

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201
• Fax: (650) 616-1244

www.tecenvironmental.com
 Contractor's Lic. #762034

June 30, 2010

Ms. Barbara Jakub, P.G. Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

RECEIVED

9:23 am, Jul 01, 2010

Alameda County
Environmental Health

SUBJECT: SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501 FLC # RO0000193

Dear Ms. Jakub:

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) is pleased to submit this second quarter 2010 groundwater monitoring report for the above-referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1211.

Sincerely,

Technology, Engineering & Construction, Inc.

Nicholas Haddad Vice President

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, California 94070 Mr. Jeff Farrar, P.O. Box 1701, Chico, California 95927

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, California 95540

SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

FLC #: RO0000193

PREPARED FOR:

OLYMPIAN JV
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:

TECHNOLOGY, ENGINEERING & CONSTRUCTION, INC.
PROJECT #: E-419

SAMPLING DATE:

JUNE 10, 2010

REPORT DATE:

JUNE 30, 2010

TABLE OF CONTENTS

	<u>P</u>	AGE
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	ENVIRONMENTAL BACKGROUND	1
3.1	Site Timeline	1
3.2	Site Condition	2
4.0	GROUNDWATER MONITORING	3
4.1	Sampling Methods	3
4.2	Electronic Laboratory Data Submittal	
4.3	Results	3
5.0	CONCLUSIONS AND RECOMMENDATIONS	4
6.0	LIMITATIONS	5

TABLES

- 1 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS AND ACTIVITY SCHEDULE
- 2 SUMMARY OF HISTORICAL GROUNDWATER ELEVATION DATA
- 3 SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS

FIGURES

- 1 VICINITY MAP
- 2 SITE MAP
- 3 GROUNDWATER GRADIENT MAP
- 4 PETROLEUM HYDROCARBONS IN GROUNDWATER

ATTACHMENTS

- A FIELD DATA SHEETS
- **B** LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION
- C GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 INTRODUCTION

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) conducted the second quarter 2010 groundwater monitoring event at the former Olympian Service Station located at 1435 Webster Street, Alameda, California. The site is the location of a subsurface release of petroleum hydrocarbons related to the former gasoline underground storage tanks (USTs) that were removed in 1989.

This report includes the site environmental background and results of the current groundwater monitoring event. All site groundwater monitoring wells were gauged and wells MW-4 and MW-9 were sampled in compliance with California Regional Water Quality Control Board Resolution 2009-42 and Alameda County Health Agency directives. A vicinity map and site map are provided as Figures 1 and 2, respectively.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST, one 500-gallon waste oil UST and two dispenser islands (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently used as a parking lot.

3.0 ENVIRONMENTAL BACKGROUND

A historical timeline of relevant activities at the subject site is presented in Section 3.1; a summary of the current site condition, including the monitoring well network and general chemical of concern (COC) distribution, is presented in Section 3.2.

3.1 Site Timeline

October 1988	Soil gas analysis performed onsite identified significant concentrations of total hydrocarbons as propane in soil gas.
September 1989	Two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST removed by TEC Accutite; petroleum hydrocarbons detected in soil beneath former tank location.
January 1991	Approximately 950 cubic yards of soil were removed from the former location of the USTs; this soil was bioremediated onsite and returned to the former excavation.
January 1993	Three monitoring wells installed onsite (MW-1 through MW-3); no petroleum hydrocarbons detected in soil.
February 1999	Four soil borings advanced on- and offsite (B-1 through B-4); petroleum hydrocarbon concentrations detected in soil and groundwater.

hydrocarbons detected in soil.

Three monitoring wells, installed onsite (MW-4 through MW-6); petroleum

December 1999

November 2000	Site	conceptual	model	(SCM)	completed;	potential	for	benzene	vapor-phase
	migra	ation from hy	drocarbo	on affect	ted groundwa	ater to indo	or a	nd ambien	t air identified

as an exposure pathway requiring futher evaluation.

June 2001 Four soil borings advanced [B-1 through B-4 (second set of B-1 through B-4)]; no

petroleum hydrocarbons detected in soil; petroleum hydrocarbons detected in

groundwater.

February 2002 Site-specific risk assessment performed; compounds of concern identified as TPHg

and benzene.

May 2003 Eight soil vapor probes advanced onsite (SV-1 through SV-7); petroleum

hydrocarbons detected below their respective Environmental Screening Levels

(ESLs).

September 2005 SCM updated; uncertainties identified in onsite benzene vapor concentrations and

offsite groundwater conditions.

June 2006 Eight soil borings advanced (SP-1 through SP-8); petroleum hydrocarbons detected

in soil above constituent ESLs.

November 2006 Seventeen soil borings advanced (CB-1 through CB-17) to determine excavation

limits; petroleum hydrocarbons detected at concentrations below ESLs and/or

laboratory detection limits at depths shallower than 8 feet bsg.

December 2006 Five soil borings advanced (DB-1 through DB-5); onsite soils classified as Class II

waste; monitoring wells MW-1 and MW-5 abandoned by pressure grouting.

February 2007 Interim remedial action conducted; 992.54 tons of soil excavated from site; 15,000

gallons of groundwater pumped from open excavation pit, sediment removed and

carbon-filtered, and discharged to sewer under permit.

March 2007 Two monitoring wells installed onsite (MW-7 and MW-8).

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2009 Six off-site soil borings advanced (B-19 through B-24); off-site plume fully defined.

One groundwater monitoring well (MW-9) installed in the public right-of-way on Webster Street. Five permanent nested vapor monitoring points installed onsite; no

petroleum hydrocarbons detected in onsite soil vapor.

February 2010 Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study and

Corrective Action Plan submitted to the Alameda County Health Agency. Hydrogen

peroxide injection identified as the most effective remedial alternative.

3.2 Site Condition

The site currently has seven groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and five dual-completed vapor monitoring points (VMP-1 through VMP-5). Locations of site monitoring wells are presented in Figure 2. Groundwater monitoring well construction details and activity schedule are presented in Table 1. Chemicals of concern (COCs) for the site include petroleum

hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), and methyl tert-butyl ether (MTBE). The source was the former USTs, which were removed in 1989. TEC continues to monitor all active groundwater monitoring wells associated with the site on a semi-annual basis in preparation for site corrective action. New well MW-9 and priority well MW-4 are monitored quarterly.

4.0 GROUNDWATER MONITORING

TEC conducted the second quarter groundwater monitoring event on June 10, 2010. Field data sheets from this groundwater sampling event are presented as Attachment A.

4.1 Sampling Methods

Upon arrival to the site, a TEC technician uncapped all active site groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and allowed the water level in each well to fully equilibrate prior to measuring the depth to water. Wells were gauged to the nearest 0.01 foot using an electric water level meter and recorded on the well sampling logs. Following well gauging, approximately three casing-water volumes of groundwater were purged from well MW-9 using a submersible pump. Well MW-4 was also purged with a submersible pump but went dry after purging one casing volume. After water levels in each well recovered to a minimum of 80% of the pre-purge level, groundwater samples were collected with a disposable bailer and transferred into laboratory-supplied, HCI-preserved volatile organic analysis vials (VOAs). The samples were labeled, stored in an insulated container with ice, and delivered to *Torrent Laboratory, Inc.*, a California Department of Health Services certified laboratory, under chain-of-custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX compounds, fuel oxygenates and lead scavengers by EPA Method 8260B. The laboratory analytical report and chain-of-custody documentation are presented in Attachment B.

4.2 Electronic Laboratory Data Submittal

The laboratory report was converted into EDF format and uploaded to GeoTracker, California's online geospatial database. Depths to groundwater were uploaded to GeoTracker as a GEO_WELL file. This report was converted into PDF format and uploaded to GeoTracker as a GEO_REPORT file and to the Alameda County FTP site. Attachment C contains the GeoTracker submission confirmations.

