027	0.053	<0.023	
SP-7	6/12/2006	7.5	1,100	3	200	4	0.032	0.000	0.066	0.033	<0.02	
SP-7 SP-7	6/12/2006	7.5 10	328	3	8.5	4	0.032 0.019 ^J	2.1 ^J	3.3 ^J	0.29 18	<0.02 <4	
SP-8	6/12/2006	7	3,430		270	4	0.019	4.8 ^J	40	160	<20	
SP-8		10			160	4	<10	20	31	160	<20	
SP-0	6/12/2006	10	1,350		160		<10	20	31	100	<20	
CB-2	11/15/2006	6	<0.5		<2.5	1	< 0.01	<0.01	<0.01	<0.01	<0.05	
CB-2	11/15/2006	10	8,800		<120	1	<20	190	92	490	<100	
CB-2 CB-4	11/15/2006	8	< 0.5		<2.5		<0.01	<0.01	<0.01	<0.01	< 0.05	
CB-4 CB-4	11/15/2006	o 12	2,100		<2.5 <120	1	<0.01 <5.0	<0.01 14	<0.01 21	<0.01 52	<0.05 <25	
CB-4 CB-5	11/15/2006	8	< 0.5		<2.5		<0.01	<0.01	<0.01	<0.01	<0.05	
CB-5	11/15/2006	o 12	<0.5 0.7		<2.5 <2.5	1	<0.01	<0.01	0.013	0.067	<0.05	
CB-5 CB-6												
CB-6	11/15/2006	8 12	<0.5		<2.5 <12	1	<0.01	<0.01	<0.01 94	<0.01	<0.05	
	11/15/2006	12	8,000				57	190		500	<50	11
CB-7	11/15/2006	12						 -0.01		 -0.01	 -0.05	11
CB-8	11/15/2006	8	< 0.5		<2.5	1	<0.01	<0.01	<0.01	<0.01	< 0.05	4.0
CB-8	11/15/2006	10	1,800		< 5.0	•	< 5.0	< 5.0	26	150	<25	4.8
CB-9	11/15/2006	8	<0.5		<2.5		<0.01	<0.01	<0.01	<0.01	<0.05	
CB-9	11/15/2006	10	<0.5		<2.5		<0.01	<0.01	<0.01	<0.01	<0.05	

Table 7

Summary of Soil Analytical Results
Former Olympian Service Station
1435 Webster Avenue Alameda, California

Field	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Pb
Point ID	Date	(ft bsg)	ıg	, IIIIu			s per million (pr			1.0
		ESL	83	83	0.023	2.9	2.3	2.3	0.023	200
	Appro	ved SSTL			0.39	3.3	0.68	6.6	0.63	
CB-10	11/15/2006	8	2.2	<2.5	<0.01	<0.01	0.012	<0.01	< 0.05	
CB-10	11/15/2006	12	2,800	<12 ¹	<10	34	45	200	<50	
CB-11	11/15/2006	8	0.53	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-11	11/15/2006	12	300	<62	<2.0	3.8	4.8	25	<10	
CB-12	11/15/2006	8	<0.5	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-12	11/15/2006	12	<0.50	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-14	11/15/2006	8	<0.5	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-14	11/15/2006	12	1.0	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-16	11/15/2006	8	<0.5	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-17	11/15/2006	8	<0.5	<2.5	< 0.01	< 0.01	<0.01	< 0.01	< 0.05	
CB-17	11/15/2006	12	10,000	<50 ¹	<20	170	120	640	<100	
MW-8	3/9/2007	10	<0.1	<2.5	<.005	<.005	<.005	<.010	<.005	
10100-8	3/9/2007	10	<0.1	<2.5	<.005	<.005	<.005	<.010	<.005	
B-6	7/11/2007	8	0.196 ³		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-6	7/11/2007	11	11.2 ⁵		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-7	7/11/2007	6	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-7	7/11/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-8	7/11/2007	6	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-8	7/11/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-9	7/11/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-9	7/11/2007	11	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-10	7/11/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-10	7/11/2007	11	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-11	7/11/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-11	7/11/2007	11	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-12	7/11/2007	10	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-12	7/11/2007	12	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-13	7/10/2007	10	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-13	7/10/2007	12	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-14	7/10/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-14	7/10/2007	10	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	
B-17	7/10/2007	8	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-17	7/10/2007	10	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-18	7/10/2007	10	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	
B-18	7/10/2007	12	<0.1		< 0.05	< 0.05	< 0.05	< 0.05	<0.01	

Table 7 Summary of Soil Analytical Results

Former Olympian Service Station 1435 Webster Avenue Alameda, California

Field	Date	Depth			Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Pb
Point ID		(ft bsg)			Concentrati	ons in part	s per million (pr	om) (mg/kg)	
		ESL	83	83	0.023	2.9	2.3	2.3	0.023	200
	Appro	oved SSTL			0.39	3.3	0.68	6.6	0.63	
B-19	7/7/2009	8	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
B-19	7/7/2009	12	<1	<1		< 0.01	<0.01	< 0.015	<0.01	
B-20	7/7/2009	6	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
B-21	7/7/2009	6	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
B-21	7/7/2009	11	<1		<0.01	< 0.01	<0.01	< 0.015	< 0.01	
B-22	7/7/2009	8	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
B-22	7/7/2009	14	<1		<0.01	< 0.01	<0.01	< 0.015	< 0.01	
B-23	7/7/2009	8	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
B-23	7/7/2009	14	<1		<0.01	< 0.01	<0.01	< 0.015	< 0.01	
B-24	7/7/2009	8	<1		<0.01	< 0.01	<0.01 <0.01		<0.01	
B-24	7/7/2009	14	<1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
MW-9	7/13/2009	8	<0.1		<0.01	< 0.01	<0.01	< 0.015	<0.01	
MW-9	7/13/2009	20*	<0.1		< 0.011	<0.011	< 0.011	< 0.017	< 0.011	
I-A3	10/4/2011	9	<0.1		<0.010	<0.010	<0.010	<0.015	<0.010	
A-1	12/6/2011	9	<0.1		<0.010	<0.010	<0.010	<0.015	<0.010	
I-B1	10/4/2011	9	170	5	<1	<1	2.3	3.1	<1	
A-2	12/6/2011	9	49	2	< 0.05	< 0.05	<0.05	< 0.075	< 0.05	
I-B6	10/4/2011	9	150	5	<1	<1	2.3	7.4	<1	
A-3	12/6/2011	9	12	2,3	<0.05	< 0.05	0.13	0.43	<0.05	
I-C1	10/4/2011	9	<0.1		<0.01	<0.01	<0.01	<0.015	<0.01	
A-4	12/6/2011	9	<0.1		<0.01	<0.01	<0.01	<0.015	<0.01	
ll										

Notes:

Highlighed row = recent data

ESL = Environmental Screening Level, Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, Table A-1 Shallow soils, groundwater is a drinking water resource, residential land use, CRWQCB, May 2008.

SSTL = Site-Specific Treatment Level

--- = Not Analyzed ? = Depth unknown

ND = No Detection at or above laboratory reporting limits

TPHg = Total petroleum hydrocarbons as gasoline, EPA Method 8015; 2009 samples by EPA Method 8260.

TPHd = Total petroleum hydrocarbons as diesel, EPA Method 8015.

Benzene, Ethylbenzene, Toluene, Xylenes, EPA Method 8020; 2009 samples by EPA Method 8260.

MTBE = Methyl tert-butyl ether, EPA Method 8020; 2009 samples by EPA Method 8260.

Pb = Lead, Method 7420

- * = dry weight analysis.
- ¹ No diesel pattern present.
- ² Hydrocarbons responded in gasoline range, but pattern does not match typical gasoline (possibly aged gasoline).
- ³ Hydrocarbons responded in gasoline range, but pattern does not match typical gasoline (heavy end).
- ⁴ Sample chromatogram does not resemble typical diesel pattern. Unidentified lighter end hydrocarbons within the diesel range quantitated as diesel.
- 5 Hydrocarbons responded in gasoline range, but pattern does not match typical gasoline (includes non-target compounds).
- J Value should be considered estimated.

Table 8 Summary of Grab Groundwater Analytical Results

Former Olympian Service Station 1435 Webster Avenue Alameda, California

Sample ID	Date	TPHg	В	T	E	Х	MTBE	EDB	EDC	Ethanol	ETBE	DIPE	t-Butanol	TAME				
			•		•			microgra	ms per lite	er (µg/L)								
	STL	-	940	4,300	760	7,100	1,300	-	-	-	-		-					
	SL	100	1	40	30	20	5	0.05	0.5				12					
B-1	6/27/2001	<50	< 0.005	3	< 0.005	<0.01	4											
B-2	6/27/2001	<50	< 0.005	0.9	0.5	2	4											
B-3			1	3														
B-4	6/27/2001	96	2	3	0.6	2	2											
B-6	7/11/2007	1,180	<1.50	<1.32	50.7	<3.26	<1.72	<1.58	<1.58	<220	<1.85	<1.98	<6.60	<1.41				
B-7	7/11/2007	250 ¹	8.79	0.52	13.6	<1.16	2.9	< 0.565	< 0.565	<78.5	< 0.659	< 0.706	<2.36	< 0.502				
B-8	7/11/2007	<73.5	< 0.534	< 0.471	< 0.392	<1.16	6.83	< 0.565	0.64	<78.5	< 0.659	< 0.706	<2.36	< 0.502				
B-9	7/11/2007	400 ¹	2.20	<1.32	<1.10	<3.26	433	<1.58	33.2	<220	<1.85	<1.98	164	<1.41				
B-10	7/11/2007	<100	<0.598	<0.528	< 0.440	<1.30	66.2	< 0.634	5.44	<88.0	< 0.739	< 0.792	23.5	< 0.563				
B-11	7/11/2007	<91.5	< 0.622	< 0.549	<0.458	<1.35	< 0.714	< 0.659	< 0.659	<91.5	< 0.769	< 0.824	<2.74	< 0.586				
B-12	7/10/2007	290 ²	< 0.598	< 0.528	< 0.440	<1.30	<0.686	< 0.634	< 0.634	<88.0	< 0.739	< 0.792	<2.64	< 0.563				
B-13	7/10/2007	<78.5	< 0.534	< 0.471	< 0.392	<1.16	< 0.612	< 0.565	< 0.565	<78.5	< 0.659	< 0.706	<2.36	< 0.502				
B-14	7/10/2007	<63.0	< 0.394	< 0.348	< 0.290	< 0.858	2.77	< 0.418	< 0.418	<58.0	< 0.487	< 0.522	<1.74	< 0.371				
B-15	7/10/2007	142 ¹	< 0.68	< 0.68	< 0.68	<2.04	< 0.68	< 0.68	<0.68	<136	<0.68	<0.68	<13.6	<0.68				
B-17	7/10/2007	<100	< 0.622	< 0.549	< 0.458	<1.35	< 0.714	< 0.659	< 0.659	<91.5	< 0.769	< 0.824	<2.74	< 0.586				
B-18	7/10/2007	<81.5	<0.575	< 0.507	< 0.422	<1.25	< 0.659	<0.608	<0.608	<84.5	<0.710	<0.760	<2.54	<0.541				
B-19	7/7/2009	<76	<0.76	<0.76	<0.76	<2.3	<0.76				<0.76	<0.76	<15	<0.76				
B-19	7/7/2009	<69	< 0.69	< 0.69	<0.76	<2.3	<0.76				< 0.69	<0.76	<14	< 0.69				
B-20 B-21	7/7/2009	<09 <74	< 0.74	< 0.74	<0.69	<2.1	< 0.69				< 0.74	<0.69	<15	< 0.74				
B-21			<0.74			<2.2 <2.4						<0.74		<0.74				
	7/7/2009	<82 <74	<0.82	<0.82 <0.74	<0.82 <0.74	<2.4 <2.2	<0.82 <0.74				<0.82 <0.74	<0.82	<16 <15	<0.82 <0.74				
B-23 B-24	7/7/2009		<0.74				1.0											
B-24 VMP-1	7/7/2009	<76		< 0.76	< 0.76	<2.3	1.0 <22				<0.76	<0.76	<15	<0.76 <22				
	7/13/2009	47,000	1,500	1,200	1,900	6,300					<22	<22	<440					
VMP-2	7/14/2009	11,000	970	500	370	1,000	420				<4.4	<4.4	120	<4.4				
VMP-3	7/14/2009	9,700 ¹	61	<5.5	280	16	1,900				<5.5	<5.5	<110	<5.5				
VMP-4	7/13/2009	110,000	4,100	1,500	3,000	17,000	950				<44	<44	<880	<44				
VMP-5	7/14/2009	<50	2.6	1.3	1.0	2.5	1.1				<0.5	<0.5	<10	<0.5				
I-A3	10/4/2011	18,000	290	540	390	1,770	<5.5				<5.5	<5.5	<55	<5.5				
A-1	12/6/2011	240,000	8,000	9,500	3,700	12,400	180				<44	<44	<440	<44				
I-B1	10/4/2011	12,000 ³	19	<2.2	300	352.2	<2.2				<2.2	<2.2	<22	<2.2				
1-01	10/4/2011	12,000	19	\Z.Z	300	332.2	\Z.Z				\Z.Z	\2.2	\ZZ	\Z.Z				
I-B6	10/4/2011	20,000 4	6,100	1,100	1,800	2,380	720				<22	<22	<22	<2.2				
A-3	12/6/2011	150,000	17,000	19,000	4,500	19,700	1,400				<44	<44	230	<44				
I-C1	10/4/2011	2,600	56	61	52	252	<0.5				<0.5	<0.5	<5	<0.5				
A-4	12/6/2011	56,000	3,300	4,600	1,700	8,400	57				<44	<44	<440	<44				
		,	-,3	.,	.,	-,												

Notes and Abbreviations:

Bold = Concentration exceeds SSTL

SSTL = Site-specific treatment level

ESL = Environmental Screening Levels of CRWQCB, Table F-1a - (groundwater IS a current or potential drinking water resource), Interm Final - 2007, Revised May 2008.

TPHg = Total petroleum hydrocarbons as gasoline, EPA Method 8015.

B T E X = Benzene, Ethylbenzene, Toluene, Xylenes, EPA Method 8260.

MTBE = Methyl tert-butyl ether, EDB = 1,2-Dibromoethane, EDC = 1,2-Dichloroethane, Ethanol, ETBE = Ethyl tert-butyl ether, DIPE = Isopropyl ether, t-Butanol = t-Butyl alcohol, TAME = tert-Amyl methyl ether, EPA Method 8260.

¹ = Hydrocarbons responded in gasoline range, but pattern does not match typical gasoline.

² = The pattern does not match typical gasoline; TPH value includes significant amount of non-target compounds.

<X = Concentration less than respective laboratory reporting limit.

--- = Not analyzed.

³ = Does not match pattern of reference Gasoline standard; reported TPH value includes contribution from heavy end hydrocarbons (possibly aged gasoline) and non-fuel light hydrocarbons in the C5-C12 range quantified as Gasoline.

^{4 =} Does not match pattern of reference Gasoline standard; reported value includes amount due to discrete peaks of aromatic compounds and contribution from non-fuel hydrocarbons in range of C5-C12 quantified as gasoline.

Table 9 Summary of Soil Vapor Sampling Analytical Results Former Olympian Service Station 1435 Webster Street

Alameda, California

		Sampling	Sampling							l										
Sample Point	Date	Duration	Depth	TPHa	В	т	Е	(a.m) X	X (o)	МТВЕ	DIPE	ETBE	TAME	tBA	PCE	Isopropanol	Acetone	0,	СН	CO2
		min	ft	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m ³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	%	%	%
Standard for				ESLs:	g	g					g	- g	- g			DTSC Limit:			nospheric (Conc.:
Comparison:				29,000	140	180,000	3,300	58,0	000	31,000					1,400	10,000		21.9	0.00018	0.039
SV-1	5/14/2003		3.5	5.400	<1.000	1,900	<1,000	<1,000		<1.000	<1.000	-1 000	-1 000	<5.000						
SV-2	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000		,	<1,000	,	,	<5,000						
SV-3	5/14/2003		3.5	5,800	<1,000	3,700	<1,000	<1,000			<1,000			<5,000						
SV-4	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000			<1,000			<5,000						
SV-5	5/14/2003		3.5	<1,000	<1.000	<1,000	<1,000	<1,000		<1.000	<1.000			<5.000						
SV-6	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<5,000						
SV-7	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<5,000						
SV-7 dupl.	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<5,000						
																				ŀ
VMP-1 (4)	8/11/2009*	6	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	10	<33	22	15	< 0.0023	4.8
	12/22/2009*	9	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		16	<0.0012	3.4
	10/27/2011**	<1	4	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42						
																				l l
VMP-1 (8)	8/11/2009*	6	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	9	97	46	21	<0.0022	4.6
dupl.	8/11/2009*	10	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	8	110	51	25	<0.0024	3.6
	12/22/2009	6	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		16	<0.0012	5.4
	10/27/2011**	<1	8	<3,500	<8.0	<9.4	<11	15.6	<11	<9.0	<10	<10	<10	<42						
VMP-2 (4)	8/11/2009*	15	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	32	<33	19	26	<0.0019	2.5
V IVIT -2 (4)	12/22/2009*	8	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		15	<0.0019	3.7
	10/27/2011**	<1	4	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42						J.1
	10/21/2011		-	νο,οοο	νο.υ	νο. τ	×111	722	×111	40.0	110	210	110	N-12						
VMP-2 (8)	8/11/2009*	11	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	15	170	<19	33	< 0.0014	1.5
(-)	12/22/2009*	10	8	<2,800	<3.2	<3.8	<4.3	<4.1	11	<3.6						<33		13	< 0.0011	4.3
	10/27/2011**	<1	8	<7,000	<8.0	<9.4	<11	55.1	<11	<9.0	<10	<10	<10	<42						
VMP-3 (4)	8/11/2009*	6	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	24	38	30	29	<0.0018	3.3
	12/22/2009*	9	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		22	<0.0011	4.5
	10/27/2011**	<1	4	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42						
	1																			l l
VMP-3 (8)	8/11/2009*	5	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	21	<33	23	23	<0.0019	6.4
	12/22/2009*	7	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		7.4	<0.0011	9.5
	10/27/2011**	<1	8	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42						
																		<u> </u>		

Table 9 Summary of Soil Vapor Sampling Analytical Results

Former Olympian Service Station 1435 Webster Street Alameda, California

Sample Point	Date	Sampling Duration	Sampling Depth	TPHg	В	Т	E	X (m,p)	X (o)	MTBE	DIPE	ETBE	TAME	tBA	PCE	Isopropanol	Acetone	02	CH₄	CO2	
		min	ft	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m ³	ug/m³	ug/m³	ug/m³	ug/m³	%	%	%	
Standard for	or			ESLs:												DTSC Limit:	Atmospheric Conc.:				
Comparison:				29,000	140	180,000	3,300	58,0	000	31,000					1,400	10,000		21.9	0.00018	0.039	
VMP-4 (4)	8/11/2009*	6	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	7.7	39	45	34	< 0.0016	1.4	
	12/22/2009*	12	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						38		16	< 0.0013	4.5	
	10/27/2011**	<1	4	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42							
VMP-4 (8)	8/11/2009*	7	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	13	<33	38	16	< 0.0015	5.0	
	12/22/2009*	8	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		17	<0.0015	4.1	
	10/27/2011**	<1	8	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42							
\((4)	0/44/0000*	40		0.000	0.4	4.4	4.7		4.7	0.0	4.5	4.5	4.5	40	00	0.5	40	00	0.0007	4.5	
VMP-5 (4)	8/11/2009*	12	4	<3,000	<3.4	<4.1	<4.7	<4.4	<4.7	<3.9	<4.5	<4.5	<4.5	<13	30	<35	46	22	< 0.0027	4.5	
	12/22/2009*	9	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		33	<0.0011	1.5	
	10/27/2011**	<1	4	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42							
VMP-5 (8)	8/11/2009*	8	8	<2.800	<3.2	6.7	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	14	<33	40	36	< 0.0024	1.9	
0 (0)	12/22/2009*	7	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33		22	< 0.0016	3.5	
	10/27/2011**	<1	8	<3,500	<8.0	<9.4	<11	<22	<11	<9.0	<10	<10	<10	<42							
	10,21,2011	-1	J	10,000	30.0	10.4				-5.0	-10	-10	-10	- 12							
Atmosphere #1																					
(ATM-01)	8/11/2009*															1,700,000E					

Notes and Abbreviations:

2003 samples were collected in a calibrated syringe and analyzed by EPA Method 8260B.

* samples were collected in Summa canisters and analyzed by EPA Methods TO-3 and TO-15.

** samples collected using Tedlar bags and analyzed by EPA Methods TO-3 and TO-15.

-- = not analyzed or data not available

min = minutes

ug/m3 = micrograms per cubic meter

B, T, E, X = benzene, toluene, ethyl benzene, xylenes

MTBE = methyl tert-butyl ether

DIPE = Diisopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

tBA = tert-Butyl alcohol

PCE = tetrachloroethene

 O_2 = oxygen, CH_4 = methane, and CO_2 = carbon dioxide, by Method ASTM D-1946

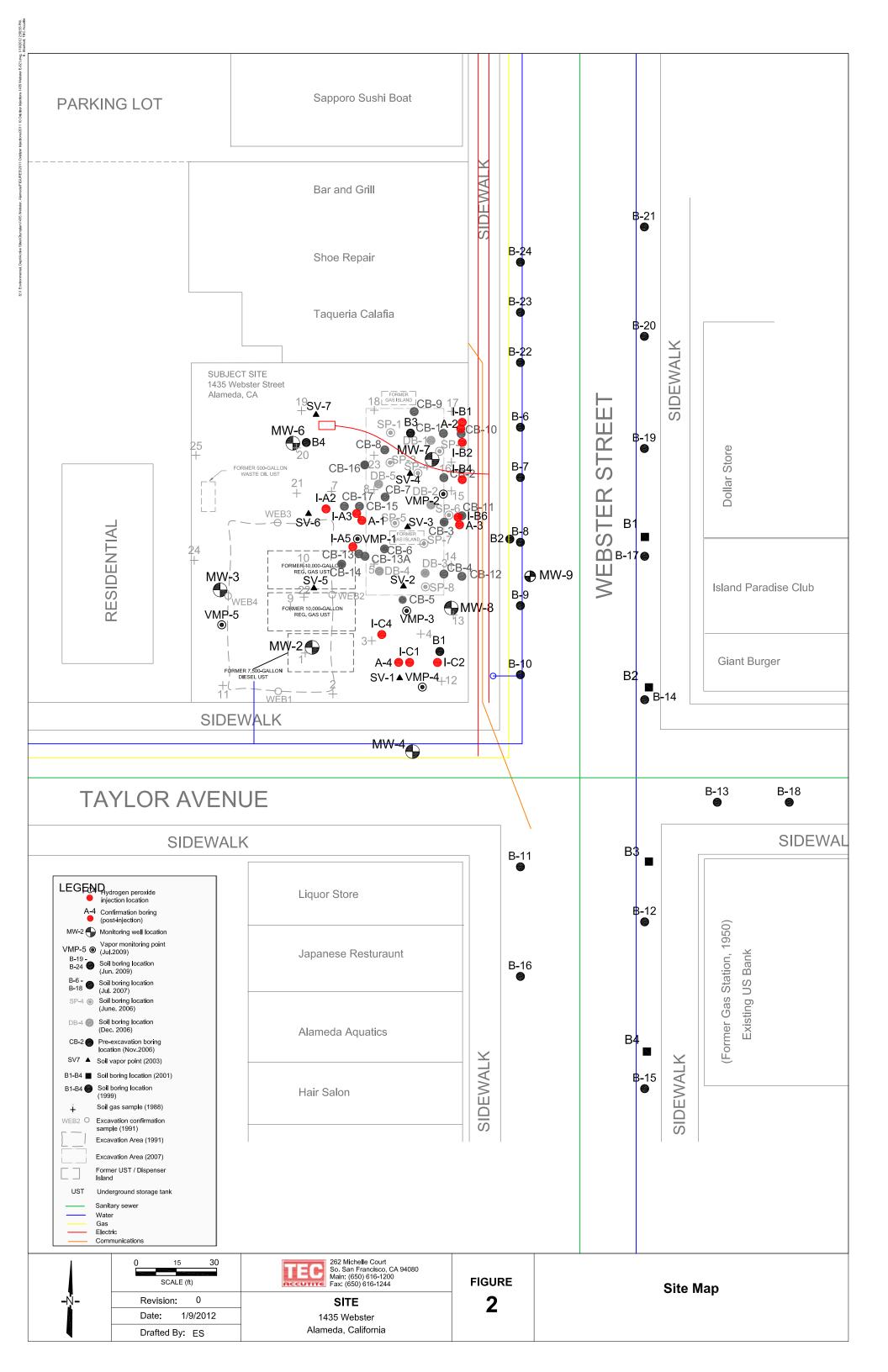
dupl. = laboratory split and duplicate

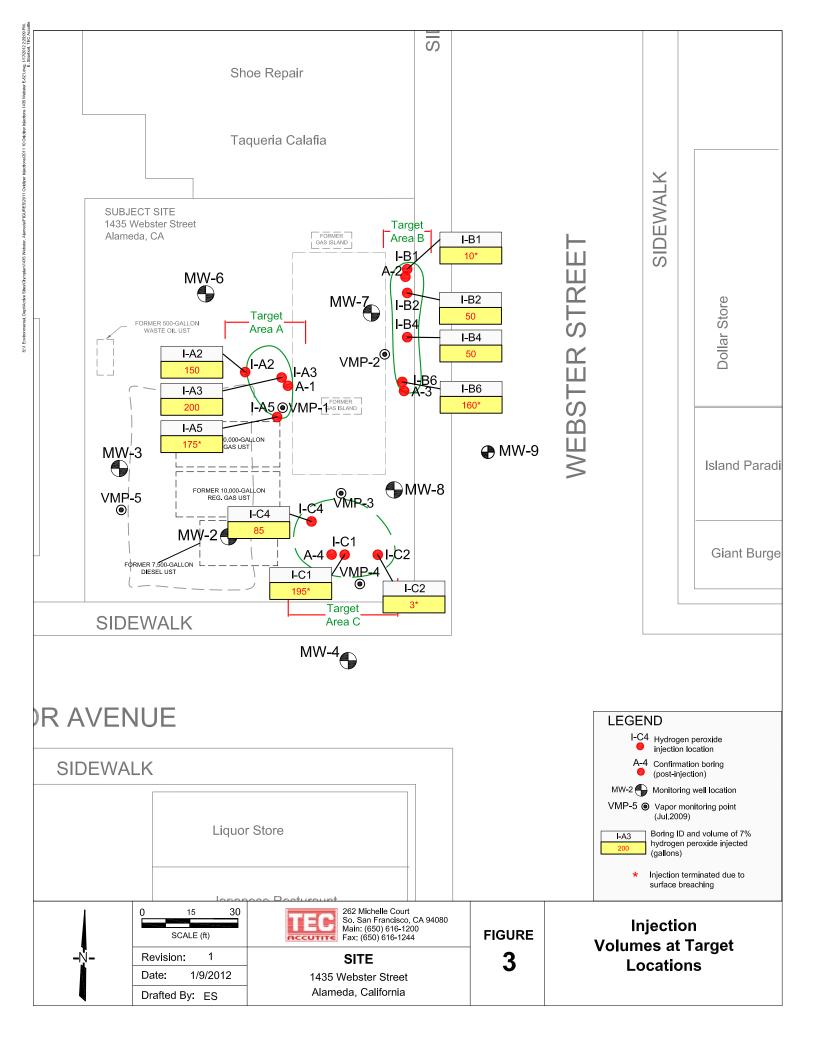
E = estimated value; the amount exceeds the calibration range but is within linear working range of the instrument.

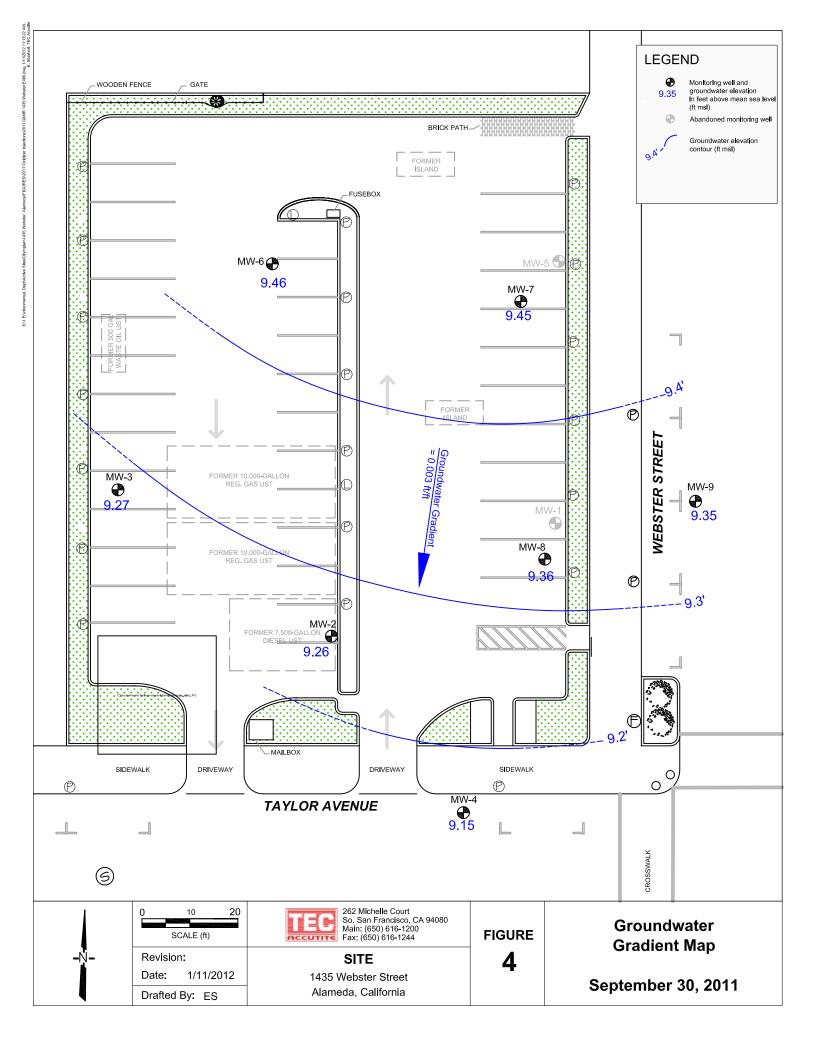
ESLs = Environmental Screening Levels, Table E-2 (Soil Gas in Shallow Soils, commercial/industrial land use scenario, lowest levels), California Regional Water Quality Control Board, Interim Final, November 2007, revised May 2008.

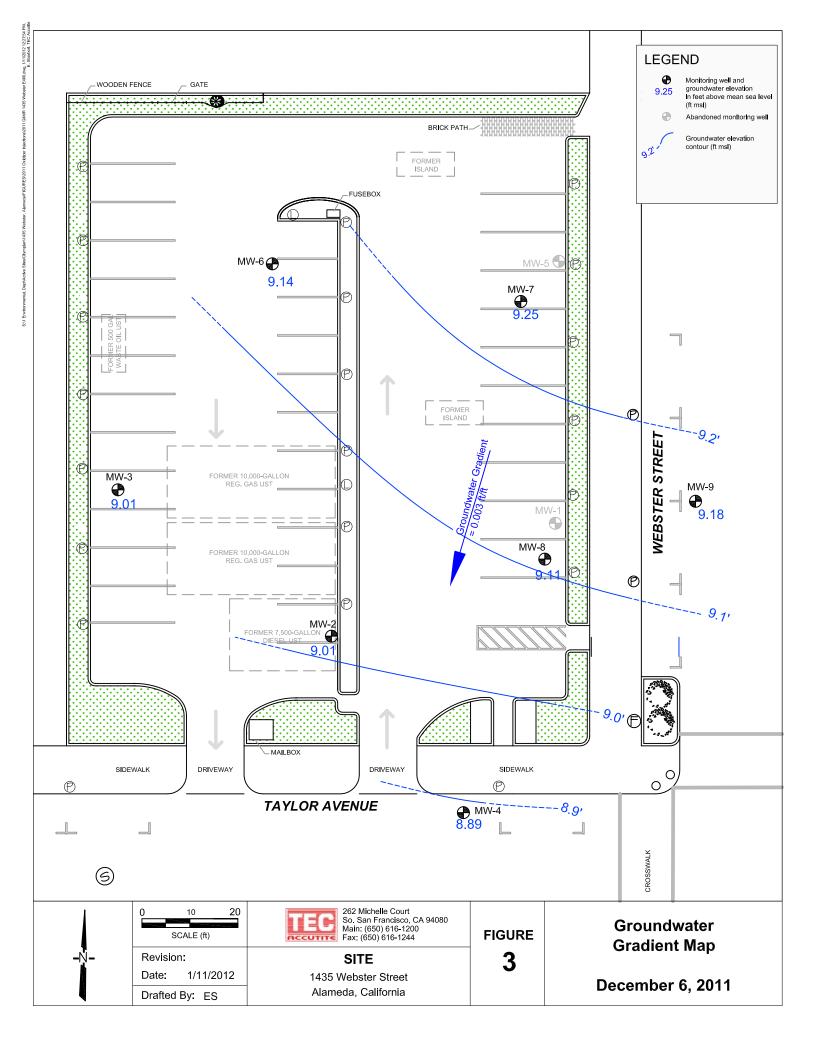
Concentrations above ESLs for soil gas are shown in **bold**

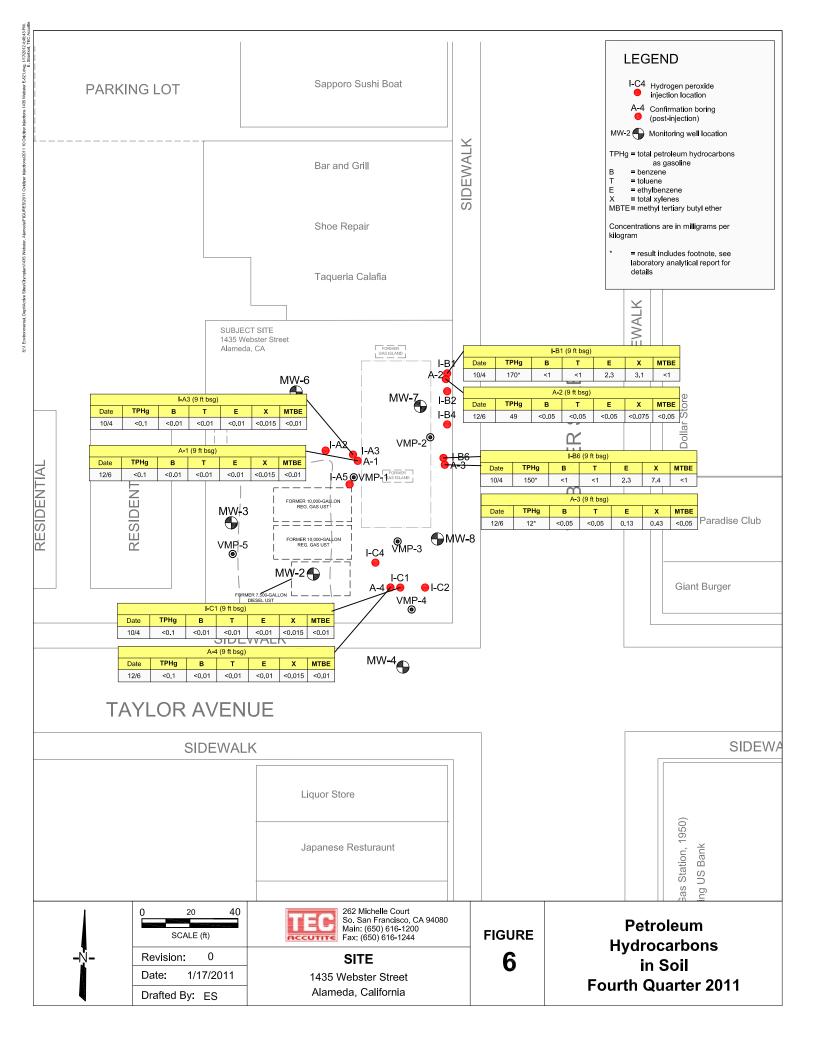
DTSC Limit = a standard, issued by the Department of Toxic Substances Control (2003), representing significant Isopropanol contamination

