

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201 Fax: (650) 616-1244

www.tecenvironmental.com

Contractor's Lic. #762034

September 28, 2012

Ms. Karel Detterman, P.G. Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

RECEIVED

By Alameda County Environmental Health at 5:38 pm, Dec 19, 2012

SUBJECT:

PERJURY STATEMENT

SITE:

FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET

ALAMEDA, CALIFORNIA 94501

FLC # RO0000193

Dear Ms. Detterman:

I declare under penalty of perjury that the information and/or recommendations contained in the attached report is true and correct.

Thank you for your cooperation and assistance on this project. If you have any questions, feel free to contact me at (650) 596-8950.

Sincerely

Responsible Party

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201
• Fax: (650) 616-1244

www.tecenvironmental.com
 Contractor's Lic. #762034

September 28, 2012

Ms. Karel Detterman, P.G. Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

SUBJECT: THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501 FLC # RO0000193

Dear Ms. Detterman:

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. is pleased to submit this third quarter 2012 groundwater monitoring report for the above-referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1214.

Sincerely,

Technology, Engineering & Construction, Inc.

Elise Sbarbori Project Manager

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, California 94070

Mr. Jeff Farrar, via email Mr. Ed Firestone, via email

 ${\it Mr. and Mrs. Charles A. \& Ose M. Begley, 2592 Pine View Dr., Fortuna, California ~95540}$

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

FLC #: RO0000193

PREPARED FOR:

OLYMPIAN JV
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:

TECHNOLOGY, ENGINEERING & CONSTRUCTION, INC. PROJECT #: E-589

SAMPLING DATE:

SEPTEMBER 5, 2012

REPORT DATE:

SEPTEMBER 28, 2012

TABLE OF CONTENTS

	<u>P/</u>	AGE
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	ENVIRONMENTAL BACKGROUND	1
3.1	Site Timeline	1
3.2	Site Condition	3
4.0	GROUNDWATER MONITORING	3
4.1	Sampling Methods	3
4.2	Electronic Laboratory Data Submittal	
4.3	Results	3
5.0	CONCLUSIONS AND RECOMMENDATIONS	4
6.0	LIMITATIONS	5

TABLES

- 1 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS AND ACTIVITY SCHEDULE
- 2 SUMMARY OF HISTORICAL GROUNDWATER ELEVATION DATA
- 3 SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS

FIGURES

- 1 VICINITY MAP
- 2 SITE MAP
- **3** GROUNDWATER GRADIENT MAP
- 4 PETROLEUM HYDROCARBONS IN GROUNDWATER

CHART

1 MTBE CONCENTRATION TRENDS AND DEPTH TO WATER, MW-8

ATTACHMENTS

- A FIELD DATA SHEETS
- **B** LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION
- C GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 INTRODUCTION

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) conducted the third quarter 2012 semi-annual groundwater monitoring event at the former Olympian Service Station located at 1435 Webster Street, Alameda, California. The site is the location of a subsurface release of petroleum hydrocarbons related to the former gasoline underground storage tanks (USTs) that were removed in 1989.

This report includes the site environmental background and results of the recent groundwater monitoring event. All site groundwater monitoring wells were gauged and sampled in compliance with California Regional Water Quality Control Board Resolution 2009-42 and Alameda County Health Agency (ACHA) directives. A vicinity map and site map are provided as Figures 1 and 2, respectively.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST, one 500-gallon waste oil UST and two dispenser islands (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently used as a parking lot, however the site owner wishes to redevelop the property as mixed commercial (ground floor) / residential.

3.0 ENVIRONMENTAL BACKGROUND

A historical timeline of relevant activities at the subject site is presented in Section 3.1; a summary of the current site condition, including the monitoring well network and general chemical of concern (COC) distribution, is presented in Section 3.2.

3.1 Site Timeline

October 1988	Soil gas analysis performed onsite identified significant concentrations of total hydrocarbons as propane in soil gas.									
September 1989	Two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST removed by TEC Accutite; petroleum hydrocarbons detected in soil beneath former tank location.									
January 1991	Approximately 950 cubic yards of soil were removed from the former location of the USTs; this soil was bioremediated onsite and returned to the former excavation.									
January 1993	Three monitoring wells installed onsite (MW-1 through MW-3); no petroleum hydrocarbons detected in soil.									
February 1999	Four soil borings advanced on- and offsite (B-1 through B-4); petroleum hydrocarbon concentrations detected in soil and groundwater.									
December 1999	Three monitoring wells, installed onsite (MW-4 through MW-6); petroleum									

Site conceptual model (SCM) completed; potential for benzene vapor-phase migration from hydrocarbon affected groundwater to indoor and ambient air identified

hydrocarbons detected in soil.

as an exposure pathway requiring futher evaluation.

November 2000

June 2001 Four soil borings advanced [B-1 through B-4 (second set of B-1 through B-4)]; no

petroleum hydrocarbons detected in soil; petroleum hydrocarbons detected in

groundwater.

February 2002 Site-specific risk assessment performed; compounds of concern identified as TPHg

and benzene.

May 2003 Eight soil vapor probes advanced onsite (SV-1 through SV-7); petroleum

hydrocarbons detected below their respective Environmental Screening Levels

(ESLs).

September 2005 SCM updated; uncertainties identified in onsite benzene vapor concentrations and

offsite groundwater conditions.

June 2006 Eight soil borings advanced (SP-1 through SP-8); petroleum hydrocarbons detected

in soil above constituent ESLs.

November 2006 Seventeen soil borings advanced (CB-1 through CB-17) to determine excavation

limits; petroleum hydrocarbons detected at concentrations below ESLs and/or

laboratory detection limits at depths shallower than 8 feet bsg.

December 2006 Five soil borings advanced (DB-1 through DB-5); onsite soils classified as Class II

waste; monitoring wells MW-1 and MW-5 abandoned by pressure grouting.

February 2007 Interim remedial action conducted; 992.54 tons of soil excavated from site; 15,000

gallons of groundwater pumped from open excavation pit, sediment removed and

carbon-filtered, and discharged to sewer under permit.

March 2007 Two monitoring wells installed onsite (MW-7 and MW-8).

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2009 Six off-site soil borings advanced (B-19 through B-24); off-site plume fully defined.

One groundwater monitoring well (MW-9) installed in the public right-of-way on Webster Street. Five permanent nested vapor monitoring points installed onsite; no

petroleum hydrocarbons detected in onsite soil vapor.

February 2010 Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study and

Corrective Action Plan submitted to the Alameda County Health Agency. Hydrogen

peroxide injection identified as the most effective remedial alternative.

March 2011 Corrective Action Plan Addendum submitted to the Alameda County Health Agency.

April 2011 Baseline sampling for chromium, hexavalent chromium and other metals completed

onsite. Total chromium was detected in wells MW-3, MW-4, MW-6 and MW-7. Chromium was detected at low levels in the hexavalent (oxidized) state in wells MW-

3 and MW-4.

September –

December 2011 Injection Pilot Test completed. 1,078 gallons of 7% hydrogen peroxide solution

injected at three target remediation areas onsite.

3.2 Site Condition

The site currently has seven groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and five dual-completed vapor monitoring points (VMP-1 through VMP-5). Locations of site monitoring wells are presented in Figure 2. Groundwater monitoring well construction details and activity schedule are presented in Table 1. Chemicals of concern (COCs) for the site include petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), and methyl tert-butyl ether (MTBE). The source of the contamination was the former USTs, which were removed in 1989. TEC continues to monitor all active groundwater monitoring wells associated with the site on a semi-annual basis.

4.0 GROUNDWATER MONITORING

TEC conducted the third quarter monitoring event on September 5, 2012. Field data sheets from this groundwater sampling event are presented as Attachment A.

4.1 Sampling Methods

Upon arrival to the site, a TEC technician uncapped all active site groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and allowed the water level in each well to fully equilibrate prior to measuring the depth to water. Wells were gauged to the nearest 0.01 foot using an electric water level meter and recorded on the well sampling logs.

Following well gauging, approximately three casing-water volumes of groundwater were purged from each well with a dedicated disposable plastic bailer, with the exception of well MW-8, which went dry after purging 2.4 casing volumes. After water levels in each well recovered to a minimum of 80% of the pre-purge level, groundwater samples were collected with a disposable bailer and transferred into laboratory-supplied, HCl-preserved volatile organic analysis vials (VOAs). The samples were labeled, stored in an insulated container with ice, and delivered to *Torrent Laboratory, Inc.*, a California Department of Health Services certified laboratory, under chain-of-custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX compounds, and fuel oxygenates by EPA Method 8260B. The laboratory analytical report and chain-of-custody documentation are presented in Attachment B.

4.2 Electronic Laboratory Data Submittal

The laboratory report was converted into EDF format and uploaded to GeoTracker, California's online geospatial database. Depths to groundwater were uploaded to GeoTracker as a GEO_WELL file. This report was converted into PDF format and uploaded to GeoTracker as a GEO_REPORT file and to the Alameda County FTP site. Attachment C contains the GeoTracker submission confirmations.

4.3 Results

4.3.1 Groundwater Elevation and Flow Direction

The calculated groundwater gradient based on groundwater elevations was toward the southwest at 0.003 feet/foot (ft/ft) during the September 2012 monitoring event. Groundwater elevations are presented in Table 2 and Figure 3.

4.3.2 Petroleum Hydrocarbons in Groundwater

The highest concentrations of petroleum hydrocarbons in groundwater were detected in the sample from well MW-8 (590 ug/L TPHg, 99 ug/L benzene, 1.1 ug/L ethylbenzene, 20 ug/L ethylbenzene, 4.9 ug/L xylenes, 510 ug/L MTBE, 3,800 ug/L TBA, and 11 ug/L DIPE).

In all other wells, site COCs were not detected above the laboratory reporting limits with the exception of the following:

- 20 ug/L MTBE in well MW-2;
- 79 ug/L TPHg and 140 ug/L MTBE in well MW-4;
- and 2.4 ug/L MTBE in well MW-7.

Groundwater analytical results are summarized in Table 3 and Figure 4.

5.0 CONCLUSIONS AND RECOMMENDATIONS

- For this groundwater monitoring event, average groundwater flow was toward the south at approximately 0.003 ft/ft, within historical precedent for seasonal change in groundwater elevation and gradient.
- During the September 2012 monitoring event, no chemicals of concern were detected above the calculated site-specific treatment levels.
- Well MW-8 contained the highest concentration of petroleum hydrocarbons, and site contamination appears to be localized to that vicinity. The concentration of MTBE in well MW-8 has shown a general decreasing trend since its installation in 2007 (Chart 1). MTBE concentrations in downgradient well MW-4 have remained relatively stable prior to the pilot test, where they increased to levels which remain below site-specific treatment levels. During the the current quarter TBA, MTBE's degradation product, was detected at well MW-8 at the highest concentration since 2007. It is TEC's conclusion that the decrease in MTBE in well MW-8 is influenced more by degradation to TBA than to down-gradient migration.
- This fuel leak case meets the criteria for closure based on the State of California's Low Threat Underground Storage Tank Case Closure Policy, which became effective August 17, 2012:
 - The unauthorized release consisted only of petroleum. The source of the contamination (USTs) has been removed. Free product has not been observed at the site. Secondary sources of contamination (elevated concentrations of petroleum hydrocarbons in soil and groundwater) have been addressed in the following ways:
 - a) tank removal and over-excavation / bioremediation of affected soils (1991)
 - b) excavation and removal of 992 tons of soil and 15,000 gallons of groundwater; addition of Oxygen Releasing Compound[™] to the excavation pit prior to backfill (2007)
 - c) injection of 1,078 gallons of 7% hydrogen peroxide solution at target remediation areas onsite (2011)
 - The site is located within the service area of a public water system
 - A conceptual site model has been developed that assesses the nature, extent and mobility of the release. The release has been defined offsite by multiple step-out soil borings.
 - Soil and groundwater have been tested for MTBE. Although background water quality objectives have not been achieved, the extent of contamination meets the groundwaterspecific criteria described by the State.