4.3 Results

4.3.1 Groundwater Elevation and Flow Direction

The calculated groundwater gradient based on groundwater elevations is toward the south at 0.004 feet/foot (ft/ft). Groundwater elevations are presented in Table 2 and Figure 3.

4.3.2 Petroleum Hydrocarbons in Groundwater

The sample from groundwater monitoring well MW-4 contained concentrations of MTBE (8.5 ug/L), and 1,2 DCA (1.8 ug/L) exceeding ESLs. TBA (6.1 ug/L:) and xylenes (0.52 ug/L) were also detected in the sample from well MW-4 at concentrations above laboratory reporting limits but below ESLs.

The sample from well MW-9 contained concentrations of MTBE (7.4 ug/L) and 1,2 DCA (0.6 ug/L) above ESLs. No other COCs were detected above laboratory reporting limits.

Groundwater analytical results are summarized in Table 3 and Figure 4.

5.0 CONCLUSIONS AND RECOMMENDATIONS

- For this groundwater monitoring event, average groundwater flow was toward the south at approximately 0.004 ft/ft, within historical precedent for seasonal change in groundwater elevation and gradient.
- Wells sampled this quarter did not contain concentrations of COCs above proposed site-specific treatment levels, however MTBE was detected above ESLs in samples from wells MW-9 and downgradient well MW-4. The concentrations of contaminants of concern remain within the historical ranges.
- TEC has completed four quarterly monitoring events for new well MW-9, installed July 2009, which represent data collected over a complete hydrologic cycle. In accordance with State Water Resources Control Board Resolution 2009-042, TEC recommends that all site monitoring wells be sampled semi-annually; the proposed monitoring events will occur during the first and third quarters.
- TEC is currently awaiting regulatory approval of the Revised Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Workplan.

6.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Technology, Engineering & Construction Inc.'s liability is limited to the dollar amount of the work performed.

Thank you for your cooperation and assistance with this project. If you have any questions or concerns, please contact Nicholas Haddad at (650) 616-1211.

Sincerely,

Technology, Engineering & Construction, Inc.

Elise Sbarbori Project Geologist

Reviewed by:

Paul B. Dotson, PG # 8237 Professional Geologist

TABLES

Table 1 Groundwater Monitoring Well Construction Details and Activity Schedule

Former Olympian Service Station 1435 Webster Street Alameda, California

			Monitoring V	Vell Constru	ction Details				Activity	Schedule
Well ID	Date Installed ¹	Total Depth	Diameter	Top of Screen	Bottom of Screen	Screen Length	Top of Casing ²	Monitoring Status	Gauging	Sampling ³
	installed	(ft bsg)	(inches)	(ft bsg)	(ft bsg)	(feet)	(ft msl)		(semi-a	annually)
MW-1	1/1/1993	24	2	6	24	18	19.53	Destroyed		
MW-2	1/1/1993	24	2	6	24	18	19.80	Active	\checkmark	\checkmark
MW-3	1/1/1993	24	2	6	24	18	19.79	Active	\checkmark	\checkmark
MW-4	12/1/1999	20	2	5	20	15	19.30	Active	\checkmark	\checkmark
MW-5	12/1/1999	20	2	5	20	15	18.99	Destroyed		
MW-6	12/1/1999	20	2	5	20	15	20.27	Active	$\sqrt{}$	\checkmark
MW-7	3/9/2007	20	4	10	20	10	18.93	Active	\checkmark	\checkmark
MW-8	3/9/2007	20	4	10	20	10	19.33	Active	\checkmark	\checkmark
MW-9	7/13/2009	20	4	5	20	15	18.83	Active	$\sqrt{}$	\checkmark

Notes

ft = feet

bsg = below surface grade

msl = mean sea level

Note: Monitoring well MW-9 and MW-4 to be sampled quarterly for one full year from the date of installation of well MW-9.

¹ = Well installation date is given as first day of the installation month when exact well installation date is unknown

² = survey performed by Virgil Chavez Land Surveying (PLS #6323)

³ = groundwater samples are routinely analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260TPH, and for benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl-tert-butyl ether (MTBE), di-isopropyl ether (DIPE), tert-butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA) and 1,2-dibromoethane (EDB) by EPA Method 8260B.

Table 2

Summary of Historical Groundwater Elevation Data
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-1	19.53	6/3/1993	(1)	
		9/14/1994	11.46	8.07
		12/30/1994	9.22	10.31
		3/26/1995	6.76	12.77
		7/9/1995	8.92	10.61
		7/31/1998	8.30	11.23
		2/11/1999	7.91	11.62
		6/23/1999	9.03	10.50
		12/6/1999	10.86	8.67
		3/16/2000	6.93	12.60
		6/13/2000	8.73	10.80
		9/29/2000	10.18	9.35
		3/22/2001	8.24	11.29
		6/25/2001	9.73	9.80
		9/28/2001	11.06	8.47
		12/26/2001	8.11	11.42
		07/0705	8.69	10.84
		10/19/2005	10.25	9.28
		1/13/2006	7.09	12.44
		5/5/2006	6.40	13.13
		7/19/2006	8.28	11.25
		10/5/2006	9.67	9.86
		******Aba	ndoned 12/27	/2006*****
MW-2	19.80	6/3/1993	9.54	10.26
		9/14/1994	11.82	7.98
		12/30/1994	9.46	10.34
		3/26/1995	6.82	12.98
		7/9/1995	9.22	10.58
		7/31/1998	8.56	11.24
		2/11/1999	8.12	11.68
		6/23/1999	9.33	10.47
		12/6/1999	11.20	8.60
		3/16/2000	6.88	12.92
		6/13/2000	8.99	10.81
		9/29/2000	10.40	9.40
		3/22/2001	8.46	11.34
		6/25/2001	10.11	9.69
		9/28/2001	11.40	8.40
		12/26/2001	8.28	11.52
		7/7/2005	8.99	10.81
		10/19/2005	10.63	9.17
		1/13/2006	7.15	12.65
		5/5/2006	6.43	13.37
		7/19/2006	8.57	11.23
		7/19/2006 10/5/2006	8.57 10.05	11.23 9.75
		7/19/2006 10/5/2006 3/29/2007	8.57 10.05 8.83	11.23 9.75 10.97
		7/19/2006 10/5/2006 3/29/2007 6/27/2007	8.57 10.05 8.83 9.86	11.23 9.75 10.97 9.94
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007	8.57 10.05 8.83 9.86 10.89	11.23 9.75 10.97 9.94 8.91
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007	8.57 10.05 8.83 9.86 10.89 10.78	11.23 9.75 10.97 9.94 8.91 9.02
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008	8.57 10.05 8.83 9.86 10.89 10.78 8.48	11.23 9.75 10.97 9.94 8.91 9.02 11.32
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89 8.68	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 6/3/2009	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89 8.68 9.91	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91 11.12 9.89
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 6/3/2009 8/27/2009	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89 8.68 9.91 11.16	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91 11.12 9.89 8.64
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 6/3/2009 8/27/2009 12/10/2009	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89 8.68 9.91 11.16 11.32	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91 11.12 9.89 8.64 8.48
		7/19/2006 10/5/2006 3/29/2007 6/27/2007 9/19/2007 12/19/2007 3/6/2008 6/18/2008 9/10/2008 12/10/2008 3/4/2009 6/3/2009 8/27/2009	8.57 10.05 8.83 9.86 10.89 10.78 8.48 10.23 11.36 11.89 8.68 9.91 11.16	11.23 9.75 10.97 9.94 8.91 9.02 11.32 9.57 8.44 7.91 11.12 9.89 8.64