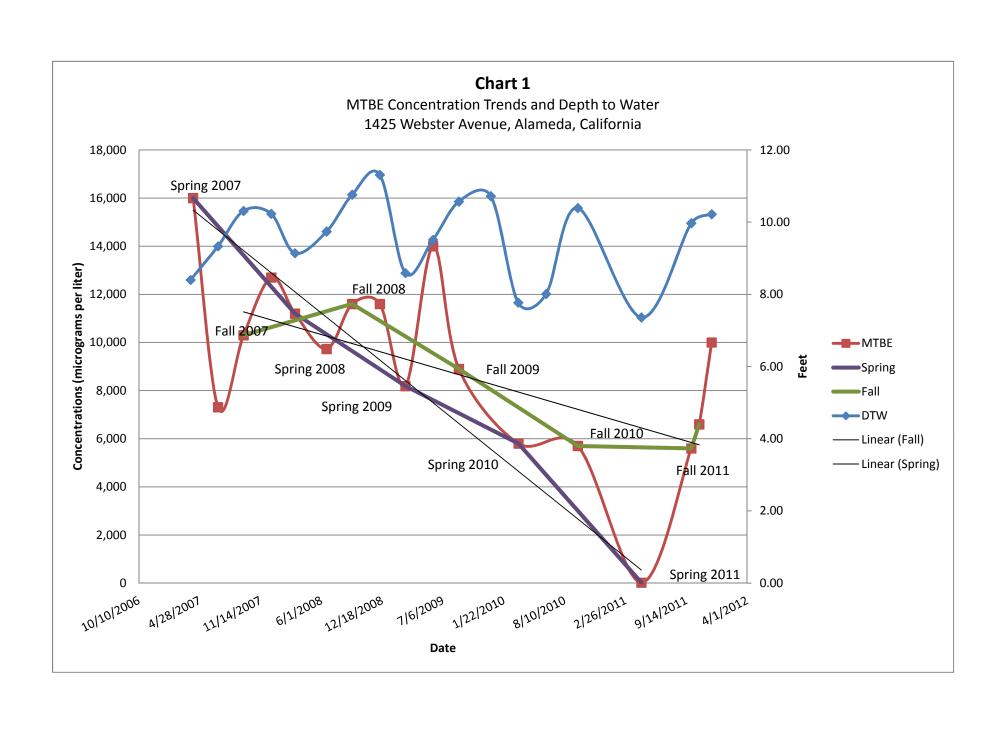

Atmospheric Conc. = average atmospheric concentration of each gas




FIGURES




Drafted By: AK



CHART

ATTACHMENT A

FIELD DATA SHEETS

		TEC	ACCUTI	TE Well	Data Shee	et		
Date: 9/36/\\	Site Name: 1435	Webster			Project #:	E-480	-2-11	Sampler: BD
Event: SAMPL	Site Address: A	lameda			Client: Oly	/mpian		
					ENT	50 m	* WELL	COMMENTS
WELLID	TIME	P.DTP.	PT *	DTW	Historic DTB	Today's DTB	DIAMETER	(i.e. pressurized or
1000	20-0				date: 6/3/09			maintenance req.)
MW-2	0928			10.54	19.42		2"	
MW-3	0926			10.52	21.85		2"	
MW-4	0929			10.15	19.76		2"	
MW-6	0927		:	10.81	19.34		2"	
MW-7	0931			9.48	19.81		4"	
MVV-8	0932			9.97	20.03		4"	
MVV-9	0934			9.48	19.94		4"	
	,							
								
				:				
	:							

Abbreviations:

· · · · · · · · · · · · · · · · · · ·		 								
		W	TEC A ater Sample I	ccutite Field Data Sh	leet					
Project #: E	E-480-2-	-11	Purged By:	BD		Well ID:	MW-2			
Client Name	e: Olympian		Sampled By	: BD		Sample ID:	MW-2			
Location:	1435 Webste	er				QA Samples	s: <u>-</u>			
	}		Purge In	formation						
Date: 9/3	30/11		Start (2400h	r): 1058	,	End (2400hr	1: 1105			
Depth to Bo	ttom: 19.42			iter: 10,54		Casing Diam				
DTB - DTW:	8.88		Purge (gal):	多二十	1.51	x 3 volumes	: 4.353			
			Field Mea	surements						
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)			
1100	1.5	20,4	994	6.40	10w	brown	10.9			
1103	3, 0	20.0	988	6.55	11	11	11.6			
1105 4.5 70.1 994 6.67 11 1 12.1										
							. ,			
					i					
)			Sample In	formation		1				
Date: 9 30	11/6	Time: //0	<u>٧</u>	DTW : 11, 3		Turbidity: /	\text{U}			
Odor: NO.	re		Analysis:	8260	Sample Vess Preservative		As 			
	Purging E	Equipment			Sampling	Equipment				
	sible pump _			 ,	–	peristaltic p	-			
dedicated	isposable) _ d	bailer (st. s _ bladder pum	·		sposable) <u> </u>	bailer (st. s _ bladder pum	•			
other:							-			
Well Integrity	y: 900°	<u> </u>	Lock: hD							
	nvert water co lumn height by	olumn height to								
Signature:	Brie	m Doh	VVI							

					. .		
		w	TEC A ∣ater Sample	ccutite	neet	,	
,	- 110	_	_		1001		
Project #:	=-480-6	2-11	Purged By:	BD		Well ID:	MW-3
Client Name	e: Olympian		Sampled By	: BD	Sample ID:	MW-3	
Location:	1435 Webst	ter				QA Samples	S:
}	,		Purge In	formation			
Date: 9/3	0/11		Start (2400h	r):1032		End (2400hr): 104
Depth to Bo	ottom: 21.85		Depth to Wa	iter: 10.57	2	Casing Dian	neter: 2"
DTB - DTW:	11.33		Purge (gal):	1.93		x 3 volumes	: 5.78
			Field Mea	surements			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
1038	2.0	20.9	504	6.75	100	brawn	10.9
1042	4.0	205	505	6.50	U	(1	11,2
1046	6.0	20.4	506	6,46	, \	13	17.5
			<u> </u>		-		
			 				
		<u> </u>					
1	1		-	formation			:
Date: 9	30/11	Time: 10	47	<u>DTW: //, 4</u>	46	Turbidity: /	12
Odor: h ()	N		Analysis:	8260	Sample Ves Preservative	sels: 3 VO	As
····	Purging I	Equipment			Sampling	Equipment	
		peristaltic				peristaltic p	-
		bailer (st. s bladder pun				bailer (st. s bladder pum	
other:		_ bladdel pull					-
Well Integrity			Lock : n0	· -			
	-	olumn height t		of gallons in	one well volu	me multiply	
		y: .17 for 2" w					
	R C	n Dohe	to				

		W		Accutite Field Data Sh	eet		
Project #: É	E-480-2	1-11	Purged By:	BD		Well ID:	MW
Client Name	e: Olympian		Sampled By	n: BD		Sample ID:	MW
Location:	1435 Webste	er				QA Samples	s:
	,		Purge In	formation			
Date: 9 3	0/11		Start (2400h	nr): 1119		End (2400hr): 1
Depth to Bo	ttom: 19.76		Depth to Wa	ater: 10.15		Casing Dian	neter
DTB - DTW:	9.61		Purge (gal):	1-64		x 3 volumes	: 4.0
			Field Mea	surements		-	
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	I
1122	1,5	19.9	467	7.20	10iv	brown	16
1125	25	WELLA	VENTO	DRY (a)	~ 2,5	GALL	N:
	5.0						
					-		<u> </u>
							ļ
	<u> </u>						
Date: 9/38	.]	Time: 113	•	nformation DTW: 12・0	. K	Turbidity:	l _{ss}
Date: 7/50	711	Time: 5	7.2		Sample Vess		
Odor: No	ne		Analysis:	8260	Preservative	: HCI	
ou broom	Purging E			ou brooroi		Equipment	
	ible pump <u> </u>		•			peristaltic p bailer (st. s	•
dedicate	d	_bladder pum	ıp	dedicated	<u> </u>	_ bladder pum	ηp
other:				other:			_
Well Integrit	v: 900d	_	Lock: no				
Note: To co	nvert water co	lumn height to	o total amoun	t of gallons in	one well volur	ne, multiply	

J							
		w	TEC A ater Sample	Accutite Field Data Sh	ieet		
Project #:	E-480-6	2-1)	Purged By:	BD		Well ID:	MW-6
Client Name	e: Olympian		Sampled By	: BD		Sample ID:	MW-6
Location:	1435 Webst	er				QA Samples	s:
			Purge In	formation			
Date: 93	W II		Start (2400h	r): 1008		End (2400hr	1:1014
Depth to Bo	ttom: 19.34		Depth to Wa	iter: 10.81		Casing Dian	neter: 2"
DTB - DTW:	8.53		Purge (gal):	1.45		x 3 volumes	: 4.35
			Field Mea	surements			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
1010	1.5	20,9	494	7.44	10~	clouds	1161
1012	3.0	21.0	472	7.12	1(11	11.4
1014	4.5	20.9	456	6.79	<i>1</i> t	1,	12.1
`							
)	1		-	formation			
Date: 9/30	2/12	Time: 102		DTW: //. 1			
Odor: 1	sne		Analysis:	8260	Sample Ves Preservative	sels: 3 VO e: HCI	As ———————
	Purging E	quipment	······································		Sampling	Equipment	· <u> </u>
	ible pump _					peristaltic	
	sposable) <u> </u>	bailer (st. s _ bladder pun		<u>X</u> bailer (di dedicated		bailer (st. s bladder pun	<u>-</u>
	u		•			-	<u>-</u>
Well Integrity	v: 0001		Lock: YD				
Note: To co	nvert water co		o total amount				
the water col	 	^ 1	ell diameter,	.65 for 4", 1.4	7 for 6", or 2.0	62 for 8".	
Signature:	Brian	n Doh	utg				

							
		w		Accutite Field Data Sh	eet		
Project #: É	E-480-6	2-11	Purged By:	BD		Well ID:	MW-7
Client Name	e: Olympian		Sampled By	r: BD		Sample ID:	MW-7
Location:	1435 Webst	er				QA Samples	s:
	}		Purge In	formation	-		
Date: 9/3	0/11		Start (2400h	r): 1216		End (2400hr	1:1227
Depth to Bo	ottom: 19.81		Depth to Wa	nter: 9,48		Casing Dian	neter: 4"
DTB - DTW:	10.33		Purge (gal):	6.71	·	x 3 volumes	:20.14
			Field Mea	surements			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
1220	6.5	21.1	7.88 m S	6.71	100	rler	14.7
1223	13.5	20.7	7.87 M S	6.82	11	1,	16.5
1227	20.0	20.5	7.50m S	6.87	1-	37	18.0
<u> </u>							
,			Sample In	formation			
Date: 9/3	ofu	Time: / 30	5	DTW: 9.8	>/	Turbidity: /	a~
Odor: 10	re		Analysis:	8260	Sample Vess Preservative		As
	Puraina F	quipment			Sampling	Equipment	·
$\frac{X}{X}$ submers	ible pump		oump	submersi		peristaltic p	oump
	sposable) _			🔰 bailer (dis	sposable) _	bailer (st. s	teel)
dedicate	d	_ bladder pum	np	dedicated	t	_ bladder pun	пр
other:				other:			
Well Integrity	v:000d	-	Lock: NO				
	nvert water co lumn height by						
	R	100	MI		, , , , , , ,		
Signature:	BULAV	12500	(V'V)				

╗

		w	TEC A	ccutite Field Data Sh	neet		
Project #:	=-480-2	-1)	Purged By:	BD		Well ID:	MW-8
Client Name	e: Olympian		Sampled By	: BD		Sample ID:	MW-8
Location:	1435 Webst	er				QA Samples	s:
	1	····	Purge In	formation			
Date: 7/3[)/II		Start (2400h	r): 1236		End (2400h)	1): 1247
Depth to Bo	ottom: 20.03		Depth to Wa	iter: 9,97	7	Casing Diar	neter: 4"
DTB - DTW:	10.06		Purge (gal):	654		x 3 volumes	: 19.62
			Field Mea	surements			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
1241	6.5	21.1	1163	6.63	1av	cleer	14.0
1245	13.0	20,5	2.64 ms	6.27	, 1	1.	19.0
1247	WELL	WENT	T Der	@ v	15 GAG	LONS	s.
				-			_
ام)		Sample In				
Date: 3	0/11	Time: 134		DTW: 10		Turbidity:	0W
Odor: S	ight		Analysis:	8260	Sample Vess Preservative		AS
	Purging E	quipment			Sampling	Equipment	,
	ible pump				ible pump _		·
bailer (di	sposable) d	baller (st. s bladder pum		baller (di dedicate	sposable) _ d	baller (st. s _ bladder pun	•
other:						-	<u> </u>
Well Integrity	y: 9000		Lock :				
	nvert water co lumn height by						
Signature:	Bei	en D	Mede				

		, w	TEC A ater Sample l	ccutite Field Data Sh	neet		
Project #: E	=-480-2	-11	Purged By:	BD		Well ID:	MW-9
	e: Olympian		Sampled By	: BD		Sample ID:	MW-9
Location:	1435 Webst	er				QA Samples	s:
	1		Purge in	formation			
Date: 9/3	0/11		Start (2400h	r): 0940)	End (2400hr	1:0952
Depth to Bo	ttom: 19.94		Depth to Wa	iter: 9,48		Casing Dian	neter: 4"
DTB - DTW:	10.46		Purge (gal):	6.80		x 3 volumes	: 20,40
			Field Mea	surements			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
0944	7.0	17.6	892	6.81	1000	cler	
0948	14.0	17.5	880	6.80	1)	()	
0952	20.5	17.5	874	6.80	11	15	
				,			
1	i	"	Sample In	formation			
Date: 9 3	0/11	Time: ()99	55	DTW: 9.8	32	Turbidity: /	0W_
Odor: nov	w		Analysis:	8260	Preservative	sels: 3 VO e: HCl	As
	Purging E	quipment			Sampling	Equipment	
		peristaltic p			–	peristaltic	-
		bailer (st. s _ bladder pum	<i>'</i>		–	bailer (st. s _ bladder pun	-
other:		- ·	<u> </u>	other:		·	<u>. </u>
Well Integrity	1: acod		Lock: MO				
			o total amount				
THE WATER COR		/\	· / ·	.00 101 4 , 1.4	7 101 0 , 01 2.0		
Signature:	Brian	Woll 1	NM,				

		Alameda, Califor						Soil Vapor Sampling	Initials: BD	Date: 0 3 1
Summa	VMP No.		Start	Initial Pressure			PID		Notes	
No.	and depth		Time	(mg Hg)	Time	(mg Hg)	reading	1	·	
	160	vacuum test					α	1		
	1 (4)	purge					\mathcal{L}			
		sample								
		vacuum test purge					6/28	İ		
	1 (0)	sample					ZØ			
		vacuum test								
	2(4)	purge					Ø			
	160	sample								
		vacuum test			· ·				· · · · · · · · · · · · · · · · · · ·	
	2(8)	purge				<u> </u>	Ø			
	2-(0)	sample					у.		,	
	110	vacuum test					0.0			
	13(4)	purge					0.3			
		sample			<u> </u>					
	3(8)	vacuum test					×1			
	しろんのと	purge sample								
		vacuum test			 		10			
	4 (4)	purge					12			
	19 (7)	sample						1		
	1.(6)	vacuum test								
	4 (8)	purge					0			
		sample								
		vacuum test					61			
	15 (4)	purge								
	3 (1)	sample			<u> </u>		<i>y</i>		·	
	(-/	vacuum test					α			
	13 (8)	purge sample					Ø			
	- (0)	vacuum test					<u> </u>			
		purge:			-		-			
		sample					-			

Calibrated w/ 100 ppm gas Refore: 60,2 After: 102.1

TEC Accutite Injection Field Data Sheet

Project Name:	1435 Webster	
Client Name:	Olympia	

Site Location: A lameda

Signature:

			d Measuren			
Date	Boring	Time	Pressure	Flow Rate	Volume	Volume
(mm/dd/yy)	ID .	(2400hr)	(psi)	(gpm)	(totalizer)	(carboy)
10/4/11	I-A3	1126	160 for 1 min.,	1.5	Ø	Ø
		1128	0	1.2		
		1134	0	2.1	15	20
		1138	0	4.2	33	40
		1143	Ø	5.6	55	60 80
		1149	Ø	4.0		80
		1151	Ø	4.0	87	90
		1200	Ø	3.8	122	120
		1206	Ø	4.3	147	140
		1214	Ø	4.3	175	170
		1220	Ø	4.2	200	195
_			ĺ	_		
104/11	I-C1	1440	80	0.1		
, , , , ,		1449	120->20			_
		1459	16	1,3	1 1	30
		1502	10	1.5		50
		1528	5	1.8	· —	125
		1538	Ø	2.0		155
		1543	Ø	1.9		180
		1550	a	2.0)	195
	* SURFAC				W (crack	s in asph
	- K JOH- 170		DC 17CVO	5-0 (1, 0	(0,0.0)	
10/4/11	7-B1	1440	0			
:	<u>ــــــرا ط</u> ــــــــــــــــــــــــــــــــــــ	1449	ã	cleanup	overflou	Ibreach
	¥ 51	JEFACE E	BREACHIN		,	omins
	7()	up betw			casing	0"1" 0
		1507	0	0.5-2.0	0	~5
	* 4			tion larly	e Vacina	,
	end al	10/4/11	1055	an 100	e vacino)
	<u> </u>	10/1/11	الا تقام	\mathcal{S}	1110/13	
			-			
lotes:						

Page 1 of 3

TEC Accutite Injection Field Data Sheet

Project Name: 1435 Webster

Client Name: Olympian

Site Location: Alameda

		Field	d Measurer	nents			
Date	Boring	Time	Pressure	Flow Rate	Volume	Volume	
(mm/dd/yy)	ID OI	(2400hr)	(psi)	(gpm)	(totalizer)	(carboy)	
10/4/4	I-B6	1530	75	<u>GALLONS</u>			4
1 /		1600	/	17.	~ /	_	1
10/5/11		0821		1.1	8-1		_
		0830		1.3	93		
		0842	Ø	2.7	116		_
		0852	Ø	2.2	130		_
	* 5UP	FACE BR	EACHING	, INJECT	ON STOR	PCD.	1
				<u> </u>]
10/5/11	I-B1	Continue		10/4/11			
		0914	SETUP				
	₩ Co	ULD NOT	ACCEPT	1/202,	FLOWED		
	υ	PWARD T	HROUGH	CASING	POOR SE	AL_	
,							
10/5/11	I-A2	1050	7160	0	Ø	Ø	
		1058	Ø	0.92	12		
		1123	0	3.6	59	65	
_		1127	8	3.7	77	70	
	STOP	1129	Ø	3.7	80.3	75	
	START	1240	Ø	1.8	92	90	
	13 13 11	1248	Ø	1.9	98	98	1
		1258	Ø	1.6	118	125	1
		1303	Ø	1.7	128	135	
		1307	8	1.6	132	140	
		1315				150	
10/5/11	I-AS	094	60->20->8	2.2	Ц		
/		0946	Ø	2.4	17		
		0957	2	1.8	42	_	
		1601	2	1.8	48		
-		1016	4	0.9	71 4	TOTALIZER	READ
		1043	8	0.67	150	INCORRECT	
		1052	10	2.9	175	DOWN TO	
		1058	SURFACE		NG THROU		
			JUNITION	UNITEDIA	IND (HED)	OCI VIVI	

Notes:

Signature: Page 2 of 3

TEC Accutite Injection Field Data Sheet

Project Name: 1435 Webster

Client Name: Olympian
Site Location: Alameda

		Field	d Measuren	nents		
Date (mm/dd/yy)	Boring ID	Time (2400hr)	Pressure (psi)	Flow Rate (gpm)	Volume (totalizer)	Volume (carboy)
10/5/11	I-34-	1320	setup	(95111)	(totalizor)	(carboy)
		133	0	1.6	2	
		1343	Ø	1.2	16	_
		135	Ø	1.3	26	
	_	1357	Ø	1.0	32	
		1401	Ø	1.2	37	50
		1504	\mathscr{D}	1.1	40	~\$5
10/5/11	I-C2	1325	setup	•		
		1329	20->5	0.4	2_	
		1333	20	0.4	3	
		1335	SURFACE	BREACH,		IG TO I-CY
10/6/11	I-C4	(/LaG		1	,	
10/5/11	1-69	1409	Start -	problem	W/ Pum	
		1428	resume Ø	- problem	w/ gause	/totalizer
		1720	<u> </u>			85
		_	_			
10/5/11	I-B2	1415	Ø	1.2	2	
,		1422	0	1.0	9	
		1432	Ø	1.0	19	25
		1441	8	8.0	28	
		1447	Ø	1.7	35	50
N. 4						

Notes:				
Signature:			Page $\frac{3}{2}$ of $\frac{3}{2}$	<u>3</u>

Date: 12/13/11 Initials: BD 1435 Webster Street, Alameda, California Soil Vapor Sampling VMP No. Initial Pressure Finish Final Pressure Summa Start PID Notes and depth Time (mg Hg) Time (mg Hg) reading No. VMP- | vacuum test PID calibrated = 101-4 ppm (4) purge sample VMP-1 vacuum test Ø purge (8) sample VMP-2 vacuum test Ø purge (4) sample VMP-2 vacuum test 0 purge (F) sample vacuum test VMP-3 purge (4) sample VMP-3 vacuum test Ø purge (8) sample 4-9MV vacuum test purge (4) sample VMR-4 vacuum test purge (8) sample VMQ-5 vacuum test purge sample (8) NMB-2 vacuum test 0 purge sample vacuum test purge sample

1435 Webster Street, Alameda, California

Pre-Injection

10/4/11

5090

End of Day Readings

10/4/11

Start of Day

Readings

10/5/11

0845

End of Day Readings

10/5/11

1500

1600

Well ID

MW-2

MW-3

MW-4

MW-6

MW-7

MW-8

Temp (°C)

20.6

20.6

20.4

20,9

20.8

20.9

21.0

20,9

21.4

20,9

20.7

20.7

20.3

20.6

20.8

20,9

20.5

20.0

19.85

19.64

20,37

20,35

19.94

21.1

Conductivity

(µmhos/cm)

949

478

404

430

1162

966

506

438

413

1300

459

517

393

429

698 mS

1198

1219

608

551

523

6174

2363

695m S

6.86 mS

pH (units)

6.18

6.29

6.58

6.66

6.00

5.89

6.72

691

7.08

6.83

6.49

6.88

6.40

7.07

6.74

6.70

6.61

6.41

6.28

5.59

5.70

5.54

6.82

5.96

345.9

195.9

23.05

0.47

		0	F-114	Date: 1014 -1015/V
7			Field Measurements Initials:	Date: (019 -1013 1)
	ORP (mV)	D.O. (mg/l)	Notes	
	102.5	2.72		
	102.8	よ、7 よ		
	102.5	3.05		
	103.6	4.29		
	102.6	4.34		
	102.4	3.15		
_	110.4	3.56		
	110.4	4.96		
	110.0	5.30		
	110.3	5.83		
		5.38		
	110.5	4.28		
	235.6	5,28	ORP was calibrated beforehand.	
	236.5	5,28· 4.97	DEL MILE TO SECURITION	
	235.1	6.30		
	236.0	4.66		
	235.5	5.28		
	235.5	4.81		
	266.9	0.37		
	253.3	1.20	using rented YSI meter.	
_	269.6	0.84	-	
_	249.8	1.33		
-	~	1 0 0 -		I

			injec	TEC Accu		Sheet	Ī	0/4/11
Project Nar	me: 1435 We	bster						
Client Nam	e: Olympia	n			*** *			
Site Location	on: Alaned	a		•				
					-		•	
			Fie	eld Measure	ements			
Time	Well/Vapor	Volume	Temp.	Conduct.	D.O.	pН	ORP	Color
(2400hr)	Point ID	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)
1210	VMP-1(4)	LEL=		02=1.95		= over	,	226
1233	MW-6		21.5	522	2.70	7.63	107.5	
1 - 5 - 5	VMP-4(4)	151-	1	PPM=200	2.10	DXY 1.=16		CO = Ø
	VMP-4(8)	101-	1	PPM=480		DXY 110		
	1VMP-7(8)	LEL=	4	PPM=400		0x71/=	over	C0=63
				_				
	 							
	 				· · · · · ·			
· · · · · · · · · · · · · · · · · · ·								
								
	 							
								

	TEC Accutite Time Date 1435 Webster Vapor Readings 930 10 5 11											
			1435 W	ebster Vap	or Readings		930	10/5/11				
					 -							
Vanor	1	1	Fie	eld Measur	ements							
Vapor Point ID	PID	LEL	O2 %	СО РРМ								
VMP-1 (4)	330											
VMP-1 (8)	WATER	IN TH	E LIN	€								
	0-2	ļ,		~								
VMP-2 (4)	180		16.3	~ 2								
VMP-2 (8)	200		15.6	Ø								
VMP-3 (4)	280	0	11.8	8								
VMP-3 (4)	240	2	9.6	7								
· · · · · · · · · · · · · · · · · · ·	a.10		1,0	<u> </u>								
VMP-4 (4)	880	7	over	187								
VMP-4 (8)	1840	14	over	282								
VMP-5 (4)	280	2	15.1	Ø								
VMP-5 (8)	200	}	14.4	Ø								
	1						-					
		<u> </u>	. '		······································	,	-					
Notes: Co.	itchad	C	161	motor t	O PID	· · · · ·	200	to				
			L-1-1	nera 1	0 110	meter	2000	10				
α	problem	m 、										
\!	Brien	100	MA			D -	-) }					
ignature:	12 cm	M	1-01			Page	<u>e_</u>					

Project Name: 435 Webster Client Name: Olympian Site Location: Alamedia Field Measurements Time Well/Vapor Volume Temp. Conduct. D.O. pH ORP Color D					love	TEC Acci Field ⇔		Sheet		10/5/	(1
Client Name: Olympican Site Location: Alameda Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2	i	Project Nar	me:\UZC 10	10150			u Data C	nicet		- 1 1	`
Site Location: Alamed a Field Measurements Time (2400hr) Well/Vapor Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) PH (Wisual) ORP (visual)		Client Nam	e: 01 100 m	160216	<i>Y</i>						
Field Measurements Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2			on: Alamad	O .							
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2 1300 VMP-4(8) PID = 96.6 VMP-4(8) PID = 841			Minima			<u> </u>					
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2 1300 VMP-4(8) PID = 96.6 VMP-4(8) PID = 341											
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2									1		
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2											·
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2											
Time (2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2					Г:.	ld Magazin					
(2400hr) Point ID (liters) (deg. C) (µS/cm) (mg/l) (units) (mV) (visual) 2		T:		Malasas a				11	000	0-1	БТ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											DT
Fore $VMP-4(8)$ $PID=341$ $VMP-4(8)$ $PID=341$ $VMP-4(8)$ $PID=341$ $VMP-3(8)$ $VM-3(8)$ $VM-3$						(µS/cm)	(mg/I)	(units)	(mv)	(visuai)	(f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1300	1VMP-9(9)					ļ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	امہ		VMP-4(8)	PID							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1315	MW-8		19.94	2005	2.38	5.58	263.7		
B4 Fore $VMP-2(4)$ $PID=\emptyset$ $VMP-2(8)$ $PID=\emptyset$ $MW-7$ — 20.41 7660 291 6.60 251.2 — 1343 $MW-7$ — 20.43 7660 2.25 6.76 218.2 — $VMP-2(4)$ $PID=53.5$ $VMP-2(8)$ $PID=260$	start	1410	MW-8			2349	0.42		265.0		_
B4 Fore $VMP-2(4)$ $PID=\emptyset$ $VMP-2(8)$ $PID=\emptyset$ $MW-7$ — 20.41 7660 291 6.60 251.2 — 1343 $MW-7$ — 20.43 7660 2.25 6.76 218.2 — $VMP-2(4)$ $PID=53.5$ $VMP-2(8)$ $PID=260$	dunin	1440	MINER						205.1		
Fore VMP-2(4) PID=0 VMP-2(8) PID=0 MW-7 — 20.41 7660 2.91 6.60 251.2 —	~~~}	1 1 1 0	1.14000		11:10	G. J. J.	10170	J. 1.J			· -
Fore VMP-2(4) PID=0 VMP-2(8) PID=0 MW-7 — 20.41 7660 2.91 6.60 251.2 —	24		+				 		 		
MW-7 — 20.41 7660 2.91 6.60 251.2 — - 1343 MW-7 — 20.43 7660 2.25 6.76 218.2 — VMP-24) PID=53.5 VMP-28) PID=260	21	4	1110 000		~						
MW-7 — 20.41 7660 2.91 6.60 251.2 — - 1343 MW-7 — 20.43 7660 2.25 6.76 218.2 — VMP-2(4) PID=53.5 VMP-2(8) PID=260			1VMIP-2(4)	PID-	F (2)		ļ				
rg 1343 MW-7 - 20.43 7660 2.25 6.76 218.2 - VMP-2(8) PID=260	DY E			PID=							
VMP-2(4) PID=53.5 VMP-2(8) PID=260			MW-7		20.41	7660	291	6.60	251.2		
VMP-2(4) P1D=53.5 VMP-2(8) P1D=260	na	1343	MW-7	_	20.43	7660	2.25	6.76	218.2	_	~_
VMP-2(8) PID=260	J 1			PIDE	53.5						
, , , , , , , , , , , , , , , , , , ,	 						· ·				
AI 1100 1 10	, 	1405		1107		7500	2016	622	1992		
	7/ -	1-100	1,4100-1		20.0	1200	0,70	رن	(11,2)		
	}-		 								
			 						ļļ		
	L		 								
	L										
	Γ										
	ſ										
	F						,				
	 		 								
	- 1						<u> </u>				
			<u> </u>					·	· · · · · · · · · · · · · · · · · · ·		
Notes:		Votes:									

				TEC Acci			Time	Dat	e_
			1435 W	ebster Vap	or Reading	gs	1530	10/5	3/11
				ld Massur					
Vapor	}	<u> </u>	FIE	eld Measur	ements]				
Point ID	PID	LEL	O2 %	CO PPM					
/MP-1 (4)									
/MP-1 (8)									
/MP-2 (4)	1109								
/MP-2 (8)	1034								
/MP-3 (4)	9.5								
/MP-3 (8)	16.0								
				<u> </u>					
/MP-4 (4)	108.9				ļ				
/MP-4 (8)	252								
	- 0								
/MP-5 (4)	7.3								
/MP-5 (8)	12.1								
								-	
									L

Notes: LEL meter was not working, only used PID meter for this round of readings.

No tedlars taken from either point of VMP-1 due to hydrogen peroxide breaking through.

Signature: Brew Doluty

TEC Accutite											
			Micro-P	urging Fie	ld Data S	Sheet					
	me: 1435 Wel			Purged by:		•	Well ID:	111	17		
	e: Olympian			Sampled by	: BD		Sample I		1-12		
	on: Alameda							ample:			
Date Purge	d: 10 26	11		Start (2400h			End (240	Ohr): 1/39	<u> </u>		
Date Samp	led: 10 261	1)		Well Head P	ID (ppm):		Initial DT	W (ft bgs):	10.61		
	meter (inch): ottom (ft): °			Well Integrit Depth of Pu	y: 000	(ft) (zon	of intoro	مع اراجه مع اراجه	- W		
Type of Pu	rge Pump: b	ladder		Optimal Pur	ne Rate (r	nl/min)·	() ()	sij. /~/3	· W		
Турс от та	ige i umpi b	idadei	Fie	eld Measur			IXU		*		
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW		
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
10/26/11	11107	1,80	20,41	1236	2.22	6.85	160.2	closes	11.76		
	1112	1,40	20,54	1262	1.22	6.84	153.9	, ,	١,		
	11111	2.00	20.63		0.81	6.83	149.3	ι)	11		
	1122	2.60	20,76	1284	0.24	6.83	143.5	, 1	11		
	 			1209		600	138,2	1)	1		
	1127	3.20	20.79	1286	0.49	6.84			1 3		
	1132	3.80	20,78	1287	0.37	684	136,4	11			
	i	,	, ,								
			·	•							
											
	1	<u> </u>									
		71	Sa	mple infor			1.				
Sample DTV	N (ft):	,76			Sample T		100				
	th: 🔀 Pum	pBai	ler		Sample T		35				
Odor: n	ore_		1 1 1	1101			(ml/min.):_				
Sample Cor	ntainer/Prese	rvative:	3 VOAS	HU , 12	some an	16-v/n m	2) 250/	nl poly 1	none		
Lab Analysi	s: 8260,	disolved	metal	>, ha/c	none,	ferrol	12 1COV	. ,	_		
Notes:											
GUIDE:	DTW = Dept	h to Wate	•	- 1							
	•			eter slowly in	to ground	water to r	educe dis	turbing it.			
				than 0.3 feet	-			3 - 3			
			•	& 500 ml/mir			•	s 100 ml/m	in.		
				east 3 conse		-					
	± 3% °C for 7			or conductivi		-	± 0.2 mg/l	-			
	± 0.1 for pH			V or ORP	•		•	here applic	able		
0:	B)()	VA I AAA)			
Signature:	Draw	1 / Ye	ww.				Page c	DT			
			J								

Micro-Purging Field Data Sheet	TEC Accutite										
Start (2400hr); O Did Date				Micro-P	urging Fie	ld Data S	Sheet				
Start (2400hr); O Did Date			oster					Well ID:	MW	_2_	
Start (2400hr); O Did Date					Sampled by	: BD		Sample II	D: / V		
Date Sample of (inch): 2 Well Integrity: 9,000 Depth to Bottom (ft): 2 \$ Well Integrity: 9,000 Depth to Bottom (ft): 2 \$ \$ Depth of Pump Intake (ft.) (zone of interest): 15,000 Depth of Pump Pump: bladder					Start (2400k	r): 1011	6	JUMUUCS	ample	1=	
Casing Diameter (inch): 2 Well Integrity: 9,000	Date Sampl	ed: 10 /2/2	,					Initial DT	W (ft has):	11169	
Depth to Bottom (fi): 21 % Depth of Pump' Intake (ft.) (zone of Interest): 15.05 Type of Purge Pump: bladder Optimal Purge Rate (mil/min.): 30 Date								Initial D1	ii (it bgo).	10.01	
Type of Purge Pump: bladder					Depth of Pu	mp Intake	(ft.) (zone	of interes	st):~15	ეა	
Date Time Volume Temp (deg. C) (µS/cm) (µg/l) (µnits) (µt) (visual) (provided of the provided of the pro	Type of Pur	ge Pump: b	adder		Optimal Pur	ge Rate (r	nl/min.): ¡	20			
(mm/dd/yy) (2400hr) (liters) (deg.C) (µS/cm) (mg/l) (units) (mV) (visual) (ft) (1076/11 / 073				Fie	eld Measur	ements	•		-		
10 26 11 10 23 56 19 71 636 2.46 6.16 199.5 10.78 10.78 1.02 6.15 6.14 20.10 11 11 11 11 10.33 2.00 20.10 6.45 1.56 6.12 20.14 11 11 11 11 11 11 11	Date	Time	Volume	Temp.	Conduct.	D.O.	рΗ	ORP	Color	DTW	
1078 1.00 2072 645 1.6 6.14 201.0 11 11 11 12 13 2 67 2014 11 11 11 13 2 67 2014 11 11 11 11 11 11 11	(mm/dd/yy)	(2400hr)	(liters)	(deg. C)					(visual)		
Sample DTW (ft):	10/26/11	1023	08.	19.71	636	2.46	6.16	199.5		10.78	
Sample DTW (ft): Sampled with: Yeurn Bailer Sampled Container/Preservative: 5 VCAS/ NCL 125 MC and a flavor and a flavor are table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 20 mV or ORP 10% for turbidity. 10	· '	1028	1.40		645					í į t	
Sample DTW (ft): Sample DTW (ft): Sample Container/Preservative: 3 VCA3 / NC 125 mL amb 100 mL 201 mL 100 mL		1033	2,00	20,12	646		6.12	2014	įΙ	11	
Sample DTW (ft): Sampled with: Yeurp Bailer Sampled with: Yeurp Bailer Sample Container/Preservative: 5 VCA3 / VC 125 mL ambar 10 mL			2.60	20.14	644	0.86	6.13	201.1	,1	11	
Sample DTW (ft): Sample DTW (ft): Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Time: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: A sample		1043			643		6.15	198.8	٠,	11	
Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: Sample Time											
Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: Sample Time											
Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: Sample Time											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp					·					· ··· - ,	
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp						-					
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp						-					
Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: Sample Time			-								
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Time: Sample Flow Rate (ml/min.): Sample Time: Sample Time											
Sample DTW (ft): Sample DTW (ft): Sample Turbidity: Sample Turbidity: Sample Time: Sample Flow Rate (ml/min.): Sample Time: // Sample Time: // Samp											
Sample DTW (Tt): Sample Turbidity: Sample Turbidity: Sample Turbidity: Sample Turbidity: Sample Turbidity: Sample Turbidity: Sample Time: _/048 Sample Time: _/048 Sample Flow Rate (ml/min.):		10	78	Sa	mple Infor	mation	,				
Sample Time:		v (π):				Sample T	urbidity:_	مده			
Sample Container/Preservative: 3 VOAS / NC 125 mL amba hove 250 mL poly n lnd Lab Analysis: 8060 hlx chrome forces 1000 4 isolved metal 12 Notes: GUIDE: DTW = Depth to Water Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable			pBai	ler		Sample T	'ime: <u>//</u>)	45			
Notes: GUIDE: DTW = Depth to Water Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable	Odor: <u>0</u> 2	<u> </u>		//// 2001 1	101 0	Sample F	low Rate	(ml/min.):_	2 00		
Notes: GUIDE: DTW = Depth to Water Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable									c pory/	1006	
GUIDE: DTW = Depth to Water Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable		80601	NCX. CM	10me, F	errous 1	U.D. 415	JUNEU 1	very!			
Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable	Notes:										
Lower pump and water level meter slowly into groundwater to reduce disturbing it. Don't let water table drop more than 0.3 feet while micro-purging. Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable	GUIDE:	DTW = Dept	h to Wateı	r							
Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min. Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable		•			ter slowly in	to ground	lwater to r	educe dis	turbing it.		
Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% ⁰ C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable	I			•				-			
± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable	I						•				
± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable										•	
										abla	
Signature: 15 can Lower Page of 1		_ o.i for pn			V OF ORP					anie	
u	Signature:	1orcan	your	المع				Page_/_c	of <u>/</u>		

