

TEC Environmental

a division of Technology, Engineering, & Construction, Inc.

262 Michelle Court Tel: (650) 616-1200 So. San Francisco, CA 94080-6201
• Fax: (650) 616-1244

www.tecenvironmental.com
Contractor's Lic. #762034

January 22, 2010

Mr. Steven Plunkett Hazardous Materials Specialist Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502 RECEIVED

3:24 pm, Jan 20, 2010

Alameda County Environmental Health

SUBJECT: FOURTH QUARTER 2009 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501 FLC # RO0000193

Dear Mr. Plunkett:

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) is pleased to submit this fourth quarter 2009 groundwater monitoring report for the above referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1205.

Sincerely,

Technology, Engineering & Construction, Inc.

Morgan A. Reed Project Manager

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, California 94070 Mr. Jeff Farrar, P.O. Box 1701, Chico, California 95927

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, California 95540

FOURTH QUARTER 2009 GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

FLC #: RO0000193

PREPARED FOR:

OLYMPIAN JV
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED BY:

TECHNOLOGY, ENGINEERING & CONSTRUCTION, INC.
PROJECT #: E-322

SAMPLING DATE:

DECEMBER 10 AND 22, 2009

REPORT DATE:

JANUARY 22, 2010

TABLE OF CONTENTS

	<u>Page</u>
1.0	INTRODUCTION1
2.0	SITE DESCRIPTION1
3.0	ENVIRONMENTAL BACKGROUND1
3.1	Site Timeline1
3.2	Site Condition2
4.0	GROUNDWATER MONITORING3
4.1	Sampling Methods3
4.2	Electronic Laboratory Data Submittal3
4.3	Results3
5.0	SOIL VAPOR MONITORING4
5.1	Sampling Methods4
5.2	Results5
6.0	CONCLUSIONS AND RECOMMENDATIONS6
7.0	LIMITATIONS7
TABLE	s

- 1 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS AND ACTIVITY SCHEDULE
- 2 SUMMARY OF HISTORICAL GROUNDWATER ELEVATION DATA
- 3 SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS
- 4 SUMMARY OF SOIL VAPOR SAMPLING ANALYTICAL RESULTS

FIGURES

- 1 VICINITY MAP
- 2 SITE MAP
- 3 GROUNDWATER GRADIENT MAP
- 4 PETROLEUM HYDROCARBONS IN GROUNDWATER

ATTACHMENTS

- A FIELD DATA SHEETS
- **B** LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION
- C GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 INTRODUCTION

On behalf of Olympian JV, Technology, Engineering & Construction, Inc. (TEC) conducted the fourth quarter 2009 groundwater monitoring event at the former Olympian Service Station located at 1435 Webster Street, Alameda, California. The site is the location of a subsurface release of petroleum hydrocarbons related to the former gasoline underground storage tanks (USTs) that were removed in 1989

This report includes the site environmental background and results of the current groundwater monitoring event. This quarter, recently installed well MW-9, priority groundwater monitoring well MW-4, and all soil vapor monitoring wells were sampled in compliance with California Regional Water Quality Control Board Resolution 2009-42 and Alameda County Health Agency directives. A vicinity map and site map are provided as Figures 1 and 2, respectively.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. Station facilities consisted of two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST, one 500-gallon waste oil UST and two dispenser islands (Figure 2).

The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently leased by the City of Alameda and used as a metered parking lot.

3.0 ENVIRONMENTAL BACKGROUND

A historical timeline of relevant activities at the subject site is presented in Section 3.1; a summary of the current site condition, including the monitoring well network and general chemical of concern (COC) distribution, is presented in Section 3.2. An updated site conceptual model, incorporating results from the recent subsurface investigation will be presented in the forthcoming *Updated Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Workplan.*

3.1 Site Timeline

October 1988	Soil gas	analysis	performed	onsite	identifies	significant	concentrations	of	total
	hydrocarl	ons as pr	opane in so	il gas.					

September 1989	Two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon
	waste oil UST removed by TEC Accutite; petroleum hydrocarbons detected in soil
	beneath former tank location.

January 1991	Approximately 950 cubic yards of soil were removed from the former location of the
	USTs: this soil was bioremediated onsite and returned to the former excavation.

January 1993	Three monitoring v	wells installed	onsite (MW-1	through	MW-3); no	petroleum
	hydrocarbons detect	ted in soil.				

February 1999	Four soil borings advanced on- and offsite (B-1 through B-4); petroleum hydrocarbon
	concentrations detected in soil and groundwater.

December 1999 Three monitoring wells, installed onsite (MW-4 through MW-6); petroleum hydrocarbons detected in soil.

November 2000	Site	conceptual	model	(SCM)	completed;	potential	for	benzene	vapor-phase
---------------	------	------------	-------	-------	------------	-----------	-----	---------	-------------

migration from hydrocarbon affected groundwater to indoor and ambient air identified

as an exposure pathway requiring futher evaluation.

June 2001 Four soil borings advanced [B-1 through B-4 (second set of B-1 through B-4)]; no

petroleum hydrocarbons detected in soil; petroleum hydrocarbons detected in

groundwater.

February 2002 Site-specific risk assessment performed; compounds of concern identified as TPHg

and benzene.

May 2003 Eight soil vapor probes advanced onsite (SV-1 through SV-7); petroleum

hydrocarbons detected below their respective Environmental Screening Levels

(ESLs).

September 2005 SCM updated; uncertainties identified in onsite benzene vapor concentrations and

offsite groundwater conditions.

June 2006 Eight soil borings advanced (SP-1 through SP-8); petroleum hydrocarbons detected

in soil above constituent ESLs.

November 2006 Seventeen soil borings advanced (CB-1 through CB-17) to determine excavation

limits; petroleum hydrocarbons detected at concentrations below ESLs and/or

laboratory detection limits at depths shallower than 8 feet bsg.

December 2006 Five soil borings advanced (DB-1 through DB-5); onsite soils classified as Class II

waste; monitoring wells MW-1 and MW-5 abandoned by pressure grouting.

February 2007 Interim remedial action conducted; 992.54 tons of soil excavated from site; 15,000

gallons of groundwater pumped from open excavation pit, sediment removed and

carbon-filtered, and discharged to sewer under permit.

March 2007 Two monitoring wells installed onsite (MW-7 and MW-8).

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume defined in

all directions except crossgradient to the northeast.

July 2009 Six off-site soil borings advanced (B-19 through B-24); off-site plume fully defined.

One groundwater monitoring well (MW-9) installed in the public right-of-way on Webster Street. Five permanent nested vapor monitoring points installed onsite; no

petroleum hydrocarbons detected in onsite soil vapor.

3.2 Site Condition

The site currently has seven groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and five dual-completed vapor monitoring points (VMP-1 through VMP-5) in its network. Locations of site monitoring wells are presented in Figure 2. The groundwater monitoring well construction details and activity schedule are presented in Table 1. Chemicals of concern (COCs) for the site include petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), and methyl tert-butyl ether (MTBE). The source area was the former USTs, which were removed in 1989. TEC continues to monitor all active groundwater monitoring wells associated with the site on a semi-

annual basis in preparation for applying for site closure. New well MW-9 and priority well MW-4 are monitored quarterly.

4.0 GROUNDWATER MONITORING

TEC conducted the fourth quarter groundwater monitoring event on December 10, 2009. Field data sheets from this groundwater sampling event are presented as Attachment A.

4.1 Sampling Methods

Upon arrival to the site, a TEC technician uncapped all active site groundwater monitoring wells (MW-2 through MW-4 and MW-6 through MW-9) and allowed the water level in each well to fully equilibrate prior to measuring the depth to water. Wells were gauged to the nearest 0.01 foot using an electric water level meter and recorded on the well sampling logs. Following well gauging, approximately three casing-water volumes of groundwater were purged from well MW-9 using a submersible pump. Well MW-4 was purged using a disposable plastic bailer and went dry after purging one casing volume. After water levels in each well recovered to a minimum of 80% of the pre-purge level, groundwater samples were collected with a disposable bailer and transferred into laboratory supplied HCl-preserved volatile organic analysis vials (VOAs). The samples were labeled, stored in an insulated container with ice, and delivered to *Torrent Laboratory, Inc.*, a California Department of Health Services certified laboratory, under chain-of-custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX, and fuel oxygenates by EPA Method 8260B. The laboratory analytical report and chain-of-custody documentation are presented in Attachment B.

4.2 Electronic Laboratory Data Submittal

The laboratory report was converted into EDF format and uploaded to GeoTracker, California's online geospatial database. Depths to groundwater were uploaded to GeoTracker as a GEO_WELL file. This report was converted into PDF format and uploaded to GeoTracker as a GEO_REPORT file. Attachment C contains the GeoTracker submission confirmations.

4.3 Results

4.3.1 Groundwater Elevation and Flow Direction

The calculated groundwater gradient based on groundwater elevations is toward the southwest at 0.004 feet/foot (ft/ft). Groundwater elevations are presented in Table 2 and Figure 3.

4.3.2 Petroleum Hydrocarbons in Groundwater

The sample submitted from groundwater monitoring well MW-9 (installed third quarter 2009) contained concentrations of toluene and MTBE that were above laboratory detection limits but below ESLs. All other target analytes were below laboratory detection limits.

TPHg and BTEX compounds were not detected in the sample from well MW-4; however, 1,2, dichloroethane (1,2 DCA) and MTBE were reported at 0.71 micrograms per liter (ug/L) and 4.1 ug/L, respectively.

Groundwater analytical results are summarized in Table 3 and Figure 4.

5.0 SOIL VAPOR MONITORING

5.1 Sampling Methods

TEC conducted vapor sampling of monitoring points VMP-1 through VMP-5 on December 22, 2009. Standard sampling procedures for TO-15 are presented below.

