

Technology, Engineering & Construction, Inc.

262 Michelle Court • So. San Francisco, CA 94080-6201 • Contractor's Lic. #762034 Tel: (650) 616-1200 • Fax: (650) 616-1244 • www.tecaccutite.com

RECEIVED

10:14 am, Jun 13, 2008

Alameda County
Environmental Health

April 17, 2008

Mr. Steven Plunkett Hazardous Materials Specialist Alameda County Health Agency Division of Environmental Protection 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

SUBJECT: FIRST QUARTER 2008 GROUNDWATER MONITORING REPORT

SITE: FORMER OLYMPIAN SERVICE STATION

1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501 FLC # RO0000193

Dear Mr. Plunkett:

On behalf of Olympian JV, TEC Accutite is pleased to submit this first quarter 2008 groundwater monitoring report for the above referenced site.

Thank you for your cooperation and assistance on this project. If you have any questions or concerns, please call Marc Mullaney at (650) 616-1209.

Sincerely,
TEC Accutite
Why Haves

Abby Harris

Environmental Scientist

cc: Mr. Fred Bertetta c/o Ms. Janet Heikel, Olympian, 1300 Industrial Road, Suite 2, San Carlos, California

Mr. Jeff Farrar, P.O. Box 1701, Chico, California 95927

Mr. and Mrs. Charles A. & Ose M. Begley, 2592 Pine View Dr., Fortuna, California 95540

FIRST QUARTER 2008 GROUNDWATER MONITORING REPORT

FORMER OLYMPIAN SERVICE STATION 1435 WEBSTER STREET ALAMEDA, CALIFORNIA 94501

FLC #: RO0000193

PREPARED FOR:

OLYMPIAN JV
AND
ALAMEDA COUNTY HEALTH AGENCY

PREPARED FOR:

OLYMPIAN JV PROJECT #: E-203

SAMPLING DATE:

MARCH 6, 2008

REPORT DATE:

APRIL 17, 2008

TABLE OF CONTENTS

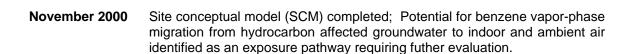
	<u>Page</u>
1.0	INTRODUCTION1
2.0	SITE DESCRIPTION
3.0	ENVIRONMENTAL BACKGROUND
3.1	Site Timeline 1
3.2	Site Condition
4.0	GROUNDWATER MONITORING
4.1	Sampling Methods
4.2	Electronic Laboratory Data Submittal
5.0	RESULTS
5.1 5.2	Groundwater Elevation and Flow Direction
6.0	Petroleum Hydrocarbons in Groundwater
7.0	LIMITATIONS
7.0	
TABLE	ES CONTRACTOR OF THE PROPERTY
1	SUMMARY OF GROUNDWATER ELEVATION DATA
2	SUMMARY OF GROUNDWATER MONITORING ANALYTICAL RESULTS
_	Community of Checkbon Central Month Charles and Central Centra
FIGUR	ES
1	VICINITY MAP
2	SITE MAP
3	GROUNDWATER GRADIENT MAP
4	PETROLEUM HYDROCARBONS IN GROUNDWATER
ATTAC	CHMENTS
Α	FIELD DATA SHEETS
В	LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION
С	GEOTRACKER SUBMISSION CONFIRMATIONS

1.0 INTRODUCTION

On behalf of Olympian JV, TEC Accutite conducted the first quarter 2008 groundwater monitoring event at the former Olympian Service Station, located at 1435 Webster Street, Alameda, California. This event represents the fifth sampling event following the completion of soil excavation activities during February 2007. Presented herein are the site environmental background and results of the current groundwater monitoring event.

2.0 SITE DESCRIPTION

The site is located on the corner of Webster Street and Taylor Avenue in Alameda, California. Prior to 1989, the site was occupied by an Olympian Service Station. The former station facilities consisted of two 10,000-gallon gasoline and one 7,500-gallon diesel underground storage tanks (USTs), two dispenser islands, and a 500-gallon waste oil UST. A Vicinity Map and a Site Map are presented as Figures 1 and 2, respectively.


The surrounding topography is flat and the site is approximately 20 feet above mean sea level. The site is situated in a mixed commercial and residential area and is currently leased by the City of Alameda and used as a metered parking lot.

3.0 ENVIRONMENTAL BACKGROUND

A historical timeline of relevant activities at the subject site is presented in Section 3.1; a summary of the current site condition, including the monitoring well network and general chemical of concern (COC) distribution, is presented in Section 3.2

3.1 Site Timeline

3.1 Site Ti	meline
October 1988	Soil gas analysis performed on site reveals high soil gas readings.
September 1989	Two 10,000-gallon gasoline USTs, one 7,500-gallon diesel UST and one 500-gallon waste oil UST removed by TEC Accutite; Petroleum hydrocarbons detected in soil beneath former tanks.
January 1991	Approximately 950 cubic yards of soil were removed from the former location of the USTs; This soil was bioremediated onsite and returned to the former excavation.
January 1993	Three monitoring wells installed onsite (MW-1 through MW-3); No petroleum hydrocarbons detected in soil.
February 1999	Four soil borings advanced on- and offsite (B-1 through B-4); Petroleum hydrocarbon concentrations detected in soil and groundwater.
December 1999	Three monitoring wells, installed onsite (MW-4 through MW-6); Petroleum

hydrocarbons detected in soil.

June 2001 Four soil borings advanced (B-1 through B-4 (second set of B-1 through B-

4)); No petroleum hydrocarbons detected in soil; Petroleum hydrocarbons

detected in groundwater.

February 2002 Site-specific risk assessment performed; Compounds of concern identified

as TPHg and benzene.

May 2003 Eight soil vapor probes advanced onsite (SV-1 through SV-7); Petroleum

hydrocarbons detected below their respective Environmental Screening

Levels (ESLs).

September 2005 Site conceptual model updated; Uncertainties determined with onsite

benzene vapor concentratioins and offsite groundwater conditions.

June 2006 Eight soil borings advanced (SP-1 through SP-8); Petroleum hydrocarbons

detected in soil above constituent ESLs.

November 2006 Seventeen soil borings advanced (CB-1 through CB-17) to determine

excavation limits; Petroleum hydrocarbons detected at concentrations below ESLs and/or laboratory detection limits at depths shallower than 8 feet bsg; Onsite soils classified as SP to SP-SM, as determined by Geophysical

analysis.

December 2006 Five soil borings advanced (DB-1 through DB-5); Onsite soils classified as

Class II waste; Monitoring wells MW-1 and MW-5 abandoned by pressure

grouting.

February 2007 Interim remedial action conducted; 992.54 tons of soil excavated from site

and properly disposed; 15,000 gallons of groundwater pumped from open excavation pit, sediment and carbon-filtered, and discharged to sewer under

permit.

March 2007 Two monitoring wells installed onsite (MW-7 and MW-8).

July 2007 Thirteen off-site soil borings advanced (B-6 through B-18); off-site plume

defined in all directions except crossgradient to the northeast.

3.2 Site Condition

The site currently has six monitoring wells in its network (MW-2 through MW-4 and MW-6 through MW-8). Locations of site monitoring wells are presented in Figure 2. Chemicals of concern (COCs) for the site include petroleum hydrocarbons as gasoline (TPHg), BTEX compounds, and MTBE. The source area was the former USTs, which have since been removed. TEC Accutite continues to monitor all active groundwater monitoring wells associated with the site on a quarterly basis in preparation for applying for site closure.

4.0 GROUNDWATER MONITORING

TEC Accutite conducted groundwater monitoring on March 6, 2008. Field data sheets from this groundwater sampling event are presented as Attachment A.

4.1 Sampling Methods

Upon arrival to the site, a TEC Accutite technician uncapped all site groundwater monitoring wells and allowed the water level in each well to fully equilibrate prior to measuring the depth to water. Following well gauging, approximately three casing volumes of groundwater were purged from wells MW-2 through MW-4 and MW-6 through MW-8 (all active wells). Following well purging, water levels in each well were allowed to recover to 80% of the pre-purge level prior to collection of groundwater samples. Following purging and recovery, groundwater samples were collected from each well with a disposable bailer and transferred into laboratory supplied HCl-preserved volatile organic analysis vials (VOAs). The samples were labeled, stored in an ice chest with sufficient ice, and delivered to *Torrent Laboratory, Inc.*, a California State Certified laboratory, under chain-of-custody documentation for analysis.

All groundwater samples were analyzed for TPHg, BTEX, fuel oxygenates, and lead scavengers by EPA Method 8260. The laboratory analytical report and chain-of-custody documentation are presented in Attachment B.

4.2 Electronic Laboratory Data Submittal

The laboratory report was converted into EDF format and uploaded to GeoTracker, the web-based geospatial database of California. Depths to groundwater were uploaded to GeoTracker as a GEO_WELL file. Attachment C contains hard copies of the GeoTracker submission confirmations.

5.0 RESULTS

5.1 Groundwater Elevation and Flow Direction

The calculated groundwater flow direction based on groundwater elevation is toward the east at a gradient of approximately 0.015 feet/foot (ft/ft). Groundwater monitoring well MW-7 was excluded from the calculations of the groundwater contours, flow direction, and hydraulic gradient because it is located in a former excavation pit and it does not match the existing gradient. Groundwater elevations are presented in Table 1 and Figure 3.

5.2 Petroleum Hydrocarbons in Groundwater

For this monitoring event, the highest concentrations of dissolved-phase petroleum hydrocarbons and fuel oxygenates were detected in groundwater monitoring well MW-8 (19,000 μ g/L total petroleum hydrocarbons (TPHg), 639 μ g/L benzene, 268 μ g/L ethylbenzene, 152 μ g/L xylenes, 11,200 μ g/L methyl-tert-butyl ether (MTBE), and 227 μ g/L 1,2-dichloroethane (1,2-DCA)). Elevated levels of other contaminants of concern were also detected in well MW-7 (4.83 μ g/L MTBE and 0.59 μ g/L 1,2-DCA) and well MW-2 (1.02 μ g/L MTBE).