Moreover:

Dissolved-phase contaminant concentrations appear stable or generally decreasing.
 Seasonal variation in contaminant concentrations appear to be linked to fluctuations in the groundwater table.

- Soil vapor samples have been collected and an evaluation of the vapor intrusion pathway has been conducted; vapor intrusion does not appear to be of concern at this site.
- Pending further site corrective action or closure, and in accordance with State Water Resources Control Board Resolution 2009-042, TEC recommends that all site monitoring wells be sampled semi-annually; the next monitoring event is scheduled to occur during the first guarter 2013.

6.0 **LIMITATIONS**

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Technology, Engineering & Construction Inc.'s liability is limited to the dollar amount of the work performed.

Thank you for your cooperation and assistance with this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1200.

SSIONAL GEO

No. 8237

OF CALIFOR

Sincerely,

Technology, Engineering & Construction, Inc.

Elise Sbarbori **Project Manager**

Reviewed by:

Paul B. Dotson, PG #8237 Professional Geologist

TABLES

Table 1 Groundwater Monitoring Well Construction Details and Activity Schedule

Former Olympian Service Station 1435 Webster Street Alameda, California

			Monitoring V	Vell Constru	ction Details				Activity	Schedule
Well ID	Date Installed ¹	Total Depth	Diameter	Top of Screen	Bottom of Screen	Screen Length	Top of Casing ²	Monitoring Status	Gauging	Sampling ³
	instaneu	(ft bsg)	(inches)	(ft bsg)	(ft bsg)	(feet)	(ft msl)		(semi-a	annually)
MW-1	1/1/1993	24	2	6	24	18	19.53	Destroyed		
MW-2	1/1/1993	24	2	6	24	18	19.80	Active	\checkmark	\checkmark
MW-3	1/1/1993	24	2	6	24	18	19.79	Active	\checkmark	\checkmark
MW-4	12/1/1999	20	2	5	20	15	19.30	Active	\checkmark	\checkmark
MW-5	12/1/1999	20	2	5	20	15	18.99	Destroyed		
MW-6	12/1/1999	20	2	5	20	15	20.27	Active	\checkmark	\checkmark
MW-7	3/9/2007	20	4	10	20	10	18.93	Active	\checkmark	\checkmark
MW-8	3/9/2007	20	4	10	20	10	19.33	Active	$\sqrt{}$	\checkmark
MW-9	7/13/2009	20	4	5	20	15	18.83	Active	\checkmark	\checkmark

Notes

ft = feet

bsg = below surface grade

msl = mean sea level

¹ = Well installation date is given as first day of the installation month when exact well installation date is unknown

² = survey performed by Virgil Chavez Land Surveying (PLS #6323)

³ = groundwater samples are routinely analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260TPH, and for benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl-tert-butyl ether (MTBE), di-isopropyl ether (DIPE), and tert-butyl alcohol (TBA).

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-1	19.53	6/3/1993	(1)	
		9/14/1994	11.46	8.07
		12/30/1994	9.22	10.31
		3/26/1995	6.76	12.77
		7/9/1995	8.92	10.61
		7/31/1998	8.30	11.23
		2/11/1999 6/23/1999	7.91	11.62 10.50
		12/6/1999	9.03 10.86	8.67
		3/16/2000	6.93	12.60
		6/13/2000	8.73	10.80
		9/29/2000	10.18	9.35
		3/22/2001	8.24	11.29
		6/25/2001	9.73	9.80
		9/28/2001	11.06	8.47
		12/26/2001	8.11	11.42
		07/0705	8.69	10.84
		10/19/2005	10.25	9.28
		1/13/2006	7.09	12.44
		5/5/2006	6.40	13.13
		7/19/2006	8.28	11.25
		10/5/2006	9.67	9.86
		******Aba	ndoned 12/27	/2006*******
MW-2	19.80	6/3/1993	9.54	10.26
		9/14/1994 12/30/1994	11.82 9.46	7.98 10.34
		3/26/1995	6.82	12.98
		7/9/1995	9.22	10.58
		7/31/1998	8.56	11.24
		2/11/1999	8.12	11.68
		6/23/1999	9.33	10.47
		12/6/1999	11.20	8.60
		3/16/2000	6.88	12.92
		6/13/2000	8.99	10.81
		9/29/2000	10.40	9.40
		3/22/2001	8.46	11.34
		6/25/2001	10.11	9.69
		9/28/2001	11.40	8.40
		12/26/2001	8.28	11.52
		7/7/2005	8.99	10.81
		10/19/2005	10.63	9.17
		1/13/2006	7.15	12.65
		5/5/2006	6.43	13.37
		7/19/2006	8.57	11.23
		10/5/2006 3/29/2007	10.05 8.83	9.75 10.97
		6/27/2007	9.86	
		9/19/2007	10.89	9.94 8.91
		12/19/2007	10.78	9.02
		3/6/2008	8.48	11.32
		6/18/2008	10.23	9.57
		9/10/2008	11.36	8.44
		12/10/2008	11.89	7.91
		3/4/2009	8.68	11.12
		6/3/2009	9.91	9.89
		8/27/2009	11.16	8.64
		12/10/2009	11.32	8.48
		3/10/2010	7.99	11.81
		6/10/2010	9.13	10.67
		9/22/2010	10.95	8.85
		4/19/2011	7.43	12.37
		9/30/2011	10.54	9.26
		12/6/2011	10.79	9.01
		9/5/2012	10.75	9.05
		i		

(ft msl) (ft) (ft) MW-3 19.79 6/3/1993 9.80 9.80 9/14/1994 12.19 12/30/1994 9.72 1 3/26/1995 6.88 1 7/9/1995 9.52 1 7/31/1998 8.40 1 2/11/1999 7.77 1 6/23/1999 9.21 1	vation
MW-3 19.79 6/3/1993 9.80 9/14/1994 12.19 12/30/1994 9.72 1 3/26/1995 6.88 1 7/9/1995 9.52 7/31/1998 8.40 1 2/11/1999 7.77 1 6/23/1999 9.21 1	
9/14/1994 12.19 12/30/1994 9.72 1 3/26/1995 6.88 1 7/9/1995 9.52 1 7/31/1998 8.40 1 2/11/1999 7.77 1 6/23/1999 9.21 1	msl) 9.99
12/30/1994 9.72 1 3/26/1995 6.88 1 7/9/1995 9.52 1 7/31/1998 8.40 2/11/1999 7.77 1 6/23/1999 9.21 1	7.60
7/9/1995 9.52 1 7/31/1998 8.40 1 2/11/1999 7.77 1 6/23/1999 9.21 1	0.07
7/31/1998 8.40 1 2/11/1999 7.77 1 6/23/1999 9.21 1	2.91
2/11/1999 7.77 1 6/23/1999 9.21 1	0.27
6/23/1999 9.21 1	1.39
	2.02
	0.58 3.67
	3.31
	1.03
	9.59
3/22/2001 8.24 1	1.55
	9.75
	3.45
	1.78
	0.95 9.21
	2.94
	3.68
	1.38
	9.77
3/29/2007 9.71 1	80.0
	9.97
	3.91
	9.11
	1.49 9.61
	3.46
	7.90
	1.39
6/3/2009 9.81	9.98
	3.61
	3.49
	2.01
	0.77 3.83
	2.57
	9.27
	9.01
9/5/2012 10.82	3.97
MN 4 40.00 40/0/4000 40.70	2.54
	3.51 2.44
	1.12
	9.19
4/5/2001 8.26 1	1.04
	9.62
	3.32
	1.12
	0.53
10/19/2005 10.24 1/13/2006 (1)	9.06 (1)
	(1)
I 5/5/2006 (1)	0.92
5/5/2006 (1) 7/19/2006 8.38 1	9.65
7/19/2006 8.38 1	0.75
7/19/2006 8.38 1 10/5/2006 9.65	0.75
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40	9.90
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 9 6/27/2007 9.40 9 9/19/2007 10.45	9.90 3.85
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9/19/2007 10.45 9 12/19/2007 10.35 8	9.90 8.85 8.95
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9 19/19/2007 10.45 8 12/19/2007 10.35 3 3/6/2008 8.25 1	9.90 8.85 8.95 1.05
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9 19/19/2007 10.45 1 2/19/2007 10.35 3 3/6/2008 8.25 1 6/18/2008 9.80 9	9.90 8.85 8.95
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 9 6/27/2007 9.40 9 9/19/2007 10.45 8 12/19/2007 10.35 8 3/6/2008 8.25 6 18/2008 9.80 9 9/10/2008 10.89	9.90 8.85 8.95 1.05 9.50
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 9 6/27/2007 9.40 9 9/19/2007 10.45 12/19/2007 10.35 3/6/2008 8.25 6 6/18/2008 9.40 9 12/10/2008 10.89 12/10/2008 11.43	9.90 8.85 8.95 1.05 9.50 8.41
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9/19/2007 10.45 8 12/19/2007 10.35 8 3/6/2008 8.25 1 6/18/2008 9.80 9 12/10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 1 6/3/2009 9.53	9.90 8.85 8.95 1.05 9.50 3.41 7.87 0.83
7/19/2006 8.38 1 10/5/2006 9.65 9.65 9.65 9.75/2007 8.55 9.75/2007 9.40 9/19/2007 10.45 9/19/2007 10.35 9/19/2008 8.25 9/10/2008 10.89 12/10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 6/3/2009 9.53 9/27/2009 10.72	9.90 3.85 3.95 1.05 9.50 3.41 7.87 0.83 9.77 3.58
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 9 6/27/2007 9.40 9 9/19/2007 10.45 8 12/19/2007 10.35 8 3/6/2008 8.25 1 6/18/2008 9.80 9 10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 1 6/3/2009 9.53 8/27/2009 10.72 8 12/10/2009 10.72 8	9.90 3.85 3.95 1.05 9.50 8.41 7.87 0.83 9.77 3.58 3.45
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9/19/2007 10.45 12/19/2007 10.35 3/6/2008 8.25 1 6/18/2008 9.80 9/10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 1 6/3/2009 9.53 8/27/2009 10.72 12/10/2009 10.85 3/10/2010 7.87 1	9.90 9.85 9.95 1.05 9.50 9.41 7.87 0.83 9.77 8.58 8.45 1.43
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 1 6/27/2007 9.40 9/19/2007 10.45 12/19/2007 10.35 3/6/2008 8.25 1 6/18/2008 9.80 9/10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 1 6/3/2009 9.53 8/27/2009 9.53 8/27/2009 10.72 12/10/2009 10.85 3/10/2010 7.87 1 6/10/2010 8.87 1	9.90 8.85 8.95 1.05 9.50 8.41 7.87 0.83 9.77 8.58 8.45 1.43 0.43
7/19/2006 8.38 1 10/5/2006 9.65 9.65 9.40 3/29/2007 8.55 9.40 9.40 9.40 9.40 9.40 9.40 9.40 9.40	9.90 9.85 9.95 1.05 9.50 9.41 7.87 0.83 9.77 8.58 8.45 1.43
7/19/2006 8.38 1 10/5/2006 9.65 9 3/29/2007 8.55 9 6/27/2007 9.40 9 9/19/2007 10.45 8 12/19/2007 10.35 8 3/6/2008 8.25 1 6/18/2008 9.80 9 10/2008 10.89 12/10/2008 11.43 3 3/4/2009 8.47 1 6/3/2009 9.53 8/27/2009 10.72 8 12/10/2009 10.72 8 12/10/2009 10.85 8 3/10/2010 7.87 1 6/10/2010 8.87 9 9/22/2010 10.52 8 4/19/2011 7.43 1	9.90 8.85 8.95 1.05 9.50 3.41 7.87 0.83 9.77 8.58 3.45 1.43 0.43
7/19/2006 8.38 1 10/5/2006 9.65 9.65 3/29/2007 8.55 1 6/27/2007 9.40 9/19/2007 10.45 12/19/2007 10.45 12/19/2007 10.35 3/6/2008 8.25 1 6/18/2008 9.80 9/10/2008 10.89 12/10/2008 11.43 3/4/2009 8.47 1 6/3/2009 9.53 8/27/2009 10.72 12/10/2009 10.85 3/10/2010 7.87 6/10/2010 8.87 9/22/2010 10.52 4/19/2011 7.43 9/30/2011 10.15 9/30/2011 10.15 12/6/2011 10.41	9.90 8.85 8.95 1.05 9.50 8.41 7.87 0.83 9.77 8.58 8.45 1.43 0.43 3.78 1.87