Table 2 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
B#14/ O	(ft msl)	0/0/4000	(ft)	(ft msl)
MW-3	19.79	6/3/1993 9/14/1994	9.80 12.19	9.99 7.60
		12/30/1994	9.72	10.07
		3/26/1995	6.88	12.91
		7/9/1995	9.52	10.27
		7/31/1998	8.40	11.39
		2/11/1999	7.77	12.02
		6/23/1999	9.21	10.58
		12/6/1999 3/16/2000	11.12 6.48	8.67 13.31
		6/13/2000	8.76	11.03
		9/29/2000	10.20	9.59
		3/22/2001	8.24	11.55
		6/25/2001	10.04	9.75
		9/28/2001	11.34	8.45
		12/26/2001	8.01	11.78
		7/7/2005 10/19/2005	8.84 10.58	10.95 9.21
		1/13/2006	6.85	12.94
		5/5/2006	6.11	13.68
		7/19/2006	8.41	11.38
		10/5/2006	10.02	9.77
		3/29/2007	9.71	10.08
		6/27/2007	9.82	9.97
		9/19/2007 12/19/2007	10.88 10.68	8.91 9.11
		3/6/2008	8.30	11.49
		6/18/2008	10.18	9.61
		9/10/2008	11.33	8.46
		12/10/2008	11.89	7.90
		3/4/2009	8.40	11.39
		6/3/2009	9.81	9.98
		8/27/2009 12/10/2009	11.18 11.30	8.61 8.49
		3/10/2010	7.78	12.01
		6/10/2010	9.02	10.77
MW-4	19.30	12/6/1999	10.79	8.51
		3/16/2000 6/13/2000	6.86 8.18	12.44 11.12
		9/29/2000	10.11	9.19
		4/5/2001	8.26	11.04
		6/25/2001	9.68	9.62
		9/28/2001	10.98	8.32
		12/26/2001	8.18	11.12
		7/7/2005 10/19/2005	8.77 10.24	10.53 9.06
		1/13/2006	(1)	(1)
		5/5/2006	(1)	(1)
		7/19/2006	8.38	10.92
		10/5/2006	9.65	9.65
		3/29/2007	8.55	10.75
		6/27/2007	9.40	9.90
		9/19/2007 12/19/2007	10.45 10.35	8.85 8.95
		3/6/2008	8.25	11.05
		6/18/2008	9.80	9.50
		9/10/2008	10.89	8.41
		12/10/2008	11.43	7.87
		3/4/2009	8.47	10.83
		6/3/2009	9.53	9.77
		8/27/2009 12/10/2009	10.72 10.85	8.58 8.45
		3/10/2010	7.87	11.43
		6/10/2010	8.87	10.43

Table 2

Summary of Historical Groundwater Elevation Data
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
101/5	(ft msl)	10/0/1000	(ft)	(ft msl)
MW-5	18.99	12/6/1999	10.17	8.82
		3/16/2000	6.28	12.71
		6/13/2000	7.95 9.54	11.04
		9/29/2000		9.45
		3/22/2001 6/25/2001	7.48	11.51
		9/28/2001	9.05 10.39	9.94 8.60
		12/26/2001	7.28	11.71
		8/24/2005	7.26 7.87	11.12
		10/19/2005	9.51	9.48
		1/13/2006	6.35	12.64
		5/5/2006	5.64	13.35
		7/19/2006	7.41	11.58
		10/5/2006	8.89	10.10
			ndoned 12/27	
		Abc	12/2/	72000
MW-6	20.27	12/6/1999	11.46	8.81
		3/16/2000	8.32	11.95
		6/13/2000	9.14	11.13
		9/29/2000	10.81	9.46
		3/22/2001	8.64	11.63
		6/25/2001	10.39	9.88
		9/28/2001	11.70	8.57
		12/26/2001	8.40	11.87
		7/7/2005	9.10	11.17
		10/19/2005	10.88	9.39
		1/13/2006	7.33	12.94
		5/5/2006	6.53	13.74
		7/19/2006	8.64	11.63
		10/5/2006	10.29	9.98
		3/29/2007	9.01	11.26
		6/27/2007	10.14	10.13
		9/19/2007	11.17	9.10
		12/19/2007	10.99	9.28
		3/6/2008	8.65	11.62
		6/18/2008	10.46	9.81
		9/10/2008	11.64	8.63
		12/10/2008	12.18	8.09
		3/4/2009	8.86	11.41
		6/3/2009	10.07	10.20
		8/27/2009	11.45	8.82
		12/10/2009	11.61	8.66
		3/10/2010 6/10/2010	8.19 9.30	12.08 10.97
		0/10/2010	3.30	10.91
MW-7	18.93	3/29/2007	7.90	11.03
		6/27/2007	8.87	10.06
		9/19/2007	9.88	9.05
		12/19/2007	9.72	9.21
		3/6/2008	7.52	11.41
		6/18/2008	9.13	9.80
		9/10/2008	10.29	8.64
		12/10/2008	10.81	8.12
		3/4/2009	7.89	11.04
		6/3/2009	8.70	10.23
		8/27/2009	10.05	8.88
		12/10/2009	10.21	8.72
		3/10/2010	7.16	11.77
		6/10/2010	8.58	10.35
1				

Table 2 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC Elevation (ft msl)	Sample Date	Depth to Water (ft)	Groundwater Elevation (ft msl)
MW-8	19.33	3/29/2007	8.40	10.93
		6/27/2007	9.33	10.00
		9/19/2007	10.31	9.02
		12/19/2007	10.23	9.10
		3/6/2008	9.14	10.19
		6/18/2008	9.74	9.59
		9/10/2008	10.76	8.57
		12/10/2008	11.31	8.02
		3/4/2009	8.59	10.74
		6/3/2009	9.51	9.82
		8/27/2009	10.57	8.76
		12/10/2009	10.72	8.61
		3/10/2010	7.77	11.56
		6/10/2010	8.01	11.32
MW-9	18.83	8/27/2009	10.01	8.82
		12/10/2009	10.16	8.67
		3/10/2010	7.31	11.52
		6/10/2010	8.14	10.69

Notes:

TOC = Top of Casing

ft msl = Feet referenced to mean sea level

--- = Not Available

(1) = Well not accessible due to obstruction by a parked car

yellow row = most recent data

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	Е	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
Well ID	Date	11 TIG	11119	Concentration				W.DL	Tivi II	DI. 2	IDA	1,2-207.
ES		100	100	1.0	40	30	20	5.0			12	0.5
proposed				940	4,300	760	7,100	1,300				
MW-1	6/3/1993											
	9/14/1994	<50	14,000	44	28	25	50		800			
	12/30/1994	<50	4,000	12	9	6.8	30		<500			
	3/26/1995 7/9/1995	<50 <50	1,000 16,000	21 57	10 28	7.1 25	25 53		2,100			
	7/31/1998	1,700	4,700	1,300	48	140	150	6,600	<5000			
	2/11/1999	2000	25,000	18,000	1,600	1,400	500	28,000				
	6/23/1999	4,900	42,000	11,000	1,100	1,500	2,300	15,000				
	12/6/1999	4,000	44,000	8,900	3,400	1,900	5,100	11,000				
	3/16/2000	700	5,100	2,400	100	280	460	2,700	2			
	6/13/2000	2,800	17,000	5,300	260	720	790	7,000	2			
	9/29/2000	5,200	50,000	11,000	2,900	1,900	4,600	7,200	2			
	3/22/2001	1,500	¹ 8,600	2,600	750	250	950	3,200	2			
	6/25/2001		18,000	1,200	1,800	970	3,200	1,500	²			
	9/28/2001		48,000	5,200	6,100	2,200	8,100	4,000				
	12/26/2001		524	216	1.2	8.6	7.4	721				
	7/7/2005 10/19/2005		1,500	190 2,100	15 45	36 370	29 82	1,100 4,600		<20 <250	<500	50 200
	1/13/2006		11,000 5,400	2,100 680	45 37	370 83	82 41	4,600 3,900		<250 <250	<500 <500	200 180
	5/5/2006		<25	2	<0.5	<0.5	<0.5	2.2		<5.0	<10	<0.5
	7/19/2006		5,000	836	22.3	107	81.8	1,130		<4.2	<84	54.1
	10/5/2006		23,000	3,740	112	395	161	6,020		13.5	546	219
	10/0/2000			*****					*****		0.0	2.0
MW-2	6/3/1993	<50	<50	5.8	<0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994	<50	160	1.4	1.4	0.8	5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500 			
	7/9/1995 7/31/1998	220	<50	<0.5	<0.5	<0.5	<0.5	73	<500			
	2/11/1999	<50	<50 <50	<0.5	<0.5	<0.5	<0.5	75	<500			
	6/23/1999	420	<50	<0.5	<0.5	<0.5	<0.5	96				
	12/6/1999	<110	300	28	45	6	37	210				
	3/16/2000	<50	<50	1	<0.5	0.5	1	3				
	6/13/2000	<50	68	0.8	< 0.5	< 0.5	< 0.5	38				
	9/29/2000	<50	67	8.0	0.5	<0.5	1	86	2			
	3/22/2001	<50	<50	1	0.5	<0.5	1	14				
	6/25/2001		<50	<0.5	< 0.5	<0.5	<1.0	13				
	9/28/2001		300	4	6	3	10	130				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	20		<1.0		1.1
	10/19/2005 1/13/2006		29 <25	1.4 <0.5	<0.5 ³ <0.5	<0.5 <0.5	<0.5 <0.5	19 <1.0		<5.0 <5.0	<10 <10	0.95 <0.5
	5/5/2006		<25 <25	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0		<5.0 <5.0	<10 <10	<0.5 <0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	16.6		<0.5	<10	1.24
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	11.9		<0.5	<10	0.750
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	3.36		<0.5	<10	<0.5
	6/27/2007		<50	< 0.5	<0.5	<0.5	<1.5	10.5		<0.5	<10	0.820
	9/19/2007		52	4 <0.5	< 0.5	< 0.5	<1.5	18.1		<0.5	<10	0.710
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	22.9		<0.5	<10	0.840
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	1.02		<0.5	<10	<0.5
	6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	36.9		<0.5	<10	0.880
	9/10/2008		69	<0.5	<0.5	<0.5	<1.5	24.6		<0.5	<10	0.810
	12/10/2008		84	<0.5	<0.5	<0.5	<1.5	30.2		<0.5	<10	0.650
	3/4/2009		<50	< 0.5	< 0.5	< 0.5	<1.5	3.15		< 0.5	<10	<0.5
	6/3/2009		<55	<0.55	< 0.55	< 0.55	<1.6	35 73		< 0.55	<11	0.55
	8/27/2009 3/11/2010		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	73 <0.5		<0.5 <0.5	23 <30	1.1 <0.5
1	3/11/2010		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<30	<υ.5
l		l										

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	Е	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			Concentration								
ES		100	100	1.0	40	30	20	5.0			12	0.5
proposed MW-3	6/3/1993	 <50	<50	940 <0.5	4,300 <0.5	760 <0.5	7,100 <0.5	1,300	<500			
WW-3	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995											
	7/31/1998	<50	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<5000			
	2/11/1999 6/23/1999	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 3				
	12/6/1999	<110	<50	3	1	<0.5	1	0.6				
	3/16/2000	<50	<50	<0.5	<0.5	<0.5	<1.0	1				
	6/13/2000	<50	490	8.0	<0.5	< 0.5	9	2				
	9/29/2000	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0				
	3/22/2001 6/25/2001	<50 	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	2 0.8				
	9/28/2001		91	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25	<0.5	<0.5 ³	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	5/5/2006 7/19/2006		<25 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <1.5	<1.0 <0.5		<5.0 <0.5	<10 <10	<0.5 <0.5
	7/19/2006 10/5/2006		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/19/2007		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		< 0.5	<10	<0.5
	3/6/2008 6/18/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/4/2009		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	8/27/2009 3/11/2010		<55	< 0.55	< 0.55	< 0.55	<1.6	<0.55		<1.55	<11	< 0.55
	3/11/2010		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<30	<0.5
MW-4	12/6/1999	160	<50	3	2	0.6	4	140				
	3/16/2000	90	<50	0.5	0.5	<0.5	2	34				
	6/13/2000	<50	56	<0.5	<0.5	<0.5	<1.0	1 .40 2	,			
	9/29/2000 4/5/2001	<50 <50	92 51	0.7 <0.5	<0.5 0.5	<0.5 <0.5	3 1	<1.0 ²				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	9/28/2001		<50	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	1.6	1.7	1.6	4.4	2.7				
	7/7/2005		<50	<0.5	< 0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25 ************	<0.5	<0.5 ³	<0.5 ********Not	<0.5	<1.0 *******	 *******	<5.0 ******	<10 ******	<0.5
	1/13/2006 5/5/2006			******			sampled *****	******	******	*****	******	
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	< 0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	0.69		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	< 0.5	<1.5	1.38		<0.5	<10	< 0.5
	12/19/2007 3/6/2008		63 <50	° <0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	2.20 <0.5		<0.5 <0.5	<10 <10	0.590 <0.5
	6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	0.700		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	2.04		<0.5	<10	<0.5
	3/4/2009 6/3/2009		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	2.96 1.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	8/27/2009		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	1.5 4.9		<0.5 <0.5	<10 11	<0.5 1.3
	12/10/2009		<50	<0.5	<0.5	<0.5	<1.5	4.1		<0.5	<5	0.71
_	3/11/2010		<50	<0.5	<0.5	<0.5	<1.5	9.8		<0.5	<30	<0.5
	6/10/2010		<50	<0.5	<0.5	<0.5	0.52	8.5		<0.5	6.1	1.8
MW-5	12/6/1999	2,800	30,000	2,200	3,300	910	7000	670				
10.00-3	3/16/2000	1,100	3,500	1,100	260	210	6300	260				
	6/13/2000	1,100	6,500	2,200	360	360	730	480				
	9/29/2000	700	1 3,900	990	120	300	340	390 ²				
	3/22/2001	380	¹ 4,300	780	240	250	530	190				
	6/25/2001		3,100	1,000	110	200	320	140 770				
	9/28/2001 12/26/2001		3,000 3,240	1,200 738	77 262	120 218	170 626	770 66.4				
	8/24/2005		3,240 150	738 57	3	8	3.9	67		<1.0	18	3.0
	10/19/2005		560	130	3.8	23	9.3	230		<25	<50	11
	1/13/2006		2,300	570	18	120	140	220		<25	<50	14
	5/5/2006		130	35	1.7	7.8	7.4	8		<5.0	<10	0.55
	7/19/2006		210	102	1.54	15.8	3.85	27.6		< 0.5	<10	2.06
	10/5/2006		410	105 ******	1.06	9.05 **Well Abar	2.24 ndoned 12/27	101 7/2006**** ***	******	0.640	11.3	6.65
						TTOII ADAI		000				