No dissolved-phase petroleum hydrocarbons or fuel oxygenates were detected at or above respective laboratory reporting limits in remaining groundwater monitoring wells MW-3, MW-4, or MW-6. Groundwater analytical results are summarized in Table 2 and Figure 4.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- For this groundwater monitoring event, groundwater flow appears to be to the east at a gradient of approximately 0.015 ft/ft. This is within historical precedent for change in groundwater elevation and gradient due to seasonal variations in rainfall.
- Concentrations of dissolved-phase petroleum hydrocarbons and fuel oxygenates were detected above respective ESLs in groundwater monitoring well MW-8, located approximately 5 feet south-southwest of former groundwater monitoring well MW-1. Concentrations of petroleum hydrocarbons and fuel oxygenates are within the historical range of former well MW-1, and concentrations of petroleum hydrocarbons appear to be stable.
- Concentrations of fuel oxygenates MTBE and 1,2-DCA were detected above respective ESLs in groundwater monitoring well MW-7, located approximately 10 feet southwest of former groundwater monitoring well MW-5. Concentrations of petroleum hydrocarbons and fuel oxygenates are within the historic range of former well MW-5 and appear to be decreasing.
- Neither MTBE nor 1,2-DCA were detected at concentrations above the respective ESLs in groundwater monitoring well MW-2, indicating that fuel oxygenates in monitoring well MW-2 are decreasing.
- No dissolved-phase petroleum hydrocarbons or fuel oxygenates were detected at or above respective laboratory reporting limits in groundwater monitoring wells MW-3, MW-4, or MW-6.
- TEC Accutite proposes to advance a minimum of two additional soil borings to define the lateral extent of the petroleum hydrocarbon impact to soil and groundwater crossgradient of the site to the northeast, detailed in the *Additional Site Characterization Report* dated September 7, 2007 and pending approval of Alameda County Health Agency.
- TEC Accutite will continue to monitor all active wells associated with the site on a quarterly basis in preparation for applying for site closure after completion of the site delineation.

7.0 LIMITATIONS

Our services consist of professional opinions, conclusions, and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TEC Accutite's liability is limited to the dollar amount of the work performed.

Thank you for your cooperation and assistance with this project. If you have any questions or concerns, please contact the undersigned at (650) 616-1200.

Sincerely,

TEC Accutite

abby Harris

Reviewed by:

Abby Harris Environmental Scientist Marc Mullaney, PG # 7438 Senior Project Manager

TABLES

Table 1 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)	24.0	(ft)	(ft msl)
MW-1	(it iiioi)	6/3/1993	(1)	(it illel)
	19.53	9/14/1994	11.46	8.07
	. 0.00	12/30/1994	9.22	10.31
		3/26/1995	6.76	12.77
		7/9/1995	8.92	10.61
		7/31/1998	8.30	11.23
		2/11/1999	7.91	11.62
		6/23/1999	9.03	10.50
		12/6/1999	10.86	8.67
		3/16/2000	6.93	12.60
		6/13/2000	8.73	10.80
		9/29/2000	10.18	9.35
		3/22/2001	8.24	11.29
		6/25/2001	9.73	9.80
		9/28/2001	11.06	8.47
		12/26/2001	8.11	11.42
		07/0705	8.69	10.84
		10/19/2005	10.25	9.28
		1/13/2006	7.09	12.44
		5/5/2006	6.40	13.13
		7/19/2006	8.28	11.25
		10/5/2006	9.67	9.86
				/2006*******
MW-2	19.8	6/3/1993	9.54	10.26
		9/14/1994	11.82	7.98
		12/30/1994	9.46	10.34
		3/26/1995	6.82	12.98
		7/9/1995	9.22	10.58
		7/31/1998	8.56	11.24
		2/11/1999	8.12	11.68
		6/23/1999	9.33	10.47
		12/6/1999	11.20	8.60
		3/16/2000	6.88	12.92
		6/13/2000	8.99	10.81
		9/29/2000	10.40	9.40
		3/22/2001	8.46	11.34
		6/25/2001	10.11	9.69
		9/28/2001	11.40	8.40
		12/26/2001	8.28	11.52
		7/7/2005	8.99	10.81
		10/19/2005	10.63	9.17
		1/13/2006	7.15	12.65
		5/5/2006	6.43	13.37
		7/19/2006	8.57	11.23
		10/5/2006	10.05	9.75
		3/29/2007	8.83	10.97
		6/27/2007	9.86	9.94
		9/19/2007	10.89	8.91
		12/19/2007	10.78	9.02
		3/6/2008	8.48	11.32
II				

Table 1 Summary of Historical Groundwater Elevation Data

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-3	19.79	6/3/1993	9.80	9.99
		9/14/1994	12.19	7.60
		12/30/1994	9.72	10.07
		3/26/1995	6.88	12.91
		7/9/1995	9.52	10.27
		7/31/1998	8.40	11.39
		2/11/1999	7.77	12.02
		6/23/1999	9.21	10.58
		12/6/1999	11.12	8.67
		3/16/2000	6.48	13.31
		6/13/2000	8.76	11.03
		9/29/2000	10.20	9.59
		3/22/2001	8.24	11.55
		6/25/2001	10.04	9.75
		9/28/2001	11.34	8.45
		12/26/2001	8.01	11.78
		7/7/2005	8.84	10.95
		10/19/2005	10.58	9.21
		1/13/2006	6.85	12.94
		5/5/2006	6.11	13.68
		7/19/2006	8.41	11.38
		10/5/2006	10.02	9.77
		3/29/2007	9.71	10.08
		6/27/2007	9.82	9.97
		9/19/2007	10.88	8.91
		12/19/2007	10.68	9.11
		3/6/2008	8.30	11.49
MW-4	19.3	12/6/1999	10.79	8.51
		3/16/2000	6.86	12.44
		6/13/2000	8.18	11.12
		9/29/2000	10.11	9.19
		4/5/2001	8.26	11.04
		6/25/2001	9.68	9.62
		9/28/2001	10.98	8.32
		12/26/2001	8.18	11.12
		7/7/2005	8.77	10.53
		10/19/2005	10.24	9.06
		1/13/2006	(1)	(1)
		5/5/2006	(1)	(1)
		7/19/2006	8.38	10.92
		10/5/2006	9.65	9.65
		3/29/2007	8.55	10.75
		6/27/2007	9.40	9.90
		9/19/2007	10.45	8.85
		12/19/2007	10.35	8.95
		3/6/2008	8.25	11.05

Table 1 **Summary of Historical Groundwater Elevation Data**

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	TOC	Sample	Depth to	Groundwater
	Elevation	Date	Water	Elevation
	(ft msl)		(ft)	(ft msl)
MW-5	18.99	12/6/1999	10.17	8.82
		3/16/2000	6.28	12.71
		6/13/2000	7.95	11.04
		9/29/2000	9.54	9.45
		3/22/2001	7.48	11.51
		6/25/2001	9.05	9.94
		9/28/2001	10.39	8.60
		12/26/2001	7.28	11.71
		8/24/2005	7.87	11.12
		10/19/2005	9.51	9.48
		1/13/2006	6.35	12.64
		5/5/2006	5.64	13.35
		7/19/2006	7.41	11.58
		10/5/2006	8.89	10.10
		******Aba	ndoned 12/27	/2006******
MW-6	20.27	12/6/1999	11.46	8.81
		3/16/2000	8.32	11.95
		6/13/2000	9.14	11.13
		9/29/2000	10.81	9.46
		3/22/2001	8.64	11.63
		6/25/2001	10.39	9.88
		9/28/2001	11.70	8.57
		12/26/2001	8.40	11.87
		7/7/2005	9.10	11.17
		10/19/2005	10.88	9.39
		1/13/2006	7.33	12.94
		5/5/2006	6.53	13.74
		7/19/2006	8.64	11.63
		10/5/2006	10.29	9.98
		3/29/2007	9.01	11.26
		6/27/2007	10.14	10.13
		9/19/2007	11.17	9.10
		12/19/2007	10.99	9.28
		3/6/2008	8.65	11.62
MW-7	18.93	3/29/2007	7.90	11.03
		6/27/2007	8.87	10.06
		9/19/2007	9.88	9.05
		12/19/2007	9.72	9.21
		3/6/2008	7.52	11.41
MW-8	19.33	3/29/2007	8.40	10.93
141 44 -0	13.33	6/27/2007	9.33	10.93
		9/19/2007	10.31	9.02
		12/19/2007	10.31	9.10
		3/6/2008	9.14	10.19
		0/0/2000	0.17	10.10
Netoo				

Notes:

TOC = Top of Casing

ft msl = Feet referenced to mean sea level

--- = Not Available

(1) = Well not accessible due to obstruction by a parked car

yellow row = most recent data

Table 2

Summary of Groundwater Monitoring Analytical Results
Former Olympian Service Station
1435 Webster Street
Alameda, California

Well ID	Sample	TPHd	TPHq	В	Т	E	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
weilib	Date	IFHU	•	Concentrati	=				IKFN	DIFE	IDA	1,2-DCA
F	SL	100	100	1.0	40	30	20	5.0				0.5
MW-1	6/3/1993											
	9/14/1994	<50	14,000	44	28	25	50		800			
	12/30/1994	<50	4,000	12	9	6.8	30		<500			
	3/26/1995	<50	1,000	21	10	7.1	25		2,100			
	7/9/1995	<50	16,000	57	28	25	53					
	7/31/1998	1,700	4,700	1,300	48	140	150	6,600	<5000			
	2/11/1999	2000	25,000	18,000	1,600	1,400	500	28,000				
	6/23/1999	4,900	42,000	11,000	1,100	1,500	2,300	15,000				
	12/6/1999	4,000	44,000	8,900	3,400	1,900	5,100	11,000				
	3/16/2000	700	5,100	2,400	100	280	460	$2,700^{2}$				
	6/13/2000	2,800	17,000	5,300	260	720	790	7,000 ²				
	9/29/2000	5,200 ¹	50,000	11,000	2,900	1,900	4,600	$7,200^{2}$				
	3/22/2001	1,500 ¹	8,600	2,600	750	250	950	3,200 ²				
	6/25/2001		18,000	1,200	1,800	970	3,200	1500 ²				
	9/28/2001		48,000	5,200	6100	2200	8100	4000				
	12/26/2001		524	216	1.2	8.6	7.4	721				
	7/7/2005		1,500	190	15	36	29	1,100		<20		50
	10/19/2005		11,000	2,100	45	370	82	4,600		<250	<500	200
	1/13/2006		5,400	680	37	83	41	3,900		<250	<500	180
	5/5/2006		<25	2	< 0.5	< 0.5	< 0.5	2.2		<5.0	<10	<0.5
	7/19/2006		5,000	836	22.3	107	81.8	1,130		<4.2	<84	54.1
	10/5/2006		23,000	3,740	112	395	161	6,020		13.5	546	219
			**	******	******	***Well Aba	ndoned 12/2	27/2006****	*******	*****	k .	
MW-2	6/3/1993	<50	<50	5.8	< 0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	12/30/1994	<50	160	1.4	1.4	8.0	5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995											
	7/31/1998	220	<50	<0.5	<0.5	<0.5	<0.5	73	<500			
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	75				
	6/23/1999	420	<50	<0.5	<0.5	<0.5	<0.5	96				
	12/6/1999	<110	300	28	45	6	37	210				
	3/16/2000	<50	<50	1	<0.5	0.5	1	3				
	6/13/2000	<50	68	8.0	< 0.5	<0.5	<0.5	38 ੂ				
	9/29/2000	<50	67	8.0	0.5	<0.5	1	86 ²				
	3/22/2001	<50	<50	1	0.5	<0.5	1	14				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	13				
	9/28/2001		300	4	6	3	10	130				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	20		<1.0		1.1
	10/19/2005		29	1.4	<0.5 3	<0.5	<0.5	19		<5.0	<10	0.95
	1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	16.6		<0.5	<10	1.24
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	11.9		<0.5	<10	0.750
	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	3.36		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	10.5		<0.5	<10	0.820
	9/19/2007		52 ⁴	<0.5	<0.5	<0.5	<1.5	18.1		<0.5	<10	0.710
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	22.9		<0.5	<10	0.840
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	1.02		<0.5	<10	<0.5