5.1.1 Vacuum Tightness Test Procedures

Prior to vapor sampling at each location, a sampling train was constructed using a clean laboratory-supplied manifold consisting of an in-line 0.5 micron filter, a vacuum gauge and an in-line flow regulator rated at 50-60 milliliters per minute (mL/Min). A 1-liter sample Summa canister was attached to a tee-fitting located at the downstream end of the manifold. All connections were made with Swagelok fittings. Each manifold was connected to an existing sampling point using a Swagelok ball-valve and ¼-inch Teflon tubing. After the sampling train had been constructed, a 6-liter Summa canister was attached to the tee-fitting to conduct a vacuum leak test and to subsequently purge the system. Vacuum tests were conducted by closing the ball-valve between the sampling point and manifold and opening the 6-liter Summa canister. A vacuum of 10-30 inches of mercury (in Hg) was applied to the sampling train for a minimum of 5 minutes.

5.1.2 Sampling System Purge Procedures

Following vacuum testing, the soil-vapor sample implant, tubing, and manifold were purged by opening the ball valve while under vacuum from the purge Summa canister. A minimum of one sample train volume (60-100mL) was purged from the system by leaving the ball valve open for a minimum of 2 minutes at a flow rate of approximately 50 mL/min. The ball valve and 6-liter Summa canister valve were closed following each purge.

5.1.3 Sample Collection Procedures

Two samples from each of the five dual-point monitoring wells (VMP-1 through VMP-5), were collected using 1-liter Summa canisters attached directly to the sampling manifold. For process verification purposes, the entire sampling train was covered by a sampling shroud and a tracer gas atmosphere was generated as described in Section 5.1.4, below. Once a tracer gas atmosphere had been introduced to the shroud, the ball valve and 1-liter sample Summa canister were opened for sample collection. Sample collection continued until approximately -0.5 to -4 in Hg were shown on the manifold vacuum gauge. TEC attempted to leave a partial vacuum in the Summa canister as a means to determine if leakage occurred during transit to the laboratory. The final vacuum gauge reading was recorded on a tag attached to the Summa canister. All samples were labeled and shipped under chain-of-custody documentation to Torrent for analysis of TPHg and volatile organic compounds (VOCs), including BTEX compounds, by EPA Methods TO-3 Modified and TO-15 and analysis of fixed gases by ASTM D-1946. Field sheets showing sampling times and final vacuum readings are included in Attachment A. A copy of the TO-15 laboratory report is presented in Attachment B and summarized in Table 4.

5.1.4 Process Verification

Process verification sampling was intended to test the integrity of the soil vapor sample point seal and all fittings and connections in order to demonstrate that the sampled vapor represented targeted soil gas rather than ambient air caused by short-circuiting or leakage. To determine if above-grade ambient air had compromised sample results, cotton pads soaked with isopropyl alcohol (IPA) were placed inside a clear high density polyethylene shroud fitted over the sampling train. The IPA was allowed to volatilize for a minimum of 5 minutes prior to sample collection in order to create a tracer gas atmosphere within the shroud. The presence of tracer gas atmosphere in the shroud was confirmed using a hand-held Thermo OVM PID. All samples soil gas samples were analyzed for the presence of IPA.

5.2 Results

Analytical results for soil vapor samples collected on December 22, 2009 are summarized below and in Table 4. The laboratory analytical report is presented as Attachment B.

5.2.1 Chemicals of Concern

TPHg, BTEX compounds and MTBE were not detected in any soil vapor samples collected during this sampling event, with the exception of 11 ug/m³ o-xylenes in sample VMP-2(8).

5.2.2 Tracer Compound

The IPA tracer compound was not detected above laboratory reporting limits in any soil vapor samples with the exception of VMP-4(4), where it was detected at 38 ug/m³. This concentration is significantly lower than the detection limit of 10,000 ug/m³ recommended in Department of Toxis Substances Control guidance (DTSC 2003).

5.2.3 Fixed Gases

Oxygen was detected at levels that are typically representative of soil gas (between 7.4% and normal atmospheric levels) with the exception of VMP-5(4). Concentrations of carbon dioxide were detected in samples between 1.5% and 9.5%. Methane was below reporting limits for all samples.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- For this groundwater monitoring event, average groundwater flow was toward the southwast at approximately 0.004 ft/ft, within historical precedent for seasonal change in groundwater elevation and gradient.
- Concentrations of chemicals of concern in wells MW-4 and MW-9 were below ESLs with the exception of 1,2 DCA in well MW-4. Concentrations of MTBE in these wells are below ESLs and appear to be stable or decreasing.
- TEC will complete at least 2 more quarterly events in order to accumulate one full year of quarterly monitoring results for newly installed well MW-9. Because this sampling will incur technician travel time, laboratory minimum analytical fees, and other costs, TEC will also monitor priority downgradient well MW-4 on a quarterly basis. All other site monitoring wells will be monitored on a semi-annual basis; the next semi-annual monitoring event will occur during the first quarter 2010.
- Soil vapor monitoring analytical results for COCs are consistent with and confirm the
 representativeness of results from August 2009. COCs were not detected at or above laboratory
 reporting limits in any sample. With the exception of sample VMP-5 (4'), which contains a
 greater-than-atmospheric concentration of oxygen, fixed gas results are within typical ranges for
 soil gas, increasing confidence in the VOC results. TEC recommends utilizing soil vapor data for
 VOCs with confidence during the forthcoming health risk assessment.
- TEC is currently finalizing a Revised Site Conceptual Model, Health Risk Assessment, Feasibility Study, and Corrective Action Workplan for this site in order to facilitate regulatory closure. updated SCM and a detailed Health Risk Assessment to evaluate the exposure pathways considered potentially complete for this site and to develop site-specific cleanup goals using the RBCA Tool Kit for Chemical Releases. TEC is considering the upcoming property transaction and potential site development in parameter selection. Goals will be proposed that are protective of human health to a 1.0E-6 cumulative risk level and a 1.0 cumulative hazard index. The feasibility study and corrective action workplan detail work designed for cost-effective contaminant mass removal and polishing.

7.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Technology, Engineering & Construction Inc.'s liability is limited to the dollar amount of the work performed.

Thank you for your cooperation and assistance with this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1200.

Sincerely,


Technology, Engineering & Construction, Inc.

Elise Sbarbori Project Geologist

Reviewed by:

Morgan A. Reed Project Manager

Paul B. Dotson, PG # 8237 Professional Geologist

TABLES

Table 1 **Groundwater Monitoring Well Construction Details and Activity Schedule**

Former Olympian Service Station 1435 Webster Street Alameda, California

	Monitoring Well Construction Details										
Well ID	Date Installed ¹	Total Depth	Diameter	Top of Screen	Bottom of Screen	Screen Length	Top of Casing ²	Monitoring Status	Gauging	Sampling ³	
	installed	(ft bsg)	(inches)	(ft bsg)	(ft bsg)	(feet)	(ft msl)		(semi-a	annually)	
MW-1	1/1/1993	24	2	6	24	18	19.53	Destroyed			
MW-2	1/1/1993	24	2	6	24	18	19.80	Active	\checkmark	\checkmark	
MW-3	1/1/1993	24	2	6	24	18	19.79	Active	\checkmark	\checkmark	
MW-4	12/1/1999	20	2	5	20	15	19.30	Active	\checkmark	\checkmark	
MW-5	12/1/1999	20	2	5	20	15	18.99	Destroyed			
MW-6	12/1/1999	20	2	5	20	15	20.27	Active	\checkmark	\checkmark	
MW-7	3/9/2007	20	4	10	20	10	18.93	Active	\checkmark	\checkmark	
MW-8	3/9/2007	20	4	10	20	10	19.33	Active	\checkmark	\checkmark	
MW-9	7/13/2009	20	4	5	20	15	18.83	Active	√	\checkmark	

Notes

ft = feet

bsg = below surface grade

msl = mean sea level

¹ = Well installation date is given as first day of the installation month when exact well installation date is unknown

² = survey performed by Virgil Chavez Land Surveying (PLS #6323)

³ = groundwater samples are routinely analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl-tert-butyl ether (MTBE), di-isopropyl ether (DIPE), tert-butyl alcohol (TBA), and 1,2-dichloroethane (1,2-DCA) by EPA Method 8260B Note: Monitoring well MW-9 and MW-4 to be sampled quarterly for one full year from the date of installation of well MW-9.