	TEC Accutite										
			Micro-P	urging Fie	ld Data S	Sheet					
	ne: 1435 Wel			Purged by:			Well ID:	1.14	U_		
	e: Olympian			Sampled by	: BD		Sample I	D: MW.			
	on: Alameda						QA/QC S	ample:			
	d: 10/26/11			Start (2400h			End (240	0hr): ,	6		
Date Sample	led: 10(26)	71		Well Head P	ID (ppm):		Initial DT	W (ft bgs):	10,28		
Donth to Be	meter (inch): ottom (ft): , q	7.		Well Integrit	y: 900	(ft) (=0 p.	of intoro	24). 17	00		
	rge Pump: b			Depth of Pu Optimal Pur	no Rate (r	nl/min):	> 01 III.ere	<u>>i, ~ ∠.</u>			
Type of Ful	ge r unip. b	iadaci	Fi	eld Measur			120	-9190	===		
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW		
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
10/26/11	1204	180	19.61	623	1,78	6.17	182.4	cled	10.40		
	1209	1.40	19.77	600	1.32	6.12	193.6	(1	10.46		
	1214	1.90	19.98		1.10	6.10	1971	<i>[</i> 1	t'		
	1219	2,40	20.37	574	0.97	6.07	200,5	1.	11		
	1224	2.90	20,56	568	0,93	6.16	1924	()	N		
	1201	2.10	20/30	500	075	12.40	7 70 (<u>'</u>		
	1						<u> </u>				
-						<u> </u>		,			
	<u> </u>										
				i					·		
								-			
								,			
							-				
				la Infa							
	V (ft): 10.	46	Sa	mple Infor			1 (
Sample DIV	V (π): 10/	n Pai	lon.			iurbidity:_ ime: <i>i_</i> _	1				
Odor: 00	th: 🛧 Pum	pBai	ier				<u></u>	<101)	·····		
	tainer/Prese	rvative: 3	1/00/201	HC1 Poly		ambe		-100			
Lab Analysi				`` \) A • ' /	ous in	' _ i -	chron	e			
Notes:						,					
GUIDE:	DTW = Dept	h to Wate	 _								
	•			eter slowly in	to ground	water to i	educe dis	turbing it.			
				than 0.3 feet	-			-			
				& 500 ml/mii				s 100 ml/m	in.		
	Parameters	are stable		east 3 conse	cutive rea	dings wit	hin follow	ing ranges			
	± 3% °C for 1			or conductivi	•		± 0.2 mg/l				
····	± 0.1 for pH	units	± 20 m	V or ORP		10% for to	urbidity w	here applic	able		
Signature:	Brein	n Wool	my.				Page	of <u> </u>			
			1								

	TEC Accutite										
			Micro-P	urging Fiel	ld Data S	Sheet					
	ne: 1435 Web	ster		Purged by:			Well ID:	111	<i>(</i>		
	e: Olympian			Sampled by	: BD		Sample II	D: MW-	-0		
	n: Alameda			101 11010	\			ample:			
Date Purge	d: [0 26,111 ed: 10 26/	//		Start (2400h				0hr): / 🐠			
	neter (inch):			Well Head P Well Integrit	ID (ppm):		initiai Di	W (ft bgs):	10.98		
Depth to Bo	ottom (ft): / 9	34		Depth of Pu	<u>y∙ ⊬γ∋⊘⊃</u> mpYntake	(ft.) (zone	of interes	st): ~12.	<u>کہ</u>		
	ge Pump: b			Optimal Pur	ge Rate (n	nl/min.):	120				
			Fie	eld Measur	•	•	·				
Date	Time	Volume	Temp.	Conduct.	D.O.	рΗ	ORP	Color	DTW		
(mm/dd/yy)		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
10/26/11	0939	,80	19.17	570	3.01	6.00	1821	dor	11.09		
	0944	1,30	1990	545	1.55	6.07	191.2	()	11		
	0949	1.80	20.15	537	1,20	6.07	193.1	11	*1		
	0954	2.30	20.36		1.14	607	1947	į t	11		
	0959	2.80	20.46	523	0.98	6.07	195.8		1)		
		2.00	20090		0.70	W 0 7	7 73 1 0				
					-						
				-					,		
									,		
		i									
				_							
			Sa	mple Infor	mation		1				
Sample DTV	V (ft): <u>//.0</u>	7			Sample T	urbidity:_	104				
Sampled wit	th: 🔀 Pum	pBai	ler			ime: <u>/<i>O</i>∂</u>					
Odor:	0,70		 /	Alct			(ml/min.):_				
Sample Con	tainer/Prese	rvative: 3	VUASI		3	16-17 non	u, aso,	mr Poly	1/none		
Lab Analysis	s: 8d(6()	hex.ch	rome,	9120M69	metal	, rem	003 10	/			
Notes:											
	DTW = Dept										
				eter slowly in	-			turbing it.			
			•	than 0.3 feet			-	400	•		
				& 500 ml/mir							
	_			east 3 conse		-			•		
	± 3% ⁰ C for 1 ± 0.1 for pH :			or conductivi V or ORP	•		± 0.2 mg/l urbidity wi	าดา DO here applic	able		
	0	120c	A->	V OI OINF							
Signature: //	I am						Page <u> ≀ </u> c	of			

TEC Accutite											
			Micro-P	urging Fiel	d Data S	Sheet					
	me: 1435 Web			Purged by:	BD		Well ID:	111			
	e: Olympian			Sampled by	: BD		Sample I		/- T		
L	on: Alameda			las secesiii				ample:			
	d: 10/26/1	<i> </i>		Start (2400h				0hr): 135			
Date Samp	led: 10 261			Well Head P	ID (ppm);		Initial DT	W (ft bgs):	9.55		
Casing Dia	meter (inch):	4 "		Well Integrit			. 6 :	-4)- 1	A))		
Type of Pu	ottom (ft): ^c rge Pump: bl	1.8/ laddar		Depth of Pu Optimal Pur	mp Intake	(π.) (zone	of Interes	st):~/ > .	00		
Type of Fu	ige Fullip. bi	auuei	Ei/	eld Measur	<u> </u>	111/111111.).	110				
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW		
(mm/dd/yy		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
10/26/11		.80	21.35	8569	5.00	6.86	109.8	clear	9.68		
10/26/11	1340				 			<u>'</u>			
		1.50	21.27	8772	4.17	6.83	117.9	11	11		
	1345	2.20	21.21	8813	4.09	6.83	121.1	, 1	+3		
	1350	2.90	21.17	8815	4.08	6.83	123.0	, 1	u		
<u> </u>									 		
			,								
									<u> </u>		
	1			·	ı				ľ l		
- · · · · · · · · · · · · · · · · · · ·											
· · · · · · · · · · · · · · · · · · ·											
		<u> </u>									
Odor: <u>/</u> Sample Cor	N (ft):9. th: Pump 10 ntainer/Preser s: 8260, €	rvative:	ler VUNS/H		Sample T Sample T Sample F	ime: /ʒ:		<100			
	, , , ,				, <u>*, - / /</u>						
Notes:											
GUIDE:	DTW = Deptil Lower pump Don't let wat Ideal purge r Parameters a ± 3% °C for T ± 0.1 for pH o	and wate er table d ate is bet are stable emp.	r level me rop more ween 150 when at l ± 3% fo	than 0.3 feet & 500 ml/min	while mic and idea cutive rea ty	ro-purgin I sample f dings with ± 10% or :	g. low rate is hin follow ± 0.2 mg/l	s 100 ml/m ing ranges	iin. s:		
Signature:	Brien	De	hut				Page	of			
			J								

TEC Accutite											
Micro-Purging Field Data Sheet											
Project Name: 1435 Webster				Purged by:	BD		Well ID:				
Client Name: Olympian				Sampled by	: BD		Sample I		7-0		
	on: Alameda			101 11010				ample:			
Date Purge	d: 10/26			Start (2400h	<u>r): 124</u>	5	End (2400hr): 13/3				
Casing Dia	led: (6/26 meter (inch):	/ <u> </u>		Well Head P			Initial DTW (ft bgs): / /). / /				
Depth to Bo	ottom (ft): 2	1 17		Well Integrity: Q OOC Depth of Pump Intake (ft.) (zone of interest): ~/ <							
Type of Pu	rge Pump: b	ladder		Optimal Purge Rate (ml/min.): 120							
Field Measurements											
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW		
(mm/dd/yy		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
102611	1250	.80	21.59	2276	1.94	6.35	34.3	Clear	10.15		
	1255	1.40	21.58	2436	1.30	6,30	35,4	, 1	11		
	1300	2.00	21.58	2497	0.94	6.Z8	36.0	L.	VI.		
	1305	2.60	2160		0.89	6.27	36,	11	()		
	1310	3.20	21.66	2529	0.72	6.27	32,6	/!	11		
	1310	3, 00	21.00	0.501	101/2	0.0.7	35.0		, ,		
							<u> </u>				
	 	<u> </u>				 					
-	 	 		<u> </u>	-			<u> </u>			
	 	<u> </u>									
	ļ				-			<u> </u>			
	ļ					ļ		· · · · · · · · · · · · · · · · · · ·			
	ļ										
			_		ļ						
				-							
		_	Sa	mple Infor	mation		1.				
	N (ft):/ 0./				Sample T		10m				
	th: 😾 Pum	pBai	ler			ime:					
	0~-		71700-1	L) 1 71	Sample F	low Rate	(ml/min.): -/µo∼				
I ah Analysi	ntainer/Prese is: &-eoo ,	Frative:	S V OF S /	her 12019	= 10/00)	= owld	midal	C			
	o. o eso,	1 -7 .000	1101	wx. ON!	my a	1	1 00(14)				
Notes:						1.					
GUIDE:	DTW = Dept										
				eter slowly in	•			turbing it.			
				than 0.3 feet				- 400 !!			
	Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min.										
	Parameters are stable when at least 3 consecutive readings within following ranges: ± 3% ⁰ C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO										
± 3% ⁰ C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO ± 0.1 for pH units <u>≠</u> 20 mV or ORP 10% for turbidity where applicable											
	//	1	Jun	- 01 010			,	1			
Signature:	Brian	Jo wo	~				Page_	of <u>/</u>			

TEC Accutite										
Micro-Purging Field Data Sheet										
Project Name: 1435 Webster				Purged by: BD			Well ID: W-9			
Client Name: Olympian				Sampled by	: BD					
Site Location: Alameda					. 40.15		QA/QC Sample:			
Date Purged	1: 10126/11			Start (2400h			End (2400hr): 6912			
Date Sample Casing Diam	a: 10126 11	<i>)</i>		Well Head P	יוט (ppm):	_^	Initial DTW (ft bgs): 9.67			
		Well Integrity: and Depth of Pump Intake (ft.) (zone of interest): ~ /2.00					20			
Depth to Bottom (ft): 19.94 Depth of Pump Intake (ft.) (zone of interest): ~12.00 Type of Purge Pump: bladder Optimal Purge Rate (ml/min.): 12.00) <u>U</u>	
Field Measurements										
Date	Time	Volume	Temp.	Conduct.	D.O.	pН	ORP	Color	DTW	
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)	
10/26/11	0855	180	17.63		4.23	6.52	138.6	clear	9.79	
10100111	0900	1.40		768	3.53	6.51	136.9	11	0	
	0905			782	3.41	6,50	135.1	11	(1	
		2,00		707			134,3		(1	
	0910	6.60	17.79	787	3.36	6.50	137,3	ι ۱		
					 					
						,				
				· •	· · · · · · · · · · · · · · · · · · ·					
							<u> </u>			
										
	0.00	a	Sa	mple Infor	mation		1000			
Sample DTW	(ft): <u>9.7</u>	1			Sample T			_		
Sampled witl		pBail	ler		Sample T					
Odor: NON	<u>~ · </u>		· · · · · · · · · · · · · · · · · · ·	b - x - x	, -		(ml/min.): ₋			
Sample Cont	ainer/Prese	rvative: 🤰	VOHSI				r/non	******		
Lab Analysis	: 8260, h	ex-cwa	vse, t	erpois i	on, dis	olved n	retals			
Notes:										
GUIDE: I	DTW = Dept	h to Water	•							
Lower pump and water level meter slowly into groundwater to reduce disturbing it.										
Don't let water table drop more than 0.3 feet while micro-purging.										
Ideal purge rate is between 150 & 500 ml/min and ideal sample flow rate is 100 ml/min.										
Parameters are stable when at least 3 consecutive readings within following ranges:										
± 3% °C for Temp. ± 3% for conductivity ± 10% or ± 0.2 mg/l for DO										
± 0.1 for pH units ± 20 mV or ORP 10% for turbidity where applicable										
Signature: Bran Down Page ! of										

1435 Webster Street, Alameda, California

Initials:130 Date: 10/27/11 VMP No. and depth Initial Pressure Finish Final Pressure PID Start Notes reading Time (mg Hg) Time (mg Hg) vacuum test 1.2 tack 2-3x large to fill tedlar than other points, more vacuum too sample vacuum test Ø sample vacuum test 18,2 sample vacuum test Ø vacuum test Ø sample vacuum test sample vacuum test 1.0 VMP-48 purge 1130 sample vacuum test 1.3 sample vacuum test Ø VMP-5(8) purge sample PID car. cheek - before after 79.9 vacuum test purge 100.9 sample

Soil Vapor Sampling

		TEC	ACCUT	ITE Well	Data Shee	et		
Date: 12/6/11	Site Name: 1435	Webster			Project #:	E-5	21	Sampler: BD
Event: Post-Injection	Site Address: A	lameda	. "		Client: Oly	/mpian		
WELLID	TIME	DTP		EASUREM DTW	ENT :	Today's	*WELL	COMMENTS (I.e. pressurized or
			8,000 B. W.		DTB date: 6/3/09	DTB	DIAMETER	maintenance req.)
MW-2	0841			10.79	19.42		2"	
MW-3	0840			10.78	21.85		2"	
MW-4	0842			10.41	19.76		2"	
MW-6	0839			11.13	19.34	·	2"	
MW-7	0844			9.68	19.81		4"	
MW-8	0843			10.22	20.03		4"	
MVV-9	0902			9.65	19.94		4"	
								·
								Tak T
					. —			

Abbreviations:

				TEC Acci	TEC Accutite										
			Micro-P	urging Fiel	ld Data S	Sheet									
Project Nam	ie: 1435 N	reloster		Purged by:	BD		Well ID:	Λ/1.	17						
Client Name	: Olympic	<u>ኢ</u>		Sampled by	:BD		Sample I	D: MW	-1						
Site Locatio							QA/QC S	ample:							
Date Purged				Start (2400h	r): /126			0hr): 👔 🖊 🖰							
Date Sample	ed: 12/6/1	1		Well Head P	ID (ppm):		Initial DT	W (ft bgs):	10.68						
Casing Dian	neter (inch):	2"		Well Integrit	y : a o o	t i									
Depth to Bo	ttom (ft): 👍 🤈	1.42		Depth of Pu	mp Intake	(ft.) (zone	of interes	st): ~/5	00						
Type of Puro	ge Pump: b	ladder		Optimal Pur	ge Rate (r	ni/min.):	190								
			Fie	eld Measur	ements										
Date	Time	Volume	Temp.	Conduct.	D.O.	рΗ	ORP	Color	DTW						
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)						
12/6/11	1135	.30	17.43	719	6.79	6.52	224.5	cloudy	10.85						
· · · · · ·	1140	1.30	17.88	1363	1.37	4.63	231.5	,)	11						
	1145	1.80	18.08	1366	1.37		222.0	1 1	11						
				1368		667			11						
	1150	2.30	18,14	1368	1.18	667	216.0	: 1							
		<u> </u>													
						<u> </u>									
-					 										
1															
<u></u>															
			Sa	mple Infor	mation										
Sample DTW	(ft): 10,8	527			Sample T	urbidity:	10/01								
Sampled with	h: 🖟 Pum	p Bai	ler		Sample T										
	0.A			I_			/	4100							
Sample Cont		rvative: 3	VUASI	Dore .	oumpio i		(,								
Lab Analysis			-7,371					***							
	U Res U							*******							
Notes:															
GUIDE:	DTW = Dept	h to Wate	r												
				eter slowly in	to ground	water to r	educe dis	turbing it.							
				than 0.3 feet				•							
1			•	& 500 ml/mir			-	s 100 ml/m	in.						
1				east 3 conse		-									
	± 3% ⁰ C for 7			or conductivi		-	± 0.2 mg/l	-							
	± 0.1 for pH			V or ORP	•		_	here applic	able						
								- 	· · · · ·						
Signature:							Page c	of							

				TEC Acci	utite		-		
			Micro-P	urging Fiel		Sheet			
Project Nar	ne: 1435 V	veloste		Purged by:	BD		Well ID:	1 / 1.1	16
Client Name	e: Olympi	an		Sampled by	:BD		Sample II		-7
Site Location	on: Alarba	<u> </u>						ample:	<u> </u>
	d: 12/6/11			Start (2400h				0hr): 30	
	led: 12/6/			Well Head P			Initial DT	W (ft bgs):	112
	meter (inch):			Well Integrit	y : <u>ტიდ</u>	(*)			
	ottom (ft): º[Depth of Pu	mp Intake	(ft.) (zon	e of interes	st): ~114	60
Type of Pur	rge Pump: b	ladder		Optimal Pur		ni/min.):	<i>5</i> 0	_	
				eld Measur					-
Date	Time	Volume	Temp.	Conduct.	D.O.	pΗ	ORP	Color	DTW
(mm/dd/yy)		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)
12/6/11	1246	80	15.76	(159	3.22	5 74	245.0	clear	10,40
	125	1.30	16.20	637	2.46	5.95	239.2	1)	t i
	1256	1.86	16.49	628	2.11	5.93	237.2	t i	11
	1301	2.30	16.61	626	2.02	5.92	235.6	i t	t 1
	1306	2.80	16.75	624	2.07	5.90	234.6		į i
	1 700	2,00	1 32.7	10//		J	0-5 (
				 					
			<u> </u>	<u> </u>		<u> </u>			
					<u> </u>				- · · · -
	·								
									
	<u> </u>								
				<u> </u>					
								· · · · · ·	
			Sa	mple Infor	mation				*** -
Sample DTV	N (ft): 16.	40	Ja	imple imor		urbidity:	lobl		
	th: 🔀 Pum		lor			ime: 13			
Odor:		p	ICI				(ml/min.):	<100	
Sample Con	tainer/Prese	rvative: 3	VdA . In	one, I poly	linasi	1 amber	Inore	100	
Lab Analysi	s: 8260, d	ssolved	meta	is force	12 (200)				
	0200)		111000)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100.	V 017 0		
Notes:							<u></u>		
GUIDE:	DTW = Dept								
				eter slowly in	-			turbing it.	
				than 0.3 feet				400	
				& 500 ml/mir					
				least 3 conse					:
	± 3% °C for 7			or conductivi	•		± 0.2 mg/l		- lal -
	± 0.1 for pH			V or ORP		10% for t	urbialty w	here applic	able
Signature:	Frien	. Wal	with				Page / c	of !	

	•			TEC Acci	utite				
			Micro-P	urging Fiel	d Data S	Sheet			
Project Nam	1e: 1435 v	رعر د طها	•	Purged by:			Well ID:		9
Client Name Site Locatio	olymp	190		Sampled by	: BD		Sample II	D: MW	<i></i>
		SAB				- .	QA/QC S	ample:	•
Date Purged				Start (2400h				Ohr): // <	
Date Sample		()		Well Head P			Initial DT	W (ft bgs):	10.68
Casing Diam Depth to Bo	ttom (ft): 🔿	<u>d</u>		Well Integrit Depth of Pu	y: <u>yoo</u>	(ft) (zon	of intoro	24)1 217 7	272
Type of Purg	re Pump b	ladder		Optimal Pur	ne Rate (n	(IC.) (2016 nl/min):		sty. 7-15-C) ()
1,000.1.4.5	go i dilipi b	idddo!	Ei	eld Measur			100		
Date	Time	Volume	Temp.	Conduct.	D.O.	pН	ORP	Color	DTW
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)
12/6/11	1057	180	:5.90	692	2.58	5.44	251.3	cloudy	in.85
	1102	1.30	16.32	696	2.04	5.69	245.8	<i>i</i>]	10,87
	1107	1.80	6.63	697	1.99	5.75	241.5	11	(1
	1112	2.30	16.84	696	1.86	5.78	238.7	11	ž i
	1112	L. 30	16.0-1	1 W 1 W	1.80	J- 70	$[\infty 38.7]$		
					ļ				
						,,			
<u></u>								_	
					,				
			···						
							<u> </u>		
l									
							· · · · · · · · · · · · · · · · · · ·		· · · · · ·
ļ									
									.
									
		$\overline{}$	Sa	mple Infor	mation				· ·
Sample DTW	(ft): 10.8	/		•	Sample T	urbidity:	10W		
Sampled with	h: 🔀 Pum	pBail	ler		Sample T	ime: <u> [17</u>	<u> </u>		
Odor: <i>_/_//</i> /	ne		\.						
Sample Cont	ainer/Prese	rvative: <u>3</u>	VUAS /1	ore lanz	m/none	1 pol.	yInone	<u> </u>	
Lab Analysis	: 8260, D	rssolved	metal	s hex ch	rone, fi	emus i	<u> </u>		
Notes:	<u> </u>			, 	<u>, , , , , , , , , , , , , , , , , , , </u>				
GUIDE:	DTW = Dept	h to Water	•						
	•			eter slowly in	to around	water to r	educe dis	turbing it.	
				than 0.3 feet	_			J	
			-	& 500 ml/mir			_	3 100 ml/m	in.
				east 3 conse		•			
4	ե 3% ⁰C for T	emp.		or conductivi		_	± 0.2 mg/l	•	
4	± 0.1 for pH ∈	units	<u>,</u> ± 20 m′	V or ORP	1	10% for tu	urbidity wh	nere applic	able
Signature:	Bria	m D	oher	7)			Pagec	of	
	 1 	· · · · · · · · · · · · · · · · · · ·							

		·		TEC Acci	utite				
			Micro-P	urging Fie	ld Data S	Sheet			
Project Na	me: :435\	NeloEte	<u>, </u>	Purged by:	8D		Well ID:	^ / 1 - 1	
Client Nam	ne: Olympion: Alama	icu		Sampled by	:BD			D: 1910	-0
Site Locati	on: Alawa	da						ample:	
Date Purge	ed: 12/6/1	<u> </u>		Start (2400h	r): 1002		End (240	Ohr): / 0 3	39
Date Samp				Well Head P			Initial DT	W (ft bgs):	10.98
	meter (inch):			Well Integrit	y: 300	74			
	ottom (ft): 역 rge Pump: b			Depth of Pu Optimal Pur	mp intake	(ft.) (zone	of intere	st): ~ /3.	0.0
Туре от га	ige ruilip. b	iauuei				111/111111.): 4	7 100		···
Date	Time	Volume	Temp.	eld Measur Conduct.	ements D.O.	pН	ORP	Color	DTW
(mm/dd/yy		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)
12/6/11	1011	1.80	15.81	581	5.03	5.52	234.4	clear	11.18
12/0/	1016	1.30	16.39	577	2.45	5.61	234.4	Clem	F,
	1021						7		11
		1.80	16.65	571	2.09	5.61	234.1	/!	٠/
	1026	2,30	1694	563	1.80	5.60	233.9	11	t (
	1031	2.80	17.23	554	1.71	5.6	233.G	11	U
	1036	3.30	7.35	546	1.68	5.63	233.0	, 1	11
		,							
· · · · · · · · · · · · · · · · · · ·									
	· ···								
	 								
	<u> </u>								
				,					
	1								
Odor: <u>116</u>	ith: 😕 Pum		ler		Sample T Sample T	ime: <u>/</u> /	/ 0〜√ クミ う (ml/min.):_	2100	
	is: გუ. 60	valive2	V 02-12 1 V	W-C					
Notes:								***************************************	· .·
GUIDE:	DTW = Dept	h to Water							
JUIDE.	Lower pump			ter slowly in	to around	water to r	educe dis	turbina it.	
	Don't let wat			•	-				
	Ideal purge i		-			. •	_	100 ml/m	in.
	Parameters								
	± 3% °C for T			r conductivi		_	£ 0.2 mg/l		
	± 0.1 for pH	units		or ORP	•		•	nere applic	able
Signature:	Buen	J. O.	why.				1	of__	
<u> </u>		~ /C/V							

				TEC Acci	utite				
			Micro-P	urging Fiel	d Data S	Sheet			•
	ne: 1435 W			Purged by:	BD		Well ID:	A.4.1/	7
Client Name	e: Olympia	<u>n</u>		Sampled by	:BD		Sample I		- (
	n: Algned	9		Tar.				ample:	
	d: 12/6/11	· ·		Start (2400h				0hr): 14고	
	ed: 12 6 neter (inch):			Well Head P Well Integrit			Initial Di	W (ft bgs):	9,95
	ottom (ft): 19	1		Depth of Pu			of intere	et): ~// 5	00
	ge Pump: b			Optimal Pur				(), 	
			Fie	eld Measur		· · · · · · · · · · · · · · · · · · ·			
Date	Time	Volume	Temp.	Conduct.		рН	ORP	Color	DTW
(mm/dd/yy)	(2400hr)	(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)
12/6/11	1407	:80	16.69	5139	5.84	6.90	154.4	cleo	9.63
	1412	1,40	18.15	6019	1.71	6.96	153.5	11	(1)
	1417	2.00	18 46	6082	1.58	107,02	146.0	1 1	11
	1422	2.60	18.65	6/18	1.50	7.02	143.0	į Ł	U
	•								
-									
	,, ,,								
				-					
					·				
	-								
							4		
						·			
	0.7-	7	Sa	mple Infor	mation		1.0		
Sample DTW Sampled wit	V (ft): 76_	o Bai			Sample T	urbidity:	1 an		
		pBai	ier			Ime: <u> </u>		1100	
Odor: <u>n & </u>	tainer/Prese	rvative: 12	VOBsla	one lan	Sample r	low Rate		1,	
Sample Con Lab Analysis	s: 8260. fe	2~~0~> (~	AV 912	solved m	etale.	bex ch	1771/10/3	~	
Notes:	· · ·				-10-(-)	TV-SU-	(. 0.0		
	DTW = Dept	h to Mata				_			
	•			eter slowly in	to around	water to r	educe dis	turbina it.	
				than 0.3 feet	_			y iti	
			-	& 500 ml/mir			-	s 100 ml/m	in.
	Parameters :	are stable	when at I	east 3 conse	cutive rea	dings wit	hin follow	ing ranges	
	± 3% ^o C for T			or conductivi	•	± 10% or :	•		
	± 0.1 for pH	units	± 20 m	V or ORP		10% for tu	irbidity w	here applic	able
Signature:	Breen	Dol	wy				Page <u>l</u> (of <u> </u>	

	TEC Accutite										
			Micro-P	urging Fie	ld Data S	Sheet					
Project Na	me: 1435 v	resster		Purged by:	BD		Well ID:	2-12-1	Ø		
Client Nam	ne: Olympi on: Alame	an		Sampled by	1: BD		Sample I	D:/9W-	-0		
Site Locati	on: Alame	79 C		101-110100	\ \\(\alpha\)			ample:			
Date Purge				Start (2400h	ii): 1,2/8			0hr): 134			
	neter (inch):	<u> </u>		Well Head F			Initial DI	W (ft bgs):	10.10		
	ottom (ft): 2			Well Integri	wn intake) (ft) (zon	of intere	ctl: 1	20		
	rge Pump: b			Optimal Pur	ge Rate (r	nl/min.):	127	3t). NIS.	.00		
7,000	- Je		Fid	eld Measur	<u> </u>		;				
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW		
(mm/dd/yy		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)		
12/6/11	1325	, 80	17.01	2778	2.27	6.03	100.7	cloudy	10,21		
	1330	1,40	17,46	2861	1.56	6.13	94.2	11	10,24		
	1335	2.00	17.81	2903	091	6.16	89.3	1,	10.23		
	1340		17.87	2912		6-19		()	11		
	1345	2.60			0.78	, ,	86.2				
	1375	3,20	18.04	2910	0.68	6.17	832	11	1)		
	· · · · · · · · · · · · · · · · · · ·					 					
									••		
			-								
									··· -		
							,				
		1 7	Sa	mple Infor			i				
Sample DTV	` \-		<u> </u>			urbidity:					
•	th: 🏸 Pum	pBail	er		•	ime: <u>/3</u>		<u> </u>			
Odor:/	ntainer/Prese	neather 2	100			low Rate		-100			
	s: 8260, f			1, - 1	. 1	, , , , ,					
	V. FLGO, +	arov- in	ον <u>π</u> ι,	scolled me	tals,	nex.ch	OVV.C				
Notes:	DTW -	. 4 - 197 1				,					
GUIDE:	DTW = Dept			4	4	, 	a day 17	Annula Inc. 14			
	Lower pump			•	•			turbing it.			
	Don't let wat		-				_	- 400			
	Ideal purge										
	Parameters : ± 3% °C for T					-		•	•		
	± 0.1 for pH			or conductivi V or ORP		± 10% or :		tor มับ here applic	able		
	4/	7 N	± 20 III	V OI OILP				1	abie		
Signature:	priem	Noll	<u> frre</u>				Page 🚶	of <u>'</u>			

				TEC Acc	utite				
				urging Fie		Sheet			
Project Nan	ne: 1435 v	187 Sto		Purged by:	<u>5</u> D		Well ID:	D: MM	9
Client Name	on: Alam	(M)		Sampled by	: BD		Sample I		-7_
Site Location	on: (-)1 6 00	div		104-4 (0400)				ample:	(1.0)
Date Purge	d: 12 6 11 ed: 12 6 1	,		Start (2400h				0hr): 09	
	neter (inch):			Well Head F			ו ט ווווווון	W (ft bgs):	7.56
Depth to Bo	ttom (ft): [9	91		Depth of Pu		(ft) (zone	of interes	st): ~17 0	0
	ge Pump: b			Optimal Pur	ge Rate (r	nl/min.):	(21)	5cj. 77 (2.0	
7,	<u></u>		Fi	eld Measur			1 1		
Date	Time	Volume	Temp.	Conduct.	D.O.	рН	ORP	Color	DTW
(mm/dd/yy)		(liters)	(deg. C)	(µS/cm)	(mg/l)	(units)	(mV)	(visual)	(ft)
12/6/11	0912	180	19.79		7.73	5.74	241.6	clour	7.68
10.101(1	0917	1.40	16.45		3.40	5.74	241.7	11	1,
					2.58	5.73	240.8		7,1
	0922	2.00	16.97	658			270.8	/ (C	
	2927	260	17.42	655	1.75	5.74	238.4		
	0932	3.20	17,57	654	1.62	5.74	236.7	1.1	1,1
	0937	3.80	17.84	653	1.55	2.80	230.7	/((1
i			'						
									<u> </u>
						ļ			
									1
					ļ				
		_	Sa	mple Infor	mation				
Sample DTV	V (ft) 9.	6 E		р.сс.		urbidity:	10~		
Sampled wit	h: Pum	p Bai	ler			ime:∂°			
Odor: no			,				(ml/min.):	<100	
Sample Con		rvative: 3	VOAs/n	iane					
Lab Analysis									
Notes:						•			
	DTW - D - 41	h 4 a 141-4							·
1	DTW = Dept				4	4. 4		4la for !4	
				eter slowly in	-			turbing it.	
i .			•	than 0.3 feet			-	400	•
1				& 500 ml/mii		-			
				east 3 conse		•		•	;;
I	± 3% ^o C for 1 ± 0.1 for pH :	•		or conductivi	•		± 0.2 mg/l		abla
	± 0.1 for pri	(A)	± 20 m	V or ORP		10% TOF TO)	here applic	anie
Signature:	Bran	Sel	2			<u>.</u>	Page	of	

ı

ATTACHMENT B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster St.

Work Order No.: 1110007

Dear Brian Doherty:

Torrent Laboratory, Inc. received 7 sample(s) on October 03, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Total Page Count: 20

Sr. Project Manager

October 10, 2011

Page 1 of 20

Date

Date: 10/10/2011

Client: Tec Accutite

Project: 1435 Webster St.

Work Order: 1110007

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 20 Page 2 of 20

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/03/11

Tec Accutite Date Reported: 10/10/11

MW-2 1110007-001

Parameters: **Analysis** <u>DF</u> **MDL** <u>PQL</u> Results <u>Unit</u> Method MTBE SW8260B 1 0.38 0.50 12 ug/L 1,2-Dichloroethane SW8260B 1 0.28 0.50 0.80 ug/L

MW-3 1110007-002

<u>Parameters:</u>
Analysis
DF
MDL
PQL
Results
Unit
Method
OH
OH
PQL
Results
Unit
Unit
Method
OH
PQL
Results
Unit
Unit
OH
OH
DE
Results
Unit
Unit
OH
OH
OH
DE
Results
Unit
Unit
OH
OH
OH
OH
DE
Results
Unit
Unit
OH
OH
OH
DE
Results
Unit
Unit
OH
OH
OH
OH
DE
<a href="#

All compounds were non-detectable for this sample.

MW-4 1110007-003

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	70	ug/L
1,2-Dichloroethane	SW8260B	1	0.28	0.50	2.4	ug/L
TPH(Gasoline)	8260TPH	1	22	50	73	ug/L

Parameters: Analysis DF MDL PQL Results Unit

<u>Method</u>

All compounds were non-detectable for this sample.

MW-6

MW-7 1110007-005

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	4.3	ug/L

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1110007-004

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/03/11

Tec Accutite Date Reported: 10/10/11

MW-8 1110007-006

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Diisopropyl ether (DIPE)	SW8260E	1	0.36	0.50	8.2	ug/L
Toluene	SW8260E	1	0.19	0.50	2.0	ug/L
Ethyl Benzene	SW8260E	1	0.15	0.50	38	ug/L
m,p-Xylene	SW8260E	1	0.20	1.0	5.3	ug/L
TPH(Gasoline)	8260TPH	1	22	50	2500	ug/L
Benzene	SW8260E	22	7.4	11	140	ug/L
1,2-Dichloroethane	SW8260E	22	6.1	11	180	ug/L
MTBE	SW8260E	88	33	44	5600	ug/L
MW-9					11	10007-007
Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>

All compounds were non-detectable for this sample.

Total Page Count: 20 Page 4 of 20

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for: **Brian Doherty** Date Received: 10/03/11 Tec Accutite Date Reported: 10/10/11

Client Sample ID: MW-2 Lab Sample ID: 1110007-001A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

09/30/11 / 11:08 1435 Webster St. Tag Number:

Date/Time Sampled:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/07/11	1	0.38	0.50	12	•	ug/L	406971	NA
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
1,2-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	0.80		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	ND		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	99.9		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	121		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	92.9		%	406971	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	ND		ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	80.5		%	406971	3816

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 5 of 20

Brian Doherty Report prepared for: Date Received: 10/03/11 Tec Accutite Date Reported: 10/10/11

Client Sample ID: MW-3 Lab Sample ID: 1110007-002A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location:

Project Number: Date/Time Sampled: 09/30/11 / 10:47 1435 Webster St. Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	10/07/11	1	0.38	0.50	ND	•	ug/L	406971	NA
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
1,2-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	ND		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	ND		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	107		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	122		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	93.7		%	406971	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	ND		ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	94.9		%	406971	3816

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 6 of 20

Brian Doherty Report prepared for: Date Received: 10/03/11 Tec Accutite Date Reported: 10/10/11

Client Sample ID: MW-4 Lab Sample ID: 1110007-003A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

09/30/11 / 11:35 1435 Webster St. Tag Number:

Date/Time Sampled:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/07/11	1	0.38	0.50	70	•	ug/L	406971	NA
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
1,2-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	2.4		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	ND		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	106		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	121		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	91.5		%	406971	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	73	Х	ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	77.8		%	406971	3816

NOTE: x-Not typical of Gasoline standard pattern. Result due to discrete peak (MTBE).