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-5	18.99	12/6/1999	10.17	8.82
		3/16/2000	6.28	12.71
		6/13/2000	7.95	11.04
		9/29/2000 3/22/2001	9.54 7.48	9.45 11.51
		6/25/2001	9.05	9.94
		9/28/2001	10.39	8.60
		12/26/2001	7.28	11.71
		8/24/2005	7.87	11.12
		10/19/2005	9.51	9.48
		1/13/2006	6.35	12.64
		5/5/2006	5.64	13.35
		7/19/2006	7.41	11.58
		10/5/2006	8.89	10.10
		******Aba	ndoned 12/27	2006*******
MW-6	20.27	12/6/1999	11.46	8.81
		3/16/2000	8.32	11.95
		6/13/2000	9.14	11.13
		9/29/2000	10.81	9.46
		3/22/2001	8.64	11.63
		6/25/2001	10.39	9.88
		9/28/2001	11.70	8.57
		12/26/2001	8.40	11.87
		7/7/2005	9.10	11.17
		10/19/2005	10.88	9.39
		1/13/2006 5/5/2006	7.33 6.53	12.94 13.74
		7/19/2006	8.64	11.63
		10/5/2006	10.29	9.98
		3/29/2007	9.01	11.26
		6/27/2007	10.14	10.13
		9/19/2007	11.17	9.10
		12/19/2007	10.99	9.28
		3/6/2008	8.65	11.62
		6/18/2008	10.46	9.81
		9/10/2008	11.64	8.63
		12/10/2008	12.18	8.09
		3/4/2009	8.86	11.41
		6/3/2009	10.07	10.20
		8/27/2009	11.45	8.82
		12/10/2009	11.61	8.66
		3/10/2010	8.19	12.08
		6/10/2010	9.30	10.97
		9/22/2010	11.28	8.99
		4/19/2011	7.59	12.68
		9/30/2011 12/6/2011	10.81 11.13	9.46 9.14
		9/5/2012	11.13	9.14
				27.13
MW-7	18.93	3/29/2007	7.90	11.03
		6/27/2007	8.87	10.06
		9/19/2007 12/19/2007	9.88 9.72	9.05 9.21
		3/6/2008	7.52	11.41
		6/18/2008	9.13	9.80
		9/10/2008	10.29	8.64
		12/10/2008	10.81	8.12
		3/4/2009	7.89	11.04
		6/3/2009	8.70	10.23
		8/27/2009	10.05	8.88
		12/10/2009	10.21	8.72
		3/10/2010	7.16	11.77
		6/10/2010	8.58	10.35
		9/22/2010	9.89	9.04
		4/19/2011	6.58	12.35
		9/30/2011	9.48	9.45
		12/6/2011	9.68	9.25
		9/5/2012	9.68	9.25

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-8	19.33	3/29/2007	8.40	10.93
		6/27/2007	9.33	10.00
		9/19/2007	10.31	9.02
		12/19/2007	10.23	9.10
		3/6/2008	9.14	10.19
		6/18/2008	9.74	9.59
		9/10/2008	10.76	8.57
		12/10/2008	11.31	8.02
		3/4/2009	8.59	10.74
		6/3/2009	9.51	9.82
		8/27/2009	10.57	8.76
		12/10/2009	10.72	8.61
		3/10/2010	7.77	11.56
		6/10/2010	8.01	11.32
		9/22/2010	10.39	8.94
		4/19/2011	7.36	11.97
		9/30/2011	9.97	9.36
		12/6/2011	10.22	9.11
		9/5/2012	10.18	9.15
MW-9	18.83	8/27/2009	10.01	8.82
		12/10/2009	10.16	8.67
		3/10/2010	7.31	11.52
		6/10/2010	8.14	10.69
		9/22/2010	9.86	8.97
		4/19/2011	6.86	11.97
		9/30/2011	9.48	9.35
		12/6/2011	9.65	9.18
		9/5/2012	9.60	9.23

Notes:
TOC = Top of Casing
It msl = Feet referenced to mean sea level
--- = Not Available

(1) = Well not accessible due to obstruction by a parked car yellow row = most recent data

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

113/2006	Well ID	Sample	TPHd	TPHg	В	Т	E	X	MTBE	TRPH	DIPE	TBA	1,2-DCA
MV-1 65/1985		L	100	100		40	ograms per 30		5.0			12	0.5
91/41/994				_	940	4,300	760	7,100	1,300				
12001999	IVIVV-I		<50	14,000	44	28	25	50		800			
7691685													
7311999 1,700 4,700 1,300 1,300 1,300 1,00													
MW-2 6071899 4,000 4,000 1,000 1,000 1,500 2,300 15,000		7/31/1998	1,700	4,700	1,300	48	140	150		<5000			
126/1999 2,000 44,000 8,300 3,400 100 200 400 7,700 2 100 2,000 100 2,000 100 2,000 7,200 2 100 2,000 100 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 1,000 2,000 1,00													
## Company 1		12/6/1999	4,000	44,000	8,900	3,400	1,900	5,100	11,000				
9/28/2000 5,000 5,000 1,000 2,000 1,000 4,000 7,000 3									2,700				
March 1,000 1,000 1,000 1,000 2,000 1,000 2,000 1,00			5,200	50,000					7,200	2			
9.222001 —			1,500	0,000					3,200				
7772005 — 1,500 199 15 38 29 1,100 — 20 450 450 100 100 200 450 300 100 200 450 100 200 200 200 200 200 200 200 200 20													
1019/2006													
113/2006													50 200
MW2		1/13/2006		5,400	680	37	83	41	3,900		<250		180
MW 2 60/1981													<0.5 54.1
MW-2 631993							395	161	6,020				219
9914/1994					************	********	**Well Abar	ndoned 12/27	7/2006*****	**********	*******		
1220/1994 -50 160 1.4 1.4 0.8 5	MW-2	6/3/1993	<50	<50	5.8	<0.5	<0.5	<0.5		<500			
32261996													
779/1989													
27111999		7/9/1995											
6223/1999 420													
STIFECORD CFG		6/23/1999	420	<50	< 0.5	< 0.5	< 0.5	< 0.5	96				
61/3/2000 c50 68 0.8 c5.5 c5.5 c5.5 c7.5													
September Sept		6/13/2000	<50	68	0.8		< 0.5		38				
6252001									00				
9282001 \$50													
777/2005													
1019/2005 29											<1.0		1.1
S5/2006		10/19/2005		29	1.4	<0.5 3	< 0.5	<0.5	19		<5.0		0.95
7/19/2006 50													<0.5 <0.5
Post exemention 3/28/2007 -50 -0.5 -0.5 -0.5 -0.5 -1.5 -1.5 -0.5 -1.0 -0.5 -0.5 -0.5 -1.5 -0.5 -					< 0.5								1.24
69/27/2007	Dest sussission												0.750
12/19/2007	Post excavation												<0.5 0.820
3/6/2008													0.710
6/18/2008													0.840 <0.5
12/10/2000		6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	36.9		<0.5	<10	0.880
34/2009				69	<0.5								0.810 0.650
Big													<0.5
9/22/2010 < < < < < < < < <-													0.55 1.1
### ### ### ### ### ### ### ### ### ##													<0.5
9/30/2011													1.3
10/26/2011													0.80
MW-3 6/3/1993 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		10/26/2011		<50	<0.5	<0.5	<0.5	<1.5			<0.5	<5.0	
MW-3 6/3/1993 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <													
1/14/1994 <50													
12/30/1994	MW-3												
7/3/1/1998		12/30/1994	<50	<50	< 0.5	<0.5	< 0.5	< 0.5		<500			
7/31/1998													
6/23/1999 <50		7/31/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
12/6/1999													
6/13/2000 c50 490 0.8 c0.5 c0.5 9 2		12/6/1999	<110	<50	3	1	<0.5	1	0.6				
9/29/2000								<1.0					
6/25/2001		9/29/2000	400	100	0.0	40.0	40.0	<1.0	<1.0	2			
9/28/2001 91			<50										
12262001 <50 <0.5 <0.5 <0.5 <1.0 <0.5 < < < < < < < < <-													
10/19/2005 <25		12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
1/13/2006						<0.5 <0.5 ³							<0.5 <0.5
7/19/2006 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
10/5/2006													<0.5 <0.5
Post examplian 3/29/2007													<0.5
9/19/2007 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <10 <10 <12/19/2007 <50 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
12/19/2007 <50													<0.5 <0.5
6/18/2008 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		12/19/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
9/10/2008 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <10 <10 <12/10/2008 <0.5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10													<0.5 <0.5
\$\frac{34/2009}{66/2009} \times \cdot <50 \cdot <0.5 \cdot <0.5 \cdot <0.5 \cdot <0.5 \cdot <0.5 \cdot \cdot \cdot <0.5 \cdot \cdo \cdot \cdo		9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
6/2/2009 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <-0.5 <-0.5 <-0.10 8/27/2009 <55 <0.55 <0.55 <0.55 <0.55 <1.6 <0.55 <0.55 <-1.5 <1.0 <0.55 <-1.5 <1.0 <0.55 <-1.5 <1.0 <0.55 <-1.5 <-0.5 <-1.5 <-0.5 <-1.5 <-0.5 <-1.5 <-0.5 <-1.5 <-0.5 <-1.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0.5 <-0													<0.5
8/27/2009 <55 <0.55 <0.55 <0.55 <1.6 <0.55 <1.55 <11 <													<0.5 <0.5
9/22/2010 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0 4/19/2011 <50 <0.5 <0.5 <0.5 <1.5 <2.9 <0.5 <5.0 9/30/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 < <0.5 <5.0 10/26/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0 12/6/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0 5.0 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0 5.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <		8/27/2009		<55	< 0.55	< 0.55	< 0.55	<1.6	< 0.55		<1.55	<11	< 0.55
4/19/2011 <50													<0.5 <0.5
10/26/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0 12/6/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0		4/19/2011		<50	< 0.5	<0.5	<0.5	<1.5	2.9		<0.5	<5.0	
12/6/2011 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0							<0.5						<0.5
		12/6/2011		<50				<1.5					-
9/5/2012 <50 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <5.0													