Table 2
Summary of Historical Groundwater Elevation Data
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
2004	(ft msl)	0/0/4000	(ft)	(ft msl)
MW-1	19.53	6/3/1993	(1)	
		9/14/1994 12/30/1994	11.46 9.22	8.07 10.31
		3/26/1995	6.76	12.77
		7/9/1995	8.92	10.61
		7/31/1998	8.30	11.23
		2/11/1999	7.91	11.62
		6/23/1999	9.03	10.50
		12/6/1999	10.86	8.67
		3/16/2000	6.93	12.60
		6/13/2000	8.73	10.80
		9/29/2000	10.18	9.35
		3/22/2001	8.24	11.29
		6/25/2001	9.73	9.80
		9/28/2001	11.06	8.47
		12/26/2001	8.11	11.42
		07/0705	8.69	10.84
		10/19/2005	10.25	9.28
		1/13/2006	7.09	12.44
		5/5/2006	6.40	13.13
		7/19/2006 10/5/2006	8.28 9.67	11.25 9.86
			9.07 andoned 12/27	
		Abc	indoned 12/2/	72000
MW-2	19.80	6/3/1993	9.54	10.26
		9/14/1994	11.82	7.98
		12/30/1994	9.46	10.34
		3/26/1995	6.82	12.98
		7/9/1995	9.22	10.58
		7/31/1998	8.56	11.24
		2/11/1999	8.12	11.68
		6/23/1999	9.33	10.47
		12/6/1999 3/16/2000	11.20 6.88	8.60 12.92
		6/13/2000	8.99	10.81
		9/29/2000	10.40	9.40
		3/22/2001	8.46	11.34
		6/25/2001	10.11	9.69
		9/28/2001	11.40	8.40
		12/26/2001	8.28	11.52
		7/7/2005	8.99	10.81
		10/19/2005	10.63	9.17
		1/13/2006	7.15	12.65
		5/5/2006	6.43	13.37
		7/19/2006	8.57	11.23
		10/5/2006	10.05	9.75
		3/29/2007 6/27/2007	8.83 9.86	10.97 9.94
		9/19/2007	10.89	9.94 8.91
		12/19/2007	10.78	9.02
		3/6/2008	8.48	11.32
		6/18/2008	10.23	9.57
		9/10/2008	11.36	8.44
		12/10/2008	11.89	7.91
		3/4/2009	8.68	11.12
		6/3/2009	9.91	9.89
		8/27/2009	11.16	8.64
		12/10/2009	11.32	8.48
I				

Table 2
Summary of Historical Groundwater Elevation Data
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
MW-3	(ft msl) 19.79	6/3/1993	(ft) 9.80	(ft msl) 9.99
IVIVV-3	19.79	9/14/1994	12.19	7.60
		12/30/1994	9.72	10.07
		3/26/1995	6.88	12.91
		7/9/1995	9.52	10.27
		7/31/1998	8.40	11.39
		2/11/1999	7.77	12.02
		6/23/1999	9.21	10.58
		12/6/1999	11.12	8.67
		3/16/2000	6.48	13.31
		6/13/2000	8.76	11.03
		9/29/2000	10.20	9.59
		3/22/2001 6/25/2001	8.24 10.04	11.55 9.75
		9/28/2001	11.34	8.45
		12/26/2001	8.01	11.78
		7/7/2005	8.84	10.95
		10/19/2005	10.58	9.21
		1/13/2006	6.85	12.94
		5/5/2006	6.11	13.68
		7/19/2006	8.41	11.38
		10/5/2006	10.02	9.77
		3/29/2007	9.71	10.08
		6/27/2007	9.82 10.88	9.97
		9/19/2007 12/19/2007	10.68	8.91 9.11
		3/6/2008	8.30	11.49
		6/18/2008	10.18	9.61
		9/10/2008	11.33	8.46
		12/10/2008	11.89	7.90
		3/4/2009	8.40	11.39
		6/3/2009	9.81	9.98
		8/27/2009	11.18	8.61
		12/10/2009	11.30	8.49
MW-4	19.30	12/6/1999	10.79	8.51
		3/16/2000	6.86	12.44
		6/13/2000	8.18	11.12
		9/29/2000	10.11	9.19
		4/5/2001	8.26	11.04
		6/25/2001	9.68	9.62
		9/28/2001	10.98	8.32
		12/26/2001 7/7/2005	8.18 8.77	11.12 10.53
		10/19/2005	10.24	9.06
		1/13/2006	(1)	(1)
		5/5/2006	(1)	(1)
		7/19/2006	8.38	10.92
		10/5/2006	9.65	9.65
		3/29/2007	8.55	10.75
		6/27/2007	9.40	9.90
		9/19/2007	10.45	8.85
		12/19/2007	10.35	8.95
		3/6/2008 6/18/2008	8.25	11.05 9.50
		6/18/2008 9/10/2008	9.80 10.89	9.50 8.41
		12/10/2008	11.43	7.87
		3/4/2009	8.47	10.83
		6/3/2009	9.53	9.77
		8/27/2009	10.72	8.58
		12/10/2009	10.85	8.45

Table 2
Summary of Historical Groundwater Elevation Data
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-5	18.99	12/6/1999	10.17	8.82
		3/16/2000	6.28	12.71
		6/13/2000	7.95	11.04
		9/29/2000	9.54	9.45
		3/22/2001 6/25/2001	7.48	11.51
		9/28/2001	9.05 10.39	9.94 8.60
		12/26/2001	7.28	11.71
		8/24/2005	7.87	11.12
		10/19/2005	9.51	9.48
		1/13/2006	6.35	12.64
		5/5/2006	5.64	13.35
		7/19/2006	7.41	11.58
		10/5/2006	8.89	10.10
		*************Aba	andoned 12/27	/2006*****
MW-6	20.27	12/6/1999	11.46	8.81
		3/16/2000	8.32	11.95
		6/13/2000	9.14	11.13
		9/29/2000	10.81	9.46
		3/22/2001	8.64	11.63
		6/25/2001	10.39	9.88
		9/28/2001	11.70	8.57
		12/26/2001	8.40	11.87
		7/7/2005	9.10	11.17
		10/19/2005	10.88	9.39
		1/13/2006	7.33	12.94
		5/5/2006	6.53	13.74
		7/19/2006	8.64	11.63
		10/5/2006	10.29	9.98
		3/29/2007 6/27/2007	9.01	11.26
		9/19/2007	10.14	10.13
		12/19/2007	11.17 10.99	9.10 9.28
		3/6/2008	8.65	11.62
		6/18/2008	10.46	9.81
		9/10/2008	11.64	8.63
		12/10/2008	12.18	8.09
		3/4/2009	8.86	11.41
		6/3/2009	10.07	10.20
		8/27/2009	11.45	8.82
		12/10/2009	11.61	8.66
MW-7	18.93	3/29/2007	7.90	11.03
		6/27/2007	8.87	10.06
		9/19/2007	9.88	9.05
		12/19/2007	9.72	9.21
		3/6/2008	7.52	11.41
		6/18/2008	9.13	9.80
		9/10/2008 12/10/2008	10.29	8.64
		3/4/2009	10.81 7.89	8.12 11.04
		6/3/2009	7.89 8.70	10.23
		8/27/2009	10.05	8.88
		12/10/2009	10.03	8.72
		,	. 3.2.	
MW-8	19.33	3/29/2007	8.40	10.93
		6/27/2007	9.33	10.00
		9/19/2007	10.31	9.02
		12/19/2007	10.23	9.10
		3/6/2008	9.14	10.19
		6/18/2008	9.74	9.59
		9/10/2008	10.76	8.57
		12/10/2008	11.31	8.02
		3/4/2009	8.59	10.74
		6/3/2009	9.51	9.82
		8/27/2009	10.57	8.76
		12/10/2009	10.72	8.61
MINTO	10.00	0/27/2000	10.04	0.00
MW-9	18.83	8/27/2009 12/10/2009	10.01	8.82 8.67
		12/10/2009	10.16	0.07

Notes:
TOC = Top of Casing
It msl = Feet referenced to mean sea level
--- = Not Available

(1) = Well not accessible due to obstruction by a parked car yellow row = most recent data

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street

Alameda, California

							.,					
Well ID	Sample	TPHd	TPHg	B	T	E	X	MTBE	TRPH	DIPE	TBA	1,2-DCA
ES	Date	100	100	Concentration	40		20	5.0			12	0.5
MW-1	6/3/1993			1.0		30		<u> </u>				
10100-1	9/14/1994	<50	14,000	44	28	25	50		800			
	12/30/1994	<50	4,000	12	9	6.8	30		<500			
	3/26/1995	<50	1,000	21	10	7.1	25		2,100			
	7/9/1995	<50	16,000	57	28	25	53					
	7/31/1998	1,700	4,700	1,300	48	140	150	6,600	<5000			
	2/11/1999	2000	25,000	18,000	1,600	1,400	500	28,000				
	6/23/1999	4,900	42,000	11,000	1,100	1,500	2,300	15,000				
	12/6/1999	4,000	44,000	8,900	3,400	1,900	5,100	11,000				
	3/16/2000	700	5,100	2,400	100	280	460	2,700	2			
	6/13/2000	2,800	17,000	5,300	260	720	790	7,000	2			
	9/29/2000	5,200	¹ 50,000	11,000	2,900	1,900	4,600	7,200	2			
	3/22/2001	1,500	¹ 8,600	2,600	750	250	950	3,200	2			
	6/25/2001		18,000	1,200	1,800	970	3,200	1,500	2			
	9/28/2001		48,000	5,200	6100	2200	8100	4000				
	12/26/2001		524	216	1.2	8.6	7.4	721				
	7/7/2005		1,500	190	15	36	29	1,100		<20		50
	10/19/2005		11,000	2,100	45	370	82	4,600		<250	<500	200
	1/13/2006		5,400	680	37	83	41	3,900		<250	<500	180
	5/5/2006		<25	2	<0.5	< 0.5	<0.5	2.2		<5.0	<10	<0.5
	7/19/2006		5,000	836	22.3	107	81.8	1,130		<4.2	<84	54.1
	10/5/2006		23,000	3,740	112	395	161	6,020		13.5	546	219
			*	*******	*******	**Well Abar	ndoned 12/27	//2006****	*******	*****		
MW-2	6/3/1993	<50	<50	5.8	<0.5	<0.5	<0.5		<500			
14144-2	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994	<50	160	1.4	1.4	0.8	5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995											
	7/31/1998	220	<50	<0.5	<0.5	<0.5	<0.5	73	<500			
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	75				
	6/23/1999	420	<50	<0.5	< 0.5	<0.5	< 0.5	96				
	12/6/1999	<110	300	28	45	6	37	210				
	3/16/2000	<50	<50	1	< 0.5	0.5	1	3				
	6/13/2000	<50	68	0.8	< 0.5	< 0.5	< 0.5	38				
	9/29/2000	<50	67	0.8	0.5	< 0.5	1	86	2			
	3/22/2001	<50	<50	1	0.5	< 0.5	1	14				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	13				
	9/28/2001		300	4	6	3	10	130				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	< 0.5	<0.5	<1.0	20		<1.0		1.1
	10/19/2005		29	1.4	<0.5 3	<0.5	<0.5	19		<5.0	<10	0.95
	1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	16.6		<0.5	<10	1.24
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	11.9		<0.5	<10	0.750
Post excavation	3/29/2007		<50	<0.5	<0.5	< 0.5	<1.5	3.36		< 0.5	<10	< 0.5
	6/27/2007		<50	<0.5	<0.5	< 0.5	<1.5	10.5		< 0.5	<10	0.820
	9/19/2007		52 -50	<0.5	< 0.5	<0.5	<1.5	18.1 22.9		<0.5	<10	0.710
	12/19/2007 3/6/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	1.02		<0.5 <0.5	<10 <10	0.840 <0.5
	6/18/2008		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		36.9		<0.5 <0.5	<10 <10	<0.5 0.880
	9/10/2008		<50 69	4 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	36.9 24.6		<0.5 <0.5	<10 <10	0.810
	12/10/2008		84	4 <0.5	<0.5	<0.5	<1.5	30.2		<0.5	<10	0.650
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	3.15		<0.5	<10	< 0.5
	6/3/2009		<55	< 0.55	<0.55	<0.55	<1.6	35		<0.55	<11	0.55
	8/27/2009		<50	<0.5	<0.5	<0.5	<1.5	73		<0.5	23	1.1
	2000			.0.0	. 3.0			- •		.5.0		