Total Page Count: 20 Page 7 of 20

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 10/03/11
Date Reported: 10/10/11

Client Sample ID:MW-6Lab Sample ID:1110007-004AProject Name/Location:1435 Webster St.Sample Matrix:Groundwater

Project Name/Location: Project Number:

 Date/Time Sampled:
 09/30/11 / 10:21

 Tag Number:
 1435 Webster St.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/07/11	1	0.38	0.50	ND	•	ug/L	406971	NA
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
1,2-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	ND		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	ND		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	104		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	122		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	92.7		%	406971	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	ND		ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	83.2		%	406971	3816

Total Page Count: 20 Page 8 of 20

Report prepared for: **Brian Doherty** Date Received: 10/03/11 Tec Accutite Date Reported: 10/10/11

Client Sample ID: MW-7 Lab Sample ID: 1110007-005A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location:

Project Number:

09/30/11 / 13:05

Date/Time Sampled: 1435 Webster St. Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/07/11	1	0.38	0.50	4.3		ug/L	406971	NA
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
1,2-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	ND		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	ND		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	108		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	121		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	92.5		%	406971	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	ND		ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	75.0		%	406971	3816

Total Page Count: 20 Page 9 of 20

Report prepared for: Brian Doherty Date Received: 10/03/11

Tec Accutite Date Reported: 10/10/11

Client Sample ID:MW-8Lab Sample ID:1110007-006AProject Name/Location:1435 Webster St.Sample Matrix:Groundwater

Project Number:

 Date/Time Sampled:
 09/30/11 / 13:41

 Tag Number:
 1435 Webster St.

Applying | Prop. | Date | DE | MDI | Pop. | December | Leb | Unit | Applytical | Prop. | December | Dec

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	8.2		ug/L	406971	NA
ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
TAME	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	1	0.19	0.50	2.0		ug/L	406971	NA
1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	38		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	5.3		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	103		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	116		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	89.6		%	406971	NA
Benzene	SW8260B	NA	10/10/11	22	7.4	11	140		ug/L	406973	NA
1,2-Dichloroethane	SW8260B	NA	10/10/11	22	6.1	11	180		ug/L	406973	NA
(S) Dibromofluoromethane	SW8260B	NA	10/10/11	22	61.2	131	108		%	406973	NA
(S) Toluene-d8	SW8260B	NA	10/10/11	22	75.1	127	115		%	406973	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/10/11	22	64.1	120	99.2		%	406973	NA
MTBE	SW8260B	NA	10/10/11	88	33	44	5600		ug/L	406973	NA
(S) Dibromofluoromethane	SW8260B	NA	10/10/11	88	61.2	131	107		%	406973	NA
(S) Toluene-d8	SW8260B	NA	10/10/11	88	75.1	127	114		%	406973	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/10/11	88	64.1	120	97.1		%	406973	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	2500	Х	ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	89.5		%	406971	3816

NOTE: x-Not typical of Gasoline standard pattern. Result due to discrete peak (MTBE).

Total Page Count: 20 Page 10 of 20

Report prepared for: **Brian Doherty** Date Received: 10/03/11 Tec Accutite Date Reported: 10/10/11

Client Sample ID: MW-9 Lab Sample ID: 1110007-007A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 09/30/11 / 9:55 1435 Webster St. Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/10/11	1	0.38	0.50	ND		ug/L	406973	NA
tert-Butanol	SW8260B	NA	10/10/11	1	1.5	5.0	ND		ug/L	406973	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/10/11	1	0.36	0.50	ND		ug/L	406973	NA
ETBE	SW8260B	NA	10/10/11	1	0.40	0.50	ND		ug/L	406973	NA
Benzene	SW8260B	NA	10/10/11	1	0.33	0.50	ND		ug/L	406973	NA
TAME	SW8260B	NA	10/10/11	1	0.32	0.50	ND		ug/L	406973	NA
1,2-Dichloroethane	SW8260B	NA	10/10/11	1	0.28	0.50	ND		ug/L	406973	NA
Toluene	SW8260B	NA	10/10/11	1	0.19	0.50	ND		ug/L	406973	NA
1,2-Dibromoethane	SW8260B	NA	10/10/11	1	0.19	0.50	ND		ug/L	406973	NA
Ethyl Benzene	SW8260B	NA	10/10/11	1	0.15	0.50	ND		ug/L	406973	NA
m,p-Xylene	SW8260B	NA	10/10/11	1	0.20	1.0	ND		ug/L	406973	NA
o-Xylene	SW8260B	NA	10/10/11	1	0.13	0.50	ND		ug/L	406973	NA
(S) Dibromofluoromethane	SW8260B	NA	10/10/11	1	61.2	131	110		%	406973	NA
(S) Toluene-d8	SW8260B	NA	10/10/11	1	75.1	127	115		%	406973	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/10/11	1	64.1	120	99.9		%	406973	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/7/11	10/07/11	1	22	50	ND		ug/L	406971	3816
(S) 4-Bromofluorobenzene	8260TPH	10/7/11	10/07/11	1	71	131	84.8		%	406971	3816

Total Page Count: 20 Page 11 of 20

Work Order:	1110007	Prep	Method:	5030	Prep	Date:	10/07/11	Prep Batch:	3816
Matrix:	•			8260TPH	Anal	yzed Date:	10/07/11	Analytical	406971
Units: ug/L		Metho	Method:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	obenzene	22	50	ND 92.0					
Work Order	1110007	Dran	Mothodi	NΙΛ	Dron	Dotos	NΙΛ	Dron Potobi	NΛ

Work Order:	1110007	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/07/11	Analytical	406971
Units:	ug/L	Method:				Batch:	

Parameters MDL PQL Method Blank Conc. Lab Qualifier Dichlorodifluoromethane 0.41 0.50 ND
Dichlorodifluoromethane 0.41 0.50 ND
Chloromethane 0.41 0.50 ND
/inyl Chloride 0.37 0.50 ND
Bromomethane 0.37 0.50 ND
Frichlorofluoromethane 0.34 0.50 ND
1,1-Dichloroethene 0.29 0.50 ND
Freon 113 0.38 0.50 ND
Methylene Chloride 0.18 5.0 ND
rans-1,2-Dichloroethene 0.31 0.50 ND
MTBE 0.38 0.50 ND
ert-Butanol 1.5 5.0 ND
Diisopropyl ether (DIPE) 0.36 0.50 ND
1,1-Dichloroethane 0.28 0.50 ND
ETBE 0.40 0.50 ND
cis-1,2-Dichloroethene 0.33 0.50 ND
2,2-Dichloropropane 0.37 0.50 ND
Bromochloromethane 0.34 0.50 ND
Chloroform 0.29 0.50 ND
Carbon Tetrachloride 0.26 0.50 ND
1,1,1-Trichloroethane 0.32 0.50 ND
1,1-Dichloropropene 0.40 0.50 ND
Benzene 0.33 0.50 ND
TAME 0.32 0.50 ND
1,2-Dichloroethane 0.28 0.50 ND
Frichloroethylene 0.38 0.50 ND
Dibromomethane 0.21 0.50 ND
1,2-Dichloropropane 0.37 0.50 ND
Bromodichloromethane 0.23 0.50 ND
cis-1,3-Dichloropropene 0.30 0.50 ND
Toluene 0.19 0.50 ND

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 12 of 20

Work Order: 1110007 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 10/07/11 Analytical 406971 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Tetrachloroethylene	0.15	0.50	ND	•
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	
o-Xylene	0.13	0.50	ND	
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			102	
(S) Toluene-d8			120	
(S) 4-Bromofluorobenzene			90.9	

Total Page Count: 20 Page 13 of 20

Work Order: 1110007 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 10/10/11 Analytical 406973 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	ND	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	
o-Xylene	0.13	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 14 of 20

Work Order: 1110007 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 10/10/11 Analytical 406973 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.20	0.50	ND	•
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			109	
(S) Toluene-d8			116	
(S) 4-Bromofluorobenzene			101	

Total Page Count: 20 Page 15 of 20

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: 1110007 Prep Method: 5030 Prep Date: 10/07/11 Prep Batch: 3816 8260TPH 406971 Matrix: 10/07/11 Analytical **Analyzed Date:** Analytical Water Method:

Units: ug/L

Batch:

LCS % LCSD % LCS/LCSD Method Spike % **Parameters** MDL **PQL Blank** Conc. Recovery Recovery % RPD Recovery % RPD Lab Conc. Limits Limits Qualifier TPH(Gasoline) 22 50 ND 227.27 52.4 - 127 30 85.8 86.6 0.899

(S) 4-Bromofluorobenzene 92.0 95.5 85.1 41.5 - 125 11.36

Work Order: 1110007 **Prep Method:** NA Prep Date: NA Prep Batch: NA

Matrix: Analytical SW8260B **Analyzed Date:** 10/07/11 Analytical 406971 Water

Method: Batch: Units: ug/L

LCSD % LCS/LCSD Method Spike LCS % MDL PQL Recovery % RPD **Parameters** Blank Conc. Recovery % RPD Recovery Lab Conc. Limits Limits Qualifier 1,1-Dichloroethene 0.29 0.50 ND 17.04 61.4 - 129 30 93.1 90.1 3.53 Benzene 0.33 0.50 ND 17.04 74.7 75.4 66.9 - 140 30 1.17 Trichloroethylene 0.38 0.50 ND 17.04 104 102 2.28 69.3 - 144 30 Toluene 0.19 0.50 ND 17.04 106 101 4.32 76.6 - 123 30 Chlorobenzene 0.14 0.50 ND 17.04 105 102 3.04 73.9 - 137 30 ND 96.1 98.1 (S) Dibromofluoromethane 11.36 61.2 - 131 (S) Toluene-d8 ND 75.1 - 127 11.36 118 116 (S) 4-Bromofluorobenzene ND 83.4 85.4 64.1 - 120 11.36

Work Order: **Prep Method:** NA Prep Date: NA Prep Batch: NA 1110007 Matrix: SW8260B Water Analytical **Analyzed Date:** 10/10/11 Analytical 406973

Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	87.2	115	27.6	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	82.5	95.5	14.3	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	100	108	7.34	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	101	105	4.41	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	101	105	4.13	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	102	99.6		61.2 - 131		
(S) Toluene-d8			ND	11.36	114	106		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	90.3	90.8		64.1 - 120		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 10/3/2011 18:50

Project Name: 1435 Webster St. Received By: NG

Work Order No.: 1110007 Physically Logged By: YB

Checklist Completed By: YB

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: 4 °C

Water-VOA vials have zero headspace? No

Water-pH acceptable upon receipt?

pH Checked by: pH Adjusted by:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20

Page 18 of 20

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster St. **TAT Requested:** 5+ day:0

Project #: Date Received: 10/3/2011

Report Due Date: 10/10/2011 Time Received: 18:50

Comments: 5 day TAT! Received 7 waters @ 4'C for TPHg,BTEX,Oxy,Lead scav for all samples.

Work Order #: 1110007

WO Sample ID	<u>Client</u> <u>Sample ID</u>	Collection Date/Time	<u>Matrix</u>		Sample On Hold	<u>Test</u> On Hold	Requested Tests	Subbed
1110007-001A	MW-2	09/30/11 11:08	Water	11/17/11			W_8260Pet EDF W_GCMS-GRO	
Sample Note:	TPHg,BTEX,Oxy,Lead scav	/ for all samples. R	un to ESLs.					
1110007-002A	MW-3	09/30/11 10:47	Water	11/17/11			W_8260Pet W_GCMS-GRO	
1110007-003A	MW-4	09/30/11 11:35	Water	11/17/11			W_8260Pet W_GCMS-GRO	
1110007-004A	MW-6	09/30/11 10:21	Water	11/17/11			W_8260Pet	
1110007-005A	MW-7	09/30/11 13:05	Water	11/17/11			W_GCMS-GRO W_8260Pet	
1110007-006A	MW-8	09/30/11 13:41	Water	11/17/11			W_GCMS-GRO W_8260Pet	
1110007-007A	MW-9	09/30/11 9:55	Water	11/17/11			W_GCMS-GRO W_8260Pet W_GCMS-GRO	

Total Page Count: 20 Page 19 of 20

CHAIN OF CUSTODY

Lab Work Order # [110007

															Lub VV	ork Orac	<i>π.</i> [[, ,	
	Project	1435 Webste	or.		Report to:	Brian				Analysis R	equired					Turn	-around	Time (wor	k days)
	Name:	1435 Websit	, i		tecaccutite	@gmail.com										ASAP	1 Day	2 Days	3 Days
	Project	1435 Webste	er St.		Bill to: TEC	Accutite	8260 TPHg BTEX oxygenates, lead scavengers									5 Days	10 Days	Other:	
	Address:	Alameda, CA			(650) 616-	1200	BTI , leg										Sam	ple Type	
	Olekelio	T000040070			-	>	Hg									ground w	ater		
	Global ID:	T060010076		1.1	PO#:)	9640	TP ena									3.00		454	
	Sampler:	BD	Date	10/3/11	- '		260 xyg										керо	rt Format	
	Field Point ID	Sample ID	Sample Matrix	# of Containers	Container Type	Sample Date & Time	8 0									EDF	Re	marks	
Œ	MW-2	MW-2	w	3	VOAs w/ HCI	9/30/11	1									Run to E	SLs		
	MW-3 .	MW-3	w	3	VOAs w/ HCI	9/30/11	1												,
) MW-4	MW-4	W	3	VOAs w/ HCI	11,35	1												
or	f))-MW-6	MW-6	w	3	VOAs w/ HCI	1921	√												1
H	AMW-7	MW-7	w	3	VOAs w/ HCI	1305	√											, ° C	
91	(A MW-8	MW-8	Ņ	3	VOAs w/ HCI	9/30/11	1									1	bert.	K C	
5	Ja MW-9	MW-9	w	3	VOAs w/ HCI	9/30/11	. √							,					
																,			
	Relinquishe	ed by: Brian Do	oherty LAM (Dolur	Date:	10/3/11	Time:	:50	pn	Received David	Dagst	anyan	(la	X	Date:	0/3/11		4:5	e: 0 PM
	Pelinquishe David	ed by: Dagstan	yan	hooke	Date:	3/11	Time: 6:50	PM ·		Received	by:)	NAV Cesar	ING	ン 	Date:	:		Tim 615	e: 50 RM
		J .) ()					V	E	rst	Courie	r	, ,				

Total Page Count: 20 Page 20 of 20

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster

Work Order No.: 1110123

Dear Brian Doherty:

Torrent Laboratory, Inc. received 8 sample(s) on October 14, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Sr. Project Manager

October 24, 2011

Date

Total Page Count: 34 Page 1 of 34

Date: 10/24/2011

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1110123

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 34 Page 2 of 34

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

I-A3

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/14/11

Tec Accutite Date Reported: 10/24/11

1110123-001

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
TPH(Gasoline)	8260TPH	11	240	550	18000	ug/L
Benzene	SW8260B	11	3.7	5.5	290	ug/L
Toluene	SW8260B	11	2.1	5.5	540	ug/L
Ethyl Benzene	SW8260B	11	1.7	5.5	390	ug/L
m,p-Xylene	SW8260B	11	2.2	11	1300	ug/L
o-Xylene	SW8260B	11	1.4	5.5	470	ug/L

I-B1 1110123-002

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Benzene	SW8260B	4.4	1.5	2.2	19	ug/L
Ethyl Benzene	SW8260B	4.4	0.68	2.2	300	ug/L
m,p-Xylene	SW8260B	4.4	0.88	4.4	350	ug/L
o-Xylene	SW8260B	4.4	0.56	2.2	2.2	ug/L
TPH(Gasoline)	8260TPH	4.4	95	220	12000	ug/L

I-B6 1110123-003

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
TPH(Gasoline)	8260TPH	11	240	550	20000	ug/L
МТВЕ	SW8260B	44	17	22	720	ug/L
Benzene	SW8260B	44	15	22	6100	ug/L
Toluene	SW8260B	44	8.4	22	1100	ug/L
Ethyl Benzene	SW8260B	44	6.8	22	1800	ug/L
m,p-Xylene	SW8260B	44	8.8	44	2000	ug/L
o-Xylene	SW8260B	44	5.6	22	380	ug/L

Total Page Count: 34 Page 3 of 34

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/14/11

Tec Accutite Date Reported: 10/24/11

I-C1 1110123-004

Parameters:	Analysis Method	DF	MDL	<u>PQL</u>	Results	<u>Unit</u>
Benzene	SW8260B	1	0.33	0.50	56	ug/L
Toluene	SW8260B	1	0.19	0.50	61	ug/L
Ethyl Benzene	SW8260B	1	0.15	0.50	52	ug/L
m,p-Xylene	SW8260B	1	0.20	1.0	190	ug/L
o-Xylene	SW8260B	1	0.13	0.50	62	ug/L
TPH(Gasoline)	8260TPH	8.8	190	440	2600	ug/L
I-A3 @ 9'					111	0123-005
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>

All compounds were non-detectable for this sample.

I-B1@ 9'

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Ethyl Benzene	SW8260B	100	86	1000	2300	ug/Kg
m,p-Xylene	SW8260B	100	190	1000	3100	ug/Kg
TPH(Gasoline)	8260TPH	100	1700	10000	170000	ug/Kg

I-B6 @ 9'

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Ethyl Benzene	SW8260B	100	86	1000	2300	ug/Kg
m,p-Xylene	SW8260B	100	190	1000	5900	ug/Kg
o-Xylene	SW8260B	100	66	500	1500	ug/Kg
TPH(Gasoline)	8260TPH	100	1700	10000	150000	ug/Kg

Total Page Count: 34 Page 4 of 34

I-C1 @ 9'

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/14/11

Tec Accutite Date Reported: 10/24/11

1110123-008

<u>Parameters:</u> <u>Analysis</u> <u>DF MDL PQL Results Unit Method</u>

All compounds were non-detectable for this sample.

Total Page Count: 34 Page 5 of 34

Report prepared for: **Brian Doherty** Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-A3 Lab Sample ID: 1110123-001A Groundwater

Project Name/Location:

Date/Time Sampled: 10/04/11 / 10:16 Tag Number: 1435 Webster

1435 Webster Sample Matrix: **Project Number:**

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/20/11	11	4.1	5.5	ND		ug/L	407137	NA
tert-Butanol	SW8260B	NA	10/20/11	11	17	55	ND		ug/L	407137	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/20/11	11	4.0	5.5	ND		ug/L	407137	NA
ETBE	SW8260B	NA	10/20/11	11	4.4	5.5	ND		ug/L	407137	NA
Benzene	SW8260B	NA	10/20/11	11	3.7	5.5	290		ug/L	407137	NA
TAME	SW8260B	NA	10/20/11	11	3.5	5.5	ND		ug/L	407137	NA
Toluene	SW8260B	NA	10/20/11	11	2.1	5.5	540		ug/L	407137	NA
Ethyl Benzene	SW8260B	NA	10/20/11	11	1.7	5.5	390		ug/L	407137	NA
m,p-Xylene	SW8260B	NA	10/20/11	11	2.2	11	1300		ug/L	407137	NA
o-Xylene	SW8260B	NA	10/20/11	11	1.4	5.5	470		ug/L	407137	NA
(S) Dibromofluoromethane	SW8260B	NA	10/20/11	11	61.2	131	99.0		%	407137	NA
(S) Toluene-d8	SW8260B	NA	10/20/11	11	75.1	127	87.6		%	407137	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/20/11	11	64.1	120	113		%	407137	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/20/11	11	240	550	18000		ug/L	407137	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/20/11	11	41.5	125	95.6		%	407137	NA

Total Page Count: 34 Page 6 of 34

Report prepared for: **Brian Doherty** Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-B1 Lab Sample ID: 1110123-002A

Project Name/Location:

10/04/11 / 10:49 Date/Time Sampled: Tag Number: 1435 Webster

1435 Webster Sample Matrix: Groundwater Project Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/20/11	4.4	1.7	2.2	ND		ug/L	407137	NA
tert-Butanol	SW8260B	NA	10/20/11	4.4	6.6	22	ND		ug/L	407137	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/20/11	4.4	1.6	2.2	ND		ug/L	407137	NA
ETBE	SW8260B	NA	10/20/11	4.4	1.7	2.2	ND		ug/L	407137	NA
Benzene	SW8260B	NA	10/20/11	4.4	1.5	2.2	19		ug/L	407137	NA
TAME	SW8260B	NA	10/20/11	4.4	1.4	2.2	ND		ug/L	407137	NA
Toluene	SW8260B	NA	10/20/11	4.4	0.84	2.2	ND		ug/L	407137	NA
Ethyl Benzene	SW8260B	NA	10/20/11	4.4	0.68	2.2	300		ug/L	407137	NA
m,p-Xylene	SW8260B	NA	10/20/11	4.4	0.88	4.4	350		ug/L	407137	NA
o-Xylene	SW8260B	NA	10/20/11	4.4	0.56	2.2	2.2		ug/L	407137	NA
(S) Dibromofluoromethane	SW8260B	NA	10/20/11	4.4	61.2	131	98.6		%	407137	NA
(S) Toluene-d8	SW8260B	NA	10/20/11	4.4	75.1	127	91.4		%	407137	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/20/11	4.4	64.1	120	117		%	407137	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/20/11	4.4	95	220	12000	Х	ug/L	407137	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/20/11	4.4	41.5	125	94.4		%	407137	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes contribution from heavy end hydrocarbons (possibly aged gasoline) and non-fuel light hydrocarbons to the C5-C12 range quantified as Gasoline.

Total Page Count: 34 Page 7 of 34

Sample Matrix:

Groundwater

Brian Doherty Report prepared for: Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-B6 Lab Sample ID: 1110123-003A

1435 Webster

Project Name/Location:

Project Number: 10/04/11 / 13:54

Date/Time Sampled: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/24/11	44	17	22	720		ug/L	407177	NA
tert-Butanol	SW8260B	NA	10/24/11	44	66	220	ND		ug/L	407177	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/24/11	44	16	22	ND		ug/L	407177	NA
ETBE	SW8260B	NA	10/24/11	44	17	22	ND		ug/L	407177	NA
Benzene	SW8260B	NA	10/24/11	44	15	22	6100		ug/L	407177	NA
TAME	SW8260B	NA	10/24/11	44	14	22	ND		ug/L	407177	NA
Toluene	SW8260B	NA	10/24/11	44	8.4	22	1100		ug/L	407177	NA
Ethyl Benzene	SW8260B	NA	10/24/11	44	6.8	22	1800		ug/L	407177	NA
m,p-Xylene	SW8260B	NA	10/24/11	44	8.8	44	2000		ug/L	407177	NA
o-Xylene	SW8260B	NA	10/24/11	44	5.6	22	380		ug/L	407177	NA
(S) Dibromofluoromethane	SW8260B	NA	10/24/11	44	61.2	131	94.3		%	407177	NA
(S) Toluene-d8	SW8260B	NA	10/24/11	44	75.1	127	105		%	407177	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/24/11	44	64.1	120	95.0		%	407177	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/21/11	10/21/11	11	240	550	20000	Х	ug/L	407162	3945
(S) 4-Bromofluorobenzene	8260TPH	10/21/11	10/21/11	11	41.5	125	80.7		%	407162	3945

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value includes amount due to discrete peaks of aromatic compounds and contribution from non-fuel hydrocarbons in range of C5-C12 quantified as gasoline.

Total Page Count: 34 Page 8 of 34

Report prepared for: Brian Doherty Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-C1 Lab Sample ID: 1110123-004A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Tag Number: 1435 Webster

Date/Time Sampled: 10/04/11 / 14:28

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/18/11	1	0.38	0.50	ND		ug/L	407156	NA
tert-Butanol	SW8260B	NA	10/18/11	1	1.5	5.0	ND		ug/L	407156	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/18/11	1	0.36	0.50	ND		ug/L	407156	NA
ETBE	SW8260B	NA	10/18/11	1	0.40	0.50	ND		ug/L	407156	NA
Benzene	SW8260B	NA	10/18/11	1	0.33	0.50	56		ug/L	407156	NA
TAME	SW8260B	NA	10/18/11	1	0.32	0.50	ND		ug/L	407156	NA
Toluene	SW8260B	NA	10/18/11	1	0.19	0.50	61		ug/L	407156	NA
Ethyl Benzene	SW8260B	NA	10/18/11	1	0.15	0.50	52		ug/L	407156	NA
m,p-Xylene	SW8260B	NA	10/18/11	1	0.20	1.0	190		ug/L	407156	NA
o-Xylene	SW8260B	NA	10/18/11	1	0.13	0.50	62		ug/L	407156	NA
(S) Dibromofluoromethane	SW8260B	NA	10/18/11	1	61.2	131	100		%	407156	NA
(S) Toluene-d8	SW8260B	NA	10/18/11	1	75.1	127	90.9		%	407156	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/18/11	1	64.1	120	105		%	407156	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/19/11	8.8	190	440	2600		ug/L	407168	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/19/11	8.8	41.5	125	97.7		%	407168	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 9 of 34

Sample Matrix:

Soil

Report prepared for: **Brian Doherty** Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-A3 @ 9' Lab Sample ID: 1110123-005A

1435 Webster

Project Name/Location:

1435 Webster Tag Number:

Project Number: Date/Time Sampled: 10/04/11 / 9:30

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/20/11	1	2.6	10	ND		ug/Kg	407139	NA
tert-Butanol	SW8260B	NA	10/20/11	1	21	50	ND		ug/Kg	407139	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/20/11	1	2.2	10	ND		ug/Kg	407139	NA
ETBE	SW8260B	NA	10/20/11	1	2.4	10	ND		ug/Kg	407139	NA
Benzene	SW8260B	NA	10/20/11	1	1.5	10	ND		ug/Kg	407139	NA
TAME	SW8260B	NA	10/20/11	1	2.1	10	ND		ug/Kg	407139	NA
Toluene	SW8260B	NA	10/20/11	1	0.98	10	ND		ug/Kg	407139	NA
Ethyl Benzene	SW8260B	NA	10/20/11	1	0.86	10	ND		ug/Kg	407139	NA
m,p-Xylene	SW8260B	NA	10/20/11	1	1.9	10	ND		ug/Kg	407139	NA
o-Xylene	SW8260B	NA	10/20/11	1	0.66	5.0	ND		ug/Kg	407139	NA
(S) Dibromofluoromethane	SW8260B	NA	10/20/11	1	59.8	148	110		%	407139	NA
(S) Toluene-d8	SW8260B	NA	10/20/11	1	55.2	133	100		%	407139	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/20/11	1	55.8	141	116		%	407139	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/20/11	10/15/11	1	17	100	ND		ug/Kg	407084	3929
(S) 4-Bromofluorobenzene	8260TPH	10/20/11	10/15/11	1	43.9	127	63.4		%	407084	3929

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 10 of 34

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 10/14/11
Date Reported: 10/24/11

Client Sample ID: I-B1@ 9' **Lab Sample ID:** 1110123-006A

Project Name/Location:

Project Number:

1435 Webster

Sample Matrix: Soil

 Date/Time Sampled:
 10/04/11 / 10:20

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/15/11	100	260	1000	ND		ug/Kg	407084	NA
tert-Butanol	SW8260B	NA	10/15/11	100	2100	5000	ND		ug/Kg	407084	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/15/11	100	220	1000	ND		ug/Kg	407084	NA
ETBE	SW8260B	NA	10/15/11	100	240	1000	ND		ug/Kg	407084	NA
Benzene	SW8260B	NA	10/15/11	100	150	1000	ND		ug/Kg	407084	NA
TAME	SW8260B	NA	10/15/11	100	210	1000	ND		ug/Kg	407084	NA
Toluene	SW8260B	NA	10/15/11	100	98	1000	ND		ug/Kg	407084	NA
Ethyl Benzene	SW8260B	NA	10/15/11	100	86	1000	2300		ug/Kg	407084	NA
m,p-Xylene	SW8260B	NA	10/15/11	100	190	1000	3100		ug/Kg	407084	NA
o-Xylene	SW8260B	NA	10/15/11	100	66	500	ND		ug/Kg	407084	NA
(S) Dibromofluoromethane	SW8260B	NA	10/15/11	100	59.8	148	106		%	407084	NA
(S) Toluene-d8	SW8260B	NA	10/15/11	100	55.2	133	96.9		%	407084	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/15/11	100	55.8	141	115		%	407084	NA

NOTE: Reporting limits were raised due to high level of non-target hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/15/11	100	1700	10000	170000	Х	ug/Kg	407084	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/15/11	100	43.9	127	91.2		%	407084	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes significant amount of non-target hydrocarbons within range of C5-C12 quantified as gasoline.

Sample Matrix:

Soil

Report prepared for: **Brian Doherty** Date Received: 10/14/11 Tec Accutite Date Reported: 10/24/11

Client Sample ID: I-B6 @ 9' Lab Sample ID: 1110123-007A

1435 Webster

Project Name/Location:

Project Number: 10/04/11 / 13:39

Date/Time Sampled: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/15/11	100	260	1000	ND		ug/Kg	407084	NA
tert-Butanol	SW8260B	NA	10/15/11	100	2100	5000	ND		ug/Kg	407084	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/15/11	100	220	1000	ND		ug/Kg	407084	NA
ETBE	SW8260B	NA	10/15/11	100	240	1000	ND		ug/Kg	407084	NA
Benzene	SW8260B	NA	10/15/11	100	150	1000	ND		ug/Kg	407084	NA
TAME	SW8260B	NA	10/15/11	100	210	1000	ND		ug/Kg	407084	NA
Toluene	SW8260B	NA	10/15/11	100	98	1000	ND		ug/Kg	407084	NA
Ethyl Benzene	SW8260B	NA	10/15/11	100	86	1000	2300		ug/Kg	407084	NA
m,p-Xylene	SW8260B	NA	10/15/11	100	190	1000	5900		ug/Kg	407084	NA
o-Xylene	SW8260B	NA	10/15/11	100	66	500	1500		ug/Kg	407084	NA
(S) Dibromofluoromethane	SW8260B	NA	10/15/11	100	59.8	148	110		%	407084	NA
(S) Toluene-d8	SW8260B	NA	10/15/11	100	55.2	133	93.0		%	407084	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/15/11	100	55.8	141	108		%	407084	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/15/11	100	1700	10000	150000	Х	ug/Kg	407084	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/15/11	100	43.9	127	82.4		%	407084	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes significant amount of non-target hydrocarbons within range of C5-C12 quantified as gasoline.

Report prepared for: **Brian Doherty** Date Received: 10/14/11

Tec Accutite Date Reported: 10/24/11

Sample Matrix:

Soil

Client Sample ID: I-C1 @ 9' Lab Sample ID: 1110123-008A

1435 Webster

Project Name/Location: **Project Number:**

Date/Time Sampled: 10/04/11 / 14:16

1435 Webster Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MITTE	OWIGOOD		40/45/44				<u> </u>		0.4	407004	
MTBE	SW8260B	NA	10/15/11	1	2.6	10	ND		ug/Kg	407084	NA
tert-Butanol	SW8260B	NA	10/15/11	1	21	50	ND		ug/Kg	407084	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/15/11	1	2.2	10	ND		ug/Kg	407084	NA
ETBE	SW8260B	NA	10/15/11	1	2.4	10	ND		ug/Kg	407084	NA
Benzene	SW8260B	NA	10/15/11	1	1.5	10	ND		ug/Kg	407084	NA
TAME	SW8260B	NA	10/15/11	1	2.1	10	ND		ug/Kg	407084	NA
Toluene	SW8260B	NA	10/15/11	1	0.98	10	ND		ug/Kg	407084	NA
Ethyl Benzene	SW8260B	NA	10/15/11	1	0.86	10	ND		ug/Kg	407084	NA
m,p-Xylene	SW8260B	NA	10/15/11	1	1.9	10	ND		ug/Kg	407084	NA
o-Xylene	SW8260B	NA	10/15/11	1	0.66	5.0	ND		ug/Kg	407084	NA
(S) Dibromofluoromethane	SW8260B	NA	10/15/11	1	59.8	148	108		%	407084	NA
(S) Toluene-d8	SW8260B	NA	10/15/11	1	55.2	133	84.5		%	407084	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/15/11	1	55.8	141	110		%	407084	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/15/11	1	17	100	ND		ug/Kg	407084	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/15/11	1	43.9	127	64.3		%	407084	NA

Total Page Count: 34 Page 13 of 34

Work Order:	1110123	Prep I	Method:	5035	Prep	Date:	10/15/11	Prep Batch:	3891
Matrix:	Soil	Analy		8260TPH	Anal	yzed Date:	10/15/11	Analytical	407084
Units:	ug/Kg	Metho	Method:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	bbenzene	17	100	ND 74.1					
Work Order:	1110123	Prep I	Method:	5030	Prep	Date:	10/20/11	Prep Batch:	3924
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	10/20/11	Analytical	407137
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	bbenzene	22	50	33 100					
Work Order:	1110123	Prep I	Method:	5035	5035 Prep Date:		10/20/11	Prep Batch:	3929
Matrix:	Soil	Analy		8260TPH	Analyzed Date:		10/20/11	Analytical	407139
Units:	ug/Kg	Metho	oa:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	bbenzene	17	100	ND 89.9					
Work Order:	1110123	Prep I	Method:	5030	Prep	Date:	10/21/11	Prep Batch:	3945
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	10/21/11	Analytical	407162
Units:	ug/L	Metho	oa: 					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	bbenzene	22	50	ND 70.8	•				

Total Page Count: 34 Page 14 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Soil Analytical SW8260B Analyzed Date: 10/15/11 Analytical 407084 Method: Batch: ug/Kg Units:

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	4.4	10	ND	•	
Chloromethane	4.6	10	ND		
Vinyl Chloride	2.6	10	ND		
Bromomethane	4.7	10	ND		
Trichlorofluoromethane	2.9	10	ND		
1,1-Dichloroethene	1.5	10	ND		
Freon 113	3.7	10	ND		
Methylene Chloride	2.0	50	ND		
trans-1,2-Dichloroethene	1.1	10	ND		
MTBE	2.6	10	ND		
tert-Butanol	21	50	ND		
Diisopropyl ether (DIPE)	2.2	10	ND		
1,1-Dichloroethane	1.3	10	ND		
ETBE	2.4	10	ND		
cis-1,2-Dichloroethene	1.8	10	ND		
2,2-Dichloropropane	1.2	10	ND		
Bromochloromethane	2.3	10	ND		
Chloroform	1.2	10	ND		
Carbon Tetrachloride	1.6	10	ND		
1,1,1-Trichloroethane	1.2	10	ND		
1,1-Dichloropropene	1.4	10	ND		
Benzene	1.5	10	ND		
TAME	2.1	10	ND		
1,2-Dichloroethane	1.9	10	ND		
Trichloroethylene	3.9	10	ND		
Dibromomethane	2.2	10	ND		
1,2-Dichloropropane	1.3	10	ND		
Bromodichloromethane	1.1	10	ND		
cis-1,3-Dichloropropene	1.4	10	ND		
Toluene	0.98	10	ND		
Tetrachloroethylene	1.8	10	ND		
trans-1,3-Dichloropropene	1.2	10	ND		
1,1,2-Trichloroethane	1.8	10	ND		
Dibromochloromethane	1.1	10	ND		
1,3-Dichloropropane	2.1	10	ND		
1,2-Dibromoethane	1.7	10	ND		
Ethyl Benzene	0.86	10	ND		
Chlorobenzene	4.2	10	ND		
1,1,1,2-Tetrachloroethane	0.86	10	ND		
m,p-Xylene	1.9	10	ND		
o-Xylene	0.66	5.0	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 15 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Soil Analytical SW8260B Analyzed Date: 10/15/11 Analytical 407084 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank	Lab Qualifier
			Conc.	
Styrene	0.77	10	ND	
Bromoform	1.9	10	ND	
Isopropyl Benzene	1.2	10	ND	
n-Propylbenzene	1.4	10	ND	
Bromobenzene	1.2	10	ND	
1,1,2,2-Tetrachloroethane	3.0	10	ND	
1,3,5-Trimethylbenzene	1.1	10	ND	
1,2,3-Trichloropropane	3.3	10	ND	
4-Chlorotoluene	1.6	10	ND	
2-Chlorotoluene	1.6	10	ND	
tert-Butylbenzene	1.4	10	ND	
1,2,4-Trimethylbenzene	1.1	10	ND	
sec-Butyl Benzene	1.6	10	ND	
p-Isopropyltoluene	1.5	10	ND	
1,3-Dichlorobenzene	1.8	10	ND	
1,4-Dichlorobenzene	1.5	10	ND	
n-Butylbenzene	2.2	10	ND	
1,2-Dichlorobenzene	1.3	10	ND	
1,2-Dibromo-3-Chloropropane	4.2	10	ND	
Hexachlorobutadiene	2.6	10	ND	
1,2,4-Trichlorobenzene	2.1	10	ND	
Naphthalene	2.8	10	ND	
1,2,3-Trichlorobenzene	2.9	10	ND	
(S) Dibromofluoromethane			104	
(S) Toluene-d8			106	
(S) 4-Bromofluorobenzene			113	