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date	400		Concentrati	ons in micr	ograms per	r liter (µg/L)	E.C.				
ES SST		100	100	1.0 940	40 4,300	30 760	20 7.100	5.0 1.300			12	0.5
MW-4	12/6/1999	160	<50	3	2	0.6	4	140				
	3/16/2000	90	<50	0.5	0.5	< 0.5	2	34				
	6/13/2000	<50	56	<0.5	<0.5	< 0.5	<1.0	1				
	9/29/2000	<50	92	0.7	<0.5	<0.5	3	<1.0				
	4/5/2001 6/25/2001	<50 	51 <50	<0.5 <0.5	0.5 <0.5	<0.5 <0.5	1 <1.0	6 ² <0.5				
	9/28/2001		<50 <50	<0.5	<0.5	< 0.5	2	2				
	12/26/2001		<50	1.6	1.7	1.6	4.4	2.7				
	7/7/2005		<50	< 0.5	< 0.5	< 0.5	<1.0	<0.5		<1.0		< 0.5
	10/19/2005		<25	<0.5	<0.5 3	< 0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		*********	***********	***********		sampled ******	***********	******		******	
	5/5/2006 7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	< 0.5
	10/5/2006		<50 <50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	0.69		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	< 0.5	< 0.5	<1.5	<0.5		< 0.5	<10	< 0.5
	9/19/2007		<50	< 0.5	<0.5	< 0.5	<1.5	1.38		<0.5	<10	<0.5
	12/19/2007		63	<0.5	<0.5	<0.5	<1.5	2.20		<0.5	<10	0.590
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/18/2008 9/10/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 0.700		<0.5 <0.5	<10 <10	<0.5 <0.5
	12/10/2008		<50 <50	<0.5	<0.5	<0.5	<1.5	2.04		<0.5	<10	<0.5
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	2.96		<0.5	<10	<0.5
	6/3/2009		<50	<0.5	<0.5	< 0.5	<1.5	1.5		<0.5	<10	< 0.5
	8/27/2009		<50	<0.5	<0.5	< 0.5	<1.5	4.9		<0.5	11	1.3
	12/10/2009		<50	<0.5	<0.5	<0.5	<1.5	4.1		<0.5	<5	0.71
	3/11/2010 6/10/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 0.52	9.8 8.5		<0.5 <0.5	<30 6.1	<0.5 1.8
	6/10/2010 9/22/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.52 <1.5	8.5 5.2		<0.5 <0.5	6.1 5.1	1.8
	4/19/2011		<50 <50	< 0.5	<0.5	<0.5	<1.5	6.1		<0.5	<5.0	
	9/30/2011		73	5 <0.5	<0.5	<0.5	<1.5	70		<0.5	<5.0	2.4
	10/26/2011		<50	<0.5	<0.5	< 0.5	<1.5	80		<0.5	<5.0	
	12/6/2011		110	5 <0.5	<0.5	<0.5	<1.5	140		<0.5	14	
	9/5/2012		79	⁵ <0.5	<0.5	<0.5	<1.5	140		<0.5	<5.0	-
MW-5	12/6/1999	2.800	30,000	2,200	3,300	910	7000	670				
	3/16/2000	1,100	3,500	1,100	260	210	6300	260				
	6/13/2000	1,100	6,500	2,200	360	360	730	480				
	9/29/2000	700	3,900	990	120	300	340	390				
	3/22/2001	380	4,300	780 1,000	240	250	530	190				
	6/25/2001 9/28/2001		3,100 3,000	1,000 1,200	110 77	200 120	320 170	140 770				
	12/26/2001		3,000	738	262	218	626	66.4				
	8/24/2005		150	57	3	8	3.9	67		<1.0	18	3.0
	10/19/2005		560	130	3.8	23	9.3	230		<25	<50	11
	1/13/2006		2,300	570	18	120	140	220		<25	<50	14
	5/5/2006		130	35 102	1.7	7.8 15.8	7.4	8 27.6		<5.0	<10	0.55
	7/19/2006 10/5/2006		210 410	102 105	1.54 1.06	15.8 9.05	3.85 2.24	27.6 101		<0.5 0.640	<10 11.3	2.06 6.65
	.0/0/2000		710	***********	******	**Well Aba	2.24 ndoned 12/27	/2006*****		*******	11.0	0.00
MW-6	12/6/1999	110	<50	2	2	0.8	8	1				
	3/16/2000	<50 <50	<50	8	8	5	18 2	<0.5				
	6/13/2000 9/29/2000	<50 <50	75 <50	0.7 <0.5	1 <0.5	0.9 <0.5	<1.0	0.6 <0.5				
	3/22/2001	<50	66	0.5	<0.5	<0.5	<1.0	3				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	4				
	9/28/2001		63	2	ND	ND	1	3				
	12/26/2001		<50	<0.5	<0.5	<0.5	1.4	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005 1/13/2006		<25 <25	<0.5 <0.5	<0.5 ³	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0		<5.0 <5.0	<10 <10	<0.5 <0.5
	5/5/2006		<25 <25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0 <5.0	<10	<0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<05	<0.5	< 0.5	<1.5	< 0.5		<0.5	<10	< 0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007 12/19/2007		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	3/6/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10	<0.5
	6/18/2008		<50 <50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	< 0.5
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	8/27/2009		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/11/2010 9/22/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<30 <5.0	<0.5 <0.5
	4/19/2011		<50 <50	<0.5	<0.5	<0.5	<1.5	0.63		<0.5	<5.0 <5.0	~0.0
	9/30/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	<0.5
	10/26/2011		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<5.0	
	12/6/2011		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
	9/5/2012		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street

Alameda, California

Well ID	Sample	TPHd	TPHg		В	Т	E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			С		ions in micro							
	SL TLs	100	100		1.0	40 4.300	30	20	5.0			12	0.5
MW-7	3/29/2007		840		940 50.8	9.33	760 2.54	7,100	1,300 39.9		<0.5	<10	2.26
191 99 -7	6/27/2007		270		126	< 0.5	7.11	<1.5	94.4		0.550	58.4	6.21
	9/19/2007		191	4	0.5	<0.5	5.38	<1.5	49.6		<0.5	28.5	4.37
	12/19/2007		54	4	<0.5	<0.5	<0.5	<1.5	11.4		<0.5	<10	1.09
	3/6/2008		<50		<0.5	<0.5	<0.5	<1.5	4.83		<0.5	<10	0.59
	6/18/2008		<50		0.840	<0.5	0.500	<1.5	52.5		<0.5	15.3	5.70
	9/10/2008		55	4	< 0.5	<0.5	<0.5	<1.5	15.3		<0.5	<10	1.98
	12/10/2008		<50		<0.5	<0.5	<0.5	<1.5	2.43		<0.5	<10	<0.5
	3/4/2009		<50		<0.5	<0.5	<0.5	<1.5	0.530		<0.5	<10	<0.5
	6/3/2009		<50		0.62	<0.5	<0.5	<1.5	5.2		<0.5	<10	<0.5
	8/27/2009		<50		< 0.5	<0.5	<0.5	<1.5	4.8		<0.5	<10	0.55
	3/11/2010		<50		<0.5	<0.5	<0.5	<1.5	0.73		<0.5	<30	<0.5
	9/22/2010		<50		<0.5	<0.5	<0.5	<1.5	3.9		<0.5	<5.0	0.64
	4/19/2011		<50		<0.5	<0.5	<0.5	<1.5	2.0		<0.6	<5.0	
	9/30/2011		<50		<0.5	<0.5	<0.5	<1.5	4.3		<0.5	<5.0	
	10/26/2011		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
	12/6/2011		<50		<0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<5.0	
	9/5/2012		<50		< 0.5	< 0.5	<0.5	<1.5	2.4		<0.5	<5.0	
MW-8	4/6/2007		27,000		2,460	1,520	210	1,810	16,000		24.3	1,050	459
	6/27/2007		20,000		2,460	382	611	1,040	7,310		11.1	3,400	319
	9/19/2007		20,400	4	814	16.2	219	21.6	10,300		<4.40	7,080	194
	12/19/2007		14,100	4	426	10.6	115	22.4	12,700		25.0	864	289
	3/6/2008		19,000	5	639	19.5	268	152	11,200		<4.4	<88	227
	6/18/2008		5,800	4	496	11.7	258	24.4	9,730		15.7	468	209
	9/10/2008		9,900		299	11.1	73.0	13.6	11,600		27.1	1,670	240
	12/10/2008		6,900	4	477	3.98	57.9	22.6	11,600		23.1	634	287
	3/4/2009		8,500	5	168	1.35	17.3	8.59	8,190		7.00	2,050	238
	6/3/2009		11,000	5	490	3.90	57	16	14,000		<0.5	<10	310
	8/27/2009		5,400		340	8.3	67	37	8,900		21	2,900	300
	3/11/2010		7,900	5	660	3.7	100	28.3	5,800		18	1,100	150
	9/22/2010		4,700	4	1,100	<44	230	<132	5,700		<44	470	120
	4/19/2011		67	6	< 0.5	< 0.5	0.83	<1.5	20		<0.5	<5.0	
	9/30/2011		2,500	5	140	2.0	38	5.3	5,600		8.2	<5.0	180
	10/26/2011		6,900	5	3.7	< 0.5	0.59	<1.5	6.600		16	<440	
	12/6/2011		2,100	5	4.3	0.52	0.56	<1.5	10.000		21	590	
	9/5/2012		590	4	99	1.1	20	4.9	510		11	3,800	
												-,	
MW-9	8/27/2009		<50		<0.5	< 0.5	<0.5	<1.5	12		<0.5	<10	0.76
	12/10/2009		<50		< 0.5	0.50	< 0.5	<1.5	4.8		<0.5	<5.0	<0.5
	3/10/2010		<50		< 0.5	< 0.5	< 0.5	<1.5	3.8		< 0.5	<30	< 0.5
	6/10/2010		<50		< 0.5	<0.5	< 0.5	<1.5	7.4		< 0.5	<5.0	0.6
	9/22/2010		<50		< 0.5	< 0.5	< 0.5	<1.5	1.6		< 0.5	<5.0	< 0.5
	4/19/2011		<50		< 0.5	< 0.5	< 0.5	<1.5	8.7		< 0.5	<5.0	
	9/30/2011		<50		< 0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<5.0	<0.5
	10/26/2011		<50		< 0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<5.0	
	12/6/2011		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	
	9/5/2012		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<5.0	

Notes:

TPH d - Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)

TPHg - Total Petroleum Hydrocarbons as Gascline by EPA Method 8015, after July 2005 by EPA 8260

STEX - Benzone, Toluene, Ethylsenzene, Xylenes by EPA Method 8020; after July 2005 by EPA 8260

STEX - Benzone, Toluene, Ethylsenzene, Xylenes by EPA Method 8020; after July 2005 by EPA 8260

Fuel Additives - Methyl-sen-budy ether (MTBE), Di-isopropyl ether (DIPE), ten-Budy alcohol (TBA), 1,2-Dichloroethane (1,2-DCA) by EPA Method 82608

TRPH - Total Recoverable Petroleum Hydrocarbons

-X - Concentration less than laboratory reporting limit

- Not Analyzed

- Not

- ² = Confirmed by EPA Method 8260
- To Tolure was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-3, and 0.65 ppb in sample from well MW-3. Data were adjusted to non-detect because of the presence of tolures (0.81 ppb) in member of the sample results were the less than 5 times in the blank (PEA, blocknote) Data Validation Fructional Collectives for Evaluating Organics Analyses, December 1094).

 **TPM Gasciline value is primarily due to individual peaks / non-target compounds within gasciline quantitative range.

- = TPH value due to individual peak(s) (MTBE and/or TBA) within gasoline quantitative range.