Table 3 Summary of Groundwater Monitoring Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	Т	E E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
Well ID	Date	IFIIG	iriig	Concentrati				WITEL	IKFII	DIFL	IDA	1,2-DCA
	SL	100	100	1.0	40	30	20	5.0			12	0.5
MW-3	6/3/1993	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995											
	7/31/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000			
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
	6/23/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	3				
	12/6/1999 3/16/2000	<110 <50	<50 <50	3 <0.5	1 <0.5	<0.5 <0.5	1 <1.0	0.6 1				
	6/13/2000	<50	490	0.8	<0.5	<0.5	9	2				
	9/29/2000	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0				
	3/22/2001	<50	<50	<0.5	<0.5	<0.5	<1.0	2				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	0.8				
	9/28/2001		91	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25	<0.5	<0.5 3	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		<25	< 0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	5/5/2006		<25	< 0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
Post excavation	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	< 0.5
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/4/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	< 0.5
	6/3/2009		<50	<0.5	<0.5	<0.5	<1.5	<0.5		< 0.5	<10	< 0.5
	8/27/2009		<55	<0.55	<0.55	<0.55	<1.6	<0.55		<1.55	<11	<0.55
MW-4	12/6/1999	160	<50	3	2	0.6	4	140				
171 7 7 -4	3/16/2000	90	<50	0.5	0.5	<0.5	2	34				
	6/13/2000	<50	56	<0.5	<0.5	<0.5	<1.0	1				
	9/29/2000	<50	92	0.7	<0.5	<0.5	3	<1.0				
	4/5/2001	<50	51	<0.5	0.5	<0.5	1	6				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	9/28/2001		<50	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	1.6	1.7	1.6	4.4	2.7				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25	<0.5	<0.5 3	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		********	******	******	*******Not s	ampled *****	*******	*******		******	
	5/5/2006			******				*******	******	*****		
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
Post excavation			<50	<0.5	<0.5	<0.5	<1.5	0.69		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	1.38		<0.5	<10	<0.5
	12/19/2007		63	<0.5	<0.5	<0.5	<1.5	2.20		<0.5	<10	0.590
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	< 0.5
	6/18/2008		<50	<0.5	<0.5	<0.5	<1.5	< 0.5		<0.5	<10	<0.5
	9/10/2008		<50	<0.5	<0.5	<0.5	<1.5	0.700		<0.5	<10	<0.5
	12/10/2008		<50	<0.5	<0.5	<0.5	<1.5	2.04		<0.5	<10	<0.5
	3/4/2009 6/3/2009		<50	<0.5	<0.5	<0.5	<1.5 <1.5	2.96		<0.5	<10 <10	<0.5
	8/27/2009		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1.5	1.5 4.9		<0.5 <0.5	<10 11	<0.5 1.3
	12/10/2009		<50 <50	<0.5 <0.5	<0.5	<0.5	<1.5 <1.5	4.9		<0.5 <0.5	<5	0.71
	12/10/2009			70.0	20.5	20.5	41.0	7.1		40.0	70	0.71
MW-5	12/6/1999	2,800	30,000	2,200	3,300	910	7000	670				
	3/16/2000	1,100	3,500	1,100	260	210	6300	260				
	6/13/2000	1,100	6,500	2200	360	360	730	480				
	9/29/2000	700	1 3,900	990	120	300	340	390	2			
	3/22/2001	380	¹ 4,300	780	240	250	530	190				
	6/25/2001		3,100	1000	110	200	320	140				
	9/28/2001		3,000	1200	77	120	170	770				
	12/26/2001		3,240	738	262	218	626	66.4				
	8/24/2005		150	57	3	8	3.9	67		<1.0	18	3.0
	10/19/2005		560	130	3.8	23	9.3	230		<25	<50	11
	1/13/2006		2,300	570	18	120	140	220		<25	<50	14
			130	35	1.7	7.8	7.4	8		<5.0	<10	0.55
	5/5/2006											
	7/19/2006		210	102	1.54	15.8	3.85	27.6		<0.5	<10	2.06
			210 410		1.06	9.05	2.24	101		0.640	<10 11.3	2.06 6.65

Table 3 **Summary of Groundwater Monitoring Analytical Results**

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg		В	Т	E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			Co	ncentrat	ions in micro	grams pe	r liter (µg/L)					, -
ES		100	100		1.0	40	30	20	5.0			12	0.5
MW-6	12/6/1999	110	<50		2	2	0.8	8	1				
	3/16/2000	<50	<50		8	8	5	18	< 0.5				
	6/13/2000	<50	75		0.7	1	0.9	2	0.6				
	9/29/2000	<50	<50		<0.5	< 0.5	< 0.5	<1.0	< 0.5				
	3/22/2001	<50	66		0.5	< 0.5	< 0.5	<1.0	3				
	6/25/2001		<50		< 0.5	< 0.5	< 0.5	<1.0	4				
	9/28/2001		63		2	ND	ND	1	3				
	12/26/2001		<50		< 0.5	< 0.5	< 0.5	1.4	< 0.5				
	7/7/2005		<50		<0.5	< 0.5	< 0.5	<1.0	< 0.5		<1.0		< 0.5
	10/19/2005		<25		<0.5	<0.5 ³	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	1/13/2006		<25		<0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	5/5/2006		<25		<0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	7/19/2006		<50		<0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	10/5/2006		<50		<05	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
Post excavation	3/29/2007		<50		<0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50		<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	9/19/2007		<50		< 0.5	< 0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/19/2007		<50		<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/6/2008		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	6/18/2008		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	9/10/2008		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	12/10/2008		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	3/4/2009		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	6/3/2009		<50		< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	8/27/2009		<50		< 0.5	<0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
MW-7	3/29/2007		840		50.8	9.33	2.54	162	39.9		<0.5	<10	2.26
	6/27/2007		270		126	<0.5	7.11	<1.5	94.4		0.550	58.4	6.21
	9/19/2007		191	4	0.5	<0.5	5.38	<1.5	49.6		<0.5	28.5	4.37
	12/19/2007		54	4	<0.5	<0.5	<0.5	<1.5	11.4		<0.5	<10	1.09
	3/6/2008		<50		<0.5	<0.5	<0.5	<1.5	4.83		<0.5	<10	0.59
	6/18/2008		<50		0.840	<0.5	0.500	<1.5	52.5		<0.5	15.3	5.70
	9/10/2008		55	4	<0.5	<0.5	<0.5	<1.5	15.3		<0.5	<10	1.98
	12/10/2008		<50		<0.5	<0.5	<0.5	<1.5	2.43		<0.5	<10	<0.5
	3/4/2009		<50		<0.5	<0.5	< 0.5	<1.5	0.530		<0.5	<10	<0.5
	6/3/2009		<50		0.62	<0.5	<0.5	<1.5	5.2		<0.5	<10	<0.5
	8/27/2009		<50		<0.5	<0.5	<0.5	<1.5	4.8		<0.5	<10	0.55
MW-8	4/6/2007		27,000		2,460	1,520	210	1,810	16,000		24.3	1,050	459
	6/27/2007		20,000	4	2,460	382	611	1,040	7,310		11.1	3,400	319
	9/19/2007		20,400	4	814	16.2	219	21.6	10,300		<4.40	7,080	194
	12/19/2007		14,100	5	426	10.6	115	22.4	12,700		25.0	864	289
	3/6/2008		19,000	4	639	19.5	268	152	11,200		<4.4	<88	227
	6/18/2008		5,800	4	496	11.7	258	24.4	9,730		15.7	468	209
	9/10/2008		9,900		299	11.1	73.0	13.6	11,600		27.1	1,670	240
	12/10/2008		6,900	4	477	3.98	57.9	22.6	11,600		23.1	634	287
	3/4/2009		8,500	-	168	1.35	17.3	8.59	8,190		7.00	2,050	238
	6/3/2009		11,000	5 5	490	3.90	57	16	14,000		<0.5	<10	310
	8/27/2009		5,400	5	340	8.3	67	37	8,900		21	2,900	300
MW-9	8/27/2009		<50		<0.5	<0.5	<0.5	<1.5	12		<0.5	<10	0.76
	12/10/2009		<50		<0.5	0.50	<0.5	<1.5	4.8		<0.5	<5.0	<0.5

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)

TPHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; after July 2005 by EPA 8260

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; after July 2005 by EPA 8260

Fuel Additives = Methyl-tert-butyl ether (MTBE), Di-isopropyl ether (DIPE), tert-Butyl alcohol (TBA), 1,2-Dichloroethane (1,2-DCA) by EPA Method 8260B

TRPH = Total Recoverable Petroleum Hydrocarbons <X = Concentration less than laboratory reporting limit

- --- = Not Analyzed

 1 = Does not match diesel chromatogram pattern
- ² = Confirmed by EPA Method 8260

ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CRWQCB, Interim Final, November 2007, revised May 2008).