Total Page Count: 34 Page 16 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/20/11 Analytical 407137 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.41	0.50	ND	•	
Chloromethane	0.41	0.50	ND		
Vinyl Chloride	0.37	0.50	ND		
Bromomethane	0.37	0.50	ND		
Trichlorofluoromethane	0.34	0.50	ND		
1,1-Dichloroethene	0.29	0.50	ND		
Freon 113	0.38	0.50	ND		
Methylene Chloride	0.18	5.0	ND		
trans-1,2-Dichloroethene	0.31	0.50	ND		
MTBE	0.38	0.50	ND		
tert-Butanol	1.5	5.0	ND		
Diisopropyl ether (DIPE)	0.36	0.50	ND		
1,1-Dichloroethane	0.28	0.50	ND		
ETBE	0.40	0.50	ND		
cis-1,2-Dichloroethene	0.33	0.50	ND		
2,2-Dichloropropane	0.37	0.50	ND		
Bromochloromethane	0.34	0.50	ND		
Chloroform	0.29	0.50	ND		
Carbon Tetrachloride	0.26	0.50	ND		
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 17 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/20/11 Analytical 407137 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			105	
(S) Toluene-d8			79.5	
(S) 4-Bromofluorobenzene			104	

Total Page Count: 34 Page 18 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Soil Analytical SW8260B Analyzed Date: 10/20/11 Analytical 407139 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	4.4	10	ND	
Chloromethane	4.6	10	ND	
Vinyl Chloride	2.6	10	ND	
Bromomethane	4.7	10	ND	
Trichlorofluoromethane	2.9	10	ND	
1,1-Dichloroethene	1.5	10	ND	
Freon 113	3.7	10	ND	
Methylene Chloride	2.0	50	ND	
trans-1,2-Dichloroethene	1.1	10	ND	
MTBE	2.6	10	ND	
tert-Butanol	21	50	ND	
Diisopropyl ether (DIPE)	2.2	10	ND	
1,1-Dichloroethane	1.3	10	ND	
ETBE	2.4	10	ND	
cis-1,2-Dichloroethene	1.8	10	ND	
2,2-Dichloropropane	1.2	10	ND	
Bromochloromethane	2.3	10	ND	
Chloroform	1.2	10	ND	
Carbon Tetrachloride	1.6	10	ND	
1,1,1-Trichloroethane	1.2	10	ND	
1,1-Dichloropropene	1.4	10	ND	
Benzene	1.5	10	ND	
TAME	2.1	10	ND	
1,2-Dichloroethane	1.9	10	ND	
Trichloroethylene	3.9	10	ND	
Dibromomethane	2.2	10	ND	
1,2-Dichloropropane	1.3	10	ND	
Bromodichloromethane	1.1	10	ND	
cis-1,3-Dichloropropene	1.4	10	ND	
Toluene	0.98	10	ND	
Tetrachloroethylene	1.8	10	ND	
trans-1,3-Dichloropropene	1.2	10	ND	
1,1,2-Trichloroethane	1.8	10	ND	
Dibromochloromethane	1.1	10	ND	
1,3-Dichloropropane	2.1	10	ND	
1,2-Dibromoethane	1.7	10	ND	
Ethyl Benzene	0.86	10	ND	
Chlorobenzene	4.2	10	ND	
1,1,1,2-Tetrachloroethane	0.86	10	ND	
m,p-Xylene	1.9	10	ND	
o-Xylene	0.66	5.0	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 19 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Soil Analytical SW8260B Analyzed Date: 10/20/11 Analytical 407139 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.77	10	ND	•
Bromoform	1.9	10	ND	
Isopropyl Benzene	1.2	10	ND	
n-Propylbenzene	1.4	10	ND	
Bromobenzene	1.2	10	ND	
1,1,2,2-Tetrachloroethane	3.0	10	ND	
1,3,5-Trimethylbenzene	1.1	10	ND	
1,2,3-Trichloropropane	3.3	10	ND	
4-Chlorotoluene	1.6	10	ND	
2-Chlorotoluene	1.6	10	ND	
tert-Butylbenzene	1.4	10	ND	
1,2,4-Trimethylbenzene	1.1	10	ND	
sec-Butyl Benzene	1.6	10	ND	
p-Isopropyltoluene	1.5	10	ND	
1,3-Dichlorobenzene	1.8	10	ND	
1,4-Dichlorobenzene	1.5	10	ND	
n-Butylbenzene	2.2	10	ND	
1,2-Dichlorobenzene	1.3	10	ND	
1,2-Dibromo-3-Chloropropane	4.2	10	ND	
Hexachlorobutadiene	2.6	10	ND	
1,2,4-Trichlorobenzene	2.1	10	ND	
Naphthalene	2.8	10	ND	
1,2,3-Trichlorobenzene	2.9	10	ND	
(S) Dibromofluoromethane			109	
(S) Toluene-d8			102	
(S) 4-Bromofluorobenzene			121	

Total Page Count: 34 Page 20 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/18/11 Analytical 407156 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.41	0.50	ND	•	
Chloromethane	0.41	0.50	ND		
Vinyl Chloride	0.37	0.50	ND		
Bromomethane	0.37	0.50	ND		
Trichlorofluoromethane	0.34	0.50	ND		
1,1-Dichloroethene	0.29	0.50	ND		
Freon 113	0.38	0.50	ND		
Methylene Chloride	0.18	5.0	ND		
trans-1,2-Dichloroethene	0.31	0.50	ND		
MTBE	0.38	0.50	ND		
tert-Butanol	1.5	5.0	ND		
Diisopropyl ether (DIPE)	0.36	0.50	ND		
1,1-Dichloroethane	0.28	0.50	ND		
ETBE	0.40	0.50	ND		
cis-1,2-Dichloroethene	0.33	0.50	ND		
2,2-Dichloropropane	0.37	0.50	ND		
Bromochloromethane	0.34	0.50	ND		
Chloroform	0.29	0.50	ND		
Carbon Tetrachloride	0.26	0.50	ND		
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 21 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/18/11 Analytical 407156 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.20	0.50	ND	•
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			92.7	
(S) Toluene-d8			90.3	
(S) 4-Bromofluorobenzene			96.0	

Total Page Count: 34 Page 22 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/21/11 Analytical 407162 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.41	0.50	ND	•	
Chloromethane	0.41	0.50	ND		
Vinyl Chloride	0.37	0.50	ND		
Bromomethane	0.37	0.50	ND		
Trichlorofluoromethane	0.34	0.50	ND		
1,1-Dichloroethene	0.29	0.50	ND		
Freon 113	0.38	0.50	ND		
Methylene Chloride	0.18	5.0	ND		
trans-1,2-Dichloroethene	0.31	0.50	ND		
MTBE	0.38	0.50	ND		
tert-Butanol	1.5	5.0	ND		
Diisopropyl ether (DIPE)	0.36	0.50	ND		
1,1-Dichloroethane	0.28	0.50	ND		
ETBE	0.40	0.50	ND		
cis-1,2-Dichloroethene	0.33	0.50	ND		
2,2-Dichloropropane	0.37	0.50	ND		
Bromochloromethane	0.34	0.50	ND		
Chloroform	0.29	0.50	ND		
Carbon Tetrachloride	0.26	0.50	ND		
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 23 of 34

TPH(Gasoline)

(S) 4-Bromofluorobenzene

22

50

ND

86.9

MB Summary Report

Work Order:	1110123	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8260B Analyzed Date:		10/21/11	Analytical	407162	
Units:	ug/L	Method:						Batch:	107 102
			1	T	T				
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzen	ie	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo		0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene	9	0.29	0.50	ND					
1,2,3-Trichloropro	opane	0.59	1.0	ND					
1,2,4-Trimethylbe	enzene	0.33	0.50	ND					
sec-Butyl Benzen	ne	0.24	0.50	ND					
p-Isopropyltoluen	е	0.25	0.50	ND					
1,3-Dichlorobenz	ene	0.31	0.50	ND					
1,4-Dichlorobenz	ene	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenz	ene	0.39	0.50	ND					
1,2-Dibromo-3-Ch	hloropropane	0.45	1.0	ND					
Hexachlorobutad	iene	0.22	0.50	ND					
1,2,4-Trichlorobe	nzene	0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobe	nzene	0.52	1.0	ND					
Ethanol		100	100	ND	TIC				
(S) Dibromofluoro	omethane			84.1					
(S) Toluene-d8				90.5					
(S) 4-Bromofluoro	obenzene			83.5					
Work Order:	1110123	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	10/19/11	Analytical	407168
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 24 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/24/11 Analytical 407177 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.41	0.50	ND	•	
Chloromethane	0.41	0.50	ND		
Vinyl Chloride	0.37	0.50	ND		
Bromomethane	0.37	0.50	ND		
Trichlorofluoromethane	0.34	0.50	ND		
1,1-Dichloroethene	0.29	0.50	ND		
Freon 113	0.38	0.50	ND		
Methylene Chloride	0.18	5.0	ND		
trans-1,2-Dichloroethene	0.31	0.50	ND		
MTBE	0.38	0.50	ND		
tert-Butanol	1.5	5.0	ND		
Diisopropyl ether (DIPE)	0.36	0.50	ND		
1,1-Dichloroethane	0.28	0.50	ND		
ETBE	0.40	0.50	ND		
cis-1,2-Dichloroethene	0.33	0.50	ND		
2,2-Dichloropropane	0.37	0.50	ND		
Bromochloromethane	0.34	0.50	ND		
Chloroform	0.29	0.50	ND		
Carbon Tetrachloride	0.26	0.50	ND		
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34 Page 25 of 34

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110123 Matrix: Water Analytical SW8260B Analyzed Date: 10/24/11 Analytical 407177 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			104	
(S) Toluene-d8			106	
(S) 4-Bromofluorobenzene			98.0	

Total Page Count: 34 Page 26 of 34

(S) 4-Bromofluorobenzene

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1110122		Drop Mothe	od: 5035		Prop Do	to:				1
	1110123		Prep Metho			Prep Da		10/15/11	Prep Ba		
Matrix:	Soil		Analytical Method:	8260	IPH	Analyze	d Date:	10/15/11	Analytic Batch:	al 407	J84
Units:	ug/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	I	17	100	ND	1000	115	119	3.69	48.2 - 132	30	
(S) 4-Bromofluoro	benzene			74.1	50	82.8	84.7		57 - 127		
Work Order:	1110123		Prep Metho	od: 5030		Prep Da	te:	10/20/11	Prep Ba	tch: 392	4
Matrix: Units:	Water ug/L		Analytical Method:	8260 ⁻	ТРН	Analyze	d Date:	10/20/11	Analytic Batch:	al 407	137
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		22	50	33	227.27	105	117	11.0	52.4 - 127	30	
(S) 4-Bromofluoro	benzene			100	11.36	94.5	94.2		41.5 - 125		
Work Order:	1110123		Prep Metho	od: 5035		Prep Da	te:	10/20/11	Prep Ba	tch: 392	9
Matrix:	Soil		Analytical Method:	8260	ГРН	Analyze	d Date:	10/20/11	Analytic Batch:	al 407	139
Units:	ug/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	<u>"</u>	17	100	ND	1000	95.2	95.6	0.453	48.2 - 132	30	
(S) 4-Bromofluoro	benzene			89.9	50	85.4	86.1		57 - 127		
Work Order:	1110123		Prep Metho	od : 5030		Prep Da	te:	10/21/11	Prep Ba	tch: 394	5
Matrix:	Water		Analytical	•		Analytic	al 407	162			
Units:	ug/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		22	50	ND	227.27	99.8	86.4	14.4	52.4 - 127	30	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

70.8

11.36

Total Page Count: 34 Page 27 of 34

90.6

75.1

41.5 - 125

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: Prep Method: NA NA Prep Batch: NA 1110123 Prep Date: Matrix: Soil Analytical SW8260B Analyzed Date: 10/15/11 Analytical 407084 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	1.5	10	ND	50	108	103	4.39	53.7 - 139	30	
Benzene	1.5	10	ND	50	90.1	88.3	1.95	66.5 - 135	30	
Trichloroethylene	3.9	10	ND	50	104	98.8	5.13	57.5 - 150	30	
Toluene	0.98	10	ND	50	97.8	94.1	3.88	56.8 - 134	30	
Chlorobenzene	4.2	10	ND	50	122	119	3.05	57.4 - 134	30	
(S) Dibromofluoromethane			ND	50	108	104		59.8 - 148		
(S) Toluene-d8			ND	50	103	102		55.2 - 133		
(S) 4-Bromofluorobenzene			ND	50	112	117		55.8 - 141		

Work Order: Prep Method: Prep Date: Prep Batch: 1110123 NA NA NA Matrix: Water Analytical SW8260B **Analyzed Date:** 10/20/11 Analytical 407137 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	102	84.6	18.7	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	121	105	14.3	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	89.6	85.5	4.85	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	90.4	83.5	7.96	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	92.2	82.2	11.4	73.9 - 137	30	
(S) Dibromofluoromethane			ND	17.04	110	87.6		61.2 - 131		
(S) Toluene-d8			ND	17.04	88.3	77.2		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	17.04	114	98.6		64.1 - 120		

Total Page Count: 34 Page 28 of 34

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: Prep Method: NA NA Prep Batch: NA 1110123 Prep Date: Matrix: Soil Analytical SW8260B Analyzed Date: 10/20/11 Analytical 407139 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	1.5	10	ND	50	86.8	88.4	1.85	53.7 - 139	30	
Benzene	1.5	10	ND	50	93.7	91.0	3.01	66.5 - 135	30	
Trichloroethylene	3.9	10	ND	50	101	88.7	13.4	57.5 - 150	30	
Toluene	0.98	10	ND	50	90.3	94.6	4.50	56.8 - 134	30	
Chlorobenzene	4.2	10	ND	50	108	112	3.38	57.4 - 134	30	
(S) Dibromofluoromethane			ND	50	108	105		59.8 - 148		
(S) Toluene-d8			ND	50	102	108		55.2 - 133		
(S) 4-Bromofluorobenzene			ND	50	123	107		55.8 - 141		

Work Order: Prep Method: Prep Date: Prep Batch: 1110123 NA NA NA Matrix: Water Analytical SW8260B **Analyzed Date:** 10/18/11 Analytical 407156 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	86.3	80.4	7.03	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	85.4	80.4	6.35	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	80.7	76.9	5.18	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	83.7	78.3	6.99	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	81.3	76.4	6.53	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	80.5	79.1		61.2 - 131		
(S) Toluene-d8			ND	11.36	80.1	79.6		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	83.3	81.7		64.1 - 120		

Total Page Count: 34 Page 29 of 34

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1110123	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/21/11	Analytical	407162
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	89.0	95.3	6.61	61.4 - 129	30	_
Benzene	0.33	0.50	ND	17.04	94.3	95.8	1.41	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	93.3	94.8	1.54	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	92.0	93.6	1.62	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	91.0	94.2	3.49	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	110	95.4		61.2 - 131		
(S) Toluene-d8			ND	11.36	105	92.8		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	100	89.4		64.1 - 120		

Work Order:	1110123	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	8260TPH	Analyzed Date:	10/19/11	Analytical Batch:	407168
Units:	ug/L	WELLIOU.				Batcii.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	ND	227.27	88.1	85.4	3.15	52.4 - 127	30	
(S) 4-Bromofluorobenzene			86.9	11.36	91.7	91.5		41.5 - 125		

Work Order:	1110123	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/24/11	Analytical	407177
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	84.0	85.6	2.03	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	79.9	83.1	3.99	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	86.7	87.2	0.357	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	87.8	86.5	1.79	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	87.4	88.1	0.709	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	87.0	91.3		61.2 - 131		
(S) Toluene-d8			ND	11.36	94.2	92.2		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	84.5	84.1		64.1 - 120		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 34

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 10/14/2011 18:00

Project Name: <u>1435 Webster</u> Received By: <u>NG</u>

Work Order No.: 1110123 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: 10 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

All sagmples present and correct.

Total Page Count: 34 Page 32 of 34

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 10/14/2011

Report Due Date: 10/21/2011 **Time Received:** 18:00

Comments:

Work Order #: 1110123

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Sam Disposal On H	ple <u>Test</u> lold On Hold	Requested Tests	Subbed
1110123-001A	I-A3	10/04/11 10:16	Water	11/28/11		W_8260Pet EDF W_GCMS-GRO	
Sample Note:	Run to ESLs. TPHGas, BT	EX, OXY by 8260					
1110123-002A	I-B1	10/04/11 10:49	Water	11/28/11		W_8260Pet W_GCMS-GRO	
1110123-003A	I-B6	10/04/11 13:54	Water	11/28/11		W_8260Pet W_GCMS-GRO W_GCMS-GRO	
1110123-004A	I-C1	10/04/11 14:28	Water	11/28/11		W_8260Pet W_GCMS-GRO	
1110123-005A	I-A3 @ 9'	10/04/11 9:30	Soil	04/11/12		S_GCMS-GRO S_8260Pet	
1110123-006A	I-B1@ 9'	10/04/11 10:20	Soil	04/11/12		S_GCMS-GRO S 8260Pet	
1110123-007A	I-B6 @ 9'	10/04/11 13:39	Soil	04/11/12		S_GCMS-GRO S 8260Pet	
1110123-008A	I-C1 @ 9'	10/04/11 14:16	Soil	04/11/12		S_GCMS-GRO S_8260Pet	

Total Page Count: 34 Page 33 of 34

CHAIN OF CUSTODY

Lab Work Order #: 1110123

Project	440514/-1-1-	_		Report to:	<u>Brian</u>				Analysis Re	quired		*			Turn	-around T	ime (work	days)
ame:	1435 Webste	r		tecaccutite(2gmail.com					T					ASAP	1 Day	2 Days	3 Days
roject	1435 Webste	r St.		Bill to: TEC	Accutite	X									5 Days	10 Days	Other:	
ddress:	Alameda, CA			(650) 616-1	200	BT ates					1					Samp	le Type	
Global ID:	T0600100766			20.4.1	2101	8260 TPHg BTEX oxygenates									ground w	rater and s	oil	
ampler:	BD	Date :	10/14/2011	PO <u>#:</u> [9686	30 T										Repor	t Format	
Field Point ID	Sample ID	Sample Matrix	# of Containers	Container Type	Sample Date & Time	826									EDF	Rer	narks	
I-A3	I-A3	W	4	VOAs w/ HCI	10/04/11	1	·	-00	1A						Run to E	SLs		
I-B1	I-B1	w	4 ٦	VOAs w/ HCI	10/04/11 1049	1		. 60	2A				,				٠,	
I-B6	I-B6	w	4	VOAs w/ HCI	10/04/11 1354	√		-00	3 A									
I-C1	I-C1	w	4	VOAs w/ HCI	10/04/11 1428	1		-00	4 A	× .								
I-A3 @ 9'	I-A3 @ 9'	S	1	Acetate	10/04/11 930	1		~00	5 A					ı			1	-
-B1 @ 9'	I-B1 @ 9'	S	1	Acetate	10/04/11 1020	√		-0	06A				,		Ter	R	100	,
I-B6 @ 9'	I-B6 @ 9'	S	1 .	Acetate	10/04/11	√			07R						Ter.	//· [
I-C1 @ 9'	I-C1 @ 9'	S	1	Acetate	10/04/11 1416	1		-00	817									
	1				,			,									,	
elinquishe	d by: Brian Do	cen L	John	Date:	10/14/11	Time:	164\$		Received by	Ju	2	_	_	Date:	4/11		Time 4:1	
telinquistre			-	Date:		1ime:			Received by				4	Date:			Time	

First Courier

Total Page Count: 34 Page 34 of 34

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster

Work Order No.: 1110198

Dear Brian Doherty:

Torrent Laboratory, Inc. received 7 sample(s) on October 26, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Total Page Count: 28

Sr. Project Manager

November 02, 2011

Page 1 of 28

Date

Date: 11/2/2011

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1110198

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 28 Page 2 of 28

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/26/11

Tec Accutite Date Reported: 11/02/11

MW-2 1110198-001

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	20	ug/L
Iron (Dissolved) Arsenic (Dissolved)	SW6020 SW6020	1 1	1.0 0.11	1.0 0.30	24 1.9	ug/L ug/L
Ferrous Iron	H8146	1	0.1	0.1	0.20	mg/L

MW-3 1110198-002

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	91	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	2.9	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	0.81	ug/L
Chromium, Hexavalent	SW7196A	1	3.0	10	18	ug/L

MW-4 1110198-003

Parameters:	<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	40	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	2.7	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	1.0	ug/L
Chromium, Hexavalent	SW7196A	1	3.0	10	17	ug/L
MTBE	SW8260B	1	0.38	0.50	80	ug/L

Total Page Count: 28 Page 3 of 28

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/26/11

Tec Accutite Date Reported: 11/02/11

MW-6 1110198-004

Parameters:	Analysis Method	DF	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	7.4	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	0.54	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	1.0	ug/L

MW-7 1110198-005

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	12	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	1.7	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	2.0	ug/L
Selenium (Dissolved)	SW6020	1	0.083	1.0	1.0	ug/L
Ferrous Iron	H8146	1	0.1	0.1	0.22	mg/L

MW-8 1110198-006

Parameters:	Analysis Method	<u>DF</u>	MDL	PQL	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	2000	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	5.6	ug/L
Diisopropyl ether (DIPE)	SW8260B	1	0.36	0.50	16	ug/L
Benzene	SW8260B	1	0.33	0.50	3.7	ug/L
Ethyl Benzene	SW8260B	1	0.15	0.50	0.59	ug/L
Ferrous Iron	H8146	1	0.1	0.1	2.8	mg/L
TPH(Gasoline)	8260TPH	44	950	2200	6900	ug/L
MTBE	SW8260B	88	33	44	6600	ug/L

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 4 of 28

MW-9

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 10/26/11

Tec Accutite Date Reported: 11/02/11

1110198-007

Parameters:	Analysis Method	DF	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	2.9	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	1.3	ug/L

Total Page Count: 28 Page 5 of 28

Report prepared for: Brian Doherty Date Received: 10/26/11 Tec Accutite Date Reported: 11/02/11

Client Sample ID: MW-2 Lab Sample ID: 1110198-001A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 10/26/11 / 11:35 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	24		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	ND		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	1.9		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	ND		ua/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	ND		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA NA	10/27/11	1	0.38	0.50	20		ug/L	407246	NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	94.4		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	94.9		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	87.0		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	0.20		mg/L	407299	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	64.7		%	407246	3998

Total Page Count: 28 Page 6 of 28

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 10/26/11
Date Reported: 11/02/11

Client Sample ID:MW-3Lab Sample ID:1110198-002AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Number:

 Date/Time Sampled:
 10/26/11 / 10:45

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	91		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	2.9		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	0.81		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	ND		ug/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	18		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA NA	10/27/11	1	0.38	0.50	ND		ug/L	407246	NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	92.0		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	94.6		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	83.5		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	ND		mg/L	407299	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	64.9		%	407246	3998

Total Page Count: 28 Page 7 of 28

Report prepared for: Brian Doherty Date Received: 10/26/11 Tec Accutite Date Reported: 11/02/11

Client Sample ID: MW-4 Lab Sample ID: 1110198-003A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 10/26/11 / 12:26 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	40		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	2.7		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	1.0		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	ND		ug/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	17		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/27/11	1	0.38	0.50	80		ug/L	407246	NA NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	94.9		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	94.6		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	85.3		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	ND		mg/L	407299	NA	-

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	62.9		%	407246	3998

Total Page Count: 28 Page 8 of 28

Report prepared for: **Brian Doherty** Date Received: 10/26/11 Tec Accutite Date Reported: 11/02/11

Client Sample ID: MW-6 Lab Sample ID: 1110198-004A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 10/26/11 / 10:02 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	7.4		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	0.54		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	1.0		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	ND		ug/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	ND		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA NA	10/27/11	1	0.38	0.50	ND		ug/L	407246	NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	95.6		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	93.8		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	84.9		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	ND		mg/L	407299	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	62.7		%	407246	3998

Total Page Count: 28 Page 9 of 28

Report prepared for:

Brian Doherty
Tec Accutite

Date Received: 10/26/11
Date Reported: 11/02/11

Client Sample ID:MW-7Lab Sample ID:1110198-005AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Name/Location: Project Number:

 Date/Time Sampled:
 10/26/11 / 13:52

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	12		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	1.7		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	2.0		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	1.0		ug/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	ND		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/27/11	1	0.38	0.50	ND		ug/L	407246	NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	92.4		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	93.9		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	82.4		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	0.22	·	mg/L	407299	NA	-

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	61.8		%	407246	3998

Total Page Count: 28 Page 10 of 28

Report prepared for:

Brian Doherty

Tec Accutite

Date Received: 10/26/11

Date Reported: 11/02/11

Client Sample ID:MW-8Lab Sample ID:1110198-006AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Name/Location: Project Number:

(S) 4-Bromofluorobenzene

SW8260B

NA

 Date/Time Sampled:
 10/26/11 / 13:13

 Tag Number:
 1435 Webster

Date DF MDL PQL Results Lab Unit Analytical **Analysis** Prep Prep Qualifier Parameters: Method Analyzed Batch Batch Date Iron (Dissolved) SW6020 2000 NA 11/02/11 1.0 1.0 ug/L 407295 NA

Chromium (Dissolved) SW6020 NA 11/02/11 0.12 0.50 ND ug/L 407295 NA 1 Arsenic (Dissolved) SW6020 NA 11/02/11 1 0.11 0.30 5.6 ug/L 407295 NA SW6020 11/02/11 0.083 ND NA Selenium (Dissolved) NA 1 1.0 ug/L 407295

Analysis Prep Date DF MDL **PQL** Results Lab Unit Analytical Prep Parameters: Method Qualifier Date Analyzed Batch Batch SW7196A NA 10/26/11 3.0 10 ND ug/L 407300 Chromium, Hexavalent 1 NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	16		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	3.7		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	0.59		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	95.6		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	94.2		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	85.0		%	407246	NA
MTBE	SW8260B	NA	10/28/11	88	33	44	6600		ug/L	407265	NA
tert-Butanol	SW8260B	NA	10/28/11	88	130	440	ND		ug/L	407265	NA
(S) Dibromofluoromethane	SW8260B	NA	10/28/11	88	61.2	131	91.4		%	407265	NA
(S) Toluene-d8	SW8260B	NA	10/28/11	88	75.1	127	96.2		%	407265	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	2.8		mg/L	407299	NA

64.1

120

89.3

%

407265

NA

10/28/11 88

Total Page Count: 28 Page 11 of 28

Sample Matrix:

Groundwater

Report prepared for: **Brian Doherty** Date Received: 10/26/11 Tec Accutite Date Reported: 11/02/11

Client Sample ID: 8-WM Lab Sample ID: 1110198-006A

Project Name/Location:

1435 Webster **Project Number:**

Date/Time Sampled: 10/26/11 / 13:13 Tag Number: 1435 Webster

PQL Prep Date DF MDL Results Lab Unit Analytical Prep **Analysis** Parameters: Method Date Analyzed Qualifier Batch Batch TPH(Gasoline) 8260TPH 10/27/11 10/27/11 44 950 2200 6900 ug/L 407246 3998 (S) 4-Bromofluorobenzene 8260TPH 10/27/11 10/27/11 41.5 125 65.7 407246 3998

NOTE: x-Not typical of Gasoline standard pattern. Result due to discrete peak (MTBE).

Total Page Count: 28 Page 12 of 28

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for: **Brian Doherty** Date Received: 10/26/11 Tec Accutite Date Reported: 11/02/11

Client Sample ID: MW-9 Lab Sample ID: 1110198-007A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 10/26/11 / 9:12 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	11/02/11	1	1.0	1.0	2.9		ug/L	407295	NA
Chromium (Dissolved)	SW6020	NA	11/02/11	1	0.12	0.50	ND		ug/L	407295	NA
Arsenic (Dissolved)	SW6020	NA	11/02/11	1	0.11	0.30	1.3		ug/L	407295	NA
Selenium (Dissolved)	SW6020	NA	11/02/11	1	0.083	1.0	ND		ug/L	407295	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium, Hexavalent	SW7196A	NA	10/26/11	1	3.0	10	ND		ug/L	407300	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA NA	10/27/11	1	0.38	0.50	ND		ug/L	407246	NA NA
tert-Butanol	SW8260B	NA	10/27/11	1	1.5	5.0	ND		ug/L	407246	NA
Diisopropyl ether (DIPE)	SW8260B	NA	10/27/11	1	0.36	0.50	ND		ug/L	407246	NA
ETBE	SW8260B	NA	10/27/11	1	0.40	0.50	ND		ug/L	407246	NA
Benzene	SW8260B	NA	10/27/11	1	0.33	0.50	ND		ug/L	407246	NA
TAME	SW8260B	NA	10/27/11	1	0.32	0.50	ND		ug/L	407246	NA
Toluene	SW8260B	NA	10/27/11	1	0.19	0.50	ND		ug/L	407246	NA
Ethyl Benzene	SW8260B	NA	10/27/11	1	0.15	0.50	ND		ug/L	407246	NA
m,p-Xylene	SW8260B	NA	10/27/11	1	0.20	1.0	ND		ug/L	407246	NA
o-Xylene	SW8260B	NA	10/27/11	1	0.13	0.50	ND		ug/L	407246	NA
(S) Dibromofluoromethane	SW8260B	NA	10/27/11	1	61.2	131	93.6		%	407246	NA
(S) Toluene-d8	SW8260B	NA	10/27/11	1	75.1	127	93.3		%	407246	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/27/11	1	64.1	120	86.2		%	407246	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron	H8146	NA	10/26/11	1	0.1	0.1	ND		mg/L	407299	NA	_

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	10/27/11	10/27/11	1	22	50	ND		ug/L	407246	3998
(S) 4-Bromofluorobenzene	8260TPH	10/27/11	10/27/11	1	41.5	125	65.6		%	407246	3998

Total Page Count: 28 Page 13 of 28

Work Order:	1110198	Prep I	Method:	5030	Prep	Date:	10/27/11	Prep Batch:	3998
Matrix:	Water	Analy	tical	8260TPH	Anal	yzed Date:	10/27/11	Analytical	407246
Units:	ug/L	Metho				•		Batch:	
<u> </u>									
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	obenzene	22	50	ND 65.4					
Work Order:	1110198	Prep I	Method:	5030	Prep	Date:	10/28/11	Prep Batch:	4011
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	10/28/11	Analytical	407265
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	obenzene	22	50	ND 69.2					
Work Order:	1110198	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	Anal	yzed Date:	10/27/11	Analytical	407246
Units:	ug/L	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	0.41	0.50	ND	1	<u> </u>			
Chloromethane		0.41	0.50	ND					
Vinyl Chloride		0.37	0.50	ND					
Bromomethane		0.37	0.50	ND					
Trichlorofluorome		0.34	0.50	ND					
1,1-Dichloroether	ne	0.29	0.50	ND					
Freon 113		0.38	0.50	ND					
Methylene Chlorid		0.18	5.0	ND					
trans-1,2-Dichloro	petnene	0.31	0.50 0.50	ND ND					
tert-Butanol		0.38 1.5	5.0	ND					
Diisopropyl ether	(DIPE)	0.36	0.50	ND					
1,1-Dichloroethar	, ,	0.28	0.50	ND					
ETBE		0.40	0.50	ND					
cis-1,2-Dichloroet	thene	0.33	0.50	ND					
2,2-Dichloropropa		0.37	0.50	ND					
Bromochlorometh		0.34	0.50	ND					
Chloroform		0.29	0.50	ND					
Carbon Tetrachlo	ride	0.26	0.50	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 14 of 28

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110198 Matrix: Water Analytical SW8260B Analyzed Date: 10/27/11 Analytical 407246 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		
Styrene	0.20	0.50	ND		
Bromoform	0.45	1.0	ND		
Isopropyl Benzene	0.28	0.50	ND		
Bromobenzene	0.39	0.50	ND		
1,1,2,2-Tetrachloroethane	0.26	0.50	ND		
n-Propylbenzene	0.30	0.50	ND		
2-Chlorotoluene	0.33	0.50	ND		
1,3,5-Trimethylbenzene	0.20	0.50	ND		
4-Chlorotoluene	0.32	0.50	ND		
tert-Butylbenzene	0.29	0.50	ND		
1,2,3-Trichloropropane	0.59	1.0	ND		
1,2,4-Trimethylbenzene	0.33	0.50	ND		
sec-Butyl Benzene	0.24	0.50	ND		
p-Isopropyltoluene	0.25	0.50	ND		
1,3-Dichlorobenzene	0.31	0.50	ND		
1,4-Dichlorobenzene	0.37	0.50	ND		
n-Butylbenzene	0.32	0.50	ND		
1,2-Dichlorobenzene	0.39	0.50	ND		
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 15 of 28

Work Order:	1110198	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/27/11	Analytical	407246
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			96.0	
(S) Toluene-d8			96.0	
(S) 4-Bromofluorobenzene			90.3	

Total Page Count: 28 Page 16 of 28

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110198 Matrix: Water Analytical SW8260B Analyzed Date: 10/28/11 Analytical 407265 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	ND	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	
o-Xylene	0.13	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 17 of 28

Chromium (Dissolved)

Arsenic (Dissolved)

Selenium (Dissolved)

0.12

0.11

0.083

0.50

0.30

1.0

ND

ND

ND

MB Summary Report

				MB Sur	nmary Re	port			
Work Order:	1110198	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8260B	Anal	Analyzed Date:		Analytical	407265
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.20	0.50	ND	•				
Bromoform		0.45	1.0	ND					
Isopropyl Benzen	ie	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo	roethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropro	opane	0.59	1.0	ND					
1,2,4-Trimethylbe		0.33	0.50	ND					
sec-Butyl Benzer		0.24	0.50	ND					
p-Isopropyltoluen	е	0.25	0.50	ND					
1,3-Dichlorobenz		0.31	0.50	ND					
1,4-Dichlorobenz	ene	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenz		0.39	0.50	ND					
1,2-Dibromo-3-Cl		0.45	1.0	ND					
Hexachlorobutad		0.22	0.50	ND					
1,2,4-Trichlorobe	nzene	0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobe	nzene	0.52	1.0	ND					
Ethanol		100	100	ND	TIC				
(S) Dibromofluoro	omethane			92.1					
(S) Toluene-d8				95.5					
(S) 4-Bromofluoro	obenzene			88.3					
Work Order:	1110198	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW6020	Anal	yzed Date:	11/02/11	Analytical	407295
Units:	ug/L	Metho	oa:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Iron (Dissolved)		1.0	1.0	ND	•				

Total Page Count: 28 Page 18 of 28

Work Order:	1110198	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	•	Analytical		Anal	yzed Date:	10/26/11	Analytical	407299
Units:	mg/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Ferrous Iron		0.1	0.1	ND					
Work Order:	1110198	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW7196A	Anal	yzed Date:	10/26/11	Analytical	407300
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Chromium, Hexa	valent	3.0	10	ND					

Total Page Count: 28 Page 19 of 28

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

%

Work Order:	1110198	Prep Method:	5030	Prep Date:	10/27/11	Prep Batch:	3998	
Matrix:	Water	Analytical Method:	8260TPH	Analyzed Date:	10/27/11	Analytical Batch:	407246	
Units:	ug/L	wethou.				Daton.		