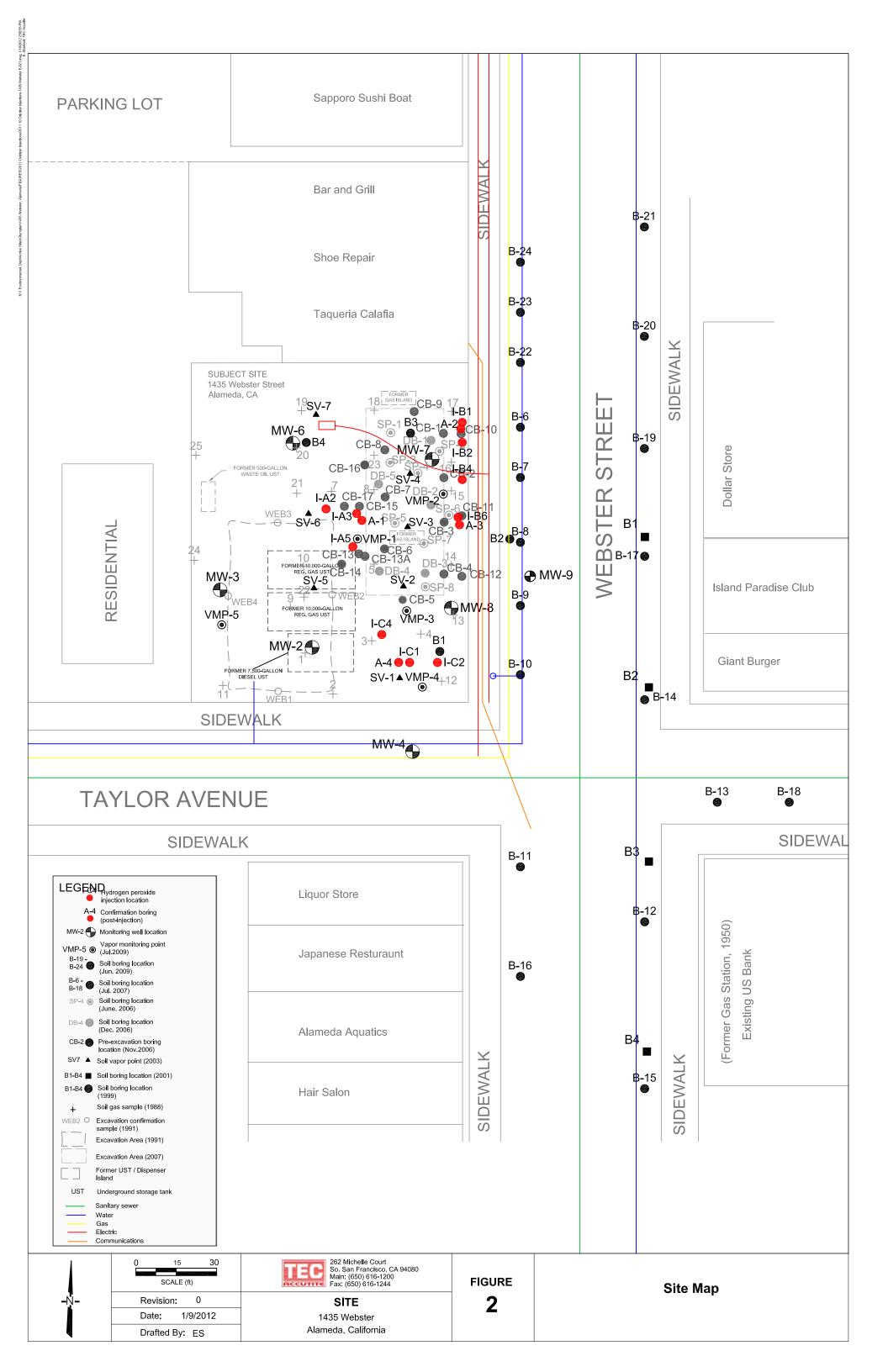
 = TPH value due to individual peak(s) (MTBE and/or TBA) within gasoline quantitative range.

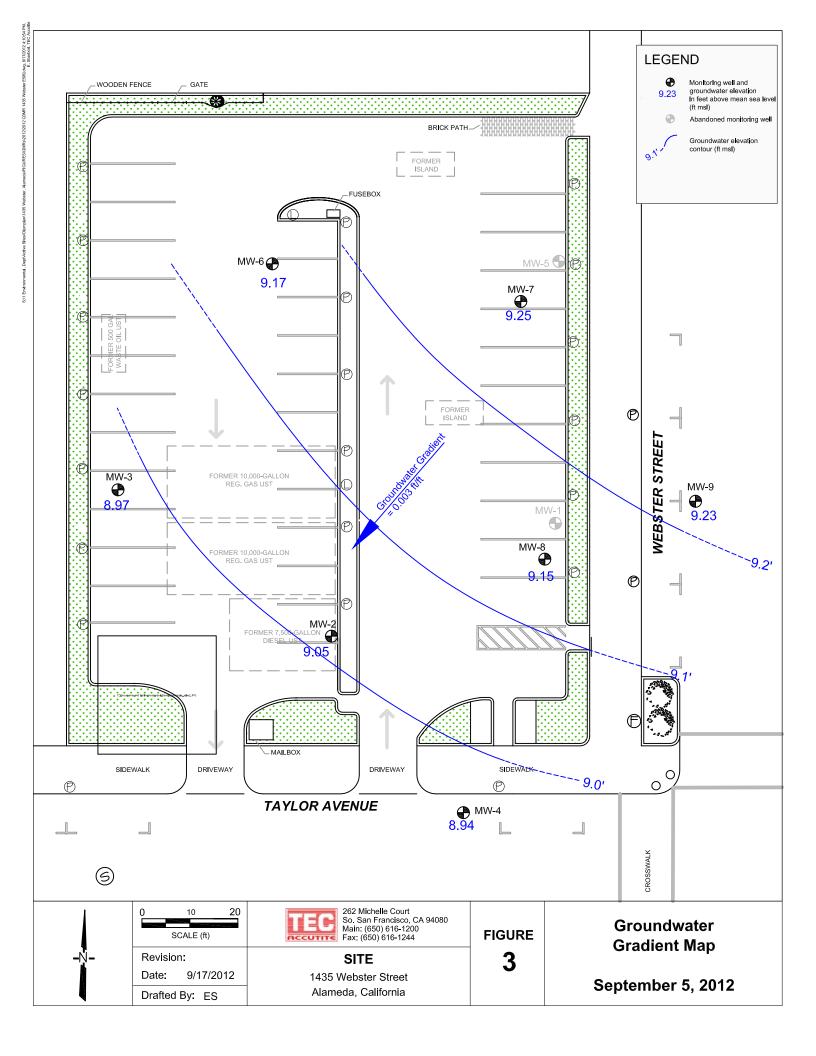
 = Does not match pattern or reference gasoline standard; hydrocarbons in the range of CS-C12 quantified as gasoline.

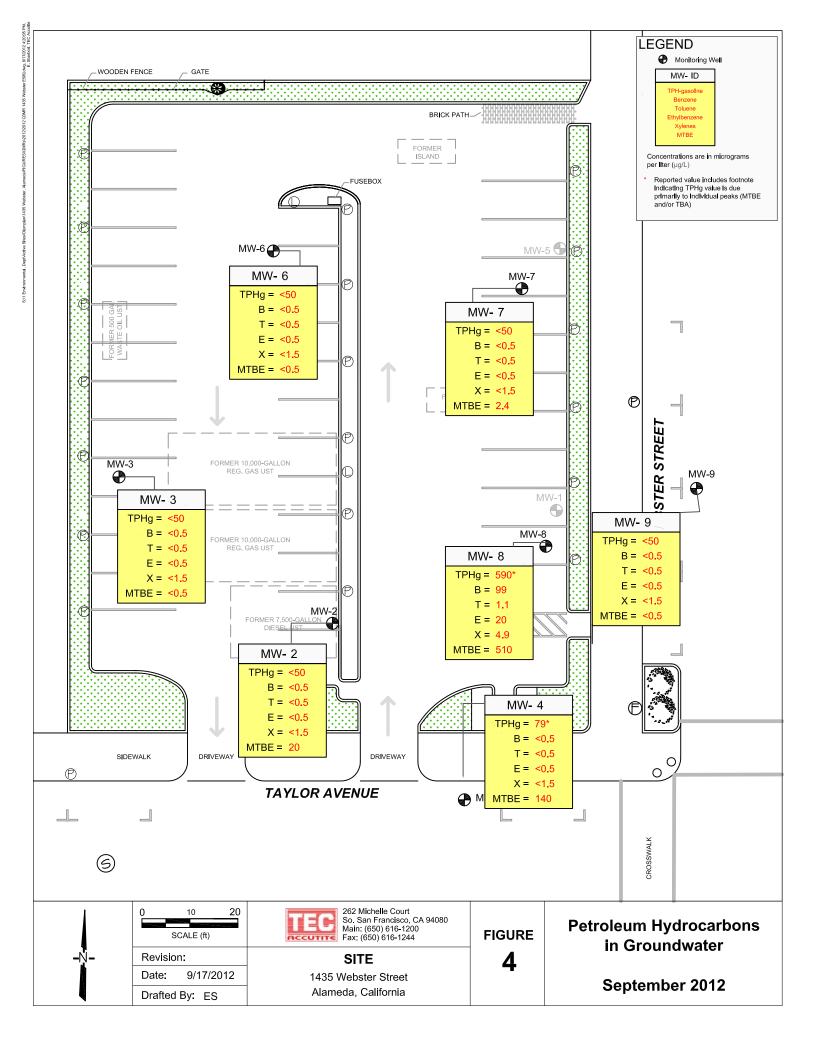
 ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CRWQCB, Interim Final, November 2007; revised May 2008).

SSTLs = site-specific treatment levels calculated in the Updated Site Conceptual Model, Health Risk Assessment, Fessibility Study, and Corrective Action Plan (TEC 2010).

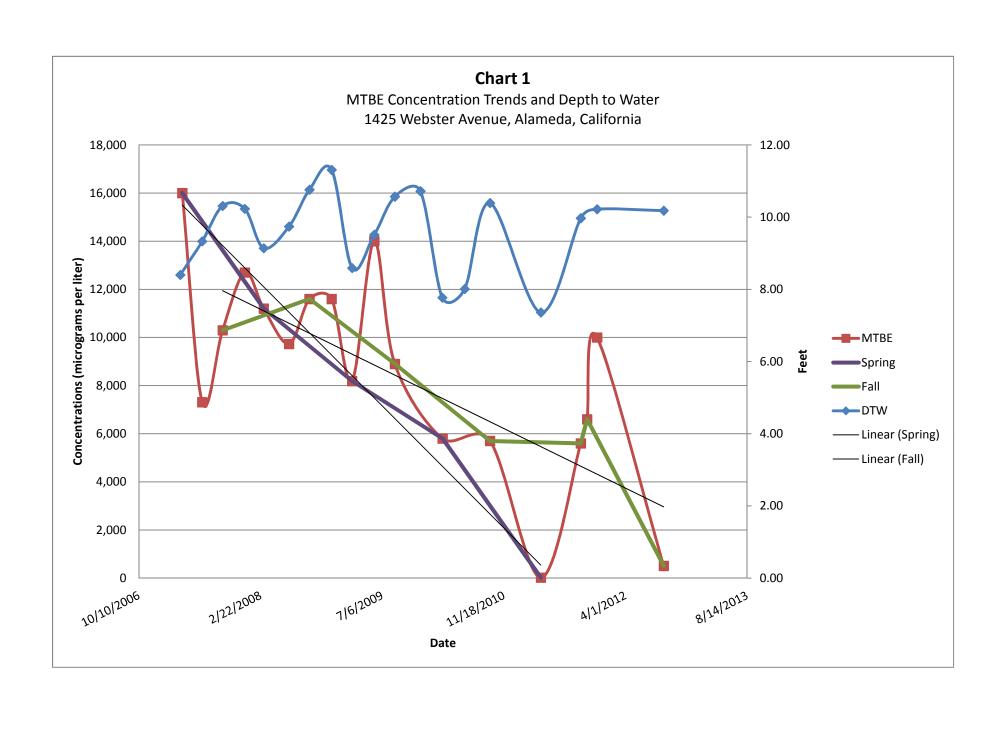
bold = constituent exceeds SSTL


gellow row = most recent data




FIGURES

Drafted By: AK



CHART

ATTACHMENT A

FIELD DATA SHEETS

TEC ACCUTITE Well Data Sheet												
Date: 9/5/17	L	Site Name: 1435	Webster			Project #:	£-58	9	Sampler: BD			
Event: SAMR	- Q3	Site Address: A	ameda	-		Client: Oly	/mpian					
				St. dy improved to the self-self.	EASUREM	Section of the Control of the Control		WELL	COMMENTS			
WELL ID		TIME	DTR	PT	DTW	Historic DTB date: 6/3/09	Today's DTB	DIAMETER	(i.e. pressurized or maintenance req.)			
MW-2		0951			1075	19.42		2"				
MW-3		0952			10.82	21.85		2"				
MVV-4		0949			10.36	19.76		2"				
MW-6		0953			11.10	19.34		2"				
MW-7		0955			9.68	19.81		4"				
MW-8		0954			10.18	20.03		4"				
MW-9		1000			9.60	19.94		4"				
			,									
			, , ,									
		h-24th - 14th										