Table 2

Summary of Groundwater Monitoring Analytical Results
Former Olympian Service Station
1435 Webster Street
Alameda, California

Wall ID	Commis	TDUA	TDU.					MTDE	TDDU	DIDE	TDA	4.2 DCA
Well ID	Sample	TPHd	TPHg	B	T	E	X	MTBE	TRPH	DIPE	TBA	1,2-DCA
ļ	Date	400		Concentrati								0.5
	SL (2/4/002	100	100	1.0	40	30	20	5.0	 -E00			0.5
MW-3	6/3/1993	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	9/14/1994	<50	<50	<0.5	< 0.5	< 0.5	<0.5		<500			
	12/30/1994	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	3/26/1995	<50	<50	<0.5	<0.5	<0.5	<0.5		<500			
	7/9/1995											
	7/31/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5000			
	2/11/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5				
	6/23/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	3				
	12/6/1999	<110	<50	3	1	<0.5	1	0.6				
	3/16/2000	<50	<50	<0.5	<0.5	<0.5	<1.0	1				
	6/13/2000	<50	490	0.8	<0.5	<0.5	9	2				
	9/29/2000	<50	57	<0.5	<0.5	<0.5	<1.0	<1.0 ²				
	3/22/2001	<50	<50	<0.5	<0.5	<0.5	<1.0	2				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	8.0				
	9/28/2001		91	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25	<0.5	<0.5 3	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	5/5/2006		<25	<0.5	<0.5	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/29/2007		<50	<0.5	<0.5	< 0.5	<1.5	<0.5		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		< 0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	12/19/2007		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
MW-4	12/6/1999	160	<50	3	2	0.6	4	140				
	3/16/2000	90	<50	0.5	0.5	<0.5	2	34				
	6/13/2000	<50	56	<0.5	<0.5	<0.5	<1.0	1				
	9/29/2000	<50	92	0.7	<0.5	<0.5	3	<1.0 2				
	4/5/2001	<50	51	<0.5	0.5	<0.5	1	6.0 ²				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	<0.5				
	9/28/2001		<50	<0.5	<0.5	<0.5	2	2				
	12/26/2001		<50	1.6	1.7	1.6	4.4	2.7				
	7/7/2005		<50	<0.5	<0.5	<0.5	<1.0	<0.5		<1.0		<0.5
	10/19/2005		<25 ******	<0.5	<0.5 ³	<0.5	<0.5	<1.0		<5.0	<10	<0.5
	1/13/2006											
	5/5/2006		******									
	7/19/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	10/5/2006		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
	3/29/2007		<50	<0.5	<0.5	<0.5	<1.5	0.69		<0.5	<10	<0.5
	6/27/2007		<50	<0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	<0.5
	9/19/2007		<50	<0.5	<0.5	<0.5	<1.5	1.38		<0.5	<10	<0.5
	12/19/2007		63 ⁵	<0.5	<0.5	<0.5	<1.5	2.20		<0.5	<10	0.590
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
MW-5	12/6/1000	2 900	30,000	2,200	2 200	910	7000	670				
IVIVV-3	12/6/1999 3/16/2000	2,800 1,100	30,000 3,500		3,300 260			260				
	6/13/2000	1,100	6,500	1,100 2200	360	210 360	6300 730	480				
		700 ¹						390 ²				
	9/29/2000	700 380 ¹	3,900	990 780	120	300	340 530					
	3/22/2001		4,300	780 1000	240	250	530	190 140				
	6/25/2001		3,100	1000	110	200	320	140				
	9/28/2001		3,000	1200	77 262	120	170	770				
	12/26/2001		3,240	738	262	218	626	66.4			40	
	8/24/2005		150	57	3	8	3.9	67		<1.0	18	3.0
	10/19/2005		560	130	3.8	23	9.3	230		<25	<50	11
	1/13/2006		2,300	570	18	120	140	220		<25	<50	14
	5/5/2006		130	35	1.7	7.8	7.4	8		<5.0	<10	0.55
	7/19/2006		210	102	1.54	15.8	3.85	27.6		< 0.5	<10	2.06
	10/5/2006		410	105 ******	1.06 ******	9.05 **\ V oll Abo	2.24	101	*******	0.640 ******	11.3	6.65
			***			well Aba	ndoned 12/	Z11ZUU0""^^^				
<u> </u>												

Table 2 Summary of Groundwater Monitoring Analytical Results

Former Olympian Service Station 1435 Webster Street Alameda, California

Well ID	Sample	TPHd	TPHg	В	T	Е	Х	MTBE	TRPH	DIPE	TBA	1,2-DCA
	Date			Concentrat	ions in mic	rograms pe	er liter (µg/L					
E	SL	100	100	1.0	40	30	20	5.0				0.5
MW-6	12/6/1999	110	<50	2	2	8.0	8	1				
	3/16/2000	<50	<50	8	8	5	18	<0.5				
	6/13/2000	<50	75	0.7	1	0.9	2	0.6				
	9/29/2000	<50	<50	<0.5	< 0.5	<0.5	<1.0	<0.5				
	3/22/2001	<50	66	0.5	<0.5	<0.5	<1.0	3				
	6/25/2001		<50	<0.5	<0.5	<0.5	<1.0	4				
	9/28/2001		63	2	ND	ND	1	3				
	12/26/2001		<50	< 0.5	< 0.5	< 0.5	1.4	< 0.5				
	7/7/2005		<50	< 0.5	< 0.5	< 0.5	<1.0	< 0.5		<1.0		< 0.5
	10/19/2005		<25	<0.5	<0.5 ³	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	1/13/2006		<25	< 0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	5/5/2006		<25	< 0.5	< 0.5	< 0.5	< 0.5	<1.0		<5.0	<10	< 0.5
	7/19/2006		<50	< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	10/5/2006		<50	<05	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	3/29/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	6/27/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	9/19/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	12/19/2007		<50	< 0.5	< 0.5	< 0.5	<1.5	< 0.5		< 0.5	<10	< 0.5
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	<0.5		<0.5	<10	<0.5
MW-7	3/29/2007		840	50.8	9.33	2.54	162	39.9		<0.5	<10	2.26
	6/27/2007		270	126	< 0.5	7.11	<1.5	94.4		0.550	58.4	6.21
	9/19/2007		191 ⁴	0.5	< 0.5	5.38	<1.5	49.6		< 0.5	28.5	4.37
	12/19/2007		54 ⁴	< 0.5	< 0.5	< 0.5	<1.5	11.4		< 0.5	<10	1.09
	3/6/2008		<50	<0.5	<0.5	<0.5	<1.5	4.83		<0.5	<10	0.59
MW-8	4/6/2007		27,000	2,460	1,520	210	1,810	16,000		24.3	1,050	459
	6/27/2007		20,000	2,460	382	611	1,040	7,310		11.1	3,400	319
	9/19/2007		20,400 4	814	16.2	219	21.6	10,300		<4.40	7,080	194
	12/19/2007		14,100 ⁴	426	10.6	115	22.4	12,700		25.0	864	289
	3/6/2008		19,000 ⁶	639	19.5	268	152	11,200		<4.4	<88>	227

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel (EPA Method 8015)

TPHg = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015; July 2005 by EPA 8260

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020; July 2005 by EPA 8260

Fuel Additives = Methyl-tert-butyl ether (MTBE), Di-isopropyl ether (DIPE), tert-Butyl alcohol (TBA), 1,2-Dichloroethane (1,2-DCA), (EPA Method 8260B) TRPH = Total Recoverable Petroleum Hydrocarbons

<X = Concentration less than laboratory reporting limit

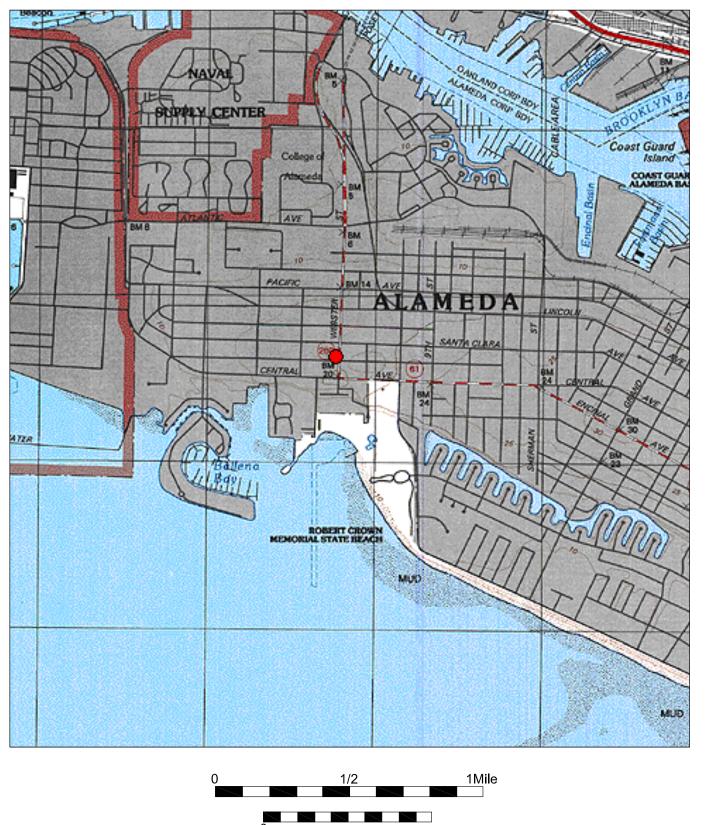
--- = Not Analyzed

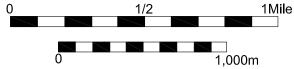
¹ = Does not match diesel chromatogram pattern

² = Confirmed by EPA Method 8260

- ⁴ = Does not match typical gasoline pattern; TPH Gasoline value is primarily due to individual peaks within gasoline quantitative range.
- ⁵ = Does not match typical gasoline pattern; TPH value includes amount of non-target compounds within the gasoline quantitative range.
- ⁶ = TPH value partially due to individual peak (MTBE) within gasoline quantitative range.