= most recent data

^{3 =} Toluene was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1994).

⁴ = TPH Gasoline value is primarily due to individual peaks / non-target compounds within gasoline quantitative range.

⁼ TPH value partially due to individual peak (MTBE) within gasoline quantitative range.

Table 4 Summary of Soil Vapor Sampling Analytical Results Former Olympian Service Station 1435 Webster Street Alameda, California

Committe Balan	D. II.	Sampling	Sampling	TOLL	_	-	-	V ()	V (-)	мтог	DIDE	ETDE	T4445	454	DOE		A	_	OII.	-00
Sample Point	Date	Duration min	Depth ft	TPHg ug/m ³	B ug/m³	T ug/m³	E ug/m³	X (m,p) ug/m ³	X (o) ug/m³	MTBE ug/m³	DIPE ug/m ³	ug/m ³	TAME ug/m ³	tBA ug/m³	PCE ug/m³	Isopropanol ug/m ³	Acetone ug/m ³	O ₂	CH₄ %	CO ₂
			"	ug/iii	ug/III	ug/III	ug/III	ug/iii	ug/III	ug/iii	ug/iii	ug/III	ug/iii	ug/iii	ug/iii	ug/iii	ug/III	/0	70	
SV-1	5/14/2003		3.5	5,400	<1,000	1,900	<1,000	<1,000		<1.000	<1.000	<1.000	<1,000	<5.000						
SV-2	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000					<1,000	-	_		_			
SV-3	5/14/2003		3.5	5,800	<1,000	3,700	<1,000	<1,000	_				<1,000	-		_			_	_
SV-4	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000	_				<1,000	-	_					
SV-5	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000	_				<1,000	-		_			_	_
SV-6	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000	_				<1,000	-	_		_		-	
SV-7	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000	_	<1,000				<5,000	_	_	_			
														-	-					-
SV-7 dupl.	5/14/2003		3.5	<1,000	<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<5,000	-	_	-	-		
VMP-1 (4)	8/11/2009 12/22/2009	6	4	<2,800 <2,800	<3.2 <3.2	<3.8 <3.8	<4.3 <4.3	<4.1 <4.1	<4.3 <5.4	<3.6 <3.6	<4.2	<4.2	<4.2	<12	10	<33 <33	22	15 16	<0.0023	4.8 3.4
			-																	
VMP-1 (8)	8/11/2009	6	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	9	97	46	21	<0.0022	4.6
dupl.	8/11/2009 12/22/2009	10 6	8	<2,800 <2,800	<3.2 <3.2	<3.8 <3.8	<4.3 <4.3	<4.1	<4.3 <5.4	<3.6	<4.2	<4.2	<4.2	<12	8	110 <33	51	25 16	<0.0024	3.6 5.4
	12/22/2009	В	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6		-	-			<33	-	16	<0.0012	5.4
VMP-2 (4)	8/11/2009	15	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	32	<33	19	26	<0.0019	2.5
	12/22/2009	8	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						<33	-	15	<0.0012	3.7
VMP-2 (8)	8/11/2009	11	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	15	170	<19	33	<0.0014	1.5
VWII -2 (0)	12/22/2009	10	8	<2,800	<3.2	<3.8	<4.3	<4.1	11	<3.6						<33		13	<0.0014	4.3
VMP-3 (4)	8/11/2009 12/22/2009	6 9	4	<2,800 <2,800	<3.2 <3.2	<3.8 <3.8	<4.3 <4.3	<4.1 <4.1	<4.3 <5.4	<3.6 <3.6	<4.2	<4.2	<4.2	<12	24	38 <33	30	29 22	<0.0018	3.3 4.5
				-,																
VMP-3 (8)	8/11/2009	5	8	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	21	<33	23	23	<0.0019	6.4
	12/22/2009	7	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6			-			<33	-	7.4	<0.0011	9.5
VMP-4 (4)	8/11/2009	6	4	<2,800	<3.2	<3.8	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	7.7	39	45	34	<0.0016	1.4
	12/22/2009	12	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6						38	-	16	<0.0013	
		_																		
VMP-4 (8)	8/11/2009 12/22/2009	7 8	8	<2,800 <2.800	<3.2 <3.2	<3.8 <3.8	<4.3 <4.3	<4.1 <4.1	<4.3 <5.4	<3.6 <3.6	<4.2	<4.2	<4.2	<12	13	<33 <33	38	16 17	<0.0015	5.0 4.1
				_,,																
VMP-5 (4)	8/11/2009	12	4	<3,000	<3.4	<4.1	<4.7	<4.4	<4.7	<3.9	<4.5	<4.5	<4.5	<13	30	<35	46	22	<0.0027	4.5
	12/22/2009	9	4	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6		-	-	-		<33	-	33	<0.0011	1.5
VMP-5 (8)	8/11/2009	8	8	<2,800	<3.2	6.7	<4.3	<4.1	<4.3	<3.6	<4.2	<4.2	<4.2	<12	14	<33	40	36	< 0.0024	1.9
- (1)	12/22/2009	7	8	<2,800	<3.2	<3.8	<4.3	<4.1	<5.4	<3.6		-	-			<33	-	22	<0.0016	
Atmosphere #1																				
(ATM-01)	8/11/2009															1,700,000E				
Standard for				ESLs:												DTSC Limit:		Atm	ospheric C	onc.:
Comparison:				29,000	140	180,000	3,300	58,0	000	31,000					1,400	10,000			0.00018	

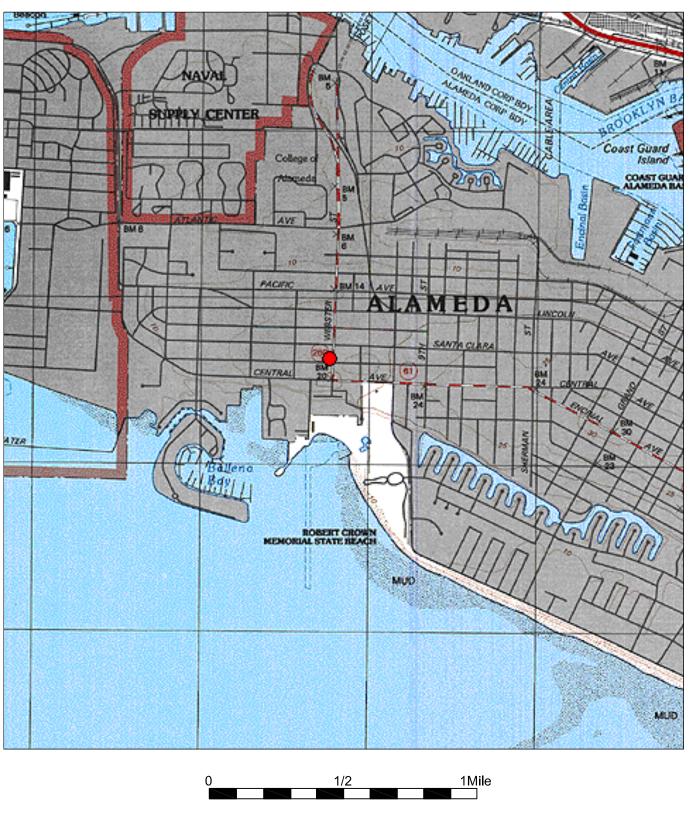
Notes and Abbreviations:

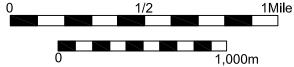
-- = not analyzed or data not available

-- = not array/zeo or data not availation
min = minutes
ug/m² = micrograms per cubic meter
ug/m² = micrograms per cubic meter
B, T, E, X = benzene, toluene, ethyl benzene, xylenes
MTBE = methyl tert-butyl ether
DIPE = Discopropyl ether
ETBE = Ethyl tert-butyl ether
TAME = tert-Amyl methyl ether

TISAL — Lettership tensive the META = Lettership tensive the META

2009 samples were collected in Summa canisters and analyzed by EPA Method TO-15, Torrent Laboratory.