Abbreviations:

·							11111		
,		w		Accutite Field Data Sh	ieet				
Project #:	5-589		Purged By:	BD		Well ID:	MW-2		
Client Name	e: Olympian		Sampled By	: BD		Sample ID:	MW-2		
Location:	1435 Webst	er			#1-T-7-	QA Samples):		
	1 .		Purge in	formation					
Date: 9/	5/12	-	Start (2400h	r): [[0]		End (2400hr	1:1106		
Depth to Bo	ttom: 19.42		Depth to Wa	iter: 10.75		Casing Dian	neter: 2"		
DTB - DTW:	8,47		Purge (gal):	1.47	Marie La Company	x 3 volumes	: 4,42		
			Field Mea	surements		(1)	-		
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)		
11.03	(941)	20.7	957	6137	1(m	Drawn	(11)		
1164	3,3	20.5	953	644	100	1			
1106	4.5	20.3	947	6,56	, (11			
1	1		Sample In	formation	:-				
Date:	5/12	Time: ()	0	<u>dtw: //、()</u>	8 (Turbidity:	W		
Odor: 10	ne.		Analysis:	8260	Sample Ves Preservative		As		
	Puraina E	quipment			Sampling	Equipment			
submers	ible pump _		oump	submersi		peristaltic p	ump		
	sposable) _		·			·	-		
dedicated	d	_ bladder pum	р	bailer (disposable) bailer (st. steel) bladder pump					
other:				other:					
Well Integrity	r:fair		Lock: MD)					
	nvert water co umn height by								
	B	(, ()	1 1 1						
Signature:	Porce	in Di	Nunde						

TEC Accutite Water Sample Field Data Sheet								
Project #: 5 - 589 Purged By:				BD .		Well ID:	MW-3	
Client Name	e: Olympian		Sampled By	: BD		Sample ID:	MW-3	
Location:	1435 Webst	ter				QA Samples	s:	
	,		formation					
Date: 9/5/12 Start (2400h			r): 1119		End (2400hr	End (2400hr): //2 ⁽ /		
Depth to Bo	ttom: 21.85		Depth to Wa	iter: 10.62		Casing Diameter: 2"		
DTB - DTW:	11.03	,	Purge (gal):	1.88		x 3 volumes: 5, 63		
		 , .	Field Mea	surements		colu		
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbiaty (NTU)	D. O. (mg/l)	Depth (ft)	
1122	2.0	21.1	577	671	100~	proun		
1125	4,0	21.0	562	6.55	11	\1		
1127	5.0	20.9	S9	6.44	<i>)</i> (11		
				7. 4				
	·							
	,	· · · · · · · · · · · · · · · · · · ·	Sample In	formation)	
Date: 9/	5/12	Time: 112	9	DTW: //	35	Turbidity:	ow	
Odor: N	one		Analysis:	8260	Sample Ves Preservative		As	
 , ,	Purging E	Equipment			Sampling	Equipment		
		peristaltic p	· .	submersible pump peristaltic pump				
bailer (disposable) bailer (st. steel) dedicated bladder pump				bailer (disposable) bailer (st. steel)				
other:	u	_ bladder puil	ib	dedicated bladder pump other:				
Well Integrity: Good Lock: h D								
Note: To convert water column height to total amount of gallons in one well volume, multiply								
the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".								
Signature: Brein Dolan								

TEC Accutite Water Sample Field Data Sheet								
Project #: \(\)	3_58	7	Purged By:	(D		Well ID:	MW-4	
Client Name	: Olympian		Sampled By	.BO		Sample ID:	MW-4	
Location:	1435 Webste	er				QA Samples	s:	
1	1		Purge Inf	formation			1 21	
Date:	5/12		Start (2400h	r):/029		End (2400hr): 103x	
Depth to Bo	ttom: 19.76		Depth to Wa	iter: 10.36		Casing Diam	neter: 2"	
DTB - DTW:	9.40		Purge (gal):	1.60		x 3 volumes: 4 79		
Time	Volume	Temp (°C)	Field Meas	surements pH	Turbidity	COU DO.	Depth	
(2400hr)	(gal) / <	120,2	(риноэтент)	(units)	(NTU) //)_/	brown	(ft)	
1124	2,0	20,0	11/26	600	100	[1]	1101	
1-1-1-1	, ,	20,0		<u> </u>			7	
			Sample In	formation		L		
Date: 9/5	5/12	Time: //)4	<i>,</i>	DTW: //. 8		Turbidity: /	M	
Odor: MO	re		Analysis:		Sample Vess Preservative		As • • • • • • • • • • • • • • • • • • •	
Purging Equipment submersible pump peristaltic pump bailer (disposable) bailer (st. steel) dedicated bladder pump other:				Sampling Equipment submersible pump peristaltic pump bailer (disposable) bailer (st. steel) dedicated bladder pump other:				
	Well Integrity: a 002 Lock: No							
Note: To convert water column height to total amount of gallons in one well volume, multiply the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".								
Signature: Brien Dolut								

de Egjas

TEC Accutite								
Water Sample Field Data Sheet								
Project #: E-589 Purged By: BD						Well ID:	MW-6	
Client Name	: Olympian		Sampled By	: BD		Sample ID:	MW-6	
Location:	1435 Webste	er			···	QA Samples:		
Purge Information								
Date: 9	5/12		Start (2400h	Start (2400hr): 1 3 6			End (2400hr): //4/	
Depth to Bo	ttom: 19.34		Depth to Wa	iter: //./0		Casing Diameter: 2"		
DTB - DTW:	8.24		Purge (gal):	140		x 3 volumes: 4.20		
			Field Mea	surements		colur		
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)	
1139	1.5	20.9	480	(0.51	17m	brun		
1141	3.0	110	415	637	1	11		
1142	4.0	21,0	455	6.28	li.	4		
								
							-	
Date: 9/9	5/17-	Time: 11	Sample in	formation DTW: /2.3	5	Turbidity:	Ar J	
Date.		rine.	1 2		Sample Ves		As	
Odor: /	me_		Analysis:	8260	Preservative	e: HCI_		
	Purging E	quipment			Sampling	Equipment		
submersible pump peristaltic pump				submersible pump peristaltic pump				
✓ bailer (disposable) bailer (st. steel) dedicated bladder pump				bailer (disposable) bailer (st. steel)				
other:	u	_ biadder puil	ıρ	dedicated bladder pump other:				
Well Integrity: (A) Lock: N D Note: To convert water column height to total amount of gallons in one well volume, multiply								
the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".								
Signature: Brin Dalux								

TEC Accutite Water Sample Field Data Sheet								
Project #:	<u> - 58</u> 6		Purged By:		`	Well ID:	MW-7	
	e: Olympian		Sampled By	Sampled By: BD			MW-7	
Location:	1435 Webst	er				QA Samples		
Purge Information								
Date: 9	C/12-		•				End (2400hr): [227	
(['			Start (2400hr): 2 5 Depth to Water: 9.68				
Depth to Bo			Depth to Wa	^		Casing Dian		
DTB - DTW:	10.13		Purge (gal):	6.58		x 3 volumes	: 17. 75	
Time	Volume	Temp	Field Meas	surements pH	Turbidity	CO 0 (Depth	
(2400hr)	(gal)	(°C)	(µmhos/cm)	(units)	(NTU)	-(mg/l)	(ft)	
1219	6.5	21.3	5.15 m S	6.78	low	clear	14.20	
1223	13.0	21.0	4.90 m 3	6.92	1 \	1)		
1227	20,0	20.6	4.50 mS	6.98	1.1	1)		
		,						
)				
			Sample In	formation				
Date: 9	5/12	Time: 130			34	Turbidity:	∞	
Odor: Slig	WH		Analysis:	8260	Sample Vess Preservative		As	
	Purging E	quipment	,		Sampling	Equipment		
	ible pump _	• •	pump	submersible pump peristaltic pump				
bailer (disposable) bailer (st. steel)				()		bailer (st. s		
dedicated bladder pump				dedicated		_ bladder pum	ıp	
other: other:								
Well Integrity: Goe Lock: ND								
Note: To convert water column height to total amount of gallons in one well volume, multiply								
the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".								
Signature: Dum Dolum								

TEC Accutite Water Sample Field Data Sheet								
Project #: £-589 Purged By:				BD		Well ID:	MW-8	
Client Name	e: Olympian		Sampled By	r: BD		Sample ID:	MW-8	
Location:	1435 Webste	er				QA Samples	s:	
Purge Information								
Date: 9/5/12 Start (2400h			or): 1156)	End (2400hr	1:1206		
Depth to Bo	ottom: 20.03		•	ater: (0, 16		Casing Diameter: 4"		
DTB - DTW:	9.85	•	Purge (gal):	6.40		x 3 volumes: / 9, 2 /		
				surements		c0(20~		
Time (2400hr)	Volume (gal)	Temp ("C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)	
1700	65	21.5	1327	6.02	1000	alew	15.05	
1204	13.01	20.8	1503	6.02	(1	11	18.55	
1206	WELL	MENT	DRY	$0 \sim 15$	1.5 GA	LLONS		
			Sample In	formation		<u></u>		
Date: 9/5	5/12	Time: 134	20	DTW: 12.	13	Turbidity:	law	
Odor: Sli	ght		Analysis:			sels: 3 VO HCI	As	
	Purging E					Equipment		
	ible pump sposable)			submersible pump peristaltic pump bailer (disposable) bailer (st. steel)				
dedicated bladder pump				dedicated bladder pump				
other:				other:				
Well Integrity	Well Integrity: 900 Lock: 10							
	Note: To convert water column height to total amount of gallons in one well volume, multiply the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".							
Signature: Brum Down								

TEC Accutite Water Sample Field Data Sheet								
Project #: 5-589 Purged By:						Well ID:	MW-9	
Client Name: Olympian Sampled B				r: BD		Sample ID:	MW-9	
Location:	1435 Webst	er				QA Samples	S:	
	,		Purge In	formation				
Date: 9/	5/12	- 4:	Start (2400h	r): 1005	>	End (2400hr): ()		
Depth to Bo	ttom: 19.94	·	Depth to Wa	iter: 9.60 Casing Diameter: 4"			neter: 4"	
DTB - DTW:	10.34	0	Purge (gal):	6.72	-	x 3 volumes: 20, (6		
			Field Mea	surements	. 			
Time (2400hr)	Volume (gal)	Temp (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)	
1009	6.5	20,7	581	6.51	10n/	cleer		
1013	130	201/	593	6,39	1 1	1 1		
1017	20.0	198	614	6,32	l (\ \		
				·				
	1 .		Sample In	formation	1.1		<i>1</i> . ,	
Date: 9/5/	112	Time: (6	2-1	DTW: 7. /	Sample Ves	Turbidity: (
Odor: 10	re		Analysis:	8260	Preservative		——————————————————————————————————————	
. 4	Purging E	quipment	·	Sampling Equipment				
		peristaltic p		submersible pump peristaltic pump				
bailer (disposable) bailer (st. steel) dedicated bladder pump			bailer (disposable) bailer (st. steel) dedicated bladder pump					
other:				other:				
Well Integrity: OOd Lock: 10								
Note: To convert water column height to total amount of gallons in one well volume, multiply the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".								
Signature: Brian Dolum								

ATTACHMENT B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

RE: 1435 Webster St.

Work Order No.: 1209025

Dear Brian Doherty:

Torrent Laboratory, Inc. received 7 sample(s) on September 05, 2012 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Patti Sandrock
QA Officer

September 12, 2012

Date

....