ESLs = Environmental Screening Levels (Table F-1a), groundwater is a current or potential drinking water resource (CRWQCB, Interim Final, November 2007).


yellow row = most recent data

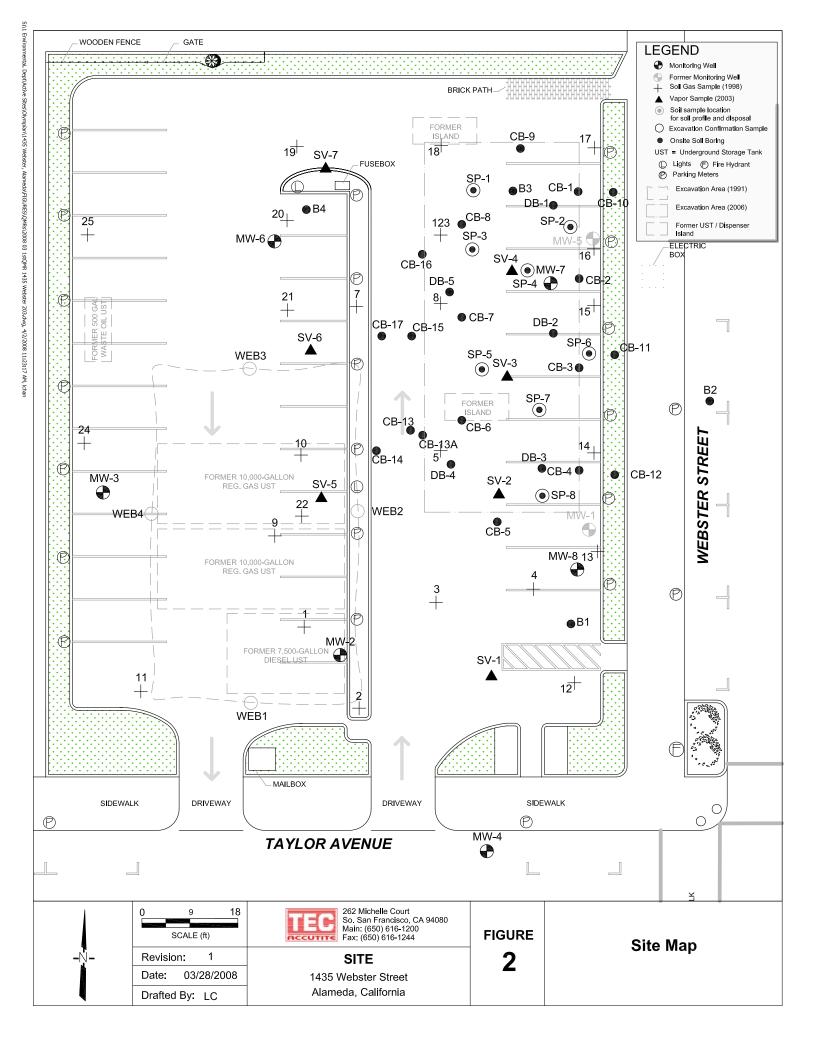


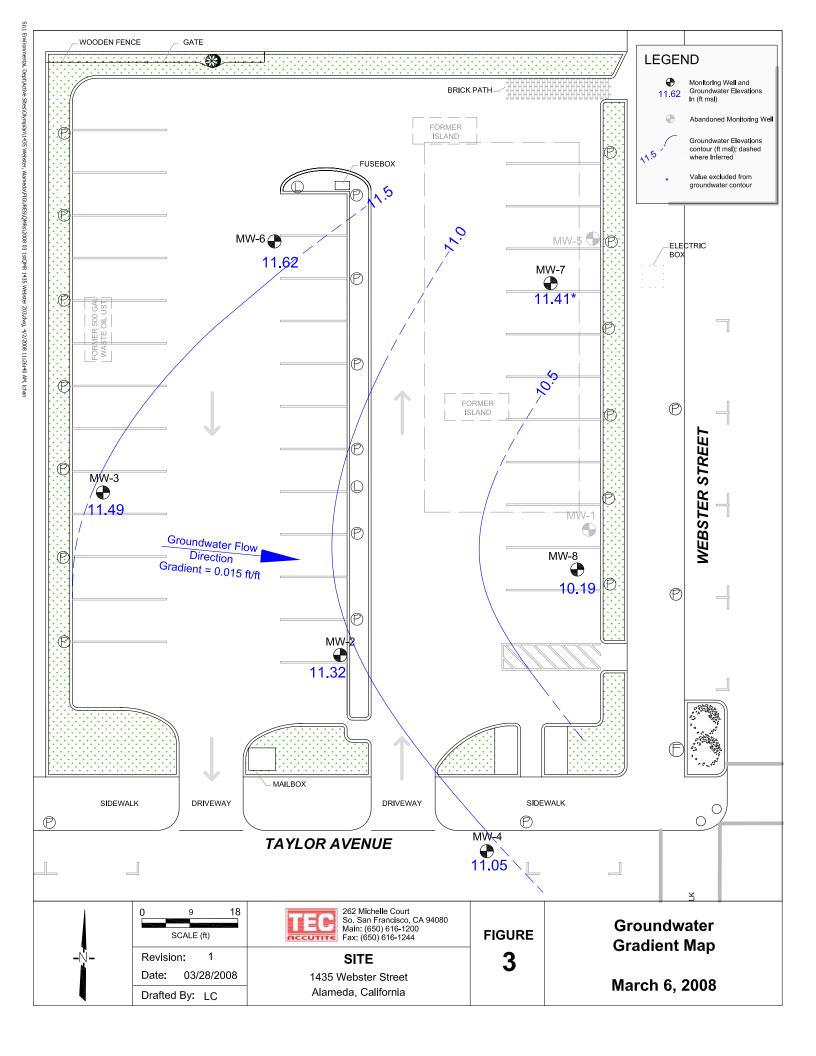
³ = Toluene was detected at concentrations of 1 ppb in sample from well MW-2, 0.74 ppb in sample from well MW-3, 0.9 ppb in sample from well MW-4, and 0.66 ppb in sample from well MW-6. Data were adjusted to non-detect because of the presence of toluene (0.81 ppb) in method blank and the sample results were less than 5 times in the blank (EPA, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1994).

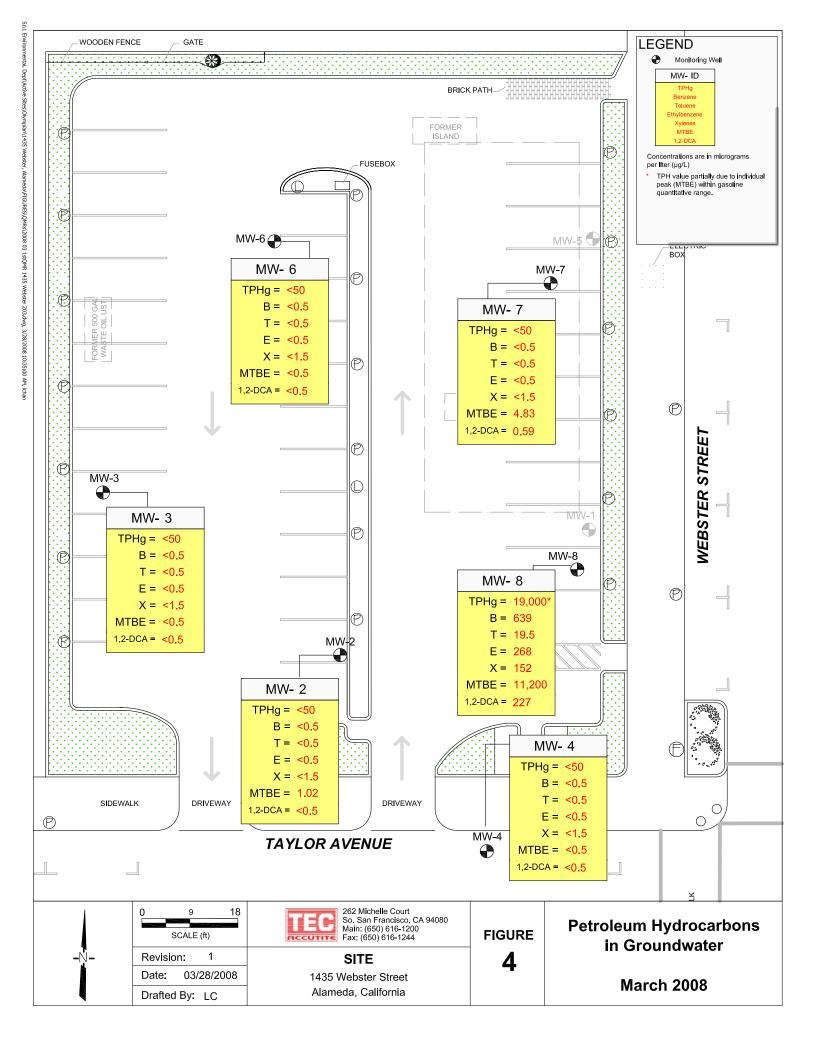
FIGURES

Site Location

Map By: TOPO! Date: 03/28/2008 Drafted By: LC


SITE 1435 Webster Street Alameda, California


262 Michelle Court So. San Francisco, CA 94080 Main: (650) 616-1200 Fax: (650) 616-1244


FIGURE

TITLE

Vicinity Map

ATTACHMENT A

FIELD DATA SHEETS

TEC ACCUTITE Well Data Sheet Project: 1435 Web5 ter Project # E-203 -1-08 Sampler: AD Date: 3/6/08 Site Address: Alameda Client: Olympian Event: Q1QmR Measurement Well Time Well ID Comments TOC DTB DTW DTP PT ELEV Diameter 958 8.48 MW-Z mn-3 956 8.30 8.25 MW-4 1018 MW-6 955 8.65 7.52 mw-7 95 61016 10 20 mw-8 9.14