LCS %

LCSD %

LCS/LCSD

Parameters	MDL	PQL	Blank Conc.	Conc.	Recovery	Recovery	% RPD	Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	ND	227.27	120	121	0.739	52.4 - 127	30	
(S) 4-Bromofluorobenzene	е		65.4	11.36	74.3	72.7		41.5 - 125		
Work Order: 1110	198	Prep Meti	nod: 5030		Prep Da	te:	10/28/11	Prep Bat	ch: 401	1

Spike

Method

Work Order:	1110198	Prep Method:	5030	Prep Date:	10/28/11	Prep Batch:	4011
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	10/28/11	Analytical	407265
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	ND	227.27	106	84.1	23.1	52.4 - 127	30	
(S) 4-Bromofluorobenzene			69.2	11.36	68.0	66.3		41.5 - 125		

Work Order:	1110198	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/27/11	Analytical	407246
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	82.6	86.0	3.85	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	80.5	84.3	4.69	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	81.9	88.1	6.98	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	83.8	87.9	4.67	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	84.5	89.6	5.85	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	84.5	83.0		61.2 - 131		
(S) Toluene-d8			ND	11.36	84.2	83.8		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	78.0	76.8		64.1 - 120		

Total Page Count: 28 Page 20 of 28

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1110198	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	10/28/11	Analytical	407265
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	82.2	83.9	2.13	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	80.1	82.6	2.72	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	89.5	88.0	1.96	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	85.4	86.1	0.458	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	87.7	87.2	0.255	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	80.9	83.0		61.2 - 131		
(S) Toluene-d8			ND	11.36	82.4	82.0		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	72.2	75.3		64.1 - 120		

Work Order:	1110198	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	SW6020	Analyzed Date:	11/02/11	Analytical Batch:	407295
Units:	ug/L	wethou.				васп.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Iron (Dissolved)	1.0	1.0	ND	50	91.8	92.1	0.0956	80 - 120	20	_
Chromium (Dissolved)	0.12	0.50	ND	50	96.9	96.5	0.482	80 - 120	20	
Arsenic (Dissolved)	0.11	0.30	ND	50	104	104	0.298	80 - 120	20	
Selenium (Dissolved)	0.083	1.0	ND	50	97.6	98.3	0.342	80 - 120	20	

Work Order:	1110198	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	SW7196A	Analyzed Date:	10/26/11	Analytical Batch:	407300
Units:	ug/L	wethou.				Daton.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Chromium, Hexavalent	3.0	10	ND	10	90.0	100	10.5	90 - 110	20	

Total Page Count: 28 Page 21 of 28

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order: 1110198 Prep Method: NA NA

Prep Batch:

NA

Lab

Qualifier

Page 22 of 28

Matrix:

Water

Analytical

Analyzed Date:

Prep Date:

11/02/11

Analytical

407295

% RPD

Limits

Spiked Sample:

1110198-001A

Method:

MS/MSD

% RPD

Batch:

Recovery

Units: ug/L

Parameters	MDL	PQL	Sample	Spike	MS %	MSD %
			Conc.	Conc.	Recovery	Recovery

Limits Iron (Dissolved) 1.0 24 50 82.4 NR 1.0 81.2 0.599 75 - 125 20 Chromium (Dissolved) 0.12 0.50 0.19 50 94.7 95.0 0.700 75 - 125 20 NR 75 - 125 Arsenic (Dissolved) 0.11 0.30 1.9 50 97.2 99.2 2.96 20 NR Selenium (Dissolved) 0.083 0.27 50 98.9 97.4 75 - 125 20 NR 1.0 2.04

Work Order:

1110198

Prep Method:

Prep Date:

NA

Prep Batch:

NA

Matrix: Spiked Sample: Water

1110198-001A

Analytical Method:

SW7196A

NA

SW6020

Analyzed Date:

10/26/11

Analytical

407300

Batch:

Units:

ua/L

Total Page Count: 28

Parameters	MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Chromium, Hexavalent	3.0	10	4	10	110	100	6.90	85 - 115	20	•

Duplicate QC Summary Report

Work Order:	1110198	Pre	p Method:	NA		Prep Date:	NA	Prep Batch:	NA
Matrix:	Water		alytical thod:	H8146		Analyzed Date:	10/26/11	Analytical Batch:	407299
Units:								Lab Sample ID:	: 1110198-001A-Dup
Parameters		MDL	<u>PQL</u>	Sample Result	Duplicate Result	<u>% RPD</u>			
Ferrous Iron		0.1	0.1	0.20	0.23	14.0			<u>'</u>

Raw values are used in quality control assessment.

Total Page Count: 28 Page 23 of 28

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable

Total Page Count: 28

- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- $\hbox{\bf R-The \% RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts}$
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Page 24 of 28

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 10/26/2011 18:33

Project Name: 1435 Webster Received By: NG

Work Order No.: 1110198 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: 10 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

All samples present and correct.

Total Page Count: 28 Page 25 of 28

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 10/26/2011

Report Due Date: 11/2/2011 **Time Received:** 18:33

Comments:

Work Order #: 1110198

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Disposal	Sample Test On Hold On Hold	Requested Tests	Subbed
1110198-001A Sample Note:	MW-2 Run to ESLs.	10/26/11 11:35	Water	12/10/11		W_8260Pet W_7196ACrVI EDF W_6020_D W_Ferrous Iron W_GCMS-GRO	
1110198-002A	MW-3	10/26/11 10:45	Water	12/10/11		W_8260Pet W_7196ACrVI W_6020_D W_Ferrous Iron W_GCMS-GRO	
1110198-003A	MW-4	10/26/11 12:26	Water	12/10/11		W_8260Pet W_7196ACrVI W_Ferrous Iron W_GCMS-GRO W_6020_D	
1110198-004A	MW-6	10/26/11 10:02	Water	12/10/11		W_8260Pet W_7196ACrVI W_GCMS-GRO W_Ferrous Iron W_6020_D	
1110198-005A	MW-7	10/26/11 13:52	Water	12/10/11		W_8260Pet W_7196ACrVI W_Ferrous Iron W_GCMS-GRO W_6020_D	
1110198-006A	MW-8	10/26/11 13:13	Water	12/10/11		W_8260Pet W_7196ACrVI W_Ferrous Iron	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 26 of 28

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 10/26/2011

Report Due Date: 11/2/2011 Time Received: 18:33

Comments:

Work Order #: 1110198

WO Sample ID	Client Sample ID	Collection Date/Time	<u>Matrix</u>		<u>「est</u> On Hold	Requested Tests	Subbed
						W_GCMS-GRO W_6020_D	
1110198-007A	MW-9	10/26/11 9:12	Water	12/10/11		W_8260Pet W_Ferrous Iron W_GCMS-GRO W_6020_D W_7196ACrVI	

Total Page Count: 28 Page 27 of 28

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

CHAIN OF CUSTODY

Lab Work Order #: 1/10198

				Report to:	Brian				Analysis R	equired				Turn	around Ti	me (work	days)
Project Name:	1435 Webste	er		,	@gmail.com		. 0		<u> </u>	equireu				ASAP	_	2 Days	3 Davs
Project Address:	1435 Webste Alameda, CA			Bill to: TEC (650) 616-1	Accutite	8260 TPHg BTEX oxygenates	6020B Disolved Metals (including Fe, Cr, Se, As)	7196 Hex. Chromium	Ferrous Iron						-	Other:	3 Days
Global ID:	T0600100766	6		20 # 1	anul	PHg	solv =e, (, O						ground wa	ater		
Sampler:	BD	Date :	10/26/4	PO#:	7/19	30 T	3 Di	F	300						Report	Format	
Field Point ID	Sample ID	Sample Matrix	# of Containers	Container Type	Sample Date & Time	82(60206 (includ	7196	SM3500D					EDF	Rem	arks	
MW-2	MW-2	w	5	VOAs w/ HCl, poly, amber	10/26/11	1	1	1	1	_	- 001 <i>F</i>	9		Run to ES	SLs	,	
MW-3	MW-3	w	5	VOAs w/ HCl, poly, amber	1026/11	1	1	1	. √	-	002F						
MW-4	MW-4	w .	5	VOAs w/ HCI, poly, amber	10/26/11	1	1	1	1	-	003/	7					,
MW-6	MW-6	w	5	VOAs w/ HCI, poly, amber	10/26/11	1	1	1	√	-	0041	7		***PLEASE	CHECK H	IOLD TIM	E§}
MW-7	MW-7	w	. 5	VOAs w/ HCl, poly, amber	10/26/11	1	1	1	1	_	-005/	7				٥.	
MW-8	MW-8	·W	5	VOAs w/ HCl, poly, amber	1026/11	1	1	1	1	-	006,	A .		Ten	rp, 10	has	
MW-9	MW-9	W	5	VOAs w/ HCl, poly, amber	10/26/11	1	1.	1	1	-	007	A		Ten	Wrog	jun,	
															JP~[)	
											,		,				
Relinquishe	ed by: Brian D	oherty ran D	oberti	Date:	10/26/1	Time:	4:4	L	Received t)y: Z)een	(gy vra	Date	10/26	[1]	Time:	12pin
Relinguishe	ed by:	\sim		Date:	1	Time:			Received t	ру:		0	Date	:		Time:	
1	Dan	(sey!	u	10/2	26/11		6-33	pm.	10:4	5. Oho	dass	rra	10-26	11		18:3	3
_				1	I				0								
		,						FC.									

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 28 Page 28 of 28

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster

Work Order No.: 1110211

Dear Brian Doherty:

Torrent Laboratory, Inc. received 10 sample(s) on October 27, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Total Page Count: 21

Sr. Project Manager

November 03, 2011

Page 1 of 21

Date

Date: 11/3/2011

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1110211

CASE NARRATIVE

Note for TO15/TO-3Gas analysis: The reporting limits were raised due to limited sample volume received (tedlar bag).

Note for TO-3Gas: Gasoline result is corrected for contribution from non-fuel compound (unknown single peak) within the gasoline quantitation range. Where no TPH as Gasoline compounds (BTEX) are present result reported as "ND".

Total Page Count: 21 Page 2 of 21

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for: **Brian Doherty** Date Received: 10/27/11 Tec Accutite Date Reported: 11/03/11 VMP-1 (4)

1110211-001A

Analysis Method Parameters: <u>DF</u> MDL **PQL** Results <u>uq/m3</u>

All compounds were non-detectable for this sample.

VMP-1 (8) 1110211-002A

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results ug/m3
m,p-Xylene	ETO15	5	8.1	22	15.6
VMP-2 (4)					1110211-003A
Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results ug/m3

All compounds were non-detectable for this sample.

VMP-2 (8) 1110211-004A

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u> ug/m3
m,p-Xylene	ETO15	5	8.1	22	55.1
VMP-3 (4)					1110211-005A
Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results ug/m3

All compounds were non-detectable for this sample.

VMP-3 (8) 1110211-006A

Parameters: **Analysis** <u>DF</u> MDL **PQL** Results **Method** <u>uq/m3</u>

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 3 of 21

Sample Result Summary

Report prepared for: **Brian Doherty** Date Received: 10/27/11 Tec Accutite Date Reported: 11/03/11 1110211-007A VMP-4 (4) Analysis Method Parameters: <u>DF</u> MDL **PQL** Results <u>ug/m3</u> All compounds were non-detectable for this sample. VMP-4 (8) 1110211-008A <u>DF</u> MDL <u>PQL</u> Parameters: <u>Analysis</u> Results Method ug/m3 All compounds were non-detectable for this sample. VMP-5 (4) 1110211-009A Parameters: <u>Analysis</u> DF **MDL** <u>PQL</u> Results Method <u>ug/m3</u> All compounds were non-detectable for this sample. VMP-5 (8) 1110211-010A Parameters: **Analysis** DF MDL **PQL** Results

Method

ug/m3

All compounds were non-detectable for this sample.

Total Page Count: 21 Page 4 of 21

Brian Doherty Report prepared for: Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-1 (4)

Project Name/Location: 1435 Webster

Project Number:

Date/Time Sampled: 10/27/11 / 12:08

Canister/Tube ID:

Collection Volume (L): 0.00

Tag Number: 1435 Webster

1110211-001A Lab Sample ID: Sample Matrix: Soil Vapor

Certified Clean WO #:

Received PSI: 0.0

Corrected PSI:

0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are	e reported using	their MD	ı								
MTBE	ETO15	NA NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	115 %			407274	NA

Parameters: Analysis Prep Date Method Date Analysis	DF MDL ug/m3		esults Results g/m3 ppbv (Lab Analytica Qualifier Batch	I Prep Batch
--	--------------	--	-------------------------------	----------------------------------	-----------------

The results shown below are reported using their MDL.

ND TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 5 of 21

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-1 (8) 1110211-002A Lab Sample ID: Sample Matrix: Soil Vapor

Project Name/Location: 1435 Webster

Project Number:

TPH-Gasoline

Total Page Count: 21

Certified Clean WO #: Date/Time Sampled: 10/27/11 / 12:00

Canister/Tube ID: Received PSI: 0.0

Collection Volume (L): 0.00 0.0 Corrected PSI: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
<u></u>	L										
The results shown below are re	eported using	their MD	L.								
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	15.6	3.59	J	407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	125 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are re	eported usina	their MD	L.								

1800

3500

ND

ND

407275

NA

Page 6 of 21

10

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

NA

10/29/11

ETO3

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-2 (4) 1110211-003A Lab Sample ID: Sample Matrix: Soil Vapor

Project Name/Location: 1435 Webster

Project Number:

Date/Time Sampled: 10/27/11 / 11:09

Canister/Tube ID: Collection Volume (L): 0.00

Tag Number: 1435 Webster Certified Clean WO #:

Received PSI: 0.0

Corrected PSI: 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below ar	e reported using	their MD	L.						I		
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	120 %			407274	NA

Parameters: Analysis Prep Date DF MDL PQL ug/m3 ug/m3	Results	Results	Lab	Analytical	Prep
	ug/m3	ppbv	Qualifier	Batch	Batch

The results shown below are reported using their MDL.

Total Page Count: 21

TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

Page 7 of 21

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-2 (8) 1110211-004A Lab Sample ID: Soil Vapor Sample Matrix:

Project Name/Location: 1435 Webster

Project Number:

NOTE:

Certified Clean WO #: Date/Time Sampled: 10/27/11 / 11:04

Canister/Tube ID: Received PSI: 0.0

Collection Volume (L): 0.00 Corrected PSI: 0.0

Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	55.1	12.70		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	120 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Sample analyzed at a 20X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are re	ported using	their MD	L.								
TPH-Gasoline	ETO3	NA	10/29/11	20	3500	7000	ND	ND		407275	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 8 of 21

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-3 (4) 1110211-005A Lab Sample ID: 1435 Webster Sample Matrix: Soil Vapor

Project Name/Location:

Project Number:

10/27/11 / 11:24

Date/Time Sampled: Canister/Tube ID:

Collection Volume (L): 0.00

Tag Number: 1435 Webster Certified Clean WO #:

Received PSI: 0.0

Corrected PSI:

0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below ar	re reported using	their MD	L.			l			<u>I</u>		
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
ert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
ТАМЕ	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	120 %			407274	NA

Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag). NOTE:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
-------------	--------------------	--------------	------------------	----	--------------	--------------	------------------	-----------------	------------------	---------------------	---------------

The results shown below are reported using their MDL.

TPH-Gasoline ETO3 NA 10/29/11 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

Total Page Count: 21 Page 9 of 21

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-3 (8) 1110211-006A Lab Sample ID: Soil Vapor

1435 Webster **Project Name/Location:** Sample Matrix:

Project Number:

Certified Clean WO #: Date/Time Sampled: 10/27/11 / 11:19

Canister/Tube ID: Received PSI: 0.0 0.0

Collection Volume (L): 0.00 Corrected PSI: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are re	ported using	their MD	L.			<u>l</u>					
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	110 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
-------------	--------------------	--------------	------------------	----	--------------	--------------	------------------	-----------------	------------------	---------------------	---------------

The results shown below are reported using their MDL.

TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 10 of 21

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-4 (4) 1110211-007A Lab Sample ID: Soil Vapor

Project Name/Location: 1435 Webster Sample Matrix:

Project Number:

Certified Clean WO #: Date/Time Sampled: 10/27/11 / 11:36

Canister/Tube ID: Received PSI: 0.0

Collection Volume (L): 0.00 0.0 Corrected PSI: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are	e reported using	their MD	<u> </u> L.							<u> </u>	
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	95.0 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
-------------	--------------------	--------------	------------------	----	--------------	--------------	------------------	-----------------	------------------	---------------------	---------------

The results shown below are reported using their MDL.

TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for: **Brian Doherty** Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-4 (8) 1110211-008A Lab Sample ID: Sample Matrix: Soil Vapor

Project Name/Location: 1435 Webster

Project Number:

Certified Clean WO #: Date/Time Sampled: 10/27/11 / 11:30

Canister/Tube ID: Received PSI: 0.0 0.0

Collection Volume (L): 0.00 Corrected PSI: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are	reported using	their MD	Ĺ.		-						
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	110 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
-------------	--------------------	--------------	------------------	----	--------------	--------------	------------------	-----------------	------------------	---------------------	---------------

The results shown below are reported using their MDL.

TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 12 of 21

Report prepared for: Brian Doherty Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

 Client Sample ID:
 VMP-5 (4)
 Lab Sample ID:
 1110211-009A

Project Name/Location: 1435 Webster **Sample Matrix:** Soil Vapor

Project Number:

Date/Time Sampled: 10/27/11 / 11:47 Certified Clean WO #:

 Canister/Tube ID:
 Received PSI :
 0.0

 Collection Volume (L):
 0.00
 Corrected PSI :
 0.0

Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are re	ported using	their MD	L.				<u> </u>				
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	115 %			407274	NA

NOTE: Sample analyzed at a 5X dilution due to limited sample volume available (tedlar bag).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
-------------	--------------------	--------------	------------------	----	--------------	--------------	------------------	-----------------	------------------	---------------------	---------------

The results shown below are reported using their MDL.

TPH-Gasoline ETO3 NA 10/29/11 10 1800 3500 ND ND 407275 NA

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 13 of 21

Brian Doherty Report prepared for: Date Received: 10/27/11

Tec Accutite Date Reported: 11/03/11

Client Sample ID: VMP-5 (8) 1110211-010A Lab Sample ID: Sample Matrix: Soil Vapor

Project Name/Location: 1435 Webster

Project Number:

TPH-Gasoline

Date/Time Sampled: 10/27/11 / 11:41

Canister/Tube ID: Collection Volume (L): 0.00

Tag Number: 1435 Webster Certified Clean WO #:

Received PSI: 0.0

Corrected PSI: 0.0

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are	e reported using	their MD	L.	l .							
MTBE	ETO15	NA	10/28/11	5	4.4	9.0	ND	ND		407274	NA
tert-Butanol	ETO15	NA	10/28/11	5	4.5	42	ND	ND		407274	NA
Diisopropyl ether (DIPE)	ETO15	NA	10/28/11	5	4.4	10	ND	ND		407274	NA
ETBE	ETO15	NA	10/28/11	5	3.4	10	ND	ND		407274	NA
Benzene	ETO15	NA	10/28/11	5	3.4	8.0	ND	ND		407274	NA
TAME	ETO15	NA	10/28/11	5	1.8	10	ND	ND		407274	NA
Toluene	ETO15	NA	10/28/11	5	4.7	9.4	ND	ND		407274	NA
Ethyl Benzene	ETO15	NA	10/28/11	5	5.0	11	ND	ND		407274	NA
m,p-Xylene	ETO15	NA	10/28/11	5	8.1	22	ND	ND		407274	NA
o-Xylene	ETO15	NA	10/28/11	5	4.1	11	ND	ND		407274	NA
(S) 4-Bromofluorobenzene	ETO15	NA	10/28/11	5	65	135	115 %			407274	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
The results shown below are re	ported using	their MD	L.							-	

1800

3500

ND

ND

407275

NA

10

NOTE: Sample analyzed at a 10X dilution due to limited sample volume available (tedlar bag).

NA

10/29/11

ETO3

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 14 of 21

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1110211 Matrix: Air Analytical ETO15 Analyzed Date: 10/28/11 Analytical 407274 Method: Batch: Units: ppbv

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.30	1.00	ND	
1,1-Difluoroethane	0.18	0.500	ND	
1,2-Dichlorotetrafluoroethane	0.70	2.00	ND	
Chloromethane	0.15	0.500	ND	
Vinyl Chloride	0.26	1.00	ND	
1,3-Butadiene	0.20	0.500	ND	
Bromomethane	0.18	0.500	ND	
Chloroethane	0.19	0.500	ND	
Trichlorofluoromethane	0.32	1.00	ND	
1,1-Dichloroethene	0.15	0.500	ND	
Freon 113	0.11	0.500	ND	
Carbon Disulfide	0.26	1.00	ND	
2-Propanol (Isopropyl Alcohol)	0.39	4.00	ND	
Methylene Chloride	0.17	0.500	ND	
Acetone	0.37	4.00	ND	
trans-1,2-Dichloroethene	0.16	0.500	ND	
Hexane	0.15	0.500	ND	
MTBE	0.24	0.500	ND	
tert-Butanol	0.22	2.00	ND	
Diisopropyl ether (DIPE)	0.21	0.500	ND	
1,1-Dichloroethane	0.18	0.500	ND	
ETBE	0.16	0.500	ND	
cis-1,2-Dichloroethene	0.13	0.500	ND	
Chloroform	0.25	1.00	ND	
Vinyl Acetate	0.16	0.500	ND	
Carbon Tetrachloride	0.14	0.500	ND	
1,1,1-Trichloroethane	0.15	0.500	ND	
2-Butanone (MEK)	0.21	0.500	ND	
Ethyl Acetate	0.21	0.500	ND	
Tetrahydrofuran	0.10	0.500	ND	
Benzene	0.21	0.500	ND	
TAME	0.086	0.500	ND	
1,2-Dichloroethane (EDC)	0.24	0.500	ND	
Trichloroethylene	0.26	1.00	ND	
1,2-Dichloropropane	0.29	1.00	ND	
Bromodichloromethane	0.13	0.500	ND	
1,4-Dioxane	0.35	1.00	ND	
trans-1,3-Dichloropropene	0.19	0.500	ND	
Toluene	0.25	0.500	ND	
4-Methyl-2-Pentanone (MIBK)	0.21	0.500	ND	
cis-1,3-Dichloropropene	0.25	0.500	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 15 of 21

TPH-Gasoline

MB Summary Report

Work Order:	1110211	Prep	Prep Method:		Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy		ETO15		yzed Date:	10/28/11	Analytical	407274
Units:	ppbv	Metho	Method:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethyle	ene	0.13	0.500	ND					
1,1,2-Trichloroethane		0.17	0.500	ND					
Dibromochlorome	ethane	0.20	0.500	ND					
1,2-Dibromoethar	ne (EDB)	0.27	1.00	ND					
2-Hexanone		0.27	1.00	ND					
Ethyl Benzene		0.23	0.500	ND					
Chlorobenzene		0.15	0.500	ND					
1,1,1,2-Tetrachloroethane		0.15	0.500	ND					
m,p-Xylene		0.38	1.00	ND					
o-Xylene		0.19	0.500	ND					
Styrene		0.16	0.500	ND					
Bromoform		0.11	0.500	ND					
1,1,2,2-Tetrachlo	roethane	0.10	0.500	ND					
4-Ethyl Toluene		0.17	0.500	ND					
1,3,5-Trimethylbe	enzene	0.15	0.500	ND					
1,2,4-Trimethylbe	enzene	0.14	0.500	ND					
1,4-Dichlorobenz	ene	0.11	0.500	ND					
1,3-Dichlorobenz	ene	0.14	0.500	ND					
Benzyl Chloride		0.12	0.500	ND					
1,2-Dichlorobenz	ene	0.15	0.500	ND					
Hexachlorobutad	iene	0.22	0.500	ND					
1,2,4-Trichlorobe	nzene	0.46	1.00	ND					
Naphthalene		0.28	1.00	ND					
(S) 4-Bromofluoro	obenzene			113					
Work Order:	1110211	Prep	Method:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Air	Analy		ETO3	Analyzed Date:		10/29/11	Analytical	407275
Units:	ppbv	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

100

ND

Total Page Count: 21 Page 16 of 21

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1110211	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical	ETO15	Analyzed Date:	10/28/11	Analytical	407274
Units:	ppbv	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.15	0.500	ND	20	93.2	95.4	2.33	65 - 135	30	
Benzene	0.21	0.500	ND	20	94.8	94.1	0.688	65 - 135	30	
Trichloroethylene	0.26	1.00	ND	20	106	104	2.76	65 - 135	30	
Toluene	0.25	0.500	ND	20	91.1	84.6	7.40	65 - 135	30	
Chlorobenzene 0.15		0.500	ND	20	77.6	71.8	7.83	65 - 135	30	
(S) 4-Bromofluorobenzene			ND	20	75.0	70.0		65 - 135		
Work Order: 1110211		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	

Work Order:	1110211	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical Method:	ETO3	Analyzed Date:	10/29/11	Analytical Batch:	407275
Units:	ppbv	Metriou.				Daton.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline	50	100	ND	500	84.7	92.8	9.12	50 - 150	30	

Total Page Count: 21 Page 17 of 21

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 10/27/2011 18:20

Project Name: 1435 Webster Received By:

Work Order No.: 1110211 Physically Logged By:

Checklist Completed By:

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? <u>Yes</u>

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: °C

Water-VOA vials have zero headspace? No VOA vials submitted

Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

All samples present and correct.

Total Page Count: 21 Page 19 of 21

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 10/27/2011

Report Due Date: 11/3/2011 **Time Received:** 18:20

Comments:

Work Order #: 1110211

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Sample Disposal On Hold	<u>Test</u> On Hold	Requested Tests	<u>Subbed</u>
1110211-001A	VMP-1 (4)	10/27/11 12:08	Air				
						EDF A_TO-3GRO A_TO-15Pet	
Sample Note:	Run to ESLs.						
1110211-002A	VMP-1 (8)	10/27/11 12:00	Air			. ==	
						A_TO-3GRO A_TO-15Pet	
1110211-003A	VMP-2 (4)	10/27/11 11:09	Air			N_10 101 Ct	
						A_TO-3GRO	
1110211-004A	VMP-2 (8)	10/27/11 11:04	Air			A_TO-15Pet	
		10,21,11	,			A_TO-3GRO	
1110211-005A	VMP-3 (4)	10/27/11 11:24	Air			A_TO-15Pet	
1110211-005A	VIVIP-3 (4)	10/27/11 11.24	All			A_TO-3GRO	
						A_TO-15Pet	
1110211-006A	VMP-3 (8)	10/27/11 11:19	Air			A_TO-3GRO	
						A_TO-15Pet	
1110211-007A	VMP-4 (4)	10/27/11 11:36	Air			A_TO-3GRO	
						A_TO-3GRO A_TO-15Pet	
1110211-008A	VMP-4 (8)	10/27/11 11:30	Air				
						A_TO-3GRO A_TO-15Pet	
1110211-009A	VMP-5 (4)	10/27/11 11:47	Air			7 <u>-</u> 10 101 00	
						A_TO-3GRO	
1110211-010A	VMP-5 (8)	10/27/11 11:41	Air			A_TO-15Pet	
	()					A_TO-3GRO	
						A_TO-15Pet	

Total Page Count: 21 Page 20 of 21

262 Michelle Court South San Francisco, CA 94080 Ph No.: (650)616 1200, Fax No.: (650)616 1244

CHAIN OF CUSTODY

Lab Work Order #: 1110 211

Droinet				Report to:	Brian				Analysis R	equired					Turn	around	Time (worl	k days)
Project Name:	1435 Webste	r		tecaccutite("		7						ASAP	1 Day	2 Days	3 Days
Project	1435 Webste	r St.		Bill to: TEC			ates					,				10 Days	Other:	1
Address:	Alameda, CA			(650) 616-1	1200	5-3	BTEX fuel oxygenates									Samp	ole Type	
Global ID:	T0600100766			,	2 4	тРнд то-3	(xo								vapor			
Sampler:	BD	Date : (0/27/11	PO#: 1	9725	TPH	tue (Repor	t Format	
Field Point	Sample ID	Sample	# of	Container	Sample Date		Ĕ								EDF			
ID	Sample 15	Matrix	Containers	Туре	& Time		ш									Rei	marks	
VMP-1 (4)	VMP-1 (4)	A	. 1	Tedlar Bag	10/27/11	1	J		_	001A					Run to E	SLs		,
VMP-1 (8)	VMP-1 (8)	A	1	Tedlar Bag	10/27/11 1200	J	J	,	-	002A							·	
VMP-2 (4)	VMP-2 (4)	Α	1	Tedlar Bag	10/27/11 1109	J	1		,	003 A	,							
VMP-2 (8)	VMP-2 (8)	A.	1	Tedlar Bag	10/27/11 1104	1	J		_	-004A				,				
VMP-3 (4)	VMP-3 (4)	Ą	1	Tedlar Bag	10/27/11	1	J		,	005A								
VMP-3 (8)	VMP-3 (8)	Α	1	Tedlar Bag	10/27/11 1119	1	J			006A								
VMP-4 (4)	VMP-4 (4)	A	1	Tedlar Bag	10/27/11 1136	1	J		-	0 07A								
VMP-4 (8)	VMP-4 (8)	А	1	Tedlar Bag	10/27/11 1130	1	1		_	008A			,	,	ř		7	
VMP-5 (4)	VMP-5 (4)	А	1 .	Tedlar Bag	10/27/11 1147	1	J		,	009A								
VMP-5 (8)	VMP-5 (8)	A	1	Tedlar Bag	10/27/11 1141	1	J		_	010A								
,				1)÷												
Relinquishe	d by: Brian Do	oherty S	John	Date:	10/27/11	Time:	4115		Received to	Y C	Ponl	Jusi	Pr	Date:	7 11		4:15))
Reli nquis be				Date	. /	Time:			Received b	Dy:	NAN	ING	,	Date:			Time	
La	Je an	le	pe	(0/	11/56	6:0	topn	St	K-GAG	roda	sara			10-27	11		6:	20 FM
			J	, 1	,		F	isst	Couri	es					,			

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 21 Page 21 of 21

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster

Work Order No.: 1112044

Dear Brian Doherty:

Torrent Laboratory, Inc. received 7 sample(s) on December 06, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Sr. Project Manager

December 13, 2011

Date

Total Page Count: 25 Page 1 of 25

Date: 12/13/2011

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1112044

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comments for method W_6020D, 1112044-001 MS/MSD, QC Analytical Batch ID 407774, Note: The % recoveries for Selenium are outside of laboratory control limits but are within % RPD limits. The associated LCS/LCSD % recoveries and % RPD are within limits. No corrective action required.

Total Page Count: 25 Page 2 of 25

Chromium (Dissolved)

Arsenic (Dissolved)

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 12/06/11

Tec Accutite Date Reported: 12/13/11

Tec Accutite				Date I	Reported: 1	2/13/11
MW-2					111	12044-001
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	15	ug/L
Ferrous Iron (Total)	H8146	1	0.1	0.1	0.12	mg/L
Iron (Dissolved)	SW6020	1	1.0	1.0	57	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	1.7	ug/L
MW-3					11	12044-002
Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	510	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	3.4	ug/L
MW-4					111	12044-003
Parameters:	Analysis Method	DF	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	140	ug/L
tert-Butanol	SW8260B	1	1.5	5.0	14	ug/L
TPH(Gasoline)	8260TPH	1	22	50	110	ug/L
Iron (Dissolved)	SW6020	1	1.0	1.0	110	ug/L

Total Page Count: 25 Page 3 of 25

SW6020

SW6020

0.12

0.11

0.50

0.30

ug/L

ug/L

1.6

0.31

MW-6

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 12/06/11

Tec Accutite Date Reported: 12/13/11

1112044-004

Analysis Method Parameters: <u>DF</u> **MDL** <u>PQL</u> Results <u>Unit</u> Iron (Dissolved) SW6020 1.0 1.0 39 ug/L Chromium (Dissolved) SW6020 0.12 0.50 0.53 ug/L

MW-7 1112044-005

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved)	SW6020	1	1.0	1.0	37	ug/L
Chromium (Dissolved)	SW6020	1	0.12	0.50	1.5	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	1.1	ug/L

MW-8 1112044-006

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Diisopropyl ether (DIPE)	SW8260B	1	0.36	0.50	21	ug/L
Benzene	SW8260B	1	0.33	0.50	4.3	ug/L
Toluene	SW8260B	1	0.19	0.50	0.52	ug/L
Ethyl Benzene	SW8260B	1	0.15	0.50	0.56	ug/L
TPH(Gasoline)	8260TPH	1	22	50	2100	ug/L
tert-Butanol	SW8260B	44	66	220	590	ug/L
Arsenic (Dissolved)	SW6020	1	0.11	0.30	7.2	ug/L
Iron (Dissolved)	SW6020	50	50	50	5600	ug/L
МТВЕ	SW8260B	88	33	44	10000	ug/L

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 4 of 25

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 12/06/11

Tec Accutite Date Reported: 12/13/11

MW-9 1112044-007

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Iron (Dissolved) Arsenic (Dissolved)	SW6020	1	1.0	1.0	34	ug/L
	SW6020	1	0.11	0.30	0.38	ug/L

Total Page Count: 25 Page 5 of 25

Report prepared for: Brian Doherty Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: MW-2 Lab Sample ID: 1112044-001A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 12/06/11 / 11:53 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	12/12/11	1	1.0	1.0	57		ug/L	407774	NA
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	ND		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	1.7		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	15		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	ND		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	117		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	103		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	109		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	0.12		mg/L	407773	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	ND		ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	77.7		%	407776	NA

Total Page Count: 25 Page 6 of 25

Report prepared for: Brian Doherty Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: MW-3 Lab Sample ID: 1112044-002A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 12/06/11 / 11:15 1435 Webster Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	12/12/11	1	1.0	1.0	510		ug/L	407774	NA
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	3.4		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	ND		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	ND		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	ND		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	118		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	102		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	109		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND		mg/L	407773	NA	

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	ND		ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	60.2		%	407776	NA

Total Page Count: 25 Page 7 of 25

Report prepared for:
Brian Doherty
Tec Accutite
Date Received: 12/06/11
Date Reported: 12/13/11

Client Sample ID:MW-4Lab Sample ID:1112044-003AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Name/Location: Project Number:

 Date/Time Sampled:
 12/06/11 / 13:09

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	12/12/11	1	1.0	1.0	110		ug/L	407774	NA
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	1.6		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	0.31		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTDE	0,4,00000		40/00/44		0.00	0.50	4.40		/1	407770	
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	140		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	14		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	114		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	104		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	110		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
												ĺ
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND		ma/l	407773	NA	

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	110	Х	ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	67.5		%	407776	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value is the result of discrete peak (MTBE).

Total Page Count: 25 Page 8 of 25

Sample Matrix:

Groundwater

Report prepared for: **Brian Doherty** Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: MW-6 Lab Sample ID: 1112044-004A 1435 Webster

Project Name/Location: Project Number:

(S) Toluene-d8

(S) 4-Bromofluorobenzene

Date/Time Sampled: 12/06/11 / 10:39 Tag Number: 1435 Webster

Date DF MDL PQL Results Lab Unit Analytical **Analysis** Prep Prep Qualifier Parameters: Method Analyzed Batch Batch Date Iron (Dissolved) SW6020 39 NA 12/12/11 1.0 1.0 ug/L 407774 NA

Chromium (Dissolved) SW6020 NA 0.12 0.50 0.53 ug/L 407774 NA 12/12/11 1 Arsenic (Dissolved) SW6020 NA 12/12/11 1 0.11 0.30 ND ug/L 407774 NA SW6020 0.083 ND Selenium (Dissolved) NA 12/12/11 1 1.0 ug/L 407774 NA

Analysis Prep Date DF MDL **PQL** Results Lab Unit Analytical Prep Parameters: Method Qualifier Date Analyzed Batch Batch Hexavalent Chromium SW7196A NA 12/07/11 3.0 10 ND 407734 1 ug/L NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	ND		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	ND		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	118		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND	•	mg/L	407773	NA

1

75.1

64.1

127

120

103

108

%

%

407776

407776

NA

NA

12/08/11

12/08/11

SW8260B

SW8260B

NA

NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	ND		ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	69.1		%	407776	NA

Total Page Count: 25 Page 9 of 25

Report prepared for: **Brian Doherty** Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: MW-7 Lab Sample ID: 1112044-005A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 12/06/11 / 11:53 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	12/12/11	1	1.0	1.0	37		ug/L	407774	NA
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	1.5		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	1.1		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	ND		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	ND		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	109		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	102		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	106		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND		mg/L	407773	NA	

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	ND		ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	70.8		%	407776	NA

Total Page Count: 25 Page 10 of 25

Sample Matrix:

Groundwater

Brian Doherty Report prepared for: Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: 8-WM Lab Sample ID: 1112044-006A

Project Name/Location:

Project Number:

Date/Time Sampled: 12/06/11 / 11:53 1435 Webster Tag Number:

1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	ND		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	7.2		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA
Iron (Dissolved)	SW6020	NA	12/12/11	50	50	50	5600		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	21		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	4.3		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	0.52		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	0.56		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	111		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	102		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	106		%	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	44	66	220	590		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	44	61.2	131	130		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	44	75.1	127	104		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	44	64.1	120	110		%	407776	NA
МТВЕ	SW8260B	NA	12/08/11	88	33	44	10000		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	88	61.2	131	114		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	88	75.1	127	104		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	88	64.1	120	109		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND		mg/L	407773	NA

Total Page Count: 25 Page 11 of 25

Sample Matrix:

Groundwater

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 12/06/11
Date Reported: 12/13/11

Client Sample ID: MW-8 Lab Sample ID: 1112044-006A

Project Name/Location: Project Number:

 Date/Time Sampled:
 12/06/11 / 11:53

 Tag Number:
 1435 Webster

1435 Webster

Prep Date DF MDL PQL Lab Unit Analytical **Analysis** Results Prep Parameters: Method Date Analyzed Qualifier Batch Batch TPH(Gasoline) 8260TPH NA 22 50 2100 407776 NA 12/08/11 ug/L 1 (S) 4-Bromofluorobenzene 8260TPH NA 12/08/11 1 41.5 125 68.1 407776 NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes amount due to discrete peaks (MTBE/TBA) hydrocarbons within range of C5-C12 quantified as gasoline.