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Date: 9/12/2012

Client: Tec Accutite
Project: 1435 Webster St.
Work Order: 1209025

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Total Page Count: 22 Page 2 of 22

Sample Result Summary

Report prepared for:Brian DohertyDate Received: 09/05/12Tec AccutiteDate Reported: 09/12/12

MW-2 1209025-001 Parameters: **Analysis** <u>DF</u> MDL <u>PQL</u> Results <u>Unit</u> Method **MTBE** SW8260B 0.17 0.50 20 ug/L MW-3 1209025-002 Parameters: **Analysis** DF MDL **PQL** Results Unit Method All compounds were non-detectable for this sample. MW-4 1209025-003 **PQL** Parameters: **Analysis** <u>DF</u> MDL Results <u>Unit</u> Method 8260TPH TPH(Gasoline) 1 31 50 79 ug/L **MTBE** SW8260B 0.76 2.2 140 4.4 ug/L MW-6 1209025-004 Parameters: **Analysis** <u>DF</u> MDL <u>PQL</u> Results <u>Unit</u> Method All compounds were non-detectable for this sample. MW-7 1209025-005 Parameters: **Analysis** <u>DF</u> MDL **PQL** Results <u>Unit</u> Method **MTBE** SW8260B 0.17 0.50 2.4 ug/L

Total Page Count: 22 Page 3 of 22

Sample Result Summary

Report prepared for: Brian Doherty Date Received: 09/05/12

> Tec Accutite Date Reported: 09/12/12

> > 1209025-006

MW-8					12	09025-006
Parameters:	Analysis Method	DF	MDL	<u>PQL</u>	Results	<u>Unit</u>
Diisopropyl ether (DIPE)	SW8260B	1	0.15	0.50	11	ug/L
Benzene	SW8260B	1	0.088	0.50	99	ug/L
Toluene	SW8260B	1	0.059	0.50	1.1	ug/L
Ethyl Benzene	SW8260B	1	0.074	0.50	20	ug/L
m,p-Xylene	SW8260B	1	0.13	1.0	4.9	ug/L
TPH(Gasoline)	8260TPH	1	31	50	590	ug/L
МТВЕ	SW8260B	44	7.6	22	510	ug/L
tert-Butanol	SW8260B	44	68	220	3800	ug/L
MW-9					12	09025-007
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>

All compounds were non-detectable for this sample.

Total Page Count: 22 Page 4 of 22

Report prepared for: **Brian Doherty** Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

Client Sample ID: MW-2 Lab Sample ID: 1209025-001A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

09/05/12 / 11:10 1435 Webster St. Tag Number:

Date/Time Sampled:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
	011/2222	L	20/10/10		L						<u> </u>
MTBE	SW8260B	NA	09/10/12	1	0.17	0.50	20		ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	94.4		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	99.8		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	100		%	411408	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND		ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	79.4		%	411408	6480

Total Page Count: 22 Page 5 of 22

Report prepared for:
Brian Doherty
Tec Accutite
Date Received: 09/05/12
Date Reported: 09/12/12

Client Sample ID:MW-3Lab Sample ID:1209025-002AProject Name/Location:1435 Webster St.Sample Matrix:Groundwater

Project Name/Location: Project Number:

(S) Toluene-d8

(S) 4-Bromofluorobenzene

 Date/Time Sampled:
 09/05/12 / 11:29

 Tag Number:
 1435 Webster St.

SW8260B

SW8260B

NA

NA

09/10/12

09/10/12

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	09/10/12	1	0.17	0.50	ND		ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	106		%	411408	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND		ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	79.8		%	411408	6480

1

1

75.1

64.1

127

120

99.5

102

%

%

411408

411408

NA

NA

Total Page Count: 22 Page 6 of 22

Brian Doherty Report prepared for: Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

Client Sample ID: MW-4 Lab Sample ID: 1209025-003A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

09/05/12 / 10:45 Tag Number: 1435 Webster St.

Date/Time Sampled:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	104		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	101		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	102		%	411408	NA
MTBE	SW8260B	NA	09/11/12	4.4	0.76	2.2	140		ug/L	411440	NA
(S) Dibromofluoromethane	SW8260B	NA	09/11/12	4.4	61.2	131	94.2		%	411440	NA
(S) Toluene-d8	SW8260B	NA	09/11/12	4.4	75.1	127	104		%	411440	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/11/12	4.4	64.1	120	103		%	411440	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	79	Х	ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	79.2		%	411408	6480

NOTE: x-Not typical of Gasoline standard pattern. Result due to discrete peak (MTBE).

Page 7 of 22 Total Page Count: 22

Report prepared for: **Brian Doherty** Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

Client Sample ID: MW-6 Lab Sample ID: 1209025-004A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

Date/Time Sampled: 09/05/12 / 11:45 1435 Webster St. Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	09/10/12	1	0.17	0.50	ND	•	ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	97.7		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	101		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	101		%	411408	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND		ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	89.5		%	411408	6480

Total Page Count: 22 Page 8 of 22

Report prepared for: **Brian Doherty** Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

Client Sample ID: MW-7 Lab Sample ID: 1209025-005A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location: **Project Number:**

09/05/12 / 13:01

Date/Time Sampled: 1435 Webster St. Tag Number:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	09/10/12	1	0.17	0.50	2.4		ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	101		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	101		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	102		%	411408	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND		ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	81.9		%	411408	6480

Total Page Count: 22 Page 9 of 22

Brian Doherty Report prepared for: Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

Client Sample ID: 8-WM Lab Sample ID: 1209025-006A 1435 Webster St. Sample Matrix: Groundwater

Project Name/Location:

Project Number: Date/Time Sampled: 09/05/12 / 13:28 Tag Number: 1435 Webster St.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	11		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	99		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	1.1		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	20		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	4.9		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	98.8		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	99.7		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	101		%	411408	NA
MTBE	SW8260B	NA	09/10/12	44	7.6	22	510		ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	44	68	220	3800		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	44	61.2	131	96.6		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	44	75.1	127	101		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	44	64.1	120	104		%	411408	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	590	Х	ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	99.9		%	411408	6480

NOTE: x - Although TPH as Gasoline constituents are present, sample chromatogram does not resemble pattern of reference Gasoline standard.

Groundwater

Lab

Qualifier

Unit

Analytical

Batch

Prep

Batch

Results

Report prepared for: **Brian Doherty** Date Received: 09/05/12 Tec Accutite Date Reported: 09/12/12

DF

MDL

PQL

Client Sample ID: MW-9 Lab Sample ID: 1209025-007A Sample Matrix:

Prep

Date

Date

Analyzed

Project Name/Location:

Parameters:

09/05/12 / 10:21 Date/Time Sampled: Tag Number: 1435 Webster St.

1435 Webster St. Project Number:

Analysis

Method

MTBE	SW8260B	NA	09/10/12	1	0.17	0.50	ND		ug/L	411408	NA
tert-Butanol	SW8260B	NA	09/10/12	1	1.5	5.0	ND		ug/L	411408	NA
Diisopropyl ether (DIPE)	SW8260B	NA	09/10/12	1	0.15	0.50	ND		ug/L	411408	NA
ETBE	SW8260B	NA	09/10/12	1	0.13	0.50	ND		ug/L	411408	NA
Benzene	SW8260B	NA	09/10/12	1	0.088	0.50	ND		ug/L	411408	NA
TAME	SW8260B	NA	09/10/12	1	0.095	0.50	ND		ug/L	411408	NA
Toluene	SW8260B	NA	09/10/12	1	0.059	0.50	ND		ug/L	411408	NA
Ethyl Benzene	SW8260B	NA	09/10/12	1	0.074	0.50	ND		ug/L	411408	NA
m,p-Xylene	SW8260B	NA	09/10/12	1	0.13	1.0	ND		ug/L	411408	NA
o-Xylene	SW8260B	NA	09/10/12	1	0.076	0.50	ND		ug/L	411408	NA
(S) Dibromofluoromethane	SW8260B	NA	09/10/12	1	61.2	131	114		%	411408	NA
(S) Toluene-d8	SW8260B	NA	09/10/12	1	75.1	127	103		%	411408	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	09/10/12	1	64.1	120	104		%	411408	NA
	Analysis	Prep	Date	DF	MDL	PQL	Results	Lab	Unit	Analytical	Prep
Parameters:	Method	Date	Analyzed					Qualifier		Batch	Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND	<u> </u>	ug/L	411408	6480

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	9/10/12	09/10/12	1	31	50	ND		ug/L	411408	6480
(S) 4-Bromofluorobenzene	8260TPH	9/10/12	09/10/12	1	41.5	125	81.0		%	411408	6480

Total Page Count: 22 Page 11 of 22

Work Order: NA NA Prep Method: Prep Date: NA Prep Batch: 1209025 Matrix: Water Analytical SW8260B **Analyzed Date:** 09/10/12 Analytical 411408 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.18	0.50	ND	
Chloromethane	0.16	0.50	ND	
Vinyl Chloride	0.16	0.50	ND	
Bromomethane	0.18	0.50	ND	
Trichlorofluoromethane	0.18	0.50	ND	
1,1-Dichloroethene	0.15	0.50	ND	
Freon 113	0.19	0.50	ND	
Methylene Chloride	0.23	5.0	ND	
trans-1,2-Dichloroethene	0.19	0.50	ND	
MTBE	0.17	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.13	0.50	ND	
1,1-Dichloroethane	0.13	0.50	ND	
ETBE	0.17	0.50	ND	
cis-1,2-Dichloroethene	0.19	0.50	ND	
2,2-Dichloropropane	0.15	0.50	ND	
Bromochloromethane	0.20	0.50	ND	
Chloroform	0.13	0.50	ND	
Carbon Tetrachloride	0.15	0.50	ND	
1,1,1-Trichloroethane	0.097	0.50	ND	
1,1-Dichloropropene	0.15	0.50	ND	
Benzene	0.13	0.50	ND	
TAME	0.17	0.50	ND	
1,2-Dichloroethane	0.14	0.50	ND	
Trichloroethylene	0.13	0.50	ND	
Dibromomethane	0.15	0.50	ND	
1,2-Dichloropropane	0.17	0.50	ND	
Bromodichloromethane	0.13	0.50	ND	
cis-1,3-Dichloropropene	0.096	0.50	ND	
Toluene	0.14	0.50	ND	
Tetrachloroethylene	0.14	0.50	ND	
trans-1,3-Dichloropropene	0.23	0.50	ND	
1,1,2-Trichloroethane	0.14	0.50	ND	
Dibromochloromethane	0.096	0.50	ND	
1,3-Dichloropropane	0.10	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.096	0.50	ND	
m,p-Xylene	0.13	1.0	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 22 Page 12 of 22

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1209025 Matrix: Water Analytical SW8260B Analyzed Date: 09/10/12 Analytical 411408 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
o-Xylene	0.15	0.50	ND	l
Styrene	0.21	0.50	ND	
Bromoform	0.21	1.0	ND	
Isopropyl Benzene	0.097	0.50	ND	
Bromobenzene	0.15	0.50	ND	
1,1,2,2-Tetrachloroethane	0.11	0.50	ND	
n-Propylbenzene	0.078	0.50	ND	
2-Chlorotoluene	0.076	0.50	ND	
1,3,5,-Trimethylbenzene	0.074	0.50	ND	
4-Chlorotoluene	0.088	0.50	ND	
tert-Butylbenzene	0.081	0.50	ND	
1,2,3-Trichloropropane	0.14	0.50	ND	
1,2,4-Trimethylbenzene	0.083	0.50	ND	
sec-Butyl Benzene	0.092	0.50	ND	
p-Isopropyltoluene	0.093	0.50	ND	
1,3-Dichlorobenzene	0.10	0.50	ND	
1,4-Dichlorobenzene	0.069	0.50	ND	
n-Butylbenzene	0.081	0.50	ND	
1,2-Dichlorobenzene	0.057	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.15	0.50	ND	
Hexachlorobutadiene	0.19	0.50	ND	
1,2,4-Trichlorobenzene	0.12	0.50	ND	
Naphthalene	0.14	1.0	ND	
1,2,3-Trichlorobenzene	0.23	0.50	ND	
(S) Dibromofluoromethane			110	
(S) Toluene-d8			103	
(S) 4-Bromofluorobenzene			106	
Ethanol	0.21	0.50	ND	TIC