Table 3 Summary of Groundwater Monitoring Analytical Results

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg		В	Т	E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
Well ID	Date	11110	9	Con		ions in micre			WILDE	110111	D., L	IDA	1,2 504
ES		100	100		1.0	40	30	20	5.0			12	0.5
propose					940	4,300	760	7,100	1,300				
MW-6	12/6/1999	110	<50		2	2	0.8	8	1				
	3/16/2000	<50	<50		8	8	5	18	<0.5				
	6/13/2000	<50	75		0.7	1	0.9	2	0.6				
	9/29/2000 3/22/2001	<50 <50	<50 66		<0.5 0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.5 3				
	6/25/2001		<50		< 0.5	<0.5	<0.5	<1.0	4				
	9/28/2001		63		2	ND	ND	1	3				
	12/26/2001		<50		<0.5	<0.5	<0.5	1.4	<0.5				
	7/7/2005		<50		<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25		<0.5	<0.5 3	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		<25		< 0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25		<0.5	<0.5	< 0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006		<50		<0.5	<0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	10/5/2006		<50		<05	<0.5	< 0.5	<1.5	< 0.5		<0.5	<10	<0.5
Post excavation	3/29/2007		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/19/2007		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/6/2008		<50		<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/18/2008		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/10/2008		<50		<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/10/2008 3/4/2009		<50 <50		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5
	6/3/2009		<50 <50		< 0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	8/27/2009		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/11/2010		<50		<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<30	<0.5
	0/11/2010		400		40.0	40.0	10.0	11.0	40.0		10.0	400	10.0
MW-7	3/29/2007		840		50.8	9.33	2.54	162	39.9		<0.5	<10	2.26
	6/27/2007		270		126	<0.5	7.11	<1.5	94.4		0.550	58.4	6.21
	9/19/2007		191	4	0.5	< 0.5	5.38	<1.5	49.6		<0.5	28.5	4.37
	12/19/2007		54	4	<0.5	<0.5	<0.5	<1.5	11.4		<0.5	<10	1.09
	3/6/2008		<50		<0.5	<0.5	<0.5	<1.5	4.83		<0.5	<10	0.59
	6/18/2008		<50	4	0.840	<0.5	0.500	<1.5	52.5		<0.5	15.3	5.70
	9/10/2008		55	*	<0.5	<0.5	<0.5	<1.5	15.3		<0.5	<10	1.98
	12/10/2008		<50		<0.5	<0.5	<0.5	<1.5	2.43		<0.5	<10	<0.5
	3/4/2009		<50		<0.5	<0.5	< 0.5	<1.5	0.530		<0.5	<10	<0.5
	6/3/2009 8/27/2009		<50 <50		0.62 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	5.2 4.8		<0.5 <0.5	<10 <10	<0.5 0.55
	3/11/2010		<50 <50		<0.5	<0.5	<0.5	<1.5	0.73		<0.5	<30	<0.5
	3/11/2010]	~30		~0. 3	~0.3	~0.0	\1.J	0.73		~0.0	\30	\0. 0
MW-8	4/6/2007		27,000		2,460	1,520	210	1,810	16,000		24.3	1,050	459
	6/27/2007		20,000		2,460	382	611	1,040	7,310		11.1	3,400	319
	9/19/2007		20,400	4	814	16.2	219	21.6	10,300		<4.40	7,080	194
	12/19/2007		14,100	4	426	10.6	115	22.4	12,700		25.0	864	289
	3/6/2008		19,000	5	639	19.5	268	152	11,200		<4.4	<88	227
	6/18/2008		5,800	4	496	11.7	258	24.4	9,730		15.7	468	209
	9/10/2008		9,900		299	11.1	73.0	13.6	11,600		27.1	1,670	240
	12/10/2008		6,900	4	477	3.98	57.9	22.6	11,600		23.1	634	287
	3/4/2009		8,500	5	168	1.35	17.3	8.59	8,190		7.00	2,050	238
	6/3/2009		11,000	5	490	3.90	57	16	14,000		<0.5	<10	310
	8/27/2009		5,400	5	340	8.3	67	37	8,900 5,900		21	2,900	300
	3/11/2010		7,900	-	660	3.7	100	28.3	5,800		18	1,100	150
MW-9	8/27/2009		<50		<0.5	<0.5	<0.5	<1.5	12		<0.5	<10	0.76
INI VV-S	12/10/2009		<50 <50		<0.5 <0.5	<0.5 0.50	<0.5 <0.5	<1.5 <1.5	4.8		<0.5 <0.5	< 10 < 5.0	<0.5
	3/10/2009		<50		<0.5	<0.5	<0.5	<1.5	3.8		<0.5	<30	<0.5
	6/10/2010		<50		<0.5	<0.5	<0.5	<1.5	7.4		<0.5	<5.0	0.6
	2, 10,20.0				.0.0		-10.0	10					0.0
1		•											

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)

TPHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; after July 2005 by EPA 8260

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; after July 2005 by EPA 8260

Fuel Additives = Methyl-tert-butyl ether (MTBE), Di-isopropyl ether (DIPE), tert-Butyl alcohol (TBA), 1,2-Dichloroethane (1,2-DCA) by EPA Method 8260B

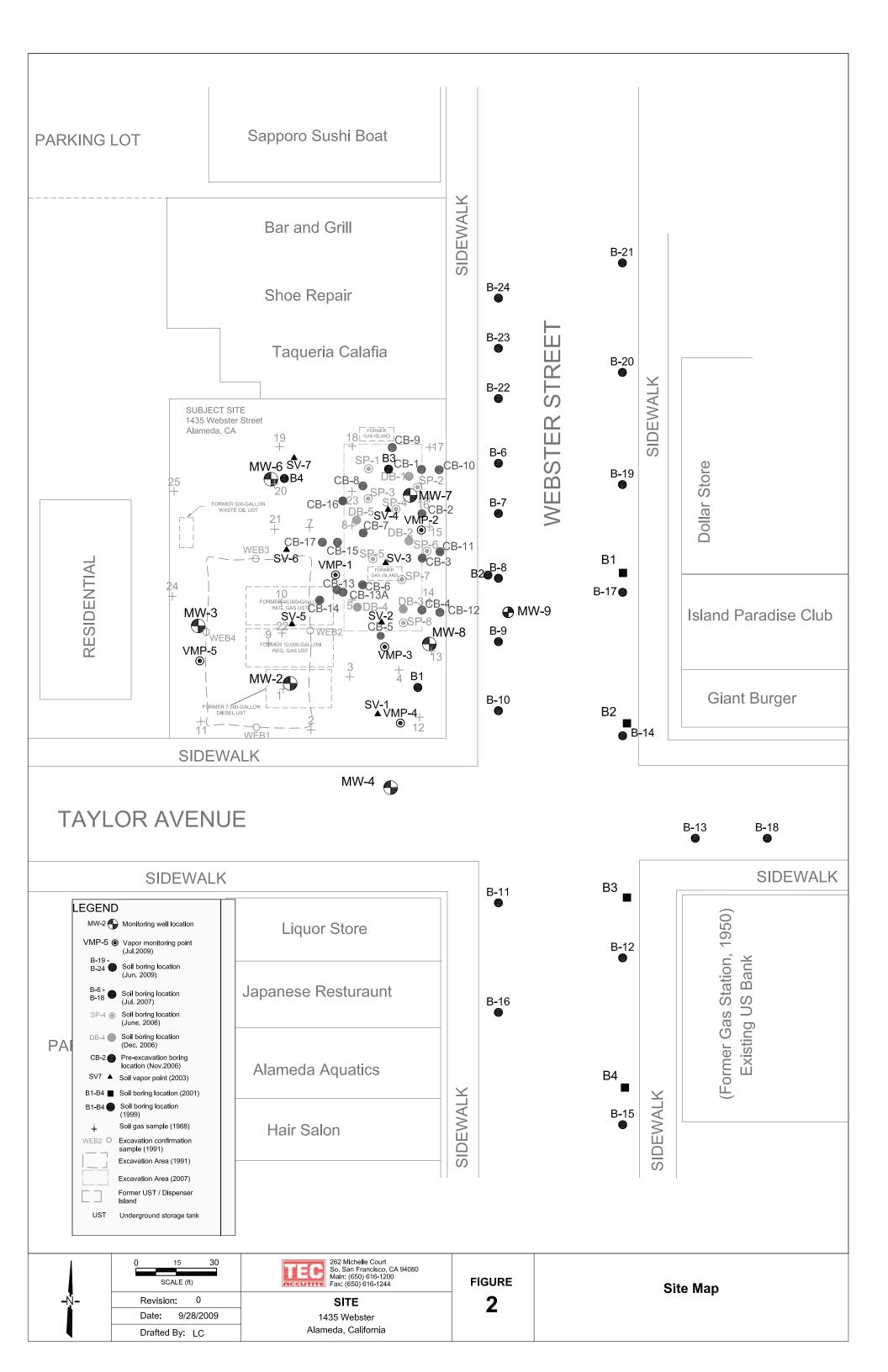
TRPH = Total Recoverable Petroleum Hydrocarbons