Codes:

TOC = Top Of Casing (Feet, Relative to Mean Sea Level)

PT = Product Thickness (Feet)

PT = Product Thickness (Feet)

ELEV = Groundwater Elevation (Feet, Relative to Mean Sea Level)

(mm/dd/yy) (2400hr) (gall) (degrees C) (umhos/cm) (units) (visual) (NTU) (mg/l) (fit) 12/8 1,9 16.9 71.5 6.61 // 1.24	***************************************				TEC A	Accutite				
Client Name: Clambello Sampled By: Sample ID:: Cloadion: Alametlo OA Samples: Q1 OA Sample					•			t		
Client Name: Clambello Sampled By: Sample ID:: Cloadion: Alametlo OA Samples: Q1 OA Sample	Project	#: 1435	Web:	ster	Purged	Ву:	0	Wel	11.D.:	\
Date Purged 3/6/08 Start (2400hr) FZ/8 FZI End (2400hr) IZZ Date Sampled Sample Time (2400hr) IZZ Sample Type: Mcroundwater Other: Other: Casing Diameter 2" 3" 4" 5" 6" 8" Other Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 Date Time Volume Temp. Conductivity Pt Color Turbidity December Turbidity Turbi	i Client N	ame: O'/Y	mpia	n	Sampled	By:	17	Sam	ple I.D.:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Date Purged 3/6/08 Start (2400hr) 122/ Sample Type: Agroundwater Other: Casing Diameter 2" 3" 4" 5" 6" 8" Other Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 Depth to Bottom (feet) = 19.30 Teled Measurements Teled Measurements Teled Measurements Temp. Conductivity pH Color Turbidity (NTU) (mg/l) fit 12/8 1.9 (6.9 71.5 6.6) br.n med 12/8 1.9 (6.9 71.5 6.6) br.n med 12/8 1.9 (6.9 71.5 6.6) br.n med 12/9 3.8 (7.6 70.8 6.6) br.n med 12/1 3.8 (7.6 70.8 6.6) br.n med 12/1 5.6 17.8 68.0 6.65 br.n med Analysis: 3260 Sample Depth to Water: 3.49 Sample Information Sample Turbidity: Analysis: 3260 Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Peristaltic Pump Dedicated Teles of the first of total microscopic of the first of th	Location	1: Alan	redla		_			QA S	Samples:	<u>Q1</u>
Date Sample Type: AGroundwater Other: Casing Diameter 2"	Date Pui	rged 3/6	5/08		Start (240	Ohr) 1-7	18/2			
Sample Type: Agroundwater Other: Casing Diameter 2" 3" 4" 5" 6" 8" Other Depth to Bottom (feet) = 19.30 Depth to Bottom (feet) = 19.30 Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 X 3 (volumes) = 5.6/ Field Measurements Temp. Conductivity pH Color Turbidity (risual) (intru) (risual) (risual	3	npled	11		Sample Ti	me (2400h	122	21		
Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 Purge (gal) = 1.37 Table Time (gal) (gal										
Depth to Bottom (feet) = 19.30 Depth to Water (feet) = 3.3 Purge (gal) = 1.37 Table Time (gal) (gal	Casing D	iameter 2"	V :	3"	4"	5"	6"	8"	Ot	her
Purge (gal) = 1.27 x 3 (volumes) = 3.67 Field Measurements Field Measurementa Field School Aid				30			Water (fee	t) = 8.3		
Field Measurements Time (gal) Time (gal) Temp. Conductivity pH (units) (visual) Turbidity (mg/l) Turbidity Turbidity (mg/l) Turbidity	DTB-DTW	/= <u> </u>		Purg	e (gal) =	1.87	x 3	(volumes)	_ 5.6	/
Date (mm/dd/yy) (240br) (gal) (degrees C) (umhos/cm) (units) (visual) (NTU) (mg/l) (mg								,		
The state of the state of the state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of galons in one well volume, multiply after column height by A Total and state of the	Date	Time	Volume	Temp.	Conductivit	у рН	Color			- Dep
17/8 1,9 16.9 71.5 6.61 1/1 1/2	(mm/dd/yy) (2400hr)	(gal)	(degrees C			(visual)	· · · · ·	(mg/l)	
17.9 3.8 17.6 70.8 2.63 // 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 17.9 69.0 6.65 1/ 1/ 1/ 3.5 1/ 1/ 3.5	3/6/0			-						0.
Sample Information Sample Turbidity: Analysis: 3260 Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Pvc or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated er: Integrity: 9 COO E: To Convert water column height to total after of galons in one well volume, multiply ater column height by A Sample Information Sample Turbidity: 16 Med Sample Turbidity: 16 Med Sample Turbidity: 16 Med Sample Turbidity: 18 Med Sample Turbid								4,34		
Analysis: 3260 Sample Depth to Water: Analysis: 3260 Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump — Bailer (Teflon) — Centrifugal Pump — Bailer (Pvc or Disposable) Submersible Pump — Bailer (Stainless Steel) — Peristaltic Pump — Dedicated — D				· · · · · · · · · · · · · · · · · · ·					-t	8.4
Analysis: \$\frac{\text{DZGO}}{\text{Sample Vessel/Preservative:}} \frac{\text{Sample Monte}}{\text{Sample Vessel/Preservative:}} \frac{\text{Sampling Equipment}}{\text{Sampling Equipment}} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sampling Equipment}} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sampling Equipment} \text{Sailer (PvC or disposable)} \text{Submersible Pump} \text{Sailer (PvC or disposable)} \text{Submersible Pump} \text{Sailer (Stainless Steel)} \text{Submersible Pump} \text{Sailer (Stainless Steel)} \text{Submersible Pump} \text{Dedicated} \text{Dedicated} \text{Other:} \text{Other:} \text{Other:} \text{Dock #: \$\frac{\text{Dock #: }\text{Dock #: }D		(3.16	17.0	- 0.0	0,00				
Analysis: DZ60 Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Pvc or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated er: Inp Depth: X 10 ff (FS) for hyse Integrity: 9 COC Well Diameter A Int of galons in one well volume, multiply after column height by A Analysis: DZ60 Sample Turbidity: Memoriside Memorisides Sampling Equipment Bailer (Teflon) Centrifugal Pump Bailer (PvC or disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Lock #: 1000 Well Diameter A Int of galons in one well volume, multiply after column height by A Well Diameter A Int of galons in one well volume, multiply after column height by A								·		
Analysis: \$\frac{\text{3.60}}{\text{Sample Vessel/Preservative:}} \frac{\text{3 VOAS}}{\text{40 Med}} \frac{\text{Bailer (Teflon)}}{\text{Sample Newsel/Preservative:}} \frac{\text{3 VOAS}}{\text{40 Med}} \frac{\text{Bailer (Teflon)}}{\text{Bailer (PVC or Disposable)}} \frac{\text{Bailer (PVC or disposable)}}{\text{Bailer (PVC or disposable)}} \frac{\text{Submersible Pump}}{\text{Bailer (Stainless Steel)}} \frac{\text{Bailer (PVC or disposable)}}{\text{Submersible Pump}} \frac{\text{Bailer (Stainless Steel)}}{\text{Bailer (Stainless Steel)}} \frac{\text{Peristaltic Pump}}{\text{Depths: X 10 ft (VS) fix hase}} \frac{\text{Volume}}{\text{Volume}} \frac{\text{Volume}}{\text{Dock #: \$\text{40 Med}}} \frac{\text{Volume}}{\text{Dock #: \$\text{40 Med}}} \frac{\text{Volume}}{\text{Volume}} \frac{\text{Volume}}{Vol		.						· -		
Analysis: \$\frac{\text{3.60}}{\text{Sample Vessel/Preservative:}} \frac{\text{3 VOAS}}{\text{40 Med}} \frac{\text{Bailer (Teflon)}}{\text{Sample Newsel/Preservative:}} \frac{\text{3 VOAS}}{\text{40 Med}} \frac{\text{Bailer (Teflon)}}{\text{Bailer (PVC or Disposable)}} \frac{\text{Bailer (PVC or disposable)}}{\text{Bailer (PVC or disposable)}} \frac{\text{Submersible Pump}}{\text{Bailer (Stainless Steel)}} \frac{\text{Bailer (PVC or disposable)}}{\text{Submersible Pump}} \frac{\text{Bailer (Stainless Steel)}}{\text{Bailer (Stainless Steel)}} \frac{\text{Peristaltic Pump}}{\text{Depths: X 10 ft (VS) fix hase}} \frac{\text{Volume}}{\text{Volume}} \frac{\text{Volume}}{\text{Dock #: \$\text{40 Med}}} \frac{\text{Volume}}{\text{Dock #: \$\text{40 Med}}} \frac{\text{Volume}}{\text{Volume}} \frac{\text{Volume}}{Vol										
Analysis: DZGO Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PvC or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated er: Inp Depth: X 10 ff CFS for huse Integrity: Convert water column height to total after column height by A Well Diameter A Integrity: Convert water column height to total after column height by A Sample Turbidity: Memorial waters of medicated Sampling Equipment Bailer (Teflon) Centrifugal Pump Bailer (PvC or disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Lock #: 1000 Well Diameter A Integrity: 0.17 4" 0.65 6" 1.47 8" 2.62										
Analysis: 5260 Sample Vessel/Preservative: 3 VOAS #CC Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated er: Depth: X 10 ft Convert water column height to total and of galons in one well volume, multiply after column height by A Analysis: 5260 Sampling Equipment Bailer (Teflon) Centrifugal Pump Bailer (PVC or disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Lock #: 1000 Well Diameter A 2" 0.17 4" 0.65 6" 1.47 8" 2.62			3.40	9 Sar	nple Info	rmation		. Bon	, od	
Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PvC or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Peristaltic Pump Depth: X Integrity: Well Diameter A 2" O.17 4" O.65 6" 1.47 8" 2.62	ample Dep	th to Water:			× 2.00	Samp	ole Turbiai	ty:		
Purging Equipment Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Pvc or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Peristaltic Pump Other: Integrity: TE: To Convert water column height to total and of galons in one well volume, multiply after column height by A Well Diameter A Well Diameter A 2" 0.17 4" 0.65 6" 1.47 8" 2.62	. b N:	u L	A	nalysis: _4	0 <u>260</u>	-tiva. 3	MAS	466		
Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Peristaltic Pump Dedicated The Depth: X Off Case for home by the following attention one well volume, multiply after column height by A Bailer (Teflon) Centrifugal Pump Bailer (PVC or disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Lock #: 1010	ior:nor				Selfreserv				anf	
Centrifugal Pump Bailer (PVC or Disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Peristaltic Pump Dedicated Integrity: E: To Convert water column height to total ant of galons in one well volume, multiply ater column height by A E: To Convert water column height to total after column height by A Centrifugal Pump Bailer (PVC or disposable) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Lock #: 1070 Well Diameter A 2" 0.17 4" 0.65 6" 1.47 8" 2.62	Bladdor I	-				Bladder Pi	ump	Bailer (1	Teflon)	
Submersible PumpBailer (Stainless Steel) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Other:					sable)	Centrifuga	i Pump 4	🔀 Bailer (P	VC or disp	osable)
Peristaltic Pump Dedicated — Peristaltic Pump Other: Inp Depth: X 10 ft Cts ft have to the second of the second o		•			teel)	Submersib	le Pump -	Bailer (S	Stainless	Steel
Integrity: 9 Cook Lock #: Lock	Peristaltio	Pump _	Dedicat	ted	i			Dedicate	ed	
E: To Convert water column height to total ant of galons in one well volume, multiply rater column height by A Well Diameter A 2" 0.17 4" 0.65 6" 1.47 8" 2.62	er:	x In fe	140	I Fax	here Othe	er:				
E: To Convert water column height to total ant of galons in one well volume, multiply rater column height by A Well Diameter A 2" 0.17 4" 0.65 6" 1.47 8" 2.62		~/	1 100 5	1 %	nexely			nhe		
ant of galons in one well volume, multiply 2" 0.17 ater column height by A 4" 0.65 6" 1.47 8" 2.62	I Integrity:	9000	4			Lo	CK#:			
ater column height by A 4" 0.65 6" 1.47 8" 2.62										
8" 2.62			anto, manapi,	,						
ature: Page 1 of 1						1.77				
					8"	2.62				