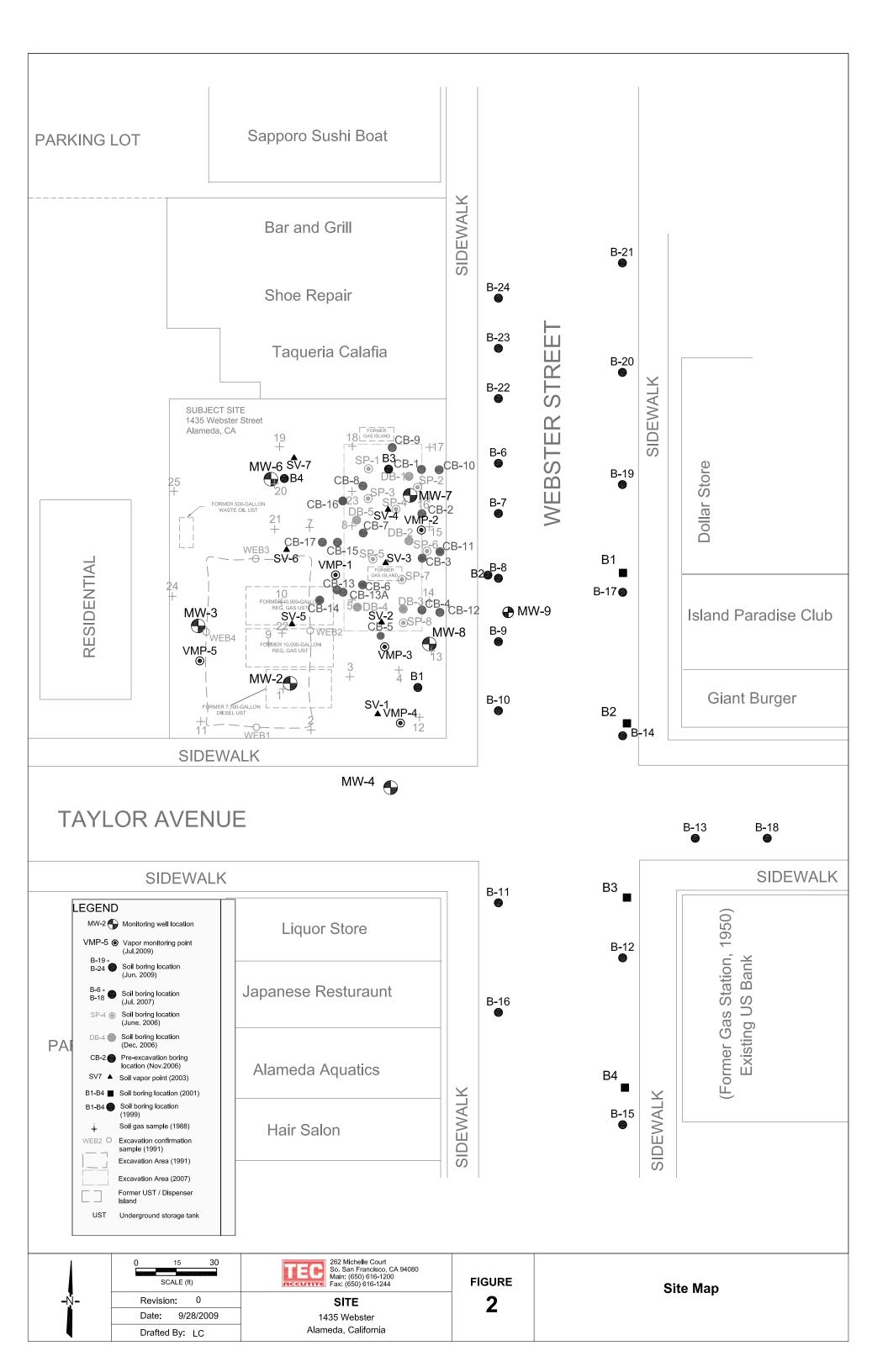

E = estimated value; the amount exceeds the calibration range but is within linear working range of the instrument.

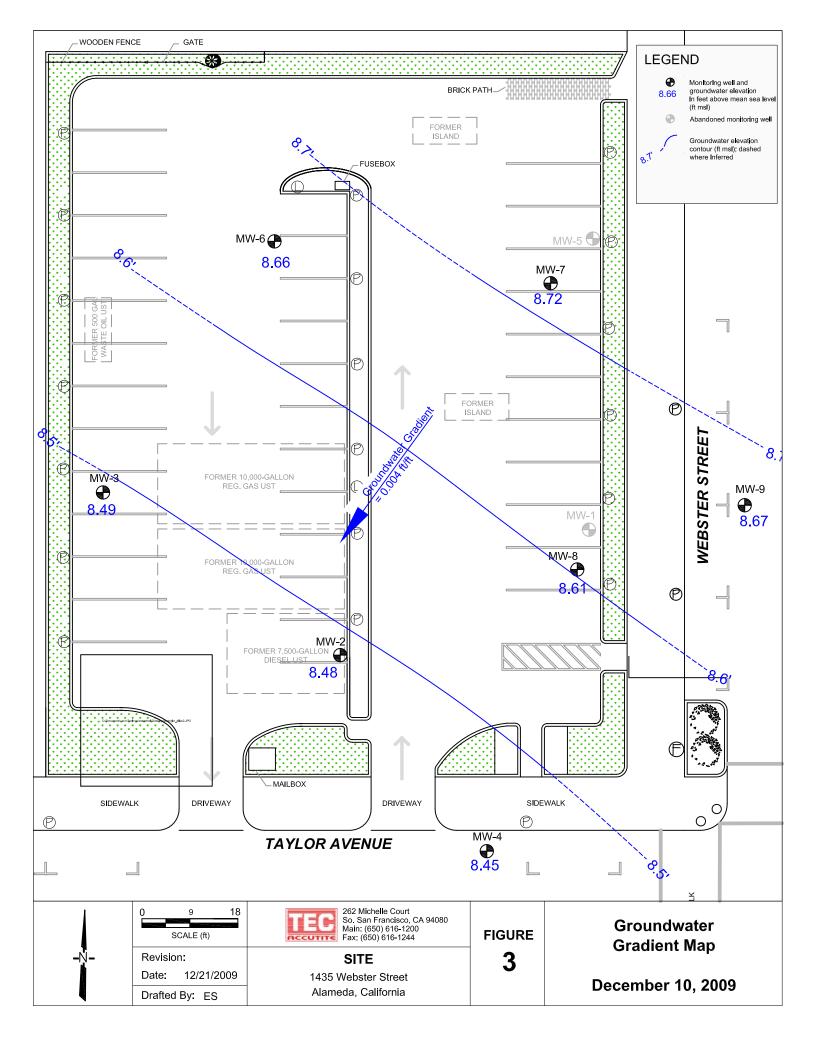

ESLs = Environmental Screening Levels, Table E-2 (Soil Gas in Shallow Soils, commercial/industrial land use scenario, lowest levels), California Regional Water Quality Control Board, Interim Final, November 2007, revised May 2008. Concentrations above ESLs for soil gas are shown inbold
DTSC Limit = a standard, issued by the Department of Toxic Substances Control (2003), representing significant Isopropanol contamination
[Atmospheric Conc. = average atmospheric concentration of each gas

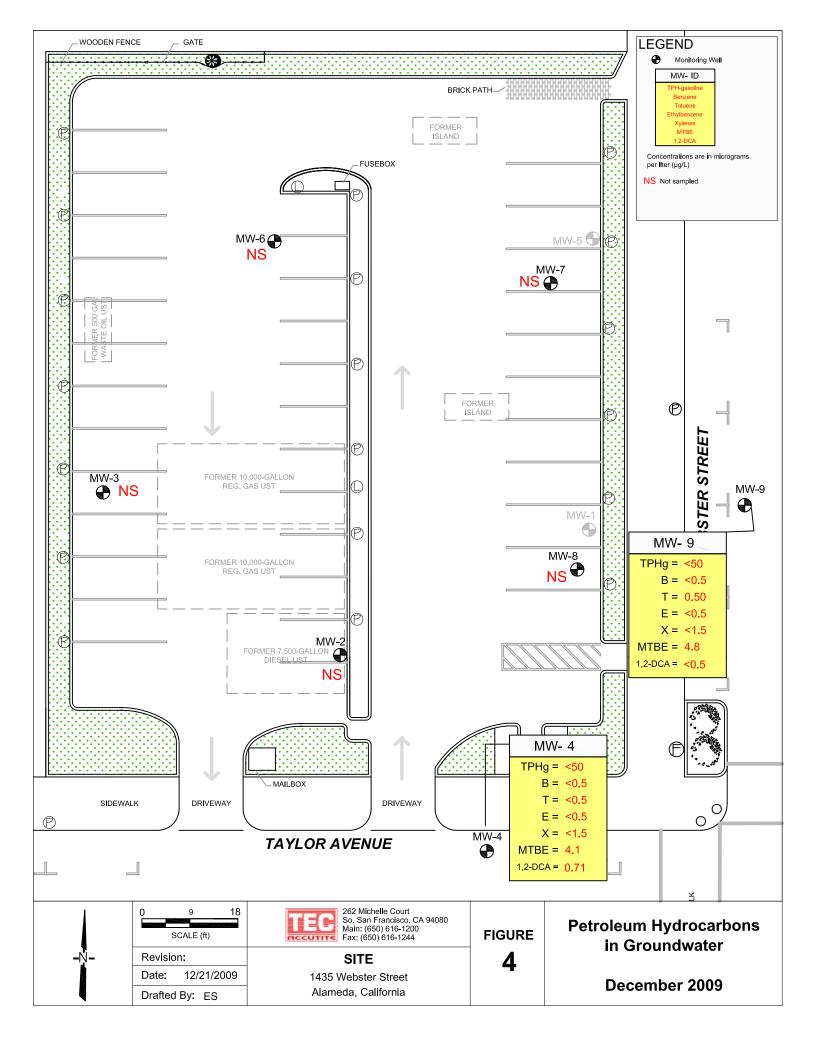
FIGURES

Site Location

Map By: TOPO! Date: 9/15/2009 Drafted By: LC


SITE 1435 Webster Street Alameda, California


262 Michelle Court So. San Francisco, CA 94080 Main: (650) 616-1200 Fax: (650) 616-1244


FIGURE

TITLE

Vicinity Map

ATTACHMENT A

FIELD DATA SHEETS

		TEC	ACCUT	TE Well	Data Shee	et		
Date: 12/10/09	Site Name: 1435	Webster			Project #:	E-327	L-4-U9	Sampler: BD
Event: Q4 QMR	Site Address: A	lameda			Client: Oly	ympian		
WELL ID	TIME	DTP	PT	EASUREM DTW	CONTRACTOR NOTES	Today's DTB	WELL DIAMETER	COMMENTS (i.e. pressurized or maintenance req.)
MW-2	946			11.32	19.42		2"	
MW-3	941			11.30	21.85		2"	
MW-4	948			10.85	19.76		2"	
MW-6	944			11.61	19.34		2"	
MW-7	950			10.21	19.81		4"	
MW-8	951			10.72			4"	
MW-9	953			10.16	19.94		4"	
					_			
_								
								×*