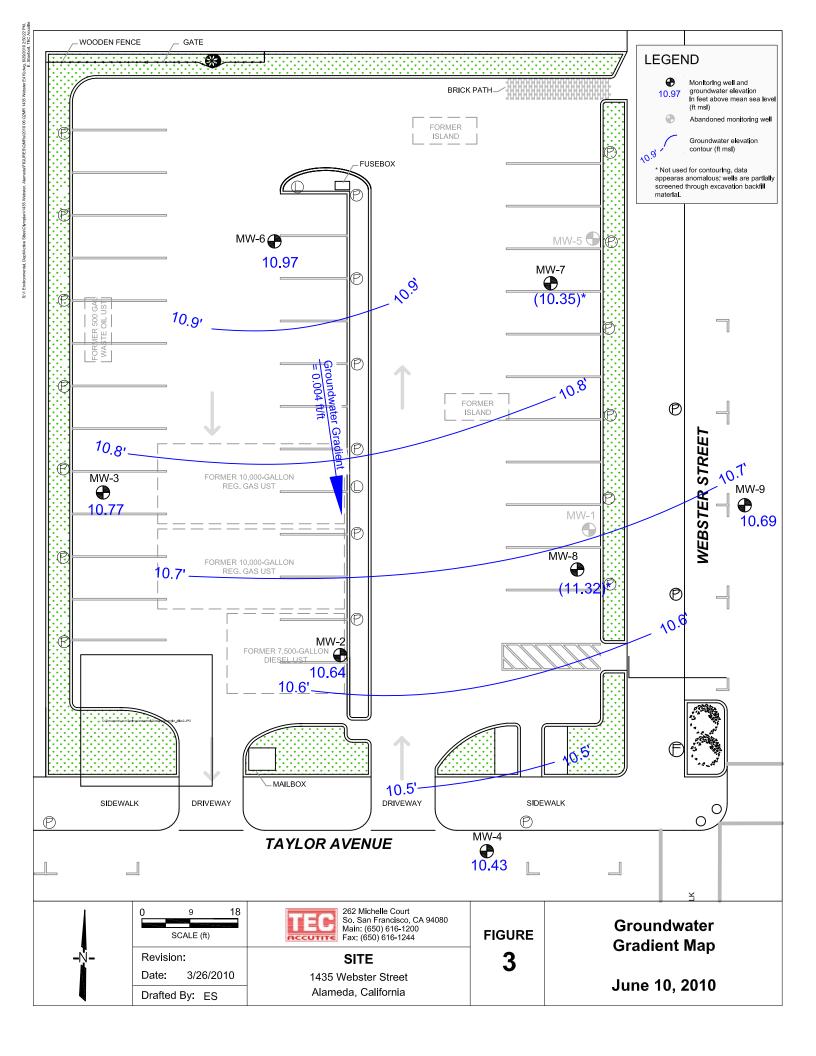
- <X = Concentration less than laboratory reporting limit
 --- = Not Analyzed
- ¹ = Does not match diesel chromatogram pattern
- ² = Confirmed by EPA Method 8260
- ³ = Toluene was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1994).
- ⁴ = TPH Gasoline value is primarily due to individual peaks / non-target compounds within gasoline quantitative range.
- = TPH value partially due to individual peak (MTBE) within gasoline quantitative range.

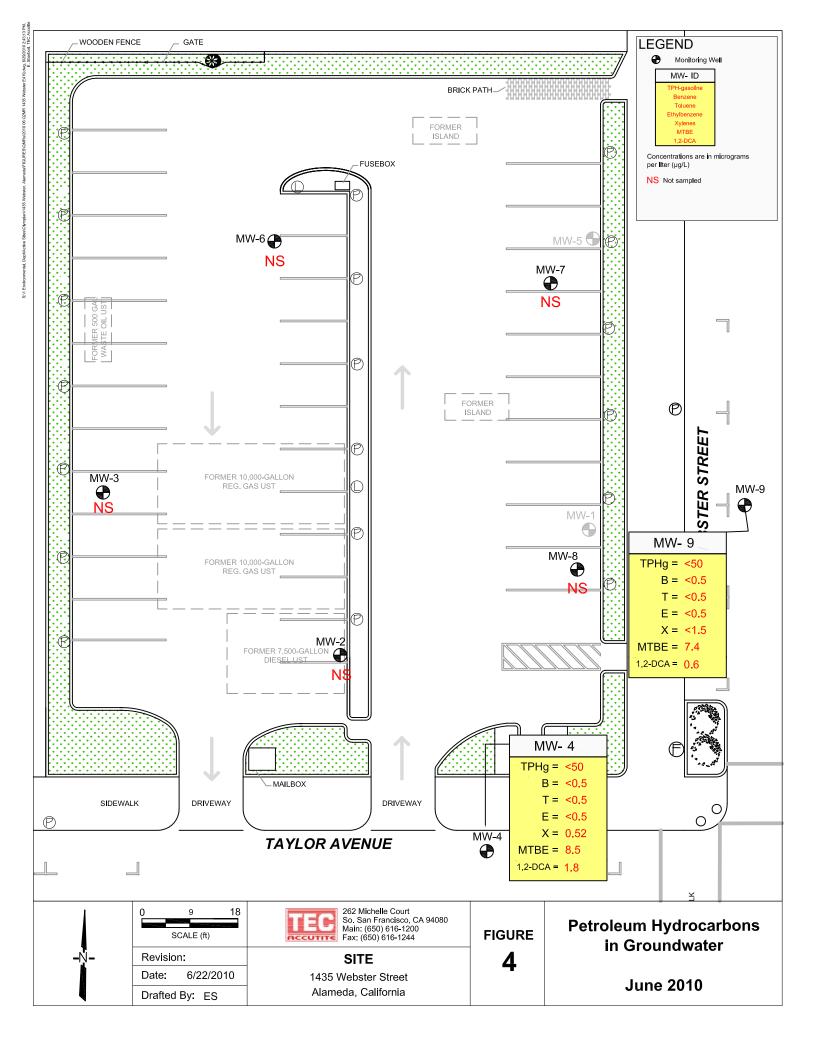
ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CRWQCB, Interim Final,

November 2007, revised May 2008).

Proposed SSTLs = site-specific treatment levels proposed in the Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Plan (TEC 2010).


bold = constituent exceeds proposed SSTL
yellow row = most recent data




FIGURES

Drafted By: AK

ATTACHMENT A

FIELD DATA SHEETS

		TEC	ACCUTI	TE Well	Data Shee	et		
Date: 6/0/10	Site Name: 1435	Webster		Project #:	E-419-	-2-10	Sampler: BD	
Evente 22 QMR	Site Address: A	lameda			Client: Oly	/mpian		
	appropriate to		保护部局局的的技术	Carrie of Carrie	ENT.	\$20EC08CD25ED4-D04C346	WELL	COMMENTS
WELL ID	TIME	DIP	PT.	DTW 3	Historic DTB date: 6/3/09	DTB	DIAMETER	(i.e. pressurized or maintenance req.)
MW-2	924			9.13	19.42		2"	
MW-3	920			9.02	21.85		2"	
MW-4	925			8.87	19.76		2"	
MW-6	922			9.30	19.34		2"	
MW-7	928			8.58	19.81		4"	
MW-8	937			8.01	20.03		4"	
MW-9	939			8.14	19.94		4"	
	•							
	.,•							