TEC Accutite Water Sample Field Data Sheet Project #: 1435 Webster Purged By: __ Well I.D.: MW-3 QA Samples: <u>Q1</u> End (2400hr) 1116 Date Purged 3/6/03 Start (2400hr) 1/17 ___ Sample Time (2400hr) 1125 Date Sampled _____ Sample Type: ___Groundwater __Other:_ Casing Diameter 2" 6" Other Depth to Bottom (feet) = 21.93 Depth to Water (feet) = 8.3σ Purge (gal) = $\frac{7.32}{x^3}$ (volumes) = $\frac{6.96}{x^3}$ DTB-DTW = 13.65 Field Measurements Date Time **Turbidity** Depth Volume Temp. Conductivity pН Color (visual) (mg/I)(mm/dd/yy) (2400hr) (gal) (degrees C) (µmhos/cm) (units) (UTV) (ft) 180 8.30 1112 83.1 6.87 brn 7.3 1113 17.6 6.75 64.8 6.69 1114 4.6 17.8 1116 6.96 6Z.4 10 8.53 6.63 ひごフ Sample Information low Sample Depth to Water: 8.53Sample Turbidity: Analysis: 7260 3 VOAS HCL Sample Vessel/Preservative: **Purging Equipment** Sampling Equipment ___ Bailer (Teflon) Bladder Pump ___ Bailer (Teflon) __ Bladder Pump Bailer (PVC or disposable) Centrifugal Pump ____Bailer (PVC or Disposable) __ Centrifugal Pump __ Submersible Pump —_ Bailer (Stainless Steel) X Submersible Pump ____Bailer (Stainless Steel) Dedicated _ ___ Peristaltic Pump Dedicated __ - Peristaltic Pump Other: Other: Pump Depth: 🔀 Lock #: none Well Integrity: _960 NOTE: To Convert water column height to total Well Diameter amount of galons in one well volume, multiply 0.17 the water column height by A 0.65 1.47 2.62 Page 1 of 1 Signature:

TEC Accutite Water Sample Field Data Sheet Well I.D.: nW Sample I.D.: Purged By: Client Name: Olymplan Sampled By: QA Samples: _ 역고 Location:_ End (2400hr) 1350 90% 110.52 Date Purged Start (2400hr) _ Sample Time (2400hr) 1357 Date Sampled . Sample Type: Groundwater Other:_ Other Casing Diameter 2" Depth to Water (feet) = 8.25Depth to Bottom (feet) = 19.60DTB-DTW = 11.55 _ x 3 (volumes) =_ Purge (gal) = Field Measurements Depth **Turbidity** D.O. Conductivity pН Color Date Time Volume Temp. (mg/I)(ft) (NTU) (mm/dd/yy) (2400hr) (degrees C) (µmhos/cm) (units) (visual) (gal) 8.ZS かい 1350 Sample Information Sample Depth to Water: 10.05 Sample Turbidity: /ow Analysis: 3260 Odor: Mod Sample Vessel/Preservative: 300 AS Sampling Equipment **Purging Equipment** Bailer (Teflon) ___ Bailer (Teflon) Bladder Pump Bladder Pump Bailer (PVC or disposable) Centrifugal Pump ____Bailer (PVC or Disposable) Centrifugal Pump Bailer (Stainless Steel) Submersible Pump ____Bailer (Stainless Steel) _ Submersible Pump -Dedicated Peristaltic Pump Dedicated – Peristaltic Pump Other: . Varced (to 20, 5 for sur Pump Depth: 🗲 (screwbreke, new Lock # Well Diameter NOTE: To Convert water column height to total amount of galons in one well volume, multiply 4" 0.65 the water column height by A 6" 1.47 Page | of Signature:

			Wate		Accutite e Field D	ata Shee	t				
Project # Client Na Location	: 1435 u me: 0 ly 1 : Alan	rebster nplan neda		Purged I	By: A)	Well Samp	I.D.: MW - ole I.D.: & I			
Date Purged 3/8/07 Start (2400hr) 1035 End (2400hr) 1039 Date Sampled 3/8/07 Sample Time (2400hr) 1053 Sample Type: UGroundwater Other:											
							8"	Other			
Depth to I	3ottom (fee	et) = 19. 25	90 Purge	e (gal) =/	Depth to	Water (feet	(volumes) =	s 5.74			
			F	ield Mea	suremen	ts					
	Time (2400hr)	Volume (gal)	Temp. (degrees C)	Conductivit (µmhos/cm	ty pH) (units)	Color (visual)	Turbidity (NTU)	Depti (mg/l) (ft)			
3/6/08		1.9	17.8		7.54	brn ',	4184	8.65			
	1037	3.8	18.0	77.Z 74.S	7.09	11	11/	9.33			
	(*)	3.7	<i>y</i> . <i>t</i>	14.	V .,						
dor: No.	ne	s	ample Vess		760 /ative: _ 3	Voas					
Pladder F	Purging	Equipme Bailer	ent (Teflon)		- Bladder F	Pump	g Equipme Bailer (T	eflon)			
Centrifug	al Pump	Bailer (PVC or Dispo	sable)	Centrifug	al Pump -	🔼 Bailer (P	VC or disposable)			
➤ Submersible Pump Bailer (Stainless Steel) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated											
her: mp Depth: j	A	1		1	ner:	•					
ell Integrity:	9000	ķ			Lo	ock#:_ V	1A				
OTE: To Convo ount of galons i water column f	ent water colu in one well v	umn height to		ell Diameter 2" 4" 6" 8"	A 0.17 0.65 1.47 2.62			1			
nature:		0/	The state of the s				Page	eof			

80% 410.9

			TE	C Accutite				
		1	Water Sai	mple Field I	Data Shee	t		
	Project #: 1435 W	rebste r	Puro	ged By: N	n	Well	I.D.:	12/_
	Project #: 1435 W	mpsan	Sam	pled By:		Sam	ple I.D.:	
. 0	1 A-10 M	eda		. ,	,м.	QA S	amples:	G
80% 6 10 14	Date Purged 3	18/08	Start	(2400hr) 17	56	End (240	0hr)	
14	Date Sampled	11	Samp	le Time (2400	hr) KO.	1-1319		
410.0	Sample Type: 🛂 G			`		,		
	Casing Diameter 2"	3"	4"_	5"	6"	8"	Oth	ier
	Depth to Bottom (fe	et) = 19.83		Depth to	Water (fee	t) = 7.7	7	
·	DTB-DTW = 12	<i>ij</i>	Purge (gal)	= 9,7.8) x 3	(volumes) =	Z3 .	6 ga
			Field N	Measuremei	 1ts			
	Date Time (mm/dd/yy) (2400hr)			uctivity pH	Color (visual)	Turbidity (NTU)	D:O. (mg/l)	Depth (ft)
	3/6/08/1756			.2. 6.41	·	low	•	7.72
	1300			7.6 6.55	brn	med	i i	
ļ	1309		8 134		11	4,30		10.10
	10-1		0 137	7 6.55				
				\(\frac{1}{2}\)				
_								
s	ample Depth to Water	10.10	Sample	Information Sar	nple Turbid	ity: 10 z	<u> </u>	
ı		Analys	is: 820	60				
0	dor: 5trong	Sample	e Vessel/Pre	eservative:				
		Equipment			•	g Equipme		
		Bailer (Teflo	-	Bladder Centrifu	Pump	Bailer (lenon) PVC or dispo	osable)
3	Centrifugal Pump			Submers		Bailer (S	Stainless	Steel)
		Dedicated _		— Peristalt		Dedicate	ed	
Ot	her:	Co Cato	. 1	Other:	•			
	mp bop di.							
We	Il Integrity: 9000/	(new cap		L	.ock #: `			
	TE: To Convert water collount of galons in one well v		Well Diam 2"	neter A 0.17				
	water column height by A	·	4" 6"	0.65	1			
			8"	2.62	1			
Sign	nature:	0/				Pag	e of	
100								