Abbreviations:

		w		Accutite Field Data Sh	eet						
Project #:	5-322-	4-09	Purged By:	BD		Well ID:	MW-4				
Client Name	: Olympian		Sampled By	H)		Sample ID:	MW-4				
Location:	1435 Webste	er				QA Samples	s:				
	,		Purge In	formation							
Date: 12/1	0/09		Start (2400h	r): t040		End (2400hr): 1044				
Depth to Bot	ttom: 19.7	6	Depth to Wa	iter: 10.8	5	Casing Dian	neter: 2"				
DTB - DTW:	8.91		Purge (gal):	1.51		x 3 volumes	:4,54				
_	Field Measurements										
Time Volume Temp Conductivity pH Turbidity D.O. Depth (2400hr) (gal) (°C) (μmhos/cm) (units) (NTU) (mg/l) (ft)											
(2400hr) (gal) (°C) (μmhos/cm) (units) (NTU) (mg/l) (ft) 1040 1.51 19.8 385 7.03 mod brown 18.31											
1044	DRY	Q ~ 6	 	LLOWS	1						
	· · ·										
		<u> </u>									
	_										
							<u> </u>				
Date: (2/1	109	Time: 105	Sample In ∰	formation DTW: \Z-	S (Turbidity:	0h/				
	1	Time. 10 2	<u></u>			sels: 3 V 02	1/5				
Odor: Slice	1, st		Analysis: 🖇	260	Preservative):\dC(
	Purging E	quipment			Sampling	Equipment					
	ble pump		•			peristaltic p					
bailer (disposable) bailer (st. steel)bailer (disposable) bailer (st. steel)											
other:						_					
Well Integrity	: 9004	1	Lock: りゃ	>							
		_		t of gallons in 6 .65 for 4", 1.4							
	Brian		Ty	, , , , ,							

		TEC A	Accutite			
		Vater Sample	Field Data Sh	eet		
Project #: E-3	12-4-09	Purged By:	BD		Well ID:	MW-9
Client Name: Oly	mpian	Sampled By	/: BD		Sample ID:	MW-9
Location: 1435	Webster				QA Samples	s:
		Purge In	formation &			
Date: 12/10(8	99	Start (2400h	nr): 100 9	£	End (2400hi	1: 1015
Depth to Bottom:	19,94	Depth to Wa	ater: () . (0	Casing Dian	neter: 4"
DTB - DTW:	78	Purge (gal):	6.36		x 3 volumes	:19.07
		Field Mea	surements			
	lume Temp gal) (°C)	Conductivity (µmhos/cm)	pH (units)	Turbidity (NTU)	D.O. (mg/l)	Depth (ft)
1008 6.	7/	669	6.60	100	clear	14 08
	72 199	667	6.50	tt	Ч	16.55
	07 20-0	679	6-46	11	(I	16.62
		 	10 W			
	_					
. 1		Sample Ir	nformation			
Date: 12/10/09	9 Time: / ()	25	DTW: 1/		Turbidity:	10~
Odor: Sligh	Y	Analysis:	260	Sample Ves Preservative	sels: 3 VOA	2:
Pu	rging Equipment			Sampling	Equipment	
	mp peristaltic		· \		peristaltic p	
bailer (disposated dedicated	ble) bailer (st. bladder pu	•	bailer (dis dedicated		bailer (st. s bladder pun	•
other:	bladder pul	πρ .			_ bladder pull	•
Well Integrity: 分≀		Lock: M	0			
	vater column height eight by: .17 for 2" v					
Signature:	ZIAM S	John				

Summa/manifold

1435 Webs	ster Street,	Alameda, Califo	rnia					Soil Vapor Sampling	Initials: BD	Date: 12/22/09
Summa	VMP No.		Start	Initial Pressure	Finish	Final Pressure	PID		Notes	
No.	and depth	:	Time	(mg Hg)	Time	(mg Hg)	reading			
	V40 1	vacuum test	932	24/30	937	29/30				
6121	VMP	purge	937	29/30	939	2813	9.5			
'	VMP-1	sample	942	30	951	4	, , ,			
1.5.6.	VMF-1	vacuum test	1004	27/79	1009	27/29				
1-6-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		purge	1009	27/29	101	25/24	8.7			
6108	(NE')	sample	1018	N. 29	1024	3	0 - 1			
	VMP-7	vacuum test	1038 1038	27/29 25/22 25/22	1043	25/23 24/23	_			
6314		purge	1043	25/23	1045	24/23	7.3			
0 - 1 1	@4'	sample	1047	24	1055	2				
62		vacuum test	1059	23/22	1055 1101	23/22 21/21				
6113	VM8-2	purge	1105	23/22	1107	21/21	5.0			
	@81	sample	1108	2.8	1118					
	MF-3	vacuum test	1129	20/22	1129	20/22				
5431	Mr	purge	1129	20/22	1131	20/21	7.9			
#	Qu'	sample	1136	24	1145					
CIAG		vacuum test	1152 6	20000119/21	1157	19/21				
6125	િક	purge	1157	19/21	1159	18/20	5.3			
	600	sample	1200	26	1207	2		<u> </u>	····	
1122	UMP-4	vacuum test	1244	18/18	1249	18/18	-			
6123	VFU	purge	1249	81/81	125	15/17	3.7			
	(a) 4	sample	1252	23/22	1304	2				
1100	IMP-4	vacuum test	1319	23/22	1324	28/22		manifold giving	much different rea	iding than
6128	100	purge	1324	28/22	1326	26/18	4.2	Inucra conistor		V
<u></u>	1000	sample vacuum test purge sample	1329	28/22	1337	2		porge can		
1221	VMP-5	vacuumtest	1358	28/22		28122	30			
6336	@4'	purge	1403	28/22	1405	25/21	3,9	1		
	604	sample	1405	27	1414	0.5	<u> </u>			
	VMT-5	vacuum test	2419	24/22	1424	24/22				
6109	@8'	puige	1424	24/22	1426		3,5			
	(0) 8	sample	1431	26	1138					
		vacuum test					1			
		purge					-			
L	1	sample			<u> </u>	<u> </u>		<u> </u>		

ATTACHMENT B

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

December 17, 2009

Brian Doherty TEC Accutite 262 Michelle Ct South San Francisco, CA 94080

TEL: (650) 616-1200 FAX (650) 616-1244

RE: 16998/1435 Webster St. Alameda

Dear Brian Doherty:

Torrent Laboratory, Inc. received 2 samples on 12/10/2009 for the analyses presented in the following report.

Order No.: 0912098

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director

Date

Patti Sandrock QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Brian Doherty

TEC Accutite **Date Reported:** 12/17/2009

Client Sample ID: MW-4

Sample Location: 16998/1435 Webster St. Alameda

Sample Matrix: GROUNDWATER 12/10/2009 10:58:00 AM **Date/Time Sampled**

Dilution Factor	MRL	Result	Units	Analytical Batch
1	0.50	ND	μg/L	R22133
1	0.50	ND	μg/L	R22133
1	0.50	ND	μg/L	R22133
1	0.50	4.1	μg/L	R22133
1	0.50	ND	μg/L	R22133
1	0.50	ND	µg/L	R22133

Date Received: 12/10/2009

Lab Sample ID: 0912098-001 **Date Prepared:** 12/14/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Toluene	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Ethylbenzene	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Methyl tert-butyl ether (MTBE)	SW8260B	12/14/2009	0.5	1	0.50	4.1	μg/L	R22133
Diisopropyl ether (DIPE)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Ethyl tert-butyl ether (ETBE)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
tert-Amyl methyl ether (TAME)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
t-Butyl alcohol (t-Butanol)	SW8260B	12/14/2009	5	1	5.0	ND	μg/L	R22133
1,2-Dibromoethane (EDB)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
1,2-Dichloroethane (EDC)	SW8260B	12/14/2009	0.5	1	0.50	0.71	μg/L	R22133
Xylenes, Total	SW8260B	12/14/2009	1.5	1	1.5	ND	μg/L	R22133
Surr: Dibromofluoromethane	SW8260B	12/14/2009	0	1	61.2-131	115	%REC	R22133
Surr: 4-Bromofluorobenzene	SW8260B	12/14/2009	0	1	64.1-120	91.7	%REC	R22133
Surr: Toluene-d8	SW8260B	12/14/2009	0	1	75.1-127	110	%REC	R22133
TPH (Gasoline)	SW8260B(TPH)	12/14/2009	50	1	50	ND	μg/L	G22133
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	12/14/2009	0	1	53-118	98.3	%REC	G22133

Report prepared for: Brian Doherty

TEC Accutite

Date Received: 12/10/2009 **Date Reported:** 12/17/2009

Client Sample ID: MW-9

Sample Location:

16998/1435 Webster St.Alameda

Sample Matrix: GROUNDWATER **Date/Time Sampled** 12/10/2009 10:25:00 AM

Lab Sample ID: 0912098-002 **Date Prepared:** 12/14/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Toluene	SW8260B	12/14/2009	0.5	1	0.50	0.50	μg/L	R22133
Ethylbenzene	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Methyl tert-butyl ether (MTBE)	SW8260B	12/14/2009	0.5	1	0.50	4.8	μg/L	R22133
Diisopropyl ether (DIPE)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Ethyl tert-butyl ether (ETBE)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
tert-Amyl methyl ether (TAME)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
t-Butyl alcohol (t-Butanol)	SW8260B	12/14/2009	5	1	5.0	ND	μg/L	R22133
1,2-Dibromoethane (EDB)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
1,2-Dichloroethane (EDC)	SW8260B	12/14/2009	0.5	1	0.50	ND	μg/L	R22133
Xylenes, Total	SW8260B	12/14/2009	1.5	1	1.5	ND	μg/L	R22133
Surr: Dibromofluoromethane	SW8260B	12/14/2009	0	1	61.2-131	123	%REC	R22133
Surr: 4-Bromofluorobenzene	SW8260B	12/14/2009	0	1	64.1-120	89.3	%REC	R22133
Surr: Toluene-d8	SW8260B	12/14/2009	0	1	75.1-127	111	%REC	R22133
TPH (Gasoline)	SW8260B(TPH)	12/14/2009	50	1	50	ND	μg/L	G22133
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	12/14/2009	0	1	53-118	104	%REC	G22133