Abbreviations:

				ccutite Field Data Sh	eet	······································	-				
Project #:	=-419-	2-10	Purged By:	BD		Well ID:	MW-4				
Client Name	: Olympian		Sampled By	: BI)		Sample ID:	MW-4				
Location:	1435 Webste	er				QA Samples	s:				
,	,		Purge In	formation			,				
Date: 6 1	0/10		Start (2400h	r): 1039		End (2400hr	1:1042-				
Depth to Bo	ttom: 19.76			iter: 8,87		Casing Dian	neter: 2"				
DTB - DTW:	10.89		Purge (gal):	1.85		x 3 volumes	:5,55				
Field Measurements											
Time (2400hr)	(2400hr) (gal) (°C) (µmhos/cm) (units) (NTU) (mg/l) (ft)										
1041	2.0	18.6	426	6.31	1000	clear	day				
1042	WELL	WENT	Dey	@ -2	GALLO	NS	/				
	i			formation		1.	_				
Date: 6 16	1D	Time: 104	9	$DTW: \mathcal{G}_{\mathcal{A}}^{\mathcal{O}}$	Sample Vest	Turbidity: /					
Odor: 10	N		Analysis:	8260	Preservative						
	Purging E	quipment			Sampling	Equipment					
		peristaltic p			–	peristaltic p	•				
bailer (disposable)bailer (st. steel)bailer (disposable)bailer (st. steel)bailer (st. steel)bladder pump											
other:				other:							
Well Integrity	1: 000 L		Lock: NO								
	Note: To convert water column height to total amount of gallons in one well volume, multiply the water column height by: .17 for 2" well diameter, .65 for 4", 1.47 for 6", or 2.62 for 8".										
Signature:	Signature: Brim Dollar										

			TEC A ater Sample I	Accutite Field Data Sh	neet						
Project #:	E-419-	2-10	Purged By:	BD		Well ID:	MW-9				
Client Name	e: Olympian		Sampled By	r: BD		Sample ID:	MW-9				
Location:	1435 Webste	er				QA Samples	s:				
	1		Purge In	formation							
Date: 6/	10/10		Start (2400h	ir): 952	,· 	End (2400hr): 1004					
	ottom: 19.94		Depth to Wa	ater: 8.14		Casing Dian	neter: 4"				
DTB - DTW:	11.80		Purge (gal):	7.67		x 3 volumes	:23.01				
	Field Measurements										
Time Volume Temp Conductivity pH Turbidity D.O. Depth (2400hr) (gal) (*C) (μmhos/cm) (units) (NTU) (mg/l) (ft)											
955	7.5	19.7	668	6.75	100	clear	11.50				
959	15.0	19.6	663	6.59	11	/1	13.30				
1000	Z3. O	19.5	653	6.51	H	t]	14.44				
					,						
			Sample In	formation							
Date: 6/10	0110	Time: 0	-	DTW: 9.1	5	Turbidity:					
Odor: Slig	ilt		Analysis:	8260	Sample Vess Preservative		As				
	Purging E	Equipment			Sampling	Equipment					
	sible pump	peristaltic p		V	ible pump _	peristaltic p					
	isposable) _		, i			bailer (st. s	•				
dedicate	a	_ bladder pum	1p	dedicated other:		_ bladder pum	•				
Well Integrit	Well Integrity: 900L Lock: ND										
Note: To co	onvert water co dumn height by	olumn height to	o total amount	•							
lile water con	n lumin neight by	717 101 2 W	ell ulameter, .	.05 101 7 , 1.7	7 101 0 , 01 2.0	02 101 0 .					
Signature:	Brian.	Dohern	1								

ATTACHMENT B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

Tec Accutite 262 Michelle Ct South San Francisco, California 94080

Tel: (650) 616-1200 Fax: (650) 616-1244

Email: tecaccutite@gmail.com

1-195

RE: 1435 Webster

Work Order No.: 1006101

Dear Brian Doherty:

Torrent Laboratory, Inc. received 2 sample(s) on June 14, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

gar s	
	June 21, 2010
Patti Sandrock	Date

Total Page Count: 13 Page 1 of 13

Date: 6/21/2010

Client: Tec Accutite
Project: 1435 Webster
Work Order: 1006101

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 13 Page 2 of 13

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for: Brian Doherty **Date Received:** 06/14/10

Tec Accutite Date Reported: 06/21/10

MW-4 1006101-001A

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	8.5	ug/L
tert-Butanol	SW8260B	1	1.5	5.0	6.1	ug/L
1,2-Dichloroethane	SW8260B	1	0.28	0.50	1.8	ug/L
o-Xylene	SW8260B	1	0.13	0.50	0.52	ug/L

MW-9 1006101-002A

Parameters:	Analysis Method	DF	MDL	PQL	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	7.4	ug/L
1,2-Dichloroethane	SW8260B	1	0.28	0.50	0.60	ug/L

Total Page Count: 13 Page 3 of 13

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

SAMPLE RESULTS

Report prepared for: Brian Doherty Date Received: 06/14/10
Tec Accutite Date Reported: 06/21/10

Client Sample ID: MW-4 Lab Sample ID: 1006101-001A

Project Name/Location: 1435 Webster Sample Matrix: Water

Project Number: 17747

 Date/Time Sampled:
 06/10/10 / 10:49

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MIDE	OWIGOOD		00/47/40		0.00	0.50	0.5		/1	404000	NI O
MTBE	SW8260B	NA	06/17/10	1	0.38	0.50	8.5		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	1	1.5	5.0	6.1		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	1	0.36	0.50	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	1	0.40	0.50	ND		ug/L	401289	NA
Benzene	SW8260B	NA	06/17/10	1	0.33	0.50	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	1	0.32	0.50	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	1	0.28	0.50	1.8		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	1	0.19	0.50	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	1	0.19	0.50	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	1	0.15	0.50	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	1	0.20	1.0	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	1	0.13	0.50	0.52		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	1	61.2	131	86.7		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	1	75.1	127	87.1		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	1	64.1	120	94.7		%	401289	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/21/10	1	22	50	ND		ug/L	401298	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/21/10	1	58.4	133	84.4		%	401298	NA

Total Page Count: 13 Page 4 of 13

SAMPLE RESULTS

Report prepared for: Brian Doherty
Tec Accutite
Date Received: 06/14/10
Date Reported: 06/21/10

Client Sample ID: MW-9 Lab Sample ID: 1006101-002A

Project Name/Location: 1435 Webster Sample Matrix: Water

Project Number: 17747

 Date/Time Sampled:
 06/10/10 / 10:17

 Tag Number:
 1435 Webster

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	06/17/10	1	0.38	0.50	7.4		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	1	1.5	5.0	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	1	0.36	0.50	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	1	0.40	0.50	ND		ug/L	401289	NA
Benzene	SW8260B	NA	06/17/10	1	0.33	0.50	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	1	0.32	0.50	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	1	0.28	0.50	0.60		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	1	0.19	0.50	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	1	0.19	0.50	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	1	0.15	0.50	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	1	0.20	1.0	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	1	0.13	0.50	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	1	61.2	131	87.2		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	1	75.1	127	96.1		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	1	64.1	120	87.6		%	401289	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	1	22	50	ND	•	ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	1	58.4	133	62.9		%	401293	NA

Total Page Count: 13 Page 5 of 13

MB Summary Report

Work Order: 1006101 Prep Method: NA NA Prep Date: NA Prep Batch: Matrix: Water Analytical SW8260B **Analyzed Date:** 06/17/10 Analytical 401289 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	_
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
2-Chloroethyl vinyl ether	0.91	2.0	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	0.34	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 6 of 13