TEC Accutite Water Sample Field Data Sheet Project #: 1435 Webster

Client Name: Olympian

Location: Alameda

Purged By: Alameda

Sampled By: Sample I.D.: _ QA Samples: -Start (2400hr) 1421 3/5/08 Date Purged __ End (2400hr) _ Date Sampled _____ _ Sample Time (2400hr)_ Sample Type: ___Groundwater Other: Other 8" Casing Diameter 2" Depth to Bottom (feet) = 19.85Depth to Water (feet) = _ ___ x 3 (volumes) = **Z**0 88 DTB-DTW = 10 - 7/ Purge (gal) = Field Measurements Depth °D.O. Date Time Volume Temp. Conductivity pН Color **Turbidity** (degrees C) (μmhos/cm) (mm/dd/yy) (units) (visual) (NTU) (mg/I)(ft) (2400hr) (gal) 1. 14 90.6 100 1421 1426 Ga 7.0 13.9 gry Sample Information 10.95 ___ Sample Turbidity: 10 w Sample Depth to Water: Analysis: DZ60 Sample Vessel/Preservative: 3 VOA5 Purging Equipment Sampling Equipment ___ Bailer (Teflon) Bladder Pump ___ Bailer (Teflon) _ Bladder Pump Centrifugal Pump Bailer (PVC or disposable) _ Centrifugal Pump ____Bailer (PVC or Disposable) Bailer (Stainless Steel) 🔀 Submersible Pump ____Bailer (Stainless Steel) Submersible Pump ---Dedicated . ___ Peristaltic Pump Dedicated . — Peristaltic Pump Other: Other: __ Pump Depth: 🗴 Lock #: -Well Integrity: ${\mathfrak L}$ Well Diameter NOTE: To Convey water column height to total amount of galons in one well volume, multiply 0.17 0.65 the water column height by A 1.47 Page of Signature:

£

ATTACHMENT B

LABBORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

March 14, 2008

Adam Dickenson TEC Accutite 262 Michelle Ct South San Francisco, CA 94080

TEL: (650) 616-1200 FAX 650-616-1244

RE: 1435 Webster Ave/ 14180

Dear Adam Dickenson:

Order No.: 0803050

Torrent Laboratory, Inc. received 6 samples on 3/7/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Patti Sandrock

QA Officer

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Adam Dickenson

TEC Accutite

Date Received: 3/7/2008

Date Reported:

Client Sample ID: MW-2

Sample Location: 1435 Webster Ave **Sample Matrix:** GROUNDWATER

Date/Time Sampled

3/6/2008 12:21:00 PM

Lab Sample ID: 0803050-001 **Date Prepared:** 3/12/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Benzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Isopropyl Ether	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/12/2008	0.5	1	0.500	1.02	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/12/2008	10	1	10.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Toluene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Xylenes, Total	SW8260B	3/12/2008	1.5	1	1.50	ND	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/12/2008	0	1	61.2-131	103	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/12/2008	0	1	64.1-120	91.0	%REC	R15632
Surr: Toluene-d8	SW8260B	3/12/2008	0	1	75.1-127	97.6	%REC	R15632
TPH (Gasoline)	SW8260B(TPH)	3/12/2008	50	1	50	ND	μg/L	G15632
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	3/12/2008	0	1	58.4-133	94.8	%REC	G15632

TEC Accutite

Date Received: 3/7/2008

Date Reported:

Client Sample ID: MW-3

Sample Location: 1435 Webster Ave

Sample Matrix: GROUNDWATER **Date/Time Sampled** 3/6/2008 11:25:00 AM

Lab Sample ID: 0803050-002 **Date Prepared:** 3/12/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Benzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Isopropyl Ether	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/12/2008	10	1	10.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Toluene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Xylenes, Total	SW8260B	3/12/2008	1.5	1	1.50	ND	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/12/2008	0	1	61.2-131	104	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/12/2008	0	1	64.1-120	94.9	%REC	R15632
Surr: Toluene-d8	SW8260B	3/12/2008	0	1	75.1-127	97.0	%REC	R15632
TPH (Gasoline)	SW8260B(TPH)	3/12/2008	50	1	50	ND	μg/L	G15632
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	3/12/2008	0	1	58.4-133	103	%REC	G15632

TEC Accutite

Date Received: 3/7/2008

Date Reported:

Client Sample ID: MW-4

Sample Location: 1435 Webster Ave

Sample Matrix: GROUNDWATER **Date/Time Sampled** 3/6/2008 1:57:00 PM

Lab Sample ID: 0803050-003 **Date Prepared:** 3/12/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Benzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Isopropyl Ether	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/12/2008	10	1	10.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Toluene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Xylenes, Total	SW8260B	3/12/2008	1.5	1	1.50	ND	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/12/2008	0	1	61.2-131	104	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/12/2008	0	1	64.1-120	90.1	%REC	R15632
Surr: Toluene-d8	SW8260B	3/12/2008	0	1	75.1-127	94.2	%REC	R15632
TPH (Gasoline)	SW8260B(TPH)	3/12/2008	50	1	50	ND	μg/L	G15632
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	3/12/2008	0	1	58.4-133	103	%REC	G15632

TEC Accutite

Date Received: 3/7/2008

Date Reported:

Client Sample ID: MW-6

Sample Location: 1435 Webster Ave

Sample Matrix: GROUNDWATER **Date/Time Sampled** 3/6/2008 10:53:00 AM

Lab Sample ID: 0803050-004 **Date Prepared:** 3/12/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Benzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Isopropyl Ether	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/12/2008	10	1	10.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Toluene	SW8260B	3/12/2008	0.5	1	0.500	ND	μg/L	R15632
Xylenes, Total	SW8260B	3/12/2008	1.5	1	1.50	ND	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/12/2008	0	1	61.2-131	110	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/12/2008	0	1	64.1-120	94.5	%REC	R15632
Surr: Toluene-d8	SW8260B	3/12/2008	0	1	75.1-127	99.4	%REC	R15632
TPH (Gasoline)	SW8260B(TPH)	3/12/2008	50	1	50	ND	μg/L	G15632
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	3/12/2008	0	1	58.4-133	103	%REC	G15632

TEC Accutite

Date Received: 3/7/2008

Date Reported:

Client Sample ID: MW-7

Sample Location: 1435 Webster Ave

Sample Matrix: GROUNDWATER **Date/Time Sampled** 3/6/2008 1:19:00 PM

Lab Sample ID: 0803050-005 **Date Prepared:** 3/13/2008

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/13/2008	0.5	1	0.500	0.590	μg/L	R15632
Benzene	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Isopropyl Ether	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/13/2008	0.5	1	0.500	4.83	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/13/2008	10	1	10.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Toluene	SW8260B	3/13/2008	0.5	1	0.500	ND	μg/L	R15632
Xylenes, Total	SW8260B	3/13/2008	1.5	1	1.50	ND	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/13/2008	0	1	61.2-131	108	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/13/2008	0	1	64.1-120	89.3	%REC	R15632
Surr: Toluene-d8	SW8260B	3/13/2008	0	1	75.1-127	98.2	%REC	R15632
TPH (Gasoline)	SW8260B(TPH)	3/13/2008	50	1	50	ND	μg/L	G15632
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	3/13/2008	0	1	58.4-133	103	%REC	G15632

TEC Accutite

Date Received: 3/7/2008

Lab Sample ID: 0803050-006

Date Prepared: 3/13/2008

Date Reported:

Client Sample ID: MW-8

1435 Webster Ave

Sample Location: Sample Matrix:

GROUNDWATER

Date/Time Sampled

Surr: 4-Bromofllurobenzene

3/6/2008 3:29:00 PM

SW8260B(TPH)

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,2-Dibromoethane (EDB)	SW8260B	3/13/2008	0.5	8.8	4.40	ND	μg/L	R15632
1,2-Dichloroethane (EDC)	SW8260B	3/13/2008	0.5	8.8	4.40	227	μg/L	R15632
Benzene	SW8260B	3/13/2008	0.5	8.8	4.40	639	μg/L	R15632
Ethyl tert-butyl ether (ETBE)	SW8260B	3/13/2008	0.5	8.8	4.40	ND	μg/L	R15632
Ethylbenzene	SW8260B	3/13/2008	0.5	8.8	4.40	268	μg/L	R15632
Isopropyl Ether	SW8260B	3/13/2008	0.5	8.8	4.40	ND	μg/L	R15632
Methyl tert-butyl ether (MTBE)	SW8260B	3/13/2008	0.5	88	44.0	11200	μg/L	R15632
t-Butyl alcohol (t-Butanol)	SW8260B	3/13/2008	10	8.8	88.0	ND	μg/L	R15632
tert-Amyl methyl ether (TAME)	SW8260B	3/13/2008	0.5	8.8	4.40	ND	μg/L	R15632
Toluene	SW8260B	3/13/2008	0.5	8.8	4.40	19.5	μg/L	R15632
Xylenes, Total	SW8260B	3/13/2008	1.5	8.8	13.2	152	μg/L	R15632
Surr: Dibromofluoromethane	SW8260B	3/13/2008	0	8.8	61.2-131	101	%REC	R15632
Surr: Dibromofluoromethane	SW8260B	3/13/2008	0	88	61.2-131	104	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/13/2008	0	8.8	64.1-120	81.6	%REC	R15632
Surr: 4-Bromofluorobenzene	SW8260B	3/13/2008	0	88	64.1-120	79.5	%REC	R15632
Surr: Toluene-d8	SW8260B	3/13/2008	0	88	75.1-127	94.2	%REC	R15632
Surr: Toluene-d8	SW8260B	3/13/2008	0	8.8	75.1-127	103	%REC	R15632
Note:TPH value partially due to indiv	vidual peak (MTBE) within	gasoline quantita	ative range					
TPH (Gasoline)	SW8260B(TPH)	3/13/2008	50	88	4400	19000	μg/L	G15632