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 17-Dec-09

CLIENT: TEC Accutite

16998/1435 Webster St. Alameda

10.20

0

11.36

Work Order: 0912098

Surr: 4-Bromofllurobenzene

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: G22133

Sample ID: MB-G22133 SampType: MBLK TestCode: TPH_GAS_W Units: µg/L Prep Date: 12/14/2009 RunNo: 22133 Client ID: ZZZZZ Batch ID: **G22133** TestNo: SW8260B(TP Analysis Date: 12/14/2009 SeqNo: 316645 SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val RPDLimit Analyte Result **PQL** %REC %RPD Qual TPH (Gasoline) ND 50 Surr: 4-Bromofllurobenzene 9.600 0 11.36 0 84.5 53 118 Sample ID: LCS-G22133 SampType: LCS TestCode: TPH_GAS_W Units: µg/L Prep Date: 12/14/2009 RunNo: 22133 Client ID: ZZZZZ Batch ID: **G22133** TestNo: SW8260B(TP Analysis Date: 12/14/2009 SeqNo: 316646 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual TPH (Gasoline) 252.0 50 227 0 111 52.4 127 Surr: 4-Bromofllurobenzene 0 53 10.60 11.36 0 93.3 118 Sample ID: LCSD-G22133 SampType: LCSD TestCode: TPH_GAS_W Units: µg/L 12/14/2009 RunNo: 22133 Prep Date: Client ID: ZZZZZ Batch ID: **G22133** TestNo: SW8260B(TP Analysis Date: 12/14/2009 SeqNo: 316647 **PQL** SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Analyte Result %REC Qual 264.0 TPH (Gasoline) 50 227 0 116 52.4 127 252 4.65 20

0

89.8

53

118

0

0

0

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

*Page 1 of 3**

TEC Accutite **CLIENT:** Work Order: 0912098

ANALYTICAL QC SUMMARY REPORT

Project: 16998/1435 Webster St. Alameda BatchID: R22133

Sample ID: MB-R22133	SampType: MBLK	TestCo	de: 8260B_W	_PE Units: μg/L		Prep Da	te: 12/14/2	009	RunNo: 22	133	
Client ID: ZZZZZ	Batch ID: R22133	Test	No: SW8260B			Analysis Da	te: 12/14/2	009	SeqNo: 310	6638	
nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.50									
Toluene	ND	0.50									
Ethylbenzene	ND	0.50									
Methyl tert-butyl ether (MTBE)	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
ert-Amyl methyl ether (TAME)	ND	0.50									
-Butyl alcohol (t-Butanol)	ND	5.0									
1,2-Dibromoethane (EDB)	ND	0.50									
1,2-Dichloroethane (EDC)	ND	0.50									
Kylenes, Total	ND	1.5									
Surr: Dibromofluoromethane	13.27	0	11.36	0	117	61.2	131				
Surr: 4-Bromofluorobenzene	9.740	0	11.36	0	85.7	64.1	120				
Surr: Toluene-d8	12.00	0	11.36	0	106	75.1	127				
Sample ID: LCS-R22133	SampType: LCS	TestCo	de: 8260B_W	_PE Units: μg/L		Prep Da	te: 12/14/2	009	RunNo: 22	133	
Client ID: ZZZZZ	Batch ID: R22133	Test	No: SW8260B		Analysis Date: 12/14/2009				SeqNo: 310	6639	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.66	0.50	17.04	0	110	66.9	140				
Toluene	15.53	0.50	17.04	0	91.1	76.6	123				
Surr: Dibromofluoromethane	12.32	0	11.36	0	108	61.2	131				
Surr: 4-Bromofluorobenzene	10.51	0	11.36	0	92.5	64.1	120				
Surr: Toluene-d8	12.95	0	11.36	0	114	75.1	127				
Sample ID: LCSD-R22133	SampType: LCSD	TestCo	de: 8260B_W	_PE Units: μg/L		Prep Da	te: 12/14/2	009	RunNo: 22	133	
Client ID: ZZZZZ	Batch ID: R22133	TestN	No: SW8260B			Analysis Da	te: 12/14/2	009	SeqNo: 310	6640	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	16.21	0.50	17.04	0	95.1	66.9	140	18.66	14.1	20	
Toluene	14.13	0.50	17.04	0	82.9	76.6	123	15.53	9.44	20	
•	quantitation range I at the Reporting Limit			ng times for preparatio outside accepted recove	•	s exceeded		Analyte detected by Spike Recovery or	•	ecovery limits	Page 2

CLIENT: TEC Accutite

Work Order: 0912098

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R22133 16998/1435 Webster St. Alameda

Sample ID: LCSD-R22133 Client ID: ZZZZZ	SampType: LCSD Batch ID: R22133		le: 8260B_W lo: SW8260B	PE Units: µg/L		Prep Da Analysis Da	te: 12/14/2 te: 12/14/2	RunNo: 22133 SeqNo: 316640			
Analyte	Result	PQL SPK value SPK Ref Val		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Surr: Dibromofluoromethane	12.18	0	11.36	0	107	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	9.670	0	11.36	0	85.1	64.1	120	0	0	0	
Surr: Toluene-d8	12.65	0	11.36	0	111	75.1	127	0	0	0	

Analyte detected below quantitation limits

Torrent Laboratory, Inc.

WORK ORDER Summary

11-Dec-09

Work Order 0912098

Client ID: TEC ACCUTITE

Project: 16998/1435 Webster St. Alameda **QC Level:**

Comments: 5 day TAT!!!Recv'd 2 water samples for TPHg;BTEX and Fuel Oxygenates;Run to ESLs.Pls. Email an EDF result to tecaccutite@gmail.com.

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	Hld	MS	SEL	Sub	Storage
0912098-001A	MW-4	12/10/2009 10:58:00 AM	12/10/2009	12/16/2009	Groundwater	8260B_W_PETRO			✓		ORG
				12/16/2009		EDF					ORG
				12/16/2009		TPH_GAS_W_GC					ORG
0912098-002A	MW-9	12/10/2009 10:25:00 AM		12/16/2009		8260B_W_PETRO			\checkmark		ORG
				12/16/2009		TPH_GAS_W_GC					ORG

CHAIN OF CUSTODY

Lab Work Order #:_____

Project	1435 Webster			Report to:	<u>Brian</u>	Analysis Required									Turn-around Time (work days)			
Name:				tecaccutite@gmail.com						·					ASAP	1 Day	2 Days	3 Days
Project Address:	1435 Webster St.			Bill to: TEC Accutite		ag E									5 Days	10 Days	Other:	
	Alameda, CA			(650) 616-1200		s, le										Sample Type		
Global ID:	T0600100766			PO#:	1008	8260 TPHg BTEX oxygenates, lead scavengers									ground water			
Sampler:	BD	Date :	12/10/09	10#.	PO#: 16998	109 802 803		:				4			Report Format			
Field Point ID	Sample ID	Sample Matrix	# of Containers	Container Type	Sample Date & Time	82 0×									EDF Remarks			
MW-4	MW-4	W	3	VOAs w/ HCI	12/10/09	1	_(00(A	,						Run to E	SLs		
MW-9	MW-9	w	3	VOAs w/ HCI	12/10/09	1		00 U.)									
																		:
				·														
·		and a second sec							·									
															0	,		
· · · · ·														(pm	po			
									, , , , , , , , , , , , , , , , , , , ,				**					
																		
Relinquishe	d by: Brian Do	oherty D	blet	Date:	12/10/09	Time:	304	<u> </u>	Received t	ру:	'			Date:	1009		Time	6:00
Relinquishe	d by:	1		Date:	12/0	5'\ Time:	Boy		Received t)))		L-S). In	Date	- 12	2 10-	Time	6:00

ATTACHMENT C

GEOTRACKER SUBMISSION CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 2009 Q4 Groundwater Monitoring Report

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: Tec Accutite 0912098 1435 Webster EDF.zip

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

Submittal Date/Time: 12/21/2009 4:48:15 PM

Confirmation Number: 6402321934

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

1 of 1 12/21/2009 4:48 PM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 2009 Q4 Groundwater Monitoring Report

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112
File Name: GEO_WELL.zip
Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

Submittal Date/Time: 12/21/2009 4:53:09 PM

Confirmation Number: 7956824064

Copyright © 2008 State of California

1 of 1 12/21/2009 4:53 PM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 2009 Q4 Groundwater Monitoring Report - vapor results

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: revised EDF 0912198.zip

Organization Name: TEC Accutite
Username: TEC-OLYMPIAN
IP Address: 67.126.45.211

<u>Submittal Date/Time:</u> 1/8/2010 3:36:29 PM

Confirmation Number: 9994180142

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

1 of 1 1/8/2010 3:36 PM

1/20/2010 GeoTracker ESI

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: Fourth Quarter 2009 Groundwater Monitoring Report

Report Type: Monitoring Report - Quarterly

Report Date: 1/20/2010
Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

File Name: 2009_12_10_Q4 QMR_1435 Webster_322-4-09 FINAL.pdf

<u>Username:</u> TEC Accutite

<u>Username:</u> TEC-OLYMPIAN

IP Address: 67.126.45.211

Submittal Date/Time: 1/20/2010 11:37:57 AM

Confirmation Number: 7851767301

Copyright © 2008 State of California