(S) 4-Bromofluorobenzene

MB Summary Report

Work Order:	1006101	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy Metho		SW8260B	Anal	yzed Date:	06/17/10	Analytical Batch:	401289
Units:	ug/L								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
m,p-Xylene		0.20	1.0	ND	•				
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzer	ne	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo		0.26	0.50	ND					
n-Propylbenzene	•	0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropro		0.59	1.0	ND					
1,2,4-Trimethylbe		0.33	0.50	ND					
sec-Butyl Benzer		0.24	0.50	ND					
p-Isopropyltoluen		0.25	0.50	ND					
1,3-Dichlorobenz		0.31	0.50	ND					
1,4-Dichlorobenz	ene	0.37	0.50	ND					
n-Butylbenzene 1,2-Dichlorobenz	·ono	0.32 0.39	0.50 0.50	ND ND					
1,2-Dichiorobenz		0.39	1.0	ND					
Hexachlorobutad		0.45	0.50	ND					
1,2,4-Trichlorobe		0.22	1.0	ND					
Naphthalene	II LUI IU	0.46	1.0	0.78					
1,2,3-Trichlorobe	nzene	0.52	1.0	ND					
(S) Dibromofluoro		0.02	1.0	95.1					
(S) Toluene-d8				93.6					
(S) 4-Bromofluor	obenzene			90.1					
Work Order:	1006101	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	06/17/10	Analytical	401293
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline)		22	50	ND	1	1			
(0) 4 Decree (because									

69.9

Total Page Count: 13 Page 7 of 13

MB Summary Report

Work Order:	1006101	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	06/21/10	Analytical	401298
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier	
TPH(Gasoline) (S) 4-Bromofluorobenzene	22	50	ND 82.7		

Total Page Count: 13 Page 8 of 13

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

			a.r raiae	o are acca in quanty	are used in quality control accessionients				
Work Order:	1006101	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA		
Matrix:	Water	Analytical Method:	SW8260B	Analyzed Date:	06/17/10	Analytical Batch:	401289		
Units:	ug/L	wethou.				Daton.			

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50		17.04	114	101	12.2	61.4 - 129	30	
Benzene	0.33	0.50		17.04	116	114	1.73	66.9 - 140	30	
Trichloroethylene	0.38	0.50		17.04	101	99.9	0.469	69.3 - 144	30	
Toluene	0.19	0.50		17.04	117	106	9.92	76.6 - 123	30	
Chlorobenzene	0.14	0.50		17.04	119	110	8.37	73.9 - 137	30	
(S) Dibromofluoromethane				11.36	91.5	111		61.2 - 131		
(S) Toluene-d8				11.36	83.4	98.2		75.1 - 127		
(S) 4-Bromofluorobenzene				11.36	93.7	81.7		64.1 - 120		

Work Order:	1006101	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	8260TPH	Analyzed Date:	06/17/10	Analytical Batch:	401293
Units:	ug/L	wethou.				Dalcii.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50		227.27	111	112	0.212	52.4 - 127	30	
(S) 4-Bromofluorobenzene				11.36	83.0	91.5		58.4 - 133		

Work Order:	1006101	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	06/21/10	Analytical	401298
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50		227.27	110	104	5.38	52.4 - 127	30	
(S) 4-Bromofluorobenzene				11.36	79.9	59.3		58.4 - 133		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- **E** Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Total Page Count: 13 Page 10 of 13

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Receipt Checklist

Client Name: Tec Accutite Date and Time Received: 6/14/2010 16:10

Project Name: 1435 Webster Received By: NG

Work Order No.: 1006101 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: Gold Bullet Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: 5 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt?

pH Checked by: pH Adjusted by:

Total Page Count: 13 Page 11 of 13

Login Summary Report

Client ID: TL5132 Tec Accutite QC Level:

 Project Name:
 1435 Webster
 TAT Requested:
 5+ day:0

 Project #:
 17747
 Date Received:
 6/14/2010

Report Due Date: 6/21/2010 Time Received: 16:10

Comments: 5 day TAT!!! Recv'd 2 groundwaters for TPHg; BTEX; Fuel Oxygenates and Lead Scavengers.Pls. email an EDF result to

Brian/tecaccutite@gmail.com.Run to ESL's.

Work Order #: 1006101

WO Sample ID Client Collection Matrix Scheduled Sample Test Requested Subbed Sample ID Date/Time <u>Disposal</u> On Hold On Hold **Tests** 1006101-001A MW-4 06/10/10 10:49 Water 07/29/10 W_8260Pet EDF W_GCMS-GRO

<u>Sample Note:</u> TPHg, BTEX,Oxys,Lead scavengers for both samples.Run to ESLs for both samples.

1006101-002A MW-9 06/10/10 10:17 Water 07/29/10

W_8260Pet W_GCMS-GRO

Total Page Count: 13 Page 12 of 13

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

	262 Michelle Court
	South San Francisco, CA 94080
OCCUTITE	Ph No.: (650)616 1200, Fax No.: (650)616 1244

CHAIN OF CUSTODY

Lab Work Order #: 1006101

				_										1					٦																																				
Project Name:	1435 Webste	ır		Report to:					Analysis R	equired						_	ime (work		4																																				
ivame.									ecaccutite@gmail.com bill to: TEC Accutite												ASAP	1 Day	2 Days	3 Days	4																														
Project	1435 Webste	r St.		Bill to: TEC									Bill to: TEC Accutite		Bill to: TEC Accutite		Bill to: TEC Accutite		Bill to: TEC Accutite		Bill to: TEC Accutite						Bill to: TEC Accutite		Bill to: TEC Accutite		ill to: TEC Accutite		ill to: TEC Accutite		Bill to: TEC Accutite				Bill to: TEC Accutite																
Address:	Alameda, CA			(650) 616-	1200	s, le										Samp	le Type		╛																																				
Global ID:	T0600100766	3			1	PHg ate									ground w	rater			1																																				
Sampler:	BD	Date :	6/11/10	PO #: (7747	8260 TPHg BTEX oxygenates, lead scavengers								ı		Report	Format	ıat																																					
			# of	Container	Sample Date	326 0xy s									EDF				1																																				
Field Point ID	Sample ID	Sample Matrix	# of Containers	Туре	& Time	"									Remarks -				١																																				
													 						┨																																				
MW-4	MW-4	W	3	VOAs w/ HCI	1049	1	,								Run to E	SLs																																							
MW-9	MW-9	W	3	VOAs w/ HCI	6/19/10 1017	1																																																	
					101 /		,												1																																				
																			4																																				
																			1																																				
				٠,															١																																				
																			╛																																				
																			1																																				
																			╛																																				
			2													/ (, ら	C																																					
	<u> </u>														1	enny	,		1																																				
						1									,				١																																				
																			1																																				
						1	· .		15	,																																													
Relinquishe	ed by: Brian Do By: ed by:	oherty On	a.T.	Date:	6/14/10	Time:	00 ,		Received	by:	Sa. w	<u> </u>		Date:	1/10		Time	00	1																																				
	700	m De	newy						1-1-	Ove.	7400	5			110				+																																				
Relinquishe	ed by: v. VAS	sy we		Date:	lialw	Time:	510	. ,	Received	oy: Tho	Lasa	ra		Date: 6-14	-10		Time																																						

Gold Bullet.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 13 of 13

ATTACHMENT C

GEOTRACKER SUBMISSION CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 2010 Q2 Monitoring Report

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112
File Name: GEO_WELL.zip
Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

<u>Submittal Date/Time:</u> 6/22/2010 11:27:09 AM

Confirmation Number: 3347375452

Copyright © 2008 State of California

1 of 1 6/22/2010 11:27 AM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 2010 Q2 Monitoring Report

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: TEC Accutite 1006101 1435 Webster EDF.zip

Organization Name:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

Submittal Date/Time: 6/22/2010 11:28:52 AM

Confirmation Number: 8577416956

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

1 of 1 6/22/2010 11:28 AM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: 2010 Q2 Monitoring Report
Report Type: Monitoring Report - Quarterly

 Report Date:
 6/30/2010

 Facility Global ID:
 T0600100766

 Facility Name:
 OLYMPIAN #112

File Name: 2010_06_Q2 QMR_1435 Webster E419 FINAL.pdf

Username:TEC AccutiteUsername:TEC-OLYMPIANIP Address:67.126.45.211

<u>Submittal Date/Time:</u> 6/30/2010 10:51:34 AM

Confirmation Number: 1229074060

Copyright © 2008 State of California

1 of 1 6/30/2010 10:51 AM