88

58.4-133

103

%REC

G15632

3/13/2008

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 14-Mar-08

CLIENT: TEC Accutite

Work Order: 0803050

Project: 1435 Webster Ave/ 14180

ANALYTICAL QC SUMMARY REPORT

BatchID: G15632

Sample ID: MB-G	SampType: MBLK	TestCoo	de: TPH_GAS	_W Units: μg/L		Prep Da	te: 3/12/20	008	RunNo: 15 6	632	
Client ID: ZZZZZ	Batch ID: G15632	TestN	lo: SW8260B	(TP		Analysis Da	te: 3/12/20	800	SeqNo: 224	4352	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	ND	50									
Surr: 4-Bromofllurobenzene	9.000	0	11.36	0	79.2	58.4	133				
Sample ID: LCS-G	SampType: LCS	TestCoo	le: TPH_GAS	_W Units: μg/L		Prep Da	te: 3/12/2 0	008	RunNo: 15 6	632	
Client ID: ZZZZZ	Batch ID: G15632	TestN	lo: SW8260B	(TP		Analysis Da	te: 3/12/20	800	SeqNo: 224	4353	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	262.0	50	227	0	115	52.4	127				
Surr: 4-Bromofllurobenzene	13.00	0	11.36	0	114	58.4	133				
Sample ID: LCSD-G	SampType: LCSD	TestCoo	le: TPH_GAS	_W Units: μg/L		Prep Da	te: 3/12/2 0	008	RunNo: 150	632	
Client ID: ZZZZZ	Batch ID: G15632	TestN	lo: SW8260B	(TP		Analysis Da	te: 3/12/20	800	SeqNo: 224	4354	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (Gasoline)	268.0	50	227	0	118	52.4	127	262	2.26	20	
Surr: 4-Bromofllurobenzene	14.00	0	11.36	0	123	58.4	133	0	0	0	

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 1 of 3

CLIENT: TEC Accutite Work Order: 0803050

ANALYTICAL QC SUMMARY REPORT

Project: 1435 Webster Ave/ 14180 BatchID: R15632

Sample ID: MB	SampType: MBLK	TestCod	de: 8260B_W _	_ PE Units: μg/L		Prep Da	te: 3/12/20	08	RunNo: 156	632	
Client ID: ZZZZZ	Batch ID: R15632	TestN	No: SW8260B			Analysis Da	te: 3/12/20	08	SeqNo: 224	1445	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.500									
1,2-Dichloroethane (EDC)	ND	0.500									
Benzene	ND	0.500									
Ethyl tert-butyl ether (ETBE)	ND	0.500									
Ethylbenzene	ND	0.500									
Isopropyl Ether	ND	0.500									
Methyl tert-butyl ether (MTBE)	ND	0.500									
-Butyl alcohol (t-Butanol)	ND	10.0									
tert-Amyl methyl ether (TAME)	ND	0.500									
Toluene	ND	0.500									
Xylenes, Total	ND	1.50									
Surr: Dibromofluoromethane	10.86	0	11.36	0	95.6	61.2	131				
Surr: 4-Bromofluorobenzene	10.22	0	11.36	0	90.0	64.1	120				
Surr: Toluene-d8	11.35	0	11.36	0	99.9	75.1	127				
Sample ID: LCS	SampType: LCS	TestCo	de: 8260B_W _	_PE Units: μg/L		Prep Da	te: 3/12/20	08	RunNo: 156	632	
Client ID: ZZZZZ	Batch ID: R15632	Test	lo: SW8260B			Analysis Da	te: 3/12/20	08	SeqNo: 224	1446	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	16.56	0.500	17.04	0	97.2	66.9	140				
Toluene	17.48	0.500	17.04	0	103	76.6	123				
Surr: Dibromofluoromethane	11.65	0	11.36	0	103	61.2	131				
Surr: 4-Bromofluorobenzene	10.54	0	11.36	0	92.8	64.1	120				
Surr: Toluene-d8	11.37	0	11.36	0	100	75.1	127				
Sample ID: LCSD	SampType: LCSD	TestCod	de: 8260B_W _	_PE Units: μg/L		Prep Da	te: 3/13/20	08	RunNo: 156	632	
Client ID: ZZZZZ	Batch ID: R15632	TestN	No: SW8260B			Analysis Da	te: 3/13/20	08	SeqNo: 224	1447	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	14.62	0.500	17.04	0	85.8	66.9	140	16.56	12.4	20	
Toluene	15.28	0.500	17.04	0	89.7	76.6	123	17.48	13.4	20	
•	quantitation range at the Reporting Limit			ng times for preparatio outside accepted recove	-	s exceeded		Analyte detected b Spike Recovery or	•	ecovery limits	age 2

CLIENT: TEC Accutite Work Order:

0803050

Project: 1435 Webster Ave/ 14180

ANALYTICAL QC SUMMARY REPORT

BatchID: R15632

Sample ID: LCSD Client ID: ZZZZZ	SampType: LCSD Batch ID: R15632		le: 8260B_W lo: SW8260B	PE Units: µg/L		Prep Dat Analysis Dat	te: 3/13/20 te: 3/13/20		RunNo: 156 SeqNo: 22 4		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	12.00	0	11.36	0	106	61.2	131	0	0	0	
Surr: 4-Bromofluorobenzene	10.25	0	11.36	0	90.2	64.1	120	0	0	0	
Surr: Toluene-d8	11.34	0	11.36	0	99.8	75.1	127	0	0	0	

Analyte detected below quantitation limits

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 RESET FAX: 408.263.8293

CHAIN OF CUSTODY

LAB WORK	ORDER NO
0803	

.263.8293 • NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

Transition Transition	www.torrentiab.com	1	1 4:-	- of Co	malina: 4	1/125 W	phster	Ave, A	lameda
Company Name: TEC Accu			Locatio	n or Sa	mpling.	477	عرال م	<u> </u>	
Address: 262 Michelle C	.+	1 0 1 0	Purpos	e: 😡 :	L Q	mk so	ento E	Es/ox	
	State: Ca		Specia	l Instruc	tions / C	omments 7			
Telephone: (650) 616-1200 F		z44				\$6 B	0180	76	on @ tecaccotite.com
REPORT TO: Adam Dicken Son	SAMPLER:		P.O. #	14/	80		EMAIL: a	dichens	one .
TURNAROUND TIME:	SAMPLE TYPE	: REPORT F	ORMAT:	9	8				
10 Work Days 3 Work Days Noon 7 Work Days 2 Work Days 2 - 8 H 5 Work Days 1 Work Day 0 Other	Hours Waste Water	Air QC Leve	EDD :	7849,87EX, 0xygenates (500)	lead somemers		-		ANALYSIS REQUESTED
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX # OF CONT	CONT TYPE	FOXO SXXO	100				REMARKS
01A MW-Z	3/6/08 122/	W 3	VOA Y HCL	4	7				
02 A MW-3 03 A MW-4	1125			<u> </u>					
031 MW-4	1357								
041 MW-6	1053								
05A MW-7.	1319								
069 mw-8	1529	1 1	<u>↓</u>	1	V				
0			. <u> </u>						
1 Relinguished By: Print: Ada in Belinguished By: Print: Name By:	Dickenson 3/7	108 Time: 1::	37pm	Rece	the w	Bow	n Natali	Brown 3/	7/08 Time: 37pm
Beinguished By: Print:	talia Bookin 3/7	108 Time: 3:	10pm	Rece	ived By:	Wa	Print:	Ani) 3.	7.08 3.10 P
Were Samples Received in Good Condition?	Yes NO S	Samples on Ice? Yes	s 🔲 NO) Metho	od of Ship	oment_	HA	Sample s	
	aboratory 30 days from da				nts are m				Page
Log In By:	Date:	Log In Revie	ewed Bv.				Date:		1

ATTACHMENT C

GEOTRACKER SUBMISSION CONFIRMATIONS

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title: First Quarter 2008 Groundwater Monitoring

Report

Facility Global ID: T0600100766

Facility Name: OLYMPIAN #112

Submittal Date/Time: 3/26/2008 10:53:28 AM

Confirmation 2423644125

Number:

Back to Main Menu

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

1 of 1 3/26/2008 11:00 AM

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6667473852

Date/Time of Submittal: 3/26/2008 11:02:38 AM

Facility Global ID: T0600100766
Facility Name: OLYMPIAN #112

Submittal Title: First Quarter 2008 Groundwater Monitoring Report

Submittal Type: GW Monitoring Report

Click <u>here</u> to view the detections report for this upload.

OLYMPIAN #112 Regional Board - Case #: 01-0832

1435 WEBSTER SAN FRANCISCO BAY RWQCB (REGION 2)

ALAMEDA, CA 94501 Local Agency (lead agency) - Case #: RO0000193

ALAMEDA COUNTY LOP - (SP)

CONF # TITLE QUARTER
6667473852 First Quarter 2008 Groundwater Monitoring Report Q1 2008

SUBMITTED BY SUBMIT DATE STATUS

Nicholas Haddad 3/26/2008 PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

FIELD POINTS WITH DETECTIONS

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

GROUNDWATER

METHOD QA/QC REPORT

METHODS USED

TESTED FOR REQUIRED ANALYTES?

LAB NOTE DATA QUALIFIERS

8260TPH,SW8260B

Y

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS 0 METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 LAB BLANK DETECTIONS 0 DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK Υ - MATRIX SPIKE Ν - MATRIX SPIKE DUPLICATE Ν Υ - BLANK SPIKE - SURROGATE SPIKE - NON-STANDARD SURROGATE USED

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a
SURROGATE SPIKES % RECOVERY BETWEEN 85-115% n/a
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% Y

SOIL SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a
SURROGATE SPIKES % RECOVERY BETWEEN 70-125% n/a
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% n/a

FIELD QC SAMPLES

SAMPLE <u>COLLECTED</u> <u>DETECTIONS > REPDL</u>

1 of 2 3/26/2008 11:48 AM

		1
QCTB SAMPLES	N	0
QCEB SAMPLES	N	0
QCAB SAMPLES	N	0

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE <u>ADMINISTRATOR</u>.

2 of 2 3/26/2008 11:48 AM

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_REPORT FILE

YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name: OLYMPIAN #112 Global ID: T0600100766

Title: First Quarter 2008 Groundwater Monitoring

Report

Document Type: Monitoring Report - Quarterly

Submittal Type: GEO_REPORT

Submittal Date/Time: 4/17/2008 11:35:53 AM

Confirmation 6622591912

Number: 662259191

Click <u>here</u> to view the document.

Back to Main Menu

Logged in as TEC-OLYMPIAN (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

1 of 1 4/17/2008 11:35 AM