Total Page Count: 25 Page 12 of 25

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 12/06/11
Date Reported: 12/13/11

Client Sample ID:MW-9Lab Sample ID:1112044-007AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Name/Location: Project Number:

 Date/Time Sampled:
 12/06/11 / 11:53

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Iron (Dissolved)	SW6020	NA	12/12/11	1	1.0	1.0	34		ug/L	407774	NA
Chromium (Dissolved)	SW6020	NA	12/12/11	1	0.12	0.50	ND		ug/L	407774	NA
Arsenic (Dissolved)	SW6020	NA	12/12/11	1	0.11	0.30	0.38		ug/L	407774	NA
Selenium (Dissolved)	SW6020	NA	12/12/11	1	0.083	1.0	ND		ug/L	407774	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Hexavalent Chromium	SW7196A	NA	12/07/11	1	3.0	10	ND		ug/L	407734	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	1	0.38	0.50	ND		ug/L	407776	NA
tert-Butanol	SW8260B	NA	12/08/11	1	1.5	5.0	ND		ug/L	407776	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	1	0.36	0.50	ND		ug/L	407776	NA
ETBE	SW8260B	NA	12/08/11	1	0.40	0.50	ND		ug/L	407776	NA
Benzene	SW8260B	NA	12/08/11	1	0.33	0.50	ND		ug/L	407776	NA
TAME	SW8260B	NA	12/08/11	1	0.32	0.50	ND		ug/L	407776	NA
Toluene	SW8260B	NA	12/08/11	1	0.19	0.50	ND		ug/L	407776	NA
Ethyl Benzene	SW8260B	NA	12/08/11	1	0.15	0.50	ND		ug/L	407776	NA
m,p-Xylene	SW8260B	NA	12/08/11	1	0.20	1.0	ND		ug/L	407776	NA
o-Xylene	SW8260B	NA	12/08/11	1	0.13	0.50	ND		ug/L	407776	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	1	61.2	131	111		%	407776	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	1	75.1	127	104		%	407776	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	1	64.1	120	111		%	407776	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Ferrous Iron (Total)	H8146	NA	12/06/11	1	0.1	0.1	ND		mg/L	407773	NA	-

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	1	22	50	ND		ug/L	407776	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	1	41.5	125	73.5		%	407776	NA

Total Page Count: 25 Page 13 of 25

MB Summary Report

Work Order:	1112044	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW7196A	Anal	yzed Date:	12/07/11	Analytical	407734
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Hexavalent Chror	mium	3.0	10	ND		1			
Work Order:	1112044	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		H8146	Anal	yzed Date:	12/06/11	Analytical	407773
Units:	mg/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Ferrous Iron (Tota	al)	0.1	0.1	ND	•				
Work Order:	1112044	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW6020	Anal	yzed Date:	12/12/11	Analytical	407774
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Iron (Dissolved)		1.0	1.0	ND	,				
Chromium (Disso	olved)	0.12	0.50	ND					
Arsenic (Dissolve	•	0.11	0.30	ND					
Selenium (Dissolv	ved)	0.083	1.0	ND					

Total Page Count: 25 Page 14 of 25

MB Summary Report

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1112044 Matrix: Water Analytical SW8260B Analyzed Date: 12/08/11 Analytical 407776 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	0.41	0.50	ND	•	
Chloromethane	0.41	0.50	ND		
Vinyl Chloride	0.37	0.50	ND		
Bromomethane	0.37	0.50	ND		
Trichlorofluoromethane	0.34	0.50	ND		
1,1-Dichloroethene	0.29	0.50	ND		
Freon 113	0.38	0.50	ND		
Methylene Chloride	0.18	5.0	0.25		
trans-1,2-Dichloroethene	0.31	0.50	ND		
MTBE	0.38	0.50	ND		
tert-Butanol	1.5	5.0	ND		
Diisopropyl ether (DIPE)	0.36	0.50	ND		
1,1-Dichloroethane	0.28	0.50	ND		
ETBE	0.40	0.50	ND		
cis-1,2-Dichloroethene	0.33	0.50	ND		
2,2-Dichloropropane	0.37	0.50	ND		
Bromochloromethane	0.34	0.50	ND		
Chloroform	0.29	0.50	ND		
Carbon Tetrachloride	0.26	0.50	ND		
1,1,1-Trichloroethane	0.32	0.50	ND		
1,1-Dichloropropene	0.40	0.50	ND		
Benzene	0.33	0.50	ND		
TAME	0.32	0.50	ND		
1,2-Dichloroethane	0.28	0.50	ND		
Trichloroethylene	0.38	0.50	ND		
Dibromomethane	0.21	0.50	ND		
1,2-Dichloropropane	0.37	0.50	ND		
Bromodichloromethane	0.23	0.50	ND		
cis-1,3-Dichloropropene	0.30	0.50	ND		
Toluene	0.19	0.50	ND		
Tetrachloroethylene	0.15	0.50	ND		
trans-1,3-Dichloropropene	0.20	0.50	ND		
1,1,2-Trichloroethane	0.20	0.50	ND		
Dibromochloromethane	0.21	0.50	ND		
1,3-Dichloropropane	0.18	0.50	ND		
1,2-Dibromoethane	0.19	0.50	ND		
Chlorobenzene	0.14	0.50	ND		
Ethyl Benzene	0.15	0.50	ND		
1,1,1,2-Tetrachloroethane	0.10	0.50	ND		
m,p-Xylene	0.20	1.0	ND		
o-Xylene	0.13	0.50	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 15 of 25

Total Page Count: 25

MB Summary Report

Work Order: 1	112044	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix: W	/ater	Analy		SW8260B	Anal	yzed Date:	12/08/11	Analytical	407776
Units : uç	g/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzene		0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachloroethai	ne	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbenzene		0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropropane		0.59	1.0	ND					
1,2,4-Trimethylbenzene		0.33	0.50	ND					
sec-Butyl Benzene		0.24	0.50	ND					
p-Isopropyltoluene		0.25	0.50	ND					
1,3-Dichlorobenzene		0.31	0.50	ND					
1,4-Dichlorobenzene		0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenzene		0.39	0.50	ND					
1,2-Dibromo-3-Chloropr	opane	0.45	1.0	ND					
Hexachlorobutadiene		0.22	0.50	ND					
1,2,4-Trichlorobenzene		0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobenzene		0.52	1.0	ND					
Ethanol		100	100	ND	TIC				
(S) Dibromofluorometha	ane			116					
(S) Toluene-d8				103					
(S) 4-Bromofluorobenze	ene			104					
Work Order: 1	112044	Prep I	Method:	5030	Prep	Date:	12/08/11	Prep Batch:	4314

Matrix: Units:	Water ug/L	Analytical Method:	8260TPH	Analyzed Date:	12/08/11	Analytical Batch:	407776	
Parameters		MDI POL	Method	Lab Qualifier				

Page 16 of 25

Conc. TPH(Gasoline) 22 50 ND (S) 4-Bromofluorobenzene 79.3

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

						. ,		
Work Order:	1112044	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA	
Matrix:	Water	Analytical Method:	SW7196A	Analyzed Date:	12/07/11	Analytical Batch:	407734	
Units:	ug/L	wetriod:				Daton:		

Parameters		MDL	PQL	Conc.	Conc.	Recovery	Recovery	% RPD	Limits	% RPD Limits	Lab Qualifier
Hexavalent Chro	omium	3.0	10	ND	10	92.0	92.2	0.261	90 - 110	20	
Work Order:	1112044		Prep Meti	nod: NA		Prep Da	te:	NA	Prep Bar	tch: NA	

LCS %

Spike

Method

LCSD % LCS/LCSD

Work Order:	1112044	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW6020	Analyzed Date:	12/12/11	Analytical	407774
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Iron (Dissolved)	1.0	1.0	ND	50	89.1	90.5	0.600	80 - 120	20	
Chromium (Dissolved)	0.12	0.50	ND	50	97.8	97.1	0.941	80 - 120	20	
Arsenic (Dissolved)	0.11	0.30	ND	50	107	107	1.23	80 - 120	20	
Selenium (Dissolved)	0.083	1.0	ND	50	98.0	96.2	1.89	80 - 120	20	

Work Order:	1112044	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	SW8260B	Analyzed Date:	12/08/11	Analytical Batch:	407776
Units:	ug/L	welliou.				Batcii.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	108	121	10.5	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	116	129	10.5	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	95.7	101	5.16	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	103	108	4.04	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	100	105	4.87	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	104	113		61.2 - 131		
(S) Toluene-d8			ND	11.36	104	102		75.1 - 127		
(S) 4-Bromofluorobenzene			0.25	11.36	106	108		64.1 - 120		

Total Page Count: 25 Page 17 of 25

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: Prep Method: 5030 12/08/11 Prep Batch: 4314 1112044 Prep Date: Matrix: Water Analytical 8260TPH Analyzed Date: 12/08/11 Analytical 407776 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	ND	227.27	107	110	2.44	52.4 - 127	30	
(S) 4-Bromofluorobenzene			79.3	11.36	67.5	67.2		41.5 - 125		

Total Page Count: 25 Page 18 of 25

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order: 1112044 Prep Method: NA NA

Prep Batch:

Matrix:

Water

Analytical

Analyzed Date:

Prep Date:

12/07/11 Analytical 407734

Spiked Sample:

1112044-001A

Method:

Batch:

Units:

ug/L

Parameters	MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Hexavalent Chromium	3.0	10	0	10	104	105	0.564	85 - 115	20	

Work Order:

1112044

Prep Method:

Prep Date:

NA

Prep Batch:

NA

Page 19 of 25

Matrix:

Units:

Water

Analytical Method:

SW6020

NA

SW7196A

Analyzed Date:

12/12/11 Analytical Batch:

407774

Spiked Sample:

Total Page Count: 25

1112044-001A

ug/L

Parameters	MDL	PQL	Comple	Spike	MS %	MSD %	MS/MSD	%	% RPD	Lab
raiameters	WIDE	FQL	Sample Conc.	Conc.	Recovery	Recovery	% RPD	Recovery Limits	Limits	Qualifier
Iron (Dissolved)	1.0	1.0	57	50	123	124	0.837	75 - 125	20	S
Chromium (Dissolved)	0.12	0.50	0.00	50	89.5	89.5	0.584	75 - 125	20	
Arsenic (Dissolved)	0.11	0.30	1.7	50	93.7	92.4	2.29	75 - 125	20	
Selenium (Dissolved)	0.083	1.0	0.00	50	73.4	73.8	0.265	75 - 125	20	S

Duplicate QC Summary Report

Work Order:	1112044	Pre	p Method:	NA	ı	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water		alytical thod:	H8146	,	Analyzed Date:	12/06/11	Analytical Batch:	407773
Units:								Lab Sample ID:	1112044-001A-Dup
Parameters		MDL	PQL	Sample Result	Duplicate Result	% RPD			

Raw values are used in quality control assessment.

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- **E** Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable

Total Page Count: 25

- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Page 21 of 25

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 12/6/2011 17:03

Project Name: 1435 Webster Received By: NG

Work Order No.: 1112044 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? Yes

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test? Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: 5 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

All samples present and correct.

Total Page Count: 25 Page 22 of 25

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 12/6/2011

Report Due Date: 12/13/2011 **Time Received:** 17:03

Comments:

Work Order #: 1112044

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Disposal		<u>Test</u> On Hold	Requested Tests	Subbed
1112044-001A	MW-2	12/06/11 11:53	Water	01/20/12				
							W_8260Pet W_7196ACrVI W_6020_D W_GCMS-GRO W_Ferrous Iron EDF	
Sample Note:	Run to ESL's. Please use l	ower detection limi	ts.(0.5 ug/L	if possible). E	DF Dissolve	ed Me- Fe	, Cr, Se and As	
1112044-002A	MW-3	12/06/11 11:15	Water	01/20/12				
							W_8260Pet W_6020_D W_GCMS-GRO W_Ferrous Iron W_7196ACrVI	
1112044-003A	MW-4	12/06/11 13:09	Water	01/20/12				
							W_8260Pet W_Ferrous Iron W_GCMS-GRO W_6020_D W_7196ACrVI	
1112044-004A	MW-6	12/06/11 10:39	Water	01/20/12				
		,		0.7.207.12			W_8260Pet W_GCMS-GRO W_Ferrous Iron W_6020_D W_7196ACrVI	
1112044-005A	MW-7	12/06/11 11:53	Water	01/20/12				
							W_8260Pet W_6020_D W_GCMS-GRO W_Ferrous Iron W_7196ACrVI	
1112044-006A	MW-8	12/06/11 11:53	Water	01/20/12			W_8260Pet W_6020_D W_GCMS-GRO	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 23 of 25

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 12/6/2011

Report Due Date: 12/13/2011 **Time Received:** 17:03

Comments:

Work Order #: 1112044

WO Sample ID	Client Sample ID	Collection Date/Time	<u>Matrix</u>		 <u>Test</u> On Hold	Requested Tests	Subbed
						W_Ferrous Iron W_7196ACrVI	
1112044-007A	MW-9	12/06/11 11:53	Water	01/20/12		W_8260Pet W_Ferrous Iron W_GCMS-GRO W_6020_D W_7196ACrVI	

Total Page Count: 25 Page 24 of 25

CHAIN OF CUSTODY

Lab Work Order #: 1112044

Desirat				Report to:	Brian				Analysis R	equired				Turr	-around	Time (wor	(days)
Project Name:	1435 Webste	r		tecaccutite(_		. @			equired		• 1	 <u> </u>	ASAP	1 Day	2 Days	3 Days
Destant	1435 Webste	r St		Bill to: TEC		×	tals	Ę	lron						10 Days	Other:	lo Bujo
Project Address:	Alameda, CA		~	(650) 616-		STE 3S	Me.	- E	sno					0,00,00		ple Type	
				(030) 010-	1200	lg E	o v	, F	erro		.					pic type	
Global ID:	T0600100766		1-1-	PO#: \0	9948	8260 TPHg BTEX oxygenates	isol	X.	DF				,	ground v			
Sampler:	BD	Date :	146/11	1	1110	09 X	B D	Ĭ	200						Repo	rt Format	
Field Point ID	Sample ID	Sample	# of Containers	Container	Sample Date	85	6020B Disolved Metals (including Fe, Cr, Se, As)	7196 Hex. Chromium	SM3500D Ferrous Iron					EDF			
10		Matrix	Containers	Туре	& Time		@ <u>F</u>		0)				 		Re	marks	
MW-2	MW-2	W	5	unpreserved VOAs, poly, amber	115,3,	√	√ √	. 1	1	_	-001A			Run to E	SLs		
MW-3	MW-3	W	5	unpreserved VOAs, poly, amber	12611	1	√	Ą	√.	-	002A			***PLEAS	E CHECK	HOLD TI	MES***
MW-4	MW-4	w	5	unpreserved VOAs, poly, amber	1309	1	1	1	1	-	003A	,.			•		
MW-6	MW-6	w	5	unpreserved VOAs, poly, amber	12/6/11	1	1	1	1	-	004A			*Pleas	e use r dete	ction 1	imit "
MW-7	MW-7	w	5	unpreserved VOAs, poly, amber	12/6/11	1	1	1	1	-	005.A			(0.5	Mg/L)	it pos	sible*
MW-8	MW-8	w	5	unpreserved VOAs, poly, amber	12/011	1	1	1	1	_	006A						
MW-9	MW-9	w	: 5	unpreserved VOAs, poly, amber	12/6/11	1	1	1	√ ,	•	007A					500	
						,				?				1/4	mp	50	
y			3	,													
Relinquishe	d by: Brian Do	oherty eu D	sherti	Date:	12/6/11	Time:	Ŋ		Received to	ent to	NAI lasara		Date:			7im	
Relinquishe	d by:			Date:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Time:			Received t	y:	NAU	IN G	Data:			Tim	
	John	M		12/4	·	17:0	3		Dr. G.	Shiel	asara	_	12-	6-11		17:0	3

first Courses

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 25 of 25

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster

Work Order No.: 1112045

Dear Elise Sbarbori:

Torrent Laboratory, Inc. received sample(s) on December 06, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

G.Gueorguieva

Sr. Project Manager

December 13, 2011

Date

Total Page Count: 25 Page 1 of 25

Date: 12/13/2011

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1112045

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Total Page Count: 25 Page 2 of 25

Sample Result Summary

Report prepared for: Elise Sbarbori Date Received: 12/06/11

Tec Accutite Date Reported: 12/13/11

A-1 1112045-001

Parameters:	Analysis Method	DF	MDL	PQL	Results	<u>Unit</u>
TPH(Gasoline)	8260TPH	440	9500	22000	240000	ug/L
МТВЕ	SW8260B	88	33	44	180	ug/L
Benzene	SW8260B	88	29	44	8000	ug/L
Toluene	SW8260B	88	17	44	9500	ug/L
Ethyl Benzene	SW8260B	88	14	44	3700	ug/L
m,p-Xylene	SW8260B	88	18	88	9300	ug/L
o-Xylene	SW8260B	88	11	44	3100	ug/L

A-3 1112045-002

Parameters:	Analysis Method	<u>DF</u>	MDL	PQL	Results	<u>Unit</u>
Benzene	SW8260B	440	150	220	17000	ug/L
Toluene	SW8260B	440	84	220	19000	ug/L
MTBE	SW8260B	88	33	44	1400	ug/L
tert-Butanol	SW8260B	88	130	440	230	ug/L
Ethyl Benzene	SW8260B	88	14	44	4500	ug/L
m,p-Xylene	SW8260B	88	18	88	14000	ug/L
o-Xylene	SW8260B	88	11	44	5700	ug/L
TPH(Gasoline)	8260TPH	88	1900	4400	150000	ug/L

A-4 1112045-003

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	88	33	44	57	ug/L
Benzene	SW8260B	88	29	44	3300	ug/L
Toluene	SW8260B	88	17	44	4600	ug/L
Ethyl Benzene	SW8260B	88	14	44	1700	ug/L
m,p-Xylene	SW8260B	88	18	88	6700	ug/L
o-Xylene	SW8260B	88	11	44	1700	ug/L
TPH(Gasoline)	8260TPH	88	1900	4400	56000	ug/L

Total Page Count: 25 Page 3 of 25

Sample Result Summary

Report prepared for: Elise Sbarbori Date Received: 12/06/11

Tec Accutite Date Reported: 12/13/11

A-1@9' 1112045-004

<u>Analysis</u> <u>DF MDL PQL Results Unit Method</u>

All compounds were non-detectable for this sample.

A-2@9' 1112045-005

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
TPH(Gasoline)	8260TPH	100	1700	10000	49000	ug/Kg
m,p-Xylene o-Xylene	SW8260B SW8260B	5 5	9.3 3.3	50 25	190 69	ug/Kg ug/Kg

A-3@9' 1112045-006

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
Ethyl Benzene	SW8260B	5	4.3	50	130	ug/Kg
m,p-Xylene	SW8260B	5	9.3	50	340	ug/Kg
o-Xylene	SW8260B	5	3.3	25	88	ug/Kg
TPH(Gasoline)	8260TPH	5	85	500	12000	ug/Kg
A-4@9'					11	12045-007

<u>Parameters:</u> <u>Analysis</u> <u>DF MDL PQL Results Unit Method</u>

All compounds were non-detectable for this sample.

Total Page Count: 25 Page 4 of 25

Elise Sbarbori Report prepared for: Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-1 Lab Sample ID: 1112045-001A 1435 Webster Sample Matrix: Groundwater

Project Name/Location:

Tag Number: 1435 Webster

Project Number: Date/Time Sampled: 12/06/11 / 9:24

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/08/11	88	33	44	180		ug/L	407777	NA
tert-Butanol	SW8260B	NA	12/08/11	88	130	440	ND		ug/L	407777	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	88	32	44	ND		ug/L	407777	NA
ETBE	SW8260B	NA	12/08/11	88	35	44	ND		ug/L	407777	NA
Benzene	SW8260B	NA	12/08/11	88	29	44	8000		ug/L	407777	NA
TAME	SW8260B	NA	12/08/11	88	28	44	ND		ug/L	407777	NA
Toluene	SW8260B	NA	12/08/11	88	17	44	9500		ug/L	407777	NA
Ethyl Benzene	SW8260B	NA	12/08/11	88	14	44	3700		ug/L	407777	NA
m,p-Xylene	SW8260B	NA	12/08/11	88	18	88	9300		ug/L	407777	NA
o-Xylene	SW8260B	NA	12/08/11	88	11	44	3100		ug/L	407777	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	88	61.2	131	95.6		%	407777	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	88	75.1	127	92.5		%	407777	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	88	64.1	120	94.3		%	407777	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	440	9500	22000	240000	Х	ug/L	407777	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	440	41.5	125	74.1		%	407777	NA

NOTE: x-Result is elevated due to contribution from heavy end hydrocarbons (possibly aged gasoline) in the C5-C12 range quantified as Gasoline.

Total Page Count: 25 Page 5 of 25

Report prepared for: Elise Sbarbori Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-3 Lab Sample ID: 1112045-002A 1435 Webster Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 12/06/11 / 11:46 1435 Webster Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	12/08/11	440	150	220	17000		ug/L	407777	NA
Toluene	SW8260B	NA	12/08/11	440	84	220	19000		ug/L	407777	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	440	61.2	131	96.3		%	407777	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	440	75.1	127	91.7		%	407777	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	440	64.1	120	97.5		%	407777	NA
The results shown below are re	eported using t	heir MDL									
MTBE	SW8260B	NA	12/08/11	88	33	44	1400		ug/L	407777	NA
tert-Butanol	SW8260B	NA	12/08/11	88	130	440	230	J	ug/L	407777	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	88	32	44	ND		ug/L	407777	NA
ETBE	SW8260B	NA	12/08/11	88	35	44	ND		ug/L	407777	NA
TAME	SW8260B	NA	12/08/11	88	28	44	ND		ug/L	407777	NA
Ethyl Benzene	SW8260B	NA	12/08/11	88	14	44	4500		ug/L	407777	NA
m,p-Xylene	SW8260B	NA	12/08/11	88	18	88	14000		ug/L	407777	NA
o-Xylene	SW8260B	NA	12/08/11	88	11	44	5700		ug/L	407777	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	88	61.2	131	116		%	407777	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	88	75.1	127	94.7		%	407777	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	88	64.1	120	102		%	407777	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	88	1900	4400	150000	I .	ug/L	407777	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	88	41.5	125	72.3		%	407777	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	88	1900	4400	150000		ug/L	407777	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	88	41.5	125	72.3		%	407777	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 6 of 25

Report prepared for: Elise Sbarbori Date Received: 12/06/11
Tec Accutite Date Reported: 12/13/11

Client Sample ID:A-4Lab Sample ID:1112045-003AProject Name/Location:1435 WebsterSample Matrix:Groundwater

Project Name/Location: Project Number:

Date/Time Sampled: 12/06/11 / 12:50
Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MATRIC	014/00000	NIA.	40/00/44	00	00	44	F-7		/1	407777	NIA
MTBE	SW8260B	NA	12/08/11	88	33	44	57		ug/L	407777	NA
tert-Butanol	SW8260B	NA	12/08/11	88	130	440	ND		ug/L	407777	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/08/11	88	32	44	ND		ug/L	407777	NA
ETBE	SW8260B	NA	12/08/11	88	35	44	ND		ug/L	407777	NA
Benzene	SW8260B	NA	12/08/11	88	29	44	3300		ug/L	407777	NA
TAME	SW8260B	NA	12/08/11	88	28	44	ND		ug/L	407777	NA
Toluene	SW8260B	NA	12/08/11	88	17	44	4600		ug/L	407777	NA
Ethyl Benzene	SW8260B	NA	12/08/11	88	14	44	1700		ug/L	407777	NA
m,p-Xylene	SW8260B	NA	12/08/11	88	18	88	6700		ug/L	407777	NA
o-Xylene	SW8260B	NA	12/08/11	88	11	44	1700		ug/L	407777	NA
(S) Dibromofluoromethane	SW8260B	NA	12/08/11	88	61.2	131	93.0		%	407777	NA
(S) Toluene-d8	SW8260B	NA	12/08/11	88	75.1	127	91.7		%	407777	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/08/11	88	64.1	120	97.5		%	407777	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	12/08/11	88	1900	4400	56000		ug/L	407777	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	12/08/11	88	41.5	125	69.1		%	407777	NA

Total Page Count: 25 Page 7 of 25

Report prepared for: Elise Sbarbori Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-1@9' Lab Sample ID:

Project Name/Location:

Project Number:

1435 Webster

Sample Matrix:

1112045-004A

Soil

Date/Time Sampled: 12/06/11 / 8:56 1435 Webster Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
L MTBE	SW8260B	NA	12/07/11	1	2.6	10	ND		ug/Kg	407789	NA
tert-Butanol	SW8260B	NA	12/07/11	1	21	50	ND		ug/Kg		NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/07/11	1	2.2	10	ND		ug/Kg		NA
ETBE	SW8260B	NA	12/07/11	1	2.4	10	ND		ug/Kg		NA
Benzene	SW8260B	NA	12/07/11	1	1.5	10	ND		ug/Kg		NA
TAME	SW8260B	NA	12/07/11	1	2.1	10	ND		ug/Kg	407789	NA
Toluene	SW8260B	NA	12/07/11	1	0.98	10	ND		ug/Kg	407789	NA
Ethyl Benzene	SW8260B	NA	12/07/11	1	0.86	10	ND		ug/Kg		NA
m,p-Xylene	SW8260B	NA	12/07/11	1	1.9	10	ND		ug/Kg		NA
o-Xylene	SW8260B	NA	12/07/11	1	0.66	5.0	ND		ug/Kg		NA
(S) Dibromofluoromethane	SW8260B	NA	12/07/11	1	59.8	148	101		%	407789	NA
(S) Toluene-d8	SW8260B	NA	12/07/11	1	55.2	133	94.2		%	407789	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/07/11	1	55.8	141	84.2		%	407789	NA
	Analysis	Prep	Date	DF	MDL	PQL	Results	Lab	Unit	Analytical	Prep

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	12/7/11	12/07/11	1	17	100	ND		ug/Kg	407789	4324
(S) 4-Bromofluorobenzene	8260TPH	12/7/11	12/07/11	1	43.9	127	86.8		%	407789	4324

Total Page Count: 25 Page 8 of 25

Elise Sbarbori Report prepared for: Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-2@9' Lab Sample ID: 1112045-005A

Project Name/Location:

1435 Webster

Sample Matrix:

Soil

Project Number:

Date/Time Sampled: 12/06/11 / 10:02 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/12/11	5	13	50	ND		ug/Kg	407793	NA
tert-Butanol	SW8260B	NA	12/12/11	5	100	250	ND		ug/Kg	407793	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/12/11	5	11	50	ND		ug/Kg	407793	NA
ETBE	SW8260B	NA	12/12/11	5	12	50	ND		ug/Kg	407793	NA
Benzene	SW8260B	NA	12/12/11	5	7.5	50	ND		ug/Kg	407793	NA
TAME	SW8260B	NA	12/12/11	5	10	50	ND		ug/Kg	407793	NA
Toluene	SW8260B	NA	12/12/11	5	4.9	50	ND		ug/Kg	407793	NA
Ethyl Benzene	SW8260B	NA	12/12/11	5	4.3	50	ND		ug/Kg	407793	NA
m,p-Xylene	SW8260B	NA	12/12/11	5	9.3	50	190		ug/Kg	407793	NA
o-Xylene	SW8260B	NA	12/12/11	5	3.3	25	69		ug/Kg	407793	NA
(S) Dibromofluoromethane	SW8260B	NA	12/12/11	5	59.8	148	96.6		%	407793	NA
(S) Toluene-d8	SW8260B	NA	12/12/11	5	55.2	133	96.1		%	407793	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/12/11	5	55.8	141	91.4		%	407793	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	12/7/11	12/07/11	100	1700	10000	49000	Х	ug/Kg	407789	4324
(S) 4-Bromofluorobenzene	8260TPH	12/7/11	12/07/11	100	43.9	127	92.8		%	407789	4324

NOTE: x - Does not match pattern of reference Gasoline standard (possibly aged gasoline). Hydrocarbons in the range of C5-C12 quantified as Gasoline.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 9 of 25

Sample Matrix:

Soil

Elise Sbarbori Report prepared for: Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-3@9' Lab Sample ID: 1112045-006A

1435 Webster

Project Name/Location:

Project Number:

12/06/11 / 11:28 Date/Time Sampled: Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/12/11	5	13	50	ND	<u> </u>	ug/Kg	407793	NA
tert-Butanol	SW8260B	NA	12/12/11	5	100	250	ND		ug/Kg	407793	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/12/11	5	11	50	ND		ug/Kg	407793	NA
ETBE	SW8260B	NA	12/12/11	5	12	50	ND		ug/Kg	407793	NA
Benzene	SW8260B	NA	12/12/11	5	7.5	50	ND		ug/Kg	407793	NA
TAME	SW8260B	NA	12/12/11	5	10	50	ND		ug/Kg	407793	NA
Toluene	SW8260B	NA	12/12/11	5	4.9	50	ND		ug/Kg	407793	NA
Ethyl Benzene	SW8260B	NA	12/12/11	5	4.3	50	130		ug/Kg	407793	NA
m,p-Xylene	SW8260B	NA	12/12/11	5	9.3	50	340		ug/Kg	407793	NA
o-Xylene	SW8260B	NA	12/12/11	5	3.3	25	88		ug/Kg	407793	NA
(S) Dibromofluoromethane	SW8260B	NA	12/12/11	5	59.8	148	92.8		%	407793	NA
(S) Toluene-d8	SW8260B	NA	12/12/11	5	55.2	133	99.7		%	407793	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/12/11	5	55.8	141	88.8		%	407793	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	12/12/11	12/12/11	5	85	500	12000	Х	ug/Kg	407793	4326
(S) 4-Bromofluorobenzene	8260TPH	12/12/11	12/12/11	5	43.9	127	90.8		%	407793	4326

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes significant contribution from heavy end hydrocarbons (possibly aged gasoline).

Total Page Count: 25 Page 10 of 25

Report prepared for: Elise Sbarbori Date Received: 12/06/11 Tec Accutite Date Reported: 12/13/11

Client Sample ID: A-4@9' Lab Sample ID: 1112045-007A

Project Name/Location:

Project Number:

1435 Webster

Sample Matrix: Soil

Date/Time Sampled: 12/06/11 / 12:20 Tag Number: 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	12/07/11	1	2.6	10	ND	1	ug/Kg	407789	NA
tert-Butanol	SW8260B	NA	12/07/11	1	21	50	ND		ug/Kg	407789	NA
Diisopropyl ether (DIPE)	SW8260B	NA	12/07/11	1	2.2	10	ND		ug/Kg	407789	NA
ETBE	SW8260B	NA	12/07/11	1	2.4	10	ND		ug/Kg	407789	NA
Benzene	SW8260B	NA	12/07/11	1	1.5	10	ND		ug/Kg	407789	NA
TAME	SW8260B	NA	12/07/11	1	2.1	10	ND		ug/Kg	407789	NA
Toluene	SW8260B	NA	12/07/11	1	0.98	10	ND		ug/Kg	407789	NA
Ethyl Benzene	SW8260B	NA	12/07/11	1	0.86	10	ND		ug/Kg	407789	NA
m,p-Xylene	SW8260B	NA	12/07/11	1	1.9	10	ND		ug/Kg	407789	NA
o-Xylene	SW8260B	NA	12/07/11	1	0.66	5.0	ND		ug/Kg	407789	NA
(S) Dibromofluoromethane	SW8260B	NA	12/07/11	1	59.8	148	108		%	407789	NA
(S) Toluene-d8	SW8260B	NA	12/07/11	1	55.2	133	102		%	407789	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	12/07/11	1	55.8	141	90.7		%	407789	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	12/7/11	12/07/11	1	17	100	ND		ug/Kg	407789	4324
(S) 4-Bromofluorobenzene	8260TPH	12/7/11	12/07/11	1	43.9	127	87.2		%	407789	4324

Total Page Count: 25 Page 11 of 25

Work Order: NA NA 1112045 Prep Method: Prep Date: NA Prep Batch: Matrix: Water Analytical SW8260B **Analyzed Date:** 12/08/11 Analytical 407777 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	ND	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 12 of 25

Work Order: 1112045 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 12/08/11 Analytical 407777 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
o-Xylene	0.13	0.50	ND	•
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
Ethanol	100	100	ND	TIC
(S) Dibromofluoromethane			112	
(S) Toluene-d8			102	
(S) 4-Bromofluorobenzene			107	

Total Page Count: 25 Page 13 of 25

Work Order: 1112045 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Soil Analytical SW8260B Analyzed Date: 12/07/11 Analytical 407789 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	4.4	10	ND	
Chloromethane	4.6	10	ND	
Vinyl Chloride	2.6	10	ND	
Bromomethane	4.7	10	ND	
Trichlorofluoromethane	2.9	10	ND	
1,1-Dichloroethene	1.5	10	ND	
Freon 113	3.7	10	ND	
Methylene Chloride	2.0	50	ND	
trans-1,2-Dichloroethene	1.1	10	ND	
MTBE	2.6	10	ND	
tert-Butanol	21	50	ND	
Diisopropyl ether (DIPE)	2.2	10	ND	
1,1-Dichloroethane	1.3	10	ND	
ETBE	2.4	10	ND	
cis-1,2-Dichloroethene	1.8	10	ND	
2,2-Dichloropropane	1.2	10	ND	
Bromochloromethane	2.3	10	ND	
Chloroform	1.2	10	ND	
Carbon Tetrachloride	1.6	10	ND	
1,1,1-Trichloroethane	1.2	10	ND	
1,1-Dichloropropene	1.4	10	ND	
Benzene	1.5	10	ND	
TAME	2.1	10	ND	
1,2-Dichloroethane	1.9	10	ND	
Trichloroethylene	3.9	10	ND	
Dibromomethane	2.2	10	ND	
1,2-Dichloropropane	1.3	10	ND	
Bromodichloromethane	1.1	10	ND	
cis-1,3-Dichloropropene	1.4	10	ND	
Toluene	0.98	10	ND	
Tetrachloroethylene	1.8	10	ND	
trans-1,3-Dichloropropene	1.2	10	ND	
1,1,2-Trichloroethane	1.8	10	ND	
Dibromochloromethane	1.1	10	ND	
1,3-Dichloropropane	2.1	10	ND	
1,2-Dibromoethane	1.7	10	ND	
Ethyl Benzene	0.86	10	ND	
Chlorobenzene	4.2	10	ND	
1,1,1,2-Tetrachloroethane	0.86	10	ND	
m,p-Xylene	1.9	10	ND	
o-Xylene	0.66	5.0	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 14 of 25

Work Order: 1112045 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Soil Analytical SW8260B Analyzed Date: 12/07/11 Analytical 407789 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Styrene	0.77	10	ND	•
Bromoform	1.9	10	ND	
Isopropyl Benzene	1.2	10	ND	
n-Propylbenzene	1.4	10	ND	
Bromobenzene	1.2	10	ND	
1,1,2,2-Tetrachloroethane	3.0	10	ND	
1,3,5-Trimethylbenzene	1.1	10	ND	
1,2,3-Trichloropropane	3.3	10	ND	
4-Chlorotoluene	1.6	10	ND	
2-Chlorotoluene	1.6	10	ND	
tert-Butylbenzene	1.4	10	ND	
1,2,4-Trimethylbenzene	1.1	10	ND	
sec-Butyl Benzene	1.6	10	ND	
p-Isopropyltoluene	1.5	10	ND	
1,3-Dichlorobenzene	1.8	10	ND	
1,4-Dichlorobenzene	1.5	10	ND	
n-Butylbenzene	2.2	10	ND	
1,2-Dichlorobenzene	1.3	10	ND	
1,2-Dibromo-3-Chloropropane	4.2	10	ND	
Hexachlorobutadiene	2.6	10	ND	
1,2,4-Trichlorobenzene	2.1	10	ND	
Naphthalene	2.8	10	ND	
1,2,3-Trichlorobenzene	2.9	10	ND	
(S) Dibromofluoromethane			96.7	
(S) Toluene-d8			98.3	
(S) 4-Bromofluorobenzene			84.8	

Total Page Count: 25 Page 15 of 25

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1112045 Matrix: Soil Analytical SW8260B Analyzed Date: 12/12/11 Analytical 407793 Method: Batch: ug/Kg Units:

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
Dichlorodifluoromethane	4.4	10	ND		
Chloromethane	4.6	10	ND		
Vinyl Chloride	2.6	10	ND		
Bromomethane	4.7	10	ND		
Trichlorofluoromethane	2.9	10	ND		
1,1-Dichloroethene	1.5	10	ND		
Freon 113	3.7	10	ND		
Methylene Chloride	2.0	50	ND		
trans-1,2-Dichloroethene	1.1	10	ND		
MTBE	2.6	10	ND		
tert-Butanol	21	50	ND		
Diisopropyl ether (DIPE)	2.2	10	ND		
1,1-Dichloroethane	1.3	10	ND		
ETBE	2.4	10	ND		
cis-1,2-Dichloroethene	1.8	10	ND		
2,2-Dichloropropane	1.2	10	ND		
Bromochloromethane	2.3	10	ND		
Chloroform	1.2	10	ND		
Carbon Tetrachloride	1.6	10	ND		
1,1,1-Trichloroethane	1.2	10	ND		
1,1-Dichloropropene	1.4	10	ND		
Benzene	1.5	10	ND		
TAME	2.1	10	ND		
1,2-Dichloroethane	1.9	10	ND		
Trichloroethylene	3.9	10	ND		
Dibromomethane	2.2	10	ND		
1,2-Dichloropropane	1.3	10	ND		
Bromodichloromethane	1.1	10	ND		
cis-1,3-Dichloropropene	1.4	10	ND		
Toluene	0.98	10	ND		
Tetrachloroethylene	1.8	10	ND		
trans-1,3-Dichloropropene	1.2	10	ND		
1,1,2-Trichloroethane	1.8	10	ND		
Dibromochloromethane	1.1	10	ND		
1,3-Dichloropropane	2.1	10	ND		
1,2-Dibromoethane	1.7	10	ND		
Ethyl Benzene	0.86	10	ND		
Chlorobenzene	4.2	10	ND		
1,1,1,2-Tetrachloroethane	0.86	10	ND		
m,p-Xylene	1.9	10	ND		
o-Xylene	0.66	5.0	ND		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 16 of 25

Work Order:	1112045	Prep M	Method:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Soil	Analyt		SW8260B	Anal	yzed Date:	12/12/11	Analytical	407793
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND	•				
Bromoform		1.9	10	ND					
Isopropyl Benzen	е	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	oethane	3.0	10	ND					
1,3,5-Trimethylbe	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylbe	nzene	1.1	10	ND					
sec-Butyl Benzen	е	1.6	10	ND					
p-Isopropyltoluene	е	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch	loropropane	4.2	10	ND					
Hexachlorobutadi	ene	2.6	10	ND					
1,2,4-Trichlorober	nzene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorober	nzene	2.9	10	ND					
(S) Dibromofluoro	methane			89.2					
(S) Toluene-d8				93.5					
(S) 4-Bromofluoro	benzene			101					
Work Order:	1112045	Prep I	Method:	5030	Prep Date:		12/08/11	Prep Batch:	4315
Matrix:	Water	Analyt		8260TPH	Anal	yzed Date:	12/08/11	Analytical	407777
Units:	ug/L	Metho	d:					Batch:	

 Parameters
 MDL
 PQL
 Method Blank Conc.
 Lab Qualifier

 TPH(Gasoline)
 22
 50
 ND

 (S) 4-Bromofluorobenzene
 77.1

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 25 Page 17 of 25

Work Order:	1112045	Prep	Method:	5035	Prep	Date:	12/07/11	1 Prep Batch:	4324
Matrix:	Soil	Analy		8260TPH	Anal	yzed Date:	12/07/11	Analytical	407789
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluorobenzene		17	100	ND 95.0					
Work Order:	1112045	Prep	Method:	5035	Prep Date:		12/12/11	Prep Batch:	4326
Matrix:	Soil	Analy		8260TPH	Anal	yzed Date:	12/12/11	Analytical	407793
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier			<u> </u>	
TPH(Gasoline) (S) 4-Bromofluoro	obenzene	17	100	ND 85.7	•				

Total Page Count: 25 Page 18 of 25

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: Prep Method: NA Prep Batch: 1112045 NA Prep Date: NA Matrix: Analytical SW8260B 12/08/11 407777 **Analyzed Date:** Analytical Water Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	ND	17.04	119	114	3.59	61.4 - 129	30	
Benzene	0.33	0.50	ND	17.04	128	125	2.39	66.9 - 140	30	
Trichloroethylene	0.38	0.50	ND	17.04	103	99.7	2.93	69.3 - 144	30	
Toluene	0.19	0.50	ND	17.04	107	105	1.86	76.6 - 123	30	
Chlorobenzene	0.14	0.50	ND	17.04	104	103	1.56	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	114	114		61.2 - 131		
(S) Toluene-d8			ND	11.36	105	105		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	108	110		64.1 - 120		

Work Order: 1112045 **Prep Method:** NA Prep Date: NA Prep Batch: NA Analytical Method: Matrix: Soil SW8260B Analyzed Date: 12/07/11 Analytical 407789 Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	1.5	10	ND	50	120	110	9.04	53.7 - 139	30	
Benzene	1.5	10	ND	50	109	117	6.94	66.5 - 135	30	
Trichloroethylene	3.9	10	ND	50	106	110	3.95	57.5 - 150	30	
Toluene	0.98	10	ND	50	102	96.5	5.89	56.8 - 134	30	
Chlorobenzene	4.2	10	ND	50	118	124	5.39	57.4 - 134	30	
(S) Dibromofluoromethane			ND	50	106	108		59.8 - 148		
(S) Toluene-d8			ND	50	92.4	95.6		55.2 - 133		
(S) 4-Bromofluorobenzene			ND	50	94.3	90.5		55.8 - 141		

Total Page Count: 25 Page 19 of 25

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1112045	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analytical Method:	SW8260B	Analyzed Date:	12/12/11	Analytical Batch:	407793
Units:	ug/Kg	wethou.				Daton.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	1.5	10	ND	50	95.6	91.8	4.10	53.7 - 139	30	
Benzene	1.5	10	ND	50	92.6	87.7	5.44	66.5 - 135	30	
Trichloroethylene	3.9	10	ND	50	86.6	82.3	5.12	57.5 - 150	30	
Toluene	0.98	10	ND	50	99.7	95.3	4.43	56.8 - 134	30	
Chlorobenzene	4.2	10	ND	50	116	110	4.87	57.4 - 134	30	
(S) Dibromofluoromethane			ND	50	98.0	96.6		59.8 - 148		
(S) Toluene-d8			ND	50	96.7	93.8		55.2 - 133		
(S) 4-Bromofluorobenzene			ND	50	85.0	92.2		55.8 - 141		

Work Order:	1112045	Prep Method:	5030	Prep Date:	12/08/11	Prep Batch:	4315
Matrix:	Water	Analytical Method:	8260TPH	Analyzed Date:	12/08/11	Analytical Batch:	407777
Units:	ug/L	wethou.				ваки.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	ND	227.27	119	117	1.92	52.4 - 127	30	
(S) 4-Bromofluorobenzene			77.1	11.36	73.1	66.9		41.5 - 125		

Work Order:	1112045	Prep Method:	5035	Prep Date:	12/07/11	Prep Batch:	4324
Matrix:	Soil	Analytical	8260TPH	Analyzed Date:	12/07/11	Analytical	407789
Units:	ug/Kg	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	17	100	ND	1000	95.7	115	18.2	48.2 - 132	30	
(S) 4-Bromofluorobenzene			95.0	50	98.3	85.3		57 - 127		

Total Page Count: 25 Page 20 of 25

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: Prep Method: 5035 12/12/11 Prep Batch: 4326 1112045 Prep Date: Matrix: Soil Analytical 8260TPH Analyzed Date: 12/12/11 Analytical 407793 Method: Batch: Units: ug/Kg

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	17	100	ND	1000	107	114	6.65	48.2 - 132	30	
(S) 4-Bromofluorobenzene			85.7	50	91.9	89.0		57 - 127		

Total Page Count: 25 Page 21 of 25

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- **E** Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- $\hbox{\bf R-The \% RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts}$
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Receipt Checklist

Date and Time Received: 12/6/2011 17:03 Client Name: Tec Accutite

Project Name: 1435 Webster Received By: NG

Physically Logged By: NG Work Order No.: <u>1112045</u>

Checklist Completed By: NG

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? Yes

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? Not Present

Sample Receipt Information

Custody seals intact on shipping container/cooler? Not Present

Shipping Container/Cooler In Good Condition? Yes

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test? Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: °C

Water-VOA vials have zero headspace? <u>Yes</u> Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

All samples present and correct.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Page 23 of 25

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: 1435 Webster TAT Requested: 5+ day:0

Project #: Date Received: 12/6/2011

Report Due Date: 12/13/2011 Time Received: 17:03

Comments:

Work Order #: 1112045

WO Sample ID	Client Sample ID	Collection Date/Time	<u>Matrix</u>		<u>Test</u> On Hold	Requested Tests	Subbed
1112045-001A	A-1	12/06/11 9:24	Water	01/20/12			
						W_8260Pet EDF	
						W_GCMS-GRO	
Sample Note:	Run to ESL's.						
1112045-002A	A-3	12/06/11 11:46	Water	01/20/12		W 0000D 1	
						W_8260Pet W_GCMS-GRO	
1112045-003A	A-4	12/06/11 12:50	Water	01/20/12		_	
						W_8260Pet W_GCMS-GRO	
1112045-004A	A-1@9'	12/06/11 8:56	Soil	06/03/12		W_GOING GRO	
						S_GCMS-GRO S 8260Pet	
1112045-005A	A-2@9'	12/06/11 10:02	Soil	06/03/12		3_0200Fet	
						S_GCMS-GRO	
1112045-006A	A-3@9'	12/06/11 11:28	Soil	06/03/12		S_8260Pet	
						S_GCMS-GRO	
1112045-007A	A-4@9'	12/06/11 12:20	Soil	06/03/12		S_8260Pet	
11120 1 3-001A	A-4@0	12/00/11 12.20	Ooli	00/03/12		S_GCMS-GRO	
						S_8260Pet	

Total Page Count: 25 Page 24 of 25

	OTTE		Milp Pho FAX	Sinclair Frontagitas, CA 95035 ne: 408.263.525 (: 408.263.8293 v.torrentlab.com	8 RESE	T •NOT
Company Nam	e: TEC Acc	utite				-
Address: 262 I	Michelle Court	:				
City: South Sa	n Francisco		State:	CA	Zip Code:	94080
Telephone: 65	0-616-1200	F	AX: 650)-616-1244		
REPORT TO: E	llise		SAI	MPLER: ES		
TURNAROUND	TIME:			SAMPLE TYPE		REPORT FO
10 Work Days	3 Work Days	_		Storm Water Waste Water Ground Water	Air Other	QC Level EDF Excel / EC
_	_	_		_		_

CHAIN OF CUSTODY

mpany Name: TEC Accutite			Location of Sampling: 1435 Webster St., Alameda, CA								
dress: 262 Michelle Court			Purpose: Environmental								
y: South San Francisco Sta	te: CA Zip	Code: 94080	Special Inst	ructions / C	omments: ı	run to esls					
lephone: 650-616-1200 FAX:	650-616-1244		Global ID	: T060010	766						
PORT TO: Elise	SAMPLER: ES		P.O.#: 19	947		EMAIL: teca	ccutite@gmail.co	m ·			
RNAROUND TIME:	SAMPLE TYPE:	REPORT FO	RMAT:	60B				1			
10 Work Days 3 Work Days Noon - Not 7 Work Days 2 Work Days 2 - 8 Hours 5 Work Days 1 Work Day Other	Masta Water	Air Other QC Level DF Excel / ED	O + BTE	Oxygenates 8260B				ANALYSIS REQUESTED			
B ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED MA		CONT HALL	5 Ox				REMARKS			
IA A-1	12/6/11 0924	w 3	voa 🗸	1							
2 A A-3	12/6/11 1146	w 3	voa 🗸	1							
3A A-4	12/6/11 1250	w 3	voa 🗸	1							
4A A-1@9'	12/6/11 0856	s 1 a	cetate 🗸	1							
5A A-2@9'	12/6/11 1002	s 1 a	cetate 🗸	✓				4			
6 A A-3@9'	12/6/11 1128	s 1 a	cetate 🗸	1							
7 A A-4@9'	12/6/11 1220	s 1 a	cetate 🗸	1							
								Lover of			
d - 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (72			
Retinguished By Print:		Time:	n	eived By:		Print: Sept Tex	Date:	Time:			
Relinquished By: Print:	Date:	Time:	REC	eived By:	heda	Print: NAVA	07 Date: 12-6-11	Time:			

Total Page Count: 25 Page 25 of 25

ATTACHMENT C

LOW FLOW SAMPLING PROTOCOL

STANDARD OPERATING PROCEDURE FOR LOW FLOW PURGING AND SAMPLING OF GROUNDWATER MONITORING WELLS

This procedure is designed for taking representative groundwater samples from monitoring wells. The groundwater samples will be collected using low flow (minimal drawdown) purging and sampling methods as discussed in U.S. EPA, Ground Water Issue, Publication Number EPN540IS-951504, April 1996 by Puls, R.W. and M.J. Barcelona - "Low-Flow (Minimal Drawdown) Ground-water Sampling Procedures". This procedure is also similar to the ASTM D 6771-02 "Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigation". This practice does not address sampling of wells containing either light or dense non-aqueous-phase liquids (LNAPLs or DNAPLs); wells with LNAPL or DNAPL will not be sampled by the low flow purging and sampling method.

OBJECTIVE

The objective is to purge and sample the well so that the water that discharged from the pump, and subsequently collected, is representative of the formation water from an aquifer or shallow water bearing zone of interest.

WELL PREPARATION

Monitoring wells will be purged with an electronically controlled submersible bladder pump. The pump will be slowly lowered to the middle of, or slightly above, the screened interval. The submersible pump will be decontaminated before each use in each well with phosphate-free detergent, rinsing with potable water and rinsing with deionized water.

INITIAL PUMP FLOW TEST PROCEDURES

If possible, the optimum flow rate for each well will be established during well development or redevelopment or in advance of the actual purging and sampling event. The monitoring well will be gauged for depth to water prior to the installation of the bladder pump and before pumping of any water from the well. The measurement will be documented on a groundwater monitoring field data sheet. After pump installation, and confirmation that the static water level has returned to its original level (as determined prior to pump installation), the bladder pump will be started at a discharge rate between 0.1 to 0.5 liters per minute without any in-line flow cell connected. The water level in the well casing will be monitored continuously for any change from the original measurement. If significant drawdown is observed, the pump's flow rate will be incrementally reduced until the static water level drawdown ceases and stabilizes. Total drawdown from the initial (static) water level should not exceed 0.3 feet. Once the specific well's optimum flow rate, without an in-line flow cell connected, has been determined and documented, the in-line flow cell system will be connected to the well discharge. Control settings may require adjustment to achieve the well's optimum flow rate with the in-line flow cell connected. (Due to the system's back-pressure, the flow rate may decrease by 10-20%). All control settings shall be documented on the field data sheet as specific to that particular well's ID and will be utilized for its subsequent purging and sampling events.

PURGE AND SAMPLING EVENTS

Prior to the initiation of the bladder pump, the static water level will be measured, documented, and the bladder pump will be initiated, as described above. When the optimum pump flow rate has been established, the static water level drawdown has stabilized within the required range, and at least one

October 19, 2007 Page i

pump system volume (Flow cell volume + bladder volume + discharge tubing volume) has been purged, field measurements will be recorded for pH, temperature (T), conductivity (Ec), oxygen reduction potential (ORP), and dissolved oxygen (DO) using the in-line flow cell. All water chemistry field measurements will be documented on the gauging sheet. Measurements will be taken every three to five minutes until stabilization has been achieved. Stabilization is achieved after all parameters have stabilized for three consecutive readings. In lieu of measuring all five parameters, a minimum subset would include temperature, pH, conductivity and turbidity or dissolved oxygen. Three consecutive measurements indicating stability should be within:

- Temperature ± 3% of reading (minimum of + 0.2 C) (with a maximum of ± 10%)
- pH ± 0.1 pH units, minimum
- Conductivity ± 3%
- Dissolved Oxygen (DO) ± 0.2 mg/L or ± 10% of reading whichever is greater
- Redox (ORP) ± 20 mv

Equipment List:

The following equipment is needed to conduct low flow purging and sampling:

- Bladder pump temporarily or permanently installed within the well's screened interval
- Pump controller and air source
- In-line flow cell and meter(s) with connection fittings and tubing to measure water quality
- Water Level Probe or installed dedicated water level measurement system
- Sample containers appropriate for the analytical requirements prepared by the laboratory
- Field Measurement documentation forms
- Graduated cylinder or measuring cup
- 5 gallon bucket(s) for containerizing purge water
- Labeled 55 gallon drum(s) for storing purge water
- Stopwatch
- Sufficient cleaning and decontamination supplies

PROCEDURE

- 1. Regularly calibrate all field instruments per the instrument manufacturer's instructions. Record calibration data on the proper field instruments calibration documentation form.
- 2. Proceed to the first well scheduled to be sampled (typically the least contaminated). Make notes in the field log book describing the well condition and activity in the vicinity of the well. Decontaminate the portable water gauging probe, if necessary, by washing with phosphate-free detergent, rinsing with potable water and rinsing with deionized water.
- 3. Open the well boxes and remove the locking caps. Allow the liquid levels within the wells to equilibrate with ambient barometric conditions.
- 4. Measure the depth to water from the surveyed reference mark on the wellhead and record the measurement on the field datasheet. Lock the water level meter in place so that the level can be monitored during purging and sampling. When placing the probe in the well, take precautions to not disturb or agitate the water.
- 5. Connect the compressed air source's airline to the pump controller's "AIR IN" connection (If utilizing a gas-engine operated compressor, locate the compressor at least 25 feet, down wind from the wellhead), and connect the pump controller "AIR OUT air-line to the bladder pump's air supply fitting at the wellhead.
- 6. Connect the pump discharge line to the in-line flow cell's "IN" fitting.
- 7. Connect the flow cell's "OUT" line and secure to drain the purge water into the purge water collection container.
- 8. Lower the bladder pump into the well to the middle of, or slightly above, the screened interval. When placing the pump in the well, take precautions to not disturb or agitate the water. Lock the pump in place.

October 19, 2007 Page ii

- 9. Start the air supply to the pump. Set the pump controller settings to equal or less than the documented settings for the specific well. Modify the settings, as necessary to achieve the well's optimum flow rate. Connect the well discharge to the in-line flow cell and modify the flow rate as necessary.
- 10. Monitor the water level and confirm that the water level drawdown has stabilized within the well's allowable limits. Measure and record the depth to the pump intake, depth to groundwater when purging is terminated, and the depth to groundwater when the sample is collected.
- 11. After a single pump-system's volume (flow cell volume + bladder volume + discharge tubing volume) has been adequately purged, read and record water quality field measurements every three to five minutes.
- 12. Once three successive readings are taken within the limits listed above, disconnect the flow cell, and its tubing, from the pump discharge line before collecting samples. Decrease the pump rate to 100 milliliters per minute or less by lowering the controller's air pressure setting prior to collecting samples for volatiles. Place the samples in a cooler with sufficient ice.
- 13. Once samples for volatiles have been collected, re-establish pump flow rate to the optimal purge flow rate and collect remaining samples, if necessary.
- 14. When all sample containers have been filled, make a final measurement of the well's static water level and record the measurement on the field datasheet.
- 15. Measure and record total purge volume collected. Consolidate generated purge water.
- 16. Remove and decontaminate the Portable Water Level Probe with phosphate-free detergent, rinsing with potable water and rinsing with deionized water.
- 17. Disconnect the controller air supply to the pump.
- 18. Secure the pump's discharge adapter in the wellhead, if appropriate.
- 19. Secure the wellhead cover and secure with its lock, if appropriate. Move equipment to next well to be sampled.
- 20. At the end of the sampling event, clean and decontaminate the in-line flow cell and other equipment with phosphate-free detergent, rinsing with potable water and rinsing with deionized water.

October 19, 2007 Page iii

ATTACHMENT D

DRILLING PERMITS

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/19/2011 By jamesy Permit Numbers: W2011-0589
Permits Valid from 10/04/2011 to 10/06/2011

Application Id: 1316023437653 City of Project Site: Alameda

Site Location: Former Olympian Service Station

1435 Webster Street Alameda, California

Project Start Date: 10/04/2011 Completion Date:10/06/2011

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: TEC Accutite - Elise Sbarbori Phone: 650-616-1214

262 Michelle Court, South San Francisco, CA 94080

Property Owner: Phone: 530-899-9200

PO Box 1701, Chico, CA 95927

Client: Phone: --

Olympian Oil, 1300 Industrial Rd #2, San Carlos, CA 94707

Contact: Same Phone: --

Cell: 650-269-5200

Total Due: \$265.00
Receipt Number: WR2011-0278 Total Amount Paid: \$265.00

Payer Name : TEC Accutite Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 15 Boreholes

Driller: RSI Drilling - Lic #: 802334 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2011-	09/19/2011	01/02/2012	15	3.00 in.	15.00 ft

0589

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/01/2011 By jamesy

Permit Numbers: W2011-0727

Permits Valid from 12/06/2011 to 12/06/2011

City of Project Site: Alameda Application Id: 1321468066764

Site Location: 1435 Webster Street @ Taylor Ave **Project Start Date:** 12/06/2011 Completion Date: 12/06/2011

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Phone: 650-616-1200 Applicant: TEC Accutite - Elise Sbarbori

262 Michelle Court, San Francisco, CA 94080

Property Owner: Geoffrey Farrar Phone: 530-899-9200

PO Box 1701, Chico, CA 95927 Client: Janet Heikel Phone: --

1300 Industrial Rd #2, San Carlos, CA 94707 Contact: Elise Sbarbori Phone: 650-616-1214

Cell: 650-269-5200

Total Due: \$265.00

Receipt Number: WR2011-0349 **Total Amount Paid:** \$265 00 Payer Name : TEC Accutite Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes

Driller: Gregg Drilling and Testing - Lic #: 485165 - Method: DP Work Total: \$265.00

Specifications

Permit Issued Dt **Expire Dt** Hole Diam Max Depth Number **Boreholes**

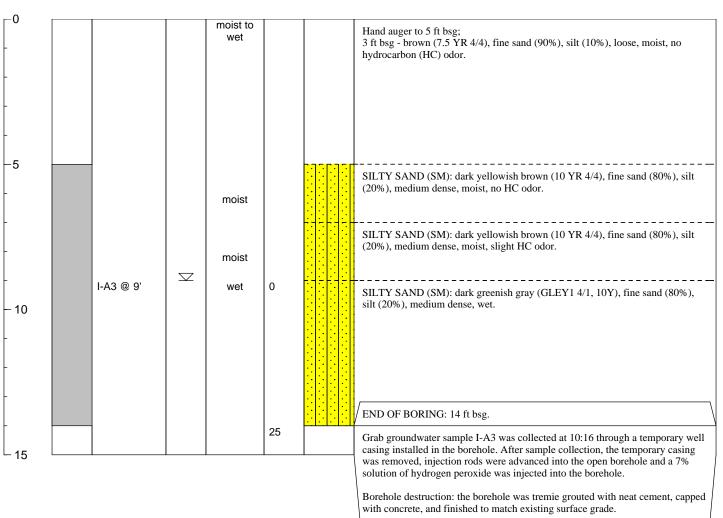
W2011-12/01/2011 03/05/2012 4 2.25 in. 15.00 ft

0727

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and
coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits
required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants
responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours
planned. No work shall begin until all the permits and requirements have been approved or obtained.


7. Permit is valid or	nly for the purpose specified herein.	No changes in construction	n procedures, as described on this
permit application.	Boreholes shall not be converted to	monitoring wells, without a	permit application process.

ATTACHMENT E

Soil Boring Logs

TEC	ACCU.	TITE			SO	IL BO	RING LOG		BORING NUMBER I-A3	
									I-AJ	
CLIENT:		Olympi	<u>an</u>				BORING DIAMETER:		2.25 inches	
LOCATION	۱:	1435 W	ebster s	St., Alamed	<u>a, CA</u>		TOTAL DEPTH:		14 ft bsg	
DRILLING	CO:	<u>RSI</u>					DATE STARTED:		<u>10/4/11</u>	
DRILLING	METHOD:	Direct F	Push Te	chnology			DATE COMPLETED:		<u>10/4/11</u>	
SAMPLING	METHOD:	Macro-	core wit	th liners			SURFACE ELEVATION	1	Not measured	
GEOLOGIS	ST:	E. Sbar	bori				FIRST ENCOUNTERED	D WATER	9 ft bsg	
REVIEWEI	D BY:	P. Dots	on, PG	#8237			STATIC WATER LEVE	L	Not measured	
							FT BSG = FEET BELO	W SURFA	CE GRADE	
DEPTH (ft bsg)	INTERVAL	PLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIP	PTION		

Page 1 of 1

TE	EC AC	CCUTITE			SO	IL BO	RING LOG	BORING NUMBER I-B1
DRILLI SAMPI GEOLO	ΓΙΟΝ: ING CO: ING MET	RSI THOD: Direct THOD: Macro E. Sba	Vebster : Push Te	<u>liners</u>	<u>da</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERED STATIC WATER LEVEL FT BSG = FEET BELOV	O WATER 8 ft bsg Not measured
DEPTH (ft bsg)	VIEWED	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIP	TION
0							Hand auger to 5 ft bsg	
5		I-B1 @ 9'	ightharpoons	moist wet	>1000		(20%), medium dense, moist, i SILTY SAND (SM): dark yell (20%), medium dense, moist, s	owish brown (10 YR 4/4), fine sand (80%), silt slight HC odor. enish gray (GLEY1 4/1, 10Y), fine sand (80%),
10					10		casing installed in the borehole	I was collected at 10:49 through a temporary wel b. After sample collection, the temporary casing ere advanced into the open borehole and a 7%

solution of hydrogen peroxide was injected into the borehole.

with concrete, and finished to match existing surface grade.

Borehole destruction: the borehole was tremie grouted with neat cement, capped

TE	EC AC	CCUTITE			SC	IL BOI	RING LOG	BORING NUMBER I-B6
DRILLII SAMPL GEOLO	TION: NG CO: NG MET LING ME	RSI THOD: Direct THOD: Macro-	Vebster Push To	<u>′liners</u>	<u>da</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERED: STATIC WATER LEVEL FT BSG = FEET BELOW	Not measured
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIPT	ION
5		I-B6 @ 9'	∇	moist	598		(20%), medium dense, moist, no	wish brown (10 YR 4/4), fine sand (80%), silt hydrocarbon (HC) odor.
10		1-50 @ 9			40.2		casing installed in the borehole.	was collected at 13:51 through a temporary well After sample collection, the temporary casing the advanced into the open borehole and a 7%

Borehole destruction: the borehole was tremie grouted with neat cement, capped with concrete, and finished to match existing surface grade.

TE	EC AC	CCUTITE			SO	IL BO	RING LOG	BORING NUMBER I-C1
DRILLII SAMPL GEOLO	TON: NG CO: NG MET	RSI THOD: Direct THOD: Macro-	/ebster S	<u>iners</u>	<u>da</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTEREI STATIC WATER LEVE FT BSG = FEET BELO	D WATER <u>9 ft bsg</u> L <u>Not measured</u>
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIF	PTION
0							Hand auger to 5 ft bsg.	
5				moist			(20%), medium dense, moist,	lowish brown (10 YR 4/4), fine sand (80%), silt
10		I-C1 @ 9'		wet	0		(15%), clay (5%), medium der	lowish brown (10 YR 4/4), fine sand (80%), silt nse, wet, moderate HC odor. enish gray (GLEY1 4/1, 10Y), fine sand (80%), a dense, wet, moderate HC odor.
15					49.9		END OF BORING: 14 ft bsg. Grab groundwater sample I-C casing installed in the borehol was removed, injection rods w	

Borehole destruction: the borehole was tremie grouted with neat cement, capped with concrete, and finished to match existing surface grade.

TE	EC AC	CUTITE			so	IL BO	RING LOG	BORING NUMBER A-1
DRILLII SAMPL GEOLO	TION: NG CO: NG MET LING ME	Gregg HOD: Direct THOD: Macro-	lebster Drilling Push Te	echnology ners	l <u>a</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERED STATIC WATER LEVEL FT BSG = FEET BELOY	O WATER 12 ft bsg Not measured
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIP	TION
-0							Hand auger to 5 ft bsg; brown (7.5 YR), fine sand (90° odor.	%), silt (10%), loose, moist, no hydrocarbon (HC)
-5		A-1 @ 9'		moist moist	0		SILTY SAND (SM): dark yell (20%), medium dense, moist, 1	owish brown (10 YR 5/6), fine sand (80%), silt no HC odor.
- 10 - 15			∇	moist wet	1116 466		(20%), medium dense, moist, s SILTY SAND (SM): dark gree silt (20%), medium dense, wet END OF BORING: 13 ft bsg.	enish gray (GLEY1 4/1, 10Y), fine sand (80%), , moderate HC odor.

Page 1 of 1

Borehole destruction: the temporary well casing was removed and the borehole was tremie grouted with neat cement, capped with concrete, and finished to match existing surface grade.

TE	C AC	CCUTITE			so	IL BO	RING LOG	BORING NUMBER A-2
DRILLII SAMPL GEOLO	TION: NG CO: NG MET ING ME	Gregg THOD: Direct THOD: Macro-	/ebster St., A Drilling Push Techno Core liners	ology			BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERE STATIC WATER LEVE FT BSG = FEET BELO	D WATER Not encountered L Not measured
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC SYMBOL	LITHOLOGIC DESCRIF	PTION
-0							Hand auger to 5 ft bsg.	Louisk kroup (10 VD 4/4) fire 1/200/2
- 10		A-2 @ 9'	W	vet .	54.1 1011		(20%), medium dense, moist, SILTY SAND (SM): dark yel (20%), medium dense, wet, m	lowish brown (10 YR 4/4), fine sand (80%), silt oderate HC odor. enish gray (GLEY1 4/1, 10Y), fine sand (80%),
- 15							groundwater samples; however encountered. Borehole destruction: the temp	installed in the borehole to collect grab er, after 30 minutes, no recoverable water was porary well casing was removed and the borehole cement, capped with concrete, and finished to

Page 1 of 1

TEC ACCUTITE					SO	IL BO	RING LOG	BORING NUMBER A-3	
DRILLII SAMPL GEOLO	TION: NG CO: NG MET LING ME	Gregg THOD: Direct THOD: Macro E. Sba	Vebster Drilling Push Te	echnology ners	<u>da</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERED STATIC WATER LEVEL FT BSG = FEET BELOV	13 ft bsg 12/6/11 12/6/11 Not measured ED WATER 8.5 ft bsg EL Not measured	
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIP	TION	
-0							Hand auger to 5 ft bsg.		
-5			∇	moist moist	10.1		(20%), medium dense, moist, n	owish brown (10 YR 4/6), fine sand (80%), silt	
- 10		A-3 @ 9'		wet	1039		SILTY SAND (SM): dark gree silt (20%), medium dense, wet,	enish gray (GLEY1 4/1, 10Y), fine sand (80%), moderate HC odor.	
- 15					1535		Grab groundwater sample A-3 casing installed in the borehole Borehole destruction: the temp	was collected at 11:36 through a temporary well corary well casing was removed and the borehole ement, capped with concrete, and finished to	

Page 1 of 1

TEC ACCUTITE					SO	IL BO	RING LOG	BORING NUMBER A-4	
DRILLII SAMPL GEOLC	TION: NG CO: NG MET ING ME	Gregg THOD: Direct THOD: Macro-	Vebster St Drilling Push Tec Core line	<u>hnology</u> <u>rs</u>	d <u>a</u>		BORING DIAMETER: TOTAL DEPTH: DATE STARTED: DATE COMPLETED: SURFACE ELEVATION FIRST ENCOUNTERE! STATIC WATER LEVE FT BSG = FEET BELO	D WATER 9 ft bsg L Not encountered	
DEPTH (ft bsg)	VIEWED INTERVAL	SAMPLE ID	WATER LEVEL	MOISTURE	PID (ppm)	LITHOLOGIC	LITHOLOGIC DESCRIF	PTION	
0							Hand auger to 5 ft bsg.		
5				moist			(20%), medium dense, moist,	lowish brown (10 YR 4/4), fine sand (80%), silt	
10		A-4 @ 9'	\square	wet	288		(15%), clay (5%), medium der	enish gray (GLEY1 4/1, 10Y), fine sand (80%), a dense, wet, moderate HC odor.	
15					468		casing installed in the borehol Borehole destruction: the temp	4 was collected at 12:50 through a temporary well e. porary well casing was removed and the borehole cement, capped with concrete, and finished to	

Page 1 of 1

ATTACHMENT F

GEOTRACKER SUBMISSION CONFIRMATIONS

GEOTRACKER ESI

UPLOADING A GEO_MAP FILE

SUCCESS

Your GEO_MAP file has been successfully submitted!

Submittal Type:GEO_MAPFacility Global ID:T0600100766Facility Name:OLYMPIAN #112

File Name: 2011 10 Oxidizer Injections 1435 Webst F2.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:29:21 PM

Confirmation Number: 9224164605

Copyright © 2012 State of California

1 of 1 1/27/2012 2:29 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: I-A3

Facility Name: OLYMPIAN #112

File Name: I-A3.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:17:24 PM

Confirmation Number: 6023406267

Copyright © 2012 State of California

1 of 1 1/27/2012 2:20 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: I-B1

Facility Name: OLYMPIAN #112

File Name: I-B1.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:22:38 PM

Confirmation Number: 6464398980

Copyright © 2012 State of California

1 of 1 1/27/2012 2:22 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: I-B6

Facility Name: OLYMPIAN #112

File Name: I-B6.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:23:42 PM

Confirmation Number: 6729964494

Copyright © 2012 State of California

1 of 1 1/27/2012 2:23 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: I-C1

Facility Name: OLYMPIAN #112

File Name: I-C1.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:24:56 PM

Confirmation Number: 7156885802

Copyright © 2012 State of California

1 of 1 1/27/2012 2:24 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: A-1

Facility Name: OLYMPIAN #112

File Name: A-1.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:10:24 PM

Confirmation Number: 5548995912

Copyright © 2012 State of California

1 of 1 1/27/2012 2:10 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: A-2

Facility Name: OLYMPIAN #112

File Name: A-2.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:12:20 PM

Confirmation Number: 6006409645

Copyright © 2012 State of California

1 of 1 1/27/2012 2:12 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: A-3

Facility Name: OLYMPIAN #112

File Name: A-3.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:13:12 PM

Confirmation Number: 1050477027

Copyright © 2012 State of California

1 of 1 1/27/2012 2:13 PM

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE
Facility Global ID: T0600100766

Field Point: A-4

Facility Name: OLYMPIAN #112

File Name: A-4.pdf

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

<u>IP Address:</u> 67.126.45.211

<u>Submittal Date/Time:</u> 1/27/2012 2:16:00 PM

Confirmation Number: 4964014708

Copyright © 2012 State of California

1 of 1 1/27/2012 2:15 PM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 2011 Peroxide Injection and SAMR2

67.126.45.211

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112
File Name: GEO_WELL.zip
Organization Name: TEC Accutite
Username: TEC-OLYMPIAN

Submittal Date/Time: 1/20/2012 3:04:32 PM

Confirmation Number: 4095143139

IP Address:

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

<u>Submittal Type:</u> EDF - Interim Remedial Action Report <u>Submittal Title:</u> 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1110007 Webster St EDF.zip

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

Submittal Date/Time: 1/20/2012 3:07:18 PM

Confirmation Number: 7077783167

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Interim Remedial Action Report **Submittal Title:** 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1110123 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/20/2012 3:08:26 PM

Confirmation Number: 5167958080

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Interim Remedial Action Report **Submittal Title:** 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1110198 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/20/2012 3:09:43 PM

Confirmation Number: 3573209404

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Interim Remedial Action Report Submittal Title: 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1110211 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/30/2012 10:31:31 AM

Confirmation Number: 4319152116

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Interim Remedial Action Report **Submittal Title:** 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1112044 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/20/2012 3:11:59 PM

Confirmation Number: 9183381080

VIEW QC REPORT

VIEW DETECTIONS REPORT

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Interim Remedial Action Report **Submittal Title:** 2011 Peroxide Injection and SAMR2

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1112045 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/20/2012 3:12:26 PM

Confirmation Number: 4796844422

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: 2011 Oxidizer Injection Pilot Test and Second Quarter Groundwater

Monitoring Report

Report Type: Pilot Study/ Treatability Report

 Report Date:
 1/30/2012

 Facility Global ID:
 T0600100766

 Facility Name:
 OLYMPIAN #112

File Name: RO0193 2011_PT and SAMR2_1435 Webster E480 E521 FINAL.pdf

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 1/30/2012 4:34:38 PM

Confirmation 8709803283

Number:

Copyright © 2012 State of California

1 of 1 1/30/2012 4:34 PM