Total Page Count: 22 Page 13 of 22

Work Order: Prep Method: NA Prep Date: NA Prep Batch: NA 1209025 Matrix: Water Analytical SW8260B Analyzed Date: 09/11/12 Analytical 411440 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.18	0.50	ND	•
Chloromethane	0.16	0.50	ND	
Vinyl Chloride	0.16	0.50	ND	
Bromomethane	0.18	0.50	ND	
Trichlorofluoromethane	0.18	0.50	ND	
1,1-Dichloroethene	0.15	0.50	ND	
Freon 113	0.19	0.50	ND	
Methylene Chloride	0.23	5.0	ND	
trans-1,2-Dichloroethene	0.19	0.50	ND	
MTBE	0.17	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.13	0.50	ND	
1,1-Dichloroethane	0.13	0.50	ND	
ETBE	0.17	0.50	ND	
cis-1,2-Dichloroethene	0.19	0.50	ND	
2,2-Dichloropropane	0.15	0.50	ND	
Bromochloromethane	0.20	0.50	ND	
Chloroform	0.13	0.50	ND	
Carbon Tetrachloride	0.15	0.50	ND	
1,1,1-Trichloroethane	0.097	0.50	ND	
1,1-Dichloropropene	0.15	0.50	ND	
Benzene	0.13	0.50	ND	
TAME	0.17	0.50	ND	
1,2-Dichloroethane	0.14	0.50	ND	
Trichloroethylene	0.13	0.50	ND	
Dibromomethane	0.15	0.50	ND	
1,2-Dichloropropane	0.17	0.50	ND	
Bromodichloromethane	0.13	0.50	ND	
cis-1,3-Dichloropropene	0.096	0.50	ND	
Toluene	0.14	0.50	ND	
Tetrachloroethylene	0.14	0.50	ND	
trans-1,3-Dichloropropene	0.23	0.50	ND	
1,1,2-Trichloroethane	0.14	0.50	ND	
Dibromochloromethane	0.096	0.50	ND	
1,3-Dichloropropane	0.10	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.096	0.50	ND	
m,p-Xylene	0.13	1.0	ND	
o-Xylene	0.15	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 22 Page 14 of 22

TPH(Gasoline)

(S) 4-Bromofluorobenzene

31

50

ND

70.7

MB Summary Report

	wib Summary Neport												
Work Order:	1209025	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA				
Matrix:	Water	Analy		SW8260B	Anal	yzed Date:	09/11/12	Analytical	411440				
Units:	ug/L	Metho	d:					Batch:					
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier								
Styrene		0.21	0.50	ND	•								
Bromoform		0.21	1.0	ND									
Isopropyl Benzen	е	0.097	0.50	ND									
Bromobenzene		0.15	0.50	ND									
1,1,2,2-Tetrachlor	roethane	0.11	0.50	ND									
n-Propylbenzene		0.078	0.50	ND									
2-Chlorotoluene		0.076	0.50	ND									
1,3,5,-Trimethylbe	enzene	0.074	0.50	ND									
4-Chlorotoluene		0.088	0.50	ND									
tert-Butylbenzene	•	0.081	0.50	ND									
1,2,3-Trichloropro	pane	0.14	0.50	ND									
1,2,4-Trimethylbe	nzene	0.083	0.50	ND									
sec-Butyl Benzen	е	0.092	0.50	ND									
p-Isopropyltoluen	е	0.093	0.50	ND									
1,3-Dichlorobenze	ene	0.10	0.50	ND									
1,4-Dichlorobenze	ene	0.069	0.50	ND									
n-Butylbenzene		0.081	0.50	ND									
1,2-Dichlorobenze	ene	0.057	0.50	ND									
1,2-Dibromo-3-Ch	nloropropane	0.15	0.50	ND									
Hexachlorobutadi	ene	0.19	0.50	ND									
1,2,4-Trichlorober	nzene	0.12	0.50	ND									
Naphthalene		0.14	1.0	ND									
1,2,3-Trichlorober	nzene	0.23	0.50	ND									
(S) Dibromofluoro	methane			94.3									
(S) Toluene-d8				102									
(S) 4-Bromofluoro	benzene			101									
Ethanol		0.21	0.50	ND	TIC								
Work Order:	1209025	Prep I	Method:	5030	Prep	Date:	09/10/12	Prep Batch:	6480				
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	09/10/12	Analytical	411408				
Units:	ug/L	Metho	ou:					Batch:					
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier								

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 22 Page 15 of 22

Work Order:	1209025	Prep Method:	5030	Prep Date:	09/11/12	Prep Batch:	6492
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	09/11/12	Analytical	411440
Units:	ug/L	Method:				Batch:	

Parameters	MDL PQL	Method Lab Blank Qualifier Conc.
PH(Gasoline) 3) 4-Bromofluorobenzene	31 50	ND 96.4

Total Page Count: 22 Page 16 of 22

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: NA 1209025 Prep Method: NA Prep Date: Prep Batch: NA Matrix: SW8260B 09/10/12 411408 Analytical **Analyzed Date:** Analytical Water Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.14	0.50	ND	17.04	117	112	4.92	61.4 - 129	30	
Benzene	0.087	0.50	ND	17.04	109	102	6.32	66.9 - 140	30	
Trichloroethylene	0.057	0.50	ND	17.04	97.4	95.4	2.08	69.3 - 144	30	
Toluene	0.059	0.50	ND	17.04	110	107	3.28	76.6 - 123	30	
Chlorobenzene	0.068	0.50	ND	17.04	96.1	93.4	3.01	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	96.9	94.3		61.2 - 131		
(S) Toluene-d8			ND	11.36	99.3	99.0		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	95.7	95.5		64.1 - 120		

Work Order: 1209025 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: SW8260B 411440 Water **Analytical Analyzed Date:** 09/11/12 Analytical Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.14	0.50	ND	17.04	119	109	9.17	61.4 - 129	30	
Benzene	0.087	0.50	ND	17.04	113	103	8.88	66.9 - 140	30	
Trichloroethylene	0.057	0.50	ND	17.04	99.2	90.9	8.66	69.3 - 144	30	
Toluene	0.059	0.50	ND	17.04	115	107	7.36	76.6 - 123	30	
Chlorobenzene	0.068	0.50	ND	17.04	109	93.1	15.4	73.9 - 137	30	
(S) Dibromofluoromethane			ND	11.36	96.7	95.3		61.2 - 131		
(S) Toluene-d8			ND	11.36	100	101		75.1 - 127		
(S) 4-Bromofluorobenzene			ND	11.36	96.9	97.1		64.1 - 120		

Work Order: 1209025 Prep Method: 5030 09/10/12 Prep Batch: 6480 Prep Date: Matrix: Water Analytical 8260TPH Analyzed Date: 09/10/12 Analytical 411408 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	31	50	ND	227.27	105	103	1.79	52.4 - 127	30	
(S) 4-Bromofluorobenzene			70.7	11.36	98.4	92.8		41.5 - 125		

Total Page Count: 22 Page 17 of 22

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1209025	Prep Method:	5030	Prep Date:	09/11/12	Prep Batch:	6492
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	09/11/12	Analytical	411440
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	31	50	ND	227.27	111	100	9.54	52.4 - 127	30	
(S) 4-Bromofluorobenzene			96.4	11.36	98.8	96.5		41.5 - 125		

Total Page Count: 22 Page 18 of 22

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 9/5/2012 18:30

Project Name: 1435 Webster St. Received By: NAVIN

Work Order No.: 1209025 Physically Logged By: LORNA

Checklist Completed By: LORNA

Carrier Name: First Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? <u>Yes</u>

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: 5 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt? N/A

Total Page Count: 22

pH Checked by: N/A pH Adjusted by: N/A

Page 20 of 22

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

Project Name: TAT Requested: 1435 Webster St. 5+ day:0 9/5/2012

Report Due Date: 9/12/2012 Time Received: 18:30

5 day TAT!!! Recv'd 7 samples for TPHg; MTBE BTEX and Oxygenates.Pls. email an EDF result to tecaccutite@gmail.com. Comments:

Date Received:

Work Order #: 1209025

Project #:

WO Sample ID	Client Sample ID	Collection Date/Time	<u>Matrix</u>		<u>Test</u> On Hold	Requested Tests	Subbed
1209025-001A	MW-2	09/05/12 11:10	Water	10/20/12			
						W_8260Pet	
						EDF W_GCMS-GRO	
1209025-002A	MW-3	09/05/12 11:29	Water	10/20/12		W_GOWG-GIVO	
						W_8260Pet	
400000= 0004		00/05/40 40 45	144 4	10/00/10		W_GCMS-GRO	
1209025-003A	MW-4	09/05/12 10:45	Water	10/20/12		W 8260Pet	
						W GCMS-GRO	
1209025-004A	MW-6	09/05/12 11:45	Water	10/20/12		_	
						W_8260Pet	
1209025-005A	MW-7	09/05/12 13:01	Water	10/20/12		W_GCMS-GRO	
1209025-005A	IVIVV-7	09/03/12 13.01	vvalei	10/20/12		W 8260Pet	
						W_GCMS-GRO	
1209025-006A	MW-8	09/05/12 13:28	Water	10/20/12			
						W_8260Pet W_GCMS-GRO	
1209025-007A	MW-9	09/05/12 10:21	Water	10/20/12		VV_GOIVIG-GIVO	
	-					W_8260Pet	
						W_GCMS-GRO	

Total Page Count: 22 Page 21 of 22

CHAIN OF CUSTODY

1209025

roject				Report to:	Brian	Analysis Required										Turn-around Time (work days)			
ame:	1435 Webste	ſ		tecaccutite(@gmail.com							T		ASAP	1 Day	2 Days	3 Day		
oject				Bill to: TEC	Accutite	1 <u>x</u>	,								5 Days	10 Days Other:			
ddress: Alameda, CA		:A		(650) 616-1200		8260 TPHg BTEX oxygenates									Sample				
Global ID: T0600100766				0 m-		PHg									ground water Report Format				
Sampler: BD Date: 9 5 12			PO#:20851	30 T oxyg															
ield Point ID	Sample ID	Sample # of Containers		Container Type	Sample Date & Time	826			,	,					EDF Remarks				
MW-2	MW-2	w	3	VOAs w/ HCI	9/5/12	1		001A							Run to E	SLs	έν.		
MW-3	MW-3	· w	3	VOAs w/ HCI	9/5/12	1		-002A								•			
MW-4	MW-4	w	.3	VOAs w/ HCI	9/5/12	1		003A											
MW-6	MW-6	w	3	VOAs w/ HCI	9/5/12	1	-	004A								,			
MW-7	MW-7	w	3	VOAs w/ HCI	9/5/12	1	_	005A											
MW-8	MW-8	W	3	VOAs w/ HCI	9/5/12	1		0-0 GA								/ 01	500		
MW-9	MW-9	w	3	VOAs w/ HCI	9/5/12	√.	-	007A							Je	Man 1	,	,	
				,															
						,					,					2			
elinquishe	d by: Brian Do	herty M.D.	Mule	Date:	9/5/12	Time:	3:3	4	Received I	by:	2			Date: 9/5/	12		Zim Zim	e: 34	
elinquishe	d by:	E		Date:	5/12	Time:	6:30	, C	Received I	by: 8/1	rodas	LAVIA	2	Date: 9/5/			Tim	-	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 22 Page 22 of 22

ATTACHMENT C

GEOTRACKER SUBMISSION CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Report Title: 2012 Q3 Groundwater Monitoring Report

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112
File Name: GEO_WELL.zip
Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

<u>Submittal Date/Time:</u> 9/17/2012 4:28:48 PM

Confirmation Number: 3243926942

Copyright © 2012 State of California

1 of 1 9/17/2012 4:28 PM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: 2012 Q3 Groundwater Monitoring Report

Report Type: Monitoring Report - Semi-Annually

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1209025 1435 Webster EDF.zip

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

<u>Submittal Date/Time:</u> 9/17/2012 4:30:29 PM

Confirmation Number: 3487548768

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California

1 of 1 9/17/2012 4:29 PM